prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python3 -u """ Main Script for training and testing """ import argparse import json import logging import os import pdb import random import sys import time as t from collections import OrderedDict import numpy as np import spacy import torch from torch import nn from torch.optim.lr_scheduler import ReduceLROnPlateau from torch.utils.data import DataLoader, RandomSampler, SubsetRandomSampler from data_loader import ContDataset, MySampler from dataset_settings import data_dir # from extra import plot_batch from model import ContModel from settings import (args, batch_size, device, individual_turnpair_experiments, just_test, just_test_folder, just_test_model, language_size, load_encodings, load_model, load_second_encodings, lstm_sets_dict, max_epochs, naming_dict, note_append, num_data_loader_workers) from settings import num_feat_per_person as num_feat_per_person_dict from settings import (optim_patience, pred_task_dict, test_dataset_settings_dict, test_file_list, time_out_length, train_dataset_settings_dict, train_file_list, use_ling, vae_data_multiplier, vae_data_multiplier_2, vae_experiments, vae_target_da, valid_dataset_settings_dict, valid_file_list) from test_funcs import test from util import (get_individual_turnpair_dataset, get_vae_dataset, get_vae_encodings) # from test_funcs import sanity_check_func, get_batch_items_for_full_test sys.dont_write_bytecode = True torch.autograd.set_detect_anomaly(True) torch.set_default_dtype(torch.float32) SET_TRAIN = 0 SET_VALID = 1 SET_TEST = 2 def main(): SEED = args.seed random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed_all(SEED) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(SEED) t0 = t.time() embeds_usr, embeds_sys, embeds, num_feat_per_person, sil_tok, nlp = setup_ling() if just_test: just_test_func( embeds_usr=embeds_usr, embeds_sys=embeds_sys, embeds=embeds, num_feat_per_person=num_feat_per_person, sil_tok=sil_tok, nlp=nlp ) def _init_fn(): return np.random.seed(SEED) print('Loading valid DATA') valid_dataset = ContDataset(valid_dataset_settings_dict) valid_dataset.embeds_usr = embeds_usr valid_dataset.embeds_sys = embeds_sys valid_dataset.nlp = nlp valid_dataset.sil_tok = sil_tok collate_fn_valid = valid_dataset.collate_fn valid_sampler = MySampler(valid_dataset) valid_dataloader = DataLoader(valid_dataset, sampler=valid_sampler, batch_size=batch_size, collate_fn=collate_fn_valid, num_workers=num_data_loader_workers, worker_init_fn=_init_fn) num_valid_batches = len(valid_dataloader) valid_dataset.update_annots_test = test_dataset_settings_dict['update_annots_test'] print('Loading train DATA') train_dataset = ContDataset(train_dataset_settings_dict) train_dataset.embeds_usr = embeds_usr train_dataset.embeds_sys = embeds_sys train_dataset.nlp = nlp train_dataset.sil_tok = sil_tok collate_fn_train = train_dataset.collate_fn if lstm_sets_dict['two_sys_turn']: tmp_sampler = MySampler(train_dataset) train_sampler = SubsetRandomSampler(tmp_sampler.my_indices_no_first) else: train_sampler = RandomSampler( train_dataset) if lstm_sets_dict['train_random_sample'] else MySampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=batch_size, collate_fn=collate_fn_train, num_workers=num_data_loader_workers, worker_init_fn=_init_fn) num_train_batches = len(train_dataloader) print('Done loading all DATA') print('time taken: \n' + str(t.time() - t0)) context_vec_settings_dict = { 'train': len(train_file_list), 'valid': len(valid_file_list), 'test': len(test_file_list) } lstm_sets_dict['sil_tok'] = sil_tok model = ContModel(num_feat_per_person, lstm_sets_dict, device, context_vec_settings_dict, embeds_usr, embeds_sys, embeds) # print([[k, i.shape, torch.prod(torch.tensor(i.shape))] for k, i in model.state_dict().items()]) # keep for debugging # best_valid_loss = 10000 iteration = 0 results_dict = OrderedDict() results_dict['train'], results_dict['valid'], results_dict['test'] = OrderedDict( ), OrderedDict(), OrderedDict() for task in ['all'] + pred_task_dict['active_outputs'] + ['iteration', 'epoch', ]: results_dict['train'][task] = [] results_dict['valid'][task] = [] results_dict['test'][task] = [] # results_dict['test']['num_batches'] = len(test_dataloader) results_dict['valid']['stats'] = [] results_dict['test']['stats'] = [] if load_model: print('LOADING MODEL FROM DISK') if torch.cuda.is_available(): checkpoint = torch.load(just_test_folder + '/model.pt') else: checkpoint = torch.load( just_test_folder+'/model.pt', map_location='cpu') model = torch.nn.DataParallel(model, dim=0) model.load_state_dict(checkpoint) model.to(device) embeds = model.module.embeds train_dataset.embeds = embeds valid_dataset.embeds = embeds train_dataset.nlp = nlp valid_dataset.nlp = nlp valid_dataset.sil_tok = sil_tok results_dict = json.load(open(just_test_folder + '/results.json', 'r')) # model.load_state_dict(checkpoint, strict=False) iteration = results_dict['train']['iteration'][-1] if not note_append == '_dev' and not os.path.exists(just_test_folder+'/optimizer.pt'): initial_learning_rate = float(input("Set initial learning rate:")) lstm_sets_dict['learning_rate'] = initial_learning_rate else: model = torch.nn.DataParallel(model, dim=0) model.to(device) def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] print('Parameter count:{}'.format(int(count_parameters(model)))) optimizer = torch.optim.Adam(model.parameters( ), lr=lstm_sets_dict['learning_rate'], weight_decay=lstm_sets_dict['l2']) if load_model and os.path.exists(just_test_folder + '/optimizer.pt'): optim_state = torch.load(just_test_folder+'/optimizer.pt') optimizer.load_state_dict(optim_state) print('optimizer loaded. LR:{}'.format(optimizer.defaults['lr'])) # scheduler = ReduceLROnPlateau(optimizer, 'min', patience=optim_patience, min_lr=5.0e-06, verbose=True) # 9000, 2000, 2000, 1000, 1000 iterations. scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, milestones=lstm_sets_dict['milestones'], gamma=0.1) if load_model and os.path.exists(just_test_folder + '/scheduler.pt'): sched_state = torch.load(just_test_folder + '/scheduler.pt') scheduler.load_state_dict(sched_state) print('scheduler loaded.') print('LR {}'.format(get_lr(optimizer))) # test_dataset.embeds = model.module.embeds train_dataset.embeds = model.module.embeds valid_dataset.embeds = model.module.embeds # Train for epoch in range(max_epochs): model.train() loss_dict_train_raw = { task: 0.0 for task in pred_task_dict['active_outputs']} loss_dict_train_raw['all'] = 0.0 num_pred_samples_for_result = { task: 0 for task in pred_task_dict['active_outputs']} model.module.reset_hidden('train') # hidden_inference = model.module.hidden_inference['train'] model.zero_grad() start_time = t.time() for batch_ndx, batch in enumerate(train_dataloader): if not (lstm_sets_dict['two_sys_turn']) and (len(batch['update_strt_f']) != batch_size): # This should just be triggered for the last few batches of the epoch continue if lstm_sets_dict['two_sys_turn'] and batch['sys_trn_1'].shape[0] != int(batch_size * 2): print('caught small batch') continue cont_file_indx, cont_ab_indx = batch['file_idx'], batch['a_idx'] if lstm_sets_dict['two_sys_turn']: cont_file_indx = cont_file_indx[::2] cont_ab_indx = cont_ab_indx[::2] # h_inf = hidden_inference[:, cont_file_indx, cont_ab_indx, 0, :] # c_inf = hidden_inference[:, cont_file_indx, cont_ab_indx, 1, :] mod_in = {k: v for k, v in batch.items() if not (k in ['y_dict'])} # mod_in['h_inf'] = h_inf.squeeze(0) # mod_in['c_inf'] = c_inf.squeeze(0) mod_in = {**batch['y_dict'], **mod_in} # loc_seed = torch.LongTensor([random.randint(0, 1<<31)]*2).unsqueeze(1) # mod_in['seed'] = loc_seed bp_loss, outputs = model(**mod_in) loss = torch.sum(bp_loss) loss.backward() optimizer.step() optimizer.zero_grad() # if lstm_sets_dict['plot_batch']: # for b_i in [0, 1, 2, 3]: # plot_batch(outputs, mod_in, train_dataset, b_i) # quit() # Don't delete, need for context # hidden_inference[:, cont_file_indx, cont_ab_indx, 0, :] = outputs['h_inf'].detach().cpu() # hidden_inference[:, cont_file_indx, cont_ab_indx, 1, :] = outputs['c_inf'].detach().cpu() # aggregate info loss_dict_train_raw = {k: float(loss_dict_train_raw[k]) + float(np.sum( v.data.cpu().numpy())) for k, v in outputs['loss_dict_train_raw'].items()} num_pred_samples_for_result = {k: num_pred_samples_for_result[k] + int(np.sum( v.data.cpu().numpy())) for k, v in outputs['num_pred_samples_for_result'].items()} if (iteration + 1) % 10 == 0 or ((note_append == '_dev' or note_append == '_dev_restart_') and (iteration + 1) % 2 == 0): print_results = {} print_results['all'] = 0.0 weight_denom = 0.0 for task in pred_task_dict['active_outputs']: print_results[task] = loss_dict_train_raw[task] / \ num_pred_samples_for_result[task] print_results['all'] += pred_task_dict[task]['weight'] * \ print_results[task] weight_denom += pred_task_dict[task]['weight'] num_pred_samples_for_result[task] = 0 loss_dict_train_raw[task] = 0.0 print_results['all'] = print_results['all']/weight_denom elapsed = t.time() - start_time loss_string = '' loss_string += ' train | epoch {:2d} {:4d}/{:4d}| dur(s) {:4.2f} |' loss_string += ''.join( [task + ' {:1.5f} |' for task in pred_task_dict['active_outputs']]) loss_string += ' Weighted {:1.5f} ' loss_string_items = [epoch, batch_ndx+1, num_train_batches, elapsed] + [ print_results[task] for task in pred_task_dict['active_outputs']] + [print_results['all']] print(loss_string.format(*loss_string_items)) for task in pred_task_dict['active_outputs']: results_dict['train'][task].append( float(print_results[task])) results_dict['train']['all'].append( float(print_results['all'])) results_dict['train']['iteration'].append(int(iteration) + 1) results_dict['train']['epoch'].append(int(epoch)) start_time = t.time() if (iteration + 1) % 200 == 0 or ((note_append == '_dev' or note_append == '_dev_restart_') and (iteration + 1) % 2 == 0): # 25 full_test_flag = lstm_sets_dict['valid_full_test_flag'] model.module.autoregress = lstm_sets_dict['valid_autoregress'] valid_loss_all, valid_loss_TL = test( model, valid_dataloader, full_test_flag, results_dict, iteration, epoch) if note_append != '_dev' and (np.argmin(valid_loss_TL) == (len(valid_loss_TL)-1)): torch.save(model.state_dict(), naming_dict['fold_name']+'/best_model.pt') torch.save(model.state_dict(), naming_dict['fold_name'] + '/model.pt') torch.save(optimizer.state_dict(), naming_dict['fold_name']+'/optimizer.pt') json.dump(results_dict, open( naming_dict['fold_name'] + '/results.json', 'w'), indent=4) # scheduler.step(valid_loss_all[-1]) scheduler.step() torch.save(scheduler.state_dict(), naming_dict['fold_name']+'/scheduler.pt') print(naming_dict['fold_name']) print('LR {}'.format(get_lr(optimizer))) print('Best TL valid loss: {:.4f} ({} steps ago) \n'.format( np.min(valid_loss_TL), len(valid_loss_TL) - np.argmin(valid_loss_TL))) # Run tests after final iteration if scheduler._step_count >= scheduler.milestones[-1]: # load test dataloader # del train_dataset.dataset # free some RAM # test_dataset = ContDataset(test_dataset_settings_dict) # collate_fn_test = test_dataset.collate_fn # test_dataset.embeds_usr = embeds_usr # test_dataset.embeds_sys = embeds_sys # test_dataset.embeds = embeds # test_dataset.nlp = nlp # test_dataset.sil_tok = sil_tok # test_sampler = MySampler(test_dataset) # test_dataloader = DataLoader(test_dataset, sampler=test_sampler, # batch_size=batch_size, collate_fn=collate_fn_test, # num_workers=num_data_loader_workers, # worker_init_fn=_init_fn) # test_dataset.update_annots_test = test_dataset_settings_dict['update_annots_test'] # test_dataloader.dataset.time_out_length = time_out_length # epoch = 0 # train_batch_indx = -1 # full_test_flag = False # test(model, test_dataloader, full_test_flag, # results_dict, train_batch_indx, epoch) # json.dump(results_dict, open( # naming_dict['fold_name'] + '/results_test.json', 'w'), indent=4) # print('Finished non-sampling test') # full_test_flag = True # model.module.lstm_sets_dict['full_test_flag'] = True # test(model, test_dataloader, full_test_flag, # results_dict, train_batch_indx, epoch) # json.dump(results_dict, open( # naming_dict['fold_name'] + '/results_sampled.json', 'w'), indent=4) # print('Finished sampling test') print('DONE') os._exit(0) model.train() model.module.autoregress = lstm_sets_dict['train_autoregress'] start_time = t.time() iteration += 1 start_time = t.time() print('finished') def setup_ling(): if use_ling: nlp = spacy.blank('en') if language_size == 500: print('using REALLY small language: 500') nlp.from_disk(data_dir+'/spacy_tok_combined_500/') elif language_size == 5000: print('using small language: 5000') nlp.from_disk(data_dir+'/spacy_tok_combined_5000/') elif language_size == 10000: print('using small language: 10000') nlp.from_disk(data_dir+'/spacy_tok_combined_10000/') else: print('using medium language:20000') nlp.from_disk(data_dir+'/spacy_tok_combined_20000/') spacy.vocab.link_vectors_to_models(nlp.vocab) unspec_tok = len(nlp.vocab.vectors.data) sil_tok = unspec_tok + 1 if lstm_sets_dict['use_wait_stop_tok']: lstm_sets_dict['unspec_tok'] = unspec_tok # for user lstm_sets_dict['sil_tok'] = sil_tok lstm_sets_dict['wait_tok'] = sil_tok + 1 lstm_sets_dict['stop_tok'] = sil_tok + 2 lstm_sets_dict['pad_tok'] = sil_tok + 3 num_embed_rows_to_add = 5 # padding_idx = lstm_sets_dict['stop_tok'] padding_idx = lstm_sets_dict['pad_tok'] else: num_embed_rows_to_add = 1 # padding_idx = sil_tok padding_idx = None lstm_sets_dict['sil_tok'] = sil_tok embedding_dim = nlp.vocab.vectors.data.shape[1] num_embeddings = len(nlp.vocab.vectors.data) if lstm_sets_dict['ling_use_glove']: embeds = nn.Embedding.from_pretrained( torch.FloatTensor(np.concatenate([np.array(nlp.vocab.vectors.data), np.zeros( [num_embed_rows_to_add, embedding_dim])])), padding_idx=padding_idx, freeze=lstm_sets_dict['ling_emb_freeze'] ) else: num_embeddings = len(nlp.vocab.vectors.data) embeds = nn.Embedding( num_embeddings + 1, embedding_dim=embedding_dim, padding_idx=sil_tok).to(device) embeds_reduce_layer_usr = nn.Linear(embedding_dim, 300) embeds_reduce_layer_sys = nn.Linear(embedding_dim, 300) embeds_dropout_usr = nn.Dropout(lstm_sets_dict['embeds_dropout']) embeds_dropout_sys = nn.Dropout(lstm_sets_dict['embeds_dropout']) embeds_usr = nn.Sequential(embeds_dropout_usr, embeds_reduce_layer_usr) embeds_sys = nn.Sequential(embeds_dropout_sys, embeds_reduce_layer_sys) num_feat_per_person = num_feat_per_person_dict['acous'] + embedding_dim print('Embeddings loaded.') else: num_feat_per_person = num_feat_per_person_dict['acous'] embeds_usr, embeds_sys = 0, 0 sil_tok = -1 nlp = -1 return embeds_usr, embeds_sys, embeds, num_feat_per_person, sil_tok, nlp def just_test_func(**kwargs): print('******* JUST TESTING *****') print('Loading test DATA') context_vec_settings_dict = { 'train': len(train_file_list), 'valid': len(valid_file_list), 'test': len(test_file_list) } # if kwargs['load_test_model']: if torch.cuda.is_available(): checkpoint = torch.load(just_test_folder+just_test_model) else: checkpoint = torch.load( just_test_folder+just_test_model, map_location='cpu') model = ContModel(kwargs['num_feat_per_person'], lstm_sets_dict, device, context_vec_settings_dict, kwargs['embeds_usr'], kwargs['embeds_sys'], kwargs['embeds']) model.temperature = lstm_sets_dict['temperature'] model.autoregress = lstm_sets_dict['test_autoregress'] # only test on one gpu if torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model, device_ids=[0], dim=0) else: model = torch.nn.DataParallel(model, dim=0) strict = True model.load_state_dict(checkpoint, strict=strict) model.to(device) model.eval() embeds = model.module.embeds test_dataset = ContDataset(test_dataset_settings_dict) collate_fn_test = test_dataset.collate_fn test_dataset.embeds_usr = kwargs['embeds_usr'] test_dataset.embeds_sys = kwargs['embeds_sys'] test_dataset.embeds = embeds test_dataset.nlp = kwargs['nlp'] test_dataset.sil_tok = kwargs['sil_tok'] def _init_fn(): return np.random.seed(lstm_sets_dict['seed']) if vae_experiments: test_dataset_subset = get_vae_dataset( test_dataset, test_dataset_settings_dict['update_annots_test'], vae_target_da) test_dataset_subset = test_dataset_subset * vae_data_multiplier if load_encodings and load_second_encodings: test_dataset_subset_2 = get_vae_dataset( test_dataset, test_dataset_settings_dict['update_annots_test'], vae_target_da) test_dataset_subset_2 = test_dataset_subset * vae_data_multiplier_2 test_dataset_subset = test_dataset_subset[:len( test_dataset_subset)//2] + test_dataset_subset_2[:len(test_dataset_subset_2)//2] print('Target da: {}\t number of points: {}'.format( vae_target_da, len(test_dataset_subset))) test_sampler = SubsetRandomSampler(test_dataset_subset) test_dataloader = DataLoader(test_dataset, sampler=test_sampler, batch_size=batch_size, collate_fn=collate_fn_test, num_workers=num_data_loader_workers, drop_last=False, worker_init_fn=_init_fn) if load_encodings: mu, log_var = get_vae_encodings(lstm_sets_dict, False) if load_second_encodings: mu_2, log_var_2 = get_vae_encodings(lstm_sets_dict, True) mu = (mu + mu_2) / 2 log_var = np.log(0.5*(
np.exp(log_var)
numpy.exp
from keras.layers.convolutional import Conv2D, MaxPooling2D from keras.layers.normalization import BatchNormalization from keras.layers import Activation, Flatten, Dropout, Dense, GlobalAveragePooling2D from keras.models import Sequential, load_model from keras.optimizers import Adam import tensorflow as tf import keras import numpy as np import time import random from collections import deque """Code taken/implemented from https://pythonprogramming.net/reinforcement-learning-self-driving-autonomous-cars-carla-python/""" from keras.callbacks import TensorBoard # Own Tensorboard class class ModifiedTensorBoard(TensorBoard): # Overriding init to set initial step and writer (we want one log file for all .fit() calls) def __init__(self, **kwargs): super().__init__(**kwargs) self.step = 1 self.writer = tf.summary.FileWriter(self.log_dir) # Overriding this method to stop creating default log writer def set_model(self, model): pass # Overrided, saves logs with our step number # (otherwise every .fit() will start writing from 0th step) def on_epoch_end(self, epoch, logs=None): self.update_stats(**logs) # Overrided # We train for one batch only, no need to save anything at epoch end def on_batch_end(self, batch, logs=None): pass # Overrided, so won't close writer def on_train_end(self, _): pass # Custom method for saving own metrics # Creates writer, writes custom metrics and closes writer def update_stats(self, **stats): self._write_logs(stats, self.step) class DQNAgent: def __init__(self): self.model = load_model('models/model450.model') #self.model = self.create_model() #self.target_model = self.create_model() self.target_model = load_model('models/model450.model') self.replay_memory = deque(maxlen=1000000) self.tensorboard = ModifiedTensorBoard(log_dir=f"logs/{'carla'}-{int(time.time())}") self.target_update_counter = 0 self.graph = tf.get_default_graph() self.terminate = False self.last_logged_episode = 0 self.training_initialized = False def create_model(self): model = Sequential() model.add(Dense(64, input_shape=(600,400,3), activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Flatten()) model.add(Dense(3)) model.add(Activation('linear')) model.compile(loss='mse', optimizer=Adam(lr=0.001), metrics=['accuracy']) return model def add_memory(self, transition): # transition = (current_state, action, reward, new_state, done) self.replay_memory.append(transition) def random_action(self): action = np.random.randint(0, 3) return action def train(self): #Maybe change this to 1000 if anything goes bad if len(self.replay_memory) < 64: return minibatch = random.sample(self.replay_memory, 16) current_states =
np.array([transition[0] for transition in minibatch])
numpy.array
import numpy as np import matplotlib.pyplot as plt import os import sys import matplotlib.colors as colors import matplotlib.cm as cm from matplotlib import rcParams from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.interpolate import griddata from scipy.interpolate import UnivariateSpline rcParams.update({'font.size': 22}) def colorbar(mappable,ax): pos = ax.get_subplotspec().get_position(fig) cb_width = 0.02 cb_height = pos.y1-pos.y0 vertical_position = pos.y0 horizontal_position = 0.905 cax = fig.add_axes([horizontal_position, vertical_position, cb_width, cb_height]) clb = fig.colorbar(cmmapable,cax=cax,orientation='vertical') return clb os.chdir('..') home = os.getcwd() + "/" plot_dir = home + "Figs/" data_dir = home + "data/" ax_loc = np.array([[0.125,0.885],[0.55,0.885],[0.125,0.455],[0.55,0.455]]) aspect = 16./9. width = 10 lw = 4 fs = 'x-large' clabel = ["","$\Delta \epsilon$", "$\Delta T_s$", "$\Delta f_{ice}$", ] sublabel = ['a','b','c','d'] fig = plt.figure(1,figsize=(aspect*width,2*width),dpi=300) ax1 = fig.add_subplot(611) ax2 = fig.add_subplot(612) ax3 = fig.add_subplot(613) ax4 = fig.add_subplot(614) ax5 = fig.add_subplot(615) ax6 = fig.add_subplot(616) ax_list = [ax1,ax2,ax3,ax4,ax5,ax6] sub_lbl = ['a','b','c','d','e','f'] data = np.genfromtxt(data_dir+"VPlanet_data_GenBin_map_10.txt",delimiter=',',comments='#') data[data[:,3]>90,2] = np.inf data[data[:,6]==3,7] = 3 for i in range(0,6): ax = ax_list[i] if i == 0: Q = data[:,2] cmap = "gist_rainbow" vmin, vmax = 0,90 elif i == 1: cmap = "magma" data[data[:,3]==0,3]=0.01 Q = np.log10(data[:,3]) vmin, vmax = 0, np.log10(60) elif i == 2: data[data[:,4]==0,4]=0.01 Q = np.log10(data[:,4]) cmap = "plasma" vmin, vmax = -2,0 elif i == 3: Q = data[:,-4] cmap = colors.ListedColormap(['k', 'gray', 'b', 'r']) vmin, vmax = -0.5,3 elif i == 4: Q = data[:,-2] cmap = cm.get_cmap("plasma").copy() vmin, vmax = 0.001,0.4 else: Q = data[:,-1] cmap = cm.get_cmap("plasma").copy() vmin, vmax = 0.001,0.4 #Q_cut = np.where(~np.isfinite(data[:,2]))[0] #Q[Q_cut] = -1. abin = data[:,0] ebin = data[:,1] xi = np.arange(10,91,1) yi = np.arange(0,.91,0.01) zi = griddata((abin,ebin),Q,(xi[None,:],yi[:,None]),method = 'nearest') my_cmap = cm.get_cmap(cmap).copy() norm = colors.Normalize(vmin,vmax) cmmapable = cm.ScalarMappable(norm,my_cmap) cmmapable.set_array(range(0,1)) my_cmap.set_over('w') if i > 3: my_cmap.set_under('k') my_cmap.set_over('r') if i == 3: bounds = [0.,1.,2.,3.,4.] norm = colors.BoundaryNorm(bounds, cmap.N) CS = ax.pcolormesh(xi,yi+0.005,zi,cmap = my_cmap,norm=norm,shading='auto',zorder=2) switch_states = np.zeros(len(abin)) for k in range(0,len(abin)): if data[k,-3] != data[k,-4]: switch_states[k] = 1 #ax.plot(data[switch_states==1,0],data[switch_states==1,1]+0.005,'wx',ms=4,zorder=4,alpha=0.75) switch_rows = np.where(switch_states==1)[0] ax.plot(data[switch_rows,0],data[switch_rows,1],'m+',ms=6,zorder=4) else: CS = ax.pcolormesh(xi,yi+0.005,zi,cmap = my_cmap,vmin=vmin,vmax=vmax,shading='auto') #ax.plot(23,46,color='w',marker='$\oplus$',ms=25) #ax.set_xticks(np.arange(10,100,10)) ax.set_yticks(np.arange(0,1.,0.2)) ax.set_ylim(0,0.9) ax.set_xlim(10,90) ax.tick_params(axis='both', direction='out',length = 8.0, width = 8.0,labelsize=fs) ax.text(0.02,0.86,sub_lbl[i], color='k',fontsize='x-large',weight='bold',horizontalalignment='left',transform=ax.transAxes) ax.set_ylabel("$e_{\\rm bin}$",fontsize=fs) if i == 3: ax.text(1.02,0.8,"ice free", color='k',fontsize='medium',weight='bold',horizontalalignment='left',transform=ax.transAxes) ax.text(1.02,0.6,"ice caps", color='gray',fontsize='medium',weight='bold',horizontalalignment='left',transform=ax.transAxes) ax.text(1.02,0.4,"ice belt", color='b',fontsize='medium',weight='bold',horizontalalignment='left',transform=ax.transAxes) ax.text(1.02,0.2,"snowball", color='r',fontsize='medium',weight='bold',horizontalalignment='left',transform=ax.transAxes) if i < 5: ax.set_xticklabels([]) else: ax.set_xlabel("$a_{\\rm bin}$ (au)",fontsize=fs) if i == 0: color_label=r'$\Delta \epsilon$' cbar=colorbar(CS,ax) cbar.set_label(color_label,fontsize=fs) cticks =
np.arange(0,105,15)
numpy.arange
"""Matrix algebra for counting triplet motifs""" import numpy as np import pandas as pd from itertools import permutations, combinations_with_replacement from util import index_to_directed_triplet_motif_matrix, basis_vector, bin_subsets, binary_digits def tupp(m): return tuple(m.ravel()) def matt(m): return np.array(m).reshape(3, 3) def triplet_pattern(t): """Convert an arbitrary 3-tuple into a string specifying the distinct elements.""" if t[0] == t[1] == t[2]: return "AAA" if t[0] == t[1]: return "AAB" if t[1] == t[2]: return "ABB" return "ABC" def tuple_swap_02(t): return (t[2], t[1], t[0]) ################################################################################ # Isomorphisms of 3 node graphs ################################################################################ permutation_matrices = {(s0, s1, s2): np.array([basis_vector(s0), basis_vector(s1), basis_vector(s2)]) for s0, s1, s2 in permutations(range(3))} def get_permutation_matrices(): """ There's some aspects of python's import system that I cannot seem to figure out, so there's going to be a lot of these `get_blah()` functions in this file. """ return permutation_matrices def isomorphic(tg, th): """Check if graphs, represented by raveled tuples tg, th, are isomorphic""" mg = matt(tg) mh = matt(th) for P in permutation_matrices.values(): if np.all(P @ mg @ P.T == mh): return True return False def color_isomorphic(tg, th, cg, ch): mg = matt(tg) mh = matt(th) for s, P in permutation_matrices.items(): colors_match = all(cg[si] == ch[i] for si, i in zip(s, range(3))) if colors_match and np.all(P @ mg @ P.T == mh): return True return False ################################################################################ # Mapping from graphs to their isomorphism class ################################################################################ iso_representative_AAA = {} # map from tuple to represantive tuple iso_classes_AAA = {} # preimage map from represntative tuple to list of tuples for k in range(64): m = index_to_directed_triplet_motif_matrix(k) tm = tupp(m) # current tuple for iso in iso_classes_AAA: # iso is the representative tuple if isomorphic(tm, iso): iso_classes_AAA[iso].append(tm) iso_representative_AAA[tm] = iso break else: iso_classes_AAA[tm] = [tm] iso_representative_AAA[tm] = tm iso_classes_AAB = {} # preimage map from representative to list of tuples. Color is always AAB pattern. iso_representative_AAB = {} # map from tuple to representative tuple. Color is always AAB pattern. colors_AAB = [0, 0, 1] for k in range(64): # base graph has colors AAB m = index_to_directed_triplet_motif_matrix(k) tm = tupp(m) for iso in iso_classes_AAB: if color_isomorphic(tm, iso, colors_AAB, colors_AAB): iso_classes_AAB[iso].append(tm) iso_representative_AAB[tm] = iso break else: iso_classes_AAB[tm] = [tm] iso_representative_AAB[tm] = tm iso_classes_ABB = {} # preimage map from representative to list of tuples. Color is always ABB iso_representative_ABB = {} # map from tuple to representative tuple colors_ABB = [0, 1, 1] for k in range(64): # base graph has colors ABB m = index_to_directed_triplet_motif_matrix(k) tm = tupp(m) for iso in iso_classes_ABB: if color_isomorphic(tm, iso, colors_ABB, colors_ABB): iso_classes_ABB[iso].append(tm) iso_representative_ABB[tm] = iso break else: iso_classes_ABB[tm] = [tm] iso_representative_ABB[tm] = tm iso_classes_ABC, iso_representative_ABC = {}, {} for k in range(64): t = tupp(index_to_directed_triplet_motif_matrix(k)) iso_classes_ABC[t] = [t] # preimage map from representative to list of tuples. Always singleton iso_representative_ABC[t] = t # map from tuple to representative tuple (just identity map) def get_iso_classes(pat): if pat[0] == pat[1] == pat[2]: return iso_classes_AAA if pat[0] == pat[1]: return iso_classes_AAB if pat[1] == pat[2]: return iso_classes_ABB if pat[0] != pat[1] != pat[2]: return iso_classes_ABC return {} def get_iso_representative(pat): if pat[0] == pat[1] == pat[2]: return iso_representative_AAA if pat[0] == pat[1]: return iso_representative_AAB if pat[1] == pat[2]: return iso_representative_ABB if pat[0] != pat[1] != pat[2]: return iso_representative_ABC return {} def get_iso_list(pat): if pat[0] == pat[1] == pat[2]: return iso_list_AAA if pat[0] == pat[1]: return iso_list_AAB if pat[1] == pat[2]: return iso_list_ABB if pat[0] != pat[1] != pat[2]: return iso_list_ABC return [] def class_representative(ct, gt): """ Get the graph tuple of the represntative of the class in whic `gt` lives given the nodes are colored according to the pattern in `ct`. Note that this skips pattern 'ABA' since all my current algorithms will avoid using that pattern. """ if ct[0] == ct[1] == ct[2]: # Case AAA return iso_representative_AAA[gt] if ct[0] == ct[1] != ct[2]: # Case AAB return iso_representative_AAB[gt] if ct[0] != ct[1] == ct[2]: # Case ABB return iso_representative_ABB[gt] if ct[0] != ct[1] != ct[2]: # Case ABC return iso_representative_ABC[gt] return None ################################################################################ # Mobius Inversion-type matrices ################################################################################ iso_list_AAA = list(iso_classes_AAA.keys()) exact_to_over_AAA = np.zeros((len(iso_list_AAA), len(iso_list_AAA)), dtype=int) for j, tm_j in enumerate(iso_list_AAA): for tm_i in bin_subsets(tm_j): i = iso_list_AAA.index(iso_representative_AAA[tm_i]) exact_to_over_AAA[i, j] += 1 over_to_exact_AAA =
np.linalg.inv(exact_to_over_AAA)
numpy.linalg.inv
# Licensed under a 3-clause BSD style license - see LICENSE.rst """ Tests for the photometry module. """ import pytest import numpy as np from numpy.testing import (assert_allclose, assert_array_equal, assert_array_less) from astropy.coordinates import SkyCoord from astropy.io import fits from astropy.nddata import NDData, StdDevUncertainty from astropy.table import Table import astropy.units as u from astropy.utils.exceptions import AstropyDeprecationWarning from astropy.wcs import WCS from ..photometry import aperture_photometry from ..circle import (CircularAperture, CircularAnnulus, SkyCircularAperture, SkyCircularAnnulus) from ..ellipse import (EllipticalAperture, EllipticalAnnulus, SkyEllipticalAperture, SkyEllipticalAnnulus) from ..rectangle import (RectangularAperture, RectangularAnnulus, SkyRectangularAperture, SkyRectangularAnnulus) from ...datasets import get_path, make_4gaussians_image, make_wcs, make_gwcs from ...utils._optional_deps import HAS_GWCS, HAS_MATPLOTLIB # noqa APERTURE_CL = [CircularAperture, CircularAnnulus, EllipticalAperture, EllipticalAnnulus, RectangularAperture, RectangularAnnulus] TEST_APERTURES = list(zip(APERTURE_CL, ((3.,), (3., 5.), (3., 5., 1.), (3., 5., 4., 12./5., 1.), (5, 8, np.pi / 4), (8, 12, 8, 16./3., np.pi / 8)))) @pytest.mark.parametrize(('aperture_class', 'params'), TEST_APERTURES) def test_outside_array(aperture_class, params): data = np.ones((10, 10), dtype=float) aperture = aperture_class((-60, 60), *params) fluxtable = aperture_photometry(data, aperture) # aperture is fully outside array: assert np.isnan(fluxtable['aperture_sum']) @pytest.mark.parametrize(('aperture_class', 'params'), TEST_APERTURES) def test_inside_array_simple(aperture_class, params): data = np.ones((40, 40), dtype=float) aperture = aperture_class((20., 20.), *params) table1 = aperture_photometry(data, aperture, method='center', subpixels=10) table2 = aperture_photometry(data, aperture, method='subpixel', subpixels=10) table3 = aperture_photometry(data, aperture, method='exact', subpixels=10) true_flux = aperture.area assert table1['aperture_sum'] < table3['aperture_sum'] if not isinstance(aperture, (RectangularAperture, RectangularAnnulus)): assert_allclose(table3['aperture_sum'], true_flux) assert_allclose(table2['aperture_sum'], table3['aperture_sum'], atol=0.1) @pytest.mark.skipif('not HAS_MATPLOTLIB') @pytest.mark.parametrize(('aperture_class', 'params'), TEST_APERTURES) def test_aperture_plots(aperture_class, params): # This test should run without any errors, and there is no return # value. # TODO: check the content of the plot aperture = aperture_class((20., 20.), *params) aperture.plot() def test_aperture_pixel_positions(): pos1 = (10, 20) pos2 = [(10, 20)] r = 3 ap1 = CircularAperture(pos1, r) ap2 = CircularAperture(pos2, r) assert not np.array_equal(ap1.positions, ap2.positions) class BaseTestAperturePhotometry: def test_array_error(self): # Array error error = np.ones(self.data.shape, dtype=float) if not hasattr(self, 'mask'): mask = None true_error = np.sqrt(self.area) else: mask = self.mask # 1 masked pixel true_error = np.sqrt(self.area - 1) table1 = aperture_photometry(self.data, self.aperture, method='center', mask=mask, error=error) table2 = aperture_photometry(self.data, self.aperture, method='subpixel', subpixels=12, mask=mask, error=error) table3 = aperture_photometry(self.data, self.aperture, method='exact', mask=mask, error=error) if not isinstance(self.aperture, (RectangularAperture, RectangularAnnulus)): assert_allclose(table3['aperture_sum'], self.true_flux) assert_allclose(table2['aperture_sum'], table3['aperture_sum'], atol=0.1) assert np.all(table1['aperture_sum'] < table3['aperture_sum']) if not isinstance(self.aperture, (RectangularAperture, RectangularAnnulus)): assert_allclose(table3['aperture_sum_err'], true_error) assert_allclose(table2['aperture_sum_err'], table3['aperture_sum_err'], atol=0.1) assert np.all(table1['aperture_sum_err'] < table3['aperture_sum_err']) class TestCircular(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = (20., 20.) r = 10. self.aperture = CircularAperture(position, r) self.area = np.pi * r * r self.true_flux = self.area class TestCircularArray(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = ((20., 20.), (25., 25.)) r = 10. self.aperture = CircularAperture(position, r) self.area = np.pi * r * r self.area = np.array((self.area, ) * 2) self.true_flux = self.area class TestCircularAnnulus(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = (20., 20.) r_in = 8. r_out = 10. self.aperture = CircularAnnulus(position, r_in, r_out) self.area = np.pi * (r_out * r_out - r_in * r_in) self.true_flux = self.area class TestCircularAnnulusArray(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = ((20., 20.), (25., 25.)) r_in = 8. r_out = 10. self.aperture = CircularAnnulus(position, r_in, r_out) self.area = np.pi * (r_out * r_out - r_in * r_in) self.area = np.array((self.area, ) * 2) self.true_flux = self.area class TestElliptical(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = (20., 20.) a = 10. b = 5. theta = -np.pi / 4. self.aperture = EllipticalAperture(position, a, b, theta=theta) self.area = np.pi * a * b self.true_flux = self.area class TestEllipticalAnnulus(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = (20., 20.) a_in = 5. a_out = 8. b_out = 5. theta = -np.pi / 4. self.aperture = EllipticalAnnulus(position, a_in, a_out, b_out, theta=theta) self.area = (np.pi * (a_out * b_out) - np.pi * (a_in * b_out * a_in / a_out)) self.true_flux = self.area class TestRectangularAperture(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = (20., 20.) h = 5. w = 8. theta = np.pi / 4. self.aperture = RectangularAperture(position, w, h, theta=theta) self.area = h * w self.true_flux = self.area class TestRectangularAnnulus(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) position = (20., 20.) h_out = 8. w_in = 8. w_out = 12. h_in = w_in * h_out / w_out theta = np.pi / 8. self.aperture = RectangularAnnulus(position, w_in, w_out, h_out, theta=theta) self.area = h_out * w_out - h_in * w_in self.true_flux = self.area class TestMaskedSkipCircular(BaseTestAperturePhotometry): def setup_class(self): self.data = np.ones((40, 40), dtype=float) self.mask = np.zeros((40, 40), dtype=bool) self.mask[20, 20] = True position = (20., 20.) r = 10. self.aperture = CircularAperture(position, r) self.area = np.pi * r * r self.true_flux = self.area - 1 class BaseTestDifferentData: def test_basic_circular_aperture_photometry(self): aperture = CircularAperture(self.position, self.radius) table = aperture_photometry(self.data, aperture, method='exact') assert_allclose(table['aperture_sum'].value, self.true_flux) assert table['aperture_sum'].unit, self.fluxunit assert np.all(table['xcenter'].value == np.transpose(self.position)[0]) assert np.all(table['ycenter'].value == np.transpose(self.position)[1]) class TestInputNDData(BaseTestDifferentData): def setup_class(self): data = np.ones((40, 40), dtype=float) self.data = NDData(data, unit=u.adu) self.radius = 3 self.position = [(20, 20), (30, 30)] self.true_flux = np.pi * self.radius * self.radius self.fluxunit = u.adu @pytest.mark.remote_data def test_wcs_based_photometry_to_catalogue(): pathcat = get_path('spitzer_example_catalog.xml', location='remote') pathhdu = get_path('spitzer_example_image.fits', location='remote') hdu = fits.open(pathhdu) data = u.Quantity(hdu[0].data, unit=hdu[0].header['BUNIT']) wcs = WCS(hdu[0].header) catalog = Table.read(pathcat) pos_skycoord = SkyCoord(catalog['l'], catalog['b'], frame='galactic') photometry_skycoord = aperture_photometry( data, SkyCircularAperture(pos_skycoord, 4 * u.arcsec), wcs=wcs) # Photometric unit conversion is needed to match the catalogue factor = (1.2 * u.arcsec) ** 2 / u.pixel converted_aperture_sum = (photometry_skycoord['aperture_sum'] * factor).to(u.mJy / u.pixel) fluxes_catalog = catalog['f4_5'].filled() # There shouldn't be large outliers, but some differences is OK, as # fluxes_catalog is based on PSF photometry, etc. assert_allclose(fluxes_catalog, converted_aperture_sum.value, rtol=1e0) assert(np.mean(np.fabs(((fluxes_catalog - converted_aperture_sum.value) / fluxes_catalog))) < 0.1) # close the file hdu.close() def test_wcs_based_photometry(): data = make_4gaussians_image() wcs = make_wcs(data.shape) # hard wired positions in make_4gaussian_image pos_orig_pixel = u.Quantity(([160., 25., 150., 90.], [70., 40., 25., 60.]), unit=u.pixel) pos_skycoord = wcs.pixel_to_world(pos_orig_pixel[0], pos_orig_pixel[1]) pos_skycoord_s = pos_skycoord[2] photometry_skycoord_circ = aperture_photometry( data, SkyCircularAperture(pos_skycoord, 3 * u.arcsec), wcs=wcs) photometry_skycoord_circ_2 = aperture_photometry( data, SkyCircularAperture(pos_skycoord, 2 * u.arcsec), wcs=wcs) photometry_skycoord_circ_s = aperture_photometry( data, SkyCircularAperture(pos_skycoord_s, 3 * u.arcsec), wcs=wcs) assert_allclose(photometry_skycoord_circ['aperture_sum'][2], photometry_skycoord_circ_s['aperture_sum']) photometry_skycoord_circ_ann = aperture_photometry( data, SkyCircularAnnulus(pos_skycoord, 2 * u.arcsec, 3 * u.arcsec), wcs=wcs) photometry_skycoord_circ_ann_s = aperture_photometry( data, SkyCircularAnnulus(pos_skycoord_s, 2 * u.arcsec, 3 * u.arcsec), wcs=wcs) assert_allclose(photometry_skycoord_circ_ann['aperture_sum'][2], photometry_skycoord_circ_ann_s['aperture_sum']) assert_allclose(photometry_skycoord_circ_ann['aperture_sum'], photometry_skycoord_circ['aperture_sum'] - photometry_skycoord_circ_2['aperture_sum']) photometry_skycoord_ell = aperture_photometry( data, SkyEllipticalAperture(pos_skycoord, 3 * u.arcsec, 3.0001 * u.arcsec, theta=45 * u.arcsec), wcs=wcs) photometry_skycoord_ell_2 = aperture_photometry( data, SkyEllipticalAperture(pos_skycoord, 2 * u.arcsec, 2.0001 * u.arcsec, theta=45 * u.arcsec), wcs=wcs) photometry_skycoord_ell_s = aperture_photometry( data, SkyEllipticalAperture(pos_skycoord_s, 3 * u.arcsec, 3.0001 * u.arcsec, theta=45 * u.arcsec), wcs=wcs) photometry_skycoord_ell_ann = aperture_photometry( data, SkyEllipticalAnnulus(pos_skycoord, 2 * u.arcsec, 3 * u.arcsec, 3.0001 * u.arcsec, theta=45 * u.arcsec), wcs=wcs) photometry_skycoord_ell_ann_s = aperture_photometry( data, SkyEllipticalAnnulus(pos_skycoord_s, 2 * u.arcsec, 3 * u.arcsec, 3.0001 * u.arcsec, theta=45 * u.arcsec), wcs=wcs) assert_allclose(photometry_skycoord_ell['aperture_sum'][2], photometry_skycoord_ell_s['aperture_sum']) assert_allclose(photometry_skycoord_ell_ann['aperture_sum'][2], photometry_skycoord_ell_ann_s['aperture_sum']) assert_allclose(photometry_skycoord_ell['aperture_sum'], photometry_skycoord_circ['aperture_sum'], rtol=5e-3) assert_allclose(photometry_skycoord_ell_ann['aperture_sum'], photometry_skycoord_ell['aperture_sum'] - photometry_skycoord_ell_2['aperture_sum'], rtol=1e-4) photometry_skycoord_rec = aperture_photometry( data, SkyRectangularAperture(pos_skycoord, 6 * u.arcsec, 6 * u.arcsec, 0 * u.arcsec), method='subpixel', subpixels=20, wcs=wcs) photometry_skycoord_rec_4 = aperture_photometry( data, SkyRectangularAperture(pos_skycoord, 4 * u.arcsec, 4 * u.arcsec, 0 * u.arcsec), method='subpixel', subpixels=20, wcs=wcs) photometry_skycoord_rec_s = aperture_photometry( data, SkyRectangularAperture(pos_skycoord_s, 6 * u.arcsec, 6 * u.arcsec, 0 * u.arcsec), method='subpixel', subpixels=20, wcs=wcs) photometry_skycoord_rec_ann = aperture_photometry( data, SkyRectangularAnnulus(pos_skycoord, 4 * u.arcsec, 6 * u.arcsec, 6 * u.arcsec, theta=0 * u.arcsec), method='subpixel', subpixels=20, wcs=wcs) photometry_skycoord_rec_ann_s = aperture_photometry( data, SkyRectangularAnnulus(pos_skycoord_s, 4 * u.arcsec, 6 * u.arcsec, 6 * u.arcsec, theta=0 * u.arcsec), method='subpixel', subpixels=20, wcs=wcs) assert_allclose(photometry_skycoord_rec['aperture_sum'][2], photometry_skycoord_rec_s['aperture_sum']) assert np.all(photometry_skycoord_rec['aperture_sum'] > photometry_skycoord_circ['aperture_sum']) assert_allclose(photometry_skycoord_rec_ann['aperture_sum'][2], photometry_skycoord_rec_ann_s['aperture_sum']) assert_allclose(photometry_skycoord_rec_ann['aperture_sum'], photometry_skycoord_rec['aperture_sum'] - photometry_skycoord_rec_4['aperture_sum'], rtol=1e-4) def test_basic_circular_aperture_photometry_unit(): radius = 3 true_flux = np.pi * radius * radius aper = CircularAperture((12, 12), radius) data1 = np.ones((25, 25), dtype=float) table1 = aperture_photometry(data1, aper) assert_allclose(table1['aperture_sum'], true_flux) unit = u.adu data2 = u.Quantity(data1 * unit) table2 = aperture_photometry(data2, aper) assert_allclose(table2['aperture_sum'].value, true_flux) assert table2['aperture_sum'].unit == data2.unit == unit error1 = np.ones((25, 25)) with pytest.raises(ValueError): # data has unit, but error does not aperture_photometry(data2, aper, error=error1) error2 = u.Quantity(error1 * u.Jy) with pytest.raises(ValueError): # data and error have different units aperture_photometry(data2, aper, error=error2) def test_aperture_photometry_with_error_units(): """Test aperture_photometry when error has units (see #176).""" data1 = np.ones((40, 40), dtype=float) data2 = u.Quantity(data1, unit=u.adu) error = u.Quantity(data1, unit=u.adu) radius = 3 true_flux = np.pi * radius * radius unit = u.adu position = (20, 20) table1 = aperture_photometry(data2, CircularAperture(position, radius), error=error) assert_allclose(table1['aperture_sum'].value, true_flux) assert_allclose(table1['aperture_sum_err'].value, np.sqrt(true_flux)) assert table1['aperture_sum'].unit == unit assert table1['aperture_sum_err'].unit == unit def test_aperture_photometry_inputs_with_mask(): """ Test that aperture_photometry does not modify the input data or error array when a mask is input. """ data = np.ones((5, 5)) aperture = CircularAperture((2, 2), 2.) mask = np.zeros_like(data, dtype=bool) data[2, 2] = 100. # bad pixel mask[2, 2] = True error = np.sqrt(data) data_in = data.copy() error_in = error.copy() t1 = aperture_photometry(data, aperture, error=error, mask=mask) assert_array_equal(data, data_in) assert_array_equal(error, error_in) assert_allclose(t1['aperture_sum'][0], 11.5663706144) t2 = aperture_photometry(data, aperture) assert_allclose(t2['aperture_sum'][0], 111.566370614) TEST_ELLIPSE_EXACT_APERTURES = [(3.469906, 3.923861394, 3.), (0.3834415188257778, 0.3834415188257778, 0.3)] @pytest.mark.parametrize('x,y,r', TEST_ELLIPSE_EXACT_APERTURES) def test_ellipse_exact_grid(x, y, r): """ Test elliptical exact aperture photometry on a grid of pixel positions. This is a regression test for the bug discovered in this issue: https://github.com/astropy/photutils/issues/198 """ data = np.ones((10, 10)) aperture = EllipticalAperture((x, y), r, r, 0.) t = aperture_photometry(data, aperture, method='exact') actual = t['aperture_sum'][0] / (np.pi * r ** 2) assert_allclose(actual, 1) @pytest.mark.parametrize('value', [np.nan, np.inf]) def test_nan_inf_mask(value): """Test that nans and infs are properly masked [267].""" data = np.ones((9, 9)) mask = np.zeros_like(data, dtype=bool) data[4, 4] = value mask[4, 4] = True radius = 2. aper = CircularAperture((4, 4), radius) tbl = aperture_photometry(data, aper, mask=mask) desired = (np.pi * radius**2) - 1 assert_allclose(tbl['aperture_sum'], desired) def test_aperture_partial_overlap(): data = np.ones((20, 20)) error = np.ones((20, 20)) xypos = [(10, 10), (0, 0), (0, 19), (19, 0), (19, 19)] r = 5. aper = CircularAperture(xypos, r=r) tbl = aperture_photometry(data, aper, error=error) assert_allclose(tbl['aperture_sum'][0], np.pi * r ** 2) assert_array_less(tbl['aperture_sum'][1:], np.pi * r ** 2) unit = u.MJy / u.sr tbl = aperture_photometry(data * unit, aper, error=error * unit) assert_allclose(tbl['aperture_sum'][0].value, np.pi * r ** 2) assert_array_less(tbl['aperture_sum'][1:].value, np.pi * r ** 2) assert_array_less(tbl['aperture_sum_err'][1:].value, np.pi * r ** 2) assert tbl['aperture_sum'].unit == unit assert tbl['aperture_sum_err'].unit == unit def test_pixel_aperture_repr(): aper = CircularAperture((10, 20), r=3.0) assert '<CircularAperture(' in repr(aper) assert 'Aperture: CircularAperture' in str(aper) aper = CircularAnnulus((10, 20), r_in=3.0, r_out=5.0) assert '<CircularAnnulus(' in repr(aper) assert 'Aperture: CircularAnnulus' in str(aper) aper = EllipticalAperture((10, 20), a=5.0, b=3.0, theta=15.0) assert '<EllipticalAperture(' in repr(aper) assert 'Aperture: EllipticalAperture' in str(aper) aper = EllipticalAnnulus((10, 20), a_in=4.0, a_out=8.0, b_out=4.0, theta=15.0) assert '<EllipticalAnnulus(' in repr(aper) assert 'Aperture: EllipticalAnnulus' in str(aper) aper = RectangularAperture((10, 20), w=5.0, h=3.0, theta=15.0) assert '<RectangularAperture(' in repr(aper) assert 'Aperture: RectangularAperture' in str(aper) aper = RectangularAnnulus((10, 20), w_in=4.0, w_out=8.0, h_out=4.0, theta=15.0) assert '<RectangularAnnulus(' in repr(aper) assert 'Aperture: RectangularAnnulus' in str(aper) def test_sky_aperture_repr(): s = SkyCoord([1, 2], [3, 4], unit='deg') aper = SkyCircularAperture(s, r=3*u.deg) a_repr = ('<SkyCircularAperture(<SkyCoord (ICRS): (ra, dec) in deg\n' ' [(1., 3.), (2., 4.)]>, r=3.0 deg)>') a_str = ('Aperture: SkyCircularAperture\npositions: <SkyCoord ' '(ICRS): (ra, dec) in deg\n [(1., 3.), (2., 4.)]>\n' 'r: 3.0 deg') assert repr(aper) == a_repr assert str(aper) == a_str aper = SkyCircularAnnulus(s, r_in=3.*u.deg, r_out=5*u.deg) a_repr = ('<SkyCircularAnnulus(<SkyCoord (ICRS): (ra, dec) in deg\n' ' [(1., 3.), (2., 4.)]>, r_in=3.0 deg, r_out=5.0 deg)>') a_str = ('Aperture: SkyCircularAnnulus\npositions: <SkyCoord ' '(ICRS): (ra, dec) in deg\n [(1., 3.), (2., 4.)]>\n' 'r_in: 3.0 deg\nr_out: 5.0 deg') assert repr(aper) == a_repr assert str(aper) == a_str aper = SkyEllipticalAperture(s, a=3*u.deg, b=5*u.deg, theta=15*u.deg) a_repr = ('<SkyEllipticalAperture(<SkyCoord (ICRS): (ra, dec) in ' 'deg\n [(1., 3.), (2., 4.)]>, a=3.0 deg, b=5.0 deg, ' 'theta=15.0 deg)>') a_str = ('Aperture: SkyEllipticalAperture\npositions: <SkyCoord ' '(ICRS): (ra, dec) in deg\n [(1., 3.), (2., 4.)]>\n' 'a: 3.0 deg\nb: 5.0 deg\ntheta: 15.0 deg') assert repr(aper) == a_repr assert str(aper) == a_str aper = SkyEllipticalAnnulus(s, a_in=3*u.deg, a_out=5*u.deg, b_out=3*u.deg, theta=15*u.deg) a_repr = ('<SkyEllipticalAnnulus(<SkyCoord (ICRS): (ra, dec) in ' 'deg\n [(1., 3.), (2., 4.)]>, a_in=3.0 deg, ' 'a_out=5.0 deg, b_in=1.8 deg, b_out=3.0 deg, ' 'theta=15.0 deg)>') a_str = ('Aperture: SkyEllipticalAnnulus\npositions: <SkyCoord ' '(ICRS): (ra, dec) in deg\n [(1., 3.), (2., 4.)]>\n' 'a_in: 3.0 deg\na_out: 5.0 deg\nb_in: 1.8 deg\n' 'b_out: 3.0 deg\ntheta: 15.0 deg') assert repr(aper) == a_repr assert str(aper) == a_str aper = SkyRectangularAperture(s, w=3*u.deg, h=5*u.deg, theta=15*u.deg) a_repr = ('<SkyRectangularAperture(<SkyCoord (ICRS): (ra, dec) in ' 'deg\n [(1., 3.), (2., 4.)]>, w=3.0 deg, h=5.0 deg' ', theta=15.0 deg)>') a_str = ('Aperture: SkyRectangularAperture\npositions: <SkyCoord ' '(ICRS): (ra, dec) in deg\n [(1., 3.), (2., 4.)]>\n' 'w: 3.0 deg\nh: 5.0 deg\ntheta: 15.0 deg') assert repr(aper) == a_repr assert str(aper) == a_str aper = SkyRectangularAnnulus(s, w_in=5*u.deg, w_out=10*u.deg, h_out=6*u.deg, theta=15*u.deg) a_repr = ('<SkyRectangularAnnulus(<SkyCoord (ICRS): (ra, dec) in deg' '\n [(1., 3.), (2., 4.)]>, w_in=5.0 deg, ' 'w_out=10.0 deg, h_in=3.0 deg, h_out=6.0 deg, ' 'theta=15.0 deg)>') a_str = ('Aperture: SkyRectangularAnnulus\npositions: <SkyCoord ' '(ICRS): (ra, dec) in deg\n [(1., 3.), (2., 4.)]>\n' 'w_in: 5.0 deg\nw_out: 10.0 deg\nh_in: 3.0 deg\n' 'h_out: 6.0 deg\ntheta: 15.0 deg') assert repr(aper) == a_repr assert str(aper) == a_str def test_rectangular_bbox(): # odd sizes width = 7 height = 3 a = RectangularAperture((50, 50), w=width, h=height, theta=0) assert a.bbox.shape == (height, width) a = RectangularAperture((50.5, 50.5), w=width, h=height, theta=0) assert a.bbox.shape == (height + 1, width + 1) a = RectangularAperture((50, 50), w=width, h=height, theta=90.*np.pi/180.) assert a.bbox.shape == (width, height) # even sizes width = 8 height = 4 a = RectangularAperture((50, 50), w=width, h=height, theta=0) assert a.bbox.shape == (height + 1, width + 1) a = RectangularAperture((50.5, 50.5), w=width, h=height, theta=0) assert a.bbox.shape == (height, width) a = RectangularAperture((50.5, 50.5), w=width, h=height, theta=90.*np.pi/180.) assert a.bbox.shape == (width, height) def test_elliptical_bbox(): # integer axes a = 7 b = 3 ap = EllipticalAperture((50, 50), a=a, b=b, theta=0) assert ap.bbox.shape == (2*b + 1, 2*a + 1) ap = EllipticalAperture((50.5, 50.5), a=a, b=b, theta=0) assert ap.bbox.shape == (2*b, 2*a) ap = EllipticalAperture((50, 50), a=a, b=b, theta=90.*np.pi/180.) assert ap.bbox.shape == (2*a + 1, 2*b + 1) # fractional axes a = 7.5 b = 4.5 ap = EllipticalAperture((50, 50), a=a, b=b, theta=0) assert ap.bbox.shape == (2*b, 2*a) ap = EllipticalAperture((50.5, 50.5), a=a, b=b, theta=0) assert ap.bbox.shape == (2*b + 1, 2*a + 1) ap = EllipticalAperture((50, 50), a=a, b=b, theta=90.*np.pi/180.) assert ap.bbox.shape == (2*a, 2*b) @pytest.mark.skipif('not HAS_GWCS') @pytest.mark.parametrize('wcs_type', ('wcs', 'gwcs')) def test_to_sky_pixel(wcs_type): data = make_4gaussians_image() if wcs_type == 'wcs': wcs = make_wcs(data.shape) elif wcs_type == 'gwcs': wcs = make_gwcs(data.shape) ap = CircularAperture(((12.3, 15.7), (48.19, 98.14)), r=3.14) ap2 = ap.to_sky(wcs).to_pixel(wcs) assert_allclose(ap.positions, ap2.positions) assert_allclose(ap.r, ap2.r) ap = CircularAnnulus(((12.3, 15.7), (48.19, 98.14)), r_in=3.14, r_out=5.32) ap2 = ap.to_sky(wcs).to_pixel(wcs) assert_allclose(ap.positions, ap2.positions) assert_allclose(ap.r_in, ap2.r_in) assert_allclose(ap.r_out, ap2.r_out) ap = EllipticalAperture(((12.3, 15.7), (48.19, 98.14)), a=3.14, b=5.32, theta=103.*np.pi/180.) ap2 = ap.to_sky(wcs).to_pixel(wcs) assert_allclose(ap.positions, ap2.positions) assert_allclose(ap.a, ap2.a) assert_allclose(ap.b, ap2.b) assert_allclose(ap.theta, ap2.theta) ap = EllipticalAnnulus(((12.3, 15.7), (48.19, 98.14)), a_in=3.14, a_out=15.32, b_out=4.89, theta=103.*np.pi/180.) ap2 = ap.to_sky(wcs).to_pixel(wcs) assert_allclose(ap.positions, ap2.positions) assert_allclose(ap.a_in, ap2.a_in) assert_allclose(ap.a_out, ap2.a_out) assert_allclose(ap.b_out, ap2.b_out) assert_allclose(ap.theta, ap2.theta) ap = RectangularAperture(((12.3, 15.7), (48.19, 98.14)), w=3.14, h=5.32, theta=103.*np.pi/180.) ap2 = ap.to_sky(wcs).to_pixel(wcs) assert_allclose(ap.positions, ap2.positions) assert_allclose(ap.w, ap2.w) assert_allclose(ap.h, ap2.h) assert_allclose(ap.theta, ap2.theta) ap = RectangularAnnulus(((12.3, 15.7), (48.19, 98.14)), w_in=3.14, w_out=15.32, h_out=4.89, theta=103.*np.pi/180.) ap2 = ap.to_sky(wcs).to_pixel(wcs) assert_allclose(ap.positions, ap2.positions) assert_allclose(ap.w_in, ap2.w_in) assert_allclose(ap.w_out, ap2.w_out) assert_allclose(ap.h_out, ap2.h_out) assert_allclose(ap.theta, ap2.theta) def test_position_units(): """Regression test for unit check.""" pos = (10, 10) * u.pix pos = np.sqrt(pos**2) with pytest.warns(AstropyDeprecationWarning): ap = CircularAperture(pos, r=3.) assert_allclose(ap.positions, np.array([10, 10])) def test_radius_units(): """Regression test for unit check.""" pos = SkyCoord(10, 10, unit='deg') r = 3.*u.pix r = np.sqrt(r**2) with pytest.warns(AstropyDeprecationWarning): ap = SkyCircularAperture(pos, r=r) assert ap.r.value == 3.0 assert ap.r.unit == u.pix def test_scalar_aperture(): """ Regression test to check that length-1 aperture list appends a "_0" on the column names to be consistent with list inputs. """ data = np.ones((20, 20), dtype=float) ap = CircularAperture((10, 10), r=3.) colnames1 = aperture_photometry(data, ap, error=data).colnames assert (colnames1 == ['id', 'xcenter', 'ycenter', 'aperture_sum', 'aperture_sum_err']) colnames2 = aperture_photometry(data, [ap], error=data).colnames assert (colnames2 == ['id', 'xcenter', 'ycenter', 'aperture_sum_0', 'aperture_sum_err_0']) colnames3 = aperture_photometry(data, [ap, ap], error=data).colnames assert (colnames3 == ['id', 'xcenter', 'ycenter', 'aperture_sum_0', 'aperture_sum_err_0', 'aperture_sum_1', 'aperture_sum_err_1']) def test_nan_in_bbox(): """ Regression test that non-finite data values outside of the aperture mask but within the bounding box do not affect the photometry. """ data1 = np.ones((101, 101)) data2 = data1.copy() data1[33, 33] = np.nan data1[67, 67] = np.inf data1[33, 67] = -np.inf data1[22, 22] = np.nan data1[22, 23] = np.inf error = data1.copy() aper1 = CircularAperture((50, 50), r=20.) aper2 = CircularAperture((5, 5), r=20.) tbl1 = aperture_photometry(data1, aper1, error=error) tbl2 = aperture_photometry(data2, aper1, error=error)
assert_allclose(tbl1['aperture_sum'], tbl2['aperture_sum'])
numpy.testing.assert_allclose
#! /usr/bin/env python3 # -*- coding: utf-8 -*- # File: sample_questions_mgn.py # Author: anon # Email: <EMAIL> # Created on: 2020-05-19 # # This file is part of MGN # Distributed under terms of the MIT License import os, sys, platform import argparse import h5py import numpy as np
np.random.seed(42)
numpy.random.seed
#!/usr/bin/python # -*- coding: utf-8 -*- try: import unittest2 as unittest except: import unittest import numpy as np from pyrr import quaternion class test_quaternion(unittest.TestCase): # many of these values are taken from searches on wolfram alpha def test_import(self): import pyrr pyrr.quaternion from pyrr import quaternion def test_create(self): result = quaternion.create() np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_parameters(self): result = quaternion.create(1.0, 2.0, 3.0, 4.0) np.testing.assert_almost_equal(result, [1.0, 2.0, 3.0, 4.0], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_x_rotation(self): # 180 degree turn around X axis q = quaternion.create_from_x_rotation(np.pi) self.assertTrue(np.allclose(q, [1., 0., 0., 0.])) # 90 degree rotation around X axis q = quaternion.create_from_x_rotation(np.pi / 2.) self.assertTrue(np.allclose(q, [np.sqrt(0.5), 0., 0., np.sqrt(0.5)])) # -90 degree rotation around X axis q = quaternion.create_from_x_rotation(-np.pi / 2.) self.assertTrue(np.allclose(q, [-np.sqrt(0.5), 0., 0., np.sqrt(0.5)])) def test_create_from_y_rotation(self): # 180 degree turn around Y axis q = quaternion.create_from_y_rotation(np.pi) self.assertTrue(np.allclose(q, [0., 1., 0., 0.])) # 90 degree rotation around Y axis q = quaternion.create_from_y_rotation(np.pi / 2.) self.assertTrue(np.allclose(q, [0., np.sqrt(0.5), 0., np.sqrt(0.5)])) # -90 degree rotation around Y axis q = quaternion.create_from_y_rotation(-np.pi / 2.) def test_create_from_z_rotation(self): # 180 degree turn around Z axis q = quaternion.create_from_z_rotation(np.pi) self.assertTrue(np.allclose(q, [0., 0., 1., 0.])) # 90 degree rotation around Z axis q = quaternion.create_from_z_rotation(np.pi / 2.) self.assertTrue(np.allclose(q, [0., 0., np.sqrt(0.5), np.sqrt(0.5)])) # -90 degree rotation around Z axis q = quaternion.create_from_z_rotation(-np.pi / 2.) def test_create_from_axis_rotation(self): # wolfram alpha can be awesome sometimes result = quaternion.create_from_axis_rotation([0.57735, 0.57735, 0.57735], np.pi) np.testing.assert_almost_equal(result, [5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17], decimal=3) self.assertTrue(result.dtype == np.float) def test_create_from_axis_rotation_non_normalized(self): result = quaternion.create_from_axis_rotation([1., 1., 1.], np.pi) np.testing.assert_almost_equal(result, [5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17], decimal=3) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_unit(self): result = quaternion.create_from_matrix(np.eye(3)) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_x(self): result = quaternion.create_from_matrix([ [1., 0., 0.], [0., -1., 0.], [0., 0., -1.], ]) np.testing.assert_almost_equal(result, [1., 0., 0., 0.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_y(self): result = quaternion.create_from_matrix([ [-1., 0., 0.], [0., 1., 0.], [0., 0., -1.], ]) np.testing.assert_almost_equal(result, [0., 1., 0., 0.], decimal=5) self.assertTrue(result.dtype == np.float) def test_create_from_matrix_z(self): result = quaternion.create_from_matrix([ [-1., 0., 0.], [0., -1., 0.], [0., 0., 1.], ]) np.testing.assert_almost_equal(result, [0., 0., 1., 0.], decimal=5) self.assertTrue(result.dtype == np.float) @unittest.skip('Not implemented') def test_create_from_eulers(self): pass @unittest.skip('Not implemented') def test_create_from_inverse_of_eulers(self): pass def test_cross(self): q1 = quaternion.create_from_x_rotation(np.pi / 2.0) q2 = quaternion.create_from_x_rotation(-np.pi / 2.0) result = quaternion.cross(q1, q2) np.testing.assert_almost_equal(result, quaternion.create(), decimal=5) def test_quaternion_slerp(self): sqrt2 = np.sqrt(2) / 2 identity = np.array([0.0, 0.0, 0.0, 1.0]) y90rot = np.array([0.0, sqrt2, 0.0, sqrt2]) y180rot = np.array([0.0, 1.0, 0.0, 0.0]) # Testing a == 0 # Must be id result = quaternion.slerp(identity, y90rot, 0.0) np.testing.assert_almost_equal(result, identity, decimal=4) # Testing a == 1 # Must be 90° rotation on Y : 0 0.7 0 0.7 result = quaternion.slerp(identity, y90rot, 1.0) np.testing.assert_almost_equal(result, y90rot, decimal=4) # Testing standard, easy case # Must be 45° rotation on Y : 0 0.38 0 0.92 y45rot1 = quaternion.slerp(identity, y90rot, 0.5) # Testing reverse case # Must be 45° rotation on Y : 0 0.38 0 0.92 y45rot2 = quaternion.slerp(y90rot, identity, 0.5) np.testing.assert_almost_equal(y45rot1, y45rot2, decimal=4) # Testing against full circle around the sphere instead of shortest path # Must be 45° rotation on Y # certainly not a 135° rotation # y45rot3 = quaternion.slerp(identity, quaternion.negate(y90rot), 0.5) y45rot3 = quaternion.slerp(identity, y90rot, 0.5) y45angle3 = quaternion.rotation_angle(y45rot3) np.testing.assert_almost_equal(y45angle3 * 180 / np.pi, 45, decimal=4) np.testing.assert_almost_equal(y45angle3, np.pi / 4, decimal=4) # # Same, but inverted # # Must also be 45° rotation on Y : 0 0.38 0 0.92 # # -0 -0.38 -0 -0.92 is ok too y45rot4 = quaternion.slerp(-y90rot, identity, 0.5) np.testing.assert_almost_equal(np.abs(y45rot4), y45rot2, decimal=4) # # Testing q1 = q2 # # Must be 90° rotation on Y : 0 0.7 0 0.7 y90rot3 = quaternion.slerp(y90rot, y90rot, 0.5); np.testing.assert_almost_equal(y90rot3, y90rot, decimal=4) # # Testing 180° rotation # # Must be 90° rotation on almost any axis that is on the XZ plane xz90rot = quaternion.slerp(identity, -y90rot, 0.5) xz90rot = quaternion.rotation_angle(xz90rot) np.testing.assert_almost_equal(xz90rot, np.pi / 4, decimal=4) def test_is_zero_length(self): result = quaternion.is_zero_length([1., 0., 0., 0.]) self.assertFalse(result) def test_is_zero_length_zero(self): result = quaternion.is_zero_length([0., 0., 0., 0.]) self.assertTrue(result) def test_is_non_zero_length(self): result = quaternion.is_non_zero_length([1., 0., 0., 0.]) self.assertTrue(result) def test_is_non_zero_length_zero(self): result = quaternion.is_non_zero_length([0., 0., 0., 0.]) self.assertFalse(result) def test_squared_length_identity(self): result = quaternion.squared_length([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, 1., decimal=5) def test_squared_length(self): result = quaternion.squared_length([1., 1., 1., 1.]) np.testing.assert_almost_equal(result, 4., decimal=5) def test_squared_length_batch(self): result = quaternion.squared_length([ [0., 0., 0., 1.], [1., 1., 1., 1.], ]) np.testing.assert_almost_equal(result, [1., 4.], decimal=5) def test_length_identity(self): result = quaternion.length([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, 1., decimal=5) def test_length(self): result = quaternion.length([1., 1., 1., 1.]) np.testing.assert_almost_equal(result, 2., decimal=5) def test_length_batch(self): result = quaternion.length([ [0., 0., 0., 1.], [1., 1., 1., 1.], ]) np.testing.assert_almost_equal(result, [1., 2.], decimal=5) def test_normalize_identity(self): # normalize an identity quaternion result = quaternion.normalize([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_normalize_non_identity(self): # normalize an identity quaternion result = quaternion.normalize([1., 2., 3., 4.]) np.testing.assert_almost_equal(result, [1. / np.sqrt(30.), np.sqrt(2. / 15.), np.sqrt(3. / 10.), 2. * np.sqrt(2. / 15.)], decimal=5) def test_normalize_batch(self): # normalize an identity quaternion result = quaternion.normalize([ [0., 0., 0., 1.], [1., 2., 3., 4.], ]) expected = [ [0., 0., 0., 1.], [1. / np.sqrt(30.), np.sqrt(2. / 15.), np.sqrt(3. / 10.), 2. * np.sqrt(2. / 15.)], ] np.testing.assert_almost_equal(result, expected, decimal=5) def test_rotation_angle(self): result = quaternion.rotation_angle([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, np.pi, decimal=5) def test_rotation_axis(self): result = quaternion.rotation_axis([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, [0.57735, 0.57735, 0.57735], decimal=5) def test_dot_adjacent(self): result = quaternion.dot([1., 0., 0., 0.], [0., 1., 0., 0.]) np.testing.assert_almost_equal(result, 0.0, decimal=5) def test_dot_parallel(self): result = quaternion.dot([0., 1., 0., 0.], [0., 1., 0., 0.]) np.testing.assert_almost_equal(result, 1.0, decimal=5) def test_dot_angle(self): result = quaternion.dot([.2, .2, 0., 0.], [2., -.2, 0., 0.]) np.testing.assert_almost_equal(result, 0.36, decimal=5) def test_dot_batch(self): result = quaternion.dot([ [1., 0., 0., 0.], [0., 1., 0., 0.], [.2, .2, 0., 0.] ], [ [0., 1., 0., 0.], [0., 1., 0., 0.], [2., -.2, 0., 0.] ]) expected = [0., 1., 0.36] np.testing.assert_almost_equal(result, expected, decimal=5) def test_conjugate(self): #result = quaternion.conjugate([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) result = quaternion.conjugate([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_conjugate_rotation(self): result = quaternion.conjugate([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, [-0.57735, -0.57735, -0.57735, 6.12323e-17], decimal=5) @unittest.skip('Not implemented') def test_power(self): pass def test_inverse(self): result = quaternion.inverse([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., 1.], decimal=5) def test_inverse_rotation(self): result = quaternion.inverse([5.77350000e-01, 5.77350000e-01, 5.77350000e-01, 6.12323400e-17]) np.testing.assert_almost_equal(result, [-0.577351, -0.577351, -0.577351, 6.12324e-17], decimal=5) def test_inverse_non_unit(self): q = [1, 2, 3, 4] result = quaternion.inverse(q) expected = quaternion.conjugate(q) / quaternion.length(q) np.testing.assert_almost_equal(result, expected, decimal=5) def test_negate_unit(self): result = quaternion.negate([0., 0., 0., 1.]) np.testing.assert_almost_equal(result, [0., 0., 0., -1.], decimal=5) def test_negate(self): result = quaternion.negate([1., 2., 3., 4.]) np.testing.assert_almost_equal(result, [-1., -2., -3., -4.], decimal=5) def test_apply_to_vector_unit_x(self): result = quaternion.apply_to_vector([0., 0., 0., 1.], [1., 0., 0.]) np.testing.assert_almost_equal(result, [1., 0., 0.], decimal=5) def test_apply_to_vector_x(self): # 180 degree turn around X axis q = quaternion.create_from_x_rotation(np.pi) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0.,-1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0.,-1.])) # 90 degree rotation around X axis q = quaternion.create_from_x_rotation(np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 0., 1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0.,-1., 0.])) # -90 degree rotation around X axis q = quaternion.create_from_x_rotation(-np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 0.,-1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 1., 0.])) def test_apply_to_vector_y(self): # 180 degree turn around Y axis q = quaternion.create_from_y_rotation(np.pi) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [-1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0.,-1.])) # 90 degree rotation around Y axis q = quaternion.create_from_y_rotation(np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 0.,-1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [1., 0., 0.])) # -90 degree rotation around Y axis q = quaternion.create_from_y_rotation(-np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 0., 1.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [-1., 0., 0.])) def test_apply_to_vector_z(self): # 180 degree turn around Z axis q = quaternion.create_from_z_rotation(np.pi) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [-1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [0.,-1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) # 90 degree rotation around Z axis q = quaternion.create_from_z_rotation(np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0., 1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [-1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) # -90 degree rotation around Z axis q = quaternion.create_from_z_rotation(-np.pi / 2.) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [1., 0., 0.]), [0.,-1., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 1., 0.]), [1., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 1.]), [0., 0., 1.])) def test_apply_to_vector_non_unit(self): q = quaternion.create_from_x_rotation(np.pi) # zero length self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 0.]), [0., 0., 0.])) # >1 length self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [2., 0., 0.]), [2., 0., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 2., 0.]), [0.,-2., 0.])) self.assertTrue(np.allclose(quaternion.apply_to_vector(q, [0., 0., 2.]), [0., 0.,-2.])) def test_identity(self): # https://en.wikipedia.org/wiki/Quaternion i = quaternion.create(1., 0., 0., 0.) j = quaternion.create(0., 1., 0., 0.) k = quaternion.create(0., 0., 1., 0.) one = quaternion.create(0., 0., 0., 1.) # i * 1 = i # j * 1 = j # k * 1 = k # 1 * i = i # 1 * j = j # 1 * k = k i1 = quaternion.cross(i, one) j1 = quaternion.cross(j, one) k1 = quaternion.cross(k, one) _1i = quaternion.cross(one, i) _1j = quaternion.cross(one, j) _1k = quaternion.cross(one, k) self.assertTrue(np.allclose(i1, _1i, i)) self.assertTrue(np.allclose(j1, _1j, j)) self.assertTrue(np.allclose(k1, _1k, k)) # result = -1 ii = quaternion.cross(i, i) kk = quaternion.cross(k, k) jj = quaternion.cross(j, j) ijk = quaternion.cross(quaternion.cross(i, j), k) self.assertTrue(np.allclose(ii, -one)) self.assertTrue(np.allclose(jj, -one)) self.assertTrue(
np.allclose(kk, -one)
numpy.allclose
import numpy as np import tensorflow as tf from keras import backend as K from tqdm import tqdm def write_log(callback, names, logs, batch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, batch_no) callback.writer.flush() def fit_one_epoch(model_rpn, model_all, loss_history, callback, epoch, epoch_step, epoch_step_val, gen, gen_val, Epoch, anchors, bbox_util, roi_helper): total_loss = 0 rpn_loc_loss = 0 rpn_cls_loss = 0 roi_loc_loss = 0 roi_cls_loss = 0 val_loss = 0 with tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar: for iteration, batch in enumerate(gen): if iteration >= epoch_step: break X, Y, boxes = batch[0], batch[1], batch[2] P_rpn = model_rpn.predict_on_batch(X) results = bbox_util.detection_out_rpn(P_rpn, anchors) roi_inputs = [] out_classes = [] out_regrs = [] for i in range(len(X)): R = results[i] X2, Y1, Y2 = roi_helper.calc_iou(R, boxes[i]) roi_inputs.append(X2) out_classes.append(Y1) out_regrs.append(Y2) loss_class = model_all.train_on_batch([X,
np.array(roi_inputs)
numpy.array
import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import FancyArrowPatch from mpl_toolkits.mplot3d import proj3d import math as m from numpy.linalg import inv from func_dh_table import Tmat class Arrow3D(FancyArrowPatch): def __init__(self, xs, ys, zs, *args, **kwargs): FancyArrowPatch.__init__(self, (0, 0), (0, 0), *args, **kwargs) self._verts3d = xs, ys, zs def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj3d.proj_transform(xs3d, ys3d, zs3d, renderer.M) self.set_positions((xs[0], ys[0]), (xs[1], ys[1])) FancyArrowPatch.draw(self, renderer) def Rx(theta): return np.array([[1, 0, 0, 0], [0, np.cos(theta), -np.sin(theta), 0], [0, np.sin(theta), np.cos(theta), 0], [0, 0, 0, 1]]) def Rz(theta): return np.array([[np.cos(theta), -np.sin(theta), 0, 0], [np.sin(theta),
np.cos(theta)
numpy.cos
from __future__ import division, print_function, absolute_import import numpy from numpy import (atleast_1d, poly, polyval, roots, real, asarray, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array, mintypecode) from .filters import * from .helpers import fminbound, fmin, newton from mpmath import ellipk, ellipfun, besselk import numpy as np __all__ = ['iirfilter', 'cheb1ord', 'cheb2ord', 'buttord'] def iirfilter(N, Wn, rp=None, rs=None, btype='band', analog=False, ftype='butter', output='ba'): """ IIR digital and analog filter design given order and critical points. Design an Nth-order digital or analog filter and return the filter coefficients. Parameters ---------- N : int The order of the filter. Wn : array_like A scalar or length-2 sequence giving the critical frequencies. For digital filters, `Wn` is normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`Wn` is thus in half-cycles / sample.) For analog filters, `Wn` is an angular frequency (e.g. rad/s). rp : float, optional For Chebyshev and elliptic filters, provides the maximum ripple in the passband. (dB) rs : float, optional For Chebyshev and elliptic filters, provides the minimum attenuation in the stop band. (dB) btype : {'bandpass', 'lowpass', 'highpass', 'bandstop'}, optional The type of filter. Default is 'bandpass'. analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba') or pole-zero ('zpk'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- butter : Filter design using order and critical points cheby1, cheby2, ellip, bessel buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord, ellipord iirdesign : General filter design using passband and stopband spec Notes ----- The ``'sos'`` output parameter was added in 0.16.0. Examples -------- Generate a 17th-order Chebyshev II bandpass filter and plot the frequency response: >>> from scipy import signal >>> import matplotlib.pyplot as plt >>> b, a = signal.iirfilter(17, [50, 200], rs=60, btype='band', ... analog=True, ftype='cheby2') >>> w, h = signal.freqs(b, a, 1000) >>> fig = plt.figure() >>> ax = fig.add_subplot(111) >>> ax.semilogx(w, 20 * np.log10(abs(h))) >>> ax.set_title('Chebyshev Type II bandpass frequency response') >>> ax.set_xlabel('Frequency [radians / second]') >>> ax.set_ylabel('Amplitude [dB]') >>> ax.axis((10, 1000, -100, 10)) >>> ax.grid(which='both', axis='both') >>> plt.show() """ ftype, btype, output = [x.lower() for x in (ftype, btype, output)] Wn = asarray(Wn) try: btype = band_dict[btype] except KeyError: raise ValueError("'%s' is an invalid bandtype for filter." % btype) try: typefunc = filter_dict[ftype][0] except KeyError: raise ValueError("'%s' is not a valid basic IIR filter." % ftype) if output not in ['ba', 'zpk']: raise ValueError("'%s' is not a valid output form." % output) if rp is not None and rp < 0: raise ValueError("passband ripple (rp) must be positive") if rs is not None and rs < 0: raise ValueError("stopband attenuation (rs) must be positive") # Get analog lowpass prototype if typefunc == buttap: z, p, k = typefunc(N) # elif typefunc == besselap: # z, p, k = typefunc(N, norm=bessel_norms[ftype]) elif typefunc == cheb1ap: if rp is None: raise ValueError("passband ripple (rp) must be provided to " "design a Chebyshev I filter.") z, p, k = typefunc(N, rp) elif typefunc == cheb2ap: if rs is None: raise ValueError("stopband attenuation (rs) must be provided to " "design an Chebyshev II filter.") z, p, k = typefunc(N, rs) # elif typefunc == ellipap: # if rs is None or rp is None: # raise ValueError("Both rp and rs must be provided to design an " # "elliptic filter.") # z, p, k = typefunc(N, rp, rs) else: raise NotImplementedError("'%s' not implemented in iirfilter." % ftype) # Pre-warp frequencies for digital filter design if not analog: if numpy.any(Wn <= 0) or numpy.any(Wn >= 1): raise ValueError("Digital filter critical frequencies " "must be 0 < Wn < 1") fs = 2.0 warped = 2 * fs * tan(pi * Wn / fs) else: warped = Wn # transform to lowpass, bandpass, highpass, or bandstop if btype in ('lowpass', 'highpass'): if numpy.size(Wn) != 1: raise ValueError('Must specify a single critical frequency Wn') if btype == 'lowpass': z, p, k = _zpklp2lp(z, p, k, wo=warped) elif btype == 'highpass': z, p, k = _zpklp2hp(z, p, k, wo=warped) elif btype in ('bandpass', 'bandstop'): try: bw = warped[1] - warped[0] wo = sqrt(warped[0] * warped[1]) except IndexError: raise ValueError('Wn must specify start and stop frequencies') if btype == 'bandpass': z, p, k = _zpklp2bp(z, p, k, wo=wo, bw=bw) elif btype == 'bandstop': z, p, k = _zpklp2bs(z, p, k, wo=wo, bw=bw) else: raise NotImplementedError("'%s' not implemented in iirfilter." % btype) # Find discrete equivalent if necessary if not analog: z, p, k = _zpkbilinear(z, p, k, fs=fs) # Transform to proper out type (pole-zero, state-space, numer-denom) if output == 'zpk': return z, p, k elif output == 'ba': return zpk2tf(z, p, k) def buttap(N): """Return (z,p,k) for analog prototype of Nth-order Butterworth filter. The filter will have an angular (e.g. rad/s) cutoff frequency of 1. See Also -------- butter : Filter design function using this prototype """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") z = numpy.array([]) m = numpy.arange(-N+1, N, 2) # Middle value is 0 to ensure an exactly real pole p = -numpy.exp(1j * pi * m / (2 * N)) k = 1 return z, p, k def cheb1ap(N, rp): """ Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter. The returned filter prototype has `rp` decibels of ripple in the passband. The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first drops below ``-rp``. See Also -------- cheby1 : Filter design function using this prototype """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") elif N == 0: # Avoid divide-by-zero error # Even order filters have DC gain of -rp dB return numpy.array([]), numpy.array([]), 10**(-rp/20) z = numpy.array([]) # Ripple factor (epsilon) eps = numpy.sqrt(10 ** (0.1 * rp) - 1.0) mu = 1.0 / N * arcsinh(1 / eps) # Arrange poles in an ellipse on the left half of the S-plane m = numpy.arange(-N+1, N, 2) theta = pi * m / (2*N) p = -sinh(mu + 1j*theta) k = numpy.prod(-p, axis=0).real if N % 2 == 0: k = k / sqrt((1 + eps * eps)) return z, p, k def cheb2ap(N, rs): """ Return (z,p,k) for Nth-order Chebyshev type I analog lowpass filter. The returned filter prototype has `rs` decibels of ripple in the stopband. The filter's angular (e.g. rad/s) cutoff frequency is normalized to 1, defined as the point at which the gain first reaches ``-rs``. See Also -------- cheby2 : Filter design function using this prototype """ if abs(int(N)) != N: raise ValueError("Filter order must be a nonnegative integer") elif N == 0: # Avoid divide-by-zero warning return numpy.array([]), numpy.array([]), 1 # Ripple factor (epsilon) de = 1.0 / sqrt(10 ** (0.1 * rs) - 1) mu = arcsinh(1.0 / de) / N if N % 2: m = numpy.concatenate((numpy.arange(-N+1, 0, 2), numpy.arange(2, N, 2))) else: m = numpy.arange(-N+1, N, 2) z = -conjugate(1j / sin(m * pi / (2.0 * N))) # Poles around the unit circle like Butterworth p = -exp(1j * pi * numpy.arange(-N+1, N, 2) / (2 * N)) # Warp into Chebyshev II p = sinh(mu) * p.real + 1j * cosh(mu) * p.imag p = 1.0 / p k = (numpy.prod(-p, axis=0) / numpy.prod(-z, axis=0)).real return z, p, k def _zpkbilinear(z, p, k, fs): """ Return a digital filter from an analog one using a bilinear transform. Transform a set of poles and zeros from the analog s-plane to the digital z-plane using Tustin's method, which substitutes ``(z-1) / (z+1)`` for ``s``, maintaining the shape of the frequency response. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. fs : float Sample rate, as ordinary frequency (e.g. hertz). No prewarping is done in this function. Returns ------- z : ndarray Zeros of the transformed digital filter transfer function. p : ndarray Poles of the transformed digital filter transfer function. k : float System gain of the transformed digital filter. """ z = atleast_1d(z) p = atleast_1d(p) degree = _relative_degree(z, p) fs2 = 2.0*fs # Bilinear transform the poles and zeros z_z = (fs2 + z) / (fs2 - z) p_z = (fs2 + p) / (fs2 - p) # Any zeros that were at infinity get moved to the Nyquist frequency z_z = append(z_z, -ones(degree)) # Compensate for gain change k_z = k * real(prod(fs2 - z) / prod(fs2 - p)) return z_z, p_z, k_z def _zpklp2lp(z, p, k, wo=1.0): r""" Transform a lowpass filter prototype to a different frequency. Return an analog low-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change. Returns ------- z : ndarray Zeros of the transformed low-pass filter transfer function. p : ndarray Poles of the transformed low-pass filter transfer function. k : float System gain of the transformed low-pass filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{s}{\omega_0} """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) # Avoid int wraparound degree = _relative_degree(z, p) # Scale all points radially from origin to shift cutoff frequency z_lp = wo * z p_lp = wo * p # Each shifted pole decreases gain by wo, each shifted zero increases it. # Cancel out the net change to keep overall gain the same k_lp = k * wo**degree return z_lp, p_lp, k_lp def _zpklp2hp(z, p, k, wo=1.0): r""" Transform a lowpass filter prototype to a highpass filter. Return an analog high-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired cutoff, as angular frequency (e.g. rad/s). Defaults to no change. Returns ------- z : ndarray Zeros of the transformed high-pass filter transfer function. p : ndarray Poles of the transformed high-pass filter transfer function. k : float System gain of the transformed high-pass filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{\omega_0}{s} This maintains symmetry of the lowpass and highpass responses on a logarithmic scale. """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) degree = _relative_degree(z, p) # Invert positions radially about unit circle to convert LPF to HPF # Scale all points radially from origin to shift cutoff frequency z_hp = wo / z p_hp = wo / p # If lowpass had zeros at infinity, inverting moves them to origin. z_hp = append(z_hp, zeros(degree)) # Cancel out gain change caused by inversion k_hp = k * real(prod(-z) / prod(-p)) return z_hp, p_hp, k_hp def _zpklp2bp(z, p, k, wo=1.0, bw=1.0): r""" Transform a lowpass filter prototype to a bandpass filter. Return an analog band-pass filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, using zeros, poles, and gain ('zpk') representation. Parameters ---------- z : array_like Zeros of the analog IIR filter transfer function. p : array_like Poles of the analog IIR filter transfer function. k : float System gain of the analog IIR filter transfer function. wo : float Desired passband center, as angular frequency (e.g. rad/s). Defaults to no change. bw : float Desired passband width, as angular frequency (e.g. rad/s). Defaults to 1. Returns ------- z : ndarray Zeros of the transformed band-pass filter transfer function. p : ndarray Poles of the transformed band-pass filter transfer function. k : float System gain of the transformed band-pass filter. Notes ----- This is derived from the s-plane substitution .. math:: s \rightarrow \frac{s^2 + {\omega_0}^2}{s \cdot \mathrm{BW}} This is the "wideband" transformation, producing a passband with geometric (log frequency) symmetry about `wo`. """ z = atleast_1d(z) p = atleast_1d(p) wo = float(wo) bw = float(bw) degree = _relative_degree(z, p) # Scale poles and zeros to desired bandwidth z_lp = z * bw/2 p_lp = p * bw/2 # Square root needs to produce complex result, not NaN z_lp = z_lp.astype(complex) p_lp = p_lp.astype(complex) # Duplicate poles and zeros and shift from baseband to +wo and -wo z_bp = concatenate((z_lp + sqrt(z_lp**2 - wo**2), z_lp - sqrt(z_lp**2 - wo**2))) p_bp = concatenate((p_lp +
sqrt(p_lp**2 - wo**2)
numpy.sqrt
import numpy as np from dwave.system.samplers import DWaveSampler # Numpy arrays should be row-major for best performance class TrainEnv: # require for the data to be passed as NP data arrays # -> clear to both user and code what each array is # X_train, y_train should be formatted like scikit-learn data arrays are # -> X_train is the train data, y_train is the train labels def __init__( self, X_train, y_train, endpoint_url, account_token, X_val=None, y_val=None, fidelity=7, dwave_topology="pegasus", ): """ Configures the hyperparameters for the model. In essence, this controls how the model learns. Parameters: - X_train Input Events x Params dataset (given in Scikit-learn's format). - y_train Input Classification dataset (given in Scikit-learn's format). - endpoint_url The url associated with the D-Wave machine desired. - account_token Access token for D-Wave machines associated with your account. - X_val (Optional) Validation Events x Params dataset (given in Scikit-learn's format). - y_val (Optional) Validation Classification dataset (given in Scikit-learn's format). - fidelity (Optional) Number of copies of parameter to make for zooming. - dwave_topology (Optional) Architecture of the desired D-Wave machine. (Possible options defined in D-Wave documentation.) Environment Vars: - X_train Dataset of Events x Params used solely for training. - y_train Dataset of Classifcations used solely for training. - X_val Dataset of Events x Params used solely for validation. - y_val Dataset of Classifcations used solely for validation. - train_size Number of events to train on (or per group if dataset is split). - fidelity Number of copies of each parameter to make. The greater the fidelity, the more complex of a decision boundary that could be formed. - fidelity_offset Amount to shift each copy of a param. Should generally not be changed. - c_i Input dataset after the param copies have been created and shifted. - C_i c_i dotted with y_train row-wise. - C_ij c_i dotted with itself row-wise. - sampler Defines the characteristics for the desired D-Wave machine. Can be changed after understanding the Ocean SDK. """ self.X_train = X_train self.y_train = y_train # if X_val is None: # self.create_val_data() # else: # self.X_val = X_val # self.y_val = y_val self.train_size = np.shape(self.X_train)[0] self.fidelity = fidelity self.fidelity_offset = 0.0225 / fidelity self.c_i = None self.C_i = None self.C_ij = None self.data_preprocess() self.sampler = DWaveSampler( endpoint=endpoint_url, token=account_token, solver=dict(topology__type=dwave_topology), auto_scale=True, ) # auto_scale set True by default def create_val_data(self): """ Takes a small portion of the training data for validation (useful for comparing performance of error-correction schemes). """ dummy_xt, dummy_xv = np.split( self.X_train, [int(8 * np.size(self.X_train, 0) / 10)], 0 ) dummy_yt, dummy_yv = np.split( self.y_train, [int(8 * np.size(self.y_train) / 10)] ) self.X_train, self.X_val = np.array(list(dummy_xt)), np.array(list(dummy_xv)) self.y_train, self.y_val = np.array(list(dummy_yt)), np.array(list(dummy_yv)) def data_preprocess(self): """ This duplicates the parameters 'fidelity' times. The purpose is to turn the weak classifiers from outputing a single number (-1 or 1) to outputting a binary array ([-1, 1, 1,...]). The use of such a change is to trick the math into allowing more nuance between a weak classifier that outputs 0.1 from a weak classifier that outputs 0.9 (the weak classifier outputs are continuous) -> thereby discretizing the weak classifier's decision into more pieces than binary. This then creates a periodic array to shift the outputs of the repeated weak classifier, so that there is a meaning to duplicating them. You can think of each successive digit of the resulting weak classifier output array as being more specific about what the continuous output was - ie >0, >0.1, >0.2 etc. This description is not exactly correct in this case but it is the same idea as what we're doing. """ m_events, n_params = np.shape( self.X_train ) # [M events (rows) x N parameters (columns)] c_i = np.repeat( self.X_train, repeats=self.fidelity, axis=1 ) # [M events (rows) x N*fidelity parameters (columns)] offset_array = self.fidelity_offset * ( np.tile(
np.arange(self.fidelity)
numpy.arange
""" Module to run I/O tests on XSpectrum1D """ from __future__ import print_function, absolute_import, \ division, unicode_literals import numpy as np import os import pytest import astropy.io.ascii as ascii from astropy import units as u import astropy.table from linetools.spectra import io from linetools.spectra.xspectrum1d import XSpectrum1D def data_path(filename): data_dir = os.path.join(os.path.dirname(__file__), 'files') return os.path.join(data_dir, filename) def test_from_tuple(): tmp = ascii.read(data_path('UM184.dat.gz'), names=['wave', 'flux', 'sig']) idl = dict(wave=np.array(tmp['wave']), flux=np.array(tmp['flux']), sig=np.array(tmp['sig'])) spec = XSpectrum1D.from_tuple((idl['wave'],idl['flux'], idl['sig'])) # np.testing.assert_allclose(spec.data['wave'][spec.select], idl['wave']) np.testing.assert_allclose(spec.data['sig'][spec.select], idl['sig'], atol=2e-3, rtol=0) assert spec.wavelength.unit == u.Unit('AA') # spec = XSpectrum1D.from_tuple((idl['wave'],idl['flux'])) np.testing.assert_allclose(spec.data['wave'][spec.select], idl['wave']) # continuum co = np.ones_like(idl['flux']) spec = XSpectrum1D.from_tuple((idl['wave'],idl['flux'],idl['sig'], co)) np.testing.assert_allclose(spec.data['wave'][spec.select], idl['wave']) co = None spec = XSpectrum1D.from_tuple((idl['wave'],idl['flux'],idl['sig'], co))
np.testing.assert_allclose(spec.data['wave'][spec.select], idl['wave'])
numpy.testing.assert_allclose
# This code is modified from https://github.com/facebookresearch/low-shot-shrink-hallucinate import torch from PIL import Image import numpy as np import pandas as pd import torchvision.transforms as transforms import datasets.additional_transforms as add_transforms from torch.utils.data import Dataset, DataLoader from abc import abstractmethod from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import sys sys.path.append("../") from configs import * idx = 0 class CustomDatasetFromImages(Dataset): def __init__(self, csv_path= ISIC_path + "/ISIC2018_Task3_Training_GroundTruth/ISIC2018_Task3_Training_GroundTruth.csv", \ image_path = ISIC_path + "/ISIC2018_Task3_Training_Input/"): print(csv_path) """ Args: csv_path (string): path to csv file img_path (string): path to the folder where images are transform: pytorch transforms for transforms and tensor conversion """ self.img_path = image_path self.csv_path = csv_path # Transforms self.to_tensor = transforms.ToTensor() # Read the csv file self.data_info = pd.read_csv(csv_path, skiprows=[0], header=None) # First column contains the image paths self.image_name = np.asarray(self.data_info.iloc[:, 0]) self.labels =
np.asarray(self.data_info.iloc[:, 1:])
numpy.asarray
#!/usr/bin/python3 # -*- coding: utf-8 -*- # Imports ######################################## import sys, os SciAnalysis_PATH='/home/kyager/current/code/SciAnalysis/main/' SciAnalysis_PATH in sys.path or sys.path.append(SciAnalysis_PATH) import glob import numpy as np from SciAnalysis import tools from SciAnalysis.XSAnalysis.Data import * #from SciAnalysis.XSAnalysis import Protocols # Select file/conditions root_dir = '/home/kyager/ppl/EmilyCranston/Kevin_DeFrance/2015_10Oct_18-SAXS_all/' source_dir = os.path.join(root_dir, 'CNC_825_1p2T_kin/') #source_dir = os.path.join(root_dir, 'CNC_825_0p56T_kin/') #source_dir = os.path.join(root_dir, 'CNC_825_0T_kin/') #source_dir = os.path.join(root_dir, 'CNC_413_1p2T_kin/') #source_dir = os.path.join(root_dir, 'CNC_165_1p2T_kin/') #source_dir = os.path.join(root_dir, 'CNC_165_0T_kin/') #source_dir = os.path.join(root_dir, 'CNC_1p65_0p56T_1_kin/') results_dir = os.path.join(source_dir, 'SciAnalysis/', 'results/') output_dir = os.path.join(source_dir, 'SciAnalysis', 'trend/') t_initial = 3 # min t_step = 1 # min #show = ['I', 'q', 'd', 'sigma', 'xi', 'eta', 'm', 'S'] # all show = ['I', 'd', 'xi', 'eta', 'S'] # most useful #show = ['q', 'sigma', 'm'] # aux # Custom plot class DataLinesStacked_current(DataLinesStacked): def analyze(self, **run_args): self.fit_lines = [] self.fit_results = [] for i, line in enumerate(self.lines): lm_result, fit_line, fit_line_extended = self.fit_sigmoid(line, **run_args) self.fit_lines.append(fit_line_extended) result = [lm_result.params['x_center'].value, lm_result.params['x_center'].stderr, lm_result.params['x_scale'].value, lm_result.params['x_scale'].stderr, lm_result.params['b'].value, lm_result.params['b'].stderr, lm_result.params['prefactor'].value, lm_result.params['prefactor'].stderr, ] self.fit_results.append(result) print( line.y_label ) tau1 = lm_result.params['x_center'].value tau2 = np.abs(lm_result.params['x_scale'].value) tau = lm_result.params['x_center'].value+np.abs(lm_result.params['x_scale'].value) tauerr = np.sqrt( np.square(lm_result.params['x_center'].stderr) + np.square(lm_result.params['x_scale'].stderr) ) print( ' tau1 = {:.2f} min tau2 = {:.2f} min'.format(tau1, tau2) ) print( ' tau = {:.2f} +/- {:.2f} min'.format(tau, tauerr) ) If = lm_result.params['b'].value+lm_result.params['prefactor'].value Iferr = np.sqrt( np.square(lm_result.params['b'].stderr) + np.square(lm_result.params['prefactor'].stderr) ) print( ' I_i, I,f = {:.3f}+/-{:.3f}, {:.3f}+/-{:.3f}'.format(lm_result.params['b'].value, lm_result.params['b'].stderr, If, Iferr ) ) print( ' <I>+/- = {} +/- {}'.format(np.average(line.y), np.std(line.y)) ) def fit_sigmoid(self, line, **run_args): import lmfit def model(v, x): '''Eta orientation function.''' m = v['b'] m += v['prefactor']*( 1./(1 + np.exp(-(x-v['x_center'])/v['x_scale'])) ) return m def func2minimize(params, x, data): v = params.valuesdict() m = model(v, x) return m - data x_span = np.max(line.x)-np.min(line.x) # Determine 'polarity' line.sort_x() y_start = np.average(line.y[:5]) y_end = np.average(line.y[-5:]) if y_start>y_end: polarity = -1 else: polarity = +1 params = lmfit.Parameters() params.add('b', value=np.min(line.y), min=0, max=np.max(line.y)) params.add('prefactor', value=np.max(line.y)-np.min(line.y), min=0) params.add('x_center', value=x_span, min=np.min(line.x), max=np.max(line.x)) params.add('x_scale', value=x_span*0.25*polarity) lm_result = lmfit.minimize(func2minimize, params, args=(line.x, line.y)) if run_args['verbosity']>=5: print('Fit results (lmfit):') lmfit.report_fit(lm_result.params) fit_x = line.x fit_y = model(lm_result.params.valuesdict(), fit_x) fit_line = DataLine(x=fit_x, y=fit_y, plot_args={'linestyle':'-', 'color':'r', 'marker':None, 'linewidth':4.0}) fit_x = np.linspace(min(np.min(line.x), 0), np.max(line.x)*2.0, num=1000) fit_y = model(lm_result.params.valuesdict(), fit_x) fit_line_extended = DataLine(x=fit_x, y=fit_y, plot_args={'linestyle':'-', 'color':'r', 'marker':None, 'linewidth':4.0}) return lm_result, fit_line, fit_line_extended def _plot_extra(self, **plot_args): if hasattr(self, 'fit_lines') and self.fit_lines is not None: for i, fline in enumerate(self.fit_lines): ax = getattr(self, 'ax{}'.format(i+1)) xi, xf, yi, yf = ax.axis() p_args = dict([(i, fline.plot_args[i]) for i in self.plot_valid_keys if i in fline.plot_args]) p_args['color'] = 'b' p_args['linewidth'] = 3.0 ax.plot(fline.x, fline.y, **p_args) result = self.fit_results[i] xpos = result[0] xerr = result[1] ax.axvline(xpos, color='b', linewidth=1.0) ax.text(xpos, yf, '${:.0f}\pm{:.0f} \, \mathrm{{min}}$'.format(xpos, xerr), verticalalignment='top', horizontalalignment='left', color='b') xpos = result[2] + xpos xerr = result[3] ax.axvline(xpos, color='purple', linewidth=1.0) ax.text(xpos, yi, '${:.0f}\pm{:.0f} \, \mathrm{{min}}$'.format(xpos, xerr), verticalalignment='bottom', horizontalalignment='left', color='purple') xpos = result[0] + result[2]*0.5 ax.text(xpos, yi+0.25*(yf-yi), '$+{:.0f} \, \mathrm{{min}}$'.format(result[2]), verticalalignment='center', horizontalalignment='center', color='purple') for i, line in enumerate(self.lines): ax = getattr(self, 'ax{}'.format(i+1)) xi, xf, yi, yf = ax.axis() if line.y_label=='m': ax.axis( [xi, xf, 0, yf] ) elif line.y_label=='eta': ax.axis( [xi, xf, 0, yf] ) elif line.y_label=='S': ax.axis( [xi, xf, 0, 1] ) #yticks = ax.get_yticks() # Positions yticks = ax.yaxis.get_major_ticks() # Objects yticks[0].label1.set_visible(False) # First #yticks[-1].label1.set_visible(False) # Last def load_data(infile): # Extract data import re filename_re = re.compile('^.+_(\d+)\.xml$') data = [] with open(infile) as fin: for i, line in enumerate(fin.readlines()): if i==0 and line[0]=='#': headers = line[1:].split() els = line.split() m = filename_re.match(els[0].strip()) if m: exposure_id = int(m.groups()[0]) time = t_initial + (exposure_id-1)*t_step els[0] = time els = [float(el) for el in els] data.append(els) return headers,
np.asarray(data)
numpy.asarray
""" SARIMAX Model Author: <NAME> License: Simplified-BSD """ from __future__ import division, absolute_import, print_function from statsmodels.compat.python import long from warnings import warn import numpy as np from .initialization import Initialization from .mlemodel import MLEModel, MLEResults, MLEResultsWrapper from .tools import ( companion_matrix, diff, is_invertible, constrain_stationary_univariate, unconstrain_stationary_univariate, solve_discrete_lyapunov, prepare_exog ) from statsmodels.tools.tools import Bunch from statsmodels.tools.data import _is_using_pandas from statsmodels.tsa.tsatools import lagmat from statsmodels.tools.decorators import cache_readonly from statsmodels.tools.sm_exceptions import ValueWarning import statsmodels.base.wrapper as wrap class SARIMAX(MLEModel): r""" Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors model Parameters ---------- endog : array_like The observed time-series process :math:`y` exog : array_like, optional Array of exogenous regressors, shaped nobs x k. order : iterable or iterable of iterables, optional The (p,d,q) order of the model for the number of AR parameters, differences, and MA parameters. `d` must be an integer indicating the integration order of the process, while `p` and `q` may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. Default is an AR(1) model: (1,0,0). seasonal_order : iterable, optional The (P,D,Q,s) order of the seasonal component of the model for the AR parameters, differences, MA parameters, and periodicity. `d` must be an integer indicating the integration order of the process, while `p` and `q` may either be an integers indicating the AR and MA orders (so that all lags up to those orders are included) or else iterables giving specific AR and / or MA lags to include. `s` is an integer giving the periodicity (number of periods in season), often it is 4 for quarterly data or 12 for monthly data. Default is no seasonal effect. trend : str{'n','c','t','ct'} or iterable, optional Parameter controlling the deterministic trend polynomial :math:`A(t)`. Can be specified as a string where 'c' indicates a constant (i.e. a degree zero component of the trend polynomial), 't' indicates a linear trend with time, and 'ct' is both. Can also be specified as an iterable defining the polynomial as in `numpy.poly1d`, where `[1,1,0,1]` would denote :math:`a + bt + ct^3`. Default is to not include a trend component. measurement_error : boolean, optional Whether or not to assume the endogenous observations `endog` were measured with error. Default is False. time_varying_regression : boolean, optional Used when an explanatory variables, `exog`, are provided provided to select whether or not coefficients on the exogenous regressors are allowed to vary over time. Default is False. mle_regression : boolean, optional Whether or not to use estimate the regression coefficients for the exogenous variables as part of maximum likelihood estimation or through the Kalman filter (i.e. recursive least squares). If `time_varying_regression` is True, this must be set to False. Default is True. simple_differencing : boolean, optional Whether or not to use partially conditional maximum likelihood estimation. If True, differencing is performed prior to estimation, which discards the first :math:`s D + d` initial rows but results in a smaller state-space formulation. If False, the full SARIMAX model is put in state-space form so that all datapoints can be used in estimation. Default is False. enforce_stationarity : boolean, optional Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. Default is True. enforce_invertibility : boolean, optional Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. Default is True. hamilton_representation : boolean, optional Whether or not to use the Hamilton representation of an ARMA process (if True) or the Harvey representation (if False). Default is False. **kwargs Keyword arguments may be used to provide default values for state space matrices or for Kalman filtering options. See `Representation`, and `KalmanFilter` for more details. Attributes ---------- measurement_error : boolean Whether or not to assume the endogenous observations `endog` were measured with error. state_error : boolean Whether or not the transition equation has an error component. mle_regression : boolean Whether or not the regression coefficients for the exogenous variables were estimated via maximum likelihood estimation. state_regression : boolean Whether or not the regression coefficients for the exogenous variables are included as elements of the state space and estimated via the Kalman filter. time_varying_regression : boolean Whether or not coefficients on the exogenous regressors are allowed to vary over time. simple_differencing : boolean Whether or not to use partially conditional maximum likelihood estimation. enforce_stationarity : boolean Whether or not to transform the AR parameters to enforce stationarity in the autoregressive component of the model. enforce_invertibility : boolean Whether or not to transform the MA parameters to enforce invertibility in the moving average component of the model. hamilton_representation : boolean Whether or not to use the Hamilton representation of an ARMA process. trend : str{'n','c','t','ct'} or iterable Parameter controlling the deterministic trend polynomial :math:`A(t)`. See the class parameter documentation for more information. polynomial_ar : array Array containing autoregressive lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_ma : array Array containing moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_seasonal_ar : array Array containing seasonal moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_seasonal_ma : array Array containing seasonal moving average lag polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). polynomial_trend : array Array containing trend polynomial coefficients, ordered from lowest degree to highest. Initialized with ones, unless a coefficient is constrained to be zero (in which case it is zero). k_ar : int Highest autoregressive order in the model, zero-indexed. k_ar_params : int Number of autoregressive parameters to be estimated. k_diff : int Order of intergration. k_ma : int Highest moving average order in the model, zero-indexed. k_ma_params : int Number of moving average parameters to be estimated. seasonal_periods : int Number of periods in a season. k_seasonal_ar : int Highest seasonal autoregressive order in the model, zero-indexed. k_seasonal_ar_params : int Number of seasonal autoregressive parameters to be estimated. k_seasonal_diff : int Order of seasonal intergration. k_seasonal_ma : int Highest seasonal moving average order in the model, zero-indexed. k_seasonal_ma_params : int Number of seasonal moving average parameters to be estimated. k_trend : int Order of the trend polynomial plus one (i.e. the constant polynomial would have `k_trend=1`). k_exog : int Number of exogenous regressors. Notes ----- The SARIMA model is specified :math:`(p, d, q) \times (P, D, Q)_s`. .. math:: \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D y_t = A(t) + \theta_q (L) \tilde \theta_Q (L^s) \zeta_t In terms of a univariate structural model, this can be represented as .. math:: y_t & = u_t + \eta_t \\ \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D u_t & = A(t) + \theta_q (L) \tilde \theta_Q (L^s) \zeta_t where :math:`\eta_t` is only applicable in the case of measurement error (although it is also used in the case of a pure regression model, i.e. if p=q=0). In terms of this model, regression with SARIMA errors can be represented easily as .. math:: y_t & = \beta_t x_t + u_t \\ \phi_p (L) \tilde \phi_P (L^s) \Delta^d \Delta_s^D u_t & = A(t) + \theta_q (L) \tilde \theta_Q (L^s) \zeta_t this model is the one used when exogenous regressors are provided. Note that the reduced form lag polynomials will be written as: .. math:: \Phi (L) \equiv \phi_p (L) \tilde \phi_P (L^s) \\ \Theta (L) \equiv \theta_q (L) \tilde \theta_Q (L^s) If `mle_regression` is True, regression coefficients are treated as additional parameters to be estimated via maximum likelihood. Otherwise they are included as part of the state with a diffuse initialization. In this case, however, with approximate diffuse initialization, results can be sensitive to the initial variance. This class allows two different underlying representations of ARMA models as state space models: that of Hamilton and that of Harvey. Both are equivalent in the sense that they are analytical representations of the ARMA model, but the state vectors of each have different meanings. For this reason, maximum likelihood does not result in identical parameter estimates and even the same set of parameters will result in different loglikelihoods. The Harvey representation is convenient because it allows integrating differencing into the state vector to allow using all observations for estimation. In this implementation of differenced models, the Hamilton representation is not able to accomodate differencing in the state vector, so `simple_differencing` (which performs differencing prior to estimation so that the first d + sD observations are lost) must be used. Many other packages use the Hamilton representation, so that tests against Stata and R require using it along with simple differencing (as Stata does). Detailed information about state space models can be found in [1]_. Some specific references are: - Chapter 3.4 describes ARMA and ARIMA models in state space form (using the Harvey representation), and gives references for basic seasonal models and models with a multiplicative form (for example the airline model). It also shows a state space model for a full ARIMA process (this is what is done here if `simple_differencing=False`). - Chapter 3.6 describes estimating regression effects via the Kalman filter (this is performed if `mle_regression` is False), regression with time-varying coefficients, and regression with ARMA errors (recall from above that if regression effects are present, the model estimated by this class is regression with SARIMA errors). - Chapter 8.4 describes the application of an ARMA model to an example dataset. A replication of this section is available in an example IPython notebook in the documentation. References ---------- .. [1] Durbin, James, and <NAME>. 2012. Time Series Analysis by State Space Methods: Second Edition. Oxford University Press. """ def __init__(self, endog, exog=None, order=(1, 0, 0), seasonal_order=(0, 0, 0, 0), trend=None, measurement_error=False, time_varying_regression=False, mle_regression=True, simple_differencing=False, enforce_stationarity=True, enforce_invertibility=True, hamilton_representation=False, **kwargs): # Model parameters self.seasonal_periods = seasonal_order[3] self.measurement_error = measurement_error self.time_varying_regression = time_varying_regression self.mle_regression = mle_regression self.simple_differencing = simple_differencing self.enforce_stationarity = enforce_stationarity self.enforce_invertibility = enforce_invertibility self.hamilton_representation = hamilton_representation # Save given orders self.order = order self.seasonal_order = seasonal_order # Enforce non-MLE coefficients if time varying coefficients is # specified if self.time_varying_regression and self.mle_regression: raise ValueError('Models with time-varying regression coefficients' ' must integrate the coefficients as part of the' ' state vector, so that `mle_regression` must' ' be set to False.') # Lag polynomials # Assume that they are given from lowest degree to highest, that all # degrees except for the constant are included, and that they are # boolean vectors (0 for not included, 1 for included). if isinstance(order[0], (int, long, np.integer)): self.polynomial_ar = np.r_[1., np.ones(order[0])] else: self.polynomial_ar = np.r_[1., order[0]] if isinstance(order[2], (int, long, np.integer)): self.polynomial_ma = np.r_[1., np.ones(order[2])] else: self.polynomial_ma = np.r_[1., order[2]] # Assume that they are given from lowest degree to highest, that the # degrees correspond to (1*s, 2*s, ..., P*s), and that they are # boolean vectors (0 for not included, 1 for included). if isinstance(seasonal_order[0], (int, long, np.integer)): self.polynomial_seasonal_ar = np.r_[ 1., # constant ([0] * (self.seasonal_periods - 1) + [1]) * seasonal_order[0] ] else: self.polynomial_seasonal_ar = np.r_[ 1., [0] * self.seasonal_periods * len(seasonal_order[0]) ] for i in range(len(seasonal_order[0])): tmp = (i + 1) * self.seasonal_periods self.polynomial_seasonal_ar[tmp] = seasonal_order[0][i] if isinstance(seasonal_order[2], (int, long, np.integer)): self.polynomial_seasonal_ma = np.r_[ 1., # constant ([0] * (self.seasonal_periods - 1) + [1]) * seasonal_order[2] ] else: self.polynomial_seasonal_ma = np.r_[ 1., [0] * self.seasonal_periods * len(seasonal_order[2]) ] for i in range(len(seasonal_order[2])): tmp = (i + 1) * self.seasonal_periods self.polynomial_seasonal_ma[tmp] = seasonal_order[2][i] # Deterministic trend polynomial self.trend = trend if trend is None or trend == 'n': self.polynomial_trend = np.ones((0)) elif trend == 'c': self.polynomial_trend = np.r_[1] elif trend == 't': self.polynomial_trend = np.r_[0, 1] elif trend == 'ct': self.polynomial_trend = np.r_[1, 1] else: self.polynomial_trend = (np.array(trend) > 0).astype(int) # Model orders # Note: k_ar, k_ma, k_seasonal_ar, k_seasonal_ma do not include the # constant term, so they may be zero. # Note: for a typical ARMA(p,q) model, p = k_ar_params = k_ar - 1 and # q = k_ma_params = k_ma - 1, although this may not be true for models # with arbitrary log polynomials. self.k_ar = int(self.polynomial_ar.shape[0] - 1) self.k_ar_params = int(np.sum(self.polynomial_ar) - 1) self.k_diff = int(order[1]) self.k_ma = int(self.polynomial_ma.shape[0] - 1) self.k_ma_params = int(np.sum(self.polynomial_ma) - 1) self.k_seasonal_ar = int(self.polynomial_seasonal_ar.shape[0] - 1) self.k_seasonal_ar_params = ( int(np.sum(self.polynomial_seasonal_ar) - 1) ) self.k_seasonal_diff = int(seasonal_order[1]) self.k_seasonal_ma = int(self.polynomial_seasonal_ma.shape[0] - 1) self.k_seasonal_ma_params = ( int(np.sum(self.polynomial_seasonal_ma) - 1) ) # Make internal copies of the differencing orders because if we use # simple differencing, then we will need to internally use zeros after # the simple differencing has been performed self._k_diff = self.k_diff self._k_seasonal_diff = self.k_seasonal_diff # We can only use the Hamilton representation if differencing is not # performed as a part of the state space if (self.hamilton_representation and not (self.simple_differencing or self._k_diff == self._k_seasonal_diff == 0)): raise ValueError('The Hamilton representation is only available' ' for models in which there is no differencing' ' integrated into the state vector. Set' ' `simple_differencing` to True or set' ' `hamilton_representation` to False') # Note: k_trend is not the degree of the trend polynomial, because e.g. # k_trend = 1 corresponds to the degree zero polynomial (with only a # constant term). self.k_trend = int(np.sum(self.polynomial_trend)) # Model order # (this is used internally in a number of locations) self._k_order = max(self.k_ar + self.k_seasonal_ar, self.k_ma + self.k_seasonal_ma + 1) if self._k_order == 1 and self.k_ar + self.k_seasonal_ar == 0: # Handle time-varying regression if self.time_varying_regression: self._k_order = 0 # Exogenous data (self.k_exog, exog) = prepare_exog(exog) # Redefine mle_regression to be true only if it was previously set to # true and there are exogenous regressors self.mle_regression = ( self.mle_regression and exog is not None and self.k_exog > 0 ) # State regression is regression with coefficients estiamted within # the state vector self.state_regression = ( not self.mle_regression and exog is not None and self.k_exog > 0 ) # If all we have is a regression (so k_ar = k_ma = 0), then put the # error term as measurement error if self.state_regression and self._k_order == 0: self.measurement_error = True # Number of states k_states = self._k_order if not self.simple_differencing: k_states += (self.seasonal_periods * self._k_seasonal_diff + self._k_diff) if self.state_regression: k_states += self.k_exog # Number of diffuse states k_diffuse_states = k_states if self.enforce_stationarity: k_diffuse_states -= self._k_order # Number of positive definite elements of the state covariance matrix k_posdef = int(self._k_order > 0) # Only have an error component to the states if k_posdef > 0 self.state_error = k_posdef > 0 if self.state_regression and self.time_varying_regression: k_posdef += self.k_exog # Diffuse initialization can be more sensistive to the variance value # in the case of state regression, so set a higher than usual default # variance if self.state_regression: kwargs.setdefault('initial_variance', 1e10) # Number of parameters self.k_params = ( self.k_ar_params + self.k_ma_params + self.k_seasonal_ar_params + self.k_seasonal_ar_params + self.k_trend + self.measurement_error + 1 ) if self.mle_regression: self.k_params += self.k_exog # We need to have an array or pandas at this point self.orig_endog = endog self.orig_exog = exog if not _is_using_pandas(endog, None): endog = np.asanyarray(endog) # Update the differencing dimensions if simple differencing is applied self.orig_k_diff = self._k_diff self.orig_k_seasonal_diff = self._k_seasonal_diff if (self.simple_differencing and (self._k_diff > 0 or self._k_seasonal_diff > 0)): self._k_diff = 0 self._k_seasonal_diff = 0 # Internally used in several locations self._k_states_diff = ( self._k_diff + self.seasonal_periods * self._k_seasonal_diff ) # Set some model variables now so they will be available for the # initialize() method, below self.nobs = len(endog) self.k_states = k_states self.k_posdef = k_posdef # By default, do not calculate likelihood while it is controlled by # diffuse initial conditions. kwargs.setdefault('loglikelihood_burn', k_diffuse_states) # Initialize the statespace super(SARIMAX, self).__init__( endog, exog=exog, k_states=k_states, k_posdef=k_posdef, **kwargs ) # Set as time-varying model if we have time-trend or exog if self.k_exog > 0 or len(self.polynomial_trend) > 1: self.ssm._time_invariant = False # Initialize the fixed components of the statespace model self.ssm['design'] = self.initial_design self.ssm['state_intercept'] = self.initial_state_intercept self.ssm['transition'] = self.initial_transition self.ssm['selection'] = self.initial_selection # update _init_keys attached by super self._init_keys += ['order', 'seasonal_order', 'trend', 'measurement_error', 'time_varying_regression', 'mle_regression', 'simple_differencing', 'enforce_stationarity', 'enforce_invertibility', 'hamilton_representation'] + list(kwargs.keys()) # TODO: I think the kwargs or not attached, need to recover from ??? # Initialize the state if self.ssm.initialization is None: self.initialize_default() def _get_init_kwds(self): kwds = super(SARIMAX, self)._get_init_kwds() for key, value in kwds.items(): if value is None and hasattr(self.ssm, key): kwds[key] = getattr(self.ssm, key) return kwds def prepare_data(self): endog, exog = super(SARIMAX, self).prepare_data() # Perform simple differencing if requested if (self.simple_differencing and (self.orig_k_diff > 0 or self.orig_k_seasonal_diff > 0)): # Save the original length orig_length = endog.shape[0] # Perform simple differencing endog = diff(endog.copy(), self.orig_k_diff, self.orig_k_seasonal_diff, self.seasonal_periods) if exog is not None: exog = diff(exog.copy(), self.orig_k_diff, self.orig_k_seasonal_diff, self.seasonal_periods) # Reset the ModelData datasets and cache self.data.endog, self.data.exog = ( self.data._convert_endog_exog(endog, exog)) # Reset indexes, if provided new_length = self.data.endog.shape[0] if self.data.row_labels is not None: self.data._cache['row_labels'] = ( self.data.row_labels[orig_length - new_length:]) if self._index is not None: if self._index_generated: self._index = self._index[:-(orig_length - new_length)] else: self._index = self._index[orig_length - new_length:] # Reset the nobs self.nobs = endog.shape[0] # Cache the arrays for calculating the intercept from the trend # components time_trend = np.arange(1, self.nobs + 1) self._trend_data = np.zeros((self.nobs, self.k_trend)) i = 0 for k in self.polynomial_trend.nonzero()[0]: if k == 0: self._trend_data[:, i] = np.ones(self.nobs,) else: self._trend_data[:, i] = time_trend**k i += 1 return endog, exog def initialize(self): """ Initialize the SARIMAX model. Notes ----- These initialization steps must occur following the parent class __init__ function calls. """ super(SARIMAX, self).initialize() # Cache the indexes of included polynomial orders (for update below) # (but we do not want the index of the constant term, so exclude the # first index) self._polynomial_ar_idx = np.nonzero(self.polynomial_ar)[0][1:] self._polynomial_ma_idx = np.nonzero(self.polynomial_ma)[0][1:] self._polynomial_seasonal_ar_idx = np.nonzero( self.polynomial_seasonal_ar )[0][1:] self._polynomial_seasonal_ma_idx = np.nonzero( self.polynomial_seasonal_ma )[0][1:] # Save the indices corresponding to the reduced form lag polynomial # parameters in the transition and selection matrices so that they # don't have to be recalculated for each update() start_row = self._k_states_diff end_row = start_row + self.k_ar + self.k_seasonal_ar col = self._k_states_diff if not self.hamilton_representation: self.transition_ar_params_idx = ( np.s_['transition', start_row:end_row, col] ) else: self.transition_ar_params_idx = ( np.s_['transition', col, start_row:end_row] ) start_row += 1 end_row = start_row + self.k_ma + self.k_seasonal_ma col = 0 if not self.hamilton_representation: self.selection_ma_params_idx = ( np.s_['selection', start_row:end_row, col] ) else: self.design_ma_params_idx = ( np.s_['design', col, start_row:end_row] ) # Cache indices for exog variances in the state covariance matrix if self.state_regression and self.time_varying_regression: idx = np.diag_indices(self.k_posdef) self._exog_variance_idx = ('state_cov', idx[0][-self.k_exog:], idx[1][-self.k_exog:]) def initialize_default(self, approximate_diffuse_variance=None): if approximate_diffuse_variance is None: approximate_diffuse_variance = self.ssm.initial_variance init = Initialization( self.k_states, approximate_diffuse_variance=approximate_diffuse_variance) if self.enforce_stationarity: # Differencing operators are at the beginning init.set((0, self._k_states_diff), 'approximate_diffuse') # Stationary component in the middle init.set((self._k_states_diff, self._k_states_diff + self._k_order), 'stationary') # Regression components at the end init.set((self._k_states_diff + self._k_order, self._k_states_diff + self._k_order + self.k_exog), 'approximate_diffuse') # If we're not enforcing a stationarity, then we can't initialize a # stationary component else: init.set(None, 'approximate_diffuse') self.ssm.initialization = init @property def initial_design(self): """Initial design matrix""" # Basic design matrix design = np.r_[ [1] * self._k_diff, ([0] * (self.seasonal_periods - 1) + [1]) * self._k_seasonal_diff, [1] * self.state_error, [0] * (self._k_order - 1) ] if len(design) == 0: design = np.r_[0] # If we have exogenous regressors included as part of the state vector # then the exogenous data is incorporated as a time-varying component # of the design matrix if self.state_regression: if self._k_order > 0: design = np.c_[ np.reshape( np.repeat(design, self.nobs), (design.shape[0], self.nobs) ).T, self.exog ].T[None, :, :] else: design = self.exog.T[None, :, :] return design @property def initial_state_intercept(self): """Initial state intercept vector""" # TODO make this self.k_trend > 1 and adjust the update to take # into account that if the trend is a constant, it is not time-varying if self.k_trend > 0: state_intercept = np.zeros((self.k_states, self.nobs)) else: state_intercept = np.zeros((self.k_states,)) return state_intercept @property def initial_transition(self): """Initial transition matrix""" transition = np.zeros((self.k_states, self.k_states)) # Exogenous regressors component if self.state_regression: start = -self.k_exog # T_\beta transition[start:, start:] = np.eye(self.k_exog) # Autoregressive component start = -(self.k_exog + self._k_order) end = -self.k_exog if self.k_exog > 0 else None else: # Autoregressive component start = -self._k_order end = None # T_c if self._k_order > 0: transition[start:end, start:end] = companion_matrix(self._k_order) if self.hamilton_representation: transition[start:end, start:end] = np.transpose( companion_matrix(self._k_order) ) # Seasonal differencing component # T^* if self._k_seasonal_diff > 0: seasonal_companion = companion_matrix(self.seasonal_periods).T seasonal_companion[0, -1] = 1 for d in range(self._k_seasonal_diff): start = self._k_diff + d * self.seasonal_periods end = self._k_diff + (d + 1) * self.seasonal_periods # T_c^* transition[start:end, start:end] = seasonal_companion # i for i in range(d + 1, self._k_seasonal_diff): transition[start, end + self.seasonal_periods - 1] = 1 # \iota transition[start, self._k_states_diff] = 1 # Differencing component if self._k_diff > 0: idx = np.triu_indices(self._k_diff) # T^** transition[idx] = 1 # [0 1] if self.seasonal_periods > 0: start = self._k_diff end = self._k_states_diff transition[:self._k_diff, start:end] = ( ([0] * (self.seasonal_periods - 1) + [1]) * self._k_seasonal_diff) # [1 0] column = self._k_states_diff transition[:self._k_diff, column] = 1 return transition @property def initial_selection(self): """Initial selection matrix""" if not (self.state_regression and self.time_varying_regression): if self.k_posdef > 0: selection = np.r_[ [0] * (self._k_states_diff), [1] * (self._k_order > 0), [0] * (self._k_order - 1), [0] * ((1 - self.mle_regression) * self.k_exog) ][:, None] if len(selection) == 0: selection = np.zeros((self.k_states, self.k_posdef)) else: selection = np.zeros((self.k_states, 0)) else: selection = np.zeros((self.k_states, self.k_posdef)) # Typical state variance if self._k_order > 0: selection[0, 0] = 1 # Time-varying regression coefficient variances for i in range(self.k_exog, 0, -1): selection[-i, -i] = 1 return selection @property def _res_classes(self): return {'fit': (SARIMAXResults, SARIMAXResultsWrapper)} @staticmethod def _conditional_sum_squares(endog, k_ar, polynomial_ar, k_ma, polynomial_ma, k_trend=0, trend_data=None): k = 2 * k_ma r = max(k + k_ma, k_ar) k_params_ar = 0 if k_ar == 0 else len(polynomial_ar.nonzero()[0]) - 1 k_params_ma = 0 if k_ma == 0 else len(polynomial_ma.nonzero()[0]) - 1 residuals = None if k_ar + k_ma + k_trend > 0: # If we have MA terms, get residuals from an AR(k) model to use # as data for conditional sum of squares estimates of the MA # parameters if k_ma > 0: Y = endog[k:] X = lagmat(endog, k, trim='both') params_ar =
np.linalg.pinv(X)
numpy.linalg.pinv
import numpy as np from scipy.spatial import ConvexHull import matplotlib.pyplot as plt from scipy.optimize import fmin from scipy.interpolate import PchipInterpolator from .ParticleGroupExtension import core_emit_calc from .nicer_units import * from .tools import scale_and_get_units def emittance_vs_fraction(pg, var, number_of_points=25, plotting=True, verbose=False, show_core_emit_plot=False, title_fraction=[], title_emittance=[]): # pg: Input ParticleGroup # var: 'x' or 'y' pg = copy.deepcopy(pg) var1 = var var2 = 'p' + var # Check input and perform initializations: x = getattr(pg, var1) y = getattr(pg, var2)/pg.mass w = pg.weight (full_emittance, alpha, beta, center_x, center_y) = get_twiss(x, y, w) fs = np.linspace(0,1,number_of_points) es = np.zeros(number_of_points) es[-1] = full_emittance twiss_parameters = np.array([alpha, beta, center_x, center_y]) twiss_scales = np.abs(np.array([alpha, beta, np.max([1.0e-6, np.abs(center_x)]), np.max([1.0e-6, np.abs(center_y)])])) # scale of each fit parameter, helps simplex dimensions all be similar normed_twiss_parameters = twiss_parameters/twiss_scales aa = np.empty(len(fs)) bb = np.empty(len(fs)) cx = np.empty(len(fs)) cp = np.empty(len(fs)) aa[:] = np.nan bb[:] = np.nan cx[:] = np.nan cp[:] = np.nan # Computation of emittance vs. fractions # Run through bounding ellipse areas (largest to smallest) and compute the # enclosed fraction and emittance of inclosed beam. The Twiss parameters # computed for the minimum bounding ellipse for the entire distribution is # used as an initial guess: if verbose: print('') print(' computing emittance vs. fraction curve...') indices = np.arange(len(es)-2,1,-1) for ind, ii in enumerate(indices): # use previous ellipse as a guess point to compute next one: twiss_parameter_guess = normed_twiss_parameters normed_twiss_parameters = fmin(lambda xx: get_emit_at_frac(fs[ii],xx*twiss_scales,x,y,w), twiss_parameter_guess, args=(), maxiter=None, disp=verbose) # xtol=0.01, ftol=1, es[ii] = get_emit_at_frac(fs[ii],normed_twiss_parameters*twiss_scales,x,y,w) aa[ii] = normed_twiss_parameters[0]*twiss_scales[0] bb[ii] = normed_twiss_parameters[1]*twiss_scales[1] cx[ii] = normed_twiss_parameters[2]*twiss_scales[2] cp[ii] = normed_twiss_parameters[3]*twiss_scales[3] if verbose: print(' ...done.') # Compute core fraction and emittance: if verbose: print('') print(' computing core emittance and fraction: ') ec = core_emit_calc(x, y, w, show_fit=show_core_emit_plot) if verbose: print('done.') fc = np.interp(ec,es,fs) ac = np.interp(fc,fs,aa) bc = np.interp(fc,fs,bb) gc = (1.0+ac**2)/bc # Plot results if plotting: if verbose: print(' plotting data: ') plot_points=100 base_units = 'm' (es_plot, emit_units, emit_scale) = scale_and_get_units(es, base_units) ec_plot = ec/emit_scale fc1s = np.ones(plot_points)*fc ec1s = np.linspace(0.0,1.0,plot_points)*ec_plot ec2s = np.ones(plot_points)*ec_plot fc2s = np.linspace(0.0,1.0,plot_points) plt.figure(dpi=100) plt.plot(fc1s, ec1s, 'r--') plt.plot(fc2s, ec2s, 'r--') plt.plot(fs, ec_plot*fs, 'r') plt.plot(fs, es_plot, 'b.') pchip = PchipInterpolator(fs, es_plot) plt.plot(fc2s, pchip(fc2s), 'b-') plt.xlim([0,1]) plt.ylim(bottom=0) plt.xlabel('Fraction') plt.ylabel(f'Emittance ({emit_units})') title_str = f'$\epsilon_{{core}}$ = {ec_plot:.3g} {emit_units}, $f_{{core}}$ = {fc:.3f}' if (title_fraction): title_str = title_str + f', $\epsilon_{{{title_fraction}}}$ = {pchip(title_fraction):.3g} {emit_units}' # np.interp(title_fraction, fs, es) plt.title(title_str) if verbose: print('done.') return (es, fs, ec, fc) def get_twiss(x, y, w): w_sum = np.sum(w) x0=np.sum(x*w)/w_sum y0=np.sum(y*w)/w_sum dx=x-x0 dy=y-y0 x2 = np.sum(dx**2*w)/w_sum y2 = np.sum(dy**2*w)/w_sum xy = np.sum(dx*dy*w)/w_sum e=np.sqrt(x2*y2-xy**2) a = -xy/e b = x2/e return (e,a,b,x0,y0) def get_emit_at_frac(f_target, twiss_parameters, x, y, w): alpha = twiss_parameters[0] beta = twiss_parameters[1] x0 = twiss_parameters[2] y0 = twiss_parameters[3] # subtract out centroids: dx=x-x0 dy=y-y0 # compute and compare single particle emittances to emittance from Twiss parameters gamma=(1.0+alpha**2)/beta e_particles = 0.5*(gamma*dx**2 + beta*dy**2 + 2.0*alpha*dx*dy) e_particles = np.sort(e_particles) idx_target = int(np.floor(f_target * len(e_particles))) frac_emit = np.sum(e_particles[0:idx_target])/(idx_target+1.0) return frac_emit # This function is no longer used, alas def minboundellipse( x_all, y_all, tolerance=1.0e-3, plot_on=False): # x_all and y_all are rows of points # reduce set of points to just the convex hull of the input ch = ConvexHull(np.array([x_all,y_all]).transpose()) x = x_all[ch.vertices] y = y_all[ch.vertices] d = 2 N = len(x) P = np.array([x, y]) Q = np.array([x, y, np.ones(N)]) # Initialize count = 1 err = 1 u = (1.0/N) * np.array([np.ones(N)]).transpose() # Khachiyan Algorithm while (err > tolerance): X = Q @ np.diag(u.reshape(len(u))) @ Q.transpose() M = np.diag(Q.transpose() @ np.linalg.solve(X, Q)) j = np.argmax(M) maximum = M[j] step_size = (maximum-d-1.0)/((d+1.0)*(maximum-1.0)) new_u = (1.0 - step_size)*u new_u[j] = new_u[j] + step_size err = np.linalg.norm(new_u - u) count = count + 1 u = new_u U = np.diag(u.reshape(len(u))) # Compute the twiss parameters A = (1.0/d) * np.linalg.inv(P @ U @ P.transpose() - (P @ u) @ (P @ u).transpose() ) (U, D, V) = np.linalg.svd(A) a = 1/np.sqrt(D[0]) # major axis b = 1/
np.sqrt(D[1])
numpy.sqrt
from astropy.io import fits import os import numpy as np import numpy import DRE from DRE.misc.h5py_compression import compression_types from DRE.misc.interpolation import fit_parabola_1d from DRE.misc.read_psf import get_psf from scipy.signal import fftconvolve class ModelsCube: """ This object stores the models and performs the convolution and fit operation, also computes the parameters for the fit results and makes a mosaic to visualize it Attributes ---------- models : ndarray numpy/cupy array with the cube of models, the axes are sorted as (ax_ratio, angle, log_r, x_image, y_image) convolved_models : ndarray numpy/cupy array with the cube of models convolved with a PSF header : dict astropy header of the models fits file original_shape : tuple shape of the models as saved in the fits file (ax_ratio, angle x x_image, log_r x y_image) src_index : ndarray numpy array with the Sérsic index axis log_r : ndarray numpy array with the log_r axis angle : ndarray numpy array with the angle axis ax_ratio : ndarray numpy array with the ax_ratio axis compression : dict dictionary with arguments for H5Py compression Methods ------- load_models(models_file): loads the models fits file and reshapes it save_models(output_file): saves the convolved models into a fits file convolve(psf, *args, **kwargs): convolves the models whit the psf, is implemented in the child classes ModelsCPU and ModelsGPU depending on the acceleration method dre_fit(data, segment, noise, backend=numpy) performs the fit and returns a numpy/cupy array chi_squared residual between the model and the data inside the segment pond_rad_3d(chi_cube) computes a weighted radius which weights are 1/chi_squared for each model, also computes a wighted variance respect the minimum and the weighted radius, they are returned in log10 scale get_parameters(chi_cube) find the model that minimizes the chi_square and computes the parameters for this model make_mosaic(data, segment, model_index) makes a image with the data, the segment and the model, all scaled to the data flux """ def __init__(self, models_file=None, out_compression='none'): """ Parameters ---------- models_file : str the path to the fits file with the models out_compression : str compression level for the HDF5 output file, can be 'none', 'low', 'medium' or 'high' """ self.models = None self.convolved_models = None self.header = None self.original_shape = None self.src_index = None self.log_r = None self.angle = None self.ax_ratio = None self.x_image = None self.y_image = None self.compression = compression_types[out_compression] if models_file is None: dre_dir = os.path.dirname(os.path.realpath(DRE.__file__)) models_file = os.path.join(dre_dir, 'models', 'modelbulge.fits') self.load_models(models_file) def __getitem__(self, index): return self.models.__getitem__(index) @property def shape(self): """ Returns ------- tuple tuple with the shape of the models array """ return self.models.shape @property def axes_names(self): """ Returns ------- tuple name of each axis """ return 'src_index', 'ax_ratio', 'angle', 'log_r', 'x_image', 'y_image' @property def axes(self): """ Returns ------- tuple arrays of each axis """ return self.src_index, self.ax_ratio, self.angle, self.log_r, self.x_image, self.y_image def load_models(self, models_file): """ loads the models fits file and reshapes it, also loads the header and computes the axes Parameters ---------- models_file : str the path to the fits file with the models """ self.header = fits.getheader(models_file) cube = fits.getdata(models_file).astype('float') self.original_shape = cube.shape if "NINDEX" in self.header: cube = cube.reshape(self.header["NINDEX"], self.header["NAXRAT"], self.header["NPOSANG"], self.header["BOXSIZE"], self.header["NLOGH"], self.header["BOXSIZE"]) else: # the old cube without Sérsic index cube = cube.reshape(1, self.header["NAXRAT"], self.header["NPOSANG"], self.header["BOXSIZE"], self.header["NLOGH"], self.header["BOXSIZE"]) self.header["INDEX0"] = 4.0 self.header["NINDEX"] = 1 self.header["DINDEX"] = 0 # swap log_r and x_image cube = cube.swapaxes(-2, -3) self.models = cube self.src_index = np.arange(self.header["NINDEX"]) * self.header["DINDEX"] + self.header["INDEX0"] self.log_r = np.arange(self.header["NLOGH"]) * self.header["DLOGH"] + self.header["LOGH0"] self.angle = np.arange(self.header["NPOSANG"]) * self.header["DPOSANG"] + self.header["POSANG0"] self.ax_ratio = np.arange(self.header["NAXRAT"]) * self.header["DAXRAT"] + self.header["AXRAT0"] self.x_image = np.arange(self.header["BOXSIZE"]) self.y_image = np.arange(self.header["BOXSIZE"]) def save_models(self, output_file): """128 saves the convolved models into a fits file at the specified directory Parameters ---------- output_file : str the path to the fits file to save the models """ cube = self.convolved_models.swapaxes(-2, -3) cube = cube.reshape(self.original_shape) models_hdu = fits.ImageHDU(data=cube) header_hdu = fits.PrimaryHDU(header=self.header) hdul = fits.HDUList([header_hdu, models_hdu]) hdul.writeto(output_file, overwrite=True) @staticmethod def to_cpu(array): return array def convolve(self, psf, *args, **kwargs): """ convolves the models with the PSF and stores them in the convolved_models attribute, is reimplemented in the child classes ModelsCPU and ModelsGPU depending on the acceleration method Parameters ---------- psf : ndarray array representing the PSF """ self.convolved_models = np.zeros(self.models.shape) for i in range(self.convolved_models.shape[0]): for j in range(self.convolved_models.shape[1]): self.convolved_models[i, j] = fftconvolve(self.models[i, j], psf[np.newaxis, np.newaxis], mode='same', axes=(-2, -1)) def dre_fit(self, data, segment, noise, backend=numpy): """ performs the fit with this steps: - masks the models, the data and the noise with the segment, all the following operations are only in the segment - compute the models flux and the object flux, scales the model to match the object flux - compute the residual between the model and the data divided by the variance for each pixel, the variance is considered: sqrt(scaled_model)^2 + noise - compute the chi-squared: sum the residuals and divide by the number of pixels Parameters ---------- backend : module, optional module tu use as backend, should be numpy or cupy data : ndarray numpy/cupy array corresponding to a science image cut with the object at the center segment : ndarray numpy/cupy array corresponding to a segmentation image cut noise : ndarray numpy/cupy array corresponding to a background RMS image cut Returns ------- ndarray numpy/cupy array with the chi-square for each model """ # mask all elements, faster with index for large arrays mask_idx = backend.where(segment) models = self.convolved_models[..., mask_idx[0], mask_idx[1]] data = data[mask_idx[0], mask_idx[1]] noise = noise[mask_idx[0], mask_idx[1]] flux_models = backend.sum(models, axis=-1) flux_data = backend.nansum(data, axis=-1) scale = flux_data / flux_models models = scale[..., backend.newaxis] * models chi = (data - models) ** 2 / (models + noise ** 2) return backend.nanmean(chi, axis=-1) def pond_rad_3d(self, chi_cube, log_r_min): """ DEPRECATION WARNING: this method is probably going to be deprecated in the near future computes a weighted radius which weights are 1/chi_squared for each model, also computes a wighted variance respect the minimum and the weighted radius Parameters --------- chi_cube : ndarray numpy array with the chi_squared resulting from the DRE fit, if using cupy array it must be converted to numpy array before using this method log_r_min : float value of log_r at the model which minimizes the chi_squared Returns ------- log_r_chi : float log10 of the weighted radius log_r_var : float log10 of the variance respect to the radius of the optimal model log_r_chi_var : float log10 of the variance respect to the weighted radius """ r_chi = np.sum((10 ** self.log_r) / chi_cube) r_chi = r_chi / np.sum(1. / chi_cube) log_r_chi = np.log10(r_chi) r_var = np.sum(((10 ** self.log_r - 10 ** log_r_min) ** 2) / chi_cube) r_var = r_var / np.sum(1. / chi_cube) log_r_var = np.log10(r_var) r_chi_var = np.sum(((10 ** self.log_r - r_chi) ** 2) / chi_cube) r_chi_var = r_chi_var / np.sum(1. / chi_cube) log_r_chi_var =
np.log10(r_chi_var)
numpy.log10
""" # Event source for MAGIC calibrated data files. # Requires uproot package (https://github.com/scikit-hep/uproot). """ import re import uproot import logging import scipy import scipy.interpolate import numpy as np from decimal import Decimal from enum import Enum, auto from astropy.coordinates import Angle from astropy import units as u from astropy.time import Time from ctapipe.io.eventsource import EventSource from ctapipe.io.datalevels import DataLevel from ctapipe.core import Container, Field from ctapipe.core.traits import Bool from ctapipe.coordinates import CameraFrame from ctapipe.containers import ( ArrayEventContainer, SimulatedEventContainer, SimulatedShowerContainer, SimulationConfigContainer, PointingContainer, TelescopePointingContainer, TelescopeTriggerContainer, MonitoringCameraContainer, PedestalContainer, ) from ctapipe.instrument import ( TelescopeDescription, SubarrayDescription, OpticsDescription, CameraDescription, CameraReadout, ) from .version import __version__ from .constants import ( MC_STEREO_TRIGGER_PATTERN, PEDESTAL_TRIGGER_PATTERN, DATA_STEREO_TRIGGER_PATTERN ) __all__ = ['MAGICEventSource', '__version__'] LOGGER = logging.getLogger(__name__) degrees_per_hour = 15.0 seconds_per_hour = 3600. msec2sec = 1e-3 nsec2sec = 1e-9 # MAGIC telescope positions in m wrt. to the center of CTA simulations # MAGIC_TEL_POSITIONS = { # 1: [-27.24, -146.66, 50.00] * u.m, # 2: [-96.44, -96.77, 51.00] * u.m # } # MAGIC telescope positions in m wrt. to the center of MAGIC simulations, from # CORSIKA and reflector input card MAGIC_TEL_POSITIONS = { 1: [31.80, -28.10, 0.00] * u.m, 2: [-31.80, 28.10, 0.00] * u.m } # Magnetic field values at the MAGIC site (taken from CORSIKA input cards) # Reference system is the CORSIKA one, where x-axis points to magnetic north # i.e. B y-component is 0 # MAGIC_Bdec is the magnetic declination i.e. angle between magnetic and # geographic north, negative if pointing westwards, positive if pointing # eastwards # MAGIC_Binc is the magnetic field inclination MAGIC_Bx = u.Quantity(29.5, u.uT) MAGIC_Bz = u.Quantity(23.0, u.uT) MAGIC_Btot = np.sqrt(MAGIC_Bx**2+MAGIC_Bz**2) MAGIC_Bdec = u.Quantity(-7.0, u.deg).to(u.rad) MAGIC_Binc = u.Quantity(np.arctan2(-MAGIC_Bz.value, MAGIC_Bx.value), u.rad) # MAGIC telescope description OPTICS = OpticsDescription.from_name('MAGIC') MAGICCAM = CameraDescription.from_name("MAGICCam") pulse_shape_lo_gain = np.array([0., 1., 2., 1., 0.]) pulse_shape_hi_gain = np.array([1., 2., 3., 2., 1.]) pulse_shape = np.vstack((pulse_shape_lo_gain, pulse_shape_lo_gain)) MAGICCAM.readout = CameraReadout( camera_name='MAGICCam', sampling_rate=u.Quantity(1.64, u.GHz), reference_pulse_shape=pulse_shape, reference_pulse_sample_width=u.Quantity(0.5, u.ns) ) MAGICCAM.geometry.frame = CameraFrame(focal_length=OPTICS.equivalent_focal_length) GEOM = MAGICCAM.geometry MAGIC_TEL_DESCRIPTION = TelescopeDescription( name='MAGIC', tel_type='MAGIC', optics=OPTICS, camera=MAGICCAM) MAGIC_TEL_DESCRIPTIONS = {1: MAGIC_TEL_DESCRIPTION, 2: MAGIC_TEL_DESCRIPTION} class MARSDataLevel(Enum): """ Enum of the different MARS Data Levels """ CALIBRATED = auto() # Calibrated images in charge and time (no waveforms) STAR = auto() # Cleaned images, with Hillas parametrization SUPERSTAR = auto() # Stereo parameters reconstructed MELIBEA = auto() # Reconstruction of hadronness, event direction and energy class MissingDriveReportError(Exception): """ Exception raised when a subrun does not have drive reports. """ def __init__(self, message): self.message = message class MAGICEventSource(EventSource): """ EventSource for MAGIC calibrated data. This class operates with the MAGIC data subrun-wise for calibrated data. Attributes ---------- current_run : MarsCalibratedRun Object containing the info needed to fill the ctapipe Containers datalevel : DataLevel Data level according to the definition in ctapipe file_ : uproot.ReadOnlyFile A ROOT file opened with uproot is_mc : bool Flag indicating real or simulated data mars_datalevel : int Data level according to MARS convention metadata : dict Dictionary containing metadata run_numbers : int Run number of the file simulation_config : SimulationConfigContainer Container filled with the information about the simulation telescope : int The number of the telescope use_pedestals : bool Flag indicating if pedestal events should be returned by the generator """ use_pedestals = Bool( default_value=False, help=( 'If true, extract pedestal evens instead of cosmic events.' ), ).tag(config=False) def __init__(self, input_url=None, config=None, parent=None, **kwargs): """ Constructor Parameters ---------- config: traitlets.loader.Config Configuration specified by config file or cmdline arguments. Used to set traitlet values. Set to None if no configuration to pass. parent : ctapipe.core.Tool Tool executable that is calling this component. Passes the correct logger to the component. Set to None if no Tool to pass. kwargs: dict Additional parameters to be passed. NOTE: The file mask of the data to read can be passed with the 'input_url' parameter. """ super().__init__(input_url=input_url, config=config, parent=parent, **kwargs) # Retrieving the list of run numbers corresponding to the data files self.file_ = uproot.open(self.input_url.expanduser()) run_info = self.parse_run_info() self.run_numbers = run_info[0] self.is_mc = run_info[1] self.telescope = run_info[2] self.mars_datalevel = run_info[3] self.metadata = self.parse_metadata_info() # Retrieving the data level (so far HARDCODED Sorcerer) self.datalevel = DataLevel.DL0 if self.is_mc: self.simulation_config = self.parse_simulation_header() if not self.is_mc: self.is_stereo, self.is_sumt = self.parse_data_info() # # Setting up the current run with the first run present in the data # self.current_run = self._set_active_run(run_number=0) self.current_run = None self._subarray_info = SubarrayDescription( name='MAGIC', tel_positions=MAGIC_TEL_POSITIONS, tel_descriptions=MAGIC_TEL_DESCRIPTIONS ) if self.allowed_tels: self._subarray_info = self._subarray_info.select_subarray(self.allowed_tels) def __exit__(self, exc_type, exc_val, exc_tb): """ Releases resources (e.g. open files). Parameters ---------- exc_type : Exception Class of the exception exc_val : BaseException Type of the exception exc_tb : TracebackType The traceback """ self.close() def close(self): """ Closes open ROOT file. """ self.file_.close() @staticmethod def is_compatible(file_path): """ This method checks if the specified file mask corresponds to MAGIC data files. The result will be True only if all the files are of ROOT format and contain an 'Events' tree. Parameters ---------- file_path: str Path to file Returns ------- bool: True if the masked files are MAGIC data runs, False otherwise. """ is_magic_root_file = True try: with uproot.open(file_path) as input_data: mandatory_trees = ['Events', 'RunHeaders', 'RunTails'] trees_in_file = [tree in input_data for tree in mandatory_trees] if not all(trees_in_file): is_magic_root_file = False except ValueError: # uproot raises ValueError if the file is not a ROOT file is_magic_root_file = False return is_magic_root_file @staticmethod def get_run_info_from_name(file_name): """ This internal method extracts the run number and type (data/MC) from the specified file name. Parameters ---------- file_name : str A file name to process. Returns ------- run_number: int The run number of the file. is_mc: Bool Flag to tag MC files telescope: int Number of the telescope datalevel: MARSDataLevel Data level according to MARS Raises ------ IndexError Description """ mask_data_calibrated = r"\d{6}_M(\d+)_(\d+)\.\d+_Y_.*" mask_data_star = r"\d{6}_M(\d+)_(\d+)\.\d+_I_.*" mask_data_superstar = r"\d{6}_(\d+)_S_.*" mask_data_melibea = r"\d{6}_(\d+)_Q_.*" mask_mc_calibrated = r"GA_M(\d)_za\d+to\d+_\d_(\d+)_Y_.*" mask_mc_star = r"GA_M(\d)_za\d+to\d+_\d_(\d+)_I_.*" mask_mc_superstar = r"GA_za\d+to\d+_\d_S_.*" mask_mc_melibea = r"GA_za\d+to\d+_\d_Q_.*" if re.findall(mask_data_calibrated, file_name): parsed_info = re.findall(mask_data_calibrated, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.CALIBRATED is_mc = False elif re.findall(mask_data_star, file_name): parsed_info = re.findall(mask_data_star, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.STAR is_mc = False elif re.findall(mask_data_superstar, file_name): parsed_info = re.findall(mask_data_superstar, file_name) telescope = None run_number = int(parsed_info[0]) datalevel = MARSDataLevel.SUPERSTAR is_mc = False elif re.findall(mask_data_melibea, file_name): parsed_info = re.findall(mask_data_melibea, file_name) telescope = None run_number = int(parsed_info[0]) datalevel = MARSDataLevel.MELIBEA is_mc = False elif re.findall(mask_mc_calibrated, file_name): parsed_info = re.findall(mask_mc_calibrated, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.CALIBRATED is_mc = True elif re.findall(mask_mc_star, file_name): parsed_info = re.findall(mask_mc_star, file_name) telescope = int(parsed_info[0][0]) run_number = int(parsed_info[0][1]) datalevel = MARSDataLevel.STAR is_mc = True elif re.findall(mask_mc_superstar, file_name): parsed_info = re.findall(mask_mc_superstar, file_name) telescope = None run_number = None datalevel = MARSDataLevel.SUPERSTAR is_mc = True elif re.findall(mask_mc_melibea, file_name): parsed_info = re.findall(mask_mc_melibea, file_name) telescope = None run_number = None datalevel = MARSDataLevel.MELIBEA is_mc = True else: raise IndexError( 'Can not identify the run number and type (data/MC) of the file' '{:s}'.format(file_name)) return run_number, is_mc, telescope, datalevel def parse_run_info(self): """ Parses run info from the TTrees in the ROOT file Returns ------- run_number: int The run number of the file is_mc: Bool Flag to tag MC files telescope_number: int Number of the telescope datalevel: MARSDataLevel Data level according to MARS """ runinfo_array_list = [ 'MRawRunHeader.fRunNumber', 'MRawRunHeader.fRunType', 'MRawRunHeader.fTelescopeNumber', ] run_info = self.file_['RunHeaders'].arrays( runinfo_array_list, library="np") run_number = int(run_info['MRawRunHeader.fRunNumber'][0]) run_type = int(run_info['MRawRunHeader.fRunType'][0]) telescope_number = int(run_info['MRawRunHeader.fTelescopeNumber'][0]) # a note about run numbers: # mono data has run numbers starting with 1 or 2 (telescope dependent) # stereo data has run numbers starting with 5 # if both telescopes are taking data with no L3, # also in this case run number starts with 5 (e.g. muon runs) # Here the data types (from MRawRunHeader.h) # std data = 0 # pedestal = 1 (_P_) # calibration = 2 (_C_) # domino calibration = 3 (_L_) # linearity calibration = 4 (_N_) # point run = 7 # monteCarlo = 256 # none = 65535 mc_data_type = 256 if run_type == mc_data_type: is_mc = True else: is_mc = False events_tree = self.file_['Events'] melibea_trees = ['MHadronness', 'MStereoParDisp', 'MEnergyEst'] superstar_trees = ['MHillas_1', 'MHillas_2', 'MStereoPar'] star_trees = ['MHillas'] datalevel = MARSDataLevel.CALIBRATED events_keys = events_tree.keys() trees_in_file = [tree in events_keys for tree in melibea_trees] if all(trees_in_file): datalevel = MARSDataLevel.MELIBEA trees_in_file = [tree in events_keys for tree in superstar_trees] if all(trees_in_file): datalevel = MARSDataLevel.SUPERSTAR trees_in_file = [tree in events_keys for tree in star_trees] if all(trees_in_file): datalevel = MARSDataLevel.STAR return run_number, is_mc, telescope_number, datalevel def parse_data_info(self): """ Check if data is stereo/mono and std trigger/SUMT Returns ------- is_stereo: Bool True if stereo data, False if mono is_sumt: Bool True if SUMT data, False if std trigger """ prescaler_mono_nosumt = [1, 1, 0, 1, 0, 0, 0, 0] prescaler_mono_sumt = [0, 1, 0, 1, 0, 1, 0, 0] prescaler_stereo = [0, 1, 0, 1, 0, 0, 0, 1] # L1_table_mono = "L1_4NN" # L1_table_stereo = "L1_3NN" L3_table_nosumt = "L3T_L1L1_100_SYNC" L3_table_sumt = "L3T_SUMSUM_100_SYNC" trigger_tree = self.file_["Trigger"] L3T_tree = self.file_["L3T"] # here we take the 2nd element (if possible) because sometimes # the first trigger report has still the old prescaler values from a previous run try: prescaler_array = trigger_tree["MTriggerPrescFact.fPrescFact"].array(library="np") except AssertionError: LOGGER.warning("No prescaler info found. Will assume standard stereo data.") is_stereo = True is_sumt = False return is_stereo, is_sumt prescaler_size = prescaler_array.size if prescaler_size > 1: prescaler = prescaler_array[1] else: prescaler = prescaler_array[0] if prescaler == prescaler_mono_nosumt or prescaler == prescaler_mono_sumt: is_stereo = False elif prescaler == prescaler_stereo: is_stereo = True else: is_stereo = True is_sumt = False if is_stereo: # here we take the 2nd element for the same reason as above # L3Table is empty for mono data i.e. taken with one telescope only # if both telescopes take data with no L3, L3Table is filled anyway L3Table_array = L3T_tree["MReportL3T.fTablename"].array(library="np") L3Table_size = L3Table_array.size if L3Table_size > 1: L3Table = L3Table_array[1] else: L3Table = L3Table_array[0] if L3Table == L3_table_sumt: is_sumt = True elif L3Table == L3_table_nosumt: is_sumt = False else: is_sumt = False else: if prescaler == prescaler_mono_sumt: is_sumt = True return is_stereo, is_sumt @staticmethod def decode_version_number(version_encoded): """ Decodes the version number from an integer Parameters ---------- version_encoded : int Version number encoded as integer Returns ------- version_decoded: str Version decoded as major.minor.patch """ major_version = version_encoded >> 16 minor_version = (version_encoded % 65536) >> 8 patch_version = (version_encoded % 65536) % 256 version_decoded = f'{major_version}.{minor_version}.{patch_version}' return version_decoded def parse_metadata_info(self): """ Parse metadata information from ROOT file Returns ------- metadata: dict Dictionary containing the metadata information: - run number - real or simulated data - telescope number - subrun number - source RA and DEC - source name (real data only) - observation mode (real data only) - MARS version - ROOT version """ metadatainfo_array_list_runheaders = [ 'MRawRunHeader.fSubRunIndex', 'MRawRunHeader.fSourceRA', 'MRawRunHeader.fSourceDEC', 'MRawRunHeader.fSourceName[80]', 'MRawRunHeader.fObservationMode[60]', ] metadatainfo_array_list_runtails = [ 'MMarsVersion_sorcerer.fMARSVersionCode', 'MMarsVersion_sorcerer.fROOTVersionCode', ] metadata = dict() metadata['run_number'] = self.run_numbers metadata['is_simulation'] = self.is_mc metadata['telescope'] = self.telescope meta_info_runh = self.file_['RunHeaders'].arrays( metadatainfo_array_list_runheaders, library="np" ) metadata['subrun_number'] = int(meta_info_runh['MRawRunHeader.fSubRunIndex'][0]) metadata['source_ra'] = meta_info_runh['MRawRunHeader.fSourceRA'][0] / \ seconds_per_hour * degrees_per_hour * u.deg metadata['source_dec'] = meta_info_runh['MRawRunHeader.fSourceDEC'][0] / \ seconds_per_hour * u.deg if not self.is_mc: src_name_array = meta_info_runh['MRawRunHeader.fSourceName[80]'][0] metadata['source_name'] = "".join([chr(item) for item in src_name_array if item != 0]) obs_mode_array = meta_info_runh['MRawRunHeader.fObservationMode[60]'][0] metadata['observation_mode'] = "".join([chr(item) for item in obs_mode_array if item != 0]) meta_info_runt = self.file_['RunTails'].arrays( metadatainfo_array_list_runtails, library="np" ) mars_version_encoded = int(meta_info_runt['MMarsVersion_sorcerer.fMARSVersionCode'][0]) root_version_encoded = int(meta_info_runt['MMarsVersion_sorcerer.fROOTVersionCode'][0]) metadata['mars_version_sorcerer'] = self.decode_version_number(mars_version_encoded) metadata['root_version_sorcerer'] = self.decode_version_number(root_version_encoded) return metadata def parse_simulation_header(self): """ Parse the simulation information from the RunHeaders tree. Returns ------- SimulationConfigContainer Container filled with simulation information Notes ----- Information is extracted from the RunHeaders tree within the ROOT file. Within it, the MMcCorsikaRunHeader and MMcRunHeader branches are used. Here below the units of the members extracted, for reference: * fSlopeSpec: float * fELowLim, fEUppLim: GeV * fCorsikaVersion: int * fHeightLev[10]: centimeter * fAtmosphericModel: int * fRandomPointingConeSemiAngle: deg * fImpactMax: centimeter * fNumSimulatedShowers: int * fShowerThetaMax, fShowerThetaMin: deg * fShowerPhiMax, fShowerPhiMin: deg * fCWaveUpper, fCWaveLower: nanometer """ run_header_tree = self.file_['RunHeaders'] spectral_index = run_header_tree['MMcCorsikaRunHeader.fSlopeSpec'].array(library="np")[0] e_low = run_header_tree['MMcCorsikaRunHeader.fELowLim'].array(library="np")[0] e_high = run_header_tree['MMcCorsikaRunHeader.fEUppLim'].array(library="np")[0] corsika_version = run_header_tree['MMcCorsikaRunHeader.fCorsikaVersion'].array(library="np")[0] site_height = run_header_tree['MMcCorsikaRunHeader.fHeightLev[10]'].array(library="np")[0][0] atm_model = run_header_tree['MMcCorsikaRunHeader.fAtmosphericModel'].array(library="np")[0] if self.mars_datalevel in [MARSDataLevel.CALIBRATED, MARSDataLevel.STAR]: view_cone = run_header_tree['MMcRunHeader.fRandomPointingConeSemiAngle'].array(library="np")[0] max_impact = run_header_tree['MMcRunHeader.fImpactMax'].array(library="np")[0] n_showers = np.sum(run_header_tree['MMcRunHeader.fNumSimulatedShowers'].array(library="np")) max_zd = run_header_tree['MMcRunHeader.fShowerThetaMax'].array(library="np")[0] min_zd = run_header_tree['MMcRunHeader.fShowerThetaMin'].array(library="np")[0] max_az = run_header_tree['MMcRunHeader.fShowerPhiMax'].array(library="np")[0] min_az = run_header_tree['MMcRunHeader.fShowerPhiMin'].array(library="np")[0] max_wavelength = run_header_tree['MMcRunHeader.fCWaveUpper'].array(library="np")[0] min_wavelength = run_header_tree['MMcRunHeader.fCWaveLower'].array(library="np")[0] elif self.mars_datalevel in [MARSDataLevel.SUPERSTAR, MARSDataLevel.MELIBEA]: view_cone = run_header_tree['MMcRunHeader_1.fRandomPointingConeSemiAngle'].array(library="np")[0] max_impact = run_header_tree['MMcRunHeader_1.fImpactMax'].array(library="np")[0] n_showers = np.sum(run_header_tree['MMcRunHeader_1.fNumSimulatedShowers'].array(library="np")) max_zd = run_header_tree['MMcRunHeader_1.fShowerThetaMax'].array(library="np")[0] min_zd = run_header_tree['MMcRunHeader_1.fShowerThetaMin'].array(library="np")[0] max_az = run_header_tree['MMcRunHeader_1.fShowerPhiMax'].array(library="np")[0] min_az = run_header_tree['MMcRunHeader_1.fShowerPhiMin'].array(library="np")[0] max_wavelength = run_header_tree['MMcRunHeader_1.fCWaveUpper'].array(library="np")[0] min_wavelength = run_header_tree['MMcRunHeader_1.fCWaveLower'].array(library="np")[0] return SimulationConfigContainer( corsika_version=corsika_version, energy_range_min=u.Quantity(e_low, u.GeV).to(u.TeV), energy_range_max=u.Quantity(e_high, u.GeV).to(u.TeV), prod_site_alt=u.Quantity(site_height, u.cm).to(u.m), spectral_index=spectral_index, num_showers=n_showers, shower_reuse=1, # shower_reuse not written in the magic root file, but since the # sim_events already include shower reuse we artificially set it # to 1 (actually every shower reused 5 times for std MAGIC MC) shower_prog_id=1, prod_site_B_total=MAGIC_Btot, prod_site_B_declination=MAGIC_Bdec, prod_site_B_inclination=MAGIC_Binc, max_alt=u.Quantity((90. - min_zd), u.deg).to(u.rad), min_alt=u.Quantity((90. - max_zd), u.deg).to(u.rad), max_az=u.Quantity(max_az, u.deg).to(u.rad), min_az=u.Quantity(min_az, u.deg).to(u.rad), max_viewcone_radius=view_cone * u.deg, min_viewcone_radius=0.0 * u.deg, max_scatter_range=u.Quantity(max_impact, u.cm).to(u.m), min_scatter_range=0.0 * u.m, atmosphere=atm_model, corsika_wlen_min=min_wavelength * u.nm, corsika_wlen_max=max_wavelength * u.nm, ) def _set_active_run(self, run_number): """ This internal method sets the run that will be used for data loading. Parameters ---------- run_number: int The run number to use. Returns ------- run: MarsRun The run to use """ run = dict() run['number'] = run_number run['read_events'] = 0 if self.mars_datalevel == MARSDataLevel.CALIBRATED: run['data'] = MarsCalibratedRun(self.file_, self.is_mc) return run @property def subarray(self): return self._subarray_info @property def is_simulation(self): return self.is_mc @property def datalevels(self): return (self.datalevel, ) @property def obs_ids(self): # ToCheck: will this be compatible in the future, e.g. with merged MC files return [self.run_numbers] def _generator(self): """ The default event generator. Return the stereo event generator instance. Returns ------- """ if self.mars_datalevel == MARSDataLevel.CALIBRATED: if self.use_pedestals: return self._pedestal_event_generator(telescope=f"M{self.telescope}") else: return self._mono_event_generator(telescope=f"M{self.telescope}") def _stereo_event_generator(self): """ Stereo event generator. Yields DataContainer instances, filled with the read event data. Returns ------- """ counter = 0 # Data container - is initialized once, and data is replaced within it after each yield data = ArrayEventContainer() # Telescopes with data: tels_in_file = ["m1", "m2"] tels_with_data = [1, 2] # Loop over the available data runs for run_number in self.run_numbers: # Removing the previously read data run from memory if self.current_run is not None: if 'data' in self.current_run: del self.current_run['data'] # Setting the new active run (class MarsRun object) self.current_run = self._set_active_run(run_number) # Set monitoring data: if not self.is_mc: monitoring_data = self.current_run['data'].monitoring_data for tel_i, tel_id in enumerate(tels_in_file): monitoring_camera = MonitoringCameraContainer() pedestal_info = PedestalContainer() badpixel_info = PixelStatusContainer() pedestal_info.sample_time = Time( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalUnix'], format='unix', scale='utc' ) # hardcoded number of pedestal events averaged over: pedestal_info.n_events = 500 pedestal_info.charge_mean = [] pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean']) pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean']) pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format( tel_i + 1)]['PedestalFromExtractorRndm']['Mean']) pedestal_info.charge_std = [] pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms']) t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoUnixRange'], format='unix', scale='utc') badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo'] badpixel_info.sample_time_range = t_range monitoring_camera.pedestal = pedestal_info monitoring_camera.pixel_status = badpixel_info data.mon.tels_with_data = [1, 2] data.mon.tel[tel_i + 1] = monitoring_camera else: assert self.current_run['data'].mcheader_data['M1'] == self.current_run['data'].mcheader_data['M2'], "Simulation configurations are different for M1 and M2 !!!" data.mcheader.num_showers = self.current_run['data'].mcheader_data['M1']['sim_nevents'] data.mcheader.shower_reuse = self.current_run['data'].mcheader_data['M1']['sim_reuse'] data.mcheader.energy_range_min = (self.current_run['data'].mcheader_data['M1']['sim_emin']).to(u.TeV) # GeV->TeV data.mcheader.energy_range_max = (self.current_run['data'].mcheader_data['M1']['sim_emax']).to(u.TeV) # GeV->TeV data.mcheader.spectral_index = self.current_run['data'].mcheader_data['M1']['sim_eslope'] data.mcheader.max_scatter_range = (self.current_run['data'].mcheader_data['M1']['sim_max_impact']).to(u.m) # cm->m data.mcheader.max_viewcone_radius = (self.current_run['data'].mcheader_data['M1']['sim_conesemiangle']).to(u.deg)# deg->deg if data.mcheader.max_viewcone_radius != 0.: data.mcheader.diffuse = True else: data.mcheader.diffuse = False # Loop over the events for event_i in range(self.current_run['data'].n_stereo_events): # Event and run ids event_order_number = self.current_run['data'].stereo_ids[event_i][0] event_id = self.current_run['data'].event_data['M1']['stereo_event_number'][event_order_number] obs_id = self.current_run['number'] # Reading event data event_data = self.current_run['data'].get_stereo_event_data(event_i) data.meta['origin'] = 'MAGIC' data.meta['input_url'] = self.input_url data.meta['max_events'] = self.max_events # Event counter data.count = counter data.index.obs_id = obs_id data.index.event_id = event_id # Setting up the R0 container data.r0.tel.clear() # Setting up the R1 container data.r1.tel.clear() # Setting up the DL0 container data.dl0.tel.clear() # Setting up the DL1 container data.dl1.tel.clear() pointing = PointingContainer() # Filling the DL1 container with the event data for tel_i, tel_id in enumerate(tels_in_file): # Creating the telescope pointing container pointing_tel = TelescopePointingContainer() pointing_tel.azimuth = np.deg2rad( event_data['{:s}_pointing_az'.format(tel_id)]) * u.rad pointing_tel.altitude = np.deg2rad( 90 - event_data['{:s}_pointing_zd'.format(tel_id)]) * u.rad # pointing.ra = np.deg2rad( # event_data['{:s}_pointing_ra'.format(tel_id)]) * u.rad # pointing.dec = np.deg2rad( # event_data['{:s}_pointing_dec'.format(tel_id)]) * u.rad pointing.tel[tel_i + 1] = pointing_tel # Adding trigger id (MAGIC nomenclature) data.r0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number] data.r1.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number] data.dl0.tel[tel_i + 1].trigger_type = self.current_run['data'].event_data['M1']['trigger_pattern'][event_order_number] # Adding event charge and peak positions per pixel data.dl1.tel[tel_i + 1].image = event_data['{:s}_image'.format(tel_id)] data.dl1.tel[tel_i + 1].peak_time = event_data['{:s}_pulse_time'.format(tel_id)] pointing.array_azimuth = np.deg2rad(event_data['m1_pointing_az']) * u.rad pointing.array_altitude = np.deg2rad(90 - event_data['m1_pointing_zd']) * u.rad pointing.array_ra = np.deg2rad(event_data['m1_pointing_ra']) * u.rad pointing.array_dec = np.deg2rad(event_data['m1_pointing_dec']) * u.rad data.pointing = pointing if not self.is_mc: for tel_i, tel_id in enumerate(tels_in_file): data.trigger.tel[tel_i + 1] = TelescopeTriggerContainer( time=Time(event_data[f'{tel_id}_unix'], format='unix', scale='utc') ) else: data.mc.energy = event_data['true_energy'] * u.GeV data.mc.alt = (np.pi/2 - event_data['true_zd']) * u.rad # check meaning of 7deg transformation (I.Vovk) data.mc.az = -1 * \ (event_data['true_az'] - np.deg2rad(180 - 7)) * u.rad data.mc.shower_primary_id = 1 - \ event_data['true_shower_primary_id'] data.mc.h_first_int = event_data['true_h_first_int'] * u.cm # adding a 7deg rotation between the orientation of corsika (x axis = magnetic north) and MARS (x axis = geographical north) frames # magnetic north is 7 deg westward w.r.t. geographical north rot_corsika = 7 *u.deg data.mc.core_x = (event_data['true_core_x']*np.cos(rot_corsika) - event_data['true_core_y']*np.sin(rot_corsika))* u.cm data.mc.core_y = (event_data['true_core_x']*np.sin(rot_corsika) + event_data['true_core_y']*np.cos(rot_corsika))* u.cm # Setting the telescopes with data data.r0.tels_with_data = tels_with_data data.r1.tels_with_data = tels_with_data data.dl0.tels_with_data = tels_with_data data.trigger.tels_with_trigger = tels_with_data yield data counter += 1 return def _mono_event_generator(self, telescope): """ Mono event generator. Yields DataContainer instances, filled with the read event data. Parameters ---------- telescope: str The telescope for which to return events. Can be either "M1" or "M2". Returns ------- """ counter = 0 telescope = telescope.upper() # Data container - is initialized once, and data is replaced after each yield data = ArrayEventContainer() # Telescopes with data: tels_in_file = ["M1", "M2"] if telescope not in tels_in_file: raise ValueError(f"Specified telescope {telescope} is not in the allowed list {tels_in_file}") tel_i = tels_in_file.index(telescope) tels_with_data = [tel_i + 1, ] # Removing the previously read data run from memory if self.current_run is not None: if 'data' in self.current_run: del self.current_run['data'] # Setting the new active run self.current_run = self._set_active_run(self.run_numbers) # Set monitoring data: if not self.is_mc: monitoring_data = self.current_run['data'].monitoring_data monitoring_camera = MonitoringCameraContainer() pedestal_info = PedestalContainer() badpixel_info = PixelStatusContainer() pedestal_info.sample_time = Time( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalUnix'], format='unix', scale='utc' ) pedestal_info.n_events = 500 # hardcoded number of pedestal events averaged over pedestal_info.charge_mean = [] pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Mean']) pedestal_info.charge_mean.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Mean']) pedestal_info.charge_mean.append(monitoring_data['M{:d}'.format( tel_i + 1)]['PedestalFromExtractorRndm']['Mean']) pedestal_info.charge_std = [] pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFundamental']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractor']['Rms']) pedestal_info.charge_std.append( monitoring_data['M{:d}'.format(tel_i + 1)]['PedestalFromExtractorRndm']['Rms']) t_range = Time(monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfoUnixRange'], format='unix', scale='utc') badpixel_info.hardware_failing_pixels = monitoring_data['M{:d}'.format(tel_i + 1)]['badpixelinfo'] badpixel_info.sample_time_range = t_range monitoring_camera.pedestal = pedestal_info monitoring_camera.pixel_status = badpixel_info data.mon.tel[tel_i + 1] = monitoring_camera if telescope == 'M1': n_events = self.current_run['data'].n_mono_events_m1 else: n_events = self.current_run['data'].n_mono_events_m2 # Loop over the events for event_i in range(n_events): # Event and run ids event_order_number = self.current_run['data'].mono_ids[telescope][event_i] event_id = self.current_run['data'].event_data[telescope]['stereo_event_number'][event_order_number] obs_id = self.current_run['number'] # Reading event data event_data = self.current_run['data'].get_mono_event_data(event_i, telescope=telescope) data.meta['origin'] = 'MAGIC' data.meta['input_url'] = self.input_url data.meta['max_events'] = self.max_events data.trigger.event_type = self.current_run['data'].event_data[telescope]['trigger_pattern'][event_order_number] data.trigger.tels_with_trigger = tels_with_data if self.allowed_tels: data.trigger.tels_with_trigger = np.intersect1d( data.trigger.tels_with_trigger, self.subarray.tel_ids, assume_unique=True ) if not self.is_mc: data.trigger.tel[tel_i + 1] = TelescopeTriggerContainer( time=Time(event_data['unix'], format='unix', scale='utc') ) # Event counter data.count = counter data.index.obs_id = obs_id data.index.event_id = event_id # Setting up the R0 container data.r0.tel.clear() data.r1.tel.clear() data.dl0.tel.clear() data.dl1.tel.clear() data.pointing.tel.clear() # Creating the telescope pointing container pointing = PointingContainer() pointing_tel = TelescopePointingContainer( azimuth=np.deg2rad(event_data['pointing_az']) * u.rad, altitude=np.deg2rad(90 - event_data['pointing_zd']) * u.rad,) pointing.tel[tel_i + 1] = pointing_tel pointing.array_azimuth = np.deg2rad(event_data['pointing_az']) * u.rad pointing.array_altitude = np.deg2rad(90 - event_data['pointing_zd']) * u.rad pointing.array_ra = np.deg2rad(event_data['pointing_ra']) * u.rad pointing.array_dec =
np.deg2rad(event_data['pointing_dec'])
numpy.deg2rad
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the # Pyedra Project (https://github.com/milicolazo/Pyedra/). # Copyright (c) 2020, <NAME> # License: MIT # Full Text: https://github.com/milicolazo/Pyedra/blob/master/LICENSE # ============================================================================ # DOCS # ============================================================================ """Implementation of phase function for asteroids.""" # ============================================================================= # IMPORTS # ============================================================================= import attr import matplotlib.pyplot as plt from matplotlib import cm import numpy as np import pandas as pd import scipy import scipy.interpolate import scipy.optimize as optimization from . import core, datasets # ============================================================================ # CLASSES # ============================================================================ @attr.s(frozen=True) class HG1G2Plot(core.BasePlot): """Plots for HG1G2 fit.""" default_plot_kind = "curvefit" def curvefit( self, df, idc="id", alphac="alpha", magc="v", ax=None, cmap=None, fit_kwargs=None, data_kwargs=None, ): """Plot the phase function using the HG1G2 model. Parameters ---------- df: ``pandas.DataFrame`` The dataframe must with the values idc : ``str``, optional (default=id) Column with the mpc number of the asteroids. alphac : ``str``, optional (default=alpha) Column with the phase angle of the asteroids. magc : ``str``, optional (default=v) Column with the magnitude. The default 'v' value is reference to the reduced magnitude in Johnson's V filter. ax : ``matplotlib.pyplot.Axis``, (optional) Matplotlib axis cmap : ``None``, ``str`` or calable (optional) Name of the color map to be used (https://matplotlib.org/users/colormaps.html). If is None, the default colors of the matplotlib.pyplot.plot function is used, and if, and is a callable is used as colormap generator. fit_kwargs: ``dict`` or ``None`` (optional) The parameters to send to the fit curve plot. Only ``label`` and ``color`` can't be provided. data_kwargs: ``dict`` or ``None`` (optional) The parameters to send to the data plot. Only ``label`` and ``color`` can't be provided. Return ------ ``matplotlib.pyplot.Axis`` : The axis where the method draws. """ def fit_y(d, e, f): y = d - 2.5 * np.log10(e * fi1 + f * fi2 + (1 - e - f) * fi3) return y if ax is None: ax = plt.gca() fig = ax.get_figure() fig.set_size_inches(self.DEFAULT_FIGURE_SIZE) ax.invert_yaxis() ax.set_title("HG1G2 - Phase curves") ax.set_xlabel("Phase angle") ax.set_ylabel(magc.upper()) fit_kwargs = {} if fit_kwargs is None else fit_kwargs fit_kwargs.setdefault("ls", "--") fit_kwargs.setdefault("alpha", 0.5) data_kwargs = {} if data_kwargs is None else data_kwargs data_kwargs.setdefault("marker", "o") data_kwargs.setdefault("ls", "None") model_size = len(self.pdf.model_df) if cmap is None: colors = [None] * model_size elif callable(cmap): colors = cmap(np.linspace(0, 1, model_size)) else: cmap = cm.get_cmap(cmap) colors = cmap(np.linspace(0, 1, model_size)) for idx, m_row in self.pdf.iterrows(): row_id = int(m_row.id) data = df[df[idc] == m_row.id] fi1 = np.array([]) fi2 = np.array([]) fi3 = np.array([]) for alpha_b in data[alphac]: p1 = self.pdf.metadata.y_interp1(alpha_b) fi1 = np.append(fi1, p1) p2 = self.pdf.metadata.y_interp2(alpha_b) fi2 = np.append(fi2, p2) p3 = self.pdf.metadata.y_interp3(alpha_b) fi3 = np.append(fi3, p3) v_fit = fit_y(m_row.H12, m_row.G1, m_row.G2) line = ax.plot( data[alphac], v_fit, label=f"Fit #{row_id}", color=colors[idx], **fit_kwargs, ) # data part ax.plot( data[alphac], data[magc], color=line[0].get_color(), label=f"Data #{row_id}", **data_kwargs, ) # reorder legend for two columns handles, labels = ax.get_legend_handles_labels() labels, handles = zip( *sorted(zip(labels, handles), key=lambda t: t[0]) ) ax.legend(handles, labels, ncol=2, loc="best") return ax # ============================================================================ # FUNCTIONS # ============================================================================ def _HG1G2_model(X, a, b, c): x, y, z = X return a * x + b * y + c * z def HG1G2_fit(df, idc="id", alphac="alpha", magc="v"): """Fit (H-G1-G2) system to data from table. HG1G2_fit calculates the H,G1 and G2 parameters of the phase function following the procedure described in [5]_ . Parameters ---------- df: ``pandas.DataFrame`` The dataframe must with the values idc : ``str``, optional (default=id) Column with the mpc number of the asteroids. alphac : ``str``, optional (default=alpha) Column with the phase angle of the asteroids. magc : ``str``, optional (default=v) Column with the magnitude. The default 'v' value is reference to the reduced magnitude in Johnson's V filter. Returns ------- ``PyedraFitDataFrame`` The output contains eight columns: id (mpc number of the asteroid), H (absolute magnitude returned by the fit), H error (fit H parameter error), G1 (G1 parameter returned by the fit), G1 error (fit G1 parameter error), G2 (G2 parameter returned bythe fit), G2 error (fit G2 parameter error), and R (fit determination coefficient). References ---------- .. [5] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>.,<NAME>., <NAME>., 2010, Icarus, 209, 542. """ lt = core.obs_counter(df, 3, idc, alphac) if len(lt): lt_str = " - ".join(str(idx) for idx in lt) raise ValueError( f"Some asteroids has less than 3 observations: {lt_str}" ) noob = df.drop_duplicates(subset=idc, keep="first", inplace=False) size = len(noob) id_column = np.empty(size, dtype=int) H_1_2_column = np.empty(size) error_H_1_2_column = np.empty(size) G_1_column = np.empty(size) error_G_1_column = np.empty(size) G_2_column = np.empty(size) error_G_2_column = np.empty(size) R_column = np.empty(size) observations = np.empty(size, dtype=int) penttila2016 = datasets.load_penttila2016() alpha = penttila2016["alpha"].to_numpy() phi1 = penttila2016["phi1"].to_numpy() phi2 = penttila2016["phi2"].to_numpy() phi3 = penttila2016["phi3"].to_numpy() y_interp1 = scipy.interpolate.interp1d(alpha, phi1) y_interp2 = scipy.interpolate.interp1d(alpha, phi2) y_interp3 = scipy.interpolate.interp1d(alpha, phi3) for idx, id in enumerate(noob[idc]): data = df[df[idc] == id] fi1 = np.array([]) fi2 = np.array([]) fi3 = np.array([]) for alpha_b in data[alphac]: p1 = y_interp1(alpha_b) fi1 = np.append(fi1, p1) p2 = y_interp2(alpha_b) fi2 =
np.append(fi2, p2)
numpy.append
""" This scripts is similar to dynamic.py. Yet, since we simulate the vortex- induced load, we need to solve for the new lift variable q, so we consider a new mixed function space with additional variables. The additional constants present in this script are: - Cl0: mean lift coefficient. - A, eps: coupling constants used in the model of Facchinetti et al. (2004) """ import time, datetime import numpy as np from fenics import * # ============================================================================= St = 0.16 bend_to_twist = 1.5 # Aerodynamic coefficients Cd = 1.2 Cl0 = 0.3 # Coupling constants A, eps = 12., 0.3 def initialise_results(): """ [t, n, b, w, fext, q, speed] """ return [np.empty(0), np.empty(0), np.empty(0),
np.empty(0)
numpy.empty
import SimpleITK as sitk import numpy as np import os import paths import csv import math from scipy.io import loadmat from skimage.measure import regionprops, marching_cubes_classic, mesh_surface_area def divide_hcp(connectivity_matrix, hcp_connectivity): ''' divide the connectivity matrix by the hcp matrix''' assert(connectivity_matrix.shape == hcp_connectivity.shape) output_matrix = np.zeros(connectivity_matrix.shape) for i in range(connectivity_matrix.shape[0]): for j in range(connectivity_matrix.shape[1]): if hcp_connectivity[i,j] != 0: output_matrix[i,j] = connectivity_matrix[i,j]/hcp_connectivity[i,j] return output_matrix def get_hcp_connectivity_matrice(hcp_connectivity_matrices_path = paths.hcp_connectivity_matrices_path): '''Get the pass-type and end-type connectivity matrices from HCP1021 subjects''' end_matrix_path = os.path.join(hcp_connectivity_matrices_path, 'HCP1021.1mm.fib.gz.aal.count.end.connectivity.mat') pass_matrix_path = os.path.join(hcp_connectivity_matrices_path, 'HCP1021.1mm.fib.gz.aal.count.pass.connectivity.mat') end_obj = loadmat(end_matrix_path) end_matrix = end_obj['connectivity'] pass_obj = loadmat(pass_matrix_path) pass_matrix = pass_obj['connectivity'] return pass_matrix, end_matrix def ReadImage(path): ''' This code returns the numpy nd array for a MR image at path''' return sitk.GetArrayFromImage(sitk.ReadImage(path)).astype(np.float32) def find_list(subject_id, list): ''' this is used to find the stroke lesion for a subject name ''' files = [file for file in list if subject_id in file] return files[0] def find_3d_surface(mask, voxel_spacing=(1.0,1.0,1.0)): ''' find the surface for a 3D object ''' verts, faces = marching_cubes_classic(volume=mask, spacing=voxel_spacing) return mesh_surface_area(verts, faces) def find_3d_roundness(mask): ''' find the roundess of a 3D object ''' mask_region_props = regionprops(mask.astype(int)) mask_area = mask_region_props[0].area mask_equivDiameter = (6.0*mask_area/math.pi)**(1.0/3.0) mask_major_axis_length = mask_region_props[0].major_axis_length return mask_equivDiameter**2/mask_major_axis_length**2 def reshape_by_padding_upper_coords(image, new_shape, pad_value=None): ''' reshape the 3d matrix ''' shape = tuple(list(image.shape)) new_shape = tuple(np.max(np.concatenate((shape, new_shape)).reshape((2,len(shape))), axis=0)) if pad_value is None: if len(shape)==2: pad_value = image[0,0] elif len(shape)==3: pad_value = image[0, 0, 0] else: raise ValueError("Image must be either 2 or 3 dimensional") res = np.ones(list(new_shape), dtype=image.dtype) * pad_value if len(shape) == 2: res[0:0+int(shape[0]), 0:0+int(shape[1])] = image elif len(shape) == 3: res[0:0+int(shape[0]), 0:0+int(shape[1]), 0:0+int(shape[2])] = image return res # ======================= Tools for connectivity matrix ============================================= # def threshold_connectivity_matrix(connectivity_matrix, threshold=0.01): ''' threshold the connectiivty matrix in order to remove the noise''' thresholded_connectivity_matrix= np.copy(connectivity_matrix) thresholded_connectivity_matrix[connectivity_matrix <= threshold*np.amax(connectivity_matrix)] = 0.0 return thresholded_connectivity_matrix def weight_conversion(W): ''' convert to the normalized version and binary version''' W_bin = np.copy(W) W_bin[W!=0]=1 W_nrm = np.copy(W) W_nrm = W_nrm/np.amax(np.absolute(W)) return W_nrm, W_bin def get_lesion_weights(stroke_mni_path): ''' get the weight vector(workshop paper)''' aal_path = os.path.join(paths.dsi_studio_path, 'atlas', 'aal.nii.gz') aal_nda = ReadImage(aal_path) aal_182_218_182 = reshape_by_padding_upper_coords(aal_nda, (182,218,182), 0) stroke_mni_nda = ReadImage(stroke_mni_path) weights = np.zeros(int(np.amax(aal_182_218_182)), dtype=float) for bp_number in range(int(np.amax(aal_182_218_182))): mask = np.zeros(aal_182_218_182.shape, aal_182_218_182.dtype) mask[aal_182_218_182==(bp_number+1)]=1 bp_size = float(np.count_nonzero(mask)) stroke_in_bp = np.multiply(mask, stroke_mni_nda) stroke_in_bp_size = float(np.count_nonzero(stroke_in_bp)) weights[bp_number] = stroke_in_bp_size/bp_size #weights[bp_number] = stroke_in_bp_size return weights def get_modified_lesion_weights(stroke_mni_path): ''' get the modified weight vector''' aal_path = os.path.join(paths.dsi_studio_path, 'atlas', 'aal.nii.gz') aal_nda = ReadImage(aal_path) aal_182_218_182 = reshape_by_padding_upper_coords(aal_nda, (182,218,182), 0) stroke_mni_nda = ReadImage(stroke_mni_path) stroke_volume = float(np.count_nonzero(stroke_mni_nda)) weights = np.zeros(int(np.amax(aal_182_218_182)), dtype=float) for bp_number in range(int(np.amax(aal_182_218_182))): mask = np.zeros(aal_182_218_182.shape, aal_182_218_182.dtype) mask[aal_182_218_182==(bp_number+1)]=1 #bp_size = float(np.count_nonzero(mask)) stroke_in_bp = np.multiply(mask, stroke_mni_nda) stroke_volume_in_bp = float(np.count_nonzero(stroke_in_bp)) #weights[bp_number] = 1.0 + stroke_volume_in_bp/stroke_volume weights[bp_number] = stroke_volume_in_bp/stroke_volume #remaining_volume = stroke_volume - np.sum(weights) #print(remaining_volume) return weights def get_train_dataset(): '''Give you the training dataset''' gt_subject_paths = [os.path.join(root, name) for root, dirs, files in os.walk(paths.isles2017_training_dir) for name in files if '.OT.' in name and '__MACOSX' not in root and name.endswith('.nii')] gt_subject_paths.sort() # The CSV file for train dataset train_mRS_file = "ISLES2017_Training.csv" train_mRS_path = os.path.join(paths.isles2017_dir, train_mRS_file) assert(os.path.isfile(train_mRS_path)) # Read CSV file for Train dataset train_dataset = {} with open(train_mRS_path, 'rt') as csv_file: csv_reader = csv.reader(csv_file) for line in csv_reader: if line[2] == '90' or line[2] == '88' or line[2] == '96' or line[2] == '97': # 90 days subject_name = line[0] gt_file = [file for file in gt_subject_paths if '/'+subject_name+'/' in file] if gt_file: train_dataset[subject_name]={} train_dataset[subject_name]['mRS'] = line[1] train_dataset[line[0]]['TICI'] = line[3] train_dataset[line[0]]['TSS'] = line[4] train_dataset[line[0]]['TTT'] = line[5] train_dataset[line[0]]['ID'] = gt_file[0][-10:-4] train_dataset[line[0]]['tracts'] = line[6] return train_dataset # Get the mRS for training subject from training_1 to training_48 def extract_gt_mRS(): '''extract the mRS for training subjects from training_1 to training_48''' mRS_gt = np.zeros((40, )) train_dataset = get_train_dataset() for idx, subject_name in enumerate(train_dataset.keys()): mRS_gt[idx] = train_dataset[subject_name]['mRS'] return mRS_gt def extract_tract_features(): ''' extract number of tracts''' train_dataset = get_train_dataset() tracts = np.zeros((40, 1)) for idx, subject_name in enumerate(train_dataset.keys()): tracts[idx] = train_dataset[subject_name]['tracts'] return tracts, ['tracts'] # Extract the volume of stroke in MNI152 space def extract_volumetric_features(): # The ground truth lesions in MNI space volumetric_list = ["volume"] stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() assert(len(stroke_mni_paths) == 43) # Volumetric Features volumetric_features = np.zeros((40,1)) train_dataset = get_train_dataset() for idx, subject_name in enumerate(train_dataset.keys()): subject_id = train_dataset[subject_name]['ID'] stroke_mni_path = find_list(subject_id, stroke_mni_paths) #volumetric features stroke_mni_nda = ReadImage(stroke_mni_path) volumetric_features[idx] = np.count_nonzero(stroke_mni_nda) return volumetric_features, volumetric_list def extract_spatial_features(): # The ground truth lesions in MNI space stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() assert(len(stroke_mni_paths) == 43) spatial_list = ["centroid_z", "centroid_y", "centroid_x"] # Volumetric Features spatial_features = np.zeros((40,3)) train_dataset = get_train_dataset() for idx, subject_name in enumerate(train_dataset.keys()): subject_id = train_dataset[subject_name]['ID'] stroke_mni_path = find_list(subject_id, stroke_mni_paths) stroke_mni_nda = ReadImage(stroke_mni_path) stroke_regions = regionprops(stroke_mni_nda.astype(int)) stroke_centroid = stroke_regions[0].centroid spatial_features[idx, :] = stroke_centroid return spatial_features, spatial_list def extract_morphological_features(): # The ground truth lesions in MNI space stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() assert(len(stroke_mni_paths) == 43) morphological_list = ["major", "minor", "major/minor", "surface", "solidity", "roundness"] # Volumetric Features morphological_features = np.zeros((40,6), dtype=np.float32) train_dataset = get_train_dataset() for idx, subject_name in enumerate(train_dataset.keys()): subject_id = train_dataset[subject_name]['ID'] stroke_mni_path = find_list(subject_id, stroke_mni_paths) stroke_mni_nda = ReadImage(stroke_mni_path) stroke_regions = regionprops(stroke_mni_nda.astype(int)) stroke_major_axis_length = stroke_regions[0].major_axis_length stroke_minor_axis_length = stroke_regions[0].minor_axis_length stroke_surface = find_3d_surface(stroke_mni_nda.astype(int)) stroke_roundness = find_3d_roundness(stroke_mni_nda.astype(int)) morphological_features[idx, :] = stroke_major_axis_length, stroke_minor_axis_length, stroke_major_axis_length/stroke_minor_axis_length, stroke_surface, stroke_regions[0].solidity, stroke_roundness return morphological_features, morphological_list def extract_tractographic_features(weight_type, aal_regions=116): # The ground truth lesion in subject space gt_subject_paths = [os.path.join(root, name) for root, dirs, files in os.walk(paths.isles2017_training_dir) for name in files if '.OT.' in name and '__MACOSX' not in root and name.endswith('.nii')] # New connectivity matrices location connectivity_train_dir = os.path.join(paths.dsi_studio_path, 'connectivity', 'gt_stroke') # pass type locations connectivity_pass_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'pass' in name and name.endswith('.mat')] connectivity_pass_files.sort() # end type locations connectivity_end_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'end' in name and name.endswith('.mat')] connectivity_end_files.sort() # The ground truth lesions in MNI space stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() tractographic_list = ["tract_aal_"+str(i) for i in range(1, aal_regions+1)] assert(len(connectivity_pass_files) == len(connectivity_end_files) == len(stroke_mni_paths) == 43) train_dataset = get_train_dataset() # Tractographic Features W_dsi_pass_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) W_nrm_pass_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) W_bin_pass_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) W_dsi_end_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) W_nrm_end_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) W_bin_end_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) for idx, subject_name in enumerate(train_dataset.keys()): subject_id = train_dataset[subject_name]['ID'] connectivity_pass_file = find_list(subject_id, connectivity_pass_files) connectivity_pass_obj = loadmat(connectivity_pass_file) thresholded_connectivity_pass = threshold_connectivity_matrix(connectivity_pass_obj['connectivity'], 0) W_nrm_pass, W_bin_pass = weight_conversion(thresholded_connectivity_pass) connectivity_end_file = find_list(subject_id, connectivity_end_files) connectivity_end_obj = loadmat(connectivity_end_file) thresholded_connectivity_end = threshold_connectivity_matrix(connectivity_end_obj['connectivity'], 0) W_nrm_end, W_bin_end = weight_conversion(thresholded_connectivity_end) stroke_mni_path = find_list(subject_id, stroke_mni_paths) # =================================== Weight Vector ========================================== # # Get the lesion weights if 'ori' in weight_type: lesion_weights = get_lesion_weights(stroke_mni_path) # Get the modified lesion weights if 'mod' in weight_type: lesion_weights = get_modified_lesion_weights(stroke_mni_path) # No weight if 'one' in weight_type: lesion_weights = np.ones((1,aal_regions), dtype=np.float32) # weighted connectivity histogram W_dsi_pass_histogram_features[idx, :] = np.multiply(np.sum(thresholded_connectivity_pass, axis=0), lesion_weights) W_nrm_pass_histogram_features[idx, :] = np.multiply(np.sum(W_nrm_pass, axis=0), lesion_weights) W_bin_pass_histogram_features[idx, :] = np.multiply(np.sum(W_bin_pass, axis=0), lesion_weights) W_dsi_end_histogram_features[idx, :] = np.multiply(np.sum(thresholded_connectivity_end, axis=0), lesion_weights) W_nrm_end_histogram_features[idx, :] = np.multiply(np.sum(W_nrm_end, axis=0), lesion_weights) W_bin_end_histogram_features[idx, :] = np.multiply(np.sum(W_bin_end, axis=0), lesion_weights) return W_dsi_pass_histogram_features, W_nrm_pass_histogram_features, W_bin_pass_histogram_features, W_dsi_end_histogram_features, W_nrm_end_histogram_features, W_bin_end_histogram_features, tractographic_list def extract_volumetric_spatial_features(atlas_name): '''extract volumetric spatial features''' stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() train_dataset = get_train_dataset() atlas_path = os.path.join(paths.dsi_studio_path, 'atlas', atlas_name+'.nii.gz') atlas_nda = ReadImage(atlas_path) if atlas_name == 'aal': atlas_nda = reshape_by_padding_upper_coords(atlas_nda, (182,218,182), 0) volumetric_spatial_features = np.zeros((40, int(np.amax(atlas_nda))+1), dtype=float) for idx, subject_name in enumerate(train_dataset.keys()): subject_id = train_dataset[subject_name]['ID'] stroke_mni_path = find_list(subject_id, stroke_mni_paths) stroke_mni_nda = ReadImage(stroke_mni_path) whole_stroke_volume = float(np.count_nonzero(stroke_mni_nda)) for bp_number in range(1, int(np.amax(atlas_nda)+1)): mask = np.zeros(atlas_nda.shape, atlas_nda.dtype) mask[atlas_nda==(bp_number)]=1 stroke_in_bp = np.multiply(mask, stroke_mni_nda) stroke_in_bp_volume = np.count_nonzero(stroke_in_bp) volumetric_spatial_features[idx, bp_number] = stroke_in_bp_volume total_stroke_volume_bp = np.sum(volumetric_spatial_features[idx, :]) volumetric_spatial_features[idx, 0] = whole_stroke_volume - total_stroke_volume_bp volumetric_spatial_list =['volume_'+atlas_name+'_'+str(i) for i in range(0, int(np.amax(atlas_nda)+1))] return volumetric_spatial_features, volumetric_spatial_list def extract_modified_volumetric_spatial_features(atlas_name): '''extract volumetric spatial features considering the total volume of the stroke lesion''' stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() train_dataset = get_train_dataset() atlas_path = os.path.join(paths.dsi_studio_path, 'atlas', atlas_name+'.nii.gz') atlas_nda = ReadImage(atlas_path) if atlas_name == 'aal': atlas_nda = reshape_by_padding_upper_coords(atlas_nda, (182,218,182), 0) modified_volumetric_spatial_features = np.zeros((40, int(np.amax(atlas_nda))), dtype=float) for idx, subject_name in enumerate(train_dataset.keys()): subject_id = train_dataset[subject_name]['ID'] stroke_mni_path = find_list(subject_id, stroke_mni_paths) stroke_mni_nda = ReadImage(stroke_mni_path) whole_stroke_volume = float(np.count_nonzero(stroke_mni_nda)) for bp_number in range(1, int(np.amax(atlas_nda))+1): mask = np.zeros(atlas_nda.shape, atlas_nda.dtype) mask[atlas_nda==(bp_number)]=1 stroke_in_bp = np.multiply(mask, stroke_mni_nda) stroke_in_bp_volume = float(np.count_nonzero(stroke_in_bp)) modified_volumetric_spatial_features[idx, bp_number-1] = stroke_in_bp_volume / whole_stroke_volume volumetric_spatial_list =['volume_'+atlas_name+'_'+str(i) for i in range(1, int(np.amax(atlas_nda))+1)] assert((len(volumetric_spatial_list))==modified_volumetric_spatial_features.shape[1]) return modified_volumetric_spatial_features, volumetric_spatial_list def extract_new_tractographic_features(weight_type, aal_regions=116): # The ground truth lesion in subject space gt_subject_paths = [os.path.join(root, name) for root, dirs, files in os.walk(paths.isles2017_training_dir) for name in files if '.OT.' in name and '__MACOSX' not in root and name.endswith('.nii')] # New connectivity matrices location connectivity_train_dir = os.path.join(paths.dsi_studio_path, 'connectivity', 'gt_stroke') # pass type locations connectivity_pass_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'pass' in name and name.endswith('.mat')] connectivity_pass_files.sort() # end type locations connectivity_end_files = [os.path.join(root, name) for root, dirs, files in os.walk(connectivity_train_dir) for name in files if 'count' in name and 'ncount' not in name and 'connectivity' in name and 'end' in name and name.endswith('.mat')] connectivity_end_files.sort() # The ground truth lesions in MNI space stroke_mni_dir = os.path.join(paths.dsi_studio_path, 'gt_stroke') stroke_mni_paths = [os.path.join(root, name) for root, dirs, files in os.walk(stroke_mni_dir) for name in files if name.endswith('nii.gz')] stroke_mni_paths.sort() tractographic_list = ["tract_aal_"+str(i) for i in range(1, aal_regions+1)] assert(len(connectivity_pass_files) == len(connectivity_end_files) == len(stroke_mni_paths) == 43) train_dataset = get_train_dataset() # Tractographic Features W_pass_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) W_end_histogram_features = np.zeros((40, aal_regions), dtype=np.float32) for idx, subject_name in enumerate(train_dataset.keys()): HCP_pass, HCP_end = get_hcp_connectivity_matrice() subject_id = train_dataset[subject_name]['ID'] connectivity_pass_file = find_list(subject_id, connectivity_pass_files) connectivity_pass_obj = loadmat(connectivity_pass_file) connectivity_pass_matrix = connectivity_pass_obj['connectivity'] #normalized_pass_matrix = divide_hcp(connectivity_pass_matrix, HCP_pass) connectivity_end_file = find_list(subject_id, connectivity_end_files) connectivity_end_obj = loadmat(connectivity_end_file) connectivity_end_matrix = connectivity_end_obj['connectivity'] #normalized_end_matrix = divide_hcp(connectivity_pass_matrix, HCP_end) stroke_mni_path = find_list(subject_id, stroke_mni_paths) # =================================== Weight Vector ========================================== # # Get the lesion weights if 'ori' in weight_type: lesion_weights = get_lesion_weights(stroke_mni_path) # Get the modified lesion weights if 'mod' in weight_type: lesion_weights = get_modified_lesion_weights(stroke_mni_path) # No weight if 'one' in weight_type: lesion_weights = np.ones((1,aal_regions), dtype=np.float32) normalized_pass_matrix = np.divide(np.sum(connectivity_pass_matrix, axis=0), np.sum(HCP_pass, axis=0)) normalized_end_matrix = np.divide(np.sum(connectivity_end_matrix, axis=0), np.sum(HCP_end, axis=0)) # weighted connectivity histogram W_pass_histogram_features[idx, :] =
np.multiply(normalized_pass_matrix, lesion_weights)
numpy.multiply
# ---------------------------------------------------------------------- # Imports # ---------------------------------------------------------------------- import VyPy from VyPy.data import ibunch from VyPy.optimize.drivers import Driver import numpy as np from time import time from VyPy.exceptions import MaxEvaluations try: import scipy import scipy.optimize except ImportError: pass # ---------------------------------------------------------------------- # Sequential Least Squares Quadratic Programming # ---------------------------------------------------------------------- class SLSQP(Driver): def __init__(self): ''' see http://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_slsqp.html for more info ''' # import check import scipy.optimize Driver.__init__(self) self.verbose = True self.max_iterations = 1000 self.max_evaluations = 10000 self.objective_accuracy = None def run(self,problem): # store the problem self.problem = problem # cache self._current_x = None self._current_eval = 0 # single objective assert len(problem.objectives) == 1 , 'too many objectives' # optimizer import scipy.optimize optimizer = scipy.optimize.fmin_slsqp # inputs func = self.func x0 = problem.variables.scaled.initials_array() f_eqcons = self.f_eqcons f_ieqcons = self.f_ieqcons bounds = problem.variables.scaled.bounds_array() fprime = self.fprime fprime_ieqcons = self.fprime_ieqcons fprime_eqcons = self.fprime_eqcons iprint = 2 iters = self.max_iterations accuracy = self.objective_accuracy or 1e-6 ## objective scaling #accuracy = accuracy / problem.objective.scale # printing if not self.verbose: iprint = 0 # constraints? if not problem.constraints.inequalities: f_ieqcons = None if not problem.constraints.equalities: f_eqcons = None # gradients? dobj,dineq,deq = problem.has_gradients() if not dobj: fprime = None if not (f_ieqcons and dineq): fprime_ieqcons = None if not (f_eqcons and deq) : fprime_eqcons = None # for catching max_evaluations self._current_x = x0 # start timing tic = time() # run the optimizer try: # for catching custom exits x_min,f_min,its,imode,smode = optimizer( func = func , x0 = x0 , f_eqcons = f_eqcons , f_ieqcons = f_ieqcons , bounds = bounds , fprime = fprime , fprime_ieqcons = fprime_ieqcons , fprime_eqcons = fprime_eqcons , iprint = iprint , full_output = True , iter = iters , acc = accuracy , **self.other_options.to_dict() ) except MaxEvaluations: its = None # can't know major iterations unless gradients are provided imode = 10 # custom mode number smode = 'Evaluation limit exceeded' x_min = self._current_x ## TODO - check constraints are met to tolerance, scipy doesn't do this # stop timing toc = time() - tic # get final variables vars_min = self.problem.variables.scaled.unpack_array(x_min) # pack outputs outputs = self.pack_outputs(vars_min) outputs.success = imode == 0 outputs.messages.exit_flag = imode outputs.messages.exit_message = smode outputs.messages.iterations = its outputs.messages.evaluations = self._current_eval outputs.messages.run_time = toc # done! return outputs def func(self,x): # check number of evaluations max_eval = self.max_evaluations if max_eval and max_eval>0 and self._current_eval >= max_eval: raise MaxEvaluations self._current_x = x self._current_eval += 1 # evaluate the objective function objective = self.problem.objectives[0] result = objective.function(x) result = result[0,0] return result def f_ieqcons(self,x): inequalities = self.problem.inequalities result = [ -1.*inequality.function(x) for inequality in inequalities ] result =
np.vstack(result)
numpy.vstack
import numpy as np import numpy.linalg as la import matplotlib.pyplot as plt import os from pathlib import Path import pickle import warnings class Trace: """ Stores the logs of running an optimization method and plots the trajectory. Arguments: loss (Oracle): the optimized loss class label (string, optional): label for convergence plots (default: None) """ def __init__(self, loss, label=None): self.loss = loss self.label = label self.xs = [] self.ts = [] self.its = [] self.loss_vals = [] self.its_converted_to_epochs = False self.ls_its = None def compute_loss_of_iterates(self): if len(self.loss_vals) == 0: self.loss_vals = np.asarray([self.loss.value(x) for x in self.xs]) else: warnings.warn('Loss values have already been computed. Set .loss_vals = [] to recompute.') def convert_its_to_epochs(self, batch_size=1): if self.its_converted_to_epochs: warnings.warn('The iteration count has already been converted to epochs.') return its_per_epoch = self.loss.n / batch_size self.its = np.asarray(self.its) / its_per_epoch self.its_converted_to_epochs = True def plot_losses(self, its=None, f_opt=None, label=None, markevery=None, ls_its=True, time=False, *args, **kwargs): if its is None: if ls_its and self.ls_its is not None: its = self.ls_its elif time: its = self.ts else: its = self.its if len(self.loss_vals) == 0: self.compute_loss_of_iterates() if f_opt is None: f_opt = self.loss.f_opt if label is None: label = self.label if markevery is None: markevery = max(1, len(self.loss_vals)//20) plt.plot(its, self.loss_vals - f_opt, label=label, markevery=markevery, *args, **kwargs) plt.ylabel(r'$f(x)-f^*$') def plot_distances(self, its=None, x_opt=None, label=None, markevery=None, ls_its=True, time=False, *args, **kwargs): if its is None: if ls_its and self.ls_its is not None: its = self.ls_its elif time: its = self.ts else: its = self.its if x_opt is None: if self.loss.x_opt is None: x_opt = self.xs[-1] else: x_opt = self.loss.x_opt if label is None: label = self.label if markevery is None: markevery = max(1, len(self.xs)//20) dists = [self.loss.norm(x-x_opt)**2 for x in self.xs] its = self.ls_its if ls_its and self.ls_its else self.its plt.plot(its, dists, label=label, markevery=markevery, *args, **kwargs) plt.ylabel(r'$\Vert x-x^*\Vert^2$') @property def best_loss_value(self): if len(self.loss_vals) == 0: self.compute_loss_of_iterates() return np.min(self.loss_vals) def save(self, file_name, path='./results/'): # To make the dumped file smaller, remove the loss loss_ref_copy = self.loss self.loss = None Path(path).mkdir(parents=True, exist_ok=True) with open(path + file_name, 'wb') as f: pickle.dump(self, f) self.loss = loss_ref_copy @classmethod def from_pickle(cls, path, loss=None): if not os.path.isfile(path): return None with open(path, 'rb') as f: trace = pickle.load(f) trace.loss = loss if loss is not None: loss.f_opt = min(self.best_loss_value, loss.f_opt) return trace class StochasticTrace: """ Class that stores the logs of running a stochastic optimization method and plots the trajectory. """ def __init__(self, loss, label=None): self.loss = loss self.label = label self.xs_all = {} self.ts_all = {} self.its_all = {} self.loss_vals_all = {} self.its_converted_to_epochs = False self.loss_is_computed = False def init_seed(self): self.xs = [] self.ts = [] self.its = [] self.loss_vals = None def append_seed_results(self, seed): self.xs_all[seed] = self.xs.copy() self.ts_all[seed] = self.ts.copy() self.its_all[seed] = self.its.copy() self.loss_vals_all[seed] = self.loss_vals.copy() if self.loss_vals else None def compute_loss_of_iterates(self): for seed, loss_vals in self.loss_vals_all.items(): if loss_vals is None: self.loss_vals_all[seed] = np.asarray([self.loss.value(x) for x in self.xs_all[seed]]) else: warnings.warn("""Loss values for seed {} have already been computed. Set .loss_vals_all[{}] = [] to recompute.""".format(seed, seed)) self.loss_is_computed = True @property def best_loss_value(self): if not self.loss_is_computed: self.compute_loss_of_iterates() return np.min([np.min(loss_vals) for loss_vals in self.loss_vals_all.values()]) def convert_its_to_epochs(self, batch_size=1): if self.its_converted_to_epochs: return self.its_per_epoch = self.loss.n / batch_size for seed, its in self.its_all.items(): self.its_all[seed] = np.asarray(its) / self.its_per_epoch self.its = np.asarray(self.its) / self.its_per_epoch self.its_converted_to_epochs = True def plot_losses(self, its=None, f_opt=None, log_std=True, label=None, markevery=None, alpha=0.25, *args, **kwargs): if not self.loss_is_computed: self.compute_loss_of_iterates() if its is None: its = np.mean([np.asarray(its_) for its_ in self.its_all.values()], axis=0) if f_opt is None: f_opt = self.loss.f_opt if log_std: y_log = [np.log(loss_vals-f_opt) for loss_vals in self.loss_vals_all.values()] y_log_ave = np.mean(y_log, axis=0) y_log_std = np.std(y_log, axis=0) lower, upper = np.exp(y_log_ave - y_log_std), np.exp(y_log_ave + y_log_std) y_ave = np.exp(y_log_ave) else: y = [loss_vals-f_opt for loss_vals in self.loss_vals_all.values()] y_ave = np.mean(y, axis=0) y_std = np.std(y, axis=0) lower, upper = y_ave - y_std, y_ave + y_std if label is None: label = self.label if markevery is None: markevery = max(1, len(y_ave)//20) plot = plt.plot(its, y_ave, label=label, markevery=markevery, *args, **kwargs) if len(self.loss_vals_all.keys()) > 1: plt.fill_between(its, lower, upper, alpha=alpha, color=plot[0].get_color()) plt.ylabel(r'$f(x)-f^*$') def plot_distances(self, its=None, x_opt=None, log_std=True, label=None, markevery=None, alpha=0.25, *args, **kwargs): if its is None: its = np.mean([np.asarray(its_) for its_ in self.its_all.values()], axis=0) if x_opt is None: if self.loss.x_opt is None: x_opt = self.xs[-1] else: x_opt = self.loss.x_opt dists = [np.asarray([self.loss.norm(x-x_opt)**2 for x in xs]) for xs in self.xs_all.values()] if log_std: y_log = [np.log(dist) for dist in dists] y_log_ave = np.mean(y_log, axis=0) y_log_std =
np.std(y_log, axis=0)
numpy.std
import logging import numpy as np import cv2 def bbox2roi(bbox): ''' Args: [x1, y1, width, height] Returns: [y1, x1, y2, x2] ''' if not (isinstance(bbox, (list, tuple))): raise TypeError('Need a list of a tuple, got %s' % type(bbox)) if not len(bbox) == 4: raise ValueError('Need 4 numbers, not %d.' % len(bbox)) for x in bbox: if not (isinstance(x, (int, float))): raise TypeError('Each element must be a number, got %s' % type(x)) if bbox[2] < 0 or bbox[3] < 0: raise ValueError('Bbox %s has negative width or height.' % str(bbox)) return [bbox[1], bbox[0], bbox[3] + bbox[1], bbox[2] + bbox[0]] def roi2bbox(roi): ''' Args: [y1, x1, y2, x2] Returns: [x1, y1, width, height] ''' if not (isinstance(roi, list) or isinstance(roi, tuple)): raise TypeError('Need a list of a tuple, got %s' % type(roi)) if not len(roi) == 4: raise ValueError('Need 4 numbers, not %d.' % len(roi)) for x in roi: if not (isinstance(x, (int, float))): raise TypeError('Each element must be a number, got %s' % type(x)) if roi[2] < roi[0] or roi[3] < roi[1]: raise ValueError('Roi %s has negative width or height.' % str(roi)) return [roi[1], roi[0], roi[3] - roi[1], roi[2] - roi[0]] def getIoU(roi1, roi2): ' Computes intersection over union for two rectangles. ' intersection_y = max(0, (min(roi1[2], roi2[2]) - max(roi1[0], roi2[0]))) intersection_x = max(0, (min(roi1[3], roi2[3]) - max(roi1[1], roi2[1]))) intersection = intersection_x * intersection_y area1 = (roi1[3] - roi1[1]) * (roi1[2] - roi1[0]) area2 = (roi2[3] - roi2[1]) * (roi2[2] - roi2[0]) union = area1 + area2 - intersection IoU = intersection / union if union > 0 else 0. return IoU def expandRoiBorder(roi, imsize, perc, integer_result=True): ''' Expands a ROI, and clips it within borders. Floats are rounded to the nearest integer. ''' imheight, imwidth = imsize perc_y, perc_x = perc if (perc_y, perc_x) == (0, 0): return roi half_delta_y = float(roi[2] + 1 - roi[0]) * perc_y / 2 half_delta_x = float(roi[3] + 1 - roi[1]) * perc_x / 2 # the result must be within (imheight, imwidth) bbox_height = roi[2] + 1 - roi[0] + half_delta_y * 2 bbox_width = roi[3] + 1 - roi[1] + half_delta_x * 2 if bbox_height > imheight or bbox_width > imwidth: logging.warning( 'expanded bbox of size (%d,%d) does not fit into image (%d,%d)' % (bbox_height, bbox_width, imheight, imwidth)) # if so, decrease half_delta_y, half_delta_x coef = min(imheight / bbox_height, imwidth / bbox_width) logging.warning('decreased bbox to (%d,%d)' % (bbox_height, bbox_width)) bbox_height *= coef bbox_width *= coef logging.warning('decreased bbox to (%d,%d)' % (bbox_height, bbox_width)) half_delta_y = (bbox_height - (roi[2] + 1 - roi[0])) * 0.5 half_delta_x = (bbox_width - (roi[3] + 1 - roi[1])) * 0.5 # and a small epsilon to account for floating-point imprecisions EPS = 0.001 # expand each side roi[0] -= (half_delta_y - EPS) roi[1] -= (half_delta_x - EPS) roi[2] += (half_delta_y - EPS) roi[3] += (half_delta_x - EPS) # move to clip into borders if roi[0] < 0: roi[2] += abs(roi[0]) roi[0] = 0 if roi[1] < 0: roi[3] += abs(roi[1]) roi[1] = 0 if roi[2] > imheight - 1: roi[0] -= abs((imheight - 1) - roi[2]) roi[2] = imheight - 1 if roi[3] > imwidth - 1: roi[1] -= abs((imwidth - 1) - roi[3]) roi[3] = imwidth - 1 # check that now averything is within borders (bbox is not too big) assert roi[0] >= 0 and roi[1] >= 0, str(roi) assert roi[2] <= imheight - 1 and roi[3] <= imwidth - 1, str(roi) # make integer if integer_result: roi = [int(round(x)) for x in roi] return roi def expandRoi(roi, perc, integer_result=True): ''' Expands a ROI. Floats are rounded to the nearest integer. ''' roi = list(roi) perc_y, perc_x = perc if (perc_y, perc_x) == (0, 0): return roi half_delta_y = float(roi[2] + 1 - roi[0]) * perc_y / 2 half_delta_x = float(roi[3] + 1 - roi[1]) * perc_x / 2 # and a small epsilon to account for floating-point imprecisions EPS = 0.001 # expand each side roi[0] -= (half_delta_y - EPS) roi[1] -= (half_delta_x - EPS) roi[2] += (half_delta_y - EPS) roi[3] += (half_delta_x - EPS) # make integer if integer_result: roi = [int(round(x)) for x in roi] return roi def expandPolygon(xs, ys, perc, integer_result=True): ''' Expand polygon from its median center in all directions. Floating-point numbers are then rounded to the nearest integer. Args: xs: A list of x values. ys: A list of y values. perc: A tuple of (perc_y, perc_x). Both values are float from -1 to inf. Returns: xs: A list of x values. ys: A list of y values. ''' perc_y, perc_x = perc center_x = np.array(xs, dtype=float).mean() center_y =
np.array(ys, dtype=float)
numpy.array
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% [markdown] # # Dependencies # Created by wrborrelli # %% import sys import itertools import matplotlib.pyplot as plt from scipy.spatial import ConvexHull from scipy.optimize import linprog from scipy.optimize import lsq_linear from scipy.spatial import HalfspaceIntersection import numpy as np from numpy.linalg import lstsq import pint from pint import UnitRegistry units = UnitRegistry() Q_ = units.Quantity # %% [markdown] # # Sample Inputs # %% reagent1= {'Gamma-Butyrolactone': '0.0 M'} reagent2= {'Lead Diiodide': '1.81 M', 'Formamidinium Iodide': '1.36 M', 'Gamma-Butyrolactone': '0.0 M'} reagent3 ={'Formamidinium Iodide': '2.63 M', 'Gamma-Butyrolactone': '0.0 M'} reagent7= {'Formic Acid': '26.5 M'} reagents = [reagent1, reagent2, reagent3, reagent7] descriptions=['Reagent1', 'Reagent2', 'Reagent3', 'Reagent7'] # %% nExpt = 96 maxMolarity = 15.0 finalVolume = '500 ul' # %% [markdown] # ## Helper Functions # %% def get_hull_centroid(hull: ConvexHull): """ Returns the centroid of the supplied scipy convex hull object. Args: hull: a scipy convex hull object Returns: np.array() of centroids for each axis. >>> get_hull_centroid(ConvexHull(np.array([[1.8, 0., 0.],[0. , 0., 0.], [0., 0., 26.5], [0., 2., 1.]]))) array([0.45, 0.5, 6.875]) """ return np.array([np.mean(hull.points[hull.vertices, i]) for i in range(len(hull.points) - 1)]) # %% def convex_hull_intersection(points1: np.ndarray, points2: np.ndarray, vis2d=False): """ Returns the points corresponding to the intersecting region of two convex hulls (up to however many dimensions scipy ConvexHull takes (9D I think). Args: points1: np.array() of points corresponding to the first convex hull. points2: np.array() of points corresponding to the second convex hull. vis2d: True/False if you want to visualize the resulting region (2D hulls only) Returns: np.array() of points corresponding to the intersection region. """ assert points1.shape[1] == points2.shape[1] hull1 = ConvexHull(points1) hull2 = ConvexHull(points2) A = np.vstack((hull1.equations[:, :-1], hull2.equations[:, :-1])) b = np.hstack((hull1.equations[:, -1], hull2.equations[:, -1])) res = linprog(c=np.zeros(A.shape[1]), A_ub=A, b_ub=-b, method="interior-point") feasible_point = res.x hint = HalfspaceIntersection(np.vstack((hull1.equations, hull2.equations)), feasible_point) if vis2d: fig = plt.figure() ax = fig.add_subplot(1, 1, 1, aspect='equal') xlim, ylim = (0, 1), (0, 1) ax.set_xlim(xlim) ax.set_ylim(ylim) for simplex in hull1.simplices: ax.plot(points1[simplex, 0], points1[simplex, 1], 'r-') for simplex in hull2.simplices: ax.plot(points2[simplex, 0], points2[simplex, 1], 'b-') x, y = zip(*hint.intersections) ax.plot(x, y, 'k^', markersize=8) plt.savefig("{}".format(__file__).replace(".py", ".png")) return hint.intersections # %% def bb_to_cds(bb): """ Converts bounding box notation to vertex coordinates. Args: bb: list of lists of bounding box notation [[mins], [maxes]] corresponding to the mins and maxes for each axis. Returns: np.array() of points corresponding to the vertices of the bounding box. """ outp = list(itertools.product(*bb)) out = [] for i in outp: temp = [] for j in i: if isinstance(j, list): for k in j: temp.append(k) else: temp.append(j) out.append(temp) return np.array(out) # %% def bb_cds(corners): """ Returns a list of the mins and maxes for each axis in a bounding box, given the corners of concentration space. Args: corners: np.array() of points corresponding to the corners of the concentration space. Returns: list of [[mins], [maxes]] defining the resulting bounding box. """ tarray = np.transpose(corners) maxes = [max(tarray[i]) for i in range(len(corners[0]))] mins = [min(tarray[i]) for i in range(len(corners[0]))] return [mins, maxes] # %% def box_int(b1, b2): """ Gets the coordinates of the overlapping region for two n-dimensional hypercubes. Args: b1: list of lists in bounding box notation [[mins], [maxes]] for each axis of box 1 b2: list of lists in bounding box notation [[mins], [maxes]] for each axis of box 2 Returns: List of the coordinates for the overlapping region (returns 0 for no overlap). """ olap_cds = [] for i in range(len(b1.T)): if (b1.T[i][0] <= b2.T[i][0]): None else: b1, b2 = b2, b1 if ((b1.T[i][0] <= b1.T[i][1]) and (b1.T[i][1] <= b2.T[i][0]) and (b2.T[i][0] <= b2.T[i][1])): return 0 elif ((b1.T[i][0] <= b2.T[i][0]) and (b2.T[i][0] <= b1.T[i][1]) and (b1.T[i][1] <= b2.T[i][1])): olap_cds.append([b2.T[i][0], b1.T[i][1]]) elif ((b1.T[i][0] <= b2.T[i][0]) and (b2.T[i][0] <= b2.T[i][1]) and (b2.T[i][1] <= b1.T[i][1])): olap_cds.append([b2.T[i][0], b2.T[i][1]]) return olap_cds # %% def in_hull(points, x): """ Tests if a point is inside the ConvexHull given by points. Args: points: np.array() of points defining the ConvexHull. x: point to be tested for inclusion in the Convexhull. Returns: True: point is inside hull. False: point is not inside hull """ n_points = len(points) n_dim = len(x) c = np.zeros(n_points) A = np.r_[points.T, np.ones((1, n_points))] b = np.r_[x,
np.ones(1)
numpy.ones
## # \file simple_itk_helper.py # \brief Utility functions associated to SimpleITK and ITK # # \author <NAME> (<EMAIL>) # \date September 2015 # import re import os import itk import six import fnmatch import datetime import subprocess import numpy as np import nibabel as nib import SimpleITK as sitk import matplotlib.pyplot as plt import pysitk.python_helper as ph from pysitk.definitions import VIEWER from pysitk.definitions import DIR_TMP from pysitk.definitions import ITKSNAP_EXE, FSLVIEW_EXE, NIFTYVIEW_EXE # Use ITK-SNAP instead of imageJ to view images os.environ['SITK_SHOW_COMMAND'] = ITKSNAP_EXE TRANSFORM_SITK_DOF_LABELS_LONG = { 6: ["angle_x [rad]", "angle_y [rad]", "angle_z [rad]", "t_x [mm]", "t_y [mm]", "t_z [mm]"], } TRANSFORM_SITK_DOF_LABELS_SHORT = { 6: ["angle_x", "angle_y", "angle_z", "t_x", "t_y", "t_z"], } ## # Get composite transform of two affine/euler sitk transforms # \see http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/Python_html/22_Transforms.html # \date 2017-08-14 11:51:32+0100 # # \param transform_outer The transform outer # \param transform_inner The transform inner # # \return The composite sitk affine/euler transform. # def get_composite_sitk_affine_transform(transform_outer, transform_inner): dim = transform_outer.GetDimension() A_inner = np.asarray(transform_inner.GetMatrix()).reshape(dim, dim) c_inner = np.asarray(transform_inner.GetCenter()) t_inner = np.asarray(transform_inner.GetTranslation()) A_outer = np.asarray(transform_outer.GetMatrix()).reshape(dim, dim) c_outer = np.asarray(transform_outer.GetCenter()) t_outer = np.asarray(transform_outer.GetTranslation()) A_composite = A_outer.dot(A_inner) c_composite = c_inner t_composite = A_outer.dot( t_inner + c_inner - c_outer) + t_outer + c_outer - c_inner if transform_outer.GetName() == "AffineTransform" \ or transform_inner.GetName() == "AffineTransform" \ or transform_outer.GetName() != transform_inner.GetName(): trafo = sitk.AffineTransform(dim) else: trafo = eval("sitk." + transform_outer.GetName() + "()") trafo.SetMatrix(A_composite.flatten()) trafo.SetTranslation(t_composite) trafo.SetCenter(c_composite) return trafo ## # Composite two Euler Transforms # \param[in] transform_outer as sitk::simple::EulerxDTransform # \param[in] transform_inner as sitk::simple::EulerxDTransform # \return \p tranform_outer # \f$ \circ # \f$ \p transform_inner as sitk.EulerxDTransform # \see http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/22_Transforms.html # def get_composite_sitk_euler_transform(transform_outer, transform_inner): # Guarantee type sitk::simple::AffineTransform of transformations # transform_outer = sitk.AffineTransform(transform_outer) # transform_inner = sitk.AffineTransform(transform_inner) dim = transform_outer.GetDimension() A_inner = np.asarray(transform_inner.GetMatrix()).reshape(dim, dim) c_inner = np.asarray(transform_inner.GetCenter()) t_inner = np.asarray(transform_inner.GetTranslation()) A_outer = np.asarray(transform_outer.GetMatrix()).reshape(dim, dim) c_outer = np.asarray(transform_outer.GetCenter()) t_outer = np.asarray(transform_outer.GetTranslation()) A_composite = A_outer.dot(A_inner) c_composite = c_inner t_composite = A_outer.dot( t_inner + c_inner - c_outer) + t_outer + c_outer - c_inner euler = eval("sitk." + transform_outer.GetName() + "()") euler.SetMatrix(A_composite.flatten()) euler.SetTranslation(t_composite) euler.SetCenter(c_composite) return euler ## # Get direction for sitk.Image object from sitk.AffineTransform instance. The # information of the image is required to extract spacing information and # associated image dimension # \param[in] affine_transform_sitk sitk.AffineTransform instance # \param[in] image_or_spacing_sitk provide entire image as sitk object or # spacing directly # \return image direction which can be used to update the sitk.Image via # image_sitk.SetDirection(direction) # def get_sitk_image_direction_from_sitk_affine_transform(affine_transform_sitk, image_or_spacing_sitk): dim = affine_transform_sitk.GetDimension() try: spacing_sitk = np.array(image_or_spacing_sitk.GetSpacing()) except: spacing_sitk = np.array(image_or_spacing_sitk) S_inv_sitk =
np.diag(1 / spacing_sitk)
numpy.diag
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SO(8) gauged D=4 supergravity. Usage: python3 -i -m dim4.so8.src.analysis """ # Naming deviates from PEP-8 conventions where this makes mathematics easier # to read. Also, local variables may name-match module-global definitions. # pylint:disable=invalid-name # pylint:disable=redefined-outer-name import collections import itertools import os from dim4.generic import a123 from m_theory_lib import algebra from m_theory_lib import m_util as mu from m_theory_lib import supergravity import numpy import tensorflow as tf ### Supergravity ### class SO8_SUGRA(supergravity.SUGRA): """D=4 SO(8) Supergravity. In addition to the base class attributes, this class adds...: Attributes: e7: The e7 algebra that was used to define this supergravity. """ signature = supergravity.SUGRASignature( name='SO8', gauge_algebra_name='so(8)', dim=4, generator_scaling=+1, dim_scalar_manifold=70, num_model_params=1, # The 'dyonic angle'. scalar_masses_dV_from_right=False, scalar_masses_factor=36.0, gravitino_masses_factor=6.0, fermion_masses_factor=6.0, vector_masses_factor=6.0, num_spurious_vector_masses=28) def __init__(self, use_dwn_stationarity=True, e7=algebra.g.e7, squash_stationarity_tf_func=tf.math.asinh, **kwargs): """Initializes the instance. Args: use_dwn_stationarity: Whether to use the de A1/A2 formula from the de Wit-Nicolai 'SO(8) Supergravity' paper to compute the stationarity-violation (rather than taking the naive gradient-squared). e7: The e7 algebra to use. squash_stationarity_tf_func: Optional 'squashing' function that is used to squash the stationarity-violation ([]-tf.Tensor -> []-tf.Tensor). **kwargs: keyword parameters to be passed on to superclass __init__(). """ super().__init__(e7.t_a_ij_kl, squash_stationarity_tf_func=squash_stationarity_tf_func, **kwargs) self._use_dwn_stationarity = use_dwn_stationarity self.e7 = e7 self._tc_28_8_8 = tf.constant( e7.su8.m_28_8_8.astype(numpy.complex128), dtype=tf.complex128) def _expand_ijkl(self, t_ab): """Index-expands 28, 28 -> [8, 8] [8, 8].""" return 0.5 * tf.einsum( 'ijB,BIJ->ijIJ', tf.einsum('AB,Aij->ijB', t_ab, self._tc_28_8_8), self._tc_28_8_8) def _canonicalize_equilibrium_sc(self, v70, diagonalize_8x8s=True, rng=None, verbose=True): """Simplifies a location on the scalar manifold by rotation.""" if rng is None: rng = numpy.random.RandomState() m8x8s = mu.nsum('Aij,A->ij', self.e7.su8.m_35_8_8.real, v70[:35]) m8x8c = mu.nsum('Aij,A->ij', self.e7.su8.m_35_8_8.real, v70[35:]) rot = self.e7.spin8.get_diagonalizing_rotation( m8x8s if diagonalize_8x8s else m8x8c) decomposed_rot = mu.product_decompose_rotation(rot) resynthesized_rot = mu.resynthesize_rotation_for_rep( 8, 8, decomposed_rot, 'ab,->ab', numpy.ones([])) if not numpy.allclose(rot, resynthesized_rot, rtol=1e-3, atol=1e-5): raise ValueError( 'Resynthesized rotation does not match original rotation.') generator_mapping_spec = 'sS,sScC->cC' if diagonalize_8x8s else 'cC,sScC->sS' rep_action = 0.25 * self.e7.spin8.gamma_sscc rot_other_rep = mu.resynthesize_rotation_for_rep( 8, 8, decomposed_rot, generator_mapping_spec, rep_action) (rot_s, rot_c) = ((rot, rot_other_rep) if diagonalize_8x8s else (rot_other_rep, rot)) canon_m8x8s = rot_s.T @ m8x8s @ rot_s canon_m8x8c = rot_c.T @ m8x8c @ rot_c if diagonalize_8x8s: gens_postdiag = mu.get_generators_for_post_diagonalization_reduction( numpy.diag(canon_m8x8s), 'gsS,sScC->gcC', self.e7.spin8.gamma_sscc) else: gens_postdiag = mu.get_generators_for_post_diagonalization_reduction( numpy.diag(canon_m8x8c), 'gcC,sScC->gsS', self.e7.spin8.gamma_sscc) tc_rot_gens = mu.tff64(gens_postdiag) tc_8x8s = mu.tff64(canon_m8x8s) tc_8x8c = mu.tff64(canon_m8x8c) @tf.function def tf_rotated_8x8(t_rot_params): t_rot = mu.tf_expm( tf.einsum('gab,g->ab', tc_rot_gens, t_rot_params)) if diagonalize_8x8s: tc_rotated_8x8 = tf.linalg.matmul( t_rot @ tc_8x8c, t_rot, transpose_b=True) else: tc_rotated_8x8 = tf.linalg.matmul( t_rot @ tc_8x8s, t_rot, transpose_b=True) return tc_rotated_8x8 @tf.function def tf_loss(t_rot_params): t_8x8 = tf_rotated_8x8(t_rot_params) ret = tf.reduce_sum(tf.abs(t_8x8)) return ret if gens_postdiag.shape[0] == 0: return self.e7.v70_from_35s35c(canon_m8x8s, canon_m8x8c) _, opt_rot_params = mu.tf_minimize_v2( tf_loss, rng.normal(scale=1.0, size=gens_postdiag.shape[0]), default_gtol=1e-14) opt_8x8 = tf_rotated_8x8(mu.tff64(opt_rot_params)).numpy() if diagonalize_8x8s: return self.e7.v70_from_35s35c(canon_m8x8s, opt_8x8) else: return self.e7.v70_from_35s35c(opt_8x8, canon_m8x8c) def canonicalize_equilibrium(self, v70, **kwargs): """Simplifies a location on the scalar manifold by rotation.""" v70 =
numpy.asarray(v70)
numpy.asarray
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Jun 20 11:51:49 2021 @author: arslan """ from pyit2fls import (IT2FS_Gaussian_UncertStd, IT2FS_LGaussian_UncertStd, IT2FS_RGaussian_UncertStd, IT2Mamdani, product_t_norm, probabilistic_sum_s_norm, IT2FS_plot, crisp, ) from numpy import (random, linspace, array, zeros, shape, sort, maximum, minimum, ) from scipy.optimize import (differential_evolution, minimize, basinhopping, ) from PyPSO import PyPSO class Classifier: def normalizeParameters(self, parameters, n=3): p = zeros(shape=(3 * n + 2 + 3 ** n, )) for i in range(n): p[3 * i:3 * (i + 1)] = sort(parameters[3 * i:3 * (i + 1)]) p[3 * n:3 * n + 2] = maximum(0., minimum(1., sort(parameters[3 * n:3 * n + 2]))) p[3 * n + 2:] = parameters[3 * n + 2:] > 0 return p def __init__(self, attributes, decisions, parameters, n=3): self.attributes = attributes self.decisions = decisions self.p = self.normalizeParameters(parameters) self.idomain = linspace(-1.0, 1.0, 1001) self.odomain = linspace( 0.0, 1.0, 1001) self.att1_s1 = IT2FS_RGaussian_UncertStd(self.idomain, params=[self.p[0], 0.25, 0.05, 1.0]) self.att1_s2 = IT2FS_Gaussian_UncertStd(self.idomain, params=[self.p[1], 0.25, 0.05, 1.0]) self.att1_s3 = IT2FS_LGaussian_UncertStd(self.idomain, params=[self.p[2], 0.25, 0.05, 1.0]) self.ATT1_SETS = [self.att1_s1, self.att1_s2, self.att1_s3] self.att2_s1 = IT2FS_RGaussian_UncertStd(self.idomain, params=[self.p[3], 0.25, 0.05, 1.0]) self.att2_s2 = IT2FS_Gaussian_UncertStd(self.idomain, params=[self.p[4], 0.25, 0.05, 1.0]) self.att2_s3 = IT2FS_LGaussian_UncertStd(self.idomain, params=[self.p[5], 0.25, 0.05, 1.0]) self.ATT2_SETS = [self.att2_s1, self.att2_s2, self.att2_s3] self.att3_s1 = IT2FS_RGaussian_UncertStd(self.idomain, params=[self.p[6], 0.25, 0.05, 1.0]) self.att3_s2 = IT2FS_Gaussian_UncertStd(self.idomain, params=[self.p[7], 0.25, 0.05, 1.0]) self.att3_s3 = IT2FS_LGaussian_UncertStd(self.idomain, params=[self.p[8], 0.25, 0.05, 1.0]) self.ATT3_SETS = [self.att3_s1, self.att3_s2, self.att3_s3] self.deci_s1 = IT2FS_RGaussian_UncertStd(self.odomain, params=[self.p[9], 0.25, 0.05, 1.0]) self.deci_s2 = IT2FS_LGaussian_UncertStd(self.odomain, params=[self.p[10], 0.25, 0.05, 1.0]) self.DECI_SETS = [self.deci_s1, self.deci_s2] self.DM = IT2Mamdani(product_t_norm, probabilistic_sum_s_norm) self.DM.add_input_variable("ATT1") self.DM.add_input_variable("ATT2") self.DM.add_input_variable("ATT3") self.DM.add_output_variable("DECI") for i in range(3): for j in range(3): for k in range(3): self.DM.add_rule([("ATT1", self.ATT1_SETS[i]), ("ATT2", self.ATT2_SETS[j]), ("ATT3", self.ATT3_SETS[k])], [("DECI", self.DECI_SETS[int(self.p[11 + i * 9 + j * 3 + k])])]) def __call__(self, att1, att2, att3): o, tr = self.DM.evaluate({"ATT1": att1, "ATT2": att2, "ATT3": att3}) return crisp(tr["DECI"]) def error(self): err = 0. for attribute, decision in zip(self.attributes, self.decisions): o = self.__call__(*attribute) if o > 0.51 and decision != 1: err += o - 0.51 elif o < 0.49 and decision != 0: err += 0.49 - o return err / len(self.decisions) if __name__ == "__main__": def parametersGenerator(n=3): return 2 * (random.rand(3 * n + 2 + 3 ** n) - 0.5) def velocityGenerator(n=3): return 4. * (
random.rand(3 * n + 2 + 3 ** n)
numpy.random.rand
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data =
np.array([])
numpy.array
import enum import numpy as np import numpy.typing as npt import pyoorb import requests as req from astropy.time import Time from os import getenv from typing import ( Iterable, Optional, Tuple, List ) from .spherical_geom import propagate_linearly pyoorb_initialized = False DEGREE = 1.0 ARCMIN = DEGREE / 60 ARCSEC = ARCMIN / 60 def _ensure_pyoorb_initialized(*args, **kwargs): """Make sure that pyoorb is initialized.""" global pyoorb_initialized if not pyoorb_initialized: pyoorb.pyoorb.oorb_init(*args, **kwargs) pyoorb_initialized = True class OrbitElementType(enum.Enum): CARTESIAN = 1 COMETARY = 2 KEPLERIAN = 3 class EpochTimescale(enum.Enum): UTC = 1 UT1 = 2 TT = 3 TAI = 4 class PropagationIntegrator(enum.Enum): N_BODY = 1 TWO_BODY = 2 class Orbit: def __init__(self, orbit_id: int, state_vector: npt.NDArray[np.float64]): """ Create a new Orbit. state_vector is a pretty opaque blob. It should be the structure that pyoorb expects - a 12-element vector of doubles. """ self.orbit_id = orbit_id self._state_vector = state_vector self._orbit_type = OrbitElementType(int(state_vector[0][7])) self._epoch_timescale = EpochTimescale(int(state_vector[0][9])) self._epoch = state_vector[0][8] @classmethod def cometary( cls, orbit_id: int, perihelion_au: float, eccentricity: float, inclination_deg: float, ascending_node_longitude_deg: float, periapsis_argument_deg: float, perihelion_epoch_mjd: float, osculating_element_epoch_mjd: float, epoch_timescale: EpochTimescale, abs_magnitude: float, photometric_slope_parameter: float, ): # Orbits class takes in degrees, but state vectors are given in radians state_vector = np.array( [ [ orbit_id, perihelion_au, eccentricity, np.deg2rad(inclination_deg), np.deg2rad(ascending_node_longitude_deg), np.deg2rad(periapsis_argument_deg), perihelion_epoch_mjd, OrbitElementType.COMETARY.value, osculating_element_epoch_mjd, epoch_timescale.value, abs_magnitude, photometric_slope_parameter, ] ], dtype=np.double, order="F", ) return cls(orbit_id, state_vector) @classmethod def keplerian( cls, orbit_id: int, semimajor_axis_au: float, eccentricity: float, inclination_deg: float, ascending_node_longitude_deg: float, periapsis_argument_deg: float, mean_anomaly_deg: float, osculating_element_epoch_mjd: float, epoch_timescale: EpochTimescale, abs_magnitude: float, photometric_slope_parameter: float, ): # Orbits class takes in degrees, but state vectors are given in radians state_vector = np.array( [ [ orbit_id, semimajor_axis_au, eccentricity, np.deg2rad(inclination_deg), np.deg2rad(ascending_node_longitude_deg), np.deg2rad(periapsis_argument_deg),
np.deg2rad(mean_anomaly_deg)
numpy.deg2rad
# Copyright (C) 2021-2022 by the FEMlium authors # # This file is part of FEMlium. # # SPDX-License-Identifier: MIT import numpy as np import geojson import folium from femlium.base_plotter import BasePlotter from femlium.utils import ColorbarWrapper class BaseMeshPlotter(BasePlotter): """ This class contains the base interface of a geographic plotter for mesh-related plots. """ def add_mesh_to(self, geo_map, vertices, cells, cell_markers=None, face_markers=None, cell_colors=None, face_colors=None, face_weights=None): """ Add a triangular mesh to a folium map. Parameters ---------- geo_map : folium.Map Map to which the mesh plot should be added. vertices: 2d numpy array Matrix containing the coordinates of the vertices. The matrix should have as many rows as vertices in the mesh, and two columns. cells: 2d numpy array Matrix containing the connectivity of the cells. The matrix should have as many rows as cells in the mesh, and three columns. cell_markers: 1d numpy array, optional Vector containing a marker (i.e., an integer number) for each cell. The vector should have as many entries as cells in the mesh. If not provided, the marker will be set to 0 everywhere. face_markers: 2d numpy array, optional Vector containing a marker (i.e., an integer number) for each face. The matrix should have the same shape of the cells argument. Given a row index r, the entry face_markers[r, 0] is the marker of the face connecting the first and second vertex of the r-th cell. Similarly, face_markers[r, 1] is the marker associated to the face connecting the second and third vertex of the r-th cell. Finally, face_markers[r, 2] is the marker associated to the face connecting the first and third vertex of the r-th cell. If not provided, the marker will be set to 0 everywhere. cell_colors: str or dict of str, optional If a dictionary is provided, it should contain key: value pairs defining the mapping marker: color for cells. If a string is provided instead of a dictionary, the same color will be used for all cell markers. If not provided, the cells will not be colored. face_colors: str or dict of str, optional If a dictionary is provided, it should contain key: value pairs defining the mapping marker: color for faces. If a string is provided instead of a dictionary, the same color will be used for all face markers. If not provided, a default black color will be used for faces. face_weights: int or dict of int, optional Line weight of each face. Input should be provided following a similar convention for the face_colors argument. If not provided, a unit weight will be used. """ if cell_markers is None: cell_markers = np.zeros((cells.shape[0], ), dtype=np.dtype(int)) else: assert cell_markers.shape[0] == cells.shape[0] if face_markers is None: face_markers = np.zeros(cells.shape, dtype=
np.dtype(int)
numpy.dtype
# coding: utf-8 # In[20]: import numpy as np import pydensecrf.densecrf as dcrf import os import cv2 import random from tqdm import tqdm # In[21]: from skimage.color import gray2rgb from skimage.color import rgb2gray import matplotlib.pyplot as plt from sklearn.metrics import f1_score, accuracy_score from pydensecrf.utils import unary_from_labels, create_pairwise_bilateral, create_pairwise_gaussian, unary_from_softmax #from osgeo import gdal get_ipython().run_line_magic('matplotlib', 'inline') # In[22]: # Color maps for direction map COLOR_LR = [0,128,128] COLOR_UD = [128,0,128] COLOR_DIAG = [255,215,0] COLOR_ADIAG = [1,255,255] INF = 10000 # In[23]: MAX = 0 SUM = 1 VEC = 0 MAT = 1 # In[24]: def dir_to_features(dir_map): """Converts direction color map to feature used for crf kernel. The feature is obtained by computing the intersections of the x, y axis and the line determined by the position of one point and its direction. (More details in the report) Parameters ____________ dir_map: numpy.array Direction map that maps each pixel to a direction in [left_right, up_down, diagonal, anti-diagonal], each direction is represented by a color. """ (h, w, c) = dir_map.shape feature_map = np.zeros((h,w,2)) for i in range(h): for j in range(w): dir_color = dir_map[i,j] if dir_color[0] == COLOR_LR[0]: # dir = lr feature_map[i,j] = np.array([INF,i]) if dir_color[0] == COLOR_UP[0]: # dir = ud feature_map[i,j] = np.array([j,INF]) if dir_color[1] == COLOR_DIAG[0]: # dir = diag feature_map[i,j] = np.array([j-i,i-j]) if dir_color[1] == COLOR_ADIAG[0]: # dir = adiag feature_map[i,j] = np.array([i+j, i+j]) return feature_map # In[25]: def gen_dir_map(img): """Generate direction map from a rgb img Parameters ____________ img: numpy.array Rgb img with width = height """ window_size = 101 half_size = int((window_size-1)/2) sigma_1 = 2 sigma_2 = 40 (h, w, c) = img.shape assert h==w, "h and w are not equal" dir_map = np.zeros((h,w)) pos_mat = np.zeros((h,w,2)) for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) index_mask_lr = np.zeros((window_size, window_size)).astype("bool") index_mask_lr[half_size,:]=True index_mask_ud = np.zeros((window_size, window_size)).astype("bool") index_mask_ud[:,half_size]=True index_mask_diag = np.identity(window_size).astype("bool") index_mask_adiag = np.fliplr(np.identity(window_size)).astype("bool") mask_list = [index_mask_lr, index_mask_ud, index_mask_diag, index_mask_adiag] for i in range(h): for j in range(w): img_nbr = padded_img[i:i+window_size,j:j+window_size] pos_nbr = padded_pos[i:i+window_size,j:j+window_size] img_nbr = img_nbr - img[i,j,:] pos_nbr = pos_nbr - np.array([i,j]) dir_intensity = np.zeros(4) for dir_index, index_mask in enumerate(mask_list): img_nbr_dir = img_nbr[index_mask] pos_nbr_dir = pos_nbr[index_mask] img_nbr_dir = np.sum(img_nbr_dir**2, axis=1)/(2*sigma_1**2) pos_nbr_dir = np.sum(pos_nbr_dir**2, axis=1)/(2*sigma_2**2) k = np.exp(-img_nbr_dir-pos_nbr_dir) dir_intensity[dir_index]=np.sum(k) dir_map[i,j]=np.argmax(dir_intensity)+1 return dir_map # In[26]: def visualize_dir_map(img, dir_map, save_file=False, filename=None, vis_path=None, dir_path=None): """Visualize a direction map Parameters ____________ img: numpy.array Rgb img dir_map: numpy.array Correspongding direction map ... """ h = img.shape[0] w = img.shape[1] vis_dir = np.zeros(img.shape) vis_dir[dir_map==1] = np.array(COLOR_LR) vis_dir[dir_map==2] = np.array(COLOR_UD) vis_dir[dir_map==3] = np.array(COLOR_DIAG) vis_dir[dir_map==4] = np.array(COLOR_ADIAG) plt.figure(figsize=(10,5)) plt.subplot(1,2,1); plt.imshow(img); plt.title('Original Image (blurred)'); plt.axis('off'); plt.subplot(1,2,2); plt.imshow(dir_map); plt.title('Direction map'); plt.axis('off'); if save_file: plt.savefig(os.path.join(vis_path, filename),dpi=300) plt.close() cv2.imwrite(os.path.join(dir_path, filename), vis_dir) # In[27]: def gen_dir_map_and_visualize(image_path= './images/', vis_path='./vis_dir_blur_/', dir_path='./dir_map_/', process_all=True): """Generate direction color map for images in image_path Parameters ____________ image_path: string Image path vis_path: string Path to save visualization results dir_path: string Path to save direction map process_all: Bool False to generate a single visualization result without save. True to generate and save visualizaiton results for all images. """ if not os.path.exists(dir_path): os.mkdir(dir_path) if not os.path.exists(vis_path): os.mkdir(vis_path) if process_all: for file in tqdm(os.listdir(image_path)): img = cv2.imread(os.path.join(image_path, file)) img = cv2.GaussianBlur(img,(5,5),0) dir_map = gen_dir_map(img) visualize_dir_map(img, dir_map, filename=file, save_file=True, vis_path=vis_path, dir_path=dir_path) else: img = cv2.imread('./images/satImage_001.png') img = cv2.GaussianBlur(img,(5,5),0) dir_map = gen_dir_map(img) visualize_dir_map(img, dir_map, save_file=False) # In[28]: def crf_with_dir_kernel(original_img, dir_feature, prob, iter_num, compat_smooth, compat_appearance, compat_struct, w_smooth, w_appearance, w_struct, sigma_smooth, sigma_app_color, sigma_app_pos, sigma_struct_pos, sigma_struct_feat): """CRF with a Gaussian smoothing kernel, an appearance kernel and a structural kernel """ (h,w) = prob.shape y = np.zeros((h,w,2)) y[:,:,1] = prob y[:,:,0] = 1-y[:,:,1] annotated_image=y.transpose((2, 0, 1)) #Gives no of class labels in the annotated image n_labels = 2 #Setting up the CRF model d = dcrf.DenseCRF2D(original_img.shape[1], original_img.shape[0], n_labels) # get unary potentials (neg log probability) U = unary_from_softmax(annotated_image) unary = np.ascontiguousarray(U) d.setUnaryEnergy(unary) compat_smooth = compat_smooth * w_smooth compat_appearance = compat_appearance * w_appearance compat_struct = compat_struct * w_struct # Smooth kernel d.addPairwiseGaussian(sxy=(sigma_smooth, sigma_smooth), compat=compat_smooth.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) # Appearance kernel d.addPairwiseBilateral(sxy=(sigma_app_pos, sigma_app_pos), srgb=(sigma_app_color, sigma_app_color, sigma_app_color), rgbim=original_image, compat=compat_appearance.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) # Structural kernel pairwise_energy = create_pairwise_bilateral(sdims=(sigma_struct_pos,sigma_struct_pos), schan=(sigma_struct_feat,sigma_struct_feat), img=dir_feature, chdim=2) d.addPairwiseEnergy(pairwise_energy, compat=compat_struct.astype(np.float32)) Q = d.inference(iter_num) proba = np.array(Q) return proba[1].reshape((dir_feature.shape[0], dir_feature.shape[1])) # In[29]: def crf(original_image, prob, iter_num=4, compat_smooth = np.array([[-0.4946432, 1.27117338],[0.59452892, 0.23182234]]), compat_appearance = np.array([[-0.30571318, 0.83015124],[1.3217825, -0.13046645]]), w_smooth=3.7946478055761963, w_appearance=1.8458537690881878, sigma_smooth=8.575103751642672, sigma_color=2.0738539891571977, sigma_color_pos=20): """Basic CRF with a Gaussian smoothing kernel and an appearance kernel """ (h,w) = prob.shape y = np.zeros((h,w,2)) y[:,:,1] = prob y[:,:,0] = 1-y[:,:,1] annotated_image=y.transpose((2, 0, 1)) #Gives no of class labels in the annotated image n_labels = 2 #print("No of labels in the Image are ") #print(n_labels) #Setting up the CRF model d = dcrf.DenseCRF2D(original_image.shape[1], original_image.shape[0], n_labels) # get unary potentials (neg log probability) U = unary_from_softmax(annotated_image) unary = np.ascontiguousarray(U) d.setUnaryEnergy(unary) compat_smooth=compat_smooth*w_smooth compat_appearance=compat_appearance*w_appearance # This adds the color-independent term, features are the locations only. d.addPairwiseGaussian(sxy=(sigma_smooth, sigma_smooth), compat=compat_smooth.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) # This adds the color-dependent term, i.e. features are (x,y,r,g,b). d.addPairwiseBilateral(sxy=(sigma_color_pos, sigma_color_pos), srgb=(sigma_color, sigma_color, sigma_color), rgbim=original_image, compat=compat_appearance.astype(np.float32), kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) Q = d.inference(iter_num) proba = np.array(Q) return proba[1].reshape((original_image.shape[0], original_image.shape[1])) # In[30]: def crf_smooth(original_image, prob, use_2d = True, iter_num=1, w=4.921522279119057, sigma_sm=4.325251720130304): """CRF with only a smoothing kernel """ (h,w) = prob.shape y = np.zeros((h,w,2)) y[:,:,1] = prob y[:,:,0] = 1-y[:,:,1] annotated_image=y.transpose((2, 0, 1)) #Gives no of class labels in the annotated image n_labels = 2 #Setting up the CRF model if use_2d : d = dcrf.DenseCRF2D(original_image.shape[1], original_image.shape[0], n_labels) # get unary potentials (neg log probability) U = unary_from_softmax(annotated_image) unary = np.ascontiguousarray(U) d.setUnaryEnergy(unary) # This adds the color-independent term, features are the locations only. d.addPairwiseGaussian(sxy=(sigma_sm, sigma_sm), compat=w, kernel=dcrf.DIAG_KERNEL, normalization=dcrf.NORMALIZE_SYMMETRIC) Q = d.inference(iter_num) proba = np.array(Q) return proba[1].reshape((original_image.shape[0], original_image.shape[1])) # In[31]: def propagate_max_mat(img, prob): """Probability propagation (max) in 4 directions via matrix multiplication """ prob_out = prob.copy() prop_size = 51 half_size = int((prop_size-1)/2) prop_num = 3 sigma_1 = 5 sigma_2 = 42 (h, w) = prob.shape pos_mat = np.zeros((h,w,2)) for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) index_mask = np.zeros((prop_size, prop_size)).astype("bool") for i in range(prop_size): index_mask[i,half_size]=1 index_mask[half_size,i]=1 index_mask[i,i]=1 index_mask[prop_size-1-i,i]=1 for iteration in range(prop_num): padded_prob = np.pad(prob_out, ((half_size, half_size), (half_size, half_size))) # propagate prob (maximum) for i in range(h): for j in range(w): if prob_out[i,j]<0.01: continue img_nbr = padded_img[i:i+prop_size,j:j+prop_size] pos_nbr = padded_pos[i:i+prop_size,j:j+prop_size] img_nbr = img_nbr - img[i,j,:] pos_nbr = pos_nbr - np.array([i,j]) img_nbr[~index_mask]=0 pos_nbr[~index_mask]=0 img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr)*prob_out[i,j] k = k*index_mask padded_prob[i:i+prop_size,j:j+prop_size] = np.maximum(padded_prob[i:i+prop_size,j:j+prop_size], k) prob_out = padded_prob[half_size:h+half_size,half_size:w+half_size] return prob_out # In[32]: def propagate_max_vec(img, prob, prop_size=11, prop_num=16, sigma_1=1.039316347691348, sigma_2=40): """ vec means only do propagation along x and y axis max means propagate using max function Args: prop_size: neighborhood size prop_num: number of iteration/propagation sigma_1: variance of color sigma_2: variance of distance """ prob_out = prob.copy() half_size = int((prop_size-1)/2) (h, w, c) = img.shape pos_mat = np.zeros((h,w,2)) # position matrix for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) for iteration in range(prop_num): padded_prob = np.pad(prob_out, ((half_size, half_size), (half_size, half_size))) padded_prob_fix = padded_prob.copy() # propagate prob (maximum) assert h==w, "h and w are not equal" for i in range(h): # prop along y for row i img_nbr = padded_img[i:i+prop_size,:] pos_nbr = padded_pos[i:i+prop_size,:] img_nbr = img_nbr - padded_img[i+half_size,:,:] pos_nbr = pos_nbr - padded_pos[i+half_size,:,:] img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr)*padded_prob_fix[i+half_size,:] padded_prob[i:i+prop_size,:] = np.maximum(padded_prob[i:i+prop_size,:], k) # prop along x for col i img_nbr = padded_img[:,i:i+prop_size] pos_nbr = padded_pos[:,i:i+prop_size] img_nbr = img_nbr - padded_img[:,i+half_size,:].reshape((padded_img.shape[0],1,c)) pos_nbr = pos_nbr - padded_pos[:,i+half_size,:].reshape((padded_img.shape[0],1,2)) img_nbr = np.sum(img_nbr**2, axis=2)/(2*sigma_1**2) pos_nbr = np.sum(pos_nbr**2, axis=2)/(2*sigma_2**2) k = np.exp(-img_nbr-pos_nbr)*padded_prob_fix[:,i+half_size].reshape((-1,1)) padded_prob[:,i:i+prop_size] = np.maximum(padded_prob[:,i:i+prop_size], k) prob_out = padded_prob[half_size:h+half_size,half_size:w+half_size] return prob_out # In[33]: def propagate_sum_vec(img, prob, prop_size=11, prop_num=1, sigma_1=1.5319569104856783, sigma_2=80): """ vec means only do propagation along x and y axis sum means propagate in a additive schema (with total probability fixed) Args: prop_size: neighborhood size prop_num: number of iteration/propagation sigma_1: variance of color sigma_2: variance of distance """ # print(np.sum(prob)) prob_out = prob.copy() half_size = int((prop_size-1)/2) (h, w, c) = img.shape pos_mat = np.zeros((h,w,2)) # position matrix for i in range(h): for j in range(w): pos_mat[i,j,0]=i pos_mat[i,j,1]=j padded_pos = np.pad(pos_mat, ((half_size, half_size), (half_size, half_size), (0,0))) padded_img = np.pad(img, ((half_size, half_size), (half_size, half_size), (0,0))) padded_prob =
np.pad(prob, ((half_size, half_size), (half_size, half_size)))
numpy.pad
#!/usr/bin/env python # coding: utf-8 """" Usage: python show_data.py """ # In[1]: import numpy as np from scipy import spatial import math import sys import os # ## 一、自定义函数 # ### 1.获取模型信息 # In[2]: def get_edges(faces): """ 根据面得到相应的边 @faces: 模型的所有面 return: 模型的边 """ edge2key = dict() edges = [] edges_count = 0 for face_id, face in enumerate(faces): faces_edges = [] for i in range(3): cur_edge = (face[i], face[(i + 1) % 3]) faces_edges.append(cur_edge) for idx, edge in enumerate(faces_edges): edge = tuple(sorted(list(edge))) if edge not in edge2key: edge2key[edge] = edges_count edges_count += 1 edges.append(list(edge)) return edges def parse_obje(obj_file): """ 解析obj文件, 获取点,边,面 @obj_file: obj模型文件路径 return: 模型的点,边,面信息 """ vs = [] faces = [] edges = [] with open(obj_file) as f: for line in f: line = line.strip() splitted_line = line.split() if not splitted_line: continue elif splitted_line[0] == 'v': vs.append([float(v) for v in splitted_line[1:]]) elif splitted_line[0] == 'f': try: faces.append([int(c) - 1 for c in splitted_line[1:]]) except ValueError: faces.append([int(c.split('/')[0]) - 1 for c in splitted_line[1:]]) elif splitted_line[0] == 'e': if len(splitted_line) >= 4: edge_v = [int(c) - 1 for c in splitted_line[1:-1]] edge_c = int(splitted_line[-1]) edge_v.append(edge_c) # class edges.append(edge_v) else: continue vs = np.array(vs) faces = np.array(faces, dtype=int) # if len(edges) == 0: # edges = get_edges(faces) edges = np.array(edges) return vs, faces, edges # ### 2.根据边标记对面进行标记 # In[3]: def label_face_by_edge(faces, edges, edge_labels): """ 利用边标签对面进行标记 @faces: 模型的面 @edges: 模型的边 @edge_labels: 模型边对应的标签 return: 面的标签 """ edge_dict = {} # key: str([pt1, pt2]) value: label for ei, edge in enumerate(edges): key = tuple(edge) edge_dict[key] = edge_labels[ei] # print(edge_dict) face_labels = np.array(len(faces) * [[-1, -1, -1]]) for i, face in enumerate(faces): for j in range(3): cur_edge = [face[j], face[(j + 1) % 3]] cur_label = edge_dict[tuple(sorted(cur_edge))] face_labels[i][j] = cur_label # face_labels.append(faces_edges) face_labels = np.where(np.sum(face_labels, axis=1) < 2, 1, 2) optimizer_face_labels(faces, face_labels) # 对面标签进行优化 膨胀操作 填充 return face_labels def find_neighb_faces(face_id, faces): face = faces[face_id] nb_face = [] for i in range(3): cur_edge = [face[i], face[(i + 1) % 3]] pt1 = cur_edge[0] pt2 = cur_edge[1] face_ids = find_faces_by_2point(faces, pt1, pt2) if len(face_ids) == 2: nb_face_id = face_ids[0][0] if face_ids[0][0] != face_id else face_ids[1][0] nb_face.append(nb_face_id) return nb_face def optimizer_face_labels(faces, face_labels): # new_face_labels = face_labels.copy() for i, face in enumerate(faces): nb_faces = find_neighb_faces(i, faces) nb_labels = [] for face_id in nb_faces: nb_labels.append(face_labels[face_id]) if len(nb_labels) == 0: continue counts = np.bincount(nb_labels) # 返回众数 if face_labels[i] != np.argmax(counts): # print("face: {}, label:{} nb_labels: {}, 众数: {}".format(i, face_labels[i], nb_labels, np.argmax(counts))) face_labels[i] = np.argmax(counts) # ### 3.利用边对点进行标记 # In[4]: def label_pts_by_edges(vs, edges, edge_labels): """ 根据边标签,对点进行标注 @vs: 模型的点 @edge: 模型的边 @edge_labels: 模型边对应的标签 return: 模型点的标签 """ pts_labels = np.array(len(vs) * [[-1, -1]]) for ei, edge in enumerate(edges): edge_label = edge_labels[ei] pt1 = edge[0] pt2 = edge[1] pts_labels[pt1][edge_label] = edge_label pts_labels[pt2][edge_label] = edge_label return pts_labels # In[5]: def find_faces_by_2point(faces, id1, id2): """ 根据两个点确定以两点所在边为公共边的两个面 @faces: 所有面,N*3, 值表示点的id值 @id1: 第一个点的id值 @id2: 第二个点的id值 return: 2*3, [面的id,第一个点的位置, 第二个点的位置] """ p1_faces = np.argwhere(faces == id1) # 行id, 列id p2_faces = np.argwhere(faces == id2) intersection_faces = [] for val1 in p1_faces: for val2 in p2_faces: if val1[0] == val2[0]: intersection_faces.append([val1[0], val1[1], val2[1]]) return intersection_faces # In[6]: def get_pts_from_edges(edges, threshold=30): circle_pts = [[]] circle_edges = [[]] count = 0 while len(edges) > 0: if len(circle_pts[count]) == 0: circle_pts[count] = list(edges[0]) circle_edges[count].append(list(edges[0])) # 记录对应的边 edges = np.delete(edges, 0, axis=0) else: last_id = circle_pts[count][-1] idx = np.where(edges == last_id)[0] # 没有找到边 if len(idx) == 0: circle_pts.append([]) circle_edges.append([]) count += 1 else: edge = edges[idx[0]] next_id = edge[0] if edge[0] != last_id else edge[1] circle_pts[count].append(next_id) circle_edges[count].append(list(edge)) edges = np.delete(edges, idx[0], axis=0) pts_ids = [] for circle in circle_pts: # 过滤短的 if len(circle) > threshold: # print("{}".format(len(circle))) circle = drop_cycle(circle, threshold) # 去闭环 # print("after drop cycle {}".format(len(circle))) pts_ids.append(circle) return pts_ids def get_pts_from_edges_vs(edges, vs, threshold=30): # ---- split_edges ---- circle_pts = [[]] circle_edges = [[]] count = 0 while len(edges) > 0: if len(circle_pts[count]) == 0: circle_pts[count] = list(edges[0]) circle_edges[count].append(edges[0]) # 记录对应的边 edges = np.delete(edges, 0, axis=0) else: last_id = circle_pts[count][-1] idx = np.where(edges == last_id)[0] # 没有找到边 if len(idx) == 0: circle_pts.append([]) circle_edges.append([]) count += 1 else: edge = edges[idx[0]] next_id = edge[0] if edge[0] != last_id else edge[1] circle_pts[count].append(next_id) circle_edges[count].append(edge) edges = np.delete(edges, idx[0], axis=0) # ---- 2.过滤掉长度不符合要求的 (噪声点)---- filter_edges = [] filter_pts = [] for idx, circle in enumerate(circle_edges): # print(len(circle)) if len(circle) < threshold: continue else: filter_edges.append(circle) circle_pt = drop_cycle(circle_pts[idx], threshold) filter_pts.append(circle_pt) # # save pts # for idx, pts_id in enumerate(filter_pts): # save_dir = "./test_circle" # pts = vs[pts_id] # np.savetxt(os.path.join(save_dir, "predict_class" + str(idx + 1) + ".pts"), pts) # with open(os.path.join(save_dir, "predict_class" + str(idx + 1) + ".pts"), 'r+') as f: # content = f.read() # f.seek(0, 0) # f.write('BEGIN\n' + content) # with open(os.path.join(save_dir, "predict_class" + str(idx + 1) + ".pts"), 'a') as f: # f.write('END\n') return filter_pts # # ---- 3. 合并 ---- # # 长度为1直接返回, 如果长度大于1,说明有2个或者以上的闭环(3个或以上需要按x顺序合并),这时可以先将各闭环对应的边找出,上一步骤保存即可 # # 然后利用KDTree找出两个集合中最近的两条边,断开重组(重组时根据x,y值避免缠绕)即删除两条边,构造两条虚拟边 # n_circle = len(filter_edges) # if 0 == n_circle: # return [] # elif 1 == n_circle: # pts_ids = [] # for circle in filter_pts: # circle = drop_cycle(circle, threshold) # 去闭环 # pts_ids.append(circle) # return pts_ids # else: # # TODO 3个以上根据x的范围进行排序,可过滤掉包含在大圈里面的部分 (这样处理有些有问题 如:APDXA_VS_SET_VSc2_Subsetup4_Maxillar) # # 找最近的边,进行破圈 # last_edges = filter_edges[0] # vs_edges = vs[last_edges].reshape(len(last_edges), -1) # tree = spatial.KDTree(vs_edges) # for i in range(1, n_circle): # cur_edges = filter_edges[i] # min_dist = np.inf # min_index = -1 # cur_edge = cur_edges[0] # cur_e_idx = 0 # for e_idx, e in enumerate(cur_edges): # vs_e = np.append(vs[e[0]], vs[e[1]]) # dist, dist_idx = tree.query(vs_e) # if dist < min_dist: # min_dist = dist # min_index = dist_idx # cur_edge = e # cur_e_idx = e_idx # # # 迭代 # # 上一个闭环中最近的边 # last_edge = last_edges[min_index] # last_edge_y1 = vs[last_edge[0]][1] # last_edge_y2 = vs[last_edge[1]][1] # last_lower_y_idx = 0 if last_edge_y1 < last_edge_y2 else 1 # # 本次闭环中最近的边 # cur_edge_y1 = vs[cur_edge[0]][1] # cur_edge_y2 = vs[cur_edge[1]][1] # cur_lower_y_idx = 0 if cur_edge_y1 < cur_edge_y2 else 1 # # 根据y值重新组合两条边 # edge_1 = [[last_edge[last_lower_y_idx], cur_edge[cur_lower_y_idx]]] # edge_2 = [[last_edge[1-last_lower_y_idx], cur_edge[1-cur_lower_y_idx]]] # # 重新生成last_edges # last_edges = last_edges[:min_index] + last_edges[min_index+1:] + cur_edges[:cur_e_idx] + cur_edges[cur_e_idx+1:] # last_edges = last_edges + edge_1 + edge_2 # if i + 1 < n_circle: # 小于才重新构建tree # vs_edges = vs[last_edges].reshape(len(last_edges), -1) # tree = spatial.KDTree(vs_edges) # # # 按边将点拼接成一个闭环 # circle_pts = [[]] # count = 0 # while len(last_edges) > 0: # if len(circle_pts[count]) == 0: # circle_pts[count] = list(last_edges[0]) # last_edges = np.delete(last_edges, 0, axis=0) # else: # last_id = circle_pts[count][-1] # idx = np.where(last_edges == last_id)[0] # # 没有找到边 # if len(idx) == 0: # circle_pts.append([]) # count += 1 # else: # edge = last_edges[idx[0]] # next_id = edge[0] if edge[0] != last_id else edge[1] # circle_pts[count].append(next_id) # last_edges = np.delete(last_edges, idx[0], axis=0) # pts_ids = [] # for circle in circle_pts: # # 过滤短的 # if len(circle) > threshold: # # print("{}".format(len(circle))) # circle = drop_cycle(circle, threshold) # 去闭环 # # print("after drop cycle {}".format(len(circle))) # pts_ids.append(circle) # return pts_ids def drop_cycle(edge, max_length=20): """ 删除列表中形成的小闭环 @edge: 原始顶点id @max_length: 容许闭环的最小长度 return: 输出删除小闭环后的列表 """ drop_list = [] drop_count = 0 for i, item in enumerate(edge): if item not in drop_list: drop_list.append(item) else: last_index = len(drop_list) - 1 - drop_list[::-1].index(item) if i - last_index - drop_count < max_length: drop_count += len(drop_list[last_index:]) drop_list = drop_list[:last_index+1] else: drop_list.append(item) # 去掉首尾构成的闭环 如: [956 1035 1538 ...... 2028 1035 952 956] ==> 1035->952->956->1035 circle_count = np.where(np.bincount(drop_list) >= 2)[0] for item in circle_count: if item == drop_list[0]: continue try: first_id = drop_list.index(item) last_id = drop_list[::-1].index(item) if first_id + last_id <= max_length: length = len(drop_list) drop_list = drop_list[first_id:length-last_id] except ValueError: continue return np.asarray(drop_list) # def label_pts_by_edges_and_faces(vs, edges, faces, face_labels): # """ # 根据边和面标签,对点进行标注,一条边对应两个面,如果两个面标签不同,则保留点 # @vs: 模型的点 # @edges: 模型的边 # @faces: 模型的面 # @face_labels: 模型面对应的标签 # return: 模型边界点 # """ # pts_labels = np.array(len(vs) * [False]) # for ei, edge in enumerate(edges): # pt1 = edge[0] # pt2 = edge[1] # face_ids = find_faces_by_2point(faces, pt1, pt2) # if len(face_ids) == 2: # if face_labels[face_ids[0][0]] != face_labels[face_ids[1][0]]: # pts_labels[pt1] = True # pts_labels[pt2] = True # # return vs[pts_labels] def label_pts_by_edges_and_faces(vs, edges, faces, face_labels): """ 根据边和面标签,对点进行标注,一条边对应两个面,如果两个面标签不同,则保留点 @vs: 模型的点 @edges: 模型的边 @faces: 模型的面 @face_labels: 模型面对应的标签 return: 模型边界点 """ # pts_labels = np.array(len(vs) * [False]) edge_idx = [] for ei, edge in enumerate(edges): pt1 = edge[0] pt2 = edge[1] face_ids = find_faces_by_2point(faces, pt1, pt2) # TODO 对于边界边会误删 if len(face_ids) == 2: if face_labels[face_ids[0][0]] != face_labels[face_ids[1][0]]: edge_idx.append(ei) test_edges = np.asarray(edges[edge_idx]) # print("test_edges:", len(test_edges)) pts_ids = get_pts_from_edges_vs(test_edges, vs, 10) # np.savetxt("./pts_ids.txt", pts_ids, fmt="%d") # np.savetxt("./vs.txt", vs) # pts_ids = get_pts_from_edges(test_edges) # print("pts_ids: ", pts_ids) res_vs = np.array([]) face_normals, face_areas = compute_face_normals_and_areas(vs, faces) # 计算面的法向量 for idx, pts_id in enumerate(pts_ids): # idx = np.append(idx, pts_id) temp = [] temp.append(pts_id[0]) for i in range(1, len(pts_id) - 1): last_pt = pts_id[i - 1] cur_pt = pts_id[i] next_pt = pts_id[i + 1] a = vs[last_pt] - vs[cur_pt] b = vs[next_pt] - vs[cur_pt] y = a[0] * b[0] + a[1] * b[1] + a[2] * b[2] x = math.sqrt(a[0] * a[0] + a[1] * a[1] + a[2] * a[2]) * math.sqrt(b[0] * b[0] + b[1] * b[1] + b[2] * b[2]) # 计算三点形成的夹角 theta = math.acos(y / x) / math.pi * 180 # 不存在重合点 x可以不用判零 if theta > 50: curvature = compute_pt_curvature(vs, edges, faces, face_normals, cur_pt) if max(curvature) > 0: temp.append(cur_pt) temp.append(pts_id[-1]) res_vs = np.append(res_vs, vs[temp]) if idx != len(pts_ids) - 1: res_vs = np.append(res_vs, np.array([0, 0, 0])) return res_vs def compute_face_normals_and_areas(vs, faces): """ 计算每个面的法向量和面积 """ face_normals = np.cross(vs[faces[:, 1]] - vs[faces[:, 0]], vs[faces[:, 2]] - vs[faces[:, 1]]) # >>> deal zero face >>> zeros_idx =
np.argwhere((face_normals[:, 0] == 0) & (face_normals[:, 1] == 0) & (face_normals[:, 2] == 0))
numpy.argwhere
#Extract features for static gestures recognition import cv2 as cv import numpy as np from time import time from sklearn.externals import joblib import os from scipy.cluster.vq import * from sklearn.preprocessing import StandardScaler import sys from tqdm import tqdm class HOGFeatures: def __init__(self): #image = cv.imread("test.jpg",0) self.winSize = (80,80) self.blockSize = (16,16) self.blockStride = (8,8) self.cellSize = (8,8) self.nbins = 9 self.derivAperture = 1 self.winSigma = 4. self.histogramNormType = 0 self.L2HysThreshold = 2.0000000000000001e-01 self.gammaCorrection = 1 #nlevels = 10 self.hog = cv.HOGDescriptor(self.winSize,self.blockSize,self.blockStride,self.cellSize,self.nbins,self.derivAperture,self.winSigma,self.histogramNormType,self.L2HysThreshold,self.gammaCorrection)#,nlevels) # self.winStride = (16,16) self.padding = (8,8) def dimensionReductionPCA(self, feature): #pca = cv.PCACompute(feature, mean=None, maxComponents=1000) #pca = cv.PCA(feature, mean=None, maxComponents=1000) t0 = time() mean, eigenvectors = cv.PCACompute(feature, mean=None, maxComponents=1000) print("PCA compute took ", time()-t0,"seconds to run") #reduced_features = pca.project(feature) t1 = time() reduced_features = cv.PCAProject(feature, mean, eigenvectors) print("PCA project took ", time()-t1,"seconds to run") return reduced_features def extractFeatures(self, image): im = cv.resize(image,(80, 80), interpolation = cv.INTER_CUBIC) fd = self.hog.compute(im,self.winStride,self.padding) return fd class HOGPCAFeatures: def __init__(self): #image = cv.imread("test.jpg",0) self.winSize = (80,80) self.blockSize = (16,16) self.blockStride = (8,8) self.cellSize = (8,8) self.nbins = 9 self.derivAperture = 1 self.winSigma = 4. self.histogramNormType = 0 self.L2HysThreshold = 2.0000000000000001e-01 self.gammaCorrection = 1 #nlevels = 10 self.hog = cv.HOGDescriptor(self.winSize,self.blockSize,self.blockStride,self.cellSize,self.nbins,self.derivAperture,self.winSigma,self.histogramNormType,self.L2HysThreshold,self.gammaCorrection)#,nlevels) # self.winStride = (16,16) self.padding = (8,8) self.pcapath = "/media/1tb/datasets/libras_configurations/chroma_videos/features/" self.mean_name = "pcahog_skin.mean" self.eigenvectors_names = "pcahog_skin.eigv" self.mean_path = os.path.join(self.pcapath, self.mean_name) self.eigenvectors_path = os.path.join(self.pcapath, self.eigenvectors_names) self.reduced_features_name = "reduced_features1000.feat" self.features_path = os.path.join(self.pcapath, self.reduced_features_name) #self.mean = joblib.load(self.mean_path) #self.eigenvector = joblib.load(self.eigenvectors_path) def computePCA(self, feature): #pca = cv.PCACompute(feature, mean=None, maxComponents=1000) #pca = cv.PCA(feature, mean=None, maxComponents=1000) t0 = time() mean, eigenvectors = cv.PCACompute(feature, mean=None, maxComponents=2000) print("PCA compute took ", time()-t0,"seconds to run") #reduced_features = pca.project(feature) print("Saving Means and eigenvectors") #joblib.dump(mean, self.mean_path, compress=True) #joblib.dump(eigenvectors, self.eigenvectors_path, compress=True) return mean, eigenvectors def projectPCA(self, mean, eigenvectors, feature): t1 = time() reduced_features = cv.PCAProject(feature, mean, eigenvectors) print("PCA project took ", time()-t1,"seconds to run") return reduced_features def extractFeatures(self, image): im = cv.resize(image,(80, 80), interpolation = cv.INTER_CUBIC) fd = self.hog.compute(im,self.winStride,self.padding) return fd def extract(self, image): #print(self.mean.shape) #print(self.eigenvector.shape) features = self.extractFeatures(image) print(features.shape) features = np.transpose(features) print(features.shape) reduced_features = self.projectPCA(self.mean, self.eigenvector, features) return reduced_features class HUFeatures: def __init__(self): self.initial =0 def getContours(self, img): contours,hierarchy = cv.findContours(img,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE) #contours_retain=[] #for cnt in contours: # if cv.contourArea(cnt)>500: # contours_retain.append(cnt) c = max(contours, key = cv.contourArea) #cv.drawContours(img,contours_retain,-1,(255,0,255),3) return c def extractFeatures(self, img): image = cv.resize(img,(200, 200), interpolation = cv.INTER_CUBIC) c = self.getContours(image) #for cnt in contours_retain: # print(cv.HuMoments(cv.moments(cnt)).flatten()) ft = cv.HuMoments(cv.moments(c)).flatten() return ft class GaborFeatures: def __init__(self): self.x = 0 self.filters = self.build_filters() # define gabor filter bank with different orientations and at different scales def build_filters(self): filters = [] ksize = 9 #define the range for theta and nu for theta in np.arange(0, np.pi, np.pi / 8): for nu in np.arange(0, 6*np.pi/4 , np.pi / 4): kern = cv.getGaborKernel((ksize, ksize), 1.0, theta, nu, 0.5, 0, ktype=cv.CV_32F) kern /= 1.5*kern.sum() filters.append(kern) return filters #function to convolve the image with the filters def process(self, img, filters): accum = np.zeros_like(img) for kern in filters: fimg = cv.filter2D(img, cv.CV_8UC3, kern) np.maximum(accum, fimg, accum) return accum def extractFeatures(self, img): #instantiating the filters img = cv.resize(img,(128, 128), interpolation = cv.INTER_CUBIC) #filters = self.build_filters() f = np.array(self.filters, dtype='int64') #initializing the feature vector feat = [] #calculating the local energy for each convolved image for j in range(40): res = self.process(img, f[j]) #print(res.shape) temp = np.dtype('int64').type(0) for p in range(128): for q in range(128): temp = temp + res[p][q]*res[p][q] #print(temp) feat.append(temp) #calculating the mean amplitude for each convolved image for j in range(40): res = self.process(img, f[j]) #print(res.shape) temp =
np.dtype('int64')
numpy.dtype
import pandas as pd import os import logging import pickle import numpy as np import multiprocessing import spikeinterface.extractors as se import spikeinterface.sorters as ss logger = logging.getLogger('ceciestunepipe.util.spike.kilosort') N_JOBS_MAX = multiprocessing.cpu_count()-1 def run_spikesort(recording_extractor: se.RecordingExtractor, logger: logging.Logger, sort_pickle_path: str, tmp_dir: str, grouping_property: str=None, sorting_method: str='kilosort3', n_jobs_bin: int=N_JOBS_MAX, chunk_mb: int=512, restrict_to_gpu=None, **sort_kwargs): logger.info("Grouping property: {}".format(grouping_property)) logger.info("sorting method: {}".format(sorting_method)) # try: if sorting_method == "kilosort2": # perform kilosort sorting sort_tmp_dir = os.path.join(tmp_dir, 'tmp_ks2') logger.info('Sorting tmp dir {}'.format(sort_tmp_dir)) if restrict_to_gpu is not None: logger.info('Will set visible gpu devices {}'.format(restrict_to_gpu)) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(restrict_to_gpu) sort = ss.run_kilosort2( recording_extractor, car=True, output_folder=sort_tmp_dir, parallel=True, verbose=True, grouping_property=grouping_property, chunk_mb=chunk_mb, n_jobs_bin=n_jobs_bin, **sort_kwargs ) elif sorting_method == "kilosort3": # perform kilosort sorting sort_tmp_dir = os.path.join(tmp_dir, 'tmp_ks3') logger.info('Sorting tmp dir {}'.format(sort_tmp_dir)) if restrict_to_gpu is not None: logger.info('Will set visible gpu devices {}'.format(restrict_to_gpu)) os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"] = "{}".format(restrict_to_gpu) sort = ss.run_kilosort3( recording_extractor, car=True, output_folder=sort_tmp_dir, parallel=True, verbose=True, grouping_property=grouping_property, chunk_mb=chunk_mb, **sort_kwargs ) else: raise NotImplementedError('Only know how to sort kilosort2/3 for now, \ will deal with {} later'.format(sorting_method)) logger.info('done sorting') # # save sort # logger.info("Saving sort {}".format(sort_pickle_path)) # with open(sort_pickle_path, "wb") as output: # pickle.dump(sort, output, pickle.HIGHEST_PROTOCOL) # logger.info("Sorting output saved to {}".format(sort_pickle_path)) # # save sort again with all that processed data # sort_temp_pickle_path = sort_pickle_path + '.dump.pkl' # logger.info("Saving sort {}".format(sort_temp_pickle_path)) # sort.dump_to_pickle(sort_temp_pickle_path) return sort def load_spikes(ks_folder:str) -> tuple: spk_dict = {k: np.load(os.path.join(ks_folder, 'spike_{}.npy'.format(k))).flatten() for k in ['times', 'clusters']} spk_dict['cluster_id'] = spk_dict['clusters'] spk_df = pd.DataFrame(spk_dict) clu_df = pd.read_csv(os.path.join(ks_folder, 'cluster_KSLabel.tsv'), sep='\t', header=0) # get the templates templ_arr = np.load(os.path.join(ks_folder, 'templates.npy')) clu_df['template'] = [x for x in templ_arr] # with the templates, compute the sorted chanels, main channel, main 7 channels and waveform for the 7 channels clu_df['max_chans'] = clu_df['template'].apply(lambda x: np.argsort(np.ptp(x, axis=0))[::-1]) clu_df['main_chan'] = clu_df['max_chans'].apply(lambda x: x[0]) clu_df['main_7'] = clu_df['max_chans'].apply(lambda x:
np.sort(x[:7])
numpy.sort
import numpy as _np import math as _math def read_energy_acceptance_file(fname, eRF): # reads raw data from file lines = [line.strip() for line in open(fname)] # processes raw data accp, accn = [], [] for line in lines: if not line or line[0] == '#': continue values = [float(word) for word in line.split()] pos, e_ac = values[4], values[7] if e_ac > 0.0: accp.append([pos,min(abs(e_ac),eRF)]) else: accn.append([pos,min(abs(e_ac),eRF)]) accp = _np.array(accp) accn = _np.array(accn) return (accp,accn) def read_twiss_file(fname, param): # reads raw data from file lines = [line.strip() for line in open(fname)] # processes raw data into twiss and element structures twiss, elements = [], [] for line in lines: words = line.split() if not words or words[0][0] == '*': continue if words[0][0] == '#': if words[0] == '#I1': param['I1'] += float(words[1]) elif words[0] == '#I2': param['I2'] += float(words[1]) elif words[0] == '#I3': param['I3'] += float(words[1]) elif words[0] == '#I4': param['I4'] += float(words[1]) elif words[0] == '#I5': param['I5'] += float(words[1]) elif words[0] == '#I6': param['I6'] += float(words[1]) else: pass continue if words[0][0] == '@': if words[1] == 'K_beta': param['k_beta'] = float(words[3]) elif words[1] == 'K_dw': param['k_dw'] = float(words[3])-param['k_beta'] elif words[1] == 'EX': param['ex0'] = float(words[3]) else: if float(words[3]) > 0: values = [float(word) for word in words[2:]] values = values + [0,0] # for acceptances insertion latter on #print(values) twiss.append(values) elements.append(words[0]) twiss = _np.array(twiss) elements =
_np.array(elements)
numpy.array
from __future__ import division, print_function, absolute_import import numpy as np from numpy.linalg import inv, solve from numpy.testing import TestCase, rand, run_module_suite, assert_raises, \ assert_equal, assert_almost_equal, assert_array_almost_equal, assert_, \ assert_allclose from numpy.testing.noseclasses import KnownFailureTest from scipy.linalg import solve_sylvester, solve_lyapunov, \ solve_discrete_lyapunov, solve_continuous_are, solve_discrete_are class TestSolveLyapunov(TestCase): cases = [ (np.array([[1, 2], [3, 4]]), np.array([[9, 10], [11, 12]])), # a, q all complex. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[2.0-2j, 2.0+2j],[-1.0-1j, 2.0]])), # a real; q complex. (np.array([[1.0, 2.0], [3.0, 5.0]]), np.array([[2.0-2j, 2.0+2j],[-1.0-1j, 2.0]])), # a complex; q real. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[2.0, 2.0],[-1.0, 2.0]])), # An example from Kitagawa, 1977 (np.array([[3, 9, 5, 1, 4], [1, 2, 3, 8, 4], [4, 6, 6, 6, 3], [1, 5, 2, 0, 7], [5, 3, 3, 1, 5]]), np.array([[2, 4, 1, 0, 1], [4, 1, 0, 2, 0], [1, 0, 3, 0, 3], [0, 2, 0, 1, 0], [1, 0, 3, 0, 4]])), # Companion matrix example. a complex; q real; a.shape[0] = 11 (np.array([[0.100+0.j, 0.091+0.j, 0.082+0.j, 0.073+0.j, 0.064+0.j, 0.055+0.j, 0.046+0.j, 0.037+0.j, 0.028+0.j, 0.019+0.j, 0.010+0.j], [1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j, 0.000+0.j], [0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 0.000+0.j, 1.000+0.j, 0.000+0.j]]), np.eye(11)), # https://github.com/scipy/scipy/issues/4176 (np.matrix([[0, 1], [-1/2, -1]]), (np.matrix([0, 3]).T * np.matrix([0, 3]).T.T)), # https://github.com/scipy/scipy/issues/4176 (np.matrix([[0, 1], [-1/2, -1]]), (np.array(np.matrix([0, 3]).T * np.matrix([0, 3]).T.T))), ] def check_continuous_case(self, a, q): x = solve_lyapunov(a, q) assert_array_almost_equal(np.dot(a, x) + np.dot(x, a.conj().transpose()), q) def check_discrete_case(self, a, q, method=None): x = solve_discrete_lyapunov(a, q, method=method) assert_array_almost_equal(np.dot(np.dot(a, x),a.conj().transpose()) - x, -1.0*q) def test_cases(self): for case in self.cases: self.check_continuous_case(case[0], case[1]) self.check_discrete_case(case[0], case[1]) self.check_discrete_case(case[0], case[1], method='direct') self.check_discrete_case(case[0], case[1], method='bilinear') class TestSolveContinuousARE(TestCase): cases = [ # An example from <NAME>. # (http://dspace.mit.edu/bitstream/handle/1721.1/1301/R-0859-05666488.pdf) (np.matrix([[0, 1], [0, 0]]), np.matrix([[0,], [1,]]), np.matrix([[1, 0], [0, 2]]), np.matrix([[1,],])), # Difficult from a numerical standpoint, again from <NAME>. (np.matrix([[4, 3], [-9.0/2.0, -7.0/2.0]]), np.matrix([[1,], [-1,]]), np.matrix([[9, 6], [6, 4]]), np.matrix([[1,],])), # Complex a; real b, q, r (np.matrix([[0, 1-2j], [0, -3j]]), np.matrix([[0,], [1,]]), np.matrix([[1, 0], [0, 2]]), np.matrix([[1,],])), # Real a, q, r; complex b (np.matrix([[0, 1], [0, -1]]), np.matrix([[-2j,], [1j,]]), np.matrix([[1, 0], [0, 2]]), np.matrix([[1,],])), # Real a, b; complex q, r (np.matrix([[0, 1], [0, -1]]), np.matrix([[1, 2], [1, 3]]), np.matrix([[1, -3j], [1-1j, 2]]), np.matrix([[-2j, 2], [1j, 3]])), ] def check_case(self, a, b, q, r): """Checks if (A'X + XA - XBR^-1B'X+Q=0) is true""" x = solve_continuous_are(a, b, q, r) assert_array_almost_equal( a.getH()*x + x*a - x*b*inv(r)*b.getH()*x + q, 0.0) def test_cases(self): for case in self.cases: self.check_case(case[0], case[1], case[2], case[3]) def test_solve_discrete_are(): cases = [ # Darex examples taken from (with default parameters): # [1] P.BENNER, <NAME>, <NAME>: 'A Collection of Benchmark # Examples for the Numerical Solution of Algebraic Riccati # Equations II: Discrete-Time Case', Tech. Report SPC 95_23, # <NAME>, TU Chemnitz-Zwickau (Germany), 1995. # [2] <NAME>, <NAME>, <NAME>: 'Scaling of the # Discrete-Time Algebraic Riccati Equation to Enhance Stability # of the Schur Solution Method', IEEE Trans.Aut.Cont., vol.37(4) # # The format of the data is (a, b, q, r, knownfailure), where # knownfailure is None if the test passes or a string # indicating the reason for failure. # # Complex a; real b, q, r (np.array([[2, 1-2j], [0, -3j]]), np.array([[0,], [1,]]), np.array([[1, 0], [0, 2]]), np.array([[1,],]), None), # Real a, q, r; complex b (np.array([[2, 1], [0, -1]]), np.array([[-2j,], [1j,]]), np.array([[1, 0], [0, 2]]), np.array([[1,],]), None), # Real a, b; complex q, r (np.array([[3, 1], [0, -1]]), np.array([[1, 2], [1, 3]]), np.array([[1, 1+1j], [1-1j, 2]]), np.array([[2, -2j], [2j, 3]]), None), # User-reported gh-2251 (Trac #1732) (np.array([[0.63399379, 0.54906824, 0.76253406], [0.5404729, 0.53745766, 0.08731853], [0.27524045, 0.84922129, 0.4681622]]), np.array([[0.96861695],[0.05532739],[0.78934047]]), np.eye(3), np.eye(1), None), # darex #1 (np.array([[4, 3],[-4.5, -3.5]]), np.array([[1],[-1]]), np.array([[9, 6],[6, 4]]), np.array([[1]]), None), # darex #2 (np.array([[0.9512, 0],[0, 0.9048]]), np.array([[4.877, 4.877],[-1.1895, 3.569]]), np.array([[0.005, 0],[0, 0.02]]), np.array([[1/3, 0],[0, 3]]), None), # darex #3 (np.array([[2, -1],[1, 0]]), np.array([[1],[0]]), np.array([[0, 0],[0, 1]]), np.array([[0]]), None), # darex #4 (skipped the gen. Ric. term S) (np.array([[0, 1],[0, -1]]), np.array([[1, 0],[2, 1]]), np.array([[-4, -4],[-4, 7]]) * (1/11), np.array([[9, 3],[3, 1]]), None), # darex #5 (np.array([[0, 1],[0, 0]]), np.array([[0],[1]]), np.array([[1, 2],[2, 4]]), np.array([[1]]), None), # darex #6 (np.array([[0.998, 0.067, 0, 0], [-.067, 0.998, 0, 0], [0, 0, 0.998, 0.153], [0, 0, -.153, 0.998]]), np.array([[0.0033, 0.0200], [0.1000, -.0007], [0.0400, 0.0073], [-.0028, 0.1000]]), np.array([[1.87, 0, 0, -0.244], [0, 0.744, 0.205, 0], [0, 0.205, 0.589, 0], [-0.244, 0, 0, 1.048]]), np.eye(2), None), # darex #7 (np.array([[0.984750, -.079903, 0.0009054, -.0010765], [0.041588, 0.998990, -.0358550, 0.0126840], [-.546620, 0.044916, -.3299100, 0.1931800], [2.662400, -.100450, -.9245500, -.2632500]]), np.array([[0.0037112, 0.0007361], [-.0870510, 9.3411e-6], [-1.198440, -4.1378e-4], [-3.192700, 9.2535e-4]]), np.eye(4)*1e-2, np.eye(2), None), # darex #8 (np.array([[-0.6000000, -2.2000000, -3.6000000, -5.4000180], [1.0000000, 0.6000000, 0.8000000, 3.3999820], [0.0000000, 1.0000000, 1.8000000, 3.7999820], [0.0000000, 0.0000000, 0.0000000, -0.9999820]]), np.array([[1.0, -1.0, -1.0, -1.0], [0.0, 1.0, -1.0, -1.0], [0.0, 0.0, 1.0, -1.0], [0.0, 0.0, 0.0, 1.0]]), np.array([[2, 1, 3, 6], [1, 2, 2, 5], [3, 2, 6, 11], [6, 5, 11, 22]]), np.eye(4), None), # darex #9 (np.array([[95.4070, 1.9643, 0.3597, 0.0673, 0.0190], [40.8490, 41.3170, 16.0840, 4.4679, 1.1971], [12.2170, 26.3260, 36.1490, 15.9300, 12.3830], [4.1118, 12.8580, 27.2090, 21.4420, 40.9760], [0.1305, 0.5808, 1.8750, 3.6162, 94.2800]]) * 0.01, np.array([[0.0434, -0.0122], [2.6606, -1.0453], [3.7530, -5.5100], [3.6076, -6.6000], [0.4617, -0.9148]]) * 0.01, np.eye(5), np.eye(2), None), # darex #10 (np.kron(np.eye(2),np.diag([1,1],k=1)), np.kron(np.eye(2),np.array([[0],[0],[1]])), np.array([[1, 1, 0, 0, 0, 0], [1, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0], [0, 0, 0, 1, -1, 0], [0, 0, 0, -1, 1, 0], [0, 0, 0, 0, 0, 0]]), np.array([[3, 0],[0, 1]]), None), # darex #11 (0.001 * np.array( [[870.1, 135.0, 11.59, .5014, -37.22, .3484, 0, 4.242, 7.249], [76.55, 897.4, 12.72, 0.5504, -40.16, .3743, 0, 4.53, 7.499], [-127.2, 357.5, 817, 1.455, -102.8, .987, 0, 11.85, 18.72], [-363.5, 633.9, 74.91, 796.6, -273.5, 2.653, 0, 31.72, 48.82], [-960, 1645.9, -128.9, -5.597, 71.42, 7.108, 0, 84.52, 125.9], [-664.4, 112.96, -88.89, -3.854, 84.47, 13.6, 0, 144.3, 101.6], [-410.2, 693, -54.71, -2.371, 66.49, 12.49, .1063, 99.97, 69.67], [-179.9, 301.7, -23.93, -1.035, 60.59, 22.16, 0, 213.9, 35.54], [-345.1, 580.4, -45.96, -1.989, 105.6, 19.86, 0, 219.1, 215.2]]), np.array([[4.7600, -0.5701, -83.6800], [0.8790, -4.7730, -2.7300], [1.4820, -13.1200, 8.8760], [3.8920, -35.1300, 24.8000], [10.3400, -92.7500, 66.8000], [7.2030, -61.5900, 38.3400], [4.4540, -36.8300, 20.2900], [1.9710, -15.5400, 6.9370], [3.7730, -30.2800, 14.6900]]) * 0.001, np.diag([50, 0, 0, 0, 50, 0, 0, 0, 0]), np.eye(3), None), # darex #12 (np.array([[0, 1e6],[0, 0]]), np.array([[0],[1]]), np.eye(2), np.array([[1]]), "Bad absolute accuracy"), # darex #13 (np.array([[16, 10, -2], [10, 13, -8], [-2, -8, 7]]) * (1/9), np.eye(3), 1e6 * np.eye(3), 1e6 * np.eye(3), "Fails to find a valid solution"), # darex #14 (np.array([[1 - 1/1e8, 0, 0, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]]), np.array([[1e-08],[0],[0],[0]]), np.diag([0, 0, 0, 1]), np.array([[0.25]]), "Bad absolute accuracy"), # darex #15 (np.eye(100, k=1), np.flipud(np.eye(100, 1)), np.eye(100), np.array([[1]]), None) ] def _test_factory(case): """Checks if X = A'XA-(A'XB)(R+B'XB)^-1(B'XA)+Q) is true""" a, b, q, r, knownfailure = case if knownfailure: raise KnownFailureTest(knownfailure) x = solve_discrete_are(a, b, q, r) res = a.conj().T.dot(x.dot(a)) - x + q res -= a.conj().T.dot(x.dot(b)).dot( solve(r+b.conj().T.dot(x.dot(b)),b.conj().T).dot(x.dot(a)) ) assert_array_almost_equal(res,np.zeros_like(res)) for case in cases: yield _test_factory, case class TestSolveSylvester(TestCase): cases = [ # a, b, c all real. (np.array([[1, 2], [0, 4]]), np.array([[5, 6], [0, 8]]), np.array([[9, 10], [11, 12]])), # a, b, c all real, 4x4. a and b have non-trival 2x2 blocks in their # quasi-triangular form. (np.array([[1.0, 0, 0, 0], [0, 1.0, 2.0, 0.0], [0, 0, 3.0, -4], [0, 0, 2, 5]]), np.array([[2.0, 0, 0,1.0], [0, 1.0, 0.0, 0.0], [0, 0, 1.0, -1], [0, 0, 1, 1]]), np.array([[1.0, 0, 0, 0], [0, 1.0, 0, 0], [0, 0, 1.0, 0], [0, 0, 0, 1.0]])), # a, b, c all complex. (np.array([[1.0+1j, 2.0], [3.0-4.0j, 5.0]]), np.array([[-1.0, 2j], [3.0, 4.0]]), np.array([[2.0-2j, 2.0+2j],[-1.0-1j, 2.0]])), # a and b real; c complex. (
np.array([[1.0, 2.0], [3.0, 5.0]])
numpy.array
from __future__ import print_function, division import numpy as np import R_smooth as sm from matplotlib import pyplot as plt Eradius = 6371315.0 # Earth radius as used in Croco (cf. scalars.h), m def get_vslab(xm,ym,Lslab,lcenter,dl,ang,xx,yy,doverb=True): # define lon, lat points ov vertical section (indxm,indym) = np.unravel_index(((xx-xm)**2+(yy-ym)**2).argmin(),xx.shape) Nl = int(Lslab/dl) + int((Lslab//dl)%2==0) # odd lonslab = xm + np.arange(-(Nl//2)*dl-lcenter,(Nl//2+1)*dl-lcenter,dl)\ /Eradius*np.cos(ang)*180./np.pi latslab = ym +
np.arange(-(Nl//2)*dl-lcenter,(Nl//2+1)*dl-lcenter,dl)
numpy.arange
import pandas as pd import numpy as np import math, statistics, functools import matplotlib.pyplot as plt from sklearn.metrics.cluster import adjusted_rand_score def read_csv_input(filename): df = pd.read_csv(filename, header = None).to_numpy() y = df[:, [0]] X = df[:, range(1, df.shape[1])] return X, y def normalize(X): means = np.mean(X, axis=0) stds =
np.std(X, axis=0)
numpy.std
import os import glob import time from datetime import datetime import pandas as pd import torch import numpy as np import argparse import gym from env.gym_cancer.envs.cancercontrol import CancerControl import matplotlib.pyplot as plt # import pybullet_envs import seaborn as sns from PPO import PPO def set_device(cuda=None): print("============================================================================================") # set device to cpu or cuda device = torch.device('cpu') if torch.cuda.is_available() and cuda is not None: device = torch.device('cuda:' + str(cuda)) torch.cuda.empty_cache() print("Device set to : " + str(torch.cuda.get_device_name(device))) else: print("Device set to : cpu") print("============================================================================================") return device #################################### Testing ################################### def plot_figure(data, save_path, par = 0): if par: save_name = "_best_survival_time.png" else: save_name = '_best_reward.png' states = data["states"] doses = data["doses"] cs = sns.color_palette('Paired') x = np.arange(states.shape[0]) * 28 ad = states[:, 0] ai = states[:, 1] psa = states[:, 2] fig = plt.figure(figsize=(21, 7)) plt.style.use('seaborn') plt.style.use(['science', "nature"]) ax1 = fig.add_subplot(1, 2, 1) ax1.plot(x, psa, linestyle="-", linewidth=2) nadir_psa = min(psa) nadir_psa_x = x[
np.where(psa == nadir_psa)
numpy.where
import numpy as np import cv2 import os import dlib from imutils.face_utils import rect_to_bb, shape_to_np, FaceAligner from imutils.face_utils.helpers import FACIAL_LANDMARKS_IDXS import matplotlib.pyplot as plt path = '/home/yaurehman2/Documents/stereo_face_liveness/shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(path) fa = FaceAligner(predictor, desiredFaceWidth=700) def get_dataset(paths, filename): # this function get the dataset from the given path # This function generates a txt file that is used by the video generating function. The txt file contains paths # to the video data. labels = [] file1 = open(filename, "w+") for path in paths.split(':'): if path != '': path_exp = os.path.expanduser(path) h_subjects = os.listdir(path_exp) # list all the files and directories inside in the path h_subjects.sort() # sort all the directories nr_of_subjects = len(h_subjects) # find the length of all the directories for i in range(nr_of_subjects): # count upto the number of directories h_subject_num = h_subjects[i] # select the ith directory vid_dir = os.path.join(path_exp, h_subject_num) # getting the full path of the directory if os.path.isdir(vid_dir): # check whether the given path is a directory or not nr_of_videos = os.listdir(vid_dir) # list all the files in that directory nr_of_videos.sort() for index in nr_of_videos: sub_index = index.split('_') if sub_index[2] == 'real': # first class labels.append([os.path.join(vid_dir, index), 0]) file1.write('%s %d \n' %(os.path.join(vid_dir,index),int(0))) elif sub_index[2] == 'print': # second class labels.append([os.path.join(vid_dir, index), 1]) file1.write('%s %d \n' % (os.path.join(vid_dir, index), int(1))) elif sub_index[2] == 'cut': # 3rd class labels.append([os.path.join(vid_dir, index), 2]) file1.write('%s %d \n' % (os.path.join(vid_dir, index), int(2))) elif sub_index[2] == 'mobile': # 4th class labels.append([os.path.join(vid_dir, index), 3]) file1.write('%s %d \n' % (os.path.join(vid_dir, index), int(3))) elif sub_index[2] == 'tablet': # 5th class labels.append([os.path.join(vid_dir, index), 4]) file1.write('%s %d \n' % (os.path.join(vid_dir, index), int(4))) else: vid_descrip = vid_dir.strip().split('/') sub_index = vid_descrip[7].strip().split('_') if sub_index[2] == 'real': # first class labels.append([vid_dir, 0]) file1.write('%s %d \n' % (vid_dir, int(0))) elif sub_index[2] == 'print': # second class labels.append([vid_dir, 1]) file1.write('%s %d \n' % (vid_dir, int(1))) elif sub_index[2] == 'cut': # 3rd class labels.append([vid_dir, 2]) file1.write('%s %d \n' % (vid_dir, int(2))) elif sub_index[2] == 'mobile': # 4th class labels.append([vid_dir, 3]) file1.write('%s %d \n' % (vid_dir, int(3))) elif sub_index[2] == 'tablet': # 5th class labels.append([vid_dir, 4]) file1.write('%s %d \n' % (vid_dir, int(4))) file1.close() # --------------------------------------------------------------------------------------------------------------------- def alignImages(im1, im2): MAX_FEATURES = 500 GOOD_MATCH_PERCENT = 0.15 # Convert images to grayscale im1Gray = cv2.cvtColor(im1, cv2.COLOR_BGR2GRAY) im2Gray = cv2.cvtColor(im2, cv2.COLOR_BGR2GRAY) # Detect ORB features and compute descriptors. orb = cv2.ORB_create(MAX_FEATURES) keypoints1, descriptors1 = orb.detectAndCompute(im1Gray, None) keypoints2, descriptors2 = orb.detectAndCompute(im2Gray, None) # Match features. matcher = cv2.DescriptorMatcher_create(cv2.DESCRIPTOR_MATCHER_BRUTEFORCE_HAMMING) matches = matcher.match(descriptors1, descriptors2, None) # Sort matches by score matches.sort(key=lambda x: x.distance, reverse=False) # Remove not so good matches numGoodMatches = int(len(matches) * GOOD_MATCH_PERCENT) matches = matches[:numGoodMatches] # Draw top matches imMatches = cv2.drawMatches(im1, keypoints1, im2, keypoints2, matches, None) cv2.imwrite("matches.jpg", imMatches) # Extract location of good matches points1 = np.zeros((len(matches), 2), dtype=np.float32) points2 = np.zeros((len(matches), 2), dtype=np.float32) for i, match in enumerate(matches): points1[i, :] = keypoints1[match.queryIdx].pt points2[i, :] = keypoints2[match.trainIdx].pt # Find homography h, mask = cv2.findHomography(points1, points2, cv2.RANSAC) # Use homography height, width, channels = im2.shape im1Reg = cv2.warpPerspective(im1, h, (width, height)) return im1Reg, h # --------------------------------------------------------------------------------------------------------------------- # Function to extract video frames and put them in a corresponding separate directory def video_data(file_path, frame_length, seed_input, img_rows, img_cols): video_matrix_ = [] # define a video matrix to store video data # video_matrix_l = [] database_matrix = [] # define the database matrix to store videos along with frames capr = cv2.VideoCapture(file_path[0]) capl = cv2.VideoCapture(file_path[1]) video_r_length = int(capr.get(cv2.CAP_PROP_FRAME_COUNT)) video_r_width = int(capr.get(cv2.CAP_PROP_FRAME_WIDTH)) video_r_height = int(capr.get(cv2.CAP_PROP_FRAME_HEIGHT)) video_r_fps = capr.get(cv2.CAP_PROP_FPS) video_l_length = int(capl.get(cv2.CAP_PROP_FRAME_COUNT)) video_l_width = int(capl.get(cv2.CAP_PROP_FRAME_WIDTH)) video_l_height = int(capl.get(cv2.CAP_PROP_FRAME_HEIGHT)) video_l_fps = capl.get(cv2.CAP_PROP_FPS) print('length of the video = %g ---- height x width = %d x %d --- fps =%g' % ( video_r_length, video_r_height, video_r_width, video_r_fps)) print('length of the video = %g ---- height x width = %d x %d --- fps =%g' % ( video_l_length, video_l_height, video_l_width, video_l_fps)) counter = 0 starting_point = 0 ret_false_count = 0 while (capr.isOpened()) & (capl.isOpened()): # Read all frames of the video ret_r, frame_r = capr.read() ret_l, frame_l = capl.read() if (counter != (video_r_length-ret_false_count)) & (counter != (video_l_length - ret_false_count)): # if (counter != frame_length): if (ret_r is not False) & (ret_l is not False): # imReg, h = alignImages(frame_l, frame_r) tensor_translated, check_face_id, _ = facial_tensor_landmarks(frame_r, frame_l, img_rows, img_cols) print (counter, check_face_id) if check_face_id != 0: video_matrix_.append(tensor_translated) # video_matrix_l.append(tensor_translated[:,:,3:6]) counter += 1 else: ret_false_count += 1 else: ret_false_count += 1 break else: break if cv2.waitKey(1) & 0xFF == ord('q'): break capr.release() capl.release() np.random.seed(seed_input) if len(video_matrix_)>10: dummy = np.random.randint(0, len(video_matrix_), len(video_matrix_)) print (dummy) counter_b = 0 for i in dummy: selected_frames = video_matrix_[i] # selected_l_frames = video_matrix_l[i] # ---------------------------------------------------------------------------------------------------- # print selected_l_frames.dtype # # for checking the output detected face. It can be commented # comb_frames = np.concatenate((selected_r_frames,selected_l_frames), axis=1) # cv2.imshow('min_frame', comb_frames) # cv2.waitKey() # ----------------------------------------------------------------------------------------------------- # tensor_translated, flg = facial_tensor_landmarks(selected_r_frames, selected_l_frames, img_rows, img_cols) database_matrix.append(selected_frames) counter_b += 1 print (np.asarray(database_matrix).shape) if counter_b == frame_length: break # ----------------------------------------------------------------------------------------------------- # print tensor_translated.shape # comb_frames = np.concatenate((tensor_translated[:, :, 0:3], tensor_translated[:, :, 3:6]), axis=1) # cv2.imshow('min_frame', comb_frames) # cv2.imshow(tensor_translated[:, :, 0:6:2]) # cv2.waitKey() # ------------------------------------------------------------------------------------------------------ return np.asarray(database_matrix) def facial_tensor_landmarks(frame_r, frame_l, img_rows, img_cols): img_list = [frame_r, frame_l] right_Eye_translate = [] bounding_boxes = [] for img in img_list: if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) else: img = img rects = detector(img) # detect the face region # print(rects) for rect in rects: bounding_boxes.append(rects) # (x, y, w, h) = rect_to_bb(rect) # face_area = cv2.resize(img[y:y + h - 15, x:x + w - 15], (img_rows, img_cols)) # cv2.imshow('dummy', face_area) # cv2.waitKey() land_marks = predictor(img, rect) # detect the landmarks in the face land_marks = shape_to_np(land_marks) # convert the landmarks in tuples of x and y (rEstart, rEend) = FACIAL_LANDMARKS_IDXS['right_eye'] # get the landmark of right eye right_Eye_pts = land_marks[rEstart:rEend] # get the right eye points and arrange them right_Eye_translate.append(right_Eye_pts) # append the right eye points in the array # print (np.asarray(right_Eye_translate).shape) if np.asarray(right_Eye_translate).shape[0] == 2: # condition to set to avoid a single image # print right_Eye_translate # finding the distance between eyes location and adjusting the translation (im1RECX, im1RecY) = (right_Eye_translate[0][0][0], right_Eye_translate[0][0][1]) # select the right most point (im2RECX, im2RECY) = (right_Eye_translate[1][0][0], right_Eye_translate[1][0][1]) # select the right most point # compute the Euclidean distance distx = im1RECX - im2RECX disty = im1RecY - im2RECY M = np.float32([[1, 0, distx], [0, 1, disty]]) # translation matrix # print right_Eye_translate[1][2] # pts1 = np.float32([right_Eye_translate[1][0], right_Eye_translate[1][1], right_Eye_translate[1][2]]) # pts2 = np.float32([right_Eye_translate[0][0], right_Eye_translate[0][1], right_Eye_translate[0][2]]) # M_1 = cv2.getAffineTransform(pts1, pts2) rows, cols,dims = img_list[1].shape frame1 = (img_list[1]) # translate the left image so it the face can overlap on the right image dst = cv2.warpAffine(frame1, M, (cols, rows)) # do an affine transform # dst = cv2.warpAffine(dst, M_1, (cols, rows)) # ------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------- # Just for testing purpose. You can comment this portion if you don't want to do test # frame_gray1 = dst # rects = detector(frame_gray1) # # for rect in rects: # land_marks = predictor(frame_gray1, rect) # land_marks = shape_to_np(land_marks) # (rEstart, rEend) = FACIAL_LANDMARKS_IDXS['right_eye'] # right_Eye_pts = land_marks[rEstart:rEend] # print right_Eye_pts # # # updated right eye point after translation of second camera image by dstx and disty # (x, y) = right_Eye_pts[0] # cv2.circle(frame_r, (x, y), 4, (0, 0, 255), -1) # # # original right eye point in the first camera image # (x1, y1) = right_Eye_translate[0][0] # cv2.circle(frame_r, (x1, y1), 4, (0, 255, 0), -1) # # original right eye point in the second camera shown in the first camera image # (x2, y2) = right_Eye_translate[1][0] # cv2.circle(frame_r, (x2, y2), 4, (255, 0, 0), -1) # # vis = np.concatenate((frame_r, dst, frame_r, frame_l), axis=1) # cv2.imshow('output', vis) # cv2.waitKey(1) # --------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------- # # For testing purpose # tensor1 = np.zeros((frame_r.shape[0], frame_r.shape[1], 2*frame_r.shape[2])) # tensor2 = np.zeros((frame_l.shape[0], frame_l.shape[1], 2*frame_l.shape[2])) # # tensor1[:, :, 0:3] = cv2.cvtColor(frame_r, cv2.COLOR_BGR2RGB) # tensor1[:, :, 3:6] = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB) # # tensor2[:, :, 0:3] = cv2.cvtColor(frame_r, cv2.COLOR_BGR2RGB) # tensor2[:, :, 3:6] = cv2.cvtColor(frame_l, cv2.COLOR_BGR2RGB) # # plt.figure(1) # plt.imshow(tensor1[:, :, 0:6:2]) # plt.figure(2) # plt.imshow(tensor2[:, :, 0:6:2]) # plt.show() # Extract the face area after translation translated_images = [] image_translated = [frame_r, dst] # cv2.imshow("window", dst) # cv2.waitKey() rect = 0 for i in image_translated: # rects = detector(i) if len(bounding_boxes) != 2: print("The rectangle is empty") break else: for rect in bounding_boxes[0] : (x, y, w, h) = rect_to_bb(rect) if x < 0 or y < 0 or w < 0 or h < 0: break else: face_area = cv2.resize(i[y:y+h, x:x+w], (img_rows, img_cols)) translated_images.append(face_area) if len(translated_images) == 2: tensor_translated = np.uint8(np.zeros((face_area.shape[0], face_area.shape[1], 2*face_area.shape[2]))) tensor_translated[:, :, 0:3] = translated_images[0] tensor_translated[:, :, 3:6] = translated_images[1] # testing plt.figure(3) cv2.imshow('window', cv2.resize(tensor_translated[:, :, 6:0:-2],(255,255))) # cv2.waitKey(1) # plt.show() s = 1 return tensor_translated, s, bounding_boxes else: s = 0 rect = 0 return [], s, rect else: s = 0 rect = 0 return [], s, rect def facial_tensor_homography(img_list, img_rows, img_cols): tensor1 = [] rect_st = [] s = 0 for i in img_list: # detect the face region rects = detector(i) # only accommodate non-empty bounding boxes if rects: rect_st.append(rects) # since we have two images, we need two bounding boxes, one for each image! if len(rect_st) != 2: print("The rectangle is empty") return tensor1, s # break else: cont = 0 for i in img_list: rect1 = [] for z in rect_st[cont]: rect1.append(z) print(z) if len(rect1) > 1: (x, y, w, h) = rect_to_bb(rect1[0]) else: (x, y, w, h) = rect_to_bb(rect1[0]) if x < 0 or y < 0 or w < 0 or h < 0: print("The rectangle is empty") s = 0 return tensor1, s else: # if len(rect_st) cont += 1 face_area = cv2.resize(i[y:y + h, x:x + w], (img_rows, img_cols)) tensor1.append(face_area) if len(tensor1) == 2: reg_img = np.concatenate((tensor1[0], tensor1[1]), axis=-1) cv2.imshow('registered', reg_img[:, :, 6:0:-2]) # cv2.waitKey(1) s = 1 return reg_img, s else: s = 0 return tensor1, s def check_face(frame_r, frame_l, img_rows, img_cols): img_list = [frame_r, frame_l] right_Eye_translate = [] for img in img_list: # if len(img.shape) == 3: # frame_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # else: # frame_gray = img rects = detector(img,1) # detect the face region for rect in rects: land_marks = predictor(img, rect) # detect the landmarks in the face land_marks = shape_to_np(land_marks) # convert the landmarks in tuples of x and y (rEstart, rEend) = FACIAL_LANDMARKS_IDXS['right_eye'] # get the landmark of right eye right_Eye_pts = land_marks[rEstart:rEend] # get the right eye points and arrange them right_Eye_translate.append(right_Eye_pts) # append the right eye points in the array # print np.asarray(right_Eye_translate).shape s = 0 if np.asarray(right_Eye_translate).shape[0] == 2: # condition to set if there is a single image # print right_Eye_translate # finding the distance between eyes location and adjusting the translation (im1RECX, im1RecY) = (right_Eye_translate[0][0][0], right_Eye_translate[0][0][1]) # select the right most point (im2RECX, im2RECY) = (right_Eye_translate[1][0][0], right_Eye_translate[1][0][1]) # select the right most point # compute the Euclidean distance distx = im1RECX - im2RECX disty = im1RecY - im2RECY M = np.float32([[1, 0, distx], [0, 1, disty]]) # translation matrix # print right_Eye_translate[1][2] # pts1 = np.float32([right_Eye_translate[1][0], right_Eye_translate[1][1], right_Eye_translate[1][2]]) # pts2 = np.float32([right_Eye_translate[0][0], right_Eye_translate[0][1], right_Eye_translate[0][2]]) # M_1 = cv2.getAffineTransform(pts1, pts2) rows, cols, dims = img_list[1].shape frame1 = (img_list[1]) # translate the left image so it the face can overlap on the right image dst = cv2.warpAffine(frame1, M, (cols, rows)) # do an affine transform # dst = cv2.warpAffine(dst, M_1, (cols, rows)) # ------------------------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------------------------- # Just for testing purpose. You can comment this portion if you don't want to do test # frame_gray1 = dst # rects = detector(img) # # for rect in rects: # land_marks = predictor(frame_gray1, rect) # land_marks = shape_to_np(land_marks) # (rEstart, rEend) = FACIAL_LANDMARKS_IDXS['right_eye'] # right_Eye_pts = land_marks[rEstart:rEend] # print (right_Eye_pts) # # # updated right eye point after translation of second camera image by dstx and disty # (x, y) = right_Eye_pts[0] # cv2.circle(frame_r, (x, y), 4, (0, 0, 255), -1) # # # original right eye point in the first camera image # (x1, y1) = right_Eye_translate[0][0] # cv2.circle(frame_r, (x1, y1), 4, (0, 255, 0), -1) # # original right eye point in the second camera shown in the first camera image # (x2, y2) = right_Eye_translate[1][0] # cv2.circle(frame_r, (x2, y2), 4, (255, 0, 0), -1) # # vis = np.concatenate((frame_r, dst, frame_r, frame_l), axis=1) # cv2.imshow('output', vis) # cv2.waitKey(1) # --------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------- # # For testing purpose # tensor1 = np.zeros((frame_r.shape[0], frame_r.shape[1], 2*frame_r.shape[2])).astype(np.uint8) # tensor2 = np.zeros((frame_l.shape[0], frame_l.shape[1], 2*frame_l.shape[2])).astype(np.uint8) # # tensor1[:, :, 0:3] = cv2.cvtColor(frame_r, cv2.COLOR_BGR2RGB) # tensor1[:, :, 3:6] = cv2.cvtColor(dst, cv2.COLOR_BGR2RGB) # # tensor2[:, :, 0:3] = cv2.cvtColor(frame_r, cv2.COLOR_BGR2RGB) # tensor2[:, :, 3:6] = cv2.cvtColor(frame_l, cv2.COLOR_BGR2RGB) # # plt.figure(1) # plt.imshow(tensor1[:, :, 0:6:2]) # plt.figure(2) # plt.imshow(tensor2[:, :, 0:6:2]) # plt.show() # Extract the face area after translation translated_images = [] image_translated = [frame_r, dst] # cv2.imshow("window", dst) # cv2.waitKey() for i in image_translated: # rects = detector(cv2.cvtColor(i, cv2.COLOR_BGR2GRAY), 1) rects = detector(i,1) if not rects: print("The rectangle is empty") break for rect in rects: (x, y, w, h) = rect_to_bb(rect) face_area = cv2.resize(i[y:y + h, x:x + w], (img_rows, img_cols)) translated_images.append(face_area) # print (np.asarray(translated_images).shape) if len(translated_images) == 2: tensor_translated = np.uint8(
np.zeros((face_area.shape[0], face_area.shape[1], 2 * face_area.shape[2]))
numpy.zeros
import numpy as np import datetime import dateutil.parser import cdflib import matplotlib.pyplot as plt import matplotlib as mpl import string #---Time conversion. All times are in UTC. # internally save time as (whole ut sec, fractional ut sec up to pica sec accuracy). # t_epoch, accurate to 1 milli second, in milli sec. # t_epoch16, accurate to 1 pico second, real part in sec, imagine part in pica sec. # t_tt2000, accurate to 1 nano second, in nano sec, contains leap second. # t_ut, accurate to 1 milli second, in sec. # datetime, accurate to 1 micro second, in object. class ut(object): t0_datetime = datetime.datetime(1970,1,1) secofday = 86400. secofday1 = 1/secofday t0_jd = 2440587.5 # in day, 0 of Julian day. t0_mjd = 40587. # in day, 0 of modified Julian day. t0_sdt = 50716800. # in sec, 0 of times in SDT. # real part is the ut second, imaginary part is the fractional second. def __init__(self, times, format=''): # input can be an array of string or number, or a single string or number. if type(times) == str: # input is a string, change it into a list. t_input = [times] elif not isinstance(times, (list,np.ndarray)): # input is not a list or nparray. t_input = [times] else: t_input = times # complex 128 includes 2 float 64, which have >14 significant digits. self.t_ep16 = np.zeros(len(t_input),dtype=np.complex128) # input is a string, parse each. if type(t_input[0]) == str: t_ut = np.empty(len(t_input)) for i, ttime in enumerate(t_input): if format == '': # no format code, use parser. t_datetime = dateutil.parser.parse(ttime) else: # use explicit format codes. t_datetime = datetime.datetime.strptime(ttime, format) t_ut[i] = (t_datetime-self.t0_datetime).total_seconds() self.t_ep16.real = np.remainder(t_ut, 1) self.t_ep16.imag = t_ut - self.t_ep16.real elif type(t_input[0]) == datetime.datetime: t_ut = np.empty(len(t_input)) for i, ttime in enumerate(t_input): t_ut[i] = (ttime-self.t0_datetime).total_seconds() self.t_ep16.real = np.remainder(t_ut, 1) self.t_ep16.imag = t_ut - self.t_ep16.real else: # input should be number, then use numpy array. # datetime object is used in some conversions, it's accurate to milli sec. if type(t_input) == list: t_input = np.array(t_input) if format == '': format = 'ut' if format in ['ut','utc','unix']: # ut in sec, accurate to milli sec. self.t_ep16.imag = np.remainder(t_input, 1) self.t_ep16.real = t_input - self.t_ep16.imag elif format == 'epoch': # epoch is in msec, accurate to milli sec. t0 = cdflib.cdfepoch.breakdown_epoch(t_input[0]) t_datetime = datetime.datetime(*t0) t0 = (t_datetime-self.t0_datetime).total_seconds() t_ut = t0+(t_input-t_input[0])*1e-3 self.t_ep16.imag = np.remainder(t_ut, 1) self.t_ep16.real = t_ut-self.t_ep16.imag elif format == 'epoch16': # epoch16 is in (sec,pica sec), accurate to pica sec. # get the ut sec for the first time. t_list = cdflib.cdfepoch.breakdown_epoch16(t_input[0]) t_datetime = datetime.datetime(*t_list[0:6]) t0 = (t_datetime-self.t0_datetime).total_seconds() # ut sec, in sec. # decompose ut sec and fractional sec. self.t_ep16.real = t0+t_input.real-t_input.real[0] self.t_ep16.imag = t_input.imag*1e-12 # convert pica sec to sec. elif format == 'tt2000': # tt2000 is in nano sec, accurate to nano sec. # get the ut sec for the first time. t_list = cdflib.cdfepoch.breakdown_tt2000(t_input[0]) t_datetime = datetime.datetime(*t_list[0:6]) t0_ut = (t_datetime-self.t0_datetime).total_seconds() # ut sec, in sec. # decompose input time into sec and fractional sec in sec. t0_t2000 = np.longlong(t_input[0]-t_list[6]*1e6-t_list[7]*1e3-t_list[8]) # the first time without fractional sec. t_dt = np.int64(t_input-t0_t2000) # nano sec relative to the first time. dt_dt = np.mod(t_dt, np.int64(1e9)) # the part of fractional sec in nano sec. self.t_ep16.real = t0_ut+(t_dt-dt_dt)*1e-9 self.t_ep16.imag = dt_dt*1e-9 elif format == 'mjd': # modified Julian day, in day. t_ut = (t_input-self.t0_mjd)*self.secofday self.t_ep16.imag = np.remainder(t_ut, 1) self.t_ep16.real = t_ut-self.t_ep16.imag elif format == 'jd': # Julian day, in day. t_ut = (t_input-self.t0_jd)*self.secofday self.t_ep16.imag = np.remainder(t_ut, 1) self.t_ep16.real = t_ut-self.t_ep16.imag elif format == 'sdt': # times in SDT, in sec, has a different zero time. t_ut = t_input-self.t0_sdt self.t_ep16.imag = np.remainder(t_ut, 1) self.t_ep16.real = t_ut-self.t_ep16.imag def __getitem__(self, item): return self.t_ep16[item].real+self.t_ep16[item].imag def __eq__(self, other): if type(other) == ut: return self.t_ep16 == other.t_ep16 elif np.iscomplex(other): return self.t_ep16 == other else: return self.ut() == other def __lt__(self, other): if type(other) == ut: return self.t_ep16 < other.t_ep16 elif np.iscomplex(other): return self.t_ep16 < other else: return self.ut() < other def __le__(self, other): if type(other) == ut: return self.t_ep16 <= other.t_ep16 elif np.iscomplex(other): return self.t_ep16 <= other else: return self.ut() <= other def __gt__(self, other): if type(other) == ut: return self.t_ep16 > other.t_ep16 elif np.iscomplex(other): return self.t_ep16 > other else: return self.ut() > other def __ge__(self, other): if type(other) == ut: return self.t_ep16 >= other.t_ep16 elif
np.iscomplex(other)
numpy.iscomplex
import numpy as np from PIL import Image import os from skimage.transform import resize from scipy.ndimage.filters import convolve import argparse from sklearn.metrics import mean_squared_error as compare_mse from sklearn.metrics import mean_absolute_error as compare_mae from skimage.measure import compare_psnr from skimage.measure import compare_ssim compare_mae5 = lambda a, b: compare_mae(a, b) * 1e5 compare_rmse = lambda a, b: np.sqrt(compare_mse(a, b)) compare_rmse5 = lambda a, b: np.sqrt(compare_mse(a, b)) * 1e5 resize2 = lambda x, y: resize(x, output_shape=y, preserve_range=True, anti_aliasing=True, mode='constant') parser = argparse.ArgumentParser() parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated") parser.add_argument("--version", type=str, default='testcube3d_latest', help="Version of model") args = parser.parse_args() path = os.path.join(args.result_dir, args.version) output_file = os.path.join(args.result_dir, args.version, 'scores_bi.txt') with open(output_file, 'w') as f: print('Loading data paths...') # Load data real_As = sorted([os.path.join(path, x) for x in os.listdir(path) if 'real_A' in x]) fake_Bs = sorted([os.path.join(path, x) for x in os.listdir(path) if 'fake_B' in x]) real_Bs = sorted([os.path.join(path, x) for x in os.listdir(path) if 'real_B' in x]) fake_As = sorted([os.path.join(path, x) for x in os.listdir(path) if 'fake_A' in x]) is_backward = True if len(fake_As) > 0 else False if is_backward: real_As = sorted([os.path.join(path, x) for x in os.listdir(path) if 'real_A' in x]) f.write('Model: {}\tVersion: {}\tFwrd: {} \tBwrd: {}\n'.format(args.result_dir, args.version, len(fake_Bs), len(fake_As))) # Forward rmse_s, mae_s, psnr_s, ssim_s = [], [], [], [] for fake_B_path, real_B_path in zip(fake_Bs, real_Bs): print('Loading real_B:', real_B_path) im_true = np.load(real_B_path).flatten() print('Loading fake_B:', fake_B_path) im_pred = np.load(fake_B_path).flatten() print('comparing normal...') rmse = compare_rmse(im_true, im_pred) rmse_s.append(rmse) print('rmse: ', rmse) mae = compare_mae(im_true, im_pred) mae_s.append(mae) print('mae: ', mae) psnr = compare_psnr(im_true, im_pred) psnr_s.append(psnr) print('psnr:', psnr) ssim = compare_ssim(im_true, im_pred) ssim_s.append(ssim) print('ssim:', ssim) del im_pred del im_true print('\nForward Real Results\n') print('Total RMSE: {:.4f}\t{:.4f}\n'.format(np.mean(rmse_s), np.std(rmse_s))) print('Total MAE: {:.4f}\t{:.4f}\n'.format(np.mean(mae_s), np.std(mae_s))) print('Total PSNR: {:.4f}\t{:.4f}\n'.format(np.mean(psnr_s), np.std(psnr_s))) print('Total SSIM: {:.4f}\t{:.4f}\n'.format(np.mean(ssim_s),
np.std(ssim_s)
numpy.std
''' This is a follow up of https://letianzj.github.io/portfolio-management-one.html It backtests four portfolios: GMV, tangent, maximum diversification and risk parity and compare them with equally-weighted portfolio ''' import os import numpy as np import pandas as pd import pytz from datetime import datetime, timezone import quanttrader as qt from scipy.optimize import minimize import matplotlib.pyplot as plt import empyrical as ep import pyfolio as pf # set browser full width from IPython.core.display import display, HTML display(HTML("<style>.container { width:100% !important; }</style>")) # ------------------ help functions -------------------------------- # def minimum_vol_obj(wo, cov): w = wo.reshape(-1, 1) sig_p = np.sqrt(np.matmul(w.T,
np.matmul(cov, w)
numpy.matmul
import matplotlib.pyplot import numpy def errorize(observation, error): """ Adds error to the observation. :param observation: original observation :param error: error probability :return: errored observation """ errored = observation for i in range(len(errored)): if numpy.random.rand() < error: errored[i] = (errored[i] + 1) % 2 return errored def sensor_model(location, states, moves, error): """ Gets the sensor model. :param location: current location :param states: possible states :param moves: possible moves :param error: error probability :return: sensor matrix (N x N) """ N = len(states) matrix = numpy.zeros((N, N)) actual_observation = errorize(sense(location, states, moves), error) for i in range(N): true_observation = sense(states[i], states, moves) d = 0 for true_direction, actual_direction in zip(true_observation, actual_observation): if true_direction != actual_direction: d = d + 1 matrix[i][i] = ((1 - error) ** (len(true_observation) - d)) * (error ** d) return matrix def transition_model(states, moves): """ Gets the transitional model. :param states: possible states :param moves: possible moves :return: transition matrix (N x N) """ N = len(states) matrix = numpy.ndarray((N, N)) for i in range(N): observation = sense(states[i], states, moves) n_zeroes = len(observation) - sum(observation) for j in range(N): matrix[i][j] = 0.0 if n_zeroes == 0 else 1.0 / n_zeroes return matrix def viterbi(locations, states, moves, error): """ Viterbi algorithm. :param locations: path locations :param states: possible states :param moves: possible moves :param error: error probability :return: best possible states """ N = len(states) T = len(locations) M = numpy.ndarray((N, T + 1)) M_star = numpy.ndarray((N, T + 1), numpy.int) transition_matrix = transition_model(states, moves) initial_transition = numpy.full((N,), 1.0 / N) for i in range(N): M[i][1] = initial_transition[i] M_star[i][1] = 0 for t in range(2, T + 1): sensor_matrix = sensor_model(locations[t - 1], states, moves, error) for i in range(N): max_finding = [] for j in range(N): max_finding.append(M[j][t - 1] * transition_matrix[j][i] * sensor_matrix[i][i]) M[i][t] = max(max_finding) M_star[i][t] = numpy.argmax(max_finding) best_path = numpy.ndarray((T + 1,), numpy.int) max_finding = [] for i in range(N): max_finding.append(M[i][T]) best_path[T] = numpy.argmax(max_finding) for i in range(T, 1, -1): best_path[i - 1] = M_star[best_path[i]][i] return [states[index] for index in best_path[1:]] def question_two(locations, states, moves, error): """ Solution to question two. :param locations: path locations :param states: possible states :param moves: possible moves :param error: error probability :return: path accuracies at every time """ viterbi_states = viterbi(locations, states, moves, error) accuracies = [] accurate_count = 0 for index, (location, viterbi_state) in enumerate(zip(locations, viterbi_states)): if location == viterbi_state: accurate_count = accurate_count + 1 accuracies.append(accurate_count / (index + 1)) return accuracies def manhattan(location1, location2): """ Manhattan distance. :param location1: x :param location2: y :return: distance """ return abs(location1[0] - location2[0]) + abs(location1[1] - location2[1]) def forward(locations, states, moves, error): """ Forward algorithm. :param locations: path locations :param states: possible states :param moves: possible moves :param error: error probability :return: best possible states """ N = len(states) forward_states = [] transition_matrix = transition_model(states, moves) forward_variable =
numpy.full((N,), 1.0 / N)
numpy.full
#!/usr/bin/python import math import numpy as np import scipy from scipy.signal import argrelextrema, find_peaks import scipy.ndimage as nd import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd import seaborn as sns from pylab import cm import os import sys import re import sympy import cmath import matplotlib.patches as patches from matplotlib import colors as m2colors cwd = os.getcwd() sns.set(style="ticks", font_scale=1.5) mcolors = dict(m2colors.BASE_COLORS, **m2colors.CSS4_COLORS) def static_alphaG(p,t): return p['a0'] *
np.exp(t/p['tau_SG'])
numpy.exp
import numpy as np class stress(np.ndarray): # Inherits Numpy array class # def __new__(cls, a): # Create Array Object obj =
np.asarray(a)
numpy.asarray
import numpy as np import os import torch import torchvision from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from torch.utils.data import Dataset, random_split from torchvision import transforms import PIL.Image as Image from sklearn.datasets import load_boston ## Custom PyTorch Dataset Class wrapper class CustomDataset(Dataset): def __init__(self, data, target, device=None, transform=None): self.transform = transform if device is not None: # Push the entire data to given device, eg: cuda:0 self.data = data.float().to(device) self.targets = target.long().to(device) else: self.data = data.float() self.targets = target.long() def __len__(self): return len(self.targets) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() sample_data = self.data[idx] label = self.targets[idx] if self.transform is not None: sample_data = self.transform(sample_data) return (sample_data, label) # .astype('float32') class CustomDataset_WithId(Dataset): def __init__(self, data, target, transform=None): self.transform = transform self.data = data # .astype('float32') self.targets = target self.X = self.data self.Y = self.targets def __len__(self): return len(self.targets) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() sample_data = self.data[idx] label = self.targets[idx] if self.transform is not None: sample_data = self.transform(sample_data) return sample_data, label, idx # .astype('float32') ## Utility function to load datasets from libsvm datasets def csv_file_load(path, dim, save_data=False): data = [] target = [] with open(path) as fp: line = fp.readline() while line: temp = [i for i in line.strip().split(",")] target.append(int(float(temp[-1]))) # Class Number. # Not assumed to be in (0, K-1) temp_data = [0] * dim count = 0 for i in temp[:-1]: # ind, val = i.split(':') temp_data[count] = float(i) count += 1 data.append(temp_data) line = fp.readline() X_data = np.array(data, dtype=np.float32) Y_label = np.array(target) if save_data: # Save the numpy files to the folder where they come from data_np_path = path + '.data.npy' target_np_path = path + '.label.npy' np.save(data_np_path, X_data) np.save(target_np_path, Y_label) return (X_data, Y_label) def libsvm_file_load(path, dim, save_data=False): data = [] target = [] with open(path) as fp: line = fp.readline() while line: temp = [i for i in line.strip().split(" ")] target.append(int(float(temp[0]))) # Class Number. # Not assumed to be in (0, K-1) temp_data = [0] * dim for i in temp[1:]: ind, val = i.split(':') temp_data[int(ind) - 1] = float(val) data.append(temp_data) line = fp.readline() X_data = np.array(data, dtype=np.float32) Y_label = np.array(target) if save_data: # Save the numpy files to the folder where they come from data_np_path = path + '.data.npy' target_np_path = path + '.label.npy' np.save(data_np_path, X_data) np.save(target_np_path, Y_label) return (X_data, Y_label) def census_load(path, dim, save_data=False): enum = enumerate( ['Private', 'Self-emp-not-inc', 'Self-emp-inc', 'Federal-gov', 'Local-gov', 'State-gov', 'Without-pay', 'Never-worked']) workclass = dict((j, i) for i, j in enum) enum = enumerate( ['Bachelors', 'Some-college', '11th', 'HS-grad', 'Prof-school', 'Assoc-acdm', 'Assoc-voc', '9th', '7th-8th', '12th', 'Masters', '1st-4th', '10th', 'Doctorate', '5th-6th', 'Preschool']) education = dict((j, i) for i, j in enum) enum = enumerate( ['Married-civ-spouse', 'Divorced', 'Never-married', 'Separated', 'Widowed', 'Married-spouse-absent', 'Married-AF-spouse']) marital_status = dict((j, i) for i, j in enum) enum = enumerate(['Tech-support', 'Craft-repair', 'Other-service', 'Sales', 'Exec-managerial', 'Prof-specialty', 'Handlers-cleaners', 'Machine-op-inspct', 'Adm-clerical', 'Farming-fishing', 'Transport-moving', 'Priv-house-serv', 'Protective-serv', 'Armed-Forces']) occupation = dict((j, i) for i, j in enum) enum = enumerate(['Wife', 'Own-child', 'Husband', 'Not-in-family', 'Other-relative', 'Unmarried']) relationship = dict((j, i) for i, j in enum) enum = enumerate(['White', 'Asian-Pac-Islander', 'Amer-Indian-Eskimo', 'Other', 'Black']) race = dict((j, i) for i, j in enum) sex = {'Female': 0, 'Male': 1} enum = enumerate( ['United-States', 'Cambodia', 'England', 'Puerto-Rico', 'Canada', 'Germany', 'Outlying-US(Guam-USVI-etc)', 'India', 'Japan', 'Greece', 'South', 'China', 'Cuba', 'Iran', 'Honduras', 'Philippines', 'Italy', 'Poland', 'Jamaica', 'Vietnam', 'Mexico', 'Portugal', 'Ireland', 'France', 'Dominican-Republic', 'Laos', 'Ecuador', 'Taiwan', 'Haiti', 'Columbia', 'Hungary', 'Guatemala', 'Nicaragua', 'Scotland', 'Thailand', 'Yugoslavia', 'El-Salvador', 'Trinadad&Tobago', 'Peru', 'Hong', 'Holand-Netherlands']) native_country = dict((j, i) for i, j in enum) data = [] target = [] with open(path) as fp: line = fp.readline() while line: temp = [i.strip() for i in line.strip().split(",")] if '?' in temp or len(temp) == 1: line = fp.readline() continue if temp[-1].strip() == "<=50K" or temp[-1].strip() == "<=50K.": target.append(0) else: target.append(1) temp_data = [0] * dim count = 0 # print(temp) for i in temp[:-1]: if count == 1: temp_data[count] = workclass[i.strip()] elif count == 3: temp_data[count] = education[i.strip()] elif count == 5: temp_data[count] = marital_status[i.strip()] elif count == 6: temp_data[count] = occupation[i.strip()] elif count == 7: temp_data[count] = relationship[i.strip()] elif count == 8: temp_data[count] = race[i.strip()] elif count == 9: temp_data[count] = sex[i.strip()] elif count == 13: temp_data[count] = native_country[i.strip()] else: temp_data[count] = float(i) temp_data[count] = float(temp_data[count]) count += 1 data.append(temp_data) line = fp.readline() X_data = np.array(data, dtype=np.float32) Y_label = np.array(target) if save_data: # Save the numpy files to the folder where they come from data_np_path = path + '.data.npy' target_np_path = path + '.label.npy' np.save(data_np_path, X_data) np.save(target_np_path, Y_label) return (X_data, Y_label) def create_imbalance(x_trn, y_trn, x_val, y_val, x_tst, y_tst, num_cls, ratio): np.random.seed(42) samples_per_class = np.zeros(num_cls) val_samples_per_class = np.zeros(num_cls) tst_samples_per_class = np.zeros(num_cls) for i in range(num_cls): samples_per_class[i] = len(np.where(y_trn == i)[0]) val_samples_per_class[i] = len(np.where(y_val == i)[0]) tst_samples_per_class[i] = len(np.where(y_tst == i)[0]) min_samples = int(np.min(samples_per_class) * 0.1) selected_classes = np.random.choice(np.arange(num_cls), size=int(ratio * num_cls), replace=False) for i in range(num_cls): if i == 0: if i in selected_classes: subset_idxs = np.random.choice(np.where(y_trn == i)[0], size=min_samples, replace=False) else: subset_idxs = np.where(y_trn == i)[0] x_trn_new = x_trn[subset_idxs] y_trn_new = y_trn[subset_idxs].reshape(-1, 1) else: if i in selected_classes: subset_idxs = np.random.choice(np.where(y_trn == i)[0], size=min_samples, replace=False) else: subset_idxs = np.where(y_trn == i)[0] x_trn_new = np.row_stack((x_trn_new, x_trn[subset_idxs])) y_trn_new = np.row_stack((y_trn_new, y_trn[subset_idxs].reshape(-1, 1))) max_samples = int(np.max(val_samples_per_class)) for i in range(num_cls): y_class = np.where(y_val == i)[0] if i == 0: subset_ids =
np.random.choice(y_class, size=max_samples - y_class.shape[0], replace=True)
numpy.random.choice
'''Compare different estimators on public datasets Code modified from https://github.com/tmadl/sklearn-random-bits-forest ''' import argparse import os import pickle as pkl import time import warnings from collections import defaultdict, OrderedDict from typing import Any, Callable, List, Dict, Tuple import numpy as np import pandas as pd from scipy.interpolate import interp1d from sklearn.base import BaseEstimator from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.metrics import accuracy_score, roc_auc_score, average_precision_score, make_scorer from sklearn.model_selection import KFold, train_test_split, cross_validate from tqdm import tqdm from experiments.config.config_general import DATASETS from experiments.config.util import get_estimators_for_dataset, get_ensembles_for_dataset from experiments.util import Model, MODEL_COMPARISON_PATH, get_clean_dataset, get_best_accuracy, remove_x_axis_duplicates warnings.filterwarnings("ignore", message="Bins whose width") def get_complexity(estimator: BaseEstimator) -> float: if isinstance(estimator, (RandomForestClassifier, GradientBoostingClassifier)): complexity = 0 for tree in estimator.estimators_: if type(tree) is np.ndarray: tree = tree[0] complexity += (2 ** tree.get_depth()) * tree.get_depth() return complexity else: return estimator.complexity_ def compute_meta_auc(result_data: pd.DataFrame, prefix: str = '', low_complexity_cutoff: int = 30, max_start_complexity: int = 10) -> Tuple[pd.DataFrame, Tuple[float]]: # LOW_COMPLEXITY_CUTOFF: complexity score under which a model is considered interpretable # MAX_START_COMPLEXITY: min complexity of curves included in the AUC-of-AUC comparison must be below this value # x_column = f'{prefix}_mean_complexity' x_column = f'mean_complexity' compute_columns = result_data.columns[result_data.columns.str.contains('mean')] estimators = np.unique(result_data.index) xs = np.empty(len(estimators), dtype=object) ys = xs.copy() for i, est in enumerate(estimators): est_result_df = result_data[result_data.index.str.fullmatch(est)] complexities_unsorted = est_result_df[x_column] complexity_sort_indices = complexities_unsorted.argsort() complexities = complexities_unsorted[complexity_sort_indices] roc_aucs = est_result_df.iloc[complexity_sort_indices][compute_columns] xs[i] = complexities.values ys[i] = roc_aucs.values # filter out curves which start too complex start_under_10 = list(map(lambda x: min(x) < max_start_complexity, xs)) # find overlapping complexity region for roc-of-roc comparison meta_auc_lb = max([x[0] for x in xs]) endpts =
np.array([x[-1] for x in xs])
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Apr 10 14:15:37 2020 @author: <NAME> """ import numpy as np import matplotlib.pyplot as plt import scipy.io as sio import sklearn from sklearn.model_selection import train_test_split, StratifiedKFold import seaborn as sns # from tabulate import tabulate # from imblearn import under_sampling, over_sampling def normalize(pressure): """ Scales each array of the given array of arrays to the range [0, 1] Only considers values in the same tactile frame """ normalized_p = np.copy(pressure) for i in range(pressure.shape[0]): min_p = np.min(pressure[i]) normalized_p[i] = (pressure[i] - min_p) / np.max(pressure[i] - min_p) return normalized_p def normalize_per_pixel(pressure): """ Scales each element of the given array of arrays to the range [0, 1] Considers values in all tactile frames """ normalized_p =
np.copy(pressure)
numpy.copy
# -*- coding: utf-8 -*- """ Created on Tue Dec 10 14:26:54 2019 @author: Mnemosyne Functions to compute the features of the song """ import os import shutil import glob import sys import random import re import numpy as np import scipy as sp import scipy.io.wavfile as wav from scipy.fftpack import fft, rfft from scipy.optimize import curve_fit import scipy.signal as signal from scipy.stats.mstats import gmean from sklearn.cluster import KMeans from pydub import AudioSegment from pydub import silence import matplotlib.pyplot as plt import matplotlib.colors as colors from mpl_toolkits.mplot3d import axes3d import matplotlib.colors as colors from threading import Thread import librosa.feature import librosa.effects from songbird_data_analysis import Song_functions # Onset and offset of the syllables: to compute duration of syllables and gaps def cut(rawsong, sr, threshold, min_syl_dur, min_silent_dur, f_cut_min, f_cut_max): """ This function is meant to be used on a single recording, create an external loop to apply on several recordings (see function distribution). VARIABLES: - rawsong: the wav file a song - sr: sampling rate OUTPUT: - onset and offset of each syllable of the song So for syllable 1 of a song, its onset is onsets[0] and its offset is offsets[0]. To get that segment of the spectrogram, you'd take spect[:,onsets[0]:offsets[0]] """ # parameters that might be adjusted dependending on the bird rawsong = rawsong.astype(float) rawsong = rawsong.flatten() amp = Song_functions.smooth_data(rawsong,sr,freq_cutoffs=(f_cut_min, f_cut_max)) (onsets, offsets) = Song_functions.segment_song(amp,segment_params={'threshold': threshold, 'min_syl_dur': min_syl_dur, 'min_silent_dur': min_silent_dur},samp_freq=sr) # Detects syllables according to the threshold you set return amp, onsets, offsets def test_features(songfile, args): """ A function to tune the parameter depending on the dataset and test the feature extraction INPUT: One recording. OUTPUT - plot of the spectrogram, onset & offset and amplitude of the selected syllables - plot the pitches - plot the coupling of the features two by two """ # read the data sr, samples = wav.read(songfile[0]) y, sr = librosa.load(songfile[0], sr=16000) # determine onset and offset of the syllables for this song amp, onsets, offsets = cut(samples, sr, args.threshold, args.min_syl_dur, args.min_silent_dur, args.f_cut_min, args.f_cut_max) # Make output directory aux_output_dir = os.path.join(args.data_dir,args.output_dir) if not os.path.isdir(aux_output_dir): os.makedirs(aux_output_dir) os.chdir(aux_output_dir) # Spectrogram with librosa X = librosa.stft(y, n_fft=args.N, hop_length=args.H, win_length=args.N, window='hann', pad_mode='constant', center=True) Y = np.log(1 + 100 * np.abs(X) ** 2) T_coef = np.arange(X.shape[1]) * args.H / sr K = args.N // 2 F_coef = np.arange(K + 1) * sr / args.N # Plot noverlap = args.nperseg - args.overlap fig, (ax1, ax2, ax3) = plt.subplots(nrows=3, sharex=True) # Plots spectrogram #(f,t,spect)=sp.signal.spectrogram(samples, sr, args.window, args.nperseg, noverlap, mode='complex') #ax1.imshow(10*np.log10(np.square(abs(spect))), origin="lower", aspect="auto", interpolation="none", extent=[0, max(t)*1000, min(f), max(f)], cmap = 'inferno') extent = [T_coef[0], T_coef[-1], F_coef[0], 8000] ax1.imshow(Y, cmap=args.color, aspect='auto', origin='lower', extent=extent, norm=colors.PowerNorm(gamma=0.2)) ax1.set_ylabel('Frequency (Hz)') # Plots song signal amplitude x_amp=np.arange(len(amp)) ax2.plot(x_amp/sr*1000,samples,color='grey') for i in range(0,len(onsets)): ax2.axvline(x=onsets[i]/sr*1000,color='olivedrab',linestyle='dashed') ax2.axvline(x=offsets[i]/sr*1000,color='darkslategrey',linestyle='dashed') ax2.set_ylabel('Amplitude (V)') # Plot smoothed amplitude of the song as per spectrogram index ax3.plot(x_amp/sr*1000, amp,color='grey') for i in range(0,len(onsets)): ax3.axvline(x=onsets[i]/sr*1000,color='olivedrab',linestyle='dashed') ax3.axvline(x=offsets[i]/sr*1000,color='darkslategrey',linestyle='dashed') ax3.axhline(y=args.threshold,color='black',label='Threshold') ax3.legend() ax3.set_ylabel('Amplitude (V)') ax3.set_xlabel('Time (ms)') ax1.spines['right'].set_visible(False) ax1.spines['top'].set_visible(False) ax1.spines['bottom'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['top'].set_visible(False) ax2.spines['bottom'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.spines['top'].set_visible(False) ax3.spines['bottom'].set_visible(False) ax1.tick_params(axis='x', labelbottom=False, bottom=False) ax2.tick_params(axis='x', labelbottom=False, bottom=False) ax3.tick_params(axis='x', labelbottom=True, bottom=True) plt.savefig(args.data_dir + '/' + args.output_dir + '/' + 'Test_selection_0' + '.' + args.format) # Duration, spectral flatness, mean pitch dur_syll = np.zeros((np.size(onsets),)) dur_gap = np.zeros((np.size(onsets),)) wiener = np.zeros((np.size(onsets),)) mean_pitch = np.zeros((np.size(onsets),)) max_pitch = np.zeros((np.size(onsets),)) min_pitch = np.zeros((np.size(onsets),)) direction_pitch = np.zeros((np.size(onsets),)) for j in range(0,
np.size(onsets)
numpy.size
# Utility Functions # Authors: <NAME> # Edited by: <NAME> ''' Used by the user to define channels that are hard coded for analysis. ''' # Imports necessary for this function import numpy as np import re from itertools import combinations def splitpatient(patient): stringtest = patient.find('seiz') if stringtest == -1: stringtest = patient.find('sz') if stringtest == -1: stringtest = patient.find('aw') if stringtest == -1: stringtest = patient.find('aslp') if stringtest == -1: stringtest = patient.find('_') if stringtest == -1: print("Not sz, seiz, aslp, or aw! Please add additional naming possibilities, or tell data gatherers to rename datasets.") else: pat_id = patient[0:stringtest] seiz_id = patient[stringtest:] # remove any underscores pat_id = re.sub('_', '', pat_id) seiz_id = re.sub('_', '', seiz_id) return pat_id, seiz_id def returnindices(pat_id, seiz_id=None): included_indices, onsetelecs, clinresult = returnnihindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnlaindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnummcindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returnjhuindices( pat_id, seiz_id) if included_indices.size == 0: included_indices, onsetelecs, clinresult = returntngindices( pat_id, seiz_id) return included_indices, onsetelecs, clinresult def returntngindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 if pat_id == 'id001ac': # included_indices = np.concatenate((np.arange(0,4), np.arange(5,55), # np.arange(56,77), np.arange(78,80))) included_indices = np.array([0, 1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 72, 73, 74, 75, 76, 78, 79]) elif pat_id == 'id002cj': # included_indices = np.array(np.arange(0,184)) included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 45, 46, 47, 48, 49, 50, 51, 52, 53, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 85, 86, 87, 88, 89, 90, 91, 92, 93, 100, 101, 102, 103, 104, 105, 106, 107, 108, 115, 116, 117, 118, 119, 120, 121, 122, 123, 129, 130, 131, 132, 133, 134, 135, 136, 137, # np.arange(143, 156) 143, 144, 145, 146, 147, 148, 149, 150, 151, 157, 158, 159, 160, 161, 162, 163, 164, 165, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182]) elif pat_id == 'id003cm': included_indices = np.concatenate((np.arange(0,13), np.arange(25,37), np.arange(40,50), np.arange(55,69), np.arange(70,79))) elif pat_id == 'id004cv': # removed OC'10, SC'5, CC'14/15 included_indices = np.concatenate((np.arange(0,23), np.arange(25,39), np.arange(40,59), np.arange(60,110))) elif pat_id == 'id005et': included_indices = np.concatenate((np.arange(0,39), np.arange(39,47), np.arange(52,62), np.arange(62,87))) elif pat_id == 'id006fb': included_indices = np.concatenate((np.arange(10,19), np.arange(40,50), np.arange(115,123))) elif pat_id == 'id008gc': included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 61, 62, 63, 64, 65, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89, 90, 92, 93, 94, 95, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 110, 111]) elif pat_id == 'id009il': included_indices = np.concatenate((np.arange(0,10), np.arange(10,152))) elif pat_id == 'id010js': included_indices = np.concatenate((np.arange(0,14), np.arange(15,29), np.arange(30,42), np.arange(43,52), np.arange(53,65), np.arange(66,75), np.arange(76,80), np.arange(81,85), np.arange(86,94), np.arange(95,98), np.arange(99,111), np.arange(112,124))) elif pat_id == 'id011ml': included_indices = np.concatenate((np.arange(0,18), np.arange(21,68), np.arange(69,82), np.arange(82,125))) elif pat_id == 'id012pc': included_indices = np.concatenate((np.arange(0,4), np.arange(9,17), np.arange(18,28), np.arange(31,41), np.arange(44,56), np.arange(57,69), np.arange(70,82), np.arange(83,96), np.arange(97,153))) elif pat_id == 'id013pg': included_indices = np.array([2, 3, 4, 5, 15, 18, 19, 20, 21, 23, 24, 25, 30, 31, 32, 33, 34, 35, 36, 37, 38, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 77, 78]) elif pat_id == 'id014rb': included_indices = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 135, 136, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164]) elif pat_id == 'id015sf': included_indices = np.concatenate((np.arange(0,37), np.arange(38,77), np.arange(78,121))) return included_indices, onsetelecs, clinresult def returnnihindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 if pat_id == 'pt1': included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43), np.arange(45, 69), np.arange(71, 95))) onsetelecs = set(['ATT1', 'ATT2', 'AD1', 'AD2', 'AD3', 'AD4', 'PD1', 'PD2', 'PD3', 'PD4']) resectelecs = set(['ATT1', 'ATT2', 'ATT3', 'ATT4', 'ATT5', 'ATT6', 'ATT7', 'ATT8', 'AST1', 'AST2', 'AST3', 'AST4', 'PST1', 'PST2', 'PST3', 'PST4', 'AD1', 'AD2', 'AD3', 'AD4', 'PD1', 'PD2', 'PD3', 'PD4', 'PLT5', 'PLT6', 'SLT1']) clinresult = 1 elif pat_id == 'pt2': # [1:14 16:19 21:25 27:37 43 44 47:74] included_indices = np.concatenate((np.arange(0, 14), np.arange(15, 19), np.arange( 20, 25), np.arange( 26, 37), np.arange( 42, 44), np.arange(46, 74))) onsetelecs = set(['MST1', 'PST1', 'AST1', 'TT1']) resectelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT6', 'TT6', 'G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G12', 'G18', 'G19', 'G20', 'G26', 'G27', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 elif pat_id == 'pt3': # [1:19 21:37 42:43 46:69 71:107] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 69), np.arange(70, 107))) onsetelecs = set(['SFP1', 'SFP2', 'SFP3', 'IFP1', 'IFP2', 'IFP3', 'MFP2', 'MFP3', 'OF1', 'OF2', 'OF3', 'OF4']) resectelecs = set(['FG1', 'FG2', 'FG9', 'FG10', 'FG17', 'FG18', 'FG25', 'SFP1', 'SFP2', 'SFP3', 'SFP4', 'SFP5', 'SFP6', 'SFP7', 'SFP8', 'MFP1', 'MFP2', 'MFP3', 'MFP4', 'MFP5', 'MFP6', 'IFP1', 'IFP2', 'IFP3', 'IFP4', 'OF3', 'OF4']) clinresult = 1 elif pat_id == 'pt4': # [1:19 21:37 42:43 46:69 71:107] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26), np.arange(28, 36))) onsetelecs = set([]) resectelecs = set([]) clinresult = -1 elif pat_id == 'pt5': included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 26), np.arange(28, 36))) onsetelecs = set([]) resectelecs = set([]) clinresult = -1 elif pat_id == 'pt6': # [1:36 42:43 46 52:56 58:71 73:95] included_indices = np.concatenate((np.arange(0, 36), np.arange(41, 43), np.arange(45, 46), np.arange(51, 56), np.arange(57, 71), np.arange(72, 95))) onsetelecs = set(['LA1', 'LA2', 'LA3', 'LA4', 'LAH1', 'LAH2', 'LAH3', 'LAH4', 'LPH1', 'LPH2', 'LPH3', 'LPH4']) resectelecs = set(['LALT1', 'LALT2', 'LALT3', 'LALT4', 'LALT5', 'LALT6', 'LAST1', 'LAST2', 'LAST3', 'LAST4', 'LA1', 'LA2', 'LA3', 'LA4', 'LPST4', 'LAH1', 'LAH2', 'LAH3', 'LAH4', 'LPH1', 'LPH2']) clinresult = 2 elif pat_id == 'pt7': # [1:17 19:35 37:38 41:62 67:109] included_indices = np.concatenate((np.arange(0, 17), np.arange(18, 35), np.arange(36, 38), np.arange(40, 62), np.arange(66, 109))) onsetelecs = set(['MFP1', 'LFP3', 'PT2', 'PT3', 'PT4', 'PT5', 'MT2', 'MT3', 'AT3', 'AT4', 'G29', 'G30', 'G39', 'G40', 'G45', 'G46']) resectelecs = set(['G28', 'G29', 'G30', 'G36', 'G37', 'G38', 'G39', 'G41', 'G44', 'G45', 'G46', 'LFP1', 'LFP2', 'LSF3', 'LSF4']) clinresult = 3 elif pat_id == 'pt8': # [1:19 21 23 30:37 39:40 43:64 71:76] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 21), np.arange( 22, 23), np.arange( 29, 37), np.arange( 38, 40), np.arange(42, 64), np.arange(70, 76))) onsetelecs = set(['G19', 'G23', 'G29', 'G30', 'G31', 'TO6', 'TO5', 'MST3', 'MST4', 'O8', 'O9']) resectelecs = set(['G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31', 'MST2', 'MST3', 'MST4', 'PST2', 'PST3', 'PST4']) clinresult = 1 elif pat_id == 'pt10': # [1:3 5:19 21:35 48:69] included_indices = np.concatenate((np.arange(0, 3), np.arange(4, 19), np.arange(20, 35), np.arange(47, 69))) onsetelecs = set(['TT1', 'TT2', 'TT4', 'TT6', 'MST1', 'AST2']) resectelecs = set(['G3', 'G4', 'G5', 'G6', 'G11', 'G12', 'G13', 'G14', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4']) clinresult = 2 elif pat_id == 'pt11': # [1:19 21:35 37 39 40 43:74 76:81 83:84] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 35), np.arange( 36, 37), np.arange( 38, 40), np.arange( 42, 74), np.arange(75, 81), np.arange(82, 84))) onsetelecs = set(['RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG44', 'RG45']) resectelecs = set(['RG4', 'RG5', 'RG6', 'RG7', 'RG12', 'RG13', 'RG14', 'RG15', 'RG21', 'RG22', 'RG23', 'RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG45', 'RG46', 'RG47']) resectelecs = set(['RG4', 'RG5', 'RG6', 'RG7', 'RG12', 'RG13', 'RG14', 'RG15', 'RG21', 'RG22', 'RG23', 'RG29', 'RG30', 'RG31', 'RG37', 'RG38', 'RG39', 'RG45', 'RG46', 'RG47']) clinresult = 1 elif pat_id == 'pt12': # [1:15 17:33 38:39 42:61] included_indices = np.concatenate((np.arange(0, 15), np.arange(16, 33), np.arange(37, 39), np.arange(41, 61))) onsetelecs = set(['AST1', 'AST2', 'TT2', 'TT3', 'TT4', 'TT5']) resectelecs = set(['G19', 'G20', 'G21', 'G22', 'G23', 'G27', 'G28', 'G29', 'G30', 'G31', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 2 elif pat_id == 'pt13': # [1:36 39:40 43:66 69:74 77 79:94 96:103 105:130] included_indices = np.concatenate((np.arange(0, 36), np.arange(38, 40), np.arange( 42, 66), np.arange( 68, 74), np.arange( 76, 77), np.arange(78, 94), np.arange(95, 103), np.arange(104, 130))) onsetelecs = set(['G1', 'G2', 'G9', 'G10', 'G17', 'G18']) resectelecs = set(['G1', 'G2', 'G3', 'G4', 'G9', 'G10', 'G11', 'G17', 'G18', 'G19', 'AP2', 'AP3', 'AP4']) clinresult = 1 elif pat_id == 'pt14': # [1:19 21:37 41:42 45:61 68:78] included_indices = np.concatenate((np.arange(0, 3), np.arange(6, 10), np.arange( 11, 17), np.arange( 18, 19), np.arange( 20, 37), np.arange(40, 42), np.arange(44, 61), np.arange(67, 78))) onsetelecs = set(['MST1', 'MST2', 'TT1', 'TT2', 'TT3', 'AST1', 'AST2']) resectelecs = set(['TT1', 'TT2', 'TT3', 'AST1', 'AST2', 'MST1', 'MST2', 'PST1']) clinresult = 4 elif pat_id == 'pt15': # [2:7 9:30 32:36 41:42 45:47 49:66 69 71:85]; included_indices = np.concatenate((np.arange(1, 7), np.arange(8, 30), np.arange( 31, 36), np.arange( 40, 42), np.arange( 44, 47), np.arange(48, 66), np.arange(68, 69), np.arange(70, 85))) onsetelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'MST1', 'MST2', 'AST1', 'AST2', 'AST3']) resectelecs = set(['G2', 'G3', 'G4', 'G5', 'G10', 'G11', 'G12', 'G13', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 elif pat_id == 'pt16': # [1:19 21:37 42:43 46:53] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 53))) onsetelecs = set(['TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST3', 'MST4', 'G26', 'G27', 'G28', 'G18', 'G19', 'G20', 'OF4']) resectelecs = set(['G18', 'G19', 'G20', 'G26', 'G27', 'G28', 'G29', 'G30', 'TT1', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4' ]) clinresult = 1 elif pat_id == 'pt17': # [1:19 21:37 42:43 46:51] included_indices = np.concatenate((np.arange(0, 19), np.arange(20, 37), np.arange(41, 43), np.arange(45, 51))) onsetelecs = set(['TT1', 'TT2']) resectelecs = set(['G27', 'G28', 'G29', 'G30', 'TT', 'TT2', 'TT3', 'TT4', 'TT5', 'TT6', 'AST1', 'AST2', 'AST3', 'AST4', 'MST1', 'MST2', 'MST3', 'MST4']) clinresult = 1 return included_indices, onsetelecs, clinresult def returnlaindices(pat_id, seiz_id): included_indices = np.array([]) onsetelecs = None clinresult = -1 spreadelecs = None if pat_id == 'la01': # [1 3 7:8 11:13 17:19 22:26 32 34:35 37 42 50:55 58 ... # 62:65 70:72 77:81 84:97 100:102 105:107 110:114 120:121 130:131]; # onset_electrodes = {'Y''1', 'X''4', ... # 'T''5', 'T''6', 'O''1', 'O''2', 'B1', 'B2',...% rare onsets # } included_indices = np.concatenate((np.arange(0, 3), np.arange(6, 8), np.arange(10, 13), np.arange( 16, 19), np.arange( 21, 26), np.arange( 31, 32), np.arange( 33, 35), np.arange( 36, 37), np.arange( 41, 42), np.arange( 49, 55), np.arange( 57, 58), np.arange( 61, 65), np.arange( 69, 72), np.arange( 76, 81), np.arange( 83, 97), np.arange( 99, 102), np.arange( 104, 107), np.arange( 109, 114), np.arange(119, 121), np.arange(129, 131))) onsetelecs = ["X'4", "T'5", "T'6", "O'1", "O'2", "B1", "B2"] spreadelecs = ["P1", "P2", 'P6', "X1", "X8", "X9", "E'2", "E'3" "T'1"] if seiz_id == 'inter2': included_indices = np.concatenate((np.arange(0, 1), np.arange(7, 16), np.arange(21, 28), np.arange( 33, 36), np.arange( 39, 40), np.arange( 42, 44), np.arange( 46, 50), np.arange( 56, 58), np.arange( 62, 65), np.arange( 66, 68), np.arange( 69, 75), np.arange(76, 83), np.arange(85, 89), np.arange(96, 103), np.arange(106, 109), np.arange(111, 115), np.arange(116, 117), np.arange(119, 123), np.arange(126, 127), np.arange(130, 134), np.arange(136, 137), np.arange(138, 144), np.arange(146, 153))) if seiz_id == 'ictal2': included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 19), np.arange(20, 33), np.arange( 34, 37), np.arange( 38, 40), np.arange( 42, 98), np.arange(107, 136), np.arange(138, 158))) onsetelecs = ["Y'1"] clinresult = 1 elif pat_id == 'la02': # [1:4 7 9 11:12 15:18 21:28 30:34 47 50:62 64:67 ... # 70:73 79:87 90 95:99] included_indices = np.concatenate((np.arange(0, 4), np.arange(6, 7), np.arange(8, 9), np.arange( 10, 12), np.arange( 14, 18), np.arange( 20, 28), np.arange( 29, 34), np.arange( 46, 47), np.arange( 49, 62), np.arange( 63, 67), np.arange( 69, 73), np.arange( 78, 87), np.arange(89, 90), np.arange(94, 99))) onsetelecs = ["L'2", "L'3", "L'4"] clinresult = 1 elif pat_id == 'la03': # [1:3 6:33 36:68 77:163] included_indices = np.concatenate((np.arange(0, 3), np.arange(5, 33),
np.arange(35, 68)
numpy.arange
import numpy as np def energy(X,W_fixed): """ Input X is a vector (N by 1), and the shape of W_fixed is N by N.\n Return a 2D array E with shape (1,1) """ return (-1/2) * np.dot(np.dot(np.transpose(X),W_fixed),X) def f(W,X): """ W : W_fixed after storaging phase with shape (N,N) \n X : testing pattern X with shape (N,1) \n Return X_new with shape (N,1) """ i = 0 v = np.dot(W,X) for value in v : if value > 0 : v[i,0] = 1 elif value < 0 : v[i,0] = -1 else : v[i,0] = X[i,0] i += 1 return v X0 = np.array([ 1,-1, 1,-1, 1,-1]) X2 = np.array([-1, 1,-1, 1,-1, 1]) X4 = np.array([ 1, 1, 1, 1, 1, 1]) X6 = np.array([-1,-1,-1,-1,-1,-1]) X0 = X0.reshape(1,X0.size) X2 = X2.reshape(1,X2.size) X4 = X4.reshape(1,X4.size) X6 = X6.reshape(1,X6.size) X =
np.array([X0,X2,X4,X6])
numpy.array
import numpy as np import time from sklearn.utils import check_random_state from scipy.special import expit def sigmoid(x): return expit(np.clip(x, -30, 30)) class RestrictedBoltzmannMachine: def __init__(self, n_hidden_variables, learning_rate=0.1, batch_size=20, n_epochs=15, mu=0.5, pcd_steps=1, random_state=None, verbose=0): self.n_hidden = n_hidden_variables self.random_state = random_state self.n_epochs = n_epochs self.batch_size = batch_size self.learning_rate = learning_rate self.mu = mu self.pcd_steps = pcd_steps self.verbose = verbose def fit(self, X): self.random_state_ = check_random_state(self.random_state) X = np.asarray(X, dtype=np.bool) self.n_visible_ = X.shape[1] self.init_parameters() self.stochastic_gradient_descent(X) return self def init_parameters(self): sdev = 1.0 / np.sqrt(self.n_visible_) dim = (self.n_hidden, self.n_visible_) self.W_ = self.random_state_.normal(0, sdev, size=dim) self.b_ = np.zeros(self.n_visible_) self.c_ = np.zeros(self.n_hidden) self.VW_ = np.zeros(self.W_.shape) self.Vb_ = np.zeros(self.b_.shape) self.Vc_ = np.zeros(self.c_.shape) self.V = None def stochastic_gradient_descent(self, X): bs = self.batch_size now = time.time() for epoch in range(self.n_epochs): s = self.random_state_.permutation(X.shape[0]) X_s = X[s] for i in range(0, X_s.shape[0], bs): self.gradient_descent_step(X_s[i: i + bs]) if self.verbose > 2: print('Epoch {0} ({1:.1f}%).'.format(epoch + 1, 100*float(i)/(X_s.shape[0] - 1))) if self.verbose > 0: now, last = time.time(), now print('Epoch {0} ({1:.01f}s).'.format(epoch + 1, now - last)) if self.verbose > 3: print('Average reconstruction error: {0:.3f}.'.\ format(self.reconstruction_error(X[0: 10*bs]))) def gradient_descent_step(self, X): if self.V is None: self.V = np.array(X, dtype=np.bool) for i, vi in enumerate(self.V): self.V[i] = self.sample(vi, 1, thinning=self.pcd_steps - 1)[0] neg_W =
np.zeros(self.W_.shape)
numpy.zeros
from __future__ import print_function import numpy as np import itertools from numpy.testing import (assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal, suppress_warnings) import pytest from pytest import raises as assert_raises from pytest import warns as assert_warns from scipy.spatial import SphericalVoronoi, distance from scipy.spatial import _spherical_voronoi as spherical_voronoi from scipy.spatial.transform import Rotation from scipy.optimize import linear_sum_assignment TOL = 1E-10 class TestSphericalVoronoi(object): def setup_method(self): self.points = np.array([ [-0.78928481, -0.16341094, 0.59188373], [-0.66839141, 0.73309634, 0.12578818], [0.32535778, -0.92476944, -0.19734181], [-0.90177102, -0.03785291, -0.43055335], [0.71781344, 0.68428936, 0.12842096], [-0.96064876, 0.23492353, -0.14820556], [0.73181537, -0.22025898, -0.6449281], [0.79979205, 0.54555747, 0.25039913]] ) # Issue #9386 self.hemisphere_points = np.array([ [0.88610999, -0.42383021, 0.18755541], [0.51980039, -0.72622668, 0.4498915], [0.56540011, -0.81629197, -0.11827989], [0.69659682, -0.69972598, 0.15854467]]) # Issue #8859 phi = np.linspace(0, 2 * np.pi, 10, endpoint=False) # azimuth angle theta = np.linspace(0.001, np.pi * 0.4, 5) # polar angle theta = theta[np.newaxis, :].T phiv, thetav = np.meshgrid(phi, theta) phiv = np.reshape(phiv, (50, 1)) thetav = np.reshape(thetav, (50, 1)) x = np.cos(phiv) * np.sin(thetav) y = np.sin(phiv) * np.sin(thetav) z = np.cos(thetav) self.hemisphere_points2 = np.concatenate([x, y, z], axis=1) def test_constructor(self): center = np.array([1, 2, 3]) radius = 2 s1 = SphericalVoronoi(self.points) # user input checks in SphericalVoronoi now require # the radius / center to match the generators so adjust # accordingly here s2 = SphericalVoronoi(self.points * radius, radius) s3 = SphericalVoronoi(self.points + center, center=center) s4 = SphericalVoronoi(self.points * radius + center, radius, center) assert_array_equal(s1.center, np.array([0, 0, 0])) assert_equal(s1.radius, 1) assert_array_equal(s2.center, np.array([0, 0, 0])) assert_equal(s2.radius, 2) assert_array_equal(s3.center, center) assert_equal(s3.radius, 1) assert_array_equal(s4.center, center) assert_equal(s4.radius, radius) def test_vertices_regions_translation_invariance(self): sv_origin = SphericalVoronoi(self.points) center = np.array([1, 1, 1]) sv_translated = SphericalVoronoi(self.points + center, center=center) assert_equal(sv_origin.regions, sv_translated.regions) assert_array_almost_equal(sv_origin.vertices + center, sv_translated.vertices) def test_vertices_regions_scaling_invariance(self): sv_unit = SphericalVoronoi(self.points) sv_scaled = SphericalVoronoi(self.points * 2, 2) assert_equal(sv_unit.regions, sv_scaled.regions) assert_array_almost_equal(sv_unit.vertices * 2, sv_scaled.vertices) def test_old_radius_api(self): sv_unit = SphericalVoronoi(self.points, radius=1) with suppress_warnings() as sup: sup.filter(DeprecationWarning, "`radius` is `None`") sv = SphericalVoronoi(self.points, None) assert_array_almost_equal(sv_unit.vertices, sv.vertices) def test_old_radius_api_warning(self): with assert_warns(DeprecationWarning): sv = SphericalVoronoi(self.points, None) def test_sort_vertices_of_regions(self): sv = SphericalVoronoi(self.points) unsorted_regions = sv.regions sv.sort_vertices_of_regions() assert_equal(sorted(sv.regions), sorted(unsorted_regions)) def test_sort_vertices_of_regions_flattened(self): expected = sorted([[0, 6, 5, 2, 3], [2, 3, 10, 11, 8, 7], [0, 6, 4, 1], [4, 8, 7, 5, 6], [9, 11, 10], [2, 7, 5], [1, 4, 8, 11, 9], [0, 3, 10, 9, 1]]) expected = list(itertools.chain(*sorted(expected))) sv = SphericalVoronoi(self.points) sv.sort_vertices_of_regions() actual = list(itertools.chain(*sorted(sv.regions))) assert_array_equal(actual, expected) def test_sort_vertices_of_regions_dimensionality(self): points = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], [0.5, 0.5, 0.5, 0.5]]) with pytest.raises(TypeError, match="three-dimensional"): sv = spherical_voronoi.SphericalVoronoi(points) sv.sort_vertices_of_regions() def test_num_vertices(self): # for any n >= 3, a spherical Voronoi diagram has 2n - 4 # vertices; this is a direct consequence of Euler's formula # as explained by <NAME> Mamede (2010) Proceedings of the # 2010 International Symposium on Voronoi Diagrams in Science # and Engineering sv = SphericalVoronoi(self.points) expected = self.points.shape[0] * 2 - 4 actual = sv.vertices.shape[0] assert_equal(actual, expected) def test_voronoi_circles(self): sv = spherical_voronoi.SphericalVoronoi(self.points) for vertex in sv.vertices: distances = distance.cdist(sv.points, np.array([vertex])) closest = np.array(sorted(distances)[0:3]) assert_almost_equal(closest[0], closest[1], 7, str(vertex)) assert_almost_equal(closest[0], closest[2], 7, str(vertex)) def test_duplicate_point_handling(self): # an exception should be raised for degenerate generators # related to Issue# 7046 self.degenerate = np.concatenate((self.points, self.points)) with assert_raises(ValueError): sv = spherical_voronoi.SphericalVoronoi(self.degenerate) def test_incorrect_radius_handling(self): # an exception should be raised if the radius provided # cannot possibly match the input generators with assert_raises(ValueError): sv = spherical_voronoi.SphericalVoronoi(self.points, radius=0.98) def test_incorrect_center_handling(self): # an exception should be raised if the center provided # cannot possibly match the input generators with assert_raises(ValueError): sv = spherical_voronoi.SphericalVoronoi(self.points, center=[0.1, 0, 0]) def test_single_hemisphere_handling(self): # Test solution of Issues #9386, #8859 for points in [self.hemisphere_points, self.hemisphere_points2]: sv = SphericalVoronoi(points) triangles = sv._tri.points[sv._tri.simplices] dots = np.einsum('ij,ij->i', sv.vertices, triangles[:, 0]) circumradii = np.arccos(np.clip(dots, -1, 1)) assert np.max(circumradii) > np.pi / 2 def test_rank_deficient(self): # rank-1 input cannot be triangulated points = np.array([[-1, 0, 0], [1, 0, 0]]) with pytest.raises(ValueError, match="Rank of input points"): sv = spherical_voronoi.SphericalVoronoi(points) @pytest.mark.parametrize("n", [8, 15, 21]) @pytest.mark.parametrize("radius", [0.5, 1, 2]) @pytest.mark.parametrize("center", [(0, 0, 0), (1, 2, 3)]) def test_geodesic_input(self, n, radius, center): U = Rotation.random(random_state=0).as_matrix() thetas = np.linspace(0, 2 * np.pi, n, endpoint=False) points = np.vstack([np.sin(thetas), np.cos(thetas), np.zeros(n)]).T points = radius * points @ U sv = SphericalVoronoi(points + center, radius=radius, center=center) # each region must have 4 vertices region_sizes = np.array([len(region) for region in sv.regions]) assert (region_sizes == 4).all() regions = np.array(sv.regions) # vertices are those between each pair of input points + north and # south poles vertices = sv.vertices - center assert len(vertices) == n + 2 # verify that north and south poles are orthogonal to geodesic on which # input points lie poles = vertices[n:] assert np.abs(np.dot(points, poles.T)).max() < 1E-10 for point, region in zip(points, sv.regions): cosine = np.dot(vertices[region], point) sine = np.linalg.norm(np.cross(vertices[region], point), axis=1) arclengths = radius * np.arctan2(sine, cosine) # test arc lengths to poles
assert_almost_equal(arclengths[[1, 3]], radius * np.pi / 2)
numpy.testing.assert_almost_equal
""" Copyright 2019 <NAME> <<EMAIL>> This file is part of localreg. localreg is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. localreg is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with localreg. If not, see <http://www.gnu.org/licenses/>. """ # TODO # # One could consider making the kernels callable objects. These objects could # then have a member function without if-testing, which is faster in case it # is known that all datapoints are to be included. This is the case when # frac!=None. It could also have a property for its width? # import numpy as np import logging logger = logging.getLogger("localreg") logging.basicConfig() def polyfit(x, y, x0, weights=None, degree=2): if len(x) == 0: return np.nan * np.ones_like(x0) if weights is None: weights = np.ones_like(x) s = np.sqrt(weights) X = x[:, None] ** np.arange(degree + 1) X0 = x0[:, None] ** np.arange(degree + 1) lhs = X * s[:, None] rhs = y * s # This is what NumPy uses for default from version 1.15 onwards, # and what 1.14 uses when rcond=None. Computing it here ensures # support for older versions of NumPy. rcond = np.finfo(lhs.dtype).eps * max(*lhs.shape) beta = np.linalg.lstsq(lhs, rhs, rcond=rcond)[0] rslt = {"beta_fit": beta, "y_fit": X0.dot(beta)} return rslt def rectangular(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = 0.5 return res def triangular(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = 1 - np.abs(t[ind]) return res def epanechnikov(t): res = np.zeros_like(t) ind = np.where(np.abs(t) <= 1) res[ind] = 0.75 * (1 - t[ind] ** 2) return res def biweight(t): res = np.zeros_like(t) ind = np.where(
np.abs(t)
numpy.abs
import os import numpy as np import torch import warnings import sys import logging from resunet import UNet from utils import preprocess, postrocessing, reshape_mask logging.basicConfig(stream=sys.stdout, level=logging.INFO) warnings.filterwarnings("ignore", category=UserWarning) # stores urls and number of classes of the models model_urls = { ("unet", "r231"): ("unet_r231-d5d2fc3d.pth", 3), ("unet", "ltrclobes"): ("unet_ltrclobes-3a07043d.pth", 6), ("unet", "r231covidweb"): ("unet_r231covid-0de78a7e.pth", 3), } def apply(image, model, device, volume_postprocessing=True): tvolslices, xnew_box = preprocess(image, resolution=[256, 256]) tvolslices[tvolslices > 600] = 600 tvolslices = np.divide((tvolslices + 1024), 1624) timage_res = np.empty((np.append(0, tvolslices[0].shape)), dtype=np.uint8) with torch.no_grad(): X = torch.Tensor(tvolslices).unsqueeze(0).to(device) prediction = model(X) pls = torch.max(prediction, 1)[1].detach().cpu().numpy().astype(np.uint8) timage_res =
np.vstack((timage_res, pls))
numpy.vstack
import warnings from pathlib import Path import logging import sys import matplotlib.pyplot as plt import matplotlib.colors as mcolors from mpl_toolkits.axes_grid1 import make_axes_locatable from mpl_toolkits.axes_grid1.inset_locator import inset_axes import matplotlib.gridspec as gridspec import matplotlib.ticker as mtick import pandas as pd from matplotlib.ticker import FormatStrFormatter from typing import Any from tifffile import imsave import numpy as np import seaborn as sns from tqdm import tqdm, trange import matplotlib.patches as patches from preprocessing import embedding from wavefront import Wavefront from zernike import Zernike from synthetic import SyntheticPSF logging.basicConfig( stream=sys.stdout, level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) warnings.filterwarnings('ignore') def plot_training_dist(n_samples=1000, batch_size=200, wavelength=.605): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) from utils import peak2peak from utils import microns2waves psfargs = dict( n_modes=60, distribution='zipf', bimodal=True, gamma=1.5, lam_detection=wavelength, amplitude_ranges=(0, .25), psf_shape=(32, 32, 32), x_voxel_size=.15, y_voxel_size=.15, z_voxel_size=.6, batch_size=batch_size, snr=30, max_jitter=1, cpu_workers=-1, ) n_batches = n_samples // batch_size peaks = [] zernikes = pd.DataFrame([], columns=range(1, psfargs['n_modes'] + 1)) for _, (psfs, ys) in zip(range(n_batches), SyntheticPSF(**psfargs).generator()): zernikes = zernikes.append( pd.DataFrame(microns2waves(ys, wavelength=wavelength), columns=range(1, psfargs['n_modes'] + 1)), ignore_index=True ) peaks.extend(list(peak2peak(ys))) logger.info(zernikes.round(2)) fig, (pax, cax, zax) = plt.subplots(1, 3, figsize=(16, 4)) sns.histplot(peaks, kde=True, ax=pax, color='dimgrey') pax.set_xlabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$\n' rf'($\lambda = {int(wavelength*1000)}~nm$)' ) pax.set_ylabel(rf'Samples') # bars = sns.barplot(zernikes.columns.values, zernikes.mean(axis=0), ax=zax) # for index, label in enumerate(bars.get_xticklabels()): # if index % int(.1 * zernikes.shape[1]) == 0: # label.set_visible(True) # else: # label.set_visible(False) # zax.set_xlabel('Average amplitude per zernike mode') zernikes = np.abs(zernikes) dmodes = (zernikes[zernikes > .25]).count(axis=1) hist, bins = np.histogram(dmodes, bins=zernikes.columns.values) hist = hist / hist.sum() idx = (hist > 0).nonzero() bars = sns.barplot(bins[idx], hist[idx], ax=cax) for index, label in enumerate(bars.get_xticklabels()): if index % 2 == 0: label.set_visible(True) else: label.set_visible(False) cax.set_xlabel( f'Number of modes above diffraction limit\n' f'($\\alpha > \lambda/4$)' ) zernikes = zernikes.div(zernikes.sum(axis=1), axis=0) dmodes = (zernikes[zernikes > .05]).count(axis=1) hist, bins = np.histogram(dmodes, bins=zernikes.columns.values) idx = (hist > 0).nonzero() hist = hist / hist.sum() bars = sns.barplot(bins[idx], hist[idx], ax=zax, palette='Accent') for index, label in enumerate(bars.get_xticklabels()): if index % 2 == 0: label.set_visible(True) else: label.set_visible(False) zax.set_xlabel( f'Number of dominant modes\n' f'$\\alpha / \\sum_{{i=1}}^{{60}}{{\\alpha_{{i}}}} > 5\%$' ) pax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) cax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) zax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) name = f'{psfargs["distribution"]}_{psfargs["n_modes"]}modes_gamma_{str(psfargs["gamma"]).replace(".", "p")}' plt.savefig( f'../data/{name}.png', dpi=300, bbox_inches='tight', pad_inches=.25 ) def plot_fov(n_modes=60, wavelength=.605, psf_cmap='hot', x_voxel_size=.15, y_voxel_size=.15, z_voxel_size=.6): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) from utils import peak_aberration, center_crop waves = np.round(np.arange(0, .5, step=.1), 2) res = [128, 64, 32] offsets = [0, 32, 48] savedir = '../data/fov/ratio_150x-150y-600z' logger.info(waves) for i in range(3, n_modes): fig = plt.figure(figsize=(35, 60)) gs = fig.add_gridspec(len(waves)*len(res), 8) grid = {} for a, j in zip(waves, np.arange(0, len(waves)*len(res), step=3)): for k, r in enumerate(res): for c in range(8): grid[(a, r, c)] = fig.add_subplot(gs[j+k, c]) # from pprint import pprint # pprint(grid) for j, amp in enumerate(tqdm(waves, desc=f'Mode [#{i}]')): phi = np.zeros(n_modes) phi[i] = amp w = Wavefront(phi, order='ansi') for r in res: gen = SyntheticPSF( amplitude_ranges=(-1, 1), n_modes=n_modes, lam_detection=wavelength, psf_shape=3*[r], x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, snr=100, max_jitter=0, cpu_workers=-1, ) window = gen.single_psf(w, zplanes=0, normed=True, noise=False) #window = center_crop(psf, crop_shape=tuple(3 * [r])) fft = np.fft.fftn(window) fft = np.fft.fftshift(fft) fft = np.abs(fft) # fft[fft == np.inf] = np.nan # fft[fft == -np.inf] = np.nan # fft[fft == np.nan] = np.min(fft) # fft = np.log10(fft) fft /= np.max(fft) perfect_psf = gen.single_psf(phi=Wavefront(np.zeros(n_modes)), zplanes=0) perfect_fft = np.fft.fftn(perfect_psf) perfect_fft = np.fft.fftshift(perfect_fft) perfect_fft = np.abs(perfect_fft) perfect_fft /= np.max(perfect_fft) fft = fft / perfect_fft fft[fft > 1] = 0 NA_det = 1.0 n = 1.33 lambda_det = wavelength * 1000 kx = ky = 4 * np.pi * NA_det / lambda_det kz = 2 * np.pi * ((n - np.sqrt(n**2 - NA_det**2)) / lambda_det) N = np.array(window.shape) px = x_voxel_size * 1000 py = y_voxel_size * 1000 pz = z_voxel_size * 1000 # get the axis lengths of the support hN = np.ceil((N - 1) / 2) a = 2 * hN[2] * (kx * px) / (2 * np.pi) b = 2 * hN[1] * (ky * py) / (2 * np.pi) c = 2 * hN[0] * (kz * pz) / (2 * np.pi) # formulate the ellipse Z, Y, X = np.mgrid[-hN[0]:hN[0], -hN[1]:hN[1], -hN[2]:hN[2]] mask = np.sqrt(X**2/a**2 + Y**2/b**2 + Z**2/c**2) mask = mask <= 1 for ax in range(3): vol = np.max(window, axis=ax) ** .5 grid[(amp, r, ax)].imshow(vol, cmap=psf_cmap, vmin=0, vmax=1) grid[(amp, r, ax)].set_aspect('equal') if ax == 0: vol = fft[fft.shape[0]//2, :, :] vol *= mask[mask.shape[0] // 2, :, :] elif ax == 1: vol = fft[:, fft.shape[1]//2, :] vol *= mask[:, mask.shape[1] // 2, :] else: vol = fft[:, :, fft.shape[2]//2] vol *= mask[:, :, mask.shape[2] // 2] # vol = np.max(fft, axis=ax) ** .5 # vol = np.nan_to_num(vol) grid[(amp, r, ax+3)].imshow(vol, vmin=0, vmax=1) grid[(amp, r, ax+3)].set_aspect('equal') # draw boxes for z, rr in enumerate(res): rect = patches.Rectangle( (offsets[z], offsets[z]), rr, rr, linewidth=1, edgecolor='w', facecolor='none' ) grid[(amp, 128, ax)].add_patch(rect) grid[(amp, r, ax)].axis('off') grid[(amp, r, ax+3)].axis('off') grid[(amp, r, 6)].semilogy(fft[:, fft.shape[0]//2, fft.shape[0]//2], '-', label='XY') grid[(amp, r, 6)].semilogy(fft[fft.shape[0]//2, :, fft.shape[0]//2], '--', label='XZ') grid[(amp, r, 6)].semilogy(fft[fft.shape[0]//2, fft.shape[0]//2, :], ':', label='YZ') grid[(amp, r, 6)].grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) grid[(amp, r, 6)].legend(frameon=False, ncol=1, bbox_to_anchor=(1.0, 1.0), loc='upper left') grid[(amp, r, 6)].set_aspect('equal') mat = grid[(amp, r, 7)].contourf( w.wave(100), levels=np.arange(-10, 10, step=1), cmap='Spectral_r', extend='both' ) grid[(amp, r, 7)].axis('off') grid[(amp, r, 7)].set_aspect('equal') grid[(amp, r, 7)].set_title(f'{round(peak_aberration(phi))} waves') grid[(amp, r, 0)].set_title('XY') grid[(amp, r, 3)].set_title('XY') grid[(amp, r, 1)].set_title('XZ') grid[(amp, r, 4)].set_title('XZ') grid[(amp, r, 2)].set_title('YZ') grid[(amp, r, 5)].set_title('YZ') plt.subplots_adjust(top=0.95, right=0.95, wspace=.2) plt.savefig(f'{savedir}/fov_mode_{i}.pdf', bbox_inches='tight', pad_inches=.25) def plot_relratio( res=64, padsize=None, n_modes=15, wavelength=.605, x_voxel_size=.15, y_voxel_size=.15, z_voxel_size=.6, savepath='../data/relratio', ): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) from utils import peak_aberration vmin, vmax, vcenter, step = 0, 2, 1, .1 highcmap = plt.get_cmap('YlOrRd', 256) lowcmap = plt.get_cmap('YlGnBu_r', 256) low = np.linspace(0, 1 - step, int(abs(vcenter - vmin) / step)) high = np.linspace(0, 1 + step, int(abs(vcenter - vmax) / step)) cmap = np.vstack((lowcmap(low), [1, 1, 1, 1], highcmap(high))) cmap = mcolors.ListedColormap(cmap) waves = np.round(np.arange(-.25, .3, step=.05), 3) logger.info(waves) fig = plt.figure(figsize=(25, 60)) nrows = (n_modes-5) * 6 gs = fig.add_gridspec(nrows, len(waves)+1) grid = {} for mode, ax in zip(range(5, n_modes), np.round(np.arange(0, nrows, step=6))): for k in range(6): grid[(mode, k, 'wavefront')] = fig.add_subplot(gs[ax + k, 0]) for j, w in enumerate(waves): grid[(mode, k, w)] = fig.add_subplot(gs[ax+k, j+1]) gen = SyntheticPSF( amplitude_ranges=(-1, 1), n_modes=n_modes, lam_detection=wavelength, psf_shape=3*[res], x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, snr=20, max_jitter=0, cpu_workers=-1, ) for mode in trange(5, n_modes): for amp in waves: phi = np.zeros(n_modes) phi[mode] = amp window, amps, snr, zplanes, maxcounts = gen.single_otf( phi=phi, zplanes=0, normed=True, noise=True, augmentation=True, meta=True, midslice=True, na_mask=True, ratio=True, padsize=padsize ) abr = round(peak_aberration(phi) * np.sign(amp), 1) grid[(mode, 0, amp)].set_title(f'{abr}$\\lambda$') outdir = Path(f'{savepath}/i{res}_pad_{padsize}/mode_{mode}/ratios/') outdir.mkdir(exist_ok=True, parents=True) imsave(f"{outdir}/{str(abr).replace('.', 'p')}.tif", window) for ax in range(6): if amp == waves[-1]: mat = grid[(mode, ax, 'wavefront')].contourf( Wavefront(phi).wave(100), levels=np.arange(-10, 10, step=1), cmap='Spectral_r', extend='both' ) grid[(mode, ax, 'wavefront')].axis('off') grid[(mode, ax, 'wavefront')].set_aspect('equal') if window.shape[0] == 6: vol = window[ax, :, :] else: vol = np.max(window, axis=ax) m = grid[(mode, ax, amp)].imshow( vol, cmap=cmap if ax < 3 else 'Spectral_r', vmin=vmin if ax < 3 else -1, vmax=vmax if ax < 3 else 1, ) grid[(mode, ax, amp)].set_aspect('equal') grid[(mode, ax, amp)].axis('off') cax = inset_axes( grid[(mode, ax, waves[-1])], width="10%", height="100%", loc='center right', borderpad=-3 ) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_label_position("right") plt.subplots_adjust(top=0.95, right=0.95, wspace=.2) plt.savefig(f'{savepath}/i{res}_pad{padsize}.pdf', bbox_inches='tight', pad_inches=.25) def plot_simulation( res=64, padsize=None, n_modes=60, wavelength=.605, x_voxel_size=.15, y_voxel_size=.15, z_voxel_size=.6, #savepath='../data/embeddings/seminar/x100-y100-z100', savepath='../data/embeddings/seminar/x150-y150-z600', ): from utils import peak_aberration waves = np.round([-.2, -.1, -.05, .05, .1, .2], 3) logger.info(waves) gen = SyntheticPSF( amplitude_ranges=(-1, 1), n_modes=n_modes, lam_detection=wavelength, psf_shape=3*[res], x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, snr=100, max_jitter=0, cpu_workers=-1, ) outdir = Path(f'{savepath}/i{res}_pad_{padsize}/') outdir.mkdir(exist_ok=True, parents=True) ipsf = gen.theoretical_psf(normed=True) imsave(f"{outdir}/theoretical_psf.tif", ipsf) iotf, _ = gen.fft(ipsf, padsize=padsize) imsave(f"{outdir}/theoretical_otf.tif", iotf) for mode in trange(5, n_modes): for amp in waves: phi = np.zeros(n_modes) phi[mode] = amp abr = round(peak_aberration(phi) * np.sign(amp), 1) # otf = gen.single_otf( # phi=phi, # zplanes=0, # normed=True, # noise=True, # augmentation=True, # midslice=False, # na_mask=True, # ratio=False, # padsize=padsize, # ) # # amps = Path(f'{outdir}/mode_{mode}/amps') # amps.mkdir(exist_ok=True, parents=True) # imsave(f"{amps}/{str(abr).replace('.', 'p')}.tif", otf) embedding = gen.single_otf( phi=phi, zplanes=0, normed=True, noise=True, augmentation=True, midslice=True, na_mask=True, ratio=True, padsize=padsize, ) emb = Path(f'{outdir}/mode_{mode}/embeddings') emb.mkdir(exist_ok=True, parents=True) imsave(f"{emb}/{str(abr).replace('.', 'p')}.tif", embedding) psf = gen.single_psf( phi=phi, zplanes=0, normed=True, noise=True, augmentation=True, meta=False, ) reals = Path(f'{outdir}/mode_{mode}/psfs') reals.mkdir(exist_ok=True, parents=True) imsave(f"{reals}/{str(abr).replace('.', 'p')}.tif", psf) def plot_signal(n_modes=60, wavelength=.605): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) from preprocessing import center_crop from utils import peak_aberration waves = np.arange(0, .5, step=.05) res = [32, 64, 96, 128, 192, 256] logger.info(waves) gen = SyntheticPSF( amplitude_ranges=(-1, 1), n_modes=n_modes, lam_detection=wavelength, psf_shape=(256, 256, 256), x_voxel_size=.1, y_voxel_size=.1, z_voxel_size=.1, snr=100, max_jitter=0, cpu_workers=-1, ) signal = {} for i in range(3, n_modes): signal[i] = {} for j, a in enumerate(tqdm(waves, desc=f'Mode [#{i}]')): phi = np.zeros(n_modes) phi[i] = a w = Wavefront(phi, order='ansi') abr = 0 if j == 0 else round(peak_aberration(phi)) signal[i][abr] = {} psf = gen.single_psf(w, zplanes=0, normed=True, noise=False) # psf_cmap = 'hot' # fig, axes = plt.subplots(len(res), 4) for k, r in enumerate(res): window = center_crop(psf, crop_shape=tuple(3*[r])) signal[i][abr][r] = np.sum(window) # vol = window ** .5 # vol = np.nan_to_num(vol) # # axes[k, 0].bar(range(n_modes), height=w.amplitudes_ansi_waves) # m = axes[k, 1].imshow(np.max(vol, axis=0), cmap=psf_cmap, vmin=0, vmax=1) # axes[k, 2].imshow(np.max(vol, axis=1), cmap=psf_cmap, vmin=0, vmax=1) # axes[k, 3].imshow(np.max(vol, axis=2), cmap=psf_cmap, vmin=0, vmax=1) # plt.tight_layout() # plt.show() df = pd.DataFrame.from_dict(signal[i], orient="index") logger.info(df) total_energy = df[res[-1]].values df = df.apply(lambda e: e/total_energy, axis=0) logger.info(df) theoretical = df.iloc[[0]].values[0] rdf = df.apply(lambda row: abs(theoretical-row) / theoretical, axis=1) logger.info(rdf) fig = plt.figure(figsize=(8, 6)) gs = fig.add_gridspec(2, 3) ax = fig.add_subplot(gs[0, :2]) axw = fig.add_subplot(gs[0, 2]) axr = fig.add_subplot(gs[1, :]) for r in res: ax.plot(df[r], label=r) ax.set_xlim((0, None)) ax.set_ylim((0, 1)) ax.set_ylabel('Signal') ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) axr.plot(rdf[r], label=r) axr.set_xlim((0, None)) axr.set_ylim((0, 1)) axr.set_xlabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$' rf'($\lambda = {int(wavelength*1000)}~nm$)' ) axr.set_ylabel('Percentage signal lost') axr.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) axr.legend(frameon=False, loc='upper center', ncol=6) phi = np.zeros(n_modes) phi[i] = .5 phi = Wavefront(phi, order='ansi').wave(size=100) mat = axw.contourf( phi, cmap='Spectral_r', extend='both' ) divider = make_axes_locatable(axw) top = divider.append_axes("top", size='30%', pad=0.2) top.hist(phi.flatten(), bins=phi.shape[0], color='grey') top.set_yticks([]) top.xaxis.set_major_formatter(FormatStrFormatter("%.2f")) top.spines['right'].set_visible(False) top.spines['top'].set_visible(False) top.spines['left'].set_visible(False) axw.axis('off') plt.tight_layout() plt.savefig(f'../data/signal_res_mode_{i}.png', dpi=300, bbox_inches='tight', pad_inches=.25) signal = pd.DataFrame.from_dict(signal, orient="index").stack().to_frame() signal.index.names = ['index', 'waves'] signal = pd.concat([signal.drop([0], axis=1), signal[0].apply(pd.Series)], axis=1).reset_index() logger.info(signal) signal.to_csv('../data/signal.csv') def plot_mode(savepath, df, mode_index, n_modes=60, wavelength=.605): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) fig = plt.figure(figsize=(8, 4)) gs = fig.add_gridspec(1, 3) ax = fig.add_subplot(gs[0, :2]) axw = fig.add_subplot(gs[0, 2]) ax.plot(df) ax.set_xlim((0, 12)) ax.set_yscale('log') ax.set_ylim((10**-2, 10)) ax.set_xlabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$' rf'($\lambda = {int(wavelength * 1000)}~nm$)' ) ax.set_ylabel('Peak-to-peak residuals') ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) phi = np.zeros(n_modes) phi[mode_index] = .5 phi = Wavefront(phi, order='ansi').wave(size=100) mat = axw.contourf( phi, cmap='Spectral_r', extend='both' ) divider = make_axes_locatable(axw) top = divider.append_axes("top", size='30%', pad=0.2) top.hist(phi.flatten(), bins=phi.shape[0], color='grey') top.set_yticks([]) top.xaxis.set_major_formatter(FormatStrFormatter("%.2f")) top.spines['right'].set_visible(False) top.spines['top'].set_visible(False) top.spines['left'].set_visible(False) axw.axis('off') plt.tight_layout() plt.savefig(savepath, dpi=300, bbox_inches='tight', pad_inches=.25) def plot_aberrations(): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) fig, axes = plt.subplots(4, 4, figsize=(10, 8)) axes = axes.flatten() for i in range(15): ax = axes[i] idx = i w = Wavefront({idx: 1}) ax.set_title(f"{Zernike(idx).ansi_to_nm(idx)}") mat = ax.imshow(w.wave(size=100), cmap='Spectral_r') ax.axis('off') plt.tight_layout() plt.colorbar(mat) plt.show() def plot_psnr(psf_cmap='hot', gamma=.75): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) def psf_slice(xy, zx, zy, vol): vol = vol ** gamma vol = np.nan_to_num(vol) mid_plane = vol.shape[0] // 2 # m = xy.imshow(vol[mid_plane, :, :], cmap=psf_cmap, vmin=0, vmax=1) # zx.imshow(vol[:, mid_plane, :], cmap=psf_cmap, vmin=0, vmax=1) # zy.imshow(vol[:, :, mid_plane], cmap=psf_cmap, vmin=0, vmax=1) levels = np.arange(0, 1.01, .01) m = xy.contourf(vol[mid_plane, :, :], cmap=psf_cmap, levels=levels, vmin=0, vmax=1) zx.contourf(vol[:, mid_plane, :], cmap=psf_cmap, levels=levels, vmin=0, vmax=1) zy.contourf(vol[:, :, mid_plane], cmap=psf_cmap, levels=levels, vmin=0, vmax=1) cax = inset_axes(zy, width="10%", height="100%", loc='center right', borderpad=-2) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) return m scales = sorted(set([int(t) for t in np.logspace(0, 2, num=8)])) logger.info(f"PSNRs: {scales}") fig, axes = plt.subplots(len(scales), 3, figsize=(8, 16)) for i, snr in tqdm(enumerate(scales), total=len(scales)): psfargs = dict( lam_detection=.605, amplitude_ranges=0, psf_shape=(64, 64, 64), x_voxel_size=.1, y_voxel_size=.1, z_voxel_size=.1, batch_size=10, snr=snr, max_jitter=0, cpu_workers=-1, ) psfs, ys, psnrs, zplanes, maxcounts = next(SyntheticPSF(**psfargs).generator(debug=True)) target_psnr = np.ceil(np.nanquantile(psnrs, .95)) psf_slice( xy=axes[i, 0], zx=axes[i, 1], zy=axes[i, 2], vol=psfs[np.random.randint(psfs.shape[0]), :, :, :, 0], ) axes[i, 0].set_title(f'r-SNR: {snr}') axes[i, 1].set_title(f"PSNR: {target_psnr:.2f}") axes[i, 2].set_title(f"$\gamma$: {gamma:.2f}") axes[-1, 0].set_xlabel('XY') axes[-1, 1].set_xlabel('ZX') axes[-1, 2].set_xlabel('ZY') plt.tight_layout() plt.subplots_adjust(top=0.95, right=0.95, wspace=.3, hspace=.3) plt.savefig(f'../data/noise.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_dmodes( psf: np.array, gen: SyntheticPSF, y: Wavefront, pred: Wavefront, save_path: Path, wavelength: float = .605, psf_cmap: str = 'hot', gamma: float = .5, threshold: float = .01, ): def wavefront(iax, phi, levels, label=''): mat = iax.contourf( phi, levels=levels, cmap=wave_cmap, vmin=np.min(levels), vmax=np.max(levels), extend='both' ) iax.axis('off') iax.set_title(label) cax = inset_axes(iax, width="10%", height="100%", loc='center right', borderpad=-3) cbar = fig.colorbar( mat, cax=cax, fraction=0.046, pad=0.04, extend='both', format=FormatStrFormatter("%.2g"), ) cbar.ax.set_title(r'$\lambda$') cbar.ax.yaxis.set_ticks_position('right') cbar.ax.yaxis.set_label_position('left') return mat def psf_slice(xy, zx, zy, vol, label=''): vol = vol ** gamma vol = np.nan_to_num(vol) if vol.shape[0] == 3: m = xy.imshow(vol[0], cmap='Spectral_r', vmin=0, vmax=1) zx.imshow(vol[1], cmap='Spectral_r', vmin=0, vmax=1) zy.imshow(vol[2], cmap='Spectral_r', vmin=0, vmax=1) else: m = xy.imshow(np.max(vol, axis=0), cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(np.max(vol, axis=1), cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(np.max(vol, axis=2), cmap=psf_cmap, vmin=0, vmax=1) cax = inset_axes(zy, width="10%", height="100%", loc='center right', borderpad=-3) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) cax.yaxis.set_label_position("right") xy.set_ylabel(label) return m plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, 'axes.autolimit_mode': 'round_numbers' }) # plt.style.use("dark_background") if len(psf.shape) > 3: psf = np.squeeze(psf, axis=-1) psf = np.squeeze(psf, axis=0) y_wave = y.wave(size=100) step = .25 vmax = round(np.max([ np.abs(round(np.nanquantile(y_wave, .1), 2)), np.abs(round(np.nanquantile(y_wave, .9), 2)) ]) * 4) / 4 vmax = .25 if vmax < threshold else vmax highcmap = plt.get_cmap('magma_r', 256) middlemap = plt.get_cmap('gist_gray', 256) lowcmap = plt.get_cmap('gist_earth_r', 256) ll = np.arange(-vmax, -.25 + step, step) mm = [-.15, 0, .15] hh = np.arange(.25, vmax + step, step) mticks = np.concatenate((ll, mm, hh)) levels = np.vstack(( lowcmap(.66 * ll / ll.min()), middlemap([.85, .95, 1, .95, .85]), highcmap(.66 * hh / hh.max()) )) wave_cmap = mcolors.ListedColormap(levels) fig = plt.figure(figsize=(15, 200)) gs = fig.add_gridspec(64, 4) p_psf = gen.single_psf(pred, zplanes=0) ax_xy = fig.add_subplot(gs[0, 0]) ax_xz = fig.add_subplot(gs[0, 1]) ax_yz = fig.add_subplot(gs[0, 2]) ax_w = fig.add_subplot(gs[0, 3]) psf_slice(ax_xy, ax_xz, ax_yz, p_psf, label='Prediction') wavefront(ax_w, pred.wave(size=100), label='Prediction', levels=mticks) ax_xy = fig.add_subplot(gs[1, 0]) ax_xz = fig.add_subplot(gs[1, 1]) ax_yz = fig.add_subplot(gs[1, 2]) ax_w = fig.add_subplot(gs[1, 3]) psf_slice(ax_xy, ax_xz, ax_yz, psf, label='PSF (maxproj)') wavefront(ax_w, y_wave, label='Ground truth', levels=mticks) otf = np.squeeze(embedding(np.expand_dims(psf, -1), ishape=psf.shape[-1]), axis=-1) ax_xy = fig.add_subplot(gs[2, 0]) ax_xz = fig.add_subplot(gs[2, 1]) ax_yz = fig.add_subplot(gs[2, 2]) ax_w = fig.add_subplot(gs[2, 3]) psf_slice(ax_xy, ax_xz, ax_yz, otf, label='R_rel') wavefront(ax_w, y_wave, label='Ground truth', levels=mticks) k = 0 for i, w in enumerate(y.amplitudes_ansi_waves): k += 1 phi = np.zeros(60) phi[i] = w / (2 * np.pi / wavelength) phi = Wavefront(phi, order='ansi') psf = gen.single_psf(phi, zplanes=0) otf = np.squeeze(embedding(np.expand_dims(psf, -1), ishape=psf.shape[-1]), axis=-1) ax_xy = fig.add_subplot(gs[2+k, 0]) ax_xz = fig.add_subplot(gs[2+k, 1]) ax_yz = fig.add_subplot(gs[2+k, 2]) ax_w = fig.add_subplot(gs[2+k, 3]) psf_slice(ax_xy, ax_xz, ax_yz, otf, label=f'Mode #{i}') wavefront(ax_w, phi.wave(100), label=f'Mode #{i}', levels=mticks) ax_zcoff = fig.add_subplot(gs[-1, :]) ax_zcoff.plot(pred.amplitudes_ansi_waves, '-o', color='C0', label='Predictions') ax_zcoff.plot(y.amplitudes_ansi_waves, '-o', color='C1', label='Ground truth') ax_zcoff.legend(frameon=False, loc='upper center', bbox_to_anchor=(.1, 1)) ax_zcoff.set_xticks(range(len(pred.amplitudes_ansi_waves))) ax_zcoff.set_ylabel(f'Amplitudes\n($\lambda = {wavelength}~\mu m$)') ax_zcoff.spines['top'].set_visible(False) ax_zcoff.set_xlim((0, len(pred.amplitudes_ansi_waves))) ax_zcoff.grid(True, which="both", axis='both', lw=1, ls='--', zorder=0) plt.subplots_adjust(top=0.95, right=0.95, wspace=.2) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) def diagnostic_assessment( psf: np.array, gt_psf: np.array, predicted_psf: np.array, corrected_psf: np.array, psnr: Any, maxcounts: Any, y: Wavefront, pred: Wavefront, save_path: Path, wavelength: float = .605, display: bool = False, psf_cmap: str = 'hot', gamma: float = .5, threshold: float = .01, ): def wavefront(iax, phi, levels, label=''): mat = iax.contourf( phi, levels=levels, cmap=wave_cmap, vmin=np.min(levels), vmax=np.max(levels), extend='both' ) divider = make_axes_locatable(iax) top = divider.append_axes("top", size='30%', pad=0.2) top.hist(phi.flatten(), bins=phi.shape[0], color='grey') top.set_title(label) top.set_yticks([]) top.xaxis.set_major_formatter(FormatStrFormatter("%.2f")) top.spines['right'].set_visible(False) top.spines['top'].set_visible(False) top.spines['left'].set_visible(False) return mat def psf_slice(xy, zx, zy, vol, label=''): if vol.shape[0] == 6: vmin, vmax, vcenter, step = 0, 2, 1, .1 highcmap = plt.get_cmap('YlOrRd', 256) lowcmap = plt.get_cmap('YlGnBu_r', 256) low = np.linspace(0, 1 - step, int(abs(vcenter - vmin) / step)) high = np.linspace(0, 1 + step, int(abs(vcenter - vmax) / step)) cmap = np.vstack((lowcmap(low), [1, 1, 1, 1], highcmap(high))) cmap = mcolors.ListedColormap(cmap) inner = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=xy, wspace=0.1, hspace=0.1) ax = fig.add_subplot(inner[0]) ax.imshow(vol[0], cmap=cmap, vmin=vmin, vmax=vmax) ax.set_xticks([]) ax.set_yticks([]) ax.set_ylabel('Input') ax.set_xlabel(r'$\alpha = |\tau| / |\hat{\tau}|$') ax = fig.add_subplot(inner[1]) ax.imshow(vol[3], cmap='coolwarm', vmin=-1, vmax=1) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel(r'$\phi = G_{\sigma=3}(\angle \tau)$') xy.axis('off') inner = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=zx, wspace=0.1, hspace=0.1) ax = fig.add_subplot(inner[0]) ax.imshow(vol[1], cmap=cmap, vmin=vmin, vmax=vmax) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel(r'$\alpha = |\tau| / |\hat{\tau}|$') ax = fig.add_subplot(inner[1]) ax.imshow(vol[4], cmap='coolwarm', vmin=-1, vmax=1) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel(r'$\phi = G_{\sigma=3}(\angle \tau)$') zx.axis('off') inner = gridspec.GridSpecFromSubplotSpec(1, 2, subplot_spec=zy, wspace=0.1, hspace=0.1) ax = fig.add_subplot(inner[0]) m = ax.imshow(vol[2], cmap=cmap, vmin=vmin, vmax=vmax) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel(r'$\alpha = |\tau| / |\hat{\tau}|$') ax = fig.add_subplot(inner[1]) ax.imshow(vol[5], cmap='coolwarm', vmin=-1, vmax=1) ax.set_xticks([]) ax.set_yticks([]) ax.set_xlabel(r'$\phi = G_{\sigma=3}(\angle \tau)$') zy.axis('off') cax = inset_axes(zy, width="10%", height="100%", loc='center right', borderpad=-3) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) cax.yaxis.set_label_position("right") elif vol.shape[0] == 3: m = xy.imshow(vol[0], cmap='Spectral_r', vmin=0, vmax=1) zx.imshow(vol[1], cmap='Spectral_r', vmin=0, vmax=1) zy.imshow(vol[2], cmap='Spectral_r', vmin=0, vmax=1) else: vol = vol ** gamma vol = np.nan_to_num(vol) m = xy.imshow(np.max(vol, axis=0), cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(np.max(vol, axis=1), cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(np.max(vol, axis=2), cmap=psf_cmap, vmin=0, vmax=1) cax = inset_axes(zy, width="10%", height="100%", loc='center right', borderpad=-3) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) cax.set_ylabel(f"$\gamma$: {gamma:.2f}") cax.yaxis.set_label_position("right") xy.set_ylabel(label) return m plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, 'axes.autolimit_mode': 'round_numbers' }) # plt.style.use("dark_background") if len(psf.shape) > 3: psf = np.squeeze(psf, axis=-1) psf = np.squeeze(psf, axis=0) if not np.isscalar(psnr): psnr = psnr[0] if not np.isscalar(maxcounts): maxcounts = maxcounts[0] y_wave = y.wave(size=100) pred_wave = pred.wave(size=100) diff = y_wave - pred_wave fig = plt.figure(figsize=(13, 20)) gs = fig.add_gridspec(6 if gt_psf is None else 7, 3) ax_gt = fig.add_subplot(gs[:2, 0]) ax_pred = fig.add_subplot(gs[:2, 1]) ax_diff = fig.add_subplot(gs[:2, 2]) cax = fig.add_axes([.99, 0.725, 0.02, .175]) ax_xy = fig.add_subplot(gs[2, 0]) ax_xz = fig.add_subplot(gs[2, 1]) ax_yz = fig.add_subplot(gs[2, 2]) ax_pxy = fig.add_subplot(gs[3, 0]) ax_pxz = fig.add_subplot(gs[3, 1]) ax_pyz = fig.add_subplot(gs[3, 2]) ax_cxy = fig.add_subplot(gs[-2, 0]) ax_cxz = fig.add_subplot(gs[-2, 1]) ax_cyz = fig.add_subplot(gs[-2, 2]) ax_zcoff = fig.add_subplot(gs[-1, :]) step = .25 vmax = round(np.max([ np.abs(round(np.nanquantile(y_wave, .1), 2)), np.abs(round(np.nanquantile(y_wave, .9), 2)) ]) * 4) / 4 vmax = .25 if vmax < threshold else vmax highcmap = plt.get_cmap('magma_r', 256) middlemap = plt.get_cmap('gist_gray', 256) lowcmap = plt.get_cmap('gist_earth_r', 256) ll = np.arange(-vmax, -.25 + step, step) mm = [-.15, 0, .15] hh = np.arange(.25, vmax + step, step) mticks = np.concatenate((ll, mm, hh)) levels = np.vstack(( lowcmap(.66 * ll / ll.min()), middlemap([.85, .95, 1, .95, .85]), highcmap(.66 * hh / hh.max()) )) wave_cmap = mcolors.ListedColormap(levels) mat = wavefront(ax_gt, y_wave, label='Ground truth', levels=mticks) wavefront(ax_pred, pred_wave, label='Predicted', levels=mticks) wavefront(ax_diff, diff, label='Residuals', levels=mticks) cbar = fig.colorbar( mat, cax=cax, fraction=0.046, pad=0.04, extend='both', format=FormatStrFormatter("%.2g"), # spacing='proportional', ) cbar.ax.set_title(r'$\lambda$') cbar.ax.set_ylabel(f'$\lambda = {wavelength}~\mu m$') cbar.ax.yaxis.set_ticks_position('right') cbar.ax.yaxis.set_label_position('left') ax_xy.set_title('XY') ax_xz.set_title('ZX') ax_yz.set_title('ZY') ax_xz.set_ylabel(f"PSNR: {psnr:.2f}") ax_yz.set_ylabel(f"Max photon count: {maxcounts:.0f}") psf_slice(ax_xy, ax_xz, ax_yz, psf, label='Input (maxproj)') psf_slice(ax_pxy, ax_pxz, ax_pyz, predicted_psf, label='Predicted') psf_slice(ax_cxy, ax_cxz, ax_cyz, corrected_psf, label='Corrected') if gt_psf is not None: ax_xygt = fig.add_subplot(gs[-3, 0]) ax_xzgt = fig.add_subplot(gs[-3, 1]) ax_yzgt = fig.add_subplot(gs[-3, 2]) psf_slice(ax_xygt, ax_xzgt, ax_yzgt, gt_psf, label='Validation') # ax_zcoff.set_title('Zernike modes') ax_zcoff.plot(pred.amplitudes_ansi_waves, '-o', color='C0', label='Predictions') ax_zcoff.plot(y.amplitudes_ansi_waves, '-o', color='C1', label='Ground truth') ax_zcoff.legend(frameon=False, loc='upper center', bbox_to_anchor=(.1, 1)) ax_zcoff.set_xticks(range(len(pred.amplitudes_ansi_waves))) ax_zcoff.set_ylabel(f'Amplitudes\n($\lambda = {wavelength}~\mu m$)') ax_zcoff.spines['top'].set_visible(False) error = 100 * np.abs(y.amplitudes_ansi_waves - pred.amplitudes_ansi_waves) / np.abs(y.amplitudes_ansi_waves) ax_error = ax_zcoff.twinx() ax_error.set_ylabel(f'MAPE = {np.mean(error[np.isfinite(error)]):.2f}%', color='darkgrey') ax_error.tick_params(axis='y', labelcolor='darkgrey') ax_error.set_ylim(0, 100) ax_error.bar(range(len(pred.zernikes)), error, color='darkgrey', alpha=.5) ax_error.yaxis.set_major_formatter(mtick.PercentFormatter()) ax_error.grid(True, which="both", axis='both', lw=1, ls='--', zorder=0) ax_error.spines['top'].set_visible(False) if len(pred.zernikes) < 20: xticks = [f"$\\alpha$={z.index_ansi}\n$j$={z.index_noll}\n$n$={z.n}\n$m$={z.m}" for z in pred.zernikes] else: xticks = [z.index_ansi for z in pred.zernikes] ax_error.set_xticklabels(xticks) for ax in [ax_gt, ax_pred, ax_diff]: ax.axis('off') plt.subplots_adjust(top=0.95, right=0.95, wspace=.2) plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) if display: plt.tight_layout() plt.show() def plot_residuals(df: pd.DataFrame, save_path, wavelength=.605, nsamples=100, label=''): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) fig, ax = plt.subplots(figsize=(8, 6)) df = df.drop(df.index[[0, 1, 2, 4]]) mean = np.mean(df[np.isfinite(df)], axis=0) stdv = np.std(df[np.isfinite(df)], axis=0) ax.errorbar( x=df.columns.values, y=mean, yerr=stdv, ecolor='lightgrey', lw=2, label=r'Mean $\pm$ stdev' ) ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_yscale('log') ax.set_ylim((0.01, .5)) ax.spines['top'].set_visible(False) ax.set_xlabel(label) ax.set_xscale('log', subsx=[2, 4, 6, 8]) ax.xaxis.set_major_formatter(FormatStrFormatter("%d")) ax.xaxis.set_minor_formatter(FormatStrFormatter("%d")) ax.set_xlim(10 ** 1, 10 ** 3) ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_yticks([.01, 0.02, .03, .05, .07, .15, .2, .3, .4], minor=True) ax.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) ax.yaxis.set_minor_formatter(FormatStrFormatter("%.2f")) ax.tick_params(axis='x', which='major', pad=10) divider = make_axes_locatable(ax) axl = divider.append_axes("top", size=2.0, pad=0, sharex=ax) axl.errorbar( x=df.columns.values, y=mean, yerr=stdv, ecolor='lightgrey', lw=2, ) axl.set_xscale('linear') axl.set_ylim((0.5, 3)) axl.spines['bottom'].set_visible(False) axl.xaxis.set_ticks_position('top') axl.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) axl.grid(True, which="major", axis='both', lw=.5, ls='--', zorder=0) axl.set_xscale('log', subsx=[2, 3, 4, 6, 8]) axl.xaxis.set_major_formatter(FormatStrFormatter("%d")) axl.xaxis.set_minor_formatter(FormatStrFormatter("%d")) axl.tick_params(axis='x', which='major', pad=10) axl.set_xlim(10 ** 1, 10 ** 3) axl.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_ylabel(rf'Peak-to-peak residuals') axl.set_ylabel(rf'($n$ = {nsamples}; $\lambda = {wavelength}~\mu m$)') ax.legend(frameon=False, loc='lower center') plt.tight_layout() plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_mae_amps(df: pd.DataFrame, save_path, wavelength=.605): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) fig, ax = plt.subplots(figsize=(8, 6)) ax.plot(df.index, df['mae'], color='k') ax.grid(True, which="major", axis='both', lw=1, ls='--', zorder=0) ax.legend(frameon=False, loc='upper right') ax.set_ylabel(f'MAE ($\lambda = {wavelength}~\mu m$)') ax.set_xlabel(f'Amplitudes\n($\lambda = {wavelength}~\mu m$)') plt.tight_layout() plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_eval(means: pd.DataFrame, save_path, wavelength=.605, nsamples=100, label=''): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, 'xtick.major.pad': 10 }) # fig = plt.figure(figsize=(8, 6)) # ax = fig.gca(projection="3d") fig, ax = plt.subplots(figsize=(8, 6)) levels = [ .15, .175, .2, .225, .25, .3, .35, .4, .45, .5, .6, .7, .8, .9, 1, 1.25, 1.5, 1.75, 2. ] vmin, vmax, vcenter, step = 0, 2, .1, .01 highcmap = plt.get_cmap('magma_r', 256) lowcmap = plt.get_cmap('GnBu_r', 256) low = np.linspace(0, 1 - step, int(abs(vcenter - vmin) / step)) high = np.linspace(0, 1 + step, int(abs(vcenter - vmax) / step)) cmap = np.vstack((lowcmap(low), [1, 1, 1, 1], highcmap(high))) cmap = mcolors.ListedColormap(cmap) contours = ax.contourf( means.columns.values, means.index.values, means.values, cmap=cmap, levels=levels, extend='both', linewidths=2, linestyles='dashed', ) # ax.clabel(contours, contours.levels, inline=True, fontsize=10, colors='k') cax = fig.add_axes([1, 0.08, 0.03, 0.87]) cbar = plt.colorbar( contours, cax=cax, fraction=0.046, pad=0.04, extend='both', spacing='proportional', format=FormatStrFormatter("%.2f") ) cbar.ax.set_ylabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$' rf'($\lambda = {int(wavelength*1000)}~nm$)' ) cbar.ax.set_title(r'$\lambda$') cbar.ax.yaxis.set_ticks_position('right') cbar.ax.yaxis.set_label_position('left') ax.set_xlabel(f'Peak signal-to-noise ratio') ax.set_xscale('log') ax.xaxis.set_major_formatter(FormatStrFormatter("%d")) ax.xaxis.set_minor_formatter(FormatStrFormatter("%d")) ax.set_xlim(10 ** 0, 10 ** 2) ax.grid(True, which="both", axis='both', lw=.25, ls='--', zorder=0) if 'amplitude' in label: ax.set_ylabel( 'Peak-to-peak aberration $|P_{95} - P_{5}|$' rf'($\lambda = {int(wavelength*1000)}~nm$)' ) ax.set_yticks(np.arange(0, 11, .5), minor=True) ax.set_yticks(np.arange(0, 11, 1)) ax.set_ylim(.25, 10) else: ax.set_ylabel(f"{label.replace('_', ' ').capitalize()} ($\mu m$)") plt.tight_layout() plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def prediction( psf: np.array, predicted_psf: np.array, pred: Wavefront, dm_before: np.array, dm_after: np.array, save_path: Path, wavelength: float = .605, psf_cmap: str = 'hot', gamma: float = .5, threshold: float = .01, ): def wavefront(iax, phi, levels): mat = iax.contourf( phi, levels=levels, cmap=wave_cmap, vmin=np.min(levels), vmax=np.max(levels), extend='both' ) divider = make_axes_locatable(iax) top = divider.append_axes("top", size='30%', pad=0.2) top.hist(phi.flatten(), bins=phi.shape[0], color='grey') top.set_yticks([]) top.xaxis.set_major_formatter(FormatStrFormatter("%.2f")) top.spines['right'].set_visible(False) top.spines['top'].set_visible(False) top.spines['left'].set_visible(False) iax.axis('off') return mat def psf_slice(xy, zx, zy, vol, label='', maxx=True): vol = vol ** gamma vol = np.nan_to_num(vol) if maxx: m = xy.imshow(np.max(vol, axis=0), cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(np.max(vol, axis=1), cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(np.max(vol, axis=2), cmap=psf_cmap, vmin=0, vmax=1) else: mid_plane = vol.shape[0] // 2 m = xy.imshow(vol[mid_plane, :, :], cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(vol[:, mid_plane, :], cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(vol[:, :, mid_plane], cmap=psf_cmap, vmin=0, vmax=1) cax = inset_axes(zy, width="10%", height="100%", loc='center right', borderpad=-3) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) cax.set_ylabel(f"$\gamma$: {gamma:.2f}") cax.yaxis.set_label_position("right") xy.set_ylabel(label) return m plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, 'axes.autolimit_mode': 'round_numbers' }) if len(psf.shape) > 3: psf = np.squeeze(psf, axis=-1) psf = np.squeeze(psf, axis=0) pred_wave = pred.wave(size=257) fig = plt.figure(figsize=(8, 11)) gs = fig.add_gridspec(7, 3) ax_ixy = fig.add_subplot(gs[0, 0]) ax_ixz = fig.add_subplot(gs[0, 1]) ax_iyz = fig.add_subplot(gs[0, 2]) ax_mxy = fig.add_subplot(gs[1, 0]) ax_mxz = fig.add_subplot(gs[1, 1]) ax_myz = fig.add_subplot(gs[1, 2]) ax_pxy = fig.add_subplot(gs[2, 0]) ax_pxz = fig.add_subplot(gs[2, 1]) ax_pyz = fig.add_subplot(gs[2, 2]) ax_acts = fig.add_subplot(gs[3:5, :2]) ax_wavefornt = fig.add_subplot(gs[3:5, 2]) cax = inset_axes(ax_wavefornt, width="10%", height="100%", loc='center right', borderpad=-4) ax_zcoff = fig.add_subplot(gs[-2:, :]) step = .25 vmax = round(np.max([ np.abs(round(np.nanquantile(pred_wave, .1), 2)), np.abs(round(np.nanquantile(pred_wave, .9), 2)) ]) * 4) / 4 vmax = .25 if vmax < threshold else vmax highcmap = plt.get_cmap('magma_r', 256) middlemap = plt.get_cmap('gist_gray', 256) lowcmap = plt.get_cmap('gist_earth_r', 256) ll = np.arange(-vmax, -.25 + step, step) mm = [-.15, 0, .15] hh = np.arange(.25, vmax + step, step) mticks = np.concatenate((ll, mm, hh)) levels = np.vstack(( lowcmap(.66 * ll / ll.min()), middlemap([.85, .95, 1, .95, .85]), highcmap(.66 * hh / hh.max()) )) wave_cmap = mcolors.ListedColormap(levels) ax_ixy.set_title('XY') ax_ixz.set_title('ZX') ax_iyz.set_title('ZY') psf_slice(ax_ixy, ax_ixz, ax_iyz, psf, label=r'Input (max)', maxx=True) psf_slice(ax_mxy, ax_mxz, ax_myz, psf, label=r'Input (middle)') psf_slice(ax_pxy, ax_pxz, ax_pyz, predicted_psf, label='Predicted') mat = wavefront(ax_wavefornt, pred_wave, levels=mticks) cbar = fig.colorbar( mat, cax=cax, fraction=0.046, pad=0.04, extend='both', format=FormatStrFormatter("%.2g"), # spacing='proportional', ) cbar.ax.set_title(r'$\lambda$') cbar.ax.set_ylabel(f'$\lambda = {wavelength}~\mu m$') cbar.ax.yaxis.set_ticks_position('right') cbar.ax.yaxis.set_label_position('left') ax_acts.plot(dm_before, ls='--', color='C1', label='Current') ax_acts.plot(dm_after, color='C0', label='Predictions') ax_acts.set_xlim(0, 68) ax_acts.set_ylabel(f'DM actuators (volts)') ax_acts.legend(frameon=False, loc='lower right') ax_acts.grid(True, which="both", axis='both', lw=1, ls='--', zorder=0) ax_acts.axhline(0, ls='--', color='k', alpha=.5) ax_zcoff.plot([], [], ' ', label=r"$\alpha$: ANSI index") ax_zcoff.plot([], [], ' ', label=r"$j$: Noll index") ax_zcoff.plot(pred.amplitudes_ansi_waves, color='dimgrey', label='Predictions') ax_zcoff.legend(frameon=False, loc='lower left') ax_zcoff.set_xticks(range(len(pred.amplitudes_ansi_waves))) ax_zcoff.set_ylabel(f'Amplitudes ($\lambda = {wavelength}~\mu m$)') ax_zcoff.spines['top'].set_visible(False) ax_zcoff.grid(True, which="both", axis='y', lw=1, ls='--', zorder=0) ax_zcoff.spines['top'].set_visible(False) xticks = [f"$\\alpha$={z.index_ansi}\n$j$={z.index_noll}\n$n$={z.n}\n$m$={z.m}" for z in pred.zernikes] ax_zcoff.set_xticklabels(xticks) ax_zcoff.set_xlim(0, 14) ax_zcoff.axhline(0, ls='--', color='r', alpha=.5) plt.subplots_adjust(top=0.95, right=0.95, wspace=.2) pupil_displacement = np.array(pred_wave, dtype='float32') imsave(f"{save_path}_pupil_displacement.tif", pupil_displacement) plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_models(df: pd.DataFrame, save_path, wavelength=.605, nsamples=100, label=''): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) fig, ax = plt.subplots(figsize=(8, 6)) for model in df.columns.values: ax.plot(df[model], label=model) ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_yscale('log') ax.set_ylim((0.01, .5)) ax.spines['top'].set_visible(False) ax.set_xlabel(label) ax.set_xscale('log', subsx=[2, 3, 4, 5, 6, 8]) ax.xaxis.set_major_formatter(FormatStrFormatter("%d")) ax.xaxis.set_minor_formatter(FormatStrFormatter("%d")) ax.set_xlim(10 ** 1, 10 ** 2) ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_yticks([.01, 0.02, .03, .05, .07, .15, .2, .3, .4], minor=True) ax.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) ax.yaxis.set_minor_formatter(FormatStrFormatter("%.2f")) ax.tick_params(axis='x', which='major', pad=10) divider = make_axes_locatable(ax) axl = divider.append_axes("top", size=2.0, pad=0, sharex=ax) for model in df.columns: axl.plot(df[model], label=model) axl.set_xscale('linear') axl.set_ylim((0.5, 3)) axl.spines['bottom'].set_visible(False) axl.xaxis.set_ticks_position('top') axl.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) axl.grid(True, which="major", axis='both', lw=.5, ls='--', zorder=0) axl.set_xscale('log', subsx=[2, 3, 4, 5, 6, 8]) axl.xaxis.set_major_formatter(FormatStrFormatter("%d")) axl.xaxis.set_minor_formatter(FormatStrFormatter("%d")) axl.tick_params(axis='x', which='major', pad=10) axl.set_xlim(10 ** 1, 10 ** 2) axl.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_ylabel(rf'Peak-to-peak residuals') axl.set_ylabel(rf'($n$ = {nsamples}; $\lambda = {wavelength}~\mu m$)') ax.legend(frameon=False, loc='lower center', ncol=df.shape[1] // 2) plt.tight_layout() plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_residuals_per_mode(df: pd.DataFrame, save_path, wavelength=.605, nsamples=100): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) order = pd.concat( [ df.mean(axis=1).to_frame('mean'), df.sum(axis=1).to_frame('sum'), df.std(axis=1).to_frame('std'), df.median(axis=1).to_frame('median'), df ], axis=1 ) order = order.groupby('model')['mean', 'std', 'median', 'sum'].mean().sort_values('mean') logger.info(order) fig, axes = plt.subplots(nrows=order.shape[0], figsize=(df.shape[1] / 2, 20), sharex='all') for i, (model, row) in enumerate(order.iterrows()): axes[i].set_title(model) g = sns.boxplot( ax=axes[i], data=df[df.model == model], orient='v', palette="Set3", ) g.set(ylim=(0, 2)) axes[i].grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) axes[i].axhline(.25, color='r') props = dict(boxstyle='round', facecolor='wheat', alpha=0.5) text = '\n'.join(( rf"$\mu={round(row['mean'], 4)}$", rf"$\sigma={round(row['std'], 4)}$", rf"$m={round(row['median'], 4)}$", rf"$\Sigma={round(row['sum'], 4)}$", )) axes[i].text(0.025, 0.95, text, transform=axes[i].transAxes, va='top', bbox=props) axes[i].set_ylabel( 'Residuals\n' rf'($n$ = {nsamples}; $\lambda = {wavelength}~\mu m$)' ) plt.tight_layout() plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_convergence(df: pd.DataFrame, save_path, wavelength=.605, nsamples=100, psnr=30): plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, }) fig, ax = plt.subplots(figsize=(8, 6)) for model in df['model'].unique(): x = df[df['model'] == model]['niter'].values y = df[df['model'] == model]['residuals'].values ax.plot(x, y, label=model) ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_yscale('log') ax.set_ylim((0.01, 10)) ax.set_xlim((0, df['niter'].nunique())) ax.set_xticks(range(df['niter'].nunique())) ax.spines['top'].set_visible(False) ax.set_xlabel('Number of iterations') ax.grid(True, which="both", axis='both', lw=.5, ls='--', zorder=0) ax.set_yticks([ .01, 0.02, .03, .05, .07, .15, .25, .5, .75, 1, 1.5, 2, 3, 4, 6, 8, 10 ], minor=True) ax.xaxis.set_major_formatter(FormatStrFormatter("%d")) ax.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) ax.yaxis.set_minor_formatter(FormatStrFormatter("%.2f")) ax.tick_params(axis='x', which='major', pad=10) #ax.set_title(f"PSNR: {psnr}, $n$ = {nsamples}") ax.set_ylabel(rf'Average peak-to-peak residuals ($\lambda = {round(wavelength*1000)}~nm$)') ax.legend(frameon=False, loc='lower center', ncol=4) plt.tight_layout() plt.savefig(f'{save_path}.pdf', bbox_inches='tight', pad_inches=.25) plt.savefig(f'{save_path}.png', dpi=300, bbox_inches='tight', pad_inches=.25) def plot_inputs( n_modes=15, x_voxel_size=.15, y_voxel_size=.15, z_voxel_size=.6, psnr=100, wavelength: float = .605, psf_cmap: str = 'Spectral_r', threshold: float = .01, ): def wavefront(iax, phi, levels, label=''): mat = iax.contourf( phi, levels=levels, cmap=wave_cmap, vmin=np.min(levels), vmax=np.max(levels), extend='both' ) iax.set_aspect('equal') divider = make_axes_locatable(iax) top = divider.append_axes("top", size='30%', pad=0.2) top.hist(phi.flatten(), bins=phi.shape[0], color='grey') top.set_title(label) top.set_yticks([]) top.xaxis.set_major_formatter(FormatStrFormatter("%.2f")) top.spines['right'].set_visible(False) top.spines['top'].set_visible(False) top.spines['left'].set_visible(False) return mat def slice(xy, zx, zy, vol, label='', maxproj=True): if vol.shape[-1] == 3: m = xy.imshow(vol[:, :, 0], cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(vol[:, :, 1], cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(vol[:, :, 2], cmap=psf_cmap, vmin=0, vmax=1) else: #vol = vol ** gamma #vol = np.nan_to_num(vol) if maxproj: m = xy.imshow(np.max(vol, axis=0), cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(np.max(vol, axis=1), cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(np.max(vol, axis=2), cmap=psf_cmap, vmin=0, vmax=1) else: mid_plane = vol.shape[0] // 2 m = xy.imshow(vol[mid_plane, :, :], cmap=psf_cmap, vmin=0, vmax=1) zx.imshow(vol[:, mid_plane, :], cmap=psf_cmap, vmin=0, vmax=1) zy.imshow(vol[:, :, mid_plane], cmap=psf_cmap, vmin=0, vmax=1) cax = inset_axes(zy, width="10%", height="100%", loc='center right', borderpad=-3) cb = plt.colorbar(m, cax=cax) cax.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) cax.yaxis.set_label_position("right") xy.set_ylabel(label) return m plt.rcParams.update({ 'font.size': 10, 'axes.titlesize': 12, 'axes.labelsize': 12, 'xtick.labelsize': 10, 'ytick.labelsize': 10, 'legend.fontsize': 10, 'axes.autolimit_mode': 'round_numbers' }) #plt.style.use("dark_background") for i in trange(5, n_modes): phi = np.zeros(n_modes) phi[i] = .05 w = Wavefront(phi, order='ansi') y_wave = w.wave(size=100) gen = SyntheticPSF( amplitude_ranges=(-1, 1), n_modes=n_modes, lam_detection=wavelength, psf_shape=3*[32], x_voxel_size=x_voxel_size, y_voxel_size=y_voxel_size, z_voxel_size=z_voxel_size, snr=psnr, max_jitter=0, cpu_workers=-1, ) inputs = gen.single_otf(w, zplanes=0, normed=True, noise=False) psf = gen.single_psf(w, zplanes=0, normed=True, noise=False) otf =
np.fft.fftn(psf)
numpy.fft.fftn
import numpy as np from matplotlib import pyplot as plt class NN: def __init__(self, h1, seed): np.random.seed(seed) self.h1 = h1 # number of hidden units in the hidden layer def init_params(self, X, Y): W1 = np.random.randn(self.h1, X.shape[0]) * 0.01 b1 = np.zeros((self.h1, 1)) W2 = np.random.randn(Y.shape[0], self.h1) * 0.01 b2 = np.zeros((Y.shape[0],1)) params = { 'W1':W1, 'b1':b1, 'W2':W2, 'b2':b2 } return params def forward_pass(self, params, X): W1 = params['W1'] b1 = params['b1'] W2 = params['W2'] b2 = params['b2'] Z1 = np.dot(W1, X) + b1 # Forward Propagation A1 = np.tanh(Z1) Z2 = np.dot(W2, A1) + b2 A2 = 1/(1+(np.exp(-Z2))) cache = { 'Z1':Z1, 'A1':A1, 'Z2':Z2, 'A2':A2 } return cache def compute_cost(self, cache, Y): A2 = cache['A2'] m = Y.shape[1] cost = (-1/m) * np.sum(Y*np.log(A2) + (1-Y)*np.log(1-A2)) # Computing Cost return cost def back_prop(self, cache, params, X, Y): W2 = params['W2'] m = Y.shape[1] A1 = cache['A1'] A2 = cache['A2'] # Updating the gradient dZ2 = A2 - Y dW2 = (1/m) * np.dot(dZ2, A1.transpose()) db2 = (1/m) * (np.sum(dZ2, axis=1, keepdims=True)) dZ1 = np.dot(W2.transpose(),dZ2) * (1-(A1**2)) dW1 = (1/m) * np.dot(dZ1, X.transpose()) db1 = (1/m) * (np.sum(dZ1, axis=1, keepdims=True)) grads = {'dW1':dW1, 'db1':db1, 'dW2':dW2, 'db2':db2} return grads def optimize(self, X, Y, grads, params, alpha): W1 = params['W1'] b1 = params['b1'] W2 = params['W2'] b2 = params['b2'] dW1 = grads['dW1'] db1 = grads['db1'] dW2 = grads['dW2'] db2 = grads['db2'] W1 = W1 - alpha*dW1 # Gradient Descent b1 = b1 - alpha*db1 W2 = W2 - alpha*dW2 b2 = b2 - alpha*db2 params = {'W1':W1,'b1':b1,'W2':W2,'b2':b2} return params def fit(self, X, Y, alpha=0.01, epochs=10000, plot_cost=False, verbose=True): params = self.init_params(X, Y) cost = [] iterations = [] c = 0 for i in range (epochs): cache = self.forward_pass(params, X) if plot_cost and ((i+1)%1000 == 0): cost.append(self.compute_cost(cache, Y)) iterations.append(i+1) if verbose and ((i+1)%1000 == 0): c = self.compute_cost(cache, Y) print("Cost after {} iterations is: {}".format((i+1), c)) grads = self.back_prop(cache, params, X, Y) params = self.optimize(X, Y, grads, params, alpha) if plot_cost: plt.plot(iterations, cost) plt.xlabel('Iterations') plt.ylabel('Cost') plt.title("Cost vs. Iterations") plt.show() return params, cost, iterations else: return params def predict(self, X, params): W1 = params['W1'] b1 = params['b1'] W2 = params['W2'] b2 = params['b2'] Z1 = np.dot(W1, X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2, A1) + b2 A2 = 1/(1+(
np.exp(-Z2)
numpy.exp
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(
np.arange(col_len + 10)
numpy.arange
import codecs import os import random import pickle import sys import numpy as np import tensorflow as tf from tqdm import tqdm from transformers import BertTokenizer, TFBertModel from io_utils.io_utils import load_data from data_processing.feature_extraction import calc_features from data_processing.feature_extraction import calc_features_and_labels def main(): random.seed(42) np.random.seed(42) tf.random.set_seed(42) if len(sys.argv) < 2: err_msg = 'The source file is not specified!' raise ValueError(err_msg) src_fname = os.path.normpath(sys.argv[1]) if len(sys.argv) < 3: err_msg = 'The BERT model name is not specified!' raise ValueError(err_msg) bert_path = os.path.normpath(sys.argv[2]) if len(sys.argv) < 4: err_msg = 'The destination file with features is not specified!' raise ValueError(err_msg) dst_fname = os.path.normpath(sys.argv[3]) if len(sys.argv) < 5: err_msg = 'The source data kind is not specified! ' \ 'Possible values: text, annotation.' raise ValueError(err_msg) source_data_kind = sys.argv[4].strip().lower() if source_data_kind not in {'text', 'annotation'}: err_msg = f'{sys.argv[4]} is wrong source data kind!' \ f'Possible values: text, annotation.' raise ValueError(err_msg) if len(sys.argv) < 6: err_msg = 'The maximal sentence length is not specified!' raise ValueError(err_msg) try: max_len = int(sys.argv[5]) except: max_len = 0 if max_len <= 0: err_msg = f'The maximal sentence length = {sys.argv[5]} ' \ f'is inadmissible!' raise ValueError(err_msg) if source_data_kind == 'annotation': if len(sys.argv) < 7: err_msg = 'The named entity vocabulary is not specified!' raise ValueError(err_msg) ne_voc_fname = os.path.normpath(sys.argv[6]) if not os.path.isfile(ne_voc_fname): err_msg = f'The file "{ne_voc_fname}" does not exist!' raise IOError(err_msg) with codecs.open(ne_voc_fname, mode='r', encoding='utf-8') as fp: named_entity_list = list(filter( lambda it2: len(it2) > 0, map(lambda it1: it1.strip(), fp.readlines()) )) if len(named_entity_list) < 1: raise ValueError(f'The file "{ne_voc_fname}" is empty!') else: named_entity_list = [] if not os.path.isfile(src_fname): err_msg = f'The file "{src_fname}" does not exist!' raise IOError(err_msg) if len(dst_fname.strip()) == 0: raise ValueError('The destination file name is empty!') dst_dir = os.path.dirname(dst_fname) if len(dst_dir) > 0: if not os.path.isdir(dst_dir): err_msg = f'The directory "{dst_dir}" does not exist!' raise IOError(err_msg) bert_tokenizer = BertTokenizer.from_pretrained(bert_path) bert_model = TFBertModel.from_pretrained(bert_path) features = [] if source_data_kind == 'annotation': labels = [[] for _ in range(len(named_entity_list))] source_data = load_data(src_fname) for cur_id in tqdm(sorted(list(source_data.keys()))): text, ners = source_data[cur_id] X, y = calc_features_and_labels( bert_tokenizer, bert_model, max_len, named_entity_list, text, ners ) features.append(X) for idx in range(len(named_entity_list)): labels[idx].append(y[idx]) features = np.vstack(features) for idx in range(len(named_entity_list)): labels[idx] =
np.vstack(labels[idx])
numpy.vstack
from models import CNN5 from core.Optimizers import sgd, bgd from core.Functions import one_hot_f import numpy as np from tensorflow import keras from core.Dataloader import batch_iterator import cupy as cp def test(model, test_inputs, test_labels): num_of_sample = test_inputs.shape[0] cnt_correct, cnt_tot = 0, 0 if model.gpu_backend: test_inputs = cp.array(test_inputs) test_labels = cp.array(test_labels) for i in range(num_of_sample): test_input = test_inputs[i:i + 1] test_label = test_labels[i] res = model.forward_prop(test_input) if cp.argmax(res) == cp.argmax(test_label): cnt_correct += 1 cnt_tot += 1 else: for i in range(num_of_sample): test_input = test_inputs[i:i + 1] test_label = test_labels[i] res = model.forward_prop(test_input) if np.argmax(res) == np.argmax(test_label): cnt_correct += 1 cnt_tot += 1 acc = cnt_correct / cnt_tot print('[ accuracy ]: ', acc * 100) return acc fashion_mnist = keras.datasets.fashion_mnist (train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data() train_images =
np.expand_dims(train_images / 255, axis=-1)
numpy.expand_dims
""" BlackthornFeatures.py Author: <NAME> (<EMAIL>) """ import h5py import multiprocessing as mp import numpy as np import os import random import scipy.sparse as sparse import time from aimodel.commons import t from data.ImagenetShuffleFeatureExtractor import ImagenetShuffleFeatureExtractor # noqa E501 class BlackthornFeatures: """ The features for the interactive learning models are based on Blackthorn, they are very time-efficient (enabling real-time interactivity on even large dataset) without sacrificing too much of accuracy. Essentially operates in two modes. BlackthornFeatures instance is used in the live system - it loads the features into the system, and instance-level methods properly handle them. Class-level methods are used in dataset processing, i.e., compressing the extracted features into a sparse representation. """ N_SUBCHUNKS_PER_PROCESS = 4 DEFAULT_N_PROCESSES = 1 DEFAULT_N_FEAT_PER_IMG = 50 def __init__(self, features_path): """ Constructor. Parameters ---------- features_path : str The path to where the compressed features are located. """ self.features = sparse.load_npz(features_path) self.n = self.features.shape[0] self.n_feat = self.features.shape[1] self.rand_candidates_all = set(range(self.n)) def get(self, idx, n_random_fill=0): """ Fetches the compressed features corresponding to the given row indices. Parameters ---------- idx : list The list of requested row (image) indices. n_random_fill : int The number of images to be randomly sampled in addition to the features specified in idx. Default: 0. Returns ------- np.array A 2-D array with rows corresponding to the requested image indices, and columns being the features. """ if n_random_fill > 0: random_candidates = self.rand_candidates_all - set(idx) idx += random.sample(random_candidates, n_random_fill) return self.features[idx, :] def all(self): """ Returns the complete feature matrix. Returns ------- np.array A 2-D array with rows being the images and columns the features. """ return self.features @classmethod def compress(cls, dataset_config): """ Given the dataset config, takes the concept feature representation of a dataset and compresses the features into a sparse matrix. Parameters ---------- dataset_config : dict A valid dataset config (see the README for formatting specs) """ # Dataset config shortcuts root_dir = dataset_config["root_dir"] il_raw_features_path =\ os.path.join(root_dir, dataset_config["il_raw_features_path"]) il_features_path =\ os.path.join(root_dir, dataset_config["il_features_path"]) n_processes = dataset_config["il_n_processes"] n_feat_comp = dataset_config["il_n_feat_per_image"] # First, validate the inputs (establishing data dims in the process) n, n_feat, process_chunks =\ cls._prepare_compression(il_raw_features_path, il_features_path, n_processes) print("%s +++ COMPRESSING +++" % t()) stopwatch = time.time() # Start the workers that perform the compression processes = [None for x in range(n_processes)] for p_id in range(n_processes): worker_args = (p_id, n_processes, il_raw_features_path, il_features_path, n, n_feat, n_feat_comp, process_chunks) processes[p_id] =\ mp.Process(target=cls._compress_worker, args=worker_args) processes[p_id].start() for p_id in range(n_processes): processes[p_id].join() # Merge the compressed features into a single matrix, iterating over # all feature selection-n compressed features combinations worker_comp_features_all = [] for p_id in range(n_processes): # Append the worker features to the list worker_comp_features_path =\ cls._worker_comp_features_path(p_id, il_features_path) worker_comp_features = sparse.load_npz(worker_comp_features_path) worker_comp_features_all.append(worker_comp_features) # Mop up worker feature files os.remove(worker_comp_features_path) comp_features = sparse.vstack(worker_comp_features_all) # Sanity check - the compressed features should have the same # dimensions as the original ones if comp_features.shape != (n, n_feat): err = (("Compression sanity check failed: the compressed feature " "matrix dimensions (%sx%s) do not match the original ones " "(%s x %s).") % (comp_features.shape[0], comp_features.shape[1], n, n_feat)) raise BlackthornFeaturesError(err) # Write the feature file sparse.save_npz(il_features_path, comp_features) print("%s +++ COMPRESSION COMPLETE (%s s) +++" % (t(), round(time.time() - stopwatch, 2))) @classmethod def _compress_worker(cls, p_id, n_processes, il_raw_features_path, il_features_path, n, n_feat, n_feat_comp, process_chunks): """ The worker method that performs the actual compression on its data chunks (further subchunks to avoid memory issues, as data is copied in the process). Parameters ---------- p_id : int The process ID. n_processes : int The total number of worker processes. il_raw_features_path : str The absolute path to the uncompressed (raw) features. il_features_path : str The path where the compressed features will be stored. n : int The number of images in the collection. n_feat : int The number of features. n_feat_comp : int The number of features to be preserved (compressed), each one beyond this number in the top-features-by-value ranking will be set to 0. process_chunks : dict The data chunks as computed by the _prepare_compression() method """ # We need to split chunks into subchunks due to the data being copied n_subchunks = cls.N_SUBCHUNKS_PER_PROCESS * n_processes # Prepare the feature container worker_comp_features = sparse.csr_matrix((0, n_feat)) # Go over the data chunks for chunk in process_chunks[p_id]: n_subchunk = (chunk["i_end"] - chunk["i_start"]) // n_subchunks # Open the dataset with h5py.File(il_raw_features_path, "r") as feat_f: features = feat_f[chunk["feat_submat"]] for subchunk in range(n_subchunks): i_start_sc = chunk["i_start"] + subchunk * n_subchunk if subchunk == n_subchunks - 1: i_end_sc = chunk["i_end"] else: i_end_sc =\ chunk["i_start"] + (subchunk + 1) * n_subchunk n_sc = i_end_sc - i_start_sc # Establish the feature submatrix X = np.copy(features[i_start_sc: i_end_sc, :]) # Establish the top feature indices. feat_argsort = np.argsort(-X) # Trim the argsort to the indices of actually kept # features. This is now a 2-D matrix with each row # corresponding to the indices of the top features # kept for each image. top_feat_idx =\ np.copy(feat_argsort[:, :n_feat_comp]) # Initialize the nullifier matrix, which will be # used to set the NOT kept features to zero. The # nullifier dimensions are equal to the chunk # feature matrix dimensions, each item is 1 if the # feature is kept and 0 if the feature is not kept. # We initialize to all 0s nullifier =
np.zeros((n_sc, n_feat))
numpy.zeros
# environment setting import os os.chdir(os.path.split(os.path.realpath(__file__))[0]) import warnings warnings.filterwarnings('ignore') # external packages import numpy as np import torch import json import copy import time import torch.nn.functional as F from torch.distributions import MultivariateNormal from torch.nn import DataParallel from tqdm import tqdm # self writing files import constants import networks from reward_fun import reward_fun from simulator import disease_model from util import * class GraphRL(object): def __init__(self, MSA_name='Atlanta', vaccine_day=200, step_length=24, num_seed=128, num_episode=300, num_epoch=10, batch_size=512, buffer_size=8192, save_interval=1, lr=1e-4, soft_replace_rate=0.5, gamma=0.6, epsilon=0.2, SPR_weight=2, manual_seed=0): super().__init__() print('Initializing...') # generate config config_data=locals() del config_data['self'] del config_data['__class__'] time_data=time.strftime('%Y-%m-%d_%H-%M-%S', time.localtime()) config_data['time']=time_data # environment self.device='cuda' if torch.cuda.is_available() else 'cpu' self.manual_seed=manual_seed torch.manual_seed(self.manual_seed) if self.device=='cuda': torch.cuda.manual_seed(self.manual_seed) np.random.seed(self.manual_seed) dgl.seed(self.manual_seed) # loading cbg data (for simulation) self.MSA_name=MSA_name self.data=load_data(self.MSA_name) self.poi_areas=self.data['poi_areas'] self.poi_times=self.data['poi_times'] self.cbg_ages=self.data['cbg_ages']# cbg*23groups self.cbg_sizes=self.data['cbg_sizes'] self.poi_cbg_visits_list=self.data['poi_cbg_visits_list']# time_length*poi*cbg self.time_length=len(self.poi_cbg_visits_list) self.day_length=int(self.time_length/24) self.step_length=step_length assert len(self.cbg_ages)==len(self.cbg_sizes) assert len(self.cbg_ages)==self.poi_cbg_visits_list[0].shape[-1] self.num_cbg=len(self.cbg_ages) self.sum_population=np.sum(self.cbg_sizes) assert len(self.poi_areas)==self.poi_cbg_visits_list[0].shape[0] self.num_poi=len(self.poi_areas) # simulator self.num_seed=num_seed self.batch_size=batch_size self.seeds=range(self.num_seed) self.simulator=disease_model.Model(starting_seed=self.seeds,num_seeds=self.num_seed) self.simulator.init_exogenous_variables(poi_areas=self.poi_areas, poi_dwell_time_correction_factors=self.data['poi_dwell_time_correction_factors'], cbg_sizes=self.cbg_sizes, poi_cbg_visits_list=self.poi_cbg_visits_list, cbg_attack_rates_original = self.data['cbg_attack_rates_scaled'], cbg_death_rates_original = self.data['cbg_death_rates_scaled'], p_sick_at_t0=constants.parameters_dict[self.MSA_name][0], home_beta=constants.parameters_dict[self.MSA_name][1], poi_psi=constants.parameters_dict[self.MSA_name][2], just_compute_r0=False, latency_period=96, # 4 days infectious_period=84, # 3.5 days confirmation_rate=.1, confirmation_lag=168, # 7 days death_lag=432) # loading community data self.data_community=load_data_aggregate(self.MSA_name) self.community_ages=self.data_community['community_ages']# cbg*23groups self.community_sizes=self.data_community['community_sizes'] self.community_index=self.data_community['community_index'] self.poi_community_visits_list=self.data_community['poi_community_visits_list']# time_length*poi*cbg assert len(self.community_ages)==len(self.community_sizes) assert len(self.community_ages)==self.poi_community_visits_list[0].shape[-1] assert len(self.community_index)==self.num_cbg self.num_community=len(self.community_ages) # dynamic features self.community_state_num=np.zeros((self.num_seed,3,self.num_community))#S,C,D self.community_state_record=np.zeros((self.num_seed,self.step_length,3,self.num_community)) self.community_casediff=np.zeros((self.num_seed,3,self.num_community)) self.cbg_case_num=np.zeros((self.num_seed,self.num_cbg)) self.cbg_case_num_old=np.zeros((self.num_seed,self.num_cbg)) # static features (normalized) self.community_ages_norm=array_norm(self.community_ages,clip=100)# cbg*23 self.poi_areas_norm=array_norm(self.poi_areas,clip=99)[:,np.newaxis]# poi*1 self.poi_times_norm=array_norm(self.poi_times,clip=99)[:,np.newaxis]# poi*1 self.community_ages_norm=torch.FloatTensor(self.community_ages_norm).to(self.device) self.poi_areas_norm=torch.FloatTensor(self.poi_areas_norm).to(self.device) self.poi_times_norm=torch.FloatTensor(self.poi_times_norm).to(self.device) self.community_ages_norm_repeated_batch=self.community_ages_norm.repeat(self.batch_size,1,1) self.poi_areas_norm_repeated_batch=self.poi_areas_norm.repeat(self.batch_size,1,1) self.poi_times_norm_repeated_batch=self.poi_times_norm.repeat(self.batch_size,1,1) self.community_ages_norm_repeated_seed=self.community_ages_norm.repeat(self.num_seed,1,1) self.poi_areas_norm_repeated_seed=self.poi_areas_norm.repeat(self.num_seed,1,1) self.poi_times_norm_repeated_seed=self.poi_times_norm.repeat(self.num_seed,1,1) # network features (normalized) poi_community_visits_day=list() for i in range(self.day_length): poi_community_visits_day.append(np.sum(self.poi_community_visits_list[i*24:i*24+24])) self.poi_visit_day=list() for i in range(len(poi_community_visits_day)): self.poi_visit_day.append(np.sum(poi_community_visits_day[i],axis=1)) self.poi_visit_day=np.array(self.poi_visit_day) self.poi_visit_day_norm=array_norm(self.poi_visit_day,clip=100) self.poi_visit_day_norm=torch.FloatTensor(self.poi_visit_day_norm).to(self.device) poi_community_visits_day_norm=sparse_mat_list_norm(poi_community_visits_day,clip=99) self.poi_community_visits_day_network=list() print('Building graphs...') for i in tqdm(range(len(poi_community_visits_day_norm))): net,edge_weights=BuildGraph(poi_community_visits_day_norm[i]) self.poi_community_visits_day_network.append((net.to(self.device),edge_weights.to(self.device))) # vaccine number self.vacine_day=int((vaccine_day/37367)*self.sum_population) # replay buffers self.buffer_size=buffer_size self.buffer_pointer=0 self.buffer_sa=np.zeros((self.buffer_size,self.step_length,3,self.num_community)) self.buffer_sadiff=np.zeros((self.buffer_size,3,self.num_community)) self.buffer_sb=np.zeros((self.buffer_size),dtype=int) self.buffer_a=np.zeros((self.buffer_size,self.num_community)) self.buffer_r=np.zeros(self.buffer_size) self.buffer_sa1=np.zeros((self.buffer_size,self.step_length,3,self.num_community)) self.buffer_sadiff1=np.zeros((self.buffer_size,3,self.num_community)) self.buffer_sb1=np.zeros((self.buffer_size),dtype=int) self.buffer_logp=np.zeros(self.buffer_size) # training trackors self.num_episode=num_episode self.num_epoch=num_epoch self.save_interval=save_interval self.episode_deaths_trackor=list() self.episode_cases_trackor=list() self.critic_loss_trackor=list() self.actor_loss_trackor=list() self.SPR_loss_trackor=list() # networks self.online_encoder=DataParallel(networks.Encoder(step_length=self.step_length).to(self.device)) self.online_GCN=networks.GCN().to(self.device) self.online_projector=DataParallel(networks.Projector(num_cbg=self.num_community).to(self.device)) self.transition=DataParallel(networks.Transition().to(self.device)) self.predictor=DataParallel(networks.Predictor().to(self.device)) self.PPO_actor=DataParallel(networks.Actor(num_cbg=self.num_community).to(self.device)) self.PPO_critic=DataParallel(networks.Critic(num_cbg=self.num_community).to(self.device)) self.target_encoder=copy.deepcopy(self.online_encoder) self.target_encoder.eval() self.target_GCN=copy.deepcopy(self.online_GCN) self.target_GCN.eval() self.target_projector=copy.deepcopy(self.online_projector) self.target_projector.eval() self.soft_replace_rate=soft_replace_rate self.gamma=gamma self.epsilon=epsilon self.SPR_weight=SPR_weight # optimizers self.lr=lr self.online_encoder_opt=torch.optim.Adam(self.online_encoder.parameters(),lr=self.lr) self.online_GCN_opt=torch.optim.Adam(self.online_GCN.parameters(),lr=self.lr) self.transition_opt=torch.optim.Adam(self.transition.parameters(),lr=self.lr) self.online_projector_opt=torch.optim.Adam(self.online_projector.parameters(),lr=self.lr) self.predictor_opt=torch.optim.Adam(self.predictor.parameters(),lr=self.lr) self.PPO_actor_opt=torch.optim.Adam(self.PPO_actor.parameters(),lr=self.lr) self.PPO_critic_opt=torch.optim.Adam(self.PPO_critic.parameters(),lr=self.lr) print(f'Training platform on {self.MSA_name} initialized') print(f'Number of communities={self.num_community}') print(f'Number of POIs={self.num_poi}') print(f'Total population={self.sum_population}') print(f'Time length={self.time_length}') print(f'Train with {self.num_seed} random seeds') # making output directory self.output_dir=os.path.join('..','model',f'{self.MSA_name}_aggregate_{self.num_seed}seeds_{time_data}') os.mkdir(self.output_dir) with open(os.path.join(self.output_dir,'config.json'),'w') as f: json.dump(config_data,f) def test_simulation(self): for num in range(1): self.simulator.reset_random_seed() self.simulator.init_endogenous_variables() # mat=500*np.ones((self.num_seed,self.num_cbg)) # mat[:30,:]-=300 # self.simulator.add_vaccine(mat) for i in range(63): # if i==20: # mat=500*np.ones((self.num_seed,self.num_cbg)) # self.simulator.add_vaccine(mat) self.simulator.simulate_disease_spread(no_print=True) T1,L_1,I_1,R_1,C2,D2,total_affected, history_C2, history_D2, total_affected_each_cbg=self.simulator.output_record(full=True) gt_result_root=os.path.join('..','model','simulator_test') if not os.path.exists(gt_result_root): os.mkdir(gt_result_root) savepath = os.path.join(gt_result_root, f'cases_cbg_no_vaccination_{self.MSA_name}_{self.num_seed}seeds_step_raw{num}a.npy') np.save(savepath, history_C2) savepath = os.path.join(gt_result_root, f'deaths_cbg_no_vaccination_{self.MSA_name}_{self.num_seed}seeds_step_raw{num}a.npy') np.save(savepath, history_D2) def test_network(self): community_state_record=torch.FloatTensor(self.community_state_record).to(self.device) print(community_state_record.shape) community_statediff=community_state_record[:,-1,:,:].unsqueeze(1) print(community_statediff.shape) index=[0]*self.num_seed g,edge_weight,poi_visits=self.get_indexed_vectors(index) cbg_encode,poi_encode=self.online_encoder(community_state_record,community_statediff,self.community_ages_norm_repeated_seed,poi_visits,self.poi_areas_norm_repeated_seed,self.poi_times_norm_repeated_seed) print(cbg_encode.shape) print(poi_encode.shape) cbg_embeddings=self.online_GCN(g,edge_weight,cbg_encode,poi_encode) print(cbg_embeddings.shape) mu,sigma=self.PPO_actor(cbg_embeddings) value=self.PPO_critic(cbg_embeddings) print(mu.shape) print(sigma.shape) print(value.shape) action,_=self.get_action(sigma,mu) print(action.shape) cbg_embeddings_new=self.transition(cbg_embeddings,action) print(cbg_embeddings_new.shape) projection1=self.online_projector(cbg_embeddings_new) projection2=self.online_projector(cbg_embeddings) print(projection1.shape) print(projection2.shape) prediction=self.predictor(projection1) print(prediction.shape) def get_indexed_vectors(self,index): g_list=list() edge_weight_list=list() for i in range(len(index)): g,edge_weight=self.poi_community_visits_day_network[index[i]] g_list.append(g) edge_weight_list.append(edge_weight) poi_visits=self.poi_visit_day_norm[index,:] return g_list,edge_weight_list,poi_visits def update_community_state(self,current_C,current_D): self.community_state_record[:,:,1,:]=current_C self.community_state_record[:,:,2,:]=current_D self.community_state_record[:,:,0,:]=self.community_sizes-self.community_state_record[:,:,1,:]-self.community_state_record[:,:,2,:] self.community_state_num=self.community_state_record[:,-1,:,:] def get_action(self,mu,sigma,action=None): batch_size=len(mu) eye=torch.eye(self.num_community).to(self.device).repeat(batch_size,1,1) sigma_mat=eye*(torch.square(sigma).unsqueeze(1)) dist = MultivariateNormal(mu, sigma_mat) if action==None: action = dist.sample() log_prob = dist.log_prob(action) return action,log_prob else: log_prob = dist.log_prob(action) return log_prob def get_vaccine(self,actions): # actions=actions-2*(np.min(actions,axis=1)[:,np.newaxis]) actions=np.exp(actions) actions=actions/(np.sum(actions,axis=1)[:,np.newaxis]) vaccine_mat_community=self.vacine_day*actions pop=self.cbg_sizes cases=self.cbg_case_num-self.cbg_case_num_old vaccine_mat=np.empty((self.num_seed,self.num_cbg)) for i in range(self.num_community): cases_community=cases[:,self.community_index==i] cases_community_sum=np.sum(cases_community,axis=1) proportion_cases_community=cases_community/cases_community_sum[:,np.newaxis] pop_community=pop[self.community_index==i] proportion_pop_community=pop_community/np.sum(pop_community) proportion_cases_community[cases_community_sum==0,:]=proportion_pop_community vaccine_mat[:,self.community_index==i]=vaccine_mat_community[:,i][:,np.newaxis]*proportion_cases_community return vaccine_mat.astype(int) def SPR_loss_fun(self,input,target): input_norm=torch.norm(input,dim=1) target_norm=torch.norm(target,dim=1) input_normed=input/input_norm.unsqueeze(1) target_normed=target/target_norm.unsqueeze(1) SPR_loss=-torch.mean(torch.sum(input_normed*target_normed,dim=1)) return SPR_loss def update(self): batch_count=0 critic_loss_sum=0 actor_loss_sum=0 SPR_loss_sum=0 self.buffer_r=(self.buffer_r - self.buffer_r.mean())/(self.buffer_r.std() + 1e-10) sa=torch.FloatTensor(self.buffer_sa).to(self.device) sadiff=torch.FloatTensor(self.buffer_sadiff).to(self.device).unsqueeze(1) r=torch.FloatTensor(self.buffer_r).to(self.device) a=torch.FloatTensor(self.buffer_a).to(self.device) logp=torch.FloatTensor(self.buffer_logp).to(self.device) sa1=torch.FloatTensor(self.buffer_sa1).to(self.device) sadiff1=torch.FloatTensor(self.buffer_sadiff1).to(self.device).unsqueeze(1) target_v=torch.FloatTensor(self.buffer_pointer,1).to(self.device) advantage=torch.FloatTensor(self.buffer_pointer,1).to(self.device) with torch.no_grad(): index_t=np.array(range(self.buffer_pointer)) batch_pointer_t=0 batch_num_t=int(self.buffer_pointer/self.batch_size) for batch_t in range(batch_num_t): batch_index_t=index_t[batch_pointer_t:batch_pointer_t+self.batch_size] sa_batch_t=sa[batch_index_t] sadiff_batch_t=sadiff[batch_index_t] sb_batch_t=self.buffer_sb[batch_index_t] r_batch_t=r[batch_index_t] sa1_batch_t=sa1[batch_index_t] sadiff1_batch_t=sadiff1[batch_index_t] sb1_batch_t=self.buffer_sb1[batch_index_t] g_batch_t,edge_weight_batch_t,poi_visits_batch_t=self.get_indexed_vectors(sb_batch_t) community_encode_batch_t,poi_encode_batch_t=self.online_encoder(sa_batch_t,sadiff_batch_t,self.community_ages_norm_repeated_batch,poi_visits_batch_t,self.poi_areas_norm_repeated_batch,self.poi_times_norm_repeated_batch) community_embeddings_batch_t=self.online_GCN(g_batch_t,edge_weight_batch_t,community_encode_batch_t,poi_encode_batch_t) g1_batch_t,edge_weight1_batch_t,poi_visits1_batch_t=self.get_indexed_vectors(sb1_batch_t) community_encode1_batch_t,poi_encode1_batch_t=self.online_encoder(sa1_batch_t,sadiff1_batch_t,self.community_ages_norm_repeated_batch,poi_visits1_batch_t,self.poi_areas_norm_repeated_batch,self.poi_times_norm_repeated_batch) community_embeddings1_batch_t=self.online_GCN(g1_batch_t,edge_weight1_batch_t,community_encode1_batch_t,poi_encode1_batch_t) target_v_batch_t=r_batch_t.unsqueeze(1)+self.gamma*self.PPO_critic(community_embeddings1_batch_t) advantage_batch_t = (target_v_batch_t - self.PPO_critic(community_embeddings_batch_t)) target_v[batch_t*self.batch_size:batch_t*self.batch_size+self.batch_size]=target_v_batch_t advantage[batch_t*self.batch_size:batch_t*self.batch_size+self.batch_size]=advantage_batch_t for _ in range(self.num_epoch): index=np.array(range(self.buffer_pointer))
np.random.shuffle(index)
numpy.random.shuffle
# ==================================================================== # Author : swc21 # Date : 2018-03-14 11:49:48 # Project : GitHub # File Name : dist_bsize_cluster # Last Modified by : swc21 # Last Modified time : 2018-03-15 19:59:16 # ==================================================================== # # --[IMPORTS]---------------------------------------------------------------- # import numpy as np import time from mpi4py import MPI from random import shuffle # --[PROGRAM-OPTIONS]-------------------------------------------------------- # # box size params (Kpc) box_min = 50 box_max = 300 box_step = 10 boxsizes = range(box_min, box_max, box_step) # distance params (Mpc) d_min = 75 d_max = 1101 d_step = (d_max-d_min)/len(boxsizes) distances = [i/100.0 for i in range(d_min, d_max, d_step)] # MPI params comm = MPI.COMM_WORLD mpisize = comm.Get_size() rank = comm.Get_rank() # path params load_path1 = '/root/SHARED/Halos1/' load_path2 = '/root/SHARED/Halos2/' load_path3 = '/root/SHARED/Halos3/' load_local = load_path3 # '/root/Arrays/' save_path = '/root/SHARED/Data_out/Arrays/' # number of projections to make for each halo n_projections = 10 # number of jobs to go before saving array save_interval = 5 # array params dataarray = np.zeros((len(distances), len(boxsizes), 26)) # --[FUNCTIONS]-------------------------------------------------------------- # def rotation_matrix(ax, th): ''' Input ax : list of two zeros and a one. ie. [0,1,0] theta : radians to rotate about the axis axs Output the rotation matrix to use np.dot() with ''' axis = np.asarray(ax) theta = np.asarray(th) axis = axis/(np.dot(ax, ax))**2 a = np.cos(np.divide(theta, 2.0)) b, c, d = np.multiply(-axis, np.sin(np.divide(theta, 2.0))) aa, bb, cc, dd = a*a, b*b, c*c, d*d bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d return ([aa+bb-cc-dd, 2.0*(bc+ad), 2.0*(bd-ac)], [2.0*(bc-ad), aa+cc-bb-dd, 2.0*(cd+ab)], [2.0*(bd+ac), 2.0*(cd-ab), aa+dd-bb-cc]) def rotate(xyz, axs, theta): ''' Input xyz : dictionary of np.arrays axs : list of two zeros and a one. ie. [0,1,0] theta : radians to rotate about the axis axs Output numpy array of size three corresponding to the three new position arrays ''' rot_matrix = rotation_matrix(axs, theta) try: new_xyz = np.asarray(np.dot(rot_matrix, [xyz[0], xyz[1], xyz[2]])) except MemoryError: print(' [MemoryError caught]') new_xyz = np.asarray( np.dot(rot_matrix, [xyz[0][:100], xyz[1][:100], xyz[2][:100]])) return [new_xyz[0], new_xyz[1], new_xyz[2]] def kpc_box_at_distance(distance, kpc): ''' Input distance in Mpc Output square degrees ((206265.0*(_kpc_/1e2)/distance*1e1)/3600)^2 ''' return np.square(np.divide(np.divide(206265.0*kpc, distance*1e3), 3600.0)) def calculate_nFov(kpc, d): ''' Input distance in Mpc Output number of FOV for a box covering _kpc_ radius at input distance ((square deg of box) / WFIRST square degree FOV) ''' WFIRST_FOV = 0.79 * 0.43 n_fov = round(np.divide(kpc_box_at_distance(d, kpc), WFIRST_FOV), 2) if n_fov < 1.0: return int(1) else: return n_fov def calculate_app_mag(cutoff=26.15, t_fov=1000.0, t_exp=1000.0): ''' Inputs are all defined --> later on this can be used to measure differences from using longer exposures, different total times and different filters. Outputs apparent magnitude ''' return cutoff+2.5*np.log10(t_fov/t_exp) def calculate_abs_mag(distance=1.0, app_mag=calculate_app_mag()): ''' Input distance Mpc & apparent magnitude Output Absolute Magnitude limit for given distance ''' return app_mag-(5.0*np.log10(distance*1e5)) def prep_stars_1( halo, keys, dlim, lpl=load_local, lp1=load_path1, lp2=load_path2, lp3=load_path3): ''' Input halo : halo name as a string keys : list of keys to load as strings dlim : list of indices as int lpl : load local paths as a string lp1 : load path 1 as a string lp2 : load path 2 as a string lp3 : load path 3 as a string Output a dictionary of numpy arrays ''' if rank % 3 == 0: path = lp1 elif rank % 7 == 0: path = lp2 else: path = lp3 if keys == ['px', 'py', 'pz']: arrays = [] path = lpl for key in keys: arrays.append(np.load(path+str(halo)+'/'+str(key)+'.npy')[dlim]) return arrays else: return np.load(path+str(halo)+'/'+str(keys[0])+'.npy')[dlim] def load_mags(halo, mag_filter='dcmc_ks', lpl=load_local): ''' Input halo : halo name as a string mag_filter : key for filter band to load as string * must match galaxia name lpl : load local path as a string Output np.array of magnitudes ''' return np.load(lpl+str(halo)+'/'+mag_filter+'.npy') def find_lims(a, b, lim_, step_=box_step): ''' Input a : numpy array acting as the X values b : numpy array acting as the Y values lim_ : box_size limit in Kpc (the size of box on it's end) step_ : interval to increase box_size Kpc Output a list of indices for included stars ''' step = step_/2.0 lm = lim_/2.0 alim_inr = np.logical_and(-lm < a, a < lm) blim_inr = np.logical_and(-lm < b, b < lm) inner_box = np.nonzero(np.logical_and(alim_inr, blim_inr))[0] alim_otr = np.logical_and(-(lm+step) < a, a < (lm+step)) blim_otr = np.logical_and(-(lm+step) < b, b < (lm+step)) outter_box = np.nonzero(np.logical_and(alim_otr, blim_otr))[0] return np.setdiff1d(outter_box, inner_box, assume_unique=True) def find_dlims(Ks, abs_m): ''' returns list of indices's of stars visible within given range ''' return np.nonzero(Ks < abs_m)[0] def mix(lst, n): ''' shuffles list n times, returns shuffled list as type list ''' for i in range(n): shuffle(lst) return lst # --[OPTIONS]---------------------------------------------------------------- # # names for halo files halos = ['halo02', 'halo05', 'halo07', 'halo08', 'halo09', 'halo10', 'halo12', 'halo14', 'halo15', 'halo17', 'halo20'] # misc print line_ = ' --------------------------' line = '\n'+line_+'\n' line2_ = '#############################' line2 = '\n'+line2_+line2_+'\n' # job counter/ticker n_jobs_done = 1 # rotation matrix axii r_ax1 = [0, 0, 1] r_ax2 = [0, 1, 0] r_ax3 = [1, 0, 0] # --[MAIN]------------------------------------------------------------------- # # save initial empty array np.save(save_path+str(rank)+'array.npy', dataarray) # --[SETUP]------------------------------------------------------------------ # # rank 0 creates work lists for each worker if rank == 0: jobs = [[k, j, distance, size] for k, distance in enumerate( distances) for j, size in enumerate(boxsizes)] mix(jobs, 2) cmds = [jobs[i:i + len(jobs)//mpisize+1] for i in range(0, len(jobs), (len(jobs)//mpisize)+1)] mix(cmds, 2) else: cmds = None # opening message if rank == 0: print('\n', len(boxsizes), 'boxes and ', len(distances), 'distances') print(len(cmds), 'command chunks') print('jobs per chunk:') tot = 0 for c in cmds: n = len(c) tot += n print(' --> ', n) print(tot, 'total jobs') print(round(dataarray.nbytes/1e6, 2), 'Megabytes') # scatter work comm.Barrier() work = comm.scatter(cmds, root=0) n_jobs = len(work)*len(halos) tot_work = len(work) comm.Barrier() time.sleep(rank*5) print(line, ' [RANK '+str(rank)+' STARTING]', line) # --[RUN]-------------------------------------------------------------------- # for job in work: # ------------------- # create empty lists # running totals n_stars = [] l_n_stars = [] n_trgb_stars = [] # mins teff_min = [] age_min = [] feh_min = [] alpha_min = [] # maxes teff_max = [] age_max = [] feh_max = [] alpha_max = [] # means teff_mean = [] age_mean = [] feh_mean = [] alpha_mean = [] # ------------------- inner_mag = calculate_abs_mag(distance=job[2]) outter_mag = calculate_abs_mag(distance=(job[2]+d_step)) # halo operations for halo in halos[:2]: # mag cuts for (d --> d+step) dcmc_Ks = load_mags(halo) inner_set = find_dlims(dcmc_Ks, inner_mag) outter_set = find_dlims(dcmc_Ks, outter_mag) del dcmc_Ks # make sure there are more visible stars closer than farther if len(inner_set) <= len(outter_set): print(line, '[RANK '+str(rank)+' MAG LIMIT PROBLEM]', inner_mag, outter_mag, line) # limits for magnitude cut at this distance dlim = np.setdiff1d(inner_set, outter_set, assume_unique=True) # list of xyz arrays positions = prep_stars_1(halo, ['px', 'py', 'pz'], dlim) n_projections = 1 # projection loop for rep in range(n_projections): # three different rotation angles theta1 = np.divide(np.multiply( rep*np.random.randint(90)*13*rep, np.pi), 180.0) theta2 = np.divide(np.multiply( rep*np.random.randint(90)*4*rep, np.pi), 180.0) theta3 = np.divide(np.multiply( rep*np.random.randint(90)*7*rep, np.pi), 180.0) # rotate coordinators 3 times rot_1 = rotate(positions, r_ax1, theta1) rot_2 = rotate(rot_1, r_ax2, theta2) rot_3 = rotate(rot_2, r_ax3, theta3) # find the included indices's of rotated stars lims = find_lims(rot_3[0], rot_3[1], job[3]).tolist() ######################## # [END OF CONFIGURATION]# ######################## # --------------------------------------------------- # # we made it to all the way to the little square! # # now... collect all the data at this configuration # # --------------------------------------------------- # # number of stars for this projection n_stars += [len(rot_3[0][lims])] # log(number) of stars for this projection l_n_stars += [np.log10(len(rot_3[0][lims]))] # effective temp (log(T/Kelvin) *converted to deg Kelvin) temp_array = np.power(10, prep_stars_1(halo, ['teff'], dlim)[lims]) teff_min += [np.min(temp_array)] teff_mean += [np.mean(temp_array)] teff_max += [np.max(temp_array)] # age (log (age/yr) *converted to Yr) temp_array = np.power(10, prep_stars_1(halo, ['age'], dlim)[lims]) age_min += [np.min(temp_array)] age_mean += [np.mean(temp_array)] age_max += [np.max(temp_array)] # [Fe/H] temp_array = prep_stars_1(halo, ['feh'], dlim)[lims] feh_min += [np.min(temp_array)] feh_mean += [np.mean(temp_array)] feh_max += [np.max(temp_array)] # alpha abundances ([alpha/Fe]) temp_array = prep_stars_1(halo, ['alpha'], dlim)[lims] alpha_min += [np.min(temp_array)] alpha_mean += [np.mean(temp_array)] alpha_max += [np.max(temp_array)] # tip of the red giant branch (TRGB)/ red clump stars red_giants = 0 # compare smass to mtip temp_array = prep_stars_1(halo, ['smass'], dlim)[lims] temp_array1 = prep_stars_1(halo, ['mtip'], dlim)[lims] for sr, star in enumerate(temp_array): if star > temp_array1[sr]: red_giants += 1 n_trgb_stars += [red_giants] # ----------------------- # # [END PROJECTION LOOP] # # ----------------------- # # <back to halo loop> n_jobs -= 1 # ----------------- # # [END HALO LOOP] # # ----------------- # # <back to job loop> # number of Fov nfov = calculate_nFov(job[3], job[2]) # time required (hours) time = 1000.0*(nfov)/3600.0 # ---------------------------------------------------- # # Load the data array with all the consolidated data # # ---------------------------------------------------- # # Time (hours) dataarray[job[0], job[1], 0] = time # Number of Stars (log(n_stars)) minstars = np.min(l_n_stars) maxstars = np.max(l_n_stars) dataarray[job[0], job[1], 1] = maxstars-minstars dataarray[job[0], job[1], 2] = maxstars dataarray[job[0], job[1], 3] = np.mean(l_n_stars) dataarray[job[0], job[1], 4] = minstars # Effective Temperature (Kelvin) dataarray[job[0], job[1], 5] = np.mean(teff_max)-np.mean(teff_min) dataarray[job[0], job[1], 6] = np.mean(teff_max) dataarray[job[0], job[1], 7] = np.mean(teff_mean) dataarray[job[0], job[1], 8] = np.mean(teff_min) # Age (Years) dataarray[job[0], job[1], 9] = np.mean(age_max)-np.mean(age_min) dataarray[job[0], job[1], 10] = np.mean(age_max) dataarray[job[0], job[1], 11] = np.mean(age_mean) dataarray[job[0], job[1], 12] = np.mean(age_min) # Metallicity [Fe/H] dataarray[job[0], job[1], 13] =
np.mean(feh_max)
numpy.mean
"""Tests for the policies in the hbaselines/goal_conditioned subdirectory.""" import unittest import numpy as np import tensorflow as tf import os from gym.spaces import Box from hbaselines.utils.tf_util import get_trainable_vars from hbaselines.goal_conditioned.td3 import GoalConditionedPolicy as \ TD3GoalConditionedPolicy from hbaselines.goal_conditioned.sac import GoalConditionedPolicy as \ SACGoalConditionedPolicy from hbaselines.algorithms.rl_algorithm import SAC_PARAMS from hbaselines.algorithms.rl_algorithm import TD3_PARAMS from hbaselines.algorithms.rl_algorithm import GOAL_CONDITIONED_PARAMS class TestBaseGoalConditionedPolicy(unittest.TestCase): """Test GoalConditionedPolicy in hbaselines/goal_conditioned/base.py.""" def setUp(self): self.policy_params = { 'sess': tf.compat.v1.Session(), 'ac_space': Box(low=-1, high=1, shape=(1,)), 'ob_space': Box(low=-2, high=2, shape=(2,)), 'co_space': Box(low=-3, high=3, shape=(2,)), 'verbose': 0, 'total_steps': 1, } self.policy_params.update(TD3_PARAMS.copy()) self.policy_params.update(GOAL_CONDITIONED_PARAMS.copy()) def tearDown(self): self.policy_params['sess'].close() del self.policy_params # Clear the graph. tf.compat.v1.reset_default_graph() def test_store_transition(self): """Check the functionality of the store_transition() method. This method is tested for the following cases: 1. hindsight = False, relative_goals = False 2. hindsight = False, relative_goals = True 3. hindsight = True, relative_goals = False 4. hindsight = True, relative_goals = True 1. hindsight = False, relative_goals = False, meta_period = [5, 2] """ # =================================================================== # # test case 1 # # =================================================================== # policy_params = self.policy_params.copy() policy_params['relative_goals'] = False policy_params['hindsight'] = False policy_params['subgoal_testing_rate'] = 1 policy_params['meta_period'] = 4 policy_params['batch_size'] = 2 policy = TD3GoalConditionedPolicy(**policy_params) # Initialize the variables of the policy. policy.sess.run(tf.compat.v1.global_variables_initializer()) # Run the initialize method. policy.initialize() policy.meta_action = [np.array([5, 5])] for i in range(4): obs0 = np.array([i for _ in range(2)]) context0 = np.array([i for _ in range(3)]) action = np.array([i for _ in range(1)]) reward = i obs1 = np.array([i+1 for _ in range(2)]) context1 = np.array([i for _ in range(3)]) done, is_final_step, evaluate = False, False, False policy.store_transition( obs0=obs0, context0=context0, action=action, reward=reward, obs1=obs1, context1=context1, done=done, is_final_step=is_final_step, evaluate=evaluate, env_num=0, ) obs_t = policy.replay_buffer._obs_t[0] action_t = policy.replay_buffer._action_t[0] reward = policy.replay_buffer._reward_t[0] done = policy.replay_buffer._done_t[0] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([5, 5])], [np.array([0]), np.array([1]), np.array([2]), np.array([3])]][i][j]) for j in range(len(action_t[i]))) ) self.assertEqual(reward, [[6], [-5.656854249501219, -4.24264068713107, -2.8284271247638677, -1.4142135624084504]]) self.assertEqual(done, [False, False, False, False]) def test_store_transition_2(self): # =================================================================== # # test case 2 # # =================================================================== # policy_params = self.policy_params.copy() policy_params['relative_goals'] = True policy_params['hindsight'] = False policy_params['subgoal_testing_rate'] = 1 policy_params['meta_period'] = 4 policy_params['batch_size'] = 2 policy = TD3GoalConditionedPolicy(**policy_params) # Initialize the variables of the policy. policy.sess.run(tf.compat.v1.global_variables_initializer()) # Run the initialize method. policy.initialize() policy.meta_action = [np.array([5, 5])] for i in range(4): obs0 = np.array([i for _ in range(2)]) context0 = np.array([i for _ in range(3)]) action = np.array([i for _ in range(1)]) reward = i obs1 = np.array([i+1 for _ in range(2)]) context1 = np.array([i for _ in range(3)]) done, is_final_step, evaluate = False, False, False policy.store_transition( obs0=obs0, context0=context0, action=action, reward=reward, obs1=obs1, context1=context1, done=done, is_final_step=is_final_step, evaluate=evaluate, env_num=0, ) obs_t = policy.replay_buffer._obs_t[0] action_t = policy.replay_buffer._action_t[0] reward = policy.replay_buffer._reward_t[0] done = policy.replay_buffer._done_t[0] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([4, 4])], [np.array([0]), np.array([1]), np.array([2]), np.array([3])]][i][j]) for j in range(len(action_t[i]))) ) self.assertEqual(reward, [[6], [-5.656854249501219, -5.656854249501219, -5.656854249501219, -5.656854249501219]]) self.assertEqual(done, [False, False, False, False]) def test_store_transition_3(self): # =================================================================== # # test case 3 # # =================================================================== # policy_params = self.policy_params.copy() policy_params['relative_goals'] = False policy_params['hindsight'] = True policy_params['subgoal_testing_rate'] = 1 policy_params['meta_period'] = 4 policy_params['batch_size'] = 2 policy = TD3GoalConditionedPolicy(**policy_params) # Initialize the variables of the policy. policy.sess.run(tf.compat.v1.global_variables_initializer()) # Run the initialize method. policy.initialize() policy.meta_action = [np.array([5, 5])] for i in range(4): obs0 = np.array([i for _ in range(2)]) context0 = np.array([i for _ in range(3)]) action = np.array([i for _ in range(1)]) reward = i obs1 = np.array([i+1 for _ in range(2)]) context1 = np.array([i for _ in range(3)]) done, is_final_step, evaluate = False, False, False policy.store_transition( obs0=obs0, context0=context0, action=action, reward=reward, obs1=obs1, context1=context1, done=done, is_final_step=is_final_step, evaluate=evaluate, env_num=0, ) # unchanged sample obs_t = policy.replay_buffer._obs_t[0] action_t = policy.replay_buffer._action_t[0] reward_t = policy.replay_buffer._reward_t[0] done_t = policy.replay_buffer._done_t[0] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([5, 5])], [np.array([0]), np.array([1]), np.array([2]), np.array([3])]][i][j]) for j in range(len(action_t[i]))) ) self.assertEqual(reward_t, [[6], [-5.656854249501219, -4.24264068713107, -2.8284271247638677, -1.4142135624084504]]) self.assertEqual(done_t, [False, False, False, False]) # hindsight sample obs_t = policy.replay_buffer._obs_t[1] action_t = policy.replay_buffer._action_t[1] reward_t = policy.replay_buffer._reward_t[1] done_t = policy.replay_buffer._done_t[1] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([4, 4]), np.array([4, 4]), np.array([4, 4]), np.array([4, 4]), np.array([4, 4])], [np.array([0]), np.array([1]), np.array([2]), np.array([3])]][i][j]) for j in range(len(action_t[i]))) ) self.assertEqual(reward_t, [[6], [-4.24264068713107, -2.8284271247638677, -1.4142135624084504, -1e-05]]) self.assertEqual(done_t, [False, False, False, False]) def test_store_transition_4(self): # =================================================================== # # test case 4 # # =================================================================== # policy_params = self.policy_params.copy() policy_params['relative_goals'] = True policy_params['hindsight'] = True policy_params['subgoal_testing_rate'] = 1 policy_params['meta_period'] = 4 policy_params['batch_size'] = 2 policy = TD3GoalConditionedPolicy(**policy_params) # Initialize the variables of the policy. policy.sess.run(tf.compat.v1.global_variables_initializer()) # Run the initialize method. policy.initialize() policy.meta_action = [np.array([5, 5])] for i in range(4): obs0 = np.array([i for _ in range(2)]) context0 = np.array([i for _ in range(3)]) action = np.array([i for _ in range(1)]) reward = i obs1 = np.array([i+1 for _ in range(2)]) context1 = np.array([i for _ in range(3)]) done, is_final_step, evaluate = False, False, False policy.store_transition( obs0=obs0, context0=context0, action=action, reward=reward, obs1=obs1, context1=context1, done=done, is_final_step=is_final_step, evaluate=evaluate, env_num=0, ) # unchanged sample obs_t = policy.replay_buffer._obs_t[0] action_t = policy.replay_buffer._action_t[0] reward = policy.replay_buffer._reward_t[0] done = policy.replay_buffer._done_t[0] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([5, 5]), np.array([4, 4])], [np.array([0]), np.array([1]), np.array([2]), np.array([3])]][i][j]) for j in range(len(action_t[i]))) ) self.assertEqual(reward, [[6], [-5.656854249501219, -5.656854249501219, -5.656854249501219, -5.656854249501219]]) self.assertEqual(done, [False, False, False, False]) # hindsight sample obs_t = policy.replay_buffer._obs_t[1] action_t = policy.replay_buffer._action_t[1] reward_t = policy.replay_buffer._reward_t[1] done_t = policy.replay_buffer._done_t[1] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([4, 4]), np.array([3, 3]), np.array([2, 2]), np.array([1, 1]), np.array([0, 0])], [np.array([0]), np.array([1]), np.array([2]), np.array([3])]][i][j]) for j in range(len(action_t[i]))) ) self.assertEqual(reward_t, [[6], [-4.24264068713107, -2.8284271247638677, -1.4142135624084504, -1e-05]]) self.assertEqual(done_t, [False, False, False, False]) def test_store_transition_5(self): # =================================================================== # # test case 1 # # =================================================================== # policy_params = self.policy_params.copy() policy_params['relative_goals'] = False policy_params['hindsight'] = False policy_params['subgoal_testing_rate'] = 1 policy_params['meta_period'] = [5, 2] policy_params['num_levels'] = 3 policy_params['batch_size'] = 2 policy = TD3GoalConditionedPolicy(**policy_params) # Initialize the variables of the policy. policy.sess.run(tf.compat.v1.global_variables_initializer()) # Run the initialize method. policy.initialize() policy.meta_action = [[np.array([5, 5]), np.array([6, 6])]] for i in range(10): obs0 = np.array([i for _ in range(2)]) context0 = np.array([i for _ in range(3)]) action = np.array([i for _ in range(1)]) reward = i obs1 = np.array([i+1 for _ in range(2)]) context1 = np.array([i for _ in range(3)]) done, is_final_step, evaluate = False, False, False policy.store_transition( obs0=obs0, context0=context0, action=action, reward=reward, obs1=obs1, context1=context1, done=done, is_final_step=is_final_step, evaluate=evaluate, env_num=0, ) obs_t = policy.replay_buffer._obs_t[0] action_t = policy.replay_buffer._action_t[0] reward = policy.replay_buffer._reward_t[0] done = policy.replay_buffer._done_t[0] # check the various attributes self.assertTrue( all(all(obs_t[i] == [np.array([0, 0]), np.array([1, 1]), np.array([2, 2]), np.array([3, 3]), np.array([4, 4]), np.array([5, 5]), np.array([6, 6]), np.array([7, 7]), np.array([8, 8]), np.array([9, 9]), np.array([10, 10])][i]) for i in range(len(obs_t))) ) for i in range(len(action_t)): self.assertTrue( all(all(action_t[i][j] == [[np.array([5, 5]), np.array([5, 5]), np.array([5, 5]),
np.array([5, 5])
numpy.array
# -*- coding: utf-8 -*- ''' This modules contains functions necessary for applying group OWL to the parameters ''' from __future__ import division, print_function, absolute_import import sys sys.path.append('./owl_projection') import tensorflow as tf import numpy as np import utils_nn from projectedOWL import proxOWL from numpy.linalg import norm from utils_retrain import group_averaging import matplotlib.pyplot as plt from utils_plot import hist_plot def reg_params_init(sess, config): ''' This function initializes the regularization paramters. Args: sess: the predefined computation graph. config: the yaml configuration file. Returns: layer_owl_params: n-tuple, each elements is an array containing the weights of the corresponding layer. ''' weight_placeholder = utils_nn.get_weight_placeholders() layer_owl_params = [] min_num_row = float("Inf") if config['PLD_transition'] == 0: # read out the minimum number of rows for idx, triple in enumerate(weight_placeholder): param_i, placeholder_i, assign_op_i = triple param_shape = sess.run(tf.shape(param_i)) if param_shape[0] < min_num_row: min_num_row = param_shape[0] # iterates through all layers, idx is the layer number for idx, triple in enumerate(weight_placeholder): param_i, placeholder_i, assign_op_i = triple # OWL weights should be applied to the rows of the weight matrix param_shape = sess.run(tf.shape(param_i)) reg_params = config['growl_params'] lambda_1 = np.float32(reg_params[idx][0]) lambda_2 = np.float32(reg_params[idx][1]) if (lambda_1 < 0) | (lambda_2 < 0): raise Exception('regularization parameters must be non-negative') # get row_num row_num = int(param_shape[0]) if config['reg_params_type'] == 'PLD': if config['PLD_transition'] != 0: transition_ind = np.floor(param_shape[0]*config['PLD_transition']) -1 else: transition_ind = min_num_row param_index = np.linspace(start=row_num-1, stop=0, num=transition_ind) param_index = np.append(param_index, np.zeros([1, int(param_shape[0]-transition_ind)])) layer_owl_params.append(lambda_1 + lambda_2 * param_index) assert len(layer_owl_params) == len(weight_placeholder) return layer_owl_params def apply_group_lasso(W, weights): W_norm = norm(W, axis=1) # apply prox op of Lasso to norms of rows new_W_norm = np.maximum(W_norm - weights[0], 0) # compute group owl new_W = np.zeros_like(W) for i in range(W.shape[0]): # print('w_norm: {}'.format(W_norm[i])) # print('new_w_norm: {}'.format(new_W_norm[i])) if W_norm[i] <
np.finfo(np.float32)
numpy.finfo
# # Copyright (c) 2021 salesforce.com, inc. # All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause # """ Wrapper around AWS's Random Cut Forest anomaly detection model. """ import bisect import copy import logging from os.path import abspath, join, dirname import numpy as np from merlion.models.anomaly.base import DetectorConfig, DetectorBase from merlion.transform.moving_average import DifferenceTransform from merlion.transform.sequence import TransformSequence from merlion.transform.resample import Shingle from merlion.post_process.threshold import AggregateAlarms from merlion.utils import UnivariateTimeSeries, TimeSeries logger = logging.getLogger(__name__) class JVMSingleton: _initialized = False def __init__(self): import jpype import jpype.imports resource_dir = join(dirname(dirname(dirname(abspath(__file__)))), "resources") jars = ["gson-2.8.6.jar", "randomcutforest-core-1.0.jar", "randomcutforest-serialization-json-1.0.jar"] if not JVMSingleton._initialized: jpype.startJVM(classpath=[join(resource_dir, jar) for jar in jars]) JVMSingleton._initialized = True class RandomCutForestConfig(DetectorConfig): _default_transform = TransformSequence([DifferenceTransform(), Shingle(size=5, stride=1)]) def __init__( self, n_estimators: int = 100, parallel: bool = False, seed: int = None, max_n_samples: int = 512, thread_pool_size: int = 1, online_updates: bool = False, **kwargs ): """ Configuration class for random cut forest. Refer to https://github.com/aws/random-cut-forest-by-aws/tree/main/Java for further documentation and defaults of the Java class. :param n_estimators: The number of trees in this forest. :param parallel: If true, then the forest will create an internal thread pool. Forest updates and traversals will be submitted to this thread pool, and individual trees will be updated or traversed in parallel. For larger shingle sizes, dimensions, and number of trees, parallelization may improve throughput. We recommend users benchmark against their target use case. :param seed: the random seed :param max_n_samples: The number of samples retained by by stream samplers in this forest. :param thread_pool_size: The number of threads to use in the internal thread pool. :param online_updates: Whether to update the model while running using it to evaluate new data. """ self.n_estimators = n_estimators self.parallel = parallel self.seed = seed self.max_n_samples = max_n_samples self.thread_pool_size = thread_pool_size self.online_updates = online_updates kwargs["max_score"] = np.floor(np.log2(max_n_samples)) + 1 super().__init__(**kwargs) @property def _default_threshold(self): if not self.enable_calibrator: return AggregateAlarms(alm_threshold=self.calibrator.max_score / 5) return AggregateAlarms(alm_threshold=3.0) @property def java_params(self): items = [ ("numberOfTrees", self.n_estimators), ("randomSeed", self.seed), ("sampleSize", self.max_n_samples), ("threadPoolSize", self.thread_pool_size if self.parallel else None), ("parallelExecutionEnabled", self.parallel and self.thread_pool_size is not None), ] return {k: v for k, v in items if v is not None} class RandomCutForest(DetectorBase): """ The random cut forest is a refinement of the classic isolation forest algorithm. It was proposed in `Guha et al. 2016 <http://proceedings.mlr.press/v48/guha16.pdf>`_. """ config_class = RandomCutForestConfig def __init__(self, config: RandomCutForestConfig): super().__init__(config) self.forest = None @property def online_updates(self) -> bool: return self.config.online_updates def __getstate__(self): JVMSingleton() from com.amazon.randomcutforest.serialize import RandomCutForestSerDe # Copy state, remove forest, and then deepcopy # (since we can't deepcopy the forest) state = copy.copy(self.__dict__) forest = state.pop("forest", None) state = copy.deepcopy(state) # Set the forest in the copied state to the serialized version # The transform is specified the config, so don't save it state["forest"] = str(RandomCutForestSerDe().toJson(forest)) return state def __setstate__(self, state): JVMSingleton() from com.amazon.randomcutforest.serialize import RandomCutForestSerDe # Remove the serialized forest from the state before setting it # Set the forest manually after deserializing it forest = RandomCutForestSerDe().fromJson(state.pop("forest", None)) super().__setstate__(state) self.forest = forest def _convert_point(self, point): import jpype return jpype.types.JArray.of(point) def _forest_train(self, train_data: np.ndarray): n, d = train_data.shape scores = [] for i in range(n): jpoint = self._convert_point(train_data[i, :]) scores.append(self.forest.getAnomalyScore(jpoint)) self.forest.update(jpoint) return np.array(scores) def _forest_predict(self, data: np.ndarray, online_updates: bool): scores = [] n, d = data.shape for i in range(n): jpoint = self._convert_point(data[i, :]) scores.append(self.forest.getAnomalyScore(jpoint)) if online_updates: self.forest.update(jpoint) return
np.array(scores)
numpy.array
import pandas as pd import sys import numpy as np def speedTest(processed): dataframe = pd.DataFrame() array = np.ndarray((36652,1)) for system in processed: for unit in processed[system]: for flow in processed[system][unit]: for property in processed[system][unit][flow]: if type(processed[system][unit][flow][property]) == pd.Series: ID = system+"_"+unit+"_"+flow+"_"+property print(ID) dataframe[ID] = processed[system][unit][flow][property] np.append(array,
np.array(processed[system][unit][flow][property])
numpy.array
#!/usr/bin/env python # -*- coding:utf-8 -*- # 这个头文件指的是精准的除法,就是会帮你把小数后面的数值都保留下来,不会去除。 from __future__ import division import os import torch as t import numpy as np import cv2 import six import itertools from utils.config import opt from model import FasterRCNNVGG16 from trainer import FasterRCNNTrainer from data.util import read_image from utils.vis_tool import vis_bbox from utils import array_tool as at from collections import defaultdict from model.utils.bbox_tools import bbox_iou from data.dataset import Dataset, TestDataset, inverse_normalize from torch.utils import data as data_ from tqdm import tqdm from utils.eval_tool import eval_detection_voc def example_mining_map(trainer, modify_txt_path): # 加载权重 trainset = TestDataset(opt, split=str(int(modify_txt_path) - 1)) train_dataloader = data_.DataLoader(trainset, batch_size=1, num_workers=opt.test_num_workers, shuffle=False, pin_memory=True ) pred_bboxes1, pred_labels1, pred_scores1, gt_bboxes, gt_labels, gt_difficults, ID = bbox_result( train_dataloader, trainer.faster_rcnn, test_num=1100) map_result = every_map(pred_bboxes1, pred_labels1, pred_scores1, gt_bboxes, gt_labels, gt_difficults) # print map_result modify(modify_txt_path, map_result, ID) def example_mining_map_diversity(trainer, modify_txt_path): # 加载权重 trainset = TestDataset(opt, split=str(int(modify_txt_path) - 1)) train_dataloader = data_.DataLoader(trainset, batch_size=1, num_workers=opt.test_num_workers, shuffle=False, pin_memory=True ) pred_bboxes1, pred_labels1, pred_scores1, gt_bboxes, gt_labels, gt_difficults, ID = bbox_result( train_dataloader, trainer.faster_rcnn, test_num=1100) map_result = every_map(pred_bboxes1, pred_labels1, pred_scores1, gt_bboxes, gt_labels, gt_difficults) if opt.example_sort == 'max': total_different = np.zeros(2000) else: total_different = np.zeros(2000) + 1000 ID2 = list() trainset = TestDataset(opt, split=str(int(modify_txt_path) - 1)) train_dataloader = data_.DataLoader(trainset, batch_size=1, num_workers=opt.test_num_workers, shuffle=False, pin_memory=True ) for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_, id_) in enumerate(train_dataloader): if len(gt_bboxes_) == 0: continue # print('1', imgs.shape) ID2 += list(id_) sizes = [sizes[0][0].item(), sizes[1][0].item()] total_different[ii] = different( imgs, gt_bboxes_, sizes, trainer.faster_rcnn, thread=0.3) if opt.example_sort == 'max': order = map_result.argsort() order2 = total_different.argsort()[::-1] else: order = map_result.argsort()[::-1] order2 = total_different.argsort() sum = 0 f = open(opt.voc_data_dir + '/ImageSets/Main/' + modify_txt_path + '.txt', "a") for i in range(500): for j in range(opt.mining_number * 2): if ID2[order2[i]] == ID[order[j]]: f.write(ID2[order2[i]] + '\n') sum += 1 if sum >= opt.mining_number: break def example_mining_diversity(trainer, modify_txt_path): if opt.example_sort == 'max': total_different = np.zeros(2000) else: total_different = np.zeros(2000) + 1000 ID = list() trainset = TestDataset(opt, split=str(int(modify_txt_path) - 1)) train_dataloader = data_.DataLoader(trainset, batch_size=1, num_workers=opt.test_num_workers, shuffle=False, pin_memory=True ) for ii, (imgs, sizes, gt_bboxes_, gt_labels_, gt_difficults_, id_) in enumerate(train_dataloader): if len(gt_bboxes_) == 0: continue # print('1', imgs.shape) ID += list(id_) sizes = [sizes[0][0].item(), sizes[1][0].item()] total_different[ii] = different( imgs, gt_bboxes_, sizes, trainer.faster_rcnn, thread=0.7) modify(modify_txt_path, total_different, ID) def example_mining_map_loss(trainer, modify_txt_path): # 加载权重 trainset = TestDataset(opt, split=str(int(modify_txt_path) - 1)) train_dataloader = data_.DataLoader(trainset, batch_size=1, num_workers=opt.test_num_workers, shuffle=False, pin_memory=True ) pred_bboxes1, pred_labels1, pred_scores1, gt_bboxes, gt_labels, gt_difficults, ID = bbox_result( train_dataloader, trainer.faster_rcnn, test_num=1100) map_result = every_map(pred_bboxes1, pred_labels1, pred_scores1, gt_bboxes, gt_labels, gt_difficults) f = open('loss.txt', "r") a = dict.fromkeys(ID) for i in range(len(ID)): line = f.readline() a[line[0:6]] = float(line[7:-2]) f.close() for i in range(len(ID)): map_result[i] = a[ID[i]] - map_result[i] modify(modify_txt_path, map_result, ID) def example_mining_loss(datatxt): # 加载权重 f = open('loss.txt', "r") f2 = open(opt.voc_data_dir + '/ImageSets/Main/' + datatxt + '.txt', "a") for i in range(opt.mining_number): f2.write(f.readline()[0:6] + '\n') f.close() f2.close() def bbox_iou(bbox_a, bbox_b): # 传入的是真值标签和预测标签 if bbox_a.shape[1] != 4 or bbox_b.shape[1] != 4: raise IndexError # 由于可能两个bbox大小不一致,所以使用[bbox_a,bbox_b,2]存储遍历的bbox_a*bbox_b个bbox的比较 # top left 这边是计算了如图上第一幅的重叠左下角坐标值(x,y) tl = np.maximum(bbox_a[:, None, :2], bbox_b[:, :2]) # bottom right 这边是计算了如图上第一幅的重叠左上角坐标值ymax和右下角坐标值xmax br =
np.minimum(bbox_a[:, None, 2:], bbox_b[:, 2:])
numpy.minimum
from collections import OrderedDict from copy import copy, deepcopy from textwrap import dedent import cPickle as pickle import unittest import numpy as np import pandas as pd from xray import Dataset, DataArray, Variable, backends, utils, align, indexing from . import TestCase _dims = {'dim1': 100, 'dim2': 50, 'dim3': 10} _vars = {'var1': ['dim1', 'dim2'], 'var2': ['dim1', 'dim2'], 'var3': ['dim3', 'dim1'], } _testvar = sorted(_vars.keys())[0] _testdim = sorted(_dims.keys())[0] def create_test_data(seed=None): rs = np.random.RandomState(seed) obj = Dataset() obj['time'] = ('time', pd.date_range('2000-01-01', periods=20)) obj['dim1'] = ('dim1', np.arange(_dims['dim1'])) obj['dim2'] = ('dim2', 0.5 * np.arange(_dims['dim2'])) obj['dim3'] = ('dim3', list('abcdefghij')) for v, dims in sorted(_vars.items()): data = rs.normal(size=tuple(_dims[d] for d in dims)) obj[v] = (dims, data, {'foo': 'variable'}) return obj class UnexpectedDataAccess(Exception): pass class InaccessibleArray(utils.NDArrayMixin): def __init__(self, array): self.array = array def __getitem__(self, key): raise UnexpectedDataAccess("Tried accessing data") class InaccessibleVariableDataStore(backends.InMemoryDataStore): def __init__(self): self.dimensions = OrderedDict() self._variables = OrderedDict() self.attrs = OrderedDict() def set_variable(self, name, variable): self._variables[name] = variable return self._variables[name] def open_store_variable(self, var): data = indexing.LazilyIndexedArray(InaccessibleArray(var.values)) return Variable(var.dimensions, data, var.attrs) @property def store_variables(self): return self._variables class TestDataset(TestCase): def test_repr(self): data = create_test_data() expected = dedent(""" <xray.Dataset> Dimensions: (dim1: 100, dim2: 50, dim3: 10, time: 20) Coordinates: dim1 X dim2 X dim3 X time X Noncoordinates: var1 0 1 var2 0 1 var3 1 0 Attributes: Empty """).strip() actual = '\n'.join(x.rstrip() for x in repr(data).split('\n')) self.assertEqual(expected, actual) expected = dedent(""" <xray.Dataset> Dimensions: () Coordinates: None Noncoordinates: None Attributes: Empty """).strip() actual = '\n'.join(x.rstrip() for x in repr(Dataset()).split('\n')) self.assertEqual(expected, actual) def test_init(self): var1 = Variable('x', 2 * np.arange(100)) var2 = Variable('x', np.arange(1000)) var3 = Variable(['x', 'y'], np.arange(1000).reshape(100, 10)) with self.assertRaisesRegexp(ValueError, 'but already exists'): Dataset({'a': var1, 'b': var2}) with self.assertRaisesRegexp(ValueError, 'must be defined with 1-d'): Dataset({'a': var1, 'x': var3}) # verify handling of DataArrays expected = Dataset({'x': var1, 'z': var3}) actual = Dataset({'z': expected['z']}) self.assertDatasetIdentical(expected, actual) def test_variable(self): a = Dataset() d = np.random.random((10, 3)) a['foo'] = (('time', 'x',), d) self.assertTrue('foo' in a.variables) self.assertTrue('foo' in a) a['bar'] = (('time', 'x',), d) # order of creation is preserved self.assertTrue(a.variables.keys() == ['foo', 'time', 'x', 'bar']) self.assertTrue(all([a.variables['foo'][i].values == d[i] for i in np.ndindex(*d.shape)])) # try to add variable with dim (10,3) with data that's (3,10) with self.assertRaises(ValueError): a['qux'] = (('time', 'x'), d.T) def test_coordinate(self): a = Dataset() vec = np.random.random((10,)) attributes = {'foo': 'bar'} a['x'] = ('x', vec, attributes) self.assertTrue('x' in a.coordinates) self.assertIsInstance(a.coordinates['x'].as_index, pd.Index) self.assertVariableEqual(a.coordinates['x'], a.variables['x']) b = Dataset() b['x'] = ('x', vec, attributes) self.assertVariableEqual(a['x'], b['x']) self.assertEquals(a.dimensions, b.dimensions) # this should work a['x'] = ('x', vec[:5]) a['z'] = ('x', np.arange(5)) with self.assertRaises(ValueError): # now it shouldn't, since there is a conflicting length a['x'] = ('x', vec[:4]) arr = np.random.random((10, 1,)) scal = np.array(0) with self.assertRaises(ValueError): a['y'] = ('y', arr) with self.assertRaises(ValueError): a['y'] = ('y', scal) self.assertTrue('y' not in a.dimensions) def test_equals_and_identical(self): data = create_test_data(seed=42) self.assertTrue(data.equals(data)) self.assertTrue(data.identical(data)) data2 = create_test_data(seed=42) data2.attrs['foobar'] = 'baz' self.assertTrue(data.equals(data2)) self.assertTrue(data == data2) self.assertFalse(data.identical(data2)) del data2['time'] self.assertFalse(data.equals(data2)) self.assertTrue(data != data2) def test_attrs(self): data = create_test_data(seed=42) data.attrs = {'foobar': 'baz'} self.assertTrue(data.attrs['foobar'], 'baz') self.assertIsInstance(data.attrs, OrderedDict) def test_indexed(self): data = create_test_data() slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 2)} ret = data.indexed(**slicers) # Verify that only the specified dimension was altered self.assertItemsEqual(data.dimensions, ret.dimensions) for d in data.dimensions: if d in slicers: self.assertEqual(ret.dimensions[d], np.arange(data.dimensions[d])[slicers[d]].size) else: self.assertEqual(data.dimensions[d], ret.dimensions[d]) # Verify that the data is what we expect for v in data.variables: self.assertEqual(data[v].dimensions, ret[v].dimensions) self.assertEqual(data[v].attrs, ret[v].attrs) slice_list = [slice(None)] * data[v].values.ndim for d, s in slicers.iteritems(): if d in data[v].dimensions: inds = np.nonzero(np.array(data[v].dimensions) == d)[0] for ind in inds: slice_list[ind] = s expected = data[v].values[slice_list] actual = ret[v].values np.testing.assert_array_equal(expected, actual) with self.assertRaises(ValueError): data.indexed(not_a_dim=slice(0, 2)) ret = data.indexed(dim1=0) self.assertEqual({'time': 20, 'dim2': 50, 'dim3': 10}, ret.dimensions) self.assertItemsEqual(list(data.noncoordinates) + ['dim1'], ret.noncoordinates) ret = data.indexed(time=slice(2), dim1=0, dim2=slice(5)) self.assertEqual({'time': 2, 'dim2': 5, 'dim3': 10}, ret.dimensions) self.assertItemsEqual(list(data.noncoordinates) + ['dim1'], ret.noncoordinates) ret = data.indexed(time=0, dim1=0, dim2=slice(5)) self.assertItemsEqual({'dim2': 5, 'dim3': 10}, ret.dimensions) self.assertItemsEqual(list(data.noncoordinates) + ['dim1', 'time'], ret.noncoordinates) def test_labeled(self): data = create_test_data() int_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(2), 'dim3': slice(3)} loc_slicers = {'dim1': slice(None, None, 2), 'dim2': slice(0, 0.5), 'dim3': slice('a', 'c')} self.assertEqual(data.indexed(**int_slicers), data.labeled(**loc_slicers)) data['time'] = ('time', pd.date_range('2000-01-01', periods=20)) self.assertEqual(data.indexed(time=0), data.labeled(time='2000-01-01')) self.assertEqual(data.indexed(time=slice(10)), data.labeled(time=slice('2000-01-01', '2000-01-10'))) self.assertEqual(data, data.labeled(time=slice('1999', '2005'))) self.assertEqual(data.indexed(time=slice(3)), data.labeled( time=pd.date_range('2000-01-01', periods=3))) def test_reindex_like(self): data = create_test_data() expected = data.indexed(dim1=slice(10), time=slice(13)) actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) expected = data.copy(deep=True) expected['dim3'] = ('dim3', list('cdefghijkl')) expected['var3'][:-2] = expected['var3'][2:] expected['var3'][-2:] = np.nan actual = data.reindex_like(expected) self.assertDatasetIdentical(actual, expected) def test_reindex(self): data = create_test_data() self.assertDatasetIdentical(data, data.reindex()) expected = data.indexed(dim1=slice(10)) actual = data.reindex(dim1=data['dim1'][:10]) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].values) self.assertDatasetIdentical(actual, expected) actual = data.reindex(dim1=data['dim1'][:10].as_index) self.assertDatasetIdentical(actual, expected) def test_align(self): left = create_test_data() right = left.copy(deep=True) right['dim3'] = ('dim3', list('cdefghijkl')) right['var3'][:-2] = right['var3'][2:] right['var3'][-2:] = np.random.randn(*right['var3'][-2:].shape) intersection = list('cdefghij') union = list('abcdefghijkl') left2, right2 = align(left, right, join='inner') self.assertArrayEqual(left2['dim3'], intersection) self.assertDatasetIdentical(left2, right2) left2, right2 = align(left, right, join='outer') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertArrayEqual(left2['dim3'], union) self.assertDatasetIdentical(left2.labeled(dim3=intersection), right2.labeled(dim3=intersection)) self.assertTrue(np.isnan(left2['var3'][-2:]).all()) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='left') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], left['dim3']) self.assertDatasetIdentical(left2.labeled(dim3=intersection), right2.labeled(dim3=intersection)) self.assertTrue(np.isnan(right2['var3'][:2]).all()) left2, right2 = align(left, right, join='right') self.assertVariableEqual(left2['dim3'], right2['dim3']) self.assertVariableEqual(left2['dim3'], right['dim3']) self.assertDatasetIdentical(left2.labeled(dim3=intersection), right2.labeled(dim3=intersection)) self.assertTrue(
np.isnan(left2['var3'][-2:])
numpy.isnan
import os import torch import shutil import numpy as np from lib.loss.loss import mpjpe, n_mpjpe, p_mpjpe, mean_velocity_error, weighted_mpjpe from lib.dataloader.generators import UnchunkedGenerator from lib.camera.camera import image_coordinates from lib.skeleton.bone import get_bone_length_from_3d_pose, get_bone_unit_vector_from_3d_pose class Trainer(): def __init__(self, data_config, model_config, train_config, plot_config, train_generator, test_generator, models, optimizer, kps_left, kps_right, joints_left, joints_right, plotter, best_performance=None): self.data_config = data_config self.model_config = model_config self.train_config = train_config self.plot_config = plot_config self.lr = train_config['LEARNING_RATE'] self.optimizer = optimizer self.train_generator = train_generator self.test_generator = test_generator self.pos_model_train = models['train_pos'] self.pos_model_test = models['test_pos'] self.trj_model_train = models['train_trj'] self.trj_model_test = models['test_trj'] self.min_loss = 1e5 if best_performance is None else best_performance self.losses_3d_train = [] self.losses_3d_valid = [] self.kps_left = kps_left self.kps_right = kps_right self.joints_left = joints_left self.joints_right = joints_right self.receptive_field = model_config['NUM_FRAMES'] self.plotter = plotter @staticmethod def eval_data_prepare(receptive_field, inputs_2d, inputs_3d): inputs_2d_p = torch.squeeze(inputs_2d) if inputs_3d is not None: inputs_3d_p = inputs_3d.permute(1, 0, 2, 3) else: inputs_3d_p = inputs_3d out_num = inputs_2d_p.shape[0] - receptive_field + 1 eval_input_2d = torch.empty(out_num, receptive_field, inputs_2d_p.shape[1], inputs_2d_p.shape[2]) for i in range(out_num): eval_input_2d[i, :, :, :] = inputs_2d_p[i:i + receptive_field, :, :] return eval_input_2d, inputs_3d_p def train(self, epoch, mlog): N = 0 epoch_loss_3d_train = 0 epoch_loss_3d_pos = 0 epoch_loss_3d_trj = 0 epoch_loss_3d_bone = 0 self.pos_model_train.train() if self.model_config['TRAJECTORY_MODEL']: self.trj_model_train.train() iter = 0 for cam, batch_3d, batch_2d in self.train_generator.next_epoch(): inputs_2d = torch.from_numpy(batch_2d.astype('float32')) inputs_3d = torch.from_numpy(batch_3d.astype('float32')) inputs_param = torch.from_numpy(cam.astype('float32')) if torch.cuda.is_available(): inputs_2d = inputs_2d.cuda() inputs_3d = inputs_3d.cuda() inputs_param = inputs_param.cuda() if self.model_config['TRAJECTORY_MODEL']: inputs_traj = inputs_3d[:, :, :1].clone() if self.data_config['RAY_ENCODING']: # do nothing if self.model_config['TRAJECTORY_MODEL']: inputs_3d[:, :, 1:] -= inputs_3d[:, :, 0:1] inputs_3d[:, :, 0] = 0 else: inputs_3d[:, :, 1:] -= inputs_3d[:, :, 0:1] inputs_3d[:, :, 0] = 0 self.optimizer.zero_grad() # Predict 3D poses predicted_3d_pos = self.pos_model_train(inputs_2d, inputs_param) loss_3d_pos = mpjpe(predicted_3d_pos, inputs_3d) epoch_loss_3d_train += inputs_3d.shape[0] * inputs_3d.shape[1] * loss_3d_pos.item() epoch_loss_3d_pos += inputs_3d.shape[0] * inputs_3d.shape[1] * loss_3d_pos.item() N += inputs_3d.shape[0] * inputs_3d.shape[1] total_loss = loss_3d_pos if self.model_config['BONE_COMPARISON']: predicted_bone_length = get_bone_length_from_3d_pose(predicted_3d_pos) target_bone_length = get_bone_length_from_3d_pose(inputs_3d) loss_3d_bone_length = mpjpe(predicted_bone_length, target_bone_length) predicted_bone_unit_vector = get_bone_unit_vector_from_3d_pose(predicted_3d_pos) target_bone_unit_vector = get_bone_unit_vector_from_3d_pose(inputs_3d) loss_3d_bone_angle = mpjpe(predicted_bone_unit_vector, target_bone_unit_vector) epoch_loss_3d_bone += inputs_3d.shape[0] * inputs_3d.shape[1] * (loss_3d_bone_length.item() + loss_3d_bone_angle.item()) total_loss += (loss_3d_bone_length + loss_3d_bone_angle) if self.model_config['TRAJECTORY_MODEL']: predicted_3d_trj = self.trj_model_train(inputs_2d, inputs_param) w = torch.abs(1 / inputs_traj[:, :, :, 2]) # Weight inversely proportional to depth loss_3d_traj = weighted_mpjpe(predicted_3d_trj, inputs_traj, w) assert inputs_traj.shape[0] * inputs_traj.shape[1] == inputs_3d.shape[0] * inputs_3d.shape[1] epoch_loss_3d_train += inputs_3d.shape[0] * inputs_3d.shape[1] * loss_3d_traj.item() epoch_loss_3d_trj += inputs_3d.shape[0] * inputs_3d.shape[1] * loss_3d_traj.item() total_loss += loss_3d_traj # ---------------- visualization ---------------- # if iter % 2048 == 0 and self.plotter is not None and epoch % 64 == 0: self.plotter.show_plot( epoch, inputs_2d.detach().cpu().numpy(), inputs_3d.detach().cpu().numpy(), predicted_3d_pos.detach().cpu().numpy(), dataset=self.data_config['DATASET'], gt=self.data_config['KEYPOINTS'] ) # ---------------- visualization ---------------- # iter += 1 total_loss.backward() self.optimizer.step() self.losses_3d_train.append(epoch_loss_3d_train / N) torch.cuda.empty_cache() if self.plotter: # plot all the losses self.plotter.log_metric('train', self.losses_3d_train[-1] * 1000, epoch) self.plotter.log_metric('train_pos', epoch_loss_3d_pos / N * 1000, epoch) self.plotter.log_metric('train_trj', epoch_loss_3d_trj / N * 1000, epoch) self.plotter.log_metric('train_bone', epoch_loss_3d_bone / N * 1000, epoch) # plot all the learning rates self.plotter.log_metric('lr', self.lr, epoch) # return the current epoch's mpjme return self.losses_3d_train[-1], self.lr def test(self, epoch, mlog): with torch.no_grad(): self.pos_model_test.load_state_dict(self.pos_model_train.state_dict(), strict=True) self.pos_model_test.eval() if self.model_config['TRAJECTORY_MODEL']: self.trj_model_test.load_state_dict(self.trj_model_train.state_dict(), strict=True) self.trj_model_test.eval() epoch_loss_3d_valid = 0 epoch_loss_3d_pos = 0 epoch_loss_3d_trj = 0 epoch_loss_3d_bone = 0 N = 0 # Evaluate on test set for cam, batch, batch_2d in self.test_generator.next_epoch(): cam_param = np.array([[(-c.Rw2c.T @ c.Tw2c)[2][0], c.cam_pitch_rad] for c in cam]).astype('float32') inputs_2d = torch.from_numpy(batch_2d.astype('float32')) inputs_3d = torch.from_numpy(batch.astype('float32')) ##### convert size inputs_2d, inputs_3d = self.eval_data_prepare(self.receptive_field, inputs_2d, inputs_3d) inputs_param = torch.from_numpy(cam_param) if torch.cuda.is_available(): inputs_2d = inputs_2d.cuda() inputs_3d = inputs_3d.cuda() inputs_param = inputs_param.cuda() if self.model_config['TRAJECTORY_MODEL']: inputs_traj = inputs_3d.clone() if self.data_config['RAY_ENCODING']: # do nothing if self.model_config['TRAJECTORY_MODEL']: inputs_3d[:, :, 1:] -= inputs_3d[:, :, 0:1] inputs_3d[:, :, 0] = 0 else: inputs_3d[:, :, 1:] -= inputs_3d[:, :, 0:1] inputs_3d[:, :, 0] = 0 predicted_3d_pos = self.pos_model_test(inputs_2d, inputs_param) epoch_loss_3d_pos += inputs_3d.shape[0] * inputs_3d.shape[1] * mpjpe(predicted_3d_pos, inputs_3d).item() if self.model_config['BONE_COMPARISON']: predicted_bone_length = get_bone_length_from_3d_pose(predicted_3d_pos) target_bone_length = get_bone_length_from_3d_pose(inputs_3d) loss_3d_bone_length = mpjpe(predicted_bone_length, target_bone_length) predicted_bone_unit_vector = get_bone_unit_vector_from_3d_pose(predicted_3d_pos) target_bone_unit_vector = get_bone_unit_vector_from_3d_pose(inputs_3d) loss_3d_bone_angle = mpjpe(predicted_bone_unit_vector, target_bone_unit_vector) epoch_loss_3d_bone += inputs_3d.shape[0] * inputs_3d.shape[1] * (loss_3d_bone_length.item() + loss_3d_bone_angle.item()) if self.model_config['TRAJECTORY_MODEL']: predicted_3d_trj = self.trj_model_test(inputs_2d, inputs_param) predicted_3d_pos += predicted_3d_trj loss_3d_pos = mpjpe(predicted_3d_pos, inputs_traj) w = torch.abs(1 / inputs_traj[:, :, 0, 2]) epoch_loss_3d_trj += inputs_3d.shape[0] * inputs_3d.shape[1] * weighted_mpjpe(predicted_3d_trj, inputs_traj[:, :, 0:1], w).item() else: loss_3d_pos = mpjpe(predicted_3d_pos, inputs_3d) epoch_loss_3d_valid += inputs_3d.shape[0] * inputs_3d.shape[1] * loss_3d_pos.item() N += inputs_3d.shape[0] * inputs_3d.shape[1] self.losses_3d_valid.append(epoch_loss_3d_valid / N) # Save checkpoint if necessary if epoch % self.train_config['CHECKPOINT_FREQUENCY'] == 0: chk_path = os.path.join(self.train_config['CHECKPOINT'], 'epoch_{}.bin'.format(epoch)) mlog.info('Saving epochs {}\'s checkpoint to {}.'.format(epoch, chk_path)) if self.model_config['TRAJECTORY_MODEL']: torch.save({ 'epoch': epoch, 'lr': self.lr, 'best_performance': self.losses_3d_valid[-1] * 1000 if self.losses_3d_valid[-1] * 1000 < self.min_loss else self.min_loss, 'random_state': self.train_generator.random_state(), 'optimizer': self.optimizer.state_dict(), 'model_pos': self.pos_model_train.state_dict(), 'model_trj': self.trj_model_train.state_dict() }, chk_path) else: torch.save({ 'epoch': epoch, 'lr': self.lr, 'best_performance': self.losses_3d_valid[-1] * 1000 if self.losses_3d_valid[-1] * 1000 < self.min_loss else self.min_loss, 'random_state': self.train_generator.random_state(), 'optimizer': self.optimizer.state_dict(), 'model_pos': self.pos_model_train.state_dict(), }, chk_path) #### save best checkpoint best_chk_path = os.path.join(self.train_config['CHECKPOINT'], 'best_epoch.bin'.format(epoch)) if self.losses_3d_valid[-1] * 1000 < self.min_loss: self.min_loss = self.losses_3d_valid[-1] * 1000 mlog.info('Saving best checkpoint to {} with mpjpe: {}.'.format(best_chk_path, self.min_loss)) shutil.copy(chk_path, best_chk_path) cmd = 'rm {}'.format(chk_path) os.system(cmd) # Decay learning rate exponentially self.lr *= self.train_config['LR_DECAY'] for param_group in self.optimizer.param_groups: param_group['lr'] *= self.train_config['LR_DECAY'] # Decay BatchNorm momentum if self.model_config['MODEL'] == 'VideoPose3D': momentum = self.train_config['INITIAL_MOMENTUM'] * np.exp(-(epoch-1) / self.train_config['EPOCHS'] * np.log(self.train_config['INITIAL_MOMENTUM'] / self.train_config['FINAL_MOMENTUM'])) self.pos_model_train.module.set_bn_momentum(momentum) if self.model_config['TRAJECTORY_MODEL']: self.trj_model_train.module.set_bn_momentum(momentum) if self.plotter: # plot all the losses self.plotter.log_metric('test', self.losses_3d_valid[-1] * 1000, epoch) self.plotter.log_metric('test_pos', epoch_loss_3d_pos / N * 1000, epoch) self.plotter.log_metric('test_trj', epoch_loss_3d_trj / N * 1000, epoch) self.plotter.log_metric('test_bone', epoch_loss_3d_bone / N * 1000, epoch) # return the current epoch's mpjme return self.losses_3d_valid[-1] def evaluate_core(self, test_generator, action=None, return_predictions=False, flip_test=False): epoch_loss_3d_pos = 0 epoch_loss_3d_pos_procrustes = 0 epoch_loss_3d_pos_scale = 0 epoch_loss_3d_vel = 0 epoch_loss_3d_root = 0 with torch.no_grad(): self.pos_model_test.eval() if self.model_config['TRAJECTORY_MODEL']: self.trj_model_test.eval() N = 0 for cam, batch, batch_2d in test_generator.next_epoch(): cam_param = np.array([(-cam.Rw2c.T @ cam.Tw2c)[2][0], cam.cam_pitch_rad]).astype('float32') inputs_2d = torch.from_numpy(batch_2d.astype('float32')) if flip_test: inputs_2d_flip = inputs_2d.clone() inputs_2d_flip[:, :, :, 0] *= -1 inputs_2d_flip[:, :, self.kps_left + self.kps_right, :] = inputs_2d_flip[:, :, self.kps_right + self.kps_left, :] if return_predictions: inputs_2d, _ = self.eval_data_prepare(self.receptive_field, inputs_2d, None) inputs_param = torch.from_numpy(np.tile(cam_param, (inputs_2d.shape[0], 1))) if self.model_config['TRAJECTORY_MODEL']: return ( self.pos_model_test(inputs_2d, inputs_param) + self.trj_model_test(inputs_2d, inputs_param) ).squeeze(0).cpu().numpy() else: return self.pos_model_test(inputs_2d, inputs_param).squeeze(0).cpu().numpy() if self.model_config['TRAJECTORY_MODEL'] or self.data_config['RAY_ENCODING']: # do nothing pass else: batch[:, :, 1:] -= batch[:, :, 0:1] batch[:, :, 0] = 0 inputs_3d = torch.from_numpy(batch.astype('float32')) inputs_2d, inputs_3d = self.eval_data_prepare(self.receptive_field, inputs_2d, inputs_3d) inputs_param = torch.from_numpy(np.tile(cam_param, (inputs_2d.shape[0], 1))) if flip_test: inputs_2d_flip, _ = self.eval_data_prepare(self.receptive_field, inputs_2d_flip, inputs_3d) if torch.cuda.is_available(): inputs_2d = inputs_2d.cuda() inputs_3d = inputs_3d.cuda() inputs_param = inputs_param.cuda() if flip_test: inputs_2d_flip = inputs_2d_flip.cuda() if self.model_config['TRAJECTORY_MODEL']: predicted_3d_pos = self.pos_model_test(inputs_2d, inputs_param) if flip_test: predicted_3d_pos_flip = self.pos_model_test(inputs_2d_flip, inputs_param) predicted_3d_pos_flip[:, :, :, 0] *= -1 predicted_3d_pos_flip[:, :, self.kps_left + self.kps_right] = predicted_3d_pos_flip[:, :, self.kps_right + self.kps_left] predicted_3d_pos = torch.mean(torch.cat((predicted_3d_pos, predicted_3d_pos_flip), dim=1), dim=1, keepdim=True) predicted_3d_trj = self.trj_model_test(inputs_2d, inputs_param) if flip_test: predicted_3d_trj_flip = self.trj_model_test(inputs_2d_flip, inputs_param) predicted_3d_trj_flip[:, :, :, 0] *= -1 predicted_3d_trj = torch.mean(torch.cat((predicted_3d_trj, predicted_3d_trj_flip), dim=1), dim=1, keepdim=True) predicted_3d_pos += predicted_3d_trj if not cam is None: pred = predicted_3d_pos.cpu().numpy() target = inputs_3d.cpu().numpy() if self.data_config['RAY_ENCODING']: pred_world = cam.normalized2world(pred) target_world = cam.normalized2world(target) else: pred_world = cam.camera2world(pred) target_world = cam.camera2world(target) predicted_3d_pos = torch.from_numpy(pred_world) inputs_3d = torch.from_numpy(target_world) else: predicted_3d_pos = self.pos_model_test(inputs_2d, inputs_param) if flip_test: predicted_3d_pos_flip = self.pos_model_test(inputs_2d_flip, inputs_param) predicted_3d_pos_flip[:, :, :, 0] *= -1 predicted_3d_pos_flip[:, :, self.kps_left + self.kps_right] = predicted_3d_pos_flip[:, :, self.kps_right + self.kps_left] predicted_3d_pos = torch.mean(torch.cat((predicted_3d_pos, predicted_3d_pos_flip), dim=1), dim=1, keepdim=True) if self.data_config['RAY_ENCODING']: # do nothing pred = predicted_3d_pos.cpu().numpy() target = inputs_3d.cpu().numpy() pred_world = cam.normalized2world(pred) target_world = cam.normalized2world(target) predicted_3d_pos = torch.from_numpy(pred_world) inputs_3d = torch.from_numpy(target_world) else: # do nothing pass epoch_loss_3d_pos += inputs_3d.shape[0] * inputs_3d.shape[1] * mpjpe(predicted_3d_pos, inputs_3d).item() epoch_loss_3d_root += inputs_3d.shape[0] * inputs_3d.shape[1] * mpjpe(predicted_3d_pos[:, :, 0:1, :], inputs_3d[:, :, 0:1, :]).item() epoch_loss_3d_pos_scale += inputs_3d.shape[0] * inputs_3d.shape[1] * n_mpjpe(predicted_3d_pos, inputs_3d).item() inputs = inputs_3d.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1]) predicted_3d_pos = predicted_3d_pos.cpu().numpy().reshape(-1, inputs_3d.shape[-2], inputs_3d.shape[-1]) epoch_loss_3d_pos_procrustes += inputs_3d.shape[0] * inputs_3d.shape[1] * p_mpjpe(predicted_3d_pos, inputs) epoch_loss_3d_vel += inputs_3d.shape[0] * inputs_3d.shape[1] * mean_velocity_error(predicted_3d_pos, inputs) N += inputs_3d.shape[0] * inputs_3d.shape[1] e1 = (epoch_loss_3d_pos / N) * 1000 e2 = (epoch_loss_3d_pos_procrustes / N) * 1000 e3 = (epoch_loss_3d_pos_scale / N) * 1000 ev = (epoch_loss_3d_vel / N) * 1000 er = (epoch_loss_3d_root / N) * 1000 return e1, e2, e3, ev, er def evaluate(self, mlog, subjects_test, pose_data, action_filter, pad, causal_shift, epoch, plot=False): all_actions = dict() for subject in subjects_test: # all_actions.setdefault('Sitting 1', list()).append((subject, 'Sitting 1')) if action_filter == None: action_keys = pose_data.get_dataset()[subject].keys() else: action_keys = action_filter for action in action_keys: all_actions.setdefault(action.split(' ')[0], list()).append((subject, action)) errors_p1 = [] errors_p2 = [] errors_p3 = [] errors_vel = [] errors_root = [] if 'CAMERA_WISE_PERFORMANCE' in self.data_config and self.data_config['CAMERA_WISE_PERFORMANCE']: camera_dist = pose_data.get_dataset().camera_dist for cam_idx in range(len(camera_dist)): cam_id = camera_dist[cam_idx] for action_key in all_actions.keys(): poses_cam, poses_act, poses_2d_act = pose_data.fetch_via_action(all_actions[action_key], camera_idx=cam_idx) action_generator = UnchunkedGenerator(poses_cam, poses_act, poses_2d_act, pad=pad, causal_shift=causal_shift, kps_left=self.kps_left, kps_right=self.kps_right, joints_left=self.joints_left, joints_right=self.joints_right) e1, e2, e3, ev, er = self.evaluate_core(action_generator, action_key, flip_test=self.train_config['TEST_TIME_AUGMENTATION']) errors_p1.append(e1) errors_p2.append(e2) errors_p3.append(e3) errors_vel.append(ev) errors_root.append(er) p1, p2, p3, p4 = round(np.mean(errors_p1), 1), round(np.mean(errors_p2), 1), round(np.mean(errors_p3), 1), round(np.mean(errors_vel), 1) p5 = round(np.mean(errors_root), 1) mlog.info('CAM ID {}, {} {} {} {} {}'.format(cam_id, p1, p2, p3, p4, p5)) else: for action_key in all_actions.keys(): poses_cam, poses_act, poses_2d_act = pose_data.fetch_via_action(all_actions[action_key]) action_generator = UnchunkedGenerator(poses_cam, poses_act, poses_2d_act, pad=pad, causal_shift=causal_shift, kps_left=self.kps_left, kps_right=self.kps_right, joints_left=self.joints_left, joints_right=self.joints_right) if action_key is None: mlog.info('----------') else: mlog.info('----' + action_key + '----') e1, e2, e3, ev, er = self.evaluate_core(action_generator, action_key, flip_test=self.train_config['TEST_TIME_AUGMENTATION']) mlog.info('Protocol #1 Error (MPJPE): {} mm'.format(e1)) mlog.info('Protocol #2 Error (P-MPJPE): {} mm'.format(e2)) mlog.info('Protocol #3 Error (N-MPJPE): {} mm'.format(e3)) mlog.info('Velocity Error (MPJVE): {} mm'.format(ev)) mlog.info('Root Error (MRPE): {} mm'.format(er)) mlog.info('----------') errors_p1.append(e1) errors_p2.append(e2) errors_p3.append(e3) errors_vel.append(ev) errors_root.append(er) mlog.info('Protocol #1 (MPJPE) action-wise average: {} mm'.format(round(np.mean(errors_p1), 1))) mlog.info('Protocol #2 (P-MPJPE) action-wise average: {} mm'.format(round(np.mean(errors_p2), 1))) mlog.info('Protocol #3 (N-MPJPE) action-wise average: {} mm'.format(round(np.mean(errors_p3), 1))) mlog.info('Velocity (MPJVE) action-wise average: {} mm'.format(round(np.mean(errors_vel), 1))) mlog.info('Root (MRPE) action-wise average: {} mm'.format(round(
np.mean(errors_root)
numpy.mean
""" Power Flow Analysis: Support Functions Created By: <NAME> <NAME> """ import numpy as np from numpy.linalg import inv import pandas as pd """ Imports Bus and line data from excel sheets Takes in an array containing ['File Location', 'Sheet Name'] Returns two panda data frames for the bus and line data """ def import_BusAndLineData(BusData_Location, LineData_Location): BusData = pd.read_excel(BusData_Location[0], sheet_name=BusData_Location[1]) LineData = pd.read_excel(LineData_Location[0], sheet_name=LineData_Location[1]) return BusData, LineData """ Builds G and B matrices to be used in Power Flow calculations Takes in data frame containing all line information, and number of busses in system Returns G and B arrays """ def build_AdmittanceMatrix(LineData, sys_Size): col = np.array(LineData.columns) line_From = np.array(LineData[col[0]]) line_To = np.array(LineData[col[1]]) line_R = np.array(LineData[col[2]]) line_X = np.array(LineData[col[3]]) line_Z = np.array(LineData[col[2]]) + 1j*np.array(LineData[col[3]]) line_Y = 1/line_Z line_B = np.array(LineData[col[4]]) line_Fmax = np.array(LineData[col[5]]) sys_Y = np.array([[0 for j in range(sys_Size)] for i in range(sys_Size)], dtype = complex) sys_G = np.zeros((sys_Size, sys_Size)) sys_B = np.zeros((sys_Size, sys_Size)) #X_ij for i in range(sys_Size): #Row for j in range(sys_Size): #Column if i==j: # Diagonal, sum of Y(From==i || To==i) + .5B(From==i || To ==i) sys_Y[i][j] = np.sum(line_Y[np.array(line_From==i+1) + np.array(line_To==i+1)]) \ +.5j*np.sum(line_B[np.array(line_From==i+1) + np.array(line_To==i+1)]) elif i<j: #Non Diagonal, -Y(From==i && To==j) sys_Y[i][j] = -np.sum(line_Y[np.multiply(np.array(line_From==i+1), np.array(line_To==j+1))]) else: #i>j =[j][i] sys_Y[i][j] = sys_Y[j][i] sys_G = sys_Y.real sys_B = sys_Y.imag return sys_Y, sys_G, sys_B """ Parses intial bus information from data Takes in Bus Data data frame Returns sys_: LoadP - active power consumed at node LoadQ - reactive power consumed at node BusType - type of bus<(S)lack, (G)enerator, (D)rain> PGen - Active Power produced by each generator node VRef - Reference voltages at PV busses """ def init_BusData(BusData): col = np.array(BusData.columns) sys_BusNum = np.array(BusData[col[0]]) sys_LoadP = np.array(BusData[col[1]]) sys_LoadQ = np.array(BusData[col[2]]) sys_BusType = np.array(BusData[col[3]]) sys_PGen = np.array(BusData[col[4]]) sys_VRef = np.array(BusData[col[5]]) return sys_BusNum, sys_LoadP, sys_LoadQ, sys_BusType, sys_PGen, sys_VRef """ Initializes System Data for processing Takes in sys_: LoadP - active power consumed at node LoadQ - reactive power consumed at node BusType - type of bus<(S)lack, (G)enerator, (D)rain> PGen - Active Power produced by each generator node VRef - Reference voltages at PV busses Returns a 2D array containing each buses's current information [i,:] - Bus i's information [:,0] - Bus # [:,1] - Voltage (V) [:,2] - Angle (T) [:,3] - Active Power (P_inj) [:,4] - P(T,V)-P_inj (mismatch) [:,5] - Reactive Power (Q_inj) [:,6] - Q(T,V)-Q_inj (mismatch) """ def init_SysData(sys_BusNum, sys_LoadP, sys_LoadQ, sys_BusType, sys_PGen, sys_VRef, sys_G, sys_B, S_Base): n= sys_LoadP.size sys_Data = np.zeros((n,7)) sys_Data[:,0] = sys_BusNum sys_Data[:,1] = sys_VRef #Sets initial voltages to provided reference sys_Data[:,2] = np.zeros(n) #Sets initial angles to zero sys_Data[:,3] = (sys_PGen-sys_LoadP)/S_Base #Sets initial power inject to Bus generation minus load in per unit sys_Data[sys_BusType=='S',3] = (np.sum(sys_LoadP)-np.sum(sys_PGen))/S_Base #Sets initial guess for active power required from slack bus sys_Data[:,5] = (-sys_LoadQ)/S_Base #Sets initial power inject to Bus generation minus load in per unit sys_Data[sys_BusType=='S',5] = (-np.sum(sys_LoadQ))/S_Base #Sets initial guess for reactive power required from slack bus for i in range(n): #Sets initial mismatch to calculated power from (V,T) minus expected inject sys_Data[i,4] = -sys_Data[i,3] sys_Data[i,6] = -sys_Data[i,5] for j in range(n): sys_Data[i,4] += sys_Data[i,1]*sys_Data[j,1]*\ (sys_G[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2])+\ sys_B[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2])) sys_Data[i,6] += sys_Data[i,1]*sys_Data[j,1]*\ (sys_G[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2])-\ sys_B[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2])) return sys_Data """ Determines Jacobian value for a given J_11 cell (dP/dT) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_11(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = -Q_i - B_ij*(V_i**2) else: J_ij = V_i*V_j*(G_ij*np.sin(T_i-T_j)-B_ij*np.cos(T_i-T_j)) return J_ij """ Determines Jacobian value for a given J_12 cell (dP/dV) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_12(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = (P_i/V_i) + G_ij*V_i else: J_ij = V_i*(G_ij*np.cos(T_i-T_j)+B_ij*np.sin(T_i-T_j)) return J_ij """ Determines Jacobian value for a given J_21 cell (dQ/dT) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_21(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = P_i-G_ij*(V_i**2) else: J_ij = -V_i*V_j*(G_ij*np.cos(T_i-T_j)+B_ij*np.sin(T_i-T_j)) return J_ij """ Determines Jacobian value for a given J_22 cell (dQ/dV) Takes in: i, j, n, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij Returns Jacobian cell value """ def Jacobian_PowerFlow_22(i, j, V_i, V_j, T_i, T_j, P_i, Q_i, G_ij, B_ij): if(i==j): J_ij = (Q_i/V_i)-B_ij*V_i else: J_ij = V_i*(G_ij*np.sin(T_i-T_j)-B_ij*np.cos(T_i-T_j)) return J_ij """ Processes 1 iteration of current system data Takes in sys_Data, a 2D array containing each node's current information [0] - Bus # [1] - Voltage (V) [2] - Angle (T) [3] - Active Power (P_inj) [4] - P(T,V)-P_inj (mismatch) [5] - Reactive Power (Q_inj) [6] - Q(T,V)-Q_inj (mismatch) As well as, the systems G and B matrices, and node types Returns the updated array """ def update_SysData(sys_Data, sys_G, sys_B, sys_BusType): n = sys_BusType.size D_index = sys_BusType=='D' G_index = sys_BusType=='G' S_index = sys_BusType=='S' """Determine Jacobian""" J = np.zeros((2*n,2*n)) for i in range(n): for j in range(n): #(i, j, V_i, V_j, T_i, T_j, P_i(T,V), Q_i(T,V), G_ij, B_ij) J[i,j] = Jacobian_PowerFlow_11(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) J[i,j+n] = Jacobian_PowerFlow_12(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) J[i+n,j] = Jacobian_PowerFlow_21(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) J[i+n,j+n] =Jacobian_PowerFlow_22(i, j, sys_Data[i,1], sys_Data[j,1], sys_Data[i,2], sys_Data[j,2], sys_Data[i,4]+sys_Data[i,3], sys_Data[i,6]+sys_Data[i,5], sys_G[i,j], sys_B[i,j]) """Remove non-implicit values""" for i in range(n-1,-1,-1): if S_index[i]: J=np.delete(J, i+n, 0) J=np.delete(J, i+n, 1) J=np.delete(J, i, 0) J=np.delete(J, i, 1) elif G_index[i]: J=np.delete(J, i+n, 0) J=np.delete(J, i+n, 1) """Determine Inverse""" J_inv = inv(J) """Determine Delta T,V""" PQ = np.concatenate((sys_Data[np.invert(S_index), 4], sys_Data[D_index, 6])) Delta = -J_inv @ PQ Delta_T = Delta[0:sum(np.invert(S_index))] Delta_V = Delta[sum(np.invert(S_index)):sum(np.invert(S_index))+sum(D_index)] """Update T for non-slack buses, and V for PQ buses""" Delta_T_index = 0 Delta_V_index = 0 for i in range(n): if G_index[i]: sys_Data[i,2] += Delta_T[Delta_T_index] Delta_T_index += 1 elif D_index[i]: sys_Data[i,1] += Delta_V[Delta_V_index] Delta_V_index += 1 sys_Data[i,2] += Delta_T[Delta_T_index] Delta_T_index += 1 """Update P_inj for slack bus, and Q_inj for non PQ buses""" for i in range(n): if S_index[i]:#Update Slack P_inj sys_Data[i,3] = 0 if (S_index[i] or G_index[i]):#Update non PQ Q_inj sys_Data[i,5] = 0 for j in range(n): if S_index[i]:#Update Slack sys_Data[i,3] += sys_Data[i,1]*sys_Data[j,1]*((sys_G[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2]))+(sys_B[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2]))) if (S_index[i] or G_index[i]):#Update non PQ sys_Data[i,5] += sys_Data[i,1]*sys_Data[j,1]*((sys_G[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2]))-(sys_B[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2]))) """Update mismatch columns""" for i in range(n): sys_Data[i,4] = -sys_Data[i,3] sys_Data[i,6] = -sys_Data[i,5] for j in range(n): sys_Data[i,4] += sys_Data[i,1]*sys_Data[j,1]*((sys_G[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2]))+(sys_B[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2]))) sys_Data[i,6] += sys_Data[i,1]*sys_Data[j,1]*((sys_G[i,j]*np.sin(sys_Data[i,2]-sys_Data[j,2]))-(sys_B[i,j]*np.cos(sys_Data[i,2]-sys_Data[j,2]))) return sys_Data """ Takes in voltage and theta values, shunt capacitance, and the admittance matrix Returns Power Values: S_ij - Apparent Power P_ij - Real Power Q_ij - Reactive Power """ def PowerFlow (V_i,T_i,V_j,T_j,B_tot,y_ij): I_ij = y_ij * (V_i * np.cos(T_i) + 1j * V_i *
np.sin(T_i)
numpy.sin
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import csv import sys sys.path.append("..\\..\\libraries") from GraphicLibrary import drawPoint, drawCircle, initDrawing, finishDrawing from GeometryLibrary import getPoint, angle_radians filename = "out-dist-0,40m_B-complete.txt" # Lade Daten data = list() with open(filename) as csvDataFile: csvReader = csv.reader(csvDataFile, delimiter=';') for row in csvReader: data.append(row) data = data[1:] # Stelle Ergebnisse da initDrawing(figsize=(16,8)) import matplotlib.cm as cm from matplotlib.colors import Normalize cmap = cm.Reds #cm.autumn norm = Normalize(vmin=0, vmax=1) error1 = list() error2 = list() for d in data: error1.append(float(d[7])) error2.append(float(d[11])) errmax1 =
np.max(error1)
numpy.max
import numpy as np np.seterr(all='raise') import tensorflow as tf import pandas as pd class Episode: def __init__(self, observation, observation_enc, goal, reward): self.length = 1 self.observations = [observation] self.observations_enc = [observation_enc] self.rewards = [reward] self.actions = [] self.goal = goal def append(self, action, observation, observation_enc, reward): self.length += 1 self.actions.append(action) self.observations.append(observation) self.observations_enc.append(observation_enc) self.rewards.append(reward) class Agent: def __init__(self, env): self.env = env def act(self, observation, goal, greedy): raise NotImplementedError() def interact(self, n_episodes=1, greedy=False, render=False): episodes = [] for i in range(n_episodes): observation, observation_enc, goal, reward = self.env.reset() episodes.append( Episode( observation, observation_enc, goal, reward)) if render: print('Episode {0}.\n'.format(i + 1)) self.env.render() done = False while not done: action = self.act(observation, goal, greedy) observation, observation_enc, reward, done = self.env.step( action) episodes[-1].append(action, observation, observation_enc, reward) if render: self.env.render() return episodes class RandomAgent(Agent): def __init__(self, env): Agent.__init__(self, env) def act(self, observation, goal, greedy): return np.random.choice(self.env.n_actions) class BatchVariables: def __init__(self, d_observations, d_goals, n_actions): self.d_observations = np.reshape(d_observations, -1).tolist() self.d_goals = np.reshape(d_goals, -1).tolist() self.n_actions = n_actions self.lengths = tf.placeholder(tf.int32, [None], name='lengths') self.actions = tf.placeholder(tf.int32, [None, None], name='actions') self.actions_enc = tf.one_hot(self.actions, self.n_actions) self.observations = tf.placeholder(tf.float32, [None, None] + self.d_observations, name='observations') self.rewards = tf.placeholder(tf.float32, [None, None], name='rewards') self.baselines = tf.placeholder(tf.float32, [None, None], name='baselines') self.goals = tf.placeholder(tf.float32, [None] + self.d_goals, name='goals') self.batch_size = tf.shape(self.observations)[0] self.max_steps = tf.shape(self.observations)[1] self.goals_enc = tf.tile(self.goals, [1, self.max_steps]) self.goals_enc = tf.reshape(self.goals_enc, [-1, self.max_steps] + self.d_goals) class PolicyNetworkAgent(Agent): def __init__(self, env, hidden_layers, learning_rate, baseline, use_vscaling_init, init_session, use_gpu): Agent.__init__(self, env) self.hidden_layers = hidden_layers self.learning_rate = learning_rate self.baseline = baseline self.use_vscaling_init = use_vscaling_init self.create_network() self.setup() self.use_gpu = use_gpu self.saver = tf.train.Saver() if init_session: self.init() def create_network(self): self.bvars = BatchVariables(self.env.d_observations, self.env.d_goals, self.env.n_actions) if len(self.bvars.d_observations) == 1: self.create_network_1d() else: self.create_network_conv() def create_network_1d(self): d_input = self.bvars.d_observations[0] + self.bvars.d_goals[0] inputs = tf.concat( [self.bvars.observations, self.bvars.goals_enc], axis=2) output = tf.reshape(inputs, [-1, d_input]) self.variables = [] layers = [d_input] + self.hidden_layers +\ [self.bvars.n_actions] for i in range(1, len(layers)): if self.use_vscaling_init: W_init = tf.variance_scaling_initializer( mode="fan_avg", distribution="uniform") W = tf.get_variable('pW_{0}'.format( i), [layers[i - 1], layers[i]], initializer=W_init) b = tf.get_variable('pb_{0}'.format(i), layers[i], initializer=tf.constant_initializer(0.0)) else: W = tf.Variable(tf.truncated_normal([layers[i - 1], layers[i]], stddev=0.01), name='pW_{0}'.format(i)) b = tf.Variable(tf.zeros(layers[i]), name='pb_{0}'.format(i)) self.variables += [W, b] output = tf.matmul(output, W) + b if i < len(layers) - 1: output = tf.tanh(output) else: # Note: Probabilities lower bounded by 1e-12 output = tf.nn.softmax(output) + 1e-12 self.policy = tf.reshape(output, [-1, self.bvars.max_steps, self.bvars.n_actions]) def create_network_conv(self): n_filters = [32, 64, 64] filter_sizes = [8, 4, 3] strides = [4, 2, 1] hidden_layer_sizes = self.hidden_layers assert isinstance(hidden_layer_sizes, list) reshaped_observations = tf.reshape(self.bvars.observations, [-1] + self.bvars.d_observations) reshaped_observations = reshaped_observations / 255 with tf.device('/cpu:0'): with tf.variable_scope("state_processor"): prev_y = tf.image.resize_images( reshaped_observations, (84, 84), method=tf.image.ResizeMethod.NEAREST_NEIGHBOR) with tf.variable_scope("actor"): for i, (fs, ks, strides) in enumerate( zip(n_filters, filter_sizes, strides)): init = tf.variance_scaling_initializer( mode="fan_avg", distribution="uniform") prev_y = tf.layers.conv2d(prev_y, fs, ks, strides=strides, activation=tf.tanh, name="rep_conv_" + str(i), kernel_initializer=init) obs_enc_flat = tf.contrib.layers.flatten(prev_y) goals_reshaped = tf.reshape(self.bvars.goals_enc, [-1] + self.bvars.d_goals) inputs = tf.concat([obs_enc_flat, goals_reshaped], axis=1) prev_y = inputs for i, layer_size in enumerate(hidden_layer_sizes): init = tf.variance_scaling_initializer( mode="fan_avg", distribution="uniform") prev_y = tf.layers.dense(prev_y, layer_size, activation=tf.tanh, kernel_initializer=init, name="rep_dense_" + str(i)) self.policy = tf.layers.dense( prev_y, self.bvars.n_actions, name="op", activation=None) self.policy = tf.nn.softmax(self.policy) + 1e-12 self.policy = tf.reshape(self.policy, [-1, self.bvars.max_steps, self.bvars.n_actions]) # self.variables = tf.trainable_variables() self.variables = tf.get_collection( tf.GraphKeys.GLOBAL_VARIABLES, scope='actor') def feed(self, episodes): feed = {} lengths = np.array([e.length for e in episodes], dtype=np.int32) batch_size = len(episodes) max_steps = max(lengths) actions = np.zeros((batch_size, max_steps - 1), dtype=np.int32) observations = np.zeros([batch_size, max_steps] + self.bvars.d_observations, dtype=np.float32) rewards = np.zeros((batch_size, max_steps), dtype=np.float32) baselines = np.zeros((batch_size, max_steps - 1), dtype=np.float32) for i in range(batch_size): actions[i, :lengths[i] - 1] = episodes[i].actions for j in range(lengths[i]): observations[i, j] = episodes[i].observations[j] rewards[i, :lengths[i]] = episodes[i].rewards v = self.baseline.evaluate(episodes[i], episodes[i].goal) baselines[i, :lengths[i] - 1] = v feed[self.bvars.lengths] = lengths feed[self.bvars.actions] = actions feed[self.bvars.observations] = observations feed[self.bvars.rewards] = rewards feed[self.bvars.baselines] = baselines feed[self.bvars.goals] = np.array([e.goal for e in episodes], dtype=np.float32) return feed def init(self): if self.use_gpu: gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3) config = tf.ConfigProto(gpu_options=gpu_options) else: config = tf.ConfigProto(device_count={'GPU': 0}) self.session = tf.Session(config=config) self.session.run(tf.global_variables_initializer()) self.baseline.reset(self.session) def close(self): self.session.close() def act(self, observation, goal, greedy): goal = np.array([goal], dtype=np.float32) observation = np.array([[observation]], dtype=np.float32) feed = {self.bvars.lengths: [1], self.bvars.goals: goal, self.bvars.observations: observation} policy = self.session.run(self.policy, feed)[0][0] if greedy: return np.argmax(policy) a = np.random.choice(self.bvars.n_actions, p=policy) return a def train(self, n_batches, batch_size, eval_freq, eval_size): ereturns = [] treturns = [] plosses = [] blosses = [] print('Training for {0} batches.'.format(n_batches)) episodes = self.interact(eval_size, greedy=True, render=False) ereturns.append(np.mean([np.sum(e.rewards) for e in episodes])) print('Batch 0. Return (e): {0:.3f}.'.format(ereturns[-1])) for t in range(1, n_batches + 1): episodes = self.interact(batch_size, greedy=False, render=False) treturns.append(np.mean([np.sum(e.rewards) for e in episodes])) train_losses = self.train_step(episodes) if isinstance(train_losses, tuple): # HAC plosses.append(train_losses[0]) blosses.append(train_losses[1]) else: plosses.append(train_losses) blosses.append(self.baseline.train_step(episodes)) if t % eval_freq == 0: episodes = self.interact(eval_size, greedy=True, render=False) ereturns.append(np.mean([np.sum(e.rewards) for e in episodes])) msg = 'Batch {0}. Return (e): {1:.3f}. Return (t): {2:.3f}. ' msg += 'Policy loss (t): {3:.3f}. Baseline loss (t): {4:.3f}.' aret = np.mean(treturns[-eval_freq:]) aploss = np.mean(plosses[-eval_freq:]) abloss = np.mean(blosses[-eval_freq:]) print(msg.format(t, ereturns[-1], aret, aploss, abloss)) ereturns, treturns = np.array(ereturns),
np.array(treturns)
numpy.array
import os import timeit from typing import List import numpy as np from numpy.random import RandomState from numpy.testing import assert_allclose, assert_almost_equal import pytest from scipy.special import gamma import arch.univariate.recursions_python as recpy CYTHON_COVERAGE = os.environ.get("ARCH_CYTHON_COVERAGE", "0") in ("true", "1", "True") try: import arch.univariate.recursions as rec_cython missing_extension = False except ImportError: missing_extension = True if missing_extension: rec = recpy else: rec = rec_cython try: import numba # noqa missing_numba = False except ImportError: missing_numba = True pytestmark = pytest.mark.filterwarnings("ignore::arch.compat.numba.PerformanceWarning") class Timer(object): def __init__( self, first, first_name, second, second_name, model_name, setup, repeat=5, number=10, ) -> None: self.first_code = first self.second_code = second self.setup = setup self.first_name = first_name self.second_name = second_name self.model_name = model_name self.repeat = repeat self.number = number self._run = False self.times: List[float] = [] self._codes = [first, second] self.ratio = np.inf def display(self): if not self._run: self.time() self.ratio = self.times[0] / self.times[1] title = self.model_name + " timing" print("\n" + title) print("-" * len(title)) print(self.first_name + ": " + "{:0.3f} ms".format(1000 * self.times[0])) print(self.second_name + ": " + "{:0.3f} ms".format(1000 * self.times[1])) if self.ratio < 1: print( "{0} is {1:0.1f}% faster".format( self.first_name, 100 * (1 / self.ratio - 1) ) ) else: print( "{0} is {1:0.1f}% faster".format( self.second_name, 100 * (self.ratio - 1) ) ) print( self.first_name + "/" + self.second_name + " Ratio: {:0.3f}\n".format(self.ratio) ) def time(self): self.times = [] for code in self._codes: timer = timeit.Timer(code, setup=self.setup) self.times.append(min(timer.repeat(self.repeat, self.number))) class TestRecursions(object): @classmethod def setup_class(cls): cls.nobs = 1000 cls.rng = RandomState(12345) cls.resids = cls.rng.standard_normal(cls.nobs) cls.sigma2 = np.zeros_like(cls.resids) var = cls.resids.var() var_bounds = np.array([var / 1000000.0, var * 1000000.0]) cls.var_bounds = np.ones((cls.nobs, 2)) * var_bounds cls.backcast = 1.0 cls.timer_setup = """ import numpy as np import arch.univariate.recursions as rec import arch.univariate.recursions_python as recpy nobs = 10000 resids = np.random.standard_normal(nobs) sigma2 = np.zeros_like(resids) var = resids.var() backcast = 1.0 var_bounds = np.array([var / 1000000.0, var * 1000000.0]) var_bounds = np.ones((nobs, 2)) * var_bounds """ def test_garch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) fresids = resids ** 2.0 sresids = np.sign(resids) recpy.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_numba = sigma2.copy() recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) sigma2_python = sigma2.copy() rec.garch_recursion( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([0.1, -0.4, 0.3, 0.2]) recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 0.4, 3, 2]) recpy.garch_recursion_python( parameters, fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 0.4, 0.3, 0.2]) mod_fresids = fresids.copy() mod_fresids[:1] = np.inf recpy.garch_recursion_python( parameters, mod_fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.garch_recursion( parameters, mod_fresids, sresids, sigma2, 1, 1, 1, nobs, backcast, self.var_bounds, ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_harch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) lags = np.array([1, 5, 22], dtype=np.int32) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() recpy.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() rec.harch_recursion( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-0.1, -0.4, 0.3, 0.2]) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) recpy.harch_recursion_python( parameters, resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) mod_resids = resids.copy() mod_resids[:10] = np.inf recpy.harch_recursion_python( parameters, mod_resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) rec.harch_recursion( parameters, mod_resids, sigma2, lags, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) def test_arch(self): nobs, resids = self.nobs, self.resids sigma2, backcast = self.sigma2, self.backcast parameters = np.array([0.1, 0.4, 0.3, 0.2]) p = 3 recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) sigma2_python = sigma2.copy() recpy.arch_recursion( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) sigma2_numba = sigma2.copy() rec.arch_recursion( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert_almost_equal(sigma2_numba, sigma2) assert_almost_equal(sigma2_python, sigma2) parameters = np.array([-0.1, -0.4, 0.3, 0.2]) recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert np.all(sigma2 >= self.var_bounds[:, 0]) assert np.all(sigma2 <= 2 * self.var_bounds[:, 1]) parameters = np.array([0.1, 4e8, 3, 2]) recpy.arch_recursion_python( parameters, resids, sigma2, p, nobs, backcast, self.var_bounds ) assert
np.all(sigma2 >= self.var_bounds[:, 0])
numpy.all
# Select and shuffle a random subset of available data, and apply data augmentation techniques. # I tried adding a separate thread to fill a queue of unzipped spectrograms, # but it didn't actually improve performance. import random import sys import numpy as np import skimage from skimage import filters from core import audio from core import constants from core import util from core import plot PROB_MERGE = 0.2 # probability of merging to train multi-label support PROB_AUG = 0.55 # probability of augmentation CACHE_LEN = 1000 # cache this many noise specs for performance MAX_SHIFT = 5 # max pixels for horizontal shift NOISE_VARIANCE = 0.0015 # larger variances lead to more noise SPECKLE_VARIANCE = .009 # relative frequencies of the augmentation types BLUR_INDEX = 0 # so FREQS[0] is relative frequency of blur FADE_INDEX = 1 LOW_INDEX = 2 NOISE_INDEX = 3 SHIFT_INDEX = 4 SPECKLE_INDEX = 5 FREQS = [0.25, 0.5, 0.2, 1.0, 0.5, 0.9] class DataGenerator(): def __init__(self, x_train, y_train, seed=None, augmentation=True, binary_classifier=False, multilabel=False): self.x_train = x_train self.y_train = y_train self.seed = seed self.augmentation = augmentation self.binary_classifier = binary_classifier self.multilabel = multilabel if binary_classifier: self.spec_height = constants.BINARY_SPEC_HEIGHT else: self.spec_height = constants.SPEC_HEIGHT self.indices = np.arange(y_train.shape[0]) if self.augmentation: # convert relative frequencies to probability ranges in [0, 1] freqs = np.array(FREQS) sum = np.sum(freqs) probs = freqs / sum self.probs = np.zeros(SPECKLE_INDEX + 1) self.probs[0] = probs[0] for i in range(1, SPECKLE_INDEX + 1): self.probs[i] = self.probs[i - 1] + probs[i] # self.local_vars is used in _add_low_noise; # use exponentially more noise in the low frequencies self.local_vars = np.zeros((self.spec_height, constants.SPEC_WIDTH, 1)) for row in range(0, self.spec_height): max_val = ((self.spec_height - row) ** 4 / self.spec_height ** 4) / 70 for col in range(0, constants.SPEC_WIDTH): self.local_vars[row, col, 0] = np.random.uniform(0.001, max_val) # creating these here instead of during augmentation saves a lot of time self.noise = np.zeros((CACHE_LEN, self.spec_height, constants.SPEC_WIDTH, 1)) for i in range(CACHE_LEN): self.noise[i] = skimage.util.random_noise(self.noise[i], mode='gaussian', seed=self.seed, var=NOISE_VARIANCE, clip=True) self.low_noise = np.zeros((CACHE_LEN, self.spec_height, constants.SPEC_WIDTH, 1)) for i in range(CACHE_LEN): self.low_noise[i] = skimage.util.random_noise(self.low_noise[i], mode='localvar', seed=self.seed, local_vars=self.local_vars, clip=True) self.speckle =
np.zeros((CACHE_LEN, self.spec_height, constants.SPEC_WIDTH, 1))
numpy.zeros
import torch from torch.utils.data import DistributedSampler as _DistributedSampler import math import numpy as np import random class DistributedSampler(_DistributedSampler): def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True, round_up=True): super().__init__(dataset, num_replicas=num_replicas, rank=rank) self.shuffle = shuffle self.round_up = round_up if self.round_up: self.total_size = self.num_samples * self.num_replicas else: self.total_size = len(self.dataset) # added to adapt PK sampling strategy self.do_pk = hasattr(dataset, "K") if self.do_pk: if self.rank == 0: print("Start using PK sampling strategy!") self.spkr_dataset_ids = dataset.spkr_dataset_ids self.K = dataset.K self.P = dataset.P self.batch_size = self.P*self.K def __iter__(self): if not self.do_pk: # deterministically shuffle based on epoch if self.shuffle: g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible if self.round_up: indices += indices[:(self.total_size - len(indices))] assert len(indices) == self.total_size # subsample indices = indices[self.rank:self.total_size:self.num_replicas] if self.round_up: assert len(indices) == self.num_samples return iter(indices) else: lol = lambda lst, sz: [lst[i:i + sz] for i in range(0, len(lst), sz)] items = list(self.spkr_dataset_ids.items()) # metric learning naturally needs shuffle to be True g = torch.Generator() g.manual_seed(self.epoch) flattened_list = [] flattened_label = [] for spkr, ids in items: numSeg = (len(ids) // self.K) * self.K rp = lol(torch.randperm(len(ids), generator=g).tolist()[:numSeg], self.K) flattened_label.extend([spkr]*len(rp)) for indices in rp: flattened_list.append([ids[i] for i in indices]) mixid = torch.randperm(len(flattened_label), generator=g).tolist() mixlabel = [] mixmap = [] assert self.batch_size % self.K == 0, \ "batchsize %d should be exactly divided by K %d" % (self.batch_size, self.K) tuple_batch_size = self.batch_size // self.K for ii in mixid: startbatch = len(mixlabel) - len(mixlabel) % tuple_batch_size if flattened_label[ii] not in mixlabel[startbatch:]: mixlabel.append(flattened_label[ii]) mixmap.append(ii) all_indices = [] for idx in mixmap: all_indices.extend(flattened_list[idx]) round_len = (len(all_indices) // (self.num_replicas * self.batch_size)) * self.batch_size sub_indices = all_indices[self.rank * round_len: (self.rank+1) * round_len] # since round_len is definitely a bit smaller than the original len, # to complement the original length, some chunks will be oversampled randomly if self.round_up: epoch_iter = math.ceil(self.total_size / (self.batch_size * self.num_replicas)) truncated_iter = round_len // self.batch_size sub_indices = np.asarray(sub_indices) split_batches =
np.split(sub_indices, truncated_iter)
numpy.split
import numpy as np import pandas as pd from gym.utils import seeding import gym from gym import spaces import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import pickle from stable_baselines3.common.vec_env import DummyVecEnv, SubprocVecEnv from stable_baselines3.common.logger import Logger as log import random from copy import deepcopy class StockTradingEnv(gym.Env): """A stock trading environment for OpenAI gym""" metadata = {'render.modes': ['human']} def __init__(self, df, stock_dim, hmax, initial_amount, buy_cost_pct, sell_cost_pct, reward_scaling, state_space, action_space, mode='', out_of_cash_penalty=0.01, cash_limit=0.1): self.df = df #数据 self.stock_dim = stock_dim #股票数量 self.hmax = hmax #每日最大交易数量 self.initial_amount = initial_amount #启动资金 self.buy_cost_pct = buy_cost_pct #买摩擦费用 self.sell_cost_pct = sell_cost_pct #卖摩擦费用 self.reward_scaling = reward_scaling #奖励放大倍数 self.state_space = state_space #状态维度 self.action_space = action_space #操作维度 self.mode=mode #模式 'test' 'train' self.out_of_cash_penalty = out_of_cash_penalty #资金太少的惩罚 self.cash_limit = cash_limit #资金极限占比 ################################################################################### self.action_space = spaces.Box(low = -1, high = 1,shape = (self.action_space,)) self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape = (self.state_space,)) #################################################################################### self.day_start = 0 #开始日期 self.day = self.day_start #当前日期 self.cash = self.initial_amount #现金 self.holds = [0]*self.stock_dim #持仓 self.cost = 0 self.count_0 = 0 #为了提高采样的质量,记录无操作的次数 self.actions_memory=[] self.date_memory=[] self.asset_memory=[] def reset(self): if self.mode == 'train': lll = len(self.df.date.unique()) length = int(lll*0.95) day_start = random.choice(range(length)) self.day_start = 0 else: self.day_start = 0 print("day_start {0}".format(self.day_start)) self.day = self.day_start self.cash = self.initial_amount #现金.如果是train,应该根据域范围随机得到 self.holds = [0]*self.stock_dim #持仓 self.cost = 0 self.count_0 = 0 self.actions_memory=[] self.date_memory=[] self.asset_memory=[] self.cash_memory = [] self.date_memory.append(self._get_date()) self.asset_memory.append(self.cash) self.cash_memory.append(self.cash) #if self.mode == 'train': #self._initial_cash_and_buy_() state = self._update_state() return state def _initial_cash_and_buy_(self): """Initialize the state, already bought some""" data = self.df.loc[self.day, :] ''' cash_max = max(data.cash_max) cash_min = min(data.cash_min) if cash_max > 10000*10: cash_max = 10000*10 if cash_min < 10000*0.1: cash_min = 10000*0.1 cash_u = random.uniform(cash_min, cash_max) self.cash = self.initial_amount/10000 * cash_u ''' prices = data.close.values.tolist() avg_price = sum(prices)/len(prices) ran = random.random() #随机买。因为开始日期是随机的,initial_amount也可以是随机的。需要新加域,表明当前的cash范围,然后在范围内随机一个值 buy_nums_each_tic = ran*self.cash//(avg_price*len(prices)) # only use half of the initial amount buy_nums_each_tic = buy_nums_each_tic//100*100 cost = sum(prices)*buy_nums_each_tic self.cash = self.cash - cost self.holds = [buy_nums_each_tic]*self.stock_dim ''' state = [self.initial_amount-cost] + \ self.data.close.values.tolist() + \ [buy_nums_each_tic]*self.stock_dim + \ sum([self.data[tech].values.tolist() for tech in self.tech_indicator_list ], []) ''' def step(self, actions): #print('step') #actions = actions * self.hmax #actions initially is scaled between 0 to 1 #actions = (actions.astype(int)) #convert into integer because we can't by fraction of shares actions_old = None if self.mode == 'test': actions_old = actions.copy() begin_total_asset = self._update_total_assets() stocks_can_buy = self._get_can_buy() stocks_can_sell = -np.array(self.holds) base_ = np.array([-1]*self.stock_dim) actions = (actions - base_)/2*(stocks_can_buy - stocks_can_sell)+stocks_can_sell argsort_actions = np.argsort(actions) #索引排序 sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]] #得到卖的索引 buy_index = argsort_actions[::-1][:
np.where(actions > 0)
numpy.where
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import seaborn as sns import pandas as pd import matplotlib.pyplot as plt from matplotlib.gridspec import GridSpec import numpy as np import scipy as sp sns.set(style="ticks") def theta_pairs(samples_dict,design_names=None,native=False,lims=None,theta_ref=None,save=None): """ Create pairs plot of sampled thetas. :param dict samples_dict: samples from model.get_samples() :param list/NoneType design_names: list of string names for thetas, optional (None will use default names) :param bool native: put theta on native scale? (note: you likely want to pass lims in this case) :param list lims: list of tuples, limits for each theta value for plotting; defaults to [0, 1] if native=False :param list theta_ref: scalar reference values to plot as vlines on histplots and as red dots on bivariate plots :param str save: file name to save plot :returns: matplotlib figure """ if 'theta' not in samples_dict.keys(): print('No thetas to plot') return if native is False: theta = samples_dict['theta'] else: theta = samples_dict['theta_native'] n_samp, n_theta = theta.shape if native is False and lims is None: lims = [(0, 1) for i in range(n_theta)] if isinstance(design_names, list) and len(design_names) != n_theta: raise ValueError('Design names wrong length') if design_names is None: design_names = ['theta_%d' % (i+1) for i in range(n_theta)] thin_idx = np.linspace(0,n_samp-1,np.min([n_samp-1, 1000]),dtype=int) # thin to at most 1000 samples theta_df = pd.DataFrame(theta[thin_idx,:],columns=design_names) # take only 1000 samples to dataframe theta_df.insert(0,'idx',theta_df.index,allow_duplicates = False) if theta_df.shape[1]>2: g = sns.PairGrid(theta_df.loc[:, theta_df.columns != 'idx'], diag_sharey=False); g.map_upper(sns.scatterplot, palette = 'coolwarm', hue=theta_df['idx'], legend=False); g.map_lower(sns.kdeplot, cmap="viridis", fill=True, thresh=0.05); g.map_diag(sns.histplot, kde=True); if lims is not None: # Undo sharing of axes for i in range(n_theta): [g.diag_axes[i].get_shared_x_axes().remove(axis) for axis in g.axes.ravel()]; for j in range(n_theta): [g.axes[i, j].get_shared_x_axes().remove(axis) for axis in g.axes.ravel()]; [g.axes[i, j].get_shared_y_axes().remove(axis) for axis in g.axes.ravel()]; [g.axes[i, j].get_shared_x_axes().remove(axis) for axis in g.diag_axes.ravel()]; [g.axes[i, j].get_shared_y_axes().remove(axis) for axis in g.diag_axes.ravel()]; # Set limits for i in range(n_theta): for j in range(n_theta): if i == j: g.diag_axes[i].set_xlim(xmin=lims[i][0], xmax=lims[i][1]); g.axes[i, i].set_xlim(xmin=lims[i][0], xmax=lims[i][1]); else: g.axes[i, j].set_xlim(xmin=lims[j][0], xmax=lims[j][1]); g.axes[i, j].set_ylim(ymin=lims[i][0], ymax=lims[i][1]); if theta_ref is not None: for i in range(n_theta): g.diag_axes[i].vlines(theta_ref[i],ymin=0,ymax=1,transform = g.diag_axes[i].get_xaxis_transform(),color='r'); for j in range(n_theta): if i>j: # Lower diag contour plots g.axes[i,j].scatter(theta_ref[j], theta_ref[i], marker='o', s=5, color="red"); if save is not None: plt.tight_layout() plt.savefig(save,dpi=300,bbox_inches='tight') return g.fig else: fig,ax=plt.subplots() ax.set_xlabel(design_names[0]) sns.histplot(theta_df.loc[:, theta_df.columns != 'idx'],kde=True,ax=ax) if save is not None: plt.tight_layout() plt.savefig(save,dpi=300,bbox_inches='tight') return fig def mcmc_trace(samples_dict,theta_names=None,start=0,end=None,n_to_plot=500,by_group=True,max_print=10,save=None): """ Create trace plot of MCMC samples. :param dict samples_dict: samples from model.get_samples() :param list/NoneType theta_names: list of string names for thetas, optional (None will use default names) :param int start: where to start plotting traces (sample index) :param int/NoneType end: where to end plotting traces (sample index) :param int n_to_plot: how many samples to show :param bool by_group: group params of the same name onto one axis? :param int max_print: maximum number of traces to plot :param str save: file name to save plot :returns: matplotlib figure """ # trim samples dict n_samples = samples_dict['lamUz'].shape[0] if n_to_plot>n_samples: n_to_plot = n_samples # default end if end is None: end = n_samples-1 # check start is valid if not isinstance(start,int) or start<0 : raise TypeError('invalid start index') # check end is valid if end is not None and (start>end or end<0 or not isinstance(end,int) or end > n_samples): raise TypeError('invalid end index') # which indices to plot if (end-start) > n_to_plot: plot_idx = np.unique(np.linspace(start,end,n_to_plot,dtype=int)) else: plot_idx = np.arange(start,end,1,dtype=int) if not by_group: total_plots = 0 for i,k in enumerate(samples_dict.keys()): if k == 'theta_native': continue total_plots += min(samples_dict[k].shape[1],max_print) fig,axs = plt.subplots(total_plots,1,sharex=True,figsize=[10,1.5*total_plots]) fig.subplots_adjust(hspace=0) axs_idx = 0 for i, k in enumerate(samples_dict.keys()): if k == 'theta_native': continue n_theta = min(samples_dict[k].shape[1],max_print) if n_theta > 1: for j in range(n_theta): sns.lineplot(x=plot_idx,y=samples_dict[k][plot_idx,j], palette="tab10", linewidth=.75, ax = axs[axs_idx]) if k=='theta' and theta_names is not None: axs[axs_idx].set_ylabel(theta_names[j]) else: axs[axs_idx].set_ylabel(k+'_'+str(j+1)) axs_idx+=1 else: sns.lineplot(x=plot_idx,y=samples_dict[k][plot_idx,0], palette="tab10", linewidth=.75, ax = axs[axs_idx]) if k=='theta' and theta_names is not None: axs.set_ylabel(theta_names[0]) else: axs[axs_idx].set_ylabel(k) axs_idx+=1 if save is not None: plt.savefig(save,dpi=300, bbox_inches='tight') return fig else: lgds = [] n_axes = len(samples_dict)-1 if 'theta_native' in samples_dict.keys() else len(samples_dict) # dont plot theta_native fig, axs = plt.subplots(n_axes,1,sharex=True,figsize=[10,1.5*n_axes]) fig.subplots_adjust(hspace=0) for i, k in enumerate(samples_dict.keys()): if k == 'theta_native': continue n_lines = min(samples_dict[k].shape[1],max_print) if n_lines > 1: for j in range(n_lines): sns.lineplot(x=plot_idx,y=samples_dict[k][plot_idx,j], palette="tab10", linewidth=.75, ax = axs[i], label= theta_names[j] if (i==0 and theta_names is not None) else k+str(j+1)) axs[i].set_ylabel(k) lgds.append(axs[i].legend(bbox_to_anchor=(1.025, 1), loc='upper left', borderaxespad=0., ncol=int(np.ceil(n_lines/5)))) else: sns.lineplot(x=plot_idx,y=samples_dict[k][plot_idx,0], palette="tab10", linewidth=.75, ax = axs[i]) axs[i].set_ylabel(theta_names[0] if (i==0 and theta_names is not None) else k) if save is not None: plt.savefig(save,dpi=300,bbox_extra_artists=lgds, bbox_inches='tight') return fig def param_stats(samples_dict,theta_names=None,q1=0.05,q2=0.95,digits=4): """ Compute statistics on the samples. :param dict samples_dict: samples from model.get_samples() :param list/NoneType theta_names: list of string names for thetas, optional (None will use default names) :param float q1: lower quantile in [0, 1] :param float q2: upper quantile in [0, 1] :param int digits: how many digits to show in output :return: pandas DataFrame containing statistics """ # theta_names : list # samples_dict : dictionary of samples # stats : dataframe with mean and std of all parameters if 'theta' in samples_dict.keys(): n_theta = samples_dict['theta'].shape[1] if theta_names is not None and len(theta_names) != n_theta: print('theta_names should have',n_theta, 'entries') return mean = [] sd = [] keys = [] q1_list = [] q2_list = [] for i, k in enumerate(samples_dict.keys()): n_param = samples_dict[k].shape[1] for j in range(n_param): mean.append(np.round(np.mean(samples_dict[k][:, j]),digits)) sd.append(np.round(np.std(samples_dict[k][:, j]),digits)) q1_list.append(np.round(np.quantile(samples_dict[k][:, j],q1),digits)) q2_list.append(np.round(np.quantile(samples_dict[k][:, j],q2),digits)) if i==0 and theta_names is not None: keys.append(theta_names[j]) elif n_param>1: keys.append(k+'_'+str(j+1)) else: keys.append(k) stats = pd.DataFrame({'mean':mean,'sd':sd,'{} quantile'.format(q1):q1_list,\ '{} quantile'.format(q2):q2_list},index=keys) return stats def rho_box_plots(model,labels=None): """ Show rho box plots. (Rho are the transformed betaU parameters, corresponding to GP lengthscales) :param sepia.SepiaModel model: SepiaModel object :param list/NoneType labels: optional labels to use for box plot :return: matplotlib figure """ samples_dict = {p.name: p.mcmc_to_array() for p in model.params.mcmcList} p = model.num.p q = model.num.q pu = model.num.pu bu = samples_dict['betaU'] ru = np.exp(-bu / 4) fig,axs = plt.subplots(nrows=pu,tight_layout=True,figsize=[5,3*pu],squeeze=False) for i,ax in enumerate(axs.flatten()): r = ru[:, ((p+q)*i):((p+q)*i)+(p+q)] ax.boxplot(r) if labels is not None: ax.set_xticklabels(labels) ax.set_yticks(np.arange(0,1.2,.2)) ax.set_ylabel(r'$\rho$') ax.set_title('PC {}'.format(i+1)) return fig def plot_acf(model,nlags,nburn=0,alpha=.05,save=None): """ Plot autocorrelation function for all parameters theta. :param sepia.SepiaModel model: SepiaModel object :param int nlags: how many lags to compute/plot :param int nburn: how many samples to burn :param float alpha: confidence level for acf significance line (0,1) :param str save: file name to save figure :return: matplotlib figure """ if nlags>model.get_num_samples(): raise ValueError('plot_acf: must have more samples than requested lag size') if alpha <= 0 or alpha >= 1: raise ValueError('alpha must be in (0,1)') if model.num.sim_only: print('ACF needs thetas but this is a sim-only model.') return # get theta chains for p in model.params.mcmcList: if p.name == 'theta': chain = p.mcmc_to_array(flat=True).T acf = model.acf(chain,nlags,plot=True,alpha=alpha) if save is not None: acf['figure'].savefig(save,dpi=300,bbox_inches='tight') return acf def plot_K_basis(data, max_plots=4, obs=True): """ Plots K basis elements for both sim and obs indices (if applicable). Only applies to multivariate-output models. TODO: Lamy should be 1/Sigy_std :param SepiaData data: SepiaData object :param int max_plots: maximum number of principal components to plot :return: tuple containing matplotlib figure objects: (fig_sim, fig_obs) or just fig_sim if no observed data is present """ # Return early if scalar out or basis not set up if data.scalar_out: print('Scalar output, no K basis to plot.') return if data.sim_data.K is None: print('K basis not set up, call create_K_basis() first.') return # Plot sim basis pu = data.sim_data.K.shape[0] ncol = 5 nrow = int(np.ceil((min(pu, max_plots) + 1) / ncol)) # add 1 for mean line fig_sim, axs_sim = plt.subplots(nrow, ncol, figsize=(12, 2 * nrow)) fig_sim.tight_layout() for i, ax in enumerate(axs_sim.flatten()): if i == 0: # plot mean line ax.plot(data.sim_data.y_ind, np.mean(data.sim_data.K,axis=0)) ax.set_title('sim mean') ax.set_ylabel('sim K basis') ax.set_xlabel('sim y_ind') elif i < pu+1: ax.plot(data.sim_data.y_ind, data.sim_data.K.T[:,i-1]) ax.set_title('PC %d' % (i)) ax.set_xlabel('sim y_ind') else: ax.axis('off') # If obs are present and requested, plot obs basis if not data.sim_only and obs: if data.ragged_obs: pu = np.array([k.shape[0] for k in data.obs_data.K]) if np.all(pu == pu[0]): pu = pu[0] else: raise ValueError('first dimension in lists not equal') else: pu = data.obs_data.K.shape[0] ncol = 5 nrow = int(np.ceil((min(pu,max_plots) + 1) / ncol)) # add 1 for mean line fig_obs, axs_obs = plt.subplots(nrow,ncol,figsize=(12, 2 * nrow)) fig_obs.tight_layout() for i,ax in enumerate(axs_obs.flatten()): if i == 0: # plot mean line if data.ragged_obs: ax.plot(data.obs_data.y_ind[i],np.mean(data.obs_data.K[i],axis=0)) else: ax.plot(data.obs_data.y_ind, np.mean(data.obs_data.K,axis=0)) ax.set_title('obs mean') ax.set_ylabel('obs K basis') ax.set_xlabel('obs y_ind') elif i < pu+1: if data.ragged_obs: ax.plot(data.obs_data.y_ind[i],data.obs_data.K[i].T[:,i-1]) else: ax.plot(data.obs_data.y_ind, data.obs_data.K.T[:,i-1]) ax.set_title('PC %d' % (i)) ax.set_xlabel('obs y_ind') else: ax.axis('off') return(fig_sim,fig_obs) else: return fig_sim def plot_K_weights(data, max_u_plot=5): """ Plots K basis weights for both sim and obs data (if applicable). Only applies to multivariate-output models. TODO: Lamy should be 1/Sigy_std :param SepiaData data: SepiaData object :param int max_u_plot: max number of u's for which to plot vertical line over histogram of w's :return: tuple containing matplotlib figure objects: (fig_uw, fig_v) or just fig_uw if no discrepancy is specified """ # Return early if scalar out or basis not set up if data.scalar_out: print('Scalar output, no K weights to plot.') return if data.sim_data.K is None: print('K basis not set up, call create_K_basis() first.') return # Compute sim K weights pu = data.sim_data.K.shape[0] ncol = 5 nrow = int(np.ceil(pu / ncol)) w = np.dot(np.linalg.pinv(data.sim_data.K).T, data.sim_data.y_std.T).T fig_uw, axs_uw = plt.subplots(nrow,ncol,figsize=(10,2*nrow)) fig_uw.tight_layout() # Compute obs K weights if obs are present if not data.sim_only and data.obs_data.K is not None: # set pu if data.ragged_obs: pu = np.array([k.shape[0] for k in data.obs_data.K]) if np.all(pu == pu[0]): pu = pu[0] else: raise ValueError('first dimension in lists not equal') else: pu = data.obs_data.K.shape[0] # No D if data.obs_data.D is None: pv = 0 DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) # compute u if data.ragged_obs: u = [] for i in range(len(data.obs_data.y_ind)): DK = data.obs_data.K[i] Lamy = np.eye(data.obs_data.y_ind[i].shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) u.append(np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std[i].T])).T) u = np.array(u) else: DK = data.obs_data.K Lamy = np.eye(data.obs_data.y_ind.shape[0]) # Identity with size len(y_ind) how to do this with ragged? DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) u = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std.T])).T nrow = int(np.ceil(pu / ncol)) if u.shape[1] == w.shape[1]: for i,ax in enumerate(axs_uw.flatten()): if i < w.shape[1]: limit = abs(max(max(w[:,i].min(), w[:,i].max(), key=abs),\ max(u[:,i].min(), u[:,i].max(), key=abs), key=abs)) ax.set_xlim([-1.25*limit,1.25*limit]) bins_uw = np.linspace(-limit,limit,15,endpoint=True) ax.set_xlabel('PC %d wt' % (i+1)) ax.set_xlim([-limit,limit]) ax.hist(w[:,i],bins=bins_uw,label='w',density=True) for j in range(min(u.shape[0],max_u_plot)): ax.axvline(u[j,i],color='darkorange',label='u' if j==0 else '_') ax.legend(prop={'size': 6}) else: ax.axis('off') return fig_uw else: # do u and w independently raise ValueError('u.shape[1] != w.shape[1]') else: # D if data.ragged_obs: pv = np.array([d.shape[0] for d in data.obs_data.D]) if np.all(pv == pv[0]): pv = pv[0] else: raise ValueError('first dimension in lists not equal') DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) u = [] v = [] for i in range(len(data.obs_data.D)): DK = np.concatenate([data.obs_data.D[i], data.obs_data.K[i]]) Lamy = np.eye(data.obs_data.y_ind[i].shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) vu = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std[i].T])) v.append(vu[:pv].T) u.append(vu[pv:].T) u = np.array(u) v = np.array(v) else: pv = data.obs_data.D.shape[0] DK = np.concatenate([data.obs_data.D, data.obs_data.K]) # (pu+pv, ell_obs) DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) Lamy = np.eye(data.obs_data.y_ind.shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) vu = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std.T])) v = vu[:pv, :].T u = vu[pv:, :].T if u.shape[1] == w.shape[1]: for i,ax in enumerate(axs_uw.flatten()): if i < w.shape[1]: limit = abs(max(max(w[:,i].min(), w[:,i].max(), key=abs),\ max(u[:,i].min(), u[:,i].max(), key=abs), key=abs)) ax.set_xlim([-1.1*limit,1.1*limit]) bins_uw = np.linspace(-limit,limit,15,endpoint=True) ax.set_xlabel('PC %d wt' % (i+1)) ax.hist(w[:,i],bins=bins_uw,label='w',density=True) for j in range(min(u.shape[0],max_u_plot)): ax.axvline(u[j,i],color='darkorange',label='u' if j==0 else '_') ax.legend(prop={'size': 6}) else: ax.axis('off') else: raise ValueError('u.shape[1] != w.shape[1]') # V nrow = int(np.ceil(pv / ncol)) fig_v, axs_v = plt.subplots(nrow,ncol,figsize=(10,2*nrow)) fig_v.tight_layout() for i,ax in enumerate(axs_v.flatten()): if i < v.shape[1]: ax.hist(v[:,i],density=True) ax.set_xlabel('D %d wt : v' % (i+1)) else: ax.axis('off') return (fig_uw, fig_v) def plot_u_w_pairs(data, max_plots=5, save=False): """ Plots principal component basis weights for both sim and obs data (if applicable). Only applies to multivariate-output models. :param SepiaData data: SepiaData object :param int max_plots: max number of principal components to plot :return: matplotlib figure fig_g: seaborn pairs figure """ # Return early if scalar out or basis not set up if data.scalar_out: print('Scalar output, no K weights to plot.') return if data.sim_data.K is None: print('K basis not set up, call create_K_basis() first.') return pu = data.sim_data.K.shape[0] w = np.dot(np.linalg.pinv(data.sim_data.K).T, data.sim_data.y_std.T).T if not data.sim_only and data.obs_data.K is not None: if data.ragged_obs: pu = np.array([k.shape[0] for k in data.obs_data.K]) if np.all(pu == pu[0]): pu = pu[0] else: raise ValueError('first dimension in lists not equal') else: pu = data.obs_data.K.shape[0] # No D if data.obs_data.D is None: pv = 0 DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) if data.ragged_obs: u = [] for i in range(len(data.obs_data.K)): DK = data.obs_data.K[i] Lamy = np.eye(data.obs_data.y_ind[i].shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) u.append(np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std[i].T])).T) u = np.array(u) else: DK = data.obs_data.K Lamy = np.eye(data.obs_data.y_ind.shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) u = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std.T])).T else: # D if data.ragged_obs: pv = np.array([d.shape[0] for d in data.obs_data.D]) if np.all(pv == pv[0]): pv = pv[0] else: raise ValueError('first dimension in lists not equal') DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) u = [] v = [] for i in range(len(data.obs_data.D)): DK = np.concatenate([data.obs_data.D[i], data.obs_data.K[i]]) Lamy = np.eye(data.obs_data.y_ind[i].shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) vu = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std[i].T])) v.append(vu[:pv].T) u.append(vu[pv:].T) u = np.array(u) v = np.array(v) else: pv = data.obs_data.D.shape[0] DK = np.concatenate([data.obs_data.D, data.obs_data.K]) # (pu+pv, ell_obs) DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) Lamy = np.eye(data.obs_data.y_ind.shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) vu = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std.T])) v = vu[:pv, :].T u = vu[pv:, :].T # change u,w to match max_plots if w.shape[1]>max_plots: w = w[:,0:max_plots] print('Plotting up to',max_plots,'pairs. Change with parameter \'max_plots\'') col_names = [] for i in range(w.shape[1]): col_names.append('w{}'.format(i+1)) w_df = pd.DataFrame(data=w,columns=col_names) if u.shape[1]>max_plots: u = u[:,0:max_plots] lims = max(np.maximum(np.max(np.abs(w),axis=0),np.max(np.abs(u),axis=0))*1.1) with sns.plotting_context("notebook", font_scale=1): g = sns.PairGrid(w_df) g.map_diag(sns.histplot, kde=True) g.map_offdiag(sns.scatterplot) for i in range(g.axes.shape[1]): # rows for j in range(g.axes.shape[0]): # columns g.axes[i,j].set_xlim(-lims,lims); g.axes[i,j].set_ylim(-lims,lims) if i == j: for k in range(u.shape[0]): g.axes[i,i].axvline(u[k,i],color='darkorange',label='u{}'.format(i+1) if k==0 else "_") g.axes[i,i].legend(facecolor='white') else: g.axes[i,j].scatter(u[:,j],u[:,i],c='darkorange',label='(u{},u{})'.format(j+1,i+1)) g.axes[i,j].legend(facecolor='white') if save: plt.savefig(save,dpi=300) return g.fig def plot_K_residuals(data): """ Plots residuals after projection to K basis. Only applies to multivariate-output models. :param SepiaData data: SepiaData object :return: tuple containing matplotlib figure objects: (fig_u, fig_v) or just fig_noD if no discrepancy is specified """ # Return early if scalar out or basis not set up if data.scalar_out: print('Scalar output, no K residuals to plot.') return if data.sim_data.K is None: print('K basis not set up, call create_K_basis() first.') return if not data.sim_only and data.obs_data.K is not None: if isinstance(data.obs_data.K, list): print('plot_K_residuals cannot yet handle ragged observations') return pu = data.obs_data.K.shape[0] if data.obs_data.D is None: pv = 0 DK = data.obs_data.K DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) Lamy = np.eye(data.obs_data.y_ind.shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) u = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std.T])).T proj = np.dot(u, DK) resid = data.obs_data.y_std - proj fig_noD, axs_noD = plt.subplots(1,3,figsize=(4,6)) axs_noD[0].plot(data.obs_data.y_ind, data.obs_data.y_std.squeeze().T) axs_noD[0].set_title('obs y_std') axs_noD[0].set_xlabel('obs y_ind') axs_noD[1].plot(data.obs_data.y_ind, proj.squeeze().T) axs_noD[1].set_title('obs projection reconstruction') axs_noD[1].set_xlabel('obs y_ind') axs_noD[2].plot(data.obs_data.y_ind, resid.squeeze().T, '-') axs_noD[2].set_title('obs projection residual') axs_noD[2].set_xlabel('obs y_ind') return fig_noD else: pv = data.obs_data.D.shape[0] DK = np.concatenate([data.obs_data.D, data.obs_data.K]) # (pu+pv, ell_obs) DKridge = 1e-6 * np.diag(np.ones(pu + pv)) # (pu+pv, pu+pv) Lamy = np.eye(data.obs_data.y_ind.shape[0]) DKprod = np.linalg.multi_dot([DK, Lamy, DK.T]) # (pu+pv, pu+pv) vu = np.dot(np.linalg.inv(DKprod + DKridge), np.linalg.multi_dot([DK, Lamy, data.obs_data.y_std.T])) v = vu[:pv, :].T u = vu[pv:, :].T ncol = 5 nrow = int(np.ceil(pu / ncol)) fig_u,axs_u = plt.subplots(nrow,ncol,figsize=(8, 2 * nrow)) for i, ax in enumerate(axs_u.flatten()): if i < pu: ax.hist(u[:, i]) ax.set_xlabel('PC %d wt' % (i+1)) else: ax.axis('off') nrow = int(np.ceil(pv / ncol)) fig_v,axs_v = plt.subplots(nrow,ncol,figsize=(8, 2 * nrow)) for i,ax in enumerate(axs_v.flatten()): if i < pv: ax.hist(v[:, i]) ax.set_xlabel('D %d wt' % (i+1)) else: ax.axis('off') return (fig_u,fig_v) def plot_data(data,which_x=None,x_min=None,x_max=None,y_min=None,y_max=None,n_neighbors=3,max_sims=50,save=None): """ Plots observed data and simulation runs on the same axis with n_neighbors nearest simulations in x-space. Only applies to multivariate-output models with both simulation and observed data. :param SepiaData data: SepiaData object :param list/NoneType which_x: optionally sets which x_obs indices to plot :param float x_min: sets x lower limit on plot :param float x_max: sets x upper limit on plot :param float y_min: sets y lower limit on plot :param float y_max: sets y upper limit on plot :param int n_neighbors: sets number of nearest simulations to highlight :param int max_sims: sets maximum number of simulation runs to plot :return matplotlib figure fig: figure object of plot """ if data.sim_only: print('plot_data does not currently work for sim_only models.') return if data.scalar_out: print('plot_data does not currently work for univariate output models.') return n = data.obs_data.x.shape[0] m = data.sim_data.x.shape[0] # plot up to 4 input space points if n > 4: # if no which_x or given which_x is out of bounds if which_x is None or (which_x is not None and not np.all(which_x)<n and not np.all(which_x>-1)): # choose 4 equally space input points to plot which_x = np.linspace(0,n-1,4,dtype=int) x_plot = data.obs_data.x[which_x,:] else: which_x = np.arange(0,n,1,dtype=int) x_plot = data.obs_data.x n_plots = x_plot.shape[0] # get axis limits if data.ragged_obs: if x_min is None: x_min = min(min([np.amin(k) for k in data.obs_data.y_ind]),np.amin(data.sim_data.y_ind)) if x_max is None: x_max = max(max([
np.amax(k)
numpy.amax
import numpy as np from bisect import bisect_left def overlap(min1, max1, min2, max2): return max(0, min(max1, max2) - max(min1, min2)) def overlap_1d(x): return max(0, min(x[1], x[3]) - max(x[0], x[2])) def shifted_modified_hy_estimator(x, y, t_x, t_y, k, normalize=False): # contrast function # print('Common Python.') hy_cov = 0.0 if normalize: norm_x = np.sqrt(np.sum(np.square(np.diff(x[t_x])))) norm_y = np.sqrt(np.sum(np.square(np.diff(y[t_y])))) else: norm_x = 1.0 norm_y = 1.0 clipped_t_y_minus_k = np.clip(t_y - k, np.min(t_y),
np.max(t_y)
numpy.max
from __future__ import print_function import threading import multiprocessing from collections import namedtuple import os try: from queue import Queue, Full, Empty except ImportError: from Queue import Queue, Full, Empty try: import cPickle as pickle except ImportError: import pickle import numpy as np import h5py import tensorflow as tf from pybh import math_utils, hdf5_utils def write_samples_to_hdf5_file(filename, samples, attr_dict=None, **dataset_kwargs): stacked_samples = {} for key in samples[0]: stacked_samples[key] = np.empty((len(samples),) + samples[0][key].shape, dtype=samples[0][key].dtype) for key in samples[0]: for i, sample in enumerate(samples): stacked_samples[key][i, ...] = sample[key] hdf5_utils.write_numpy_dict_to_hdf5_file(filename, stacked_samples, attr_dict=attr_dict, **dataset_kwargs) def read_samples_from_hdf5_file(filename, field_dict=None, read_attributes=True): result = hdf5_utils.read_hdf5_file_to_numpy_dict(filename, field_dict, read_attributes) if read_attributes: data, attr_dict = result else: data = result key_list = list(data.keys()) sample_dict = {} for key in key_list: assert(data[key].shape[0] == data[key_list[0]].shape[0]) sample_dict[key] = [] for i in range(data[key].shape[0]): sample_dict[key].append(data[key][i, ...]) samples = [] for i in range(data[key_list[0]].shape[0]): samples.append({key: sample_dict[key][i] for key in sample_dict}) if read_attributes: return samples, attr_dict else: return samples Record = namedtuple("Record", ["obs_levels", "grid_3d", "rewards", "prob_rewards", "scores"]) RecordBatch = namedtuple("RecordBatch", ["obs_levels", "grid_3ds", "rewards", "prob_rewards", "scores"]) RecordV2 = namedtuple("RecordV2", ["obs_levels", "grid_3d", "rewards", "norm_rewards", "prob_rewards", "norm_prob_rewards", "scores"]) RecordV2Batch = namedtuple("RecordV2Batch", ["obs_levels", "grid_3ds", "rewards", "norm_rewards", "prob_rewards", "norm_prob_rewards", "scores"]) RecordV3 = namedtuple("RecordV3", ["obs_levels", "in_grid_3d", "out_grid_3d", "rewards", "scores"]) RecordV3Batch = namedtuple("RecordV3Batch", ["obs_levels", "in_grid_3ds", "out_grid_3ds", "rewards", "scores"]) RecordV4 = namedtuple("RecordV4", ["intrinsics", "map_resolution", "axis_mode", "forward_factor", "obs_levels", "in_grid_3d", "out_grid_3d", "rewards", "scores", "rgb_image", "depth_image", "normal_image"]) RecordV4Batch = namedtuple("RecordV4Batch", ["intrinsics", "map_resolution", "axis_mode", "forward_factor", "obs_levels", "in_grid_3ds", "out_grid_3ds", "rewards", "scores", "rgb_images", "depth_images", "normal_images"]) def write_hdf5_records(filename, records): f = h5py.File(filename, "w") (obs_levels, grid_3d, rewards, prob_rewards, scores) = records[0] assert(grid_3d.shape[-1] == 2 * len(obs_levels)) rewards_shape = (len(records),) + rewards.shape rewards_dset = f.create_dataset("rewards", rewards_shape, dtype='f') prob_rewards_shape = (len(records),) + prob_rewards.shape prob_rewards_dset = f.create_dataset("prob_rewards", prob_rewards_shape, dtype='f') scores_shape = (len(records),) + scores.shape scores_dset = f.create_dataset("scores", scores_shape, dtype='f') grid_3ds_shape = (len(records),) + grid_3d.shape grid_3ds_dset = f.create_dataset("grid_3ds", grid_3ds_shape, dtype='f') grid_3ds_dset.attrs["obs_levels"] = obs_levels grid_3ds_dset.attrs["obs_channels"] = grid_3ds_shape[-1] / len(obs_levels) for i, record in enumerate(records): (obs_levels, grid_3d, rewards, prob_rewards, scores) = record rewards_dset[i, ...] = rewards prob_rewards_dset[i, ...] = prob_rewards scores_dset[i, ...] = scores grid_3ds_dset[i, ...] = grid_3d f.close() def read_hdf5_records(filename): try: f = h5py.File(filename, "r") obs_levels = f["grid_3ds"].attrs["obs_levels"] obs_channels = f["grid_3ds"].attrs["obs_channels"] rewards = np.array(f["rewards"]) prob_rewards = np.array(f["prob_rewards"]) scores = np.array(f["scores"]) grid_3ds = np.array(f["grid_3ds"]) assert(rewards.shape[0] == grid_3ds.shape[0]) assert(prob_rewards.shape[0] == grid_3ds.shape[0]) assert(scores.shape[0] == grid_3ds.shape[0]) assert(grid_3ds.shape[-1] == len(obs_levels) * obs_channels) return RecordBatch(obs_levels, grid_3ds, rewards, prob_rewards, scores) except Exception as err: print("ERROR: Exception raised when reading as HDF5 v1 file \"{}\": {}".format(filename, err)) def write_hdf5_records_v2(filename, records): f = h5py.File(filename, "w") (obs_levels, grid_3d, rewards, norm_rewards, prob_rewards, norm_prob_rewards, scores) = records[0] assert(grid_3d.shape[-1] == 2 * len(obs_levels)) rewards_shape = (len(records),) + rewards.shape rewards_dset = f.create_dataset("rewards", rewards_shape, dtype='f') norm_rewards_shape = (len(records),) + norm_rewards.shape norm_rewards_dset = f.create_dataset("norm_rewards", norm_rewards_shape, dtype='f') prob_rewards_shape = (len(records),) + prob_rewards.shape prob_rewards_dset = f.create_dataset("prob_rewards", prob_rewards_shape, dtype='f') norm_prob_rewards_shape = (len(records),) + norm_prob_rewards.shape norm_prob_rewards_dset = f.create_dataset("norm_prob_rewards", norm_prob_rewards_shape, dtype='f') scores_shape = (len(records),) + scores.shape scores_dset = f.create_dataset("scores", scores_shape, dtype='f') grid_3ds_shape = (len(records),) + grid_3d.shape grid_3ds_dset = f.create_dataset("grid_3ds", grid_3ds_shape, dtype='f') grid_3ds_dset.attrs["obs_levels"] = obs_levels grid_3ds_dset.attrs["obs_channels"] = grid_3ds_shape[-1] / len(obs_levels) for i, record in enumerate(records): (obs_levels, grid_3d, rewards, norm_rewards, prob_rewards, norm_prob_rewards, scores) = record rewards_dset[i, ...] = rewards norm_rewards_dset[i, ...] = norm_rewards prob_rewards_dset[i, ...] = prob_rewards norm_prob_rewards_dset[i, ...] = norm_prob_rewards scores_dset[i, ...] = scores grid_3ds_dset[i, ...] = grid_3d f.close() def write_hdf5_records_v3(filename, records): f = h5py.File(filename, "w") (obs_levels, in_grid_3d, out_grid_3d, rewards, scores) = records[0] assert(in_grid_3d.shape[-1] == 2 * len(obs_levels)) assert(np.all(in_grid_3d.shape == out_grid_3d.shape)) rewards_shape = (len(records),) + rewards.shape rewards_dset = f.create_dataset("rewards", rewards_shape, dtype='f') scores_shape = (len(records),) + scores.shape scores_dset = f.create_dataset("scores", scores_shape, dtype='f') in_grid_3ds_shape = (len(records),) + in_grid_3d.shape in_grid_3ds_dset = f.create_dataset("in_grid_3ds", in_grid_3ds_shape, dtype='f') out_grid_3ds_shape = (len(records),) + out_grid_3d.shape out_grid_3ds_dset = f.create_dataset("out_grid_3ds", out_grid_3ds_shape, dtype='f') f.attrs["obs_levels"] = obs_levels f.attrs["obs_channels"] = out_grid_3ds_shape[-1] / len(obs_levels) for i, record in enumerate(records): (obs_levels, in_grid_3d, out_grid_3d, rewards, scores) = record in_grid_3ds_dset[i, ...] = in_grid_3d out_grid_3ds_dset[i, ...] = out_grid_3d rewards_dset[i, ...] = rewards scores_dset[i, ...] = scores f.close() def create_dataset_with_fixed_chunks(f, name, shape, dtype=None, **kwargs): return f.create_dataset(name, shape, dtype=dtype, **kwargs) # record_size = 4 * reduce(int.__mul__, shape[1:]) # chunk_records = 1024 * 1024 / record_size # chunk_records = min(shape[0], chunk_records) # if chunk_records == 0: # chunk_records = 1 # chunks = (chunk_records,) + shape[1:] # # print("chunks:", chunks) # maxshape = shape # return f.create_dataset(name, shape, dtype=dtype, chunks=chunks, maxshape=maxshape, **kwargs) def write_hdf5_records_v4(filename, records, dataset_kwargs): f = h5py.File(filename, "w") rec0 = records[0] assert(rec0.in_grid_3d.shape[-1] == 2 * len(rec0.obs_levels)) assert(np.all(rec0.in_grid_3d.shape == rec0.out_grid_3d.shape)) rewards_shape = (len(records),) + rec0.rewards.shape rewards_dset = create_dataset_with_fixed_chunks(f, "rewards", rewards_shape, dtype=np.float32, **dataset_kwargs) scores_shape = (len(records),) + rec0.scores.shape scores_dset = create_dataset_with_fixed_chunks(f, "scores", scores_shape, dtype=np.float32, **dataset_kwargs) in_grid_3ds_shape = (len(records),) + rec0.in_grid_3d.shape in_grid_3ds_dset = create_dataset_with_fixed_chunks(f, "in_grid_3ds", in_grid_3ds_shape, dtype=np.float32, **dataset_kwargs) out_grid_3ds_shape = (len(records),) + rec0.out_grid_3d.shape out_grid_3ds_dset = create_dataset_with_fixed_chunks(f, "out_grid_3ds", out_grid_3ds_shape, dtype=np.float32, **dataset_kwargs) rgb_image_shape = (len(records),) + rec0.rgb_image.shape rgb_image_dset = create_dataset_with_fixed_chunks(f, "rgb_images", rgb_image_shape, dtype=np.uint8, **dataset_kwargs) depth_image_shape = (len(records),) + rec0.depth_image.shape depth_image_dset = create_dataset_with_fixed_chunks(f, "depth_images", depth_image_shape, dtype=np.float32, **dataset_kwargs) normal_image_shape = (len(records),) + rec0.normal_image.shape normal_image_dset = create_dataset_with_fixed_chunks(f, "normal_images", normal_image_shape, dtype=np.float32, **dataset_kwargs) f.attrs["obs_levels"] = rec0.obs_levels f.attrs["obs_channels"] = out_grid_3ds_shape[-1] / len(rec0.obs_levels) f.attrs["intrinsics"] = rec0.intrinsics f.attrs["map_resolution"] = rec0.map_resolution f.attrs["axis_mode"] = rec0.axis_mode f.attrs["forward_factor"] = rec0.forward_factor for i, record in enumerate(records): assert(np.all(record.intrinsics == rec0.intrinsics)) assert(record.map_resolution == rec0.map_resolution) assert(record.axis_mode == rec0.axis_mode) assert(record.forward_factor == rec0.forward_factor) assert(np.all(record.obs_levels == rec0.obs_levels)) assert(np.all(record.in_grid_3d.shape == rec0.in_grid_3d.shape)) assert(np.all(record.out_grid_3d.shape == rec0.out_grid_3d.shape)) in_grid_3ds_dset[i, ...] = record.in_grid_3d out_grid_3ds_dset[i, ...] = record.out_grid_3d rewards_dset[i, ...] = record.rewards scores_dset[i, ...] = record.scores rgb_image_dset[i, ...] = record.rgb_image depth_image_dset[i, ...] = record.depth_image normal_image_dset[i, ...] = record.normal_image f.close() def read_hdf5_records_v2(filename): try: f = h5py.File(filename, "r") obs_levels = np.array(f["grid_3ds"].attrs["obs_levels"]) obs_channels = np.array(f["grid_3ds"].attrs["obs_channels"]) rewards = np.array(f["rewards"]) norm_rewards = np.array(f["norm_rewards"]) prob_rewards = np.array(f["prob_rewards"]) norm_prob_rewards = np.array(f["norm_prob_rewards"]) scores = np.array(f["scores"]) grid_3ds =
np.array(f["grid_3ds"])
numpy.array
# -*- coding: utf-8 -*- """ Created on Mon Oct 23 16:16:17 2017 @author: Vicky """ import numpy as np from sklearn.cluster import KMeans #Student Information print('UBitName = vvasanth') print('personNumber = 50248708') print('UBitName = rajvinod') print('personNumber = 50247214') print('UBitName = ss623') print('personNumber = 50247317') #importing the letor dataset letor_input_data = np.genfromtxt('datafiles/Querylevelnorm_X.csv', delimiter=',') letor_output_data = np.genfromtxt('datafiles/Querylevelnorm_t.csv', delimiter=',').reshape([-1, 1]) #partitioning the data set into training, validation and test sets letor_input_data_columns=letor_input_data.shape[1] train_rows=round(letor_input_data.shape[0]*0.8) test_validation_rows=round(letor_input_data.shape[0]*0.1) train_x=letor_input_data[:train_rows+1,:letor_input_data_columns] validation_x=letor_input_data[train_rows+1:train_rows+1+test_validation_rows,:letor_input_data_columns] test_x=letor_input_data[train_rows+1+test_validation_rows:,:letor_input_data_columns] train_y=letor_output_data[:train_rows+1,:letor_input_data_columns] validation_y=letor_output_data[train_rows+1:train_rows+1+test_validation_rows,:letor_input_data_columns] test_y=letor_output_data[train_rows+1+test_validation_rows:,:letor_input_data_columns] #applying k-means on the letor dataset kmeans=KMeans(n_clusters=4, random_state=0).fit(train_x) cluster_0=[] cluster_1=[] cluster_2=[] cluster_3=[] #design matrix function def compute_design_matrix(X, centers, spreads): # use broadcast basis_func_outputs = np.exp( np.sum( np.matmul(X - centers, spreads) * (X - centers), axis=2 ) / (-2) ).T # insert ones to the 1st col return np.insert(basis_func_outputs, 0, 1, axis=1) for i in range(0,train_x.shape[0]): eval('cluster_'+str(kmeans.labels_[i])).append(train_x[i]) #calculating the spreads and centers cov_cluster_0=np.linalg.pinv(np.cov(np.array(cluster_0).T)) cov_cluster_1=np.linalg.pinv(np.cov(np.array(cluster_1).T)) cov_cluster_2=np.linalg.pinv(np.cov(np.array(cluster_2).T)) cov_cluster_3=np.linalg.pinv(np.cov(np.array(cluster_3).T)) centers=kmeans.cluster_centers_ centers=centers[:, np.newaxis, :] spreads=
np.array([cov_cluster_0,cov_cluster_1,cov_cluster_2,cov_cluster_3])
numpy.array
# # Evaluate trained models # import warnings warnings.simplefilter(action='ignore') from keras import backend as K from src.model1 import uResNet34 from src.train import get_train_test_split, get_norm_dict from src.gen1 import SliceIterator, primary_transform from src.const import ( model_dir, model_input_size, wells, ilines, xlines, nsamples, dt, slices_dir, crossval_dict ) import numpy as np import cv2 from itertools import chain import matplotlib.pyplot as plt from typing import List from pathlib import Path model_class = uResNet34 # model weights weights = { 'Gamma_Ray': [ 'uResNet34.Gamma_Ray.sz480x512.smtd_0.14-0.78.hdf5', 'uResNet34.Gamma_Ray.sz480x512.smtd_1.11-0.37.hdf5', 'uResNet34.Gamma_Ray.sz480x512.smtd_2.07-0.65.hdf5', 'uResNet34.Gamma_Ray.sz480x512.smtd_3.42-0.67.hdf5' ], } def predict_on_fold(slice_list: List[Path], carotage: str, model_weights: Path, verbose: bool = False) -> dict: """predict model for a single fold return: dict[slice/well]{'seism', 'mask', 'y_true', 'y_pred', 'corr'}""" norm_dict = get_norm_dict() norm = [(norm_dict[c]['mean'], norm_dict[c]['std']) for c in ['seismic', carotage]] K.clear_session() model = model_class(input_size=model_input_size, weights=model_weights, n_carotage=1) gen = SliceIterator(slice_list, [carotage], model_input_size, transform_fun=primary_transform, norm=norm, aug=False, batch_size=10, shuffle=False, seed=None, verbose=False, output_ids=True, infinite_loop=False) x_m, y, ids = zip(*gen) x, m = zip(*x_m) x = np.concatenate(x) m = np.concatenate(m) y = np.concatenate(y) ids = list(chain(*ids)) pred = model.predict([x, m], batch_size=1) data = {} for seismic, mask, y_true, p, i_d in zip(x, m, y, pred, ids): designation_size = (max(ilines) - min(ilines) + 1, nsamples) if 'xline' in i_d \ else (max(xlines) - min(xlines) + 1, nsamples) y_pred = p[..., :1] seism = cv2.resize(seismic[..., 0], dsize=designation_size, interpolation=cv2.INTER_CUBIC) mask = cv2.resize(mask[..., 0], dsize=designation_size, interpolation=cv2.INTER_NEAREST) y_true = cv2.resize(y_true[..., 0], dsize=designation_size, interpolation=cv2.INTER_NEAREST) y_pred = cv2.resize(y_pred[..., 0], dsize=designation_size, interpolation=cv2.INTER_NEAREST) corr = np.corrcoef(y_true[mask.astype(bool)], y_pred[mask.astype(bool)])[0, 1] data[i_d] = {'seism': seism, 'mask': mask, 'y_true': y_true, 'y_pred': y_pred, 'corr': corr} if verbose: # provisional correlation based on single pixels. not used in final evaluation print(f'corr={np.mean([d["corr"] for d in data if ~
np.isnan(d["corr"])
numpy.isnan
# Copyright 2020 The SQLFlow Authors. All rights reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import unittest from unittest import TestCase import numpy as np import runtime.testing as testing from runtime.db import (buffered_db_writer, connect_with_data_source, db_generator, get_table_schema, limit_select, read_feature, read_features_from_row, selected_columns_and_types) from runtime.dbapi import connect from runtime.dbapi.mysql import MYSQL_FIELD_TYPE_DICT def execute(conn, statement): rs = conn.query(statement) field_names = [c[0] for c in rs.column_info()] rows = [r for r in rs] return field_names, rows class TestDB(TestCase): create_statement = "create table test_db (features text, label int)" hive_create_statement = 'create table test_db (features string, ' \ 'label int) ROW FORMAT DELIMITED FIELDS ' \ 'TERMINATED BY "\001"' select_statement = "select * from test_db" drop_statement = "drop table if exists test_db" @unittest.skipUnless(testing.get_driver() == "mysql", "skip non mysql tests") def test_mysql(self): conn = connect(testing.get_datasource()) self._do_test(conn) conn.close() @unittest.skipUnless(testing.get_driver() == "hive", "skip non hive tests") def test_hive(self): uri = testing.get_datasource() conn = connect(uri) self._do_test(conn) self._do_test_hive_specified_db(conn) def _do_test_hive_specified_db(self, conn): create_db = '''create database if not exists test_db''' create_tbl = '''create table test_db.tbl (features string, label int) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\001"''' drop_tbl = '''drop table if exists test_db.tbl''' select_tbl = '''select * from test_db.tbl''' table_schema = ["label", "features"] values = [(1, '5,6,1,2')] * 10 self.assertTrue(conn.execute(create_db)) self.assertTrue(conn.execute(drop_tbl)) self.assertTrue(conn.execute(create_tbl)) with buffered_db_writer(conn, "test_db.tbl", table_schema, buff_size=10) as w: for row in values: w.write(row) field_names, data = execute(conn, select_tbl) expect_result = [('5,6,1,2', 1)] * 10 self.assertEqual(field_names, ['features', 'label']) self.assertEqual(expect_result, data) def _do_test(self, conn): table_name = "test_db" table_schema = ["features", "label"] values = [('5,6,1,2', 1)] * 10 conn.execute(self.drop_statement) if conn.driver == "hive": conn.execute(self.hive_create_statement) else: conn.execute(self.create_statement) with buffered_db_writer(conn, table_name, table_schema, buff_size=10) as w: for row in values: w.write(row) field_names, data = execute(conn, self.select_statement) self.assertEqual(table_schema, field_names) self.assertEqual(values, data) class TestGenerator(TestCase): create_statement = "create table test_table_float_fea " \ "(features float, label int)" drop_statement = "drop table if exists test_table_float_fea" insert_statement = "insert into test_table_float_fea (features,label)" \ " values(1.0, 0), (2.0, 1)" @unittest.skipUnless(testing.get_driver() == "mysql", "skip non mysql tests") def test_generator(self): conn = connect(testing.get_datasource()) # prepare test data conn.execute(self.drop_statement) conn.execute(self.create_statement) conn.execute(self.insert_statement) column_name_to_type = { "features": { "feature_name": "features", "delimiter": "", "dtype": "float32", "is_sparse": False, "shape": [] } } label_meta = {"feature_name": "label", "shape": [], "delimiter": ""} gen = db_generator(conn, "SELECT * FROM test_table_float_fea", label_meta) idx = 0 for row, label in gen(): features = read_features_from_row(row, ["features"], ["features"], column_name_to_type) d = (features, label) if idx == 0: self.assertEqual(d, (((1.0, ), ), 0)) elif idx == 1: self.assertEqual(d, (((2.0, ), ), 1)) idx += 1 self.assertEqual(idx, 2) @unittest.skipUnless(testing.get_driver() == "mysql", "skip non mysql tests") def test_generate_fetch_size(self): label_meta = {"feature_name": "label", "shape": [], "delimiter": ""} gen = db_generator(testing.get_singleton_db_connection(), 'SELECT * FROM iris.train limit 10', label_meta) self.assertEqual(len([g for g in gen()]), 10) class TestConnectWithDataSource(TestCase): def test_kv_feature_column(self): feature_spec = { "name": "kv_feature_name", "is_sparse": True, "format": "kv", "dtype": "float", "shape": [10], } raw_val = "0:1 3:4 4:6" indices, values, shape = read_feature(raw_val, feature_spec, feature_spec["name"]) self.assertTrue(np.array_equal(indices, np.array([0, 3, 4], dtype=int))) self.assertTrue(np.array_equal(values, np.array([1, 4, 6], dtype=int))) self.assertTrue(np.array_equal(shape,
np.array([10], dtype='float')
numpy.array
#!/usr/bin/python # Imports import sys, os, re, time import argparse import pdb import pickle from itertools import * # Science import numpy as np import scipy.stats as stats import pandas as pd # Plotting import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib import colors from matplotlib.lines import Line2D ################################## FUNCTIONS ############################ def tracking_analysis_for_attribute_cutoff_bootstrapped(cycle_stats_df, category_stats, attribute, cutoff_criteria, cutoff, n_bootstrapping, save_dir): ''' Function that computes tracking analysis per group, based on bootstrapping It computes the Kolmogorov-Smirnov tests between group distributions It computes the likelihood in low, mid and high extremes of the metric Input: cycle_stats_df: pandas dataframe, with information about user's cycle statistics category_stats: pandas dataframe, with information about user's tracking statistics for a given category attribute: what specific tracking attribute to study: i.e., concatenation of the metric and the symptom to analyze cutoff_criteria: what statistic to use for separating users into groups ('cycle_lengths' for paper) cutoff: what statistic cutoff value to use for separating users into groups (9 for paper) n_bootstrapping: Number of bootstrapped samples to use for the analysis save_dir: path where to save plot Output: true_statistics: Dictionary with statistics for the observed cohort: {'KS', 'p_val', 'prob_values_high', 'prob_values_low', 'ratios'} bootstrap_statistics: Dictionary with statistics for the bootstrapped cohort: {'KS': mean of the bootstrapped KS values, 'KS_0025': 2.5 percentile of the bootstrapped KS values, 'KS_0975': 97.5 percentile of the bootstrapped KS values, 'p_val': mean of the bootstrapped p_val values, 'p_val_0025': 2.5 percentile of the bootstrapped p_val values, 'p_val_0975': 97.5 percentile of the bootstrapped p_val values, 'prob_values_high': mean of the boostrapped probability values for the high volatility group, 'prob_values_high_0025': 2.5 percentile of the boostrapped probability values for the high volatility group, 'prob_values_high_0975': 97.5 percentile of the boostrapped probability values for the high volatility group, 'prob_values_low': mean of the boostrapped probability values for the low volatility group, 'prob_values_low_0025': 2.5 percentile of the boostrapped probability values for the low volatility group, 'prob_values_low_0975': 97.5 percentile of the boostrapped probability values for the low volatility group, 'ratios': mean of the bootstrapped ratios for the high to low volability groups 'ratios_0025': 2.5 percentile of the bootstrapped ratios for the high to low volability groups 'ratios_0975': 97.5 percentile of the bootstrapped ratios for the high to low volability groups} ''' ### Define # Extreme likelihood ranges extreme_bins=np.array([0,0.05,0.95,1]) # Histogram type, color and labels hist_type='step' colors = ['orange', 'c'] labels=['Highly variable', 'NOT highly variable'] # True separation of users into groups all_users=np.unique(cycle_stats_df['user_id']) true_users_greater_than_cutoff = np.unique(cycle_stats_df[cycle_stats_df[cutoff_criteria] > cutoff]['user_id']) true_users_less_than_cutoff = np.unique(cycle_stats_df[cycle_stats_df[cutoff_criteria] <= cutoff]['user_id']) n_users_greater_than_cutoff=true_users_greater_than_cutoff.size n_users_less_than_cutoff=true_users_less_than_cutoff.size true_category_stats_users_greater_than_cutoff = category_stats[category_stats['user_id'].isin(true_users_greater_than_cutoff)] true_category_stats_users_less_than_cutoff = category_stats[category_stats['user_id'].isin(true_users_less_than_cutoff)] # Analysis for proportion of cycles metric if attribute.startswith('proportion_cycles_'): ########### TRUE OBSERVERD STATISTICS ########## # KS true_KS, true_p_val = stats.ks_2samp(true_category_stats_users_greater_than_cutoff[attribute].dropna(), true_category_stats_users_less_than_cutoff[attribute].dropna()) # Counts on extremes true_extreme_counts_greater_than_cutoff, bins_greater_than_cutoff = np.histogram(true_category_stats_users_greater_than_cutoff[attribute].dropna(), bins=extreme_bins, density=True) true_extreme_counts_less_than_cutoff, bins_less_than_cutoff = np.histogram(true_category_stats_users_less_than_cutoff[attribute].dropna(), bins=extreme_bins, density=True) # Probability values true_prob_values_high=np.array([(true_extreme_counts_greater_than_cutoff[0]*0.05), (true_extreme_counts_greater_than_cutoff[1]*0.9), (true_extreme_counts_greater_than_cutoff[2]*0.05)]) true_prob_values_low=np.array([(true_extreme_counts_less_than_cutoff[0]*0.05), (true_extreme_counts_less_than_cutoff[1]*0.9), (true_extreme_counts_less_than_cutoff[2]*0.05)]) # Ratios true_ratios=np.array([true_prob_values_high[0]/true_prob_values_low[0], true_prob_values_high[1]/true_prob_values_low[1], true_prob_values_high[2]/true_prob_values_low[2]]) # CDF # Auto bins based on integer range of values counts_greater_than_cutoff, bins_greater_than_cutoff = np.histogram(true_category_stats_users_greater_than_cutoff[attribute].dropna(), bins='auto', density=True) counts_less_than_cutoff, bins_less_than_cutoff = np.histogram(true_category_stats_users_less_than_cutoff[attribute].dropna(), bins='auto', density=True) all_bins=np.setdiff1d(bins_less_than_cutoff,bins_greater_than_cutoff) true_counts_greater_than_cutoff, bins_greater_than_cutoff = np.histogram(true_category_stats_users_greater_than_cutoff[attribute].dropna(), bins=all_bins, density=True) true_counts_less_than_cutoff, bins_less_than_cutoff = np.histogram(true_category_stats_users_less_than_cutoff[attribute].dropna(), bins=all_bins, density=True) ########### BOOTSTRAP BASED STATISTICS ########## # Computed suff statistics bootstrapped_KS=np.zeros(n_bootstrapping) bootstrapped_p_val=np.zeros(n_bootstrapping) bootstrapped_prob_values_high=np.zeros((n_bootstrapping, extreme_bins.size-1)) bootstrapped_prob_values_low=np.zeros((n_bootstrapping, extreme_bins.size-1)) bootstrapped_ratios=np.zeros((n_bootstrapping, extreme_bins.size-1)) bootstrapped_counts_greater_than_cutoff=np.zeros((n_bootstrapping, all_bins.size-1)) bootstrapped_counts_less_than_cutoff=np.zeros((n_bootstrapping, all_bins.size-1)) for n_bootstrap in np.arange(n_bootstrapping): #print('Sample={}/{}'.format(n_bootstrap,n_bootstrapping)) # Bootstrapped sample indicators users_greater_than_cutoff=np.random.choice(true_users_greater_than_cutoff,n_bootstrapping) users_less_than_cutoff=np.random.choice(true_users_less_than_cutoff,n_bootstrapping) # Bootstrapped data category_stats_users_greater_than_cutoff = category_stats[category_stats['user_id'].isin(users_greater_than_cutoff)] category_stats_users_less_than_cutoff = category_stats[category_stats['user_id'].isin(users_less_than_cutoff)] # KS bootstrapped_KS[n_bootstrap], bootstrapped_p_val[n_bootstrap] = stats.ks_2samp(category_stats_users_greater_than_cutoff[attribute].dropna(), category_stats_users_less_than_cutoff[attribute].dropna()) # Counts on extremes counts_greater_than_cutoff, bins_greater_than_cutoff = np.histogram(category_stats_users_greater_than_cutoff[attribute].dropna(), bins=extreme_bins, density=True) counts_less_than_cutoff, bins_less_than_cutoff = np.histogram(category_stats_users_less_than_cutoff[attribute].dropna(), bins=extreme_bins, density=True) # Probability values bootstrapped_prob_values_high[n_bootstrap]=np.array([(counts_greater_than_cutoff[0]*0.05), (counts_greater_than_cutoff[1]*0.9), (counts_greater_than_cutoff[2]*0.05)]) bootstrapped_prob_values_low[n_bootstrap]=np.array([(counts_less_than_cutoff[0]*0.05), (counts_less_than_cutoff[1]*0.9), (counts_less_than_cutoff[2]*0.05)]) # Ratios bootstrapped_ratios[n_bootstrap]=bootstrapped_prob_values_high[n_bootstrap]/bootstrapped_prob_values_low[n_bootstrap] # CDF, based on same bins as for true CDF bootstrapped_counts_greater_than_cutoff[n_bootstrap], bins_greater_than_cutoff = np.histogram(category_stats_users_greater_than_cutoff[attribute].dropna(), bins=all_bins, density=True) bootstrapped_counts_less_than_cutoff[n_bootstrap], bins_less_than_cutoff = np.histogram(category_stats_users_less_than_cutoff[attribute].dropna(), bins=all_bins, density=True) else: raise ValueError('Analysis for attribute {} not implemented'.format(attribute)) # Print bootstrap results print('*************************************************************************') print('******** {0} KS={1:.3f} (p={2}) ***********'.format( attribute, true_KS, true_p_val )) print('******** {0} Bootstrapped KS={1:.3f}+/-{2:.3f} (p={3} (+/-{4}))***********'.format( attribute, bootstrapped_KS.mean(), bootstrapped_KS.std(), bootstrapped_p_val.mean(), bootstrapped_p_val.std() )) print('******** {0} Bootstrapped KS={1:.3f}({2:.3f},{3:.3f}) p={4} ({5},{6}))***********'.format( attribute, bootstrapped_KS.mean(), np.percentile(bootstrapped_KS, 2.5, axis=0), np.percentile(bootstrapped_KS, 97.5, axis=0), bootstrapped_p_val.mean(), np.percentile(bootstrapped_p_val, 2.5, axis=0), np.percentile(bootstrapped_p_val, 97.5, axis=0) )) print('Bins \t\t\t & p < 0.05 \t\t & 0.05 \leq p < 0.95 \t & 0.95 \leq 1') print('True ratio \t\t & {0:.3f} \t\t & {1:.3f} \t\t & {2:.3f}'.format(true_ratios[0],true_ratios[1],true_ratios[2])) print('Bootstrapped ratio \t & {0:.3f}+/-{1:.3f} \t & {2:.3f}+/-{3:.3f} \t & {4:.3f}+/-{5:.3f}'.format( bootstrapped_ratios.mean(axis=0)[0],bootstrapped_ratios.std(axis=0)[0], bootstrapped_ratios.mean(axis=0)[1],bootstrapped_ratios.std(axis=0)[1], bootstrapped_ratios.mean(axis=0)[2],bootstrapped_ratios.std(axis=0)[2] )) print('Bootstrapped ratio \t & {0:.3f} ({1:.3f}, {2:.3f}) \t & {3:.3f} ({4:.3f}, {5:.3f}) \t & {6:.3f} ({7:.3f}, {8:.3f})'.format( bootstrapped_ratios.mean(axis=0)[0], np.percentile(bootstrapped_ratios[:,0], 2.5, axis=0), np.percentile(bootstrapped_ratios[:,0], 97.5, axis=0), bootstrapped_ratios.mean(axis=0)[1], np.percentile(bootstrapped_ratios[:,1], 2.5, axis=0),
np.percentile(bootstrapped_ratios[:,1], 97.5, axis=0)
numpy.percentile
import numpy as np def eta(xx,c=1): x = np.array(xx)/c if np.isscalar(x): y = np.zeros(1) x =
np.array([x])
numpy.array
# coding=utf-8 # Copyright 2019 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Rouge metric.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensor2tensor.utils import rouge import tensorflow as tf class TestRouge2Metric(tf.test.TestCase): """Tests the rouge-2 metric.""" def testRouge2Identical(self): hypotheses = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) references = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) self.assertAllClose(rouge.rouge_n(hypotheses, references), 1.0, atol=1e-03) def testRouge2Disjoint(self): hypotheses = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) references = np.array([[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [9, 10, 11, 12, 13, 14, 15, 16, 17, 0]]) self.assertEqual(rouge.rouge_n(hypotheses, references), 0.0) def testRouge2PartialOverlap(self): hypotheses = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) references = np.array([[1, 9, 2, 3, 4, 5, 1, 10, 6, 7], [1, 9, 2, 3, 4, 5, 1, 10, 6, 7]]) self.assertAllClose(rouge.rouge_n(hypotheses, references), 0.53, atol=1e-03) class TestRougeLMetric(tf.test.TestCase): """Tests the rouge-l metric.""" def testRougeLIdentical(self): hypotheses = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) references = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) self.assertAllClose( rouge.rouge_l_sentence_level(hypotheses, references), 1.0, atol=1e-03) def testRougeLDisjoint(self): hypotheses = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) references = np.array([[8, 9, 10, 11, 12, 13, 14, 15, 16, 17], [9, 10, 11, 12, 13, 14, 15, 16, 17, 0]]) self.assertEqual(rouge.rouge_l_sentence_level(hypotheses, references), 0.0) def testRougeLPartialOverlap(self): hypotheses = np.array([[1, 2, 3, 4, 5, 1, 6, 7, 0], [1, 2, 3, 4, 5, 1, 6, 8, 7]]) references = np.array([[1, 9, 2, 3, 4, 5, 1, 10, 6, 7], [1, 9, 2, 3, 4, 5, 1, 10, 6, 7]]) self.assertAllClose( rouge.rouge_l_sentence_level(hypotheses, references), 0.837, atol=1e-03) class TestRougeMetricsE2E(tf.test.TestCase): """Tests the rouge metrics end-to-end.""" def testRouge2MetricE2E(self): vocab_size = 4 batch_size = 12 seq_length = 12 predictions = tf.one_hot(
np.random.randint(vocab_size, size=(batch_size, seq_length, 1, 1))
numpy.random.randint
''' file: hum36m_dataloader.py author: zhangxiong(<EMAIL>) date: 2018_05_09 purpose: load hum3.6m data ''' import sys from torch.utils.data import Dataset, DataLoader import os import glob import numpy as np import random import cv2 import json import h5py import torch sys.path.append('./src') from util import calc_aabb, cut_image, flip_image, draw_lsp_14kp__bone, rectangle_intersect, get_rectangle_intersect_ratio, convert_image_by_pixformat_normalize, reflect_pose, reflect_lsp_kp from config import args from timer import Clock class hum36m_dataloader(Dataset): def __init__(self, data_set_path, use_crop, scale_range, use_flip, min_pts_required, pix_format = 'NHWC', normalize = False, flip_prob = 0.3): self.data_folder = data_set_path self.use_crop = use_crop self.scale_range = scale_range self.use_flip = use_flip self.flip_prob = flip_prob self.min_pts_required = min_pts_required self.pix_format = pix_format self.normalize = normalize self._load_data_set() def _load_data_set(self): clk = Clock() self.images = [] self.kp2ds = [] self.boxs = [] self.kp3ds = [] self.shapes = [] self.poses = [] print('start loading hum3.6m data.') anno_file_path = os.path.join(self.data_folder, 'annot.h5') with h5py.File(anno_file_path) as fp: total_kp2d = np.array(fp['gt2d']) total_kp3d = np.array(fp['gt3d']) total_shap = np.array(fp['shape']) total_pose = np.array(fp['pose']) total_image_names = np.array(fp['imagename']) assert len(total_kp2d) == len(total_kp3d) and len(total_kp2d) == len(total_image_names) and \ len(total_kp2d) == len(total_shap) and len(total_kp2d) == len(total_pose) l = len(total_kp2d) def _collect_valid_pts(pts): r = [] for pt in pts: if pt[2] != 0: r.append(pt) return r for index in range(l): kp2d = total_kp2d[index].reshape((-1, 3)) if np.sum(kp2d[:, 2]) < self.min_pts_required: continue lt, rb, v = calc_aabb(_collect_valid_pts(kp2d)) self.kp2ds.append(np.array(kp2d.copy(), dtype = np.float)) self.boxs.append((lt, rb)) self.kp3ds.append(total_kp3d[index].copy().reshape(-1, 3)) self.shapes.append(total_shap[index].copy()) self.poses.append(total_pose[index].copy()) self.images.append(os.path.join(self.data_folder, 'image') + total_image_names[index].decode()) print('finished load hum3.6m data, total {} samples'.format(len(self.kp3ds))) clk.stop() def __len__(self): return len(self.images) def __getitem__(self, index): image_path = self.images[index] kps = self.kp2ds[index].copy() box = self.boxs[index] kp_3d = self.kp3ds[index].copy() scale =
np.random.rand(4)
numpy.random.rand
""" Author = """ from __future__ import division, print_function from os.path import isfile, join import numpy as np import fitsio import datapath import specutils from glob import glob _spplate_hdunames = ('flux','ivar','andmask','ormask','disp','plugmap','sky', 'loglam', ) def spplate_filename(platein, mjdin, path): """Name for a spPlate file """ plate = np.ravel(platein) mjd = np.ravel(mjdin) if plate.size != 1 or mjd.size !=1: raise ValueError("I can only take one plate and one mjd.") return join(path,"spPlate-{0:04d}-{1:05d}.fits".format(int(plate), int(mjd))) # http://data.sdss3.org/datamodel/files/SPECTRO_REDUX/RUN2D/PLATE4/spPlate.html def read_spec(platein, mjdin, fiberin, path, output): """Read spectra from a *single* spPlate file a simpler, hopefully better version of readspec in idlspec2d/pydl requiring mjd and path so that one knows what they are doing output should be a tuple, e.g. ('flux', 'ivar',) """ # check desired output if type(output) != tuple: raise TypeError("output should be a tuple.") for thishdu in output: if type(thishdu) != str: raise TypeError("hdunames in the output should be strings.") if thishdu not in _spplate_hdunames: raise ValueError("{0} is not in the hdu list {1}".format(thishdu, _spplate_hdunames)) # check input plate = np.ravel(platein) mjd = np.ravel(mjdin) if plate.size != 1 or mjd.size !=1: raise ValueError("I can only take one plate and one mjd.") # get filename filename = spplate_filename(plate, mjd, path) if not isfile(filename): raise ValueError("I can't find this file {0}.".format(filename)) #print(filename) spplate_fits = fitsio.FITS(filename) hdr = spplate_fits[0].read_header() fiber = np.ravel(fiberin) - 1 if np.amin(fiber)<0 or np.amax(fiber)>=hdr['naxis2']: raise ValueError("Fiber ID cannot be smaller than 1 or larger than {0}.".format(hdr['naxis2'])) # output, a dictionary spplate_data = dict() for thishdu in output: if thishdu == "loglam": c0 = hdr['coeff0'] c1 = hdr['coeff1'] npix = hdr['naxis1'] # loglam vector is the same for a given plate spplate_data[thishdu] = c0+c1*np.arange(npix, dtype='d') else: index = _spplate_hdunames.index(thishdu) #spplate_data[thishdu] = spplate_fits[index].read(rows=fiber.tolist) # read in the whole image for now instead of a for loop to read in row by row spplate_data[thishdu] = (spplate_fits[index].read())[fiber,:] if fiber.size>1 else np.ravel((spplate_fits[index].read())[fiber,:]) spplate_fits.close() return spplate_data def load_interp_spec(objs, newloglam, path, rest=False): """Read spectra of a list of objects and interpolate them onto the same wavelength grid objs : a structured array with 'plate', 'mjd', 'fiber' newloglam : desired wavelength grid in logarithmic scale path : """ # check objs, newloglam objs = np.ravel(objs) # output: flux = np.zeros((objs.size, newloglam.size)) ivar =
np.zeros((objs.size, newloglam.size))
numpy.zeros
#----------------------------------------------------------------------------- # Name: SParameter.py # Purpose: Tools to analyze SParameter Data # Author: <NAME> # Created: 4/13/2016 # License: MIT License #----------------------------------------------------------------------------- """ Sparameter is a module with tools for analyzing Scattering parameter data. It contains functions for comparing, applying corrections, uncertainty analysis and plotting scattering parameters. see also <a href="./NISTUncertainty.m.html">NISTUncertainty</a> Examples -------- #!python >>test_compare_s2p_plots() <h3><a href="../../../Examples/html/Applying_Calibration_Example.html">Applying a Correction Example</a></h3> <h3><a href="../../../Examples/html/Calrep_Example.html">Using the Python Verison of Calrep</a></h3> <h3><a href="../../../Examples/html/Creating_Comparing_Reference_Curves_MUFModels.html">Analysis of files made by the NIST Microwave Uncertainty Framework</a></h3> Requirements ------------ + [sys](https://docs.python.org/2/library/sys.html) + [os](https://docs.python.org/2/library/os.html) + [re](https://docs.python.org/2/library/re.html) + [datetime](https://docs.python.org/2/library/datetime.html) + [math](https://docs.python.org/2/library/math.html) + [cmath](https://docs.python.org/2/library/cmath.html) + [numpy](https://docs.scipy.org/doc/) + [scipy](https://docs.scipy.org/doc/) + [pandas](http://pandas.pydata.org/) + [matplotlib](http://matplotlib.org/) + [pyMez](https://github.com/aricsanders/pyMez) Help --------------- <a href="./index.html">`pyMez.Code.Analysis`</a> <div> <a href="../../../pyMez_Documentation.html">Documentation Home</a> | <a href="../../index.html">API Documentation Home</a> | <a href="../../../Examples/html/Examples_Home.html">Examples Home</a> | <a href="../../../Reference_Index.html">Index</a> </div> """ #----------------------------------------------------------------------------- # Standard Imports import os import re import datetime import sys import cmath import math #----------------------------------------------------------------------------- # Third Party Imports sys.path.append(os.path.join(os.path.dirname( __file__ ), '..','..')) try: import numpy as np except: np.ndarray='np.ndarray' print("Numpy was not imported") pass try: import pandas except: print("Pandas was not imported") pass try: from scipy.stats.mstats import gmean except: print("The function gmean from the package scipy.stats.mstats did not import correctly ") try: from statsmodels.robust.scale import mad except: print("The function mad from the package statsmodels.robust.scale did not import correctly ") try: #Todo: this could lead to a cyclic dependency, it really should import only the models it analyzes #Todo: If analysis is to be in the top import, none of the models should rely on it #import pyMez.Code.DataHandlers.NISTModels from Code.DataHandlers.NISTModels import * from Code.DataHandlers.TouchstoneModels import * from Code.DataHandlers.GeneralModels import * from Code.Analysis.NISTUncertainty import * from Code.DataHandlers.Translations import * #from pyMez import * except: print("The subpackage pyMez.Code.DataHandlers did not import properly," "please check that it is on the python path and that unit tests passed") raise try: import matplotlib.pyplot as plt except: print("The module matplotlib was not found," "please put it on the python path") #----------------------------------------------------------------------------- # Module Constants # Does this belong in tests or a Data folder #Todo: This should not be here.. ONE_PORT_DUT=os.path.join(os.path.dirname(os.path.realpath(__file__)),'Tests') #----------------------------------------------------------------------------- # Module Functions def cascade(s1,s2): """Cascade returns the cascaded sparameters of s1 and s2. s1 and s2 should be in complex list form [[f,S11,S12,S21,S22]...] and the returned sparameters will be in the same format. Assumes that s1,s2 have the same frequencies. If 1-S2_22*S1_11 is zero we add a small non zero real part or loss.""" out_sparameters=[] for row_index,row in enumerate(s1): [f1,S1_11,S1_12,S1_21,S1_22]=row [f2,S2_11,S2_12,S2_21,S2_22]=s2[row_index] if f1!=f2: raise TypeError("Frequencies do not match! F lists must be the same") denominator=(1-S1_22*S2_11) if denominator ==complex(0,0): denominator=complex(10**-20,0) S11=S1_11+S2_11*(S1_12*S1_21)/denominator S12=S1_12*S2_12/(denominator) S21=S1_21*S2_21/denominator S22=S2_22+S1_22*(S2_12*S2_21)/denominator new_row=[f1,S11,S12,S21,S22] out_sparameters.append(new_row) return out_sparameters def add_white_noise_s2p(s2p_model,noise_level=.0005): """Adds white noise to a s2p in RI format and returns a new s2p with the noise added to each real and imaginary component""" s2p_model.change_data_format("RI") s2p_data=s2p_model.data[:] noisy_data=[] for row in s2p_data: new_row=[row[0]] sparameters=np.array(row[1:])+np.random.normal(loc=0,scale=noise_level,size=len(row[1:])) new_row=new_row+sparameters.tolist() noisy_data.append(new_row) options=s2p_model.options.copy() options["file_path"]=None options["data"]=noisy_data options["sparameter_complex"]=[] noisy_s2p=S2PV1(**options) return noisy_s2p def frequency_model_collapse_multiple_measurements(model, **options): """Returns a model with a single set of frequencies. Default is to average values together but geometric mean, std, variance, rss, mad and median are options. Geometric means of odd number of negative values fails""" if type(model) in [pandas.DataFrame]: model_1 = DataFrame_to_AsciiDataTable(model) defaults = {"method": "mean"} # load other options from model for option, value in model.options.items(): if not re.search('begin_line|end_line', option): defaults[option] = value for element in model.elements: if model.__dict__[element]: if re.search("meta", element, re.IGNORECASE): defaults["metadata"] = model.metadata.copy() else: defaults[element] = model.__dict__[element][:] # We need to preserve the frequency column some how collapse_options = {} for key, value in defaults.items(): collapse_options[key] = value for key, value in options.items(): collapse_options[key] = value unique_frequency_list = sorted(list(set(model["Frequency"]))) frequency_selector = model.column_names.index("Frequency") out_data = [] for index, frequency in enumerate(unique_frequency_list): data_row = [x for x in model.data[:] if x[frequency_selector] == frequency] if re.search('mean|av', collapse_options["method"], re.IGNORECASE): new_row = np.mean(np.array(data_row), axis=0).tolist() elif re.search('median', collapse_options["method"], re.IGNORECASE): new_row = np.median(np.array(data_row), axis=0).tolist() elif re.search('geometric', collapse_options["method"], re.IGNORECASE): new_row = gmean(np.array(data_row), axis=0).tolist() elif re.search('st', collapse_options["method"], re.IGNORECASE): new_row = np.std(np.array(data_row), axis=0).tolist() elif re.search('var', collapse_options["method"], re.IGNORECASE): new_row = np.var(np.array(data_row), axis=0, dtype=np.float64).tolist() elif re.search('rms', collapse_options["method"], re.IGNORECASE): new_row = np.sqrt(np.mean(np.square(np.array(data_row)), axis=0, dtype=np.float64)).tolist() elif re.search('rss', collapse_options["method"], re.IGNORECASE): new_row = np.sqrt(np.sum(np.square(np.array(data_row)), axis=0, dtype=np.float64)).tolist() elif re.search('mad', collapse_options["method"], re.IGNORECASE): new_row = mad(np.array(data_row), axis=0).tolist() new_row[frequency_selector]=frequency out_data.append(new_row) collapse_options["data"] = out_data if collapse_options["specific_descriptor"]: collapse_options["specific_descriptor"] = collapse_options["method"] + "_" + \ collapse_options["specific_descriptor"] resulting_model = AsciiDataTable(None, **collapse_options) return resulting_model def frequency_model_difference(model_1, model_2, **options): """Takes the difference of two models that both have frequency and a similar set of columns. Returns an object that is a list of [[frequency,column_1,..column_n],...] where columns are the same in the models. If a particular subset of columns is desired use columns=["Frequency","magS11] models can be any subclass of AsciiDataTable, SNP, or pandas.DataFrame, if a column is a non-numeric type it drops it. The frequency list should be unique (no multiple frequencies) for at least one model""" # Set up defaults and pass options defaults = {"columns": "all", "interpolate": False, "average": True} difference_options = {} for key, value in defaults.items(): difference_options[key] = value for key, value in options.items(): difference_options[key] = value # first check type, if it is a panadas data frame a little conversion is needed, else is for all other models if type(model_1) in [pandas.DataFrame]: model_1 = DataFrame_to_AsciiDataTable(model_1) if type(model_2) in [pandas.DataFrame]: model_2 = DataFrame_to_AsciiDataTable(model_2) # now start with a set of frequencies (unique values from both) frequency_set_1 = set(model_1["Frequency"]) frequency_set_2 = set(model_2["Frequency"]) model_2_frequency_selector = model_2.column_names.index('Frequency') column_names_set_1 = set(model_1.column_names) column_names_set_2 = set(model_2.column_names) # All points must be in the intersection to be used frequency_intersection = list(frequency_set_1.intersection(frequency_set_2)) column_names_intersection = list(column_names_set_1.intersection(column_names_set_2)) if not frequency_intersection: print("The models do not have any frequency points in common") return None new_column_names = ["Frequency"] column_types=['float'] for column_index, column in enumerate(model_1.column_names): if column in column_names_intersection and column not in ["Frequency"]: new_column_names.append(column) column_types.append(model_1.options["column_types"][column_index]) difference_data = [] for row_index, frequency in enumerate(model_1["Frequency"]): new_row = [frequency] if frequency in frequency_intersection: model_2_frequency_row =list( filter(lambda x: x[model_2_frequency_selector] == frequency, model_2.data))[0] # print("{0} is {1}".format("model_2_frequency_row",model_2_frequency_row)) for column_index, column in enumerate(model_1.column_names): if column in column_names_intersection and column not in ["Frequency"]: model_2_column_selector = model_2.column_names.index(column) if re.search('int|float', model_1.options["column_types"][column_index], re.IGNORECASE) and re.search('int|float', model_2.options["column_types"][model_2_column_selector], re.IGNORECASE): new_row.append( model_1.data[row_index][column_index] - model_2_frequency_row[model_2_column_selector]) # Print("New Column Names are {0}".format(new_column_names)) elif difference_options["columns"] in ["all"]: new_row.append(model_1.data[row_index][column_index]) difference_data.append(new_row) difference_options["column_names"] = new_column_names # print("New Column Names are {0}".format(new_column_names)) difference_options["data"] = difference_data difference_options["column_types"]=column_types #print column_types result = AsciiDataTable(None, **difference_options) return result def create_monte_carlo_reference_curve(monte_carlo_directory, **options): """Creates a standard curve from a montecarlo directory (from MUF). The standard curve has a mean or median and a standard deviation for the uncertainty""" defaults = {"method": "mean", "format": "RI", "filter": "s\d+p"} reference_options = {} for key, value in defaults.items(): reference_options[key] = value for key, value in options.items(): reference_options[key] = value file_names = os.listdir(monte_carlo_directory) filtered_file_names = [] for file_name in file_names[:]: if re.search(reference_options["filter"], file_name, re.IGNORECASE): filtered_file_names.append(file_name) file_names = filtered_file_names # print file_names initial_file = SNP(os.path.join(monte_carlo_directory, file_names[0])) initial_file.change_data_format(reference_options["format"]) combined_table = Snp_to_AsciiDataTable(initial_file) for file_name in file_names[1:]: snp_file = SNP(os.path.join(monte_carlo_directory, file_name)) snp_file.change_data_format(reference_options["format"]) table = Snp_to_AsciiDataTable(snp_file) combined_table + table mean_table = frequency_model_collapse_multiple_measurements(combined_table, method=reference_options["method"]) standard_deviation = frequency_model_collapse_multiple_measurements(combined_table, method='std') new_column_names = ['Frequency'] + ['u' + name for name in standard_deviation.column_names[1:]] standard_deviation.column_names = new_column_names reference_curve = ascii_data_table_join("Frequency", mean_table, standard_deviation) reference_curve.options["value_column_names"] = mean_table.column_names[1:] reference_curve.options["uncertainty_column_names"] = new_column_names[1:] return reference_curve def create_sensitivity_reference_curve(sensitivity_directory,nominal_file_path="../DUT_0.s2p",**options): """Creates a standard curve from a sensitivity_directory usually called Covariance(from MUF). The standard curve has a mean or median and a RMS variance from the nominal value for the uncertainty""" defaults = {"format": "RI", "filter": "s\d+p"} reference_options = {} for key, value in defaults.items(): reference_options[key] = value for key, value in options.items(): reference_options[key] = value file_names = os.listdir(sensitivity_directory) filtered_file_names = [] for file_name in file_names[:]: if re.search(reference_options["filter"], file_name, re.IGNORECASE): filtered_file_names.append(file_name) file_names = filtered_file_names # print file_names nominal_file=SNP(os.path.join(sensitivity_directory, nominal_file_path)) nominal_file.change_data_format(reference_options["format"]) initial_file = SNP(os.path.join(sensitivity_directory, file_names[0])) initial_file.change_data_format(reference_options["format"]) initial_difference=frequency_model_difference(nominal_file,initial_file) #print initial_difference.column_names combined_table = initial_difference for file_name in file_names[1:]: snp_file = SNP(os.path.join(sensitivity_directory, file_name)) snp_file.change_data_format(reference_options["format"]) difference=frequency_model_difference(nominal_file,snp_file) #print difference.column_names # table = Snp_to_AsciiDataTable(difference) combined_table + difference #print combined_table.options["column_types"] variance = frequency_model_collapse_multiple_measurements(combined_table, method='rss') new_column_names = ['Frequency'] + ['u' + name for name in variance.column_names[1:]] mean_table=Snp_to_AsciiDataTable(nominal_file) variance.column_names = new_column_names reference_curve = ascii_data_table_join("Frequency", mean_table, variance) reference_curve.options["value_column_names"] = mean_table.column_names[1:] reference_curve.options["uncertainty_column_names"] = new_column_names[1:] return reference_curve def plot_reference_curve(reference_curve, **options): """Plots a frequency based reference curve by using the options value_column_names and uncertainty_column_names.""" defaults = {"display_legend": False, "save_plot": False, "directory": os.getcwd(), "specific_descriptor": "Reference_Curve", "general_descriptor": "Plot", "file_name": None, "plots_per_column": 2, "plot_format": 'b-', "fill_color": 'k', "fill_opacity": .25, "fill_edge_color": 'k', "plot_size": (8, 10), "dpi": 80, "independent_axis_column_name": "Frequency", "share_x": "col"} plot_options = {} for key, value in defaults.items(): plot_options[key] = value for key, value in options.items(): plot_options[key] = value value_columns = reference_curve.options["value_column_names"] uncertainty_columns = reference_curve.options["uncertainty_column_names"] number_plots = len(value_columns) number_columns = int(plot_options["plots_per_column"]) number_rows = int(round(float(number_plots) / float(number_columns))) fig, reference_axes = plt.subplots(nrows=number_rows, ncols=number_columns, sharex=plot_options["share_x"], figsize=plot_options["plot_size"], dpi=plot_options["dpi"]) x_data = reference_curve[plot_options["independent_axis_column_name"]] for axes_index, ax in enumerate(reference_axes.flat): y_data = np.array(reference_curve[value_columns[axes_index]]) error = np.array(reference_curve[uncertainty_columns[axes_index]]) ax.plot(x_data, y_data, plot_options["plot_format"]) ax.fill_between(x_data, y_data - error, y_data + error, color=plot_options["fill_color"], alpha=plot_options["fill_opacity"], edgecolor=plot_options["fill_edge_color"]) ax.set_title(value_columns[axes_index]) plt.tight_layout() # Dealing with the save option if plot_options["file_name"] is None: file_name = auto_name(specific_descriptor=plot_options["specific_descriptor"], general_descriptor=plot_options["general_descriptor"], directory=plot_options["directory"], extension='png', padding=3) else: file_name = plot_options["file_name"] if plot_options["save_plot"]: # print file_name plt.savefig(os.path.join(plot_options["directory"], file_name)) else: plt.show() return fig def plot_reference_curve_comparison(reference_curve_list, **options): """Plots a list of frequency based reference curves by using the options value_column_names and uncertainty_column_names. Options """ defaults = {"display_legend": False, "save_plot": False, "directory": os.getcwd(), "specific_descriptor": "Reference_Curve", "general_descriptor": "Plot", "file_name": None, "plots_per_column": 2, "plot_format": '-', "fill_color": 'k', "fill_opacity": .25, "fill_edge_color": 'k', "plot_size": (8, 10), "dpi": 80, "independent_axis_column_name": "Frequency", "share_x": "col", "labels":None} plot_options = {} for key, value in defaults.items(): plot_options[key] = value for key, value in options.items(): plot_options[key] = value if plot_options["labels"]: labels=plot_options["labels"] else: labels=[x.path for x in reference_curve_list] value_columns = reference_curve_list[0].options["value_column_names"] uncertainty_columns = reference_curve_list[0].options["uncertainty_column_names"] number_plots = len(value_columns) number_columns = int(plot_options["plots_per_column"]) number_rows = int(round(float(number_plots) / float(number_columns))) fig, reference_axes = plt.subplots(nrows=number_rows, ncols=number_columns, sharex=plot_options["share_x"], figsize=plot_options["plot_size"], dpi=plot_options["dpi"]) for index,reference_curve in enumerate(reference_curve_list[:]): value_columns = reference_curve.options["value_column_names"] uncertainty_columns = reference_curve.options["uncertainty_column_names"] x_data = reference_curve[plot_options["independent_axis_column_name"]] for axes_index, ax in enumerate(reference_axes.flat): y_data = np.array(reference_curve[value_columns[axes_index]]) error = np.array(reference_curve[uncertainty_columns[axes_index]]) ax.plot(x_data, y_data, plot_options["plot_format"],label=labels[index]) ax.fill_between(x_data, y_data - error, y_data + error, color=plot_options["fill_color"], alpha=plot_options["fill_opacity"], edgecolor=plot_options["fill_edge_color"]) ax.set_title(value_columns[axes_index]) plt.tight_layout() if plot_options["display_legend"]: plt.legend() # Dealing with the save option if plot_options["file_name"] is None: file_name = auto_name(specific_descriptor=plot_options["specific_descriptor"], general_descriptor=plot_options["general_descriptor"], directory=plot_options["directory"], extension='png', padding=3) else: file_name = plot_options["file_name"] if plot_options["save_plot"]: # print file_name plt.savefig(os.path.join(plot_options["directory"], file_name)) else: plt.show() return fig def calrep(raw_model,**options): """ Performs the calrep analysis routine on a raw data format (such as OnePortRawModel, TwoPortRawModel,PowerRawModel) Differs from the HP BASIC program in that it keeps the metadata Needs to be checked, returns 4 error terms for power Also does not calculate all the same rows for power, expansion factor is set to 2, requires that the raw model has the attribute raw_model.metadata["Connector_Type_Measurement"] defined. If the columns passed in raw_model do not have repeat values or contain text the result will set connect uncertainty to zero""" try: mean_file=frequency_model_collapse_multiple_measurements(raw_model) except: mean_file=raw_model try: standard_deviation_file=frequency_model_collapse_multiple_measurements(raw_model,method="std") except: std_data=[] for row in mean_file.data: new_row=[] for column in mean_file.data[0]: new_row.append(0) std_data.append(new_row) standard_deviation_file=AsciiDataTable(None,column_names=raw_model.column_names, data=std_data,column_types=raw_model.options["column_types"]) if "Direction" in mean_file.column_names and "Connect" in mean_file.column_names: mean_file.remove_column("Direction") mean_file.remove_column("Connect") if "Direction" in standard_deviation_file.column_names and "Connect" in standard_deviation_file.column_names: standard_deviation_file.remove_column("Direction") standard_deviation_file.remove_column("Connect") new_data=[] new_column_names=[] expansion_factor=2 frequency_index=mean_file.column_names.index("Frequency") for row_index,row in enumerate(mean_file.data[:]): new_data_row=[] for column_index,column_name in enumerate(mean_file.column_names[:]): if re.search("frequency",column_name,re.IGNORECASE): if row_index==0: new_column_names.append("Frequency") new_data_row.append(row[column_index]) else: if re.search("mag",column_name,re.IGNORECASE): error_selector=0 error_letter="M" error_parameter=column_name.replace("mag","") elif re.search("arg|phase",column_name,re.IGNORECASE): error_selector=1 error_letter="A" error_parameter=column_name.replace("arg","") elif re.search("Eff",column_name,re.IGNORECASE): error_selector=0 error_letter="E" error_parameter="" else: error_selector=0 if row_index==0: # If this is the first row build the column names list new_column_names.append(column_name) new_column_names.append("u"+error_letter+"b"+error_parameter) new_column_names.append("u"+error_letter+"a"+error_parameter) new_column_names.append("u"+error_letter+"d"+error_parameter) new_column_names.append("u"+error_letter+"g"+error_parameter) # Mean Value new_data_row.append(row[column_index]) # Type B ub=type_b(wr_connector_type=mean_file.metadata["Connector_Type_Measurement"], frequency=row[frequency_index],parameter=column_name,magnitude=row[column_index],format="mag") #print("{0} is {1}".format("ub",ub)) new_data_row.append(ub[error_selector]) # Type A or SNIST ua=S_NIST(wr_connector_type=mean_file.metadata["Connector_Type_Measurement"], frequency=row[frequency_index],parameter=column_name,magnitude=row[column_index],format="mag") new_data_row.append(ua[error_selector]) # Standard Deviation ud=standard_deviation_file.data[row_index][column_index] new_data_row.append(ud) # Total Uncertainty #print(" ua is {0}, ub is {1} and ud is {2}".format(ua,ub,ud)) total_uncertainty=expansion_factor*math.sqrt(ua[error_selector]**2+ub[error_selector]**2+ud**2) new_data_row.append(total_uncertainty) new_data.append(new_data_row) sorted_keys=sorted(mean_file.metadata.keys()) header=["{0} = {1}".format(key,mean_file.metadata[key]) for key in sorted_keys] column_types=["float" for column in new_column_names] #todo: Add value_column_names and uncertainty_column_names to conform to reference curve calrep=AsciiDataTable(None,data=new_data,column_types=column_types, column_names=new_column_names,header=header, metadata=mean_file.metadata) return calrep def one_port_robin_comparison_plot(input_asc_file,input_res_file,**options): """one_port_robin_comparison_plot plots a one port.asc file against a given .res file, use device_history=True in options to show device history""" defaults={"device_history":False,"mag_res":False} plot_options={} for key,value in defaults.items(): plot_options[key]=value for key,value in options.items(): plot_options[key]=value history=np.loadtxt(input_res_file,skiprows=1) column_names=["Frequency",'magS11','argS11','magS11N','argS11N','UmagS11N','UargS11N'] options={"data":history.tolist(),"column_names":column_names,"column_types":['float' for column in column_names]} history_table=AsciiDataTable(None,**options) table=OnePortCalrepModel(input_asc_file) if plot_options["device_history"]: history_frame=pandas.read_csv(ONE_PORT_DUT) device_history=history_frame[history_frame["Device_Id"]==table.header[0].rstrip().lstrip()] fig, (ax0, ax1) = plt.subplots(nrows=2, sharex=True) ax0.errorbar(history_table.get_column('Frequency'),history_table.get_column('magS11N'),fmt='k--', yerr=history_table.get_column('UmagS11N'),label="History") ax0.errorbar(table.get_column('Frequency'),table.get_column('magS11'), yerr=table.get_column('uMg'),fmt='ro',label="Current Measurement",alpha=.3) if plot_options["device_history"]: ax0.errorbar(device_history['Frequency'].tolist(),device_history['magS11'].tolist(),fmt='bs', yerr=device_history['uMg'].tolist(),label="From .asc", alpha=.5) if plot_options["mag_res"]: ax0.errorbar(history_table.get_column('Frequency'),history_table.get_column('mag'),fmt='gx', yerr=history_table.get_column('UmagS11N'),label="From mag in res") ax0.set_title('Magnitude S11') ax1.errorbar(history_table.get_column('Frequency'),history_table.get_column('arg'),fmt='k--', yerr=history_table.get_column('UargS11N'),label="history") ax1.errorbar(table.get_column('Frequency'),table.get_column('arg'), yerr=table.get_column('uAg'),fmt='ro',label="Current Measurement",alpha=.3) if plot_options["device_history"]: ax1.errorbar(device_history['Frequency'].tolist(),device_history['arg'].tolist(),fmt='bs', yerr=device_history['uAg'].tolist(),label="From .asc", alpha=.5) ax1.set_title('Phase S11') ax0.legend(loc='lower left', shadow=True) plt.show() return fig def two_port_swap_ports(complex_data): """Accepts data in [[frequency, S11, S21, S12, S22]..] format and returns [[frequency, S22, S12, S21, S11]..]""" out_data=[] for row in complex_data: [frequency, S11, S21, S12, S22]=row new_row=[frequency, S22, S12, S21, S11] out_data.append(new_row) return out_data def two_port_complex_to_matrix_form(complex_data): """two_port_complex_to_matrix_form takes a list of [[frequency,S11,S21,S12,S22],..] and returns a list in the form [[frequency,np.matrix([[S11,S12],[S21,S22]])]..], it is meant to prepare data for correction""" out_list=[] for row in complex_data: frequency=row[0] [S11,S21,S12,S22]=row[1:] m=np.matrix([[S11,S12],[S21,S22]]) out_list.append([frequency,m]) #print out_list return out_list def two_port_matrix_to_complex_form(matrix_form_data): """two_port_matrix_to_complex_form takes a list of [[frequency,np.matrix([[S11,S12],[S21,S22]])]..] and returns a list in the form [[frequency,S11,S21,S12,S22],..] , it is meant to undo two_port_complex_to_matrix_form""" out_list=[] for row in matrix_form_data: frequency=row[0] m=row[1] [S11,S21,S12,S22]=[m[0,0],m[1,0],m[0,1],m[1,1]] out_list.append([frequency,S11,S12,S21,S22]) return out_list def invert_two_port_matrix_list(two_port_matrix_form): """invert_two_port_matrix_list inverts all elements in the list two_port_matrix_form, which is in the format [[frequency,np.matrix([[S11,S12],[S21,S22]])]..] and returns a list in [[frequency,inv(np.matrix([[S11,S12],[S21,S22]]))]..] format works on any list in the form [value, matrix] """ out_list=[] for row in two_port_matrix_form: frequency=row[0] m=row[1] m_inv=np.linalg.inv(m) out_list.append([frequency,m_inv]) return out_list def polar_average(complex_number_1,complex_number_2): """Averages 2 complex numbers in polar coordinates and returns a single complex number""" polar_number_1=cmath.polar(complex_number_1) polar_number_2=cmath.polar(complex_number_2) average_length=(polar_number_1[0]+polar_number_2[0])/2. average_phase=(polar_number_1[1]+polar_number_2[1])/2. out_value=cmath.rect(average_length,average_phase) return out_value def polar_geometric_average(complex_number_1,complex_number_2): """Averages 2 complex numbers in polar coordinates and returns a single complex number""" polar_number_1=cmath.polar(complex_number_1) polar_number_2=cmath.polar(complex_number_2) average_length=(polar_number_1[0]*polar_number_2[0])**.5 average_phase=(polar_number_1[1]+polar_number_2[1])/2 out_value=cmath.rect(average_length,average_phase-math.pi) return out_value def S_to_T(S_list): """Converts S-parameters into a T Matrix. Input form should be in frequency, np.matrix([[S11,S12],[S21,S22]]) format. Returns a list in [frequency, np.matrix] format """ t_complex_list=[] t_matrix=[] for row in S_list: frequency=row[0] m=row[1] T11=-np.linalg.det(m)/m[1,0] T12=m[0,0]/m[1,0] T21=-m[1,1]/m[1,0] T22=1/m[1,0] t_matrix.append([frequency,np.matrix([[T11,T12],[T21,T22]])]) t_complex_list.append([frequency,T11,T12,T21,T22]) return t_matrix def T_to_S(T_list): """Converts T Matrix into S parameters. Input form should be in frequency, np.matrix([[T11,T12],[T21,T22]]) format. Returns a list in [frequency, np.matrix] format.""" S_list=[] for row in T_list: frequency=row[0] m=row[1] S11=m[0,1]/m[1,1] S12=np.linalg.det(m)/m[1,1] S21=1/m[1,1] S22=-m[1,0]/m[1,1] S_list.append([frequency,np.matrix([[S11,S12],[S21,S22]])]) return S_list def unwrap_phase(phase_list): """unwrap_phase returns an unwraped phase list given a wraped phase list, assumed units are degrees """ unwrapped_phase_list=[] phase_list_copy=phase_list[:] i=1 n=0 while(i+1<len(phase_list)): if abs(phase_list[i]-phase_list[i-1])>90: if phase_list[i]-phase_list[i-1]>0: n+=1 else: n-=1 phase_list_copy[i]=phase_list_copy[i+1]-n*360 phase_list_copy[i+1]=phase_list_copy[i+1]-n*360 i+=1 return phase_list_copy def correct_sparameters_eight_term(sparameters_complex,eight_term_correction,reciprocal=True): """Applies the eight term correction to sparameters_complex and returns a correct complex list in the form of [[frequency,S11,S21,S12,S22],..]. The eight term correction should be in the form [[frequency,S1_11,S1_21,S1_12,S1_22,S2_11,S2_21,S2_12,S2_22]..] Use s2p.sparameter_complex as input.""" # first transform both lists to matrices s2p_matrix_list=two_port_complex_to_matrix_form(sparameters_complex) s1_list=[[row[0],row[1],row[2],row[3],row[4]] for row in eight_term_correction] s2_list=[[row[0],row[5],row[6],row[7],row[8]] for row in eight_term_correction] s1_matrix_list=two_port_complex_to_matrix_form(s1_list) s2_matrix_list=two_port_complex_to_matrix_form(s2_list) # now transform to T matrices t_matrix_list=S_to_T(s2p_matrix_list) x_matrix_list=S_to_T(s1_matrix_list) y_matrix_list=S_to_T(s2_matrix_list) # now invert x x_inverse_matrix_list=invert_two_port_matrix_list(x_matrix_list) y_inverse_matrix_list=invert_two_port_matrix_list(y_matrix_list) # now apply the correction t_corrected_list=[] for index,row in enumerate(t_matrix_list): frequency=row[0] t_corrected=x_inverse_matrix_list[index][1]*row[1]*y_inverse_matrix_list[index][1] t_corrected_list.append([frequency,t_corrected]) # now transform back to S s_corrected_matrix_list =T_to_S(t_corrected_list) # now put back into single row form s_corrected_list=two_port_matrix_to_complex_form(s_corrected_matrix_list) # now we take the geometric average and replace S12 and S21 with it if reciprocal: s_averaged_corrected=[] phase_last=0 for row in s_corrected_list: [frequency,S11,S21,S12,S22]=row # S12 and S21 are averaged together in a weird way that makes phase continuous geometric_mean=cmath.sqrt(S21*S12) root_select=1 phase_new=cmath.phase(geometric_mean) # if the phase jumps by >180 but less than 270, then pick the other root if abs(phase_new-phase_last)>math.pi/2 and abs(phase_new-phase_last)<3*math.pi/2: root_select=-1 mean_S12_S21=root_select*cmath.sqrt(S21*S12) s_averaged_corrected.append([frequency,S11,mean_S12_S21,mean_S12_S21,S22]) phase_last=cmath.phase(mean_S12_S21) s_corrected_list=s_averaged_corrected else: pass return s_corrected_list def uncorrect_sparameters_eight_term(sparameters_complex,eight_term_correction,reciprocal=True): """Removes the eight term correction to sparameters_complex and returns a uncorrected (reference plane is measurement) complex list in the form of [[frequency,S11,S21,S12,S22],..]. The eight term correction should be in the form [[frequency,S1_11,S1_21,S1_12,S1_22,S2_11,S2_21,S2_12,S2_22]..] Use s2p.sparameter_complex as input.""" # first transform both lists to matrices s2p_matrix_list=two_port_complex_to_matrix_form(sparameters_complex) s1_list=[[row[0],row[1],row[2],row[3],row[4]] for row in eight_term_correction] s2_list=[[row[0],row[5],row[6],row[7],row[8]] for row in eight_term_correction] s1_matrix_list=two_port_complex_to_matrix_form(s1_list) s2_matrix_list=two_port_complex_to_matrix_form(s2_list) # now transform to T matrices t_matrix_list=S_to_T(s2p_matrix_list) x_matrix_list=S_to_T(s1_matrix_list) y_matrix_list=S_to_T(s2_matrix_list) # now apply the correction t_uncorrected_list=[] for index,row in enumerate(t_matrix_list): frequency=row[0] t_corrected=x_matrix_list[index][1]*row[1]*y_matrix_list[index][1] t_uncorrected_list.append([frequency,t_corrected]) # now transform back to S s_uncorrected_matrix_list =T_to_S(t_uncorrected_list) # now put back into single row form s_uncorrected_list=two_port_matrix_to_complex_form(s_uncorrected_matrix_list) # now we take the geometric average and replace S12 and S21 with it if reciprocal: s_averaged_corrected=[] phase_last=0 for row in s_uncorrected_list: [frequency,S11,S21,S12,S22]=row # S12 and S21 are averaged together in a weird way that makes phase continuous geometric_mean=cmath.sqrt(S21*S12) root_select=1 phase_new=cmath.phase(geometric_mean) # if the phase jumps by >180 but less than 270, then pick the other root if abs(phase_new-phase_last)>math.pi/2 and abs(phase_new-phase_last)<3*math.pi/2: root_select=-1 mean_S12_S21=root_select*cmath.sqrt(S21*S12) s_averaged_corrected.append([frequency,S11,mean_S12_S21,mean_S12_S21,S22]) phase_last=cmath.phase(mean_S12_S21) s_uncorrected_list=s_averaged_corrected else: pass return s_uncorrected_list def correct_sparameters_sixteen_term(sparameters_complex,sixteen_term_correction): """Applies the sixteen term correction to sparameters and returns a new sparameter list. The sparameters should be a list of [frequency, S11, S21, S12, S22] where S terms are complex numbers. The sixteen term correction should be a list of [frequency, S11, S12, S13,S14,S21, S22,S23,S24,S31,S32,S33,S34,S41,S42,S43,S44], etc are complex numbers Designed to use S2P.sparameter_complex and SNP.sparameter_complex""" # first create 4 separate matrix lists for 16 term correction s1_matrix_list=[] s2_matrix_list=[] s3_matrix_list=[] s4_matrix_list=[] # Then populate them with the right values for index,correction in enumerate(sixteen_term_correction): [frequency, S11, S12, S13,S14,S21, S22,S23,S24,S31,S32,S33,S34,S41,S42,S43,S44]=correction s1_matrix_list.append([frequency,np.matrix([[S11,S12],[S21,S22]])]) s2_matrix_list.append([frequency,np.matrix([[S13,S14],[S23,S24]])]) s3_matrix_list.append([frequency,np.matrix([[S31,S32],[S41,S42]])]) s4_matrix_list.append([frequency,np.matrix([[S33,S34],[S43,S44]])]) sparameter_matrix_list=two_port_complex_to_matrix_form(sparameters_complex) # Apply the correction sparameter_out=[] for index,sparameter in enumerate(sparameter_matrix_list): frequency=sparameter[0] s_matrix=sparameter[1] [s11_matrix,s12_matrix,s21_matrix,s22_matrix]=[s1_matrix_list[index][1],s2_matrix_list[index][1], s3_matrix_list[index][1],s4_matrix_list[index][1]] corrected_s_matrix=np.linalg.inv(s21_matrix*np.linalg.inv(s_matrix-s11_matrix)*s12_matrix+s22_matrix) # This flips S12 and S21 sparameter_out.append([frequency,corrected_s_matrix[0,0],corrected_s_matrix[1,0], corrected_s_matrix[0,1],corrected_s_matrix[1,1]]) return sparameter_out def uncorrect_sparameters_sixteen_term(sparameters_complex,sixteen_term_correction): """Removes the sixteen term correction to sparameters and returns a new sparameter list. The sparameters should be a list of [frequency, S11, S21, S12, S22] where S terms are complex numbers. The sixteen term correction should be a list of [frequency, S11, S12, S13,S14,S21, S22,S23,S24,S31,S32,S33,S34,S41,S42,S43,S44], etc are complex numbers Designed to use S2P.sparameter_complex and SNP.sparameter_complex. Inverse of correct_sparameters_sixteen_term""" # first create 4 separate matrix lists for 16 term correction s1_matrix_list=[] s2_matrix_list=[] s3_matrix_list=[] s4_matrix_list=[] # Then populate them with the right values for index,correction in enumerate(sixteen_term_correction): [frequency, S11, S12, S13,S14,S21, S22,S23,S24,S31,S32,S33,S34,S41,S42,S43,S44]=correction s1_matrix_list.append([frequency,np.matrix([[S11,S12],[S21,S22]])]) s2_matrix_list.append([frequency,np.matrix([[S13,S14],[S23,S24]])]) s3_matrix_list.append([frequency,np.matrix([[S31,S32],[S41,S42]])]) s4_matrix_list.append([frequency,np.matrix([[S33,S34],[S43,S44]])]) sparameter_matrix_list=two_port_complex_to_matrix_form(sparameters_complex) # Apply the correction sparameter_out=[] for index,sparameter in enumerate(sparameter_matrix_list): frequency=sparameter[0] s_matrix=sparameter[1] [s11_matrix,s12_matrix,s21_matrix,s22_matrix]=[s1_matrix_list[index][1],s2_matrix_list[index][1], s3_matrix_list[index][1],s4_matrix_list[index][1]] uncorrected_s_matrix=np.linalg.inv(np.linalg.inv(s21_matrix)*(np.linalg.inv(s_matrix)-s22_matrix)*\ np.linalg.inv(s12_matrix))+s11_matrix # This flips S12 and S21 sparameter_out.append([frequency,uncorrected_s_matrix[0,0],uncorrected_s_matrix[1,0], uncorrected_s_matrix[0,1],uncorrected_s_matrix[1,1]]) return sparameter_out def correct_sparameters_twelve_term(sparameters_complex,twelve_term_correction,reciprocal=True): """Applies the twelve term correction to sparameters and returns a new sparameter list. The sparameters should be a list of [frequency, S11, S21, S12, S22] where S terms are complex numbers. The twelve term correction should be a list of [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] where Edf, etc are complex numbers""" if len(sparameters_complex) != len(twelve_term_correction): raise TypeError("s parameter and twelve term correction must be the same length") sparameter_out=[] phase_last=0. for index,row in enumerate(sparameters_complex): frequency=row[0] Sm=np.matrix(row[1:]).reshape((2,2)) [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr]=twelve_term_correction[index] # frequency Edf Esf Erf Exf Elf Etf Edr Esr Err Exr Elr Etr. # print [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] # print Sm[0,0] D =(1+(Sm[0,0]-Edf)*(Esf/Erf))*(1+(Sm[1,1]-Edr)*(Esr/Err))-(Sm[0,1]*Sm[1,0]*Elf*Elr)/(Etf*Etr) # print D S11 =(Sm[0,0]-Edf)/(D*Erf)*(1+(Sm[1,1]-Edr)*(Esr/Err))-(Sm[0,1]*Sm[1,0]*Elf)/(D*Etf*Etr) S21 =((Sm[1,0]-Exr)/(D*Etf))*(1+(Sm[1,1]-Edr)*(Esr-Elf)/Err) S12 = ((Sm[0,1]-Exf)/(D*Etr))*(1+(Sm[0,0]-Edf)*(Esf-Elr)/Erf) S22 = (Sm[1,1]-Edr)/(D*Err)*(1+(Sm[0,0]-Edf)*(Esf/Erf))-(Sm[0,1]*Sm[1,0]*Elr)/(D*Etf*Etr) # S12 and S21 are averaged together in a weird way that makes phase continuous geometric_mean=cmath.sqrt(S21*S12) root_select=1 phase_new=cmath.phase(geometric_mean) # if the phase jumps by >180 but less than 270, then pick the other root if abs(phase_new-phase_last)>math.pi/2 and abs(phase_new-phase_last)<3*math.pi/2: root_select=-1 mean_S12_S21=root_select*cmath.sqrt(S21*S12) if reciprocal: sparameter_out.append([frequency,S11,mean_S12_S21,mean_S12_S21,S22]) else: sparameter_out.append([frequency,S11,S21,S12,S22]) phase_last=cmath.phase(mean_S12_S21) return sparameter_out def uncorrect_sparameters_twelve_term(sparameters_complex,twelve_term_correction,reciprocal=True): """Removes the twelve term correction to sparameters and returns a new sparameter list. The sparameters should be a list of [frequency, S11, S21, S12, S22] where S terms are complex numbers. The twelve term correction should be a list of [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] where Edf, etc are complex numbers""" if len(sparameters_complex) != len(twelve_term_correction): raise TypeError("s parameter and twelve term correction must be the same length") sparameter_out=[] phase_last=0. for index,row in enumerate(sparameters_complex): frequency=row[0] Sa=np.matrix(row[1:]).reshape((2,2)) [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr]=twelve_term_correction[index] # frequency Edf Esf Erf Exf Elf Etf Edr Esr Err Exr Elr Etr. # print [frequency,Edf,Esf,Erf,Exf,Elf,Etf,Edr,Esr,Err,Exr,Elr,Etr] # print Sm[0,0] delta=Sa[0,0]*Sa[1,1]-Sa[0,1]*Sa[1,0] # print D S11 =Edf+(Erf)*(Sa[0,0]-Elf*delta)/(1-Esf*Sa[0,0]-Elf*Sa[1,1]+Esf*Elf*delta) S21 =Etf*(Sa[1,0])/(1-Esf*Sa[0,0]-Elf*Sa[1,1]-Esf*Elf*delta) S12 = Etr*(Sa[0,1])/(1-Elr*Sa[0,0]-Esr*Sa[1,1]-Esr*Elr*delta) S22 = Edr+Err*(Sa[1,1]-Elr*delta)/(1-Elr*Sa[0,0]-Esr*Sa[1,1]-Esr*Elr*delta) # S12 and S21 are averaged together in a weird way that makes phase continuous geometric_mean=cmath.sqrt(S21*S12) root_select=1 phase_new=cmath.phase(geometric_mean) # if the phase jumps by >180 but less than 270, then pick the other root if abs(phase_new-phase_last)>math.pi/2 and abs(phase_new-phase_last)<3*math.pi/2: root_select=-1 mean_S12_S21=root_select*cmath.sqrt(S21*S12) if reciprocal: sparameter_out.append([frequency,S11,mean_S12_S21,mean_S12_S21,S22]) else: sparameter_out.append([frequency,S11,S21,S12,S22]) phase_last=cmath.phase(mean_S12_S21) return sparameter_out #TODO: Check that this works the way it should def correct_sparameters(sparameters,correction,**options): """Correction sparamters trys to return a corrected set of sparameters given uncorrected sparameters and a correction. Correct sparameters will accept file_name's, pyMez classes, complex lists or a mixture, returns value in the form it was entered. Correction is assumed reciprocal unless reciprocal=False""" defaults={"reciprocal":True,"output_type":None,"file_path":None} correction_options={} for key,value in defaults.items(): correction_options[key]=value for key,value in options.items(): correction_options[key]=value try: # import and condition sparameters and correction if isinstance(sparameters, StringType): # Assume sparameters is given by file name sparameters_table=S2PV1(sparameters) sparameters=sparameters_table.sparameter_complex output_type='file' elif re.search('S2PV1',type(sparameters)): output_type='S2PV1' sparameters=sparameters.sparameter_complex elif isinstance(sparameters, ListType): # check to see if it is a list of complex variables or matrix if isinstance(sparameters[1], ComplexType): output_type='complex_list' # Handle frequency, matrix lists elif type(sparameters[1]) in ['np.array','np.matrix'] and isinstance(sparameters, FloatType) : output_type='matrix_list' sparameters=two_port_matrix_to_complex_form(sparameters) # handle matrix elif type(sparameters) in ['np.array','np.matrix']: output_type='matrix' raise # Handle the correction types if len(correction) is 13: corrected_sparameters=correct_sparameters_twelve_term(sparameters,correction) elif len(correction) is 17: corrected_sparameters=correct_sparameters_sixteen_term(sparameters,correction) elif len(correction) is 9: corrected_sparameters=correct_sparameters_eight_term(sparameters,correction) # Handle the output type using the derived one or the one entered as an option if correction_options["output_type"] is None: pass else: output_type=correction_options["output_type"] if re.match('file',output_type, re.IGNORECASE): output_table=S2PV1(correction_options["file_path"],sparameter_complex=corrected_sparameters) output_table.save() print(("Output was saved as {0}".format(output_table.path))) elif re.search("complex",output_type,re.IGNORECASE): return corrected_sparameters elif re.search("matrix_list",output_type,re.IGNORECASE): return two_port_complex_to_matrix_form(corrected_sparameters) elif re.search("matrix",output_type,re.IGNORECASE): raise except: print("Could not correct sparameters") raise def average_one_port_sparameters(table_list,**options): """Returns a table that is the average of the Sparameters in table list. The new table will have all the unique frequency values contained in all of the tables. Tables must be in Real-Imaginary format or magnitude-angle format do not try to average db-angle format. """ #This will work on any table that the data is stored in data, need to add a sparameter version defaults={"frequency_selector":0,"frequency_column_name":"Frequency"} average_options={} for key,value in defaults.items(): average_options[key]=value for key,value in options.items(): average_options[key]=value frequency_list=[] average_data=[] for table in table_list: frequency_list=frequency_list+table.get_column("Frequency") unique_frequency_list=sorted(list(set(frequency_list))) for frequency in unique_frequency_list: new_row=[] for table in table_list: data_list=[x for x in table.data if x[average_options["frequency_selector"]]==frequency] table_average=np.mean(np.array(data_list),axis=0) new_row.append(table_average) #print new_row average_data.append(np.mean(new_row,axis=0).tolist()) return average_data def two_port_comparison_plot_with_residuals(two_port_raw,mean_frame,difference_frame): """Creates a comparison plot given a TwoPortRawModel object and a pandas.DataFrame mean frame""" fig, axes = plt.subplots(nrows=3, ncols=2, sharex='col',figsize=(8,6),dpi=80) measurement_date=two_port_raw.metadata["Measurement_Date"] ax0,ax1,ax2,ax3,ax4,ax5 = axes.flat compare_axes=[ax0,ax1,ax2,ax3,ax4,ax5] diff_axes=[] for ax in compare_axes: diff_axes.append(ax.twinx()) #diff_axes=[diff_ax0,diff_ax1,diff_ax2,diff_ax3,diff_ax4,diff_ax5] column_names=['Frequency','magS11','argS11','magS21','argS21','magS22','argS22'] for index,ax in enumerate(diff_axes): ax.plot(difference_frame['Frequency'].tolist(),difference_frame[column_names[index+1]].tolist(),'r-x') ax.set_ylabel('Difference',color='red') if re.search('mag',column_names[index+1]): ax.set_ylim(-.02,.02) #ax.legend_.remove() for index, ax in enumerate(compare_axes): ax.plot(two_port_raw.get_column('Frequency'),two_port_raw.get_column(column_names[index+1]), 'k-o',label=measurement_date) ax.plot(mean_frame['Frequency'].tolist(),mean_frame[column_names[index+1]].tolist(),'gs',label='Mean') ax.set_title(column_names[index+1]) ax.legend(loc=1,fontsize='8') #ax.xaxis.set_visible(False) if re.search('arg',column_names[index+1]): ax.set_ylabel('Phase(Degrees)',color='green') elif re.search('mag',column_names[index+1]): ax.set_ylabel(r'|${\Gamma} $|',color='green') #ax.sharex(diff_axes[index]) ax4.set_xlabel('Frequency(GHz)',color='k') ax5.set_xlabel('Frequency(GHz)',color='k') fig.subplots_adjust(hspace=0) fig.suptitle(two_port_raw.metadata["Device_Id"]+"\n",fontsize=18,fontweight='bold') plt.tight_layout() plt.show() return fig def two_port_difference_frame(two_port_raw,mean_frame): """Creates a difference pandas.DataFrame given a two port raw file and a mean pandas.DataFrame""" difference_list=[] for row in two_port_raw.data[:]: #print row[0] mean_row=mean_frame[abs(mean_frame["Frequency"]-row[0])<abs(.01)].as_matrix() #print mean_row try: mean_row=mean_row[0] difference_row=[row[i+2]-mean_row[i] for i in range(1,len(mean_row))] difference_row.insert(0,row[0]) difference_list.append(difference_row) except:pass column_names=['Frequency','magS11','argS11','magS21','argS21','magS22','argS22'] diff_data_frame=pandas.DataFrame(difference_list,columns=column_names) return diff_data_frame def two_port_mean_frame(device_id,system_id=None,history_data_frame=None): """Given a Device_Id and a pandas data frame of the history creates a mean data_frame""" device_history=history_data_frame[history_data_frame["Device_Id"]==device_id] if system_id is not None: device_history=device_history[device_history["System_Id"]==system_id] column_names=['Frequency','magS11','argS11','magS21','argS21','magS22','argS22'] unique_frequency_list=device_history["Frequency"].unique() mean_array=[] for index,freq in enumerate(unique_frequency_list): row=[] for column in column_names: values=np.mean(device_history[device_history["Frequency"]==unique_frequency_list[index]][column].as_matrix()) #print values mean_value=np.mean(values) row.append(mean_value) mean_array.append(row) mean_frame=pandas.DataFrame(mean_array,columns=column_names) return mean_frame def mean_from_history(history_frame,**options): """mean_from_history creates a mean_frame given a full history frame (pandas.DataFrame object), by setting options it selects column names to output and input values to filter on. Returns a pandas.DataFrame object with column names = column_names, and filtered by any of the following: "Device_Id","System_Id","Measurement_Timestamp", "Connector_Type_Measurement", "Measurement_Date" or "Measurement_Time" """ defaults={"Device_Id":None, "System_Id":None,"Measurement_Timestamp":None, "Connector_Type_Measurement":None, "Measurement_Date":None,"Measurement_Time":None,"Direction":None, "column_names":['Frequency','magS11','argS11'],"outlier_removal":True} mean_options={} for key,value in defaults.items(): mean_options[key]=value for key,value in options.items(): mean_options[key]=value filters=["Device_Id","System_Id","Measurement_Timestamp","Connector_Type_Measurement", "Measurement_Date","Measurement_Time","Direction"] temp_frame=history_frame.copy() for index,filter_type in enumerate(filters): if mean_options[filter_type] is not None: temp_frame=temp_frame[temp_frame[filter_type]==mean_options[filter_type]] # temp_frame=temp_frame[temp_frame["Device_Id"]==mean_options["Device_Id"]] # temp_frame=temp_frame[temp_frame["System_Id"]==mean_options["System_Id"]] if mean_options["outlier_removal"]: mean_s11=np.mean(temp_frame["magS11"]) std_s11=np.std(temp_frame["magS11"]) temp_frame=temp_frame[temp_frame["magS11"]<(mean_s11+3*std_s11)] temp_frame = temp_frame[temp_frame["magS11"] > (mean_s11 - 3 * std_s11)] unique_frequency_list=temp_frame["Frequency"].unique() mean_array=[] for index,freq in enumerate(unique_frequency_list): row=[] for column in mean_options["column_names"]: values=np.mean(temp_frame[temp_frame["Frequency"]==unique_frequency_list[index]][column].as_matrix()) mean_value=np.mean(values) row.append(mean_value) mean_array.append(row) mean_frame=pandas.DataFrame(mean_array,columns=mean_options["column_names"]) return mean_frame def median_from_history(history_frame,**options): """median_from_history creates a median_frame given a full history frame (pandas.DataFrame object), by setting options it selects column names to output and input values to filter on. Returns a pandas.DataFrame object with column names = column_names, and filtered by any of the following: "Device_Id","System_Id","Measurement_Timestamp", "Connector_Type_Measurement", "Measurement_Date" or "Measurement_Time" """ defaults={"Device_Id":None, "System_Id":None,"Measurement_Timestamp":None, "Connector_Type_Measurement":None, "Measurement_Date":None,"Measurement_Time":None,"Direction":None, "column_names":['Frequency','magS11','argS11'],"outlier_removal":True} median_options={} for key,value in defaults.items(): median_options[key]=value for key,value in options.items(): median_options[key]=value filters=["Device_Id","System_Id","Measurement_Timestamp","Connector_Type_Measurement", "Measurement_Date","Measurement_Time","Direction"] temp_frame=history_frame.copy() for index,filter_type in enumerate(filters): if median_options[filter_type] is not None: temp_frame=temp_frame[temp_frame[filter_type]==median_options[filter_type]] if median_options["outlier_removal"]: mean_s11=np.mean(temp_frame["magS11"]) std_s11=np.std(temp_frame["magS11"]) temp_frame=temp_frame[temp_frame["magS11"]<(mean_s11+3*std_s11)] temp_frame = temp_frame[temp_frame["magS11"] > (mean_s11 - 3 * std_s11)] # temp_frame=temp_frame[temp_frame["Device_Id"]==median_options["Device_Id"]] # temp_frame=temp_frame[temp_frame["System_Id"]==median_options["System_Id"]] unique_frequency_list=temp_frame["Frequency"].unique() median_array=[] for index,freq in enumerate(unique_frequency_list): row=[] for column in median_options["column_names"]: values=np.median(temp_frame[temp_frame["Frequency"]==unique_frequency_list[index]][column].as_matrix()) median_value=np.median(values) row.append(median_value) median_array.append(row) median_frame=pandas.DataFrame(median_array,columns=median_options["column_names"]) return median_frame def raw_difference_frame(raw_model,mean_frame,**options): """Creates a difference pandas.DataFrame given a raw NIST model and a mean pandas.DataFrame""" defaults={"column_names":mean_frame.columns.tolist()} difference_options={} for key,value in defaults.items(): difference_options[key]=value for key,value in options.items(): difference_options[key]=value difference_list=[] for row in raw_model.data[:]: #print row[0] mean_row=mean_frame[abs(mean_frame["Frequency"]-row[0])<abs(.01)].as_matrix() #print mean_row try: mean_row=mean_row[0] difference_row=[row[i+2]-mean_row[i] for i in range(1,len(mean_row))] difference_row.insert(0,row[0]) difference_list.append(difference_row) except:pass difference_data_frame=pandas.DataFrame(difference_list,columns=difference_options["column_names"]) return difference_data_frame def return_history_key(calrep_model): "Returns a key for the history dictionary given a calrep model" model=calrep_model.__class__.__name__ #print model if re.search('Calrep|DUT',model): if re.search('OnePortCalrep',model): return '1-port calrep' elif re.search('TwoPortCalrep',model): return '2-port calrep' elif re.search('PowerCalrep',model): if calrep_model.options["column_names"]==POWER_3TERM_COLUMN_NAMES: return 'power 3term calrep' elif calrep_model.options["column_names"]==POWER_4TERM_COLUMN_NAMES: return 'power 4term calrep' elif re.search('OnePortDUT',model): return 'power 3term calrep' else: raise TypeError("Must be a calrep model, such as OnePortCalrepModel, etc. ") def raw_comparison_plot_with_residuals(raw_nist,mean_frame,difference_frame,**options): """Creates a comparison plot given a RawModel object and a pandas.DataFrame mean frame and difference frame""" defaults={"display_mean":True, "display_difference":True, "display_raw":True, "display_legend":True, "save_plot":False, "directory":None, "specific_descriptor":raw_nist.metadata["Device_Id"]+"_Check_Standard", "general_descriptor":"Plot","file_name":None} comparison_plot_options={} for key,value in defaults.items(): comparison_plot_options[key]=value for key,value in options.items(): comparison_plot_options[key]=value column_names=mean_frame.columns.tolist() number_rows=int(len(column_names)/2) fig, compare_axes = plt.subplots(nrows=number_rows, ncols=2, sharex='col',figsize=(8,6),dpi=80) measurement_date=raw_nist.metadata["Measurement_Date"] diff_axes=[] for ax in compare_axes.flat: diff_axes.append(ax.twinx()) #diff_axes=[diff_ax0,diff_ax1,diff_ax2,diff_ax3,diff_ax4,diff_ax5] if comparison_plot_options["display_difference"]: for index,ax in enumerate(diff_axes): ax.plot(difference_frame['Frequency'].tolist(),difference_frame[column_names[index+1]].tolist(),'r-x') ax.set_ylabel('Difference',color='red') if re.search('mag',column_names[index+1]): ax.set_ylim(-.02,.02) #ax.legend_.remove() for index, ax in enumerate(compare_axes.flat): if comparison_plot_options["display_raw"]: ax.plot(raw_nist.get_column('Frequency'),raw_nist.get_column(column_names[index+1]), 'k-o',label=measurement_date) if comparison_plot_options["display_mean"]: ax.plot(mean_frame['Frequency'].tolist(),mean_frame[column_names[index+1]].tolist(),'gs',label='Mean') ax.set_title(column_names[index+1]) if comparison_plot_options["display_legend"]: ax.legend(loc=1,fontsize='8') #ax.xaxis.set_visible(False) if re.search('arg',column_names[index+1]): ax.set_ylabel('Phase(Degrees)',color='green') elif re.search('mag',column_names[index+1]): ax.set_ylabel(r'|${\Gamma} $|',color='green') #ax.sharex(diff_axes[index]) compare_axes.flat[-2].set_xlabel('Frequency(GHz)',color='k') compare_axes.flat[-1].set_xlabel('Frequency(GHz)',color='k') fig.subplots_adjust(hspace=0) fig.suptitle(raw_nist.metadata["Device_Id"]+"\n",fontsize=18,fontweight='bold') plt.tight_layout() if comparison_plot_options["file_name"] is None: file_name=auto_name(specific_descriptor=comparison_plot_options["specific_descriptor"], general_descriptor=comparison_plot_options["general_descriptor"], directory=comparison_plot_options["directory"],extension='png',padding=3) else: file_name=comparison_plot_options["file_name"] if comparison_plot_options["save_plot"]: #print file_name plt.savefig(os.path.join(comparison_plot_options["directory"],file_name)) else: plt.show() return fig def calrep_history_plot(calrep_model,history_frame,**options): """Given a calrep_model and a history frame calrep_history_plot plots the file against any other in history frame (pandas.DataFrame) with dates""" defaults={"display_legend":True, "save_plot":False, "directory":None, "specific_descriptor":calrep_model.metadata["Device_Id"]+"_Device_Measurement", "general_descriptor":"Plot", "file_name":None, "min_num":0, "max_num":None, "error_style":"area"} history_plot_options={} for key,value in defaults.items(): history_plot_options[key]=value for key,value in options.items(): history_plot_options[key]=value # The way we plot depends on the models model=calrep_model.__class__.__name__ # The new method relies on metadata and not the class if re.search("DataTable",model,re.IGNORECASE): try: if calrep_model.metadata["Measurement_Type"] in ['1-port']: model="OnePort" elif calrep_model.metadata["Measurement_Type"] in ['2-port']: model="TwoPort" elif re.search('Dry Cal|Thermistor|power',calrep_model.metadata["Measurement_Type"]): model="Power" except: pass device_history=history_frame[history_frame["Device_Id"]==calrep_model.metadata["Device_Id"]] unique_analysis_dates=sorted(device_history["Analysis_Date"].unique().tolist()) print(("{0} are {1}".format("unique_analysis_dates",unique_analysis_dates))) if re.search('Power',model): number_rows=2 column_names=['magS11','argS11','Efficiency','Calibration_Factor'] if calrep_model.options["column_names"]==POWER_3TERM_COLUMN_NAMES: error_names=['uMgS11','uAgS11','uEe','uCe'] elif calrep_model.options["column_names"]==POWER_4TERM_COLUMN_NAMES: error_names=['uMgS11','uAgS11','uEg','uCg'] table=calrep_model.joined_table elif re.search('OnePort',model): number_rows=1 column_names=['magS11','argS11'] error_names=['uMgS11','uAgS11'] table=calrep_model elif re.search('TwoPort',model): number_rows=3 column_names=['magS11','argS11','magS21','argS21','magS22','argS22'] error_names=['uMgS11','uAgS11','uMgS21','uAgS21','uMgS22','uAgS22'] table=calrep_model.joined_table fig, compare_axes = plt.subplots(nrows=number_rows, ncols=2, sharex='col',figsize=(8,6),dpi=80) for index, ax in enumerate(compare_axes.flat): #ax.xaxis.set_visible(False) if re.search('arg',column_names[index]): ax.set_ylabel('Phase(Degrees)',color='green') elif re.search('mag',column_names[index]): ax.set_ylabel(r'|${\Gamma} $|',color='green') ax.set_title(column_names[index]) # initial plot of x=table.get_column('Frequency') y=np.array(table.get_column(column_names[index])) error=np.array(table.get_column(error_names[index])) if re.search('bar',history_plot_options["error_style"],re.IGNORECASE): ax.errorbar(x,y,yerr=error,fmt='k--') for date_index,date in enumerate(unique_analysis_dates[history_plot_options["min_num"]:history_plot_options["max_num"]]): number_lines=len(unique_analysis_dates[history_plot_options["min_num"]:history_plot_options["max_num"]]) date_device_history=device_history[device_history["Analysis_Date"]==date] if not date_device_history.empty: x_date=date_device_history['Frequency'] y_date=np.array(date_device_history[column_names[index]].tolist()) error_date=np.array(date_device_history[error_names[index]].tolist()) #print("{0} is {1}".format("date_device_history",date_device_history)) #print("{0} is {1}".format("y_date",y_date)) #print("{0} is {1}".format("date",date)) date_color=(1-float(date_index+1)/number_lines,0,float(date_index+1)/number_lines,.5) ax.errorbar(x_date,y_date, yerr=error_date,color=date_color,label=date) elif re.search('area',history_plot_options["error_style"],re.IGNORECASE): ax.plot(x,y,'k--') ax.fill_between(x,y-error,y+error,edgecolor=(0,.0,.0,.25), facecolor=(.25,.25,.25,.1), linewidth=1) for date_index,date in enumerate(unique_analysis_dates[history_plot_options["min_num"]:history_plot_options["max_num"]]): number_lines=float(len(unique_analysis_dates[history_plot_options["min_num"]:history_plot_options["max_num"]])) #print("{0} is {1}".format("number_lines",number_lines)) #print("{0} is {1}".format("index",index)) #print("{0} is {1}".format("date_index",date_index)) date_color=(1-float(date_index+1)/number_lines,0,float(date_index+1)/number_lines,.5) #print("{0} is {1}".format("date_color",date_color)) date_device_history=device_history[device_history["Analysis_Date"]==date] x_date=date_device_history['Frequency'] y_date=np.array(date_device_history[column_names[index]].tolist()) error_date=np.array(date_device_history[error_names[index]].tolist()) ax.plot(x_date,y_date, color=date_color,label=date) #ax.sharex(diff_axes[index]) if history_plot_options["display_legend"]: ax.legend(loc=1,fontsize='8') compare_axes.flat[-2].set_xlabel('Frequency(GHz)',color='k') compare_axes.flat[-1].set_xlabel('Frequency(GHz)',color='k') fig.subplots_adjust(hspace=0) fig.suptitle(calrep_model.metadata["Device_Id"]+"\n",fontsize=18,fontweight='bold') plt.tight_layout() # Dealing with the save option if history_plot_options["file_name"] is None: file_name=auto_name(specific_descriptor=history_plot_options["specific_descriptor"], general_descriptor=history_plot_options["general_descriptor"], directory=history_plot_options["directory"],extension='png',padding=3) else: file_name=history_plot_options["file_name"] if history_plot_options["save_plot"]: #print file_name plt.savefig(os.path.join(history_plot_options["directory"],file_name)) else: plt.show() return fig def compare_s2p_plots(list_S2PV1,**options): """compare_s2p_plot compares a list of s2p files plotting each on the same axis for all 8 possible components. The format of plots can be changed by passing options as key words in a key word dictionary. """ defaults={"format":"MA", "display_legend":True, "save_plot":False, "directory":None, "specific_descriptor":"comparison_Plot", "general_descriptor":"Plot", "file_name":None, "labels":None, "title":None, "grid":True} comparison_plot_options={} for key,value in defaults.items(): comparison_plot_options[key]=value for key,value in options.items(): comparison_plot_options[key]=value # create a set of 8 subplots #plt.hold(True) fig, compare_axes = plt.subplots(nrows=4, ncols=2, figsize=(8,6),dpi=80) if comparison_plot_options["labels"] is None: labels=[s2p.path for s2p in list_S2PV1] else: labels=comparison_plot_options["labels"] for s2p_index,s2p in enumerate(list_S2PV1): # start by changing the format of all the s2p s2p.change_data_format(comparison_plot_options["format"]) column_names=s2p.column_names[1:] for index, ax in enumerate(compare_axes.flat): #ax.xaxis.set_visible(False) if re.search('arg',column_names[index]): ax.set_ylabel('Phase(Degrees)',color='black') elif re.search('mag',column_names[index]): ax.set_ylabel(r'|{0}|'.format(column_names[index].replace("mag","")),color='green') if comparison_plot_options["grid"]: ax.grid(True) ax.set_title(column_names[index]) # initial plot of x=s2p.get_column('Frequency') y=np.array(s2p.get_column(column_names[index])) ax.plot(x,y,label=labels[s2p_index]) if comparison_plot_options["display_legend"]: if index == 1: ax.legend(loc="center left", bbox_to_anchor=(1.05, .5), shadow=True, fancybox=True) compare_axes.flat[-2].set_xlabel('Frequency(GHz)',color='k') compare_axes.flat[-1].set_xlabel('Frequency(GHz)',color='k') if comparison_plot_options["title"]: fig.suptitle(comparison_plot_options["title"]) fig.subplots_adjust(hspace=0) plt.tight_layout() # Dealing with the save option if comparison_plot_options["file_name"] is None: file_name=auto_name(specific_descriptor=comparison_plot_options["specific_descriptor"], general_descriptor=comparison_plot_options["general_descriptor"], directory=comparison_plot_options["directory"] ,extension='png',padding=3) else: file_name=comparison_plot_options["file_name"] if comparison_plot_options["save_plot"]: #print file_name plt.savefig(os.path.join(comparison_plot_options["directory"],file_name)) else: plt.show() return fig def return_calrep_value_column_names(calrep_model): """Returns the column names for values in a calrep model. For example if the calrep model is a 1-port, then it returns ["magS11","argS11"] """ measurement_type = calrep_model.metadata["Measurement_Type"] if re.search('1|one', measurement_type, re.IGNORECASE): column_names = ['magS11', 'argS11'] elif re.search('2|two', measurement_type, re.IGNORECASE): if re.search('NR', measurement_type, re.IGNORECASE): column_names = ['magS11', 'argS11', 'magS12', 'argS12', 'magS21', 'argS21', 'magS22', 'argS22'] else: column_names = ['magS11', 'argS11', 'magS21', 'argS21', 'magS22', 'argS22'] else: column_names = ['magS11', 'argS11', 'Efficiency'] return column_names def return_calrep_error_column_names(calrep_model_value_columns,error_suffix='g'): """Returns the column names for errors in a calrep model. For example if the calrep model value column names are ["magS11","argS11"], then it returns ["uMgS11","uAgS11"] """ error_columns = [] for column in calrep_model_value_columns[:]: error_column = column.replace("mag", "uM" + error_suffix) error_column = error_column.replace("arg", "uA" + error_suffix) error_column = error_column.replace("Efficiency", "uE" + error_suffix) error_columns.append(error_column) return error_columns def plot_frequency_model(frequency_model, **options): """Plots any table with frequency as its x-axis and column_names as the x-axis in a series of subplots""" defaults = {"display_legend": False, "save_plot": False, "directory": None, "specific_descriptor": "Frequency_Model", "general_descriptor": "Plot", "file_name": None, "plots_per_column": 2, "plot_format": 'b-o', "share_x": False, "subplots_title": True, "plot_title": None, "plot_size": (8, 6), "dpi": 80} plot_options = {} for key, value in defaults.items(): plot_options[key] = value for key, value in options.items(): plot_options[key] = value if type(frequency_model) in [pandas.DataFrame]: frequency_model = DataFrame_to_AsciiDataTable(frequency_model) x_data = np.array(frequency_model["Frequency"]) y_data_columns = frequency_model.column_names[:] y_data_columns.remove("Frequency") number_plots = len(y_data_columns) number_columns = plot_options["plots_per_column"] number_rows = int(round(float(number_plots) / float(number_columns))) figure, axes = plt.subplots(ncols=number_columns, nrows=number_rows, sharex=plot_options["share_x"], figsize=plot_options["plot_size"], dpi=plot_options["dpi"]) for plot_index, ax in enumerate(axes.flat): if plot_index < number_plots: y_data = np.array(frequency_model[y_data_columns[plot_index]]) ax.plot(x_data, y_data, plot_options["plot_format"], label=y_data_columns[plot_index]) if plot_options["display_legend"]: ax.legend() if plot_options["subplots_title"]: ax.set_title(y_data_columns[plot_index]) else: pass if plot_options["plot_title"]: plt.suptitle(plot_options["plot_title"]) plt.tight_layout() # Dealing with the save option if plot_options["file_name"] is None: file_name = auto_name(specific_descriptor=plot_options["specific_descriptor"], general_descriptor=plot_options["general_descriptor"], directory=plot_options["directory"], extension='png', padding=3) else: file_name = plot_options["file_name"] if plot_options["save_plot"]: # print file_name plt.savefig(os.path.join(plot_options["directory"], file_name)) else: plt.show() return figure def plot_frequency_model_histogram(frequency_model, **options): """Plots any table with frequency as its x-axis and column_names as the x-axis in a series of subplots""" defaults = {"display_legend": False, "save_plot": False, "directory": None, "specific_descriptor": "Frequency_Model", "general_descriptor": "Plot", "file_name": None, "plots_per_column": 2, "plot_format": 'b-o', "share_x": False, "subplots_title": True, "plot_title": None, "plot_size": (8, 6), "dpi": 80, "non_plotable_text": "Not Plotable"} plot_options = {} for key, value in defaults.items(): plot_options[key] = value for key, value in options.items(): plot_options[key] = value if type(frequency_model) in [pandas.DataFrame]: frequency_model = DataFrame_to_AsciiDataTable(frequency_model) x_data = np.array(frequency_model["Frequency"]) y_data_columns = frequency_model.column_names[:] y_data_columns.remove("Frequency") number_plots = len(y_data_columns) number_columns = plot_options["plots_per_column"] number_rows = int(round(float(number_plots) / float(number_columns))) figure, axes = plt.subplots(ncols=number_columns, nrows=number_rows, sharex=plot_options["share_x"], figsize=plot_options["plot_size"], dpi=plot_options["dpi"]) for plot_index, ax in enumerate(axes.flat): if plot_index < number_plots: try: y_data =
np.array(frequency_model[y_data_columns[plot_index]])
numpy.array
# %% Change working directory from the workspace root to the ipynb file location. Turn this addition off with the DataScience.changeDirOnImportExport setting # ms-python.python added from mgcpy.independence_tests.mdmr import MDMR from mgcpy.independence_tests.kendall_spearman import KendallSpearman from mgcpy.independence_tests.hhg import HHG from mgcpy.independence_tests.rv_corr import RVCorr from mgcpy.independence_tests.mgc import MGC from mgcpy.benchmarks.simulations import * from mgcpy.benchmarks.power import power, power_given_data from mgcpy.independence_tests.dcorr import DCorr import sys import os try: os.chdir(os.path.join(os.getcwd(), 'demos')) print(os.getcwd()) except: pass # %% [markdown] # This notebook contains the reproduction of the power curves in figure 2 of the paper "Discovering and Deciphering Relationships Across Disparate Data Modalities". Plots here include: # * the difference between the power computed using ``mgcpy`` and the paper results, using data pre-generated with the matlab code in the github repository ``mgc-paper`` # * partially completed power curves generated using ``mgcpy`` # %% [markdown] # ### How to add new power curves? # * Read the comments in the following functions and make edits accordingly # * For power curves with increasing dimensions # * fill_params_dict_list_dimensions() # * For power curves with increasing sample size # * fill_params_dict_list_sample_size() # * plot_all_curves for plotting # * Run the block of code as indicated in markdown # * Note that you don't need to run all the previous tests e.g. mgc, dcorr, etc. They are already stored. # %% import numpy as np from scipy.spatial.distance import pdist, squareform import seaborn as sns import matplotlib.pyplot as plt import pickle from numpy import genfromtxt import pandas as pd from sklearn.externals.joblib import Parallel, delayed import multiprocessing as mp import scipy.io #from tqdm import tqdm_notebook as tqdm import h5py import math from scipy.ndimage.filters import gaussian_filter1d # %% sns.color_palette('Set1') sns.set(color_codes=True, style='white', context='talk', font_scale=2) # %% module_path = '/Users/spanda/Essential/580.638 - NeuroData II/mgcpy' if module_path not in sys.path: sys.path.append(module_path) # %% def find_dim(sim_name): dim = 0 if sim_name in ['joint_normal', 'sine_4pi', 'sine_16pi', 'multi_noise']: dim = 10 elif sim_name in ['step', 'spiral', 'circle', 'ellipse', 'quadratic', 'w_shape', 'two_parabolas', 'fourth_root']: dim = 20 elif sim_name in ['multi_indept', 'bernoulli', 'log']: dim = 100 elif sim_name in ['linear', 'exponential', 'cubic']: dim = 1000 else: dim = 40 return dim # %% simulations = {'joint_normal': (joint_sim, 4), 'sine_4pi': (sin_sim, 12), 'sine_16pi': (sin_sim, 13), 'multi_noise': (multi_noise_sim, 19), 'step': (step_sim, 5), 'spiral': (spiral_sim, 8), 'circle': (circle_sim, 16), 'ellipse': (circle_sim, 17), 'diamond': (square_sim, 18), 'log': (log_sim, 10), 'quadratic': (quad_sim, 6), 'w_shape': (w_sim, 7), 'two_parabolas': (two_parab_sim, 15), 'fourth_root': (root_sim, 11), 'multi_indept': (multi_indep_sim, 20), 'bernoulli': (ubern_sim, 9), 'square': (square_sim, 14), 'linear': (linear_sim, 1), 'exponential': (exp_sim, 2), 'cubic': (cub_sim, 3) } # %% def find_dim_range(dim): if dim < 20: lim = 10 else: lim = 20 dim_range = np.arange(math.ceil(dim/lim), dim+1, math.ceil(dim/lim)) if math.ceil(dim/lim) != 1: dim_range = np.insert(dim_range, 0, 1) lim = dim_range.shape[0] return (lim, dim_range) # %% [markdown] # ## Parallel code # %% def power_vs_dimension_parallel(params_dict): test = params_dict['independence_test'] sim = params_dict['simulation_type'] print(sim, test.get_name()) dim = params_dict['dim'] lim, dim_range = find_dim_range(dim) estimated_power = np.zeros(lim) for i in range(lim): estimated_power[i] = power(test, sim, num_samples=100, num_dimensions=dim_range[i]) np.savetxt('../mgcpy/benchmarks/python_power_curves_dimensions/fast_mgc/{}_{}_dimensions.csv'.format(sim, test.get_name()), estimated_power, delimiter=',') print('{} {} finished'.format(sim, test.get_name())) return (params_dict, estimated_power) # %% def fill_params_dict_list_dimensions(): mcorr = DCorr(which_test='unbiased') dcorr = DCorr(which_test='biased') mantel = DCorr(which_test='mantel') mgc = MGC() rv_corr = RVCorr(which_test='rv') hhg = HHG() cca = RVCorr(which_test='cca') mdmr = MDMR() # initialize additional test # add the test that you wish to run in the `independence_tests` list independence_tests = [] # [mgc, mcorr, dcorr, mantel, rv_corr, cca] params_dict_list = [] for sim_name, sim_func in simulations.items(): for test in independence_tests: params_dict = {'independence_test': test, 'simulation_type': sim_func[1], 'dim': find_dim(sim_name)} params_dict_list.append(params_dict) return params_dict_list # %% def power_vs_sample_size_parallel(params_dict): sample_sizes = [i for i in range(5, 101, 5)] estimated_power = np.zeros(len(sample_sizes)) test = params_dict['independence_test'] sim = params_dict['simulation_type'] print(sim, test.get_name()) for i in range(len(sample_sizes)): estimated_power[i] = power_given_data(test, sim, data_type='sample_size', num_samples=sample_sizes[i], num_dimensions=1) np.savetxt('../mgcpy/benchmarks/python_power_curves_sample_size/fast_mgc/{}_{}_sample_size.csv'.format(sim, test.get_name()), estimated_power, delimiter=',') print('{} {} finished'.format(sim, test.get_name())) return (params_dict, estimated_power) # %% def fill_params_dict_list_sample_sizes(): mcorr = DCorr(which_test='unbiased') dcorr = DCorr(which_test='biased') mantel = DCorr(which_test='mantel') mgc = MGC() hhg = HHG() pearson = RVCorr(which_test='pearson') independence_tests = [] # [mgc, mcorr, dcorr, mantel, pearson] params_dict_list = [] for sim_name, sim_func in simulations.items(): for test in independence_tests: params_dict = {'independence_test': test, 'simulation_type': sim_func[1]} params_dict_list.append(params_dict) return params_dict_list # %% def fast_power_vs_dimension_parallel(params_dict): test = params_dict['independence_test'] sim = params_dict['simulation_type'] print(sim, test.get_name()) dim = params_dict['dim'] lim, dim_range = find_dim_range(dim) estimated_power =
np.zeros(lim)
numpy.zeros
# Copyright 2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typed_python import ( Bool, Int8, Int16, Int32, Int64, UInt8, UInt16, UInt32, UInt64, Float32, Float64, NoneType, TupleOf, ListOf, OneOf, Tuple, NamedTuple, Dict, ConstDict, Alternative, serialize, deserialize, Value, Class, Member, TypeFilter, UndefinedBehaviorException, Function ) from typed_python.test_util import currentMemUsageMb import typed_python._types as _types import psutil import unittest import traceback import time import numpy import os import sys def typeFor(t): assert not isinstance(t, list), t return type(t) def typeForSeveral(t): ts = set(typeFor(a) for a in t) if len(ts) == 1: return list(ts)[0] return OneOf(*ts) def makeTupleOf(*args): if not args: return TupleOf(int)() return TupleOf(typeForSeveral(args))(args) def makeNamedTuple(**kwargs): if not kwargs: return NamedTuple()() return NamedTuple(**{k:typeFor(v) for k,v in kwargs.items()})(**kwargs) def makeTuple(*args): if not args: return Tuple()() return Tuple(*[typeFor(v) for v in args])(args) def makeDict(d): if not d: return ConstDict(int,int)() return ConstDict(typeForSeveral(d.keys()), typeForSeveral(d.values()))(d) def makeAlternative(severalDicts): types = list( set( tuple( (k,typeFor(v)) for k,v in ntDict.items() ) for ntDict in severalDicts ) ) alt = Alternative("Alt", **{ "a_%s" % i: dict(types[i]) for i in range(len(types)) }) res = [] for thing in severalDicts: did = False for i in range(len(types)): try: res.append(getattr(alt,"a_%s" % i)(**thing)) did = True except Exception: pass if did: break assert len(res) == len(severalDicts) return res def choice(x): #numpy.random.choice([1,(1,2)]) blows up because it looks 'multidimensional' #so we have to pick from a list of indices if not isinstance(x,list): x = list(x) return x[numpy.random.choice(list(range(len(x))))] class RandomValueProducer: def __init__(self): self.levels = {0: [b'1', b'', '2', '', 0, 1, 0.0, 1.0, None, False, True, "a ", "a string", "b string", "b str"]} def addEvenly(self, levels, count): for level in range(1, levels+1): self.addValues(level, count) def all(self): res = [] for valueList in self.levels.values(): res.extend(valueList) return res def addValues(self, level, count, sublevels = None): assert level > 0 if sublevels is None: sublevels = list(range(level)) sublevels = [x for x in sublevels if x in self.levels] assert sublevels def picker(): whichLevel = choice(sublevels) try: return choice(self.levels[whichLevel]) except Exception: print(self.levels[whichLevel]) raise for _ in range(count): val = self.randomValue(picker) if not isinstance(val,list): val = [val] self.levels.setdefault(level, []).extend(val) def randomValue(self, picker): def randomTuple(): return makeTuple(*[picker() for i in range(choice([0,1,2,3,4]))]) def randomNamedTupleDict(): return {"x_%s" % i: picker() for i in range(choice([0,1,2,3,4]))} def randomNamedTuple(): return makeNamedTuple(**randomNamedTupleDict()) def randomDict(): return makeDict({picker():picker() for i in range(choice([0,1,2,3,4]))}) def randomTupleOf(): return makeTupleOf(*[picker() for i in range(choice([0,1,2,3,4]))]) def randomAlternative(): return makeAlternative([randomNamedTupleDict() for i in range(choice([1,2,3,4]))]) return choice([randomTuple,randomNamedTuple,randomDict,randomTupleOf,randomAlternative,picker])() def pickRandomly(self): return choice(self.levels[choice(list(self.levels))]) class NativeTypesTests(unittest.TestCase): def check_expected_performance(self, elapsed, expected=1.0): if os.environ.get('TRAVIS_CI', None) is not None: expected = 2 * expected self.assertTrue( elapsed < expected, "Slow Performance: expected to take {expected} sec, but took {elapsed}" .format(expected=expected, elapsed=elapsed) ) def test_objects_are_singletons(self): self.assertTrue(Int8 is Int8) self.assertTrue(NoneType is NoneType) def test_object_binary_compatibility(self): ibc = _types.isBinaryCompatible self.assertTrue(ibc(NoneType, NoneType)) self.assertTrue(ibc(Int8, Int8)) NT = NamedTuple(a=int,b=int) class X(NamedTuple(a=int,b=int)): pass class Y(NamedTuple(a=int,b=int)): pass self.assertTrue(ibc(X, X)) self.assertTrue(ibc(X, Y)) self.assertTrue(ibc(X, NT)) self.assertTrue(ibc(Y, NT)) self.assertTrue(ibc(NT, Y)) self.assertFalse(ibc(OneOf(int, float), OneOf(float, int))) self.assertTrue(ibc(OneOf(int, X), OneOf(int, Y))) self.assertIsInstance(OneOf(None, X)(Y()), X) self.assertIsInstance(NamedTuple(x=OneOf(None, X))(x=Y()).x, X) def test_binary_compatibility_incompatible_alternatives(self): ibc = _types.isBinaryCompatible A1 = Alternative("A1", X={'a': int}, Y={'b': float}) A2 = Alternative("A2", X={'a': int}, Y={'b': str}) self.assertTrue(ibc(A1, A1.X)) self.assertTrue(ibc(A1, A1.Y)) self.assertTrue(ibc(A1.Y, A1.Y)) self.assertTrue(ibc(A1.Y, A1)) self.assertTrue(ibc(A1.X, A1)) self.assertFalse(ibc(A1.X, A1.Y)) self.assertFalse(ibc(A1, A2)) self.assertFalse(ibc(A1.X, A2.X)) self.assertFalse(ibc(A1.Y, A2.Y)) def test_binary_compatibility_compatible_alternatives(self): ibc = _types.isBinaryCompatible A1 = Alternative("A1", X={'a': int}, Y={'b': float}) A2 = Alternative("A2", X={'a': int}, Y={'b': float}) self.assertTrue(ibc(A1.X, A2.X)) self.assertTrue(ibc(A1.Y, A2.Y)) self.assertFalse(ibc(A1.X, A2.Y)) self.assertFalse(ibc(A1.Y, A2.X)) def test_object_bytecounts(self): self.assertEqual(_types.bytecount(NoneType), 0) self.assertEqual(_types.bytecount(Int8), 1) self.assertEqual(_types.bytecount(Int64), 8) def test_type_stringification(self): for t in ['Int8', 'NoneType']: self.assertEqual(str(getattr(_types,t)()), "<class '%s'>" % t) def test_tuple_of(self): tupleOfInt = TupleOf(int) i = tupleOfInt(()) i = tupleOfInt((1,2,3)) self.assertEqual(len(i), 3) self.assertEqual(tuple(i), (1,2,3)) for x in range(10): self.assertEqual( tuple(tupleOfInt(tuple(range(x)))), tuple(range(x)) ) with self.assertRaisesRegex(AttributeError, "do not accept attributes"): tupleOfInt((1,2,3)).x = 2 def test_one_of_alternative(self): X = Alternative("X", V={'a': int}) O = OneOf(None, X) self.assertEqual(O(X.V(a=10)), X.V(a=10)) def test_one_of_py_subclass(self): class X(NamedTuple(x=int)): def f(self): return self.x O = OneOf(None, X) self.assertEqual(NamedTuple(x=int)(x=10).x, 10) self.assertEqual(X(x=10).f(), 10) self.assertEqual(O(X(x=10)).f(), 10) def test_tuple_of_tuple_of(self): tupleOfInt = TupleOf(int) tupleOfTupleOfInt = TupleOf(tupleOfInt) pyVersion = (1,2,3),(1,2,3,4) nativeVersion = tupleOfTupleOfInt(pyVersion) self.assertEqual(len(nativeVersion), 2) self.assertEqual(len(nativeVersion[0]), 3) self.assertEqual(tuple(tuple(x) for x in nativeVersion), pyVersion) bigTup = tupleOfInt(list(range(1000))) t0 = time.time() t = (bigTup,bigTup,bigTup,bigTup,bigTup) for i in range(1000000): tupleOfTupleOfInt(t) elapsed = time.time() - t0 print("Took ", elapsed, " to do 1mm") self.check_expected_performance(elapsed) def test_default_initializer_oneof(self): x = OneOf(None, int) self.assertTrue(x() is None, repr(x())) def test_tuple_of_various_things(self): for thing, typeOfThing in [("hi", str), (b"somebytes", bytes), (1.0, float), (2, int), (None, type(None)) ]: tupleType = TupleOf(typeOfThing) t = tupleType((thing,)) self.assertTrue(type(t[0]) is typeOfThing) self.assertEqual(t[0], thing) def test_tuple_assign_fails(self): with self.assertRaisesRegex(TypeError, "does not support item assignment"): (1,2,3)[10] = 20 with self.assertRaisesRegex(TypeError, "does not support item assignment"): TupleOf(int)((1,2,3))[10] = 20 def test_list_of(self): L = ListOf(int) self.assertEqual(L.__qualname__, "ListOf(Int64)") l = L([1,2,3,4]) self.assertEqual(l[0], 1) self.assertEqual(l[-1], 4) l[0] = 10 self.assertEqual(l[0], 10) l[-1] = 11 self.assertEqual(l[3], 11) with self.assertRaisesRegex(IndexError, "index out of range"): l[100] = 20 l2 = L((10,2,3,11)) self.assertEqual(l,l2) self.assertNotEqual(l,(10,2,3,11)) self.assertEqual(l,[10,2,3,11]) self.assertEqual(str(l),str([10,2,3,11])) l3 = l + l2 self.assertEqual(l3, [10,2,3,11,10,2,3,11]) l3.append(23) self.assertEqual(l3, [10,2,3,11,10,2,3,11, 23]) def test_list_resize(self): l = ListOf(TupleOf(int))() l.resize(10) self.assertEqual(l.reserved(), 10) self.assertEqual(len(l), 10) emptyTup = TupleOf(int)() aTup = TupleOf(int)((1,2,3)) self.assertEqual(list(l), [emptyTup] * 10) l.resize(20, aTup) self.assertEqual(list(l), [emptyTup] * 10 + [aTup] * 10) self.assertEqual(_types.refcount(aTup), 11) self.assertEqual(l.pop(15), aTup) self.assertEqual(l.pop(5), emptyTup) self.assertEqual(_types.refcount(aTup), 10) l.resize(15) with self.assertRaises(IndexError): l.pop(100) self.assertEqual(_types.refcount(aTup), 7) #6 in the list because we popped at '5' l.pop() self.assertEqual(_types.refcount(aTup), 6) #this pops one of the empty tuples l.pop(-10) self.assertEqual(_types.refcount(aTup), 6) l.clear() self.assertEqual(len(l), 0) def test_one_of(self): o = OneOf(None, str) self.assertEqual(o("hi"), "hi") self.assertTrue(o(None) is None) o = OneOf(None, "hi", 1.5, 1, True, b"hi2") self.assertTrue(o(None) is None) self.assertTrue(o("hi") == "hi") self.assertTrue(o(b"hi2") == b"hi2") self.assertTrue(o(1.5) == 1.5) self.assertTrue(o(1) is 1) self.assertIs(o(True), True) with self.assertRaises(TypeError): o("hi2") with self.assertRaises(TypeError): o(b"hi") with self.assertRaises(TypeError): o(3) with self.assertRaises(TypeError): o(False) def test_ordering(self): o = OneOf(None, "hi", 1.5, 1, True, b"hi2") self.assertIs(o(True), True) def test_one_of_flattening(self): self.assertEqual(OneOf(OneOf(None, 1.0), OneOf(2.0, 3.0)), OneOf(None, 1.0, 2.0, 3.0)) def test_one_of_order_matters(self): self.assertNotEqual(OneOf(1.0, 2.0), OneOf(2.0, 1.0)) def test_type_filter(self): EvenInt = TypeFilter(int, lambda i: i % 2 == 0) self.assertTrue(isinstance(2, EvenInt)) self.assertFalse(isinstance(1, EvenInt)) self.assertFalse(isinstance(2.0, EvenInt)) EvenIntegers = TupleOf(EvenInt) e = EvenIntegers(()) e2 = e + (2,4,0) with self.assertRaises(TypeError): EvenIntegers((1,)) with self.assertRaises(TypeError): e2 + (1,) def test_tuple_of_one_of_fixed_size(self): t = TupleOf(OneOf(0,1,2,3,4)) ints = tuple([x % 5 for x in range(1000000)]) typedInts = t(ints) self.assertEqual(len(serialize(t, typedInts)), len(ints) + 8) #4 bytes for size of list, 4 bytes for frame size self.assertEqual(tuple(typedInts), ints) def test_tuple_of_one_of_multi(self): t = TupleOf(OneOf(int, bool)) someThings = tuple([100 + x % 5 if x % 17 != 0 else bool(x%19) for x in range(1000000)]) typedThings = t(someThings) self.assertEqual( len(serialize(t, typedThings)), sum(2 if isinstance(t,bool) else 9 for t in someThings) + 8 ) self.assertEqual(tuple(typedThings), someThings) def test_compound_oneof(self): producer = RandomValueProducer() producer.addEvenly(1000, 2) for _ in range(1000): vals = (producer.pickRandomly(), producer.pickRandomly(), producer.pickRandomly()) a = OneOf(vals[0], vals[1], type(vals[2])) for v in vals: self.assertEqual(a(v), v, (a(v),v)) tup = TupleOf(a) tupInst = tup(vals) for i in range(len(vals)): self.assertEqual(tupInst[i], vals[i], vals) def test_one_of_conversion_failure(self): o = OneOf(None, str) with self.assertRaises(TypeError): o(b"bytes") def test_one_of_in_tuple(self): t = Tuple(OneOf(None, str), str) self.assertEqual(t(("hi","hi2"))[0], "hi") self.assertEqual(t(("hi","hi2"))[1], "hi2") self.assertEqual(t((None,"hi2"))[1], "hi2") self.assertEqual(t((None,"hi2"))[0], None) with self.assertRaises(TypeError): t((None,None)) with self.assertRaises(IndexError): t((None,"hi2"))[2] def test_one_of_composite(self): t = OneOf(TupleOf(str), TupleOf(float)) self.assertIsInstance(t((1.0,2.0)), TupleOf(float)) self.assertIsInstance(t(("1.0","2.0")), TupleOf(str)) with self.assertRaises(TypeError): t((1.0,"2.0")) def test_named_tuple(self): t = NamedTuple(a=int, b=int) with self.assertRaisesRegex(AttributeError, "object has no attribute"): t().asdf with self.assertRaisesRegex(AttributeError, "immutable"): t().a = 1 self.assertEqual(t()[0], 0) self.assertEqual(t().a, 0) self.assertEqual(t()[1], 0) self.assertEqual(t(a=1,b=2).a, 1) self.assertEqual(t(a=1,b=2).b, 2) def test_named_tuple_construction(self): t = NamedTuple(a=int, b=int) self.assertEqual(t(a=10).a, 10) self.assertEqual(t(a=10).b, 0) self.assertEqual(t(a=10,b=2).a, 10) self.assertEqual(t(a=10,b=2).b, 2) self.assertEqual(t({'a': 10,'b':2}).a, 10) self.assertEqual(t({'a': 10,'b':2}).b, 2) self.assertEqual(t({'b':2}).a, 0) self.assertEqual(t({'b':2}).b, 2) with self.assertRaises(TypeError): t({'c':10}) with self.assertRaises(TypeError): t(c=10) def test_named_tuple_str(self): t = NamedTuple(a=str, b=str) self.assertEqual(t(a='1',b='2').a, '1') self.assertEqual(t(a='1',b='2').b, '2') self.assertEqual(t(b='2').a, '') self.assertEqual(t(b='2').b, '2') self.assertEqual(t().a, '') self.assertEqual(t().b, '') def test_tuple_of_string_perf(self): t = NamedTuple(a=str, b=str) t0 = time.time() for i in range(1000000): t(a="a", b="b").a elapsed = time.time() - t0 print("Took ", elapsed, " to do 1mm") self.check_expected_performance(elapsed) def test_comparisons_in_one_of(self): t = OneOf(None, float) def map(x): if x is None: return -1000000.0 else: return x lt = lambda a,b: map(a) < map(b) le = lambda a,b: map(a) <= map(b) eq = lambda a,b: map(a) == map(b) ne = lambda a,b: map(a) != map(b) gt = lambda a,b: map(a) > map(b) ge = lambda a,b: map(a) >= map(b) funcs = [lt,le,eq,ne,gt,ge] ts = [None,1.0,2.0,3.0] for f in funcs: for t1 in ts: for t2 in ts: self.assertTrue(f(t1,t2) is f(t(t1),t(t2))) def test_comparisons_equivalence(self): t = TupleOf(OneOf(None, str, bytes, float, int, bool, TupleOf(int)),) def lt(a,b): return a < b def le(a,b): return a <= b def eq(a,b): return a == b def ne(a,b): return a != b def gt(a,b): return a > b def ge(a,b): return a >= b funcs = [lt,le,eq,ne,gt,ge] tgroups = [ [1.0,2.0,3.0], [1,2,3], [True,False], ["a","b","ab","bb","ba","aaaaaaa","","asdf"], ["1","2","3","12","13","23","24","123123", "0", ""], [b"a",b"b",b"ab",b"bb",b"ba",b"aaaaaaa",b"",b"asdf"], [(1,2),(1,2,3),(),(1,1),(1,)] ] for ts in tgroups: for f in funcs: for t1 in ts: for t2 in ts: self.assertTrue(f(t1,t2) is f(t((t1,)),t((t2,))), (f, t1,t2, f(t1,t2), f(t((t1,)),t((t2,)))) ) def test_const_dict(self): t = ConstDict(str,str) self.assertEqual(len(t()), 0) self.assertEqual(len(t({})), 0) self.assertEqual(len(t({'a':'b'})), 1) self.assertEqual(t({'a':'b'})['a'], 'b') self.assertEqual(t({'a':'b','b':'c'})['b'], 'c') self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b'})))) self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b','b':'c'})))) self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d'})))) self.assertTrue("a" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d','d':'e'})))) self.assertTrue("c" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d','def':'e'})))) self.assertTrue("def" in deserialize(t,serialize(t, t({'a':'b','b':'c','c':'d','def':'e'})))) def test_const_dict_get(self): a = ConstDict(str,str)({'a':'b','c':'d'}) self.assertEqual(a.get('a'),'b') self.assertEqual(a.get('asdf'),None) self.assertEqual(a.get('asdf',20),20) def test_const_dict_items_keys_and_values(self): a = ConstDict(str,str)({'a':'b','c':'d'}) self.assertEqual(sorted(a.items()), [('a','b'),('c','d')]) self.assertEqual(sorted(a.keys()), ['a','c']) self.assertEqual(sorted(a.values()), ['b','d']) def test_empty_string(self): a = ConstDict(str,str)({'a':''}) print(a['a']) def test_dict_to_oneof(self): t = ConstDict(str,OneOf("A","B","ABCDEF")) a = t({'a':'A','b':'ABCDEF'}) self.assertEqual(a['a'], "A") self.assertEqual(a['b'], "ABCDEF") self.assertEqual(a, deserialize(t,serialize(t,a))) def test_deserialize_primitive(self): x = deserialize(str, serialize(str, "a")) self.assertTrue(isinstance(x,str)) def test_dict_containment(self): for _ in range(100): producer = RandomValueProducer() producer.addEvenly(20, 2) values = producer.all() for v in values: if str(type(v))[:17] == "<class 'ConstDict": v = deserialize(type(v), serialize(type(v), v)) for k in v: self.assertTrue(k in v) def test_named_tuple_from_dict(self): N = NamedTuple(x=int, y=str,z=OneOf(None,"hihi")) self.assertEqual(N().x, 0) self.assertEqual(N().y, "") self.assertEqual(N().z, None) self.assertEqual(N({}).x, 0) self.assertEqual(N({}).y, "") self.assertEqual(N({}).z, None) self.assertEqual(N({'x': 20}).x, 20) self.assertEqual(N({'x': 20, 'y': "30"}).y, "30") self.assertEqual(N({'y': "30", 'x': 20}).y, "30") self.assertEqual(N({'z': "hihi"}).z, "hihi") with self.assertRaises(Exception): N({'r': 'hi'}) N({'y': 'hi', 'z': "not hihi"}) N({'a': 0, 'b': 0, 'c': 0, 'd': 0}) def test_const_dict_mixed(self): t = ConstDict(str,int) self.assertTrue(t({"a":10})["a"] == 10) t = ConstDict(int, str) self.assertTrue(t({10:"a"})[10] == "a") def test_const_dict_comparison(self): t = ConstDict(str,str) self.assertEqual(t({'a':'b'}), t({'a':'b'})) self.assertLess(t({}), t({'a':'b'})) def test_const_dict_lookup(self): for type_to_use, vals in [ (int, list(range(20))), (bytes, [b'1', b'2', b'3', b'4', b'5']) ]: t = ConstDict(type_to_use, type_to_use) for _ in range(10): ks = list(vals) vs = list(vals) numpy.random.shuffle(ks) numpy.random.shuffle(vs) py_d = {} for i in range(len(ks)): py_d[ks[i]] = vs[i] typed_d = t(py_d) for k in py_d: self.assertEqual(py_d[k], typed_d[k]) last_k = None for k in typed_d: assert last_k is None or k > last_k, (k,last_k) last_k = k def test_const_dict_lookup_time(self): int_dict = ConstDict(int, int) d = int_dict({k:k for k in range(1000000)}) for k in range(1000000): self.assertTrue(k in d) self.assertTrue(d[k] == k) def test_const_dict_of_dict(self): int_dict = ConstDict(int, int) int_dict_2 = ConstDict(int_dict,int_dict) d = int_dict({1:2}) d2 = int_dict({1:2,3:4}) big = int_dict_2({d:d2}) self.assertTrue(d in big) self.assertTrue(d2 not in big) self.assertTrue(big[d] == d2) def test_dict_hash_perf(self): str_dict = ConstDict(str, str) s = str_dict({'a' * 1000000: 'b' * 1000000}) t0 = time.time() for k in range(1000000): hash(s) elapsed = time.time() - t0 print(elapsed, " to do 1mm") self.check_expected_performance(elapsed) def test_const_dict_str_perf(self): t = ConstDict(str,str) t0 = time.time() for i in range(100000): t({str(k): str(k+1) for k in range(10)}) elapsed = time.time() - t0 print("Took ", elapsed, " to do 1mm") self.check_expected_performance(elapsed) def test_const_dict_int_perf(self): t = ConstDict(int,int) t0 = time.time() for i in range(100000): t({k:k+1 for k in range(10)}) elapsed = time.time() - t0 print("Took ", elapsed, " to do 1mm") self.check_expected_performance(elapsed) def test_const_dict_iter_int(self): t = ConstDict(int,int) aDict = t({k:k+1 for k in range(100)}) for k in aDict: self.assertEqual(aDict[k], k+1) def test_const_dict_iter_str(self): t = ConstDict(str,str) aDict = t({str(k):str(k+1) for k in range(100)}) for k in aDict: self.assertEqual(aDict[str(k)], str(int(k)+1)) def test_alternatives_with_Bytes(self): alt = Alternative( "Alt", x_0={'a':bytes} ) self.assertEqual(alt.x_0(a=b''), alt.x_0(a=b'')) def test_alternatives_with_str_func(self): alt = Alternative( "Alt", x_0={'a':bytes}, f=lambda self: 1, __str__=lambda self: "not_your_usual_str" ) self.assertEqual(alt.x_0().f(), 1) self.assertEqual(str(alt.x_0()), "not_your_usual_str") def test_named_tuple_subclass_magic_methods(self): class X(NamedTuple(x=int,y=int)): def __str__(self): return "str override" def __repr__(self): return "repr override" self.assertEqual(repr(X()), "repr override") self.assertEqual(str(X()), "str override") def test_empty_alternatives(self): a = Alternative( "Alt", A={}, B={} ) self.assertEqual(a.A(), a.A()) self.assertIsInstance(deserialize(a, serialize(a, a.A())), a.A) self.assertEqual(a.A(), deserialize(a, serialize(a, a.A()))) self.assertEqual(a.B(), a.B()) self.assertNotEqual(a.A(), a.B()) self.assertNotEqual(a.B(), a.A()) def test_extracted_alternatives_have_correct_type(self): Alt = Alternative( "Alt", A={}, B={} ) tOfAlt = TupleOf(Alt) a = Alt.A() aTup = tOfAlt((a,)) self.assertEqual(a, aTup[0]) self.assertTrue(type(a) is type(aTup[0])) def test_alternatives(self): alt = Alternative( "Alt", child_ints={'x': int, 'y': int}, child_strings={'x': str, 'y': str} ) self.assertTrue(issubclass(alt.child_ints, alt)) self.assertTrue(issubclass(alt.child_strings, alt)) a = alt.child_ints(x=10,y=20) a2 = alt.child_ints(x=10,y=20) self.assertEqual(a,a2) self.assertTrue(isinstance(a, alt)) self.assertTrue(isinstance(a, alt.child_ints)) self.assertEqual(a.x, 10) self.assertEqual(a.y, 20) self.assertTrue(a.matches.child_ints) self.assertFalse(a.matches.child_strings) with self.assertRaisesRegex(AttributeError, "immutable"): a.x = 20 def test_alternatives_comparison(self): empty = Alternative("X", A={}, B={}) self.assertEqual(empty.A(), empty.A()) self.assertEqual(empty.B(), empty.B()) self.assertNotEqual(empty.A(), empty.B()) a = Alternative("X", A={'a': int}, B={'b': int}, C={'c': str}, D={'d': bytes}, ) self.assertEqual(a.A(a=10), a.A(a=10)) self.assertNotEqual(a.A(a=10), a.A(a=11)) self.assertNotEqual(a.C(c=""), a.C(c="hi")) self.assertFalse(a.C(c="") == a.C(c="hi")) self.assertNotEqual(a.D(d=b""), a.D(d=b"hi")) def test_alternatives_add_operator(self): alt = Alternative( "Alt", child_ints={'x': int, 'y': int}, __add__=lambda l,r: (l,r) ) a = alt.child_ints(x=0,y=2) self.assertEqual(a+a,(a,a)) def test_alternatives_perf(self): alt = Alternative( "Alt", child_ints={'x': int, 'y': int}, child_strings={'x': str, 'y': str} ) t0 = time.time() for i in range(1000000): a = alt.child_ints(x=10,y=20) a.matches.child_ints a.x elapsed = time.time() - t0 print("Took ", elapsed, " to do 1mm") self.check_expected_performance(elapsed, expected=2.0) def test_object_hashing_and_equality(self): for _ in range(100): producer = RandomValueProducer() producer.addEvenly(20, 2) values = producer.all() for v1 in values: for v2 in values: if hash(v1) != hash(v2) and v1 == v2: print(v1,v2, type(v1), type(v2)) for v1 in values: for v2 in values: if type(v1) == type(v2) and v1 == v2: self.assertEqual(hash(v1), hash(v2), (v1, v2)) if type(v1) is type(v2): self.assertEqual(repr(v1), repr(v2), (v1, v2, type(v1),type(v2))) values = sorted([makeTuple(v) for v in values]) for i in range(len(values)-1): self.assertTrue(values[i] <= values[i+1]) self.assertTrue(values[i+1] >= values[i]) def test_bytes_repr(self): for _ in range(100000): #always start with a '"' because otherwise python keeps chosing different #initial characters. someBytes = b'"' + numpy.random.uniform(size=2).tostring() self.assertEqual(repr(makeTuple(someBytes)), repr((someBytes,))) def test_equality_with_native_python_objects(self): tups = [(1,2,3), (), ("2",), (b"2",), (1,2,3, "b"), (2,), (None,)] for tup1 in tups: self.assertEqual( makeTuple(*tup1), tup1 ) for tup2 in tups: if tup1 != tup2: self.assertNotEqual( makeTuple(*tup1), tup2 ) for tup1 in tups: self.assertEqual( makeTupleOf(*tup1), tup1 ) for tup2 in tups: if tup1 != tup2: self.assertNotEqual( makeTupleOf(*tup1), tup2 ) def test_add_tuple_of(self): tupleOfInt = TupleOf(int) tups = [(),(1,2),(1,),(1,2,3,4)] for tup1 in tups: for tup2 in tups: self.assertEqual(tupleOfInt(tup1) + tupleOfInt(tup2), tupleOfInt(tup1+tup2)) self.assertEqual(tupleOfInt(tup1) + tup2, tupleOfInt(tup1+tup2)) def test_slice_tuple_of(self): tupleOfInt = TupleOf(int) ints = tuple(range(20)) aTuple = tupleOfInt(ints); for i in range(-21,21): for i2 in range(-21, 21): for step in range(-3, 3): if step != 0: self.assertEqual(aTuple[i:i2:step], ints[i:i2:step]) try: ints[i] self.assertEqual(aTuple[i], ints[i]) except IndexError: with self.assertRaises(IndexError): aTuple[i] def test_dictionary_subtraction_basic(self): intDict = ConstDict(int,int) self.assertEqual(intDict({1:2}) - (1,), intDict({})) self.assertEqual(intDict({1:2, 3:4}) - (1,), intDict({3:4})) self.assertEqual(intDict({1:2, 3:4}) - (3,), intDict({1:2})) def test_dictionary_addition_and_subtraction(self): someDicts = [{i:choice([1,2,3,4,5]) for i in range(choice([4,6,10,20]))} for _ in range(20)] intDict = ConstDict(int,int) for d1 in someDicts: for d2 in someDicts: addResult = dict(d1) addResult.update(d2) self.assertEqual(intDict(d1) + intDict(d2), intDict(addResult)) res = intDict(addResult) while len(res): toRemove = [] for i in range(choice(list(range(len(res))))+1): key = choice(list(addResult)) del addResult[key] toRemove.append(key) res = res - toRemove self.assertEqual(res, intDict(addResult)) def test_subclassing(self): BaseTuple = NamedTuple(x=int,y=float) class NTSubclass(BaseTuple): def f(self): return self.x + self.y def __repr__(self): return "ASDF" inst = NTSubclass(x=10,y=20) self.assertTrue(isinstance(inst, BaseTuple)) self.assertTrue(isinstance(inst, NTSubclass)) self.assertTrue(type(inst) is NTSubclass) self.assertEqual(repr(inst), "ASDF") self.assertNotEqual(BaseTuple.__repr__(inst), "ASDF") self.assertEqual(inst.x, 10) self.assertEqual(inst.f(), 30) TupleOfSubclass = TupleOf(NTSubclass) instTup = TupleOfSubclass((inst,BaseTuple(x=20,y=20.0))) self.assertTrue(isinstance(instTup[0], NTSubclass)) self.assertTrue(isinstance(instTup[1], NTSubclass)) self.assertEqual(instTup[0].f(), 30) self.assertEqual(instTup[1].f(), 40) self.assertEqual(BaseTuple(inst).x, 10) self.assertTrue(OneOf(None, NTSubclass)(None) is None) self.assertTrue(OneOf(None, NTSubclass)(inst) == inst) def test_serialization(self): ints = TupleOf(int)((1,2,3,4)) self.assertEqual( len(serialize(TupleOf(int), ints)), 40 ) while len(ints) < 1000000: ints = ints + ints t0 = time.time() self.assertEqual(len(serialize(TupleOf(int), ints)), len(ints) * 8 + 8) print(time.time() - t0, " for ", len(ints)) def test_serialization_roundtrip(self): badlen = None for _ in range(100): producer = RandomValueProducer() producer.addEvenly(30, 3) values = producer.all() for v in values: ser = serialize(type(v), v) v2 = deserialize(type(v), ser) ser2 = serialize(type(v), v2) self.assertTrue(type(v2) is type(v)) self.assertEqual(ser,ser2) self.assertEqual(str(v), str(v2)) self.assertEqual(v, v2) def test_serialize_doesnt_leak(self): T = TupleOf(int) def getMem(): return psutil.Process().memory_info().rss / 1024 ** 2 m0 = getMem() for passIx in range(100): for i in range(1000): t = T(list(range(i))) deserialize(T, serialize(T,t)) self.assertTrue(getMem() < m0 + 100) def test_const_dict_of_tuple(self): K = NamedTuple(a=OneOf(float, int), b=OneOf(float, int)) someKs = [K(a=0,b=0), K(a=1), K(a=10), K(b=10), K()] T = ConstDict(K, K) indexDict = {} x = T() numpy.random.seed(42) for _ in range(100): i1 = numpy.random.choice(len(someKs)) i2 = numpy.random.choice(len(someKs)) add = numpy.random.choice([False, True]) if add: indexDict[i1] = i2 x = x + {someKs[i1]: someKs[i2]} else: if i1 in indexDict: del indexDict[i1] x = x - (someKs[i1],) self.assertEqual(x, T({someKs[i]:someKs[v] for i,v in indexDict.items()})) for k in x: self.assertTrue(k in x) x[k] def test_conversion_of_binary_compatible(self): class T1(NamedTuple(a=int)): pass class T2(NamedTuple(a=int)): pass class T1Comp(NamedTuple(d=ConstDict(str, T1))): pass class T2Comp(NamedTuple(d=ConstDict(str, T1))): pass aT1C = T1Comp(d={'a': T1(a=10)}) self.assertEqual(T2Comp(aT1C).d['a'].a, 10) self.assertEqual(aT1C, deserialize(T1Comp, serialize(T2Comp, aT1C))) def test_conversion_of_binary_compatible_nested(self): def make(): class Interior(NamedTuple(a=int)): pass class Exterior(NamedTuple(a=Interior)): pass return Exterior E1 = make() E2 = make() OneOf(None, E2)(E1()) def test_python_objects_in_tuples(self): class NormalPyClass(object): pass class NormalPySubclass(NormalPyClass): pass NT = NamedTuple(x=NormalPyClass, y=NormalPySubclass) nt = NT(x=NormalPyClass(),y=NormalPySubclass()) self.assertIsInstance(nt.x, NormalPyClass) self.assertIsInstance(nt.y, NormalPySubclass) def test_construct_alternatives_with_positional_arguments(self): a = Alternative("A", HasOne = {'a': str}, HasTwo = {'a': str, 'b': str}) with self.assertRaises(TypeError): a.HasTwo("hi") self.assertEqual(a.HasOne("hi"), a.HasOne(a="hi")) hasOne = a.HasOne("hi") self.assertEqual(a.HasOne(hasOne), hasOne) with self.assertRaises(TypeError): a.HasOne(a.HasTwo(a='1',b='b')) def test_recursive_classes_repr(self): class ASelfRecursiveClass(Class): x = Member(OneOf(None, lambda: ASelfRecursiveClass)) a = ASelfRecursiveClass() a.x = a b = ASelfRecursiveClass() b.x = b print(repr(a)) def test_unsafe_pointers_to_list_internals(self): x = ListOf(int)() x.resize(100) for i in range(len(x)): x[i] = i aPointer = x.pointerUnsafe(0) self.assertTrue(str(aPointer).startswith("(Int64*)0x")) self.assertEqual(aPointer.get(), x[0]) aPointer.set(100) self.assertEqual(aPointer.get(), 100) self.assertEqual(x[0], 100) aPointer = aPointer + 10 self.assertEqual(aPointer.get(), x[10]) self.assertEqual(aPointer[10], x[20]) aPointer.set(20) self.assertEqual(aPointer.get(), 20) self.assertEqual(x[10], 20) #this is OK because ints are POD. aPointer.initialize(30) self.assertEqual(x[10], 30) def test_unsafe_pointers_to_uninitialized_list_items(self): #because this is testing unsafe operations, the test is #really just that we don't segfault! for _ in range(100): x = ListOf(TupleOf(int))() x.reserve(10) for i in range(x.reserved()): x.pointerUnsafe(i).initialize((i,)) x.setSizeUnsafe(10) #now check that if we fail to set the size we'll leak the tuple aLeakedTuple = TupleOf(int)((1,2,3)) x = ListOf(TupleOf(int))() x.reserve(1) x.pointerUnsafe(0).initialize(aLeakedTuple) x = None self.assertEqual(_types.refcount(aLeakedTuple), 2) def test_list_copy_operation_duplicates_list(self): T = ListOf(int) x = T([1,2,3]) y = T(x) x[0] = 100 self.assertNotEqual(y[0], 100) def test_list_and_tuple_conversion_to_numpy(self): for T in [ListOf(bool), TupleOf(bool)]: for arr in [ numpy.array([]), numpy.array([0,1,2,3,4,5]), numpy.array([0,1,2,3,4,5], 'int32'), numpy.array([0,1,2,3,4,5], 'int16'), numpy.array([0,1,2,3,4,5], 'bool') ]: self.assertEqual(T(arr), T(arr.tolist())) self.assertEqual(T(arr).toArray().tolist(), [bool(x) for x in arr.tolist()]) for T in [ListOf(int), TupleOf(int)]: for arr in [ numpy.array([]), numpy.array([1,2,3,4,5]), numpy.array([1,2,3,4,5], 'int32'), numpy.array([1,2,3,4,5], 'int16') ]: self.assertEqual(T(arr), T(arr.tolist())) self.assertEqual(T(arr).toArray().tolist(), arr.tolist()) for T in [ListOf(float), TupleOf(float)]: for arr in [
numpy.array([])
numpy.array
############### Functions for initializing satellites ################### # <NAME> 2019, HUJI # <NAME> 2020, Yale University ######################################################################### import numpy as np import sys from . import config as cfg from . import cosmo as co from . import galhalo as gh from scipy.interpolate import splev, lognorm ######################################################################### # ---for initial satellite-galaxy stellar size def Reff(Rv, c2): """ Draw half-stellar-mass radius from a Gaussian whose median is given by the Jiang+19 relation, and the 1-sigma scatter is 0.12dex. Syntax: Reff(Rv,c2) where Rv: halo radius R_200c [kpc] (float or array) c2: concentration, R_00c / r_-2 (float or array of the same size as Rv) Note that we do not allow the half-stellar-mass radius to exceed 0.2 R_200c. Return: half-stellar-mass radius [kpc] (float or array of the same size as Rv) """ mu = np.log10(gh.Reff(Rv, c2)) return np.minimum(0.2 * Rv, 10.0 ** np.random.normal(mu, 0.12)) def Rvir(Mv, Delta=200.0, z=0.0): """ Compute halo radius given halo mass, overdensity, and redshift. Syntax: Rvir(Mv,Delta=200.,z=0.) where Mv: halo mass [M_sun] (float or array) Delta: spherical overdensity (float, default=200.) z: redshift (float or array of the same size as Mv, default=0.) """ rhoc = co.rhoc(z, h=cfg.h, Om=cfg.Om, OL=cfg.OL) return (3.0 * Mv / (cfg.FourPi * Delta * rhoc)) ** (1.0 / 3.0) # ---for initial (sub)halo profiles # for drawing the conventional halo concentration, c_-2 def concentration(Mv, z=0.0, choice="DM14"): """ Draw the conventional halo concentration, c_-2, from an empirical concentration-mass-redshift relation of choice. Syntax: concentration(Mv,z=0.,choice='DM14') where Mv: halo mass, can be M_200c or M_vir, depending on the "choice" [M_sun] (float or array) z: redshift (float or array of the same size as Mv, default=0.) choice: the relation of choice (default='DM14', representing Dutton & Maccio 14) Note that we do not allow concentration to go below 3. """ if choice == "DM14": mu = gh.lgc2_DM14(Mv, z) return np.maximum(3.0, 10.0 ** np.random.normal(mu, 0.1)) # for drawing stellar mass from stellar-to-halo-mass relations (SHMR) def Mstar(Mv, z=0.0, choice="RP17"): """ Stellar mass given halo mass and redshift, using abundance-matching relations. We assume a 1-sigma scatter of 0.2 in log(stellar mass) at a given halo mass <<< play with this later !!! Syntax: Ms(Mv,z=0.,choice='RP17') where Mv: halo mass [M_sun] (float or array) z: instantaneous redshift (float or array of the same size as Mv, default=0.) choice: choice of the stellar-to-halo-mass relation (default='RP17', representing Rodriguez-Puebla+17) Return: stellar mass [M_sun] (float or array of the same size as Mv) """ if choice == "RP17": mu = gh.lgMs_RP17(np.log10(Mv), z) if choice == "B13": mu = gh.lgMs_B13(np.log10(Mv), z) return np.minimum(cfg.Ob / cfg.Om * Mv, 10.0 ** np.random.normal(mu, 0.2)) # for drawing the Dekel+ parameters def aDekel(X, c2, HaloResponse="NIHAO"): """ Draw the Dekel+ innermost slope, given the stellar-to-halo-mass ratio, the conventional halo concentration parameter c_-2, redshift, and halo-response pattern. In particular, we use the halo response relation from simulations to compute the slope, s_0.01, at r = 0.01 R_vir, assuming a 1-sigma scatter of 0.18, motivated by Tollet+16; then, we express alpha with s_0.01 and c_-2. Syntax: aDekel(X,c2,HaloResponse='NIHAO') where X: stellar-to-halo-mass ratio (float or array) c2: concentration, c_-2 = R_vir / r_-2 (float or array of the same size as X) HaloResponse: choice of halo response -- 'NIHAO' (default, Tollet+16, mimicking FIRE/NIHAO) 'APOSTLE' (Bose+19, mimicking APOSTLE/Auriga) Return: Dekel+ alpha (float or array of the same size as X) """ mu = gh.slope(X, HaloResponse) s = np.maximum(0.0, np.random.normal(mu, 0.18)) r = np.sqrt(c2) return (s + (2.0 * s - 7.0) * r / 15.0) / (1.0 + (s - 3.5) * r / 15.0) def aDekel_GivenSlope(s1, c2): """ Compute the Dekel+ innermost slope, given the slope at 1% of virial radius s_1, and the conventional halo concentration parameter c_2. In particular, we use the halo response relation from simulations to compute the slope, s_0.01, at r = 0.01 R_vir, assuming a 1-sigma scatter of 0.18, motivated by Tollet+16; then, we express alpha with s_0.01 and c_-2. Syntax: aDekel_GivenSlope(s,c2) where s: logarithmic density slope at 1% r_vir (float or array) c2: concentration, c_-2 = R_vir / r_-2 (float or array of the same size as X) Return: Dekel+ alpha (float or array of the same size as s) """ r = np.sqrt(c2) return (s1 + (2.0 * s1 - 7.0) * r / 15.0) / (1.0 + (s1 - 3.5) * r / 15.0) def cDekel(c2, alpha): """ Compute the Dekel+ concentration, c, using the conventional concentration, c_-2, and the Dekel+ innermost slope, alpha. Syntax: cDekel(c2,alpha) where c2: concentration, c_-2 = R_vir / r_-2 (float or array) alpha: Dekel+ innermost slope (float or array of the same size as c2) Return: Dekel+ concentration (float or array of the same size as c2) """ return (2.0 - alpha) ** 2 / 2.25 * c2 def Dekel(Mv, z=0.0, HaloResponse="NIHAO"): """ Draw the Dekel+ structural parameters, c and alpha, as well as the stellar mass, given halo mass, redshift, and halo-response pattern Internally, it draws the conventional halo concentration, c_-2, which is used to compute alpha. Syntax: Dekel(Mv,z=0.,HaloResponse='NIHAO') where Mv: halo mass [M_sun] (float or array) z: redshift (float or array of the same size as Mv, default=0.) HaloResponse: choice of halo response -- 'NIHAO' (default, Tollet+16, mimicking FIRE/NIHAO) 'APOSTLE' (Bose+19, mimicking APOSTLE/Auriga) Return: Dekel+ concentration (float or array of the same size as Mv), Dekel+ alpha (float or array of the same size as Mv), stellar mass [M_sun] (float or array of the same size as Mv) c_-2 (float or array of the same size as Mv) DMO c_-2 (float or array of the same size as Mv) """ c2DMO = concentration(Mv, z) if z > 6.0: # a safety: in the regime where the stellar-halo mass # relations are not reliable, manually set the stellar mass Ms = 1e-5 * Mv else: Ms = Mstar(Mv, z) X = Ms / Mv mu = gh.c2c2DMO(X, HaloResponse) # mean c_-2 / c_-2,DMO c2c2DMO = np.maximum(0.0, np.random.normal(mu, 0.1)) c2 = c2DMO * c2c2DMO c2 = np.maximum(2.0, c2) # safety: c_-2 cannot be unrealistically low alpha = aDekel(X, c2, HaloResponse) c = cDekel(c2, alpha) return c, alpha, Ms, c2, c2DMO def Dekel_fromMAH(Mv, t, z, HaloResponse="NIHAO"): """ Returns the Dekel+ structural parameters, c and alpha, given the halo mass assembly history (MAH), using the Zhao+09 formula. Syntax: Dekel(Mv,t,z,HaloResponse='NIHAO') where Mv: main-branch mass history until the time of interest [M_sun] (array) t: the time series of the main-branch mass history (array of the same length as Mv) z: the instantaneous redshift (float) HaloResponse: choice of halo response -- 'NIHAO' (default, Tollet+16, mimicking FIRE/NIHAO) 'APOSTLE' (Bose+19, mimicking APOSTLE/Auriga) Note that we need Mv and t in reverse chronological order, i.e., in decreasing order, such that Mv[0] and t[0] are the instantaneous halo mass and instantaneous cosmic time, respectively. Return: Dekel+ concentration (float), Dekel+ alpha (float), stellar mass [M_sun] (float), c_-2 (float) DMO c_-2 (float) """ c2DMO = gh.c2_Zhao09(Mv, t) if z > 6.0: # a safety: in the regime where the stellar-halo mass # relations are not reliable, manually set the stellar mass Ms = 1e-5 * Mv[0] else: Ms = Mstar(Mv[0], z) X = Ms / Mv[0] mu = gh.c2c2DMO(X, HaloResponse) # mean c_-2 / c_-2,DMO c2c2DMO = np.maximum(0.0, np.random.normal(mu, 0.1)) c2 = c2DMO * c2c2DMO c2 = np.maximum(2.0, c2) alpha = aDekel(X, c2, HaloResponse) c = cDekel(c2, alpha) return c, alpha, Ms, c2, c2DMO def Burkert_SIDM1(Mv, Delta=200.0, z=0.0): """ Draw the Burkert concentration, c, given halo mass, halo definition, and redshift, for SIDM halos with cross section per unit mass of 1 cm^2/g, according to the scaling relation of Rocha+13 eq.18 between the SIDM Burkert scale radius and the CDM NFW scale radius. Internally, it draws the CDM halo concentration, c_-2, using the function init.concentration Syntax: Burkert_SIDM1(Mv,) where Mv: halo mass [M_sun] (float or array) Delta: spherical overdensity of halos (float or array of the same size as Mv, default=200.) z: redshift (float or array of the same size as Mv, default=0.) Return: Burkert concentration (float or array of the same size as Mv), CDM c_-2 (float or array of the same size as Mv) """ c2CDM = concentration(Mv, z) Rv = Rvir(Mv, Delta=Delta, z=z) c = c2CDM / 0.71 * (c2CDM * Rv / 10.0) ** 0.08 return c, c2CDM def Burkert_SIDM1_fromMAH(Mv, t, z, Delta=200.0): """ Returns the Burkert concentration of a SIDM1 halo, given the halo mass assembly history (MAH), using the Zhao+09 formula for CDM halo concentration and the Rocha+13 relation between the Burkert scale radius of SIDM1 halo and the scale radius of CDM halo. Syntax: Dekel(Mv,t,z,Delta=200.) where Mv: main-branch mass history until the time of interest [M_sun] (array) t: the time series of the main-branch mass history (array of the same length as Mv) z: the instantaneous redshift (float) Delta: spherical overdensity of halos (float or array of the same size as Mv, default=200.) Note that we need Mv and t in reverse chronological order, i.e., in decreasing order, such that Mv[0] and t[0] are the instantaneous halo mass and instantaneous cosmic time, respectively. Return: Burkert concentration of SIDM1 halo (float), The concentration c_-2 of the corresponding CDM halo (float) Instantaneous virial radius [kpc] (float) """ c2CDM = gh.c2_Zhao09(Mv, t) Rv = Rvir(Mv[0], Delta=Delta, z=z) c = c2CDM / 0.71 * (c2CDM * Rv / 10.0) ** 0.08 return c, c2CDM, Rv def c2_fromMAH(Mv, t, version="zhao"): """ Returns the NFW concentration, c_{-2}, given the halo mass assembly history (MAH), using the Zhao+09 formula. Syntax: c2_fromMAH(Mv,t,version) where Mv: main-branch mass history until the time of interest [M_sun] (array) t: the time series of the main-branch mass history (array of the same length as Mv) version: 'zhao' or 'vdb' for the different versions of the fitting function parameters (string) Note that we need Mv and t in reverse chronological order, i.e., in decreasing order, such that Mv[0] and t[0] are the instantaneous halo mass and instantaneous cosmic time, respectively. Return: c_-2 (float) """ return gh.c2_Zhao09(Mv, t, version) # ---for initializing orbit def orbit(hp, xc=1.0, eps=0.5): """ Initialize the orbit of a satellite, given orbit energy proxy (xc) and circularity (eps). Syntax: orbit(hp,xc=1.,eps=0.5,) where hp: host potential (a halo density profile object, as defined in profiles.py) xc: the orbital energy parameter, defined such that if the energy of the orbit is E, x_c(E) is the radius of a circular orbit in units of the host halo's virial radius (default=1.) eps: the orbital circularity parameter (default=0.5) Return: phase-space coordinates in cylindrical frame np.array([R,phi,z,VR,Vphi,Vz]) """ r0 = hp.rh rc = xc * hp.rh theta = np.arccos(2.0 * np.random.random() - 1.0) # i.e., isotropy zeta = 2.0 * np.pi * np.random.random() # i.e., uniform azimuthal # angle, zeta, of velocity vector in theta-phi-r frame Vc = hp.Vcirc( rc, ) Phic = hp.Phi( rc, ) Phi0 = hp.Phi( r0, ) V0 = np.sqrt(Vc ** 2 + 2.0 * (Phic - Phi0)) S = eps * rc / r0 * Vc / V0 gamma = np.pi - np.arcsin(S) # angle between r and v vectors. Note that # we use pi - np.arcsin(S) instead of just np.arcsin(S), because # the velocity needs to point inward the virial sphere. if S > 1.0: # a safety, may not be useful sys.exit("Invalid orbit! sin(gamma)=%.4f,xc=%4.2f,eps=%4.2f" % (S, xc, eps)) sintheta = np.sin(theta) costheta = np.cos(theta) singamma = np.sin(gamma) cosgamma = np.cos(gamma) sinzeta = np.sin(zeta) coszeta = np.cos(zeta) return np.array( [ r0 * sintheta, np.random.random() * 2.0 * np.pi, # uniformly random phi in (0,2pi) r0 * costheta, V0 * (singamma * coszeta * costheta + cosgamma * sintheta), V0 * singamma * sinzeta, V0 * (cosgamma * costheta - singamma * coszeta * sintheta), ] ) def orbit_from_Jiang2015(hp, sp, z, sample_unbound=True): """ Initialize the orbit of a satellite by sampling from V/V_{200c} and Vr/V distributions from Jiang+2015. Subhaloes are placed on initial orbital radii of r_{200c} of the host. This is an extension of the Jiang+15 model, as we use the host peak height, rather than host mass at z=0, in order to determine which distribution to sample from. Syntax: orbit_from_Jiang2015(hp, sp, z, sample_unbound) where hp: host *NFW* potential (a halo density profile object, as defined in profiles.py) sp: subhalo *NFW* potential (a halo density profile object, as defined in profiles.py) z: the redshift of accretion (float) sample_unbound: set to true to allow orbits to potentially be unbound at infall (boolean) Return: phase-space coordinates in cylindrical frame np.array([R,phi,z,VR,Vphi,Vz]) Note: This assumes NFW profiles profile, since we're using the .otherMassDefinition() method that has only been implemented for NFW. """ Mh200c, rh200c, ch200c = hp.otherMassDefinition(200.0) Ms200c, rs200c, cs200c = sp.otherMassDefinition(200.0) nu = co.nu(Mh200c, z, **cfg.cosmo) mass_ratio = Ms200c / Mh200c iM = np.searchsorted(cfg.jiang_nu_boundaries, nu) imM = np.searchsorted(cfg.jiang_ratio_boundaries, mass_ratio) rand_VV200c = np.random.uniform() rand_VrV = np.random.uniform() if sample_unbound == False: vbyvv200c_max = np.sqrt(2.0 * np.abs(hp.Phi(rh200c))) / hp.Vcirc(rh200c) while True: rand_VV200c = np.random.uniform() V_by_V200c = splev(rand_VV200c, cfg.V_by_V200c_interps[iM][imM]) if V_by_V200c < vbyvv200c_max: # sample until we get a bound orbit break else: V_by_V200c = splev(rand_VV200c, cfg.V_by_V200c_interps[iM][imM]) Vr_by_V = splev(rand_VrV, cfg.Vr_by_V_interps[iM][imM]) gamma = np.pi - np.arccos(Vr_by_V) V0 = V_by_V200c * hp.Vcirc(rh200c) theta = np.arccos(2.0 * np.random.random() - 1.0) # i.e., isotropy zeta = 2.0 * np.pi * np.random.random() # i.e., uniform azimuthal # angle, zeta, of velocity vector in theta-phi-r frame sintheta = np.sin(theta) costheta = np.cos(theta) singamma = np.sin(gamma) cosgamma = np.cos(gamma) sinzeta = np.sin(zeta) coszeta = np.cos(zeta) return np.array( [ rh200c * sintheta, np.random.random() * 2.0 * np.pi, # uniformly random phi in (0,2pi) rh200c * costheta, V0 * (singamma * coszeta * costheta + cosgamma * sintheta), V0 * singamma * sinzeta, V0 * (cosgamma * costheta - singamma * coszeta * sintheta), ] ) def orbit_from_Li2020(hp, vel_ratio, gamma): """ Initialize the orbit of a satellite, given total velocity V/Vvir and infall angle. Syntax: orbit(hp, vel_ratio, gamma) where hp: host potential (a halo density profile object, as defined in profiles.py) vel_ratio: the total velocity at infall in units of Vvir gamma: the angle between velocity and position vectors of subhalo Return: phase-space coordinates in cylindrical frame np.array([R,phi,z,VR,Vphi,Vz]) Note: This assumes that the BN98 virial mass definition is used for the haloes, since the host rh quantity is used as the radius where the circular velocity is computed. """ r0 = hp.rh V0 = vel_ratio * hp.Vcirc(r0) theta = np.arccos(2.0 * np.random.random() - 1.0) # i.e., isotropy zeta = 2.0 * np.pi * np.random.random() # i.e., uniform azimuthal # angle, zeta, of velocity vector in theta-phi-r frame sintheta = np.sin(theta) costheta = np.cos(theta) singamma =
np.sin(gamma)
numpy.sin
# -*- coding: utf-8 -*- from __future__ import print_function from itertools import combinations import numpy as np from scipy import stats import pandas as pd from lifelines.utils import group_survival_table_from_events from lifelines._statistics import concordance_index as _cindex def concordance_index(event_times, predicted_event_times, event_observed=None): """ Calculates the concordance index (C-index) between two series of event times. The first is the real survival times from the experimental data, and the other is the predicted survival times from a model of some kind. The concordance index is a value between 0 and 1 where, 0.5 is the expected result from random predictions, 1.0 is perfect concordance and, 0.0 is perfect anti-concordance (multiply predictions with -1 to get 1.0) See: <NAME>, <NAME>, <NAME>. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in Medicine 1996;15(4):361-87. Parameters: event_times: a (n,) array of observed survival times. predicted_event_times: a (n,) array of predicted survival times. event_observed: a (n,) array of censorship flags, 1 if observed, 0 if not. Default assumes all observed. Returns: c-index: a value between 0 and 1. """ event_times = np.array(event_times, dtype=float) predicted_event_times = np.array(predicted_event_times, dtype=float) if event_observed is None: event_observed = np.ones(event_times.shape[0], dtype=float) if event_times.shape != predicted_event_times.shape: raise ValueError("Event times and predictions must have the same shape") if event_times.ndim != 1: raise ValueError("Event times can only be 1-dimensional: (n,)") # 100 times faster to calculate in Fortran return _cindex(event_times, predicted_event_times, event_observed) def logrank_test(event_times_A, event_times_B, event_observed_A=None, event_observed_B=None, alpha=0.95, t_0=-1, suppress_print=False, **kwargs): """ Measures and reports on whether two intensity processes are different. That is, given two event series, determines whether the data generating processes are statistically different. The test-statistic is chi-squared under the null hypothesis. H_0: both event series are from the same generating processes H_A: the event series are from different generating processes. Pre lifelines 0.2.x: this returned a test statistic. Post lifelines 0.2.x: this returns the results of the entire test. See Survival and Event Analysis, page 108. This implicitly uses the log-rank weights. Parameters: event_times_foo: a (nx1) array of event durations (birth to death,...) for the population. censorship_bar: a (nx1) array of censorship flags, 1 if observed, 0 if not. Default assumes all observed. t_0: the period under observation, -1 for all time. alpha: the level of signifiance suppress_print: if True, do not print the summary. Default False. kwargs: add keywords and meta-data to the experiment summary Returns summary: a print-friendly string detailing the results of the test. p: the p-value test result: True if reject the null, (pendantically None if inconclusive) """ event_times_A, event_times_B = np.array(event_times_A), np.array(event_times_B) if event_observed_A is None: event_observed_A = np.ones(event_times_A.shape[0]) if event_observed_B is None: event_observed_B = np.ones(event_times_B.shape[0]) event_times = np.r_[event_times_A, event_times_B] groups = np.r_[np.zeros(event_times_A.shape[0]), np.ones(event_times_B.shape[0])] event_observed = np.r_[event_observed_A, event_observed_B] return multivariate_logrank_test(event_times, groups, event_observed, alpha=alpha, t_0=t_0, suppress_print=suppress_print, **kwargs) def pairwise_logrank_test(event_durations, groups, event_observed=None, alpha=0.95, t_0=-1, bonferroni=True, suppress_print=False, **kwargs): """ Perform the logrank test pairwise for all n>2 unique groups (use the more appropriate logrank_test for n=2). We have to be careful here: if there are n groups, then there are n*(n-1)/2 pairs -- so many pairs increase the chance that here will exist a significantly different pair purely by chance. For this reason, we use the Bonferroni correction (rewight the alpha value higher to accomidate the multiple tests). Parameters: event_durations: a (n,) numpy array the (partial) lifetimes of all individuals groups: a (n,) numpy array of unique group labels for each individual. event_observed: a (n,) numpy array of event_observed events: 1 if observed death, 0 if censored. Defaults to all observed. alpha: the level of signifiance desired. t_0: the final time to compare the series' up to. Defaults to all. bonferroni: If true, uses the Bonferroni correction to compare the M=n(n-1)/2 pairs, i.e alpha = alpha/M See (here)[http://en.wikipedia.org/wiki/Bonferroni_correction]. suppress_print: if True, do not print the summary. Default False. kwargs: add keywords and meta-data to the experiment summary. Returns: S: a (n,n) dataframe of print-friendly test summaries (np.nan on the diagonal). Ex: P: a (n,n) dataframe of p-values (np.nan on the diagonal). T: a (n,n) dataframe of test results (True is significant, None if not) (np.nan on the diagonal). Example: P: a b c a NaN 0.711136 0.401462 b 0.711136 NaN 0.734605 c 0.401462 0.734605 NaN T: a b c a NaN None None b None NaN None c None None NaN """ if event_observed is None: event_observed = np.ones((event_durations.shape[0], 1)) n = max(event_durations.shape) assert n == max(event_durations.shape) == max(event_observed.shape), "inputs must be of the same length." groups, event_durations, event_observed = map(lambda x: pd.Series(np.reshape(x, (n,))), [groups, event_durations, event_observed]) unique_groups = np.unique(groups) n = unique_groups.shape[0] if bonferroni: m = 0.5 * n * (n - 1) alpha = 1 - (1 - alpha) / m P = np.zeros((n, n), dtype=float) T =
np.empty((n, n), dtype=object)
numpy.empty
import tensorflow_advanced_segmentation_models as tasm import os import cv2 import numpy as np from time import time import tensorflow as tf import albumentations as A import matplotlib.pyplot as plt import tensorflow.keras.backend as K from labelme.utils import lblsave as label_save from common.utils import visualize_segmentation from PIL import Image DATA_DIR = "/home/minouei/Downloads/datasets/contract/version2" x_train_dir = os.path.join(DATA_DIR, 'images/train') y_train_dir = os.path.join(DATA_DIR, 'annotations/train') x_valid_dir = os.path.join(DATA_DIR, 'images/val') y_valid_dir = os.path.join(DATA_DIR, 'annotations/val') x_test_dir = os.path.join(DATA_DIR, 'images/val') y_test_dir = os.path.join(DATA_DIR, 'annotations/val') """### Helper Functions""" # helper function for data visualization def visualize(**images): """PLot images in one row.""" n = len(images) plt.figure(figsize=(16, 5)) ns='' for i, (name, image) in enumerate(images.items()): plt.subplot(1, n, i + 1) plt.xticks([]) plt.yticks([]) plt.title(' '.join(name.split('_')).title()) plt.imshow(image) ns=f'{name}_{i}' # plt.show() plt.savefig(ns+'.png', bbox_inches='tight') # helper function for data visualization def denormalize(x): """Scale image to range 0..1 for correct plot""" x_max = np.percentile(x, 98) x_min = np.percentile(x, 2) x = (x - x_min) / (x_max - x_min) x = x.clip(0, 1) return x def round_clip_0_1(x, **kwargs): return x.round().clip(0, 1) """## Data Augmentation Functions""" # define heavy augmentations def get_training_augmentation(height, width): train_transform = [ A.PadIfNeeded(min_height=height, min_width=width, always_apply=True, border_mode=0), A.Resize(height, width, always_apply=True) ] return A.Compose(train_transform) def get_validation_augmentation(height, width): """Add paddings to make image shape divisible by 32""" test_transform = [ A.PadIfNeeded(height, width), A.Resize(height, width, always_apply=True) ] return A.Compose(test_transform) def data_get_preprocessing(preprocessing_fn): """Construct preprocessing transform Args: preprocessing_fn (callbale): data normalization function (can be specific for each pretrained neural network) Return: transform: albumentations.Compose """ _transform = [ A.Lambda(image=preprocessing_fn), ] return A.Compose(_transform) """## Define some global variables""" TOTAL_CLASSES = ['background', 'headerlogo', 'twocoltabel', 'recieveraddress', 'text', 'senderaddress', 'ortdatum', 'companyinfo', 'fulltabletyp1', 'fulltabletyp2', 'copylogo', 'footerlogo', 'footertext', 'signatureimage', 'fulltabletyp3', 'unlabelled'] MODEL_CLASSES = TOTAL_CLASSES ALL_CLASSES = False if MODEL_CLASSES == TOTAL_CLASSES: MODEL_CLASSES = MODEL_CLASSES[:-1] ALL_CLASSES = True BATCH_SIZE = 1 N_CLASSES = 16 HEIGHT = 704 WIDTH = 704 BACKBONE_NAME = "efficientnetb3" WEIGHTS = "imagenet" WWO_AUG = False # train data with and without augmentation """### Functions to calculate appropriate class weights""" ################################################################################ # Class Weights ################################################################################ def get_dataset_counts(d): pixel_count = np.array([i for i in d.values()]) sum_pixel_count = 0 for i in pixel_count: sum_pixel_count += i return pixel_count, sum_pixel_count def get_dataset_statistics(pixel_count, sum_pixel_count): pixel_frequency = np.round(pixel_count / sum_pixel_count, 4) mean_pixel_frequency = np.round(np.mean(pixel_frequency), 4) return pixel_frequency, mean_pixel_frequency def get_balancing_class_weights(classes, d): pixel_count, sum_pixel_count = get_dataset_counts(d) background_pixel_count = 0 mod_pixel_count = [] for c in TOTAL_CLASSES: if c not in classes: background_pixel_count += d[c] else: mod_pixel_count.append(d[c]) mod_pixel_count.append(background_pixel_count) pixel_frequency, mean_pixel_frequency = get_dataset_statistics(mod_pixel_count, sum_pixel_count) class_weights = np.round(mean_pixel_frequency / pixel_frequency, 2) return class_weights # class_weights = get_balancing_class_weights(MODEL_CLASSES, CLASSES_PIXEL_COUNT_DICT) # print(class_weights) def save_seg_result(image, pred_mask, gt_mask, image_id, class_names): # save predict mask as PNG image mask_dir = os.path.join('result','predict_mask') os.makedirs(mask_dir, exist_ok=True) label_save(os.path.join(mask_dir, str(image_id)+'.png'), pred_mask) # visualize segmentation result title_str = 'Predict Segmentation\nmIOU: ' gt_title_str = 'GT Segmentation' image_array = visualize_segmentation(image, pred_mask, gt_mask, class_names=class_names, title=title_str, gt_title=gt_title_str, ignore_count_threshold=1) # save result as JPG result_dir = os.path.join('result','segmentation') os.makedirs(result_dir, exist_ok=True) result_file = os.path.join(result_dir, str(image_id)+'.jpg') Image.fromarray(image_array).save(result_file) """## Data Generation Functions""" ################################################################################ # Data Generator ################################################################################ def create_image_label_path_generator(images_dir, masks_dir, shuffle=False, seed=None): ids = sorted(os.listdir(images_dir)) mask_ids = sorted(os.listdir(masks_dir)) if shuffle == True: if seed is not None: tf.random.set_seed(seed) indices = tf.range(start=0, limit=tf.shape(ids)[0], dtype=tf.int32) shuffled_indices = tf.random.shuffle(indices) ids = tf.gather(ids, shuffled_indices).numpy().astype(str) mask_ids = tf.gather(mask_ids, shuffled_indices).numpy().astype(str) images_fps = [os.path.join(images_dir, image_id) for image_id in ids] masks_fps = [os.path.join(masks_dir, image_id) for image_id in mask_ids] while True: for i in range(len(images_fps)): yield [images_fps[i], masks_fps[i]] def process_image_label(images_paths, masks_paths, classes, augmentation=None, preprocessing=None): class_values = [TOTAL_CLASSES.index(cls.lower()) for cls in classes] # read data image = cv2.imread(images_paths) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) mask = cv2.imread(masks_paths, 0) # extract certain classes from mask (e.g. cars) masks = [(mask == v) for v in class_values] mask = np.stack(masks, axis=-1).astype('float') # add background if mask is not binary if mask.shape[-1] != 1: background = 1 - mask.sum(axis=-1, keepdims=True) mask = np.concatenate((mask, background), axis=-1) # apply augmentations if augmentation: sample = augmentation(image=image, mask=mask) image, mask = sample['image'], sample['mask'] # apply preprocessing if preprocessing: sample = preprocessing(image=image, mask=mask) image, mask = sample['image'], sample['mask'] # mask = np.squeeze(np.argmax(mask, axis=-1)) # mask = np.argmax(mask, axis=-1) # mask = mask[..., np.newaxis] return image, mask def DataGenerator(train_dir, label_dir, batch_size, height, width, classes, augmentation, wwo_aug=False, shuffle=False, seed=None): image_label_path_generator = create_image_label_path_generator( train_dir, label_dir, shuffle=shuffle, seed=seed ) if wwo_aug: while True: images = np.zeros(shape=[batch_size, height, width, 3]) labels = np.zeros(shape=[batch_size, height, width, len(classes) + 1], dtype=np.float32) for i in range(0, batch_size, 2): image_path, label_path = next(image_label_path_generator) image_aug, label_aug = process_image_label(image_path, label_path, classes=classes, augmentation=augmentation) image_wo_aug, label_wo_aug = process_image_label(image_path, label_path, classes=classes, augmentation=get_validation_augmentation(height=HEIGHT, width=WIDTH)) images[i], labels[i] = image_aug, label_aug images[i + 1], labels[i + 1] = image_wo_aug, label_wo_aug yield tf.convert_to_tensor(images), tf.convert_to_tensor(labels, tf.float32) else: while True: images = np.zeros(shape=[batch_size, height, width, 3]) labels = np.zeros(shape=[batch_size, height, width, len(classes) + 1], dtype=np.float32) for i in range(batch_size): image_path, label_path = next(image_label_path_generator) image, label = process_image_label(image_path, label_path, classes=classes, augmentation=augmentation) images[i], labels[i] = image, label yield tf.convert_to_tensor(images), tf.convert_to_tensor(labels, tf.float32) """## Create the Model""" base_model, layers, layer_names = tasm.create_base_model(name=BACKBONE_NAME, weights=WEIGHTS, height=HEIGHT, width=WIDTH, include_top=False, pooling=None) BACKBONE_TRAINABLE = True model = tasm.DANet(n_classes=N_CLASSES, base_model=base_model, output_layers=layers, backbone_trainable=BACKBONE_TRAINABLE) model.load_weights("DANet.ckpt") def display(display_list): plt.figure(figsize=(15, 15)) title = ['Input Image', 'True Mask', 'Predicted Mask'] for i in range(len(display_list)): plt.subplot(1, len(display_list), i+1) plt.title(title[i]) plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i])) plt.axis('off') plt.show() def create_mask(pred_mask): pred_mask = tf.argmax(pred_mask, axis=-1) pred_mask = pred_mask[..., tf.newaxis] return pred_mask[0] def show_predictions(dataset=None, num=1): output_model = model(sample_image[tf.newaxis, ...]) # print(output_model.numpy()) output_mask = create_mask(output_model) # print(sample_mask.shape) scce = tf.keras.losses.CategoricalCrossentropy() print("SparseCategoricalCrossentroy: " + str(scce(sample_mask, output_model[0]).numpy())) print("Iou-Score: " + str(tasm.losses.iou_score(sample_mask, output_model[0]).numpy())) print("categorical Focal Dice Loss: " + str(categorical_focal_dice_loss(sample_mask, output_model[0]).numpy())) display([sample_image, sample_mask, K.one_hot(K.squeeze(output_mask, axis=-1), 3)]) # show_predictions() val_shuffle = True seed = 29598 ValidationSet = DataGenerator( x_valid_dir, y_valid_dir, 1, HEIGHT, WIDTH, classes=MODEL_CLASSES, augmentation=get_validation_augmentation(height=HEIGHT, width=WIDTH), shuffle=val_shuffle, seed=seed ) """# Evaluation on Test Data""" # scores = model.evaluate(TestSet, steps=101) # print("Loss: {:.5}".format(scores[0])) # for metric, value in zip(metrics, scores[1:]): # if metric != "accuracy": # metric = metric.__name__ # print("mean {}: {:.5}".format(metric, value)) # """## Visual Examples on Test Data""" n = 5 ids = np.random.choice(np.arange(101), size=n,replace=False) # print(ids) counter = 0 second_counter = 0 for i in ValidationSet: if counter in ids: image, gt_mask = i # image = np.expand_dims(image, axis=0) pr_mask = model.predict(image) pr_mask = np.argmax(pr_mask, axis=-1) gt_mask =
np.argmax(gt_mask, axis=-1)
numpy.argmax
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for recurrent layers functionality other than GRU, LSTM, SimpleRNN. See also: lstm_test.py, gru_test.py, simplernn_test.py. """ import collections import numpy as np import tensorflow.compat.v2 as tf from absl.testing import parameterized import keras from keras.engine import base_layer_utils from keras.layers.rnn import gru from keras.layers.rnn import gru_v1 from keras.layers.rnn import lstm from keras.layers.rnn import lstm_v1 from keras.testing_infra import test_combinations from keras.testing_infra import test_utils from keras.utils import generic_utils # isort: off from tensorflow.python.training.tracking import ( util as trackable_util, ) # Used for nested input/output/state RNN test. NestedInput = collections.namedtuple("NestedInput", ["t1", "t2"]) NestedState = collections.namedtuple("NestedState", ["s1", "s2"]) @test_combinations.run_all_keras_modes class RNNTest(test_combinations.TestCase): def test_minimal_rnn_cell_non_layer(self): class MinimalRNNCell: def __init__(self, units, input_dim): self.units = units self.state_size = units self.kernel = keras.backend.variable( np.random.random((input_dim, units)) ) def call(self, inputs, states): prev_output = states[0] output = keras.backend.dot(inputs, self.kernel) + prev_output return output, [output] # Basic test case. cell = MinimalRNNCell(32, 5) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [ MinimalRNNCell(8, 5), MinimalRNNCell(32, 8), MinimalRNNCell(32, 32), ] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_minimal_rnn_cell_non_layer_multiple_states(self): class MinimalRNNCell: def __init__(self, units, input_dim): self.units = units self.state_size = (units, units) self.kernel = keras.backend.variable( np.random.random((input_dim, units)) ) def call(self, inputs, states): prev_output_1 = states[0] prev_output_2 = states[1] output = keras.backend.dot(inputs, self.kernel) output += prev_output_1 output -= prev_output_2 return output, [output * 2, output * 3] # Basic test case. cell = MinimalRNNCell(32, 5) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [ MinimalRNNCell(8, 5), MinimalRNNCell(16, 8), MinimalRNNCell(32, 16), ] layer = keras.layers.RNN(cells) self.assertEqual(layer.cell.state_size, ((8, 8), (16, 16), (32, 32))) self.assertEqual(layer.cell.output_size, 32) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_minimal_rnn_cell_layer(self): class MinimalRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super().__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer="uniform", name="kernel", ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer="uniform", name="recurrent_kernel", ) self.built = True def call(self, inputs, states): prev_output = states[0] h = keras.backend.dot(inputs, self.kernel) output = h + keras.backend.dot( prev_output, self.recurrent_kernel ) return output, [output] def get_config(self): config = {"units": self.units} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) # Test basic case. x = keras.Input((None, 5)) cell = MinimalRNNCell(32) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() with generic_utils.CustomObjectScope( {"MinimalRNNCell": MinimalRNNCell} ): layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) # Test stacking. cells = [MinimalRNNCell(8), MinimalRNNCell(12), MinimalRNNCell(32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacked RNN serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() with generic_utils.CustomObjectScope( {"MinimalRNNCell": MinimalRNNCell} ): layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) def test_minimal_rnn_cell_abstract_rnn_cell(self): class MinimalRNNCell(keras.layers.AbstractRNNCell): def __init__(self, units, **kwargs): self.units = units super().__init__(**kwargs) @property def state_size(self): return self.units def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer="uniform", name="kernel", ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer="uniform", name="recurrent_kernel", ) self.built = True def call(self, inputs, states): prev_output = states[0] h = keras.backend.dot(inputs, self.kernel) output = h + keras.backend.dot( prev_output, self.recurrent_kernel ) return output, output @property def output_size(self): return self.units cell = MinimalRNNCell(32) x = keras.Input((None, 5)) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [MinimalRNNCell(8), MinimalRNNCell(16), MinimalRNNCell(32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_rnn_with_time_major(self): batch = 10 time_step = 5 embedding_dim = 4 units = 3 # Test basic case. x = keras.Input((time_step, embedding_dim)) time_major_x = keras.layers.Lambda( lambda t: tf.transpose(t, [1, 0, 2]) )(x) layer = keras.layers.SimpleRNN( units, time_major=True, return_sequences=True ) self.assertEqual( layer.compute_output_shape( (time_step, None, embedding_dim) ).as_list(), [time_step, None, units], ) y = layer(time_major_x) self.assertEqual(layer.output_shape, (time_step, None, units)) y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, embedding_dim)), np.zeros((batch, time_step, units)), ) # Test stacking. x = keras.Input((time_step, embedding_dim)) time_major_x = keras.layers.Lambda( lambda t: tf.transpose(t, [1, 0, 2]) )(x) cell_units = [10, 8, 6] cells = [keras.layers.SimpleRNNCell(cell_units[i]) for i in range(3)] layer = keras.layers.RNN(cells, time_major=True, return_sequences=True) y = layer(time_major_x) self.assertEqual(layer.output_shape, (time_step, None, cell_units[-1])) y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, embedding_dim)), np.zeros((batch, time_step, cell_units[-1])), ) # Test masking. x = keras.Input((time_step, embedding_dim)) time_major = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))( x ) mask = keras.layers.Masking()(time_major) rnn = keras.layers.SimpleRNN( units, time_major=True, return_sequences=True )(mask) y = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(rnn) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, embedding_dim)), np.zeros((batch, time_step, units)), ) # Test layer output x = keras.Input((time_step, embedding_dim)) rnn_1 = keras.layers.SimpleRNN(units, return_sequences=True) y = rnn_1(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, embedding_dim)), np.zeros((batch, time_step, units)), ) x_np = np.random.random((batch, time_step, embedding_dim)) y_np_1 = model.predict(x_np) time_major = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))( x ) rnn_2 = keras.layers.SimpleRNN( units, time_major=True, return_sequences=True ) y_2 = rnn_2(time_major) y_2 = keras.layers.Lambda(lambda t: tf.transpose(t, [1, 0, 2]))(y_2) model_2 = keras.models.Model(x, y_2) rnn_2.set_weights(rnn_1.get_weights()) y_np_2 = model_2.predict(x_np) self.assertAllClose(y_np_1, y_np_2, atol=1e-4) def test_rnn_cell_with_constants_layer(self): # Test basic case. x = keras.Input((None, 5)) c = keras.Input((3,)) cell = RNNCellWithConstants(32, constant_size=3) layer = keras.layers.RNN(cell) y = layer(x, constants=c) model = keras.models.Model([x, c], y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 32)) ) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) c_np = np.random.random((6, 3)) y_np = model.predict([x_np, c_np]) weights = model.get_weights() config = layer.get_config() custom_objects = {"RNNCellWithConstants": RNNCellWithConstants} with generic_utils.CustomObjectScope(custom_objects): layer = keras.layers.RNN.from_config(config.copy()) y = layer(x, constants=c) model = keras.models.Model([x, c], y) model.set_weights(weights) y_np_2 = model.predict([x_np, c_np]) self.assertAllClose(y_np, y_np_2, atol=1e-4) # test flat list inputs. with generic_utils.CustomObjectScope(custom_objects): layer = keras.layers.RNN.from_config(config.copy()) y = layer([x, c]) model = keras.models.Model([x, c], y) model.set_weights(weights) y_np_3 = model.predict([x_np, c_np]) self.assertAllClose(y_np, y_np_3, atol=1e-4) # Test stacking. cells = [ gru.GRUCell(8), RNNCellWithConstants(12, constant_size=3), RNNCellWithConstants(32, constant_size=3), ] layer = keras.layers.RNN(cells) y = layer(x, constants=c) model = keras.models.Model([x, c], y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 32)) ) # Test GRUCell reset_after property. x = keras.Input((None, 5)) c = keras.Input((3,)) cells = [gru.GRUCell(32, reset_after=True)] layer = keras.layers.RNN(cells) y = layer(x, constants=c) model = keras.models.Model([x, c], y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [np.zeros((6, 5, 5)), np.zeros((6, 3))], np.zeros((6, 32)) ) # Test stacked RNN serialization x_np = np.random.random((6, 5, 5)) c_np = np.random.random((6, 3)) y_np = model.predict([x_np, c_np]) weights = model.get_weights() config = layer.get_config() with generic_utils.CustomObjectScope(custom_objects): layer = keras.layers.RNN.from_config(config.copy()) y = layer(x, constants=c) model = keras.models.Model([x, c], y) model.set_weights(weights) y_np_2 = model.predict([x_np, c_np]) self.assertAllClose(y_np, y_np_2, atol=1e-4) def test_rnn_cell_with_non_keras_constants(self): # Test basic case. x = keras.Input((None, 5)) c = tf.zeros([6, 3], dtype=tf.float32) cell = RNNCellWithConstants(32, constant_size=3) layer = keras.layers.RNN(cell) y = layer(x, constants=c) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [ gru.GRUCell(8), RNNCellWithConstants(12, constant_size=3), RNNCellWithConstants(32, constant_size=3), ] layer = keras.layers.RNN(cells) y = layer(x, constants=c) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_rnn_cell_with_constants_layer_passing_initial_state(self): # Test basic case. x = keras.Input((None, 5)) c = keras.Input((3,)) s = keras.Input((32,)) cell = RNNCellWithConstants(32, constant_size=3) layer = keras.layers.RNN(cell) y = layer(x, initial_state=s, constants=c) model = keras.models.Model([x, s, c], y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [np.zeros((6, 5, 5)), np.zeros((6, 32)), np.zeros((6, 3))], np.zeros((6, 32)), ) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) s_np = np.random.random((6, 32)) c_np = np.random.random((6, 3)) y_np = model.predict([x_np, s_np, c_np]) weights = model.get_weights() config = layer.get_config() custom_objects = {"RNNCellWithConstants": RNNCellWithConstants} with generic_utils.CustomObjectScope(custom_objects): layer = keras.layers.RNN.from_config(config.copy()) y = layer(x, initial_state=s, constants=c) model = keras.models.Model([x, s, c], y) model.set_weights(weights) y_np_2 = model.predict([x_np, s_np, c_np]) self.assertAllClose(y_np, y_np_2, atol=1e-4) # verify that state is used y_np_2_different_s = model.predict([x_np, s_np + 10.0, c_np]) with self.assertRaises(AssertionError): self.assertAllClose(y_np, y_np_2_different_s, atol=1e-4) # test flat list inputs with generic_utils.CustomObjectScope(custom_objects): layer = keras.layers.RNN.from_config(config.copy()) y = layer([x, s, c]) model = keras.models.Model([x, s, c], y) model.set_weights(weights) y_np_3 = model.predict([x_np, s_np, c_np]) self.assertAllClose(y_np, y_np_3, atol=1e-4) def test_rnn_cell_with_non_keras_constants_and_initial_state(self): # Test basic case. x = keras.Input((None, 5)) c = tf.zeros([6, 3], dtype=tf.float32) s = tf.zeros([6, 32], dtype=tf.float32) cell = RNNCellWithConstants(32, constant_size=3) layer = keras.layers.RNN(cell) y = layer(x, initial_state=s, constants=c) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) # Test stacking. cells = [ gru.GRUCell(8), RNNCellWithConstants(12, constant_size=3), RNNCellWithConstants(32, constant_size=3), ] layer = keras.layers.RNN(cells) s = [ tf.zeros([6, 8], dtype=tf.float32), tf.zeros([6, 12], dtype=tf.float32), tf.zeros([6, 32], dtype=tf.float32), ] y = layer(x, initial_state=s, constants=c) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch(np.zeros((6, 5, 5)), np.zeros((6, 32))) def test_stacked_rnn_attributes(self): if tf.executing_eagerly(): self.skipTest("reduce_sum is not available in eager mode.") cells = [keras.layers.LSTMCell(1), keras.layers.LSTMCell(1)] layer = keras.layers.RNN(cells) layer.build((None, None, 1)) # Test weights self.assertEqual(len(layer.trainable_weights), 6) cells[0].trainable = False self.assertEqual(len(layer.trainable_weights), 3) self.assertEqual(len(layer.non_trainable_weights), 3) # Test `get_losses_for` and `losses` x = keras.Input((None, 1)) loss_1 = tf.reduce_sum(x) loss_2 = tf.reduce_sum(cells[0].kernel) cells[0].add_loss(loss_1, inputs=x) cells[0].add_loss(loss_2) self.assertEqual(len(layer.losses), 2) self.assertEqual(layer.get_losses_for(None), [loss_2]) self.assertEqual(layer.get_losses_for(x), [loss_1]) # Test `updates` cells = [keras.layers.LSTMCell(1), keras.layers.LSTMCell(1)] layer = keras.layers.RNN(cells) x = keras.Input((None, 1)) _ = layer(x) update_1 = tf.compat.v1.assign_add( cells[0].kernel, x[0, 0, 0] * cells[0].kernel ) update_2 = tf.compat.v1.assign_add( cells[0].kernel, tf.ones_like(cells[0].kernel) ) # TODO(b/128682878): Remove when RNNCells are __call__'d. with base_layer_utils.call_context().enter(layer, x, True, None): cells[0].add_update(update_1) cells[0].add_update(update_2) self.assertEqual(len(layer.updates), 2) def test_rnn_dynamic_trainability(self): layer_class = keras.layers.SimpleRNN embedding_dim = 4 units = 3 layer = layer_class(units) layer.build((None, None, embedding_dim)) self.assertEqual(len(layer.weights), 3) self.assertEqual(len(layer.trainable_weights), 3) self.assertEqual(len(layer.non_trainable_weights), 0) layer.trainable = False self.assertEqual(len(layer.weights), 3) self.assertEqual(len(layer.trainable_weights), 0) self.assertEqual(len(layer.non_trainable_weights), 3) layer.trainable = True self.assertEqual(len(layer.weights), 3) self.assertEqual(len(layer.trainable_weights), 3) self.assertEqual(len(layer.non_trainable_weights), 0) @parameterized.parameters( [keras.layers.SimpleRNN, keras.layers.GRU, keras.layers.LSTM] ) def test_rnn_cell_trainability(self, layer_cls): # https://github.com/tensorflow/tensorflow/issues/32369. layer = layer_cls(3, trainable=False) self.assertFalse(layer.cell.trainable) layer.trainable = True self.assertTrue(layer.cell.trainable) def test_state_reuse_with_dropout(self): layer_class = keras.layers.SimpleRNN embedding_dim = 4 units = 3 timesteps = 2 num_samples = 2 input1 = keras.Input( batch_shape=(num_samples, timesteps, embedding_dim) ) layer = layer_class( units, return_state=True, return_sequences=True, dropout=0.2 ) state = layer(input1)[1:] input2 = keras.Input( batch_shape=(num_samples, timesteps, embedding_dim) ) output = layer_class(units)(input2, initial_state=state) model = keras.Model([input1, input2], output) inputs = [ np.random.random((num_samples, timesteps, embedding_dim)), np.random.random((num_samples, timesteps, embedding_dim)), ] model.predict(inputs) def test_builtin_and_custom_rnn_cell_serialization(self): @keras.utils.generic_utils.register_keras_serializable( package="TestOnly" ) class CustomRNNCell(keras.layers.Layer): def __init__(self, units, **kwargs): self.units = units self.state_size = units super().__init__(**kwargs) def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[-1], self.units), initializer="uniform", name="kernel", ) self.recurrent_kernel = self.add_weight( shape=(self.units, self.units), initializer="uniform", name="recurrent_kernel", ) self.built = True def call(self, inputs, states): prev_output = states[0] h = keras.backend.dot(inputs, self.kernel) output = h + keras.backend.dot( prev_output, self.recurrent_kernel ) return output, [output] def get_config(self): config = {"units": self.units} base_config = super().get_config() return dict(list(base_config.items()) + list(config.items())) for cell_class in [ keras.layers.SimpleRNNCell, keras.layers.GRUCell, keras.layers.LSTMCell, CustomRNNCell, ]: # Test basic case. x = keras.Input((None, 5)) cell = cell_class(32) layer = keras.layers.RNN(cell) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) # Test basic case serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) # Test stacking. cells = [cell_class(8), cell_class(12), cell_class(32)] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) # Test stacked RNN serialization. x_np = np.random.random((6, 5, 5)) y_np = model.predict(x_np) weights = model.get_weights() config = layer.get_config() layer = keras.layers.RNN.from_config(config) y = layer(x) model = keras.models.Model(x, y) model.set_weights(weights) y_np_2 = model.predict(x_np) self.assertAllClose(y_np, y_np_2, atol=1e-4) @parameterized.named_parameters( *test_utils.generate_combinations_with_testcase_name( layer=[ keras.layers.SimpleRNN, gru_v1.GRU, lstm_v1.LSTM, gru.GRU, lstm.LSTM, ], unroll=[True, False], ) ) def test_rnn_dropout(self, layer, unroll): rnn_layer = layer(3, dropout=0.1, recurrent_dropout=0.1, unroll=unroll) if not unroll: x = keras.Input((None, 5)) else: x = keras.Input((5, 5)) y = rnn_layer(x) model = keras.models.Model(x, y) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) x_np = np.random.random((6, 5, 5)) y_np = np.random.random((6, 3)) model.train_on_batch(x_np, y_np) @parameterized.named_parameters( *test_utils.generate_combinations_with_testcase_name( cell=[ keras.layers.SimpleRNNCell, keras.layers.GRUCell, keras.layers.LSTMCell, ], unroll=[True, False], ) ) def test_stacked_rnn_dropout(self, cell, unroll): cells = [ cell(3, dropout=0.1, recurrent_dropout=0.1), cell(3, dropout=0.1, recurrent_dropout=0.1), ] layer = keras.layers.RNN(cells, unroll=unroll) if not unroll: x = keras.Input((None, 5)) else: x = keras.Input((5, 5)) y = layer(x) model = keras.models.Model(x, y) model.compile("sgd", "mse", run_eagerly=test_utils.should_run_eagerly()) x_np = np.random.random((6, 5, 5)) y_np = np.random.random((6, 3)) model.train_on_batch(x_np, y_np) def test_dropout_mask_reuse(self): # The layer is created with recurrent_initializer = zero, so that the # the recurrent state won't affect the output. By doing this, we can # verify the output and see if the same mask is applied to for each # timestep. layer_1 = keras.layers.SimpleRNN( 3, dropout=0.5, kernel_initializer="ones", recurrent_initializer="zeros", return_sequences=True, unroll=True, ) layer_2 = keras.layers.RNN( keras.layers.SimpleRNNCell( 3, dropout=0.5, kernel_initializer="ones", recurrent_initializer="zeros", ), return_sequences=True, unroll=True, ) layer_3 = keras.layers.RNN( [ keras.layers.SimpleRNNCell( 3, dropout=0.5, kernel_initializer="ones", recurrent_initializer="zeros", ), keras.layers.SimpleRNNCell( 3, dropout=0.5, kernel_initializer="ones", recurrent_initializer="zeros", ), ], return_sequences=True, unroll=True, ) def verify(rnn_layer): inputs = tf.constant(1.0, shape=(6, 2, 5)) out = rnn_layer(inputs, training=True) if not tf.executing_eagerly(): self.evaluate(tf.compat.v1.global_variables_initializer()) batch_1 = self.evaluate(out) batch_1_t0, batch_1_t1 = batch_1[:, 0, :], batch_1[:, 1, :] self.assertAllClose(batch_1_t0, batch_1_t1) # This simulate the layer called with multiple batches in eager mode if tf.executing_eagerly(): out2 = rnn_layer(inputs, training=True) else: out2 = out batch_2 = self.evaluate(out2) batch_2_t0, batch_2_t1 = batch_2[:, 0, :], batch_2[:, 1, :] self.assertAllClose(batch_2_t0, batch_2_t1) # Also validate that different dropout is used by between batches. self.assertNotAllClose(batch_1_t0, batch_2_t0) self.assertNotAllClose(batch_1_t1, batch_2_t1) for l in [layer_1, layer_2, layer_3]: verify(l) def test_stacked_rnn_compute_output_shape(self): cells = [keras.layers.LSTMCell(3), keras.layers.LSTMCell(6)] embedding_dim = 4 timesteps = 2 layer = keras.layers.RNN( cells, return_state=True, return_sequences=True ) output_shape = layer.compute_output_shape( (None, timesteps, embedding_dim) ) expected_output_shape = [ (None, timesteps, 6), (None, 3), (None, 3), (None, 6), (None, 6), ] self.assertEqual( [tuple(o.as_list()) for o in output_shape], expected_output_shape ) # Test reverse_state_order = True for stacked cell. stacked_cell = keras.layers.StackedRNNCells( cells, reverse_state_order=True ) layer = keras.layers.RNN( stacked_cell, return_state=True, return_sequences=True ) output_shape = layer.compute_output_shape( (None, timesteps, embedding_dim) ) expected_output_shape = [ (None, timesteps, 6), (None, 6), (None, 6), (None, 3), (None, 3), ] self.assertEqual( [tuple(o.as_list()) for o in output_shape], expected_output_shape ) def test_stacked_rnn_with_training_param(self): # See https://github.com/tensorflow/tensorflow/issues/32586 class CellWrapper(keras.layers.AbstractRNNCell): def __init__(self, cell): super().__init__() self.cell = cell @property def state_size(self): return self.cell.state_size @property def output_size(self): return self.cell.output_size def build(self, input_shape): self.cell.build(input_shape) self.built = True def get_initial_state( self, inputs=None, batch_size=None, dtype=None ): return self.cell.get_initial_state( inputs=inputs, batch_size=batch_size, dtype=dtype ) def call(self, inputs, states, training=None, **kwargs): assert training is not None return self.cell(inputs, states=states, training=training) cell = keras.layers.LSTMCell(32) cell = CellWrapper(cell) cell = keras.layers.StackedRNNCells([cell]) rnn = keras.layers.RNN(cell) inputs = np.ones((8, 4, 16), dtype=np.float32) rnn(inputs, training=True) def test_stacked_rnn_with_nested_cell(self): batch = 10 t = 5 i1, i2, i3 = 3, 4, 5 o11, o12, o13 = 2, 3, 4 o21, o22, o23 = 4, 5, 6 # test 1: use_tuple=False cells = [NestedCell(o11, o12, o13), NestedCell(o21, o22, o23)] rnn = keras.layers.RNN(cells, return_sequences=True, return_state=True) input_1 = keras.Input((t, i1)) input_2 = keras.Input((t, i2, i3)) output1, output2, state1, state2 = rnn((input_1, input_2)) s11, s12 = state1 s21, s22 = state2 self.assertEqual(output1.shape.as_list(), [None, t, o21]) self.assertEqual(output2.shape.as_list(), [None, t, o22, o23]) self.assertEqual(s11.shape.as_list(), [None, o11]) self.assertEqual(s12.shape.as_list(), [None, o12, o13]) self.assertEqual(s21.shape.as_list(), [None, o21]) self.assertEqual(s22.shape.as_list(), [None, o22, o23]) model = keras.models.Model([input_1, input_2], [output1, output2]) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], [np.zeros((batch, t, o21)), np.zeros((batch, t, o22, o23))], ) self.assertEqual( model.output_shape, [(None, t, o21), (None, t, o22, o23)] ) # test 2: use_tuple=True cells = [ NestedCell(o11, o12, o13, use_tuple=True), NestedCell(o21, o22, o23), ] rnn = keras.layers.RNN(cells, return_sequences=True, return_state=True) input_1 = keras.Input((t, i1)) input_2 = keras.Input((t, i2, i3)) output1, output2, state1, state2 = rnn( NestedInput(t1=input_1, t2=input_2) ) s11, s12 = state1 s21, s22 = state2 self.assertEqual(output1.shape.as_list(), [None, t, o21]) self.assertEqual(output2.shape.as_list(), [None, t, o22, o23]) self.assertEqual(s11.shape.as_list(), [None, o11]) self.assertEqual(s12.shape.as_list(), [None, o12, o13]) self.assertEqual(s21.shape.as_list(), [None, o21]) self.assertEqual(s22.shape.as_list(), [None, o22, o23]) model = keras.models.Model([input_1, input_2], [output1, output2]) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [np.zeros((batch, t, i1)), np.zeros((batch, t, i2, i3))], [np.zeros((batch, t, o21)), np.zeros((batch, t, o22, o23))], ) self.assertEqual( model.output_shape, [(None, t, o21), (None, t, o22, o23)] ) def test_trackable_dependencies(self): rnn = keras.layers.SimpleRNN x = np.random.random((2, 2, 2)) y = np.random.random((2, 2)) model = keras.models.Sequential() model.add(rnn(2)) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.fit(x, y, epochs=1, batch_size=1) # check whether the model variables are present in the # trackable list of objects checkpointed_objects = { id(o) for o in trackable_util.list_objects(model) } for v in model.variables: self.assertIn(id(v), checkpointed_objects) def test_high_dimension_RNN(self): # Basic test case. unit_a = 10 unit_b = 20 input_a = 5 input_b = 10 batch = 32 time_step = 4 cell = Minimal2DRNNCell(unit_a, unit_b) x = keras.Input((None, input_a, input_b)) layer = keras.layers.RNN(cell) y = layer(x) self.assertEqual(cell.state_size.as_list(), [unit_a, unit_b]) if not tf.executing_eagerly(): init_state = layer.get_initial_state(x) self.assertEqual(len(init_state), 1) self.assertEqual( init_state[0].shape.as_list(), [None, unit_a, unit_b] ) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, input_a, input_b)), np.zeros((batch, unit_a, unit_b)), ) self.assertEqual(model.output_shape, (None, unit_a, unit_b)) # Test stacking. cells = [ Minimal2DRNNCell(unit_a, unit_b), Minimal2DRNNCell(unit_a * 2, unit_b * 2), Minimal2DRNNCell(unit_a * 4, unit_b * 4), ] layer = keras.layers.RNN(cells) y = layer(x) model = keras.models.Model(x, y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( np.zeros((batch, time_step, input_a, input_b)), np.zeros((batch, unit_a * 4, unit_b * 4)), ) self.assertEqual(model.output_shape, (None, unit_a * 4, unit_b * 4)) def test_high_dimension_RNN_with_init_state(self): unit_a = 10 unit_b = 20 input_a = 5 input_b = 10 batch = 32 time_step = 4 # Basic test case. cell = Minimal2DRNNCell(unit_a, unit_b) x = keras.Input((None, input_a, input_b)) s = keras.Input((unit_a, unit_b)) layer = keras.layers.RNN(cell) y = layer(x, initial_state=s) model = keras.models.Model([x, s], y) model.compile( optimizer="rmsprop", loss="mse", run_eagerly=test_utils.should_run_eagerly(), ) model.train_on_batch( [ np.zeros((batch, time_step, input_a, input_b)), np.zeros((batch, unit_a, unit_b)), ],
np.zeros((batch, unit_a, unit_b))
numpy.zeros
import numpy import random from glob import glob from scipy import interpolate from scipy.special import softmax from scipy.stats import ttest_ind from sklearn.model_selection import KFold import sys from scipy.stats import skew, kurtosis import itertools import collections import errno import os.path as osp import pickle import time import shutil from itertools import count from sklearn.metrics import confusion_matrix, f1_score, precision_score, roc_auc_score, recall_score from sklearn.metrics import average_precision_score from sklearn.metrics import accuracy_score, classification_report, cohen_kappa_score, roc_curve, precision_recall_curve from typing import List from datetime import datetime import sklearn.metrics as metrics from mlxtend.plotting import plot_confusion_matrix as mlxtend_plot_confusion_matrix from mlxtend.evaluate import confusion_matrix as mlxtend_confusion_matrix import numpy as np import pandas as pd import os import matplotlib.pyplot as plt from sklearn.manifold import TSNE from inspect import signature from sklearn.preprocessing import StandardScaler from tqdm import tqdm from pathlib import Path def get_project_root() -> Path: return Path(__file__).parent.parent def one_hot_array(label_array: np.array, total_classes): assert len(label_array.shape) == 1, print("label_array must be 1D array") tmp = np.zeros(shape=(label_array.shape[0], total_classes), dtype=np.float) tmp[np.arange(label_array.size), label_array] = 1.0 return tmp def load_tf_model(model_path=''): import tensorflow as tf with tf.Session() as sess: loaded_saver = tf.train.import_meta_graph(model_path) loaded_saver.restore(sess, tf.train.latest_checkpoint('/')) print(sess.run('w1:0')) return sess def get_all_folders_include_sub(path): folders = [x[0] for x in os.walk(path)] return folders def get_char_split_symbol(): if sys.platform == "win32": sp = "\\" else: sp = "/" return sp def get_all_files_include_sub(path, file_type): files = [] # r=root, d=directories, f = files for r, d, f in os.walk(path): for file in f: if file_type in file[-len(file_type):]: files.append(os.path.join(os.path.abspath(r), file)) return files def plot_train_history(history, title): loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(loss)) plt.figure() plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title(title) plt.legend() plt.show() def standardize_df_given_feature(df, features=[], scaler=None, df_name="", simple_method=True): assert len(features) > 0, print("feature length must greater than 0") scaler_dic = {} # check if the df contains nan or inf if simple_method: print("pre-processing dataset frame using simple method") df[features] = df[features].replace([np.inf, -np.inf], np.nan) df[features] = df[features].fillna(df[features].mean()) # df[~np.isfinite(df)] = np.nan nan = df[df.isnull().any(axis=1)] if nan.shape[0] > 0: print("df contains nan") inf = df[df.eq(np.inf).any(axis=1)] if inf.shape[0] > 0: print("df contains inf") else: print("pre-processing dataset frame using comprehensive method") for feature in features: # print("quality check on %s for column name: % s" % (df_name, feature)) if df[feature].isnull().values.any(): df[feature] = df[feature].replace(np.nan, df[~df[feature].isin([np.nan, np.inf, -np.inf])][feature].mean()) if df[feature].isin([np.inf]).values.any(): df[feature] = df[feature].replace(np.inf, df[~df[feature].isin([np.nan, np.inf, -np.inf])][feature].max()) if df[feature].isin([-np.inf]).values.any(): df[feature] = df[feature].replace(-np.inf, df[~df[feature].isin([np.nan, np.inf, -np.inf])][feature].min()) df[feature] = df[feature].replace([np.nan, np.inf, -np.inf], 0.0) if scaler is None: scaler = StandardScaler() print(' Not given scaler start training scaler now!') scaler.fit(df[features]) print('start transform dataset frame :%s' % df_name) df[features] = scaler.transform(df[features]) return scaler def extract_x_y_new(df, seq_len, mesaid, label_posi='mid', feature=""): df_x = df[df["mesaid"] == mesaid][[feature, "stages"]].copy() y = df_x["stages"].astype(int).values # get the ground truth for y del df_x["stages"] if label_posi == 'mid': if seq_len % 2 == 0: # even win_len fw_end = np.ceil(seq_len / 2) bw_end = np.floor(seq_len / 2) else: fw_end = np.round(seq_len / 2) bw_end = np.round(seq_len / 2) for s in range(1, fw_end): df_x["shift_%d" % s] = df_x[feature].shift(s) # as half of the sliding window has reversed order (these df columns) columns = df_x.columns.tolist() columns = columns[::-1] # or data_frame = data_frame.sort_index(ascending=True, axis=0) df_x = df_x[columns] for s in range(1, bw_end): df_x["shift_-%d" % s] = df_x[feature].shift(-s) else: for s in range(1, seq_len): df_x["shift_%d" % s] = df_x["activity"].shift(s) x = df_x.fillna(-1).values return x, y def extract_x_y(df, seq_len, pid, label_posi='mid', feature="", id_col_name="mesaid", gt_col_name="stages"): df_x = df[df[id_col_name] == pid][[feature, gt_col_name]].copy() y = df_x[gt_col_name].astype(int).values # get the ground truth for y del df_x[gt_col_name] if label_posi == 'mid': for s in range(1, round(seq_len / 2) + 1): df_x["shift_%d" % s] = df_x[feature].shift(s) # reverse columns columns = df_x.columns.tolist() columns = columns[::-1] # or data_frame = data_frame.sort_index(ascending=True, axis=0) df_x = df_x[columns] for s in range(1, round(seq_len / 2) + 1): df_x["shift_-%d" % s] = df_x[feature].shift(-s) else: for s in range(1, seq_len + 1): df_x["shift_%d" % s] = df_x["activity"].shift(s) x = df_x.fillna(-1).values return x, y def get_data(df, seq_len, feature_list, pid_col_name='mesaid', gt_col_name="stages"): # build dataset by participant ID, extract dataset using sliding window method. final_x = [] # loop all mesa_ids for feature in tqdm(feature_list): pids = df[pid_col_name].unique() x, y = extract_x_y(df, seq_len, pids[0], label_posi='mid', feature=feature, id_col_name=pid_col_name, gt_col_name=gt_col_name) if len(pids) > 1: for mid in pids[1:]: x_tmp, y_tmp = extract_x_y(df, seq_len, mid, label_posi='mid', feature=feature, id_col_name=pid_col_name, gt_col_name=gt_col_name) x = np.concatenate((x, x_tmp)) y = np.concatenate((y, y_tmp)) x = np.expand_dims(x, -1) final_x.append(x) combined_x = np.concatenate(final_x, axis=-1) return combined_x, y def standardize_features_to_array(df, scalers=None): """ This function will scale the dataset set use SK learn scaler function however we recommend do not pass a feature list to the function as it may difficult to save the scaler list into H5py file # fixme: need complete the code for the feature list, need return a scaler that was train from training dataset # fixme: can be used for test dataset. :param df: :param features: :param scaler: :return: """ df = df.apply(lambda x: x.replace([np.nan], x[~x.isin([np.nan, np.inf, -np.inf])].mean()), axis=0) df = df.apply(lambda x: x.replace([np.inf], x[~x.isin([np.nan, np.inf, -np.inf])].max()), axis=0) df = df.apply(lambda x: x.replace([-np.inf], x[~x.isin([np.nan, np.inf, -np.inf])].min()), axis=0) df = df.apply(lambda x: x.replace([np.nan, np.inf, -np.inf], 0.0), axis=0) if scalers is not None: df = scalers.transform(df) else: scaler = StandardScaler() scaler.fit(df) df = scaler.transform(df) # the final check to replace any abnormal values return df, scaler def load_scaler(path, file_type=".pkl"): scaler = None if file_type == ".pkl": with open(path, "rb") as f: scaler = pickle.load(f) return scaler def load_h5_df_train_test_dataset(path): """ this is only for the mesa dataset!!!!!""" store = pd.HDFStore(path, 'r') dftrain = store["train"] dftest = store["test"] feature_name = store["featnames"].values.tolist() if type(feature_name[0]) is list: feature_name = list(itertools.chain.from_iterable(feature_name)) store.close() return dftrain, dftest, feature_name def get_csv_files(data_path): # Remove non-mat files, and perform ascending sort print("searching csv files ...") allfiles = os.listdir(data_path) csv_files = [] for idx, f in enumerate(allfiles): if ".csv" in f: csv_files.append(os.path.join(data_path, f)) print("total found {} files".format(len(csv_files))) csv_files.sort() return csv_files # TODO add argument that add the modality name in column name def get_statistic_feature(df, column_name, windows_size=20): """ the function will directly change input argument dataset frame, so the argument isn't immutable :param df: :param column_name: the column name we want to extract its statistic features. :param windows_size: :return: feature_names : contains the features that extracted from the given window size. """ feature_names = [] for win_size in np.arange(1, windows_size): df["_mean_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).mean().fillna(0.0) df["_mean_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).mean().fillna(0.0) df["_median_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).median().fillna(0.0) df["_median_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).median().fillna(0.0) df["_std_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).std().fillna( 0.0) df["_std_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).std().fillna(0.0) df["_max_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).max().fillna( 0.0) df["_max_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).max().fillna(0.0) df["_min_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).min().fillna( 0.0) df["_min_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).min().fillna(0.0) df["_var_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).var().fillna( 0.0) df["_var_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).var().fillna(0.0) df["_nat_%d" % win_size] = ((df[column_name] >= 50) & (df[column_name] < 100)).rolling(window=win_size, center=False, min_periods=1).sum().fillna( 0.0) df["_nat_centered_%d" % win_size] = ((df[column_name] >= 50) & (df[column_name] < 100)).rolling(window=win_size, center=True, min_periods=1).sum().fillna( 0.0) df["_anyact_%d" % win_size] = (df[column_name] > 0).rolling(window=win_size, center=False, min_periods=1).sum().fillna(0.0) df["_anyact_centered_%d" % win_size] = (df[column_name] > 0).rolling(window=win_size, center=True, min_periods=1).sum().fillna(0.0) if win_size > 3: df["_skew_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).skew().fillna(0.0) df["_skew_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).skew().fillna(0.0) # df["_kurt_%d" % win_size] = df[column_name].rolling(window=win_size, center=False, min_periods=1).kurt().fillna(0.0) df["_kurt_centered_%d" % win_size] = df[column_name].rolling(window=win_size, center=True, min_periods=1).kurt().fillna(0.0) # build up the for variant in ["centered_", ""]: feature_names.append("_mean_%s%d" % (variant, win_size)) feature_names.append("_median_%s%d" % (variant, win_size)) feature_names.append("_max_%s%d" % (variant, win_size)) feature_names.append("_min_%s%d" % (variant, win_size)) feature_names.append("_std_%s%d" % (variant, win_size)) feature_names.append("_var_%s%d" % (variant, win_size)) feature_names.append("_nat_%s%d" % (variant, win_size)) feature_names.append("_anyact_%s%d" % (variant, win_size)) if win_size > 3: feature_names.append("_skew_%s%d" % (variant, win_size)) feature_names.append("_kurt_%s%d" % (variant, win_size)) df["_Act"] = (df[column_name]).fillna(0.0) df["_LocAct"] = (df[column_name] + 1.).apply(np.log).fillna(0.0) # build up the n log transformation feature_names.append("_LocAct") # add logarithm transformation feature_names.append("_Act") return feature_names def get_hr_statistic_feature(heart_rate_values): """ :param heart_rate_values a windowed contain a time series of heart rates """ heart_rate_values = np.asarray(heart_rate_values) min_hr = np.mean(heart_rate_values) max_hr = np.max(heart_rate_values) mean_hr = np.mean(heart_rate_values) skw_hr = skew(heart_rate_values) kurt_hr = kurtosis(heart_rate_values) std_hr = np.std(heart_rate_values) return {"min_hr": min_hr, "max_hr": max_hr, "mean_hr": mean_hr, "skw_hr": skw_hr, "kurt_hr": kurt_hr, "std_hr": std_hr} def load_results(folder, num_classes, modality, feature_type, hrv_win_len): """ Load results from machine learning based methods and combine with deep learning model based results """ MLRESULTS = os.path.join(folder, "%d_stages_%ds_ml_%s.csv" % (num_classes, hrv_win_len, modality)) dfml = pd.read_csv(MLRESULTS) dfnn = get_nns(folder, num_classes, modality, feature_type, hrv_win_len) dfml = dfml.rename(columns={"Unnamed: 0": "algs"}) dfnn = dfnn.rename(columns={"actValue": "activity"}) merged = pd.merge(dfml, dfnn, on=["mesaid", "linetime", "activity", "stages", "gt_sleep_block"]) assert len(merged.stages.unique()) == num_classes for cl in ['activity_y', 'stages_y', 'gt_sleep_block_y']: if cl in merged.columns: del merged[cl] merged["always_0"] = 0 merged["always_1"] = 1 merged["always_2"] = 2 merged["always_3"] = 3 merged["always_4"] = 4 # merged["sleep"] = (~merged["wake"].astype(np.bool)).astype(float) return merged def pvalue(results, alg1, alg2, metric): """ get the t statistic p-value from two algorithm :param results: :param alg1: :param alg2: :param metric: :return: """ return ttest_ind(results[alg1][metric], results[alg2][metric])[1] def make_one_block(source_df, start_idx, end_idx): # create a new df from the source df index and fill zeros result = pd.Series(data=0, index=source_df.index) # set a block in dataset frame with value 1 result.loc[start_idx:end_idx] = 1 return result def get_files_given_type(data_path, file_type): """ this function will return all file names with postfix :param data_path: :param file_type: :return: """ print("searching csv files ...") allfiles = os.listdir(data_path) files = [] for idx, f in enumerate(allfiles): if file_type in f: files.append(os.path.basename(f)) print("total found {} files".format(len(files))) files.sort() return files def plot_multiple_classifier_roc(files_path=None): """ it can generate a diagram contains of roc curve for multiple classifiers to show the performance :param files_path: :return: """ files = get_files_given_type(files_path, file_type='npz') # plot roc curve plt.figure(0).clf() for npz_file in files: with np.load(npz_file) as data: label = data['experiment'] y_true = data['y_true'] y_pred = data['y_pred'] # label = np.random.randint(2, size=1000) fpr, tpr, thresh = roc_curve(y_true, y_pred) auc = roc_auc_score(y_true, y_pred) plt.plot(fpr, tpr, label=label + " auc=%0.2f" % auc) plt.plot([0, 1], [0, 1], color='red', linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc="lower right") plt.legend(loc=0) def save_validation_logits(y_true, y_pred, classifier_name=None, file_path=None, ): if file_path != None: save_dict = {"experiment": classifier_name, 'y_true': y_true, 'y_pred': y_pred} np.savez(file_path, **save_dict) # we should first to check if the file existed if not create the file def log_print_inference(y_test, yhat, label_value, target_names, epochs=0, tensor_board_path='', file_title="" , args=None): """ Log inference results to tensor board path, we can track each experiment prediction result include accuracy, recall, precision, F1 score, F1 report, confusion matrix and confusion matrix in picture format. TODO: need add specificity, sensitivity, PPV, also we need log the args TODO we need two levels performance evaluation. Classifier level and label level === Confusion Matrix === a b c d e f g <-- classified as 50 15 3 0 0 1 1 | a = build wind float 16 47 6 0 2 3 2 | b = build wind non-float 5 5 6 0 0 1 0 | c = vehic wind float 0 0 0 0 0 0 0 | d = vehic wind non-float 0 2 0 0 10 0 1 | e = containers 1 1 0 0 0 7 0 | f = tableware 3 2 0 0 0 1 23 | g = headlamps === Detailed Accuracy By Class === TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class 0.714 0.174 0.667 0.714 0.690 0.532 0.806 0.667 build wind float 0.618 0.181 0.653 0.618 0.635 0.443 0.768 0.606 build wind non-float 0.353 0.046 0.400 0.353 0.375 0.325 0.766 0.251 vehic wind float 0.000 0.000 0.000 0.000 0.000 0.000 ? ? vehic wind non-float 0.769 0.010 0.833 0.769 0.800 0.788 0.872 0.575 containers 0.778 0.029 0.538 0.778 0.636 0.629 0.930 0.527 tableware 0.793 0.022 0.852 0.793 0.821 0.795 0.869 0.738 headlamps 0.668 0.130 0.670 0.668 0.668 0.539 0.807 0.611 Weighted Avg. :param args: :param file_title: :param y_test: :param yhat: :param label_value: :param target_names: :param epochs: :param tensor_board_path: :return: """ if args is not None: write_arguments_to_file(args, os.path.join(tensor_board_path, file_title + "_args.csv")) if len(y_test.shape) > 2: y_test = np.reshape(y_test, -1) accuracy = accuracy_score(y_test, yhat) print('Accuracy: %f' % accuracy) precision = precision_score(y_test, yhat, average='macro') print('Precision: %f' % precision) recall = recall_score(y_test, yhat, average='macro') print('Recall: %f' % recall) f1_result = f1_score(y_test, yhat, average='macro') print('F1 score: %f' % f1_result) matrix = confusion_matrix(y_test, yhat, label_value) report = classification_report(y_test, yhat, target_names=target_names, digits=4) print("Classification report: \n") print(report) to_json = {'epoch_num': [epochs], 'accuracy': [accuracy], 'precision_weighted': [precision], 'recall': [recall], 'f1_result': [f1_result]} result = pd.DataFrame.from_dict(to_json) result.to_csv(os.path.join(tensor_board_path, file_title + "metrics_summary.csv"), index=False) np.savetxt(os.path.join(tensor_board_path, file_title + 'confusion_matrix.txt'), matrix, fmt='%d', delimiter=',') with open(os.path.join(tensor_board_path, file_title + "classification_report.txt"), "w") as text_file: text_file.write(report) # for binary classification we produce the ROC curve if len(target_names) == 2: ratio = sum(y_test) / len(y_test) print("The ratio between negative and positive case are {}".format(str(ratio))) # save the best trained model as well. normal_path = plot_save_confusion_matrix(y_test, yhat, normalize=True, class_names=target_names, location=tensor_board_path, title=file_title) return [normal_path] def log_print_metrics(y_pred, y_test, epochs, num_classes, note, tensorboard_path, args): if len(y_pred.shape) > 1: yhat_classes = np.argmax(y_pred, axis=-1) else: yhat_classes = y_pred # Y_test_classes = np.reshape(y_test, (-1, 2)) if len(y_test.shape) > 1: Y_test_classes = np.argmax(y_test, axis=-1) else: Y_test_classes = y_test label_values, target_names = sleep_class_name_mapping(num_classes) log_print_inference(Y_test_classes, yhat_classes, label_value=label_values, target_names=target_names, epochs=epochs, tensor_board_path=tensorboard_path, file_title="dl_exp_%s" % note, args=args) def sleep_class_name_mapping(num_classes): if num_classes == 5: label_values = [0, 1, 2, 3, 4] target_names = ['Wake', 'N1', 'N2', 'N3', 'REM'] elif num_classes == 4: label_values = [0, 1, 2, 3] target_names = ['Wake', 'Light', 'Deep', 'REM'] elif num_classes == 3: label_values = [0, 1, 2] target_names = ['Wake', 'NREM', 'REM'] else: label_values = [0, 1] target_names = ['Wake', 'Sleep'] return label_values, target_names def plot_pr_re_curve(y_true, y_prob, save_path=None): # In matplotlib < 1.5, plt.fill_between does not have a 'step' argument precision, recall, _ = precision_recall_curve(y_true, y_prob) average_precision = average_precision_score(y_true, y_prob) step_kwargs = ({'step': 'post'} if 'step' in signature(plt.fill_between).parameters else {}) plt.step(recall, precision, color='b', alpha=0.2, where='post') plt.fill_between(recall, precision, alpha=0.2, color='b', **step_kwargs) plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format( average_precision)) def plot_roc_curve(y_true, y_prob, save_path=None): if max(y_true) == 1: return fpr, tpr, thresholds = roc_curve(y_true, y_prob) auc = roc_auc_score(y_true, y_prob) #################################### # The optimal cut off would be where tpr is high and fpr is low # tpr - (1-fpr) is zero or near to zero is the optimal cut off point #################################### i = np.arange(len(tpr)) # index for df roc = pd.DataFrame( {'fpr': pd.Series(fpr, index=i), 'tpr': pd.Series(tpr, index=i), '1-fpr': pd.Series(1 - fpr, index=i), 'tf': pd.Series(tpr - (1 - fpr), index=i), 'thresholds': pd.Series(thresholds, index=i)}) roc_t = roc.loc[(roc.tf - 0).abs().argsort()[:1]] if auc > 0.0: # when we plot we have to make sure the x and y values are given plt.plot(fpr, tpr, color='orange', label='ROC curve (AUC = %0.2f)' % auc) else: plt.plot(fpr, tpr, color='orange', label='ROC') plt.plot(1 - fpr, tpr, color='red', label='1 - fpr, opt cut point = %0.2f' % roc_t['thresholds']) plt.plot([0, 1], [0, 1], color='darkblue', linestyle='--') plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic (ROC) Curve') plt.legend() plt.show() if len(save_path) > 0: _save_path = os.path.join(save_path, "ROC_Curve.png") plt.savefig(_save_path) plt.clf() return _save_path return '' def plot_roc_curve2(fpr, tpr, thresholds): plt.figure() plt.plot(fpr, tpr, color='darkorange', label='ROC curve (area = %0.2f)' % metrics.auc(fpr, tpr)) plt.plot([0, 1], [0, 1], color='navy', linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.legend(loc="lower right") # create the axis of thresholds (scores) ax2 = plt.gca().twinx() ax2.plot(fpr, thresholds, markeredgecolor='r', linestyle='dashed', color='r') ax2.set_ylabel('Threshold', color='r') ax2.set_ylim([thresholds[-1], thresholds[0]]) ax2.set_xlim([fpr[0], fpr[-1]]) plt.savefig('roc_and_threshold.png') plt.clf() def calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10): assert (embeddings1.shape[0] == embeddings2.shape[0]) assert (embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds, nrof_thresholds)) fprs = np.zeros((nrof_folds, nrof_thresholds)) accuracy = np.zeros((nrof_folds)) diff = np.subtract(embeddings1, embeddings2) dist = np.sum(np.square(diff), 1) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx, threshold_idx], fprs[fold_idx, threshold_idx], _ = calculate_accuracy(threshold, dist[test_set], actual_issame[ test_set]) _, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr =
np.mean(fprs, 0)
numpy.mean
#!/usr/bin/env python # -*- encoding: utf-8 -*- '''Tests for task decoding''' import numpy as np import pytest import jams import pumpp # Sampling rate and hop are simple here to keep things # divisible for inverse checks @pytest.fixture() def sr(): return 10 @pytest.fixture() def hop_length(): return 1 @pytest.fixture() def ann_tag(): ann = jams.Annotation(namespace='tag_gtzan', duration=10) ann.append(time=0, duration=5, value='blues') ann.append(time=1.5, duration=1.5, value='reggae') return ann @pytest.fixture() def ann_vector(): ann = jams.Annotation(namespace='vector', duration=1) ann.append(time=0, duration=0, value=np.arange(32)) return ann @pytest.fixture() def ann_beat(): ann = jams.Annotation(namespace='beat', duration=10) # for n, i in enumerate(np.arange(0, 10, 0.5)): # ann.append(time=i, duration=0, value=1 + (n % 4)) # Make up two measures of 4/4, plus two pickup beats for t, v in [(0, -2), (0.5, -1), (1, 1), (1.5, 2), (2, 3), (3, 4), (3.5, 1), (4, 2), (4.5, 3), (5, 4), (5.5, 1), (6, 2), (6.5, 3), (7, 4)]: ann.append(time=t, duration=0, value=v) return ann @pytest.fixture() def ann_chord(): ann = jams.Annotation(namespace='chord', duration=5) for t, c in [(0, 'C'), (1, 'C:maj'), (2, 'D:min/3'), (3, 'F#:7(*5)'), (4, 'G:sus2')]: ann.append(time=t, duration=1, value=c) return ann @pytest.fixture(params=[None, 0.5]) def p_self_chord(request): return request.param @pytest.fixture(params=[False, True]) def p_init_chord(request): if request.param: return np.ones(170) / 170 else: return None @pytest.fixture(params=[False, True]) def p_state_chord(request): if request.param: return np.ones(170) / 170 else: return None @pytest.fixture(params=[None, False, True]) def p_self_tags(request): if request.param is None: return None if request.param: return 0.5 * np.ones(10) # 10 tags in GTZAN else: return 0.5 @pytest.fixture(params=[False, True]) def p_init_tags(request): if request.param: return 0.5 * np.ones(10) else: return None @pytest.fixture(params=[False, True]) def p_state_tags(request): if request.param: return 0.5 * np.ones(10) else: return None @pytest.fixture(params=[None, False, True]) def p_self_beat(request): if request.param is None: return None elif request.param: return np.asarray([0.5, 0.0]) else: return 0.5 @pytest.fixture(params=[None, False, True]) def p_self_down(request): if request.param is None: return None elif request.param: return np.asarray([0.5, 0.0]) else: return 0.5 @pytest.fixture(params=[None, 0.5]) def p_init_beat(request): return request.param @pytest.fixture(params=[None, 0.5]) def p_init_down(request): return request.param @pytest.fixture(params=[None, 0.5]) def p_state_beat(request): return request.param @pytest.fixture(params=[None, 0.5]) def p_state_down(request): return request.param @pytest.fixture() def ann_segment(): ann = jams.Annotation(namespace='segment_open', duration=5) for t, c in [(0, 'A'), (1, 'B'), (2, 'A'), (3, 'B'), (4, 'C')]: ann.append(time=t, duration=1, value=c) return ann @pytest.fixture() def ann_key(): ann = jams.Annotation(namespace='key_mode', duration=5) for t, c in [(0, 'A:major'), (1, 'Bb:lydian'), (2, 'A:minor'), (3, 'B:major'), (4, 'C:dorian')]: ann.append(time=t, duration=1, value=c) return ann @pytest.fixture(params=[None, 0.5]) def p_self_key(request): return request.param @pytest.fixture(params=[False, True]) def p_init_key(request): if request.param: return np.ones(109) / 109 else: return None @pytest.fixture(params=[False, True]) def p_state_key(request): if request.param: return np.ones(109) / 109 else: return None def test_decode_tags_dynamic_hard(sr, hop_length, ann_tag, p_self_tags, p_init_tags, p_state_tags): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.DynamicLabelTransformer('genre', 'tag_gtzan', hop_length=hop_length, sr=sr, p_self=p_self_tags, p_init=p_init_tags, p_state=p_state_tags) data = tc.transform_annotation(ann_tag, ann_tag.duration) inverse = tc.inverse(data['tags'], duration=ann_tag.duration) for obs in inverse: assert 0. <= obs.confidence <= 1. data2 = tc.transform_annotation(inverse, ann_tag.duration) assert np.allclose(data['tags'], data2['tags']) def test_decode_tags_dynamic_soft(sr, hop_length, ann_tag, p_self_tags, p_init_tags, p_state_tags): # This test encodes an annotation, decodes it, and then re-encodes it # It passes if the re-encoded version matches the initial encoding tc = pumpp.task.DynamicLabelTransformer('genre', 'tag_gtzan', hop_length=hop_length, sr=sr, p_self=p_self_tags, p_init=p_init_tags, p_state=p_state_tags) data = tc.transform_annotation(ann_tag, ann_tag.duration) # Soften the data, but preserve the decisions tags_predict = 0.9 * data['tags'] + 0.1 *
np.ones_like(data['tags'])
numpy.ones_like
from pylab import * import numpy as np import operator ## Search-Routine Parameters n = 2 mu_exp = 2.0 mu_rifl = 1.0 mu_contr_ex = 1.0/2 mu_contr_int = -1.0/2 mu_red = 1.0/2 ## Random Trial Simplex [may need a careful range-definition] def vertici_iniziali(): import random random.seed() vertici=[] for i in range(n+1): x=random.uniform(-12,-8); y=random.uniform(0,3); vertici.append([x,y]) return vertici vertex=vertici_iniziali() x1=vertex[0] x2=vertex[1] x3=vertex[2] ## Target Functions [uncomment the desired one] def f(x,y): #return -1.0*np.cos(x)*np.cos(y)*np.exp(-((x-np.pi)**2+(y-np.pi)**2)) # EASOM #return np.exp(0.5*(x**2+y**2-25)**2)+(np.sin(4*x-3*y))**4+0.5*(2*x+y-10)**2 # GOLDSTEIN-PRICE return 100*abs(y-0.01*x**2)+0.01*abs(x+10) # BUKIN 6th #return (x+2*y-7)**2+(2*x+y-5)**2 # BOOTH data_x=[x1,x2,x3] data_f=[f(x1[0],x1[1]),f(x2[0],x2[1]),f(x3[0],x3[1])] data=[[f(x1[0],x1[1]),x1],[f(x2[0],x2[1]),x2],[f(x3[0],x3[1]),x3]] print (data) ## Ordering [increasing f(x)] data=sorted(data,key=operator.itemgetter(0)) data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'f(trial simplex)') print ( data_x ,'trial simplex') ## Plotting the Target Function and the Trial Simplex xvec = np.linspace(-12, -8, 1000) yvec = np.linspace(-0, 3, 1000) X,Y = np.meshgrid(xvec, yvec) Z = f(X, Y).T fig, ax = subplots() im = imshow(Z, cmap=cm.magma, vmin=Z.min(), vmax=Z.max(), extent=[-12, -8, 0, 3]) im.set_interpolation('bilinear') cb = fig.colorbar(im) Xvertex = np.array([]) Yvertex = np.array([]) for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='green', edgecolor='black', s=200) coord = data_x coord.append(coord[0]) # have to repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # creates lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') # Polytope draws up ## Evolving the Simplex epsilon = 10**(-5) # See... loop=1 while data_f[n]- data_f[0] > epsilon: # ...this! loop=loop+1 ## Centroid a=np.array(data_x[0:n]) a=a/n xc=a.sum(axis=0) xr=(1+mu_rifl)*xc-mu_rifl*np.array(data_x[n]) fr=f(xr[0],xr[1]) print ( fr, 'fr') ## Reflection step if data_f[0]<=fr<data_f[n-1]: data[n][1]=xr data[n][0]=f(xr[0],xr[1]) data=sorted(data,key=operator.itemgetter(0)) print('loop',loop,'riflessione') data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'valori funzione ') print ( data_x ,'vertici ') for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='white', edgecolor='black') coord = data_x coord.append(coord[0]) # repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # create lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') continue ## Expansion step if fr<data_f[0]: a=np.array(data_x[0:n]) a=a/n xc=a.sum(axis=0) xe=(1+mu_exp)*xc-mu_exp*np.array(data_x[n]) fe=f(xe[0],xe[1]) if fe<fr: data[n][1]=xe data[n][0]=f(xe[0],xe[1]) data=sorted(data,key=operator.itemgetter(0)) print('loop' ,loop,'espansione') data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'valori funzione ') print ( data_x ,'vertici ') for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='white', edgecolor='black') coord = data_x coord.append(coord[0]) # repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # create lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') continue else: data[n][1]=xr data[n][0]=f(xr[0],xr[1]) data=sorted(data,key=operator.itemgetter(0)) print('loop',loop,'riflessione') data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'valori funzione ') print ( data_x ,'vertici ') for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='white', edgecolor='black') coord = data_x coord.append(coord[0]) # repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # create lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') continue ## External-Contraction step if data_f[n-1]<=fr<data_f[n]: a=np.array(data_x[0:n]) a=a/n xc=a.sum(axis=0) xoc=(1+mu_contr_ex)*xc-mu_contr_ex*np.array(data_x[n]) foc=f(xoc[0],xoc[1]) if foc<fr: data[n][1]=xoc data[n][0]=f(xoc[0],xoc[1]) data=sorted(data,key=operator.itemgetter(0)) print( 'loop' ,loop,'contrazione esterna') data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'valori funzione ') print ( data_x ,'vertici ') for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='white', edgecolor='black') coord = data_x coord.append(coord[0]) # repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # create lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') continue ## Reduction step [!] else: a=np.array(data_x) for i in range(1,n+1): data[i][1]=a[0]+mu_red*(a[i]-a[0]) data[i][0]=f(data[i][1][0],data[i][1][1]) data=sorted(data,key=operator.itemgetter(0)) print('loop',loop,'riduzione') data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'valori funzione ') print ( data_x ,'vertici ') for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='white', edgecolor='black') coord = data_x coord.append(coord[0]) # repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # create lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') continue ## Internal-Contraction step if fr>=data_f[n]: a=np.array(data_x[0:n]) a=a/n xc=a.sum(axis=0) xic=(1+mu_contr_int)*xc-mu_contr_int*np.array(data_x[n]) fic=f(xic[0],xic[1]) if fic<data_f[n]: data[n][1]=xic data[n][0]=f(xic[0],xic[1]) data=sorted(data,key=operator.itemgetter(0)) print('loop',loop ,'contrazione interna') data_f= [item[0] for item in data] data_x= [item[1] for item in data] print (data_f, 'valori funzione ') print ( data_x ,'vertici ') for i in range(n+1): Xvertex = np.append(Xvertex, data_x[i][0]) Yvertex = np.append(Yvertex, data_x[i][1]) plt.scatter(Xvertex,Yvertex, color='white', edgecolor='black') coord = data_x coord.append(coord[0]) # repeat the first point to create a 'closed loop' xs, ys = zip(*coord) # create lists of x and y values plt.plot(xs,ys, color='white', alpha=0.3, ls='--') continue ## Reduction step [!] else: a=
np.array(data_x)
numpy.array