code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
# Beta Version 0.7 by Nask # Beta version 0.7 # # Version prepared to deal with scenarios designed for testing, where basic WhatsApp functions can be performed, such as: # # Receive messages from multiple chats # Send messages to multiple chats # Send images to multiple chats # Receive images from multiple chats # Send emojis to a contact or the search bar # Turn images into stickers # Send links # Send files # Who sent the message # When they sent the message # This version is not production ready! from datetime import datetime class Message(object): def __init__(self, message_sender: str, message_date: str, message_hour: str, message: str, message_id: str) -> None: super().__init__() self.message_sender: str = message_sender self.message_date: datetime.date = datetime.strptime( message_date, '%d/%m/%Y').date() self.message_hour: datetime.time = datetime.strptime( message_hour, '%H:%M').time() self.message: str = message self.message_id: str = message_id
[ "datetime.datetime.strptime" ]
[((804, 847), 'datetime.datetime.strptime', 'datetime.strptime', (['message_date', '"""%d/%m/%Y"""'], {}), "(message_date, '%d/%m/%Y')\n", (821, 847), False, 'from datetime import datetime\n'), ((911, 951), 'datetime.datetime.strptime', 'datetime.strptime', (['message_hour', '"""%H:%M"""'], {}), "(message_hour, '%H:%M')\n", (928, 951), False, 'from datetime import datetime\n')]
import scrapy from GubaDC.items import GubaItem from urllib.parse import urljoin import random from GubaDC.settings import IP_POOL baseUrl = "http://guba.sina.com.cn" startUrl = baseUrl + "/?s=bar&name={}&type=0&page=0" stockCode = "sh600519" class SinaSpider(scrapy.Spider): name = "sinaSpider" startPageNo = 0 def start_requests(self): yield scrapy.Request(url=startUrl.format(stockCode)) def parse(self, response): code = response.xpath('//div[@class="blk_stock_info clearfix"]//span[@class="bsit_code"]/text()').extract_first() code = code[1:-1] name = response.xpath('//div[@class="blk_stock_info clearfix"]//span[@class="bsit_name"]//a/text()').extract_first() for line in response.xpath('//div[@id="blk_list_02"]//tr[@class="tr2"]'): Guba_info = GubaItem() Guba_info['stockCode'] = code Guba_info['stockName'] = name Guba_info['Href'] = response.request.url Guba_info['Source'] = 'SINA' cols = line.xpath("./td") Guba_info['readNum'] = cols[0].xpath("./span/text()").extract_first() Guba_info['commentNum'] = cols[1].xpath("./span/text()").extract_first() titleSelector = cols[2].xpath("./a") Guba_info['Title'] = titleSelector.xpath("./text()").extract_first() Guba_info['Writer'] = cols[3].xpath("./div//a/text()").extract_first() if Guba_info['Writer'] is None: Guba_info['Writer'] = cols[3].xpath("./div/text()").extract_first() Guba_info['Time'] = cols[4].xpath('./text()').extract_first() yield Guba_info # print(Guba_info) for link in response.xpath('//div[@class="blk_01_b"]//p[@class="page"]//a'): request = scrapy.Request(urljoin(baseUrl, link.xpath("./@href").extract_first())) # useThisIp = random.choice(IP_POOL) # print('>>>>> Using proxy : %s' % useThisIp["ip"]) # request.meta["proxy"]= useThisIp["ip"] yield request
[ "GubaDC.items.GubaItem" ]
[((827, 837), 'GubaDC.items.GubaItem', 'GubaItem', ([], {}), '()\n', (835, 837), False, 'from GubaDC.items import GubaItem\n')]
import logging DETAILED = logging.Formatter(fmt="%(asctime)s - %(name)s - %(levelname)s - %(message)s") SHORT = logging.Formatter(fmt="[%(name)-8s] %(levelname)7s: %(message)s")
[ "logging.Formatter" ]
[((27, 104), 'logging.Formatter', 'logging.Formatter', ([], {'fmt': '"""%(asctime)s - %(name)s - %(levelname)s - %(message)s"""'}), "(fmt='%(asctime)s - %(name)s - %(levelname)s - %(message)s')\n", (44, 104), False, 'import logging\n'), ((113, 178), 'logging.Formatter', 'logging.Formatter', ([], {'fmt': '"""[%(name)-8s] %(levelname)7s: %(message)s"""'}), "(fmt='[%(name)-8s] %(levelname)7s: %(message)s')\n", (130, 178), False, 'import logging\n')]
# coding=utf-8 """ person.urls ----------- """ from django.contrib.auth.models import User from django.core.urlresolvers import reverse from django.test import TestCase from mock import Mock from nose.tools import eq_ from waffle.models import Switch from amo.authentication import AMOAuthentication from django_browserid import auth from person.models import Profile class ProfileTest(TestCase): def setUp(self): self.user = User( username='jdoe', first_name='John', last_name='Doe' ) self.user.save() self.profile = Profile() self.profile.user = self.user self.profile.nickname = 'doer' self.profile.save() def tearDown(self): self.profile.delete() self.user.delete() def test_get_fullname(self): self.assertEqual(self.user.get_profile().get_fullname(), '<NAME>') def test_public_profile_url(self): x_url = reverse('person_public_profile', args=['xxx']) with_dash_url = reverse('person_public_profile', args=['abc-cde']) eq_(with_dash_url, x_url.replace('xxx', 'abc-cde')) with_underscore_url = reverse('person_public_profile', args=['abc_de']) eq_(with_underscore_url, x_url.replace('xxx', 'abc_de')) def test_public_utf_profile_url(self): user = User.objects.create(username='12345') profile = Profile.objects.create(user=user, nickname='ąbc') response = self.client.get('/user/ąbc/') eq_(response.status_code, 200) def test_dashboard_utf(self): user = User.objects.create(username='12345') profile = Profile.objects.create(user=user, nickname='ąbc') user.set_password('<PASSWORD>') user.save() self.client.login(username=user.username, password='<PASSWORD>') response = self.client.get(reverse('person_dashboard')) eq_(response.status_code, 200) def test_user_with_question_mark(self): user = User.objects.create(username='12345') profile = Profile.objects.create(user=user, nickname='b?c') # profile response = self.client.get(profile.get_addons_url()) eq_(response.status_code, 200) # dashboard user.set_password('<PASSWORD>') user.save() self.client.login(username=user.username, password='<PASSWORD>') response = self.client.get(reverse('person_dashboard')) eq_(response.status_code, 200) eq_(profile.get_profile_url(), '/user/%s/' % user.username) def test_fake_profile(self): resp = self.client.get(reverse('person_public_profile', args=['xxx'])) eq_(404, resp.status_code) class BrowserIDLoginTest(TestCase): TESTEMAIL = '<EMAIL>' def setUp(self): Switch.objects.create( name='browserid-login', active=True) self.user = User.objects.create( username='123', email=self.TESTEMAIL) Profile.objects.create(user=self.user, nickname='jdoe') # Mocking BrowserIDBackend class BIDBackend(): def verify(self, assertion, site): return {'email': assertion} self.BIDBackend = auth.BrowserIDBackend auth.BrowserIDBackend = BIDBackend def tearDown(self): auth.BrowserIDBackend = self.BIDBackend def test_existing_user_login(self): AMOAuthentication.auth_browserid_authenticate = Mock( return_value={'id': '123'}) response = self.client.post(reverse('browserid_login'), {'assertion': self.TESTEMAIL}) eq_(response.status_code, 200) assert self.user.is_authenticated() def test_user_changed_email_on_AMO(self): auth.BrowserIDBackend.verify = Mock(return_value={'email': '<EMAIL>'}) AMOAuthentication.auth_browserid_authenticate = Mock( return_value={'id': '123', 'email': '<EMAIL>'}) response = self.client.post(reverse('browserid_login'), {'assertion': 'some-assertion'}) eq_(response.status_code, 200) assert self.user.is_authenticated() assert User.objects.filter(email='<EMAIL>') self.assertRaises(User.DoesNotExist, User.objects.get, email=self.TESTEMAIL)
[ "django.contrib.auth.models.User", "nose.tools.eq_", "person.models.Profile.objects.create", "mock.Mock", "person.models.Profile", "waffle.models.Switch.objects.create", "django.core.urlresolvers.reverse", "django.contrib.auth.models.User.objects.filter", "django.contrib.auth.models.User.objects.create" ]
[((443, 500), 'django.contrib.auth.models.User', 'User', ([], {'username': '"""jdoe"""', 'first_name': '"""John"""', 'last_name': '"""Doe"""'}), "(username='jdoe', first_name='John', last_name='Doe')\n", (447, 500), False, 'from django.contrib.auth.models import User\n'), ((596, 605), 'person.models.Profile', 'Profile', ([], {}), '()\n', (603, 605), False, 'from person.models import Profile\n'), ((959, 1005), 'django.core.urlresolvers.reverse', 'reverse', (['"""person_public_profile"""'], {'args': "['xxx']"}), "('person_public_profile', args=['xxx'])\n", (966, 1005), False, 'from django.core.urlresolvers import reverse\n'), ((1030, 1080), 'django.core.urlresolvers.reverse', 'reverse', (['"""person_public_profile"""'], {'args': "['abc-cde']"}), "('person_public_profile', args=['abc-cde'])\n", (1037, 1080), False, 'from django.core.urlresolvers import reverse\n'), ((1171, 1220), 'django.core.urlresolvers.reverse', 'reverse', (['"""person_public_profile"""'], {'args': "['abc_de']"}), "('person_public_profile', args=['abc_de'])\n", (1178, 1220), False, 'from django.core.urlresolvers import reverse\n'), ((1345, 1382), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {'username': '"""12345"""'}), "(username='12345')\n", (1364, 1382), False, 'from django.contrib.auth.models import User\n'), ((1401, 1450), 'person.models.Profile.objects.create', 'Profile.objects.create', ([], {'user': 'user', 'nickname': '"""ąbc"""'}), "(user=user, nickname='ąbc')\n", (1423, 1450), False, 'from person.models import Profile\n'), ((1508, 1538), 'nose.tools.eq_', 'eq_', (['response.status_code', '(200)'], {}), '(response.status_code, 200)\n', (1511, 1538), False, 'from nose.tools import eq_\n'), ((1589, 1626), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {'username': '"""12345"""'}), "(username='12345')\n", (1608, 1626), False, 'from django.contrib.auth.models import User\n'), ((1645, 1694), 'person.models.Profile.objects.create', 'Profile.objects.create', ([], {'user': 'user', 'nickname': '"""ąbc"""'}), "(user=user, nickname='ąbc')\n", (1667, 1694), False, 'from person.models import Profile\n'), ((1900, 1930), 'nose.tools.eq_', 'eq_', (['response.status_code', '(200)'], {}), '(response.status_code, 200)\n', (1903, 1930), False, 'from nose.tools import eq_\n'), ((1991, 2028), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {'username': '"""12345"""'}), "(username='12345')\n", (2010, 2028), False, 'from django.contrib.auth.models import User\n'), ((2047, 2096), 'person.models.Profile.objects.create', 'Profile.objects.create', ([], {'user': 'user', 'nickname': '"""b?c"""'}), "(user=user, nickname='b?c')\n", (2069, 2096), False, 'from person.models import Profile\n'), ((2184, 2214), 'nose.tools.eq_', 'eq_', (['response.status_code', '(200)'], {}), '(response.status_code, 200)\n', (2187, 2214), False, 'from nose.tools import eq_\n'), ((2440, 2470), 'nose.tools.eq_', 'eq_', (['response.status_code', '(200)'], {}), '(response.status_code, 200)\n', (2443, 2470), False, 'from nose.tools import eq_\n'), ((2660, 2686), 'nose.tools.eq_', 'eq_', (['(404)', 'resp.status_code'], {}), '(404, resp.status_code)\n', (2663, 2686), False, 'from nose.tools import eq_\n'), ((2782, 2840), 'waffle.models.Switch.objects.create', 'Switch.objects.create', ([], {'name': '"""browserid-login"""', 'active': '(True)'}), "(name='browserid-login', active=True)\n", (2803, 2840), False, 'from waffle.models import Switch\n'), ((2894, 2951), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {'username': '"""123"""', 'email': 'self.TESTEMAIL'}), "(username='123', email=self.TESTEMAIL)\n", (2913, 2951), False, 'from django.contrib.auth.models import User\n'), ((2977, 3032), 'person.models.Profile.objects.create', 'Profile.objects.create', ([], {'user': 'self.user', 'nickname': '"""jdoe"""'}), "(user=self.user, nickname='jdoe')\n", (2999, 3032), False, 'from person.models import Profile\n'), ((3449, 3481), 'mock.Mock', 'Mock', ([], {'return_value': "{'id': '123'}"}), "(return_value={'id': '123'})\n", (3453, 3481), False, 'from mock import Mock\n'), ((3626, 3656), 'nose.tools.eq_', 'eq_', (['response.status_code', '(200)'], {}), '(response.status_code, 200)\n', (3629, 3656), False, 'from nose.tools import eq_\n'), ((3787, 3826), 'mock.Mock', 'Mock', ([], {'return_value': "{'email': '<EMAIL>'}"}), "(return_value={'email': '<EMAIL>'})\n", (3791, 3826), False, 'from mock import Mock\n'), ((3883, 3935), 'mock.Mock', 'Mock', ([], {'return_value': "{'id': '123', 'email': '<EMAIL>'}"}), "(return_value={'id': '123', 'email': '<EMAIL>'})\n", (3887, 3935), False, 'from mock import Mock\n'), ((4082, 4112), 'nose.tools.eq_', 'eq_', (['response.status_code', '(200)'], {}), '(response.status_code, 200)\n', (4085, 4112), False, 'from nose.tools import eq_\n'), ((4172, 4208), 'django.contrib.auth.models.User.objects.filter', 'User.objects.filter', ([], {'email': '"""<EMAIL>"""'}), "(email='<EMAIL>')\n", (4191, 4208), False, 'from django.contrib.auth.models import User\n'), ((1863, 1890), 'django.core.urlresolvers.reverse', 'reverse', (['"""person_dashboard"""'], {}), "('person_dashboard')\n", (1870, 1890), False, 'from django.core.urlresolvers import reverse\n'), ((2403, 2430), 'django.core.urlresolvers.reverse', 'reverse', (['"""person_dashboard"""'], {}), "('person_dashboard')\n", (2410, 2430), False, 'from django.core.urlresolvers import reverse\n'), ((2604, 2650), 'django.core.urlresolvers.reverse', 'reverse', (['"""person_public_profile"""'], {'args': "['xxx']"}), "('person_public_profile', args=['xxx'])\n", (2611, 2650), False, 'from django.core.urlresolvers import reverse\n'), ((3535, 3561), 'django.core.urlresolvers.reverse', 'reverse', (['"""browserid_login"""'], {}), "('browserid_login')\n", (3542, 3561), False, 'from django.core.urlresolvers import reverse\n'), ((3989, 4015), 'django.core.urlresolvers.reverse', 'reverse', (['"""browserid_login"""'], {}), "('browserid_login')\n", (3996, 4015), False, 'from django.core.urlresolvers import reverse\n')]
import asyncio import logging import aioodbc from asab import PubSub from ..abc.connection import Connection # L = logging.getLogger(__name__) # class ODBCConnection(Connection): # Caution: Providing incorrect connection configuration terminates the program with 'Abort trap 6' ConfigDefaults = { 'host': 'localhost', 'port': 3306, 'user': '', 'password': '', 'driver': '', 'db': '', 'connect_timeout': 1, 'reconnect_delay': 5.0, 'output_queue_max_size': 10, 'max_bulk_size': 2, } def __init__(self, app, id=None, config=None): super().__init__(app, id=id, config=config) self.ConnectionEvent = asyncio.Event(loop=app.Loop) self.ConnectionEvent.clear() self.PubSub = PubSub(app) self.Loop = app.Loop self._host = self.Config['host'] self._port = int(self.Config['port']) self._user = self.Config['user'] self._password = self.Config['password'] self._connect_timeout = self.Config['connect_timeout'] self._dsn = "Driver={};Database={}".format(self.Config['driver'], self.Config['db']) self._reconnect_delay = self.Config['reconnect_delay'] self._output_queue_max_size = self.Config['output_queue_max_size'] self._max_bulk_size = int(self.Config['max_bulk_size']) self._conn_future = None self._connection_request = False self._pause = False # Subscription self._on_health_check('connection.open!') app.PubSub.subscribe("Application.stop!", self._on_application_stop) app.PubSub.subscribe("Application.tick!", self._on_health_check) app.PubSub.subscribe("ODBCConnection.pause!", self._on_pause) app.PubSub.subscribe("ODBCConnection.unpause!", self._on_unpause) self._output_queue = asyncio.Queue(loop=app.Loop) self._bulks = {} # We have a "bulk" per query def _on_pause(self): self._pause = True def _on_unpause(self): self._pause = False def _flush(self): for query in self._bulks.keys(): # Break if throttling was requested during the flush, # so that put_nowait doesn't raise if self._pause: break self._flush_bulk(query) def _flush_bulk(self, query): # Enqueue and thorttle if needed self._output_queue.put_nowait((query, self._bulks[query])) if self._output_queue.qsize() == self._output_queue_max_size: self.PubSub.publish("ODBCConnection.pause!", self) # Reset bulk self._bulks[query] = [] def _on_application_stop(self, message_type, counter): self._flush() self._output_queue.put_nowait((None, None)) def _on_health_check(self, message_type): if self._conn_future is not None: # Connection future exists if not self._conn_future.done(): # Connection future didn't result yet # No sanitization needed return try: self._conn_future.result() except Exception: # Connection future threw an error L.exception("Unexpected connection future error") # Connection future already resulted (with or without exception) self._conn_future = None assert(self._conn_future is None) self._conn_future = asyncio.ensure_future( self._connection(), loop=self.Loop ) async def _connection(self): try: async with aioodbc.create_pool( host=self._host, port=self._port, user=self._user, password=self._password, dsn=self._dsn, connect_timeout=self._connect_timeout, loop=self.Loop) as pool: self._conn_pool = pool self.ConnectionEvent.set() await self._loader() except BaseException: L.exception("Unexpected ODBC connection error") raise def acquire(self): assert(self._conn_pool is not None) return self._conn_pool.acquire() def consume(self, query, data): # Create a bulk for this query if doesn't yet exist if query not in self._bulks: self._bulks[query] = [] # Add data to the query's bulk self._bulks[query].append(data) # Flush on _max_bulk_size if len(self._bulks[query]) >= self._max_bulk_size: self._flush_bulk(query) async def _loader(self): while True: query, data = await self._output_queue.get() if query is None: break if self._output_queue.qsize() == self._output_queue_max_size - 1: self.PubSub.publish("ODBCConnection.unpause!", self, asynchronously=True) async with self.acquire() as conn: async with conn.cursor() as cur: await cur.executemany(query, data) await conn.commit()
[ "logging.getLogger", "aioodbc.create_pool", "asyncio.Queue", "asyncio.Event", "asab.PubSub" ]
[((119, 146), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (136, 146), False, 'import logging\n'), ((631, 659), 'asyncio.Event', 'asyncio.Event', ([], {'loop': 'app.Loop'}), '(loop=app.Loop)\n', (644, 659), False, 'import asyncio\n'), ((708, 719), 'asab.PubSub', 'PubSub', (['app'], {}), '(app)\n', (714, 719), False, 'from asab import PubSub\n'), ((1666, 1694), 'asyncio.Queue', 'asyncio.Queue', ([], {'loop': 'app.Loop'}), '(loop=app.Loop)\n', (1679, 1694), False, 'import asyncio\n'), ((3115, 3289), 'aioodbc.create_pool', 'aioodbc.create_pool', ([], {'host': 'self._host', 'port': 'self._port', 'user': 'self._user', 'password': 'self._password', 'dsn': 'self._dsn', 'connect_timeout': 'self._connect_timeout', 'loop': 'self.Loop'}), '(host=self._host, port=self._port, user=self._user,\n password=self._password, dsn=self._dsn, connect_timeout=self.\n _connect_timeout, loop=self.Loop)\n', (3134, 3289), False, 'import aioodbc\n')]
""" Sources: https://www.pyimagesearch.com/2015/12/21/increasing-webcam-fps-with-python-and-opencv/ """ from threading import Thread import cv2 class Video_stream: def __init__(self): # Initializes the video camera stream and read the first frame from the stream self.stream = cv2.VideoCapture(0) (self.grabbed, self.frame) = self.stream.read() # Initializes the variable used to indicate if the thread should be stopped self.stopped = False def start(self): """Starts the thread to read frames from the video stream.""" Thread(target=self.update, args=()).start() return self def update(self): """Reads next frame from the stream infinitely until the thread is stopped""" while True: if self.stopped: return (self.grabbed, self.frame) = self.stream.read() def read(self): """Returns the frame most recently read""" return self.frame def stop(self): """Indicate that the thread should be stopped""" self.stopped = True
[ "threading.Thread", "cv2.VideoCapture" ]
[((298, 317), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (314, 317), False, 'import cv2\n'), ((587, 622), 'threading.Thread', 'Thread', ([], {'target': 'self.update', 'args': '()'}), '(target=self.update, args=())\n', (593, 622), False, 'from threading import Thread\n')]
import logging def get_query_for_mysql_load_full(table_name, columns, owner): """ JDBC query for full ingestion of one table """ logging.info(f"BUILDING FULL QUERY for {table_name}") select_cols = ",".join(str(x) for x in columns) return f"select {select_cols} from {table_name}" def convert_schema_to_json(lists, labels): """ Input: lists: non-empty list of n lists each of length x labels: list of strings of length n Output: list of x dictionaries with n entries, each row corresponding to a labelled row (merged from lists) """ dicts = [] for i in range(len(lists[0])): dict = {} for j in range(len(labels)): dict[labels[j]] = lists[j][i] dicts.append(dict) return dicts def cast_columns(columns, dtypes, casts): # perform the Oracle castings needed within the query itself. castings = [] for c, d in zip(columns, dtypes): if d in casts: cast = casts[d].replace("COLUMN", c) castings.append(cast) else: castings.append(c) return castings def get_schema_query(owner): """ Oracle query for getting schema information for all tables """ cols = ["TABLE_NAME", "COLUMN_NAME", "DATA_TYPE", "ORDINAL_POSITION"] cols = ",".join(cols) return f"""select {cols} from INFORMATION_SCHEMA.COLUMNS""" def get_table_schema_query(schema_table, source_table_name): """ Query to get source schema for table from BQ (previously ingested). """ return f" select distinct * from (select COLUMN_NAME, DATA_TYPE from `{schema_table}` \ where TABLE_NAME = '{source_table_name}' order by ORDINAL_POSITION)" def mysql_mappings(): return { "TINYINT": "INT64", "SMALLINT": "INT64", "MEDIUMINT": "INT64", "INT": "INT64", "BIGINT": "INT64", "DECIMAL": "NUMERIC", "FLOAT": "FLOAT64", "DOUBLE": "FLOAT64", "BIT": "BOOL", "CHAR": "STRING", "VARCHAR": "STRING", "TINYTEXT": "STRING", "TEXT": "STRING", "MEDIUMTEXT": "STRING", "LONGTEXT": "STRING", "BINARY": "BYTES", "VARBINARY": "BYTES", "DATE": "DATE", "TIME": "TIME", "DATETIME": "DATETIME", "TIMESTAMP": "TIMESTAMP", } def mysql_to_bq(dtypes: list): mappings = mysql_mappings() # Dicts are not really intended for use in this way, but for a tiny one # this is just easier for i in range(len(dtypes)): dtypes[i] = mappings[dtypes[i]] return dtypes
[ "logging.info" ]
[((148, 201), 'logging.info', 'logging.info', (['f"""BUILDING FULL QUERY for {table_name}"""'], {}), "(f'BUILDING FULL QUERY for {table_name}')\n", (160, 201), False, 'import logging\n')]
import math import pyglet from pyglet import gl import graphicutils as gu from app import colors from .camera import Camera def draw_lines(vertices): pyglet.graphics.draw( len(vertices) // 2, gl.GL_LINES, ('v2f', vertices), ) def draw_circle(x, y, r, color, mode=gl.GL_LINE_LOOP, resolution=32): gl.glColor4f(*color) gu.draw_circle(int(x), int(y), int(r), resolution, mode) def draw_grid(): camera = Camera.get_active() size = int(20 * camera.zoom) if size > 0: gl.glColor3f(*colors.CONTEXT_GRID_COLOR) gu.draw_grid( camera.w, camera.h, int(camera.centerx), int(camera.centery), size, 0, 0 ) def draw_axes(): camera = Camera.get_active() center_x = int(camera.centerx) center_y = int(camera.centery) gl.glColor3f(1, 0, 0) gu.draw_arrow(20, 40, 40, 0) draw_lines((0, center_y, camera.w, center_y)) gl.glColor3f(0, 1, 0) gu.draw_arrow(20, 40, 0, 40) draw_lines((center_x, 0, center_x, camera.h)) def draw_path(obj): camera = Camera.get_active() gl.glColor4f(1, 0.76, 0.12, 0.8) gl.glBegin(gl.GL_LINES) for x, y in obj.path[:100]: pos_x = int(x * camera.zoom + camera.centerx) pos_y = int(y * camera.zoom + camera.centery) gl.glVertex2d(pos_x, pos_y) gl.glEnd() def draw_object(obj): camera = Camera.get_active() pos = (obj.position * camera.zoom) x = int(pos[0] + camera.centerx) y = int(pos[1] + camera.centery) gl.glColor4f(0, 1, 0, 1) for force in obj.forces: if any(force): w = int(force[0] * camera.zoom) h = int(force[1] * camera.zoom) gu.draw_arrow(x, y, w, h) gl.glColor4f(0.2, 0.5, 1, 1) if any(obj.velocity): w = int(obj.velocity[0] * camera.zoom) h = int(obj.velocity[1] * camera.zoom) gu.draw_arrow(x, y, w, h) gl.glColor4f(0.9, 0.29, 0.58, 1) if any(obj.acceleration): w = int(obj.acceleration[0] * camera.zoom) h = int(obj.acceleration[1] * camera.zoom) gu.draw_arrow(x, y, w, h) draw_circle( x, y, 20 * camera.zoom, colors.RIGIDBODY_COLOR, mode=gl.GL_POLYGON ) draw_circle( x, y, 20 * camera.zoom, colors.RIGIDBODY_BORDER_COLOR, ) def draw_ruler(x1, y1, x2, y2): camera = Camera.get_active() vx1 = int(x1 * camera.zoom + camera.centerx) vy1 = int(y1 * camera.zoom + camera.centery) vx2 = int(x2 * camera.zoom + camera.centerx) vy2 = int(y2 * camera.zoom + camera.centery) gl.glColor4f(0.27, 0.63, 0.78, 0.8) gu.draw_dashed_line(vx2, vy2, vx1, vy1) gu.draw_circle(vx1, vy1, 4, 8, gl.GL_LINE_LOOP) gu.draw_circle(vx2, vy2, 4, 8, gl.GL_LINE_LOOP) size = math.hypot(x2 - x1, y2 - y1) label = pyglet.text.Label( font_name='verdana', font_size=12, color=(255, 255, 255, 200)) label.text = f'{size:.2f}m' label.x = (vx1 + vx2) // 2 label.y = (vy1 + vy2) // 2 label.draw() def draw_select_area(x1, y1, x2, y2): rect = (x1, y1, x2, y1, x2, y2, x1, y2) gl.glColor4f(0.1, 0.2, 0.3, 0.2) pyglet.graphics.draw(4, gl.GL_QUADS, ('v2f', rect)) gl.glColor4f(0.3, 0.5, 0.8, 0.5) pyglet.graphics.draw(4, gl.GL_LINE_LOOP, ('v2f', rect))
[ "pyglet.gl.glVertex2d", "graphicutils.draw_arrow", "pyglet.gl.glEnd", "pyglet.text.Label", "pyglet.gl.glColor4f", "graphicutils.draw_circle", "pyglet.gl.glBegin", "pyglet.graphics.draw", "graphicutils.draw_dashed_line", "math.hypot", "pyglet.gl.glColor3f" ]
[((338, 358), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['*color'], {}), '(*color)\n', (350, 358), False, 'from pyglet import gl\n'), ((888, 909), 'pyglet.gl.glColor3f', 'gl.glColor3f', (['(1)', '(0)', '(0)'], {}), '(1, 0, 0)\n', (900, 909), False, 'from pyglet import gl\n'), ((914, 942), 'graphicutils.draw_arrow', 'gu.draw_arrow', (['(20)', '(40)', '(40)', '(0)'], {}), '(20, 40, 40, 0)\n', (927, 942), True, 'import graphicutils as gu\n'), ((998, 1019), 'pyglet.gl.glColor3f', 'gl.glColor3f', (['(0)', '(1)', '(0)'], {}), '(0, 1, 0)\n', (1010, 1019), False, 'from pyglet import gl\n'), ((1024, 1052), 'graphicutils.draw_arrow', 'gu.draw_arrow', (['(20)', '(40)', '(0)', '(40)'], {}), '(20, 40, 0, 40)\n', (1037, 1052), True, 'import graphicutils as gu\n'), ((1163, 1195), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(1)', '(0.76)', '(0.12)', '(0.8)'], {}), '(1, 0.76, 0.12, 0.8)\n', (1175, 1195), False, 'from pyglet import gl\n'), ((1200, 1223), 'pyglet.gl.glBegin', 'gl.glBegin', (['gl.GL_LINES'], {}), '(gl.GL_LINES)\n', (1210, 1223), False, 'from pyglet import gl\n'), ((1404, 1414), 'pyglet.gl.glEnd', 'gl.glEnd', ([], {}), '()\n', (1412, 1414), False, 'from pyglet import gl\n'), ((1595, 1619), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(0)', '(1)', '(0)', '(1)'], {}), '(0, 1, 0, 1)\n', (1607, 1619), False, 'from pyglet import gl\n'), ((1803, 1831), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(0.2)', '(0.5)', '(1)', '(1)'], {}), '(0.2, 0.5, 1, 1)\n', (1815, 1831), False, 'from pyglet import gl\n'), ((1991, 2023), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(0.9)', '(0.29)', '(0.58)', '(1)'], {}), '(0.9, 0.29, 0.58, 1)\n', (2003, 2023), False, 'from pyglet import gl\n'), ((2709, 2744), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(0.27)', '(0.63)', '(0.78)', '(0.8)'], {}), '(0.27, 0.63, 0.78, 0.8)\n', (2721, 2744), False, 'from pyglet import gl\n'), ((2749, 2788), 'graphicutils.draw_dashed_line', 'gu.draw_dashed_line', (['vx2', 'vy2', 'vx1', 'vy1'], {}), '(vx2, vy2, vx1, vy1)\n', (2768, 2788), True, 'import graphicutils as gu\n'), ((2793, 2840), 'graphicutils.draw_circle', 'gu.draw_circle', (['vx1', 'vy1', '(4)', '(8)', 'gl.GL_LINE_LOOP'], {}), '(vx1, vy1, 4, 8, gl.GL_LINE_LOOP)\n', (2807, 2840), True, 'import graphicutils as gu\n'), ((2845, 2892), 'graphicutils.draw_circle', 'gu.draw_circle', (['vx2', 'vy2', '(4)', '(8)', 'gl.GL_LINE_LOOP'], {}), '(vx2, vy2, 4, 8, gl.GL_LINE_LOOP)\n', (2859, 2892), True, 'import graphicutils as gu\n'), ((2905, 2933), 'math.hypot', 'math.hypot', (['(x2 - x1)', '(y2 - y1)'], {}), '(x2 - x1, y2 - y1)\n', (2915, 2933), False, 'import math\n'), ((2946, 3031), 'pyglet.text.Label', 'pyglet.text.Label', ([], {'font_name': '"""verdana"""', 'font_size': '(12)', 'color': '(255, 255, 255, 200)'}), "(font_name='verdana', font_size=12, color=(255, 255, 255, 200)\n )\n", (2963, 3031), False, 'import pyglet\n'), ((3252, 3284), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(0.1)', '(0.2)', '(0.3)', '(0.2)'], {}), '(0.1, 0.2, 0.3, 0.2)\n', (3264, 3284), False, 'from pyglet import gl\n'), ((3289, 3340), 'pyglet.graphics.draw', 'pyglet.graphics.draw', (['(4)', 'gl.GL_QUADS', "('v2f', rect)"], {}), "(4, gl.GL_QUADS, ('v2f', rect))\n", (3309, 3340), False, 'import pyglet\n'), ((3345, 3377), 'pyglet.gl.glColor4f', 'gl.glColor4f', (['(0.3)', '(0.5)', '(0.8)', '(0.5)'], {}), '(0.3, 0.5, 0.8, 0.5)\n', (3357, 3377), False, 'from pyglet import gl\n'), ((3382, 3437), 'pyglet.graphics.draw', 'pyglet.graphics.draw', (['(4)', 'gl.GL_LINE_LOOP', "('v2f', rect)"], {}), "(4, gl.GL_LINE_LOOP, ('v2f', rect))\n", (3402, 3437), False, 'import pyglet\n'), ((530, 570), 'pyglet.gl.glColor3f', 'gl.glColor3f', (['*colors.CONTEXT_GRID_COLOR'], {}), '(*colors.CONTEXT_GRID_COLOR)\n', (542, 570), False, 'from pyglet import gl\n'), ((1372, 1399), 'pyglet.gl.glVertex2d', 'gl.glVertex2d', (['pos_x', 'pos_y'], {}), '(pos_x, pos_y)\n', (1385, 1399), False, 'from pyglet import gl\n'), ((1960, 1985), 'graphicutils.draw_arrow', 'gu.draw_arrow', (['x', 'y', 'w', 'h'], {}), '(x, y, w, h)\n', (1973, 1985), True, 'import graphicutils as gu\n'), ((2164, 2189), 'graphicutils.draw_arrow', 'gu.draw_arrow', (['x', 'y', 'w', 'h'], {}), '(x, y, w, h)\n', (2177, 2189), True, 'import graphicutils as gu\n'), ((1772, 1797), 'graphicutils.draw_arrow', 'gu.draw_arrow', (['x', 'y', 'w', 'h'], {}), '(x, y, w, h)\n', (1785, 1797), True, 'import graphicutils as gu\n')]
import shutil import os import pandas as pd from pyarrow import Table, compat, Array, Column from pyarrow.compat import guid from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, \ read_table, write_table def _to_category_cols(df, categories): category_cols = categories or list(df.dtypes.loc[df.dtypes == 'category'].index) category_cols = {c: df.loc[:, c].cat.categories for c in category_cols} return category_cols def _upsert_dataframes(df, old_df): df = df.loc[~df.index.duplicated(keep='first')] # remove dupes in subgroup just to be sure sub_cols = df.columns old_sub_cols = old_df.columns if set(sub_cols) != set(old_sub_cols): raise ValueError('The columns in old and new groups do not match') dft = pd.DataFrame(index=df.index) dft['__new__data__'] = 1.0 result = old_df.join(dft, how='outer') upd_rows = pd.notnull(result.__new__data__) result.loc[upd_rows, sub_cols] = df df = result[sub_cols].copy() if len(df.loc[df.index.duplicated()]): raise ValueError('Unexpected duplicates found in resulting dataset') return df def upsert_to_dataset(table, root_path, partition_cols=None, filesystem=None, preserve_index=True, temp_folder=None, categories=None, **kwargs): if filesystem is None: fs = _get_fs_from_path(root_path) else: fs = _ensure_filesystem(filesystem) _mkdir_if_not_exists(fs, root_path) if temp_folder: if not os.path.exists(temp_folder): temp_folder = None if partition_cols is not None and len(partition_cols) > 0: # df is the data in the new table df = table.to_pandas() partition_keys = [df[col] for col in partition_cols] data_df = df.drop(partition_cols, axis='columns') data_cols = df.columns.drop(partition_cols) if len(data_cols) == 0: raise ValueError("No data left to save outside partition columns") subschema = table.schema # ARROW-2891: Ensure the output_schema is preserved when writing a # partitioned dataset for partition_col in partition_cols: subschema = subschema.remove( subschema.get_field_index(partition_col)) for keys, subgroup in data_df.groupby(partition_keys): if not isinstance(keys, tuple): keys = (keys,) subdir = "/".join( ["{colname}={value}".format(colname=name, value=val) for name, val in zip(partition_cols, keys)]) prefix = "/".join([root_path, subdir]) _mkdir_if_not_exists(fs, prefix) existing_files = [f for f in os.listdir(prefix) if f.endswith('.parquet')] if len(existing_files) > 1: raise ValueError('Unsupported scenario, multiple files found in path %s' % prefix) if len(existing_files) == 1: outfile = existing_files[0] full_path = "/".join([prefix, outfile]) old_table = read_table(full_path) category_cols = _to_category_cols(subgroup, categories) # get categories before merging old_subgroup = old_table.to_pandas() # TODO: compare old schema with new subgroup = _upsert_dataframes(subgroup, old_subgroup) # subgroup = pd.concat([subgroup, old_subgroup[~old_subgroup.index.isin(subgroup.index.values)]]) for c, v in category_cols.items(): subgroup.loc[:, c] = subgroup.loc[:, c].astype('category', categories=v) else: outfile = compat.guid() + ".parquet" full_path = "/".join([prefix, outfile]) subtable = Table.from_pandas(subgroup, preserve_index=preserve_index, schema=subschema) write_file = os.path.join(temp_folder, outfile) if temp_folder else full_path with fs.open(write_file, 'wb') as f: write_table(subtable, f, **kwargs) if temp_folder: shutil.move(write_file, full_path) else: existing_files = [f for f in os.listdir(root_path) if f.endswith('.parquet')] if len(existing_files) > 1: raise ValueError('Unsupported scenario, multiple files found in path %s' % root_path) if len(existing_files) == 1: # append use case outfile = existing_files[0] full_path = "/".join([root_path, outfile]) old_table = read_table(full_path) subgroup = table.to_pandas() category_cols = _to_category_cols(subgroup, categories) old_subgroup = old_table.to_pandas() # TODO: compare old schema with new subgroup = _upsert_dataframes(subgroup, old_subgroup) # subgroup = pd.concat([old_subgroup[~old_subgroup.index.isin(subgroup.index)], subgroup]) for c, v in category_cols.items(): subgroup.loc[:, c] = subgroup.loc[:, c].astype('category', categories=v) schema = table.schema table = Table.from_pandas( subgroup, preserve_index=preserve_index, schema=schema ) else: # write use case outfile = compat.guid() + ".parquet" full_path = "/".join([root_path, outfile]) write_file = os.path.join(temp_folder, outfile) if temp_folder else full_path with fs.open(write_file, 'wb') as f: write_table(table, f, **kwargs) if temp_folder: shutil.move(write_file, full_path) def write_to_dataset(table, root_path, partition_cols=None, filesystem=None, preserve_index=True, **kwargs): """ Wrapper around parquet.write_table for writing a Table to Parquet format by partitions. For each combination of partition columns and values, a subdirectories are created in the following manner: root_dir/ group1=value1 group2=value1 <uuid>.parquet group2=value2 <uuid>.parquet group1=valueN group2=value1 <uuid>.parquet group2=valueN <uuid>.parquet Parameters ---------- table : pyarrow.Table root_path : string, The root directory of the dataset filesystem : FileSystem, default None If nothing passed, paths assumed to be found in the local on-disk filesystem partition_cols : list, Column names by which to partition the dataset Columns are partitioned in the order they are given preserve_index : bool, Parameter for instantiating Table; preserve pandas index or not. **kwargs : dict, kwargs for write_table function. """ if filesystem is None: fs = _get_fs_from_path(root_path) else: fs = _ensure_filesystem(filesystem) _mkdir_if_not_exists(fs, root_path) if partition_cols is not None and len(partition_cols) > 0: #df = table.to_pandas() #partition_keys = [df[col] for col in partition_cols] partition_keys = [table.column(col) for col in partition_cols] data_table = table.drop(partition_cols ) #data_cols = df.columns.drop(partition_cols) #if len(data_cols) == 0: # raise ValueError('No data left to save outside partition columns') subschema = table.schema # ARROW-2891: Ensure the output_schema is preserved when writing a # partitioned dataset for partition_col in partition_cols: subschema = subschema.remove( subschema.get_field_index(partition_col)) for keys, subgroup in data_df.groupby(partition_keys): if not isinstance(keys, tuple): keys = (keys,) subdir = '/'.join( ['{colname}={value}'.format(colname=name, value=val) for name, val in zip(partition_cols, keys)]) subtable = pa.Table.from_pandas(subgroup, preserve_index=preserve_index, schema=subschema, safe=False) prefix = '/'.join([root_path, subdir]) _mkdir_if_not_exists(fs, prefix) outfile = guid() + '.parquet' full_path = '/'.join([prefix, outfile]) with fs.open(full_path, 'wb') as f: write_table(subtable, f, **kwargs) else: outfile = guid() + '.parquet' full_path = '/'.join([root_path, outfile]) with fs.open(full_path, 'wb') as f: write_table(table, f, **kwargs)
[ "os.path.exists", "pyarrow.parquet.read_table", "os.listdir", "shutil.move", "pyarrow.Table.from_pandas", "os.path.join", "pyarrow.parquet._mkdir_if_not_exists", "pyarrow.parquet._get_fs_from_path", "pyarrow.compat.guid", "pandas.DataFrame", "pyarrow.parquet.write_table", "pandas.notnull", "pyarrow.parquet._ensure_filesystem" ]
[((794, 822), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'df.index'}), '(index=df.index)\n', (806, 822), True, 'import pandas as pd\n'), ((912, 944), 'pandas.notnull', 'pd.notnull', (['result.__new__data__'], {}), '(result.__new__data__)\n', (922, 944), True, 'import pandas as pd\n'), ((1471, 1506), 'pyarrow.parquet._mkdir_if_not_exists', '_mkdir_if_not_exists', (['fs', 'root_path'], {}), '(fs, root_path)\n', (1491, 1506), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((7055, 7090), 'pyarrow.parquet._mkdir_if_not_exists', '_mkdir_if_not_exists', (['fs', 'root_path'], {}), '(fs, root_path)\n', (7075, 7090), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((1383, 1411), 'pyarrow.parquet._get_fs_from_path', '_get_fs_from_path', (['root_path'], {}), '(root_path)\n', (1400, 1411), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((1435, 1465), 'pyarrow.parquet._ensure_filesystem', '_ensure_filesystem', (['filesystem'], {}), '(filesystem)\n', (1453, 1465), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((6967, 6995), 'pyarrow.parquet._get_fs_from_path', '_get_fs_from_path', (['root_path'], {}), '(root_path)\n', (6984, 6995), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((7019, 7049), 'pyarrow.parquet._ensure_filesystem', '_ensure_filesystem', (['filesystem'], {}), '(filesystem)\n', (7037, 7049), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((1542, 1569), 'os.path.exists', 'os.path.exists', (['temp_folder'], {}), '(temp_folder)\n', (1556, 1569), False, 'import os\n'), ((2668, 2700), 'pyarrow.parquet._mkdir_if_not_exists', '_mkdir_if_not_exists', (['fs', 'prefix'], {}), '(fs, prefix)\n', (2688, 2700), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((3806, 3882), 'pyarrow.Table.from_pandas', 'Table.from_pandas', (['subgroup'], {'preserve_index': 'preserve_index', 'schema': 'subschema'}), '(subgroup, preserve_index=preserve_index, schema=subschema)\n', (3823, 3882), False, 'from pyarrow import Table, compat, Array, Column\n'), ((4650, 4671), 'pyarrow.parquet.read_table', 'read_table', (['full_path'], {}), '(full_path)\n', (4660, 4671), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((5237, 5310), 'pyarrow.Table.from_pandas', 'Table.from_pandas', (['subgroup'], {'preserve_index': 'preserve_index', 'schema': 'schema'}), '(subgroup, preserve_index=preserve_index, schema=schema)\n', (5254, 5310), False, 'from pyarrow import Table, compat, Array, Column\n'), ((5542, 5576), 'os.path.join', 'os.path.join', (['temp_folder', 'outfile'], {}), '(temp_folder, outfile)\n', (5554, 5576), False, 'import os\n'), ((5664, 5695), 'pyarrow.parquet.write_table', 'write_table', (['table', 'f'], {}), '(table, f, **kwargs)\n', (5675, 5695), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((5732, 5766), 'shutil.move', 'shutil.move', (['write_file', 'full_path'], {}), '(write_file, full_path)\n', (5743, 5766), False, 'import shutil\n'), ((8428, 8460), 'pyarrow.parquet._mkdir_if_not_exists', '_mkdir_if_not_exists', (['fs', 'prefix'], {}), '(fs, prefix)\n', (8448, 8460), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((8682, 8688), 'pyarrow.compat.guid', 'guid', ([], {}), '()\n', (8686, 8688), False, 'from pyarrow.compat import guid\n'), ((8809, 8840), 'pyarrow.parquet.write_table', 'write_table', (['table', 'f'], {}), '(table, f, **kwargs)\n', (8820, 8840), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((3096, 3117), 'pyarrow.parquet.read_table', 'read_table', (['full_path'], {}), '(full_path)\n', (3106, 3117), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((3990, 4024), 'os.path.join', 'os.path.join', (['temp_folder', 'outfile'], {}), '(temp_folder, outfile)\n', (4002, 4024), False, 'import os\n'), ((4120, 4154), 'pyarrow.parquet.write_table', 'write_table', (['subtable', 'f'], {}), '(subtable, f, **kwargs)\n', (4131, 4154), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((4199, 4233), 'shutil.move', 'shutil.move', (['write_file', 'full_path'], {}), '(write_file, full_path)\n', (4210, 4233), False, 'import shutil\n'), ((4281, 4302), 'os.listdir', 'os.listdir', (['root_path'], {}), '(root_path)\n', (4291, 4302), False, 'import os\n'), ((5438, 5451), 'pyarrow.compat.guid', 'compat.guid', ([], {}), '()\n', (5449, 5451), False, 'from pyarrow import Table, compat, Array, Column\n'), ((8483, 8489), 'pyarrow.compat.guid', 'guid', ([], {}), '()\n', (8487, 8489), False, 'from pyarrow.compat import guid\n'), ((8619, 8653), 'pyarrow.parquet.write_table', 'write_table', (['subtable', 'f'], {}), '(subtable, f, **kwargs)\n', (8630, 8653), False, 'from pyarrow.parquet import _get_fs_from_path, _ensure_filesystem, _mkdir_if_not_exists, read_table, write_table\n'), ((2742, 2760), 'os.listdir', 'os.listdir', (['prefix'], {}), '(prefix)\n', (2752, 2760), False, 'import os\n'), ((3700, 3713), 'pyarrow.compat.guid', 'compat.guid', ([], {}), '()\n', (3711, 3713), False, 'from pyarrow import Table, compat, Array, Column\n')]
#!/usr/bin/env python # coding: utf-8 # # Area under 1-D and 2-D curves, various methods # # **<NAME>, PhD** # # This demo is based on the original Matlab demo accompanying the <a href="https://mitpress.mit.edu/books/applied-computational-economics-and-finance">Computational Economics and Finance</a> 2001 textbook by <NAME> and <NAME>. # # Original (Matlab) CompEcon file: **demqua03.m** # # Running this file requires the Python version of CompEcon. This can be installed with pip by running # # !pip install compecon --upgrade # # <i>Last updated: 2021-Oct-01</i> # <hr> # ## About # # Uni- and bi-vaiariate integration using Newton-Cotes, Gaussian, Monte Carlo, and quasi-Monte Carlo quadrature methods. # ## Initial tasks # In[1]: import numpy as np from compecon import qnwtrap, qnwsimp, qnwlege, demo import matplotlib.pyplot as plt import pandas as pd # In[2]: quadmethods = [qnwtrap, qnwsimp, qnwlege] # ### Make support function # In[3]: a, b = -1, 1 nlist = [5, 11, 21, 31] N = len(nlist) def quad(func, qnw, n): xi, wi = qnw(n,a,b) return np.dot(func(xi),wi) # ## Evaluating # $\int_{-1}^1e^{-x}dx$ # In[4]: def f(x): return np.exp(-x) f_quad = np.array([[quad(f, qnw, ni) for qnw in quadmethods] for ni in nlist]) f_true = np.exp(1) - 1/np.exp(1) f_error = np.log10(np.abs(f_quad/f_true - 1)) # ## Evaluating # $\int_{-1}^1\sqrt{|x|}dx$ # In[5]: def g(x): return np.sqrt(np.abs(x)) g_quad = np.array([[quad(g, qnw, ni) for qnw in quadmethods] for ni in nlist]) g_true = 4/3 g_error = np.log10(np.abs(g_quad/g_true - 1)) # ## Make table with results # In[6]: methods = ['Trapezoid rule', "Simpson's rule", 'Gauss-Legendre'] functions = [r'$\int_{-1}^1e^{-x}dx$', r'$\int_{-1}^1\sqrt{|x|}dx$'] results = pd.concat( [pd.DataFrame(errors, columns=methods, index=nlist) for errors in (f_error, g_error)], keys=functions) results # ## Plot the functions # In[7]: a, b, n = -1, 1, 301 x = np.linspace(a, b, n) options = dict(xlim=[a,b], xticks=[-1,0,1], yticks=[0]) fig, axs = plt.subplots(1, 2, figsize=[10,4]) axs[0].plot(x, f(x), linewidth=3) axs[0].set(title='$e^{-x}$', ylim=[0,f(a)], **options) axs[1].plot(x, g(x), linewidth=3) axs[1].set(title='$\sqrt{|x|}$', ylim=[0,g(a)], **options); # ### Export figure and table # In[8]: #results.to_latex('demqua03.tex', escape=False, float_format='%.1f') #demo.savefig([plt.gcf()], name='demqua03')
[ "numpy.abs", "numpy.exp", "numpy.linspace", "pandas.DataFrame", "matplotlib.pyplot.subplots" ]
[((1972, 1992), 'numpy.linspace', 'np.linspace', (['a', 'b', 'n'], {}), '(a, b, n)\n', (1983, 1992), True, 'import numpy as np\n'), ((2062, 2097), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(1)', '(2)'], {'figsize': '[10, 4]'}), '(1, 2, figsize=[10, 4])\n', (2074, 2097), True, 'import matplotlib.pyplot as plt\n'), ((1183, 1193), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (1189, 1193), True, 'import numpy as np\n'), ((1283, 1292), 'numpy.exp', 'np.exp', (['(1)'], {}), '(1)\n', (1289, 1292), True, 'import numpy as np\n'), ((1326, 1353), 'numpy.abs', 'np.abs', (['(f_quad / f_true - 1)'], {}), '(f_quad / f_true - 1)\n', (1332, 1353), True, 'import numpy as np\n'), ((1563, 1590), 'numpy.abs', 'np.abs', (['(g_quad / g_true - 1)'], {}), '(g_quad / g_true - 1)\n', (1569, 1590), True, 'import numpy as np\n'), ((1297, 1306), 'numpy.exp', 'np.exp', (['(1)'], {}), '(1)\n', (1303, 1306), True, 'import numpy as np\n'), ((1440, 1449), 'numpy.abs', 'np.abs', (['x'], {}), '(x)\n', (1446, 1449), True, 'import numpy as np\n'), ((1794, 1844), 'pandas.DataFrame', 'pd.DataFrame', (['errors'], {'columns': 'methods', 'index': 'nlist'}), '(errors, columns=methods, index=nlist)\n', (1806, 1844), True, 'import pandas as pd\n')]
# Assignment base class # @author: <NAME> # (c) <NAME> 2012 from AGrader.AgraderWorkflow import AgraderWorkflow from AGrader.Assignment import Assignment from os import listdir from sys import path class Workspace(AgraderWorkflow): ''' Singleton controller class. ''' def __init__(self, args): #super(Workspace, self).__init__() self.assignments = [] self.args = args # set the UI # do this first so that importing other functions can interact with the user self.ui = None try: # handle the user setting a non-interactive session if args.ui in ['none', 'off']: args.interactive = False except AttributeError: pass finally: # hard-coded default if self.ui is None: from UI.AgraderCLUI import AgraderCLUI self.ui = AgraderCLUI(args) if args is not None and not args.interactive: self.ui.setInteractive(False) # set the Gradebook #Gdata is the default gradebook spreadsheet self.gradebook = None if args is None or args.gradebook.lower() == 'gdata': from AGrader.Gradebook.Gdata import GdataSpreadsheet self.gradebook = GdataSpreadsheet(self.ui, args) elif args is not None and args.gradebook.lower() == 'file': from AGrader.Gradebook.FileGradebook import FileGradebook self.gradebook = FileGradebook(self.ui, args) elif args is not None and args.gradebook != 'none': self.ui.notifyError('Unrecognized gradebook %s. Abort?' % args.gradebook) __currentWorkspace = None @staticmethod def GetDefault(args=None): ''' Create a default Workspace instance given the possibly specified arguments. Will cache this instance. ''' if not Workspace.__currentWorkspace: workspace = Workspace(args) Workspace.__currentWorkspace = workspace return Workspace.__currentWorkspace @staticmethod def GetWorkspace(id=None): if not Workspace.__currentWorkspace: Workspace.__currentWorkspace = Workspace.GetDefault() return Workspace.__currentWorkspace def addAssignment(self, assignment): self.assignments.append(assignment) @staticmethod def __generateAndCallSubmissions(submission_generator, args): def __f__(): for sub in submission_generator(args): sub() return __f__ def getAssignments(self, assignment_dir): '''Import all of the assignments in the specified directory. Currently only imports the assignment specified by the argument assignment_file''' for modname in listdir(assignment_dir): # only try importing file if it's a python file and it matches the assignment file we want if modname.endswith(".py") and modname[:-3] == self.args.assignment_file: if self.args.verbose: self.ui.notify('Checking module %s' % modname) # look also in the assignment_dir directory when importing oldpath, path[:] = path[:], path + [assignment_dir] try: module = __import__(modname[:-3]) except ImportError as e: self.ui.notifyError("Problem importing file %s" % ("%s: %s" % (modname, e) if self.args.verbose else modname)) continue finally: # always restore the real path path[:] = oldpath # try loading assignments assignments = [] for attr in dir(module): theClass = getattr(module, attr) if self.args.verbose: self.ui.notify('Checking class %s' % attr) try: #this is a good assignment if it implements Assignment but isn't that base class itself isassignment = issubclass(theClass, Assignment) and theClass is not Assignment if isassignment: assignments.append(theClass) if self.args.verbose: self.ui.notify('Found assignment %s' % theClass) except TypeError as e: if self.args.verbose: self.ui.notify(e) pass generator = None # try getting a submission generator if we found any assignments if assignments: try: generator = Workspace.__generateAndCallSubmissions(module.SubmissionGenerator, self.args) #TODO: scrub some things off the args? give some object? self.addAssignment(generator) if self.args.verbose: self.ui.notify('Found SubmissionGenerator %s' % generator) except AttributeError as e: #no assignment generator if self.args.verbose: self.ui.notify(e) self.ui.notifyError("No submission generator for assignment module %s" % module) if self.args.verbose: self.ui.notify('adding assignments themselves since no submission generator') for a in assignments: self.addAssignment(a) if not self.assignments: self.ui.notifyError("No assignments found.") return self.assignments def __call__(self): '''Executes the workflow. Calls setup callbacks, runs each assignment (submitting grades after each one), then calls cleanup callbacks. The callbacks take the workspace as an argument.''' self.runCallbacks('setup', self) for a in self.getAssignments(self.args.assignment_dir): a() self.runCallbacks('cleanup', self) def getGrades(self, key): ''' Returns the gradebook associated with the given key. An empty one if the gradebook isn't connected. ''' if self.gradebook: return self.gradebook.getGrades(key) if self.args.gradebook != 'none': self.ui.notifyError('No gradebook connected! Abort? ') return {} #blank gradebook if they want to continue
[ "AGrader.Gradebook.Gdata.GdataSpreadsheet", "os.listdir", "UI.AgraderCLUI.AgraderCLUI", "AGrader.Gradebook.FileGradebook.FileGradebook" ]
[((2803, 2826), 'os.listdir', 'listdir', (['assignment_dir'], {}), '(assignment_dir)\n', (2810, 2826), False, 'from os import listdir\n'), ((1303, 1334), 'AGrader.Gradebook.Gdata.GdataSpreadsheet', 'GdataSpreadsheet', (['self.ui', 'args'], {}), '(self.ui, args)\n', (1319, 1334), False, 'from AGrader.Gradebook.Gdata import GdataSpreadsheet\n'), ((913, 930), 'UI.AgraderCLUI.AgraderCLUI', 'AgraderCLUI', (['args'], {}), '(args)\n', (924, 930), False, 'from UI.AgraderCLUI import AgraderCLUI\n'), ((1502, 1530), 'AGrader.Gradebook.FileGradebook.FileGradebook', 'FileGradebook', (['self.ui', 'args'], {}), '(self.ui, args)\n', (1515, 1530), False, 'from AGrader.Gradebook.FileGradebook import FileGradebook\n')]
from math import ceil from bitstring import BitArray, Bits, ConstBitStream from construct import Adapter class RL: @staticmethod def repetitions(seq): """Input: sequence of values, Output: sequence of (value, repeat count).""" i = iter(seq) prev = next(i) count = 1 for v in i: if v == prev: count += 1 else: yield prev, count prev = v count = 1 yield prev, count @staticmethod def compress(data, bit_length): """Input: data bytes, bit length, Output: RLE'd bytes""" # TODO: This could be made more efficient by encoding the run-length # as count-n, ie 0 means a run of n, where n = break_even. Then we # can encode longer runs up to 255+n. But this needs changes in the # blit engine. break_even = ceil(8 / (bit_length + 1)) bits = BitArray() for value, count in RL.repetitions(data): while count > break_even: chunk = min(count, 0x100) bits.append('0b1') bits.append(bytes([chunk - 1])) count -= chunk bits.append(BitArray(uint=value, length=bit_length)) for x in range(count): bits.append('0b0') bits.append(BitArray(uint=value, length=bit_length)) return bits.tobytes() @staticmethod def decompress(data, bit_length, output_length): stream = ConstBitStream(bytes=data) result = [] while len(result) < output_length: t = stream.read(1) if t: count = stream.read(8).uint + 1 else: count = 1 result.extend([stream.read(bit_length).uint] * count) return bytes(result) class PK: @staticmethod def compress(data, bit_length): return BitArray().join(BitArray(uint=x, length=bit_length) for x in data).tobytes() @staticmethod def decompress(data, bit_length, num_pixels): return bytes(i.uint for i in Bits(bytes=data).cut(bit_length)) packers = {cls.__name__: cls for cls in (PK, RL)} class ImageCompressor(Adapter): def bit_length(self, obj): """Compute the required bit length for image data. Uses the count of items in the palette to determine how densely we can pack the image data. """ if obj.get('type', None) == "RW": return 8 else: return max(1, (len(obj['data']['palette']) - 1).bit_length()) def num_pixels(self, obj): return obj['data']['width'] * obj['data']['height'] def _decode(self, obj, context, path): if obj['type'] != 'RW': obj['data']['pixels'] = packers[obj['type']].decompress( obj['data']['pixels'], self.bit_length(obj), self.num_pixels(obj) ) return obj def _encode(self, obj, context, path): obj = obj.copy() # we are going to mutate this, so make a deep copy obj['data'] = obj['data'].copy() bl = self.bit_length(obj) if obj.get('type', None) is None: all_comp = [(k, v.compress(obj['data']['pixels'], bl)) for k, v in packers.items()] best = min(all_comp, key=lambda x: len(x[1])) # Put the best type back into the object. obj['type'] = best[0] obj['data']['pixels'] = best[1] elif obj['type'] != 'RW': obj['data']['pixels'] = packers[obj['type']].compress(obj['data']['pixels'], bl) return obj
[ "bitstring.Bits", "math.ceil", "bitstring.BitArray", "bitstring.ConstBitStream" ]
[((903, 929), 'math.ceil', 'ceil', (['(8 / (bit_length + 1))'], {}), '(8 / (bit_length + 1))\n', (907, 929), False, 'from math import ceil\n'), ((945, 955), 'bitstring.BitArray', 'BitArray', ([], {}), '()\n', (953, 955), False, 'from bitstring import BitArray, Bits, ConstBitStream\n'), ((1528, 1554), 'bitstring.ConstBitStream', 'ConstBitStream', ([], {'bytes': 'data'}), '(bytes=data)\n', (1542, 1554), False, 'from bitstring import BitArray, Bits, ConstBitStream\n'), ((1229, 1268), 'bitstring.BitArray', 'BitArray', ([], {'uint': 'value', 'length': 'bit_length'}), '(uint=value, length=bit_length)\n', (1237, 1268), False, 'from bitstring import BitArray, Bits, ConstBitStream\n'), ((1368, 1407), 'bitstring.BitArray', 'BitArray', ([], {'uint': 'value', 'length': 'bit_length'}), '(uint=value, length=bit_length)\n', (1376, 1407), False, 'from bitstring import BitArray, Bits, ConstBitStream\n'), ((1935, 1945), 'bitstring.BitArray', 'BitArray', ([], {}), '()\n', (1943, 1945), False, 'from bitstring import BitArray, Bits, ConstBitStream\n'), ((1951, 1986), 'bitstring.BitArray', 'BitArray', ([], {'uint': 'x', 'length': 'bit_length'}), '(uint=x, length=bit_length)\n', (1959, 1986), False, 'from bitstring import BitArray, Bits, ConstBitStream\n'), ((2118, 2134), 'bitstring.Bits', 'Bits', ([], {'bytes': 'data'}), '(bytes=data)\n', (2122, 2134), False, 'from bitstring import BitArray, Bits, ConstBitStream\n')]
#1. Extract scalp from preop (raw) file. Do HD-BET, normalization, filtering without MNI registration. Let the output file be 'preop-scalp (raw)'. #2. Perform FLIRT from 'preop-scalp (raw)' to MNI scalp template (normalized and filtered) so as to remove non-skull regions (e.g. neck). Let the output file be 'MNI-registered preop-scalp (raw)'. Save the 4x4 affine transform matrix. #3. Make the inverse matrix of the 4x4 affine transform matrix (mentioned in the previous step) using numpy.linalg.inv function. #4. Perform FLIRT-applyxfm (what is applyxfm: using a known affine transform matrix) (use inverse matrix found above) to 'MNI-registered preop-scalp (raw)' with reference to 'preop-scalp (raw)' (why: to keep the same size). Let the output file be 'preop-scalp (return)'. #5. Perform FLIRT from MNI scalp template (normalized and filtered) to 'preop-scalp (return)'. With non-skull regions removed, the transformation is now suitable for the SEGMENTED SCALP, too. Let the 4x4 affine transform matrix output (-omat) be 'MNI-return.mat'. #6. Perform FLIRT-applyxfm (use 'MNI-return.mat' that is mentioned above) to SEGMENTED SCALP with reference to 'preop-scalp (raw)'. Let the output file be 'SEGMENTED SCALP-raw'. #7. Overlap 'SEGMENTED SCALP-raw' and 'preop-scalp (raw)' in MRIcroGL to check if the flap sits on the scalp. import os import numpy as np import nibabel as nib def segmentation(): T1w_name = input('\nType in the name of unmodified (raw) T1w file.\n') flap_name = input('\nType in the name of file containing the segmented, MNI-registered flap.\n') MNI_scalp_name = input('\nType in the name of referenced MNI scalp file. We recommend to have the scalp extracted from the functions provided in the repository (will be organized).\n') GPU_enabled = input('\nIs GPU enabled? Type Y/N.\n') # Task 1: Brain segmentation and deletion if (GPU_enabled == 'Y'): os.system("hd-bet -i " + str(T1w_name)) else: if (GPU_enabled == 'N'): os.system("hd-bet -i " + str(T1w_name) + " -device cpu -mode fast -tta 0") os.remove(T1w_name[:-7] + "_bet.nii.gz") os.rename(T1w_name[:-7] + "_bet_mask.nii.gz", T1w_name[:-7] + "_BRAINMASK.nii.gz") brain_mask = nib.load(T1w_name[:-7] + "_BRAINMASK.nii.gz") t1w_t2w = nib.load(T1w_name) brain_mask_A = np.array(brain_mask.dataobj) t1w_t2w_A = np.array(t1w_t2w.dataobj) # 1.1 : Checking dimensional congruency between brain mask and overlaid file. if(brain_mask_A.shape == t1w_t2w_A.shape): # 1.2 : Removing brain from overlaid file. for x in range(0, brain_mask_A.shape[0]-1): for y in range(0, brain_mask_A.shape[1]-1): for z in range(0, brain_mask_A.shape[2]-1): if(brain_mask_A[x][y][z] > 0): t1w_t2w_A[x][y][z] = 0 else: print("Comparison not possible due to difference in dimensions.") # 1.3 : Isolating scalp with enclosed coordinate volume. for x in range(0, t1w_t2w_A.shape[0]-1): for y in range(0, t1w_t2w_A.shape[1]-1): for z in range(0, t1w_t2w_A.shape[2]-1): if(x < ((t1w_t2w_A.shape[0]-1)*0.03) or x > ((t1w_t2w_A.shape[0]-1)*0.96) or y < ((t1w_t2w_A.shape[1]-1)*0.01) or y > ((t1w_t2w_A.shape[1]-1)*0.99) or z < ((-(t1w_t2w_A.shape[2]-1)*y*0.000275)+85)): t1w_t2w_A[x][y][z] = 0 # 1.4 : Finding value of threshold intensity for scalp segmentation. def paraMAX(): M = 0 for x in range(int(0.05*(t1w_t2w_A.shape[0]-1)),int(0.95*(t1w_t2w_A.shape[0]-1))): for y in range(int(0.05*(t1w_t2w_A.shape[1]-1)),int(0.95*(t1w_t2w_A.shape[1]-1))): for z in range(int(0.05*(t1w_t2w_A.shape[2]-1)),int(0.95*(t1w_t2w_A.shape[2]-1))): if(M < t1w_t2w_A[x][y][z]): M = t1w_t2w_A[x][y][z] return M MAX = paraMAX() MAX_thres = MAX*0.225 # 1.5 : Segmenting scalp using threshold intensity. for x in range(0, t1w_t2w_A.shape[0]-1): for y in range(0, t1w_t2w_A.shape[1]-1): for z in range(0, t1w_t2w_A.shape[2]-1): if(t1w_t2w_A[x][y][z] < MAX_thres): t1w_t2w_A[x][y][z] = 0 # Task 1.6 : Removing non-scalp voxels by area inspection. ns_thres = MAX*0.34 for x in range(1, t1w_t2w_A.shape[0]-1): for y in range(1, t1w_t2w_A.shape[1]-1): for z in range(1, t1w_t2w_A.shape[2]-1): M = 0 for k in range(-1,2): for m in range(-1,2): for n in range(-1,2): if t1w_t2w_A[x+k][y+m][z+n] >= M: M = t1w_t2w_A[x+k][y+m][z+n] if M < ns_thres: t1w_t2w_A[x][y][z] = 0 # Task 1.7 : Extraction scalp_array = nib.Nifti1Image(t1w_t2w_A, affine=np.eye(4)) nib.save(scalp_array, T1w_name[:-7] + "_SCALP.nii.gz") os.remove(T1w_name[:-7] + "_BRAINMASK.nii.gz") # Task 2 : Getting inverse of (prscalp_raw --> MNI_scalp) affine transform matrix. prescalp_raw_name = T1w_name[:-7] + "_SCALP.nii.gz" MNI_registered_prescalp_raw_name = "MNI_registered_" + prescalp_raw_name os.system("flirt -in " + str(prescalp_raw_name) + " -ref " + str(MNI_scalp_name) + " -out " + str(MNI_registered_prescalp_raw_name) + " -omat prescalp_raw_to_MNI.mat -bins 640 -searchcost mutualinfo") inv = np.linalg.inv(np.loadtxt('prescalp_raw_to_MNI.mat')) np.savetxt('prescalp_raw_to_MNI_inv.mat',inv) prescalp_return_name = T1w_name[:-7] + "_return_SCALP.nii.gz" os.system("flirt -in " + str(MNI_registered_prescalp_raw_name) + " -ref " + str(prescalp_raw_name) + " -out " + str(prescalp_return_name) + " -init prescalp_raw_to_MNI_inv.mat -applyxfm") os.system("flirt -in " + str(MNI_scalp_name) + " -ref " + str(prescalp_return_name) + " -out delete.nii.gz -omat MNI-return.mat -bins 640 -searchcost mutualinfo") os.remove('delete.nii.gz') segmented_flap_raw_name = flap_name[:-7] + "_raw.nii.gz" os.system("flirt -in " + str(flap_name) + " -ref " + str(prescalp_raw_name) + " -out " + str(segmented_flap_raw_name) + " -init MNI-return.mat -applyxfm") # reference could be 'prescalp_return_name', but would not make visible difference. print("Completed. The name of the output flap file is : " + str(segmented_flap_raw_name) + ". Check if this file and unmodified (raw) T1w file overlap appropriately in external softwares (e.g. MRIcroGL) or python libraries.") segmentation()
[ "numpy.eye", "nibabel.save", "nibabel.load", "os.rename", "numpy.array", "numpy.savetxt", "numpy.loadtxt", "os.remove" ]
[((2103, 2143), 'os.remove', 'os.remove', (["(T1w_name[:-7] + '_bet.nii.gz')"], {}), "(T1w_name[:-7] + '_bet.nii.gz')\n", (2112, 2143), False, 'import os\n'), ((2148, 2234), 'os.rename', 'os.rename', (["(T1w_name[:-7] + '_bet_mask.nii.gz')", "(T1w_name[:-7] + '_BRAINMASK.nii.gz')"], {}), "(T1w_name[:-7] + '_bet_mask.nii.gz', T1w_name[:-7] +\n '_BRAINMASK.nii.gz')\n", (2157, 2234), False, 'import os\n'), ((2249, 2294), 'nibabel.load', 'nib.load', (["(T1w_name[:-7] + '_BRAINMASK.nii.gz')"], {}), "(T1w_name[:-7] + '_BRAINMASK.nii.gz')\n", (2257, 2294), True, 'import nibabel as nib\n'), ((2309, 2327), 'nibabel.load', 'nib.load', (['T1w_name'], {}), '(T1w_name)\n', (2317, 2327), True, 'import nibabel as nib\n'), ((2348, 2376), 'numpy.array', 'np.array', (['brain_mask.dataobj'], {}), '(brain_mask.dataobj)\n', (2356, 2376), True, 'import numpy as np\n'), ((2393, 2418), 'numpy.array', 'np.array', (['t1w_t2w.dataobj'], {}), '(t1w_t2w.dataobj)\n', (2401, 2418), True, 'import numpy as np\n'), ((5036, 5090), 'nibabel.save', 'nib.save', (['scalp_array', "(T1w_name[:-7] + '_SCALP.nii.gz')"], {}), "(scalp_array, T1w_name[:-7] + '_SCALP.nii.gz')\n", (5044, 5090), True, 'import nibabel as nib\n'), ((5095, 5141), 'os.remove', 'os.remove', (["(T1w_name[:-7] + '_BRAINMASK.nii.gz')"], {}), "(T1w_name[:-7] + '_BRAINMASK.nii.gz')\n", (5104, 5141), False, 'import os\n'), ((5672, 5718), 'numpy.savetxt', 'np.savetxt', (['"""prescalp_raw_to_MNI_inv.mat"""', 'inv'], {}), "('prescalp_raw_to_MNI_inv.mat', inv)\n", (5682, 5718), True, 'import numpy as np\n'), ((6163, 6189), 'os.remove', 'os.remove', (['"""delete.nii.gz"""'], {}), "('delete.nii.gz')\n", (6172, 6189), False, 'import os\n'), ((5624, 5661), 'numpy.loadtxt', 'np.loadtxt', (['"""prescalp_raw_to_MNI.mat"""'], {}), "('prescalp_raw_to_MNI.mat')\n", (5634, 5661), True, 'import numpy as np\n'), ((5021, 5030), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (5027, 5030), True, 'import numpy as np\n')]
import json import logging from pprint import pformat import requests class RE_API: def __init__(self, re_url, token): self.re_url = re_url self.token = token def _call_re(self, endpoint="/api/query_results/", params=None, data=None): header = {"Authorization": self.token} logging.info(f"Calling RE_API with query data: {pformat(data)}") ret = requests.post(self.re_url+endpoint, data, params=params, headers=header) return ret.json() def get_related_sequences(self, rid, sf_sim=1, df_sim=1, exclude_self=0): if not rid.startswith('rxn_reaction/'): rid = 'rxn_reaction/' + rid body = json.dumps({'rid': rid, 'sf_sim': sf_sim, 'df_sim': df_sim, 'exclude_self': exclude_self}) ret = self._call_re(params={'view': "list_genes_for_similar_reactions"}, data=body) if "error" in ret: raise RuntimeError(f"{ret['error']}: {ret.get('arango_message', '')}") logging.info(f"Found {ret['results'][0]['count']} related sequences") return ret['results'][0]['sequences']
[ "json.dumps", "requests.post", "logging.info", "pprint.pformat" ]
[((397, 471), 'requests.post', 'requests.post', (['(self.re_url + endpoint)', 'data'], {'params': 'params', 'headers': 'header'}), '(self.re_url + endpoint, data, params=params, headers=header)\n', (410, 471), False, 'import requests\n'), ((678, 772), 'json.dumps', 'json.dumps', (["{'rid': rid, 'sf_sim': sf_sim, 'df_sim': df_sim, 'exclude_self': exclude_self}"], {}), "({'rid': rid, 'sf_sim': sf_sim, 'df_sim': df_sim, 'exclude_self':\n exclude_self})\n", (688, 772), False, 'import json\n'), ((1006, 1075), 'logging.info', 'logging.info', (['f"""Found {ret[\'results\'][0][\'count\']} related sequences"""'], {}), '(f"Found {ret[\'results\'][0][\'count\']} related sequences")\n', (1018, 1075), False, 'import logging\n'), ((366, 379), 'pprint.pformat', 'pformat', (['data'], {}), '(data)\n', (373, 379), False, 'from pprint import pformat\n')]
from json import dumps __all__ = ['print_formated'] DEFAULT_OPTIONS_JSON_DUMPS = {'indent': 4, 'sort_keys': False, 'default': str} def print_formated(text, data, options=DEFAULT_OPTIONS_JSON_DUMPS): print(f'{text}: {dumps(data, **options)}')
[ "json.dumps" ]
[((226, 248), 'json.dumps', 'dumps', (['data'], {}), '(data, **options)\n', (231, 248), False, 'from json import dumps\n')]
from union_find import UnionFind # Minimize Malware Spread # We will remove one node from the initial list. Return the node that if removed, would minimize M(initial). class Solution(object): def minMalwareSpread(self, graph, initial): """ :type graph: List[List[int]] :type initial: List[int] :rtype: int """ if not initial: return -1 # return the smallest index if multiple results initial.sort() n = len(graph) uf = UnionFind(n) # union the whole graph for i in range(n): for j in range(i + 1, n): if graph[i][j] == 1: uf.union(i, j) # if only one initially infected node, the damage reduced will be the group size # => return the infected node in the largest group # if 2+ initially infected node in a group, cannot reduce the damage # => return the infected node with minimum index counter = collections.Counter(uf.find(i) for i in initial) # group_parent => # of initially infected nodes one_infected = [i for i in initial if counter[uf.find(i)] == 1] if one_infected: return max(one_infected, key=lambda i: uf.sizes[uf.find(i)]) else: return min(initial) # O(n ^ 2) time, O(n) space # Minimize Malware Spread II # In this case, we will remove one node from the initial list, completely removing it and any connections # from this node to any other node. Return the node that if removed, would minimize M(initial). class SolutionQ2(object): def minMalwareSpread(self, graph, initial): """ :type graph: List[List[int]] :type initial: List[int] :rtype: int """ n = len(graph) d = collections.defaultdict(list) # node => list of initiail nodes for init in initial: # find reachable nodes if other initial nodes are cut off visited = set(initial) queue = collections.deque([init]) while queue: infected = queue.popleft() for node in range(n): if graph[infected][node] and node not in visited: visited.add(node) d[node].append(init) queue.append(node) # for node i, how many initial nodes can infected it # without going through other initial nodes connected = [0] * n for node, src_nodes in d.items(): if len(src_nodes) == 1: init = src_nodes[0] connected[init] += 1 max_connected = max(connected) if max_connected == 0: return min(initial) return connected.index(max_connected) # thought process: # if multiple nodes can infect a node N without going through other initial nodes # then removing one initial node would not save node N
[ "union_find.UnionFind" ]
[((517, 529), 'union_find.UnionFind', 'UnionFind', (['n'], {}), '(n)\n', (526, 529), False, 'from union_find import UnionFind\n')]
import unittest from dialogapi.entity import Application from dialogapi.entity import Bot from dialogapi.test.method import AssertEqual from dialogapi.test.method import AssertIn from dialogapi.test.method import AssertRegexEqual from dialogapi.test.method import AssertRegexIn from dialogapi.test.method import AssertNotEqual from dialogapi.test.method import AssertNotIn from dialogapi.test.method import AssertRegexNotEqual from dialogapi.test.method import AssertRegexNotIn from dialogapi.test.method import AssertionMethodFactory from dialogapi.test.task import Test from dialogapi.test.task import Task from dialogapi.test.task import TaskConfig from dialogapi.test.task import TaskManager from dialogapi.test.config import Parser class ApplicationRepositoryMock: def register(self, bot): return Application( bot=bot, app_id="test_app_id" ) class DialogRepositoryMock: def dialogue(self, request): return {"systemText": {"expression": "ワールド"}} class TaskManagerTest(unittest.TestCase): def test_execute_tasks_ok(self): # タスクの定義 factory = AssertionMethodFactory() test = Test(method=factory.build("equal"), param="response.systemText.expression", expected="ワールド") task = Task( name="TaskManagerTest-tasks_ok", request={"voiceText": "ハロー"}, tests=[test] ) # タスクマネージャの定義 manager = TaskManager( tasks=[task], config=TaskConfig(keep_app_id=False), ) # 実行 result = manager.execute_tasks( bot=Bot(id_="JP_testBot"), application_repository=ApplicationRepositoryMock(), dialogue_repository=DialogRepositoryMock() ) self.assertTrue(result) class TaskTest(unittest.TestCase): def test_execute_tests_ok(self): factory = AssertionMethodFactory() test = Test(method=factory.build("equal"), param="response.systemText.expression", expected="お疲れ様です。") # task の request の内容は内部でチェックしないので None を指定しておく task = Task(name="テストタスク", request=None, tests=[test]) response = { "systemText": { "expression": "お疲れ様です。", "utterance": "おつかれさまです", }, "dialogStatus": {}, "serverSendTime": "2017-03-30 13:31:01", } res = task.execute_tests(response=response) self.assertTrue(res) def test_execute_tests_fail(self): factory = AssertionMethodFactory() test = Test(method=factory.build("equal"), param="response.systemText.expression", expected="お疲れ様です。") test2 = Test(method=factory.build("equal"), param="response.systemText.expression", expected="お疲れ様ですよね。") # task の request の内容は内部でチェックしないので None を指定しておく task = Task(name="テストタスク", request=None, tests=[test, test2]) response = { "systemText": { "expression": "お疲れ様です。", "utterance": "おつかれさまです", }, "dialogStatus": {}, "serverSendTime": "2017-03-30 13:31:01", } res = task.execute_tests(response=response) self.assertFalse(res) class TestTest(unittest.TestCase): def test_execute(self): factory = AssertionMethodFactory() test = Test(method=factory.build("equal"), param="response.systemText.expression", expected="お疲れ様です。") response = { "systemText": { "expression": "お疲れ様です。", "utterance": "おつかれさまです", }, "dialogStatus": {}, "serverSendTime": "2017-03-30 13:31:01", } res = test.execute(response=response) self.assertTrue(res.bool) self.assertEqual(res.result, "お疲れ様です。") self.assertEqual(res.expected, "お疲れ様です。") class AssertionMethodFactoryTest(unittest.TestCase): def test_build_equal(self): factory = AssertionMethodFactory() cls = factory.build("equal") self.assertEqual(cls.__class__.__name__, "AssertEqual") def test_build_in(self): factory = AssertionMethodFactory() cls = factory.build("in") self.assertEqual(cls.__class__.__name__, "AssertIn") def test_build_regex_equal(self): factory = AssertionMethodFactory() cls = factory.build("regex_equal") self.assertEqual(cls.__class__.__name__, "AssertRegexEqual") def test_build_regex_in(self): factory = AssertionMethodFactory() cls = factory.build("regex_in") self.assertEqual(cls.__class__.__name__, "AssertRegexIn") def test_build_not_equal(self): factory = AssertionMethodFactory() cls = factory.build("not_equal") self.assertEqual(cls.__class__.__name__, "AssertNotEqual") def test_build_not_in(self): factory = AssertionMethodFactory() cls = factory.build("not_in") self.assertEqual(cls.__class__.__name__, "AssertNotIn") def test_build_regex_not_equal(self): factory = AssertionMethodFactory() cls = factory.build("regex_not_equal") self.assertEqual(cls.__class__.__name__, "AssertRegexNotEqual") def test_build_regex_not_in(self): factory = AssertionMethodFactory() cls = factory.build("regex_not_in") self.assertEqual(cls.__class__.__name__, "AssertRegexNotIn") class AssertEqualTest(unittest.TestCase): def test_execute_true(self): method = AssertEqual() first = "テスト" second = "テスト" res = method.execute(first=first, second=second) self.assertTrue(res) def test_execute_false(self): method = AssertEqual() first = "テスト" second = "テスト1" res = method.execute(first=first, second=second) self.assertFalse(res) class AssertInTests(unittest.TestCase): def test_execute_in(self): method = AssertIn() first = "テスト" second = ["テスト", "テスト2"] res = method.execute(first=first, second=second) self.assertTrue(res) def test_execute_not_in(self): method = AssertIn() first = "テスト" second = ["テスト1", "テスト2"] res = method.execute(first=first, second=second) self.assertFalse(res) class AssertRegexEqualTest(unittest.TestCase): def test_execute_true(self): method = AssertRegexEqual() first = "テ スト" second = r"^\w " res = method.execute(first=first, second=second) self.assertTrue(res) def test_execute_false(self): method = AssertRegexEqual() first = "テ スト" second = r"か$" res = method.execute(first=first, second=second) self.assertFalse(res) class AssertRegexInTest(unittest.TestCase): def test_execute_true(self): method = AssertRegexIn() first = "テ スト" second = ["感じ$", r"^\w "] res = method.execute(first=first, second=second) self.assertTrue(res) def test_execute_false(self): method = AssertRegexIn() first = "テ スト" second = ["感じ$", r"[はな]"] res = method.execute(first=first, second=second) self.assertFalse(res) class AssertNotEqualTest(unittest.TestCase): def test_execute_false(self): method = AssertNotEqual() first = "テスト" second = "テスト" res = method.execute(first=first, second=second) self.assertFalse(res) def test_execute_true(self): method = AssertNotEqual() first = "テスト" second = "テスト1" res = method.execute(first=first, second=second) self.assertTrue(res) class AssertNotInTests(unittest.TestCase): def test_execute_notin_false(self): method = AssertNotIn() first = "テスト" second = ["テスト", "テスト2"] res = method.execute(first=first, second=second) self.assertFalse(res) def test_execute_notin_true(self): method = AssertNotIn() first = "テスト" second = ["テスト1", "テスト2"] res = method.execute(first=first, second=second) self.assertTrue(res) class AssertRegexNotEqualTest(unittest.TestCase): def test_execute_false(self): method = AssertRegexNotEqual() first = "テ スト" second = r"^\w " res = method.execute(first=first, second=second) self.assertFalse(res) def test_execute_true(self): method = AssertRegexNotEqual() first = "テ スト" second = r"か$" res = method.execute(first=first, second=second) self.assertTrue(res) class AssertRegexNotInTest(unittest.TestCase): def test_execute_false(self): method = AssertRegexNotIn() first = "テ スト" second = ["感じ$", r"^\w "] res = method.execute(first=first, second=second) self.assertFalse(res) def test_execute_true(self): method = AssertRegexNotIn() first = "テ スト" second = ["感じ$", r"[はな]"] res = method.execute(first=first, second=second) self.assertTrue(res) class TestParser(unittest.TestCase): def test_parse_fd(self): test_config = """ config: keep_app_id: true tasks: - name: 「こんにちは」に対するテスト request: voiceText: こんにちは location: lat: 0 lon: 0 clientData: option: t: ols tests: - method: equal param: response.systemText.utterance expected: "こんにちは。" - method: in param: response.systemText.utterance expected: - "こんにちは。" - "こんにちは。元気ですか?" - method: equal param: response.command expected: "xheijfeiijf==" - name: 「はろー」に対するテスト request: voiceText: はろー tests: - method: equal param: response.systemText.utterance expected: "オンラインで変更済み" """ manager = Parser().parse_fd(test_config) self.assertEqual(manager.tasks[0].name, "「こんにちは」に対するテスト") self.assertEqual(len(manager.tasks[0].tests), 3) self.assertEqual(manager.tasks[1].name, "「はろー」に対するテスト") self.assertEqual(len(manager.tasks[1].tests), 1)
[ "dialogapi.entity.Application", "dialogapi.test.task.TaskConfig", "dialogapi.test.task.Task", "dialogapi.test.method.AssertNotIn", "dialogapi.entity.Bot", "dialogapi.test.method.AssertIn", "dialogapi.test.method.AssertRegexEqual", "dialogapi.test.method.AssertNotEqual", "dialogapi.test.method.AssertRegexNotEqual", "dialogapi.test.config.Parser", "dialogapi.test.method.AssertionMethodFactory", "dialogapi.test.method.AssertRegexNotIn", "dialogapi.test.method.AssertEqual", "dialogapi.test.method.AssertRegexIn" ]
[((816, 858), 'dialogapi.entity.Application', 'Application', ([], {'bot': 'bot', 'app_id': '"""test_app_id"""'}), "(bot=bot, app_id='test_app_id')\n", (827, 858), False, 'from dialogapi.entity import Application\n'), ((1126, 1150), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (1148, 1150), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((1314, 1400), 'dialogapi.test.task.Task', 'Task', ([], {'name': '"""TaskManagerTest-tasks_ok"""', 'request': "{'voiceText': 'ハロー'}", 'tests': '[test]'}), "(name='TaskManagerTest-tasks_ok', request={'voiceText': 'ハロー'}, tests=[\n test])\n", (1318, 1400), False, 'from dialogapi.test.task import Task\n'), ((1927, 1951), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (1949, 1951), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((2173, 2220), 'dialogapi.test.task.Task', 'Task', ([], {'name': '"""テストタスク"""', 'request': 'None', 'tests': '[test]'}), "(name='テストタスク', request=None, tests=[test])\n", (2177, 2220), False, 'from dialogapi.test.task import Task\n'), ((2601, 2625), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (2623, 2625), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((3003, 3057), 'dialogapi.test.task.Task', 'Task', ([], {'name': '"""テストタスク"""', 'request': 'None', 'tests': '[test, test2]'}), "(name='テストタスク', request=None, tests=[test, test2])\n", (3007, 3057), False, 'from dialogapi.test.task import Task\n'), ((3464, 3488), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (3486, 3488), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((4165, 4189), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (4187, 4189), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((4339, 4363), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (4361, 4363), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((4516, 4540), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (4538, 4540), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((4707, 4731), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (4729, 4731), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((4893, 4917), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (4915, 4917), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((5078, 5102), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (5100, 5102), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((5266, 5290), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (5288, 5290), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((5468, 5492), 'dialogapi.test.method.AssertionMethodFactory', 'AssertionMethodFactory', ([], {}), '()\n', (5490, 5492), False, 'from dialogapi.test.method import AssertionMethodFactory\n'), ((5700, 5713), 'dialogapi.test.method.AssertEqual', 'AssertEqual', ([], {}), '()\n', (5711, 5713), False, 'from dialogapi.test.method import AssertEqual\n'), ((5897, 5910), 'dialogapi.test.method.AssertEqual', 'AssertEqual', ([], {}), '()\n', (5908, 5910), False, 'from dialogapi.test.method import AssertEqual\n'), ((6134, 6144), 'dialogapi.test.method.AssertIn', 'AssertIn', ([], {}), '()\n', (6142, 6144), False, 'from dialogapi.test.method import AssertIn\n'), ((6339, 6349), 'dialogapi.test.method.AssertIn', 'AssertIn', ([], {}), '()\n', (6347, 6349), False, 'from dialogapi.test.method import AssertIn\n'), ((6592, 6610), 'dialogapi.test.method.AssertRegexEqual', 'AssertRegexEqual', ([], {}), '()\n', (6608, 6610), False, 'from dialogapi.test.method import AssertRegexEqual\n'), ((6797, 6815), 'dialogapi.test.method.AssertRegexEqual', 'AssertRegexEqual', ([], {}), '()\n', (6813, 6815), False, 'from dialogapi.test.method import AssertRegexEqual\n'), ((7045, 7060), 'dialogapi.test.method.AssertRegexIn', 'AssertRegexIn', ([], {}), '()\n', (7058, 7060), False, 'from dialogapi.test.method import AssertRegexIn\n'), ((7256, 7271), 'dialogapi.test.method.AssertRegexIn', 'AssertRegexIn', ([], {}), '()\n', (7269, 7271), False, 'from dialogapi.test.method import AssertRegexIn\n'), ((7514, 7530), 'dialogapi.test.method.AssertNotEqual', 'AssertNotEqual', ([], {}), '()\n', (7528, 7530), False, 'from dialogapi.test.method import AssertNotEqual\n'), ((7714, 7730), 'dialogapi.test.method.AssertNotEqual', 'AssertNotEqual', ([], {}), '()\n', (7728, 7730), False, 'from dialogapi.test.method import AssertNotEqual\n'), ((7965, 7978), 'dialogapi.test.method.AssertNotIn', 'AssertNotIn', ([], {}), '()\n', (7976, 7978), False, 'from dialogapi.test.method import AssertNotIn\n'), ((8178, 8191), 'dialogapi.test.method.AssertNotIn', 'AssertNotIn', ([], {}), '()\n', (8189, 8191), False, 'from dialogapi.test.method import AssertNotIn\n'), ((8437, 8458), 'dialogapi.test.method.AssertRegexNotEqual', 'AssertRegexNotEqual', ([], {}), '()\n', (8456, 8458), False, 'from dialogapi.test.method import AssertRegexNotEqual\n'), ((8645, 8666), 'dialogapi.test.method.AssertRegexNotEqual', 'AssertRegexNotEqual', ([], {}), '()\n', (8664, 8666), False, 'from dialogapi.test.method import AssertRegexNotEqual\n'), ((8899, 8917), 'dialogapi.test.method.AssertRegexNotIn', 'AssertRegexNotIn', ([], {}), '()\n', (8915, 8917), False, 'from dialogapi.test.method import AssertRegexNotIn\n'), ((9113, 9131), 'dialogapi.test.method.AssertRegexNotIn', 'AssertRegexNotIn', ([], {}), '()\n', (9129, 9131), False, 'from dialogapi.test.method import AssertRegexNotIn\n'), ((1540, 1569), 'dialogapi.test.task.TaskConfig', 'TaskConfig', ([], {'keep_app_id': '(False)'}), '(keep_app_id=False)\n', (1550, 1569), False, 'from dialogapi.test.task import TaskConfig\n'), ((1651, 1672), 'dialogapi.entity.Bot', 'Bot', ([], {'id_': '"""JP_testBot"""'}), "(id_='JP_testBot')\n", (1654, 1672), False, 'from dialogapi.entity import Bot\n'), ((10078, 10086), 'dialogapi.test.config.Parser', 'Parser', ([], {}), '()\n', (10084, 10086), False, 'from dialogapi.test.config import Parser\n')]
import os, tempfile import requests from io import BytesIO from zipfile import ZipFile def test_doc_upload_via_api_zip_file_size(docker_hello_world): """Test if the container is reachable. The docker_hello_world fixture is used, so the container will start on test startup. Do a request to the docker service and read the body. """ file_path = os.path.dirname(os.path.abspath(__file__)) + '/files/Should_open_calc.docm' output_path = tempfile.mkstemp(suffix='.zip', prefix='output') files = {'file': open(file_path, 'rb')} data = {'extension': 'docm'} res = requests.post(docker_hello_world + '/document', files=files, data=data) f = open(output_path[1], 'wb+') f.write(res.content) assert os.path.getsize(output_path[1]) > 0 def test_doc_upload_via_api_zip_content_contains_pdf(docker_hello_world): """Test if the container is reachable. The docker_hello_world fixture is used, so the container will start on test startup. Do a request to the docker service and read the body. """ name = 'Should_open_calc' file_path = os.path.dirname(os.path.abspath(__file__)) + '/files/{name}.docm'.format(name=name) files = {'file': open(file_path, 'rb')} data = {'extension': 'docm'} res = requests.post(docker_hello_world + '/document', files=files, data=data) file_found = False with BytesIO(res.content) as zip_file: with ZipFile(zip_file) as zip_file: for zip_info in zip_file.infolist(): if zip_info.filename in name.replace('-','_').replace(' ','_') + '.pdf': file_found = True if file_found: assert True else: assert False def test_doc_upload_via_api_zip_content_contains_macro_json_file(docker_hello_world): """Test if the container is reachable. The docker_hello_world fixture is used, so the container will start on test startup. Do a request to the docker service and read the body. """ name = 'Should_open_calc' file_path = os.path.dirname(os.path.abspath(__file__)) + '/files/{name}.docm'.format(name=name) files = {'file': open(file_path, 'rb')} data = {'extension': 'docm'} res = requests.post(docker_hello_world + '/document', files=files, data=data) file_found = False with BytesIO(res.content) as zip_file: with ZipFile(zip_file) as zip_file: for zip_info in zip_file.infolist(): if zip_info.filename in 'uploads - macro.json': file_found = True if file_found: assert True else: assert False
[ "os.path.getsize", "requests.post", "zipfile.ZipFile", "io.BytesIO", "os.path.abspath", "tempfile.mkstemp" ]
[((459, 507), 'tempfile.mkstemp', 'tempfile.mkstemp', ([], {'suffix': '""".zip"""', 'prefix': '"""output"""'}), "(suffix='.zip', prefix='output')\n", (475, 507), False, 'import os, tempfile\n'), ((596, 667), 'requests.post', 'requests.post', (["(docker_hello_world + '/document')"], {'files': 'files', 'data': 'data'}), "(docker_hello_world + '/document', files=files, data=data)\n", (609, 667), False, 'import requests\n'), ((1267, 1338), 'requests.post', 'requests.post', (["(docker_hello_world + '/document')"], {'files': 'files', 'data': 'data'}), "(docker_hello_world + '/document', files=files, data=data)\n", (1280, 1338), False, 'import requests\n'), ((2199, 2270), 'requests.post', 'requests.post', (["(docker_hello_world + '/document')"], {'files': 'files', 'data': 'data'}), "(docker_hello_world + '/document', files=files, data=data)\n", (2212, 2270), False, 'import requests\n'), ((740, 771), 'os.path.getsize', 'os.path.getsize', (['output_path[1]'], {}), '(output_path[1])\n', (755, 771), False, 'import os, tempfile\n'), ((1371, 1391), 'io.BytesIO', 'BytesIO', (['res.content'], {}), '(res.content)\n', (1378, 1391), False, 'from io import BytesIO\n'), ((2303, 2323), 'io.BytesIO', 'BytesIO', (['res.content'], {}), '(res.content)\n', (2310, 2323), False, 'from io import BytesIO\n'), ((381, 406), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (396, 406), False, 'import os, tempfile\n'), ((1111, 1136), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1126, 1136), False, 'import os, tempfile\n'), ((1418, 1435), 'zipfile.ZipFile', 'ZipFile', (['zip_file'], {}), '(zip_file)\n', (1425, 1435), False, 'from zipfile import ZipFile\n'), ((2043, 2068), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (2058, 2068), False, 'import os, tempfile\n'), ((2350, 2367), 'zipfile.ZipFile', 'ZipFile', (['zip_file'], {}), '(zip_file)\n', (2357, 2367), False, 'from zipfile import ZipFile\n')]
import factory from django.utils import timezone from factory.django import DjangoModelFactory from psycopg2._range import DateTimeTZRange class CampFactory(DjangoModelFactory): class Meta: model = "camps.Camp" read_only = False title = factory.Faker("word") tagline = factory.Faker("sentence") slug = factory.Faker("slug") shortslug = factory.Faker("slug") buildup = factory.LazyFunction( lambda: DateTimeTZRange( lower=timezone.now() - timezone.timedelta(days=3), upper=timezone.now() - timezone.timedelta(hours=1), ) ) camp = factory.LazyFunction( lambda: DateTimeTZRange( lower=timezone.now(), upper=timezone.now() + timezone.timedelta(days=8) ) ) teardown = factory.LazyFunction( lambda: DateTimeTZRange( lower=timezone.now() + timezone.timedelta(days=8, hours=1), upper=timezone.now() + timezone.timedelta(days=11), ) ) colour = factory.Faker("hex_color")
[ "django.utils.timezone.now", "factory.Faker", "django.utils.timezone.timedelta" ]
[((261, 282), 'factory.Faker', 'factory.Faker', (['"""word"""'], {}), "('word')\n", (274, 282), False, 'import factory\n'), ((297, 322), 'factory.Faker', 'factory.Faker', (['"""sentence"""'], {}), "('sentence')\n", (310, 322), False, 'import factory\n'), ((334, 355), 'factory.Faker', 'factory.Faker', (['"""slug"""'], {}), "('slug')\n", (347, 355), False, 'import factory\n'), ((372, 393), 'factory.Faker', 'factory.Faker', (['"""slug"""'], {}), "('slug')\n", (385, 393), False, 'import factory\n'), ((1011, 1037), 'factory.Faker', 'factory.Faker', (['"""hex_color"""'], {}), "('hex_color')\n", (1024, 1037), False, 'import factory\n'), ((692, 706), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (704, 706), False, 'from django.utils import timezone\n'), ((482, 496), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (494, 496), False, 'from django.utils import timezone\n'), ((499, 525), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'days': '(3)'}), '(days=3)\n', (517, 525), False, 'from django.utils import timezone\n'), ((545, 559), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (557, 559), False, 'from django.utils import timezone\n'), ((562, 589), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (580, 589), False, 'from django.utils import timezone\n'), ((714, 728), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (726, 728), False, 'from django.utils import timezone\n'), ((731, 757), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'days': '(8)'}), '(days=8)\n', (749, 757), False, 'from django.utils import timezone\n'), ((863, 877), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (875, 877), False, 'from django.utils import timezone\n'), ((880, 915), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'days': '(8)', 'hours': '(1)'}), '(days=8, hours=1)\n', (898, 915), False, 'from django.utils import timezone\n'), ((935, 949), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (947, 949), False, 'from django.utils import timezone\n'), ((952, 979), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'days': '(11)'}), '(days=11)\n', (970, 979), False, 'from django.utils import timezone\n')]
from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404 from .models import Item, Votefor, Comment from .forms import ItemForm, ItemEditForm, VoteforForm, CommentForm from django.contrib import messages, auth from django.contrib.auth.models import User from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger # Create your views here. def get_issues_list(request): """ Render the ticket list """ item=Item.objects.all() page = request.GET.get('page', 1) paginator = Paginator(item, 10) page = request.GET.get('page') try: items = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. items = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. items = paginator.page(paginator.num_pages) return render(request, "issues_list.html", {'items': items}) def create_an_item(request): """ Present a blank form to be filled in """ if request.method == "POST": #create new form form = ItemForm(request.POST, request.FILES) #django checks if form is valid and saves if so if form.is_valid(): if request.user.is_authenticated(): form = form.save(commit=False) form.user=request.user form.save() return redirect(get_issues_list) #if not a post request return an empty form else: form = ItemForm() return render(request, "itemform.html", {'form': form}) #get item where primary key = id def edit_an_item(request, id): """ Return an existing form for edit """ item = get_object_or_404(Item, pk=id) if request.method == "POST": form = ItemEditForm(request.POST, instance=item) if form.is_valid(): form.save() return redirect(get_issues_list) else: #item is the instance that we want to construct the object from form = ItemEditForm(instance=item) return render(request, "editform.html", {'form': form}) def get_issue_detail(request,id): """ Return the ticket issue detail view""" item = get_object_or_404(Item, pk=id) user = request.user upvotes = Votefor.objects.filter(item=item, user=user).count() comments = Comment.objects.all() return render(request, "issue_detail.html", {'item' : item, 'upvotes' : upvotes, 'comments' : comments}) def cast_an_upvote(request, id): """ Free vote up a bug""" item = get_object_or_404(Item, id=id) user = request.user if Votefor.objects.filter(item=item, user_id=request.user.id).exists(): messages.info(request, "Sorry you have already voted this one!") return redirect(get_issues_list) else: item.upvotes += 1 item.save() Votefor.objects.get_or_create(user=user, item=item) messages.success(request, "Your Bug has been upvoted!") return redirect(get_issues_list) def add_comment_to_issue(request, id): """Add a comment to a ticket item""" item= get_object_or_404(Item, pk=id) form = CommentForm(request.POST, request.FILES) if request.method == "POST": if form.is_valid(): form = form.save(commit=False) form.author = request.user form.item = item form.save() messages.success(request, "Your Comment has been added!") return redirect(get_issue_detail, id) else: form = CommentForm() return render(request, "issue_commentform.html", {'form': form}) # code below based on moderating your comments in django girls tutorial create comment model def comment_approve(request, id): comment = get_object_or_404(Comment, pk=id) comment.approve() return redirect('issue_detail', id=comment.item.id) def comment_remove(request, id): comment = get_object_or_404(Comment, pk=id) comment.delete() return redirect('issue_detail', id=comment.item.id)
[ "django.shortcuts.render", "django.shortcuts.get_object_or_404", "django.contrib.messages.info", "django.shortcuts.redirect", "django.contrib.messages.success", "django.core.paginator.Paginator" ]
[((534, 553), 'django.core.paginator.Paginator', 'Paginator', (['item', '(10)'], {}), '(item, 10)\n', (543, 553), False, 'from django.core.paginator import Paginator, EmptyPage, PageNotAnInteger\n'), ((917, 970), 'django.shortcuts.render', 'render', (['request', '"""issues_list.html"""', "{'items': items}"], {}), "(request, 'issues_list.html', {'items': items})\n", (923, 970), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((1551, 1599), 'django.shortcuts.render', 'render', (['request', '"""itemform.html"""', "{'form': form}"], {}), "(request, 'itemform.html', {'form': form})\n", (1557, 1599), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((1725, 1755), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Item'], {'pk': 'id'}), '(Item, pk=id)\n', (1742, 1755), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((2079, 2127), 'django.shortcuts.render', 'render', (['request', '"""editform.html"""', "{'form': form}"], {}), "(request, 'editform.html', {'form': form})\n", (2085, 2127), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((2225, 2255), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Item'], {'pk': 'id'}), '(Item, pk=id)\n', (2242, 2255), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((2395, 2493), 'django.shortcuts.render', 'render', (['request', '"""issue_detail.html"""', "{'item': item, 'upvotes': upvotes, 'comments': comments}"], {}), "(request, 'issue_detail.html', {'item': item, 'upvotes': upvotes,\n 'comments': comments})\n", (2401, 2493), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((2572, 2602), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Item'], {'id': 'id'}), '(Item, id=id)\n', (2589, 2602), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((3149, 3179), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Item'], {'pk': 'id'}), '(Item, pk=id)\n', (3166, 3179), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((3602, 3659), 'django.shortcuts.render', 'render', (['request', '"""issue_commentform.html"""', "{'form': form}"], {}), "(request, 'issue_commentform.html', {'form': form})\n", (3608, 3659), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((3811, 3844), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Comment'], {'pk': 'id'}), '(Comment, pk=id)\n', (3828, 3844), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((3878, 3922), 'django.shortcuts.redirect', 'redirect', (['"""issue_detail"""'], {'id': 'comment.item.id'}), "('issue_detail', id=comment.item.id)\n", (3886, 3922), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((3977, 4010), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Comment'], {'pk': 'id'}), '(Comment, pk=id)\n', (3994, 4010), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((4043, 4087), 'django.shortcuts.redirect', 'redirect', (['"""issue_detail"""'], {'id': 'comment.item.id'}), "('issue_detail', id=comment.item.id)\n", (4051, 4087), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((2711, 2775), 'django.contrib.messages.info', 'messages.info', (['request', '"""Sorry you have already voted this one!"""'], {}), "(request, 'Sorry you have already voted this one!')\n", (2724, 2775), False, 'from django.contrib import messages, auth\n'), ((2791, 2816), 'django.shortcuts.redirect', 'redirect', (['get_issues_list'], {}), '(get_issues_list)\n', (2799, 2816), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((2943, 2998), 'django.contrib.messages.success', 'messages.success', (['request', '"""Your Bug has been upvoted!"""'], {}), "(request, 'Your Bug has been upvoted!')\n", (2959, 2998), False, 'from django.contrib import messages, auth\n'), ((3014, 3039), 'django.shortcuts.redirect', 'redirect', (['get_issues_list'], {}), '(get_issues_list)\n', (3022, 3039), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((1917, 1942), 'django.shortcuts.redirect', 'redirect', (['get_issues_list'], {}), '(get_issues_list)\n', (1925, 1942), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((3442, 3499), 'django.contrib.messages.success', 'messages.success', (['request', '"""Your Comment has been added!"""'], {}), "(request, 'Your Comment has been added!')\n", (3458, 3499), False, 'from django.contrib import messages, auth\n'), ((3519, 3549), 'django.shortcuts.redirect', 'redirect', (['get_issue_detail', 'id'], {}), '(get_issue_detail, id)\n', (3527, 3549), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n'), ((1430, 1455), 'django.shortcuts.redirect', 'redirect', (['get_issues_list'], {}), '(get_issues_list)\n', (1438, 1455), False, 'from django.shortcuts import render, HttpResponse, redirect, reverse, get_object_or_404\n')]
# on Windows: open the shell as admin then: `pip install matplotlib numpy nbformat` # on Unix: `sudo pip install matplotlib numpy nbformat` # You might need to reload Atom after installation of dependencies if they are not found import numpy as np import matplotlib.pyplot as plt t = np.linspace(0, 20, 500) plt.plot(t, np.sin(t))
[ "numpy.sin", "numpy.linspace" ]
[((286, 309), 'numpy.linspace', 'np.linspace', (['(0)', '(20)', '(500)'], {}), '(0, 20, 500)\n', (297, 309), True, 'import numpy as np\n'), ((322, 331), 'numpy.sin', 'np.sin', (['t'], {}), '(t)\n', (328, 331), True, 'import numpy as np\n')]
from django.db import models class CommunityBank(models.Model): balance = models.DecimalField(max_digits=30, decimal_places=4) class OwnerBank(models.Model): balance = models.DecimalField(max_digits=30, decimal_places=4)
[ "django.db.models.DecimalField" ]
[((82, 134), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'max_digits': '(30)', 'decimal_places': '(4)'}), '(max_digits=30, decimal_places=4)\n', (101, 134), False, 'from django.db import models\n'), ((182, 234), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'max_digits': '(30)', 'decimal_places': '(4)'}), '(max_digits=30, decimal_places=4)\n', (201, 234), False, 'from django.db import models\n')]
import datetime import json import netaddr import sys from time import time import uuid from pprint import pprint from oslo_config import cfg import oslo_messaging as messaging from neutron.api.v2 import attributes from neutron.common import constants as q_const from neutron.common import rpc as q_rpc from neutron import context from neutron.db import agents_db from neutron.plugins.common import constants from neutron_lbaas.services.loadbalancer import constants as lb_const from f5_openstack_agent.lbaasv2.drivers.bigip import constants_v2 from neutron_lbaas.services.loadbalancer.drivers.abstract_driver \ import LoadBalancerAbstractDriver # @UnresolvedImport @Reimport from neutron_lbaas.extensions \ import lbaas_agentscheduler # @UnresolvedImport @Reimport from neutron_lbaas.db.loadbalancer import loadbalancer_db as lb_db from oslo_log import log as logging from oslo_utils import importutils import f5_openstack_agent.lbaasv2.drivers.bigip.constants_v2 def make_msg(method, **kwargs): return {'method': method, 'args': kwargs} if __name__ == '__main__': args = sys.argv lb_id = args[1] environment_prefix = 'Test' topic = '%s_%s' % (constants_v2.TOPIC_PROCESS_ON_HOST_V2, environment_prefix) default_version = '1.0' q_rpc.init(cfg.CONF) transport = messaging.get_transport(cfg.CONF) target = messaging.Target(topic=topic) client = messaging.RPCClient(transport, target) ctxt=context.get_admin_context().to_dict() client.call(ctxt, 'update_loadbalancer_status', loadbalancer_id=lb_id, status=constants.ACTIVE, operating_status=lb_const.ONLINE )
[ "neutron.common.rpc.init", "oslo_messaging.get_transport", "neutron.context.get_admin_context", "oslo_messaging.RPCClient", "oslo_messaging.Target" ]
[((1289, 1309), 'neutron.common.rpc.init', 'q_rpc.init', (['cfg.CONF'], {}), '(cfg.CONF)\n', (1299, 1309), True, 'from neutron.common import rpc as q_rpc\n'), ((1327, 1360), 'oslo_messaging.get_transport', 'messaging.get_transport', (['cfg.CONF'], {}), '(cfg.CONF)\n', (1350, 1360), True, 'import oslo_messaging as messaging\n'), ((1374, 1403), 'oslo_messaging.Target', 'messaging.Target', ([], {'topic': 'topic'}), '(topic=topic)\n', (1390, 1403), True, 'import oslo_messaging as messaging\n'), ((1417, 1455), 'oslo_messaging.RPCClient', 'messaging.RPCClient', (['transport', 'target'], {}), '(transport, target)\n', (1436, 1455), True, 'import oslo_messaging as messaging\n'), ((1466, 1493), 'neutron.context.get_admin_context', 'context.get_admin_context', ([], {}), '()\n', (1491, 1493), False, 'from neutron import context\n')]
import json import os from pyopenproject.business.exception.business_error import BusinessError from pyopenproject.model.custom_action import CustomAction from tests.test_cases.openproject_test_case import OpenProjectTestCase class CustomActionServiceTestCase(OpenProjectTestCase): def setUp(self): super().setUp() DATA = os.path.join(self.TEST_CASES, '../data/custom_action.json') self.caSer = self.op.get_custom_action_service() with open(DATA) as f: self.custom_action = CustomAction(json.load(f)) def test_executed(self): # TODO: We need to create custom actions to test them pass def test_find(self): # TODO: We need to create custom actions to test them pass def test_not_found_executed(self): with self.assertRaises(BusinessError): self.assertIsNotNone(self.caSer.execute(self.custom_action)) def test_not_found(self): with self.assertRaises(BusinessError): self.assertIsNotNone(self.caSer.find(self.custom_action))
[ "json.load", "os.path.join" ]
[((346, 405), 'os.path.join', 'os.path.join', (['self.TEST_CASES', '"""../data/custom_action.json"""'], {}), "(self.TEST_CASES, '../data/custom_action.json')\n", (358, 405), False, 'import os\n'), ((539, 551), 'json.load', 'json.load', (['f'], {}), '(f)\n', (548, 551), False, 'import json\n')]
import sys import pickle _, entities_tsv_in, entity_name_dict_in, bert_input_tsv_out = sys.argv with open(entities_tsv_in, 'r') as f: entities_tsv = f.read().strip().split('\n') with open(entity_name_dict_in, 'rb') as f: entity_name_dict = pickle.load(f) #is_relation = False is_relation = True bert_input_tsv = '' for i, line in enumerate(entities_tsv): text = line.split('\t')[1] if is_relation: name = text else: key_, id_ = text.split('::') if id_ in entity_name_dict: name = entity_name_dict[id_] if name is None: name = 'NoText' else: name = 'NoText' bert_input_tsv += name + '\t0\n' with open(bert_input_tsv_out, 'w') as f: f.write(bert_input_tsv)
[ "pickle.load" ]
[((251, 265), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (262, 265), False, 'import pickle\n')]
""" Utility functions for evaluation """ from collections import Counter, defaultdict class Metric(object): def __init__(self): self.cnt_samples = 0 self.cnt_samples_wo_true_triples = 0 self.cnt_samples_wo_pred_triples = 0 self.sum_prec = 0 self.sum_recall = 0 self.sum_f1 = 0 self.rel_counter = Counter() self.true_triples_by_rel = defaultdict(set) self.pred_triples_by_rel = defaultdict(set) def compute_relationwise_metric(self): """ compute relation-wise precision, recall and F1 scores :param true_triples_by_rel: :param pred_triples_by_rel: :return: """ rel2metric = dict() for rel in self.true_triples_by_rel: true_triples = self.true_triples_by_rel[rel] if rel in self.pred_triples_by_rel: pred_triples = self.pred_triples_by_rel[rel] else: pred_triples = set() true_pred_triples = pred_triples.intersection(true_triples) if len(pred_triples) == 0: prec = 0 else: prec = len(true_pred_triples) / len(pred_triples) if len(true_triples) == 0: recall = 0 else: recall = len(true_pred_triples) / len(true_triples) if prec + recall > 0: f1 = 2 * prec * recall / (prec + recall) else: f1 = 0 # use percentage points rel2metric[rel] = { "prec": prec * 100, "recall": recall * 100, "f1": f1 * 100 } return rel2metric
[ "collections.Counter", "collections.defaultdict" ]
[((358, 367), 'collections.Counter', 'Counter', ([], {}), '()\n', (365, 367), False, 'from collections import Counter, defaultdict\n'), ((403, 419), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (414, 419), False, 'from collections import Counter, defaultdict\n'), ((455, 471), 'collections.defaultdict', 'defaultdict', (['set'], {}), '(set)\n', (466, 471), False, 'from collections import Counter, defaultdict\n')]
import os import discord from discord.ext import commands from PIL import Image, ImageDraw, ImageFont import textwrap class Memes: def __init__(self, bot): self.bot = bot @commands.command() async def dipshit(self, ctx, msg: discord.Member=None): """Generate a meme usage : %prefix%dipshit <mention user> """ if msg: msg = msg.name else: msg = ctx.author.name image = Image.open("data/google.jpg").convert("RGBA") txt = Image.new('RGBA', image.size, (255, 255, 255, 0)) font = ImageFont.truetype('data/fonts/arial.ttf', 18) d = ImageDraw.Draw(txt) d.text((138, 58), msg, font=font, fill=(0, 0, 0, 255)) out = Image.alpha_composite(image, txt).save("dipshit.png") file = discord.File("dipshit.png", filename="dipshit.png") await ctx.trigger_typing() await ctx.send(file=file) os.remove('dipshit.png') @commands.command() async def headache(self, ctx, msg: discord.Member=None): """Generate a meme usage : %prefix%headache <mention user> """ x = 396 if msg: msg = msg.name else: msg = ctx.author.name if len(msg) > 8: x = x - 20 image = Image.open("data/headache.png").convert("RGBA") txt = Image.new('RGBA', image.size, (255, 255, 255, 0)) font = ImageFont.truetype('data/fonts/impact.ttf', 54) d = ImageDraw.Draw(txt) d.text((361, 504), msg, font=font, fill=(0, 0, 0, 255)) out = Image.alpha_composite(image, txt).save("headache.png") file = discord.File("headache.png", filename="headache.png") await ctx.trigger_typing() await ctx.send(file=file) os.remove('headache.png') @commands.command() async def firstwords(self, ctx, *, msg): """Generate a meme usage : %prefix%firstwords message """ image = Image.open("data/firstwords.png").convert("RGBA") txt = Image.new('RGBA', image.size, (255, 255, 255, 0)) font = ImageFont.truetype('data/fonts/comic.ttf', 70) d = ImageDraw.Draw(txt) d.text((104, 27), f"{msg[0]}..{msg[0]}...", font=font, fill=(0, 0, 0, 255)) out = Image.alpha_composite(image, txt) nfont = ImageFont.truetype('data/fonts/comic.ttf', 50) para = textwrap.wrap(msg, width=20) current_h = 591 pad = 3 for line in para: w, h = d.textsize(line, font=nfont) d.text((52, current_h), line, font=nfont, fill=(0, 0, 0, 255)) current_h += h + pad img = Image.alpha_composite(out, txt).save("firstwords.png") file = discord.File("firstwords.png", filename="firstwords.png") await ctx.trigger_typing() await ctx.send(file=file) os.remove('firstwords.png') def setup(bot): bot.add_cog(Memes(bot))
[ "PIL.Image.open", "PIL.Image.new", "PIL.ImageFont.truetype", "PIL.ImageDraw.Draw", "textwrap.wrap", "PIL.Image.alpha_composite", "discord.ext.commands.command", "discord.File", "os.remove" ]
[((192, 210), 'discord.ext.commands.command', 'commands.command', ([], {}), '()\n', (208, 210), False, 'from discord.ext import commands\n'), ((980, 998), 'discord.ext.commands.command', 'commands.command', ([], {}), '()\n', (996, 998), False, 'from discord.ext import commands\n'), ((1843, 1861), 'discord.ext.commands.command', 'commands.command', ([], {}), '()\n', (1859, 1861), False, 'from discord.ext import commands\n'), ((525, 574), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'image.size', '(255, 255, 255, 0)'], {}), "('RGBA', image.size, (255, 255, 255, 0))\n", (534, 574), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((591, 637), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""data/fonts/arial.ttf"""', '(18)'], {}), "('data/fonts/arial.ttf', 18)\n", (609, 637), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((651, 670), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['txt'], {}), '(txt)\n', (665, 670), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((820, 871), 'discord.File', 'discord.File', (['"""dipshit.png"""'], {'filename': '"""dipshit.png"""'}), "('dipshit.png', filename='dipshit.png')\n", (832, 871), False, 'import discord\n'), ((949, 973), 'os.remove', 'os.remove', (['"""dipshit.png"""'], {}), "('dipshit.png')\n", (958, 973), False, 'import os\n'), ((1382, 1431), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'image.size', '(255, 255, 255, 0)'], {}), "('RGBA', image.size, (255, 255, 255, 0))\n", (1391, 1431), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1448, 1495), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""data/fonts/impact.ttf"""', '(54)'], {}), "('data/fonts/impact.ttf', 54)\n", (1466, 1495), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1509, 1528), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['txt'], {}), '(txt)\n', (1523, 1528), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1680, 1733), 'discord.File', 'discord.File', (['"""headache.png"""'], {'filename': '"""headache.png"""'}), "('headache.png', filename='headache.png')\n", (1692, 1733), False, 'import discord\n'), ((1811, 1836), 'os.remove', 'os.remove', (['"""headache.png"""'], {}), "('headache.png')\n", (1820, 1836), False, 'import os\n'), ((2069, 2118), 'PIL.Image.new', 'Image.new', (['"""RGBA"""', 'image.size', '(255, 255, 255, 0)'], {}), "('RGBA', image.size, (255, 255, 255, 0))\n", (2078, 2118), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2135, 2181), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""data/fonts/comic.ttf"""', '(70)'], {}), "('data/fonts/comic.ttf', 70)\n", (2153, 2181), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2195, 2214), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['txt'], {}), '(txt)\n', (2209, 2214), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2330, 2363), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['image', 'txt'], {}), '(image, txt)\n', (2351, 2363), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2381, 2427), 'PIL.ImageFont.truetype', 'ImageFont.truetype', (['"""data/fonts/comic.ttf"""', '(50)'], {}), "('data/fonts/comic.ttf', 50)\n", (2399, 2427), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2444, 2472), 'textwrap.wrap', 'textwrap.wrap', (['msg'], {'width': '(20)'}), '(msg, width=20)\n', (2457, 2472), False, 'import textwrap\n'), ((2781, 2838), 'discord.File', 'discord.File', (['"""firstwords.png"""'], {'filename': '"""firstwords.png"""'}), "('firstwords.png', filename='firstwords.png')\n", (2793, 2838), False, 'import discord\n'), ((2916, 2943), 'os.remove', 'os.remove', (['"""firstwords.png"""'], {}), "('firstwords.png')\n", (2925, 2943), False, 'import os\n'), ((465, 494), 'PIL.Image.open', 'Image.open', (['"""data/google.jpg"""'], {}), "('data/google.jpg')\n", (475, 494), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((750, 783), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['image', 'txt'], {}), '(image, txt)\n', (771, 783), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1320, 1351), 'PIL.Image.open', 'Image.open', (['"""data/headache.png"""'], {}), "('data/headache.png')\n", (1330, 1351), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((1609, 1642), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['image', 'txt'], {}), '(image, txt)\n', (1630, 1642), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2005, 2038), 'PIL.Image.open', 'Image.open', (['"""data/firstwords.png"""'], {}), "('data/firstwords.png')\n", (2015, 2038), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((2710, 2741), 'PIL.Image.alpha_composite', 'Image.alpha_composite', (['out', 'txt'], {}), '(out, txt)\n', (2731, 2741), False, 'from PIL import Image, ImageDraw, ImageFont\n')]
from django.test import TestCase from django.core.exceptions import FieldDoesNotExist from django.contrib.gis.geos import Point from uk_geo_utils.geocoders import ( AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException, ) from uk_geo_utils.helpers import AddressSorter from uk_geo_utils.models import Address class FuzzyInt(int): def __new__(cls, lowest, highest): obj = super(FuzzyInt, cls).__new__(cls, highest) obj.lowest = lowest obj.highest = highest return obj def __eq__(self, other): return other >= self.lowest and other <= self.highest def __repr__(self): return "[%d..%d]" % (self.lowest, self.highest) class AddressBaseGeocoderTest(TestCase): fixtures = [ # records in Address, no corresponding records in ONSUD "addressbase_geocoder/AA11AA.json", # 3 records in Address, 2 corresponding records in ONSUD # all in county A01000001 and local auth B01000001 "addressbase_geocoder/BB11BB.json", # records in Address, corresponding records in ONSUD # all in county A01000001 but split across # local auths B01000001 and B01000002 "addressbase_geocoder/CC11CC.json", ] def test_empty_addressbase_table(self): """ The AddressBase table has no records in it """ get_address_model().objects.all().delete() with self.assertNumQueries(FuzzyInt(0, 4)): with self.assertRaises(AddressBaseNotImportedException): addressbase = AddressBaseGeocoder("AA11AA") def test_empty_onsud_table(self): """ The ONSUD table has no records in it """ get_onsud_model().objects.all().delete() with self.assertNumQueries(FuzzyInt(0, 4)): with self.assertRaises(OnsudNotImportedException): addressbase = AddressBaseGeocoder("AA11AA") def test_northern_ireland(self): with self.assertNumQueries(FuzzyInt(0, 4)): with self.assertRaises(NorthernIrelandException): addressbase = AddressBaseGeocoder("BT11AA") def test_no_records(self): """ We can't find any records for the given postcode in the AddressBase table """ with self.assertNumQueries(FuzzyInt(0, 4)): with self.assertRaises(get_address_model().DoesNotExist): addressbase = AddressBaseGeocoder("ZZ1 1ZZ") def test_no_codes(self): """ We find records for the given postcode in the AddressBase table but there are no corresponding records in the ONSUD for the UPRNs we found """ with self.assertNumQueries(FuzzyInt(0, 5)): addressbase = AddressBaseGeocoder("AA11AA") with self.assertRaises(CodesNotFoundException): result = addressbase.get_code("lad") self.assertIsInstance(addressbase.centroid, Point) def test_valid(self): """ We find records for the given postcode in the AddressBase table There are some corresponding records in the ONSUD for the UPRNs we found Valid result should be returned Note that in this case, the ONSUD table does not contain corresponding records for *all* of the UPRNs we found, but we accept the result anyway """ with self.assertNumQueries(FuzzyInt(0, 5)): addressbase = AddressBaseGeocoder( "bb 1 1B B" ) # intentionally spurious whitespace and case self.assertEqual("B01000001", addressbase.get_code("lad")) self.assertIsInstance(addressbase.centroid, Point) def test_strict_mode(self): """ We find records for the given postcode in the AddressBase table There are some corresponding records in the ONSUD for the UPRNs we found Note that in this case, the ONSUD table does not contain corresponding records for *all* of the UPRNs we found, and we are passing strict=True so we raise a StrictMatchException """ with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("BB11BB") with self.assertRaises(StrictMatchException): addressbase.get_code("lad", strict=True) def test_multiple_codes(self): """ We find records for the given postcode in the AddressBase table There are corresponding records in the ONSUD for the UPRNs we found The UPRNs described by this postcode map to more than one 'lad' but they all map to the same 'cty' """ with self.assertNumQueries(FuzzyInt(0, 5)): addressbase = AddressBaseGeocoder("CC1 1CC") with self.assertRaises(MultipleCodesException): result = addressbase.get_code("lad") self.assertEqual("A01000001", addressbase.get_code("cty")) self.assertIsInstance(addressbase.centroid, Point) def test_invalid_code_type(self): with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("CC1 1CC") with self.assertRaises(FieldDoesNotExist): result = addressbase.get_code("foo") # not a real code type def test_get_code_by_uprn_valid(self): """ valid get_code() by UPRN queries """ with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("CC1 1CC") self.assertEqual("B01000001", addressbase.get_code("lad", "00000008")) self.assertIsInstance(addressbase.get_point("00000008"), Point) self.assertEqual("B01000002", addressbase.get_code("lad", "00000009")) self.assertIsInstance(addressbase.get_point("00000009"), Point) def test_get_code_by_uprn_invalid_uprn(self): """ 'foo' is not a valid UPRN in our DB """ with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("CC1 1CC") with self.assertRaises(get_address_model().DoesNotExist): result = addressbase.get_code("lad", "foo") with self.assertRaises(get_address_model().DoesNotExist): result = addressbase.get_point("foo") def test_get_code_by_uprn_invalid_uprn_for_postcode(self): """ '00000001' is a valid UPRN in our DB, but for a different postcode than the one we constructed with """ with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("CC1 1CC") with self.assertRaises(get_address_model().DoesNotExist): result = addressbase.get_code("lad", "00000001") with self.assertRaises(get_address_model().DoesNotExist): result = addressbase.get_point("00000001") def test_get_code_by_uprn_no_onsud(self): """ '00000006' is a valid UPRN in AddressBase but not in ONSUD """ with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("BB1 1BB") with self.assertRaises(get_onsud_model().DoesNotExist): result = addressbase.get_code("lad", "00000006") self.assertIsInstance(addressbase.get_point("00000006"), Point) def test_addresses_property(self): with self.assertNumQueries(FuzzyInt(0, 4)): addressbase = AddressBaseGeocoder("AA1 1AA") addressbase._addresses = addressbase._addresses.order_by("-address") self.assertNotEqual(addressbase._addresses, addressbase.addresses) sorter = AddressSorter(addressbase._addresses) self.assertEqual(addressbase.addresses, sorter.natural_sort()) def test_centroid_ignores_type_l(self): addressbase = AddressBaseGeocoder("BB11BB") before_centroid = addressbase.centroid # adding a type L UPRN shouldn't change the postcode centroid Address.objects.create( postcode="BB1 1BB", address="foobar", location=Point(94.5, 65.7, srid=4326), addressbase_postal="L", ) after_centroid = addressbase.centroid self.assertEqual(before_centroid, after_centroid)
[ "uk_geo_utils.geocoders.AddressBaseGeocoder", "uk_geo_utils.geocoders.get_address_model", "django.contrib.gis.geos.Point", "uk_geo_utils.geocoders.get_onsud_model", "uk_geo_utils.helpers.AddressSorter" ]
[((8025, 8054), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""BB11BB"""'], {}), "('BB11BB')\n", (8044, 8054), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((2921, 2950), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""AA11AA"""'], {}), "('AA11AA')\n", (2940, 2950), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((3613, 3647), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""bb 1 1B B"""'], {}), "('bb 1 1B B')\n", (3632, 3647), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((4349, 4378), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""BB11BB"""'], {}), "('BB11BB')\n", (4368, 4378), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((4895, 4925), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""CC1 1CC"""'], {}), "('CC1 1CC')\n", (4914, 4925), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((5293, 5323), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""CC1 1CC"""'], {}), "('CC1 1CC')\n", (5312, 5323), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((5643, 5673), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""CC1 1CC"""'], {}), "('CC1 1CC')\n", (5662, 5673), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((6189, 6219), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""CC1 1CC"""'], {}), "('CC1 1CC')\n", (6208, 6219), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((6764, 6794), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""CC1 1CC"""'], {}), "('CC1 1CC')\n", (6783, 6794), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((7275, 7305), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""BB1 1BB"""'], {}), "('BB1 1BB')\n", (7294, 7305), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((7633, 7663), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""AA1 1AA"""'], {}), "('AA1 1AA')\n", (7652, 7663), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((7845, 7882), 'uk_geo_utils.helpers.AddressSorter', 'AddressSorter', (['addressbase._addresses'], {}), '(addressbase._addresses)\n', (7858, 7882), False, 'from uk_geo_utils.helpers import AddressSorter\n'), ((1739, 1768), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""AA11AA"""'], {}), "('AA11AA')\n", (1758, 1768), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((2071, 2100), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""AA11AA"""'], {}), "('AA11AA')\n", (2090, 2100), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((2283, 2312), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""BT11AA"""'], {}), "('BT11AA')\n", (2302, 2312), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((2603, 2633), 'uk_geo_utils.geocoders.AddressBaseGeocoder', 'AddressBaseGeocoder', (['"""ZZ1 1ZZ"""'], {}), "('ZZ1 1ZZ')\n", (2622, 2633), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((8287, 8315), 'django.contrib.gis.geos.Point', 'Point', (['(94.5)', '(65.7)'], {'srid': '(4326)'}), '(94.5, 65.7, srid=4326)\n', (8292, 8315), False, 'from django.contrib.gis.geos import Point\n'), ((2538, 2557), 'uk_geo_utils.geocoders.get_address_model', 'get_address_model', ([], {}), '()\n', (2555, 2557), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((6255, 6274), 'uk_geo_utils.geocoders.get_address_model', 'get_address_model', ([], {}), '()\n', (6272, 6274), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((6385, 6404), 'uk_geo_utils.geocoders.get_address_model', 'get_address_model', ([], {}), '()\n', (6402, 6404), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((6830, 6849), 'uk_geo_utils.geocoders.get_address_model', 'get_address_model', ([], {}), '()\n', (6847, 6849), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((6965, 6984), 'uk_geo_utils.geocoders.get_address_model', 'get_address_model', ([], {}), '()\n', (6982, 6984), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((7341, 7358), 'uk_geo_utils.geocoders.get_onsud_model', 'get_onsud_model', ([], {}), '()\n', (7356, 7358), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((1545, 1564), 'uk_geo_utils.geocoders.get_address_model', 'get_address_model', ([], {}), '()\n', (1562, 1564), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n'), ((1885, 1902), 'uk_geo_utils.geocoders.get_onsud_model', 'get_onsud_model', ([], {}), '()\n', (1900, 1902), False, 'from uk_geo_utils.geocoders import AddressBaseGeocoder, get_address_model, get_onsud_model, AddressBaseNotImportedException, OnsudNotImportedException, CodesNotFoundException, MultipleCodesException, NorthernIrelandException, StrictMatchException\n')]
from configparser import ConfigParser from differentiator.differentiator import Differentiator from differentiator.exception.differentiator_df_exceptions import * from functools import reduce from logging import Logger from pathlib import Path from pyspark.sql import DataFrame, SparkSession from pyspark.sql.functions import col, when from pyspark.sql.types import LongType, StringType, StructType from sequences_handler.sequences_handler import SequencesHandler from time import time from typing import Union class DataFrameStruct: def __init__(self, dataframe: DataFrame, schema: StructType, column_names: list, num_rows: int) -> None: self.dataframe = dataframe self.schema = schema self.column_names = column_names self.num_rows = num_rows class DataFrameDifferentiator(Differentiator): def __init__(self) -> None: super().__init__() self.max_DF = None self.partitioning = None @staticmethod def __read_max_DF(differentiator_config_file: Path, differentiator_config_parser: ConfigParser) -> Union[int, str]: exception_message = "{0}: 'max_DF' must be a integer value in range [1, N-1]!" \ .format(differentiator_config_file) try: max_DF = str(differentiator_config_parser.get("DataFrames Settings", "max_DF")) if max_DF != "N-1": max_DF = int(max_DF) except ValueError: raise InvalidMaxDFError(exception_message) return max_DF @staticmethod def __validate_max_DF(max_DF: Union[int, str]) -> None: exception_message = "Multiple Sequences DataFrames must have at least 1 sequence." if max_DF == "N-1": pass else: if max_DF < 1: raise InvalidMaxDFError(exception_message) def __set_max_DF(self, N: int, max_DF: Union[int, str]) -> None: if max_DF == "N-1": self.max_DF = N - 1 else: self.max_DF = max_DF @staticmethod def __log_max_DF(spark_app_name: str, max_DF: int, logger: Logger) -> None: maximum_sequences_per_dataframe_message = "({0}) Maximum Sequences Per DataFrame (max_DF): {1}" \ .format(spark_app_name, str(max_DF)) print(maximum_sequences_per_dataframe_message) logger.info(maximum_sequences_per_dataframe_message) def __get_max_DF(self) -> int: return self.max_DF @staticmethod def __read_partitioning(differentiator_config_file: Path, differentiator_config_parser: ConfigParser) -> str: exception_message = "{0}: 'partitioning' must be a string value!" \ .format(differentiator_config_file) try: partitioning = \ str(differentiator_config_parser.get("DataFrames Settings", "partitioning")) except ValueError: raise InvalidPartitioningError(exception_message) return partitioning @staticmethod def __validate_partitioning(partitioning: str) -> None: supported_partitioning = ["auto", "custom"] exception_message = "Supported partitioning: {0}" \ .format(" | ".join(supported_partitioning)) if partitioning not in supported_partitioning: raise InvalidPartitioningError(exception_message) def __set_partitioning(self, partitioning: str) -> None: self.partitioning = partitioning @staticmethod def __log_partitioning(spark_app_name: str, partitioning: str, logger: Logger) -> None: partitioning_message = "({0}) Partitioning: {1}" \ .format(spark_app_name, partitioning.capitalize()) print(partitioning_message) logger.info(partitioning_message) def __get_partitioning(self) -> str: return self.partitioning @staticmethod def __generate_dataframe_schema_struct_list(dataframe_sequences_data_list: list) -> list: dataframe_schema_struct_list = [] dataframe_index_label = "Index" dataframe_schema_struct_list.append([dataframe_index_label, LongType(), False]) for index_dataframe_sequences_data_list in range(len(dataframe_sequences_data_list)): dataframe_sequence_identification = \ dataframe_sequences_data_list[index_dataframe_sequences_data_list][0] if dataframe_sequence_identification != "Seq": dataframe_char_label = "Seq_" + dataframe_sequence_identification else: dataframe_char_label = "Seq_" + str(index_dataframe_sequences_data_list + 1) dataframe_schema_struct_list.append([dataframe_char_label, StringType(), True]) return dataframe_schema_struct_list @staticmethod def __create_dataframe_schema(dataframe_schema_struct_list: list) -> StructType: dataframe_schema = StructType() for index_dataframe_schema_struct_list in range(len(dataframe_schema_struct_list)): dataframe_schema.add(field=dataframe_schema_struct_list[index_dataframe_schema_struct_list][0], data_type=dataframe_schema_struct_list[index_dataframe_schema_struct_list][1], nullable=dataframe_schema_struct_list[index_dataframe_schema_struct_list][2]) return dataframe_schema @staticmethod def __get_dataframe_schema_column_names(dataframe_schema: StructType) -> list: return dataframe_schema.names @staticmethod def __create_dataframe(spark_session: SparkSession, dataframe_data: list, dataframe_schema: StructType) -> DataFrame: return spark_session.createDataFrame(data=dataframe_data, schema=dataframe_schema, verifySchema=True) @staticmethod def __repartition_dataframe(dataframe: DataFrame, new_number_of_partitions: int) -> DataFrame: current_dataframe_num_partitions = dataframe.rdd.getNumPartitions() if current_dataframe_num_partitions > new_number_of_partitions: # Execute Coalesce (Spark Less-Wide-Shuffle Transformation) Function dataframe = dataframe.coalesce(new_number_of_partitions) if current_dataframe_num_partitions < new_number_of_partitions: # Execute Repartition (Spark Wider-Shuffle Transformation) Function dataframe = dataframe.repartition(new_number_of_partitions) return dataframe def __apply_customized_partitioning_after_dataframe_creation(self, partitioning: str, spark_app_cores_max_count: int, spark_recommended_tasks_per_cpu: int, dataframe: DataFrame) -> DataFrame: if partitioning == "custom": dataframe_optimized_number_of_partitions = spark_app_cores_max_count * spark_recommended_tasks_per_cpu dataframe = self.__repartition_dataframe(dataframe, dataframe_optimized_number_of_partitions) return dataframe @staticmethod def __assemble_join_conditions(first_dataframe: DataFrame, first_dataframe_column_names: list, second_dataframe: DataFrame, second_dataframe_column_names: list): index_condition = first_dataframe["Index"] == second_dataframe["Index"] non_index_conditions_list = [] for index_second_dataframe_column_names in range(len(second_dataframe_column_names)): second_dataframe_column_name_quoted = \ "`" + second_dataframe_column_names[index_second_dataframe_column_names] + "`" second_dataframe_column_name_found = second_dataframe_column_name_quoted.find("Seq_") != -1 for index_first_dataframe_column_names in range(len(first_dataframe_column_names)): first_dataframe_column_name_quoted = \ "`" + first_dataframe_column_names[index_first_dataframe_column_names] + "`" first_dataframe_column_name_found = first_dataframe_column_name_quoted.find("Seq_") != -1 if first_dataframe_column_name_found and second_dataframe_column_name_found: non_index_condition = \ first_dataframe[first_dataframe_column_name_quoted] != \ second_dataframe[second_dataframe_column_name_quoted] non_index_conditions_list.append(non_index_condition) return index_condition & reduce(lambda x, y: x | y, non_index_conditions_list) @staticmethod def __execute_dataframes_diff(first_dataframe: DataFrame, second_dataframe: DataFrame, join_conditions) -> DataFrame: # Execute Full Outer Join (Spark Wider-Shuffle Transformation), # Filter (Spark Narrow Transformation) and # Drop (Spark Narrow Transformation) Functions df_r = first_dataframe \ .join(second_dataframe, join_conditions, "full_outer") \ .filter(first_dataframe["Index"].isNotNull() & second_dataframe["Index"].isNotNull()) \ .drop(second_dataframe["Index"]) return df_r @staticmethod def __substitute_equal_nucleotide_letters_on_df_r(diff_phase: str, df_r: DataFrame, first_dataframe_column_names: list) -> DataFrame: if diff_phase == "opt": # Update Non-Diff Line Values to "=" Character (For Better Viewing) first_dataframe_nucleotide_letter_column_quoted = "`" + first_dataframe_column_names[1] + "`" first_dataframe_nucleotide_letter_column_new_value = "=" df_r_second_dataframe_columns_only_list = \ [column for column in df_r.columns if column not in first_dataframe_column_names] for second_dataframe_column in df_r_second_dataframe_columns_only_list: second_dataframe_column_quoted = "`" + second_dataframe_column + "`" is_non_diff_column_comparison = col(second_dataframe_column_quoted) == \ df_r[first_dataframe_nucleotide_letter_column_quoted] column_expression = when(is_non_diff_column_comparison, first_dataframe_nucleotide_letter_column_new_value) \ .otherwise(col(second_dataframe_column_quoted)) df_r = df_r.withColumn(second_dataframe_column, column_expression) return df_r @staticmethod def __estimate_highest_df_r_size_in_bytes(first_dataframe_schema: StructType, first_dataframe_num_rows: int, second_dataframe_schema: StructType, second_dataframe_num_rows: int) -> int: long_type_count = 0 long_type_default_size = 8 # LongType(): 8 Bytes Each string_type_count = 0 string_type_default_size = 4 # StringType(): 4 Bytes Each + (1 Byte * String Length) first_dataframe_schema_list = [[field.dataType, field.name] for field in first_dataframe_schema.fields] for schema_field_list in first_dataframe_schema_list: if schema_field_list[0] == LongType(): long_type_count = long_type_count + 1 elif schema_field_list[0] == StringType(): string_type_count = string_type_count + 1 second_dataframe_schema_list = [[field.dataType, field.name] for field in second_dataframe_schema.fields] for schema_field_list in second_dataframe_schema_list: if schema_field_list[0] == LongType(): long_type_count = long_type_count + 1 elif schema_field_list[0] == StringType(): string_type_count = string_type_count + 1 long_type_count = long_type_count - 1 # Discounting Index of Second DataFrame (Dropped After Join) minimum_dataframe_num_rows = min(first_dataframe_num_rows, second_dataframe_num_rows) long_type_size_one_row = long_type_count * long_type_default_size string_type_size_one_row = string_type_count * (string_type_default_size + 1) return minimum_dataframe_num_rows * (long_type_size_one_row + string_type_size_one_row) @staticmethod def __get_optimal_num_of_partitions_after_dataframe_shuffling(spark_max_recommended_partition_size: int, spark_app_cores_max_count: int, spark_recommended_tasks_per_cpu: int, dataframe_size_in_bytes: int) -> int: # Set Initial Divider Variable Value divider = spark_app_cores_max_count * spark_recommended_tasks_per_cpu # Search Optimized Number of Partitions while True: if (dataframe_size_in_bytes / divider) <= spark_max_recommended_partition_size: return divider divider = divider + 1 def __apply_customized_partitioning_after_dataframes_diff(self, partitioning: str, first_dataframe_schema: StructType, first_dataframe_num_rows: int, second_dataframe_schema: StructType, second_dataframe_num_rows: int, spark_max_recommended_partition_size: int, spark_app_cores_max_count: int, spark_recommended_tasks_per_cpu: int, df_r: DataFrame) -> DataFrame: if partitioning == "custom": estimated_df_r_size_in_bytes = self.__estimate_highest_df_r_size_in_bytes(first_dataframe_schema, first_dataframe_num_rows, second_dataframe_schema, second_dataframe_num_rows) optimized_num_of_dataframe_partitions = \ self.__get_optimal_num_of_partitions_after_dataframe_shuffling(spark_max_recommended_partition_size, spark_app_cores_max_count, spark_recommended_tasks_per_cpu, estimated_df_r_size_in_bytes) df_r = self.__repartition_dataframe(df_r, optimized_num_of_dataframe_partitions) return df_r def __execute_diff_phase(self, diff_phase: str, partitioning: str, first_dataframe_struct: DataFrameStruct, second_dataframe_struct: DataFrameStruct, spark_max_recommended_partition_size: int, spark_app_cores_max_count: int, spark_recommended_tasks_per_cpu: int) -> DataFrame: # Get Struct Values of First DataFrame first_dataframe = first_dataframe_struct.dataframe first_dataframe_schema = first_dataframe_struct.schema first_dataframe_column_names = first_dataframe_struct.column_names first_dataframe_num_rows = first_dataframe_struct.num_rows # Get Struct Values of Second DataFrame second_dataframe = second_dataframe_struct.dataframe second_dataframe_schema = second_dataframe_struct.schema second_dataframe_column_names = second_dataframe_struct.column_names second_dataframe_num_rows = second_dataframe_struct.num_rows # Assemble Join Conditions join_conditions = self.__assemble_join_conditions(first_dataframe, first_dataframe_column_names, second_dataframe, second_dataframe_column_names) # Execute DataFrames Diff (Resulting DataFrame: df_r) df_r = self.__execute_dataframes_diff(first_dataframe, second_dataframe, join_conditions) # Substitute Equal Nucleotide Letters on df_r (If diff_phase = opt) df_r = self.__substitute_equal_nucleotide_letters_on_df_r(diff_phase, df_r, first_dataframe_column_names) # Apply Customized Partitioning on df_r After Diff (If Enabled) df_r = self.__apply_customized_partitioning_after_dataframes_diff(partitioning, first_dataframe_schema, first_dataframe_num_rows, second_dataframe_schema, second_dataframe_num_rows, spark_max_recommended_partition_size, spark_app_cores_max_count, spark_recommended_tasks_per_cpu, df_r) return df_r @staticmethod def __show_dataframe(dataframe: DataFrame, number_of_rows_to_show: int, truncate_boolean: bool) -> None: # Execute Sort (Spark Wider-Shuffle Transformation) and # Show (Spark Action) Functions dataframe \ .sort(dataframe["Index"].asc_nulls_last()) \ .show(n=number_of_rows_to_show, truncate=truncate_boolean) @staticmethod def __write_dataframe_as_distributed_partial_multiple_csv_files(dataframe: DataFrame, destination_file_path: Path, header_boolean: bool, write_mode: str) -> None: # Execute Sort (Spark Wider-Shuffle Transformation) and # Write.CSV (Spark Action) Functions dataframe \ .sort(dataframe["Index"].asc_nulls_last()) \ .write \ .csv(path=str(destination_file_path), header=header_boolean, mode=write_mode) @staticmethod def __write_dataframe_as_merged_single_csv_file(dataframe: DataFrame, destination_file_path: Path, header_boolean: bool, write_mode: str) -> None: # Execute Coalesce (Spark Less-Wide-Shuffle Transformation), # Sort (Spark Wider-Shuffle Transformation) and # Write.CSV (Spark Action) Functions dataframe \ .coalesce(1) \ .sort(dataframe["Index"].asc_nulls_last()) \ .write \ .csv(path=str(destination_file_path), header=header_boolean, mode=write_mode) def __execute_collection_phase(self, dataframe: DataFrame, collection_phase: str, destination_file_path: Path) -> None: if collection_phase == "None": # Do Not Collect Resulting DataFrame (df_r) pass elif collection_phase == "SC": # SP = Show/Collect # Show Resulting DataFrame (df_r) as Table Format on Command-Line Interface self.__show_dataframe(dataframe, dataframe.count(), False) elif collection_phase == "DW": # DW = Distributed Write # Write to Disk Resulting DataFrame (df_r) as Multiple Partial CSV Files # (Each Spark Executor Writes Its Partition's Data Locally) self.__write_dataframe_as_distributed_partial_multiple_csv_files(dataframe, destination_file_path, True, "append") elif collection_phase == "MW": # MW = Merged Write # Write to Disk Resulting DataFrame (df_r) as Single CSV File # (Each Spark Executor Sends Its Partition's Data to One Executor Which Will Merge and Write Them) self.__write_dataframe_as_merged_single_csv_file(dataframe, destination_file_path, True, "append") def diff_sequences(self) -> None: # Initialize Metrics Variables sequences_comparisons_count = 0 spark_dataframe_partitions_count = 0 diff_phases_time_in_seconds = 0 collection_phases_time_in_seconds = 0 average_sequences_comparison_time_in_seconds = 0 sequences_comparisons_time_in_seconds = 0 # Get Spark Context spark_context = self.get_spark_context() # Get Spark App Name spark_app_name = self.get_spark_app_name(spark_context) # Get Spark App Id spark_app_id = self.get_spark_app_id(spark_context) # Get Output Directory output_directory = self.get_output_directory() # Get Diff Phase diff_phase = self.get_diff_phase() # Get Collection Phase collection_phase = self.get_collection_phase() # Get Data Structure data_structure = self.get_data_structure() # Get Number of Sequences to Compare (N) N = self.get_N() # Get Differentiator Config File differentiator_config_file = self.get_differentiator_config_file() # Init ConfigParser Object config_parser = ConfigParser() # Case Preservation of Each Option Name config_parser.optionxform = str # Load config_parser config_parser.read(differentiator_config_file, encoding="utf-8") if diff_phase == "1": max_DF = 1 # Set Maximum Sequences Per DataFrame (max_DF) self.__set_max_DF(N, max_DF) elif diff_phase == "opt": # Read Maximum Sequences Per DataFrame (max_DF) max_DF = self.__read_max_DF(differentiator_config_file, config_parser) # Validate Maximum Sequences Per DataFrame (max_DF) self.__validate_max_DF(max_DF) # Set Maximum Sequences Per DataFrame (max_DF) self.__set_max_DF(N, max_DF) # Get Maximum Sequences Per DataFrame (max_DF) max_DF = self.__get_max_DF() # Get Logger logger = self.get_logger() # Log Maximum Sequences Per DataFrame (max_DF) self.__log_max_DF(spark_app_name, max_DF, logger) # Read Partitioning partitioning = self.__read_partitioning(differentiator_config_file, config_parser) # Validate Partitioning self.__validate_partitioning(partitioning) # Set Partitioning self.__set_partitioning(partitioning) # Log Partitioning self.__log_partitioning(spark_app_name, partitioning, logger) # Get Estimated Amount of Diffs (d_a) estimated_d_a = self.estimate_amount_of_diffs(diff_phase, N, max_DF) # Log Estimated Amount of Diffs (d_a) self.log_estimated_amount_of_diffs(spark_app_name, estimated_d_a, logger) # Get Sequences List Text File sequences_list_text_file = self.get_sequences_list_text_file() # Init SequencesHandler Object sh = SequencesHandler(sequences_list_text_file) # Generate Sequences Indices List sequences_indices_list = sh.generate_sequences_indices_list(N, max_DF) # Get Actual Amount of Diffs actual_d_a = self.get_actual_amount_of_diffs(sequences_indices_list) # Log Actual Amount of Diffs self.log_actual_amount_of_diffs(spark_app_name, actual_d_a, logger) # Calculate Amount of Diffs (d_a) Estimation Absolute Error d_a_estimation_absolute_error = self.calculate_amount_of_diffs_estimation_absolute_error(estimated_d_a, actual_d_a) # Calculate Amount of Diffs (d_a) Estimation Percent Error d_a_estimation_percent_error = self.calculate_amount_of_diffs_estimation_percent_error(estimated_d_a, actual_d_a) # Log Amount of Diffs (d_a) Estimation Absolute and Percent Errors self.log_d_a_estimation_errors(spark_app_name, d_a_estimation_absolute_error, d_a_estimation_percent_error, logger) # Get Spark Session spark_session = self.get_spark_session() # Iterate Through Sequences Indices List for index_sequences_indices_list in range(actual_d_a): # Sequences Comparison Start Time sequences_comparison_start_time = time() # Get First DataFrame Sequences Indices List first_dataframe_sequences_indices_list = sequences_indices_list[index_sequences_indices_list][0] # Get Second DataFrame Sequences Indices List second_dataframe_sequences_indices_list = sequences_indices_list[index_sequences_indices_list][1] # Get First DataFrame Sequences Data List first_dataframe_sequences_data_list = sh.generate_sequences_list(sequences_list_text_file, first_dataframe_sequences_indices_list) # Get Second DataFrame Sequences Data List second_dataframe_sequences_data_list = sh.generate_sequences_list(sequences_list_text_file, second_dataframe_sequences_indices_list) # Get the Biggest Sequence Length Among DataFrames biggest_sequence_length_among_dataframes = \ self.get_biggest_sequence_length_among_data_structures(first_dataframe_sequences_data_list, second_dataframe_sequences_data_list) # Set Length of First DataFrame first_dataframe_length = biggest_sequence_length_among_dataframes # Set Length of Second DataFrame second_dataframe_length = biggest_sequence_length_among_dataframes # Generate Schema Struct List of First DataFrame first_dataframe_schema_struct_list = \ self.__generate_dataframe_schema_struct_list(first_dataframe_sequences_data_list) # Create Schema of First DataFrame first_dataframe_schema = self.__create_dataframe_schema(first_dataframe_schema_struct_list) # Get Schema Column Names of First DataFrame first_dataframe_schema_column_names = self.__get_dataframe_schema_column_names(first_dataframe_schema) # Get Data of First DataFrame first_dataframe_data = self.get_data_structure_data(first_dataframe_length, first_dataframe_sequences_data_list) # Create First DataFrame first_dataframe = self.__create_dataframe(spark_session, first_dataframe_data, first_dataframe_schema) # Get Spark App Cores Max Count spark_app_cores_max_count = self.get_spark_app_cores_max_count(spark_context) # Get Spark Recommended Tasks per CPU spark_recommended_tasks_per_cpu = self.get_spark_recommended_tasks_per_cpu() # Apply Customized Partitioning on First DataFrame After Creation (If Enabled) first_dataframe = \ self.__apply_customized_partitioning_after_dataframe_creation(partitioning, spark_app_cores_max_count, spark_recommended_tasks_per_cpu, first_dataframe) # Get Number of Partitions of First DataFrame first_dataframe_partitions_number = first_dataframe.rdd.getNumPartitions() # Increase Spark DataFrame Partitions Count spark_dataframe_partitions_count = spark_dataframe_partitions_count + first_dataframe_partitions_number # Create Struct of First DataFrame first_dataframe_struct = DataFrameStruct(first_dataframe, first_dataframe_schema, first_dataframe_schema_column_names, first_dataframe_length) # Generate Schema Struct List of Second DataFrame second_dataframe_schema_struct_list = \ self.__generate_dataframe_schema_struct_list(second_dataframe_sequences_data_list) # Create Schema of Second DataFrame second_dataframe_schema = self.__create_dataframe_schema(second_dataframe_schema_struct_list) # Get Schema Column Names of Second DataFrame second_dataframe_schema_column_names = self.__get_dataframe_schema_column_names(second_dataframe_schema) # Get Data of Second DataFrame second_dataframe_data = self.get_data_structure_data(second_dataframe_length, second_dataframe_sequences_data_list) # Create Second DataFrame second_dataframe = self.__create_dataframe(spark_session, second_dataframe_data, second_dataframe_schema) # Apply Customized Partitioning on Second DataFrame After Creation (If Enabled) second_dataframe = \ self.__apply_customized_partitioning_after_dataframe_creation(partitioning, spark_app_cores_max_count, spark_recommended_tasks_per_cpu, second_dataframe) # Get Number of Partitions of Second DataFrame second_dataframe_partitions_number = second_dataframe.rdd.getNumPartitions() # Increase Spark DataFrame Partitions Count spark_dataframe_partitions_count = spark_dataframe_partitions_count + second_dataframe_partitions_number # Create Struct of Second DataFrame second_dataframe_struct = DataFrameStruct(second_dataframe, second_dataframe_schema, second_dataframe_schema_column_names, second_dataframe_length) # Get Spark Maximum Recommended Partition Size in Bytes spark_max_recommended_partition_size = 134217728 # 128 MB # Diff Phase Start Time diff_phase_start_time = time() # Execute Diff Phase df_r = self.__execute_diff_phase(diff_phase, partitioning, first_dataframe_struct, second_dataframe_struct, spark_max_recommended_partition_size, spark_app_cores_max_count, spark_recommended_tasks_per_cpu) # Time to Execute Diff Phase in Seconds time_to_execute_diff_phase_in_seconds = time() - diff_phase_start_time # Increase Diff Phases Time diff_phases_time_in_seconds = diff_phases_time_in_seconds + time_to_execute_diff_phase_in_seconds # Increase Sequences Comparisons Count sequences_comparisons_count = sequences_comparisons_count + 1 # Get Partition Number of Resulting DataFrame (df_r) df_r_partitions_number = df_r.rdd.getNumPartitions() # Increase Spark DataFrame Partitions Count spark_dataframe_partitions_count = spark_dataframe_partitions_count + df_r_partitions_number # Get First Sequence Index of First DataFrame first_dataframe_first_sequence_index = first_dataframe_sequences_indices_list[0] # Get First Sequence Index of Second DataFrame second_dataframe_first_sequence_index = second_dataframe_sequences_indices_list[0] # Get Last Sequence Index of Second DataFrame second_dataframe_last_sequence_index = second_dataframe_sequences_indices_list[-1] # Get Destination File Path for Collection Phase collection_phase_destination_file_path = \ self.get_collection_phase_destination_file_path(output_directory, spark_app_name, spark_app_id, first_dataframe_first_sequence_index, second_dataframe_first_sequence_index, second_dataframe_last_sequence_index) # Collection Phase Start Time collection_phase_start_time = time() # Execute Collection Phase self.__execute_collection_phase(df_r, collection_phase, collection_phase_destination_file_path) # Time to Execute Collection Phase in Seconds time_to_execute_collection_phase_in_seconds = time() - collection_phase_start_time # Increase Collection Phases Time collection_phases_time_in_seconds = \ collection_phases_time_in_seconds + time_to_execute_collection_phase_in_seconds # Time to Compare Sequences in Seconds time_to_compare_sequences_in_seconds = time() - sequences_comparison_start_time # Increase Sequences Comparisons Time sequences_comparisons_time_in_seconds = \ sequences_comparisons_time_in_seconds + time_to_compare_sequences_in_seconds # Log Time to Compare Sequences self.log_time_to_compare_sequences(spark_app_name, first_dataframe_first_sequence_index, second_dataframe_first_sequence_index, second_dataframe_last_sequence_index, data_structure, time_to_compare_sequences_in_seconds, logger) # Get Number of Sequences Comparisons Left number_of_sequences_comparisons_left = \ self.get_number_of_sequences_comparisons_left(actual_d_a, sequences_comparisons_count) # Get Average Sequences Comparison Time average_sequences_comparison_time_in_seconds = \ self.get_average_sequences_comparison_time(sequences_comparisons_time_in_seconds, sequences_comparisons_count) # Estimate Time Left estimated_time_left_in_seconds = self.estimate_time_left(number_of_sequences_comparisons_left, average_sequences_comparison_time_in_seconds) # Print Real Time Metrics self.print_real_time_metrics(spark_app_name, sequences_comparisons_count, number_of_sequences_comparisons_left, average_sequences_comparison_time_in_seconds, estimated_time_left_in_seconds) # Log Average Sequences Comparison Time self.log_average_sequences_comparison_time(spark_app_name, data_structure, average_sequences_comparison_time_in_seconds, logger) # Log Sequences Comparisons Count self.log_sequences_comparisons_count(spark_app_name, sequences_comparisons_count, logger) # Log Diff Phases Time self.log_diff_phases_time(spark_app_name, diff_phase, diff_phases_time_in_seconds, logger) # Log Collection Phases Time self.log_collection_phases_time(spark_app_name, collection_phase, collection_phases_time_in_seconds, logger) # Log Spark DataFrame Partitions Count self.log_spark_data_structure_partitions_count(spark_app_name, data_structure, spark_dataframe_partitions_count, logger) # Delete SequencesHandler Object del sh
[ "configparser.ConfigParser", "pyspark.sql.types.StructType", "functools.reduce", "pyspark.sql.functions.col", "pyspark.sql.types.LongType", "sequences_handler.sequences_handler.SequencesHandler", "pyspark.sql.types.StringType", "time.time", "pyspark.sql.functions.when" ]
[((5448, 5460), 'pyspark.sql.types.StructType', 'StructType', ([], {}), '()\n', (5458, 5460), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((24155, 24169), 'configparser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (24167, 24169), False, 'from configparser import ConfigParser\n'), ((26428, 26470), 'sequences_handler.sequences_handler.SequencesHandler', 'SequencesHandler', (['sequences_list_text_file'], {}), '(sequences_list_text_file)\n', (26444, 26470), False, 'from sequences_handler.sequences_handler import SequencesHandler\n'), ((9452, 9505), 'functools.reduce', 'reduce', (['(lambda x, y: x | y)', 'non_index_conditions_list'], {}), '(lambda x, y: x | y, non_index_conditions_list)\n', (9458, 9505), False, 'from functools import reduce\n'), ((28137, 28143), 'time.time', 'time', ([], {}), '()\n', (28141, 28143), False, 'from time import time\n'), ((34589, 34595), 'time.time', 'time', ([], {}), '()\n', (34593, 34595), False, 'from time import time\n'), ((37023, 37029), 'time.time', 'time', ([], {}), '()\n', (37027, 37029), False, 'from time import time\n'), ((4536, 4546), 'pyspark.sql.types.LongType', 'LongType', ([], {}), '()\n', (4544, 4546), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((12366, 12376), 'pyspark.sql.types.LongType', 'LongType', ([], {}), '()\n', (12374, 12376), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((12761, 12771), 'pyspark.sql.types.LongType', 'LongType', ([], {}), '()\n', (12769, 12771), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((35221, 35227), 'time.time', 'time', ([], {}), '()\n', (35225, 35227), False, 'from time import time\n'), ((37381, 37387), 'time.time', 'time', ([], {}), '()\n', (37385, 37387), False, 'from time import time\n'), ((37712, 37718), 'time.time', 'time', ([], {}), '()\n', (37716, 37718), False, 'from time import time\n'), ((5203, 5215), 'pyspark.sql.types.StringType', 'StringType', ([], {}), '()\n', (5213, 5215), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((11099, 11134), 'pyspark.sql.functions.col', 'col', (['second_dataframe_column_quoted'], {}), '(second_dataframe_column_quoted)\n', (11102, 11134), False, 'from pyspark.sql.functions import col, when\n'), ((11412, 11447), 'pyspark.sql.functions.col', 'col', (['second_dataframe_column_quoted'], {}), '(second_dataframe_column_quoted)\n', (11415, 11447), False, 'from pyspark.sql.functions import col, when\n'), ((12473, 12485), 'pyspark.sql.types.StringType', 'StringType', ([], {}), '()\n', (12483, 12485), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((12868, 12880), 'pyspark.sql.types.StringType', 'StringType', ([], {}), '()\n', (12878, 12880), False, 'from pyspark.sql.types import LongType, StringType, StructType\n'), ((11250, 11341), 'pyspark.sql.functions.when', 'when', (['is_non_diff_column_comparison', 'first_dataframe_nucleotide_letter_column_new_value'], {}), '(is_non_diff_column_comparison,\n first_dataframe_nucleotide_letter_column_new_value)\n', (11254, 11341), False, 'from pyspark.sql.functions import col, when\n')]
# # Copyright 2016-2018 Games Creators Club # # MIT License # import math import time import telemetry import traceback import numpy import cv2 import PIL import PIL.Image from PIL import ImageDraw import pyroslib import pyroslib.logging from pyroslib.logging import log, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_ALWAYS from rover import RoverState, normaiseAngle, angleDiference from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID MINIMUM_SPEED = 60 MIN_ANGLE = 0.5 MAX_ANGLE = 45 HEADING_MIN_DISTANCE = 150 WALL_SPEED = 210 CORNER_SPEED = 170 CORNER_CROSS_SPEED = 240 MAX_CORNER_DISTANCE = 700 pyroslib.logging.LOG_LEVEL = LOG_LEVEL_INFO remotDebug = True size = (80, 64) class CameraData: def __init__(self): self.found = {'red': None, 'blue': None, 'yellow': None, 'green': None} def reset(self): self.found['red'] = None self.found['blue'] = None self.found['yellow'] = None self.found['green'] = None def hasAll(self): return self.found['red'] is not None and self.found['blue'] is not None and self.found['yellow'] is not None and self.found['green'] is not None def getFound(self): return self.found def foundAsString(self): return " ".join([("" if v is None else str(v)) + ":" + k for k, v in self.found.items()]) def setData(self, colour, data): if not self.hasAll(): self.found[colour] = data for c in self.found: if c != colour and self.found[c] == data: self.found[c] = None def missingColours(self): return ", ".join([p for p in self.found if self.found[p] is None]) class WaitCameraData(Action): def __init__(self, agent, next_action): super(WaitCameraData, self).__init__(agent) self.foundColours = agent.foundColours self.next_action = next_action self.started_scanning_time = None def start(self): self.started_scanning_time = time.time() self.foundColours.reset() pyroslib.publish("camera/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/wheels/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera1/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera2/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/raw/fetch", "") pyroslib.publish("camera/wheels/raw/fetch", "") pyroslib.publish("camera/camera1/raw/fetch", "") pyroslib.publish("camera/camera2/raw/fetch", "") self.agent.log_info("Started a wait for all camera data to arrive...") def next(self): if self.foundColours.hasAll(): self.agent.log_info("Scanning lasted " + ("{:7.3f}".format(time.time() - self.started_scanning_time)) + "!") self.agent.log_info("Received all colours " + ("stopping" if self.next_action is None else "starting action " + str(self.next_action.getActionName()))) return self.next_action return self def execute(self): self.agent.log_info("Waiting for sensor data to arrive...") def getActionName(self): return "Scan" class NebulaAction(Action): def __init__(self, agent, speed, next_action): super(NebulaAction, self).__init__(agent) self.speed = speed self.next_action = next_action self.direction_pid = PID(0.75, 0.2, 0.01, 1, 0) self.heading_pid = PID(0.3, 0, 0.01, 1, 0, diff_method=angleDiference) self.distance_pid = PID(0.75, 0.2, 0.01, 1, 0) self.distance_error = 0 self.rover_speed = 0 self.required_corner_distance = 210 self.required_side_distance = 150 self.required_keeping_side_distance = 180 self.last_speed = 0 self.last_speed_time = 0 def obtainRoverSpeed(self): self.rover_speed = self.rover.wheel_odos.averageSpeed() / 10 self.rover_speed = 25 def keepHeading(self): state = self.rover.getRoverState() # Keeping heading heading = state.heading.heading heading_output = -self.heading_pid.process(0, heading) if -MIN_ANGLE < heading_output < MIN_ANGLE: distance = 32000 else: heading_fix_rad = heading_output * math.pi / 180 distance = self.rover_speed / heading_fix_rad if 0 <= distance < HEADING_MIN_DISTANCE: distance = HEADING_MIN_DISTANCE elif -HEADING_MIN_DISTANCE < distance < 0: distance = -HEADING_MIN_DISTANCE return distance, heading_output def keepDirection(self, requested_angle, setpoint_distance, current_distance): state = self.rover.getRoverState() # Keeping direction angle_output = self.direction_pid.process(setpoint_distance, current_distance) angle = 0 if abs(angle_output) < 1: angle = 0 elif angle_output > 0 and angle_output > self.rover_speed: angle = math.pi / 4 elif angle_output < 0 and angle_output < -self.rover_speed: angle = -math.pi / 4 else: try: angle = math.asin(angle_output / self.rover_speed) except BaseException as ex: self.agent.log_always("Domain error") if angle > MAX_ANGLE: angle = MAX_ANGLE elif angle < -MAX_ANGLE: angle = -MAX_ANGLE angle = int(requested_angle + angle * 180 / math.pi) return angle, angle_output def calculateSpeed(self, speed_time): # Defining forward speed if self.last_speed_time == speed_time: return self.last_speed if self.distance_error <= 0: speed = -self.distance_error if speed > self.speed: speed = self.speed elif speed < MINIMUM_SPEED: speed = MINIMUM_SPEED else: speed = -self.distance_error if speed > -MINIMUM_SPEED: speed = -MINIMUM_SPEED elif speed < -self.speed: speed = -self.speed self.last_speed = speed self.last_speed_time = speed_time return speed def start(self): super(NebulaAction, self).start() # self.distance_pid = PID(0.75, 0.15, 0.1, 1, 0) # self.direction_pid = PID(0.20, 0, 0.005, 1, 0) # self.heading_pid = PID(0.25, 0.0, 0.01, 1, 0, diff_method=angleDiference) def end(self): super(NebulaAction, self).end() class GoToCornerKeepingHeadingAction(NebulaAction): def __init__(self, agent, speed, angle, next_action=None): super(GoToCornerKeepingHeadingAction, self).__init__(agent, speed, next_action) self.angle = angle self.prev_angle = angle - 45 self.next_angle = angle + 45 if self.prev_angle < 0: self.prev_angle += 360 if self.next_angle >= 360: self.next_angle -= 360 def hasRadar(self, state): return state.radar.radar[self.prev_angle] > 1 and state.radar.radar[self.next_angle] > 1 and state.radar.radar[self.angle] > 1 def start(self): super(GoToCornerKeepingHeadingAction, self).start() pyroslib.publish("sensor/distance/focus", str(self.prev_angle) + " " + str(self.next_angle) + " " + str(self.angle)) self.distance_pid = PID(0.75, 0.15, 0.1, 1, 0) self.direction_pid = PID(0.20, 0, 0.02, 0.4, 0) self.heading_pid = PID(0.25, 0.0, 0.01, 0.5, 0, diff_method=angleDiference) self.agent.log_info("Starting Corner with prev_angle={: 3d} angle={: 3d} next_angle={: 3d}".format(self.prev_angle, self.angle, self.next_angle)) def next(self): state = self.rover.getRoverState() if not self.hasRadar(state): self.agent.log_info( "waiting for radar prev_angle[{0}]={1} angle[{2}]={3} next_angle[{4}]={5}".format( self.prev_angle, int(state.radar.radar[self.prev_angle]) if state.radar.radar[self.prev_angle] is not None else "-", self.angle, int(state.radar.radar[self.angle]) if state.radar.radar[self.angle] is not None else "-", self.next_angle, int(state.radar.radar[self.next_angle]) if state.radar.radar[self.next_angle] is not None else "-")) return self self.obtainRoverSpeed() corner_distance = state.radar.radar[self.angle] left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] self.distance_error = self.distance_pid.process(self.required_corner_distance, corner_distance) average_side = int((left_side + right_side) / 2) if left_side > right_side: ratio = left_side / right_side else: ratio = right_side / left_side if corner_distance < self.required_corner_distance: self.agent.log_info( "reached corner distance rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} heading={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), int(state.heading.heading))) return self.next_action left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] if average_side < self.required_side_distance: self.agent.log_info( "reached side distance rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} heading={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), int(state.heading.heading))) return self.next_action return self def execute(self): state = self.rover.getRoverState() if self.hasRadar(state): corner_distance = state.radar.radar[self.angle] distance, heading_output = self.keepHeading() left_side = state.radar.radar[self.prev_angle] right_side = state.radar.radar[self.next_angle] angle, angle_output = self.keepDirection(self.angle, right_side, left_side) speed = self.calculateSpeed(state.radar.time) if corner_distance > MAX_CORNER_DISTANCE: angle = self.angle speed = CORNER_CROSS_SPEED corner_distance = state.radar.radar[self.angle] self.agent.log_info("rover_speed={: 4d} corner_dist={: 4d} dist_error={: 7.2f} left_dist={: 4d} right_dist={: 4d} angle_fix={: 7.2f} heading={: 3d} heading_fix={: 7.2f} speed={: 3d} angle={: 3d} distance={: 3d}".format( int(self.rover_speed), int(corner_distance), self.distance_error, int(left_side), int(right_side), angle_output, int(state.heading.heading), heading_output, int(speed), int(angle), int(distance))) # distance = 32000 self.rover.command(pyroslib.publish, speed, angle, distance) def getActionName(self): return "Corner[{:3d}]".format(self.angle) class FollowWallKeepingHeadingAction(NebulaAction): def __init__(self, agent, speed, wall_angle, direction_angle, next_action=None): super(FollowWallKeepingHeadingAction, self).__init__(agent, speed, next_action) self.wall_angle = wall_angle self.direction_angle = direction_angle @staticmethod def calculateRealDistance(side_distance, side_angle): if side_distance < 1: return 0 if side_angle > 180: side_angle = 360 - side_angle side_angle = side_angle * math.pi / 180 return math.sin(math.pi / 2 - side_angle) * side_distance def hasRadar(self, state): return state.radar.radar[self.wall_angle] > 1 and state.radar.radar[self.direction_angle] > 1 def start(self): super(FollowWallKeepingHeadingAction, self).start() pyroslib.publish("sensor/distance/focus", str(self.wall_angle) + " " + str(self.direction_angle)) self.distance_pid = PID(0.85, 0.1, 0.2, 0.8, 0) self.direction_pid = PID(0.20, 0, 0.01, 0.6, 0) self.heading_pid = PID(0.25, 0.02, 0.0, 1, 0, diff_method=angleDiference) def next(self): state = self.rover.getRoverState() if not self.hasRadar(state): self.agent.log_info( "waiting for radar wall_angle[{0}]={1} direction_angle[{2}]={3}".format( self.wall_angle, int(state.radar.radar[self.wall_angle]) if state.radar.radar[self.wall_angle] is not None else "-", self.direction_angle, int(state.radar.radar[self.direction_angle]) if state.radar.radar[self.direction_angle] is not None else "-")) return self self.obtainRoverSpeed() wall_distance = state.radar.radar[self.wall_angle] front_distance = state.radar.radar[self.direction_angle] self.distance_error = self.distance_pid.process(self.required_side_distance, front_distance) if front_distance < self.required_side_distance: self.agent.log_info("reached distance rover_speed={: 4d} front_dist={: 5d} dist_error={: 9.2f} wall_dist={: 5d} heading={: 3d}".format( int(self.rover_speed), int(front_distance), self.distance_error, int(wall_distance), int(state.heading.heading))) return self.next_action return self def execute(self): state = self.rover.getRoverState() if self.hasRadar(state): distance, heading_output = self.keepHeading() wall_distance = self.calculateRealDistance(state.radar.radar[self.wall_angle], state.heading.heading) if angleDiference(self.wall_angle, self.direction_angle) > 0: angle, angle_output = self.keepDirection(self.direction_angle, wall_distance, self.required_keeping_side_distance) else: angle, angle_output = self.keepDirection(self.direction_angle, self.required_keeping_side_distance, wall_distance) speed = self.calculateSpeed(state.radar.time) front_distance = state.radar.radar[self.direction_angle] self.agent.log_info("rover_speed={: 4d} front_dist={: 5d} dist_error={: 9.2f} wall_dist={: 5d} angle_fix={: 7.2f} heading={: 3d} heading_fix={: 7.2f} speed={: 3d} angle={: 3d} distance={: 3d}".format( int(self.rover_speed), int(front_distance), self.distance_error, int(wall_distance), angle_output, int(state.heading.heading), heading_output, int(speed), int(angle), int(distance))) self.rover.command(pyroslib.publish, speed, angle, distance) def getActionName(self): return "Wall[{0} on {1}]".format(self.direction_angle, self.wall_angle) class CalculateRouteAction(Action): def __init__(self, agent, speed, foundColours, next_action): super(CalculateRouteAction, self).__init__(agent) self.speed = speed self.foundColours = foundColours self.next_action = next_action self.colour_order = ['red', 'blue', 'yellow', 'green'] log(LOG_LEVEL_INFO, "Colour order " + str(self.colour_order)) self.wait = 0 self.prepared_action = None def calcualteAction(self, from_angle, to_colour): to_angle = self.foundColours.found[to_colour] colour_index = self.colour_order.index(to_colour) if colour_index < 3: following_action = self.calcualteAction(to_angle, self.colour_order[colour_index + 1]) else: following_action = self.next_action # follow_wall_speed = self.speed # go_to_corner_speed = self.speed follow_wall_speed = WALL_SPEED go_to_corner_speed = CORNER_SPEED if normaiseAngle(from_angle + 90) == to_angle: wall_angle = normaiseAngle(from_angle + 45) direction_angle = normaiseAngle(wall_angle + 90) # return FollowWallKeepingHeadingAction(self.agent, self.speed, wall_angle, direction_angle, following_action) return FollowWallKeepingHeadingAction(self.agent, follow_wall_speed, wall_angle, direction_angle, following_action) elif normaiseAngle(from_angle - 90) == to_angle: wall_angle = normaiseAngle(from_angle - 45) direction_angle = normaiseAngle(wall_angle - 90) # return FollowWallKeepingHeadingAction(self.agent, self.speed, wall_angle, direction_angle, following_action) return FollowWallKeepingHeadingAction(self.agent, follow_wall_speed, wall_angle, direction_angle, following_action) else: # return GoToCornerKeepingHeadingAction(self, self.speed, to_angle, following_action) return GoToCornerKeepingHeadingAction(self.agent, go_to_corner_speed, to_angle, following_action) def next(self): if self.wait == 0: self.agent.log_info("Calculating route (1) -> Corner " + str(self.foundColours.found['red'])) initial_angle = self.foundColours.found['red'] following_action = self.calcualteAction(initial_angle, 'blue') i = 1 a = following_action while a != self.next_action: i += 1 if isinstance(a, GoToCornerKeepingHeadingAction): self.agent.log_info("Calculating route (" + str(i) + ") -> Corner " + str(a.angle)) a = a.next_action else: self.agent.log_info("Calculating route (" + str(i) + ") -> Follow wall " + str(a.wall_angle) + " to " + str(a.direction_angle)) a = a.next_action self.prepared_action = GoToCornerKeepingHeadingAction(self.agent, self.speed, initial_angle, following_action) self.wait = 2 self.rover.command(pyroslib.publish, 0, initial_angle, 32000) self.agent.log_info("Wheels orientation {0} wait:{1:2d}".format(str(self.rover.current_state.wheel_orientations.orientations), self.wait)) else: self.agent.log_info("Wheels orientation {0} wait:{1:2d}".format(str(self.rover.current_state.wheel_orientations.orientations), self.wait)) self.wait -= 1 if self.wait == 0: return self.prepared_action return self def getActionName(self): return "Calculate" class StraightWheelsAction(Action): def __init__(self, agent, next_action): super(StraightWheelsAction, self).__init__(agent) self.next_action = next_action def next(self): self.rover.command(pyroslib.publish, 0, 0, 3200) return self.next_action class NebulaAgent(AgentClass): def __init__(self): super(NebulaAgent, self).__init__("nebula") self.foundColours = CameraData() def connected(self): super(NebulaAgent, self).connected() pyroslib.subscribeBinary("camera/raw", self.handleCameraMain) pyroslib.subscribeBinary("camera/wheels/raw", self.handleCameraWheels) pyroslib.subscribeBinary("camera/camera1/raw", self.handleCamera1) pyroslib.subscribeBinary("camera/camera2/raw", self.handleCamera2) pyroslib.publish("camera/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/wheels/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera1/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") pyroslib.publish("camera/camera2/format", "RGB " + str(size[0]) + "," + str(size[1]) + " False") def start(self, data): if not self.running: if data[0] == 'nebula': super(NebulaAgent, self).start(data) # speed = int(data[1]) speed = 160 speed = 200 calculate_route_action = CalculateRouteAction(self, speed, self.foundColours, self.stop_action) wait_camera_data_action = WaitCameraData(self, calculate_route_action) wait_sensor_data_action = WaitSensorData(self, wait_camera_data_action) # self.nextAction(wait_sensor_data_action) self.nextAction(wait_camera_data_action) elif data[0] == 'warmup': # super(NebulaAgent, self).start(data) self.nextAction(StraightWheelsAction(self, WaitSensorData(self, WarmupAction(self)))) elif data[0] == 'scan': super(NebulaAgent, self).start(data) self.nextAction(WaitCameraData(self, self.stop_action)) elif data[0] == 'combo': super(NebulaAgent, self).start(data) combo = data[1] # go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, self.stop_action) # follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 0, go_to_corner2_action) # go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 135, follow_right_wall_action) # follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, go_to_corner1_action) # wait_sensor_data_action = WaitSensorData(self, follow_left_wall_action) if combo == '1': # Comb 1 go_to_corner3_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 315, self.stop_action) follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 180, go_to_corner3_action) go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 45, follow_right_wall_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, go_to_corner2_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) elif combo == '2': # Comb 2 follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 0, self.stop_action) go_to_corner2_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 135, follow_right_wall_action) follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, go_to_corner2_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, follow_left_wall_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) elif combo == '3': # Comb 3 follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 180, self.stop_action) follow_top_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 0, 90, follow_right_wall_action) follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, follow_top_wall_action) go_to_corner1_action = GoToCornerKeepingHeadingAction(self, CORNER_SPEED, 225, follow_left_wall_action) wait_sensor_data_action = WaitSensorData(self, go_to_corner1_action) else: wait_sensor_data_action = WaitSensorData(self, self.stop_action) self.nextAction(wait_sensor_data_action) elif data[0] == 'walls': super(NebulaAgent, self).start(data) follow_bottom_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 180, 270, self.stop_action) follow_right_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 90, 180, follow_bottom_wall_action) follow_top_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 0, 90, follow_right_wall_action) follow_left_wall_action = FollowWallKeepingHeadingAction(self, WALL_SPEED, 270, 0, follow_top_wall_action) wait_sensor_data_action = WaitSensorData(self, follow_left_wall_action) self.nextAction(wait_sensor_data_action) def handleCameraData(self, topic, message, source): # now = time.time() # delta = now - lastProcessed # lastProcessed = now pilImage = self._toPILImage(message) openCVImage = numpy.array(pilImage) result, value = self.processImageCV(openCVImage) self.log_info("For " + str(source) + " got " + ("None" if result is None else str(result)) + " for value " + str(value)) if result is not None: self.foundColours.setData(result, source) if not self.foundColours.hasAll(): self.log_info("Found " + self.foundColours.foundAsString() + " but not finished yet as " + self.foundColours.missingColours() + " " + ("are" if len(self.foundColours.missingColours()) > 1 else "is") + " still missing.") if self.running: pyroslib.publish(topic + "/fetch", "") pyroslib.publish("nebula/imagedetails", "working: " + self.foundColours.foundAsString()) else: self.log_info("So far " + self.foundColours.foundAsString() + " and finishing...") stopped = True pyroslib.publish("nebula/imagedetails", "found: " + self.foundColours.foundAsString()) def handleCameraMain(self, topic, message, groups): self.handleCameraData(topic, message, 225) def handleCameraWheels(self, topic, message, groups): self.handleCameraData(topic, message, 45) def handleCamera1(self, topic, message, groups): self.handleCameraData(topic, message, 315) def handleCamera2(self, topic, message, groups): self.handleCameraData(topic, message, 135) @staticmethod def _toPILImage(imageBytes): pilImage = PIL.Image.frombytes("RGB", size, imageBytes) return pilImage def processImageCV(self, image): def findColourNameHSV(hChannel, contour): mask = numpy.zeros(hChannel.shape[:2], dtype="uint8") cv2.drawContours(mask, [contour], -1, 255, -1) mask = cv2.erode(mask, None, iterations=2) maskAnd = hChannel.copy() cv2.bitwise_and(hChannel, mask, maskAnd) pyroslib.publish("nebula/processed", PIL.Image.fromarray(cv2.cvtColor(maskAnd, cv2.COLOR_GRAY2RGB)).tobytes("raw")) self.log_debug("Published mask ") hist = cv2.calcHist([hChannel], [0], mask, [255], [0, 255], False) value = numpy.argmax(hist) if value < 19 or value > 145: return "red", value elif 19 <= value <= 34: return "yellow", value elif 40 <= value <= 76: return "green", value elif 90 <= value <= 138: return "blue", value else: return None, value blurred = cv2.GaussianBlur(image, (5, 5), 0) hsv = cv2.cvtColor(blurred, cv2.COLOR_RGB2HSV) hueChannel, satChannel, valChannel = cv2.split(hsv) countours = [numpy.array([[25, 20], [55, 20], [55, 44], [25, 44]], dtype=numpy.int32)] c = countours[0] result, value = findColourNameHSV(hueChannel, c) if result is not None: def sendResult(colour): # pil = PIL.Image.fromarray(cv2.cvtColor(hueChannel, cv2.COLOR_GRAY2RGB)) pil = PIL.Image.fromarray(image) draw = ImageDraw.Draw(pil) draw.rectangle(((25, 20), (55, 44)), outline=colour) pyroslib.publish("nebula/processed", pil.tobytes("raw")) if result == "red": sendResult("#f00") self.log_debug("Published hue red image") elif result == "yellow": sendResult("#ff0") self.log_debug("Published hue yellow image") elif result == "green": sendResult("#0f0") self.log_debug("Published hue green image") elif result == "blue": sendResult("#00f") self.log_debug("Published hue blue image") else: cv2.drawContours(hueChannel, countours, -1, (255, 255, 255), 2) pyroslib.publish("nebula/processed", PIL.Image.fromarray(cv2.cvtColor(hueChannel, cv2.COLOR_GRAY2RGB)).tobytes("raw")) self.log_debug("Published unrecognised hue image") return result, value if __name__ == "__main__": try: print("Starting Nebula agent...") print(" creating logger...") state_logger = RoverState.defineLogger(telemetry.MQTTLocalPipeTelemetryLogger('rover-state')) nebula = NebulaAgent() pyroslib.init("nebula-agent", unique=True, onConnected=nebula.connected) print(" initialising logger...") state_logger.init() nebula.register_logger() print("Started Nebula agent.") pyroslib.forever(0.1, nebula.mainLoop) except Exception as ex: print("ERROR: " + str(ex) + "\n" + ''.join(traceback.format_tb(ex.__traceback__)))
[ "challenge_utils.WaitSensorData", "traceback.format_tb", "numpy.array", "PIL.ImageDraw.Draw", "pyroslib.forever", "pyroslib.subscribeBinary", "challenge_utils.PID", "cv2.calcHist", "cv2.erode", "rover.angleDiference", "cv2.drawContours", "pyroslib.init", "numpy.argmax", "cv2.cvtColor", "cv2.split", "PIL.Image.frombytes", "rover.normaiseAngle", "cv2.GaussianBlur", "time.time", "pyroslib.publish", "PIL.Image.fromarray", "math.asin", "cv2.bitwise_and", "numpy.zeros", "telemetry.MQTTLocalPipeTelemetryLogger", "challenge_utils.WarmupAction", "math.sin" ]
[((2016, 2027), 'time.time', 'time.time', ([], {}), '()\n', (2025, 2027), False, 'import time\n'), ((2483, 2523), 'pyroslib.publish', 'pyroslib.publish', (['"""camera/raw/fetch"""', '""""""'], {}), "('camera/raw/fetch', '')\n", (2499, 2523), False, 'import pyroslib\n'), ((2532, 2579), 'pyroslib.publish', 'pyroslib.publish', (['"""camera/wheels/raw/fetch"""', '""""""'], {}), "('camera/wheels/raw/fetch', '')\n", (2548, 2579), False, 'import pyroslib\n'), ((2588, 2636), 'pyroslib.publish', 'pyroslib.publish', (['"""camera/camera1/raw/fetch"""', '""""""'], {}), "('camera/camera1/raw/fetch', '')\n", (2604, 2636), False, 'import pyroslib\n'), ((2645, 2693), 'pyroslib.publish', 'pyroslib.publish', (['"""camera/camera2/raw/fetch"""', '""""""'], {}), "('camera/camera2/raw/fetch', '')\n", (2661, 2693), False, 'import pyroslib\n'), ((3545, 3571), 'challenge_utils.PID', 'PID', (['(0.75)', '(0.2)', '(0.01)', '(1)', '(0)'], {}), '(0.75, 0.2, 0.01, 1, 0)\n', (3548, 3571), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((3599, 3650), 'challenge_utils.PID', 'PID', (['(0.3)', '(0)', '(0.01)', '(1)', '(0)'], {'diff_method': 'angleDiference'}), '(0.3, 0, 0.01, 1, 0, diff_method=angleDiference)\n', (3602, 3650), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((3679, 3705), 'challenge_utils.PID', 'PID', (['(0.75)', '(0.2)', '(0.01)', '(1)', '(0)'], {}), '(0.75, 0.2, 0.01, 1, 0)\n', (3682, 3705), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((7547, 7573), 'challenge_utils.PID', 'PID', (['(0.75)', '(0.15)', '(0.1)', '(1)', '(0)'], {}), '(0.75, 0.15, 0.1, 1, 0)\n', (7550, 7573), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((7603, 7628), 'challenge_utils.PID', 'PID', (['(0.2)', '(0)', '(0.02)', '(0.4)', '(0)'], {}), '(0.2, 0, 0.02, 0.4, 0)\n', (7606, 7628), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((7657, 7713), 'challenge_utils.PID', 'PID', (['(0.25)', '(0.0)', '(0.01)', '(0.5)', '(0)'], {'diff_method': 'angleDiference'}), '(0.25, 0.0, 0.01, 0.5, 0, diff_method=angleDiference)\n', (7660, 7713), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((12574, 12601), 'challenge_utils.PID', 'PID', (['(0.85)', '(0.1)', '(0.2)', '(0.8)', '(0)'], {}), '(0.85, 0.1, 0.2, 0.8, 0)\n', (12577, 12601), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((12631, 12656), 'challenge_utils.PID', 'PID', (['(0.2)', '(0)', '(0.01)', '(0.6)', '(0)'], {}), '(0.2, 0, 0.01, 0.6, 0)\n', (12634, 12656), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((12685, 12739), 'challenge_utils.PID', 'PID', (['(0.25)', '(0.02)', '(0.0)', '(1)', '(0)'], {'diff_method': 'angleDiference'}), '(0.25, 0.02, 0.0, 1, 0, diff_method=angleDiference)\n', (12688, 12739), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((19608, 19669), 'pyroslib.subscribeBinary', 'pyroslib.subscribeBinary', (['"""camera/raw"""', 'self.handleCameraMain'], {}), "('camera/raw', self.handleCameraMain)\n", (19632, 19669), False, 'import pyroslib\n'), ((19678, 19748), 'pyroslib.subscribeBinary', 'pyroslib.subscribeBinary', (['"""camera/wheels/raw"""', 'self.handleCameraWheels'], {}), "('camera/wheels/raw', self.handleCameraWheels)\n", (19702, 19748), False, 'import pyroslib\n'), ((19757, 19823), 'pyroslib.subscribeBinary', 'pyroslib.subscribeBinary', (['"""camera/camera1/raw"""', 'self.handleCamera1'], {}), "('camera/camera1/raw', self.handleCamera1)\n", (19781, 19823), False, 'import pyroslib\n'), ((19832, 19898), 'pyroslib.subscribeBinary', 'pyroslib.subscribeBinary', (['"""camera/camera2/raw"""', 'self.handleCamera2'], {}), "('camera/camera2/raw', self.handleCamera2)\n", (19856, 19898), False, 'import pyroslib\n'), ((25077, 25098), 'numpy.array', 'numpy.array', (['pilImage'], {}), '(pilImage)\n', (25088, 25098), False, 'import numpy\n'), ((26567, 26611), 'PIL.Image.frombytes', 'PIL.Image.frombytes', (['"""RGB"""', 'size', 'imageBytes'], {}), "('RGB', size, imageBytes)\n", (26586, 26611), False, 'import PIL\n'), ((27666, 27700), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['image', '(5, 5)', '(0)'], {}), '(image, (5, 5), 0)\n', (27682, 27700), False, 'import cv2\n'), ((27716, 27756), 'cv2.cvtColor', 'cv2.cvtColor', (['blurred', 'cv2.COLOR_RGB2HSV'], {}), '(blurred, cv2.COLOR_RGB2HSV)\n', (27728, 27756), False, 'import cv2\n'), ((27802, 27816), 'cv2.split', 'cv2.split', (['hsv'], {}), '(hsv)\n', (27811, 27816), False, 'import cv2\n'), ((29485, 29557), 'pyroslib.init', 'pyroslib.init', (['"""nebula-agent"""'], {'unique': '(True)', 'onConnected': 'nebula.connected'}), "('nebula-agent', unique=True, onConnected=nebula.connected)\n", (29498, 29557), False, 'import pyroslib\n'), ((29711, 29749), 'pyroslib.forever', 'pyroslib.forever', (['(0.1)', 'nebula.mainLoop'], {}), '(0.1, nebula.mainLoop)\n', (29727, 29749), False, 'import pyroslib\n'), ((12173, 12207), 'math.sin', 'math.sin', (['(math.pi / 2 - side_angle)'], {}), '(math.pi / 2 - side_angle)\n', (12181, 12207), False, 'import math\n'), ((16487, 16517), 'rover.normaiseAngle', 'normaiseAngle', (['(from_angle + 90)'], {}), '(from_angle + 90)\n', (16500, 16517), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((16556, 16586), 'rover.normaiseAngle', 'normaiseAngle', (['(from_angle + 45)'], {}), '(from_angle + 45)\n', (16569, 16586), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((16617, 16647), 'rover.normaiseAngle', 'normaiseAngle', (['(wall_angle + 90)'], {}), '(wall_angle + 90)\n', (16630, 16647), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((26744, 26790), 'numpy.zeros', 'numpy.zeros', (['hChannel.shape[:2]'], {'dtype': '"""uint8"""'}), "(hChannel.shape[:2], dtype='uint8')\n", (26755, 26790), False, 'import numpy\n'), ((26803, 26849), 'cv2.drawContours', 'cv2.drawContours', (['mask', '[contour]', '(-1)', '(255)', '(-1)'], {}), '(mask, [contour], -1, 255, -1)\n', (26819, 26849), False, 'import cv2\n'), ((26869, 26904), 'cv2.erode', 'cv2.erode', (['mask', 'None'], {'iterations': '(2)'}), '(mask, None, iterations=2)\n', (26878, 26904), False, 'import cv2\n'), ((26956, 26996), 'cv2.bitwise_and', 'cv2.bitwise_and', (['hChannel', 'mask', 'maskAnd'], {}), '(hChannel, mask, maskAnd)\n', (26971, 26996), False, 'import cv2\n'), ((27192, 27251), 'cv2.calcHist', 'cv2.calcHist', (['[hChannel]', '[0]', 'mask', '[255]', '[0, 255]', '(False)'], {}), '([hChannel], [0], mask, [255], [0, 255], False)\n', (27204, 27251), False, 'import cv2\n'), ((27273, 27291), 'numpy.argmax', 'numpy.argmax', (['hist'], {}), '(hist)\n', (27285, 27291), False, 'import numpy\n'), ((27839, 27911), 'numpy.array', 'numpy.array', (['[[25, 20], [55, 20], [55, 44], [25, 44]]'], {'dtype': 'numpy.int32'}), '([[25, 20], [55, 20], [55, 44], [25, 44]], dtype=numpy.int32)\n', (27850, 27911), False, 'import numpy\n'), ((28934, 28997), 'cv2.drawContours', 'cv2.drawContours', (['hueChannel', 'countours', '(-1)', '(255, 255, 255)', '(2)'], {}), '(hueChannel, countours, -1, (255, 255, 255), 2)\n', (28950, 28997), False, 'import cv2\n'), ((29389, 29442), 'telemetry.MQTTLocalPipeTelemetryLogger', 'telemetry.MQTTLocalPipeTelemetryLogger', (['"""rover-state"""'], {}), "('rover-state')\n", (29427, 29442), False, 'import telemetry\n'), ((14284, 14337), 'rover.angleDiference', 'angleDiference', (['self.wall_angle', 'self.direction_angle'], {}), '(self.wall_angle, self.direction_angle)\n', (14298, 14337), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((16912, 16942), 'rover.normaiseAngle', 'normaiseAngle', (['(from_angle - 90)'], {}), '(from_angle - 90)\n', (16925, 16942), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((16981, 17011), 'rover.normaiseAngle', 'normaiseAngle', (['(from_angle - 45)'], {}), '(from_angle - 45)\n', (16994, 17011), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((17042, 17072), 'rover.normaiseAngle', 'normaiseAngle', (['(wall_angle - 90)'], {}), '(wall_angle - 90)\n', (17055, 17072), False, 'from rover import RoverState, normaiseAngle, angleDiference\n'), ((20795, 20840), 'challenge_utils.WaitSensorData', 'WaitSensorData', (['self', 'wait_camera_data_action'], {}), '(self, wait_camera_data_action)\n', (20809, 20840), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((25694, 25732), 'pyroslib.publish', 'pyroslib.publish', (["(topic + '/fetch')", '""""""'], {}), "(topic + '/fetch', '')\n", (25710, 25732), False, 'import pyroslib\n'), ((28176, 28202), 'PIL.Image.fromarray', 'PIL.Image.fromarray', (['image'], {}), '(image)\n', (28195, 28202), False, 'import PIL\n'), ((28227, 28246), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['pil'], {}), '(pil)\n', (28241, 28246), False, 'from PIL import ImageDraw\n'), ((5331, 5373), 'math.asin', 'math.asin', (['(angle_output / self.rover_speed)'], {}), '(angle_output / self.rover_speed)\n', (5340, 5373), False, 'import math\n'), ((29830, 29867), 'traceback.format_tb', 'traceback.format_tb', (['ex.__traceback__'], {}), '(ex.__traceback__)\n', (29849, 29867), False, 'import traceback\n'), ((27067, 27108), 'cv2.cvtColor', 'cv2.cvtColor', (['maskAnd', 'cv2.COLOR_GRAY2RGB'], {}), '(maskAnd, cv2.COLOR_GRAY2RGB)\n', (27079, 27108), False, 'import cv2\n'), ((29068, 29112), 'cv2.cvtColor', 'cv2.cvtColor', (['hueChannel', 'cv2.COLOR_GRAY2RGB'], {}), '(hueChannel, cv2.COLOR_GRAY2RGB)\n', (29080, 29112), False, 'import cv2\n'), ((2904, 2915), 'time.time', 'time.time', ([], {}), '()\n', (2913, 2915), False, 'import time\n'), ((21131, 21149), 'challenge_utils.WarmupAction', 'WarmupAction', (['self'], {}), '(self)\n', (21143, 21149), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((22612, 22654), 'challenge_utils.WaitSensorData', 'WaitSensorData', (['self', 'go_to_corner1_action'], {}), '(self, go_to_corner1_action)\n', (22626, 22654), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((24753, 24798), 'challenge_utils.WaitSensorData', 'WaitSensorData', (['self', 'follow_left_wall_action'], {}), '(self, follow_left_wall_action)\n', (24767, 24798), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((23261, 23303), 'challenge_utils.WaitSensorData', 'WaitSensorData', (['self', 'go_to_corner1_action'], {}), '(self, go_to_corner1_action)\n', (23275, 23303), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((23916, 23958), 'challenge_utils.WaitSensorData', 'WaitSensorData', (['self', 'go_to_corner1_action'], {}), '(self, go_to_corner1_action)\n', (23930, 23958), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n'), ((24027, 24065), 'challenge_utils.WaitSensorData', 'WaitSensorData', (['self', 'self.stop_action'], {}), '(self, self.stop_action)\n', (24041, 24065), False, 'from challenge_utils import AgentClass, Action, WaitSensorData, WarmupAction, PID\n')]
# Generated by Django 3.0.3 on 2020-03-22 22:03 import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0010_remove_supplier_is_publish'), ('stocks', '0021_auto_20200323_0503'), ] operations = [ migrations.AlterField( model_name='stockout', name='customer', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='supplierstockout', to='users.Customer'), ), ]
[ "django.db.models.ForeignKey" ]
[((425, 569), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""supplierstockout"""', 'to': '"""users.Customer"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='supplierstockout', to='users.Customer')\n", (442, 569), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python # # Copyright 2012 Viewfinder Inc. All Rights Reserved. """Test PhotoStore GET and PUT. """ __authors__ = ['<EMAIL> (<NAME>)', '<EMAIL> (<NAME>)'] import base64 import hashlib import json import time from functools import partial from viewfinder.backend.base import util from viewfinder.backend.base.message import Message from viewfinder.backend.base.testing import async_test from viewfinder.backend.db.friend import Friend from viewfinder.backend.db.photo import Photo from viewfinder.backend.db.user import User from viewfinder.backend.www import json_schema from viewfinder.backend.www.test import service_base_test class PhotoStoreTestCase(service_base_test.ServiceBaseTestCase): def setUp(self): super(PhotoStoreTestCase, self).setUp() self._CreateSimpleTestAssets() def testUploadAndGetPut(self): """Upload a photo, PUT the photo image data, then access it in various ways. """ episode_id = self._episode_id photo_id = self._photo_ids[0] orig_image_data = 'original image data' # Same as used in self._UploadEpisode self._PutPhotoAndVerify(self._cookie, 200, episode_id, photo_id, '.o', orig_image_data) self._PutPhotoAndVerify(self._cookie, 200, episode_id, photo_id, '.f', 'full image data') self._PutPhotoAndVerify(self._cookie, 200, episode_id, photo_id, '.t', 'thumbnail image data') # Test legit downloads. self._GetPhotoAndVerify(self._cookie, 200, episode_id, photo_id, '.o') self._GetPhotoAndVerify(self._cookie, 200, episode_id, photo_id, '.f') self._GetPhotoAndVerify(self._cookie, 200, episode_id, photo_id, '.t') # Try get and put with no cookie. self._PutPhotoAndVerify(None, 401, episode_id, photo_id, '.o', orig_image_data) self._GetPhotoAndVerify(None, 401, episode_id, photo_id, '.o') # Try get and put of missing photo. self._PutPhotoAndVerify(self._cookie, 404, episode_id, 'p-unk', '.m', orig_image_data) self._GetPhotoAndVerify(self._cookie, 404, episode_id, 'p-unk', '.m') # Try get and put without permission. self._PutPhotoAndVerify(self._cookie2, 404, episode_id, photo_id, '.o', orig_image_data) self._GetPhotoAndVerify(self._cookie2, 404, episode_id, photo_id, '.o') # Omit the Content-MD5 header. response = self._PutPhoto(self._cookie, episode_id, photo_id, '.o', orig_image_data) assert response.code == 400, response # Try to use a non well-formed Content-MD5 header. response = self._PutPhoto(self._cookie, episode_id, photo_id, '.o', orig_image_data, content_md5='not well-formed') assert response.code == 400, response # Try to use a Content-MD5 header that does not match the data. response = self._PutPhoto(self._cookie, episode_id, photo_id, '.o', orig_image_data, content_md5=util.ComputeMD5Base64('mismatched md5')) assert response.code == 400, response # Try put with user that is not episode owner. new_vp_id, new_ep_ids = self._tester.ShareNew(self._cookie, [(episode_id, [photo_id])], [self._user2.user_id]) self._PutPhotoAndVerify(self._cookie2, 403, new_ep_ids[0], photo_id, '.o', orig_image_data) # Try get of photo using removed follower. self._tester.RemoveFollowers(self._cookie2, new_vp_id, [self._user2.user_id]) self._GetPhotoAndVerify(self._cookie2, 404, new_ep_ids[0], photo_id, '.o') # Try get and put of unshared photo. self._tester.Unshare(self._cookie, new_vp_id, [(new_ep_ids[0], [photo_id])]) self._PutPhotoAndVerify(self._cookie, 403, new_ep_ids[0], photo_id, '.o', orig_image_data) self._GetPhotoAndVerify(self._cookie, 403, new_ep_ids[0], photo_id, '.o') # Try get and put of photo that has been shared again in order to override unshare. self._tester.ShareExisting(self._cookie, new_vp_id, [(self._episode_id, self._photo_ids)]) self._PutPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o', orig_image_data) self._GetPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o') # Try get and put of hidden photo. self._tester.HidePhotos(self._cookie, [(self._episode_id, self._photo_ids)]) self._PutPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o', orig_image_data) self._GetPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o') # Try get and put of removed photo. self._tester.RemovePhotos(self._cookie, [(self._episode_id, self._photo_ids)]) self._PutPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o', orig_image_data) self._GetPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o') def testErrorResponse(self): """Test that error response is always in JSON format.""" response = self._PutPhoto(self._cookie, 'unk', 'unk', '.o', '') self.assertEqual(json.loads(response.body), {"error": {"message": "Missing Content-MD5 header."}}) response = self._GetPhoto(self._cookie, 'unk', 'unk', '.o') self.assertEqual(json.loads(response.body), {u'error': {u'message': u'Photo was not found or you do not have permission to view it.'}}) def testReUpload(self): """Upload a new photo and attempt to re-upload using If-None-Match header to simulate a phone reinstall where the client uses the /photos/<photo_id> interface to get a redirect to a PUT URL. In the case of the photo existing, the Etag should match and result in a 304 response, saving the client the upload bandwidth. """ full_image_data = 'full image data' for photo_id in self._photo_ids: response = self._PutPhoto(self._cookie, self._episode_id, photo_id, '.f', full_image_data, content_md5=util.ComputeMD5Base64(full_image_data), etag=util.ComputeMD5Hex(full_image_data)) self.assertEqual(response.code, 200) for photo_id in self._photo_ids: response = self._PutPhoto(self._cookie, self._episode_id, photo_id, '.f', full_image_data, content_md5=util.ComputeMD5Base64(full_image_data), etag='"%s"' % util.ComputeMD5Hex(full_image_data)) self.assertEqual(response.code, 304) response = self._PutPhoto(self._cookie, self._episode_id, photo_id, '.f', full_image_data, content_md5=util.ComputeMD5Base64(full_image_data), etag='*') self.assertEqual(response.code, 304) def testUploadMismatch(self): """Upload photo image data with a different MD5 than was originally provided to upload_episode. Because the photo image data does not yet exist, the metadata should be overwritten with the new values. Then try to upload a different MD5 again, expecting an error this time. """ for attr_name, suffix, image_data in [('tn_md5', '.t', 'new thumbnail image data'), ('med_md5', '.m', 'new medium image data'), ('full_md5', '.f', 'new full image data'), ('orig_md5', '.o', 'new original image data')]: # Expect success on first upload. response = self._PutPhoto(self._cookie, self._episode_id, self._photo_ids[0], suffix, image_data, content_md5=util.ComputeMD5Base64(image_data), etag=util.ComputeMD5Hex(image_data)) self.assertEqual(response.code, 200) # Validate that the photo's MD5 was updated. ph_dict = {'photo_id': self._photo_ids[0], attr_name: util.ComputeMD5Hex(image_data)} self._validator.ValidateUpdateDBObject(Photo, **ph_dict) # Expect failure on second upload with different MD5. new_image_data = 'really ' + image_data response = self._PutPhoto(self._cookie, self._episode_id, self._photo_ids[0], suffix, new_image_data, content_md5=util.ComputeMD5Base64(new_image_data), etag=util.ComputeMD5Hex(new_image_data)) self.assertEqual(response.code, 400) def testProspectiveCookie(self): """Gets photos using a prospective user cookie.""" orig_image_data = 'original image data' # Same as used in self._UploadEpisode self._PutPhotoAndVerify(self._cookie, 200, self._episode_id, self._photo_ids[0], '.o', orig_image_data) prospective_user, vp_id, ep_id = self._CreateProspectiveUser() prospective_cookie = self._tester.GetSecureUserCookie(user_id=prospective_user.user_id, device_id=prospective_user.webapp_dev_id, user_name=None, viewpoint_id=vp_id) self._GetPhotoAndVerify(prospective_cookie, 200, ep_id, self._photo_ids[0], '.o') # Share again to the prospective user to create a second viewpoint. vp_id2, ep_ids2 = self._tester.ShareNew(self._cookie, [(self._episode_id, self._photo_ids)], ['Email:<EMAIL>']) # Now try to get the photo using the prospective cookie that is keyed to the first viewpoint. response = self._GetPhoto(prospective_cookie, ep_ids2[0], self._photo_ids[0], '.o') self.assertEqual(response.code, 403) def _GetPhotoAndVerify(self, user_cookie, exp_code, episode_id, photo_id, suffix): """Call _GetPhoto and verify return code equals "exp_code".""" response = self._GetPhoto(user_cookie, episode_id, photo_id, suffix) self.assertEqual(response.code, exp_code) if response.code == 200: self.assertEqual(response.headers['Cache-Control'], 'private,max-age=31536000') return response def _PutPhotoAndVerify(self, user_cookie, exp_code, episode_id, photo_id, suffix, image_data): """Call _PutPhoto and verify return code equals "exp_code".""" response = self._PutPhoto(user_cookie, episode_id, photo_id, suffix, image_data, content_md5=util.ComputeMD5Base64(image_data)) self.assertEqual(response.code, exp_code) return response def _GetPhoto(self, user_cookie, episode_id, photo_id, suffix): """Sends a GET request to the photo store URL for the specified photo and user cookie. """ return self._tester.GetPhotoImage(user_cookie, episode_id, photo_id, suffix) def _PutPhoto(self, user_cookie, episode_id, photo_id, suffix, image_data, etag=None, content_md5=None): """Sends a PUT request to the photo store URL for the specified photo and user cookie. The put request body is set to "image_data". """ return self._tester.PutPhotoImage(user_cookie, episode_id, photo_id, suffix, image_data, etag=etag, content_md5=content_md5)
[ "json.loads", "viewfinder.backend.base.util.ComputeMD5Base64", "viewfinder.backend.base.util.ComputeMD5Hex" ]
[((5026, 5051), 'json.loads', 'json.loads', (['response.body'], {}), '(response.body)\n', (5036, 5051), False, 'import json\n'), ((5194, 5219), 'json.loads', 'json.loads', (['response.body'], {}), '(response.body)\n', (5204, 5219), False, 'import json\n'), ((2867, 2906), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['"""mismatched md5"""'], {}), "('mismatched md5')\n", (2888, 2906), False, 'from viewfinder.backend.base import util\n'), ((7842, 7872), 'viewfinder.backend.base.util.ComputeMD5Hex', 'util.ComputeMD5Hex', (['image_data'], {}), '(image_data)\n', (7860, 7872), False, 'from viewfinder.backend.base import util\n'), ((10334, 10367), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['image_data'], {}), '(image_data)\n', (10355, 10367), False, 'from viewfinder.backend.base import util\n'), ((5926, 5964), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['full_image_data'], {}), '(full_image_data)\n', (5947, 5964), False, 'from viewfinder.backend.base import util\n'), ((6003, 6038), 'viewfinder.backend.base.util.ComputeMD5Hex', 'util.ComputeMD5Hex', (['full_image_data'], {}), '(full_image_data)\n', (6021, 6038), False, 'from viewfinder.backend.base import util\n'), ((6262, 6300), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['full_image_data'], {}), '(full_image_data)\n', (6283, 6300), False, 'from viewfinder.backend.base import util\n'), ((6570, 6608), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['full_image_data'], {}), '(full_image_data)\n', (6591, 6608), False, 'from viewfinder.backend.base import util\n'), ((7566, 7599), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['image_data'], {}), '(image_data)\n', (7587, 7599), False, 'from viewfinder.backend.base import util\n'), ((7638, 7668), 'viewfinder.backend.base.util.ComputeMD5Hex', 'util.ComputeMD5Hex', (['image_data'], {}), '(image_data)\n', (7656, 7668), False, 'from viewfinder.backend.base import util\n'), ((8196, 8233), 'viewfinder.backend.base.util.ComputeMD5Base64', 'util.ComputeMD5Base64', (['new_image_data'], {}), '(new_image_data)\n', (8217, 8233), False, 'from viewfinder.backend.base import util\n'), ((8272, 8306), 'viewfinder.backend.base.util.ComputeMD5Hex', 'util.ComputeMD5Hex', (['new_image_data'], {}), '(new_image_data)\n', (8290, 8306), False, 'from viewfinder.backend.base import util\n'), ((6348, 6383), 'viewfinder.backend.base.util.ComputeMD5Hex', 'util.ComputeMD5Hex', (['full_image_data'], {}), '(full_image_data)\n', (6366, 6383), False, 'from viewfinder.backend.base import util\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2018, Frappe and Contributors # See license.txt from __future__ import unicode_literals import frappe import unittest class TestCustomerFeedback(unittest.TestCase): def test_customer_feedback(self): test_create_feedback = create_feedback() test_get_feedback = get_feedback() self.assertEquals(test_create_feedback.name, test_get_feedback.name) def create_feedback(): feedback = frappe.get_doc({ "doctype": "Customer Feedback", "date": ""+ frappe.utils.nowdate() +"" }) feedback_exist = frappe.get_list("Customer Feedback", filters={"date": ""+ feedback.date +""}) if len(feedback_exist) == 0: feedback.insert() return feedback else: return feedback_exist[0] def get_feedback(): feedback = frappe.get_list("Customer Feedback") return feedback[0]
[ "frappe.get_list", "frappe.utils.nowdate" ]
[((545, 624), 'frappe.get_list', 'frappe.get_list', (['"""Customer Feedback"""'], {'filters': "{'date': '' + feedback.date + ''}"}), "('Customer Feedback', filters={'date': '' + feedback.date + ''})\n", (560, 624), False, 'import frappe\n'), ((758, 794), 'frappe.get_list', 'frappe.get_list', (['"""Customer Feedback"""'], {}), "('Customer Feedback')\n", (773, 794), False, 'import frappe\n'), ((496, 518), 'frappe.utils.nowdate', 'frappe.utils.nowdate', ([], {}), '()\n', (516, 518), False, 'import frappe\n')]
# Generated by Django 2.0.2 on 2018-06-04 18:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('vendors', '0033_auto_20180319_1648'), ] operations = [ migrations.AddField( model_name='poolmembership', name='contract_end_date', field=models.DateTimeField(null=True), ), migrations.AddField( model_name='poolmembership', name='expiration_8a_date', field=models.DateTimeField(null=True), ), ]
[ "django.db.models.DateTimeField" ]
[((353, 384), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (373, 384), False, 'from django.db import migrations, models\n'), ((524, 555), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'null': '(True)'}), '(null=True)\n', (544, 555), False, 'from django.db import migrations, models\n')]
from flask import Blueprint from flask_restful import Api import config from resources import BatchNMTPerformanceResource PERFORMANCE_BLUEPRINT = Blueprint("performance", __name__) Api(PERFORMANCE_BLUEPRINT).add_resource( BatchNMTPerformanceResource, config.MODULE_NAME + "/v1/performance" )
[ "flask.Blueprint", "flask_restful.Api" ]
[((148, 182), 'flask.Blueprint', 'Blueprint', (['"""performance"""', '__name__'], {}), "('performance', __name__)\n", (157, 182), False, 'from flask import Blueprint\n'), ((184, 210), 'flask_restful.Api', 'Api', (['PERFORMANCE_BLUEPRINT'], {}), '(PERFORMANCE_BLUEPRINT)\n', (187, 210), False, 'from flask_restful import Api\n')]
from application import db from datetime import datetime from sqlalchemy import ForeignKey class Orders(db.Model): orderid = db.Column(db.Integer, primary_key=True) first_name = db.Column(db.String(30), nullable=False) last_name = db.Column(db.String(30), nullable=False) number = db.Column(db.String(30), nullable=False) address = db.Column(db.String(100), nullable=False) pizzaid = db.Column(db.Integer, db.ForeignKey('stock.pizza_num')) # should this be stock order_quantity = db.Column(db.Integer, nullable=False) ####### integer #price = db.Column(db.Integer, nullable=True) ######## times by price per pizza orderstatus = db.Column(db.String(5), nullable=True, server_default='No') class Stock(db.Model): pizza_num = db.Column(db.Integer, primary_key=True) pizza_name = db.Column(db.String(40), nullable=False) ###########) #priceperpizza = db.Column(db.Integer, nullable=False) pizza = db.relationship('Orders', backref='nameofpizza', lazy=True)
[ "application.db.String", "application.db.relationship", "application.db.Column", "application.db.ForeignKey" ]
[((127, 166), 'application.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (136, 166), False, 'from application import db\n'), ((488, 525), 'application.db.Column', 'db.Column', (['db.Integer'], {'nullable': '(False)'}), '(db.Integer, nullable=False)\n', (497, 525), False, 'from application import db\n'), ((740, 779), 'application.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (749, 779), False, 'from application import db\n'), ((913, 972), 'application.db.relationship', 'db.relationship', (['"""Orders"""'], {'backref': '"""nameofpizza"""', 'lazy': '(True)'}), "('Orders', backref='nameofpizza', lazy=True)\n", (928, 972), False, 'from application import db\n'), ((191, 204), 'application.db.String', 'db.String', (['(30)'], {}), '(30)\n', (200, 204), False, 'from application import db\n'), ((245, 258), 'application.db.String', 'db.String', (['(30)'], {}), '(30)\n', (254, 258), False, 'from application import db\n'), ((296, 309), 'application.db.String', 'db.String', (['(30)'], {}), '(30)\n', (305, 309), False, 'from application import db\n'), ((348, 362), 'application.db.String', 'db.String', (['(100)'], {}), '(100)\n', (357, 362), False, 'from application import db\n'), ((413, 445), 'application.db.ForeignKey', 'db.ForeignKey', (['"""stock.pizza_num"""'], {}), "('stock.pizza_num')\n", (426, 445), False, 'from application import db\n'), ((648, 660), 'application.db.String', 'db.String', (['(5)'], {}), '(5)\n', (657, 660), False, 'from application import db\n'), ((804, 817), 'application.db.String', 'db.String', (['(40)'], {}), '(40)\n', (813, 817), False, 'from application import db\n')]
# Generated by Django 2.1.9 on 2019-08-27 08:24 import datetime from decimal import Decimal import django.core.validators from django.db import migrations, models import django.db.models.deletion from django.utils.timezone import utc import resources.models.utils class Migration(migrations.Migration): initial = True dependencies = [ ('resources', '0080_payments_related_changes'), ] operations = [ migrations.CreateModel( name='Order', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('state', models.CharField(choices=[('waiting', 'waiting'), ('confirmed', 'confirmed'), ('rejected', 'rejected'), ('expired', 'expired'), ('cancelled', 'cancelled')], default='waiting', max_length=32, verbose_name='state')), ('order_number', models.CharField(default=resources.models.utils.generate_id, max_length=64, unique=True, verbose_name='order number')), ('reservation', models.OneToOneField(on_delete=django.db.models.deletion.PROTECT, related_name='order', to='resources.Reservation', verbose_name='reservation')), ], options={ 'verbose_name': 'order', 'verbose_name_plural': 'orders', 'ordering': ('id',), }, ), migrations.CreateModel( name='OrderLine', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('quantity', models.PositiveIntegerField(default=1, verbose_name='quantity')), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='order_lines', to='payments.Order', verbose_name='order')), ], options={ 'verbose_name': 'order line', 'verbose_name_plural': 'order lines', 'ordering': ('id',), }, ), migrations.CreateModel( name='OrderLogEntry', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('timestamp', models.DateTimeField(auto_now_add=True)), ('state_change', models.CharField(blank=True, choices=[('waiting', 'waiting'), ('confirmed', 'confirmed'), ('rejected', 'rejected'), ('expired', 'expired'), ('cancelled', 'cancelled')], max_length=32, verbose_name='state change')), ('message', models.TextField(blank=True)), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='log_entries', to='payments.Order', verbose_name='order log entry')), ], options={ 'verbose_name': 'order log entry', 'verbose_name_plural': 'order log entries', 'ordering': ('id',), }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='created at')), ('product_id', models.CharField(db_index=True, editable=False, max_length=100, verbose_name='internal product ID')), ('archived_at', models.DateTimeField(db_index=True, default=datetime.datetime(9999, 12, 31, 0, 0, tzinfo=utc), editable=False, verbose_name='archived_at')), ('type', models.CharField(choices=[('rent', 'rent'), ('extra', 'extra')], default='rent', max_length=32, verbose_name='type')), ('sku', models.CharField(max_length=255, verbose_name='SKU')), ('name', models.CharField(blank=True, max_length=100, verbose_name='name')), ('name_fi', models.CharField(blank=True, max_length=100, null=True, verbose_name='name')), ('name_en', models.CharField(blank=True, max_length=100, null=True, verbose_name='name')), ('name_sv', models.CharField(blank=True, max_length=100, null=True, verbose_name='name')), ('description', models.TextField(blank=True, verbose_name='description')), ('description_fi', models.TextField(blank=True, null=True, verbose_name='description')), ('description_en', models.TextField(blank=True, null=True, verbose_name='description')), ('description_sv', models.TextField(blank=True, null=True, verbose_name='description')), ('price', models.DecimalField(decimal_places=2, max_digits=10, validators=[django.core.validators.MinValueValidator(Decimal('0.01'))], verbose_name='price including VAT')), ('tax_percentage', models.DecimalField(choices=[(Decimal('0.00'), '0.00'), (Decimal('10.00'), '10.00'), (Decimal('14.00'), '14.00'), (Decimal('24.00'), '24.00')], decimal_places=2, default=Decimal('24.00'), max_digits=5, verbose_name='tax percentage')), ('price_type', models.CharField(choices=[('per_period', 'per period'), ('fixed', 'fixed')], default='per_period', max_length=32, verbose_name='price type')), ('price_period', models.DurationField(blank=True, default=datetime.timedelta(0, 3600), null=True, verbose_name='price period')), ('max_quantity', models.PositiveSmallIntegerField(default=1, validators=[django.core.validators.MinValueValidator(1)], verbose_name='max quantity')), ('resources', models.ManyToManyField(blank=True, related_name='products', to='resources.Resource', verbose_name='resources')), ], options={ 'verbose_name': 'product', 'verbose_name_plural': 'products', 'ordering': ('product_id',), }, ), migrations.AddField( model_name='orderline', name='product', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='order_lines', to='payments.Product', verbose_name='product'), ), migrations.AlterUniqueTogether( name='product', unique_together={('archived_at', 'product_id')}, ), ]
[ "datetime.datetime", "django.db.models.OneToOneField", "django.db.migrations.AlterUniqueTogether", "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.ManyToManyField", "django.db.models.AutoField", "django.db.models.PositiveIntegerField", "django.db.models.DateTimeField", "datetime.timedelta", "django.db.models.CharField", "decimal.Decimal" ]
[((6208, 6308), 'django.db.migrations.AlterUniqueTogether', 'migrations.AlterUniqueTogether', ([], {'name': '"""product"""', 'unique_together': "{('archived_at', 'product_id')}"}), "(name='product', unique_together={(\n 'archived_at', 'product_id')})\n", (6238, 6308), False, 'from django.db import migrations, models\n'), ((6050, 6192), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.PROTECT', 'related_name': '"""order_lines"""', 'to': '"""payments.Product"""', 'verbose_name': '"""product"""'}), "(on_delete=django.db.models.deletion.PROTECT, related_name\n ='order_lines', to='payments.Product', verbose_name='product')\n", (6067, 6192), False, 'from django.db import migrations, models\n'), ((532, 625), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (548, 625), False, 'from django.db import migrations, models\n'), ((650, 871), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('waiting', 'waiting'), ('confirmed', 'confirmed'), ('rejected',\n 'rejected'), ('expired', 'expired'), ('cancelled', 'cancelled')]", 'default': '"""waiting"""', 'max_length': '(32)', 'verbose_name': '"""state"""'}), "(choices=[('waiting', 'waiting'), ('confirmed', 'confirmed'\n ), ('rejected', 'rejected'), ('expired', 'expired'), ('cancelled',\n 'cancelled')], default='waiting', max_length=32, verbose_name='state')\n", (666, 871), False, 'from django.db import migrations, models\n'), ((898, 1019), 'django.db.models.CharField', 'models.CharField', ([], {'default': 'resources.models.utils.generate_id', 'max_length': '(64)', 'unique': '(True)', 'verbose_name': '"""order number"""'}), "(default=resources.models.utils.generate_id, max_length=64,\n unique=True, verbose_name='order number')\n", (914, 1019), False, 'from django.db import migrations, models\n'), ((1050, 1202), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'on_delete': 'django.db.models.deletion.PROTECT', 'related_name': '"""order"""', 'to': '"""resources.Reservation"""', 'verbose_name': '"""reservation"""'}), "(on_delete=django.db.models.deletion.PROTECT,\n related_name='order', to='resources.Reservation', verbose_name=\n 'reservation')\n", (1070, 1202), False, 'from django.db import migrations, models\n'), ((1492, 1585), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1508, 1585), False, 'from django.db import migrations, models\n'), ((1613, 1676), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(1)', 'verbose_name': '"""quantity"""'}), "(default=1, verbose_name='quantity')\n", (1640, 1676), False, 'from django.db import migrations, models\n'), ((1705, 1843), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""order_lines"""', 'to': '"""payments.Order"""', 'verbose_name': '"""order"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='order_lines', to='payments.Order', verbose_name='order')\n", (1722, 1843), False, 'from django.db import migrations, models\n'), ((2151, 2244), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (2167, 2244), False, 'from django.db import migrations, models\n'), ((2273, 2312), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2293, 2312), False, 'from django.db import migrations, models\n'), ((2348, 2569), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'choices': "[('waiting', 'waiting'), ('confirmed', 'confirmed'), ('rejected',\n 'rejected'), ('expired', 'expired'), ('cancelled', 'cancelled')]", 'max_length': '(32)', 'verbose_name': '"""state change"""'}), "(blank=True, choices=[('waiting', 'waiting'), ('confirmed',\n 'confirmed'), ('rejected', 'rejected'), ('expired', 'expired'), (\n 'cancelled', 'cancelled')], max_length=32, verbose_name='state change')\n", (2364, 2569), False, 'from django.db import migrations, models\n'), ((2591, 2619), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)'}), '(blank=True)\n', (2607, 2619), False, 'from django.db import migrations, models\n'), ((2648, 2796), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""log_entries"""', 'to': '"""payments.Order"""', 'verbose_name': '"""order log entry"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='log_entries', to='payments.Order', verbose_name='order log entry')\n", (2665, 2796), False, 'from django.db import migrations, models\n'), ((3109, 3202), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (3125, 3202), False, 'from django.db import migrations, models\n'), ((3232, 3298), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""created at"""'}), "(auto_now_add=True, verbose_name='created at')\n", (3252, 3298), False, 'from django.db import migrations, models\n'), ((3332, 3435), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'editable': '(False)', 'max_length': '(100)', 'verbose_name': '"""internal product ID"""'}), "(db_index=True, editable=False, max_length=100,\n verbose_name='internal product ID')\n", (3348, 3435), False, 'from django.db import migrations, models\n'), ((3632, 3753), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('rent', 'rent'), ('extra', 'extra')]", 'default': '"""rent"""', 'max_length': '(32)', 'verbose_name': '"""type"""'}), "(choices=[('rent', 'rent'), ('extra', 'extra')], default=\n 'rent', max_length=32, verbose_name='type')\n", (3648, 3753), False, 'from django.db import migrations, models\n'), ((3775, 3827), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'verbose_name': '"""SKU"""'}), "(max_length=255, verbose_name='SKU')\n", (3791, 3827), False, 'from django.db import migrations, models\n'), ((3855, 3920), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'verbose_name': '"""name"""'}), "(blank=True, max_length=100, verbose_name='name')\n", (3871, 3920), False, 'from django.db import migrations, models\n'), ((3951, 4027), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'null': '(True)', 'verbose_name': '"""name"""'}), "(blank=True, max_length=100, null=True, verbose_name='name')\n", (3967, 4027), False, 'from django.db import migrations, models\n'), ((4058, 4134), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'null': '(True)', 'verbose_name': '"""name"""'}), "(blank=True, max_length=100, null=True, verbose_name='name')\n", (4074, 4134), False, 'from django.db import migrations, models\n'), ((4165, 4241), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'null': '(True)', 'verbose_name': '"""name"""'}), "(blank=True, max_length=100, null=True, verbose_name='name')\n", (4181, 4241), False, 'from django.db import migrations, models\n'), ((4276, 4332), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'verbose_name': '"""description"""'}), "(blank=True, verbose_name='description')\n", (4292, 4332), False, 'from django.db import migrations, models\n'), ((4370, 4437), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""description"""'}), "(blank=True, null=True, verbose_name='description')\n", (4386, 4437), False, 'from django.db import migrations, models\n'), ((4475, 4542), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""description"""'}), "(blank=True, null=True, verbose_name='description')\n", (4491, 4542), False, 'from django.db import migrations, models\n'), ((4580, 4647), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""description"""'}), "(blank=True, null=True, verbose_name='description')\n", (4596, 4647), False, 'from django.db import migrations, models\n'), ((5140, 5284), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('per_period', 'per period'), ('fixed', 'fixed')]", 'default': '"""per_period"""', 'max_length': '(32)', 'verbose_name': '"""price type"""'}), "(choices=[('per_period', 'per period'), ('fixed', 'fixed')],\n default='per_period', max_length=32, verbose_name='price type')\n", (5156, 5284), False, 'from django.db import migrations, models\n'), ((5624, 5739), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'blank': '(True)', 'related_name': '"""products"""', 'to': '"""resources.Resource"""', 'verbose_name': '"""resources"""'}), "(blank=True, related_name='products', to=\n 'resources.Resource', verbose_name='resources')\n", (5646, 5739), False, 'from django.db import migrations, models\n'), ((3510, 3559), 'datetime.datetime', 'datetime.datetime', (['(9999)', '(12)', '(31)', '(0)', '(0)'], {'tzinfo': 'utc'}), '(9999, 12, 31, 0, 0, tzinfo=utc)\n', (3527, 3559), False, 'import datetime\n'), ((5044, 5060), 'decimal.Decimal', 'Decimal', (['"""24.00"""'], {}), "('24.00')\n", (5051, 5060), False, 'from decimal import Decimal\n'), ((5357, 5384), 'datetime.timedelta', 'datetime.timedelta', (['(0)', '(3600)'], {}), '(0, 3600)\n', (5375, 5384), False, 'import datetime\n'), ((4782, 4797), 'decimal.Decimal', 'Decimal', (['"""0.01"""'], {}), "('0.01')\n", (4789, 4797), False, 'from decimal import Decimal\n'), ((4904, 4919), 'decimal.Decimal', 'Decimal', (['"""0.00"""'], {}), "('0.00')\n", (4911, 4919), False, 'from decimal import Decimal\n'), ((4931, 4947), 'decimal.Decimal', 'Decimal', (['"""10.00"""'], {}), "('10.00')\n", (4938, 4947), False, 'from decimal import Decimal\n'), ((4960, 4976), 'decimal.Decimal', 'Decimal', (['"""14.00"""'], {}), "('14.00')\n", (4967, 4976), False, 'from decimal import Decimal\n'), ((4989, 5005), 'decimal.Decimal', 'Decimal', (['"""24.00"""'], {}), "('24.00')\n", (4996, 5005), False, 'from decimal import Decimal\n')]
# !/usr/bin/python3 # -*- coding: utf-8 -*- # @Time : 2018/9/18 19:17 # @Author: <NAME> # @File : test.py import equations_solver n = 100 # the scale of the Matrix # test different methods def test_methods(A, b, methods_list): methods_num = len(methods_list) # get solution solution_x = [] for i in range(methods_num): tmp_x = equations_solver.solve(A, b, verbose=1, method=methods_list[i]) solution_x.append(tmp_x) # make table head for i in range(methods_num): print('%12s' % methods_list[i], end=' ') print() print('-' * (13 * methods_num)) # show solution for k in range(n): for i in range(methods_num): print('%12.2f' % solution_x[i][k, 0], end=' ') print() def main(): A, b = equations_solver.generate_homework_data() # 1. test single method. # x = equations_solver.gauss(A, b) # or # x = equations_solver.solve(A, b, method='gauss') # 2. compare different methods. # methods_list_all = ['gauss', 'lu', 'chase', 'square_root', # 'jacobi', 'gauss_seidel', 'sor', # 'cg', 'qr'] methods_list = [ 'jacobi', 'gauss_seidel', 'sor', 'cg', 'qr' ] test_methods(A, b, methods_list) if __name__ == '__main__': main() # Here is other data to test the top four methods # A = np.random.randint(0, 10, (n, n)) + np.eye(n) # x = np.arange(1, n + 1).reshape((n, 1)) # b = A.dot(x) # x = EquationsSolver.solve(A, b, method='Gauss') # x = EquationsSolver.solve(A, b, method='LU') # A, x, b = model.generate_data() # LU data 1 # A = np.array([[2, 1, 5], [4, 1, 12], [-2, -4, 5]], dtype='f8') # x = np.array([[1], [-1], [2]], dtype='f8') # b = np.array([[11], [27], [12]], dtype='f8') # chase data 1 # A = np.array([[2, 1, 0, 0], [1/2, 2, 1/2, 0], [0, 1/2, 2, 1/2], [0, 0, 1, 2]]) # x = np.array([[-13/45], [7/90], [-1/45], [1/90]]) # b = np.array([[-1/2], [0], [0], [0]]) # chase data 2 # A = np.array([[3, 1, 0, 0], [1, 4, 1, 0], [0, 2, 5, 2], [0, 0, 2, 6]]) # x = np.array([[1], [3], [-2], [1]]) # b = np.array([[6], [11], [-2], [2]]) # square root data 1 # A = np.array([[4, 2, -2], [2, 2, -3], [-2, -3, 14]]) # x = np.array([[2], [2], [1]]) # b = np.array([[10], [5], [4]])
[ "equations_solver.generate_homework_data", "equations_solver.solve" ]
[((789, 830), 'equations_solver.generate_homework_data', 'equations_solver.generate_homework_data', ([], {}), '()\n', (828, 830), False, 'import equations_solver\n'), ((358, 421), 'equations_solver.solve', 'equations_solver.solve', (['A', 'b'], {'verbose': '(1)', 'method': 'methods_list[i]'}), '(A, b, verbose=1, method=methods_list[i])\n', (380, 421), False, 'import equations_solver\n')]
import re comment_re = re.compile(r"""^(?P<instr>[^#]*)(?P<comment>#.*)?$""") no_operand_re = re.compile(r'''^(?P<op>(NOP|RET|RTI))$''', re.IGNORECASE) one_operand_re = re.compile(r'''^(?P<op>(NOT|INC|DEC|OUT|IN|PUSH|POP|JZ|JMP|CALL))\s+(?P<rd>R[0-7])$''', re.IGNORECASE) two_operand_re = re.compile(r'''^(?P<op>(SWAP))\s+(?P<rs>R[0-7])+(\s*,\s*)+(?P<rd>R[0-7])$''', re.IGNORECASE) three_operand_re = re.compile( r'''^(?P<op>(ADD|OR|SUB|AND))\s+(?P<rs1>R[0-7])+(\s*,\s*)+(?P<rs2>R[0-7])+(\s*,\s*)+(?P<rd>R[0-7])$''', re.IGNORECASE) three_operand_immediate_re = re.compile( r'''^(?P<op>(IADD))\s+(?P<rs1>R[0-7])+(\s*,\s*)+(?P<rd>R[0-7])+(\s*,\s*)+(?P<imm>[0-9a-fA-F]{1,4})$''', re.IGNORECASE) two_operand_immediate_re = re.compile( r'''^(?P<op>(SHL|SHR|LDM))\s+(?P<r>R[0-7])+(\s*,\s*)+(?P<imm>[0-9a-fA-F]{1,4})$''', re.IGNORECASE) two_operand_effective_re = re.compile( r'''^(?P<op>(LDD|STD))\s+(?P<r>R[0-7])+(\s*,\s*)+(?P<eff>[0-9a-fA-F]{1,5})$''', re.IGNORECASE) org_re = re.compile(r'''^(?P<op>(.ORG)\s+(?P<val>[0-9a-fA-F]{1,8}))$''', re.IGNORECASE) address_value_re = re.compile(r'''^(\s*)([0-9a-fA-F]{1,4})(\s*)$''', re.IGNORECASE)
[ "re.compile" ]
[((24, 73), 're.compile', 're.compile', (['"""^(?P<instr>[^#]*)(?P<comment>#.*)?$"""'], {}), "('^(?P<instr>[^#]*)(?P<comment>#.*)?$')\n", (34, 73), False, 'import re\n'), ((95, 147), 're.compile', 're.compile', (['"""^(?P<op>(NOP|RET|RTI))$"""', 're.IGNORECASE'], {}), "('^(?P<op>(NOP|RET|RTI))$', re.IGNORECASE)\n", (105, 147), False, 'import re\n'), ((170, 277), 're.compile', 're.compile', (['"""^(?P<op>(NOT|INC|DEC|OUT|IN|PUSH|POP|JZ|JMP|CALL))\\\\s+(?P<rd>R[0-7])$"""', 're.IGNORECASE'], {}), "(\n '^(?P<op>(NOT|INC|DEC|OUT|IN|PUSH|POP|JZ|JMP|CALL))\\\\s+(?P<rd>R[0-7])$',\n re.IGNORECASE)\n", (180, 277), False, 'import re\n'), ((318, 412), 're.compile', 're.compile', (['"""^(?P<op>(SWAP))\\\\s+(?P<rs>R[0-7])+(\\\\s*,\\\\s*)+(?P<rd>R[0-7])$"""', 're.IGNORECASE'], {}), "('^(?P<op>(SWAP))\\\\s+(?P<rs>R[0-7])+(\\\\s*,\\\\s*)+(?P<rd>R[0-7])$',\n re.IGNORECASE)\n", (328, 412), False, 'import re\n'), ((430, 569), 're.compile', 're.compile', (['"""^(?P<op>(ADD|OR|SUB|AND))\\\\s+(?P<rs1>R[0-7])+(\\\\s*,\\\\s*)+(?P<rs2>R[0-7])+(\\\\s*,\\\\s*)+(?P<rd>R[0-7])$"""', 're.IGNORECASE'], {}), "(\n '^(?P<op>(ADD|OR|SUB|AND))\\\\s+(?P<rs1>R[0-7])+(\\\\s*,\\\\s*)+(?P<rs2>R[0-7])+(\\\\s*,\\\\s*)+(?P<rd>R[0-7])$'\n , re.IGNORECASE)\n", (440, 569), False, 'import re\n'), ((598, 737), 're.compile', 're.compile', (['"""^(?P<op>(IADD))\\\\s+(?P<rs1>R[0-7])+(\\\\s*,\\\\s*)+(?P<rd>R[0-7])+(\\\\s*,\\\\s*)+(?P<imm>[0-9a-fA-F]{1,4})$"""', 're.IGNORECASE'], {}), "(\n '^(?P<op>(IADD))\\\\s+(?P<rs1>R[0-7])+(\\\\s*,\\\\s*)+(?P<rd>R[0-7])+(\\\\s*,\\\\s*)+(?P<imm>[0-9a-fA-F]{1,4})$'\n , re.IGNORECASE)\n", (608, 737), False, 'import re\n'), ((764, 881), 're.compile', 're.compile', (['"""^(?P<op>(SHL|SHR|LDM))\\\\s+(?P<r>R[0-7])+(\\\\s*,\\\\s*)+(?P<imm>[0-9a-fA-F]{1,4})$"""', 're.IGNORECASE'], {}), "(\n '^(?P<op>(SHL|SHR|LDM))\\\\s+(?P<r>R[0-7])+(\\\\s*,\\\\s*)+(?P<imm>[0-9a-fA-F]{1,4})$'\n , re.IGNORECASE)\n", (774, 881), False, 'import re\n'), ((906, 1019), 're.compile', 're.compile', (['"""^(?P<op>(LDD|STD))\\\\s+(?P<r>R[0-7])+(\\\\s*,\\\\s*)+(?P<eff>[0-9a-fA-F]{1,5})$"""', 're.IGNORECASE'], {}), "(\n '^(?P<op>(LDD|STD))\\\\s+(?P<r>R[0-7])+(\\\\s*,\\\\s*)+(?P<eff>[0-9a-fA-F]{1,5})$'\n , re.IGNORECASE)\n", (916, 1019), False, 'import re\n'), ((1026, 1100), 're.compile', 're.compile', (['"""^(?P<op>(.ORG)\\\\s+(?P<val>[0-9a-fA-F]{1,8}))$"""', 're.IGNORECASE'], {}), "('^(?P<op>(.ORG)\\\\s+(?P<val>[0-9a-fA-F]{1,8}))$', re.IGNORECASE)\n", (1036, 1100), False, 'import re\n'), ((1124, 1185), 're.compile', 're.compile', (['"""^(\\\\s*)([0-9a-fA-F]{1,4})(\\\\s*)$"""', 're.IGNORECASE'], {}), "('^(\\\\s*)([0-9a-fA-F]{1,4})(\\\\s*)$', re.IGNORECASE)\n", (1134, 1185), False, 'import re\n')]
# pylint: disable=missing-docstring from __future__ import absolute_import, division, print_function, unicode_literals import mock import os import shlex import six import subprocess import unittest from django.conf import settings from django.test import override_settings from resolwe.flow.executors.docker import FlowExecutor from resolwe.flow.executors import BaseFlowExecutor try: import builtins # py3 except ImportError: import __builtin__ as builtins # py2 def check_docker(): """Check if Docker is installed and working. :return: tuple (indicator of the availability of Docker, reason for unavailability) :rtype: (bool, str) """ command = settings.FLOW_EXECUTOR.get('COMMAND', 'docker') info_command = '{} info'.format(command) available, reason = True, "" # TODO: use subprocess.DEVNULL after dropping support for Python 2 with open(os.devnull, 'wb') as DEVNULL: try: subprocess.check_call(shlex.split(info_command), stdout=DEVNULL, stderr=subprocess.STDOUT) except OSError: available, reason = False, "Docker command '{}' not found".format(command) except subprocess.CalledProcessError: available, reason = (False, "Docker command '{}' returned non-zero " "exit status".format(info_command)) return available, reason class DockerExecutorTestCase(unittest.TestCase): @unittest.skipUnless(*check_docker()) @mock.patch('os.mkdir') @mock.patch('os.chmod') @mock.patch('os.chdir') @mock.patch('resolwe.flow.executors.Data.objects.filter') @mock.patch('resolwe.flow.executors.Data.objects.get') def test_run_in_docker(self, data_get_mock, data_filter_mock, chdir_mock, chmod_mock, mkdir_mock): executor_settings = settings.FLOW_EXECUTOR executor_settings['CONTAINER_IMAGE'] = 'centos' with override_settings(FLOW_EXECUTOR=executor_settings): executor = FlowExecutor() script = 'if grep -Fq "docker" /proc/1/cgroup; then echo "Running inside Docker"; ' \ 'else echo "Running locally"; fi' count = {'running': 0} def assert_output(line): if line.strip() == 'Running inside Docker': count['running'] += 1 write_mock = mock.MagicMock(side_effect=assert_output) stdout_mock = mock.MagicMock(write=write_mock) open_mock = mock.MagicMock(side_effect=[stdout_mock, mock.MagicMock()]) with mock.patch.object(builtins, 'open', open_mock): executor.run('no_data_id', script, verbosity=0) self.assertEqual(count['running'], 1) class GetToolsTestCase(unittest.TestCase): @mock.patch('resolwe.flow.executors.apps') @mock.patch('resolwe.flow.executors.os') @mock.patch('resolwe.flow.executors.settings') def test_get_tools(self, settings_mock, os_mock, apps_mock): apps_mock.get_app_configs.return_value = [ mock.MagicMock(path='/resolwe/test_app1'), mock.MagicMock(path='/resolwe/test_app2'), ] os_mock.path.join = os.path.join os_mock.path.isdir.side_effect = [False, True] settings_mock.RESOLWE_CUSTOM_TOOLS_PATHS = ['/custom_tools'] base_executor = BaseFlowExecutor() tools_list = base_executor.get_tools() self.assertEqual(len(tools_list), 2) self.assertIn('/resolwe/test_app2/tools', tools_list) self.assertIn('/custom_tools', tools_list) @mock.patch('resolwe.flow.executors.apps') @mock.patch('resolwe.flow.executors.settings') def test_not_list(self, settings_mock, apps_mock): apps_mock.get_app_configs.return_value = [] settings_mock.RESOLWE_CUSTOM_TOOLS_PATHS = '/custom_tools' base_executor = BaseFlowExecutor() with six.assertRaisesRegex(self, KeyError, 'setting must be a list'): base_executor.get_tools()
[ "resolwe.flow.executors.docker.FlowExecutor", "mock.patch", "mock.MagicMock", "shlex.split", "mock.patch.object", "django.test.override_settings", "six.assertRaisesRegex", "django.conf.settings.FLOW_EXECUTOR.get", "resolwe.flow.executors.BaseFlowExecutor" ]
[((699, 746), 'django.conf.settings.FLOW_EXECUTOR.get', 'settings.FLOW_EXECUTOR.get', (['"""COMMAND"""', '"""docker"""'], {}), "('COMMAND', 'docker')\n", (725, 746), False, 'from django.conf import settings\n'), ((1498, 1520), 'mock.patch', 'mock.patch', (['"""os.mkdir"""'], {}), "('os.mkdir')\n", (1508, 1520), False, 'import mock\n'), ((1526, 1548), 'mock.patch', 'mock.patch', (['"""os.chmod"""'], {}), "('os.chmod')\n", (1536, 1548), False, 'import mock\n'), ((1554, 1576), 'mock.patch', 'mock.patch', (['"""os.chdir"""'], {}), "('os.chdir')\n", (1564, 1576), False, 'import mock\n'), ((1582, 1638), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.Data.objects.filter"""'], {}), "('resolwe.flow.executors.Data.objects.filter')\n", (1592, 1638), False, 'import mock\n'), ((1644, 1697), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.Data.objects.get"""'], {}), "('resolwe.flow.executors.Data.objects.get')\n", (1654, 1697), False, 'import mock\n'), ((2782, 2823), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.apps"""'], {}), "('resolwe.flow.executors.apps')\n", (2792, 2823), False, 'import mock\n'), ((2829, 2868), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.os"""'], {}), "('resolwe.flow.executors.os')\n", (2839, 2868), False, 'import mock\n'), ((2874, 2919), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.settings"""'], {}), "('resolwe.flow.executors.settings')\n", (2884, 2919), False, 'import mock\n'), ((3577, 3618), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.apps"""'], {}), "('resolwe.flow.executors.apps')\n", (3587, 3618), False, 'import mock\n'), ((3624, 3669), 'mock.patch', 'mock.patch', (['"""resolwe.flow.executors.settings"""'], {}), "('resolwe.flow.executors.settings')\n", (3634, 3669), False, 'import mock\n'), ((3346, 3364), 'resolwe.flow.executors.BaseFlowExecutor', 'BaseFlowExecutor', ([], {}), '()\n', (3362, 3364), False, 'from resolwe.flow.executors import BaseFlowExecutor\n'), ((3869, 3887), 'resolwe.flow.executors.BaseFlowExecutor', 'BaseFlowExecutor', ([], {}), '()\n', (3885, 3887), False, 'from resolwe.flow.executors import BaseFlowExecutor\n'), ((1922, 1972), 'django.test.override_settings', 'override_settings', ([], {'FLOW_EXECUTOR': 'executor_settings'}), '(FLOW_EXECUTOR=executor_settings)\n', (1939, 1972), False, 'from django.test import override_settings\n'), ((1997, 2011), 'resolwe.flow.executors.docker.FlowExecutor', 'FlowExecutor', ([], {}), '()\n', (2009, 2011), False, 'from resolwe.flow.executors.docker import FlowExecutor\n'), ((2367, 2408), 'mock.MagicMock', 'mock.MagicMock', ([], {'side_effect': 'assert_output'}), '(side_effect=assert_output)\n', (2381, 2408), False, 'import mock\n'), ((2435, 2467), 'mock.MagicMock', 'mock.MagicMock', ([], {'write': 'write_mock'}), '(write=write_mock)\n', (2449, 2467), False, 'import mock\n'), ((3048, 3089), 'mock.MagicMock', 'mock.MagicMock', ([], {'path': '"""/resolwe/test_app1"""'}), "(path='/resolwe/test_app1')\n", (3062, 3089), False, 'import mock\n'), ((3103, 3144), 'mock.MagicMock', 'mock.MagicMock', ([], {'path': '"""/resolwe/test_app2"""'}), "(path='/resolwe/test_app2')\n", (3117, 3144), False, 'import mock\n'), ((3901, 3964), 'six.assertRaisesRegex', 'six.assertRaisesRegex', (['self', 'KeyError', '"""setting must be a list"""'], {}), "(self, KeyError, 'setting must be a list')\n", (3922, 3964), False, 'import six\n'), ((987, 1012), 'shlex.split', 'shlex.split', (['info_command'], {}), '(info_command)\n', (998, 1012), False, 'import shlex\n'), ((2569, 2615), 'mock.patch.object', 'mock.patch.object', (['builtins', '"""open"""', 'open_mock'], {}), "(builtins, 'open', open_mock)\n", (2586, 2615), False, 'import mock\n'), ((2533, 2549), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2547, 2549), False, 'import mock\n')]
from game.server.world.chunk import Chunk from game.server.tiles.tiles import * class World: def __init__(self, name, seed, generator, sizeX, sizeZ): self.name = name self.seed = seed self.generator = generator self.generator.setWorld(self); self.sizeX = sizeX self.sizeZ = sizeZ self.chunks = [None] * (sizeX * sizeZ) self.time = 0 self.dayDuration = 12000 #Fill chunk array for x in range(sizeX): for z in range(sizeZ): self.chunks[x * sizeX + z] = Chunk(x, z) for chunk in self.chunks: self.generator.genChunk(chunk) # Returns the chunk at x,z in chunk pos [0 -> sizeX / sizeZ] # Params: # - x: X coordinate of the chunk # - z: Z coordinate of the chunk def getChunkAtChunkPos(self, x, z): if(x < 0 or z < 0 or x >= self.sizeX or z >= self.sizeZ): return None return self.chunks[x * self.sizeX + z] # Returns the chunk at x,z in tile pos [0 -> (sizeX / sizeZ) * chunkSize] # Params: # - x: X coordinate of the tile # - z: Z coordinate of the tile def getChunkAt(self, x, z): return self.getChunkAtChunkPos(x >> 4, z >> 4) # Place a tile at x, y, z in the world. # Params: # - tile: Tile instance defined in class Tiles # - x: X pos of the tile # - y: Y pos of the tile # - z: Z pos of the tile def setTileAt(self, tile, x, y, z): chunk = self.getChunkAt(x, z) if(chunk != None): chunk.setTileAt(tile, x % Chunk.CHUNK_SIZE, y, z % Chunk.CHUNK_SIZE) # Returns the tile (Tile instance) at x,y,z in the world. # Params: # - x: X pos of the tile # - y: Y pos of the tile # - z: Z pos of the tile def getTileAt(self, x, y, z): chunk = self.getChunkAt(x, z) if(chunk != None): return chunk.getTileAt(x % Chunk.CHUNK_SIZE, y, z % Chunk.CHUNK_SIZE) return None # Returns the biome at x,z in the world. # Params: # - x: X pos of the tile # - z: Z pos of the tile def getBiomeAt(self, x, z): chunk = self.getChunkAt(x, z) if(chunk != None): return chunk.biome; return None # Returns the surface (initial height without modification) at x,z in the world. # Params: # - x: X pos of the tile # - z: Z pos of the tile def getSurfaceAt(self, x, z): chunk = self.getChunkAt(x, z) if(chunk != None): return chunk.heightMap[x % Chunk.CHUNK_SIZE][z % Chunk.CHUNK_SIZE]; return None
[ "game.server.world.chunk.Chunk" ]
[((484, 495), 'game.server.world.chunk.Chunk', 'Chunk', (['x', 'z'], {}), '(x, z)\n', (489, 495), False, 'from game.server.world.chunk import Chunk\n')]
import numpy as np import tensorflow as tf from lenet import create_neural_net, create_cnn_only, replace_cnn_dense_layer, freeze_part_of_inception from tensorflow import compat import time from sklearn.utils import shuffle, class_weight from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import Adam from tensorflow.keras import backend as K import os import shutil import datetime import config import utils import random import gc current_data_dir = config.new_data_dir_name def setup_tf(): tf.keras.backend.clear_session() config_var = compat.v1.ConfigProto() config_var.gpu_options.allow_growth = True compat.v1.Session(config=config_var) gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) def train_model(load_saved, freeze=False, load_saved_cnn=False): setup_tf() if load_saved: model = load_model(config.model_name) else: model = create_neural_net(load_pretrained_cnn=load_saved_cnn, model_name=config.cnn_only_name) # freeze convolutional model to fine tune lstm (the cnn is treated as one layer # make sure you freeze the correct one) # goes the other way around too if the model was saved frozen and you want to unfreeze model.layers[1].trainable = not freeze optimizer = Adam(learning_rate=config.lr) # recompile to make the changes model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary() custom_training_loop(model, config.allowed_ram_mb, 10000, save_every_epoch=True, normalize_input_values=False, incorporate_fps=True) def train_cnn_only(load_saved, swap_output_layer=False, freeze_part=True): setup_tf() if load_saved: model = load_model(config.cnn_only_name) if swap_output_layer: model = replace_cnn_dense_layer(model) else: model = create_cnn_only() if freeze_part: model = freeze_part_of_inception(model, "mixed9") model.summary() cnn_only_training(model, False) def cnn_only_training(model, normalize_inputs=True): test_data_size = 10000 class_weights = get_class_weights(test_data_size=test_data_size) filenames = utils.get_sorted_filenames(current_data_dir) random.shuffle(filenames) filename_dict_list = divide_dataset_cnn_only(filenames, test_data_size, normalize_inputs, config.known_normalize_growth, allowed_ram=config.allowed_ram_mb) for epoch in range(config.epochs): for filename_dict in filename_dict_list: K.clear_session() images = [] labels = [] for filename in filename_dict["filenames"]: data_x, data_y = utils.load_file(filename) if normalize_inputs: data_x = utils.normalize_input_values(data_x, "float32") images += [data_x] labels += [data_y] del data_x, data_y if "start_index" in filename_dict: idx_start, idx_stop = filename_dict["start_index"], filename_dict["stop_index"] list_idx = 0 if filename_dict["is_test"] else -1 images[list_idx] = images[list_idx][idx_start:idx_stop] labels[list_idx] = labels[list_idx][idx_start:idx_stop] images = np.concatenate(images, axis=0) labels = np.concatenate(labels, axis=0) images, labels = convert_labels_to_time_pressed(images, labels) if not filename_dict["is_test"]: model.fit(images, labels, epochs=epoch+1, initial_epoch=epoch, batch_size=config.CNN_ONLY_BATCH_SIZE, class_weight=class_weights, validation_split=0.05, shuffle=True) else: model.evaluate(images, labels, batch_size=config.CNN_ONLY_BATCH_SIZE) del images, labels gc.collect() model.save(config.cnn_only_name) def divide_dataset_cnn_only(filenames, test_data_size, normalize_inputs, normalize_factor=0, allowed_ram=config.allowed_ram_mb): res_list = [] filename_dict = {"filenames": [], "is_test": False} left_mem = allowed_ram for i in range(len(filenames) - 1, -1, -1): full_filename = current_data_dir + filenames[i] file_size_mb = calc_filesize(full_filename, normalize_inputs, normalize_factor) labels = utils.load_file_only_labels(full_filename) if test_data_size <= 0: filename_dict["is_test"] = False elif len(labels) > test_data_size: filename_dict["stop_index"] = len(labels) filename_dict["start_index"] = len(labels) - test_data_size filename_dict["is_test"] = True filename_dict["filenames"].insert(0, full_filename) res_list.insert(0, filename_dict) filename_dict = {"filenames": [full_filename], "stop_index": len(labels) - test_data_size, "start_index": 0, "is_test": False} left_mem = allowed_ram test_data_size = 0 continue else: test_data_size -= len(labels) filename_dict["is_test"] = True if file_size_mb > left_mem: left_mem = allowed_ram res_list.insert(0, filename_dict) filename_dict = {"filenames": [], "is_test": False} filename_dict["filenames"].insert(0, full_filename) left_mem -= file_size_mb if filename_dict["filenames"]: res_list.insert(0, filename_dict) return res_list def custom_training_loop(model, allowed_ram_mb, test_data_size, save_every_epoch, normalize_input_values=True, incorporate_fps = True): """log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1)""" class_weights = get_class_weights(test_data_size=test_data_size) filenames = utils.get_sorted_filenames(current_data_dir) if config.random_file_order_train: random.shuffle(filenames) filenames = divide_dataset(filenames, allowed_ram_mb, test_data_size, normalize_input_values, incorporate_fps=incorporate_fps, known_normalize_growth=config.known_normalize_growth) for epoch in range(config.epochs): for i in range(len(filenames)): K.clear_session() if os.path.isfile(filenames[i]["filename"]): for j in range(filenames[i]["chunks"]): K.clear_session() images, labels = utils.load_file(filenames[i]["filename"]) start_idx, stop_idx = filenames[i]["indices"][j], filenames[i]["indices"][j+1] # stop_idx is next start index, therefore not stop_idx-1 because is it the first NOT included index images, labels = images[start_idx:stop_idx], labels[start_idx:stop_idx] if normalize_input_values: images = utils.normalize_input_values(images, "float32") images, labels = convert_labels_to_time_pressed(images, labels) images, labels = sequence_data(images, labels, shuffle_bool=False, incorporate_fps=incorporate_fps) print(f"Epoch: {epoch}; Chunk {j+1} out of {filenames[i]['chunks']};" f" {len(filenames) - i} out of {len(filenames)} files to go!") # test data is always last, meaning if next doesn't exists it's the test data if not filenames[i]["test_data"]: model.fit(images, labels, epochs=epoch+1, batch_size=config.BATCH_SIZE, class_weight=class_weights, initial_epoch=epoch, validation_split=0.1, shuffle=True) else: model.evaluate(images, labels, batch_size=config.BATCH_SIZE) del images, labels gc.collect() else: print(f"File {filenames[i]['filename']} existed at the beginning, not anymore!") continue if save_every_epoch: model.save(config.model_name + "_epoch_" + str(epoch)) model.save(config.model_name + "_fully_trained") def divide_dataset(filenames, allowed_ram_mb, test_data_size=0, normalize_input_values=True, incorporate_fps=True, known_normalize_growth=0): file_size_limit = allowed_ram_mb // config.sequence_len res_filenames = [] for i in range(len(filenames) - 1, -1, -1): full_filename = current_data_dir + filenames[i] divider = {"filename": full_filename} labels = utils.load_file_only_labels(full_filename) # only load images if necessary file_size_mb = calc_filesize(full_filename, normalize_input_values, known_normalize_growth) if test_data_size <= 0: divider["test_data"] = False elif test_data_size < len(labels): full_seq_len = config.sequence_len * utils.get_fps_ratio() if incorporate_fps else config.sequence_len if test_data_size > full_seq_len: new_divider = div_test_data_helper(full_filename, test_data_size, file_size_limit, normalize_input_values, is_test=True) res_filenames.insert(0, new_divider) if len(labels) - test_data_size > full_seq_len: new_divider = div_test_data_helper(full_filename, test_data_size, file_size_limit, normalize_input_values, is_test=False) res_filenames.insert(0, new_divider) test_data_size = 0 continue else: test_data_size -= len(labels) divider["test_data"] = True calc_chunks_and_indices(file_size_mb, file_size_limit, len(labels), divider) res_filenames.insert(0, divider) return res_filenames def div_test_data_helper(filename, test_data_size, file_size_limit, normalize_input_values, is_test=True): m_byte = (1024 ** 2) new_divider = {"filename": filename, "test_data": is_test} images, labels = utils.load_file(filename) original_len = len(labels) if is_test: images, labels = images[-test_data_size:], labels[-test_data_size:] else: images, labels = images[:-test_data_size], labels[:-test_data_size] if normalize_input_values: images = utils.normalize_input_values(images, "float32") file_size_mb = images.nbytes // m_byte + labels.nbytes // m_byte offset = original_len - len(labels) if is_test else 0 calc_chunks_and_indices(file_size_mb, file_size_limit, len(labels), new_divider, offset) return new_divider def calc_chunks_and_indices(file_size_mb, file_size_limit, data_len, divider, offset=0): divider["chunks"] = file_size_mb // file_size_limit + 1 step = data_len / divider["chunks"] divider["indices"] = [int(round(chunk * step)) + offset for chunk in range(divider["chunks"] + 1)] def calc_filesize(full_filename, normalize, normalize_factor=0): m_byte = 1024 ** 2 file_size_mb = os.stat(full_filename).st_size // m_byte if normalize: if normalize_factor == 0: images = utils.load_file_only_images(full_filename) images = utils.normalize_input_values(images, "float32") labels = utils.load_file_only_labels(full_filename) file_size_mb = images.nbytes // m_byte + labels.nbytes // m_byte else: file_size_mb = int(file_size_mb * normalize_factor) return file_size_mb def sequence_data(data_x, data_y, shuffle_bool=True, incorporate_fps=True): if len(data_x) != len(data_y): ValueError(f"Data_x and Data_y length differ: Data_x:{len(data_x)}, Data_y:{len(data_y)}") images = [] fps_ratio = utils.get_fps_ratio() if fps_ratio == 0 and incorporate_fps: raise ValueError('Fps ratio is 0, cannot divide by 0') full_seq_len = config.sequence_len * fps_ratio if incorporate_fps else config.sequence_len step = fps_ratio if incorporate_fps else 1 if len(data_y) < full_seq_len: raise ValueError(f"Not enough data, minimum length should be {full_seq_len}, but is {len(data_y)}") for i in range(len(data_x) - full_seq_len + step): # i + full_seq_len is last NOT included index, therefore + step in for loop above images += [data_x[i:i+full_seq_len:step]] images = np.stack(images, axis=0) labels = data_y[full_seq_len-step:] # use keras fit shuffle, this creates a copy -> both arrays in ram for short time # also don't use if you use validation_split in fit (seen data as validation over multiple epochs) if shuffle_bool: images, labels = shuffle(images, labels) # shuffle both the same way return images, labels # not needed anymore def subdivide_data(load_from, new_dir_name, chunks, keep_directory, test_data_size=None): # keep directory assumes the files are correct, will perform training as if they just got created if keep_directory and os.path.isdir(new_dir_name): print("Directory exists and was not changed, as specified") return data = np.load(load_from, allow_pickle=True) # data = data[:len(data) // 10] # for testing name_for_file_path = new_dir_name + "/" + config.temp_data_chunk_name print("Data length:", len(data)) print("Chunk length:", len(data) // chunks) if os.path.isdir(new_dir_name): remove_subdivided_data(new_dir_name) try: os.makedirs(new_dir_name) except OSError: print(f"Creation of the directory {new_dir_name} failed, probably because it already exists") return step = len(data) // chunks for i in range(chunks): # guarantee, that test data remains constant if specified if not test_data_size: np.save(name_for_file_path + str(i), data[step*i:step*(i+1)]) else: # if test_data_size is bigger than step size, there will be less files than requested chunks # if test_data_size is smaller than step size, there will be one more file than requested chunks # when iterating over data later just check if next file exists, if no it means that it is the test data if (chunks - i - 1) * step >= test_data_size and i < chunks - 1: np.save(name_for_file_path + str(i), data[step*i:step*(i+1)]) else: np.save(name_for_file_path + str(i), data[step*i:-test_data_size]) np.save(name_for_file_path + str(i + 1), data[-test_data_size:]) break del data def remove_subdivided_data(dir_to_remove_name): if os.path.isdir(dir_to_remove_name): shutil.rmtree(dir_to_remove_name) print(f"Directory {dir_to_remove_name} successfully removed") else: print(f"Directory {dir_to_remove_name} not found") def get_inverse_proportions(data): print(len(data)) x = np.sum(data, axis=0) # sum each label for each timestep separately x = x / np.sum(x, axis=-1).reshape(-1, 1) x = np.ones(x.shape) / x x = x / np.sum(x, axis=-1).reshape(-1, 1) print(x) print(x.shape) return x def get_class_weights(test_data_size=0): labels = utils.load_labels_only(current_data_dir) # remove last x rows labels = np.concatenate(labels, axis=0) uesless, labels = convert_labels_to_time_pressed(range(100), labels) if test_data_size: labels = labels[:-test_data_size, :] labels = np.argmax(labels, axis=-1) classes = np.asarray(range(config.output_classes)) inverse_proportions = class_weight.compute_class_weight('balanced', classes=classes, y=labels) inverse_proportions = dict(enumerate(inverse_proportions)) print("Proportions:", inverse_proportions) del labels return inverse_proportions def test_sequence_data_no_mismatch(): x = np.random.rand(1000, config.height, config.width, config.color_channels) y = np.random.rand(1000, config.output_classes) print("Images shape:", x.shape, "Labels shape:", y.shape) xx, yy = sequence_data(x, y, shuffle_bool=False, incorporate_fps=True) print("Images match?:", xx[-100][-1][0][0] == x[-100][0][0], "Labels match?:", yy[-100] == y[-100]) del xx, yy xx, yy = sequence_data(x, y, shuffle_bool=False, incorporate_fps=False) print("Images match?:", xx[-100][-1][0][0] == x[-100][0][0], "Labels match?:", yy[-100] == y[-100]) def test_divide_dataset(): filenames = utils.get_sorted_filenames(current_data_dir) if config.random_file_order_train: random.shuffle(filenames) filenames = divide_dataset(filenames, config.allowed_ram_mb, 10000, normalize_input_values=True, incorporate_fps=False, known_normalize_growth=config.known_normalize_growth) for entry in filenames: print(entry) def test_divide_cnn_only(): filenames = utils.get_sorted_filenames(current_data_dir) if config.random_file_order_train: random.shuffle(filenames) my_dict = divide_dataset_cnn_only(filenames, 30000, True, normalize_factor=config.known_normalize_growth, allowed_ram=config.allowed_ram_mb) for i in my_dict: print(i) for i in my_dict: filesize = 0 for j in i["filenames"]: filesize += os.stat(j).st_size print((filesize * 4) // (1024 ** 2)) def convert_labels_to_time_pressed(images, labels): fps_ratio = utils.get_fps_ratio() new_labels = [] index_list = [1, 3, 4, 5] dict_len = len(config.outputs) for i in range(labels.shape[0] - fps_ratio): new_label = np.zeros(config.output_classes) index = np.argmax(labels[i]) temp = labels[i:i+fps_ratio] temp = np.sum(temp, axis=0) temp = temp[index] / fps_ratio if temp <= config.counts_as_tap and index in index_list: if index == 1: index = 0 else: index -= 2 new_label[index + dict_len] = 1 else: new_label[index] = 1 new_labels.append(new_label) new_labels = np.stack(new_labels, axis=0) images = images[:-fps_ratio] return images, new_labels if __name__ == "__main__": # train_model(True, freeze=True, load_saved_cnn=False) train_cnn_only(False, swap_output_layer=False, freeze_part=True)
[ "numpy.random.rand", "lenet.freeze_part_of_inception", "utils.load_labels_only", "utils.get_sorted_filenames", "utils.load_file", "tensorflow.keras.models.load_model", "tensorflow.compat.v1.Session", "numpy.stack", "os.path.isdir", "numpy.concatenate", "lenet.replace_cnn_dense_layer", "utils.normalize_input_values", "utils.load_file_only_labels", "lenet.create_neural_net", "lenet.create_cnn_only", "random.shuffle", "numpy.ones", "numpy.argmax", "utils.get_fps_ratio", "os.path.isfile", "gc.collect", "tensorflow.compat.v1.ConfigProto", "os.makedirs", "tensorflow.config.experimental.set_memory_growth", "sklearn.utils.class_weight.compute_class_weight", "sklearn.utils.shuffle", "tensorflow.keras.optimizers.Adam", "numpy.sum", "numpy.zeros", "shutil.rmtree", "utils.load_file_only_images", "os.stat", "tensorflow.keras.backend.clear_session", "numpy.load", "tensorflow.config.experimental.list_physical_devices" ]
[((529, 561), 'tensorflow.keras.backend.clear_session', 'tf.keras.backend.clear_session', ([], {}), '()\n', (559, 561), True, 'import tensorflow as tf\n'), ((579, 602), 'tensorflow.compat.v1.ConfigProto', 'compat.v1.ConfigProto', ([], {}), '()\n', (600, 602), False, 'from tensorflow import compat\n'), ((654, 690), 'tensorflow.compat.v1.Session', 'compat.v1.Session', ([], {'config': 'config_var'}), '(config=config_var)\n', (671, 690), False, 'from tensorflow import compat\n'), ((702, 753), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (746, 753), True, 'import tensorflow as tf\n'), ((1373, 1402), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'learning_rate': 'config.lr'}), '(learning_rate=config.lr)\n', (1377, 1402), False, 'from tensorflow.keras.optimizers import Adam\n'), ((2319, 2363), 'utils.get_sorted_filenames', 'utils.get_sorted_filenames', (['current_data_dir'], {}), '(current_data_dir)\n', (2345, 2363), False, 'import utils\n'), ((2368, 2393), 'random.shuffle', 'random.shuffle', (['filenames'], {}), '(filenames)\n', (2382, 2393), False, 'import random\n'), ((6125, 6169), 'utils.get_sorted_filenames', 'utils.get_sorted_filenames', (['current_data_dir'], {}), '(current_data_dir)\n', (6151, 6169), False, 'import utils\n'), ((10409, 10434), 'utils.load_file', 'utils.load_file', (['filename'], {}), '(filename)\n', (10424, 10434), False, 'import utils\n'), ((12099, 12120), 'utils.get_fps_ratio', 'utils.get_fps_ratio', ([], {}), '()\n', (12118, 12120), False, 'import utils\n'), ((12722, 12746), 'numpy.stack', 'np.stack', (['images'], {'axis': '(0)'}), '(images, axis=0)\n', (12730, 12746), True, 'import numpy as np\n'), ((13467, 13504), 'numpy.load', 'np.load', (['load_from'], {'allow_pickle': '(True)'}), '(load_from, allow_pickle=True)\n', (13474, 13504), True, 'import numpy as np\n'), ((13725, 13752), 'os.path.isdir', 'os.path.isdir', (['new_dir_name'], {}), '(new_dir_name)\n', (13738, 13752), False, 'import os\n'), ((14983, 15016), 'os.path.isdir', 'os.path.isdir', (['dir_to_remove_name'], {}), '(dir_to_remove_name)\n', (14996, 15016), False, 'import os\n'), ((15265, 15285), 'numpy.sum', 'np.sum', (['data'], {'axis': '(0)'}), '(data, axis=0)\n', (15271, 15285), True, 'import numpy as np\n'), ((15558, 15598), 'utils.load_labels_only', 'utils.load_labels_only', (['current_data_dir'], {}), '(current_data_dir)\n', (15580, 15598), False, 'import utils\n'), ((15637, 15667), 'numpy.concatenate', 'np.concatenate', (['labels'], {'axis': '(0)'}), '(labels, axis=0)\n', (15651, 15667), True, 'import numpy as np\n'), ((15822, 15848), 'numpy.argmax', 'np.argmax', (['labels'], {'axis': '(-1)'}), '(labels, axis=-1)\n', (15831, 15848), True, 'import numpy as np\n'), ((15930, 16002), 'sklearn.utils.class_weight.compute_class_weight', 'class_weight.compute_class_weight', (['"""balanced"""'], {'classes': 'classes', 'y': 'labels'}), "('balanced', classes=classes, y=labels)\n", (15963, 16002), False, 'from sklearn.utils import shuffle, class_weight\n'), ((16207, 16279), 'numpy.random.rand', 'np.random.rand', (['(1000)', 'config.height', 'config.width', 'config.color_channels'], {}), '(1000, config.height, config.width, config.color_channels)\n', (16221, 16279), True, 'import numpy as np\n'), ((16288, 16331), 'numpy.random.rand', 'np.random.rand', (['(1000)', 'config.output_classes'], {}), '(1000, config.output_classes)\n', (16302, 16331), True, 'import numpy as np\n'), ((16813, 16857), 'utils.get_sorted_filenames', 'utils.get_sorted_filenames', (['current_data_dir'], {}), '(current_data_dir)\n', (16839, 16857), False, 'import utils\n'), ((17235, 17279), 'utils.get_sorted_filenames', 'utils.get_sorted_filenames', (['current_data_dir'], {}), '(current_data_dir)\n', (17261, 17279), False, 'import utils\n'), ((17809, 17830), 'utils.get_fps_ratio', 'utils.get_fps_ratio', ([], {}), '()\n', (17828, 17830), False, 'import utils\n'), ((18442, 18470), 'numpy.stack', 'np.stack', (['new_labels'], {'axis': '(0)'}), '(new_labels, axis=0)\n', (18450, 18470), True, 'import numpy as np\n'), ((783, 834), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['gpu', '(True)'], {}), '(gpu, True)\n', (823, 834), True, 'import tensorflow as tf\n'), ((952, 981), 'tensorflow.keras.models.load_model', 'load_model', (['config.model_name'], {}), '(config.model_name)\n', (962, 981), False, 'from tensorflow.keras.models import load_model\n'), ((1008, 1099), 'lenet.create_neural_net', 'create_neural_net', ([], {'load_pretrained_cnn': 'load_saved_cnn', 'model_name': 'config.cnn_only_name'}), '(load_pretrained_cnn=load_saved_cnn, model_name=config.\n cnn_only_name)\n', (1025, 1099), False, 'from lenet import create_neural_net, create_cnn_only, replace_cnn_dense_layer, freeze_part_of_inception\n'), ((1860, 1892), 'tensorflow.keras.models.load_model', 'load_model', (['config.cnn_only_name'], {}), '(config.cnn_only_name)\n', (1870, 1892), False, 'from tensorflow.keras.models import load_model\n'), ((2000, 2017), 'lenet.create_cnn_only', 'create_cnn_only', ([], {}), '()\n', (2015, 2017), False, 'from lenet import create_neural_net, create_cnn_only, replace_cnn_dense_layer, freeze_part_of_inception\n'), ((2054, 2095), 'lenet.freeze_part_of_inception', 'freeze_part_of_inception', (['model', '"""mixed9"""'], {}), "(model, 'mixed9')\n", (2078, 2095), False, 'from lenet import create_neural_net, create_cnn_only, replace_cnn_dense_layer, freeze_part_of_inception\n'), ((4553, 4595), 'utils.load_file_only_labels', 'utils.load_file_only_labels', (['full_filename'], {}), '(full_filename)\n', (4580, 4595), False, 'import utils\n'), ((6217, 6242), 'random.shuffle', 'random.shuffle', (['filenames'], {}), '(filenames)\n', (6231, 6242), False, 'import random\n'), ((8888, 8930), 'utils.load_file_only_labels', 'utils.load_file_only_labels', (['full_filename'], {}), '(full_filename)\n', (8915, 8930), False, 'import utils\n'), ((10692, 10739), 'utils.normalize_input_values', 'utils.normalize_input_values', (['images', '"""float32"""'], {}), "(images, 'float32')\n", (10720, 10739), False, 'import utils\n'), ((13022, 13045), 'sklearn.utils.shuffle', 'shuffle', (['images', 'labels'], {}), '(images, labels)\n', (13029, 13045), False, 'from sklearn.utils import shuffle, class_weight\n'), ((13344, 13371), 'os.path.isdir', 'os.path.isdir', (['new_dir_name'], {}), '(new_dir_name)\n', (13357, 13371), False, 'import os\n'), ((13816, 13841), 'os.makedirs', 'os.makedirs', (['new_dir_name'], {}), '(new_dir_name)\n', (13827, 13841), False, 'import os\n'), ((15026, 15059), 'shutil.rmtree', 'shutil.rmtree', (['dir_to_remove_name'], {}), '(dir_to_remove_name)\n', (15039, 15059), False, 'import shutil\n'), ((15390, 15406), 'numpy.ones', 'np.ones', (['x.shape'], {}), '(x.shape)\n', (15397, 15406), True, 'import numpy as np\n'), ((16905, 16930), 'random.shuffle', 'random.shuffle', (['filenames'], {}), '(filenames)\n', (16919, 16930), False, 'import random\n'), ((17327, 17352), 'random.shuffle', 'random.shuffle', (['filenames'], {}), '(filenames)\n', (17341, 17352), False, 'import random\n'), ((17985, 18016), 'numpy.zeros', 'np.zeros', (['config.output_classes'], {}), '(config.output_classes)\n', (17993, 18016), True, 'import numpy as np\n'), ((18033, 18053), 'numpy.argmax', 'np.argmax', (['labels[i]'], {}), '(labels[i])\n', (18042, 18053), True, 'import numpy as np\n'), ((18106, 18126), 'numpy.sum', 'np.sum', (['temp'], {'axis': '(0)'}), '(temp, axis=0)\n', (18112, 18126), True, 'import numpy as np\n'), ((1943, 1973), 'lenet.replace_cnn_dense_layer', 'replace_cnn_dense_layer', (['model'], {}), '(model)\n', (1966, 1973), False, 'from lenet import create_neural_net, create_cnn_only, replace_cnn_dense_layer, freeze_part_of_inception\n'), ((2703, 2720), 'tensorflow.keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (2718, 2720), True, 'from tensorflow.keras import backend as K\n'), ((3476, 3506), 'numpy.concatenate', 'np.concatenate', (['images'], {'axis': '(0)'}), '(images, axis=0)\n', (3490, 3506), True, 'import numpy as np\n'), ((3528, 3558), 'numpy.concatenate', 'np.concatenate', (['labels'], {'axis': '(0)'}), '(labels, axis=0)\n', (3542, 3558), True, 'import numpy as np\n'), ((4062, 4074), 'gc.collect', 'gc.collect', ([], {}), '()\n', (4072, 4074), False, 'import gc\n'), ((6550, 6567), 'tensorflow.keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (6565, 6567), True, 'from tensorflow.keras import backend as K\n'), ((6583, 6623), 'os.path.isfile', 'os.path.isfile', (["filenames[i]['filename']"], {}), "(filenames[i]['filename'])\n", (6597, 6623), False, 'import os\n'), ((11386, 11408), 'os.stat', 'os.stat', (['full_filename'], {}), '(full_filename)\n', (11393, 11408), False, 'import os\n'), ((11500, 11542), 'utils.load_file_only_images', 'utils.load_file_only_images', (['full_filename'], {}), '(full_filename)\n', (11527, 11542), False, 'import utils\n'), ((11564, 11611), 'utils.normalize_input_values', 'utils.normalize_input_values', (['images', '"""float32"""'], {}), "(images, 'float32')\n", (11592, 11611), False, 'import utils\n'), ((11633, 11675), 'utils.load_file_only_labels', 'utils.load_file_only_labels', (['full_filename'], {}), '(full_filename)\n', (11660, 11675), False, 'import utils\n'), ((2858, 2883), 'utils.load_file', 'utils.load_file', (['filename'], {}), '(filename)\n', (2873, 2883), False, 'import utils\n'), ((15348, 15366), 'numpy.sum', 'np.sum', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (15354, 15366), True, 'import numpy as np\n'), ((15423, 15441), 'numpy.sum', 'np.sum', (['x'], {'axis': '(-1)'}), '(x, axis=-1)\n', (15429, 15441), True, 'import numpy as np\n'), ((17675, 17685), 'os.stat', 'os.stat', (['j'], {}), '(j)\n', (17682, 17685), False, 'import os\n'), ((2950, 2997), 'utils.normalize_input_values', 'utils.normalize_input_values', (['data_x', '"""float32"""'], {}), "(data_x, 'float32')\n", (2978, 2997), False, 'import utils\n'), ((6701, 6718), 'tensorflow.keras.backend.clear_session', 'K.clear_session', ([], {}), '()\n', (6716, 6718), True, 'from tensorflow.keras import backend as K\n'), ((6756, 6797), 'utils.load_file', 'utils.load_file', (["filenames[i]['filename']"], {}), "(filenames[i]['filename'])\n", (6771, 6797), False, 'import utils\n'), ((8192, 8204), 'gc.collect', 'gc.collect', ([], {}), '()\n', (8202, 8204), False, 'import gc\n'), ((7189, 7236), 'utils.normalize_input_values', 'utils.normalize_input_values', (['images', '"""float32"""'], {}), "(images, 'float32')\n", (7217, 7236), False, 'import utils\n'), ((9236, 9257), 'utils.get_fps_ratio', 'utils.get_fps_ratio', ([], {}), '()\n', (9255, 9257), False, 'import utils\n')]
from django.contrib import admin from .models import Account, Expense from .models import WCType, PercentDeduction admin.site.register(Account) admin.site.register(Expense) admin.site.register(WCType) admin.site.register(PercentDeduction)
[ "django.contrib.admin.site.register" ]
[((117, 145), 'django.contrib.admin.site.register', 'admin.site.register', (['Account'], {}), '(Account)\n', (136, 145), False, 'from django.contrib import admin\n'), ((146, 174), 'django.contrib.admin.site.register', 'admin.site.register', (['Expense'], {}), '(Expense)\n', (165, 174), False, 'from django.contrib import admin\n'), ((175, 202), 'django.contrib.admin.site.register', 'admin.site.register', (['WCType'], {}), '(WCType)\n', (194, 202), False, 'from django.contrib import admin\n'), ((203, 240), 'django.contrib.admin.site.register', 'admin.site.register', (['PercentDeduction'], {}), '(PercentDeduction)\n', (222, 240), False, 'from django.contrib import admin\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.3 on 2017-11-28 08:08 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('hmlvaraus', '0010_hmlreservation_berth'), ] operations = [ migrations.CreateModel( name='Purchase', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Time of creation')), ('modified_at', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Time of modification')), ('purchase_code', models.CharField(max_length=40, verbose_name='Purchase code')), ('reserver_name', models.CharField(blank=True, max_length=100, verbose_name='Reserver name')), ('reserver_email_address', models.EmailField(blank=True, max_length=254, verbose_name='Reserver email address')), ('reserver_phone_number', models.CharField(blank=True, max_length=30, verbose_name='Reserver phone number')), ('reserver_address_street', models.CharField(blank=True, max_length=100, verbose_name='Reserver address street')), ('reserver_address_zip', models.CharField(blank=True, max_length=30, verbose_name='Reserver address zip')), ('reserver_address_city', models.CharField(blank=True, max_length=100, verbose_name='Reserver address city')), ('vat_percent', models.IntegerField(choices=[0, 10, 14, 24], default=24)), ('price_vat', models.DecimalField(decimal_places=2, default=0.0, max_digits=6)), ('product_name', models.CharField(blank=True, max_length=100, verbose_name='Product name')), ('purchase_process_started', models.DateTimeField(default=django.utils.timezone.now, verbose_name='Purchase process started')), ('purchase_process_success', models.DateTimeField(blank=True, null=True, verbose_name='Purchase process success')), ('purchase_process_failure', models.DateTimeField(blank=True, null=True, verbose_name='Purchase process failure')), ('purchase_process_notified', models.DateTimeField(blank=True, null=True, verbose_name='Purchase process notified')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='purchase_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('hml_reservation', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, to='hmlvaraus.HMLReservation', verbose_name='HMLReservation')), ('modified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='purchase_modified', to=settings.AUTH_USER_MODEL, verbose_name='Modified by')), ], options={ 'abstract': False, }, ), ]
[ "django.db.models.EmailField", "django.db.models.OneToOneField", "django.db.models.IntegerField", "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.DateTimeField", "django.db.models.DecimalField", "django.db.migrations.swappable_dependency", "django.db.models.CharField" ]
[((321, 378), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (352, 378), False, 'from django.db import migrations, models\n'), ((563, 656), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (579, 656), False, 'from django.db import migrations, models\n'), ((686, 779), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'django.utils.timezone.now', 'verbose_name': '"""Time of creation"""'}), "(default=django.utils.timezone.now, verbose_name=\n 'Time of creation')\n", (706, 779), False, 'from django.db import migrations, models\n'), ((809, 906), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'django.utils.timezone.now', 'verbose_name': '"""Time of modification"""'}), "(default=django.utils.timezone.now, verbose_name=\n 'Time of modification')\n", (829, 906), False, 'from django.db import migrations, models\n'), ((938, 999), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(40)', 'verbose_name': '"""Purchase code"""'}), "(max_length=40, verbose_name='Purchase code')\n", (954, 999), False, 'from django.db import migrations, models\n'), ((1036, 1110), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'verbose_name': '"""Reserver name"""'}), "(blank=True, max_length=100, verbose_name='Reserver name')\n", (1052, 1110), False, 'from django.db import migrations, models\n'), ((1156, 1245), 'django.db.models.EmailField', 'models.EmailField', ([], {'blank': '(True)', 'max_length': '(254)', 'verbose_name': '"""Reserver email address"""'}), "(blank=True, max_length=254, verbose_name=\n 'Reserver email address')\n", (1173, 1245), False, 'from django.db import migrations, models\n'), ((1285, 1371), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(30)', 'verbose_name': '"""Reserver phone number"""'}), "(blank=True, max_length=30, verbose_name=\n 'Reserver phone number')\n", (1301, 1371), False, 'from django.db import migrations, models\n'), ((1413, 1502), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'verbose_name': '"""Reserver address street"""'}), "(blank=True, max_length=100, verbose_name=\n 'Reserver address street')\n", (1429, 1502), False, 'from django.db import migrations, models\n'), ((1541, 1626), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(30)', 'verbose_name': '"""Reserver address zip"""'}), "(blank=True, max_length=30, verbose_name='Reserver address zip'\n )\n", (1557, 1626), False, 'from django.db import migrations, models\n'), ((1666, 1753), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'verbose_name': '"""Reserver address city"""'}), "(blank=True, max_length=100, verbose_name=\n 'Reserver address city')\n", (1682, 1753), False, 'from django.db import migrations, models\n'), ((1783, 1839), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'choices': '[0, 10, 14, 24]', 'default': '(24)'}), '(choices=[0, 10, 14, 24], default=24)\n', (1802, 1839), False, 'from django.db import migrations, models\n'), ((1872, 1936), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(2)', 'default': '(0.0)', 'max_digits': '(6)'}), '(decimal_places=2, default=0.0, max_digits=6)\n', (1891, 1936), False, 'from django.db import migrations, models\n'), ((1972, 2045), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(100)', 'verbose_name': '"""Product name"""'}), "(blank=True, max_length=100, verbose_name='Product name')\n", (1988, 2045), False, 'from django.db import migrations, models\n'), ((2093, 2194), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'django.utils.timezone.now', 'verbose_name': '"""Purchase process started"""'}), "(default=django.utils.timezone.now, verbose_name=\n 'Purchase process started')\n", (2113, 2194), False, 'from django.db import migrations, models\n'), ((2237, 2326), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""Purchase process success"""'}), "(blank=True, null=True, verbose_name=\n 'Purchase process success')\n", (2257, 2326), False, 'from django.db import migrations, models\n'), ((2369, 2458), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""Purchase process failure"""'}), "(blank=True, null=True, verbose_name=\n 'Purchase process failure')\n", (2389, 2458), False, 'from django.db import migrations, models\n'), ((2502, 2592), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)', 'verbose_name': '"""Purchase process notified"""'}), "(blank=True, null=True, verbose_name=\n 'Purchase process notified')\n", (2522, 2592), False, 'from django.db import migrations, models\n'), ((2621, 2805), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""purchase_created"""', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Created by"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='purchase_created', to=settings.\n AUTH_USER_MODEL, verbose_name='Created by')\n", (2638, 2805), False, 'from django.db import migrations, models\n'), ((2834, 2966), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""hmlvaraus.HMLReservation"""', 'verbose_name': '"""HMLReservation"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'hmlvaraus.HMLReservation', verbose_name='HMLReservation')\n", (2854, 2966), False, 'from django.db import migrations, models\n'), ((2996, 3182), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""purchase_modified"""', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Modified by"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='purchase_modified', to=settings.\n AUTH_USER_MODEL, verbose_name='Modified by')\n", (3013, 3182), False, 'from django.db import migrations, models\n')]
############################## # # # loxygenK/musical_typer # # メインプログラム # # (c)2020 loxygenK # # All rights reversed. # # # ############################## import sys import os # Python管理ライブラリ import math import pygame from pygame.locals import * # Pygame初期化 pygame.mixer.pre_init(44100, 16, 2, 1024) pygame.mixer.init() pygame.init() # 自作ライブラリ from lib import DrawMethodTemplates from lib.GameSystem import * from lib.ColorTheme import * # FPS管理用インスタンスを生成 fps_clock = pygame.time.Clock() def gs_specify_score(): # ----- [ ゲーム用の情報準備 ] ----- if len(sys.argv) < 2: raise RuntimeError("Song is not specified!") elif not os.path.isfile(sys.argv[1]): raise FileNotFoundError("Specified path is not file, or not exists!") else: print("Game will start at soon. Stay tuned!") # 譜面を読み込む score_data = Score() score_data.read_score(sys.argv[1]) return score_data def gs_main_routine(score_data: Score): # ゲームに必要なインスタンスを生成 ui = Screen() game_info = GameInfo(score_data) keyboard_drawer = DrawingUtil.KeyboardDrawer(ui.screen, 193, ui.full_font, 40, 5, 2) # ループ管理用変数 game_finished_reason = "" mainloop_continues = True # フレームカウンター # 点滅処理などに使う frame_count = 0 # スクリーンのサイズを取得 w, h = ui.screen_size # 次の歌詞を表示するモードに居るか is_tmp_next_lyrics_printing = False is_cont_next_lyrics_printing = False # ランク決定用定数 rank_standard = [200, 150, 125, 100, 99.50, 99, 98, 97, 94, 90, 80, 60, 40, 20, 10, 0] rank_string = ["Wow", "Unexpected", "Very God", "God", "Pro", "Genius", "Geki-tsuyo", "tsuyotusyo", "AAA", "AA", "A", "B", "C", "D", "E", "F"] # ----- [ ゲーム準備 ] ----- # 再生 pygame.mixer.music.set_volume(0.5) pygame.mixer.music.play(1) game_info.pos = 0 # メインループ # (何らかの理由で強制的にメインループを抜ける必要が出てきた or 曲が終わった) while mainloop_continues and pygame.mixer.music.get_pos() >= 0: # ----------------- # 事前計算 # ----------------- # フレームカウンタを更新 frame_count = (frame_count + 1) % 60 # 曲上の現在位置を把握 game_info.pos = pygame.mixer.music.get_pos() / 1000 # 現在の歌詞・ゾーン・セクションを取得 lyx_idx = game_info.update_current_lyrincs() game_info.update_current_zone() sct_idx = game_info.get_current_section() # --------------------------- # イベント処理/ジャッジ # --------------------------- # イベント処理ループ for event in pygame.event.get(): if event.type == QUIT: mainloop_continues = False break if event.type == KEYUP: if event.key == K_SPACE: is_tmp_next_lyrics_printing = False if event.type == KEYDOWN: # ESCキーの場合 if event.key == K_ESCAPE: mainloop_continues = False break if event.key == K_SPACE: is_tmp_next_lyrics_printing = True if event.key == K_LSHIFT or event.key == K_RSHIFT: is_cont_next_lyrics_printing = not is_cont_next_lyrics_printing # 大前提として、無効なキーが押されていないか if Romautil.is_readable_key_pressed(event.key): # これ以上打つキーがない(打ち終わったか、そもそも歌詞がない) if game_info.completed: SoundEffectConstants.unneccesary.play() continue # 正しいキーが押されたか if game_info.is_expected_key(chr(event.key)): # 輪唱で初めての打鍵か if game_info.full[:1] and game_info.sent_count == 0: game_info.override_key_prev_pos() # 成功処理をする got_point = game_info.count_success() # 成功エフェクト ui.add_fg_effector(30, "AC/WA", DrawMethodTemplates.slide_fadeout_text, ["Pass", more_blackish(GREEN_THIN_COLOR, 50), ui.alphabet_font, 10, -150, -383]) if not (is_cont_next_lyrics_printing or is_tmp_next_lyrics_printing): # キーボード上に点数を描画する x, y = keyboard_drawer.get_place(chr(event.key)) x += keyboard_drawer.key_size / 2 x -= ui.full_font.render("+{}".format(got_point), True, TEXT_COLOR).get_width() / 2 ui.add_fg_effector(30, chr(event.key), DrawMethodTemplates.absolute_fadeout, ["+{}".format(got_point), BLUE_THICK_COLOR, ui.full_font, 15, x, y]) # AC/WAのエフェクト if game_info.is_ac: ui.add_fg_effector(120, "AC/WA", DrawMethodTemplates.slide_fadeout_text, ["AC", GREEN_THICK_COLOR, ui.alphabet_font, 20, -170, -383]) ui.add_bg_effector(15, "AC/WA", DrawMethodTemplates.blink_rect, [more_whitish(GREEN_THIN_COLOR, 50), (0, 60, w, 130)]) SoundEffectConstants.ac.play() elif game_info.is_wa: ui.add_fg_effector(120, "AC/WA", DrawMethodTemplates.slide_fadeout_text, ["WA", more_whitish(BLUE_THICK_COLOR, 100), ui.alphabet_font, 20, -170, -383]) ui.add_bg_effector(15, "AC/WA", DrawMethodTemplates.blink_rect, [more_whitish(BLUE_THICK_COLOR, 100), (0, 60, w, 130)]) SoundEffectConstants.wa.play() else: if game_info.is_in_zone and game_info.score.zone[game_info.zone_index]: SoundEffectConstants.special_success.play() else: if game_info.get_key_per_second() > 4: SoundEffectConstants.fast.play() else: SoundEffectConstants.success.play() else: if not game_info.has_to_prevent_miss: # 失敗をカウントする game_info.count_failure() # 効果音を流す SoundEffectConstants.failed.play() # エフェクト ui.add_bg_effector(15, "AC/WA", DrawMethodTemplates.blink_rect, [(255, 200, 200), (0, 60, w, 130)]) ui.add_fg_effector(30, "AC/WA", DrawMethodTemplates.slide_fadeout_text, ["MISS", more_whitish(RED_COLOR, 50), ui.alphabet_font, 10, -150, -383]) else: SoundEffectConstants.unneccesary.play() # ------------ # 計算 # ------------ # ===== 歌詞情報が変化したときの処理 ===== # 歌詞が変わった? if lyx_idx: # TLEの計算をする game_info.apply_TLE() # 最終的なタイプ情報を記録する game_info.sentence_log.append([game_info.sent_count, game_info.sent_miss, game_info.completed]) # TLEした? if len(game_info.target_roma) > 0 and not game_info.has_to_prevent_miss: ui.add_fg_effector(30, "TLE", DrawMethodTemplates.slide_fadeout_text, ["TLE", more_blackish(RED_COLOR, 50), ui.alphabet_font, -10, -150, -383]) ui.add_bg_effector(15, "TLE", DrawMethodTemplates.blink_rect, [more_whitish(RED_COLOR, 50), (0, 60, w, 130)]) SoundEffectConstants.tle.play() else: # 歌詞が変わるまでの待機時間を考慮して、前回のキータイプ時間を早める game_info.override_key_prev_pos() # 歌詞をアップデートする game_info.update_current_lyrics() # 曲が終わった? if game_info.song_finished: # 歌詞情報を消去する game_info.update_current_lyrics("", "") ui.add_bg_effector(60, "S.F.", DrawMethodTemplates.slide_fadeout_text, ["Song Finished!", (255, 127, 0), ui.system_font, 25, 0, 0]) # セクションが変わった? if sct_idx: # セクションを全完した? if game_info.section_miss == 0 and game_info.section_count != 0: # エフェクトとボーナスポイント ui.add_bg_effector(60, "Section AC", DrawMethodTemplates.slide_fadeout_text, ["Section AC!", (255, 127, 0), ui.system_font, 25, 0, 0]) game_info.point += game_info.SECTION_PERFECT_POINT # セクションごとのタイプ情報を記録 game_info.section_log.append([game_info.section_count, game_info.section_miss]) # セクションのデータを削除 game_info.reset_section_score() # --------------- # 画面描画 # ---------------- # [ 背面レイヤー ] # 画面を消去する ui.screen.fill(BACKGROUND_COLOR) # 曲のタイトルなどの情報 DrawingUtil.write_limit(ui.screen, (w - 2, 0), w / 2, ui.alphabet_font, score_data.properties["title"]) DrawingUtil.write_limit(ui.screen, (w - 5, 33), w / 2, ui.system_font, score_data.properties["song_author"] + "/" + score_data.properties["singer"], more_whitish(TEXT_COLOR, 100)) # 残り時間ゲージ pygame.draw.rect(ui.screen, more_blackish(BACKGROUND_COLOR, 25), (0, 60, w, 130)) pygame.draw.rect(ui.screen, more_blackish(BACKGROUND_COLOR, 50), (0, 60, math.floor(game_info.get_time_remain_ratio() * w), 130)) # レイヤーが変わるのでここで背景エフェクトを更新する ui.update_effector(1) # ----- [ 前面レイヤー ] ----- # 歌詞 if game_info.full[:1] != "/" or game_info.sent_count > 0: DrawingUtil.print_progress(ui.screen, (w / 2, 80), MARGIN + 20, ui.nihongo_font, game_info.typed_kana, game_info.target_kana) DrawingUtil.print_progress(ui.screen, (w / 2, 130), MARGIN + 5, ui.full_font, game_info.typed_roma, game_info.target_roma) printout_lyrics = game_info.full if game_info.full[:1] != "/" else game_info.full[1:] ui.print_str(MARGIN - 12, 60, ui.full_font, printout_lyrics, more_whitish(TEXT_COLOR, 30)) # コンボ combo_text = ui.full_font.render(str(game_info.combo), True, more_whitish(TEXT_COLOR, 50)) ui.screen.blit(combo_text, (MARGIN - 12, 157)) ui.print_str(combo_text.get_width() + 5, 165, ui.system_font, "chain", more_whitish(TEXT_COLOR, 75)) # 正確率ゲージ pygame.draw.rect(ui.screen, GREEN_THICK_COLOR if not game_info.is_ac else RED_COLOR, (0, 60, w * game_info.get_sentence_accuracy(), 3)) DrawingUtil.write_limit(ui.screen, (w * game_info.get_rate(limit=True), 168), 0, ui.system_font, rank_string[game_info.calculate_rank()], more_whitish(TEXT_COLOR, 100)) # 達成率ゲージ if game_info.calculate_rank() > 0: acheive_rate = rank_standard[game_info.calculate_rank() - 1] / 100 pygame.draw.rect(ui.screen, RED_COLOR, (0, 187, w * acheive_rate, 3)) pygame.draw.rect(ui.screen, GREEN_THICK_COLOR if game_info.get_rate() < 0.8 else BLUE_THICK_COLOR, (0, 187, w * game_info.get_rate(), 3)) # キーボード if is_tmp_next_lyrics_printing or is_cont_next_lyrics_printing: for i in range(3): lyrics_index = (i + game_info.lyrincs_index + 1) if lyrics_index >= len(game_info.score.score): break ui.print_str(5, 193 + 60 * i, ui.system_font, "[{}]".format(lyrics_index), TEXT_COLOR) if game_info.score.score[lyrics_index][1][:1] != "/": ui.print_str(5, 210 + 60 * i, ui.full_font, game_info.score.score[lyrics_index][1], TEXT_COLOR) ui.print_str(5, 230 + 60 * i, ui.system_font, Romautil.hira2roma(game_info.score.score[lyrics_index][2]), more_whitish(TEXT_COLOR, 50)) else: if game_info.has_to_prevent_miss: keyboard_drawer.draw("", background_color=(192, 192, 192)) else: keyboard_drawer.draw(game_info.target_roma[:1], background_color=(192, 192, 192) if game_info.completed else None) # 点数表示 if game_info.point < 0: if frame_count % 20 < 10: score_color = RED_COLOR else: score_color = BLUE_THICK_COLOR ui.print_str(5, 20, ui.alphabet_font, "{:08d}".format(game_info.point), score_color) else: ui.print_str(5, 20, ui.alphabet_font, "{:08d}".format(game_info.point), BLUE_THICK_COLOR) # --- リアルタイム情報 --- pygame.draw.line(ui.screen, more_whitish(TEXT_COLOR, 100), (0, 375), (w, 375), 2) # タイピング速度 ui.print_str(MARGIN, 382, ui.system_font, "タイピング速度", more_whitish(TEXT_COLOR, 100)) if game_info.get_key_per_second() > 4: color = more_blackish(RED_COLOR, 30 if frame_count % 10 < 5 else 0) pygame.draw.rect(ui.screen, color, (MARGIN, 400, w - MARGIN * 2, 20)) else: pygame.draw.rect(ui.screen, GREEN_THIN_COLOR, (MARGIN, 400, w - MARGIN * 2, 20)) pygame.draw.rect(ui.screen, more_blackish(GREEN_THIN_COLOR, 50), (MARGIN, 400, game_info.get_key_per_second() / 4 * (w - MARGIN * 2), 20)) DrawingUtil.write_center_x(ui.screen, w / 2, 398, ui.system_font, "{:4.2f} Char/sec".format(game_info.get_key_per_second()), TEXT_COLOR) # 正確率の数値情報 ui.print_str(MARGIN, 430, ui.system_font, "正確率", more_whitish(TEXT_COLOR, 100)) pygame.draw.rect(ui.screen, more_blackish(RED_COLOR, 50), (MARGIN + 5, 510, game_info.get_full_accuracy() * 250, 3)) ui.print_str(MARGIN + 5, 430, ui.big_font, "{:05.1f}%".format(game_info.get_full_accuracy() * 100), tuple(x * game_info.get_full_accuracy() for x in RED_COLOR)) # ランク ui.print_str(MARGIN + 320, 430, ui.system_font, "達成率", more_whitish(TEXT_COLOR, 100)) ui.print_str(MARGIN + 330, 430, ui.big_font, "{:05.1f}%".format(game_info.get_rate() * 100), BLUE_THICK_COLOR) # レイヤーが変わるのでここで前面エフェクトを更新する ui.update_effector(0) # FPSカウンタ ui.print_str(3, -3, ui.system_font, "{:5.2f} fps".format(fps_clock.get_fps()), TEXT_COLOR) # ループ終わり fps_clock.tick(60) pygame.display.update() # メインループ終了 print("*****************") print("* LOOP FINISHED *") print("*****************") print(mainloop_continues) print(game_finished_reason) pygame.mixer.music.stop() return game_info def gs_result(game_info): ui = Screen() w, h = ui.screen_size mainloop_continues = True retry = False rank_standard = [200, 150, 125, 100, 99.50, 99, 98, 97, 94, 90, 80, 60, 40, 20, 10, 0] rank_string = ["Wow", "Unexpected", "Very God", "God", "Pro", "Genius", "Geki-tsuyo", "tsuyotusyo", "AAA", "AA", "A", "B", "C", "D", "E", "F"] while mainloop_continues: for event in pygame.event.get(): if event.type == QUIT: mainloop_continues = False break if event.type == KEYDOWN: # ESCキーの場合 if event.key == K_ESCAPE: mainloop_continues = False break elif event.key == K_r: retry = True mainloop_continues = False break ui.screen.fill(BACKGROUND_COLOR) # 曲のタイトルなどの情報 ui.print_str(MARGIN, 0, ui.nihongo_font, score.properties["title"], TEXT_COLOR) ui.print_str(MARGIN, 50, ui.full_font, score.properties["song_author"] + "/" + score.properties["singer"], more_whitish(TEXT_COLOR, 25)) pygame.draw.line(ui.screen, more_whitish(TEXT_COLOR, 100), (0, 90), (w, 90), 2) ui.print_str(MARGIN, 85, ui.big_font, rank_string[game_info.calculate_rank()], more_blackish(RED_COLOR, 150 * (game_info.calculate_rank() + 1) / len(rank_standard))) ui.print_str(MARGIN, 150, ui.nihongo_font, "{:06.2f}%".format(game_info.get_rate() * 100), tuple(x * game_info.get_full_accuracy() for x in RED_COLOR)) if game_info.get_key_per_second() > 4: pygame.draw.rect(ui.screen, more_blackish(RED_COLOR, 30), (MARGIN, 210, w - MARGIN * 2, 20)) else: pygame.draw.rect(ui.screen, GREEN_THIN_COLOR, (MARGIN, 210, w - MARGIN * 2, 20)) pygame.draw.rect(ui.screen, more_blackish(GREEN_THIN_COLOR, 50), (MARGIN, 210, game_info.get_key_per_second() / 4 * (w - MARGIN * 2), 20)) DrawingUtil.write_center_x(ui.screen, w / 2, 208, ui.system_font, "{:4.2f} Char/sec".format(game_info.get_key_per_second()), TEXT_COLOR) if game_info.calculate_rank() > 0: acheive_rate = rank_standard[game_info.calculate_rank() - 1] - game_info.get_rate() * 100 ui.print_str(MARGIN + 200, 160, ui.system_font, "{} まで ".format(rank_string[game_info.calculate_rank() - 1]), BLUE_THICK_COLOR) ui.print_str(MARGIN + 200, 168, ui.alphabet_font, "{:06.2f}% ".format(acheive_rate), BLUE_THICK_COLOR) ui.print_str(MARGIN, 240, ui.system_font, "正確率", more_whitish(TEXT_COLOR, 50)) ui.print_str(MARGIN + 10, 247, ui.nihongo_font, "{:06.2f}%".format(game_info.get_full_accuracy() * 100), tuple(x * game_info.get_full_accuracy() for x in RED_COLOR)) DrawingUtil.write_limit(ui.screen, (w - 15, 150), w / 2, ui.nihongo_font, "{:08}".format(game_info.point)) pygame.draw.line(ui.screen, more_whitish(TEXT_COLOR, 100), (0, 320), (w, 320), 2) # TODO: 21世紀史上もっともひどいデザインをどうにかする ui.print_str(MARGIN - 10, 320, ui.alphabet_font, "[R]/リトライ", TEXT_COLOR) ui.print_str(MARGIN + 300, 320, ui.alphabet_font, "[Esc]/終了", TEXT_COLOR) fps_clock.tick(60) pygame.display.update() return retry def gs_special_error_log(score_data, path): ui = Screen() w, h = ui.screen_size error_index = 0 mainloop_continues = True while mainloop_continues: for event in pygame.event.get(): if event.type == QUIT: mainloop_continues = False break if event.type == KEYDOWN: # ESCキーの場合 if event.key == K_ESCAPE: mainloop_continues = False break if event.key == K_UP: error_index = max(0, error_index - 1) if event.key == K_DOWN: error_index = min(error_index + 1, len(score_data.log) - 1) ui.screen.fill(BACKGROUND_COLOR) ui.print_str(MARGIN - 10, 0, ui.alphabet_font, "読み込みに失敗しました!", RED_COLOR) ui.print_str(MARGIN - 10, 35, ui.system_font, "譜面がおかしなことになっているようです:", RED_COLOR) ui.print_str(MARGIN - 10, 60, ui.system_font, path, TEXT_COLOR) pygame.draw.line(ui.screen, more_whitish(TEXT_COLOR, 100), (0, 83), (w, 83), 2) ui.print_str(MARGIN, 90, ui.system_font, score_data.log[0][1], TEXT_COLOR) ui.print_str(MARGIN, 105, ui.alphabet_font, score_data.log[0][2], TEXT_COLOR) pygame.draw.line(ui.screen, more_whitish(TEXT_COLOR, 100), (0, 160), (w, 160), 2) fps_clock.tick(60) pygame.display.update() if __name__ == '__main__': try: score = gs_specify_score() loop_continues = True while loop_continues: game_result = gs_main_routine(score) loop_continues = gs_result(game_result) finally: pygame.quit()
[ "pygame.init", "pygame.quit", "pygame.event.get", "pygame.mixer.pre_init", "pygame.display.update", "pygame.mixer.music.set_volume", "os.path.isfile", "pygame.draw.rect", "pygame.time.Clock", "pygame.mixer.music.play", "pygame.mixer.music.stop", "pygame.mixer.init", "pygame.mixer.music.get_pos" ]
[((347, 388), 'pygame.mixer.pre_init', 'pygame.mixer.pre_init', (['(44100)', '(16)', '(2)', '(1024)'], {}), '(44100, 16, 2, 1024)\n', (368, 388), False, 'import pygame\n'), ((389, 408), 'pygame.mixer.init', 'pygame.mixer.init', ([], {}), '()\n', (406, 408), False, 'import pygame\n'), ((409, 422), 'pygame.init', 'pygame.init', ([], {}), '()\n', (420, 422), False, 'import pygame\n'), ((559, 578), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (576, 578), False, 'import pygame\n'), ((1808, 1842), 'pygame.mixer.music.set_volume', 'pygame.mixer.music.set_volume', (['(0.5)'], {}), '(0.5)\n', (1837, 1842), False, 'import pygame\n'), ((1847, 1873), 'pygame.mixer.music.play', 'pygame.mixer.music.play', (['(1)'], {}), '(1)\n', (1870, 1873), False, 'import pygame\n'), ((15497, 15522), 'pygame.mixer.music.stop', 'pygame.mixer.music.stop', ([], {}), '()\n', (15520, 15522), False, 'import pygame\n'), ((2566, 2584), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (2582, 2584), False, 'import pygame\n'), ((15297, 15320), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (15318, 15320), False, 'import pygame\n'), ((15974, 15992), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (15990, 15992), False, 'import pygame\n'), ((19025, 19048), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (19046, 19048), False, 'import pygame\n'), ((19260, 19278), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (19276, 19278), False, 'import pygame\n'), ((20448, 20471), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (20469, 20471), False, 'import pygame\n'), ((20729, 20742), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (20740, 20742), False, 'import pygame\n'), ((730, 757), 'os.path.isfile', 'os.path.isfile', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (744, 757), False, 'import os\n'), ((1991, 2019), 'pygame.mixer.music.get_pos', 'pygame.mixer.music.get_pos', ([], {}), '()\n', (2017, 2019), False, 'import pygame\n'), ((2214, 2242), 'pygame.mixer.music.get_pos', 'pygame.mixer.music.get_pos', ([], {}), '()\n', (2240, 2242), False, 'import pygame\n'), ((11723, 11792), 'pygame.draw.rect', 'pygame.draw.rect', (['ui.screen', 'RED_COLOR', '(0, 187, w * acheive_rate, 3)'], {}), '(ui.screen, RED_COLOR, (0, 187, w * acheive_rate, 3))\n', (11739, 11792), False, 'import pygame\n'), ((13844, 13913), 'pygame.draw.rect', 'pygame.draw.rect', (['ui.screen', 'color', '(MARGIN, 400, w - MARGIN * 2, 20)'], {}), '(ui.screen, color, (MARGIN, 400, w - MARGIN * 2, 20))\n', (13860, 13913), False, 'import pygame\n'), ((13940, 14025), 'pygame.draw.rect', 'pygame.draw.rect', (['ui.screen', 'GREEN_THIN_COLOR', '(MARGIN, 400, w - MARGIN * 2, 20)'], {}), '(ui.screen, GREEN_THIN_COLOR, (MARGIN, 400, w - MARGIN * 2, 20)\n )\n', (13956, 14025), False, 'import pygame\n'), ((17426, 17511), 'pygame.draw.rect', 'pygame.draw.rect', (['ui.screen', 'GREEN_THIN_COLOR', '(MARGIN, 210, w - MARGIN * 2, 20)'], {}), '(ui.screen, GREEN_THIN_COLOR, (MARGIN, 210, w - MARGIN * 2, 20)\n )\n', (17442, 17511), False, 'import pygame\n')]
#!/usr/bin/env python """Generic definition of a robot. Currently subclasses from the iRobotCreate class to allow for physical control of an iRobot Create base (if the Robot class is configured to control hardware) but could be subclassed to use other physical hardware in the future. A robot has a planner that allows it to select goals and a map to keep track of other robots, feasible regions to which it can move, an occupancy grid representation of the world, and role-specific information (such as a probability layer for the rop robot to keep track of where robber robots may be). """ __author__ = "<NAME>" __copyright__ = "Copyright 2015, Cohrint" __credits__ = ["<NAME>", "<NAME>"] __license__ = "GPL" __version__ = "1.0.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" import logging import math import random import numpy as np from shapely.geometry import Point, Polygon from cops_and_robots.robo_tools.pose import Pose from cops_and_robots.robo_tools.iRobot_create import iRobotCreate from cops_and_robots.robo_tools.planner import (MissionPlanner, GoalPlanner, PathPlanner, Controller) from cops_and_robots.map_tools.map import Map from cops_and_robots.map_tools.map_elements import MapObject class Robot(iRobotCreate): """Class definition for the generic robot object. .. image:: img/classes_Robot.png Parameters ---------- name : str The robot's name. pose : array_like, optional The robot's initial [x, y, theta] in [m,m,degrees] (defaults to [0, 0.5, 0]). map_name : str, optional The name of the map (defaults to 'fleming'). role : {'robber','cop'}, optional The robot's role in the cops and robbers game. status : two-element list of strings, optional The robot's initial mission status and movement status. Cops and robbers share possible movement statuses, but their mission statuses differ entirely. Defaults to ['on the run', 'without a goal']. planner_type: {'simple', 'particle', 'MAP'}, optional The robot's type of planner. consider_others : bool, optional Whether this robot generates other robot models (e.g. the primary cop will imagine other robots moving around.) Defaults to false. **kwargs Arguments passed to the ``MapObject`` attribute. """ def __init__(self, name, pose=None, pose_source='python', color_str='darkorange', map_cfg={}, create_mission_planner=True, goal_planner_cfg={}, path_planner_cfg={}, **kwargs): # Object attributes self.name = name self.pose_source = pose_source # Setup map self.map = Map(**map_cfg) # If pose is not given, randomly place in feasible layer. feasible_robot_generated = False if pose is None: while not feasible_robot_generated: x = random.uniform(self.map.bounds[0], self.map.bounds[2]) y = random.uniform(self.map.bounds[1], self.map.bounds[3]) if self.map.feasible_layer.pose_region.contains(Point([x, y])): feasible_robot_generated = True theta = random.uniform(0, 359) pose = [x, y, theta] self.pose2D = Pose(self, pose, pose_source) self.pose_history = np.array(([0, 0, 0], self.pose2D.pose)) if pose_source == 'python': self.publish_to_ROS = False else: self.publish_to_ROS = True # Setup planners if create_mission_planner: self.mission_planner = MissionPlanner(self) self.goal_planner = GoalPlanner(self, **goal_planner_cfg) # If pose_source is python, this robot is just in simulation if not self.publish_to_ROS: self.path_planner = PathPlanner(self, **path_planner_cfg) self.controller = Controller(self) # Define MapObject # <>TODO: fix this horrible hack if self.name == 'Deckard': pose = [0, 0, -np.pi/4] r = iRobotCreate.DIAMETER / 2 n_sides = 4 pose = [0, 0, -np.pi/4] x = [r * np.cos(2 * np.pi * n / n_sides + pose[2]) + pose[0] for n in range(n_sides)] y = [r * np.sin(2 * np.pi * n / n_sides + pose[2]) + pose[1] for n in range(n_sides)] shape_pts = Polygon(zip(x, y)).exterior.coords else: shape_pts = Point([0, 0]).buffer(iRobotCreate.DIAMETER / 2)\ .exterior.coords self.map_obj = MapObject(self.name, shape_pts[:], has_relations=False, blocks_camera=False, color_str=color_str) self.update_shape() def update_shape(self): """Update the robot's map_obj. """ self.map_obj.move_absolute(self.pose2D.pose) def update(self, i=0): """Update all primary functionality of the robot. This includes planning and movement for both cops and robbers, as well as sensing and map animations for cops. Parameters ---------- i : int, optional The current animation frame. Default is 0 for non-animated robots. Returns ------- tuple or None `None` if the robot does not generate an animation packet, or a tuple of all animation parameters otherwise. """ # <>TODO: @Matt Figure out how to move this back to pose class. if self.pose_source == 'tf': self.pose2D.tf_update() if self.mission_planner.mission_status is not 'stopped': # Update statuses and planners self.mission_planner.update() self.goal_planner.update() if self.publish_to_ROS is False: self.path_planner.update() self.controller.update() # Add to the pose history, update the map self.pose_history = np.vstack((self.pose_history, self.pose2D.pose[:])) self.update_shape() ############################################################################### # Custom Robot classes ############################################################################### class ImaginaryRobot(object): """An imaginary robber for the cop Represents what the cop thinks the robber is doing. Includes robber's real pose for psuedo detection. """ def __init__(self, name, pose=None): self.name = name self.pose2D = pose class Distractor(Robot): """The Distractor subclass of the generic robot type. Distractors act as distractions during search. They can be given move goals, but do not interact with other robots Parameters ---------- name : str The distractor's name. pose : list of float, optional The robots's initial [x, y, theta] (defaults to [0, 0.5, 90]). planner_type: {'simple', 'particle', 'MAP'} The robot's own type of planner. Attributes ---------- planner """ mission_planner_defaults = {} goal_planner_defaults = {'type_': 'stationary'} path_planner_defaults = {'type_': 'direct'} def __init__(self, name, pose=[0, 0, 90], pose_source='python', map_cfg={}, mission_planner_cfg={}, goal_planner_cfg={}, path_planner_cfg={}, **kwargs): # Use class defaults for kwargs not included mp_cfg = Distractor.mission_planner_defaults.copy() mp_cfg.update(mission_planner_cfg) gp_cfg = Distractor.goal_planner_defaults.copy() gp_cfg.update(goal_planner_cfg) pp_cfg = Distractor.path_planner_defaults.copy() pp_cfg.update(path_planner_cfg) # Superclass and compositional attributes super(Distractor, self).__init__(name, pose=pose, pose_source=pose_source, goal_planner_cfg=gp_cfg, path_planner_cfg=pp_cfg, map_cfg=map_cfg, color_str='darkgreen')
[ "cops_and_robots.robo_tools.planner.MissionPlanner", "cops_and_robots.robo_tools.pose.Pose", "random.uniform", "cops_and_robots.map_tools.map.Map", "numpy.sin", "shapely.geometry.Point", "numpy.array", "cops_and_robots.robo_tools.planner.GoalPlanner", "numpy.vstack", "numpy.cos", "cops_and_robots.map_tools.map_elements.MapObject", "cops_and_robots.robo_tools.planner.PathPlanner", "cops_and_robots.robo_tools.planner.Controller" ]
[((2978, 2992), 'cops_and_robots.map_tools.map.Map', 'Map', ([], {}), '(**map_cfg)\n', (2981, 2992), False, 'from cops_and_robots.map_tools.map import Map\n'), ((3555, 3584), 'cops_and_robots.robo_tools.pose.Pose', 'Pose', (['self', 'pose', 'pose_source'], {}), '(self, pose, pose_source)\n', (3559, 3584), False, 'from cops_and_robots.robo_tools.pose import Pose\n'), ((3613, 3652), 'numpy.array', 'np.array', (['([0, 0, 0], self.pose2D.pose)'], {}), '(([0, 0, 0], self.pose2D.pose))\n', (3621, 3652), True, 'import numpy as np\n'), ((3927, 3964), 'cops_and_robots.robo_tools.planner.GoalPlanner', 'GoalPlanner', (['self'], {}), '(self, **goal_planner_cfg)\n', (3938, 3964), False, 'from cops_and_robots.robo_tools.planner import MissionPlanner, GoalPlanner, PathPlanner, Controller\n'), ((4901, 5002), 'cops_and_robots.map_tools.map_elements.MapObject', 'MapObject', (['self.name', 'shape_pts[:]'], {'has_relations': '(False)', 'blocks_camera': '(False)', 'color_str': 'color_str'}), '(self.name, shape_pts[:], has_relations=False, blocks_camera=False,\n color_str=color_str)\n', (4910, 5002), False, 'from cops_and_robots.map_tools.map_elements import MapObject\n'), ((3476, 3498), 'random.uniform', 'random.uniform', (['(0)', '(359)'], {}), '(0, 359)\n', (3490, 3498), False, 'import random\n'), ((3878, 3898), 'cops_and_robots.robo_tools.planner.MissionPlanner', 'MissionPlanner', (['self'], {}), '(self)\n', (3892, 3898), False, 'from cops_and_robots.robo_tools.planner import MissionPlanner, GoalPlanner, PathPlanner, Controller\n'), ((4142, 4179), 'cops_and_robots.robo_tools.planner.PathPlanner', 'PathPlanner', (['self'], {}), '(self, **path_planner_cfg)\n', (4153, 4179), False, 'from cops_and_robots.robo_tools.planner import MissionPlanner, GoalPlanner, PathPlanner, Controller\n'), ((4210, 4226), 'cops_and_robots.robo_tools.planner.Controller', 'Controller', (['self'], {}), '(self)\n', (4220, 4226), False, 'from cops_and_robots.robo_tools.planner import MissionPlanner, GoalPlanner, PathPlanner, Controller\n'), ((6302, 6353), 'numpy.vstack', 'np.vstack', (['(self.pose_history, self.pose2D.pose[:])'], {}), '((self.pose_history, self.pose2D.pose[:]))\n', (6311, 6353), True, 'import numpy as np\n'), ((3194, 3248), 'random.uniform', 'random.uniform', (['self.map.bounds[0]', 'self.map.bounds[2]'], {}), '(self.map.bounds[0], self.map.bounds[2])\n', (3208, 3248), False, 'import random\n'), ((3269, 3323), 'random.uniform', 'random.uniform', (['self.map.bounds[1]', 'self.map.bounds[3]'], {}), '(self.map.bounds[1], self.map.bounds[3])\n', (3283, 3323), False, 'import random\n'), ((3388, 3401), 'shapely.geometry.Point', 'Point', (['[x, y]'], {}), '([x, y])\n', (3393, 3401), False, 'from shapely.geometry import Point, Polygon\n'), ((4490, 4531), 'numpy.cos', 'np.cos', (['(2 * np.pi * n / n_sides + pose[2])'], {}), '(2 * np.pi * n / n_sides + pose[2])\n', (4496, 4531), True, 'import numpy as np\n'), ((4605, 4646), 'numpy.sin', 'np.sin', (['(2 * np.pi * n / n_sides + pose[2])'], {}), '(2 * np.pi * n / n_sides + pose[2])\n', (4611, 4646), True, 'import numpy as np\n'), ((4796, 4809), 'shapely.geometry.Point', 'Point', (['[0, 0]'], {}), '([0, 0])\n', (4801, 4809), False, 'from shapely.geometry import Point, Polygon\n')]
# Copyright 2019 Google LLC # # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file or at # https://developers.google.com/open-source/licenses/bsd import collections import json import pprint import sys import pprint as pp import traceback import numpy as np import jax.numpy as jnp from jax import jit, make_jaxpr, xla_computation from jax import random from jax import lax scary_map = map def map(f, *args): return list(scary_map(f, *args)) class JaxFunction(object): def __init__(self, binders, decls, results): for b in binders: assert isinstance(b, Var) for b, op in decls: assert isinstance(b, Var) assert isinstance(op, Operation) for r in results: assert isinstance(r, Atom) self.binders = binders self.decls = decls self.results = results def ser(self): assert False @staticmethod def des(obj): binders_ser, (decls_ser, results_ser) = obj binders = map(Var.des, binders_ser) results = map(Atom.des, results_ser) decls = [(Var.des(b), Operation.des(op)) for (b, op) in decls_ser] return JaxFunction(binders, decls, results) class Name(object): def __init__(self, namespace, root, i): assert isinstance(i, int) assert isinstance(namespace, str) assert isinstance(root, str) self._name = (namespace, root, i) @staticmethod def des(obj): namespace, root, i = obj return Name(namespace, root, i) def ser(self): return {"tag":"Name", "contents": list(self._name)} def __repr__(self): return str(self) def __str__(self): (_, root, i) = self._name if i == 0: return root else: return root + str(i) def __eq__(self, other): assert isinstance(other, Name) return self._name == other._name def __hash__(self): return hash(self._name) class IdxVar(object): def __init__(self, name, size): assert isinstance(name, Name) assert isinstance(size, int) self.name = name self.size = size def __repr__(self): return str(self) def __str__(self): return str(self.name) + ":" + str(self.size) def __eq__(self, other): assert isinstance(other, IdxVar) return self.name == other.name def __hash__(self): return hash(self.name) @staticmethod def des(obj): name, idxSize = obj assert name["tag"] == "Name" return IdxVar(Name.des(name["contents"]), idxSize) class Var(object): def __init__(self, name, ty): assert isinstance(ty, Ty) assert isinstance(name, Name) self.name = name self.ty = ty def __repr__(self): return str(self) def __str__(self): return str(self.name) + ":" + str(self.ty) def __eq__(self, other): assert isinstance(other, Var) return self.name == other.name def __hash__(self): return hash(self.name) def ser(self): return [self.name.ser(), self.ty.ser()] @staticmethod def des(obj): name, (shape, basetype) = obj assert name["tag"] == "Name" return Var(Name.des(name["contents"]), Ty(shape, basetype)) class Atom(object): def __init__(self, case, data): self.case = case if case == "Var": assert isinstance(data, Var) self.var = data elif case == "Lit": assert isinstance(data, arrayish_types), type(data) self.val = data else: assert False def __repr__(self): return str(self) def __str__(self): if self.case == "Var": return str(self.var) elif self.case == "Lit": return str(self.val) else: assert False @property def ty(self): if self.case == "Var": return self.var.ty elif self.case == "Lit": x = self.val return array_ty(x) else: assert False @staticmethod def des(obj): if obj["tag"] == "JVar": val = obj["contents"] return Atom("Var", Var.des(val)) elif obj["tag"] == "JLit": shape, vec = obj["contents"] val = np.array(vec["contents"], dtype=vec_dtype(vec)).reshape(shape) return Atom("Lit", val) class IndexedAtom(object): def __init__(self, atom, idxs): assert isinstance(atom, Atom) for i in idxs: assert isinstance(i, IdxVar) self.atom = atom self.idxs = idxs @property def ty(self): atom_ty = self.atom.ty return Ty(atom_ty.shape[:len(self.idxs)], atom_ty.basetype) @staticmethod def des(obj): atom, idxs = obj return IndexedAtom(Atom.des(atom), map(IdxVar.des, idxs)) def __repr__(self): return str(self) def __str__(self): return str(self.atom) + "".join("." + str(i) for i in self.idxs) class Ty(object): def __init__(self, shape, basetype): for n in shape: assert isinstance(n, int) assert basetype in ["IntType", "BoolType", "RealType"] self.basetype = basetype self.shape = tuple(shape) def ser(self): return [self.shape, self.basetype] def __eq__(self, other): assert isinstance(other, Ty) return self.basetype == other.basetype and self.shape == other.shape @staticmethod def des(obj): assert False def __repr__(self): return str(self) def __str__(self): return self.basetype + str(self.shape) MapIdx = "MapIdx" SumIdx = "SumIdx" class Operation(object): def __init__(self, binders, op_name, size_args, args): for (i, flavor) in binders: assert isinstance(i, IdxVar) assert flavor in (MapIdx, SumIdx) assert isinstance(op_name, str) for size in size_args: assert isinstance(size, int) for arg in args: assert isinstance(arg, IndexedAtom) self.binders = binders self.op_name = op_name self.size_args = size_args self.args = args @property def all_idxs(self): return [i for i, _ in self.binders] def ser(self): assert False @staticmethod def des(obj): binders_ser, op_and_args_ser = obj binders = [(IdxVar.des(i), fl) for i, fl in binders_ser] op_name, size_args, args = des_op_and_args(op_and_args_ser) return Operation(binders, op_name, size_args, args) def __repr__(self): return str(self) def __str__(self): return "for {} . {} {}".format( self.binders, self.op_name, tuple(self.args)) def array_ty(x): return Ty(x.shape, dtype_basetype(x.dtype)) def ser_array(arr): assert isinstance(arr, arrayish_types) return ser_flat_vec(arr.ravel()) def ser_flat_vec(vec): if vec.dtype in [np.int32, np.int64]: return {"tag":"IntVec", "contents": map(int, vec)} if vec.dtype in [np.float32, np.float64]: return {"tag":"DoubleVec", "contents": map(float, vec)} else: assert False def des_op_and_args(obj): tag = obj["tag"] if tag == "JScalarBinOp": binop_name, x_ser, y_ser = obj["contents"] x = IndexedAtom.des(x_ser) y = IndexedAtom.des(y_ser) return binop_name["tag"], [], [x, y] if tag == "JScalarUnOp": unop_name, x_ser = obj["contents"] x = IndexedAtom.des(x_ser) return unop_name, [], [x] elif tag == "JIota": size = obj["contents"] assert isinstance(size, int) return "Iota", [size], [] elif tag == "JId": x_ser = obj["contents"] x = IndexedAtom.des(x_ser) return "Id", [], [x] elif tag == "JGet": x_ser, y_ser = obj["contents"] x = IndexedAtom.des(x_ser) y = IndexedAtom.des(y_ser) return "Get", [], [x, y] elif tag == "JThreeFry2x32": x_ser, y_ser = obj["contents"] x = IndexedAtom.des(x_ser) y = IndexedAtom.des(y_ser) return "ThreeFry2x32", [], [x, y] else: raise Exception("Not implemented: " + str(tag)) global_env = {} def eval_op(op): if op.op_name in ("FMul", "IMul"): ans = eval_einsum(op) return Atom("Lit", ans) else: broadcast_ans = eval_for(op) sum_axes = tuple(i for (i, (_, fl)) in enumerate(op.binders) if fl == SumIdx) if sum_axes == (): return Atom("Lit", broadcast_ans) else: summed_ans = np.sum(broadcast_ans, axis=sum_axes) return Atom("Lit", summed_ans) def eval_einsum(op): assert op.op_name in ("FMul", "IMul") x, y = op.args x_axes = [str(i.name) for i in x.idxs] y_axes = [str(i.name) for i in y.idxs] out_axes = [str(i.name) for i, f in op.binders if f != SumIdx] return jnp.einsum(x.atom.val, x_axes, y.atom.val, y_axes, out_axes) def eval_for(op): if op.op_name in ("IAdd", "IMul", "FAdd", "FMul", "FDiv"): x, y = op.args x_bc = broadcast_dims(op.all_idxs, x.idxs, x.atom.val) y_bc = broadcast_dims(op.all_idxs, y.idxs, y.atom.val) if op.op_name in ("IAdd", "FAdd"): return jnp.add(x_bc, y_bc) elif op.op_name in ("IMul", "FMul"): return jnp.multiply(x_bc, y_bc) if op.op_name in ("FDiv",): return jnp.divide(x_bc, y_bc) else: raise Exception("Not implemented: " + str(op.op_name)) elif op.op_name == "Iota": n, = op.size_args val = jnp.arange(n) val_bc = broadcast_dims(op.all_idxs, [], val) return val_bc elif op.op_name == "Id": x, = op.args x_bc = broadcast_dims(op.all_idxs, x.idxs, x.atom.val) return x_bc elif op.op_name == "Get": x, idx = op.args out_shape = [i.size for i in op.all_idxs] x_idxs_used = get_stack_idxs_used(op.all_idxs, x.idxs) leading_idx_arrays = [] for i, idx_used in enumerate(x_idxs_used): if idx_used: leading_idx_arrays.append(nth_iota(out_shape, i)) else: pass payload_idx_array = broadcast_dims(op.all_idxs, idx.idxs, idx.atom.val) out = x.atom.val[tuple(leading_idx_arrays) + (payload_idx_array,)] return out elif op.op_name == "IntToReal": x, = op.args real_val = jnp.array(x.atom.val, dtype="float32") x_bc = broadcast_dims(op.all_idxs, x.idxs, real_val) return x_bc elif op.op_name in ("FNeg", "INeg"): x, = op.args x_bc = broadcast_dims(op.all_idxs, x.idxs, jnp.negative(x.atom.val)) return x_bc elif op.op_name == "ThreeFry2x32": convert_64_to_32s = lambda x: np.array([x]).view(np.uint32) convert_32s_to_64 = lambda x: np.int64(np.array(x).view(np.int64).item()) x, y = op.args key, count = convert_64_to_32s(x.atom.val), convert_64_to_32s(y.atom.val) result = convert_32s_to_64(random.threefry_2x32(key, count)) x_bc = broadcast_dims(op.all_idxs, x.idxs, result) return x_bc else: raise Exception("Unrecognized op: {}".format(op.op_name)) def broadcast_dims(for_idxs, idxs, x): shape = [i.size for i in for_idxs] idxs_used = get_stack_idxs_used(for_idxs, idxs) bcast_dims = [i for i, b in enumerate(idxs_used) if b] return lax.broadcast_in_dim(x, shape, bcast_dims) def broadcast_with(x, final_shape, idxs_used): rem_shape = list(x.shape[sum(idxs_used):]) reshape_shape = [size if use else 1 for (size, use) in zip(final_shape, idxs_used)] x_singletons = jnp.reshape(x, reshape_shape + rem_shape) return jnp.broadcast_to(x_singletons, final_shape + rem_shape) def nth_iota(shape, i): size = shape[i] iota = jnp.arange(size) idxs_used = [Discard for _ in shape] idxs_used[i] = Use return broadcast_with(iota, shape, idxs_used) Use = True Discard = False def get_stack_idxs_used(for_idxs, idxs): stack_vars = [] cur_idxs = list(idxs) for i in for_idxs: if cur_idxs and i == cur_idxs[0]: stack_vars.append(Use) cur_idxs = cur_idxs[1:] else: stack_vars.append(Discard) return stack_vars arrayish_types = (jnp.ndarray, np.ndarray, np.int64, np.float64, np.float32) def subst_op(env, op): args = [IndexedAtom(subst_atom(env, x.atom), x.idxs) for x in op.args] return Operation(op.binders, op.op_name, op.size_args, args) def subst_atom(env, x): assert isinstance(x, Atom) if x.case == "Var": return env[x.var] elif x.case == "Lit": return x else: assert False def dtype_basetype(x): if x in [np.int32, np.int64]: return "IntType" elif x in [np.float32, np.float64]: return "RealType" else: assert False, x def vec_dtype(vec): if vec["tag"] == "IntVec": return np.int64 elif vec["tag"] == "DoubleVec": return np.float64 else: assert False def atom_as_var(x): assert isinstance(x, Atom) i = len(global_env) name = Name("ArrayName", "arr", i) v = Var(name, x.ty) assert v not in global_env global_env[v] = x return v def eval_function_application(top_arg): def run(): f = JaxFunction.des(top_arg[0]) args = [Atom("Var", Var.des(x)) for x in top_arg[1]] env = global_env.copy() args_subst = [subst_atom(env, arg) for arg in args] for v, arg in zip(f.binders, args_subst): env[v] = arg for (v, op) in f.decls: ans = eval_op(subst_op(env, op)) if not (v.ty == ans.ty): print(op) raise Exception("Unexpected type. Expected {}, got {}".format(v.ty, ans.ty)) env[v] = ans return [subst_atom(env, r).val for r in f.results] outs = run() irdump = str(make_jaxpr(run)()) return [atom_as_var(Atom("Lit", out)).ser() for out in outs], irdump def check_type(ty, val): assert isinstance(ty, Ty) def retrieve_arrays(arrs): vs = map(Var.des, arrs) return [ser_array(global_env[v].val) for v in vs] def just_print_it(obj): print(obj) return () def run_server(functions): readChan, writeChan = sys.argv[1:] with open(writeChan, "w") as w: for line in open(readChan): (f_idx, arg) = json.loads(line) try: f = functions[f_idx] ans = {"Right" : f(arg)} except Exception as e: traceback.print_exc() ans = {"Left": traceback.format_exc()} w.write(json.dumps(ans) + "\n") w.flush() if __name__ == "__main__": run_server([eval_function_application, retrieve_arrays, just_print_it])
[ "traceback.format_exc", "jax.numpy.reshape", "json.loads", "jax.make_jaxpr", "jax.numpy.divide", "jax.numpy.arange", "jax.numpy.einsum", "jax.numpy.broadcast_to", "json.dumps", "jax.numpy.array", "jax.numpy.negative", "numpy.sum", "jax.random.threefry_2x32", "numpy.array", "jax.numpy.add", "traceback.print_exc", "jax.lax.broadcast_in_dim", "jax.numpy.multiply" ]
[((8127, 8187), 'jax.numpy.einsum', 'jnp.einsum', (['x.atom.val', 'x_axes', 'y.atom.val', 'y_axes', 'out_axes'], {}), '(x.atom.val, x_axes, y.atom.val, y_axes, out_axes)\n', (8137, 8187), True, 'import jax.numpy as jnp\n'), ((10448, 10490), 'jax.lax.broadcast_in_dim', 'lax.broadcast_in_dim', (['x', 'shape', 'bcast_dims'], {}), '(x, shape, bcast_dims)\n', (10468, 10490), False, 'from jax import lax\n'), ((10687, 10728), 'jax.numpy.reshape', 'jnp.reshape', (['x', '(reshape_shape + rem_shape)'], {}), '(x, reshape_shape + rem_shape)\n', (10698, 10728), True, 'import jax.numpy as jnp\n'), ((10738, 10793), 'jax.numpy.broadcast_to', 'jnp.broadcast_to', (['x_singletons', '(final_shape + rem_shape)'], {}), '(x_singletons, final_shape + rem_shape)\n', (10754, 10793), True, 'import jax.numpy as jnp\n'), ((10846, 10862), 'jax.numpy.arange', 'jnp.arange', (['size'], {}), '(size)\n', (10856, 10862), True, 'import jax.numpy as jnp\n'), ((7818, 7854), 'numpy.sum', 'np.sum', (['broadcast_ans'], {'axis': 'sum_axes'}), '(broadcast_ans, axis=sum_axes)\n', (7824, 7854), True, 'import numpy as np\n'), ((8457, 8476), 'jax.numpy.add', 'jnp.add', (['x_bc', 'y_bc'], {}), '(x_bc, y_bc)\n', (8464, 8476), True, 'import jax.numpy as jnp\n'), ((8601, 8623), 'jax.numpy.divide', 'jnp.divide', (['x_bc', 'y_bc'], {}), '(x_bc, y_bc)\n', (8611, 8623), True, 'import jax.numpy as jnp\n'), ((8756, 8769), 'jax.numpy.arange', 'jnp.arange', (['n'], {}), '(n)\n', (8766, 8769), True, 'import jax.numpy as jnp\n'), ((12769, 12784), 'jax.make_jaxpr', 'make_jaxpr', (['run'], {}), '(run)\n', (12779, 12784), False, 'from jax import jit, make_jaxpr, xla_computation\n'), ((13221, 13237), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (13231, 13237), False, 'import json\n'), ((8531, 8555), 'jax.numpy.multiply', 'jnp.multiply', (['x_bc', 'y_bc'], {}), '(x_bc, y_bc)\n', (8543, 8555), True, 'import jax.numpy as jnp\n'), ((13348, 13369), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (13367, 13369), False, 'import traceback\n'), ((13431, 13446), 'json.dumps', 'json.dumps', (['ans'], {}), '(ans)\n', (13441, 13446), False, 'import json\n'), ((9516, 9554), 'jax.numpy.array', 'jnp.array', (['x.atom.val'], {'dtype': '"""float32"""'}), "(x.atom.val, dtype='float32')\n", (9525, 9554), True, 'import jax.numpy as jnp\n'), ((13393, 13415), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (13413, 13415), False, 'import traceback\n'), ((9731, 9755), 'jax.numpy.negative', 'jnp.negative', (['x.atom.val'], {}), '(x.atom.val)\n', (9743, 9755), True, 'import jax.numpy as jnp\n'), ((10080, 10112), 'jax.random.threefry_2x32', 'random.threefry_2x32', (['key', 'count'], {}), '(key, count)\n', (10100, 10112), False, 'from jax import random\n'), ((9844, 9857), 'numpy.array', 'np.array', (['[x]'], {}), '([x])\n', (9852, 9857), True, 'import numpy as np\n'), ((9917, 9928), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (9925, 9928), True, 'import numpy as np\n')]
from pymongo import MongoClient def get_all_publications(): print("View all publications: ") client = MongoClient('mongodb://localhost:27017', username='root', password='<PASSWORD>') db = client['publicationsDB'] cursor = db.publications.find() for publication in cursor: print(publication) get_all_publications()
[ "pymongo.MongoClient" ]
[((111, 196), 'pymongo.MongoClient', 'MongoClient', (['"""mongodb://localhost:27017"""'], {'username': '"""root"""', 'password': '"""<PASSWORD>"""'}), "('mongodb://localhost:27017', username='root', password='<PASSWORD>'\n )\n", (122, 196), False, 'from pymongo import MongoClient\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2017-03-01 06:42 from __future__ import unicode_literals from django.db import migrations from django.contrib.auth.hashers import make_password def create_default_superuser(apps, schema_editor): """ Creates a default super user """ User = apps.get_model('auth', 'user') default_super_user = User( username="admin", is_superuser=True, password=make_password("<PASSWORD>"), is_staff=True ) default_super_user.save() class Migration(migrations.Migration): dependencies = [ ('squealy', '0001_initial'), ] operations = [ migrations.RunPython(create_default_superuser), ]
[ "django.db.migrations.RunPython", "django.contrib.auth.hashers.make_password" ]
[((667, 713), 'django.db.migrations.RunPython', 'migrations.RunPython', (['create_default_superuser'], {}), '(create_default_superuser)\n', (687, 713), False, 'from django.db import migrations\n'), ((446, 473), 'django.contrib.auth.hashers.make_password', 'make_password', (['"""<PASSWORD>"""'], {}), "('<PASSWORD>')\n", (459, 473), False, 'from django.contrib.auth.hashers import make_password\n')]
import random import numpy as np import os import sys import torch from torch.autograd import Variable import sys sys.path.append(".") import utils # if running from root folder, else append '..' class DataLoader(object): """Stores dataset_params, vocabulary ad tags with their mapping to indices""" def __init__(self, data_dir, params): """Loads dataset_params, vocabulary and tags. Ensure you have already run build_vocab.py on data_dir""" json_path = os.path.join(data_dir, 'dataset_params.json') assert os.path.isfile( json_path), "No json file found at {}, run build_vocab.py".format(json_path) self.dataset_params = utils.Params(json_path) # loading vocab vocab_path = os.path.join(data_dir, 'words.txt') self.vocab = {} with open(vocab_path) as f: # map words to their indices for i, l in enumerate(f.read().splitlines()): self.vocab[l] = i # setting the indices for UNKnown words and PADding symbols self.unk_ind = self.vocab[self.dataset_params.unk_word] self.pad_ind = self.vocab[self.dataset_params.pad_word] # loading tags tags_path = os.path.join(data_dir, 'tags.txt') self.tag_map = {} with open(tags_path) as f: for i, t in enumerate(f.read().splitlines()): # map tags to their indices self.tag_map[t] = i # adding dataset parameters to param params.update(json_path) def load_sentences_labels(self, sentences_file, labels_file, d): """ Loads sentences and labels from their corresponding files. Maps tokens and tags to their indices and stores them in the provided dict d. Args: sentences_file: (string) file with sentences with tokens space-separated labels_file: (string) file with NER tags for the sentences in labels_file d: (dict) a dictionary in which the loaded data is stored """ sentences = [] labels = [] with open(sentences_file) as f: for sentence in f.read().splitlines(): s = [self.vocab[token] if token in self.vocab else self.unk_ind for token in sentence.split(' ')] sentences.append(s) with open(labels_file) as f: for sentence in f.read().splitlines(): l = [self.tag_map[label] for label in sentence.split(' ')] labels.append(l) # ensure there is a tag for each token assert len(labels) == len(sentences) for i in range(len(labels)): assert len(labels[i]) == len(sentences[i]) # storing sentences and labels in a dict d['data'] = sentences d['labels'] = labels d['size'] = len(sentences) def load_data(self, types, data_dir): """Loads data for each type in types from data_dir""" data = {} for split in ['train', 'val', 'test']: if split in types: sentences_file = os.path.join(data_dir, split, 'sentences.txt') labels_file = os.path.join(data_dir, split, 'labels.txt') data[split] = {} self.load_sentences_labels( sentences_file, labels_file, data[split]) return data def data_iterator(self, data, params, shuffle=False): """ Returns a generator that yields batches of data with labels. Batch size is params.batch_size. Expires after one pass over the data. Args: data: (dict) contains data which has keys 'data', 'labels' and 'size' params: (Params) hyperparameters of the training process. shuffle: (bool) whether the data should be shuffled Yields: batch_data: (Variable) dimension batch_size x seq_len with the sentence data batch_labels: (Variable) dimension batch_size x seq_len with the corresponding labels """ # make a list that decides the order in which we go over the data- this avoids explicit shuffling of data order = list(range(data['size'])) if shuffle: random.seed(230) random.shuffle(order) # one pass over data for i in range(data['size'] + 1 // params.batch_size): # fetch sentences and tags batch_sentences = [data['data'][idx] for idx in order[i * params.batch_size:(i + 1) * params.batch_size]] batch_tags = [data['labels'][idx] for idx in order[i * params.batch_size:(i + 1) * params.batch_size]] # compute length of longest sentence in the batch batch_max_len = max([len(s) for s in batch_sentences]) # prepare a numpy array with the data, initialising the data with pad_ind and all labels with -1 # initialising labels to -1 differentiates tokens with tags from PADding tokens batch_data = self.pad_ind * \ np.ones((len(batch_sentences), batch_max_len)) batch_labels = -1 * np.ones((len(batch_sentences), batch_max_len)) # copy the data to the numpy array for j in range(len(batch_sentences)): cur_len = len(batch_sentences[j]) batch_data[j][:cur_len] = batch_sentences[j] batch_labels[j][:cur_len] = batch_tags[j] batch_data, batch_labels = torch.LongTensor( batch_data), torch.LongTensor(batch_labels) # shift tensors to GPU if available if params.cuda: batch_data, batch_labels = batch_data.cuda(), batch_labels.cuda() # convert them to Variables to record operations in the computational graph batch_data, batch_labels = Variable( batch_data), Variable(batch_labels) yield batch_data, batch_labels
[ "random.shuffle", "torch.LongTensor", "os.path.join", "random.seed", "os.path.isfile", "utils.Params", "torch.autograd.Variable", "sys.path.append" ]
[((114, 134), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (129, 134), False, 'import sys\n'), ((483, 528), 'os.path.join', 'os.path.join', (['data_dir', '"""dataset_params.json"""'], {}), "(data_dir, 'dataset_params.json')\n", (495, 528), False, 'import os\n'), ((544, 569), 'os.path.isfile', 'os.path.isfile', (['json_path'], {}), '(json_path)\n', (558, 569), False, 'import os\n'), ((679, 702), 'utils.Params', 'utils.Params', (['json_path'], {}), '(json_path)\n', (691, 702), False, 'import utils\n'), ((749, 784), 'os.path.join', 'os.path.join', (['data_dir', '"""words.txt"""'], {}), "(data_dir, 'words.txt')\n", (761, 784), False, 'import os\n'), ((1219, 1253), 'os.path.join', 'os.path.join', (['data_dir', '"""tags.txt"""'], {}), "(data_dir, 'tags.txt')\n", (1231, 1253), False, 'import os\n'), ((4269, 4285), 'random.seed', 'random.seed', (['(230)'], {}), '(230)\n', (4280, 4285), False, 'import random\n'), ((4298, 4319), 'random.shuffle', 'random.shuffle', (['order'], {}), '(order)\n', (4312, 4319), False, 'import random\n'), ((3135, 3181), 'os.path.join', 'os.path.join', (['data_dir', 'split', '"""sentences.txt"""'], {}), "(data_dir, split, 'sentences.txt')\n", (3147, 3181), False, 'import os\n'), ((3212, 3255), 'os.path.join', 'os.path.join', (['data_dir', 'split', '"""labels.txt"""'], {}), "(data_dir, split, 'labels.txt')\n", (3224, 3255), False, 'import os\n'), ((5602, 5630), 'torch.LongTensor', 'torch.LongTensor', (['batch_data'], {}), '(batch_data)\n', (5618, 5630), False, 'import torch\n'), ((5649, 5679), 'torch.LongTensor', 'torch.LongTensor', (['batch_labels'], {}), '(batch_labels)\n', (5665, 5679), False, 'import torch\n'), ((5967, 5987), 'torch.autograd.Variable', 'Variable', (['batch_data'], {}), '(batch_data)\n', (5975, 5987), False, 'from torch.autograd import Variable\n'), ((6006, 6028), 'torch.autograd.Variable', 'Variable', (['batch_labels'], {}), '(batch_labels)\n', (6014, 6028), False, 'from torch.autograd import Variable\n')]
from .data_transfer import * import functools MSG_MAX_LENGTH = 1024 CONTENT_LEN = 250 HEADINFO = [ ["flags" , 1 , bytes2int , functools.partial(int2bytes , length = 1)] , ["src_ip" , 4 , bytes2ip , ip2bytes ] , ["src_port" , 4 , bytes2int , int2bytes] , ] FLAG_MASK = [ ["SPE" , 1 << 0] , ["STP" , 1 << 1] , ["ENT" , 1 << 2] , ["ADV" , 1 << 3] , ["ADD" , 1 << 4] , ["QUI" , 1 << 5] , ]
[ "functools.partial" ]
[((131, 169), 'functools.partial', 'functools.partial', (['int2bytes'], {'length': '(1)'}), '(int2bytes, length=1)\n', (148, 169), False, 'import functools\n')]
from setuptools import find_packages, setup setup( name='django-minimal-blog', version='1.0.0', author='<NAME>', author_email='<EMAIL>', packages=find_packages(), include_package_data=True, install_requires=[ 'Django>=1.9', 'Markdown>=2.6', 'docutils>=0.12', 'jsonfield>=1.0', 'Pillow>=3.3' ], zip_safe=False )
[ "setuptools.find_packages" ]
[((167, 182), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (180, 182), False, 'from setuptools import find_packages, setup\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('openstack', '0014_instance_volumes'), ] operations = [ migrations.AddField( model_name='instance', name='runtime_state', field=models.CharField(max_length=150, verbose_name='runtime state', blank=True), ), ]
[ "django.db.models.CharField" ]
[((359, 433), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(150)', 'verbose_name': '"""runtime state"""', 'blank': '(True)'}), "(max_length=150, verbose_name='runtime state', blank=True)\n", (375, 433), False, 'from django.db import migrations, models\n')]
# https://codechalleng.es/bites/65/ import itertools import os import urllib.request import random import string # PREWORK DICTIONARY = os.path.join('/tmp', 'dictionary.txt') urllib.request.urlretrieve('http://bit.ly/2iQ3dlZ', DICTIONARY) with open(DICTIONARY) as f: dictionary = set([word.strip().lower() for word in f.read().split()]) def get_possible_dict_words(draw): """Get all possible words from a draw (list of letters) which are valid dictionary words. Use _get_permutations_draw and provided dictionary""" permutations = [''.join(word).lower() for word in _get_permutations_draw(draw)] return set(permutations) & set(dictionary) def _get_permutations_draw(draw): """Helper to get all permutations of a draw (list of letters), hint: use itertools.permutations (order of letters matters)""" for i in range(1, 14): yield from list(itertools.permutations(draw, i)) def random_letter(): alpha = list(string.ascii_lowercase) random_letter = random.choice(alpha) return random_letter random_list = [] for _ in range(7): random_list.append(random_letter()) print(random_list) # print(get_possible_dict_words(random_list))list(get_possible_dict_words(aj_list))) # print(list(_get_permutations_draw(random_list))) my_words = 'i o l t p r l'.split() def my_word_combos(my_words=my_words): word_options = list(get_possible_dict_words(my_words)) sorted_list = sorted(word_options, key=len, reverse=True) return sorted_list # print(my_word_combos()) board_words = ['wank', 'armor', 'car', 'travel', 'foil', 'iron'] combined_words = my_words + board_words print(my_word_combos(combined_words)) # print(get_possible_dict_words(combined_words))
[ "itertools.permutations", "random.choice", "os.path.join" ]
[((138, 176), 'os.path.join', 'os.path.join', (['"""/tmp"""', '"""dictionary.txt"""'], {}), "('/tmp', 'dictionary.txt')\n", (150, 176), False, 'import os\n'), ((1035, 1055), 'random.choice', 'random.choice', (['alpha'], {}), '(alpha)\n', (1048, 1055), False, 'import random\n'), ((918, 949), 'itertools.permutations', 'itertools.permutations', (['draw', 'i'], {}), '(draw, i)\n', (940, 949), False, 'import itertools\n')]
# from genut.models.seq2seq_vae import from archive.genut import load_prev_state from archive.genut import RNNLM from archive.genut.util.argparser import ArgParser from archive.genut import Tester from archive.genut import LMTrainer if __name__ == "__main__": ap = ArgParser() opt = ap.parser.parse_args() os.environ['CUDA_LAUNCH_BLOCKING'] = '1' # Register for logger rootLogger = logging.getLogger() rootLogger.setLevel(logging.INFO) if opt.dbg is not True: fileHandler = logging.FileHandler("logger.log") rootLogger.addHandler(fileHandler) consoleHandler = logging.StreamHandler() rootLogger.addHandler(consoleHandler) logging.info('Go!') if opt.use_cuda and not torch.cuda.is_available(): logging.error('GPU NOT avail.') elif not torch.cuda.is_available(): logging.warning('GPU NOT avail.') opt, data_patch = load_dataset(opt) logging.info(opt) pretrain_embedding = load_pretrain_word_embedding(opt) # model = Seq2seq(opt, pretrain_embedding) model = RNNLM(opt, pretrain_embedding) if opt.use_cuda: model = model.cuda() if opt.load_dir is not None and opt.load_file is not None: # model.enc = load_prev_state(opt.load_dir + '/' + opt.load_file + '_enc', model.enc) model.dec = load_prev_state(opt.load_dir + '/' + opt.load_file + '_dec', model.dec) model.emb = load_prev_state(opt.load_dir + '/' + opt.load_file + '_emb', model.emb) print("Model Initialized.") if opt.mode == TEST_FLAG: model.eval() lm_test = Tester(opt, model, data=data_patch, write_file='_'.join([opt.load_file, 'result'])) ppl = lm_test.test_iters() logging.info("Evaluation PPL: %f" % ppl) elif opt.mode == TRAIN_FLAG: model.train() s2s_train = LMTrainer(opt, model, data_patch) try: s2s_train.train_iters() except KeyboardInterrupt: logging.info("Training Interrupted.") else: raise RuntimeError
[ "archive.genut.LMTrainer", "archive.genut.RNNLM", "archive.genut.util.argparser.ArgParser", "archive.genut.load_prev_state" ]
[((271, 282), 'archive.genut.util.argparser.ArgParser', 'ArgParser', ([], {}), '()\n', (280, 282), False, 'from archive.genut.util.argparser import ArgParser\n'), ((1067, 1097), 'archive.genut.RNNLM', 'RNNLM', (['opt', 'pretrain_embedding'], {}), '(opt, pretrain_embedding)\n', (1072, 1097), False, 'from archive.genut import RNNLM\n'), ((1327, 1398), 'archive.genut.load_prev_state', 'load_prev_state', (["(opt.load_dir + '/' + opt.load_file + '_dec')", 'model.dec'], {}), "(opt.load_dir + '/' + opt.load_file + '_dec', model.dec)\n", (1342, 1398), False, 'from archive.genut import load_prev_state\n'), ((1419, 1490), 'archive.genut.load_prev_state', 'load_prev_state', (["(opt.load_dir + '/' + opt.load_file + '_emb')", 'model.emb'], {}), "(opt.load_dir + '/' + opt.load_file + '_emb', model.emb)\n", (1434, 1490), False, 'from archive.genut import load_prev_state\n'), ((1888, 1921), 'archive.genut.LMTrainer', 'LMTrainer', (['opt', 'model', 'data_patch'], {}), '(opt, model, data_patch)\n', (1897, 1921), False, 'from archive.genut import LMTrainer\n')]
class SupervisedImage(Dataset): def __init__(self, x, y, augs): self.xs = x self.ys = y self.augs = augs def __getitem__(self, idx): img = self.get_image(self.xs[idx]) img = self.augs(image=img)['image'] return img, torch.tensor(self.enc[self.ys[idx]]) @classmethod def from_imagenet(cls, root, augs): fs = get_image_files(root) xs = fs ys = [i.parent.name for i in fs] cls.enc = {j:i for i,j in enumerate(set(ys))} return cls(fs, ys, augs) def __len__(self): return len(self.xs) def __repr__(self): n = '\n' s = f'# ({len(self.xs)}) {n} {self.enc}' return s def get_image(self, x): img = cv2.imread(str(x)) return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) def show_batch(self): import matplotlib.pyplot as plt fig,axes = plt.subplots(2, 6, figsize=(10, 10)) ids = [self.xs[i] for i in np.random.randint(0, len(self.xs), 12)] for i, ax in zip(ids, axes.ravel()): ax.imshow(self.augs(image=self.get_image(i))['image'].permute(1,2,0)) plt.tight_layout() class SegmentationData(Dataset): def __init__(self, xs, ys, channels, augs): self.xs = xs self.ys = ys self.augs = augs self.channels = channels def __len__(self): return len(self.xs) def __getitem__(self, idx): img = self.get_image(self.xs[idx]) mask = self.get_mask(self.ys[idx]) sample = self.augs(image=img, mask=mask) _mask, mask = torch.zeros(self.channels, 256, 256), sample['mask'] for i in rangE(1, 5): _mask[:, ...] = torch.where(mask==i, torch.ones(256, 256), torch.zeros(256, 256)) return sample['image'], _mask
[ "matplotlib.pyplot.subplots", "matplotlib.pyplot.tight_layout" ]
[((907, 943), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(6)'], {'figsize': '(10, 10)'}), '(2, 6, figsize=(10, 10))\n', (919, 943), True, 'import matplotlib.pyplot as plt\n'), ((1154, 1172), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1170, 1172), True, 'import matplotlib.pyplot as plt\n')]
# -*- coding: utf-8 -*- from mig3_client import ReportConverter def test_simple_report(simple_report): """Should be simplest possible report.""" assert len(simple_report["included"]) == 1 def test_basic_convert(simple_report): """Should convert tests from simplest possible report.""" converter = ReportConverter(simple_report) assert len(converter.convert()) == 1 def test_convert_module_name(simple_report): """Should extract module name from report item.""" result = ReportConverter(simple_report).convert() converted_test = result[0] assert converted_test.get("module") == "tests/test_examples.py", converted_test def test_convert_test_name(simple_report): """Should extract test name from report item.""" result = ReportConverter(simple_report).convert() converted_test = result[0] assert converted_test.get("test") == "test_success", converted_test def test_convert_result(simple_report): """Should extract result from report item.""" result = ReportConverter(simple_report).convert() converted_test = result[0] assert converted_test.get("result") == "passed", converted_test
[ "mig3_client.ReportConverter" ]
[((317, 347), 'mig3_client.ReportConverter', 'ReportConverter', (['simple_report'], {}), '(simple_report)\n', (332, 347), False, 'from mig3_client import ReportConverter\n'), ((504, 534), 'mig3_client.ReportConverter', 'ReportConverter', (['simple_report'], {}), '(simple_report)\n', (519, 534), False, 'from mig3_client import ReportConverter\n'), ((771, 801), 'mig3_client.ReportConverter', 'ReportConverter', (['simple_report'], {}), '(simple_report)\n', (786, 801), False, 'from mig3_client import ReportConverter\n'), ((1020, 1050), 'mig3_client.ReportConverter', 'ReportConverter', (['simple_report'], {}), '(simple_report)\n', (1035, 1050), False, 'from mig3_client import ReportConverter\n')]
from time import perf_counter from collections import Counter import numpy as np import rpxdock.homog as hm from rpxdock.geom import BCC6 from rpxdock.xbin import Xbin from rpxdock.xbin.smear import smear from rpxdock.phmap import PHMap_u8f8 from rpxdock.util import plot xident_f4 = np.eye(4).astype("f4") def test_smear_one(): for r in range(1, 6): w = 2 * r + 1 cart_resl = 1.0 xb = Xbin(cart_resl, 9e9) gr = xb.grid6 pm = PHMap_u8f8() cen = xident_f4 kcen = xb.key_of(xident_f4) bcen = xb.bincen_of(kcen) assert np.allclose(cen, bcen, atol=1e-4) phm = PHMap_u8f8() phm[xb.key_of(bcen)] = 1.0 smeared = smear(xb, phm, radius=r, extrahalf=0, oddlast3=0, sphere=0) assert isinstance(smeared, PHMap_u8f8) assert len(smeared) == w**3 + (w - 1)**3 k, v = smeared.items_array() x = xb.bincen_of(k) cart_dis = np.linalg.norm(bcen[0, :3, 3] - x[:, :3, 3], axis=1) assert np.min(cart_dis) == 0 # print(sorted(Counter(x[:, 0, 3]).values())) counts = [(w - 1)**2] * (w - 1) + [w**2] * w assert sorted(Counter(x[:, 0, 3]).values()) == counts assert sorted(Counter(x[:, 1, 3]).values()) == counts assert sorted(Counter(x[:, 2, 3]).values()) == counts ori_dist = hm.angle_of_3x3(x[:, :3, :3]) assert np.allclose(np.unique(ori_dist), [0.0, 1.24466863]) def test_smear_one_oddori(): for r in range(1, 6): w = 2 * r + 1 cart_resl = 1.0 xb = Xbin(cart_resl, 9e9) gr = xb.grid6 pm = PHMap_u8f8() cen = xident_f4 kcen = xb.key_of(xident_f4) bcen = xb.bincen_of(kcen) assert np.allclose(cen, bcen, atol=1e-4) phm = PHMap_u8f8() phm[xb.key_of(bcen)] = 1.0 smeared = smear(xb, phm, radius=r, extrahalf=0, oddlast3=1, sphere=0) assert isinstance(smeared, PHMap_u8f8) assert len(smeared) == w**3 + 8 * (w - 1)**3 k, v = smeared.items_array() x = xb.bincen_of(k) cart_dis = np.linalg.norm(bcen[0, :3, 3] - x[:, :3, 3], axis=1) d = 0.57787751 uvals = np.arange(-2 * r, 2 * r + 0.001) * d assert np.allclose(np.unique(x[:, 0, 3]), uvals, atol=1e-4) assert np.allclose(np.unique(x[:, 1, 3]), uvals, atol=1e-4) assert np.allclose(np.unique(x[:, 2, 3]), uvals, atol=1e-4) counts = [w**2] * w + [8 * (w - 1)**2] * (w - 1) assert sorted(Counter(x[:, 0, 3]).values()) == counts assert sorted(Counter(x[:, 1, 3]).values()) == counts assert sorted(Counter(x[:, 2, 3]).values()) == counts ori_dist = hm.angle_of_3x3(x[:, :3, :3]) assert np.allclose(np.unique(ori_dist), [0.0, 1.24466863]) def test_smear_one_oddori_sphere(): counts = [ [5, 5, 9, 32, 32], [9, 9, 21, 21, 21, 96, 96, 128, 128], [9, 9, 25, 25, 37, 37, 37, 128, 128, 256, 256, 256, 256], [13, 13, 37, 37, 49, 49, 61, 61, 69, 192, 192, 352, 352, 416, 416, 480, 480], [21, 21, 45, 45, 69, 69, 89, 89, 97, 97, 97, 256, 256] + [416, 416, 608, 608, 704, 704, 704, 704], ] for r in range(1, 6): w = 2 * r + 1 cart_resl = 1.0 xb = Xbin(cart_resl, 9e9) gr = xb.grid6 pm = PHMap_u8f8() cen = xident_f4 kcen = xb.key_of(xident_f4) bcen = xb.bincen_of(kcen) assert np.allclose(cen, bcen, atol=1e-4) phm = PHMap_u8f8() phm[xb.key_of(bcen)] = 1.0 smeared = smear(xb, phm, radius=r, extrahalf=0, oddlast3=1, sphere=1) smeared2 = smear(xb, phm, radius=r, extrahalf=0, oddlast3=1, sphere=1) print("smear sph/cube", len(smeared) / len(smeared2)) assert isinstance(smeared, PHMap_u8f8) assert len(smeared) == [83, 529, 1459, 3269, 6115][r - 1] k, v = smeared.items_array() x = xb.bincen_of(k) cart_dis = np.linalg.norm(bcen[0, :3, 3] - x[:, :3, 3], axis=1) d = 0.57787751 uvals = np.arange(-2 * r, 2 * r + 0.001) * d assert np.allclose(np.unique(x[:, 0, 3]), uvals, atol=1e-4) assert np.allclose(np.unique(x[:, 1, 3]), uvals, atol=1e-4) assert np.allclose(np.unique(x[:, 2, 3]), uvals, atol=1e-4) assert sorted(Counter(x[:, 0, 3]).values()) == counts[r - 1] assert sorted(Counter(x[:, 1, 3]).values()) == counts[r - 1] assert sorted(Counter(x[:, 2, 3]).values()) == counts[r - 1] ori_dist = hm.angle_of_3x3(x[:, :3, :3]) assert np.allclose(np.unique(ori_dist), [0.0, 1.24466863]) def test_smear_one_exhalf_oddori_sphere(): counts = [ [5, 5, 9, 32, 32], [9, 9, 21, 21, 21, 96, 96, 128, 128], [9, 9, 25, 25, 37, 37, 37, 128, 128, 256, 256, 256, 256], [13, 13, 37, 37, 49, 49, 61, 61, 69, 192, 192, 352, 352, 416, 416, 480, 480], [21, 21, 45, 45, 69, 69, 89, 89, 97, 97, 97, 256, 256] + [416, 416, 608, 608, 704, 704, 704, 704], ] for r in range(1, 6): w = 2 * r + 1 cart_resl = 1.0 xb = Xbin(cart_resl, 9e9) gr = xb.grid6 pm = PHMap_u8f8() cen = xident_f4 kcen = xb.key_of(xident_f4) bcen = xb.bincen_of(kcen) assert np.allclose(cen, bcen, atol=1e-4) phm = PHMap_u8f8() phm[xb.key_of(bcen)] = 1.0 smeared = smear(xb, phm, radius=r, extrahalf=1, oddlast3=1, sphere=1) smeared2 = smear(xb, phm, radius=r, extrahalf=1, oddlast3=1, sphere=0) print("smear exhalf sph/cube", len(smeared) / len(smeared2)) continue assert isinstance(smeared, PHMap_u8f8) assert len(smeared) == [83, 529, 1459, 3269, 6115][r - 1] k, v = smeared.items_array() x = xb.bincen_of(k) cart_dis = np.linalg.norm(bcen[0, :3, 3] - x[:, :3, 3], axis=1) d = 0.57787751 uvals = np.arange(-2 * r, 2 * r + 0.001) * d assert np.allclose(np.unique(x[:, 0, 3]), uvals, atol=1e-4) assert np.allclose(np.unique(x[:, 1, 3]), uvals, atol=1e-4) assert np.allclose(np.unique(x[:, 2, 3]), uvals, atol=1e-4) assert sorted(Counter(x[:, 0, 3]).values()) == counts[r - 1] assert sorted(Counter(x[:, 1, 3]).values()) == counts[r - 1] assert sorted(Counter(x[:, 2, 3]).values()) == counts[r - 1] ori_dist = hm.angle_of_3x3(x[:, :3, :3]) assert np.allclose(np.unique(ori_dist), [0.0, 1.24466863]) def test_smear_two(): for samp in range(10): for r in range(1, 5): w = 2 * r + 1 cart_resl = 1.0 ori_resl = 10 xb = Xbin(cart_resl, ori_resl) gr = xb.grid6 phm, phm0, phm1 = PHMap_u8f8(), PHMap_u8f8(), PHMap_u8f8() p = np.stack([np.eye(4), np.eye(4)]).astype("f4") p[:, :3, 3] = np.random.randn(2, 3) * (r / 2) p[1, :3, :3] = hm.rot(np.random.randn(3), ori_resl / 2, degrees=True) k = xb.key_of(p) phm[k] = np.array([1, 1], dtype="f8") smeared = smear(xb, phm, radius=r, extrahalf=1, oddlast3=1, sphere=1) allk, allv = smeared.items_array() smeared0 = [smear(xb, phm0, radius=r, extrahalf=1, oddlast3=1, sphere=1)] phm0[k[0]] = 1.0 smeared0 = smear(xb, phm0, radius=r, extrahalf=1, oddlast3=1, sphere=1) allv0 = smeared0[allk] phm1[k[1]] = 1.0 smeared1 = smear(xb, phm1, radius=r, extrahalf=1, oddlast3=1, sphere=1) allv1 = smeared1[allk] assert np.all(allv0 <= allv) assert np.all(allv1 <= allv) assert np.all(allv == np.maximum(allv0, allv1)) d = np.linalg.norm(p[0, :3, 3] - p[1, :3, 3]) s, s0, s1 = set(allk), set(smeared0.keys()), set(smeared1.keys()) assert s0.issubset(s) assert s1.issubset(s) # print(len(s0.intersection(s1)) / len(s)) def test_smear_multiple(): cart_resl = 1.0 ori_resl = 10 xb = Xbin(cart_resl, ori_resl) gr = xb.grid6 for rad in range(1, 6): maxpts = [0, 20, 10, 6, 4, 2][rad] for npts in range(2, maxpts): w = 2 * rad + 1 phm = PHMap_u8f8() phm0 = [PHMap_u8f8() for i in range(npts)] p = hm.hrot(np.random.randn(npts, 3), 1.5 * ori_resl, degrees=1, dtype="f4") p[:, :3, 3] = np.random.randn(npts, 3) * 1.5 * rad k = xb.key_of(p) phm[k] = np.ones(npts) smeared = smear(xb, phm, radius=rad, extrahalf=1, oddlast3=1, sphere=1) allk, allv = smeared.items_array() sallk = set(allk) allv0 = np.empty((npts, len(allk))) sets = list() for i in range(npts): phm0[i][k[i]] = 1.0 smr = smear(xb, phm0[i], radius=rad, extrahalf=1, oddlast3=1, sphere=1) allv0[i] = smr[allk] assert np.all(allv0[i] <= allv) s0 = set(smr.keys()) assert s0.issubset(sallk) sets.append(s0) # nisect = np.mean([len(a.intersection(b)) for a in sets for b in sets]) # print(rad, npts, nisect / len(sets[0])) # assert np.all(allv == np.max(allv0, axis=0)) def check_scores(s0, s1): not0 = np.sum(np.logical_or(s1 > 0, s0 > 0)) frac_s1_gt_s0 = np.sum(s1 > s0) / not0 frac_s1_ge_s0 = np.sum(s1 >= s0) / not0 print( "score", "Ns0", np.sum(s0 > 0), "Ns1", np.sum(s1 > 0), "frac1>=0", frac_s1_ge_s0, "frac1>0", frac_s1_gt_s0, ) return frac_s1_ge_s0, frac_s1_gt_s0, not0 def test_smear_one_bounding(): N1 = 5_000 N2 = 50_000 cart_sd = 2 xorig = hm.rand_xform(N1, cart_sd=cart_sd).astype("f4") sorig = np.exp(np.random.rand(N1)) cart_resl = 1.0 ori_resl = 20 xb0 = Xbin(cart_resl, ori_resl) xb2 = Xbin(cart_resl * 2, ori_resl * 1.5) pm0 = PHMap_u8f8() pm0[xb0.key_of(xorig)] = sorig t = perf_counter() pm1 = smear(xb0, pm0, radius=1) t = perf_counter() - t print( f"fexpand {len(pm1) / len(pm0):7.2f}", f"cell rate {int(len(pm1) / t):,}", f" expand_rate {int(len(pm0) / t):,}", ) x = hm.rand_xform(N2, cart_sd=cart_sd).astype("f4") s0 = pm0[xb0.key_of(x)] s1 = pm1[xb0.key_of(x)] ge, gt, not0 = check_scores(s0, s1) assert 0 == np.sum(np.logical_and(s0 > 0, s1 == 0)) assert np.sum((s0 > 0) * (s1 == 0)) == 0 assert ge > 0.99 assert gt > 0.98 pm20 = PHMap_u8f8() pm20[xb2.key_of(xorig)] = sorig t = perf_counter() pm2 = smear(xb2, pm20, radius=1) t = perf_counter() - t print( f"fexpand {len(pm2) / len(pm20):7.2f} cell rate {int(len(pm2) / t):,} expand_rate {int(len(pm20) / t):,}" ) s2 = pm2[xb2.key_of(x)] ge, gt, not0 = check_scores(s0, s2) assert ge > 0.99 assert gt > 0.99 assert np.sum(np.logical_and(s0 > 0, s2 == 0)) / not0 < 0.001 def smear_bench(): N = 1_000_000 cart_sd = 5 xorig = hm.rand_xform(N, cart_sd=cart_sd) sorig = np.exp(np.random.rand(N)) cart_resl = 1.0 ori_resl = 20 xb0 = Xbin(cart_resl, ori_resl) pm0 = PHMap_u8f8() pm0[xb0.key_of(xorig)] = sorig for rad in range(1, 2): t = perf_counter() pm1 = smear(xb0, pm0, radius=rad) t = perf_counter() - t print( f"rad {rad} relsize: {len(pm1) / len(pm0):7.2f} ", f"cell rate {int(len(pm1) / t):,}", f"expand_rate {int(len (pm0) / t):,}", ) def test_smear_one_kernel(): spherefudge = { (1, 0): 0.3734 + 0.0001, (1, 1): 0.0361 + 0.0001, (2, 0): 0.0474 + 0.0001, (2, 1): 0.2781 + 0.0001, (3, 0): 0.0148 + 0.0001, (3, 1): 0.1347 + 0.0001, (4, 0): 0.0510 + 0.0001, (4, 1): 0.1583 + 0.0001, } cone4Dfudge = { (1, 0): 0.0091 + 0.0001, (1, 1): 0.1417 + 0.0001, (2, 0): 0.1163 + 0.0001, (2, 1): 0.1221 + 0.0001, (3, 0): 0.1208 + 0.0001, (3, 1): 0.1304 + 0.0001, (4, 0): 0.1213 + 0.0001, (4, 1): 0.1240 + 0.0001, } parab4fudge = { (1, 0): 0.0041 + 0.0001, (1, 1): 0.1688 + 0.0001, (2, 0): 0.1347 + 0.0001, (2, 1): 0.1436 + 0.0001, (3, 0): 0.1402 + 0.0001, (3, 1): 0.1532 + 0.0001, (4, 0): 0.1413 + 0.0001, (4, 1): 0.1448 + 0.0001, } N = 8 # plot.subplots(4, N // 2, rowmajor=True) for rad in range(N): exhalf = (rad) % 2 rad = (rad) // 2 + 1 # print("rad", rad, "exhalf", exhalf) w = 2 * rad + 1 cart_resl = 1.0 xb = Xbin(cart_resl, 9e9) gr = xb.grid6 pm = PHMap_u8f8() cen = xident_f4 kcen = xb.key_of(xident_f4) bcen = xb.bincen_of(kcen) assert np.allclose(cen, bcen, atol=1e-4) phm = PHMap_u8f8() phm[xb.key_of(bcen)] = 1.0 grid_r2 = xb.grid6.neighbor_sphere_radius_square_cut(rad, exhalf) d2 = np.arange(grid_r2 + 1) # kern = np.exp(-d2 / grid_r2 * 2) kern0 = 1 - (d2 / grid_r2)**(1 / 2) # 1/R kern1 = 1 - (d2 / grid_r2)**(2 / 2) # 1/R**2 kern2 = 1 - (d2 / grid_r2)**(3 / 2) # 1/R**3 uniform in R kern3 = np.ones(len(d2)) # plot.scatter(np.sqrt(d2), kern1, show=0) # smeared = smear(xb, phm, rad, exhalf, oddlast3=1, sphere=1, kernel=kern0) # k, v = smeared.items_array() vals = [] for ikrn in [0, 1, 2, 3]: kern = vars()["kern%i" % ikrn] smeared = smear(xb, phm, rad, exhalf, oddlast3=1, sphere=1, kernel=kern) k, v = smeared.items_array() vals.append(v) # plot.hist(v, title="kern%i" % ikrn, show=0) # print(rad, "kern%i" % ikrn, np.sum(v)) assert np.all(vals[0] <= vals[1]) assert np.all(vals[1] <= vals[2]) assert np.all(vals[2] <= vals[3]) vol0 = np.sum(vals[0]) vol1 = np.sum(vals[1]) vol2 = np.sum(vals[2]) vol3 = np.sum(vals[3]) spherevol = 4 / 3 * np.pi * grid_r2**(3 / 2) parab4vol = 1 / 6 * np.pi**2 * grid_r2**(3 / 2) # ?? close enough... cone4Dvol = spherevol / 4 assert np.abs(1 - vol0 / cone4Dvol) < cone4Dfudge[rad, exhalf] assert np.abs(1 - vol1 / parab4vol) < parab4fudge[rad, exhalf] assert np.abs(1 - vol3 / spherevol) < spherefudge[rad, exhalf] # print(np.sum(vals[3]) / spherevol) # plot.show() if __name__ == "__main__": # test_smear_one() # test_smear_one_oddori() # test_smear_one_oddori_sphere() # test_smear_one_exhalf_oddori_sphere() # test_smear_one_bounding() test_smear_two() # test_smear_multiple() # test_smear_one_kernel()
[ "rpxdock.xbin.smear.smear", "numpy.random.rand", "numpy.array", "numpy.linalg.norm", "rpxdock.homog.angle_of_3x3", "numpy.arange", "rpxdock.xbin.Xbin", "time.perf_counter", "numpy.min", "numpy.maximum", "numpy.abs", "numpy.eye", "numpy.allclose", "numpy.ones", "rpxdock.homog.rand_xform", "numpy.random.randn", "rpxdock.phmap.PHMap_u8f8", "numpy.unique", "numpy.logical_and", "numpy.logical_or", "collections.Counter", "numpy.sum", "numpy.all" ]
[((7711, 7736), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', 'ori_resl'], {}), '(cart_resl, ori_resl)\n', (7715, 7736), False, 'from rpxdock.xbin import Xbin\n'), ((9500, 9525), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', 'ori_resl'], {}), '(cart_resl, ori_resl)\n', (9504, 9525), False, 'from rpxdock.xbin import Xbin\n'), ((9535, 9570), 'rpxdock.xbin.Xbin', 'Xbin', (['(cart_resl * 2)', '(ori_resl * 1.5)'], {}), '(cart_resl * 2, ori_resl * 1.5)\n', (9539, 9570), False, 'from rpxdock.xbin import Xbin\n'), ((9581, 9593), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (9591, 9593), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((9636, 9650), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (9648, 9650), False, 'from time import perf_counter\n'), ((9660, 9685), 'rpxdock.xbin.smear.smear', 'smear', (['xb0', 'pm0'], {'radius': '(1)'}), '(xb0, pm0, radius=1)\n', (9665, 9685), False, 'from rpxdock.xbin.smear import smear\n'), ((10158, 10170), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (10168, 10170), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((10213, 10227), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (10225, 10227), False, 'from time import perf_counter\n'), ((10237, 10263), 'rpxdock.xbin.smear.smear', 'smear', (['xb2', 'pm20'], {'radius': '(1)'}), '(xb2, pm20, radius=1)\n', (10242, 10263), False, 'from rpxdock.xbin.smear import smear\n'), ((10651, 10684), 'rpxdock.homog.rand_xform', 'hm.rand_xform', (['N'], {'cart_sd': 'cart_sd'}), '(N, cart_sd=cart_sd)\n', (10664, 10684), True, 'import rpxdock.homog as hm\n'), ((10767, 10792), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', 'ori_resl'], {}), '(cart_resl, ori_resl)\n', (10771, 10792), False, 'from rpxdock.xbin import Xbin\n'), ((10803, 10815), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (10813, 10815), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((285, 294), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (291, 294), True, 'import numpy as np\n'), ((409, 438), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', '(9000000000.0)'], {}), '(cart_resl, 9000000000.0)\n', (413, 438), False, 'from rpxdock.xbin import Xbin\n'), ((461, 473), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (471, 473), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((575, 610), 'numpy.allclose', 'np.allclose', (['cen', 'bcen'], {'atol': '(0.0001)'}), '(cen, bcen, atol=0.0001)\n', (586, 610), True, 'import numpy as np\n'), ((621, 633), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (631, 633), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((683, 742), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(0)', 'oddlast3': '(0)', 'sphere': '(0)'}), '(xb, phm, radius=r, extrahalf=0, oddlast3=0, sphere=0)\n', (688, 742), False, 'from rpxdock.xbin.smear import smear\n'), ((913, 965), 'numpy.linalg.norm', 'np.linalg.norm', (['(bcen[0, :3, 3] - x[:, :3, 3])'], {'axis': '(1)'}), '(bcen[0, :3, 3] - x[:, :3, 3], axis=1)\n', (927, 965), True, 'import numpy as np\n'), ((1301, 1330), 'rpxdock.homog.angle_of_3x3', 'hm.angle_of_3x3', (['x[:, :3, :3]'], {}), '(x[:, :3, :3])\n', (1316, 1330), True, 'import rpxdock.homog as hm\n'), ((1504, 1533), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', '(9000000000.0)'], {}), '(cart_resl, 9000000000.0)\n', (1508, 1533), False, 'from rpxdock.xbin import Xbin\n'), ((1556, 1568), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (1566, 1568), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((1670, 1705), 'numpy.allclose', 'np.allclose', (['cen', 'bcen'], {'atol': '(0.0001)'}), '(cen, bcen, atol=0.0001)\n', (1681, 1705), True, 'import numpy as np\n'), ((1716, 1728), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (1726, 1728), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((1778, 1837), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(0)', 'oddlast3': '(1)', 'sphere': '(0)'}), '(xb, phm, radius=r, extrahalf=0, oddlast3=1, sphere=0)\n', (1783, 1837), False, 'from rpxdock.xbin.smear import smear\n'), ((2012, 2064), 'numpy.linalg.norm', 'np.linalg.norm', (['(bcen[0, :3, 3] - x[:, :3, 3])'], {'axis': '(1)'}), '(bcen[0, :3, 3] - x[:, :3, 3], axis=1)\n', (2026, 2064), True, 'import numpy as np\n'), ((2587, 2616), 'rpxdock.homog.angle_of_3x3', 'hm.angle_of_3x3', (['x[:, :3, :3]'], {}), '(x[:, :3, :3])\n', (2602, 2616), True, 'import rpxdock.homog as hm\n'), ((3145, 3174), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', '(9000000000.0)'], {}), '(cart_resl, 9000000000.0)\n', (3149, 3174), False, 'from rpxdock.xbin import Xbin\n'), ((3197, 3209), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (3207, 3209), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((3311, 3346), 'numpy.allclose', 'np.allclose', (['cen', 'bcen'], {'atol': '(0.0001)'}), '(cen, bcen, atol=0.0001)\n', (3322, 3346), True, 'import numpy as np\n'), ((3357, 3369), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (3367, 3369), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((3419, 3478), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(0)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm, radius=r, extrahalf=0, oddlast3=1, sphere=1)\n', (3424, 3478), False, 'from rpxdock.xbin.smear import smear\n'), ((3496, 3555), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(0)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm, radius=r, extrahalf=0, oddlast3=1, sphere=1)\n', (3501, 3555), False, 'from rpxdock.xbin.smear import smear\n'), ((3804, 3856), 'numpy.linalg.norm', 'np.linalg.norm', (['(bcen[0, :3, 3] - x[:, :3, 3])'], {'axis': '(1)'}), '(bcen[0, :3, 3] - x[:, :3, 3], axis=1)\n', (3818, 3856), True, 'import numpy as np\n'), ((4345, 4374), 'rpxdock.homog.angle_of_3x3', 'hm.angle_of_3x3', (['x[:, :3, :3]'], {}), '(x[:, :3, :3])\n', (4360, 4374), True, 'import rpxdock.homog as hm\n'), ((4910, 4939), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', '(9000000000.0)'], {}), '(cart_resl, 9000000000.0)\n', (4914, 4939), False, 'from rpxdock.xbin import Xbin\n'), ((4962, 4974), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (4972, 4974), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((5076, 5111), 'numpy.allclose', 'np.allclose', (['cen', 'bcen'], {'atol': '(0.0001)'}), '(cen, bcen, atol=0.0001)\n', (5087, 5111), True, 'import numpy as np\n'), ((5122, 5134), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (5132, 5134), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((5184, 5243), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm, radius=r, extrahalf=1, oddlast3=1, sphere=1)\n', (5189, 5243), False, 'from rpxdock.xbin.smear import smear\n'), ((5261, 5320), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(0)'}), '(xb, phm, radius=r, extrahalf=1, oddlast3=1, sphere=0)\n', (5266, 5320), False, 'from rpxdock.xbin.smear import smear\n'), ((5591, 5643), 'numpy.linalg.norm', 'np.linalg.norm', (['(bcen[0, :3, 3] - x[:, :3, 3])'], {'axis': '(1)'}), '(bcen[0, :3, 3] - x[:, :3, 3], axis=1)\n', (5605, 5643), True, 'import numpy as np\n'), ((6132, 6161), 'rpxdock.homog.angle_of_3x3', 'hm.angle_of_3x3', (['x[:, :3, :3]'], {}), '(x[:, :3, :3])\n', (6147, 6161), True, 'import rpxdock.homog as hm\n'), ((8944, 8973), 'numpy.logical_or', 'np.logical_or', (['(s1 > 0)', '(s0 > 0)'], {}), '(s1 > 0, s0 > 0)\n', (8957, 8973), True, 'import numpy as np\n'), ((8994, 9009), 'numpy.sum', 'np.sum', (['(s1 > s0)'], {}), '(s1 > s0)\n', (9000, 9009), True, 'import numpy as np\n'), ((9036, 9052), 'numpy.sum', 'np.sum', (['(s1 >= s0)'], {}), '(s1 >= s0)\n', (9042, 9052), True, 'import numpy as np\n'), ((9104, 9118), 'numpy.sum', 'np.sum', (['(s0 > 0)'], {}), '(s0 > 0)\n', (9110, 9118), True, 'import numpy as np\n'), ((9139, 9153), 'numpy.sum', 'np.sum', (['(s1 > 0)'], {}), '(s1 > 0)\n', (9145, 9153), True, 'import numpy as np\n'), ((9435, 9453), 'numpy.random.rand', 'np.random.rand', (['N1'], {}), '(N1)\n', (9449, 9453), True, 'import numpy as np\n'), ((9693, 9707), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (9705, 9707), False, 'from time import perf_counter\n'), ((10073, 10101), 'numpy.sum', 'np.sum', (['((s0 > 0) * (s1 == 0))'], {}), '((s0 > 0) * (s1 == 0))\n', (10079, 10101), True, 'import numpy as np\n'), ((10271, 10285), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (10283, 10285), False, 'from time import perf_counter\n'), ((10703, 10720), 'numpy.random.rand', 'np.random.rand', (['N'], {}), '(N)\n', (10717, 10720), True, 'import numpy as np\n'), ((10888, 10902), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (10900, 10902), False, 'from time import perf_counter\n'), ((10915, 10942), 'rpxdock.xbin.smear.smear', 'smear', (['xb0', 'pm0'], {'radius': 'rad'}), '(xb0, pm0, radius=rad)\n', (10920, 10942), False, 'from rpxdock.xbin.smear import smear\n'), ((12224, 12253), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', '(9000000000.0)'], {}), '(cart_resl, 9000000000.0)\n', (12228, 12253), False, 'from rpxdock.xbin import Xbin\n'), ((12276, 12288), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (12286, 12288), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((12390, 12425), 'numpy.allclose', 'np.allclose', (['cen', 'bcen'], {'atol': '(0.0001)'}), '(cen, bcen, atol=0.0001)\n', (12401, 12425), True, 'import numpy as np\n'), ((12436, 12448), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (12446, 12448), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((12565, 12587), 'numpy.arange', 'np.arange', (['(grid_r2 + 1)'], {}), '(grid_r2 + 1)\n', (12574, 12587), True, 'import numpy as np\n'), ((13348, 13374), 'numpy.all', 'np.all', (['(vals[0] <= vals[1])'], {}), '(vals[0] <= vals[1])\n', (13354, 13374), True, 'import numpy as np\n'), ((13388, 13414), 'numpy.all', 'np.all', (['(vals[1] <= vals[2])'], {}), '(vals[1] <= vals[2])\n', (13394, 13414), True, 'import numpy as np\n'), ((13428, 13454), 'numpy.all', 'np.all', (['(vals[2] <= vals[3])'], {}), '(vals[2] <= vals[3])\n', (13434, 13454), True, 'import numpy as np\n'), ((13469, 13484), 'numpy.sum', 'np.sum', (['vals[0]'], {}), '(vals[0])\n', (13475, 13484), True, 'import numpy as np\n'), ((13498, 13513), 'numpy.sum', 'np.sum', (['vals[1]'], {}), '(vals[1])\n', (13504, 13513), True, 'import numpy as np\n'), ((13527, 13542), 'numpy.sum', 'np.sum', (['vals[2]'], {}), '(vals[2])\n', (13533, 13542), True, 'import numpy as np\n'), ((13556, 13571), 'numpy.sum', 'np.sum', (['vals[3]'], {}), '(vals[3])\n', (13562, 13571), True, 'import numpy as np\n'), ((979, 995), 'numpy.min', 'np.min', (['cart_dis'], {}), '(cart_dis)\n', (985, 995), True, 'import numpy as np\n'), ((1356, 1375), 'numpy.unique', 'np.unique', (['ori_dist'], {}), '(ori_dist)\n', (1365, 1375), True, 'import numpy as np\n'), ((2100, 2132), 'numpy.arange', 'np.arange', (['(-2 * r)', '(2 * r + 0.001)'], {}), '(-2 * r, 2 * r + 0.001)\n', (2109, 2132), True, 'import numpy as np\n'), ((2162, 2183), 'numpy.unique', 'np.unique', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (2171, 2183), True, 'import numpy as np\n'), ((2228, 2249), 'numpy.unique', 'np.unique', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (2237, 2249), True, 'import numpy as np\n'), ((2294, 2315), 'numpy.unique', 'np.unique', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (2303, 2315), True, 'import numpy as np\n'), ((2642, 2661), 'numpy.unique', 'np.unique', (['ori_dist'], {}), '(ori_dist)\n', (2651, 2661), True, 'import numpy as np\n'), ((3892, 3924), 'numpy.arange', 'np.arange', (['(-2 * r)', '(2 * r + 0.001)'], {}), '(-2 * r, 2 * r + 0.001)\n', (3901, 3924), True, 'import numpy as np\n'), ((3954, 3975), 'numpy.unique', 'np.unique', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (3963, 3975), True, 'import numpy as np\n'), ((4020, 4041), 'numpy.unique', 'np.unique', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (4029, 4041), True, 'import numpy as np\n'), ((4086, 4107), 'numpy.unique', 'np.unique', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (4095, 4107), True, 'import numpy as np\n'), ((4400, 4419), 'numpy.unique', 'np.unique', (['ori_dist'], {}), '(ori_dist)\n', (4409, 4419), True, 'import numpy as np\n'), ((5679, 5711), 'numpy.arange', 'np.arange', (['(-2 * r)', '(2 * r + 0.001)'], {}), '(-2 * r, 2 * r + 0.001)\n', (5688, 5711), True, 'import numpy as np\n'), ((5741, 5762), 'numpy.unique', 'np.unique', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (5750, 5762), True, 'import numpy as np\n'), ((5807, 5828), 'numpy.unique', 'np.unique', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (5816, 5828), True, 'import numpy as np\n'), ((5873, 5894), 'numpy.unique', 'np.unique', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (5882, 5894), True, 'import numpy as np\n'), ((6187, 6206), 'numpy.unique', 'np.unique', (['ori_dist'], {}), '(ori_dist)\n', (6196, 6206), True, 'import numpy as np\n'), ((6389, 6414), 'rpxdock.xbin.Xbin', 'Xbin', (['cart_resl', 'ori_resl'], {}), '(cart_resl, ori_resl)\n', (6393, 6414), False, 'from rpxdock.xbin import Xbin\n'), ((6745, 6773), 'numpy.array', 'np.array', (['[1, 1]'], {'dtype': '"""f8"""'}), "([1, 1], dtype='f8')\n", (6753, 6773), True, 'import numpy as np\n'), ((6793, 6852), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'r', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm, radius=r, extrahalf=1, oddlast3=1, sphere=1)\n', (6798, 6852), False, 'from rpxdock.xbin.smear import smear\n'), ((7027, 7087), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm0'], {'radius': 'r', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm0, radius=r, extrahalf=1, oddlast3=1, sphere=1)\n', (7032, 7087), False, 'from rpxdock.xbin.smear import smear\n'), ((7167, 7227), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm1'], {'radius': 'r', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm1, radius=r, extrahalf=1, oddlast3=1, sphere=1)\n', (7172, 7227), False, 'from rpxdock.xbin.smear import smear\n'), ((7277, 7298), 'numpy.all', 'np.all', (['(allv0 <= allv)'], {}), '(allv0 <= allv)\n', (7283, 7298), True, 'import numpy as np\n'), ((7315, 7336), 'numpy.all', 'np.all', (['(allv1 <= allv)'], {}), '(allv1 <= allv)\n', (7321, 7336), True, 'import numpy as np\n'), ((7408, 7449), 'numpy.linalg.norm', 'np.linalg.norm', (['(p[0, :3, 3] - p[1, :3, 3])'], {}), '(p[0, :3, 3] - p[1, :3, 3])\n', (7422, 7449), True, 'import numpy as np\n'), ((7899, 7911), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (7909, 7911), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((8154, 8167), 'numpy.ones', 'np.ones', (['npts'], {}), '(npts)\n', (8161, 8167), True, 'import numpy as np\n'), ((8187, 8248), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm'], {'radius': 'rad', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm, radius=rad, extrahalf=1, oddlast3=1, sphere=1)\n', (8192, 8248), False, 'from rpxdock.xbin.smear import smear\n'), ((9369, 9403), 'rpxdock.homog.rand_xform', 'hm.rand_xform', (['N1'], {'cart_sd': 'cart_sd'}), '(N1, cart_sd=cart_sd)\n', (9382, 9403), True, 'import rpxdock.homog as hm\n'), ((9867, 9901), 'rpxdock.homog.rand_xform', 'hm.rand_xform', (['N2'], {'cart_sd': 'cart_sd'}), '(N2, cart_sd=cart_sd)\n', (9880, 9901), True, 'import rpxdock.homog as hm\n'), ((10030, 10061), 'numpy.logical_and', 'np.logical_and', (['(s0 > 0)', '(s1 == 0)'], {}), '(s0 > 0, s1 == 0)\n', (10044, 10061), True, 'import numpy as np\n'), ((10953, 10967), 'time.perf_counter', 'perf_counter', ([], {}), '()\n', (10965, 10967), False, 'from time import perf_counter\n'), ((13105, 13167), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm', 'rad', 'exhalf'], {'oddlast3': '(1)', 'sphere': '(1)', 'kernel': 'kern'}), '(xb, phm, rad, exhalf, oddlast3=1, sphere=1, kernel=kern)\n', (13110, 13167), False, 'from rpxdock.xbin.smear import smear\n'), ((13745, 13773), 'numpy.abs', 'np.abs', (['(1 - vol0 / cone4Dvol)'], {}), '(1 - vol0 / cone4Dvol)\n', (13751, 13773), True, 'import numpy as np\n'), ((13814, 13842), 'numpy.abs', 'np.abs', (['(1 - vol1 / parab4vol)'], {}), '(1 - vol1 / parab4vol)\n', (13820, 13842), True, 'import numpy as np\n'), ((13883, 13911), 'numpy.abs', 'np.abs', (['(1 - vol3 / spherevol)'], {}), '(1 - vol3 / spherevol)\n', (13889, 13911), True, 'import numpy as np\n'), ((6465, 6477), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (6475, 6477), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((6479, 6491), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (6489, 6491), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((6493, 6505), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (6503, 6505), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((6589, 6610), 'numpy.random.randn', 'np.random.randn', (['(2)', '(3)'], {}), '(2, 3)\n', (6604, 6610), True, 'import numpy as np\n'), ((6652, 6670), 'numpy.random.randn', 'np.random.randn', (['(3)'], {}), '(3)\n', (6667, 6670), True, 'import numpy as np\n'), ((6919, 6979), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm0'], {'radius': 'r', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm0, radius=r, extrahalf=1, oddlast3=1, sphere=1)\n', (6924, 6979), False, 'from rpxdock.xbin.smear import smear\n'), ((7929, 7941), 'rpxdock.phmap.PHMap_u8f8', 'PHMap_u8f8', ([], {}), '()\n', (7939, 7941), False, 'from rpxdock.phmap import PHMap_u8f8\n'), ((7985, 8009), 'numpy.random.randn', 'np.random.randn', (['npts', '(3)'], {}), '(npts, 3)\n', (8000, 8009), True, 'import numpy as np\n'), ((8469, 8534), 'rpxdock.xbin.smear.smear', 'smear', (['xb', 'phm0[i]'], {'radius': 'rad', 'extrahalf': '(1)', 'oddlast3': '(1)', 'sphere': '(1)'}), '(xb, phm0[i], radius=rad, extrahalf=1, oddlast3=1, sphere=1)\n', (8474, 8534), False, 'from rpxdock.xbin.smear import smear\n'), ((8587, 8611), 'numpy.all', 'np.all', (['(allv0[i] <= allv)'], {}), '(allv0[i] <= allv)\n', (8593, 8611), True, 'import numpy as np\n'), ((10540, 10571), 'numpy.logical_and', 'np.logical_and', (['(s0 > 0)', '(s2 == 0)'], {}), '(s0 > 0, s2 == 0)\n', (10554, 10571), True, 'import numpy as np\n'), ((7368, 7392), 'numpy.maximum', 'np.maximum', (['allv0', 'allv1'], {}), '(allv0, allv1)\n', (7378, 7392), True, 'import numpy as np\n'), ((8073, 8097), 'numpy.random.randn', 'np.random.randn', (['npts', '(3)'], {}), '(npts, 3)\n', (8088, 8097), True, 'import numpy as np\n'), ((1124, 1143), 'collections.Counter', 'Counter', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (1131, 1143), False, 'from collections import Counter\n'), ((1184, 1203), 'collections.Counter', 'Counter', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (1191, 1203), False, 'from collections import Counter\n'), ((1244, 1263), 'collections.Counter', 'Counter', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (1251, 1263), False, 'from collections import Counter\n'), ((2410, 2429), 'collections.Counter', 'Counter', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (2417, 2429), False, 'from collections import Counter\n'), ((2470, 2489), 'collections.Counter', 'Counter', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (2477, 2489), False, 'from collections import Counter\n'), ((2530, 2549), 'collections.Counter', 'Counter', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (2537, 2549), False, 'from collections import Counter\n'), ((4147, 4166), 'collections.Counter', 'Counter', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (4154, 4166), False, 'from collections import Counter\n'), ((4214, 4233), 'collections.Counter', 'Counter', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (4221, 4233), False, 'from collections import Counter\n'), ((4281, 4300), 'collections.Counter', 'Counter', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (4288, 4300), False, 'from collections import Counter\n'), ((5934, 5953), 'collections.Counter', 'Counter', (['x[:, 0, 3]'], {}), '(x[:, 0, 3])\n', (5941, 5953), False, 'from collections import Counter\n'), ((6001, 6020), 'collections.Counter', 'Counter', (['x[:, 1, 3]'], {}), '(x[:, 1, 3])\n', (6008, 6020), False, 'from collections import Counter\n'), ((6068, 6087), 'collections.Counter', 'Counter', (['x[:, 2, 3]'], {}), '(x[:, 2, 3])\n', (6075, 6087), False, 'from collections import Counter\n'), ((6530, 6539), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (6536, 6539), True, 'import numpy as np\n'), ((6541, 6550), 'numpy.eye', 'np.eye', (['(4)'], {}), '(4)\n', (6547, 6550), True, 'import numpy as np\n')]
################################################################################ # # Moon.py - A Python module that ... # # Copyright (C) 2011 <NAME> # ################################################################################ """ todo: something to do """ __author__ = '<NAME> <<EMAIL>>' import datetime import math from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt from . import convert, geometry from .sun import Sun APOLAT = 32.7797556 APOLONG = 105.8198305 class Moon(object): """ """ ra = None dec = None datetimeObj = None def __init__(self, datetimeObj=datetime.datetime.now()): self.datetimeObj = datetimeObj self._set_position() def _set_position(self): """ ~ a few arcminutes accuracy """ l0 = 318.351648 # mean longitude P0 = 36.340410 # mean longitude of perigee N0 = 318.510107 # mean longitude of node ii = 5.145396 # inclination ee = 0.054900 # eccentricity aa = 384401 # km, semi-major axis or moon's orbit theta0 = 0.5181 # degrees, semiangular size at distance a pi0 = 0.9507 # parallax at distance a sun = Sun(self.datetimeObj) jdJan0 = convert.datetime2jd( datetime.datetime(self.datetimeObj.year, 1, 1, hour=0, minute=0, second=0)) jd = convert.datetime2jd(self.datetimeObj) d = jd - jdJan0 D = (self.datetimeObj.year - 1990) * 365.0 + (self.datetimeObj.year - 1992) / 4 + d + 2 l = (13.1763966 * D + l0) % 360.0 C = l - sun.longitude moonMeanAnomaly = (l - 0.1114041 * D - P0) % 360.0 N = (N0 - 0.0529539 * D) % 360.0 Ev = 1.2739 * math.sin(math.radians(2 * C - moonMeanAnomaly)) Ae = 0.1858 * math.sin(math.radians(sun.meanAnomaly)) A3 = 0.37 * math.sin(math.radians(sun.meanAnomaly)) corrected_moonMeanAnomaly = moonMeanAnomaly + Ev - Ae - A3 Ec = 6.2886 * math.sin(math.radians(corrected_moonMeanAnomaly)) A4 = 0.214 * math.sin(math.radians(2.0 * corrected_moonMeanAnomaly)) lprime = l + Ev + Ec - Ae + A4 V = 0.6583 * math.sin(math.radians(2.0 * (lprime - sun.longitude))) lprimeprime = lprime + V Nprime = N - 0.16 * math.sin(math.radians(sun.meanAnomaly)) y = math.sin(math.radians(lprimeprime - Nprime)) * math.cos(math.radians(ii)) x = math.cos(math.radians(lprimeprime - Nprime)) arcTan = math.degrees(math.atan(y / x)) if y > 0 and x > 0: arcTan = arcTan % 90.0 elif y > 0 and x < 0: arcTan = (arcTan % 90.0) + 90.0 elif y < 0 and x < 0: arcTan = (arcTan % 90.0) + 180.0 elif y < 0 and x > 0: arcTan = (arcTan % 90.0) + 270.0 moonLongitude = arcTan + Nprime moonBeta = math.degrees( math.asin(math.sin(math.radians(lprimeprime - Nprime)) * math.sin(math.radians(ii)))) ra, dec = convert.eclipticLatLon2RADec(moonLongitude, moonBeta) self.ra = ra self.dec = dec def illumination(self, datetimeObj=datetime.datetime.now()): """ """ fraction = 0.0 return fraction def rise(self, datetimeObj=datetime.datetime.now()): """ """ return datetimeObj def set(self, datetimeObj=datetime.datetime.now()): """ """ return datetimeObj def lunskybright(alpha, rho, altmoon, alt): """ From Skycalc: Evaluates predicted LUNAR part of sky brightness, in V magnitudes per square arcsecond, following <NAME> and <NAME> (1991) PASP 103, 1033. alpha = separation of sun and moon as seen from earth, in Degrees rho = separation of moon and object, in Degrees altmoon = altitude of moon above horizon, in Degrees alt = altitude of object above horizon, in Degrees The original C code has the following extra parameters, taken here to be constants: kzen = zenith extinction coefficient moondist = distance to moon, in earth radii all are in decimal degrees. """ if altmoon < 0.0: return 0.0 kzen = 0.19 # Zenith extinction moondist = 60.27 # Earth radii rho_rad = radians(rho) alpha = 180. - alpha Zmoon = pi / 2. - radians(altmoon) Z = pi / 2. - radians(alt) moondist = moondist / (60.27) # divide by mean distance istar = -0.4 * (3.84 + 0.026 * fabs(alpha) + 4.0e-9 * alpha**4.) # eqn 20 istar = (10.**istar) / moondist**2 if fabs(alpha) < 7.: # crude accounting for opposition effect istar = istar * (1.35 - 0.05 * fabs(istar)) # 35 per cent brighter at full, effect tapering linearly to # zero at 7 degrees away from full. mentioned peripherally in # Krisciunas and Scheafer, p. 1035. fofrho = 229087. * (1.06 + cos(rho_rad)**2.) if fabs(rho) > 10.: fofrho = fofrho + 10.**(6.15 - rho / 40.) # eqn 21 elif (fabs(rho) > 0.25): fofrho = fofrho + 6.2e7 / rho**2 # eqn 19 else: fofrho = fofrho + 9.9e8 # for 1/4 degree -- radius of moon! Xzm = sqrt(1.0 - 0.96 * sin(Zmoon)**2) if (Xzm != 0.): Xzm = 1. / Xzm else: Xzm = 10000. Xo = sqrt(1.0 - 0.96 * sin(Z)**2) if (Xo != 0.): Xo = 1. / Xo else: Xo = 10000. Bmoon = fofrho * istar * (10.**(-0.4 * kzen * Xzm)) * (1. - 10.** (-0.4 * kzen * Xo)) # nanoLamberts if (Bmoon > 0.001): return 22.50 - 1.08574 * log(Bmoon / 34.08) # V mag per sq arcs-eqn 1 else: return 99. def mjdRADec2skyBright(mjd, ra, dec): dtObj = convert.mjd2datetime(mjd) moon = Moon(dtObj) moonRA, moonDec = moon.ra, moon.dec sun = Sun(dtObj) sunRA, sunDec = sun.ra, sun.dec # alpha moonSunAngle = geometry.subtends(sunRA, sunDec, moonRA, moonDec, units='DEGREES') # rho moonObjectAngle = geometry.subtends(moonRA, moonDec, ra, dec, units='DEGREES') moonAlt, moonAz = convert.raDec2AltAz(moonRA, moonDec, APOLAT, APOLONG, dtObj) objAlt, objAz = convert.raDec2AltAz(ra, dec, APOLAT, APOLONG, dtObj) if moonAlt > 0 and objAlt > 0: bright = lunskybright(moonSunAngle.degrees, moonObjectAngle.degrees, moonAlt, objAlt) else: bright = 0 return bright def main(): moon = Moon(datetime.datetime.now()) print(moon.ra, moon.dec) if __name__ == '__main__': main()
[ "datetime.datetime", "math.radians", "math.cos", "datetime.datetime.now", "math.log", "math.fabs", "math.sin", "math.atan" ]
[((4294, 4306), 'math.radians', 'radians', (['rho'], {}), '(rho)\n', (4301, 4306), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((626, 649), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (647, 649), False, 'import datetime\n'), ((3143, 3166), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3164, 3166), False, 'import datetime\n'), ((3272, 3295), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3293, 3295), False, 'import datetime\n'), ((3380, 3403), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3401, 3403), False, 'import datetime\n'), ((4354, 4370), 'math.radians', 'radians', (['altmoon'], {}), '(altmoon)\n', (4361, 4370), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((4389, 4401), 'math.radians', 'radians', (['alt'], {}), '(alt)\n', (4396, 4401), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((4590, 4601), 'math.fabs', 'fabs', (['alpha'], {}), '(alpha)\n', (4594, 4601), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((4934, 4943), 'math.fabs', 'fabs', (['rho'], {}), '(rho)\n', (4938, 4943), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((6456, 6479), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (6477, 6479), False, 'import datetime\n'), ((1282, 1356), 'datetime.datetime', 'datetime.datetime', (['self.datetimeObj.year', '(1)', '(1)'], {'hour': '(0)', 'minute': '(0)', 'second': '(0)'}), '(self.datetimeObj.year, 1, 1, hour=0, minute=0, second=0)\n', (1299, 1356), False, 'import datetime\n'), ((2440, 2474), 'math.radians', 'math.radians', (['(lprimeprime - Nprime)'], {}), '(lprimeprime - Nprime)\n', (2452, 2474), False, 'import math\n'), ((2507, 2523), 'math.atan', 'math.atan', (['(y / x)'], {}), '(y / x)\n', (2516, 2523), False, 'import math\n'), ((5021, 5030), 'math.fabs', 'fabs', (['rho'], {}), '(rho)\n', (5025, 5030), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((1736, 1773), 'math.radians', 'math.radians', (['(2 * C - moonMeanAnomaly)'], {}), '(2 * C - moonMeanAnomaly)\n', (1748, 1773), False, 'import math\n'), ((1806, 1835), 'math.radians', 'math.radians', (['sun.meanAnomaly'], {}), '(sun.meanAnomaly)\n', (1818, 1835), False, 'import math\n'), ((1866, 1895), 'math.radians', 'math.radians', (['sun.meanAnomaly'], {}), '(sun.meanAnomaly)\n', (1878, 1895), False, 'import math\n'), ((1997, 2036), 'math.radians', 'math.radians', (['corrected_moonMeanAnomaly'], {}), '(corrected_moonMeanAnomaly)\n', (2009, 2036), False, 'import math\n'), ((2068, 2113), 'math.radians', 'math.radians', (['(2.0 * corrected_moonMeanAnomaly)'], {}), '(2.0 * corrected_moonMeanAnomaly)\n', (2080, 2113), False, 'import math\n'), ((2185, 2229), 'math.radians', 'math.radians', (['(2.0 * (lprime - sun.longitude))'], {}), '(2.0 * (lprime - sun.longitude))\n', (2197, 2229), False, 'import math\n'), ((2354, 2388), 'math.radians', 'math.radians', (['(lprimeprime - Nprime)'], {}), '(lprimeprime - Nprime)\n', (2366, 2388), False, 'import math\n'), ((2401, 2417), 'math.radians', 'math.radians', (['ii'], {}), '(ii)\n', (2413, 2417), False, 'import math\n'), ((4908, 4920), 'math.cos', 'cos', (['rho_rad'], {}), '(rho_rad)\n', (4911, 4920), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((5623, 5641), 'math.log', 'log', (['(Bmoon / 34.08)'], {}), '(Bmoon / 34.08)\n', (5626, 5641), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((2302, 2331), 'math.radians', 'math.radians', (['sun.meanAnomaly'], {}), '(sun.meanAnomaly)\n', (2314, 2331), False, 'import math\n'), ((4499, 4510), 'math.fabs', 'fabs', (['alpha'], {}), '(alpha)\n', (4503, 4510), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((4689, 4700), 'math.fabs', 'fabs', (['istar'], {}), '(istar)\n', (4693, 4700), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((5199, 5209), 'math.sin', 'sin', (['Zmoon'], {}), '(Zmoon)\n', (5202, 5209), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((5317, 5323), 'math.sin', 'sin', (['Z'], {}), '(Z)\n', (5320, 5323), False, 'from math import acos, asin, cos, degrees, fabs, log, pi, radians, sin, sqrt\n'), ((2918, 2952), 'math.radians', 'math.radians', (['(lprimeprime - Nprime)'], {}), '(lprimeprime - Nprime)\n', (2930, 2952), False, 'import math\n'), ((2965, 2981), 'math.radians', 'math.radians', (['ii'], {}), '(ii)\n', (2977, 2981), False, 'import math\n')]
# -*- coding: utf-8 -*- import os import platform from argparse import ArgumentParser from typing import Iterable, ClassVar import distro from dotty_dict import Dotty from .actions import FeaturesAction, ConfigAction, ReloadConfigAction, EjectAction, SelfUpdateAction, \ CheckForUpdateAction, VersionAction, CheckRequiredVersion from .schema import CoreFeatureSchema from ..feature import Feature, FeatureConfigurationAutoConfigureError, FeatureConfigurationReadOnlyError from ..schema import FeatureSchema from ...action import Action from ...action.runner import ExpectedError, FailFastError from ...command import LifecycleCommand, Command from ...config import config from ...config.config import ConfigPaths from ...context import context from ...phase import Phase, DefaultPhase class ConfigureSecondPassException(Exception): """ Exception that should be raised when an additional configuration file is to be loaded. """ class NoProjectConfigurationError(FailFastError, ExpectedError): """ Error that should be raised when a project configuration file is required for the command. """ def __init__(self): super().__init__("No project configuration file found. " "Please create a ddb.yml file in your project directory. " "It can be empty.") def log_error(self): context.log.error(str(self)) class CoreFeature(Feature): """ Default commands and configuration support. """ @property def name(self) -> str: return "core" @property def schema(self) -> ClassVar[FeatureSchema]: return CoreFeatureSchema @property def actions(self) -> Iterable[Action]: return ( FeaturesAction(), ConfigAction(), ReloadConfigAction(), EjectAction(), SelfUpdateAction(), CheckForUpdateAction(), VersionAction(), CheckRequiredVersion() ) @property def phases(self) -> Iterable[Phase]: def configure_parser(parser: ArgumentParser): parser.add_argument("--eject", action="store_true", help="Eject the project using the current configuration") parser.add_argument("--autofix", action="store_true", help="Autofix supported deprecated warnings by modifying template sources.") def config_parser(parser: ArgumentParser): parser.add_argument("property", nargs='?', help="Property to read") parser.add_argument("--variables", action="store_true", help="Output as a flat list of variables available in template engines") parser.add_argument("--value", action="store_true", help="Output value of given property") parser.add_argument("--full", action="store_true", help="Output full configuration") parser.add_argument("--files", action="store_true", help="Group by loaded configuration file") def info_parser(parser: ArgumentParser): parser.add_argument("--type", action="append", help="Filter for a type of information between: bin, env, port and vhost") def selfupdate_parser(parser: ArgumentParser): parser.add_argument("--force", action="store_true", help="Force update") return ( DefaultPhase("init", "Initialize project", run_once=True), DefaultPhase("configure", "Configure the environment", configure_parser), DefaultPhase("download", "Download files from remote sources"), DefaultPhase("features", "Display enabled features"), DefaultPhase("config", "Display effective configuration", config_parser), DefaultPhase("info", "Display useful information", info_parser), DefaultPhase("selfupdate", "Update ddb binary with latest version", parser=selfupdate_parser) ) @property def commands(self) -> Iterable[Command]: def requires_project_config(): if not config.project_configuration_file: error = NoProjectConfigurationError() error.log_error() raise error return ( LifecycleCommand("init", "Initialize the environment", "init", avoid_stdout=True), LifecycleCommand("configure", "Configure the environment", "configure", parent="init", before_execute=requires_project_config), LifecycleCommand("download", "Download files from remote sources", "download"), LifecycleCommand("features", "List enabled features", "features"), LifecycleCommand("config", "Display effective configuration", "config"), LifecycleCommand("info", "Display useful information", "info"), LifecycleCommand("self-update", "Update ddb to latest version", "selfupdate"), ) def configure(self, bootstrap=False): super().configure(bootstrap) if bootstrap: return self._load_environment_configuration() self._apply_eject_configuration() @staticmethod def _load_environment_configuration(): """ Loading enviromnent configuration file, if exists. """ current = config.data.get('core.env.current') if config.filenames: filenames = list(config.filenames) original_filenames = list(config.filenames) current_env_filename = filenames[0] + '.' + current if current_env_filename not in filenames: filenames.insert(len(filenames) - 1, current_env_filename) extra = config.data.get('core.configuration.extra') if extra: for extra_item in extra: if extra_item not in filenames: filenames.insert(len(filenames) - 1, extra_item) if filenames != original_filenames: config.filenames = tuple(filenames) raise ConfigureSecondPassException() @staticmethod def _apply_eject_configuration(): """ Override some configuration that doesn't make sense without ddb :return: """ if config.eject: config.data['core.path.ddb_home'] = '.ddb-home' config.data['core.path.home'] = '.docker-devbox-home' config.data['core.path.project_home'] = '.' def _configure_defaults(self, feature_config: Dotty): if not feature_config.get('project.name'): project_name = os.path.basename(config.paths.project_home) feature_config['project.name'] = project_name if not feature_config.get('domain.sub'): feature_config['domain.sub'] = feature_config['project.name'].replace("_", "-").replace(" ", "-") if feature_config.get('domain.value'): raise FeatureConfigurationReadOnlyError(self, 'domain.value') feature_config['domain.value'] = '.'.join((feature_config['domain.sub'], feature_config['domain.ext'])) if not feature_config.get('env.current') and feature_config.get('env.available'): feature_config['env.current'] = feature_config['env.available'][-1] if not feature_config.get('env.current') or \ feature_config.get('env.current') not in feature_config['env.available']: raise FeatureConfigurationAutoConfigureError(self, 'env.current') if not feature_config.get('path.project_home') and config.paths.project_home: feature_config['path.project_home'] = config.paths.project_home if not feature_config.get('path.home') and config.paths.home: feature_config['path.home'] = config.paths.home if not feature_config.get('path.ddb_home') and config.paths.ddb_home: feature_config['path.ddb_home'] = config.paths.ddb_home self._configure_release_asset_name_defaults(feature_config) config.path = ConfigPaths(ddb_home=feature_config.get('path.ddb_home'), home=feature_config.get('path.home'), project_home=feature_config.get('path.project_home')) def _configure_release_asset_name_defaults(self, feature_config: Dotty): if not feature_config.get('release_asset_name'): feature_config['release_asset_name'] = self._get_default_binary_remote_name() @staticmethod def _get_default_binary_remote_name(): """ Get default binary remote name, based on current platform. """ if platform.system() == 'Windows': return 'ddb-windows.exe' if platform.system() == 'Darwin': return 'ddb-macos' if platform.system() == 'Linux': if distro.id() == 'alpine': return 'ddb-alpine' return 'ddb-linux' return None
[ "distro.id", "platform.system", "os.path.basename" ]
[((7010, 7053), 'os.path.basename', 'os.path.basename', (['config.paths.project_home'], {}), '(config.paths.project_home)\n', (7026, 7053), False, 'import os\n'), ((9040, 9057), 'platform.system', 'platform.system', ([], {}), '()\n', (9055, 9057), False, 'import platform\n'), ((9120, 9137), 'platform.system', 'platform.system', ([], {}), '()\n', (9135, 9137), False, 'import platform\n'), ((9193, 9210), 'platform.system', 'platform.system', ([], {}), '()\n', (9208, 9210), False, 'import platform\n'), ((9238, 9249), 'distro.id', 'distro.id', ([], {}), '()\n', (9247, 9249), False, 'import distro\n')]
from shapely.geometry import MultiLineString,MultiPolygon from collections import Counter import networkx as nx from gisele.Steiner_tree_code import * from gisele.functions import * def create_roads_new(gisele_folder, case_study, Clusters,crs, accepted_road_types,resolution_MV,resolution_LV): weighted_grid_of_points = pd.read_csv(gisele_folder+'/Case studies/'+case_study+'/Intermediate/Geospatial_Data/weighted_grid_of_points.csv') starting_ID = weighted_grid_of_points['ID'].max()+1 #if not os.path.exists(gisele_folder+'/Case studies/'+case_study+'/Input/Roads_points'): ROADS_unfiltered = gpd.read_file(gisele_folder+'/Case studies/'+case_study+'/Intermediate/Geospatial_Data/Roads.shp') ROADS_unfiltered = ROADS_unfiltered.to_crs(crs) ROADS = ROADS_unfiltered[ROADS_unfiltered['highway'].isin(accepted_road_types)] #ROADS = ROADS_unfiltered ROADS = MultiLine_to_Line(ROADS) all_points = gpd.GeoDataFrame() gdf_ROADS, ROADS_segments = create_roads2(ROADS, all_points, crs) gdf_ROADS.crs = crs ROADS_segments.crs = crs #else: #ROADS_segments=gpd.read_file(gisele_folder + '/Case studies/' + case_study + '/Input/Roads_lines/Roads_lines.shp') #gdf_ROADS=gpd.read_file(gisele_folder + '/Case studies/' + case_study + '/Input/Roads_points/Roads_points.shp') ### PROBLEM WITH gdf_ROADS -> THERE ARE MULTI_POINTS print(len(gdf_ROADS)) MP = MultiPolygon([p for p in Clusters['geometry']]) nodes = ROADS_segments.ID1.to_list() + ROADS_segments.ID2.to_list() nodes = [int(i) for i in nodes] occurence = Counter(nodes) intersection_IDs = [] terminal_IDs = [] for i in occurence: if occurence[i] == 1: terminal_IDs.append(i) elif occurence[i] > 2: intersection_IDs.append(i) new_nodes = terminal_IDs + intersection_IDs Substations = new_nodes Nodes = gdf_ROADS.copy() Nodes.loc[Nodes['ID'].isin(new_nodes), 'Substation'] = 1 Nodes['inside_clusters'] = [1 if MP.contains(row['geometry']) else 0 for i,row in Nodes.iterrows()] Lines = ROADS_segments.copy() Lines.ID1 = Lines.ID1.astype(int) Lines.ID2 = Lines.ID2.astype(int) Lines_marked = Lines.copy() conn_param = 0 New_Lines = gpd.GeoDataFrame() while not Lines.empty: nodes = Lines.ID1.to_list() + Lines.ID2.to_list() # print(nodes) nodes = [int(i) for i in nodes] Substations = list(set(Substations) & set(nodes)) current_node = int(Substations[0]) #print(Substations) #print(current_node) no_lines = False tot_length = 0 tot_cost = 0 id1 = current_node while not no_lines: next_index = Lines.index[Lines['ID1'] == current_node].to_list() # check if there actually is a next node if next_index: next_index = next_index[0] # i only care about the first line if there are many next_node = Lines.loc[next_index, 'ID2'] tot_length = tot_length + Lines.loc[next_index, 'length'] tot_cost = tot_cost + Lines.loc[next_index, 'length'] Lines.drop(index=next_index, inplace=True) else: next_index = Lines.index[Lines['ID2'] == current_node].to_list() if next_index: next_index = next_index[0] # i only care about the first line if there are many next_node = Lines.loc[next_index, 'ID1'] tot_length = tot_length + Lines.loc[next_index, 'length'] tot_cost = tot_cost + Lines.loc[next_index, 'length'] Lines.drop(index=next_index, inplace=True) else: no_lines = True # there are no lines starting from this node if not no_lines: is_substation = Nodes.loc[Nodes.ID == int(next_node), 'Substation'] == 1 is_inside = int(Nodes.loc[Nodes.ID==int(next_node),'inside_clusters']) if is_inside == 1: max_tot_length = resolution_LV/1000 else: max_tot_length = resolution_MV/1000 Lines_marked.loc[next_index, 'Conn_param'] = conn_param if is_substation.values[0]: cond = False Point1 = Nodes.loc[Nodes['ID'] == int(id1), 'geometry'].values[0] Point2 = Nodes.loc[Nodes['ID'] == int(next_node), 'geometry'].values[0] geom = LineString([Point1, Point2]) Data = {'ID1': id1, 'ID2': next_node, 'Cost': tot_cost, 'length': tot_length, 'geometry': geom, 'Conn_param': conn_param} New_Lines = New_Lines.append(Data, ignore_index=True) current_node = next_node tot_length = 0 tot_cost = 0 id1 = current_node conn_param = conn_param + 1 elif tot_length > max_tot_length: Point1 = Nodes.loc[Nodes['ID'] == int(id1), 'geometry'].values[0] Point2 = Nodes.loc[Nodes['ID'] == int(next_node), 'geometry'].values[0] geom = LineString([Point1, Point2]) Data = {'ID1': id1, 'ID2': next_node, 'Cost': tot_cost, 'length': tot_length, 'geometry': geom, 'Conn_param': conn_param} New_Lines = New_Lines.append(Data, ignore_index=True) current_node = next_node tot_length = 0 tot_cost = 0 id1 = current_node conn_param = conn_param + 1 else: current_node = next_node New_Lines.crs = Lines.crs new_lines = [] for i, row in New_Lines.iterrows(): actual_Lines = Lines_marked.loc[Lines_marked['Conn_param'] == row['Conn_param'], 'geometry'] new_line = MultiLineString([actual_Lines.values[i] for i in range(len(actual_Lines))]) new_lines.append(new_line) New_Lines.geometry = new_lines # New_Lines.to_file(r'New_Lines') new_nodes = New_Lines.ID1.to_list() + New_Lines.ID2.to_list() New_Nodes = gdf_ROADS[gdf_ROADS['ID'].isin(new_nodes)] New_Nodes.reset_index(inplace=True) for i, row in New_Nodes.iterrows(): id = int(i) New_Nodes.loc[i, 'ID'] = id New_Lines.loc[New_Lines['ID1'] == row['ID'], 'ID1'] = id New_Lines.loc[New_Lines['ID2'] == row['ID'], 'ID2'] = id New_Nodes.ID+=starting_ID New_Lines.ID1+=starting_ID New_Lines.ID2+=starting_ID drop = New_Lines.loc[New_Lines['ID1'] == New_Lines['ID2'], :] if not len(drop)==0: New_Lines.drop(index=drop.index, inplace=True) print(len(New_Nodes)) New_Lines.to_file(gisele_folder + '/Case studies/' + case_study + '/Intermediate/Geospatial_Data/Roads_lines') New_Nodes.to_file(gisele_folder + '/Case studies/' + case_study + '/Intermediate/Geospatial_Data/Roads_points') return New_Nodes, New_Lines def Merge_Roads_GridOfPoints(gisele_folder,case_study): road_points = gpd.read_file(gisele_folder+'/Case studies/'+case_study+'/Intermediate/Geospatial_Data/Roads_points/Roads_points.shp') weighted_grid_points = pd.read_csv(gisele_folder+'/Case studies/'+case_study+'/Intermediate/Geospatial_Data/weighted_grid_of_points.csv') weighted_grid_points['Type'] = 'Standard' road_points['Type'] = 'Road' road_points.drop(columns=['geometry'],inplace=True) weighted_grid_points_with_roads = weighted_grid_points.append(road_points) weighted_grid_points_with_roads[['X','Y','ID','Elevation','Type','Population','Weight','Elevation']].\ to_csv(gisele_folder+'/Case studies/'+case_study+'/Intermediate/Geospatial_Data/weighted_grid_of_points_with_roads.csv') def improve_connection(MV_grid,all_points,pts,grid_1,grid_2,line_bc): graph = nx.Graph() for i, row in MV_grid.iterrows(): graph.add_edge(int(row.ID1), int(row.ID2),length = row.Length, weight=row.Cost) for i in pts: if not graph.has_edge(i[0], i[1]): p1 = all_points.loc[all_points.ID==i[0],'geometry'].values[0] p2 = all_points.loc[all_points.ID == i[1], 'geometry'].values[0] av_weight = (all_points.loc[all_points.ID==i[0],'Weight'].values[0]+all_points.loc[all_points.ID==i[1],'Weight'] .values[0])/2 graph.add_edge(int(i[0]), int(i[1]), length=p1.distance(p2)/1000, weight = p1.distance(p2)/1000*av_weight*line_bc) T_metric1 = metric_closure(graph, weight='weight') T_metric = metric_closure(graph, weight='length') min_dist = 100000 terminal_points = [] for ind1, row1 in grid_1.iterrows(): for ind2, row2 in grid_2.iterrows(): id1 = int(row1['ID']) id2 = int(row2['ID']) dist = T_metric[id1][id2]['distance'] if dist < min_dist: min_dist = dist terminal_points = [id1, id2] points = T_metric[terminal_points[0]][terminal_points[1]]['path'] steps = len(points) new_path = [] for i in range(0, steps - 1): new_path.append(points[i + 1]) pts = list(zip(points, new_path)) Line = array_to_LineString(all_points, pts) length = min_dist*1000 cost = T_metric1[terminal_points[0]][terminal_points[1]]['distance'] return Line,length,cost,terminal_points def array_to_LineString(all_points,pts): pts_new=[] i = 0 for pt in pts: if i==0: pts_new.append(all_points.loc[all_points['ID']==pt[0],'geometry'].values[0]) pts_new.append(all_points.loc[all_points['ID'] == pt[1], 'geometry'].values[0]) else: pts_new.append(all_points.loc[all_points['ID']==pt[1],'geometry'].values[0]) print(i) i+=1 Line = LineString(pts_new) return Line def calculate_mg(gisele_folder,case_study,crs,mg_types): case_folder = gisele_folder + '/Case studies/' + case_study data_folder = case_folder + '/Intermediate/Optimization/all_data' Nodes = pd.read_csv(data_folder + '/All_Nodes.csv') n_clusters = int(Nodes['Cluster'].max()) clusters_list = [*range(1,n_clusters+1)] cluster_powers = [Nodes.loc[Nodes['Cluster'] == i, 'MV_Power'].sum() for i in range(1,n_clusters+1)] cluster_population = [Nodes.loc[Nodes['Cluster'] == i, 'Population'].sum() for i in range(1,n_clusters+1)] clusters_list=pd.DataFrame({'Cluster':clusters_list,'Population': cluster_population,'Load [kW]': cluster_powers}) clusters_list.to_csv(case_folder+'/Output/clusters_list.csv') input_profile = pd.read_csv(gisele_folder+'/general_input/Load Profile.csv').round(4) config = pd.read_csv(case_folder+'/Input/Configuration.csv',index_col='Parameter') wt=config.loc['wt','Value'] grid_lifetime = int(config.loc['grid_lifetime','Value']) Nodes_gdf = gpd.GeoDataFrame(Nodes, geometry=gpd.points_from_xy(Nodes.X, Nodes.Y), crs=crs) yearly_profile, years, total_energy = load(clusters_list, grid_lifetime, input_profile, gisele_folder, case_study) mg = sizing(yearly_profile, clusters_list, Nodes_gdf, wt,mg_types,gisele_folder,case_study) mg.to_csv(case_folder+'/Output/Microgrid.csv') def calculate_mg_multiobjective(gisele_folder, case_study, crs): pass
[ "collections.Counter", "networkx.Graph", "shapely.geometry.MultiPolygon" ]
[((1422, 1469), 'shapely.geometry.MultiPolygon', 'MultiPolygon', (["[p for p in Clusters['geometry']]"], {}), "([p for p in Clusters['geometry']])\n", (1434, 1469), False, 'from shapely.geometry import MultiLineString, MultiPolygon\n'), ((1594, 1608), 'collections.Counter', 'Counter', (['nodes'], {}), '(nodes)\n', (1601, 1608), False, 'from collections import Counter\n'), ((8026, 8036), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (8034, 8036), True, 'import networkx as nx\n')]
import unittest from mock import MagicMock, patch, call, ANY from boto.dynamodb2.layer1 import DynamoDBConnection from botocore.exceptions import ClientError from flotilla.client.region_meta import RegionMetadata ENVIRONMENT = 'test' REGION = 'us-east-1' REGION_OTHER = 'us-west-2' SCHEDULER = 't2.nano' CHANNEL = 'stable' VERSION = 'current' CONTAINER = 'pebbletech/flotilla' class TestRegionMetadata(unittest.TestCase): def setUp(self): self.region_meta = RegionMetadata(ENVIRONMENT) @patch('boto3.client') def test_region_params(self, mock_connect): message = 'Value (us-east-1-zzz) for parameter availabilityZone is ' \ 'invalid. Subnets can currently only be created in the ' \ 'following availability zones: us-east-1c, us-east-1a, ' \ 'us-east-1d, us-east-1e.' self.mock_subnet_error(mock_connect, message) region_item = self.region_meta._region_params(REGION) self.assertEqual(region_item['az1'], 'us-east-1a') self.assertEqual(region_item['az2'], 'us-east-1c') self.assertEqual(region_item['az3'], 'us-east-1d') self.assertEqual(region_item['az4'], 'us-east-1e') @patch('boto3.client') def test_region_params_wrap(self, mock_connect): message = 'Value (us-east-1-zzz) for parameter availabilityZone is ' \ 'invalid. Subnets can currently only be created in the ' \ 'following availability zones: us-east-1c, us-east-1a. ' self.mock_subnet_error(mock_connect, message) region_item = self.region_meta._region_params(REGION) self.assertEqual(region_item['az1'], 'us-east-1a') self.assertEqual(region_item['az2'], 'us-east-1c') self.assertNotIn('az3', region_item) @patch('boto3.client') def test__region_params_exception(self, mock_connect): vpc = MagicMock() mock_connect.return_value = vpc vpc.describe_vpcs.side_effect = ClientError({'Error': {}}, '') self.assertRaises(ClientError, self.region_meta._region_params, REGION) @patch('boto3.resource') def test_store_regions(self, mock_connect): dynamo = MagicMock() mock_connect.return_value = dynamo self.region_meta._region_params = MagicMock(return_value={}) self.region_meta.store_regions((REGION, REGION_OTHER), False, SCHEDULER, CHANNEL, VERSION, CONTAINER) self.assertEquals(mock_connect.call_count, 2) @patch('boto3.resource') def test_store_regions_per_region(self, mock_connect): dynamo = MagicMock() mock_connect.return_value = dynamo self.region_meta._region_params = MagicMock(return_value={}) self.region_meta.store_regions((REGION, REGION_OTHER), True, SCHEDULER, CHANNEL, VERSION, CONTAINER) self.assertEquals(mock_connect.call_count, 2) def mock_subnet_error(self, mock_connect, message): vpc = MagicMock() mock_connect.return_value = vpc mock_vpc = {'VpcId': 'vpc-123456'} vpc.describe_vpcs.return_value = {'Vpcs': [mock_vpc]} client_error = ClientError({'Error': {'Message': message}}, '') vpc.create_subnet.side_effect = client_error
[ "flotilla.client.region_meta.RegionMetadata", "mock.patch", "mock.MagicMock", "botocore.exceptions.ClientError" ]
[((508, 529), 'mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (513, 529), False, 'from mock import MagicMock, patch, call, ANY\n'), ((1214, 1235), 'mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (1219, 1235), False, 'from mock import MagicMock, patch, call, ANY\n'), ((1806, 1827), 'mock.patch', 'patch', (['"""boto3.client"""'], {}), "('boto3.client')\n", (1811, 1827), False, 'from mock import MagicMock, patch, call, ANY\n'), ((2111, 2134), 'mock.patch', 'patch', (['"""boto3.resource"""'], {}), "('boto3.resource')\n", (2116, 2134), False, 'from mock import MagicMock, patch, call, ANY\n'), ((2612, 2635), 'mock.patch', 'patch', (['"""boto3.resource"""'], {}), "('boto3.resource')\n", (2617, 2635), False, 'from mock import MagicMock, patch, call, ANY\n'), ((474, 501), 'flotilla.client.region_meta.RegionMetadata', 'RegionMetadata', (['ENVIRONMENT'], {}), '(ENVIRONMENT)\n', (488, 501), False, 'from flotilla.client.region_meta import RegionMetadata\n'), ((1901, 1912), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (1910, 1912), False, 'from mock import MagicMock, patch, call, ANY\n'), ((1993, 2023), 'botocore.exceptions.ClientError', 'ClientError', (["{'Error': {}}", '""""""'], {}), "({'Error': {}}, '')\n", (2004, 2023), False, 'from botocore.exceptions import ClientError\n'), ((2200, 2211), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2209, 2211), False, 'from mock import MagicMock, patch, call, ANY\n'), ((2297, 2323), 'mock.MagicMock', 'MagicMock', ([], {'return_value': '{}'}), '(return_value={})\n', (2306, 2323), False, 'from mock import MagicMock, patch, call, ANY\n'), ((2712, 2723), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2721, 2723), False, 'from mock import MagicMock, patch, call, ANY\n'), ((2809, 2835), 'mock.MagicMock', 'MagicMock', ([], {'return_value': '{}'}), '(return_value={})\n', (2818, 2835), False, 'from mock import MagicMock, patch, call, ANY\n'), ((3149, 3160), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (3158, 3160), False, 'from mock import MagicMock, patch, call, ANY\n'), ((3330, 3378), 'botocore.exceptions.ClientError', 'ClientError', (["{'Error': {'Message': message}}", '""""""'], {}), "({'Error': {'Message': message}}, '')\n", (3341, 3378), False, 'from botocore.exceptions import ClientError\n')]
import os import time import json import numpy as np import pandas as pd import torch from hydroDL import kPath from hydroDL.app import waterQuality from hydroDL.model import rnn, crit caseName = 'refBasins' ratioTrain = 0.8 rho = 365 batchSize = 100 nEpoch = 100 hiddenSize = 64 modelFolder = os.path.join(kPath.dirWQ, 'modelA', caseName) if not os.path.exists(modelFolder): os.mkdir(modelFolder) # predict - point-by-point modelFile = os.path.join(modelFolder, 'modelSeq_Ep' + str(nEpoch) + '.pt') model = torch.load(modelFile) nt = dictData['rho'] nd, ny = y.shape batchSize = 1000 iS = np.arange(0, nd, batchSize) iE = np.append(iS[1:], nd) yOutLst = list() xNorm = (xNorm - np.tile(statDict['xMean'], [nt, nd, 1])) / np.tile( statDict['xStd'], [nt, nd, 1]) cNorm = (c - np.tile(statDict['cMean'], [nd, 1])) / np.tile( statDict['cStd'], [nd, 1]) for k in range(len(iS)): print('batch: '+str(k)) xT = torch.from_numpy(np.concatenate( [xNorm[:, iS[k]:iE[k], :], np.tile(cNorm[iS[k]:iE[k], :], [nt, 1, 1])], axis=-1)).float() if torch.cuda.is_available(): xT = xT.cuda() model = model.cuda() yT = model(xT)[-1, :, :] yOutLst.append(yT.detach().cpu().numpy()) yOut = np.concatenate(yOutLst, axis=0) yOut = yOut * np.tile(statDict['yStd'], [nd, 1]) +\ np.tile(statDict['yMean'], [nd, 1]) # save output dfOut = info dfOut['train'] = np.nan dfOut['train'][indTrain] = 1 dfOut['train'][indTest] = 0 varC = dictData['varC'] targetFile = os.path.join(modelFolder, 'target.csv') if not os.path.exists(targetFile): targetDf = pd.merge(dfOut, pd.DataFrame(data=y, columns=varC), left_index=True, right_index=True) targetDf.to_csv(targetFile) outFile = os.path.join(modelFolder, 'output_Ep' + str(nEpoch) + '.csv') outDf = pd.merge(dfOut, pd.DataFrame(data=yOut, columns=varC), left_index=True, right_index=True) outDf.to_csv(outFile)
[ "os.path.exists", "numpy.tile", "torch.load", "os.path.join", "numpy.append", "torch.cuda.is_available", "os.mkdir", "numpy.concatenate", "pandas.DataFrame", "numpy.arange" ]
[((296, 341), 'os.path.join', 'os.path.join', (['kPath.dirWQ', '"""modelA"""', 'caseName'], {}), "(kPath.dirWQ, 'modelA', caseName)\n", (308, 341), False, 'import os\n'), ((515, 536), 'torch.load', 'torch.load', (['modelFile'], {}), '(modelFile)\n', (525, 536), False, 'import torch\n'), ((597, 624), 'numpy.arange', 'np.arange', (['(0)', 'nd', 'batchSize'], {}), '(0, nd, batchSize)\n', (606, 624), True, 'import numpy as np\n'), ((630, 651), 'numpy.append', 'np.append', (['iS[1:]', 'nd'], {}), '(iS[1:], nd)\n', (639, 651), True, 'import numpy as np\n'), ((1227, 1258), 'numpy.concatenate', 'np.concatenate', (['yOutLst'], {'axis': '(0)'}), '(yOutLst, axis=0)\n', (1241, 1258), True, 'import numpy as np\n'), ((1497, 1536), 'os.path.join', 'os.path.join', (['modelFolder', '"""target.csv"""'], {}), "(modelFolder, 'target.csv')\n", (1509, 1536), False, 'import os\n'), ((349, 376), 'os.path.exists', 'os.path.exists', (['modelFolder'], {}), '(modelFolder)\n', (363, 376), False, 'import os\n'), ((382, 403), 'os.mkdir', 'os.mkdir', (['modelFolder'], {}), '(modelFolder)\n', (390, 403), False, 'import os\n'), ((729, 767), 'numpy.tile', 'np.tile', (["statDict['xStd']", '[nt, nd, 1]'], {}), "(statDict['xStd'], [nt, nd, 1])\n", (736, 767), True, 'import numpy as np\n'), ((825, 859), 'numpy.tile', 'np.tile', (["statDict['cStd']", '[nd, 1]'], {}), "(statDict['cStd'], [nd, 1])\n", (832, 859), True, 'import numpy as np\n'), ((1066, 1091), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1089, 1091), False, 'import torch\n'), ((1315, 1350), 'numpy.tile', 'np.tile', (["statDict['yMean']", '[nd, 1]'], {}), "(statDict['yMean'], [nd, 1])\n", (1322, 1350), True, 'import numpy as np\n'), ((1544, 1570), 'os.path.exists', 'os.path.exists', (['targetFile'], {}), '(targetFile)\n', (1558, 1570), False, 'import os\n'), ((1826, 1863), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'yOut', 'columns': 'varC'}), '(data=yOut, columns=varC)\n', (1838, 1863), True, 'import pandas as pd\n'), ((686, 725), 'numpy.tile', 'np.tile', (["statDict['xMean']", '[nt, nd, 1]'], {}), "(statDict['xMean'], [nt, nd, 1])\n", (693, 725), True, 'import numpy as np\n'), ((786, 821), 'numpy.tile', 'np.tile', (["statDict['cMean']", '[nd, 1]'], {}), "(statDict['cMean'], [nd, 1])\n", (793, 821), True, 'import numpy as np\n'), ((1273, 1307), 'numpy.tile', 'np.tile', (["statDict['yStd']", '[nd, 1]'], {}), "(statDict['yStd'], [nd, 1])\n", (1280, 1307), True, 'import numpy as np\n'), ((1603, 1637), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'y', 'columns': 'varC'}), '(data=y, columns=varC)\n', (1615, 1637), True, 'import pandas as pd\n'), ((996, 1038), 'numpy.tile', 'np.tile', (['cNorm[iS[k]:iE[k], :]', '[nt, 1, 1]'], {}), '(cNorm[iS[k]:iE[k], :], [nt, 1, 1])\n', (1003, 1038), True, 'import numpy as np\n')]
import datetime import time import traceback from functools import wraps from logging import Logger from flask import Flask, request, g from flask import jsonify from app.domain.usecase.user import UserService from app.pkgs import errors from app.pkgs.errors import Error, HttpStatusCode class Middleware(object): def __init__(self, a: UserService, logger: Logger): self.user_service = a self.permissions_list = set() self.logger = logger def error_handler(self, func): """Contain handler for json and error exception. Accept only one value (not tuple) and should be a dict/list Arguments: func {[type]} -- [description] Returns: [type] -- [description] """ @wraps(func) def wrapper(*args, **kwargs): try: res = func(*args, **kwargs) except Error as e: return jsonify(e.to_json()), e.code() except Exception as e: self.logger.error(e, exc_info=True) return jsonify(data=None, error=f'Unknown error: {str(e)}'), HttpStatusCode.Internal_Server_Error if res is not None: return jsonify(data=res) return jsonify(data=[]) return wrapper @staticmethod def get_bearer_token(): if 'Authorization' in request.headers: # Flask/Werkzeug do not recognize any authentication types # other than Basic or Digest or bearer, so here we parse the header by # hand try: auth_type, token = request.headers['Authorization'].split(None, 1) except ValueError: raise errors.authorization_header_empty else: raise errors.authorization_header_empty # if the auth type does not match, we act as if there is no auth # this is better than failing directly, as it allows the callback # to handle special cases, like supporting multiple auth types if auth_type != 'Bearer': raise errors.authorization_type_wrong return token def verify_auth_token(self, f): @wraps(f) def decorated(*args, **kwargs): # Flask normally handles OPTIONS requests on its own, but in the # case it is configured to forward those to the application, we # need to ignore authentication headers and let the request through # to avoid unwanted interactions with CORS. if request.method != 'OPTIONS': # pragma: no cover token = self.get_bearer_token() payload = self.user_service.validate_auth_token(token) # print(payload) accept, note = self.user_service.validate_access_policy(payload['sub'], payload['role_ids'], payload['iat']) if not accept: raise Error(f'Token rejected because of changing in user and role: {note}', HttpStatusCode.Unauthorized) g.user = payload['user'] g.roles = payload['role_ids'] g.permissions = payload['permissions'] g.auth_token = token return f(*args, **kwargs) return decorated def require_permissions(self, *permissions): """ Require on of the following permissions to pass over: :param permissions: :return: """ self.permissions_list.update(permissions) def check_permission(fn): @wraps(fn) def permit(*args, **kwargs): for p in permissions: if p in g.permissions: return fn(*args, **kwargs) raise Error("permission denied", HttpStatusCode.Forbidden) return permit return check_permission def set_logger(logger: Logger, app: Flask): # app.logger.handlers = logger.handlers # app.logger.setLevel(logger.level) @app.before_request def start_timer(): g.start = time.time() @app.after_request def log_request(response): now = time.time() duration = '%2.4f ms' % ((now - g.start) * 1000) ip = request.headers.get('X-Forwarded-For', request.remote_addr) host = request.host.split(':', 1)[0] args = dict(request.args) timestamp = datetime.datetime.utcnow() log_params = [ ('method', request.method, 'blue'), ('path', request.path, 'blue'), ('status', response.status_code, 'yellow'), ('duration', duration, 'green'), ('utc_time', timestamp, 'magenta'), ('ip', ip, 'red'), ('host', host, 'red'), ('params', args, 'blue') ] request_id = request.headers.get('X-Request-ID') if request_id: log_params.append(('request_id', request_id, 'yellow')) parts = [] for name, value, _color in log_params: part = f'"{name}":"{value}"' parts.append(part) line = '{' + ",".join(parts) + '}' logger.info(line) return response
[ "datetime.datetime.utcnow", "app.pkgs.errors.Error", "functools.wraps", "time.time", "flask.request.headers.get", "flask.request.host.split", "flask.jsonify" ]
[((763, 774), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (768, 774), False, 'from functools import wraps\n'), ((2183, 2191), 'functools.wraps', 'wraps', (['f'], {}), '(f)\n', (2188, 2191), False, 'from functools import wraps\n'), ((4054, 4065), 'time.time', 'time.time', ([], {}), '()\n', (4063, 4065), False, 'import time\n'), ((4136, 4147), 'time.time', 'time.time', ([], {}), '()\n', (4145, 4147), False, 'import time\n'), ((4219, 4278), 'flask.request.headers.get', 'request.headers.get', (['"""X-Forwarded-For"""', 'request.remote_addr'], {}), "('X-Forwarded-For', request.remote_addr)\n", (4238, 4278), False, 'from flask import Flask, request, g\n'), ((4378, 4404), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (4402, 4404), False, 'import datetime\n'), ((4805, 4840), 'flask.request.headers.get', 'request.headers.get', (['"""X-Request-ID"""'], {}), "('X-Request-ID')\n", (4824, 4840), False, 'from flask import Flask, request, g\n'), ((1252, 1268), 'flask.jsonify', 'jsonify', ([], {'data': '[]'}), '(data=[])\n', (1259, 1268), False, 'from flask import jsonify\n'), ((3541, 3550), 'functools.wraps', 'wraps', (['fn'], {}), '(fn)\n', (3546, 3550), False, 'from functools import wraps\n'), ((4294, 4320), 'flask.request.host.split', 'request.host.split', (['""":"""', '(1)'], {}), "(':', 1)\n", (4312, 4320), False, 'from flask import Flask, request, g\n'), ((1215, 1232), 'flask.jsonify', 'jsonify', ([], {'data': 'res'}), '(data=res)\n', (1222, 1232), False, 'from flask import jsonify\n'), ((3746, 3798), 'app.pkgs.errors.Error', 'Error', (['"""permission denied"""', 'HttpStatusCode.Forbidden'], {}), "('permission denied', HttpStatusCode.Forbidden)\n", (3751, 3798), False, 'from app.pkgs.errors import Error, HttpStatusCode\n'), ((2920, 3022), 'app.pkgs.errors.Error', 'Error', (['f"""Token rejected because of changing in user and role: {note}"""', 'HttpStatusCode.Unauthorized'], {}), "(f'Token rejected because of changing in user and role: {note}',\n HttpStatusCode.Unauthorized)\n", (2925, 3022), False, 'from app.pkgs.errors import Error, HttpStatusCode\n')]
import sys import math import numpy as np import warnings import torch import os import argparse import random import pandas as pd import logging from sklearn.model_selection import GroupKFold from sklearn import svm from sklearn.model_selection import GridSearchCV from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from cld_ivado.utils.context import get_context from cld_ivado.utils.reshape_features import flatten_scattering from cld_ivado.utils.reshape_features import reshape_raw_images from cld_ivado.utils.reshape_features import get_scattering_features from cld_ivado.utils.compute_metrics import get_metrics from cld_ivado.utils.compute_metrics import get_average_per_patient from cld_ivado.utils.compute_metrics import log_test_experiments sys.path.append('../src') warnings.filterwarnings("ignore") logging.basicConfig(level = logging.INFO) def train_and_evaluate_model(parameters, X_train, X_test, y_train, y_test, fold_c): """ :param parameters: parameters to train model :param X_train: training data points :param X_test: testing data points :param y_train: training labels :param y_test: testing label :param fold_c: fold number """ svc = svm.SVC(probability = True, class_weight='balanced') clf = GridSearchCV(svc, parameters['param_grid'], verbose=parameters['verbose'], n_jobs=-1) clf.fit(X_train, y_train) probs = np.array(clf.predict_proba(X_test))[:,1] acc, auc, specificity, sensitivity = get_metrics(y_test, probs) (acc_avg, auc_avg, specificity_avg, sensitivity_avg), label_per_patient, average_prob = get_average_per_patient(y_test, probs) if math.isnan(auc): logging.info(f'FOLD {fold_c} : acc: {acc} , specificity: {specificity}, sensitivity: {sensitivity}') logging.info(f'FOLD {fold_c} : Average per patient: acc : {acc_avg} , specificity: {specificity_avg}, sensitivity: {sensitivity_avg}') else: logging.info(f'FOLD {fold_c} : acc: {acc} , auc: {auc}, \ specificity: {specificity}, sensitivity: {sensitivity}') logging.info(f'FOLD {fold_c} : Average per patient: acc : {acc_avg} , auc: {auc_avg},\ specificity: {specificity_avg}, sensitivity: {sensitivity_avg}') test_metric = {'acc': acc, 'auc': auc, 'sensitivity': sensitivity, 'specificity': specificity} test_metric_avg = {'acc': acc_avg, 'auc': auc_avg, 'sensitivity': sensitivity_avg, 'specificity': specificity_avg} return test_metric, test_metric_avg, probs, label_per_patient, average_prob def train_predict(catalog, params): M = params['preprocess']['dimension']['M'] N = params['preprocess']['dimension']['N'] df = pd.read_pickle(os.path.join(catalog['data_root'], catalog['02_interim_pd'])) seed = params['cross_val']['seed'] #permutation = np.random.RandomState(seed=1424).permutation(df.index) #df = df.iloc[permutation ].reset_index(drop=True) if params['model']['is_raw_data']: if params['pca']['global'] is False: raise NotImplemented(f"Local PCA not implemented for raw images") data = reshape_raw_images(df, params['preprocess']['dimension']['M'], params['preprocess']['dimension']['N'] ) # using raw images and not scattering params['scattering']['J'] = None params['scattering']['max_order'] = None params['scattering']['scat_order'] = None else: J = params['scattering']['J'] data = get_scattering_features(catalog, params['scattering']['J'], params['scattering']['scat_order'] ) #data = data.iloc[permutation].reset_index(drop=True) df = df.drop(columns=['img']) test_n_splits = params['cross_val']['test_n_splits'] group_kfold_test = GroupKFold(n_splits=test_n_splits) fold_c = 1 df_pid = df['id'] df_y = df['class'] df_fat = df['fat'] # save metrics and probability test_metrics = {} test_metrics_avg = {} labels_all, probs_all, fat_percentage = [], [], [] # for mlflow patient_ids, avg_prob, label_per_patients_all = [], [], []# for mlflow, logging.info('Cross-validation Started') for train_index, test_index in group_kfold_test.split(df, df_y, df_pid): random.seed(seed) random.shuffle(train_index) X_train, X_test = data.iloc[train_index][10:params['model']['train_samples']+10], data.iloc[test_index] y_train, y_test, y_fat = df_y.iloc[train_index][10:params['model']['train_samples']+10], df_y.iloc[test_index], df_fat[test_index] if params['pca']['global'] is False: X_train, size_train = flatten_scattering(X_train, J, M, N) X_test, size_test = flatten_scattering(X_test, J, M , N) fat_percentage.extend(y_fat) patient_ids.extend(df_pid[test_index]) # pca is used for dimensionality reduction logging.info(f'FOLD {fold_c}: Apply PCA on train data points') pca = PCA(n_components = params['pca']['n_components'], random_state = seed) X_train = pca.fit_transform(X_train[:params['model']['train_samples']]) X_train = X_train X_test = pca.transform(X_test) if params['pca']['global'] is False: X_train = torch.from_numpy(pca.fit_transform(X_train)).reshape(size_train, -1) X_test = torch.from_numpy(pca.transform(X_test)).reshape(size_test, -1) #standardize if params['pca']['standardize']: scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.transform(X_test) logging.info(f'FOLD {fold_c}: model train started') # training and evalution test_metric, test_metric_avg, probs, label_per_patient, average_prob = train_and_evaluate_model(params['model'], X_train, X_test, y_train, y_test, fold_c = fold_c) labels_all.extend(y_test) probs_all.extend(probs) avg_prob.extend(average_prob) label_per_patients_all.extend(label_per_patient) logging.info(f'FOLD {fold_c}: model train done') test_metrics[fold_c] = test_metric test_metrics_avg[fold_c] = test_metric_avg fold_c += 1 # log all the metrics in mlflow all_predictions = {'labels': labels_all, 'probabilities': probs_all, 'Fat_percentage': fat_percentage, 'Patient ID': patient_ids } df_all_predictions= pd.DataFrame(data= all_predictions) pred_values = {'df_all_predictions': df_all_predictions, 'average_prob': avg_prob, 'label_per_patient': label_per_patients_all} print(f"pca num: {params['pca']['n_components']}") log_test_experiments(test_metrics, test_metrics_avg, params = params, pred_values = pred_values) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--param_file', type=str, default='parameters_svm.yml', help="YML Parameter File Name") args = parser.parse_args() catalog, params = get_context(args.param_file) train_predict(catalog, params) # train_predict(catalog, params) # train_predict(catalog, params) # train_predict(catalog, params) # train_predict(catalog, params) # for n_split in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,]: # #params['model']['train_samples'] = n_split # params['pca']['n_components'] = n_split # train_predict(catalog, params)
[ "sklearn.model_selection.GridSearchCV", "cld_ivado.utils.compute_metrics.get_metrics", "cld_ivado.utils.context.get_context", "cld_ivado.utils.compute_metrics.get_average_per_patient", "cld_ivado.utils.reshape_features.flatten_scattering", "logging.info", "sys.path.append", "argparse.ArgumentParser", "sklearn.decomposition.PCA", "sklearn.model_selection.GroupKFold", "cld_ivado.utils.reshape_features.get_scattering_features", "pandas.DataFrame", "random.shuffle", "warnings.filterwarnings", "cld_ivado.utils.reshape_features.reshape_raw_images", "logging.basicConfig", "sklearn.svm.SVC", "cld_ivado.utils.compute_metrics.log_test_experiments", "os.path.join", "random.seed", "sklearn.preprocessing.StandardScaler", "math.isnan" ]
[((789, 814), 'sys.path.append', 'sys.path.append', (['"""../src"""'], {}), "('../src')\n", (804, 814), False, 'import sys\n'), ((815, 848), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (838, 848), False, 'import warnings\n'), ((849, 888), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (868, 888), False, 'import logging\n'), ((1232, 1282), 'sklearn.svm.SVC', 'svm.SVC', ([], {'probability': '(True)', 'class_weight': '"""balanced"""'}), "(probability=True, class_weight='balanced')\n", (1239, 1282), False, 'from sklearn import svm\n'), ((1295, 1384), 'sklearn.model_selection.GridSearchCV', 'GridSearchCV', (['svc', "parameters['param_grid']"], {'verbose': "parameters['verbose']", 'n_jobs': '(-1)'}), "(svc, parameters['param_grid'], verbose=parameters['verbose'],\n n_jobs=-1)\n", (1307, 1384), False, 'from sklearn.model_selection import GridSearchCV\n'), ((1506, 1532), 'cld_ivado.utils.compute_metrics.get_metrics', 'get_metrics', (['y_test', 'probs'], {}), '(y_test, probs)\n', (1517, 1532), False, 'from cld_ivado.utils.compute_metrics import get_metrics\n'), ((1625, 1663), 'cld_ivado.utils.compute_metrics.get_average_per_patient', 'get_average_per_patient', (['y_test', 'probs'], {}), '(y_test, probs)\n', (1648, 1663), False, 'from cld_ivado.utils.compute_metrics import get_average_per_patient\n'), ((1677, 1692), 'math.isnan', 'math.isnan', (['auc'], {}), '(auc)\n', (1687, 1692), False, 'import math\n'), ((3773, 3807), 'sklearn.model_selection.GroupKFold', 'GroupKFold', ([], {'n_splits': 'test_n_splits'}), '(n_splits=test_n_splits)\n', (3783, 3807), False, 'from sklearn.model_selection import GroupKFold\n'), ((4134, 4174), 'logging.info', 'logging.info', (['"""Cross-validation Started"""'], {}), "('Cross-validation Started')\n", (4146, 4174), False, 'import logging\n'), ((6706, 6740), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'all_predictions'}), '(data=all_predictions)\n', (6718, 6740), True, 'import pandas as pd\n'), ((6977, 7073), 'cld_ivado.utils.compute_metrics.log_test_experiments', 'log_test_experiments', (['test_metrics', 'test_metrics_avg'], {'params': 'params', 'pred_values': 'pred_values'}), '(test_metrics, test_metrics_avg, params=params,\n pred_values=pred_values)\n', (6997, 7073), False, 'from cld_ivado.utils.compute_metrics import log_test_experiments\n'), ((7131, 7156), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (7154, 7156), False, 'import argparse\n'), ((7346, 7374), 'cld_ivado.utils.context.get_context', 'get_context', (['args.param_file'], {}), '(args.param_file)\n', (7357, 7374), False, 'from cld_ivado.utils.context import get_context\n'), ((1702, 1813), 'logging.info', 'logging.info', (['f"""FOLD {fold_c} : acc: {acc} , specificity: {specificity}, sensitivity: {sensitivity}"""'], {}), "(\n f'FOLD {fold_c} : acc: {acc} , specificity: {specificity}, sensitivity: {sensitivity}'\n )\n", (1714, 1813), False, 'import logging\n'), ((1812, 1957), 'logging.info', 'logging.info', (['f"""FOLD {fold_c} : Average per patient: acc : {acc_avg} , specificity: {specificity_avg}, sensitivity: {sensitivity_avg}"""'], {}), "(\n f'FOLD {fold_c} : Average per patient: acc : {acc_avg} , specificity: {specificity_avg}, sensitivity: {sensitivity_avg}'\n )\n", (1824, 1957), False, 'import logging\n'), ((1967, 2110), 'logging.info', 'logging.info', (['f"""FOLD {fold_c} : acc: {acc} , auc: {auc}, specificity: {specificity}, sensitivity: {sensitivity}"""'], {}), "(\n f'FOLD {fold_c} : acc: {acc} , auc: {auc}, specificity: {specificity}, sensitivity: {sensitivity}'\n )\n", (1979, 2110), False, 'import logging\n'), ((2111, 2291), 'logging.info', 'logging.info', (['f"""FOLD {fold_c} : Average per patient: acc : {acc_avg} , auc: {auc_avg}, specificity: {specificity_avg}, sensitivity: {sensitivity_avg}"""'], {}), "(\n f'FOLD {fold_c} : Average per patient: acc : {acc_avg} , auc: {auc_avg}, specificity: {specificity_avg}, sensitivity: {sensitivity_avg}'\n )\n", (2123, 2291), False, 'import logging\n'), ((2739, 2799), 'os.path.join', 'os.path.join', (["catalog['data_root']", "catalog['02_interim_pd']"], {}), "(catalog['data_root'], catalog['02_interim_pd'])\n", (2751, 2799), False, 'import os\n'), ((3146, 3253), 'cld_ivado.utils.reshape_features.reshape_raw_images', 'reshape_raw_images', (['df', "params['preprocess']['dimension']['M']", "params['preprocess']['dimension']['N']"], {}), "(df, params['preprocess']['dimension']['M'], params[\n 'preprocess']['dimension']['N'])\n", (3164, 3253), False, 'from cld_ivado.utils.reshape_features import reshape_raw_images\n'), ((3500, 3600), 'cld_ivado.utils.reshape_features.get_scattering_features', 'get_scattering_features', (['catalog', "params['scattering']['J']", "params['scattering']['scat_order']"], {}), "(catalog, params['scattering']['J'], params[\n 'scattering']['scat_order'])\n", (3523, 3600), False, 'from cld_ivado.utils.reshape_features import get_scattering_features\n'), ((4260, 4277), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (4271, 4277), False, 'import random\n'), ((4286, 4313), 'random.shuffle', 'random.shuffle', (['train_index'], {}), '(train_index)\n', (4300, 4313), False, 'import random\n'), ((4904, 4966), 'logging.info', 'logging.info', (['f"""FOLD {fold_c}: Apply PCA on train data points"""'], {}), "(f'FOLD {fold_c}: Apply PCA on train data points')\n", (4916, 4966), False, 'import logging\n'), ((4981, 5047), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': "params['pca']['n_components']", 'random_state': 'seed'}), "(n_components=params['pca']['n_components'], random_state=seed)\n", (4984, 5047), False, 'from sklearn.decomposition import PCA\n'), ((5644, 5695), 'logging.info', 'logging.info', (['f"""FOLD {fold_c}: model train started"""'], {}), "(f'FOLD {fold_c}: model train started')\n", (5656, 5695), False, 'import logging\n'), ((6290, 6338), 'logging.info', 'logging.info', (['f"""FOLD {fold_c}: model train done"""'], {}), "(f'FOLD {fold_c}: model train done')\n", (6302, 6338), False, 'import logging\n'), ((4645, 4681), 'cld_ivado.utils.reshape_features.flatten_scattering', 'flatten_scattering', (['X_train', 'J', 'M', 'N'], {}), '(X_train, J, M, N)\n', (4663, 4681), False, 'from cld_ivado.utils.reshape_features import flatten_scattering\n'), ((4714, 4749), 'cld_ivado.utils.reshape_features.flatten_scattering', 'flatten_scattering', (['X_test', 'J', 'M', 'N'], {}), '(X_test, J, M, N)\n', (4732, 4749), False, 'from cld_ivado.utils.reshape_features import flatten_scattering\n'), ((5520, 5536), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (5534, 5536), False, 'from sklearn.preprocessing import StandardScaler\n')]
# Generated by Django 2.2 on 2019-11-20 00:53 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('blog', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='blogpost', options={'ordering': ['-publish_date', '-updated', '-timestamp']}, ), migrations.AddField( model_name='blogpost', name='image', field=models.ImageField(blank=True, null=True, upload_to='image/'), ), migrations.AddField( model_name='blogpost', name='publish_date', field=models.DateTimeField(blank=True, null=True), ), migrations.AddField( model_name='blogpost', name='slug', field=models.SlugField(default=django.utils.timezone.now, unique=True), preserve_default=False, ), migrations.AddField( model_name='blogpost', name='timestamp', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='blogpost', name='updated', field=models.DateTimeField(auto_now=True), ), migrations.AddField( model_name='blogpost', name='user', field=models.ForeignKey(default=1, null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL), ), migrations.AlterField( model_name='blogpost', name='title', field=models.CharField(max_length=120), ), ]
[ "django.db.models.ForeignKey", "django.db.models.DateTimeField", "django.db.migrations.AlterModelOptions", "django.db.models.SlugField", "django.db.models.ImageField", "django.db.migrations.swappable_dependency", "django.db.models.CharField" ]
[((254, 311), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (285, 311), False, 'from django.db import migrations, models\n'), ((381, 498), 'django.db.migrations.AlterModelOptions', 'migrations.AlterModelOptions', ([], {'name': '"""blogpost"""', 'options': "{'ordering': ['-publish_date', '-updated', '-timestamp']}"}), "(name='blogpost', options={'ordering': [\n '-publish_date', '-updated', '-timestamp']})\n", (409, 498), False, 'from django.db import migrations, models\n'), ((638, 698), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'null': '(True)', 'upload_to': '"""image/"""'}), "(blank=True, null=True, upload_to='image/')\n", (655, 698), False, 'from django.db import migrations, models\n'), ((826, 869), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (846, 869), False, 'from django.db import migrations, models\n'), ((989, 1053), 'django.db.models.SlugField', 'models.SlugField', ([], {'default': 'django.utils.timezone.now', 'unique': '(True)'}), '(default=django.utils.timezone.now, unique=True)\n', (1005, 1053), False, 'from django.db import migrations, models\n'), ((1214, 1288), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'default': 'django.utils.timezone.now'}), '(auto_now_add=True, default=django.utils.timezone.now)\n', (1234, 1288), False, 'from django.db import migrations, models\n'), ((1447, 1482), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (1467, 1482), False, 'from django.db import migrations, models\n'), ((1602, 1721), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'default': '(1)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.SET_NULL', 'to': 'settings.AUTH_USER_MODEL'}), '(default=1, null=True, on_delete=django.db.models.deletion\n .SET_NULL, to=settings.AUTH_USER_MODEL)\n', (1619, 1721), False, 'from django.db import migrations, models\n'), ((1839, 1871), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(120)'}), '(max_length=120)\n', (1855, 1871), False, 'from django.db import migrations, models\n')]
from django.contrib.auth.mixins import LoginRequiredMixin from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse from django.shortcuts import redirect, render from django.contrib.auth import authenticate, login, logout from django.contrib.auth.models import User from django.contrib.auth.decorators import login_required from django.views.generic.base import View from django.urls import reverse from user import forms from . import models from django.utils.dateparse import parse_date from django.http.response import Http404, HttpResponse from django.core import serializers from .utils import updateInvitation, list_status import user @login_required(login_url='/user/login/') def home(request): if request.user.is_superuser: return HttpResponseRedirect('/admin/') return HttpResponseRedirect(reverse('status')) @login_required(login_url='/user/login/') def edit_profile(request): if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id # Mendapatkan id user user = User.objects.get(id=user_id) #mencari objek user berdasarkan id user data = request.POST # data adalah dictionary yang key-valuenya adalah nama input dan isinya if(request.method == 'POST'): # Akan dijalankan bila methodnya POST user_profile = models.Profile.objects.get(user=user) # Mendapatkan profile berdasarkan user user_profile.birthday = parse_date(data['birthday']) user_profile.bio = data['bio'] user_profile.save() # Menyimpan kembali objek profile return HttpResponseRedirect('/user') # Meredirect return render(request, 'user/edit-profile.html', { 'profile': user.profile }) class LikeStatusView(LoginRequiredMixin, View): def post(self, request): user_id = request.user.id user = User.objects.get(id=user_id) status_id = request.POST.get('status_id') status = models.UserStatus.objects.get(id=status_id) liker = status.liker liker_filtered = liker.filter(user=user) if liker_filtered.count() > 0: isDislike=True liker.remove(user.profile) else: isDislike=False liker.add(user.profile) totalCount = status.liker.all().count() json_object = JsonResponse({"isDislike":isDislike, "totalCount": totalCount}) return json_object class OtherStatusView(LoginRequiredMixin, View): def get(self, request, name): if request.user.is_superuser: return HttpResponseRedirect('/admin/') try: user_id = request.user.id user_profile = User.objects.get(id=user_id).profile if name == user_profile.name: return HttpResponseRedirect(reverse('status')) status_owner = models.Profile.objects.get(name=name) data = list_status(status_owner, user_profile) except: return Http404() return render(request, 'user/profile/status.html', { 'data': data, 'form': False, 'owner': status_owner.name, 'dataProfile': status_owner }) # create invitation class CreateInvitationView(LoginRequiredMixin, View): def post(self, request, name): if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id inviter = User.objects.get(id=user_id).profile if name == inviter.name: return HttpResponseRedirect(reverse('status')) invitee = models.Profile.objects.get(name=name) data = request.POST print(data) message = data.get('message') if message == '': message = 'Hi! Nice to meet you' if len(message) > 200: message = message[0:200] count1 = models.Invitation.objects.filter(inviter=inviter, invitee=invitee).count() count2 = models.Invitation.objects.filter(inviter=invitee, invitee=inviter).count() if count1 == 0 and count2 == 0: new_invitation = models.Invitation(inviter=inviter, invitee=invitee, message=message) new_invitation.save() return HttpResponseRedirect(reverse('friends')) # see friends, accept invitation, decline # invitation, retract invitation class FriendsView(LoginRequiredMixin, View): def get(self, request): if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id user_profile = User.objects.get(id=user_id).profile user_name= user_profile.name pending_invitation = [] pending_invitation_querySet = models.Invitation.objects.select_related('invitee').filter(inviter=user_profile, isAccepted=False) for invitation in pending_invitation_querySet: pending_invitation.append({'message':invitation.message, 'name':invitation.invitee.name}) inbox_invitation=[] inbox_invitation_querySet = models.Invitation.objects.select_related('inviter').filter(invitee=user_profile, isAccepted=False) for invitation in inbox_invitation_querySet: inbox_invitation.append({'message':invitation.message, 'name':invitation.inviter.name}) friends = [] friends_querySet = models.Invitation.objects.select_related('inviter', 'invitee').filter(invitee=user_profile, isAccepted=True) | models.Invitation.objects.filter(inviter=user_profile, isAccepted=True) for invitation in friends_querySet: val = {} inviter_name = invitation.inviter.name if inviter_name != user_name: val['name'] = inviter_name status = invitation.inviter.posted_status.all().order_by('-time') val['latest'] = status[0].status if status.count() > 0 else False else: val['name'] = invitation.invitee.name status = invitation.invitee.posted_status.all().order_by('-time') val['latest'] = status[0].status if status.count() > 0 else False friends.append(val) print(friends) return render(request, 'user/profile/friends.html', { 'pending_invitation': pending_invitation, 'friends': friends, 'inbox_invitation':inbox_invitation, 'name': user_profile, }) def post(self, request): if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id user_profile = User.objects.get(id=user_id).profile method = request.POST.get('_method') if method is None: return target_name = request.POST.get('name') target_profile = models.Profile.objects.get(name=target_name) # To delete invitation sent print("---------") if method == 'delete': updateInvitation(user_profile, target_profile, True) return HttpResponseRedirect(reverse('friends')) if method == 'accept': # to accept invitation updateInvitation(target_profile, user_profile, False) return HttpResponseRedirect(reverse('friends')) # To decline invitation or delete friend if method == 'decline': updateInvitation(target_profile, user_profile, True) return HttpResponseRedirect(reverse('friends')) # to delete friend updateInvitation(user_profile, target_profile, True) updateInvitation(target_profile, user_profile, True) return HttpResponseRedirect(reverse('friends')) class MyStatusView(LoginRequiredMixin, View): def post(self,request): print("skreeeeee") if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id user = User.objects.get(id=user_id).profile data = request.POST flag = True if data['status'] is None or data['status'] == '': flag = False if user is not None and flag: status = models.UserStatus(user=user, status=data['status']) status.save() return HttpResponseRedirect(reverse('status')) data = list_status(user) return render(request, 'user/profile/status.html', { 'has_error': True, 'data': data, 'dataProfile': user, 'form': True }) def get(self, request): print("test") request.session["testing"] = "hai hai" print("test") if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id user = User.objects.get(id=user_id).profile data = list_status(user, user) # print(data) return render(request, 'user/profile/status.html', { 'data': data, 'form': True, 'dataProfile': user, 'has_error': False }) class SearchFriendView(LoginRequiredMixin, View): def get(self, request): if request.user.is_superuser: return HttpResponseRedirect('/admin/') return render(request, 'user/search/search-friend.html', { 'name':'', 'user': False, }) def post(self, request): if request.user.is_superuser: return HttpResponseRedirect('/admin/') user_id = request.user.id user = User.objects.get(id=user_id).profile searched = request.POST.get('name') if searched is None: searched="" users = models.Profile.objects.filter(name__icontains=searched).order_by("name") users_list = [] for user in users: bio = user.bio if user.bio else "-" users_list.append({'name': user.name,'bio': bio}) return JsonResponse({'data': users_list})
[ "django.shortcuts.render", "django.http.response.HttpResponseRedirect", "django.utils.dateparse.parse_date", "django.contrib.auth.decorators.login_required", "django.urls.reverse", "django.http.response.Http404", "django.contrib.auth.models.User.objects.get", "django.http.response.JsonResponse" ]
[((676, 716), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/user/login/"""'}), "(login_url='/user/login/')\n", (690, 716), False, 'from django.contrib.auth.decorators import login_required\n'), ((874, 914), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/user/login/"""'}), "(login_url='/user/login/')\n", (888, 914), False, 'from django.contrib.auth.decorators import login_required\n'), ((1095, 1123), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (1111, 1123), False, 'from django.contrib.auth.models import User\n'), ((1691, 1759), 'django.shortcuts.render', 'render', (['request', '"""user/edit-profile.html"""', "{'profile': user.profile}"], {}), "(request, 'user/edit-profile.html', {'profile': user.profile})\n", (1697, 1759), False, 'from django.shortcuts import redirect, render\n'), ((785, 816), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (805, 816), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((849, 866), 'django.urls.reverse', 'reverse', (['"""status"""'], {}), "('status')\n", (856, 866), False, 'from django.urls import reverse\n'), ((991, 1022), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (1011, 1022), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((1489, 1517), 'django.utils.dateparse.parse_date', 'parse_date', (["data['birthday']"], {}), "(data['birthday'])\n", (1499, 1517), False, 'from django.utils.dateparse import parse_date\n'), ((1635, 1664), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/user"""'], {}), "('/user')\n", (1655, 1664), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((1901, 1929), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (1917, 1929), False, 'from django.contrib.auth.models import User\n'), ((2373, 2437), 'django.http.response.JsonResponse', 'JsonResponse', (["{'isDislike': isDislike, 'totalCount': totalCount}"], {}), "({'isDislike': isDislike, 'totalCount': totalCount})\n", (2385, 2437), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((3044, 3179), 'django.shortcuts.render', 'render', (['request', '"""user/profile/status.html"""', "{'data': data, 'form': False, 'owner': status_owner.name, 'dataProfile':\n status_owner}"], {}), "(request, 'user/profile/status.html', {'data': data, 'form': False,\n 'owner': status_owner.name, 'dataProfile': status_owner})\n", (3050, 3179), False, 'from django.shortcuts import redirect, render\n'), ((6260, 6436), 'django.shortcuts.render', 'render', (['request', '"""user/profile/friends.html"""', "{'pending_invitation': pending_invitation, 'friends': friends,\n 'inbox_invitation': inbox_invitation, 'name': user_profile}"], {}), "(request, 'user/profile/friends.html', {'pending_invitation':\n pending_invitation, 'friends': friends, 'inbox_invitation':\n inbox_invitation, 'name': user_profile})\n", (6266, 6436), False, 'from django.shortcuts import redirect, render\n'), ((8401, 8518), 'django.shortcuts.render', 'render', (['request', '"""user/profile/status.html"""', "{'has_error': True, 'data': data, 'dataProfile': user, 'form': True}"], {}), "(request, 'user/profile/status.html', {'has_error': True, 'data':\n data, 'dataProfile': user, 'form': True})\n", (8407, 8518), False, 'from django.shortcuts import redirect, render\n'), ((8954, 9072), 'django.shortcuts.render', 'render', (['request', '"""user/profile/status.html"""', "{'data': data, 'form': True, 'dataProfile': user, 'has_error': False}"], {}), "(request, 'user/profile/status.html', {'data': data, 'form': True,\n 'dataProfile': user, 'has_error': False})\n", (8960, 9072), False, 'from django.shortcuts import redirect, render\n'), ((9311, 9389), 'django.shortcuts.render', 'render', (['request', '"""user/search/search-friend.html"""', "{'name': '', 'user': False}"], {}), "(request, 'user/search/search-friend.html', {'name': '', 'user': False})\n", (9317, 9389), False, 'from django.shortcuts import redirect, render\n'), ((9999, 10033), 'django.http.response.JsonResponse', 'JsonResponse', (["{'data': users_list}"], {}), "({'data': users_list})\n", (10011, 10033), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((2608, 2639), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (2628, 2639), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((3401, 3432), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (3421, 3432), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((3485, 3513), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (3501, 3513), False, 'from django.contrib.auth.models import User\n'), ((4287, 4305), 'django.urls.reverse', 'reverse', (['"""friends"""'], {}), "('friends')\n", (4294, 4305), False, 'from django.urls import reverse\n'), ((4514, 4545), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (4534, 4545), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((4612, 4640), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (4628, 4640), False, 'from django.contrib.auth.models import User\n'), ((6574, 6605), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (6594, 6605), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((6663, 6691), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (6679, 6691), False, 'from django.contrib.auth.models import User\n'), ((7720, 7738), 'django.urls.reverse', 'reverse', (['"""friends"""'], {}), "('friends')\n", (7727, 7738), False, 'from django.urls import reverse\n'), ((7899, 7930), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (7919, 7930), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((7980, 8008), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (7996, 8008), False, 'from django.contrib.auth.models import User\n'), ((8760, 8791), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (8780, 8791), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((8841, 8869), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (8857, 8869), False, 'from django.contrib.auth.models import User\n'), ((9264, 9295), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (9284, 9295), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((9518, 9549), 'django.http.response.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/admin/"""'], {}), "('/admin/')\n", (9538, 9549), False, 'from django.http.response import HttpResponseNotFound, HttpResponseRedirect, JsonResponse\n'), ((9599, 9627), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (9615, 9627), False, 'from django.contrib.auth.models import User\n'), ((2718, 2746), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'user_id'}), '(id=user_id)\n', (2734, 2746), False, 'from django.contrib.auth.models import User\n'), ((3019, 3028), 'django.http.response.Http404', 'Http404', ([], {}), '()\n', (3026, 3028), False, 'from django.http.response import Http404, HttpResponse\n'), ((3595, 3612), 'django.urls.reverse', 'reverse', (['"""status"""'], {}), "('status')\n", (3602, 3612), False, 'from django.urls import reverse\n'), ((7117, 7135), 'django.urls.reverse', 'reverse', (['"""friends"""'], {}), "('friends')\n", (7124, 7135), False, 'from django.urls import reverse\n'), ((7309, 7327), 'django.urls.reverse', 'reverse', (['"""friends"""'], {}), "('friends')\n", (7316, 7327), False, 'from django.urls import reverse\n'), ((7515, 7533), 'django.urls.reverse', 'reverse', (['"""friends"""'], {}), "('friends')\n", (7522, 7533), False, 'from django.urls import reverse\n'), ((8326, 8343), 'django.urls.reverse', 'reverse', (['"""status"""'], {}), "('status')\n", (8333, 8343), False, 'from django.urls import reverse\n'), ((2841, 2858), 'django.urls.reverse', 'reverse', (['"""status"""'], {}), "('status')\n", (2848, 2858), False, 'from django.urls import reverse\n')]
from enum import Enum from .Common import WeaponType class StyleBonusType(Enum): STR = 1 END = 2 DEX = 3 AGI = 4 INT = 5 WIL = 6 LOV = 7 CHA = 8 All_Attributes = 9 Ability1 = 31 Ability2 = 32 Ability3 = 33 Mastery_Level_EXP = 37 class Style: def __init__(self, style_json_object): self.id = style_json_object['id'] self.character_name = style_json_object['name'] self.style_name = style_json_object['another_name'] self.level_50_str_mod = style_json_object['bonus_rate_max_str'] - 100 self.level_50_end_mod = style_json_object['bonus_rate_max_end'] - 100 self.level_50_dex_mod = style_json_object['bonus_rate_max_dex'] - 100 self.level_50_agi_mod = style_json_object['bonus_rate_max_agi'] - 100 self.level_50_int_mod = style_json_object['bonus_rate_max_int'] - 100 self.level_50_wil_mod = style_json_object['bonus_rate_max_wil'] - 100 self.level_50_lov_mod = style_json_object['bonus_rate_max_lov'] - 100 self.level_50_cha_mod = style_json_object['bonus_rate_max_cha'] - 100 self.str_bonus = 0 self.end_bonus = 0 self.dex_bonus = 0 self.agi_bonus = 0 self.int_bonus = 0 self.wil_bonus = 0 self.lov_bonus = 0 self.cha_bonus = 0 self.base_str_bonus = 0 self.base_end_bonus = 0 self.base_dex_bonus = 0 self.base_agi_bonus = 0 self.base_int_bonus = 0 self.base_wil_bonus = 0 self.base_lov_bonus = 0 self.base_cha_bonus = 0 self.weapon_type = WeaponType(style_json_object['weapon_type']) rank = style_json_object['rarity'] self.rank = 'A' if rank == 3 else 'S' if rank == 4 else 'SS' self.skills = [] self.abilities = [] self._skill_ids = style_json_object['skill_ids'] def update_skills(self, skills_list): for skill in skills_list: if skill.id in self._skill_ids: self.skills.append(skill) def handle_level_ups(self, level_up_json_list, abilities_list): for level_up in level_up_json_list: if level_up['style_id'] != self.id: continue bonus_type = StyleBonusType(level_up['style_bonus_type']) bonus_value = level_up['style_bonus_value'] if bonus_type == StyleBonusType.STR: self.str_bonus += bonus_value if bonus_type == StyleBonusType.END: self.end_bonus += bonus_value if bonus_type == StyleBonusType.DEX: self.dex_bonus += bonus_value if bonus_type == StyleBonusType.AGI: self.agi_bonus += bonus_value if bonus_type == StyleBonusType.INT: self.int_bonus += bonus_value if bonus_type == StyleBonusType.WIL: self.int_bonus += bonus_value if bonus_type == StyleBonusType.LOV: self.lov_bonus += bonus_value if bonus_type == StyleBonusType.CHA: self.cha_bonus += bonus_value if bonus_type == StyleBonusType.All_Attributes: self.str_bonus += bonus_value self.end_bonus += bonus_value self.dex_bonus += bonus_value self.agi_bonus += bonus_value self.int_bonus += bonus_value self.wil_bonus += bonus_value self.lov_bonus += bonus_value self.cha_bonus += bonus_value if bonus_type in (StyleBonusType.Ability1, StyleBonusType.Ability2, StyleBonusType.Ability3): for ability in abilities_list: if ability.id == bonus_value: self.abilities.append(ability) def get_base_stat_bonus(self, stat_caps_list): stat_cap_object = [sc for sc in stat_caps_list if sc['styleId'] == self.id] if stat_cap_object: stat_cap_object = stat_cap_object[0] if stat_cap_object['modifier_char_str'] is None or stat_cap_object['modifier_str'] is None: print(self.style_name) else: self.base_str_bonus = stat_cap_object['modifier_char_str'] + stat_cap_object['modifier_str'] self.base_end_bonus = stat_cap_object['modifier_char_end'] + stat_cap_object['modifier_end'] self.base_dex_bonus = stat_cap_object['modifier_char_dex'] + stat_cap_object['modifier_dex'] self.base_agi_bonus = stat_cap_object['modifier_char_agi'] + stat_cap_object['modifier_agi'] self.base_int_bonus = stat_cap_object['modifier_char_int'] + stat_cap_object['modifier_int'] self.base_wil_bonus = stat_cap_object['modifier_char_wil'] + stat_cap_object['modifier_wil'] self.base_lov_bonus = stat_cap_object['modifier_char_lov'] + stat_cap_object['modifier_lov'] self.base_cha_bonus = stat_cap_object['modifier_char_cha'] + stat_cap_object['modifier_cha'] def pretty_print(self): print('{0} {1} - {2}'.format(self.rank, self.character_name, self.style_name)) print(' STR: {0}% +{1}'.format(self.level_50_str_mod, self.str_bonus)) print(' END: {0}% +{1}'.format(self.level_50_end_mod, self.end_bonus)) print(' DEX: {0}% +{1}'.format(self.level_50_dex_mod, self.dex_bonus)) print(' AGI: {0}% +{1}'.format(self.level_50_agi_mod, self.agi_bonus)) print(' INT: {0}% +{1}'.format(self.level_50_int_mod, self.int_bonus)) print(' WIL: {0}% +{1}'.format(self.level_50_wil_mod, self.wil_bonus)) print(' LOV: {0}% +{1}'.format(self.level_50_lov_mod, self.lov_bonus)) print(' CHA: {0}% +{1}'.format(self.level_50_cha_mod, self.cha_bonus)) print(' Skill1: {0}'.format(self.skills[0])) print(' Skill2: {0}'.format(self.skills[1])) print(' Skill3: {0}'.format(self.skills[2])) print(' Ability1: {0}'.format(self.abilities[0])) print(' Ability2: {0}'.format(self.abilities[1])) print(' Ability3: {0}'.format(self.abilities[2])) def __str__(self): return self.style_name def __eq__(self, other): if not isinstance(other, self.__class__): return False else: skills_match = all([s in other.skills for s in self.skills]) abilities_match = all([a in other.abilities for a in self.abilities]) are_equal = self.style_name == other.style_name and self.rank == other.rank \ and self.character_name == other.character_name and self.weapon_type == other.weapon_type \ and self.str_bonus == other.str_bonus and self.end_bonus == other.end_bonus \ and self.dex_bonus == other.dex_bonus and self.agi_bonus == other.agi_bonus \ and self.int_bonus == other.int_bonus and self.wil_bonus == other.wil_bonus \ and self.lov_bonus == other.lov_bonus and self.cha_bonus == other.cha_bonus \ and self.level_50_str_mod == other.level_50_str_mod \ and self.level_50_end_mod == other.level_50_end_mod \ and self.level_50_dex_mod == other.level_50_dex_mod \ and self.level_50_agi_mod == other.level_50_agi_mod \ and self.level_50_int_mod == other.level_50_int_mod \ and self.level_50_wil_mod == other.level_50_wil_mod \ and self.level_50_lov_mod == other.level_50_lov_mod \ and self.level_50_cha_mod == other.level_50_cha_mod \ and skills_match \ and abilities_match return are_equal def get_styles(style_filename): from json import load with open(style_filename, 'r') as style_file: styles = load(style_file) style_list = [] for style_json in styles: style = Style(style_json) style_list.append(style) return style_list def merge_styles_with_skill_data(styles_list, skills_list): dud_styles = [] for style in styles_list: style.update_skills(skills_list) if len(style.skills) != 3: dud_styles.append(style) for dud_style in dud_styles: styles_list.remove(dud_style) def merge_styles_with_level_up_data(styles_list, level_up_file, abilities_list): from json import load with open(level_up_file, 'r') as level_up: level_up_data = load(level_up) dud_styles = [] for style in styles_list: style.handle_level_ups(level_up_data, abilities_list) if len(style.abilities) != 3: dud_styles.append(style) for dud_style in dud_styles: styles_list.remove(dud_style) def merge_styles_with_base_stat_mods(styles_list, stat_mod_filename): from json import load with open(stat_mod_filename, 'r') as stat_file: stat_mod_data = load(stat_file) for style in styles_list: style.get_base_stat_bonus(stat_mod_data)
[ "json.load" ]
[((7961, 7977), 'json.load', 'load', (['style_file'], {}), '(style_file)\n', (7965, 7977), False, 'from json import load\n'), ((8593, 8607), 'json.load', 'load', (['level_up'], {}), '(level_up)\n', (8597, 8607), False, 'from json import load\n'), ((9040, 9055), 'json.load', 'load', (['stat_file'], {}), '(stat_file)\n', (9044, 9055), False, 'from json import load\n')]
from gym.envs.registration import register register( id='airsim-event-v0', entry_point='airgym.envs:EvAirSimDrone', )
[ "gym.envs.registration.register" ]
[((44, 115), 'gym.envs.registration.register', 'register', ([], {'id': '"""airsim-event-v0"""', 'entry_point': '"""airgym.envs:EvAirSimDrone"""'}), "(id='airsim-event-v0', entry_point='airgym.envs:EvAirSimDrone')\n", (52, 115), False, 'from gym.envs.registration import register\n')]
import os import functools import utils as u import logger import pandas as pd import numpy as np from joblib import Parallel, delayed import torch import math import os.path from torch.nn import BCEWithLogitsLoss from xgboost import XGBClassifier from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import average_precision_score from sklearn.metrics import f1_score from sklearn.metrics import roc_auc_score from sklearn.exceptions import NotFittedError class Trainer: def __init__( self, args, splitter, final_splitter, comp_loss, dataset, disc_encoder=None, cont_encoder=None, classifier=None, combined_splitter=None, downstream_splitter=None, train_encoder=True, ): self.final_epoch_id = 9999 self.args = args self.dataset = dataset self.splitter = splitter self.combined_splitter = combined_splitter self.downstream_splitter = downstream_splitter self.final_splitter = final_splitter self.tasker = splitter.tasker if combined_splitter != None: self.disc_tasker = combined_splitter.disc_tasker else: self.disc_tasker = None self.disc_encoder = disc_encoder self.cont_encoder = cont_encoder self.classifier = classifier self.downstream_classifiers = { "logistic": LogisticRegression(), "decision": DecisionTreeClassifier(), "xgb": XGBClassifier(), } self.comp_loss = comp_loss self.interpolation_loss = torch.nn.BCELoss() # For continuous DGNN self.num_nodes = self.tasker.data.num_nodes self.num_classes = self.tasker.num_classes self.train_encoder = ( train_encoder # Indicate which kind of training this class is for ) self.init_optimizers(args) self.downstream = False # Used to keep track of whether we're downstream or not self.frozen = False # Used to keep track of whether the encoder is frozen self.set_save_predictions = ( False # Keep track of whether to save predictions or not ) self.has_time_query = ( hasattr(self.args, "has_time_query") and self.args.has_time_query == True ) self.use_tgn_memory = ( args.model == "tgn" and self.args.gcn_parameters["use_memory"] == True ) self.tgn_train_memory_backup = None self.tgn_val_memory_backup = None self.embedding_cache = {"TRAIN": {}, "VALID": {}, "TEST": {}} # Runs using a logfile are usually more serious and we'll like to keep those checkpoints. # Runs not using a logfile store the checkpoints in the working dir where they may # later be overwritten if args.use_logfile: if args.temporal_granularity == "continuous": self.checkpoint_filename_prefix = ( "checkpoints/{}-{}-learning_rate{}".format( args.data, args.model, args.learning_rate ) ) else: self.checkpoint_filename_prefix = "checkpoints/{}-{}-{}-".format( args.data, args.model, args.grid ) prediction_folder = "predictions/{}-{}/".format(args.data, args.model) self.prediction_filename_prefix = "{}{}-".format( prediction_folder, u.get_gridcell(args) ) os.makedirs(prediction_folder, exist_ok=True) else: self.checkpoint_filename_prefix = "checkpoints/" # self.checkpoint_filename_prefix = 'wikipedia-tgat-' self.prediction_filename_prefix = "predictions/" # if self.tasker.is_static: # adj_matrix = u.sparse_prepare_tensor(self.tasker.adj_matrix, torch_size = [self.num_nodes], ignore_batch_dim = False) # self.hist_adj = [adj_matrix] # self.hist_ndFeats = [self.tasker.nodes_feats.float()] def report_trainable_parameters(self): # The "requires_grad if test" seem to make no difference, but it's kept in just in case and it doesn't hurt. count_trainable_parameters = lambda model: sum( [p.numel() for p in model.parameters() if p.requires_grad] ) num_disc_encoder_params = 0 num_cont_encoder_params = 0 num_classifier_params = 0 if self.disc_encoder != None: num_disc_encoder_params = count_trainable_parameters(self.disc_encoder) if self.cont_encoder != None: num_cont_encoder_params = count_trainable_parameters(self.cont_encoder) if self.classifier != None: num_classifier_params = count_trainable_parameters(self.classifier) num_encoder_params = num_disc_encoder_params + num_cont_encoder_params num_total_params = num_encoder_params + num_classifier_params if self.disc_tasker != None: disc_node_feats = self.disc_tasker.feats_per_node else: disc_node_feats = self.tasker.feats_per_node cont_node_feats = self.args.gcn_parameters["layer_2_feats"] if self.args.temporal_granularity in ["static", "discrete"]: node_feats = disc_node_feats else: node_feats = self.args.gcn_parameters["layer_2_feats"] num_parameter_str = "Number of parameters (i) Encoder(s): {}, (ii) Classifier: {}, Total: {}, features per node {}".format( num_encoder_params, num_classifier_params, num_total_params, node_feats ) print(num_parameter_str) self.logger.logger.info(num_parameter_str) def init_optimizers(self, args): if self.disc_encoder != None and self.args.model != "random": params = self.disc_encoder.parameters() self.opt_encoder = torch.optim.Adam(params, lr=args.learning_rate) # , weight_decay=args.weight_decay) self.opt_encoder.zero_grad() if self.cont_encoder != None: params = self.cont_encoder.parameters() self.opt_cont_encoder = torch.optim.Adam(params, lr=args.learning_rate) # , weight_decay=args.weight_decay) self.opt_cont_encoder.zero_grad() if self.classifier != None: params = self.classifier.parameters() if self.train_encoder: self.opt_decoder = torch.optim.Adam( params, lr=args.learning_rate ) # , weight_decay=args.weight_decay) else: # If we train only the decoder we want a specific learning rate for it and regularization on it. self.opt_decoder = torch.optim.Adam( params, lr=args.decoder_learning_rate, weight_decay=args.decoder_weight_decay, ) self.opt_decoder.zero_grad() # Checks all checkpoints, if one is missing for one of the encoders, then no is returned. def checkpoint_exists(self): def encoder_exists(encoder_type): prefix = self.checkpoint_filename_prefix return os.path.isfile("{}{}_encoder.pth".format(prefix, encoder_type)) exists = True if self.disc_encoder != None: exists = encoder_exists("disc") if self.cont_encoder != None: exists = exists and encoder_exists("cont") return exists def save_checkpoint(self): if self.disc_encoder != None: self.save_encoder("disc") if self.cont_encoder != None: self.save_encoder("cont") prefix = self.checkpoint_filename_prefix torch.save(self.classifier, prefix + "cls.pth") self.logger.logger.info("=> saved checkpoint") def save_encoder(self, encoder_type): assert encoder_type in ["disc", "cont"] if encoder_type == "disc": encoder = self.disc_encoder else: encoder = self.cont_encoder prefix = self.checkpoint_filename_prefix torch.save(encoder, "{}{}_encoder.pth".format(prefix, encoder_type)) if self.use_tgn_memory: torch.save(self.tgn_train_memory_backup, prefix + "tgn_memory_train.pth") torch.save(self.tgn_val_memory_backup, prefix + "tgn_memory_val.pth") def load_checkpoint( self, load_disc_encoder=True, load_cont_encoder=True, load_decoder=True ): if self.disc_encoder != None and load_disc_encoder: self.disc_encoder = self.load_encoder("disc") if self.cont_encoder != None and load_cont_encoder: self.cont_encoder = self.load_encoder("cont") if load_decoder: # Remember to initialize optimizers if the classifier is to be further optimized prefix = self.checkpoint_filename_prefix self.classifier = torch.load( prefix + "cls.pth", map_location=torch.device(self.args.device), ) def load_encoder(self, encoder_type): assert encoder_type in ["disc", "cont"] if encoder_type == "disc": old_encoder = self.disc_encoder else: old_encoder = self.cont_encoder old_encoder_name = type(old_encoder).__name__ prefix = self.checkpoint_filename_prefix encoder = torch.load( "{}{}_encoder.pth".format(prefix, encoder_type), map_location=torch.device(self.args.device), ) if hasattr(encoder, "device"): encoder.device = self.args.device if hasattr(encoder, "memory"): # i.e it is tgn encoder.memory.device = self.args.device encoder.message_aggregator.device = self.args.device encoder.memory_updater.device = self.args.device encoder.embedding_module.device = self.args.device if self.use_tgn_memory: self.tgn_train_memory_backup = torch.load( prefix + "tgn_memory_train.pth", map_location=torch.device(self.args.device), ) self.tgn_val_memory_backup = torch.load( prefix + "tgn_memory_val.pth", map_location=torch.device(self.args.device), ) self.logger.logger.info("<= loaded checkpoint {}".format(prefix)) new_encoder_name = type(encoder).__name__ error_msg = ( "Loaded encoder is not correct class. Was {}, should have been {}".format( new_encoder_name, old_encoder_name ) ) assert old_encoder_name == new_encoder_name, error_msg return encoder def train(self): self.downstream = False self.logger = logger.Logger( self.args, self.num_classes, self.num_nodes, train_encoder=self.train_encoder, ) self.report_trainable_parameters() def run_epochs(run_epoch, splitter, logger): self.tr_step = 0 best_eval_valid = 0 eval_valid = 0 epochs_without_impr = 0 for e in range(1, self.args.num_epochs + 1): eval_train, nodes_embs = run_epoch(splitter.train, e, "TRAIN") epochs_without_impr += 1 do_eval = ( e >= self.args.eval_after_epochs and e % self.args.eval_epoch_interval == 0 ) if len(splitter.val) > 0 and do_eval: eval_valid, _ = run_epoch(splitter.val, e, "VALID") if eval_valid > best_eval_valid: best_eval_valid = eval_valid epochs_without_impr = 0 print( "### w" + str(self.args.rank) + ") ep " + str(e) + " - Best valid measure:" + str(eval_valid) ) else: if epochs_without_impr > self.args.early_stop_patience: print( "### w" + str(self.args.rank) + ") ep " + str(e) + " - Early stop." ) break if len(splitter.test) > 0 and eval_valid == best_eval_valid and do_eval: self.save_checkpoint() eval_test, _ = run_epoch(splitter.test, e, "TEST") # if self.args.save_node_embeddings: # self.save_node_embs_csv(nodes_embs, self.splitter.train_idx, log_file+'_train_nodeembs.csv.gz') # self.save_node_embs_csv(nodes_embs, self.splitter.val_idx, log_file+'_valid_nodeembs.csv.gz') # self.save_node_embs_csv(nodes_embs, self.splitter.test_idx, log_file+'_test_nodeembs.csv.gz') if self.train_encoder: run_epochs(self.run_epoch, self.splitter, self.logger) else: assert ( self.args.temporal_granularity == "continuous" ), "Frozen encoder training only supported for continuous models" self.logger.logger.info("##### Decoder training") self.frozen = True self.load_checkpoint(load_disc_encoder=False, load_decoder=False) run_epochs( self.frozen_encoder_epoch, self.combined_splitter, self.logger ) self.frozen = False # Let it go! Let it gooo! if ( hasattr(self.args, "final_epoch") and self.args.final_epoch and self.train_encoder ): # Final epoch on all edges to report accurate metrics self.load_checkpoint(load_decoder=True) if self.args.temporal_granularity != "continuous": run_epoch = self.run_epoch else: run_epoch = self.frozen_encoder_epoch run_epoch(self.final_splitter.val, self.final_epoch_id, "VALID") self.set_save_predictions = self.args.save_predictions run_epoch(self.final_splitter.test, self.final_epoch_id, "TEST") self.set_save_predictions = False self.logger.close() if self.args.run_downstream: # Downstream learning print("Started downstream learning") self.logger.logger.info("##### Downstream learning") self.downstream = True # Is it pretty? No. Does it work? Yes self.downstream_loggers = { key: logger.Logger( self.args, self.num_classes, self.num_nodes, classifier_name=key ) for key in self.downstream_classifiers.keys() } self.load_checkpoint(load_decoder=True) e = 0 # epoch _ = self.run_downstream_epoch(self.downstream_splitter.train, e, "TRAIN") _ = self.run_downstream_epoch(self.downstream_splitter.val, e, "VALID") _ = self.run_downstream_epoch(self.downstream_splitter.test, e, "TEST") for logr in self.downstream_loggers.values(): logr.close() self.downstream = False # Load model and only run on test def eval(self): self.logger = logger.Logger( self.args, self.num_classes, self.num_nodes, train_encoder=self.train_encoder, ) # Load in everything self.load_checkpoint() def run_test_epoch(run_epoch, splitter, logger): self.set_save_predictions = self.args.save_predictions eval_test, _ = run_epoch(splitter.test, 1, "TEST") self.set_save_predictions = False if self.args.temporal_granularity in ["static", "discrete"]: run_test_epoch(self.run_epoch, self.splitter, self.logger) else: assert ( self.args.temporal_granularity == "continuous" ), "Frozen encoder training only supported for continuous models" self.logger.logger.info("##### Decoder eval") self.frozen = True run_test_epoch( self.frozen_encoder_epoch, self.combined_splitter, self.logger ) self.frozen = False # Let it go! Let it gooo! self.logger.close() def _epoch_decorator(run_epoch_func): @functools.wraps(run_epoch_func) def wrapper(*args, **kwards): self = args[0] split = args[1] epoch = args[2] set_name = args[3] if self.use_tgn_memory: self.prepare_tgn_memory(set_name) log_interval = 999 if set_name == "TEST": log_interval = 1 # Epoch start logger(s) if not self.downstream: self.logger.log_epoch_start( epoch, len(split), set_name, minibatch_log_interval=log_interval ) else: # Using variable name logr instead of logger to avoid overwriting import logger for logr in self.downstream_loggers.values(): logr.log_epoch_start( epoch, len(split), set_name, minibatch_log_interval=log_interval ) # Run epoch nodes_embs = run_epoch_func(*args, **kwards) if self.use_tgn_memory: self.backup_tgn_memory(set_name) # Epoch done logger(s) if not self.downstream: eval_measure = self.logger.log_epoch_done() else: for logr in self.downstream_loggers.values(): logr.log_epoch_done() eval_measure = None # Doesn't matter here return eval_measure, nodes_embs return wrapper @_epoch_decorator def run_downstream_epoch(self, split, epoch, set_name): raise NotImplementedError self.encoder = self.encoder.eval() torch.set_grad_enabled(False) for s in split: encode_sample, test_sample = s # Encoder es = self.prepare_sample(encode_sample, self.args.temporal_granularity) nodes_embs = self.encode(es, set_name) downstream_loss = torch.tensor(0.0) # No loss since we only encode # Downstream s = self.prepare_sample(test_sample, "static", only_label_sp=True) predictions_dict, probs_dict = self.predict_downstream( nodes_embs, s.label_sp["idx"], s.label_sp["vals"], set_name ) for classifier_name in predictions_dict: log = self.downstream_loggers[classifier_name] if set_name in ["TEST", "VALID"] and self.args.task == "link_pred": log.log_minibatch( downstream_loss.detach(), predictions_dict[classifier_name], probs_dict[classifier_name], s.label_sp["vals"], adj=s.label_sp["idx"], prev_adj=s.prev_adj["idx"], ) else: log.log_minibatch( downstream_loss.detach(), predictions_dict[classifier_name], probs_dict[classifier_name], s.label_sp["vals"], ) self.encoder = self.encoder.train() torch.set_grad_enabled(True) return nodes_embs @_epoch_decorator def frozen_encoder_epoch(self, split, epoch, set_name): if set_name == "TRAIN": torch.set_grad_enabled(True) else: torch.set_grad_enabled(False) # Freeze encoder self.cont_encoder = self.cont_encoder.eval() for param in self.cont_encoder.parameters(): param.requires_grad = False # Cache encoder embeddings for each snapshot to_cache = len(self.embedding_cache[set_name]) == 0 if to_cache: self.logger.logger.info("Cache empty, encoding to fill cache") else: self.logger.logger.info("Using cache") # Epoch i = 0 for s in split: encode_sample, test_sample = s i = i + 1 if to_cache: # Update cache es = self.prepare_sample(encode_sample, self.args.temporal_granularity) nodes_embs = self.encode(es, set_name) self.embedding_cache[set_name][i] = nodes_embs else: # Use cache nodes_embs = self.embedding_cache[set_name][i] # assert nodes_embs.isnan().any() == False, 'A node embedding is nan' # Node embs is occasionally nan. Sets nan to zero nodes_embs[nodes_embs.isnan()] = 0 s = self.prepare_sample(test_sample, "static", only_label_sp=True) # Decoder predictions = self.predict(nodes_embs, s.label_sp) loss = self.comp_loss(predictions, s.label_sp["vals"]) # print("loss:", loss) # assert math.isnan(loss.item()) == False, 'Loss is nan' probs = torch.softmax(predictions, dim=1)[:, 1] if self.set_save_predictions: if ( hasattr(self.args, "custom_labeler") and self.args.custom_labeler == True ): settype = self.tasker.custom_labeler.settype prefix = "{}_{}".format(self.prediction_filename_prefix, settype) u.save_predictions( probs, s.label_sp["idx"], s.label_sp["vals"], i, prefix, self.dataset, ) else: u.save_predictions( probs, s.label_sp["idx"], s.label_sp["vals"], i, self.prediction_filename_prefix, self.dataset, ) if set_name in ["TEST", "VALID"] and self.args.task == "link_pred": self.logger.log_minibatch( loss.detach(), predictions.detach().cpu(), probs.detach().cpu(), s.label_sp["vals"], adj=s.label_sp["idx"], prev_adj=s.prev_adj["idx"], ) else: self.logger.log_minibatch( loss.detach(), predictions.detach().cpu(), probs.detach().cpu(), s.label_sp["vals"], ) if set_name == "TRAIN": self.optim_step_decoder(loss) self.cont_encoder = self.cont_encoder.train() torch.set_grad_enabled(True) return nodes_embs @_epoch_decorator def run_epoch(self, split, epoch, set_name): snapshot_free = ( self.args.temporal_granularity == "continuous" or self.args.model == "seal" ) if set_name == "TRAIN": if self.disc_encoder != None: self.disc_encoder.train() if self.cont_encoder != None: self.cont_encoder.train() # If the cls is using dropout also call cls.train here. However we currently don't. torch.set_grad_enabled(True) else: if self.disc_encoder != None: self.disc_encoder.eval() if self.cont_encoder != None: self.cont_encoder.eval() torch.set_grad_enabled(False) i = 0 for s in split: # split is a data_split class and this calls the __get_item__ function # s = sample # for key in s.keys(): # print(key, u.naturalsize(u.get_memory_size(s[key]))) # Reshapes and sends the tensors to device s = self.prepare_sample(s, self.args.temporal_granularity) i = i + 1 # print("ss", i, 'set name', set_name) if not snapshot_free: # Snapshots, i.e. the Static, Discrete nodes_embs = self.encode(s, set_name) # Encoder predictions = self.predict(nodes_embs, s.label_sp) # Decoder loss = self.comp_loss(predictions, s.label_sp["vals"]) probs = torch.softmax(predictions, dim=1)[:, 1] if self.set_save_predictions: settype = self.tasker.custom_labeler.settype prefix = "{}_{}".format(self.prediction_filename_prefix, settype) u.save_predictions( probs, s.label_sp["idx"], s.label_sp["vals"], i, prefix, self.dataset, ) if set_name in ["TEST", "VALID"] and self.args.task == "link_pred": self.logger.log_minibatch( loss.detach(), predictions.detach().cpu(), probs.detach().cpu(), s.label_sp["vals"], adj=s.label_sp["idx"], prev_adj=s.prev_adj["idx"], ) else: self.logger.log_minibatch( loss.detach(), predictions.detach().cpu(), probs.detach().cpu(), s.label_sp["vals"], ) if set_name == "TRAIN" and not self.downstream: self.optim_step(loss) # Only for DGNN training else: # Edge based training - including continuous if self.args.model == "seal": nodes_embs = self.predict_seal(s, set_name) else: nodes_embs = self.predict_continuous( s.hist_adj, s.hist_time, s.hist_ndFeats, s.hist_node_mask, set_name, ) # Logging done internally in continuous training if self.disc_encoder != None: self.disc_encoder.train() if self.cont_encoder != None: self.cont_encoder.train() torch.set_grad_enabled(True) return nodes_embs def encode(self, sample, set_name, temporal_granularity=None): if temporal_granularity == None: temporal_granularity = self.args.temporal_granularity if temporal_granularity != "continuous": nodes_embs = self.disc_encoder( sample.hist_adj, sample.hist_ndFeats, sample.hist_vals, sample.hist_node_mask, ) else: # If snapshot based and continuous, used for downstream learning. nodes_embs = self.predict_continuous( sample.hist_adj, sample.hist_time, sample.hist_ndFeats, sample.hist_node_mask, set_name, ) return nodes_embs def predict(self, nodes_embs, label_sp): node_indices = label_sp["idx"] if self.has_time_query: time = label_sp["time"] edge_type = label_sp["type"] time_feats = label_sp["time_feats"] batch_size = self.args.decoder_batch_size gather_predictions = [] for i in range(1 + (node_indices.size(1) // batch_size)): b_start = i * batch_size b_end = (i + 1) * batch_size links = node_indices[:, b_start:b_end] x = self.gather_node_embs(nodes_embs, links) if self.has_time_query: t = time[b_start:b_end].unsqueeze(1) e_type = edge_type[b_start:b_end, :] t_feats = time_feats[b_start:b_end, :] predictions = self.classifier(x, t, e_type, t_feats) else: predictions = self.classifier(x) gather_predictions.append(predictions) gather_predictions = torch.cat(gather_predictions, dim=0) return gather_predictions def gather_node_embs(self, nodes_embs, links): cls_input = [] for node_set in links: cls_input.append(nodes_embs[node_set]) return torch.cat(cls_input, dim=1) def predict_continuous(self, hist_adj, hist_time, hist_ndFeats, mask, set_name): batch_size = self.args.continuous_batch_size assert len(hist_adj) == len(hist_time) == len(hist_ndFeats) == 1 # Some Torch to numpy and GPU to CPU ping pong caused by TGAT taking numpy as input # Luckily this happens only 3 times per epoch. adj = hist_adj[0] times = hist_time[0].cpu().numpy() assert len(adj) == 2 src_idx_l = adj[0].cpu().numpy() target_idx_l = adj[1].cpu().numpy() num_nodes = len(np.unique(src_idx_l)) num_edges = len(np.atleast_1d(src_idx_l)) if num_edges <= 1: # The rest of the function assumes multiple edges. # Ignore this one edge and simply return previous embeddings. This may happen on sparse datasets with small snapshots (the beginning of UC is an example) nodes_embs = self.cont_encoder.node_embed.detach() assert ( len(nodes_embs) == self.num_nodes ), "Node embeddings need to include all nodes" return nodes_embs num_batches = num_edges // batch_size # The below line is potentially great for datasets which have no edge features. But if the initialization is dictated by edge features (as in TGAT), then we'll have to do something different here. # self.cont_encoder.update_node_features(hist_ndFeats[0].to_dense().cpu().numpy()) # Combining source and target since TGAT is based on node embeddings and since our networks are treated as undirected. # The ngh_finder retrieves a sample of edges per node which are used for the embedding. # nodes = torch.stack([src_idx_l,target_idx_l], dim=1).flatten() # times = torch.stack([times, times], dim=1).flatten() for i in range(1 + num_batches): # print("Batch {}/{}".format(i+1, num_batches+1)) src_batch, target_batch, times_batch, edge_idxs = self.get_continuous_batch( src_idx_l, target_idx_l, times, i, batch_size ) # print("continuous batch times", times_batch.min(), times_batch.max()) size = len(src_batch) if size <= 1: continue # TGAT breaks down if the batch only contains one edge. # nembs_batch = self.cont_encoder(src_batch, #contrast used instead # times_batch, # hist_ndFeats[0], # mask) target_l_fake = np.random.randint(0, num_nodes, size) with torch.no_grad(): pos_label = torch.ones(size, dtype=torch.float, device=self.args.device) neg_label = torch.zeros( size, dtype=torch.float, device=self.args.device ) self.opt_cont_encoder.zero_grad() pos_prob, neg_prob = self.cont_encoder.contrast( src_batch, target_batch, target_l_fake, times_batch, edge_idxs ) if not self.downstream and not self.frozen: # If we're downstream or frozen we just want to encode inter_loss = self.interpolation_loss(pos_prob, pos_label) inter_loss += self.interpolation_loss(neg_prob, neg_label) if set_name == "TRAIN": inter_loss.backward() self.opt_cont_encoder.step() if self.use_tgn_memory: self.cont_encoder.memory.detach_memory() with torch.no_grad(): self.cont_encoder = self.cont_encoder.eval() probs = torch.tensor( np.concatenate( [ (pos_prob).cpu().detach().numpy(), (neg_prob).cpu().detach().numpy(), ] ) ) predictions = torch.stack((probs, 1 - probs), dim=1) true_label = torch.tensor( np.concatenate([np.ones(size), np.zeros(size)]) ) self.logger.log_minibatch( inter_loss.detach(), predictions.detach().cpu(), probs.detach().cpu(), true_label, calc_lp_metrics=False, ) # Detach breaks the link between the models so the continuous model and classifier are trained separately. nodes_embs = self.cont_encoder.node_embed.detach() assert ( len(nodes_embs) == self.num_nodes ), "Node embeddings need to include all nodes" return nodes_embs def predict_downstream(self, nodes_embs, node_index, true_classes, set_name): # If training we can only fit once, so no batching. # Since we train using negative samples the data should be small enough to be handled in one go. nodes_embs = nodes_embs.cpu() node_index = node_index.cpu() true_classes = true_classes.cpu() if set_name == "TRAIN": predictions_dict, probs_dict = self.predict_downstream_batch( nodes_embs, node_index, true_classes, set_name ) return predictions_dict, probs_dict # Batching for validation and test def get_batch(i, batch_size, nodes_embs, node_index, true_classes, set_name): batch_start = i * batch_size batch_end = (i + 1) * batch_size node_index_batch = node_index[:, batch_start:batch_end] true_classes_batch = true_classes[batch_start:batch_end] predictions_dict, probs_dict = self.predict_downstream_batch( nodes_embs, node_index_batch, true_classes_batch, set_name ) return predictions_dict, probs_dict batch_size = self.args.decoder_batch_size # TODO Parallel seems to make it slower, consider investigating in the future, maybe different batch size # parallel = Parallel(n_jobs=-1) # gather_predictions = parallel(delayed(get_batch)( # i, batch_size, nodes_embs, node_index, true_classes, set_name) # for i in range(1 +(node_index.size(1)//batch_size)) # ) gather_predictions = [ get_batch(i, batch_size, nodes_embs, node_index, true_classes, set_name) for i in range(1 + (node_index.size(1) // batch_size)) ] # Prepare predictions for concatenation predictions_dict_list = {} probs_dict_list = {} for predictions_dict, probs_dict in gather_predictions: for classifier_name in predictions_dict: if classifier_name in predictions_dict_list.keys(): predictions_dict_list[classifier_name].append( predictions_dict[classifier_name] ) probs_dict_list[classifier_name].append(probs_dict[classifier_name]) else: predictions_dict_list[classifier_name] = [ predictions_dict[classifier_name] ] probs_dict_list[classifier_name] = [probs_dict[classifier_name]] # Concatenate batched predictions predictions_dict = {} probs_dict = {} for classifier_name in predictions_dict_list: predictions = torch.cat(predictions_dict_list[classifier_name], dim=0) probs = torch.cat(probs_dict_list[classifier_name], dim=0) predictions_dict[classifier_name] = predictions probs_dict[classifier_name] = probs return predictions_dict, probs_dict def predict_downstream_batch(self, nodes_embs, node_index, true_classes, set_name): embedding_size = nodes_embs[1].size()[0] n1, n2 = torch.split( self.gather_node_embs(nodes_embs, node_index), embedding_size, dim=1 ) X = np.array(torch.cat([n1, n2, np.multiply(n1, n2)], dim=1)) y = np.array(true_classes) # A rare problem where some embeddings on some snapshots cause X to include nan values if not np.isfinite(X).all(): for logr in self.downstream_loggers.values(): logr.logger.warning( "nan/inf/-inf observed in downstream X. Setting values to default valid numbers" ) X = np.nan_to_num(X) predictions_dict = {} probs_dict = {} for key, classifier in self.downstream_classifiers.items(): if set_name == "TRAIN": classifier.fit(X, y) predictions = classifier.predict_proba(X) probs = predictions[:, 1] self.downstream_classifiers[key] = classifier predictions_dict[key] = torch.tensor(predictions) probs_dict[key] = torch.tensor(probs) return predictions_dict, probs_dict def get_continuous_batch(self, src_l, target_l, times_l, i, batch_size): start_idx = i * batch_size end_idx = start_idx + batch_size src_batch = src_l[start_idx:end_idx] target_batch = target_l[start_idx:end_idx] times_batch = times_l[start_idx:end_idx] edge_idxs = np.arange(start_idx, start_idx + len(src_batch)) # print("batch", i, "src", src_l.shape, "sidx", start_idx, "eidx", end_idx, "src batch", src_batch.shape) return src_batch, target_batch, times_batch, edge_idxs def optim_step(self, loss): self.tr_step += 1 loss.backward() if self.tr_step % self.args.steps_accum_gradients == 0: if self.disc_encoder != None and self.args.model != "random": self.opt_encoder.step() self.opt_encoder.zero_grad() self.opt_decoder.step() self.opt_decoder.zero_grad() def optim_step_decoder(self, loss): self.tr_step += 1 loss.backward() if self.tr_step % self.args.steps_accum_gradients == 0: self.opt_decoder.step() self.opt_decoder.zero_grad() def prepare_sample( self, sample, temporal_granularity="static", only_label_sp=False ): sample = u.Namespace(sample) sample.hist_vals, sample.hist_time = [], [] if self.args.model == "seal": # For SEAL we want to pack the data edge by edge into a dataloader (yes a second one) seal_dataset = SEALDataset( self.args, self.args.gcn_parameters["hops"], self.tasker.prepare_node_feats(sample.hist_ndFeats[0]).to_dense(), sample.label_exist["idx"].squeeze(), sample.label_non_exist["idx"].squeeze(), sample.hist_adj[0]["idx"].squeeze(), ) seal_loader = pygeomDataLoader(seal_dataset, batch_size=32) return seal_loader # Returns a dataloader instead of a sample if it is SEAL else: # For the static and continuous case there will be only one iteration for i, adj in enumerate(sample.hist_adj): # Prepares an edge index (edge list) as expected by PyTorch Geometric # Squeeze removes dimensions of size 1 vals = adj["vals"].squeeze().t() sample.hist_vals.append(vals.to(self.args.device)) if temporal_granularity == "continuous": hist_time = adj["time"].squeeze().t() sample.hist_time.append(hist_time.to(self.args.device)) if hasattr(self.args, "pygeom") and self.args.pygeom == False: # Only used for the original implementation of EGCN adj_idx = u.sparse_prepare_tensor(adj, torch_size=[self.num_nodes]) else: adj_idx = adj["idx"].squeeze().t() sample.hist_adj[i] = adj_idx.to(self.args.device) if not only_label_sp: # Created some problems for reddit_tgn, we don't use this there anyways. if self.disc_tasker != None: nodes = self.disc_tasker.prepare_node_feats( sample.hist_ndFeats[i] ) else: nodes = self.tasker.prepare_node_feats(sample.hist_ndFeats[i]) sample.hist_ndFeats[i] = nodes.to(self.args.device) hist_node_mask = sample.hist_node_mask[i] # transposed to have same dimensions as scorer sample.hist_node_mask[i] = hist_node_mask.to(self.args.device).t() label_sp = self.ignore_batch_dim(sample.label_sp) if self.has_time_query: label_sp["time"] = label_sp["time"].squeeze().to(self.args.device) label_sp["type"] = label_sp["type"].squeeze().to(self.args.device) label_sp["time_feats"] = ( label_sp["time_feats"].squeeze().to(self.args.device) ) if self.args.task in ["link_pred", "edge_cls"]: label_sp["idx"] = label_sp["idx"].to(self.args.device).t() else: label_sp["idx"] = label_sp["idx"].to(self.args.device) label_sp["vals"] = label_sp["vals"].type(torch.long).to(self.args.device) sample.label_sp = label_sp return sample def ignore_batch_dim(self, adj): if self.args.task in ["link_pred", "edge_cls"]: adj["idx"] = adj["idx"][0] adj["vals"] = adj["vals"][0] return adj def save_node_embs_csv(self, nodes_embs, indexes, file_name): csv_node_embs = [] for node_id in indexes: orig_ID = torch.DoubleTensor([self.tasker.data.contID_to_origID[node_id]]) csv_node_embs.append( torch.cat((orig_ID, nodes_embs[node_id].double())).detach().numpy() ) pd.DataFrame(np.array(csv_node_embs)).to_csv( file_name, header=None, index=None, compression="gzip" ) print("Node embs saved in", file_name) def prepare_tgn_memory(self, set_name): if set_name == "TRAIN": self.logger.logger.info("init memory") self.cont_encoder.memory.__init_memory__() elif set_name == "VALID": self.logger.logger.info("restore training memory") assert self.tgn_train_memory_backup is not None self.cont_encoder.memory.restore_memory(self.tgn_train_memory_backup) elif set_name == "TEST": self.logger.logger.info("restore validation memory") assert self.tgn_val_memory_backup is not None self.cont_encoder.memory.restore_memory(self.tgn_val_memory_backup) def backup_tgn_memory(self, set_name): if set_name == "TRAIN": print("save train memory") self.tgn_train_memory_backup = self.cont_encoder.memory.backup_memory() assert self.tgn_train_memory_backup is not None elif set_name == "VALID": print("save validation memory") self.tgn_val_memory_backup = self.cont_encoder.memory.backup_memory() assert self.tgn_val_memory_backup is not None
[ "utils.sparse_prepare_tensor", "torch.softmax", "numpy.array", "numpy.isfinite", "torch.DoubleTensor", "utils.get_gridcell", "utils.save_predictions", "numpy.multiply", "utils.Namespace", "sklearn.tree.DecisionTreeClassifier", "functools.wraps", "numpy.ones", "logger.Logger", "torch.save", "torch.no_grad", "xgboost.XGBClassifier", "torch.cat", "numpy.atleast_1d", "torch.optim.Adam", "torch.device", "numpy.unique", "os.makedirs", "torch.stack", "sklearn.linear_model.LogisticRegression", "torch.tensor", "torch.nn.BCELoss", "numpy.random.randint", "numpy.zeros", "torch.set_grad_enabled", "torch.zeros", "numpy.nan_to_num", "torch.ones" ]
[((1678, 1696), 'torch.nn.BCELoss', 'torch.nn.BCELoss', ([], {}), '()\n', (1694, 1696), False, 'import torch\n'), ((7817, 7864), 'torch.save', 'torch.save', (['self.classifier', "(prefix + 'cls.pth')"], {}), "(self.classifier, prefix + 'cls.pth')\n", (7827, 7864), False, 'import torch\n'), ((10893, 10990), 'logger.Logger', 'logger.Logger', (['self.args', 'self.num_classes', 'self.num_nodes'], {'train_encoder': 'self.train_encoder'}), '(self.args, self.num_classes, self.num_nodes, train_encoder=\n self.train_encoder)\n', (10906, 10990), False, 'import logger\n'), ((15662, 15759), 'logger.Logger', 'logger.Logger', (['self.args', 'self.num_classes', 'self.num_nodes'], {'train_encoder': 'self.train_encoder'}), '(self.args, self.num_classes, self.num_nodes, train_encoder=\n self.train_encoder)\n', (15675, 15759), False, 'import logger\n'), ((16776, 16807), 'functools.wraps', 'functools.wraps', (['run_epoch_func'], {}), '(run_epoch_func)\n', (16791, 16807), False, 'import functools\n'), ((18415, 18444), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (18437, 18444), False, 'import torch\n'), ((19922, 19950), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (19944, 19950), False, 'import torch\n'), ((23455, 23483), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (23477, 23483), False, 'import torch\n'), ((27075, 27103), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (27097, 27103), False, 'import torch\n'), ((28888, 28924), 'torch.cat', 'torch.cat', (['gather_predictions'], {'dim': '(0)'}), '(gather_predictions, dim=0)\n', (28897, 28924), False, 'import torch\n'), ((29133, 29160), 'torch.cat', 'torch.cat', (['cls_input'], {'dim': '(1)'}), '(cls_input, dim=1)\n', (29142, 29160), False, 'import torch\n'), ((37325, 37347), 'numpy.array', 'np.array', (['true_classes'], {}), '(true_classes)\n', (37333, 37347), True, 'import numpy as np\n'), ((39516, 39535), 'utils.Namespace', 'u.Namespace', (['sample'], {}), '(sample)\n', (39527, 39535), True, 'import utils as u\n'), ((1491, 1511), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (1509, 1511), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1537, 1561), 'sklearn.tree.DecisionTreeClassifier', 'DecisionTreeClassifier', ([], {}), '()\n', (1559, 1561), False, 'from sklearn.tree import DecisionTreeClassifier\n'), ((1582, 1597), 'xgboost.XGBClassifier', 'XGBClassifier', ([], {}), '()\n', (1595, 1597), False, 'from xgboost import XGBClassifier\n'), ((3609, 3654), 'os.makedirs', 'os.makedirs', (['prediction_folder'], {'exist_ok': '(True)'}), '(prediction_folder, exist_ok=True)\n', (3620, 3654), False, 'import os\n'), ((5981, 6028), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'args.learning_rate'}), '(params, lr=args.learning_rate)\n', (5997, 6028), False, 'import torch\n'), ((6245, 6292), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'args.learning_rate'}), '(params, lr=args.learning_rate)\n', (6261, 6292), False, 'import torch\n'), ((8311, 8384), 'torch.save', 'torch.save', (['self.tgn_train_memory_backup', "(prefix + 'tgn_memory_train.pth')"], {}), "(self.tgn_train_memory_backup, prefix + 'tgn_memory_train.pth')\n", (8321, 8384), False, 'import torch\n'), ((8397, 8466), 'torch.save', 'torch.save', (['self.tgn_val_memory_backup', "(prefix + 'tgn_memory_val.pth')"], {}), "(self.tgn_val_memory_backup, prefix + 'tgn_memory_val.pth')\n", (8407, 8466), False, 'import torch\n'), ((18701, 18718), 'torch.tensor', 'torch.tensor', (['(0.0)'], {}), '(0.0)\n', (18713, 18718), False, 'import torch\n'), ((20106, 20134), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (20128, 20134), False, 'import torch\n'), ((20161, 20190), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (20183, 20190), False, 'import torch\n'), ((24016, 24044), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (24038, 24044), False, 'import torch\n'), ((24237, 24266), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(False)'], {}), '(False)\n', (24259, 24266), False, 'import torch\n'), ((29729, 29749), 'numpy.unique', 'np.unique', (['src_idx_l'], {}), '(src_idx_l)\n', (29738, 29749), True, 'import numpy as np\n'), ((29775, 29799), 'numpy.atleast_1d', 'np.atleast_1d', (['src_idx_l'], {}), '(src_idx_l)\n', (29788, 29799), True, 'import numpy as np\n'), ((31703, 31740), 'numpy.random.randint', 'np.random.randint', (['(0)', 'num_nodes', 'size'], {}), '(0, num_nodes, size)\n', (31720, 31740), True, 'import numpy as np\n'), ((36703, 36759), 'torch.cat', 'torch.cat', (['predictions_dict_list[classifier_name]'], {'dim': '(0)'}), '(predictions_dict_list[classifier_name], dim=0)\n', (36712, 36759), False, 'import torch\n'), ((36780, 36830), 'torch.cat', 'torch.cat', (['probs_dict_list[classifier_name]'], {'dim': '(0)'}), '(probs_dict_list[classifier_name], dim=0)\n', (36789, 36830), False, 'import torch\n'), ((37711, 37727), 'numpy.nan_to_num', 'np.nan_to_num', (['X'], {}), '(X)\n', (37724, 37727), True, 'import numpy as np\n'), ((38111, 38136), 'torch.tensor', 'torch.tensor', (['predictions'], {}), '(predictions)\n', (38123, 38136), False, 'import torch\n'), ((38167, 38186), 'torch.tensor', 'torch.tensor', (['probs'], {}), '(probs)\n', (38179, 38186), False, 'import torch\n'), ((43031, 43095), 'torch.DoubleTensor', 'torch.DoubleTensor', (['[self.tasker.data.contID_to_origID[node_id]]'], {}), '([self.tasker.data.contID_to_origID[node_id]])\n', (43049, 43095), False, 'import torch\n'), ((3562, 3582), 'utils.get_gridcell', 'u.get_gridcell', (['args'], {}), '(args)\n', (3576, 3582), True, 'import utils as u\n'), ((6544, 6591), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'args.learning_rate'}), '(params, lr=args.learning_rate)\n', (6560, 6591), False, 'import torch\n'), ((6833, 6933), 'torch.optim.Adam', 'torch.optim.Adam', (['params'], {'lr': 'args.decoder_learning_rate', 'weight_decay': 'args.decoder_weight_decay'}), '(params, lr=args.decoder_learning_rate, weight_decay=args.\n decoder_weight_decay)\n', (6849, 6933), False, 'import torch\n'), ((9590, 9620), 'torch.device', 'torch.device', (['self.args.device'], {}), '(self.args.device)\n', (9602, 9620), False, 'import torch\n'), ((14933, 15012), 'logger.Logger', 'logger.Logger', (['self.args', 'self.num_classes', 'self.num_nodes'], {'classifier_name': 'key'}), '(self.args, self.num_classes, self.num_nodes, classifier_name=key)\n', (14946, 15012), False, 'import logger\n'), ((21679, 21712), 'torch.softmax', 'torch.softmax', (['predictions'], {'dim': '(1)'}), '(predictions, dim=1)\n', (21692, 21712), False, 'import torch\n'), ((31759, 31774), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (31772, 31774), False, 'import torch\n'), ((31804, 31864), 'torch.ones', 'torch.ones', (['size'], {'dtype': 'torch.float', 'device': 'self.args.device'}), '(size, dtype=torch.float, device=self.args.device)\n', (31814, 31864), False, 'import torch\n'), ((31893, 31954), 'torch.zeros', 'torch.zeros', (['size'], {'dtype': 'torch.float', 'device': 'self.args.device'}), '(size, dtype=torch.float, device=self.args.device)\n', (31904, 31954), False, 'import torch\n'), ((9095, 9125), 'torch.device', 'torch.device', (['self.args.device'], {}), '(self.args.device)\n', (9107, 9125), False, 'import torch\n'), ((10200, 10230), 'torch.device', 'torch.device', (['self.args.device'], {}), '(self.args.device)\n', (10212, 10230), False, 'import torch\n'), ((10375, 10405), 'torch.device', 'torch.device', (['self.args.device'], {}), '(self.args.device)\n', (10387, 10405), False, 'import torch\n'), ((22087, 22180), 'utils.save_predictions', 'u.save_predictions', (['probs', "s.label_sp['idx']", "s.label_sp['vals']", 'i', 'prefix', 'self.dataset'], {}), "(probs, s.label_sp['idx'], s.label_sp['vals'], i, prefix,\n self.dataset)\n", (22105, 22180), True, 'import utils as u\n'), ((22386, 22505), 'utils.save_predictions', 'u.save_predictions', (['probs', "s.label_sp['idx']", "s.label_sp['vals']", 'i', 'self.prediction_filename_prefix', 'self.dataset'], {}), "(probs, s.label_sp['idx'], s.label_sp['vals'], i, self.\n prediction_filename_prefix, self.dataset)\n", (22404, 22505), True, 'import utils as u\n'), ((25031, 25064), 'torch.softmax', 'torch.softmax', (['predictions'], {'dim': '(1)'}), '(predictions, dim=1)\n', (25044, 25064), False, 'import torch\n'), ((25289, 25382), 'utils.save_predictions', 'u.save_predictions', (['probs', "s.label_sp['idx']", "s.label_sp['vals']", 'i', 'prefix', 'self.dataset'], {}), "(probs, s.label_sp['idx'], s.label_sp['vals'], i, prefix,\n self.dataset)\n", (25307, 25382), True, 'import utils as u\n'), ((32734, 32749), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (32747, 32749), False, 'import torch\n'), ((33174, 33212), 'torch.stack', 'torch.stack', (['(probs, 1 - probs)'], {'dim': '(1)'}), '((probs, 1 - probs), dim=1)\n', (33185, 33212), False, 'import torch\n'), ((37283, 37302), 'numpy.multiply', 'np.multiply', (['n1', 'n2'], {}), '(n1, n2)\n', (37294, 37302), True, 'import numpy as np\n'), ((37459, 37473), 'numpy.isfinite', 'np.isfinite', (['X'], {}), '(X)\n', (37470, 37473), True, 'import numpy as np\n'), ((41042, 41099), 'utils.sparse_prepare_tensor', 'u.sparse_prepare_tensor', (['adj'], {'torch_size': '[self.num_nodes]'}), '(adj, torch_size=[self.num_nodes])\n', (41065, 41099), True, 'import utils as u\n'), ((43251, 43274), 'numpy.array', 'np.array', (['csv_node_embs'], {}), '(csv_node_embs)\n', (43259, 43274), True, 'import numpy as np\n'), ((33300, 33313), 'numpy.ones', 'np.ones', (['size'], {}), '(size)\n', (33307, 33313), True, 'import numpy as np\n'), ((33315, 33329), 'numpy.zeros', 'np.zeros', (['size'], {}), '(size)\n', (33323, 33329), True, 'import numpy as np\n')]
#! /usr/bin/env python """ A basic demonstration of Bayesian statistics by flipping lizards. """ import sys import os import math import argparse import unittest from scipy.stats import beta, binom class BinomialModel(object): """ A class for demonstrating Bayesian statistics with a binomial sampling distribution and a conjugate beta prior. Inspired by the lizard-flipping example in Chapter 2 of <NAME>'s book on phylogenetic comparative methods: https://lukejharmon.github.io/pcm/chapter2_stats/ >>> m = BinomialModel(100, 10, 0.1) >>> m.n 100 >>> m.k 10 >>> m.p 0.1 >>> abs(m.get_likelihood() - 0.1318653) < 0.00001 True >>> abs(m.get_posterior_density() - 13.3184) < 0.0001 True >>> abs(m.get_marginal_likelihood() - 0.00990099) < 0.000001 True """ def __init__(self, number_of_flips = 100, number_of_heads = 63, probability_of_heads = 0.5, prior_beta_a = 1.0, prior_beta_b = 1.0): self.n = number_of_flips self.k = number_of_heads self.beta_a = prior_beta_a self.beta_b = prior_beta_b self.p = probability_of_heads def get_prior_distribution(self): return beta(self.beta_a, self.beta_b) def get_posterior_distribution(self): return beta( self.beta_a + self.k, self.beta_b + (self.n - self.k)) def get_prior_density(self, p = None): if p is None: p = self.p prior_dist = self.get_prior_distribution() return prior_dist.pdf(p) def get_log_prior_density(self, p = None): if p is None: p = self.p prior_dist = self.get_prior_distribution() return prior_dist.logpdf(p) def get_posterior_density(self, p = None): if p is None: p = self.p post_dist = self.get_posterior_distribution() return post_dist.pdf(p) def get_log_posterior_density(self, p = None): if p is None: p = self.p post_dist = self.get_posterior_distribution() return post_dist.logpdf(p) def get_likelihood(self, p = None): if p is None: p = self.p return binom.pmf(k = self.k, n = self.n, p = p) def get_log_likelihood(self, p = None): if p is None: p = self.p return binom.logpmf(k = self.k, n = self.n, p = p) def get_log_marginal_likelihood(self): """ To get this, we just have to rearrange Bayes rule as follows: p(rate_of_heads | data) = p(data | rate_of_heads) p(rate_of_heads) ---------------------------------------- p(data) p(data) p(rate_of_heads | data) = p(data | rate_of_heads) p(rate_of_heads) p(data) = p(data | rate_of_heads) p(rate_of_heads) ---------------------------------------- p(rate_of_heads | data) Or in words, the marginal probability of the data equals the likelihood times the prior density divided by the posterior density. On a log scale, this is the log likelihood plus the log prior density minus the posterior density. """ return (self.get_log_likelihood() + self.get_log_prior_density() - self.get_log_posterior_density()) def get_marginal_likelihood(self): return math.exp(self.get_log_marginal_likelihood()) def arg_is_positive_int(i): try: if int(i) < 1: raise except: msg = '{0!r} is not a positive integer'.format(i) raise argparse.ArgumentTypeError(msg) return int(i) def arg_is_positive_float(i): try: if float(i) <= 0.0: raise except: msg = '{0!r} is not a positive real number'.format(i) raise argparse.ArgumentTypeError(msg) return float(i) def arg_is_nonnegative_float(i): try: if float(i) < 0.0: raise except: msg = '{0!r} is not a non-negative real number'.format(i) raise argparse.ArgumentTypeError(msg) return float(i) def main_cli(argv = sys.argv): parser = argparse.ArgumentParser() parser.add_argument('-n', '--number-of-flips', action = 'store', type = arg_is_positive_int, default = 100, help = 'Number of lizard flips.') parser.add_argument('-k', '--number-of-heads', action = 'store', type = arg_is_positive_int, default = 63, help = 'Number of lizards that land heads up.') parser.add_argument('-p', '--probability-of-heads', action = 'store', type = arg_is_nonnegative_float, default = 0.5, help = ('Probability of any lizard landing heads up under the ' '\'null\' model.')) parser.add_argument('-a', '--beta-prior-alpha', action = 'store', type = arg_is_positive_float, default = 1.0, help = ('Value of the alpha parameter of the beta prior on the ' 'probability of heads.')) parser.add_argument('-b', '--beta-prior-beta', action = 'store', type = arg_is_positive_float, default = 1.0, help = ('Value of the beta parameter of the beta prior on the ' 'probability of heads.')) if argv == sys.argv: args = parser.parse_args() else: args = parser.parse_args(argv) m = BinomialModel( number_of_flips = args.number_of_flips, number_of_heads = args.number_of_heads, probability_of_heads = args.probability_of_heads, prior_beta_a = args.beta_prior_alpha, prior_beta_b = args.beta_prior_beta) p = args.probability_of_heads msg = """ Let's use Bayes rule to calculate the posterior probability of 2 models: 1. A "null" model where the probability of heads is fixed to 0.5 2. An alternative model where the probabiliy of heads is free to vary between 0 and 1 according to a beta prior First, we need the marginal probability of the data (the marginal likelihood) under both models. For the null model there are no free parameters to marginalize over, so the marginal likelihood is just the likelihood. p(data | null model) = {p_data_given_null_model} For the alternative model, we can easily get the densities from the prior and posterior disributions (they are both beta distributions), and the likelihood is a binomial, just like for the null model. With these three numbers, we can solve for the marginal probability of the data (the denominator of the model's posterior density). p(data | alt model) = {p_data_given_alt_model} Now, we can get the overall (marginal) probability of the data under either of these two models: p(data) = [ p(data | null model) p(null model) ] + [ p(data | alt model) p(alt model) ] Let's assume a priori that both models are equally probable (i.e, p(null model) = p(alt model) = 0.5). This simplifies the above equation to: p(data) = 0.5 p(data | null model) + 0.5 p(data | alt model) = 0.5 [ p(data | null model) + p(data | alt model) ] Now, we can calculate the posterior probability of both models: p(null model | data) = p(data | null model) p(null model) ---------------------------------- p(data) = p(data | null model) 0.5 -------------------------------------------------- 0.5 [ p(data | null model) + p(data | alt model) ] = p(data | null model) -------------------------------------------------- p(data | null model) + p(data | alt model) = {p_null_given_data} p(alt model | data) = p(data | alt model) ------------------------------------------ p(data | null model) + p(data | alt model) = {p_alt_given_data} """.format( p_data_given_null_model = m.get_likelihood(p), p_data_given_alt_model = m.get_marginal_likelihood(), p_null_given_data = m.get_likelihood(p) / (m.get_likelihood(p) + m.get_marginal_likelihood()), p_alt_given_data = m.get_marginal_likelihood() / (m.get_likelihood(p) + m.get_marginal_likelihood())) print(msg) if __name__ == "__main__": if "--run-tests" in sys.argv: sys.stderr.write(""" ********************************************************************* Running test suite using the following Python executable and version: {0} {1} ********************************************************************* \n""".format(sys.executable, sys.version)) import doctest # doctest.testmod(verbose = True) suite = unittest.TestSuite() suite.addTest(doctest.DocTestSuite()) tests = unittest.defaultTestLoader.loadTestsFromName( os.path.splitext(os.path.basename(__file__))[0]) suite.addTests(tests) runner = unittest.TextTestRunner(verbosity = 2) runner.run(suite) sys.exit(0) main_cli()
[ "unittest.TestSuite", "doctest.DocTestSuite", "argparse.ArgumentParser", "argparse.ArgumentTypeError", "scipy.stats.binom.pmf", "scipy.stats.beta", "os.path.basename", "sys.exit", "unittest.TextTestRunner", "scipy.stats.binom.logpmf" ]
[((4274, 4299), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4297, 4299), False, 'import argparse\n'), ((1273, 1303), 'scipy.stats.beta', 'beta', (['self.beta_a', 'self.beta_b'], {}), '(self.beta_a, self.beta_b)\n', (1277, 1303), False, 'from scipy.stats import beta, binom\n'), ((1362, 1421), 'scipy.stats.beta', 'beta', (['(self.beta_a + self.k)', '(self.beta_b + (self.n - self.k))'], {}), '(self.beta_a + self.k, self.beta_b + (self.n - self.k))\n', (1366, 1421), False, 'from scipy.stats import beta, binom\n'), ((2278, 2312), 'scipy.stats.binom.pmf', 'binom.pmf', ([], {'k': 'self.k', 'n': 'self.n', 'p': 'p'}), '(k=self.k, n=self.n, p=p)\n', (2287, 2312), False, 'from scipy.stats import beta, binom\n'), ((2424, 2461), 'scipy.stats.binom.logpmf', 'binom.logpmf', ([], {'k': 'self.k', 'n': 'self.n', 'p': 'p'}), '(k=self.k, n=self.n, p=p)\n', (2436, 2461), False, 'from scipy.stats import beta, binom\n'), ((9016, 9036), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (9034, 9036), False, 'import unittest\n'), ((9258, 9294), 'unittest.TextTestRunner', 'unittest.TextTestRunner', ([], {'verbosity': '(2)'}), '(verbosity=2)\n', (9281, 9294), False, 'import unittest\n'), ((9332, 9343), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (9340, 9343), False, 'import sys\n'), ((3720, 3751), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['msg'], {}), '(msg)\n', (3746, 3751), False, 'import argparse\n'), ((3944, 3975), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['msg'], {}), '(msg)\n', (3970, 3975), False, 'import argparse\n'), ((4176, 4207), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['msg'], {}), '(msg)\n', (4202, 4207), False, 'import argparse\n'), ((9059, 9081), 'doctest.DocTestSuite', 'doctest.DocTestSuite', ([], {}), '()\n', (9079, 9081), False, 'import doctest\n'), ((9178, 9204), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (9194, 9204), False, 'import os\n')]
from sqlalchemy import (create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select) engine = create_engine('sqlite:///base.db', echo=False) metadata = MetaData(bind=engine) artists = Table('artistas', metadata, Column('id', Integer, primary_key=True, autoincrement=True), Column('nome', String(40), index=True, nullable=False, unique=True)) discs = Table('discos', metadata, Column('id', Integer, primary_key=True, autoincrement=True), Column('artista_id', ForeignKey('artistas.id'), nullable=False), Column('album', String(40), nullable=False), Column('ano', Integer, nullable=False)) metadata.create_all() def search_albums(artist): artist_id = [x for x in select([artists.c.id]). where(artists.c.nome == artist.lower()).execute()] if artist_id: query = select([discs.c.id, discs.c.album, discs.c.ano, discs.c.artista_id]).where( discs.c.artista_id == artist_id[0][0]).execute() return {_id: {'album': album, 'ano': ano, 'id_artista': artista} for _id, album, ano, artista in query} return {} def id_artist(artist): searched = select([artists]).where(artists.c.nome == artist) result = [_id for _id, artist in searched.execute()] if result: return result[0] else: insert_artist(artist) return id_artist(artist) def search_all_artists(): return {_id: artist for _id, artist in select([artists]).execute()} def insert_artist(artist): conn = engine.connect() artista_ins = artists.insert() new_artist = artista_ins.values(nome=artist) try: conn.execute(new_artist) status = True except Exception as e: print(e) status = False finally: conn.close() return status def insert_album(disc, year, artist): conn = engine.connect() disc_ins = discs.insert() new_disc = disc_ins.values(artista_id=id_artist(artist), album=disc, ano=year) try: conn.execute(new_disc) status = True except Exception as e: print(e) status = False finally: conn.close() return status
[ "sqlalchemy.create_engine", "sqlalchemy.ForeignKey", "sqlalchemy.MetaData", "sqlalchemy.String", "sqlalchemy.select", "sqlalchemy.Column" ]
[((136, 182), 'sqlalchemy.create_engine', 'create_engine', (['"""sqlite:///base.db"""'], {'echo': '(False)'}), "('sqlite:///base.db', echo=False)\n", (149, 182), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((218, 239), 'sqlalchemy.MetaData', 'MetaData', ([], {'bind': 'engine'}), '(bind=engine)\n', (226, 239), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((295, 354), 'sqlalchemy.Column', 'Column', (['"""id"""', 'Integer'], {'primary_key': '(True)', 'autoincrement': '(True)'}), "('id', Integer, primary_key=True, autoincrement=True)\n", (301, 354), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((513, 572), 'sqlalchemy.Column', 'Column', (['"""id"""', 'Integer'], {'primary_key': '(True)', 'autoincrement': '(True)'}), "('id', Integer, primary_key=True, autoincrement=True)\n", (519, 572), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((726, 764), 'sqlalchemy.Column', 'Column', (['"""ano"""', 'Integer'], {'nullable': '(False)'}), "('ano', Integer, nullable=False)\n", (732, 764), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((387, 397), 'sqlalchemy.String', 'String', (['(40)'], {}), '(40)\n', (393, 397), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((609, 634), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""artistas.id"""'], {}), "('artistas.id')\n", (619, 634), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((683, 693), 'sqlalchemy.String', 'String', (['(40)'], {}), '(40)\n', (689, 693), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((1374, 1391), 'sqlalchemy.select', 'select', (['[artists]'], {}), '([artists])\n', (1380, 1391), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((1665, 1682), 'sqlalchemy.select', 'select', (['[artists]'], {}), '([artists])\n', (1671, 1682), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((973, 1041), 'sqlalchemy.select', 'select', (['[discs.c.id, discs.c.album, discs.c.ano, discs.c.artista_id]'], {}), '([discs.c.id, discs.c.album, discs.c.ano, discs.c.artista_id])\n', (979, 1041), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n'), ((846, 868), 'sqlalchemy.select', 'select', (['[artists.c.id]'], {}), '([artists.c.id])\n', (852, 868), False, 'from sqlalchemy import create_engine, MetaData, Column, Table, Integer, String, ForeignKey, select\n')]
from dctopo import FatTreeTopo #, VL2Topo, TreeTopo import sys import time from mininet.topo import Topo from mininet.net import Mininet from mininet.node import CPULimitedHost from mininet.link import TCLink from mininet.util import dumpNodeConnections from mininet.log import setLogLevel from mininet.node import RemoteController if __name__ == '__main__': runtime = sys.argv[1] load = sys.argv[2] setLogLevel('info') fattree = FatTreeTopo(k=6, speed=0.02) net = Mininet(topo=fattree, link=TCLink, controller=RemoteController) net.start() h = net.hosts hnum = len(h) time.sleep(5) for i in range(0, hnum): h[i].cmd("python ~/mininet-repnet/run_time_load_id.py " + runtime + " " + load + " " + str(i) + " &") h[3].cmd("ping -c10000 -i0.1 10.5.1.2 > ping2.trace & ") h[4].cmd("ping -c10000 -i0.1 10.5.1.3 > ping3.trace & ") h[5].cmd("ping -c10000 -i0.1 10.5.1.4 > ping4.trace ") time.sleep(3) net.stop()
[ "mininet.log.setLogLevel", "time.sleep", "dctopo.FatTreeTopo", "mininet.net.Mininet" ]
[((413, 432), 'mininet.log.setLogLevel', 'setLogLevel', (['"""info"""'], {}), "('info')\n", (424, 432), False, 'from mininet.log import setLogLevel\n'), ((447, 475), 'dctopo.FatTreeTopo', 'FatTreeTopo', ([], {'k': '(6)', 'speed': '(0.02)'}), '(k=6, speed=0.02)\n', (458, 475), False, 'from dctopo import FatTreeTopo\n'), ((486, 549), 'mininet.net.Mininet', 'Mininet', ([], {'topo': 'fattree', 'link': 'TCLink', 'controller': 'RemoteController'}), '(topo=fattree, link=TCLink, controller=RemoteController)\n', (493, 549), False, 'from mininet.net import Mininet\n'), ((606, 619), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (616, 619), False, 'import time\n'), ((947, 960), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (957, 960), False, 'import time\n')]
from model.contact import Contact from random import randrange import random def test_delete_some_contact(app, db, check_ui): if len(db.get_contact_list()) == 0: app.contact.fill_new_entry( Contact(_first_name="Zbigniew", _middle_name="Janusz", _last_name="Brzeczyszczykiewicz", _nickname="nick123", _tittle="tittle123", _company="Company XYZ", _address="adress 3/5", _telephone_home="658123123", _telephone_mobile="654987987", _telephone_work="54121212", _fax="+52 45878787", _email="<EMAIL>", _email_2="<EMAIL>", _email_3="<EMAIL>", _homepage="www.bartek123.com", _bday="10", _bmonth="July", _byear="1989", _aday="19", _amonth="December", _ayear="2010", _secondary_address="secondary address", _secondary_home="secondaryHome", _secondary_notes="some additional notes")) old_contacts = db.get_contact_list() contact = random.choice(old_contacts) app.contact.delete_contact_by_id(contact.id) new_contacts = db.get_contact_list() #assert len(old_contacts) - 1 == len(new_contacts) old_contacts.remove(contact) #assert old_contacts == new_contacts if check_ui: assert sorted(new_contacts, key=Contact.id_or_max) == sorted(app.contact.get_contact_list(), key=Contact.id_or_max)
[ "random.choice", "model.contact.Contact" ]
[((1033, 1060), 'random.choice', 'random.choice', (['old_contacts'], {}), '(old_contacts)\n', (1046, 1060), False, 'import random\n'), ((216, 831), 'model.contact.Contact', 'Contact', ([], {'_first_name': '"""Zbigniew"""', '_middle_name': '"""Janusz"""', '_last_name': '"""Brzeczyszczykiewicz"""', '_nickname': '"""nick123"""', '_tittle': '"""tittle123"""', '_company': '"""Company XYZ"""', '_address': '"""adress 3/5"""', '_telephone_home': '"""658123123"""', '_telephone_mobile': '"""654987987"""', '_telephone_work': '"""54121212"""', '_fax': '"""+52 45878787"""', '_email': '"""<EMAIL>"""', '_email_2': '"""<EMAIL>"""', '_email_3': '"""<EMAIL>"""', '_homepage': '"""www.bartek123.com"""', '_bday': '"""10"""', '_bmonth': '"""July"""', '_byear': '"""1989"""', '_aday': '"""19"""', '_amonth': '"""December"""', '_ayear': '"""2010"""', '_secondary_address': '"""secondary address"""', '_secondary_home': '"""secondaryHome"""', '_secondary_notes': '"""some additional notes"""'}), "(_first_name='Zbigniew', _middle_name='Janusz', _last_name=\n 'Brzeczyszczykiewicz', _nickname='nick123', _tittle='tittle123',\n _company='Company XYZ', _address='adress 3/5', _telephone_home=\n '658123123', _telephone_mobile='654987987', _telephone_work='54121212',\n _fax='+52 45878787', _email='<EMAIL>', _email_2='<EMAIL>', _email_3=\n '<EMAIL>', _homepage='www.bartek123.com', _bday='10', _bmonth='July',\n _byear='1989', _aday='19', _amonth='December', _ayear='2010',\n _secondary_address='secondary address', _secondary_home='secondaryHome',\n _secondary_notes='some additional notes')\n", (223, 831), False, 'from model.contact import Contact\n')]
import os import datetime import argparse import sys import logging import contextlib import psycopg2 from dotenv import load_dotenv from logging.config import dictConfig from api_shopify import Shopify_API from api_amazon import Amazon_API LOGGING_CONFIG = { "version": 1, "formatters": { "simple": { "format": "%(levelname)s\t%(name)s\t%(asctime)s\t%(module)s@%(lineno)s\t%(message)s" }, }, "handlers": { "cli_handler": { "level": "INFO", "class": "concurrent_log_handler.ConcurrentRotatingFileHandler", "formatter": "simple", "filename": "automationtools/logs/cli.log", "maxBytes": 1000000, "backupCount": 10, "encoding": "utf8", } }, "loggers": { "cli_logger": {"level": "INFO", "handlers": ["cli_handler"]}, }, } dictConfig(LOGGING_CONFIG) logger = logging.getLogger("cli_logger") AMAZON_MARKETPLACE_IDS = "ATVPDKIKX0DER" DB_STRING = os.getenv("DB_STRING") def create_parser(): parser = argparse.ArgumentParser(description="Argument parser for Moondance.") parser.add_argument( "--sync-all", action="store_true", default=False, ) parser.add_argument( "--sync-shopify-products", action="store_true", default=False, ) parser.add_argument( "--sync-shopify-order-events", action="store_true", default=False, ) parser.add_argument( "--sync-shopify-customers", action="store_true", default=False, ) parser.add_argument( "--sync-shopify-sales", action="store_true", default=False, ) parser.add_argument( "--sync-amazon-sales", action="store_true", default=False, ) parser.add_argument( "--sync-amazon-financial-events", action="store_true", default=False, ) parser.add_argument( "--sync-amazon-sales-lines", action="store_true", default=False, ) parser.add_argument( "--time-interval", type=str, help='Date range to pull in for orders using format "YYYY-MM-DD to YYYY-MM-DD"', ) parser.add_argument( "--rebuild-sales-orders", action="store_true", default=False, ) return parser def cli(): parser = create_parser() args = parser.parse_args() interval = set_interval(args.time_interval) if args.sync_all: sync_shopify( command="products", request_parameters={ "updated_at_min": interval["start_datetime"], "limit": 100, }, ) sync_shopify( command="sales_orders", request_parameters={ "updated_at_min": interval["start_datetime"], "status": "any", "limit": 100, }, ) sync_shopify( command="sync_shopify_order_events", request_parameters={ "limit": 100, }, ) sync_shopify( command="customers", request_parameters={ "updated_at_min": interval["start_datetime"], "limit": 100, }, ) sync_amazon( command="sales_orders", request_parameters={ "MarketplaceIds": AMAZON_MARKETPLACE_IDS, "LastUpdatedBefore": interval["end_datetime"], "LastUpdatedAfter": interval["start_datetime"], }, ) sync_amazon( command="sales_order_lines", request_parameters={ "MarketplaceIds": AMAZON_MARKETPLACE_IDS, "LastUpdatedBefore": interval["end_datetime"], "LastUpdatedAfter": interval["start_datetime"], }, ) sync_amazon( command="financial_events", request_parameters={ "MarketplaceIds": AMAZON_MARKETPLACE_IDS, "PostedBefore": interval["end_datetime"], "PostedAfter": interval["start_datetime"], }, ) rebuild_sales_orders() sys.exit() if args.sync_shopify_products: sync_shopify( command="products", request_parameters={ "updated_at_min": interval["start_datetime"], }, ) if args.sync_shopify_sales: sync_shopify( command="sales_orders", request_parameters={ "status": "any", "updated_at_min": interval["start_datetime"], "limit": 100, }, ) if args.sync_shopify_order_events: sync_shopify( command="sync_shopify_order_events", request_parameters={ "limit": 100, }, ) if args.sync_shopify_customers: sync_shopify( command="customers", request_parameters={ "updated_at_min": interval["start_datetime"], "limit": 100, }, ) if args.sync_amazon_sales: sync_amazon( command="sales_orders", request_parameters={ "MarketplaceIds": AMAZON_MARKETPLACE_IDS, "LastUpdatedBefore": interval["end_datetime"], "LastUpdatedAfter": interval["start_datetime"], }, ) if args.sync_amazon_sales_lines: sync_amazon( command="sales_order_lines", request_parameters={ "MarketplaceIds": AMAZON_MARKETPLACE_IDS, "LastUpdatedBefore": interval["end_datetime"], "LastUpdatedAfter": interval["start_datetime"], }, ) if args.sync_amazon_financial_events: sync_amazon( command="financial_events", request_parameters={ "MarketplaceIds": AMAZON_MARKETPLACE_IDS, "PostedBefore": interval["end_datetime"], "PostedAfter": interval["start_datetime"], }, ) if args.rebuild_sales_orders: rebuild_sales_orders() def set_interval(time_interval): try: log = "set time interval: starting" logger.info(log) now = datetime.datetime.utcnow() end_datetime = (now - datetime.timedelta(**{"minutes": 3})).isoformat() if not time_interval: start_datetime = (now - datetime.timedelta(**{"days": 3})).isoformat() else: time_interval = time_interval.split(" ") interval = {time_interval[1].strip(): int(time_interval[0].strip())} start_datetime = (now - datetime.timedelta(**interval)).isoformat() return { "start_datetime": start_datetime, "end_datetime": end_datetime, } except Exception: log = "set time interval: failed" logger.error(log, exc_info=1) sys.exit() finally: log = f"set time interval: completed using range of {start_datetime} to {end_datetime}" logger.info(log) def sync_shopify(command, request_parameters): try: logger.info(f"sync shopify {command}: starting program") shopify = Shopify_API(logger=logger) shopify.process_data(command=command, request_parameters=request_parameters) logger.info(f"sync shopify {command}: completed program") except Exception: logger.error(f"sync shopify {command}: failed program", exc_info=1) def sync_amazon(command, request_parameters): try: logger.info(f"sync amazon {command}: starting program") amazon = Amazon_API(logger=logger) amazon.process_data(command=command, request_parameters=request_parameters) logger.info(f"sync amazon {command}: completed program") except Exception: logger.error(f"sync amazon {command}: failed program", exc_info=1) def rebuild_sales_orders(): try: logger.info("rebuilding sales orders: starting program") script_path = "automationtools/templates/scripts/" with contextlib.closing(psycopg2.connect(DB_STRING)) as conn: with contextlib.closing(conn.cursor()) as cursor: for file_name in os.listdir(script_path): try: logger.info( f"rebuilding sales orders script {file_name}: starting execution" ) with open(f"{script_path}/{file_name}", "r") as f: sql = f.read() cursor.execute(sql) conn.commit() logger.info( f"rebuilding sales orders script {file_name}: completed execution" ) except Exception: logger.error( f"rebuilding sales orders script {file_name}: failed execution", exc_info=1, ) logger.info("rebuilding sales orders: completed program") except Exception: logger.error("rebuilding sales orders: failed program", exc_info=1) if __name__ == "__main__": cli()
[ "logging.getLogger", "psycopg2.connect", "os.listdir", "argparse.ArgumentParser", "os.getenv", "datetime.datetime.utcnow", "logging.config.dictConfig", "api_amazon.Amazon_API", "sys.exit", "datetime.timedelta", "api_shopify.Shopify_API" ]
[((884, 910), 'logging.config.dictConfig', 'dictConfig', (['LOGGING_CONFIG'], {}), '(LOGGING_CONFIG)\n', (894, 910), False, 'from logging.config import dictConfig\n'), ((920, 951), 'logging.getLogger', 'logging.getLogger', (['"""cli_logger"""'], {}), "('cli_logger')\n", (937, 951), False, 'import logging\n'), ((1006, 1028), 'os.getenv', 'os.getenv', (['"""DB_STRING"""'], {}), "('DB_STRING')\n", (1015, 1028), False, 'import os\n'), ((1065, 1134), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Argument parser for Moondance."""'}), "(description='Argument parser for Moondance.')\n", (1088, 1134), False, 'import argparse\n'), ((4274, 4284), 'sys.exit', 'sys.exit', ([], {}), '()\n', (4282, 4284), False, 'import sys\n'), ((6417, 6443), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (6441, 6443), False, 'import datetime\n'), ((7379, 7405), 'api_shopify.Shopify_API', 'Shopify_API', ([], {'logger': 'logger'}), '(logger=logger)\n', (7390, 7405), False, 'from api_shopify import Shopify_API\n'), ((7793, 7818), 'api_amazon.Amazon_API', 'Amazon_API', ([], {'logger': 'logger'}), '(logger=logger)\n', (7803, 7818), False, 'from api_amazon import Amazon_API\n'), ((7092, 7102), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7100, 7102), False, 'import sys\n'), ((8261, 8288), 'psycopg2.connect', 'psycopg2.connect', (['DB_STRING'], {}), '(DB_STRING)\n', (8277, 8288), False, 'import psycopg2\n'), ((8394, 8417), 'os.listdir', 'os.listdir', (['script_path'], {}), '(script_path)\n', (8404, 8417), False, 'import os\n'), ((6474, 6510), 'datetime.timedelta', 'datetime.timedelta', ([], {}), "(**{'minutes': 3})\n", (6492, 6510), False, 'import datetime\n'), ((6591, 6624), 'datetime.timedelta', 'datetime.timedelta', ([], {}), "(**{'days': 3})\n", (6609, 6624), False, 'import datetime\n'), ((6822, 6852), 'datetime.timedelta', 'datetime.timedelta', ([], {}), '(**interval)\n', (6840, 6852), False, 'import datetime\n')]
from rest_framework import serializers from .models import * from django.contrib.auth.models import User from rest_framework.exceptions import ValidationError class RegisterSerializer(serializers.ModelSerializer): password = serializers.CharField(min_length=8,max_length=16) confirm_password = serializers.CharField(min_length=8,max_length=16) username = serializers.CharField(min_length=4) class Meta: model = User fields = ['username','email','first_name','last_name','password','confirm_password'] def create(self, validated_data): password = validated_data.pop('password') #1 confirm_password = validated_data.pop('confirm_password') #1 if password != confirm_password: raise ValidationError({"data":"Passwords don't match!"}) user = User.objects.create(**validated_data) user.set_password(password) user.save() UserProfile.objects.create(user=user,email=user.email, full_name=user.first_name.capitalize() + " " + user.last_name.capitalize()) return user class UserProfileSerializer(serializers.ModelSerializer): class Meta: model = UserProfile fields = ['id','user','full_name','phone','email',] class MovieSerializer(serializers.ModelSerializer): name = serializers.CharField(max_length=50) description = serializers.CharField(max_length=500) average_rate = serializers.FloatField(min_value=1,max_value=10) class Meta: model = Movie fields = ['name','description','average_rate']
[ "rest_framework.serializers.FloatField", "django.contrib.auth.models.User.objects.create", "rest_framework.serializers.CharField", "rest_framework.exceptions.ValidationError" ]
[((231, 281), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'min_length': '(8)', 'max_length': '(16)'}), '(min_length=8, max_length=16)\n', (252, 281), False, 'from rest_framework import serializers\n'), ((304, 354), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'min_length': '(8)', 'max_length': '(16)'}), '(min_length=8, max_length=16)\n', (325, 354), False, 'from rest_framework import serializers\n'), ((369, 404), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'min_length': '(4)'}), '(min_length=4)\n', (390, 404), False, 'from rest_framework import serializers\n'), ((1340, 1376), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (1361, 1376), False, 'from rest_framework import serializers\n'), ((1395, 1432), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': '(500)'}), '(max_length=500)\n', (1416, 1432), False, 'from rest_framework import serializers\n'), ((1452, 1501), 'rest_framework.serializers.FloatField', 'serializers.FloatField', ([], {'min_value': '(1)', 'max_value': '(10)'}), '(min_value=1, max_value=10)\n', (1474, 1501), False, 'from rest_framework import serializers\n'), ((822, 859), 'django.contrib.auth.models.User.objects.create', 'User.objects.create', ([], {}), '(**validated_data)\n', (841, 859), False, 'from django.contrib.auth.models import User\n'), ((756, 807), 'rest_framework.exceptions.ValidationError', 'ValidationError', (['{\'data\': "Passwords don\'t match!"}'], {}), '({\'data\': "Passwords don\'t match!"})\n', (771, 807), False, 'from rest_framework.exceptions import ValidationError\n')]
import matplotlib.pyplot as plt import numpy as np import cv2 class linefollow: def __init__(self, path): self.orgimg = cv2.imread(path) self.size() self.set_() def size(self): self.h , self.w = self.orgimg.shape[:2] def gary(self): return cv2.cvtColor(self.orgimg, cv2.COLOR_BGR2GRAY) def otsu(self): re, th = cv2.threshold(self.gary(), 0, 255, cv2.THRESH_OTSU) return th def median(self): msksize = round(self.h / 10) if msksize % 2 == 0 : msksize += 1 return cv2.medianBlur(self.otsu(), msksize) def flip_(self): return cv2.flip(self.median(), -1) def set_(self): self.msk_w = round(self.w/6) self.msk_h = round(self.h/6) self.flip = self.flip_() def windows(self): pass class planA(linefollow): def windows(self): show = cv2.flip(self.orgimg, -1) for y in range(3): loc = 0 max = 0 for x in range(0, self.w - self.msk_w, round(self.msk_w / 2)): win = self.flip[(y*self.msk_h):(y*self.msk_h)+self.msk_h, x:x+self.msk_w] win = list(np.concatenate(win)) if(max < win.count(0)): max = win.count(0) loc = x self.deaw(show, loc, y) #cv2.rectangle(show, (loc, (y*self.msk_h)), (loc+self.msk_w, (y*self.msk_h)+self.msk_h), (255, 0, 0), 5) return cv2.flip(show, -1) def deaw(self, show, loc, y): center_x = round(loc + (self.msk_w/2)) center_y = round((y*self.msk_h) + (self.msk_h/2)) center_xx = round(self.w/2) cv2.rectangle(show, (loc, (y*self.msk_h)), (loc+self.msk_w, (y*self.msk_h)+self.msk_h), (255, 0, 0), 5) cv2.circle(show, (center_x ,center_y), 10, (0, 255, 0), -1) cv2.circle(show, (center_xx, center_y), 10, (0, 0, 255), -1) cv2.line(show, (center_x, center_y), (center_xx, center_y), (125, 125, 125), 2) class planB(linefollow): def windows(self): show = cv2.flip(self.orgimg, -1) loc = 0 max = 0 x = self.w - self.msk_w for y in range(0, self.h - self.msk_h, round(self.msk_h / 2)): win = self.flip[y:y+self.msk_h, x:x+self.msk_w] win = list(np.concatenate(win)) if(max < win.count(0)): max = win.count(0) loc = y cv2.rectangle(show, (x, loc), (x + self.msk_w , loc + self.msk_h), (255, 0, 0), 5) return cv2.flip(show, -1)
[ "cv2.rectangle", "cv2.flip", "cv2.line", "cv2.circle", "cv2.cvtColor", "numpy.concatenate", "cv2.imread" ]
[((134, 150), 'cv2.imread', 'cv2.imread', (['path'], {}), '(path)\n', (144, 150), False, 'import cv2\n'), ((298, 343), 'cv2.cvtColor', 'cv2.cvtColor', (['self.orgimg', 'cv2.COLOR_BGR2GRAY'], {}), '(self.orgimg, cv2.COLOR_BGR2GRAY)\n', (310, 343), False, 'import cv2\n'), ((907, 932), 'cv2.flip', 'cv2.flip', (['self.orgimg', '(-1)'], {}), '(self.orgimg, -1)\n', (915, 932), False, 'import cv2\n'), ((1488, 1506), 'cv2.flip', 'cv2.flip', (['show', '(-1)'], {}), '(show, -1)\n', (1496, 1506), False, 'import cv2\n'), ((1692, 1804), 'cv2.rectangle', 'cv2.rectangle', (['show', '(loc, y * self.msk_h)', '(loc + self.msk_w, y * self.msk_h + self.msk_h)', '(255, 0, 0)', '(5)'], {}), '(show, (loc, y * self.msk_h), (loc + self.msk_w, y * self.\n msk_h + self.msk_h), (255, 0, 0), 5)\n', (1705, 1804), False, 'import cv2\n'), ((1804, 1863), 'cv2.circle', 'cv2.circle', (['show', '(center_x, center_y)', '(10)', '(0, 255, 0)', '(-1)'], {}), '(show, (center_x, center_y), 10, (0, 255, 0), -1)\n', (1814, 1863), False, 'import cv2\n'), ((1872, 1932), 'cv2.circle', 'cv2.circle', (['show', '(center_xx, center_y)', '(10)', '(0, 0, 255)', '(-1)'], {}), '(show, (center_xx, center_y), 10, (0, 0, 255), -1)\n', (1882, 1932), False, 'import cv2\n'), ((1941, 2020), 'cv2.line', 'cv2.line', (['show', '(center_x, center_y)', '(center_xx, center_y)', '(125, 125, 125)', '(2)'], {}), '(show, (center_x, center_y), (center_xx, center_y), (125, 125, 125), 2)\n', (1949, 2020), False, 'import cv2\n'), ((2086, 2111), 'cv2.flip', 'cv2.flip', (['self.orgimg', '(-1)'], {}), '(self.orgimg, -1)\n', (2094, 2111), False, 'import cv2\n'), ((2454, 2540), 'cv2.rectangle', 'cv2.rectangle', (['show', '(x, loc)', '(x + self.msk_w, loc + self.msk_h)', '(255, 0, 0)', '(5)'], {}), '(show, (x, loc), (x + self.msk_w, loc + self.msk_h), (255, 0, \n 0), 5)\n', (2467, 2540), False, 'import cv2\n'), ((2552, 2570), 'cv2.flip', 'cv2.flip', (['show', '(-1)'], {}), '(show, -1)\n', (2560, 2570), False, 'import cv2\n'), ((2330, 2349), 'numpy.concatenate', 'np.concatenate', (['win'], {}), '(win)\n', (2344, 2349), True, 'import numpy as np\n'), ((1192, 1211), 'numpy.concatenate', 'np.concatenate', (['win'], {}), '(win)\n', (1206, 1211), True, 'import numpy as np\n')]
import json import boto3 from crhelper import CfnResource import os helper = CfnResource() s3 = boto3.client('s3') s3_resource = boto3.resource('s3') sourceBucket = os.environ['s3sourceBucket'] sourcePrefix = os.environ['s3sourcePrefix'] destinationbucket = os.environ['s3destinationBucket'] def lambda_handler(event, context): helper(event, context) @helper.create @helper.update def copy_website(event, _): bucket = s3_resource.Bucket(sourceBucket) for object in bucket.objects.filter(Prefix=sourcePrefix): file = object.key try: copy_source = {'Bucket': sourceBucket, 'Key': file} s3_resource.meta.client.copy( copy_source, destinationbucket, file.replace(sourcePrefix, "")) except: print("An exception occurred copying: " + file) @helper.delete def delete_website(_, __): for object in s3_resource.Bucket(destinationbucket).objects.all(): s3.delete_object(Bucket=destinationbucket, Key=object.key) bucket = s3_resource.Bucket(destinationbucket) bucket.object_versions.delete()
[ "boto3.resource", "crhelper.CfnResource", "boto3.client" ]
[((78, 91), 'crhelper.CfnResource', 'CfnResource', ([], {}), '()\n', (89, 91), False, 'from crhelper import CfnResource\n'), ((98, 116), 'boto3.client', 'boto3.client', (['"""s3"""'], {}), "('s3')\n", (110, 116), False, 'import boto3\n'), ((131, 151), 'boto3.resource', 'boto3.resource', (['"""s3"""'], {}), "('s3')\n", (145, 151), False, 'import boto3\n')]
from eTravelerComponents import Traveler traveler = Traveler('TS8_sim', 'ScienceRaft', 'Test Stand 8 EO simulation') # # Data acquisition jobs # fe55_raft_acq = traveler.stepFactory('fe55_raft_acq', description='Fe55 acquisition') dark_raft_acq = traveler.stepFactory('dark_raft_acq', description='Darks acquisition') flat_pair_raft_acq = traveler.stepFactory('flat_pair_raft_acq', description='Flat pairs acquisition') ppump_raft_acq = traveler.stepFactory('ppump_raft_acq', description='Pocket Pumping acquisition') sflat_raft_acq = traveler.stepFactory('sflat_raft_acq', description='Superflats acquisition') qe_raft_acq = traveler.stepFactory('qe_raft_acq', description='QE acquisition') spot_raft_acq = traveler.stepFactory('spot_raft_acq', description='Spot acquisition') # # Analysis jobs # fe55_analysis = traveler.stepFactory('fe55_raft_analysis', description='Fe55 analysis') fe55_analysis.add_pre_reqs(fe55_raft_acq) read_noise = traveler.stepFactory('read_noise_raft', description='Read noise analysis') read_noise.add_pre_reqs(fe55_raft_acq, fe55_analysis) bright_defects = traveler.stepFactory('bright_defects_raft', description='Bright defects analysis') bright_defects.add_pre_reqs(dark_raft_acq, fe55_analysis) dark_defects = traveler.stepFactory('dark_defects_raft', description='Dark defects analysis') dark_defects.add_pre_reqs(sflat_raft_acq, fe55_analysis, bright_defects) traps = traveler.stepFactory('traps_raft', description='Charge traps analysis') traps.add_pre_reqs(ppump_raft_acq, fe55_analysis, bright_defects, dark_defects) mask_generators = fe55_analysis, bright_defects, dark_defects, traps dark_current = traveler.stepFactory('dark_current_raft', description='Dark current analysis') dark_current.add_pre_reqs(dark_raft_acq) dark_current.add_pre_reqs(*mask_generators) cte = traveler.stepFactory('cte_raft', description='Charge transfer efficiency') cte.add_pre_reqs(sflat_raft_acq) cte.add_pre_reqs(*mask_generators) prnu = \ traveler.stepFactory('prnu_raft', description='Photo-response non-uniformity analysis') prnu.add_pre_reqs(qe_raft_acq) prnu.add_pre_reqs(*mask_generators) flat_pairs_analysis = \ traveler.stepFactory('flat_pairs_raft_analysis', description='Full well and linearity analysis') flat_pairs_analysis.add_pre_reqs(flat_pair_raft_acq) flat_pairs_analysis.add_pre_reqs(*mask_generators) ptc = traveler.stepFactory('ptc_raft', description='Photon transfer curve') ptc.add_pre_reqs(flat_pair_raft_acq) ptc.add_pre_reqs(*mask_generators) qe_analysis = traveler.stepFactory('qe_raft_analysis', description='QE analysis') qe_analysis.add_pre_reqs(qe_raft_acq) qe_analysis.add_pre_reqs(*mask_generators) crosstalk = traveler.stepFactory('crosstalk_raft', description='Crosstalk analysis') crosstalk.add_pre_reqs(spot_raft_acq) crosstalk.add_pre_reqs(*mask_generators) test_report = traveler.stepFactory('test_report_raft', description='Test report generation') test_report.add_pre_reqs(fe55_analysis, read_noise, bright_defects, dark_defects, traps, dark_current, cte, prnu, flat_pairs_analysis, ptc, qe_analysis, crosstalk) # # Write travelers # traveler.write_fake_eT_traveler('TS8_sim_traveler.py') traveler.write_yml('TS8_sim_traveler.yml')
[ "eTravelerComponents.Traveler" ]
[((53, 117), 'eTravelerComponents.Traveler', 'Traveler', (['"""TS8_sim"""', '"""ScienceRaft"""', '"""Test Stand 8 EO simulation"""'], {}), "('TS8_sim', 'ScienceRaft', 'Test Stand 8 EO simulation')\n", (61, 117), False, 'from eTravelerComponents import Traveler\n')]
# Copyright 2019 British Broadcasting Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from unittest import mock from datetime import datetime from dateutil import tz from mediatimestamp.immutable import ( Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset) class TestTimestamp(unittest.TestCase): def test_mediatimestamp(self): to = TimeOffset() self.assertNotIsInstance(to, SupportsMediaTimestamp) ts = Timestamp() self.assertIsInstance(ts, SupportsMediaTimestamp) self.assertIsInstance(ts, SupportsMediaTimeOffset) self.assertEqual(ts, mediatimestamp(ts)) self.assertEqual(ts, mediatimeoffset(ts)) class _convertable (object): def __mediatimestamp__(self) -> Timestamp: return Timestamp() c = _convertable() self.assertIsInstance(c, SupportsMediaTimestamp) self.assertIsInstance(c, SupportsMediaTimeOffset) self.assertEqual(ts, mediatimestamp(c)) self.assertEqual(ts, mediatimeoffset(c)) def test_MAX_NANOSEC(self): self.assertEqual(Timestamp.MAX_NANOSEC, 1000000000) def test_get_time_pythonic(self): """This tests that the fallback pure python implementation of get_time works as expected.""" test_ts = [ (1512489451.0, Timestamp(1512489451 + 37, 0)), (1512489451.1, Timestamp(1512489451 + 37, 100000000)) ] for t in test_ts: with mock.patch("time.time") as time: time.return_value = t[0] gottime = Timestamp.get_time() self.assertEqual(gottime, t[1], msg="Times not equal, expected: %r, got %r" % (t[1], gottime)) def test_iaddsub(self): """This tests integer addition and subtraction on timestamps.""" ts = Timestamp(10, 0) ts += TimeOffset(1, 2) self.assertEqual(ts, Timestamp(11, 2)) ts -= TimeOffset(1, 2) self.assertEqual(ts, Timestamp(10, 0)) ts -= TimeOffset(100, 5) self.assertEqual(ts, Timestamp(90, 5, -1)) ts = Timestamp(281474976710655, 999999999) ts += TimeOffset(0, 1) self.assertEqual(ts, Timestamp(281474976710655, 999999999)) toff = TimeOffset(10, 0) toff -= TimeOffset(100, 0) self.assertEqual(toff, TimeOffset(90, 0, -1)) toff = TimeOffset(10, 0) toff -= TimeOffset(0, 1) self.assertEqual(toff, TimeOffset(9, 999999999)) toff = TimeOffset(10, 500000000) toff += TimeOffset(0, 500000000) self.assertEqual(toff, TimeOffset(11, 0)) toff = TimeOffset(10, 500000000, -1) toff -= TimeOffset(0, 500000000) self.assertEqual(toff, TimeOffset(11, 0, -1)) toff = TimeOffset(10, 0, -1) toff += TimeOffset(0, 500000000) self.assertEqual(toff, TimeOffset(9, 500000000, -1)) def test_addsub(self): """This tests addition and subtraction on timestamps.""" tests_ts = [ (Timestamp(10, 0), '+', TimeOffset(1, 2), Timestamp(11, 2)), (Timestamp(11, 2), '-', TimeOffset(1, 2), Timestamp(10, 0)), (TimeOffset(11, 2), '-', TimeOffset(1, 2), TimeOffset(10, 0)), (Timestamp(10, 0), '-', TimeOffset(11, 2), Timestamp(1, 2, -1)), (TimeOffset(10, 0), '-', TimeOffset(11, 2), TimeOffset(1, 2, -1)), (TimeOffset(10, 0), '-', Timestamp(11, 2), TimeOffset(1, 2, -1)), (Timestamp(10, 0), '-', Timestamp(11, 2), TimeOffset(1, 2, -1)), (Timestamp(11, 2), '-', Timestamp(10, 0), TimeOffset(1, 2, 1)), ] for t in tests_ts: if t[1] == '+': r = t[0] + t[2] else: r = t[0] - t[2] self.assertEqual(r, t[3], msg="{!r} {} {!r} = {!r}, expected {!r}".format(t[0], t[1], t[2], r, t[3])) self.assertEqual(type(r), type(t[3]), msg=("type({!r} {} {!r}) == {!r}, expected {!r}" .format(t[0], t[1], t[2], type(r), type(t[3])))) def test_multdiv(self): """This tests multiplication and division on timestamps.""" tests_ts = [ (TimeOffset(10, 10), '*', 0, TimeOffset(0, 0)), (TimeOffset(10, 10), '*', 10, TimeOffset(100, 100)), (10, '*', TimeOffset(10, 10), TimeOffset(100, 100)), (TimeOffset(10, 10), '*', (-10), TimeOffset(100, 100, -1)), (TimeOffset(10, 10, -1), '*', 10, TimeOffset(100, 100, -1)), (TimeOffset(100, 100), '//', 10, TimeOffset(10, 10)), (TimeOffset(100, 100), '//', -10, TimeOffset(10, 10, -1)), (TimeOffset(100, 100, -1), '//', 10, TimeOffset(10, 10, -1)), (TimeOffset(281474976710654, 0), '//', 281474976710655, TimeOffset(0, 999999999)), (Timestamp(100, 100), '//', 10, TimeOffset(10, 10)), (TimeOffset(100, 100), '/', 10, TimeOffset(10, 10)), (TimeOffset(100, 100), '/', -10, TimeOffset(10, 10, -1)), (TimeOffset(100, 100, -1), '/', 10, TimeOffset(10, 10, -1)), (TimeOffset(281474976710654, 0), '/', 281474976710655, TimeOffset(0, 999999999)), (Timestamp(100, 100), '/', 10, TimeOffset(10, 10)), (Timestamp(10, 10), '*', 10, TimeOffset(100, 100)), (10, '*', Timestamp(10, 10), TimeOffset(100, 100)), ] for t in tests_ts: if t[1] == '*': r = t[0] * t[2] elif t[1] == '//': r = t[0] // t[2] else: r = t[0] / t[2] self.assertEqual(r, t[3], msg="{!r} {} {!r} == {!r}, expected {!r}".format(t[0], t[1], t[2], r, t[3])) self.assertEqual(type(r), type(t[3]), msg=("type({!r} {} {!r}) == {!r}, expected {!r}" .format(t[0], t[1], t[2], type(r), type(t[3])))) def test_compare(self): """This tests comparison of timestamps.""" self.assertEqual(Timestamp(1, 2), Timestamp(1, 2)) self.assertNotEqual(Timestamp(1, 2), Timestamp(1, 3)) self.assertLess(Timestamp(1, 0), Timestamp(1, 2)) self.assertLessEqual(Timestamp(1, 2), Timestamp(1, 2)) self.assertGreater(Timestamp(2, 0), Timestamp(1, 0)) self.assertGreaterEqual(Timestamp(2, 0), Timestamp(2, 0)) self.assertNotEqual(Timestamp(2, 0), Timestamp(3, 0)) self.assertEqual(Timestamp(2, 0), 2) self.assertGreater(Timestamp(2, 0), 1) self.assertLess(Timestamp(2, 0), 3) self.assertLess(TimeOffset(2, 0), 3) self.assertGreaterEqual(TimeOffset(1, 0, 1), TimeOffset(1, 0, -1)) def test_invalid_str(self): """This tests that invalid strings fed into from_str raise exceptions.""" tests_ts = [ "a", "2015-02-17T12:53:48.5", "2015-02T12:53:48.5", "2015-02-17T12:53.5", "12:53:48.5" ] for t in tests_ts: try: Timestamp.from_str(t) self.assertTrue(False) except Exception: pass def test_invalid_int(self): """This tests that invalid int values fed into timestamp constructor get normalised.""" tests_ts = [ (Timestamp(-1, 0), Timestamp(1, 0, -1)), (Timestamp(281474976710656, 0), Timestamp(281474976710655, 999999999)), (Timestamp(0, 1000000000), Timestamp(1, 0)), (Timestamp(0, -1), Timestamp(0, 1, -1)), (Timestamp(5, -1000000007), Timestamp(3, 999999993)) ] for t in tests_ts: self.assertEqual(t[0], t[1]) def test_convert_str(self): """This tests that various string formats can be converted to timestamps.""" tests_ts = [ ("1:2", Timestamp(1, 2)), ("1.2", Timestamp(1, 200000000)), ("1", Timestamp(1, 0)), ("2015-02-17T12:53:48.5Z", Timestamp(1424177663, 500000000)), ("2015-02-17T12:53:48.000102003Z", Timestamp(1424177663, 102003)) ] for t in tests_ts: ts = Timestamp.from_str(t[0]) self.assertTrue(isinstance(ts, Timestamp)) self.assertEqual(ts, t[1]) def test_convert_sec_nsec(self): """This tests that the conversion to and from TAI second:nanosecond pairs works as expected.""" tests_ts = [ ("0:0", TimeOffset(0, 0), "0:0"), ("0:1", TimeOffset(0, 1), "0:1"), ("-0:1", TimeOffset(0, 1, -1), "-0:1"), ("5", TimeOffset(5, 0), "5:0"), ("5:1", TimeOffset(5, 1), "5:1"), ("-5:1", TimeOffset(5, 1, -1), "-5:1"), ("5:999999999", TimeOffset(5, 999999999), "5:999999999") ] for t in tests_ts: ts = TimeOffset.from_sec_nsec(t[0]) self.assertEqual( ts, t[1], msg="Called with {} {} {}".format(t[0], t[1], t[2])) ts_str = ts.to_sec_nsec() self.assertEqual( ts_str, t[2], msg="Called with {} {} {}".format(t[0], t[1], t[2])) self.assertEqual(ts_str, str(ts)) def test_ts_convert_tai_sec_nsec(self): """This tests that the conversion to and from TAI second:nanosecond pairs works as expected.""" tests_ts = [ ("0:0", Timestamp(0, 0), "0:0"), ("0:1", Timestamp(0, 1), "0:1"), ("-0:1", Timestamp(0, 1, -1), "-0:1"), ("5", Timestamp(5, 0), "5:0"), ("5:1", Timestamp(5, 1), "5:1"), ("-5:1", Timestamp(5, 1, -1), "-5:1"), ("5:999999999", Timestamp(5, 999999999), "5:999999999") ] for t in tests_ts: ts = Timestamp.from_sec_nsec(t[0]) self.assertIsInstance(ts, Timestamp, msg=("Timestamp.from_sec_nsec({!r}) == {!r} not an instance of Timestamp" .format(t[0], ts))) self.assertEqual( ts, t[1], msg="Timestamp.from_sec_nsec({!r}) == {!r}, expected {!r}".format(t[0], ts, t[1])) ts_str = ts.to_sec_nsec() self.assertEqual( ts_str, t[2], msg="{!r}.to_sec_nsec() == {!r}, expected {!r}".format(ts, ts_str, t[2])) self.assertEqual(ts_str, str(ts)) def test_convert_sec_frac(self): """This tests that the conversion to and from TAI seconds with fractional parts works as expected.""" tests_ts = [ ("0.0", TimeOffset(0, 0), "0.0"), ("0.1", TimeOffset(0, 1000000000 // 10), "0.1"), ("-0.1", TimeOffset(0, 1000000000 // 10, -1), "-0.1"), ("5", TimeOffset(5, 0), "5.0"), ("5.1", TimeOffset(5, 1000000000 // 10), "5.1"), ("-5.1", TimeOffset(5, 1000000000 // 10, -1), "-5.1"), ("5.10000000", TimeOffset(5, 1000000000 // 10), "5.1"), ("5.123456789", TimeOffset(5, 123456789), "5.123456789"), ("5.000000001", TimeOffset(5, 1), "5.000000001"), ("5.0000000001", TimeOffset(5, 0), "5.0") ] for t in tests_ts: ts = TimeOffset.from_sec_frac(t[0]) self.assertEqual( ts, t[1], msg="Called with {} {} {}".format(t[0], t[1], t[2])) ts_str = ts.to_sec_frac() self.assertEqual( ts_str, t[2], msg="Called with {} {} {}".format(t[0], t[1], t[2])) def test_ts_convert_tai_sec_frac(self): """This tests that the conversion to and from TAI seconds with fractional parts works as expected.""" tests_ts = [ ("0.0", Timestamp(0, 0), "0.0"), ("0.1", Timestamp(0, 1000000000 // 10), "0.1"), ("-0.1", Timestamp(0, 100000000, -1), "-0.1"), ("5", Timestamp(5, 0), "5.0"), ("5.1", Timestamp(5, 1000000000 // 10), "5.1"), ("-5.1", Timestamp(5, 100000000, -1), "-5.1"), ("5.10000000", Timestamp(5, 1000000000 // 10), "5.1"), ("5.123456789", Timestamp(5, 123456789), "5.123456789"), ("5.000000001", Timestamp(5, 1), "5.000000001"), ("5.0000000001", Timestamp(5, 0), "5.0") ] for t in tests_ts: ts = Timestamp.from_sec_frac(t[0]) self.assertIsInstance(ts, Timestamp, msg=("Timestamp.from_sec_frac({!r}) == {!r} not instance of Timestamp" .format(t[0], ts))) self.assertEqual( ts, t[1], msg="Timestamp.from_sec_frac({!r}) == {!r}, expected {!r}".format(t[0], ts, t[1])) ts_str = ts.to_sec_frac() self.assertEqual( ts_str, t[2], msg="{!r}.ts_to_sec_frac() == {!r}, expected {!r}".format(ts, ts_str, t[2])) def test_convert_iso_utc(self): """This tests that conversion to and from ISO date format UTC time works as expected.""" tests = [ (Timestamp(1424177663, 102003), "2015-02-17T12:53:48.000102003Z"), # the leap second is 23:59:60 # 30 June 1972 23:59:59 (2287785599, first time): TAI= UTC + 10 seconds (Timestamp(78796809, 0), "1972-06-30T23:59:59.000000000Z"), # 30 June 1972 23:59:60 (2287785599,second time): TAI= UTC + 11 seconds (Timestamp(78796810, 0), "1972-06-30T23:59:60.000000000Z"), # 1 July 1972 00:00:00 (2287785600) TAI= UTC + 11 seconds (Timestamp(78796811, 0), "1972-07-01T00:00:00.000000000Z"), (Timestamp(1341100833, 0), "2012-06-30T23:59:59.000000000Z"), (Timestamp(1341100834, 0), "2012-06-30T23:59:60.000000000Z"), (Timestamp(1341100835, 0), "2012-07-01T00:00:00.000000000Z"), (Timestamp(1341100835, 1), "2012-07-01T00:00:00.000000001Z"), (Timestamp(1341100835, 100000000), "2012-07-01T00:00:00.100000000Z"), (Timestamp(1341100835, 999999999), "2012-07-01T00:00:00.999999999Z"), (Timestamp(283996818, 0), "1979-01-01T00:00:00.000000000Z") # 1979 ] for t in tests: utc = t[0].to_iso8601_utc() self.assertEqual(utc, t[1]) ts = Timestamp.from_iso8601_utc(t[1]) self.assertEqual(ts, t[0]) bad_params = [ ("2012-07-01Y00:00:00.000000001Z",), ("2012-07~01T00:00:00.000000001Z",), ("2012-07-01T00:00:00.0000.0001Z",), ] for p in bad_params: with self.assertRaises(TsValueError): Timestamp.from_iso8601_utc(*p) def test_smpte_timelabel(self): """This tests that conversion to and from SMPTE time labels works correctly.""" tests = [ ("2015-01-23T12:34:56F00 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-01-23T12:34:56F01 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-01-23T12:34:56F02 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-01-23T12:34:56F28 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-01-23T12:34:56F29 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-07-01T00:59:59F00 30000/1001 UTC+01:00 TAI-35", 30000, 1001, 60*60), ("2015-07-01T00:59:59F01 30000/1001 UTC+01:00 TAI-35", 30000, 1001, 60*60), ("2015-07-01T00:59:59F29 30000/1001 UTC+01:00 TAI-35", 30000, 1001, 60*60), ("2015-07-01T00:59:60F00 30000/1001 UTC+01:00 TAI-35", 30000, 1001, 60*60), ("2015-07-01T00:59:60F29 30000/1001 UTC+01:00 TAI-35", 30000, 1001, 60*60), ("2015-07-01T01:00:00F00 30000/1001 UTC+01:00 TAI-36", 30000, 1001, 60*60), ("2015-06-30T18:59:59F29 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-06-30T18:59:60F00 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-06-30T18:59:60F29 30000/1001 UTC-05:00 TAI-35", 30000, 1001, -5*60*60), ("2015-06-30T19:00:00F00 30000/1001 UTC-05:00 TAI-36", 30000, 1001, -5*60*60) ] for t in tests: ts = Timestamp.from_smpte_timelabel(t[0]) self.assertEqual(t[0], ts.to_smpte_timelabel(t[1], t[2], t[3])) bad_params = [ ("potato",), ("the quick brown fox jumps over the lazy dog",), ("",), ('\u3069\u3082\u3042\u308a\u304c\u3068\u3046\u3001\u30df\u30b9\u30bf\u30fc\u30fb\u30ed\u30dc\u30c8\u30fc',), ("About half nine on tuesday",), ("0315-13~35T25:63:60F56 50000/1002 UTC-25:35 TAY-2",), ] for p in bad_params: with self.assertRaises(TsValueError): Timestamp.from_smpte_timelabel(*p) bad_params = [ (0, 1), (1, 0), ] for p in bad_params: with self.assertRaises(TsValueError): Timestamp(0, 0).to_smpte_timelabel(*p) with mock.patch("time.timezone", 0): with mock.patch("time.localtime") as localtime: localtime.return_value.tm_isdst = 1 ts = Timestamp.from_smpte_timelabel("2015-07-01T00:59:59F00 30000/1001 UTC+01:00 TAI-35") self.assertEqual("2015-07-01T00:59:59F00 30000/1001 UTC+01:00 TAI-35", ts.to_smpte_timelabel(30000, 1001)) def test_from_datetime(self): """Conversion from python's datetime object.""" tests = [ (datetime(1970, 1, 1, 0, 0, 0, 0, tz.gettz('UTC')), Timestamp(0, 0)), (datetime(1983, 3, 29, 15, 45, 0, 0, tz.gettz('UTC')), Timestamp(417800721, 0)), (datetime(2017, 12, 5, 16, 33, 12, 196, tz.gettz('UTC')), Timestamp(1512491629, 196000)), ] for t in tests: self.assertEqual(Timestamp.from_datetime(t[0]), t[1]) def test_to_datetime(self): """Conversion to python's datetime object.""" tests = [ (datetime(1970, 1, 1, 0, 0, 0, 0, tz.gettz('UTC')), Timestamp(0, 0)), (datetime(1983, 3, 29, 15, 45, 0, 0, tz.gettz('UTC')), Timestamp(417800721, 0)), (datetime(2017, 12, 5, 16, 33, 12, 196, tz.gettz('UTC')), Timestamp(1512491629, 196000)), (datetime(2017, 12, 5, 16, 33, 13, 0, tz.gettz('UTC')), Timestamp(1512491629, 999999999)), ] for t in tests: self.assertEqual(t[0], t[1].to_datetime()) def test_from_str(self): """Conversion from string formats.""" tests = [ ("2015-01-23T12:34:56F00 30000/1001 UTC-05:00 TAI-35", Timestamp(1422034531, 17100000)), ("2015-01-23T12:34:56.0Z", Timestamp(1422016531, 0)), ("now", Timestamp(0, 0)), ] for t in tests: with mock.patch("time.time", return_value=0.0): self.assertEqual(Timestamp.from_str(t[0]), t[1]) def test_get_leap_seconds(self): """get_leap_seconds should return the correct number of leap seconds at any point in history.""" tests = [ (Timestamp(63072008, 999999999), 0), (Timestamp(63072009, 0), 10), (Timestamp(78796809, 999999999), 10), (Timestamp(78796810, 0), 11), (Timestamp(94694410, 999999999), 11), (Timestamp(94694411, 0), 12), (Timestamp(417800721, 0), 21), (Timestamp(773020827, 999999999), 28), (Timestamp(773020828, 0), 29), (Timestamp(1512491629, 0), 37), ] for t in tests: self.assertEqual(t[0].get_leap_seconds(), t[1])
[ "mediatimestamp.immutable.Timestamp.from_iso8601_utc", "mediatimestamp.immutable.Timestamp.from_sec_nsec", "mediatimestamp.immutable.Timestamp.get_time", "dateutil.tz.gettz", "mediatimestamp.immutable.Timestamp.from_str", "mediatimestamp.immutable.TimeOffset", "mediatimestamp.immutable.Timestamp.from_datetime", "mediatimestamp.immutable.mediatimestamp", "mediatimestamp.immutable.Timestamp.from_sec_frac", "mediatimestamp.immutable.mediatimeoffset", "mediatimestamp.immutable.Timestamp.from_smpte_timelabel", "mediatimestamp.immutable.TimeOffset.from_sec_nsec", "mediatimestamp.immutable.TimeOffset.from_sec_frac", "unittest.mock.patch", "mediatimestamp.immutable.Timestamp" ]
[((971, 983), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', ([], {}), '()\n', (981, 983), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1059, 1070), 'mediatimestamp.immutable.Timestamp', 'Timestamp', ([], {}), '()\n', (1068, 1070), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2440, 2456), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (2449, 2456), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2471, 2487), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)'], {}), '(1, 2)\n', (2481, 2487), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2549, 2565), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)'], {}), '(1, 2)\n', (2559, 2565), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2627, 2645), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(5)'], {}), '(100, 5)\n', (2637, 2645), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2711, 2748), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(281474976710655)', '(999999999)'], {}), '(281474976710655, 999999999)\n', (2720, 2748), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2763, 2779), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(1)'], {}), '(0, 1)\n', (2773, 2779), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2864, 2881), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(0)'], {}), '(10, 0)\n', (2874, 2881), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2898, 2916), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(0)'], {}), '(100, 0)\n', (2908, 2916), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2987, 3004), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(0)'], {}), '(10, 0)\n', (2997, 3004), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3021, 3037), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(1)'], {}), '(0, 1)\n', (3031, 3037), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3111, 3136), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(500000000)'], {}), '(10, 500000000)\n', (3121, 3136), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3153, 3177), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(500000000)'], {}), '(0, 500000000)\n', (3163, 3177), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3244, 3273), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(500000000)', '(-1)'], {}), '(10, 500000000, -1)\n', (3254, 3273), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3290, 3314), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(500000000)'], {}), '(0, 500000000)\n', (3300, 3314), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3385, 3406), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(0)', '(-1)'], {}), '(10, 0, -1)\n', (3395, 3406), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3423, 3447), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(500000000)'], {}), '(0, 500000000)\n', (3433, 3447), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1218, 1236), 'mediatimestamp.immutable.mediatimestamp', 'mediatimestamp', (['ts'], {}), '(ts)\n', (1232, 1236), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1267, 1286), 'mediatimestamp.immutable.mediatimeoffset', 'mediatimeoffset', (['ts'], {}), '(ts)\n', (1282, 1286), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1589, 1606), 'mediatimestamp.immutable.mediatimestamp', 'mediatimestamp', (['c'], {}), '(c)\n', (1603, 1606), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1637, 1655), 'mediatimestamp.immutable.mediatimeoffset', 'mediatimeoffset', (['c'], {}), '(c)\n', (1652, 1655), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2517, 2533), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(11)', '(2)'], {}), '(11, 2)\n', (2526, 2533), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2595, 2611), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (2604, 2611), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2675, 2695), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(90)', '(5)', '(-1)'], {}), '(90, 5, -1)\n', (2684, 2695), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2809, 2846), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(281474976710655)', '(999999999)'], {}), '(281474976710655, 999999999)\n', (2818, 2846), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2948, 2969), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(90)', '(0)', '(-1)'], {}), '(90, 0, -1)\n', (2958, 2969), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3069, 3093), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(9)', '(999999999)'], {}), '(9, 999999999)\n', (3079, 3093), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3209, 3226), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(11)', '(0)'], {}), '(11, 0)\n', (3219, 3226), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3346, 3367), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(11)', '(0)', '(-1)'], {}), '(11, 0, -1)\n', (3356, 3367), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3479, 3507), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(9)', '(500000000)', '(-1)'], {}), '(9, 500000000, -1)\n', (3489, 3507), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6727, 6742), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (6736, 6742), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6744, 6759), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (6753, 6759), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6789, 6804), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (6798, 6804), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6806, 6821), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(3)'], {}), '(1, 3)\n', (6815, 6821), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6847, 6862), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(0)'], {}), '(1, 0)\n', (6856, 6862), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6864, 6879), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (6873, 6879), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6910, 6925), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (6919, 6925), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6927, 6942), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (6936, 6942), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6971, 6986), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (6980, 6986), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6988, 7003), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(0)'], {}), '(1, 0)\n', (6997, 7003), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7037, 7052), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (7046, 7052), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7054, 7069), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (7063, 7069), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7099, 7114), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (7108, 7114), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7116, 7131), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(3)', '(0)'], {}), '(3, 0)\n', (7125, 7131), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7158, 7173), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (7167, 7173), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7205, 7220), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (7214, 7220), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7249, 7264), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(2)', '(0)'], {}), '(2, 0)\n', (7258, 7264), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7293, 7309), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(2)', '(0)'], {}), '(2, 0)\n', (7303, 7309), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7346, 7365), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(0)', '(1)'], {}), '(1, 0, 1)\n', (7356, 7365), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7367, 7387), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(0)', '(-1)'], {}), '(1, 0, -1)\n', (7377, 7387), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8865, 8889), 'mediatimestamp.immutable.Timestamp.from_str', 'Timestamp.from_str', (['t[0]'], {}), '(t[0])\n', (8883, 8889), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9558, 9588), 'mediatimestamp.immutable.TimeOffset.from_sec_nsec', 'TimeOffset.from_sec_nsec', (['t[0]'], {}), '(t[0])\n', (9582, 9588), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10533, 10562), 'mediatimestamp.immutable.Timestamp.from_sec_nsec', 'Timestamp.from_sec_nsec', (['t[0]'], {}), '(t[0])\n', (10556, 10562), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12025, 12055), 'mediatimestamp.immutable.TimeOffset.from_sec_frac', 'TimeOffset.from_sec_frac', (['t[0]'], {}), '(t[0])\n', (12049, 12055), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((13188, 13217), 'mediatimestamp.immutable.Timestamp.from_sec_frac', 'Timestamp.from_sec_frac', (['t[0]'], {}), '(t[0])\n', (13211, 13217), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((15228, 15260), 'mediatimestamp.immutable.Timestamp.from_iso8601_utc', 'Timestamp.from_iso8601_utc', (['t[1]'], {}), '(t[1])\n', (15254, 15260), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((17155, 17191), 'mediatimestamp.immutable.Timestamp.from_smpte_timelabel', 'Timestamp.from_smpte_timelabel', (['t[0]'], {}), '(t[0])\n', (17185, 17191), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18002, 18032), 'unittest.mock.patch', 'mock.patch', (['"""time.timezone"""', '(0)'], {}), "('time.timezone', 0)\n", (18012, 18032), False, 'from unittest import mock\n'), ((1404, 1415), 'mediatimestamp.immutable.Timestamp', 'Timestamp', ([], {}), '()\n', (1413, 1415), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1937, 1966), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1512489451 + 37)', '(0)'], {}), '(1512489451 + 37, 0)\n', (1946, 1966), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((1996, 2033), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1512489451 + 37)', '(100000000)'], {}), '(1512489451 + 37, 100000000)\n', (2005, 2033), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((2093, 2116), 'unittest.mock.patch', 'mock.patch', (['"""time.time"""'], {}), "('time.time')\n", (2103, 2116), False, 'from unittest import mock\n'), ((2193, 2213), 'mediatimestamp.immutable.Timestamp.get_time', 'Timestamp.get_time', ([], {}), '()\n', (2211, 2213), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3637, 3653), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (3646, 3653), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3660, 3676), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)'], {}), '(1, 2)\n', (3670, 3676), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3678, 3694), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(11)', '(2)'], {}), '(11, 2)\n', (3687, 3694), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3710, 3726), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(11)', '(2)'], {}), '(11, 2)\n', (3719, 3726), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3733, 3749), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)'], {}), '(1, 2)\n', (3743, 3749), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3751, 3767), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (3760, 3767), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3783, 3800), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(11)', '(2)'], {}), '(11, 2)\n', (3793, 3800), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3807, 3823), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)'], {}), '(1, 2)\n', (3817, 3823), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3825, 3842), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(0)'], {}), '(10, 0)\n', (3835, 3842), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3858, 3874), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (3867, 3874), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3881, 3898), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(11)', '(2)'], {}), '(11, 2)\n', (3891, 3898), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3900, 3919), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)', '(-1)'], {}), '(1, 2, -1)\n', (3909, 3919), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3935, 3952), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(0)'], {}), '(10, 0)\n', (3945, 3952), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3959, 3976), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(11)', '(2)'], {}), '(11, 2)\n', (3969, 3976), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((3978, 3998), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)', '(-1)'], {}), '(1, 2, -1)\n', (3988, 3998), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4014, 4031), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(0)'], {}), '(10, 0)\n', (4024, 4031), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4038, 4054), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(11)', '(2)'], {}), '(11, 2)\n', (4047, 4054), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4056, 4076), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)', '(-1)'], {}), '(1, 2, -1)\n', (4066, 4076), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4092, 4108), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (4101, 4108), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4115, 4131), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(11)', '(2)'], {}), '(11, 2)\n', (4124, 4131), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4133, 4153), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)', '(-1)'], {}), '(1, 2, -1)\n', (4143, 4153), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4169, 4185), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(11)', '(2)'], {}), '(11, 2)\n', (4178, 4185), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4192, 4208), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(0)'], {}), '(10, 0)\n', (4201, 4208), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4210, 4229), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (4220, 4229), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4867, 4885), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (4877, 4885), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4895, 4911), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(0)'], {}), '(0, 0)\n', (4905, 4911), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4927, 4945), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (4937, 4945), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((4956, 4976), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (4966, 4976), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5001, 5019), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (5011, 5019), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5021, 5041), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (5031, 5041), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5057, 5075), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (5067, 5075), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5089, 5113), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)', '(-1)'], {}), '(100, 100, -1)\n', (5099, 5113), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5129, 5151), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)', '(-1)'], {}), '(10, 10, -1)\n', (5139, 5151), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5162, 5186), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)', '(-1)'], {}), '(100, 100, -1)\n', (5172, 5186), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5202, 5222), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (5212, 5222), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5234, 5252), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (5244, 5252), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5268, 5288), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (5278, 5288), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5301, 5323), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)', '(-1)'], {}), '(10, 10, -1)\n', (5311, 5323), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5339, 5363), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)', '(-1)'], {}), '(100, 100, -1)\n', (5349, 5363), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5375, 5397), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)', '(-1)'], {}), '(10, 10, -1)\n', (5385, 5397), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5413, 5443), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(281474976710654)', '(0)'], {}), '(281474976710654, 0)\n', (5423, 5443), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5468, 5492), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(999999999)'], {}), '(0, 999999999)\n', (5478, 5492), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5508, 5527), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(100)', '(100)'], {}), '(100, 100)\n', (5517, 5527), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5539, 5557), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (5549, 5557), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5573, 5593), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (5583, 5593), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5604, 5622), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (5614, 5622), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5638, 5658), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (5648, 5658), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5670, 5692), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)', '(-1)'], {}), '(10, 10, -1)\n', (5680, 5692), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5708, 5732), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)', '(-1)'], {}), '(100, 100, -1)\n', (5718, 5732), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5743, 5765), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)', '(-1)'], {}), '(10, 10, -1)\n', (5753, 5765), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5781, 5811), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(281474976710654)', '(0)'], {}), '(281474976710654, 0)\n', (5791, 5811), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5835, 5859), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(999999999)'], {}), '(0, 999999999)\n', (5845, 5859), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5875, 5894), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(100)', '(100)'], {}), '(100, 100)\n', (5884, 5894), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5905, 5923), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(10)', '(10)'], {}), '(10, 10)\n', (5915, 5923), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5939, 5956), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(10)'], {}), '(10, 10)\n', (5948, 5956), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((5967, 5987), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (5977, 5987), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6012, 6029), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(10)', '(10)'], {}), '(10, 10)\n', (6021, 6029), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((6031, 6051), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(100)', '(100)'], {}), '(100, 100)\n', (6041, 6051), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((7744, 7765), 'mediatimestamp.immutable.Timestamp.from_str', 'Timestamp.from_str', (['t'], {}), '(t)\n', (7762, 7765), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8020, 8036), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(-1)', '(0)'], {}), '(-1, 0)\n', (8029, 8036), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8038, 8057), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(0)', '(-1)'], {}), '(1, 0, -1)\n', (8047, 8057), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8073, 8102), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(281474976710656)', '(0)'], {}), '(281474976710656, 0)\n', (8082, 8102), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8104, 8141), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(281474976710655)', '(999999999)'], {}), '(281474976710655, 999999999)\n', (8113, 8141), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8157, 8181), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(1000000000)'], {}), '(0, 1000000000)\n', (8166, 8181), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8183, 8198), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(0)'], {}), '(1, 0)\n', (8192, 8198), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8214, 8230), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(-1)'], {}), '(0, -1)\n', (8223, 8230), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8232, 8251), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(1)', '(-1)'], {}), '(0, 1, -1)\n', (8241, 8251), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8267, 8292), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(-1000000007)'], {}), '(5, -1000000007)\n', (8276, 8292), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8294, 8317), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(3)', '(999999993)'], {}), '(3, 999999993)\n', (8303, 8317), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8558, 8573), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(2)'], {}), '(1, 2)\n', (8567, 8573), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8596, 8619), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(200000000)'], {}), '(1, 200000000)\n', (8605, 8619), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8640, 8655), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1)', '(0)'], {}), '(1, 0)\n', (8649, 8655), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8697, 8729), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1424177663)', '(500000000)'], {}), '(1424177663, 500000000)\n', (8706, 8729), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((8779, 8808), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1424177663)', '(102003)'], {}), '(1424177663, 102003)\n', (8788, 8808), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9168, 9184), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(0)'], {}), '(0, 0)\n', (9178, 9184), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9214, 9230), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(1)'], {}), '(0, 1)\n', (9224, 9230), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9261, 9281), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(1)', '(-1)'], {}), '(0, 1, -1)\n', (9271, 9281), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9310, 9326), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(0)'], {}), '(5, 0)\n', (9320, 9326), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9356, 9372), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(1)'], {}), '(5, 1)\n', (9366, 9372), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9403, 9423), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(1)', '(-1)'], {}), '(5, 1, -1)\n', (9413, 9423), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((9462, 9486), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(999999999)'], {}), '(5, 999999999)\n', (9472, 9486), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10150, 10165), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(0)'], {}), '(0, 0)\n', (10159, 10165), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10195, 10210), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(1)'], {}), '(0, 1)\n', (10204, 10210), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10241, 10260), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(1)', '(-1)'], {}), '(0, 1, -1)\n', (10250, 10260), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10289, 10304), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(0)'], {}), '(5, 0)\n', (10298, 10304), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10334, 10349), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(1)'], {}), '(5, 1)\n', (10343, 10349), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10380, 10399), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(1)', '(-1)'], {}), '(5, 1, -1)\n', (10389, 10399), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((10438, 10461), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(999999999)'], {}), '(5, 999999999)\n', (10447, 10461), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11390, 11406), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(0)'], {}), '(0, 0)\n', (11400, 11406), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11436, 11467), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(1000000000 // 10)'], {}), '(0, 1000000000 // 10)\n', (11446, 11467), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11498, 11533), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(0)', '(1000000000 // 10)', '(-1)'], {}), '(0, 1000000000 // 10, -1)\n', (11508, 11533), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11562, 11578), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(0)'], {}), '(5, 0)\n', (11572, 11578), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11608, 11639), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(1000000000 // 10)'], {}), '(5, 1000000000 // 10)\n', (11618, 11639), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11670, 11705), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(1000000000 // 10)', '(-1)'], {}), '(5, 1000000000 // 10, -1)\n', (11680, 11705), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11743, 11774), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(1000000000 // 10)'], {}), '(5, 1000000000 // 10)\n', (11753, 11774), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11812, 11836), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(123456789)'], {}), '(5, 123456789)\n', (11822, 11836), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11882, 11898), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(1)'], {}), '(5, 1)\n', (11892, 11898), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((11945, 11961), 'mediatimestamp.immutable.TimeOffset', 'TimeOffset', (['(5)', '(0)'], {}), '(5, 0)\n', (11955, 11961), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12577, 12592), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(0)'], {}), '(0, 0)\n', (12586, 12592), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12622, 12652), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(1000000000 // 10)'], {}), '(0, 1000000000 // 10)\n', (12631, 12652), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12683, 12710), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(100000000)', '(-1)'], {}), '(0, 100000000, -1)\n', (12692, 12710), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12739, 12754), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(0)'], {}), '(5, 0)\n', (12748, 12754), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12784, 12814), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(1000000000 // 10)'], {}), '(5, 1000000000 // 10)\n', (12793, 12814), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12845, 12872), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(100000000)', '(-1)'], {}), '(5, 100000000, -1)\n', (12854, 12872), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12910, 12940), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(1000000000 // 10)'], {}), '(5, 1000000000 // 10)\n', (12919, 12940), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((12978, 13001), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(123456789)'], {}), '(5, 123456789)\n', (12987, 13001), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((13047, 13062), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(1)'], {}), '(5, 1)\n', (13056, 13062), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((13109, 13124), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(5)', '(0)'], {}), '(5, 0)\n', (13118, 13124), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((13975, 14004), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1424177663)', '(102003)'], {}), '(1424177663, 102003)\n', (13984, 14004), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14184, 14206), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(78796809)', '(0)'], {}), '(78796809, 0)\n', (14193, 14206), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14343, 14365), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(78796810)', '(0)'], {}), '(78796810, 0)\n', (14352, 14365), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14494, 14516), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(78796811)', '(0)'], {}), '(78796811, 0)\n', (14503, 14516), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14567, 14591), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1341100833)', '(0)'], {}), '(1341100833, 0)\n', (14576, 14591), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14641, 14665), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1341100834)', '(0)'], {}), '(1341100834, 0)\n', (14650, 14665), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14715, 14739), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1341100835)', '(0)'], {}), '(1341100835, 0)\n', (14724, 14739), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14790, 14814), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1341100835)', '(1)'], {}), '(1341100835, 1)\n', (14799, 14814), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14864, 14896), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1341100835)', '(100000000)'], {}), '(1341100835, 100000000)\n', (14873, 14896), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((14946, 14978), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1341100835)', '(999999999)'], {}), '(1341100835, 999999999)\n', (14955, 14978), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((15029, 15052), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(283996818)', '(0)'], {}), '(283996818, 0)\n', (15038, 15052), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((15581, 15611), 'mediatimestamp.immutable.Timestamp.from_iso8601_utc', 'Timestamp.from_iso8601_utc', (['*p'], {}), '(*p)\n', (15607, 15611), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((17741, 17775), 'mediatimestamp.immutable.Timestamp.from_smpte_timelabel', 'Timestamp.from_smpte_timelabel', (['*p'], {}), '(*p)\n', (17771, 17775), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18051, 18079), 'unittest.mock.patch', 'mock.patch', (['"""time.localtime"""'], {}), "('time.localtime')\n", (18061, 18079), False, 'from unittest import mock\n'), ((18167, 18256), 'mediatimestamp.immutable.Timestamp.from_smpte_timelabel', 'Timestamp.from_smpte_timelabel', (['"""2015-07-01T00:59:59F00 30000/1001 UTC+01:00 TAI-35"""'], {}), "(\n '2015-07-01T00:59:59F00 30000/1001 UTC+01:00 TAI-35')\n", (18197, 18256), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18582, 18597), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(0)'], {}), '(0, 0)\n', (18591, 18597), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18667, 18690), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(417800721)', '(0)'], {}), '(417800721, 0)\n', (18676, 18690), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18763, 18792), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1512491629)', '(196000)'], {}), '(1512491629, 196000)\n', (18772, 18792), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18859, 18888), 'mediatimestamp.immutable.Timestamp.from_datetime', 'Timestamp.from_datetime', (['t[0]'], {}), '(t[0])\n', (18882, 18888), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19066, 19081), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(0)'], {}), '(0, 0)\n', (19075, 19081), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19151, 19174), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(417800721)', '(0)'], {}), '(417800721, 0)\n', (19160, 19174), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19247, 19276), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1512491629)', '(196000)'], {}), '(1512491629, 196000)\n', (19256, 19276), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19347, 19379), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1512491629)', '(999999999)'], {}), '(1512491629, 999999999)\n', (19356, 19379), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19634, 19665), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1422034531)', '(17100000)'], {}), '(1422034531, 17100000)\n', (19643, 19665), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19707, 19731), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1422016531)', '(0)'], {}), '(1422016531, 0)\n', (19716, 19731), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19754, 19769), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(0)'], {}), '(0, 0)\n', (19763, 19769), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((19824, 19865), 'unittest.mock.patch', 'mock.patch', (['"""time.time"""'], {'return_value': '(0.0)'}), "('time.time', return_value=0.0)\n", (19834, 19865), False, 'from unittest import mock\n'), ((20107, 20137), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(63072008)', '(999999999)'], {}), '(63072008, 999999999)\n', (20116, 20137), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20156, 20178), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(63072009)', '(0)'], {}), '(63072009, 0)\n', (20165, 20178), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20198, 20228), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(78796809)', '(999999999)'], {}), '(78796809, 999999999)\n', (20207, 20228), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20248, 20270), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(78796810)', '(0)'], {}), '(78796810, 0)\n', (20257, 20270), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20290, 20320), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(94694410)', '(999999999)'], {}), '(94694410, 999999999)\n', (20299, 20320), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20340, 20362), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(94694411)', '(0)'], {}), '(94694411, 0)\n', (20349, 20362), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20382, 20405), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(417800721)', '(0)'], {}), '(417800721, 0)\n', (20391, 20405), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20425, 20456), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(773020827)', '(999999999)'], {}), '(773020827, 999999999)\n', (20434, 20456), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20476, 20499), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(773020828)', '(0)'], {}), '(773020828, 0)\n', (20485, 20499), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((20519, 20543), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(1512491629)', '(0)'], {}), '(1512491629, 0)\n', (20528, 20543), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((18564, 18579), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (18572, 18579), False, 'from dateutil import tz\n'), ((18649, 18664), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (18657, 18664), False, 'from dateutil import tz\n'), ((18745, 18760), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (18753, 18760), False, 'from dateutil import tz\n'), ((19048, 19063), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (19056, 19063), False, 'from dateutil import tz\n'), ((19133, 19148), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (19141, 19148), False, 'from dateutil import tz\n'), ((19229, 19244), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (19237, 19244), False, 'from dateutil import tz\n'), ((19329, 19344), 'dateutil.tz.gettz', 'tz.gettz', (['"""UTC"""'], {}), "('UTC')\n", (19337, 19344), False, 'from dateutil import tz\n'), ((19900, 19924), 'mediatimestamp.immutable.Timestamp.from_str', 'Timestamp.from_str', (['t[0]'], {}), '(t[0])\n', (19918, 19924), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n'), ((17949, 17964), 'mediatimestamp.immutable.Timestamp', 'Timestamp', (['(0)', '(0)'], {}), '(0, 0)\n', (17958, 17964), False, 'from mediatimestamp.immutable import Timestamp, TimeOffset, TsValueError, mediatimestamp, SupportsMediaTimestamp, SupportsMediaTimeOffset, mediatimeoffset\n')]
"""Testing the module delta tables.""" from pyspark.sql import types as T from getl.common.delta_table import DeltaTable def create_dataframe(spark_session, data): schema = T.StructType( [ T.StructField("file_path", T.StringType(), True), T.StructField("file_desc", T.StringType(), True), ] ) return spark_session.createDataFrame(data, schema) def test_upsert_all(spark_session, tmp_dir): """Correct parameters are passed to the upsert all fuction.""" # ARRANGE create_dataframe( spark_session, [ ("path/to/file1", "about stuff"), ("path/to/file2", "gloomhaven is a nice place"), ], ).write.save(tmp_dir, format="delta") update_df = create_dataframe( spark_session, [ ("path/to/file2", "gloomhaven is a bad place"), ("path/to/file3", "my little haven"), ], ) delta_table = DeltaTable(path=tmp_dir, spark=spark_session) # ACT dataframe = delta_table.upsert_all( update_df, merge_statement="source.file_path = updates.file_path" ) # ASSER assert dataframe.collect()[0][1] == "gloomhaven is a bad place" assert dataframe.collect()[1][1] == "my little haven" assert dataframe.collect()[2][1] == "about stuff"
[ "pyspark.sql.types.StringType", "getl.common.delta_table.DeltaTable" ]
[((957, 1002), 'getl.common.delta_table.DeltaTable', 'DeltaTable', ([], {'path': 'tmp_dir', 'spark': 'spark_session'}), '(path=tmp_dir, spark=spark_session)\n', (967, 1002), False, 'from getl.common.delta_table import DeltaTable\n'), ((243, 257), 'pyspark.sql.types.StringType', 'T.StringType', ([], {}), '()\n', (255, 257), True, 'from pyspark.sql import types as T\n'), ((305, 319), 'pyspark.sql.types.StringType', 'T.StringType', ([], {}), '()\n', (317, 319), True, 'from pyspark.sql import types as T\n')]
import sys import os from six import StringIO import datetime from pkg_resources import resource_filename import textwrap from io import StringIO import nose.tools as nt from nose.plugins.attrib import attr from unittest import mock import numpy.testing as nptest import pandas.util.testing as pdtest import numpy as np import pandas import pyodbc import wqio from wqio import utils from pycvc import dataAccess, external def test__fix_nsqd_bacteria_units(): cols = ['param', 'conc_units', 'res'] inputdf = pandas.DataFrame({ 'conc_units': ['MPN/100 mL', 'MPN/100 mL', 'CFU/100 mL', 'ug/L'], 'param': ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2, 3, 4] }) outputdf = external._fix_nsqd_bacteria_units(inputdf, unitscol='conc_units') expected = pandas.DataFrame({ 'conc_units': ['CFU/100 mL', 'CFU/100 mL', 'CFU/100 mL', 'ug/L'], 'param': ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2, 3, 4] }) pdtest.assert_frame_equal(outputdf[cols], expected[cols])
[ "pandas.DataFrame", "pycvc.external._fix_nsqd_bacteria_units", "pandas.util.testing.assert_frame_equal" ]
[((523, 686), 'pandas.DataFrame', 'pandas.DataFrame', (["{'conc_units': ['MPN/100 mL', 'MPN/100 mL', 'CFU/100 mL', 'ug/L'], 'param':\n ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2, 3, 4]}"], {}), "({'conc_units': ['MPN/100 mL', 'MPN/100 mL', 'CFU/100 mL',\n 'ug/L'], 'param': ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2,\n 3, 4]})\n", (539, 686), False, 'import pandas\n'), ((725, 790), 'pycvc.external._fix_nsqd_bacteria_units', 'external._fix_nsqd_bacteria_units', (['inputdf'], {'unitscol': '"""conc_units"""'}), "(inputdf, unitscol='conc_units')\n", (758, 790), False, 'from pycvc import dataAccess, external\n'), ((806, 969), 'pandas.DataFrame', 'pandas.DataFrame', (["{'conc_units': ['CFU/100 mL', 'CFU/100 mL', 'CFU/100 mL', 'ug/L'], 'param':\n ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2, 3, 4]}"], {}), "({'conc_units': ['CFU/100 mL', 'CFU/100 mL', 'CFU/100 mL',\n 'ug/L'], 'param': ['E Coli', 'E Coli', 'Fecal', 'Copper'], 'res': [1, 2,\n 3, 4]})\n", (822, 969), False, 'import pandas\n'), ((997, 1054), 'pandas.util.testing.assert_frame_equal', 'pdtest.assert_frame_equal', (['outputdf[cols]', 'expected[cols]'], {}), '(outputdf[cols], expected[cols])\n', (1022, 1054), True, 'import pandas.util.testing as pdtest\n')]
import warnings from datetime import datetime, date import pandas as pd import numpy as np from matplotlib.font_manager import FontProperties import matplotlib.pyplot as plt import itertools import streamlit as st import yfinance as yf from statsmodels.tsa.stattools import adfuller from statsmodels.tsa.seasonal import seasonal_decompose from statsmodels.tsa.statespace.sarimax import SARIMAX from yahooquery import Ticker import src.tools.functions as f0 warnings.filterwarnings("ignore") pd.plotting.register_matplotlib_converters() plt.style.use("seaborn-poster") sm, med, lg = "20", "25", "30" plt.rcParams["font.size"] = sm # controls default text sizes plt.rc("axes", titlesize=med) # fontsize of the axes title plt.rc("axes", labelsize=med) # fontsize of the x & y labels plt.rc("xtick", labelsize=sm) # fontsize of the tick labels plt.rc("ytick", labelsize=sm) # fontsize of the tick labels plt.rc("legend", fontsize=sm) # legend fontsize plt.rc("figure", titlesize=lg) # fontsize of the figure title plt.rc("axes", linewidth=2) # linewidth of plot lines plt.rcParams["figure.figsize"] = [20, 10] plt.rcParams["figure.dpi"] = 100 plt.rcParams["axes.facecolor"] = "silver" class The_SARIMA_Model(object): def __init__(self, stock): self.sss = stock self.company = f0.company_longName(self.sss) def dataHull(self): self.start = "2011-10-01" self.end = "2021-10-19" self.x_data = yf.download(self.sss, start=self.end)["Adj Close"] self.x_data.columns = [self.company] self.spData = yf.download(self.sss, period='max') self.spData = pd.DataFrame(self.spData.loc[:self.end]) self.dataSP = pd.DataFrame(self.spData["Close"]) self.dataSP.columns = [self.sss] self.dataSP.index = pd.to_datetime(self.dataSP.index) self.df_settle = self.spData["Close"].resample("BM").ffill().dropna() self.df_rolling = self.df_settle.rolling(12) self.df_mean = self.df_rolling.mean() self.df_std = self.df_rolling.std() def adf(self): self.dataHull() self.result = adfuller(self.df_settle) self.critical_values = self.result[4] self.df_log = np.log(self.df_settle) self.df_log_ma = self.df_log.rolling(2).mean() self.df_detrend = self.df_log - self.df_log_ma self.df_detrend.dropna(inplace=True) # Mean and standard deviation of detrended data self.df_detrend_rolling = self.df_detrend.rolling(12) self.df_detrend_ma = self.df_detrend_rolling.mean() self.df_detrend_std = self.df_detrend_rolling.std() self.result2 = adfuller(self.df_detrend) self.critical_values2 = self.result2[4] self.df_log_diff = self.df_log.diff(periods=3).dropna() # Mean and standard deviation of differenced data self.df_diff_rolling = self.df_log_diff.rolling(12) self.df_diff_ma = self.df_diff_rolling.mean() self.df_diff_std = self.df_diff_rolling.std() def seasonal_decomp(self): self.adf() self.decompose_result = seasonal_decompose(self.df_log.dropna(), period=12) self.df_trend = self.decompose_result.trend self.df_season = self.decompose_result.seasonal self.df_residual = self.decompose_result.resid self.df_log_diff = self.df_residual.diff().dropna() # Mean and standard deviation of differenced data self.df_diff_rolling = self.df_log_diff.rolling(12) self.df_diff_ma = self.df_diff_rolling.mean() self.df_diff_std = self.df_diff_rolling.std() self.result = adfuller(self.df_residual.dropna()) self.critical_values = self.result[4] def arima_grid_search(self, s=12): self.seasonal_decomp() self.s = s self.p = self.d = self.q = range(2) self.param_combinations = list(itertools.product(self.p, self.d, self.q)) self.lowest_aic, self.pdq, self.pdqs = None, None, None self.total_iterations = 0 for order in self.param_combinations: for (self.p, self.q, self.d) in self.param_combinations: self.seasonal_order = (self.p, self.q, self.d, self.s) self.total_iterations += 1 try: self.model = SARIMAX( self.df_settle, order=order, seasonal_order=self.seasonal_order, enforce_stationarity=False, enforce_invertibility=False, disp=False, ) self.model_result = self.model.fit(maxiter=200, disp=False) if not self.lowest_aic or self.model_result.aic < self.lowest_aic: self.lowest_aic = self.model_result.aic self.pdq, self.pdqs = order, self.seasonal_order except Exception: continue return self.lowest_aic, self.pdq, self.pdqs def fitModel_to_SARIMAX(self): self.arima_grid_search() self.model = SARIMAX( self.df_settle, order=self.pdq, seasonal_order=self.seasonal_order, enforce_stationarity=True, enforce_invertibility=True, disp=False, ) self.model_results = self.model.fit(maxiter=200, disp=False) return self.model_results def predict(self): self.fitModel_to_SARIMAX() self.n = len(self.df_settle.index) self.prediction = self.model_results.get_prediction(start=self.n - 12 * 5, end=self.n + 12) self.prediction_ci = self.prediction.conf_int() self.prediction_ci.columns=['Lower_Confidence_Boundary', 'Upper_Confidence_Boundary'] fig, ax = plt.subplots() ax = self.df_settle['2019':].plot(label='Live_Price', color='k') self.prediction_ci['2019':].plot( ax=ax, style=['--', '--'], color=['r','g'], label='predicted/forecasted', ) ci_index = self.prediction_ci.index lower_ci = self.prediction_ci.iloc[:, 0] upper_ci = self.prediction_ci.iloc[:, 1] ax.fill_between( ci_index, lower_ci, upper_ci, color='c', alpha=.01, label='95% Confidence Interval' ) ax.fill_between( ci_index, (self.prediction_ci.iloc[:, 0]), (self.prediction_ci.iloc[:, 1]), color='r', where=ci_index<'2020 11/30', alpha=.2, label='Training' ) ax.fill_between( ci_index, (self.prediction_ci.iloc[:, 0]), (self.prediction_ci.iloc[:, 1]), color='gold', where=ci_index.isin(ci_index[43:60]), alpha=.2, label='Testing' ) ax.fill_between( ci_index, (self.prediction_ci.iloc[:, 0]), (self.prediction_ci.iloc[:, 1]), color='darkgreen', where=ci_index.isin(ci_index[59:]), alpha=.2, label='Forecast' ) ax.set_xlabel('Time (years)') ax.set_ylabel('Prices') ax.axvline(x='2020 06/25', color = 'k') ax.axvline(x='2021 10/25', color = 'k') ax.set_facecolor('white') plt.grid(True, which='major', axis='both', color='k', alpha=.34) ax.legend() plt.title('SARIMA FORECAST') l = plt.legend(loc='best', shadow=True, fontsize='x-large') for text in l.get_texts(): text.set_color("k") text.set_fontweight(13) text.set_fontsize(13) l.get_frame().set_facecolor('white'); st.pyplot(fig)
[ "matplotlib.pyplot.grid", "streamlit.pyplot", "statsmodels.tsa.stattools.adfuller", "matplotlib.pyplot.legend", "pandas.to_datetime", "numpy.log", "matplotlib.pyplot.style.use", "itertools.product", "yfinance.download", "src.tools.functions.company_longName", "matplotlib.pyplot.subplots", "pandas.plotting.register_matplotlib_converters", "pandas.DataFrame", "matplotlib.pyplot.title", "warnings.filterwarnings", "matplotlib.pyplot.rc", "statsmodels.tsa.statespace.sarimax.SARIMAX" ]
[((459, 492), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (482, 492), False, 'import warnings\n'), ((493, 537), 'pandas.plotting.register_matplotlib_converters', 'pd.plotting.register_matplotlib_converters', ([], {}), '()\n', (535, 537), True, 'import pandas as pd\n'), ((538, 569), 'matplotlib.pyplot.style.use', 'plt.style.use', (['"""seaborn-poster"""'], {}), "('seaborn-poster')\n", (551, 569), True, 'import matplotlib.pyplot as plt\n'), ((663, 692), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'titlesize': 'med'}), "('axes', titlesize=med)\n", (669, 692), True, 'import matplotlib.pyplot as plt\n'), ((723, 752), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'labelsize': 'med'}), "('axes', labelsize=med)\n", (729, 752), True, 'import matplotlib.pyplot as plt\n'), ((785, 814), 'matplotlib.pyplot.rc', 'plt.rc', (['"""xtick"""'], {'labelsize': 'sm'}), "('xtick', labelsize=sm)\n", (791, 814), True, 'import matplotlib.pyplot as plt\n'), ((846, 875), 'matplotlib.pyplot.rc', 'plt.rc', (['"""ytick"""'], {'labelsize': 'sm'}), "('ytick', labelsize=sm)\n", (852, 875), True, 'import matplotlib.pyplot as plt\n'), ((907, 936), 'matplotlib.pyplot.rc', 'plt.rc', (['"""legend"""'], {'fontsize': 'sm'}), "('legend', fontsize=sm)\n", (913, 936), True, 'import matplotlib.pyplot as plt\n'), ((956, 986), 'matplotlib.pyplot.rc', 'plt.rc', (['"""figure"""'], {'titlesize': 'lg'}), "('figure', titlesize=lg)\n", (962, 986), True, 'import matplotlib.pyplot as plt\n'), ((1019, 1046), 'matplotlib.pyplot.rc', 'plt.rc', (['"""axes"""'], {'linewidth': '(2)'}), "('axes', linewidth=2)\n", (1025, 1046), True, 'import matplotlib.pyplot as plt\n'), ((1308, 1337), 'src.tools.functions.company_longName', 'f0.company_longName', (['self.sss'], {}), '(self.sss)\n', (1327, 1337), True, 'import src.tools.functions as f0\n'), ((1571, 1606), 'yfinance.download', 'yf.download', (['self.sss'], {'period': '"""max"""'}), "(self.sss, period='max')\n", (1582, 1606), True, 'import yfinance as yf\n'), ((1629, 1669), 'pandas.DataFrame', 'pd.DataFrame', (['self.spData.loc[:self.end]'], {}), '(self.spData.loc[:self.end])\n', (1641, 1669), True, 'import pandas as pd\n'), ((1692, 1726), 'pandas.DataFrame', 'pd.DataFrame', (["self.spData['Close']"], {}), "(self.spData['Close'])\n", (1704, 1726), True, 'import pandas as pd\n'), ((1796, 1829), 'pandas.to_datetime', 'pd.to_datetime', (['self.dataSP.index'], {}), '(self.dataSP.index)\n', (1810, 1829), True, 'import pandas as pd\n'), ((2119, 2143), 'statsmodels.tsa.stattools.adfuller', 'adfuller', (['self.df_settle'], {}), '(self.df_settle)\n', (2127, 2143), False, 'from statsmodels.tsa.stattools import adfuller\n'), ((2212, 2234), 'numpy.log', 'np.log', (['self.df_settle'], {}), '(self.df_settle)\n', (2218, 2234), True, 'import numpy as np\n'), ((2653, 2678), 'statsmodels.tsa.stattools.adfuller', 'adfuller', (['self.df_detrend'], {}), '(self.df_detrend)\n', (2661, 2678), False, 'from statsmodels.tsa.stattools import adfuller\n'), ((5125, 5271), 'statsmodels.tsa.statespace.sarimax.SARIMAX', 'SARIMAX', (['self.df_settle'], {'order': 'self.pdq', 'seasonal_order': 'self.seasonal_order', 'enforce_stationarity': '(True)', 'enforce_invertibility': '(True)', 'disp': '(False)'}), '(self.df_settle, order=self.pdq, seasonal_order=self.seasonal_order,\n enforce_stationarity=True, enforce_invertibility=True, disp=False)\n', (5132, 5271), False, 'from statsmodels.tsa.statespace.sarimax import SARIMAX\n'), ((5843, 5857), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (5855, 5857), True, 'import matplotlib.pyplot as plt\n'), ((7488, 7553), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {'which': '"""major"""', 'axis': '"""both"""', 'color': '"""k"""', 'alpha': '(0.34)'}), "(True, which='major', axis='both', color='k', alpha=0.34)\n", (7496, 7553), True, 'import matplotlib.pyplot as plt\n'), ((7581, 7609), 'matplotlib.pyplot.title', 'plt.title', (['"""SARIMA FORECAST"""'], {}), "('SARIMA FORECAST')\n", (7590, 7609), True, 'import matplotlib.pyplot as plt\n'), ((7622, 7677), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""best"""', 'shadow': '(True)', 'fontsize': '"""x-large"""'}), "(loc='best', shadow=True, fontsize='x-large')\n", (7632, 7677), True, 'import matplotlib.pyplot as plt\n'), ((7869, 7883), 'streamlit.pyplot', 'st.pyplot', (['fig'], {}), '(fig)\n', (7878, 7883), True, 'import streamlit as st\n'), ((1452, 1489), 'yfinance.download', 'yf.download', (['self.sss'], {'start': 'self.end'}), '(self.sss, start=self.end)\n', (1463, 1489), True, 'import yfinance as yf\n'), ((3882, 3923), 'itertools.product', 'itertools.product', (['self.p', 'self.d', 'self.q'], {}), '(self.p, self.d, self.q)\n', (3899, 3923), False, 'import itertools\n'), ((4306, 4451), 'statsmodels.tsa.statespace.sarimax.SARIMAX', 'SARIMAX', (['self.df_settle'], {'order': 'order', 'seasonal_order': 'self.seasonal_order', 'enforce_stationarity': '(False)', 'enforce_invertibility': '(False)', 'disp': '(False)'}), '(self.df_settle, order=order, seasonal_order=self.seasonal_order,\n enforce_stationarity=False, enforce_invertibility=False, disp=False)\n', (4313, 4451), False, 'from statsmodels.tsa.statespace.sarimax import SARIMAX\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Aug 21 14:02:54 2017 - v1.0 Finalised Fri Apr 13 @author: michaelhodge """ #A script to perform a misfit analysis between manual and algorithm methods #to identify the best performing parameter space #Loads packages required import pickle import pandas as pd import pickle import matplotlib.pyplot as plt import numpy as np import math import copy from Algorithm_misfit import algorithm_misfit #Creates blank variables prof_height_subsample=np.zeros((num_subsample,nump)) prof_distance_subsample=np.zeros((num_subsample,nump)) # Creates subsample of data for analysis n=-1 for i in range (0,num_profiles,subsample): n=n+1 prof_height_subsample[n,:]=prof_height[i,:] prof_distance_subsample[n,:]=prof_distance[i,:] iterations=num_subsample print ('Running Algorithm on Sub Sampled Catalog of size %d, Please Wait...' % (iterations)) #Run smoothing and misfit analysis between subsampled data set #Choose minimum and maximum filter bin size (bin_min, bin_max) and step between (bin_step). #Choose minimum and maximum slope threshold (theta_T_min, theta_T_max) and step between (theta_T_step) #Choose derivative of slope threshold (phi_T) bin_max = 40 bin_min = 9 #needs to be an odd integer bin_step = 4 #needs to be an even integer theta_T_max = 40 #insert positive integer here, turns to negative later theta_T_min = 7 #insert positive integer here, turns to negative later theta_T_step = 4 #insert positive integer here, turns to negative later phi_T = 5 #---IMPORTANT--- #Choose two types of filter method to compare: 1 - None; 2 - Average; #3 - Sav Gol; 4 - Median; 5 - Lowess #Comment out filters not needed #---ANALYSIS 1---- #method = 1 #No smoothing #method_name_1 = 'None' #analysis_1=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (No Filter), Please Wait...') # #method = 2 #Average smoothing #method_name_1 = 'Average' #analysis_1=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (Average Filter), Please Wait...') method = 3 #Sav Gol smoothing method_name_1 = 'Sav Gol' analysis_1=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) print ('Finished Analysis (Savitzky-Golay Filter), Please Wait...') #method = 4 #Median smoothing #method_name_1 = 'Median' #analysis_1=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (Median Filter), Please Wait...') # #method = 5 #Lowess smoothing #method_name_1 = 'Lowess' #analysis_1=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (Lowess Filter), Please Wait...') analysis_number_1=method #---IMPORTANT--- #---ANALYSIS 2---- #method = 1 #No smoothing #method_name_2 = 'None' #analysis_2=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (No Filter), Please Wait...') # #method = 2 #Average smoothing #method_name_2 = 'Average' #analysis_2=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (Average Filter), Please Wait...') # #method = 3 #Sav Gol smoothing #method_name_2 = 'Sav Gol' #analysis_2=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (Savitzky-Golay Filter), Please Wait...') # #method = 4 #Median smoothing #method_name_2 = 'Median' #analysis_2=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) #print ('Finished Analysis (Median Filter), Please Wait...') method = 5 #Lowess smoothing method_name_2 = 'Lowess' analysis_2=algorithm_misfit(prof_distance_subsample,prof_height_subsample,h_manual,w_manual,slope_manual,nump,iterations,method,bin_max,bin_min,bin_step,theta_T_max,theta_T_min,theta_T_step,phi_T) print ('Finished Analysis (Lowess Filter), Please Wait...') analysis_number_2=method #Output values for ANALYSIS 1 h_1=analysis_1[0] #scarp height w_1=analysis_1[1] #scarp width slope_1=analysis_1[2] #scarp slope misfit_height_1=analysis_1[3] #misfit height misfit_width_1=analysis_1[4] #misfit width misfit_slope_1=analysis_1[5] #misfit slope misfit_height_average_1=analysis_1[6] #average misfit height misfit_width_average_1=analysis_1[7] #average misfit width misfit_slope_average_1=analysis_1[8] #average misfit slope #Output values for ANALYSIS 2 h_2=analysis_2[0] #scarp height w_2=analysis_2[1] #scarp width slope_2=analysis_2[2] #scarp slope misfit_height_2=analysis_2[3] #misfit height misfit_width_2=analysis_2[4] #misfit width misfit_slope_2=analysis_2[5] #misfit slope misfit_height_average_2=analysis_2[6] #average misfit height misfit_width_average_2=analysis_2[7] #average misfit width misfit_slope_average_2=analysis_2[8] #average misfit slope #Grid setup gridx=analysis_1[9] gridy=analysis_1[10] #Dump save analysis with open('Misfit_Analysis.pickle', 'wb') as f: pickle.dump(h_1, f) pickle.dump(h_2, f) pickle.dump(w_1, f) pickle.dump(w_2, f) pickle.dump(slope_1, f) pickle.dump(slope_2, f) pickle.dump(misfit_height_1, f) pickle.dump(misfit_height_2, f) pickle.dump(misfit_width_1, f) pickle.dump(misfit_width_2, f) pickle.dump(misfit_slope_1, f) pickle.dump(misfit_slope_2, f) pickle.dump(misfit_height_average_1, f) pickle.dump(misfit_height_average_2, f) pickle.dump(misfit_width_average_1, f) pickle.dump(misfit_width_average_2, f) pickle.dump(misfit_slope_average_1, f) pickle.dump(misfit_slope_average_2, f) pickle.dump(gridx, f) pickle.dump(gridy, f) #Count the number of samples where scarp parameter was calculated misfit_height_1_min=np.zeros((iterations,1)) misfit_height_2_min=np.zeros((iterations,1)) misfit_height_1_count=np.zeros((len(misfit_height_average_1[:,1]),(len(misfit_height_average_1[1,:])))) misfit_height_2_count=np.zeros((len(misfit_height_average_2[:,1]),(len(misfit_height_average_2[1,:])))) for i in range (0,iterations): misfit_height_1_min[i]=np.ndarray.min(abs(misfit_height_1[i,:,:])) misfit_height_2_min[i]=np.ndarray.min(abs(misfit_height_2[i,:,:])) misfit_height_1_count_all=np.count_nonzero(~np.isnan(misfit_height_1_min)) misfit_height_2_count_all=np.count_nonzero(~np.isnan(misfit_height_2_min)) for m in range (0,(len(misfit_height_average_1[:,1]))): for n in range (0,(len(misfit_height_average_1[1,:]))): misfit_height_1_count[m,n]=np.count_nonzero(~np.isnan(misfit_height_1[:,m,n])) for m in range (0,(len(misfit_height_average_1[:,1]))): for n in range (0,(len(misfit_height_average_1[1,:]))): misfit_height_2_count[m,n]=np.count_nonzero(~np.isnan(misfit_height_2[:,m,n])) #Determining the best parameter space value = 0.0 count_min=0.5 #Minimum number of successful profiles (normally 50% or 0.5) A=(abs(misfit_height_average_1)+abs(misfit_width_average_1)+abs(misfit_slope_average_1))/(misfit_height_1_count/num_subsample) where_are_NaNs = np.isnan(A) A[where_are_NaNs] = 9999 where_less_than_mincount=misfit_height_1_count/num_subsample<count_min A[where_less_than_mincount] = 9999 X_1 = np.abs(A-value) idx_1 = np.where( X_1 == X_1.min() ) B=(abs(misfit_height_average_2)+abs(misfit_width_average_2)+abs(misfit_slope_average_2))/(misfit_height_2_count/num_subsample) where_are_NaNs = np.isnan(B) B[where_are_NaNs] = 9999 where_less_than_mincount=misfit_height_2_count/num_subsample<count_min B[where_less_than_mincount] = 9999 X_2 = np.abs(B-value) idx_2 = np.where( X_2 == X_2.min() ) #Prints out the best parameter space as 'Method name (i.e., Sav Gol,), average height misfit, average width misfit, average slope misfit, count, slope threshold, bin size' if abs(A[idx_1[0], idx_1[1]])<abs(B[idx_2[0], idx_2[1]]): print('Best Parameter Space:') print('method = %s' %method_name_1) print('bin size = %s' %gridy[idx_1[0], idx_1[1]]) print('slope threshold = %s' %gridx[idx_1[0], idx_1[1]]) print('average misfit height (m) = %s' %misfit_height_average_1[idx_1[0], idx_1[1]]) print('average misfit width (m) = %s' %misfit_width_average_1[idx_1[0], idx_1[1]]) print('average misfit slope (degrees) = %s' %misfit_slope_average_1[idx_1[0], idx_1[1]]) print('misfit count = %s' %misfit_height_1_count[idx_1[0], idx_1[1]]) method=analysis_number_1 theta_T=np.int(gridx[idx_1[0], idx_1[1]]) idx_theta=np.int(idx_1[1]) bin_size=np.int(gridy[idx_1[0], idx_1[1]]) idx_b=np.int(idx_1[0]) else: print('Best Parameter Space:') print('method = %s' %method_name_2) print('bin size = %s' %gridy[idx_2[0], idx_2[1]]) print('slope threshold = %s' %gridx[idx_2[0], idx_2[1]]) print('average misfit height (m) = %s' %misfit_height_average_2[idx_2[0], idx_2[1]]) print('average misfit width (m) = %s' %misfit_width_average_2[idx_2[0], idx_2[1]]) print('average misfit slope (degrees) = %s' %misfit_slope_average_2[idx_2[0], idx_2[1]]) print('misfit count = %s' %misfit_height_2_count[idx_2[0], idx_2[1]]) method=analysis_number_2 theta_T=np.int(gridx[idx_2[0], idx_2[1]]) idx_theta=np.int(idx_2[1]) bin_size=np.int(gridy[idx_2[0], idx_2[1]]) idx_b=np.int(idx_2[0]) ### #Set levels for misfit plots levels_height=[-10, -7.5, -5, -2.5, 0, 2.5, 5, 7.5, 10] levels_width=[-20, -15, -5, 0, 5, 10, 15, 20] levels_slope=[-40, -35, -30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40] levels_count=[2,4,6,8,10,12,14,16,18,20] #Plot figures plt.figure(3) #Plot for analysis number 1 plt.subplot(4,2,1) plt.contourf(gridx,gridy,misfit_height_average_1,levels_height,cmap=plt.cm.bwr, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit height (m)', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit height using %s filter' %method_name_1, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(4,2,3) plt.contourf(gridx,gridy,misfit_width_average_1,levels_width,cmap=plt.cm.bwr, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit width (m)', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit width using %s filter' %method_name_1, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(4,2,5) plt.contourf(gridx,gridy,misfit_slope_average_1,levels_slope,cmap=plt.cm.bwr, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit slope ($^\circ$)', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit slope using %s filter' %method_name_1, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(4,2,7) cmap = plt.cm.get_cmap("winter") plt.contourf(gridx,gridy,misfit_height_1_count,levels_count,cmap=cmap, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit count', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.xlabel('$\mathit{b}$ value (m)', fontsize=8) plt.ylabel('${\\theta}_T$ ($^\circ$)', fontsize=8) plt.title('Misfit count using %s filter' %method_name_1, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) #Plot for analysis number 2 plt.subplot(4,2,2) plt.contourf(gridx,gridy,misfit_height_average_2,levels_height,cmap=plt.cm.bwr, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit height (m)', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit height using %s filter' %method_name_2, fontsize=8) #plt.subplots_adjust(hspace=1) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(4,2,4) plt.contourf(gridx,gridy,misfit_width_average_2,levels_width,cmap=plt.cm.bwr, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit width (m)', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit width using %s filter' %method_name_2, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(4,2,6) plt.contourf(gridx,gridy,misfit_slope_average_2,levels_slope,cmap=plt.cm.bwr, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit slope ($^\circ$)', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit slope using %s filter' %method_name_2, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(4,2,8) cmap = plt.cm.get_cmap("winter") plt.contourf(gridx,gridy,misfit_height_2_count,levels_count,cmap=cmap, extend ='both') plt.gca().patch.set_color('.25') cbar=plt.colorbar() cbar.ax.set_yticklabels(cbar.ax.get_yticklabels(), fontsize=8) cbar.set_label('misfit count', rotation=270, fontsize=8) plt.scatter(gridx,gridy,s=2,facecolors='none', edgecolors='w') plt.title('Misfit count using %s filter' %method_name_2, fontsize=8) plt.xticks(size = 8) plt.yticks(size = 8) plt.tight_layout() if method==analysis_number_1: h_subsample=h_1[:,idx_b,idx_theta] w_subsample=w_1[:,idx_b,idx_theta] slope_subsample=slope_1[:,idx_b,idx_theta] else: h_subsample=h_2[:,idx_b,idx_theta] w_subsample=w_2[:,idx_b,idx_theta] slope_subsample=slope_2[:,idx_b,idx_theta] #Plot against manual plot plt.figure(4) #plot manual data plt.subplot(3,1,1) plt.scatter(dist_along_fault,h_manual,s=5,color='black') plt.scatter(dist_along_fault,h_subsample,s=5,color='red') plt.ylabel('Scarp Height (m)', fontsize=8) plt.title('Manual (black) v Algorithm (red) Scarp Height Profile', fontsize=8) #plt.ylim([0, np.int(math.ceil(np.amax(h_manual)/10.0))*10]) plt.subplots_adjust(hspace=1) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(3,1,2) plt.scatter(dist_along_fault,w_manual,s=5,color='black') plt.scatter(dist_along_fault,w_subsample,s=5,color='red') plt.ylabel('Scarp Width (m)', fontsize=8) plt.title('Manual (black) v Algorithm (red) Scarp Width Profile', fontsize=8) #plt.ylim([0, np.int(math.ceil(np.amax(w_manual)/10.0))*10]) plt.subplots_adjust(hspace=1) plt.xticks(size = 8) plt.yticks(size = 8) plt.subplot(3,1,3) plt.scatter(dist_along_fault,slope_manual,s=5,color='black') plt.scatter(dist_along_fault,slope_subsample,s=5,color='red') plt.xlabel('Distance along fault (km)', fontsize=8) plt.ylabel('Scarp Slope ($^\circ$)', fontsize=8) plt.title('Manual (black) v Algorithm (red) Scarp Slope Profile', fontsize=8) plt.subplots_adjust(hspace=1) plt.xticks(size = 8) plt.yticks(size = 8) #plt.ylim([(np.int(math.ceil(np.amin(slope_manual)/10.0))*10)-10,0]) ### END
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.contourf", "matplotlib.pyplot.xlabel", "Algorithm_misfit.algorithm_misfit", "matplotlib.pyplot.yticks", "matplotlib.pyplot.scatter", "numpy.abs", "matplotlib.pyplot.xticks", "matplotlib.pyplot.gca", "numpy.isnan", "matplotlib.pyplot.cm.get_cmap", "matplotlib.pyplot.title", "numpy.int", "matplotlib.pyplot.subplots_adjust", "pickle.dump", "matplotlib.pyplot.colorbar", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplot" ]
[((511, 542), 'numpy.zeros', 'np.zeros', (['(num_subsample, nump)'], {}), '((num_subsample, nump))\n', (519, 542), True, 'import numpy as np\n'), ((566, 597), 'numpy.zeros', 'np.zeros', (['(num_subsample, nump)'], {}), '((num_subsample, nump))\n', (574, 597), True, 'import numpy as np\n'), ((2427, 2634), 'Algorithm_misfit.algorithm_misfit', 'algorithm_misfit', (['prof_distance_subsample', 'prof_height_subsample', 'h_manual', 'w_manual', 'slope_manual', 'nump', 'iterations', 'method', 'bin_max', 'bin_min', 'bin_step', 'theta_T_max', 'theta_T_min', 'theta_T_step', 'phi_T'], {}), '(prof_distance_subsample, prof_height_subsample, h_manual,\n w_manual, slope_manual, nump, iterations, method, bin_max, bin_min,\n bin_step, theta_T_max, theta_T_min, theta_T_step, phi_T)\n', (2443, 2634), False, 'from Algorithm_misfit import algorithm_misfit\n'), ((4715, 4922), 'Algorithm_misfit.algorithm_misfit', 'algorithm_misfit', (['prof_distance_subsample', 'prof_height_subsample', 'h_manual', 'w_manual', 'slope_manual', 'nump', 'iterations', 'method', 'bin_max', 'bin_min', 'bin_step', 'theta_T_max', 'theta_T_min', 'theta_T_step', 'phi_T'], {}), '(prof_distance_subsample, prof_height_subsample, h_manual,\n w_manual, slope_manual, nump, iterations, method, bin_max, bin_min,\n bin_step, theta_T_max, theta_T_min, theta_T_step, phi_T)\n', (4731, 4922), False, 'from Algorithm_misfit import algorithm_misfit\n'), ((6762, 6787), 'numpy.zeros', 'np.zeros', (['(iterations, 1)'], {}), '((iterations, 1))\n', (6770, 6787), True, 'import numpy as np\n'), ((6807, 6832), 'numpy.zeros', 'np.zeros', (['(iterations, 1)'], {}), '((iterations, 1))\n', (6815, 6832), True, 'import numpy as np\n'), ((8062, 8073), 'numpy.isnan', 'np.isnan', (['A'], {}), '(A)\n', (8070, 8073), True, 'import numpy as np\n'), ((8211, 8228), 'numpy.abs', 'np.abs', (['(A - value)'], {}), '(A - value)\n', (8217, 8228), True, 'import numpy as np\n'), ((8409, 8420), 'numpy.isnan', 'np.isnan', (['B'], {}), '(B)\n', (8417, 8420), True, 'import numpy as np\n'), ((8558, 8575), 'numpy.abs', 'np.abs', (['(B - value)'], {}), '(B - value)\n', (8564, 8575), True, 'import numpy as np\n'), ((10566, 10579), 'matplotlib.pyplot.figure', 'plt.figure', (['(3)'], {}), '(3)\n', (10576, 10579), True, 'import matplotlib.pyplot as plt\n'), ((10610, 10630), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(1)'], {}), '(4, 2, 1)\n', (10621, 10630), True, 'import matplotlib.pyplot as plt\n'), ((10629, 10732), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_height_average_1', 'levels_height'], {'cmap': 'plt.cm.bwr', 'extend': '"""both"""'}), "(gridx, gridy, misfit_height_average_1, levels_height, cmap=plt\n .cm.bwr, extend='both')\n", (10641, 10732), True, 'import matplotlib.pyplot as plt\n'), ((10763, 10777), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (10775, 10777), True, 'import matplotlib.pyplot as plt\n'), ((10903, 10968), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (10914, 10968), True, 'import matplotlib.pyplot as plt\n'), ((10966, 11036), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit height using %s filter' % method_name_1)"], {'fontsize': '(8)'}), "('Misfit height using %s filter' % method_name_1, fontsize=8)\n", (10975, 11036), True, 'import matplotlib.pyplot as plt\n'), ((11036, 11054), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (11046, 11054), True, 'import matplotlib.pyplot as plt\n'), ((11057, 11075), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (11067, 11075), True, 'import matplotlib.pyplot as plt\n'), ((11079, 11099), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(3)'], {}), '(4, 2, 3)\n', (11090, 11099), True, 'import matplotlib.pyplot as plt\n'), ((11098, 11199), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_width_average_1', 'levels_width'], {'cmap': 'plt.cm.bwr', 'extend': '"""both"""'}), "(gridx, gridy, misfit_width_average_1, levels_width, cmap=plt.\n cm.bwr, extend='both')\n", (11110, 11199), True, 'import matplotlib.pyplot as plt\n'), ((11230, 11244), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (11242, 11244), True, 'import matplotlib.pyplot as plt\n'), ((11369, 11434), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (11380, 11434), True, 'import matplotlib.pyplot as plt\n'), ((11432, 11501), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit width using %s filter' % method_name_1)"], {'fontsize': '(8)'}), "('Misfit width using %s filter' % method_name_1, fontsize=8)\n", (11441, 11501), True, 'import matplotlib.pyplot as plt\n'), ((11501, 11519), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (11511, 11519), True, 'import matplotlib.pyplot as plt\n'), ((11522, 11540), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (11532, 11540), True, 'import matplotlib.pyplot as plt\n'), ((11544, 11564), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(5)'], {}), '(4, 2, 5)\n', (11555, 11564), True, 'import matplotlib.pyplot as plt\n'), ((11563, 11664), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_slope_average_1', 'levels_slope'], {'cmap': 'plt.cm.bwr', 'extend': '"""both"""'}), "(gridx, gridy, misfit_slope_average_1, levels_slope, cmap=plt.\n cm.bwr, extend='both')\n", (11575, 11664), True, 'import matplotlib.pyplot as plt\n'), ((11695, 11709), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (11707, 11709), True, 'import matplotlib.pyplot as plt\n'), ((11841, 11906), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (11852, 11906), True, 'import matplotlib.pyplot as plt\n'), ((11904, 11973), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit slope using %s filter' % method_name_1)"], {'fontsize': '(8)'}), "('Misfit slope using %s filter' % method_name_1, fontsize=8)\n", (11913, 11973), True, 'import matplotlib.pyplot as plt\n'), ((11973, 11991), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (11983, 11991), True, 'import matplotlib.pyplot as plt\n'), ((11994, 12012), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (12004, 12012), True, 'import matplotlib.pyplot as plt\n'), ((12016, 12036), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(7)'], {}), '(4, 2, 7)\n', (12027, 12036), True, 'import matplotlib.pyplot as plt\n'), ((12042, 12067), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', (['"""winter"""'], {}), "('winter')\n", (12057, 12067), True, 'import matplotlib.pyplot as plt\n'), ((12068, 12161), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_height_1_count', 'levels_count'], {'cmap': 'cmap', 'extend': '"""both"""'}), "(gridx, gridy, misfit_height_1_count, levels_count, cmap=cmap,\n extend='both')\n", (12080, 12161), True, 'import matplotlib.pyplot as plt\n'), ((12193, 12207), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (12205, 12207), True, 'import matplotlib.pyplot as plt\n'), ((12328, 12393), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (12339, 12393), True, 'import matplotlib.pyplot as plt\n'), ((12391, 12440), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""$\\\\mathit{b}$ value (m)"""'], {'fontsize': '(8)'}), "('$\\\\mathit{b}$ value (m)', fontsize=8)\n", (12401, 12440), True, 'import matplotlib.pyplot as plt\n'), ((12440, 12491), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""${\\\\theta}_T$ ($^\\\\circ$)"""'], {'fontsize': '(8)'}), "('${\\\\theta}_T$ ($^\\\\circ$)', fontsize=8)\n", (12450, 12491), True, 'import matplotlib.pyplot as plt\n'), ((12491, 12560), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit count using %s filter' % method_name_1)"], {'fontsize': '(8)'}), "('Misfit count using %s filter' % method_name_1, fontsize=8)\n", (12500, 12560), True, 'import matplotlib.pyplot as plt\n'), ((12560, 12578), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (12570, 12578), True, 'import matplotlib.pyplot as plt\n'), ((12581, 12599), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (12591, 12599), True, 'import matplotlib.pyplot as plt\n'), ((12632, 12652), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(2)'], {}), '(4, 2, 2)\n', (12643, 12652), True, 'import matplotlib.pyplot as plt\n'), ((12651, 12754), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_height_average_2', 'levels_height'], {'cmap': 'plt.cm.bwr', 'extend': '"""both"""'}), "(gridx, gridy, misfit_height_average_2, levels_height, cmap=plt\n .cm.bwr, extend='both')\n", (12663, 12754), True, 'import matplotlib.pyplot as plt\n'), ((12785, 12799), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (12797, 12799), True, 'import matplotlib.pyplot as plt\n'), ((12925, 12990), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (12936, 12990), True, 'import matplotlib.pyplot as plt\n'), ((12988, 13058), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit height using %s filter' % method_name_2)"], {'fontsize': '(8)'}), "('Misfit height using %s filter' % method_name_2, fontsize=8)\n", (12997, 13058), True, 'import matplotlib.pyplot as plt\n'), ((13089, 13107), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (13099, 13107), True, 'import matplotlib.pyplot as plt\n'), ((13110, 13128), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (13120, 13128), True, 'import matplotlib.pyplot as plt\n'), ((13132, 13152), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(4)'], {}), '(4, 2, 4)\n', (13143, 13152), True, 'import matplotlib.pyplot as plt\n'), ((13151, 13252), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_width_average_2', 'levels_width'], {'cmap': 'plt.cm.bwr', 'extend': '"""both"""'}), "(gridx, gridy, misfit_width_average_2, levels_width, cmap=plt.\n cm.bwr, extend='both')\n", (13163, 13252), True, 'import matplotlib.pyplot as plt\n'), ((13283, 13297), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (13295, 13297), True, 'import matplotlib.pyplot as plt\n'), ((13422, 13487), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (13433, 13487), True, 'import matplotlib.pyplot as plt\n'), ((13485, 13554), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit width using %s filter' % method_name_2)"], {'fontsize': '(8)'}), "('Misfit width using %s filter' % method_name_2, fontsize=8)\n", (13494, 13554), True, 'import matplotlib.pyplot as plt\n'), ((13554, 13572), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (13564, 13572), True, 'import matplotlib.pyplot as plt\n'), ((13575, 13593), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (13585, 13593), True, 'import matplotlib.pyplot as plt\n'), ((13597, 13617), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(6)'], {}), '(4, 2, 6)\n', (13608, 13617), True, 'import matplotlib.pyplot as plt\n'), ((13616, 13717), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_slope_average_2', 'levels_slope'], {'cmap': 'plt.cm.bwr', 'extend': '"""both"""'}), "(gridx, gridy, misfit_slope_average_2, levels_slope, cmap=plt.\n cm.bwr, extend='both')\n", (13628, 13717), True, 'import matplotlib.pyplot as plt\n'), ((13748, 13762), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (13760, 13762), True, 'import matplotlib.pyplot as plt\n'), ((13894, 13959), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (13905, 13959), True, 'import matplotlib.pyplot as plt\n'), ((13957, 14026), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit slope using %s filter' % method_name_2)"], {'fontsize': '(8)'}), "('Misfit slope using %s filter' % method_name_2, fontsize=8)\n", (13966, 14026), True, 'import matplotlib.pyplot as plt\n'), ((14026, 14044), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (14036, 14044), True, 'import matplotlib.pyplot as plt\n'), ((14047, 14065), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (14057, 14065), True, 'import matplotlib.pyplot as plt\n'), ((14069, 14089), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(4)', '(2)', '(8)'], {}), '(4, 2, 8)\n', (14080, 14089), True, 'import matplotlib.pyplot as plt\n'), ((14095, 14120), 'matplotlib.pyplot.cm.get_cmap', 'plt.cm.get_cmap', (['"""winter"""'], {}), "('winter')\n", (14110, 14120), True, 'import matplotlib.pyplot as plt\n'), ((14121, 14214), 'matplotlib.pyplot.contourf', 'plt.contourf', (['gridx', 'gridy', 'misfit_height_2_count', 'levels_count'], {'cmap': 'cmap', 'extend': '"""both"""'}), "(gridx, gridy, misfit_height_2_count, levels_count, cmap=cmap,\n extend='both')\n", (14133, 14214), True, 'import matplotlib.pyplot as plt\n'), ((14246, 14260), 'matplotlib.pyplot.colorbar', 'plt.colorbar', ([], {}), '()\n', (14258, 14260), True, 'import matplotlib.pyplot as plt\n'), ((14381, 14446), 'matplotlib.pyplot.scatter', 'plt.scatter', (['gridx', 'gridy'], {'s': '(2)', 'facecolors': '"""none"""', 'edgecolors': '"""w"""'}), "(gridx, gridy, s=2, facecolors='none', edgecolors='w')\n", (14392, 14446), True, 'import matplotlib.pyplot as plt\n'), ((14444, 14513), 'matplotlib.pyplot.title', 'plt.title', (["('Misfit count using %s filter' % method_name_2)"], {'fontsize': '(8)'}), "('Misfit count using %s filter' % method_name_2, fontsize=8)\n", (14453, 14513), True, 'import matplotlib.pyplot as plt\n'), ((14513, 14531), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (14523, 14531), True, 'import matplotlib.pyplot as plt\n'), ((14534, 14552), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (14544, 14552), True, 'import matplotlib.pyplot as plt\n'), ((14556, 14574), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (14572, 14574), True, 'import matplotlib.pyplot as plt\n'), ((14895, 14908), 'matplotlib.pyplot.figure', 'plt.figure', (['(4)'], {}), '(4)\n', (14905, 14908), True, 'import matplotlib.pyplot as plt\n'), ((14928, 14948), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(1)'], {}), '(3, 1, 1)\n', (14939, 14948), True, 'import matplotlib.pyplot as plt\n'), ((14947, 15006), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dist_along_fault', 'h_manual'], {'s': '(5)', 'color': '"""black"""'}), "(dist_along_fault, h_manual, s=5, color='black')\n", (14958, 15006), True, 'import matplotlib.pyplot as plt\n'), ((15005, 15065), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dist_along_fault', 'h_subsample'], {'s': '(5)', 'color': '"""red"""'}), "(dist_along_fault, h_subsample, s=5, color='red')\n", (15016, 15065), True, 'import matplotlib.pyplot as plt\n'), ((15067, 15109), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Scarp Height (m)"""'], {'fontsize': '(8)'}), "('Scarp Height (m)', fontsize=8)\n", (15077, 15109), True, 'import matplotlib.pyplot as plt\n'), ((15110, 15188), 'matplotlib.pyplot.title', 'plt.title', (['"""Manual (black) v Algorithm (red) Scarp Height Profile"""'], {'fontsize': '(8)'}), "('Manual (black) v Algorithm (red) Scarp Height Profile', fontsize=8)\n", (15119, 15188), True, 'import matplotlib.pyplot as plt\n'), ((15250, 15279), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(1)'}), '(hspace=1)\n', (15269, 15279), True, 'import matplotlib.pyplot as plt\n'), ((15280, 15298), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (15290, 15298), True, 'import matplotlib.pyplot as plt\n'), ((15301, 15319), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (15311, 15319), True, 'import matplotlib.pyplot as plt\n'), ((15322, 15342), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(2)'], {}), '(3, 1, 2)\n', (15333, 15342), True, 'import matplotlib.pyplot as plt\n'), ((15341, 15400), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dist_along_fault', 'w_manual'], {'s': '(5)', 'color': '"""black"""'}), "(dist_along_fault, w_manual, s=5, color='black')\n", (15352, 15400), True, 'import matplotlib.pyplot as plt\n'), ((15400, 15460), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dist_along_fault', 'w_subsample'], {'s': '(5)', 'color': '"""red"""'}), "(dist_along_fault, w_subsample, s=5, color='red')\n", (15411, 15460), True, 'import matplotlib.pyplot as plt\n'), ((15464, 15505), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Scarp Width (m)"""'], {'fontsize': '(8)'}), "('Scarp Width (m)', fontsize=8)\n", (15474, 15505), True, 'import matplotlib.pyplot as plt\n'), ((15506, 15583), 'matplotlib.pyplot.title', 'plt.title', (['"""Manual (black) v Algorithm (red) Scarp Width Profile"""'], {'fontsize': '(8)'}), "('Manual (black) v Algorithm (red) Scarp Width Profile', fontsize=8)\n", (15515, 15583), True, 'import matplotlib.pyplot as plt\n'), ((15645, 15674), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(1)'}), '(hspace=1)\n', (15664, 15674), True, 'import matplotlib.pyplot as plt\n'), ((15675, 15693), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (15685, 15693), True, 'import matplotlib.pyplot as plt\n'), ((15696, 15714), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (15706, 15714), True, 'import matplotlib.pyplot as plt\n'), ((15717, 15737), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(3)', '(1)', '(3)'], {}), '(3, 1, 3)\n', (15728, 15737), True, 'import matplotlib.pyplot as plt\n'), ((15736, 15799), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dist_along_fault', 'slope_manual'], {'s': '(5)', 'color': '"""black"""'}), "(dist_along_fault, slope_manual, s=5, color='black')\n", (15747, 15799), True, 'import matplotlib.pyplot as plt\n'), ((15797, 15861), 'matplotlib.pyplot.scatter', 'plt.scatter', (['dist_along_fault', 'slope_subsample'], {'s': '(5)', 'color': '"""red"""'}), "(dist_along_fault, slope_subsample, s=5, color='red')\n", (15808, 15861), True, 'import matplotlib.pyplot as plt\n'), ((15867, 15918), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Distance along fault (km)"""'], {'fontsize': '(8)'}), "('Distance along fault (km)', fontsize=8)\n", (15877, 15918), True, 'import matplotlib.pyplot as plt\n'), ((15919, 15968), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Scarp Slope ($^\\\\circ$)"""'], {'fontsize': '(8)'}), "('Scarp Slope ($^\\\\circ$)', fontsize=8)\n", (15929, 15968), True, 'import matplotlib.pyplot as plt\n'), ((15968, 16045), 'matplotlib.pyplot.title', 'plt.title', (['"""Manual (black) v Algorithm (red) Scarp Slope Profile"""'], {'fontsize': '(8)'}), "('Manual (black) v Algorithm (red) Scarp Slope Profile', fontsize=8)\n", (15977, 16045), True, 'import matplotlib.pyplot as plt\n'), ((16046, 16075), 'matplotlib.pyplot.subplots_adjust', 'plt.subplots_adjust', ([], {'hspace': '(1)'}), '(hspace=1)\n', (16065, 16075), True, 'import matplotlib.pyplot as plt\n'), ((16076, 16094), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'size': '(8)'}), '(size=8)\n', (16086, 16094), True, 'import matplotlib.pyplot as plt\n'), ((16097, 16115), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'size': '(8)'}), '(size=8)\n', (16107, 16115), True, 'import matplotlib.pyplot as plt\n'), ((6001, 6020), 'pickle.dump', 'pickle.dump', (['h_1', 'f'], {}), '(h_1, f)\n', (6012, 6020), False, 'import pickle\n'), ((6025, 6044), 'pickle.dump', 'pickle.dump', (['h_2', 'f'], {}), '(h_2, f)\n', (6036, 6044), False, 'import pickle\n'), ((6049, 6068), 'pickle.dump', 'pickle.dump', (['w_1', 'f'], {}), '(w_1, f)\n', (6060, 6068), False, 'import pickle\n'), ((6073, 6092), 'pickle.dump', 'pickle.dump', (['w_2', 'f'], {}), '(w_2, f)\n', (6084, 6092), False, 'import pickle\n'), ((6097, 6120), 'pickle.dump', 'pickle.dump', (['slope_1', 'f'], {}), '(slope_1, f)\n', (6108, 6120), False, 'import pickle\n'), ((6125, 6148), 'pickle.dump', 'pickle.dump', (['slope_2', 'f'], {}), '(slope_2, f)\n', (6136, 6148), False, 'import pickle\n'), ((6153, 6184), 'pickle.dump', 'pickle.dump', (['misfit_height_1', 'f'], {}), '(misfit_height_1, f)\n', (6164, 6184), False, 'import pickle\n'), ((6189, 6220), 'pickle.dump', 'pickle.dump', (['misfit_height_2', 'f'], {}), '(misfit_height_2, f)\n', (6200, 6220), False, 'import pickle\n'), ((6225, 6255), 'pickle.dump', 'pickle.dump', (['misfit_width_1', 'f'], {}), '(misfit_width_1, f)\n', (6236, 6255), False, 'import pickle\n'), ((6260, 6290), 'pickle.dump', 'pickle.dump', (['misfit_width_2', 'f'], {}), '(misfit_width_2, f)\n', (6271, 6290), False, 'import pickle\n'), ((6295, 6325), 'pickle.dump', 'pickle.dump', (['misfit_slope_1', 'f'], {}), '(misfit_slope_1, f)\n', (6306, 6325), False, 'import pickle\n'), ((6330, 6360), 'pickle.dump', 'pickle.dump', (['misfit_slope_2', 'f'], {}), '(misfit_slope_2, f)\n', (6341, 6360), False, 'import pickle\n'), ((6365, 6404), 'pickle.dump', 'pickle.dump', (['misfit_height_average_1', 'f'], {}), '(misfit_height_average_1, f)\n', (6376, 6404), False, 'import pickle\n'), ((6409, 6448), 'pickle.dump', 'pickle.dump', (['misfit_height_average_2', 'f'], {}), '(misfit_height_average_2, f)\n', (6420, 6448), False, 'import pickle\n'), ((6453, 6491), 'pickle.dump', 'pickle.dump', (['misfit_width_average_1', 'f'], {}), '(misfit_width_average_1, f)\n', (6464, 6491), False, 'import pickle\n'), ((6496, 6534), 'pickle.dump', 'pickle.dump', (['misfit_width_average_2', 'f'], {}), '(misfit_width_average_2, f)\n', (6507, 6534), False, 'import pickle\n'), ((6539, 6577), 'pickle.dump', 'pickle.dump', (['misfit_slope_average_1', 'f'], {}), '(misfit_slope_average_1, f)\n', (6550, 6577), False, 'import pickle\n'), ((6582, 6620), 'pickle.dump', 'pickle.dump', (['misfit_slope_average_2', 'f'], {}), '(misfit_slope_average_2, f)\n', (6593, 6620), False, 'import pickle\n'), ((6625, 6646), 'pickle.dump', 'pickle.dump', (['gridx', 'f'], {}), '(gridx, f)\n', (6636, 6646), False, 'import pickle\n'), ((6651, 6672), 'pickle.dump', 'pickle.dump', (['gridy', 'f'], {}), '(gridy, f)\n', (6662, 6672), False, 'import pickle\n'), ((9417, 9450), 'numpy.int', 'np.int', (['gridx[idx_1[0], idx_1[1]]'], {}), '(gridx[idx_1[0], idx_1[1]])\n', (9423, 9450), True, 'import numpy as np\n'), ((9465, 9481), 'numpy.int', 'np.int', (['idx_1[1]'], {}), '(idx_1[1])\n', (9471, 9481), True, 'import numpy as np\n'), ((9495, 9528), 'numpy.int', 'np.int', (['gridy[idx_1[0], idx_1[1]]'], {}), '(gridy[idx_1[0], idx_1[1]])\n', (9501, 9528), True, 'import numpy as np\n'), ((9539, 9555), 'numpy.int', 'np.int', (['idx_1[0]'], {}), '(idx_1[0])\n', (9545, 9555), True, 'import numpy as np\n'), ((10136, 10169), 'numpy.int', 'np.int', (['gridx[idx_2[0], idx_2[1]]'], {}), '(gridx[idx_2[0], idx_2[1]])\n', (10142, 10169), True, 'import numpy as np\n'), ((10184, 10200), 'numpy.int', 'np.int', (['idx_2[1]'], {}), '(idx_2[1])\n', (10190, 10200), True, 'import numpy as np\n'), ((10214, 10247), 'numpy.int', 'np.int', (['gridy[idx_2[0], idx_2[1]]'], {}), '(gridy[idx_2[0], idx_2[1]])\n', (10220, 10247), True, 'import numpy as np\n'), ((10258, 10274), 'numpy.int', 'np.int', (['idx_2[0]'], {}), '(idx_2[0])\n', (10264, 10274), True, 'import numpy as np\n'), ((7264, 7293), 'numpy.isnan', 'np.isnan', (['misfit_height_1_min'], {}), '(misfit_height_1_min)\n', (7272, 7293), True, 'import numpy as np\n'), ((7339, 7368), 'numpy.isnan', 'np.isnan', (['misfit_height_2_min'], {}), '(misfit_height_2_min)\n', (7347, 7368), True, 'import numpy as np\n'), ((10725, 10734), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (10732, 10734), True, 'import matplotlib.pyplot as plt\n'), ((11192, 11201), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (11199, 11201), True, 'import matplotlib.pyplot as plt\n'), ((11657, 11666), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (11664, 11666), True, 'import matplotlib.pyplot as plt\n'), ((12155, 12164), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (12162, 12164), True, 'import matplotlib.pyplot as plt\n'), ((12747, 12756), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (12754, 12756), True, 'import matplotlib.pyplot as plt\n'), ((13245, 13254), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (13252, 13254), True, 'import matplotlib.pyplot as plt\n'), ((13710, 13719), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (13717, 13719), True, 'import matplotlib.pyplot as plt\n'), ((14208, 14217), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (14215, 14217), True, 'import matplotlib.pyplot as plt\n'), ((7540, 7574), 'numpy.isnan', 'np.isnan', (['misfit_height_1[:, m, n]'], {}), '(misfit_height_1[:, m, n])\n', (7548, 7574), True, 'import numpy as np\n'), ((7743, 7777), 'numpy.isnan', 'np.isnan', (['misfit_height_2[:, m, n]'], {}), '(misfit_height_2[:, m, n])\n', (7751, 7777), True, 'import numpy as np\n')]
#coding: utf-8 #!/usr/bin/python ''' REFERÊNCIAS: <http://acodigo.blogspot.com.br/2013/05/procesamiento-de-imagenes-en-opencv.html> @Author RodriguesFAS @Date 26/09/2017 @Email <<EMAIL>> || <<EMAIL>> @site <htpp://rodriguesfas.com.br> ''' # Python 2/3 compatibility from __future__ import print_function import cv2 import numpy as np src = 'src/lena.jpg' img_org = cv2.imread(src) t, dst1 = cv2.GaussianBlur(img, dst, Size(13,7), 8) cv2.imshow('GaussianBlur', dst1) cv2.waitKey(0)
[ "cv2.waitKey", "cv2.imread", "cv2.imshow" ]
[((373, 388), 'cv2.imread', 'cv2.imread', (['src'], {}), '(src)\n', (383, 388), False, 'import cv2\n'), ((443, 475), 'cv2.imshow', 'cv2.imshow', (['"""GaussianBlur"""', 'dst1'], {}), "('GaussianBlur', dst1)\n", (453, 475), False, 'import cv2\n'), ((477, 491), 'cv2.waitKey', 'cv2.waitKey', (['(0)'], {}), '(0)\n', (488, 491), False, 'import cv2\n')]
from asyncio import sleep from os import mkdir, getcwd from os.path import join from sys import platform from .logger import logger from .criptografia import fingerprint from .descargar import _extraer_links, aio_descargar, filtro, _crear_archivo, Reglas from csv import writer # Crear loop paraa async # Create loop for async if platform == 'win32': from asyncio import ProactorEventLoop _loop = ProactorEventLoop() else: from asyncio import get_event_loop _loop = get_event_loop() # ESPANOL # Funcion para guardar los links encontrados en un archivo .txt # ENGLISH # Function to save all links founded in a .txt file def _guardar_links(directorio, links): with open(join(directorio, 'lista_links.txt'), 'w') as archivo: archivo.write('\n'.join(x for x in links)) archivo.close() # ESPANOL # Funcion para guardar hashes en un archivo .csv # ENGLISH # Funtion to create a .csv file and save hashes in there def _guardar_hashes(directorio, hashes): with open(join(directorio, 'hashes.csv'), 'w') as archivo: escritor = writer(archivo) escritor.writerow(['Archivo', 'Hash']) for hash in hashes: escritor.writerow(hash) archivo.close() ###Crea un directorio y luego cd en el def crear_mantener_directorio(directorio, loger): try: mkdir(directorio) except Exception as e: loger.logear(e) # ESPANOL# ###Funcion que crea una ruta a un directorio de una carpeta # ENGLISH# ###This function found the directory to work def conseguir_directorio(directorio, archivo): if directorio != None: return join(directorio, archivo) # ESPANOL# ###Funcion que fuciona la creacion de un hash con la descarga de un archivo # ENGLISH# ###This function create a file with the bytes recieved and calculate the hash for fingerprint, them that hash is ###Inserted into a the hash list that the user have, them return it [name_of file,hash] def hash_y_archivo(hashes, nombre, contenido, directorio, parametros, descargar_archivos, guardar_hashes, loger, reglas): try: if not filtro(nombre, contenido, parametros, reglas): if descargar_archivos: _crear_archivo(join(directorio, nombre), contenido, logger=loger) if guardar_hashes: try: hashes.append([nombre, fingerprint(contenido)]) except Exception as e: loger.logear(e) except: print('error en hashyarchivo') return hashes # ESPANOL # Funcion que analiza un link para luego extraerle el hash,, descargarlo o determinar los links que tiene # ENGLISH # This function realize all the scraping process async def mapear(url, profundidad, parametros, descargar_archivos, guardar_links, guardar_hashes, loger, reglas, velocidad, informacion=None, directorio_a=getcwd()): hashes = [] # This variable store all the hashes found try: if profundidad > 0: ###This is only used after the first link is used if informacion == None: informacion = await aio_descargar(url, logger=loger) # Get the directory to work directorio = conseguir_directorio(directorio_a, informacion[0]) # Try to create a directory and cd into it crear_mantener_directorio(directorio, loger) # Extrack all the links of html bytes links = _extraer_links(informacion[2]) # Try to download the file and extrack the hash hashes = hash_y_archivo(hashes, informacion[1], informacion[2], directorio, parametros, descargar_archivos, guardar_hashes, loger, reglas) # Continue if someone wants to save all the linkss found in a file ('lista_links.txt') if guardar_links: _guardar_links(directorio, links) # Work with all links in the links list for numero, link in enumerate(links): try: # This statement because sometimes without it the program make duplications or use unnecesary resources if link != url: # Get information to mapear function informacion = await aio_descargar(link, logger=loger) await sleep(profundidad / velocidad) # Go to other process in this time # Extract the hash and download the file hashes = hash_y_archivo(hashes, informacion[1], informacion[2], directorio, parametros, descargar_archivos, guardar_hashes, loger, reglas) # Start maping the link _loop.create_task( mapear(link, profundidad - 1, parametros, descargar_archivos, guardar_links, guardar_hashes, loger, reglas, velocidad=velocidad, informacion=informacion, directorio_a=directorio)) except: pass # This is the progress of analysis in the current 'url' loger.logear('{}% en {}'.format(100 * (numero + 1) / len(links), url)) # Save all the hashes found in a .csv file _guardar_hashes(directorio, hashes) except Exception as e: # Exception debuging loger.logear(e) try: # Try to create the file _guardar_hashes(directorio, hashes) except Exception as e: # Debuging loger.logear('[ERROR] Se re-intento es cribir el hash pero no se logro') # ESPANOL # Funcion final que se utiliza para hacer el analisis de un url, (esta es la que debe usarce para el scraping) # ENGLISH # This function is the only that can be used from this file, it is the implementation of mapear def scrap(url, debug_file=None, debug=True, profundidad=2, parametros={}, descargar_archivos=True, guardar_links=True, guardar_hashes=True, reglas=Reglas, velocidad=3): loger = logger(debug_file, debug) _loop.run_until_complete( mapear(url, profundidad, parametros, descargar_archivos, guardar_links, guardar_hashes, loger, reglas, velocidad=velocidad))
[ "csv.writer", "os.path.join", "os.getcwd", "os.mkdir", "asyncio.sleep", "asyncio.get_event_loop", "asyncio.ProactorEventLoop" ]
[((406, 425), 'asyncio.ProactorEventLoop', 'ProactorEventLoop', ([], {}), '()\n', (423, 425), False, 'from asyncio import ProactorEventLoop\n'), ((483, 499), 'asyncio.get_event_loop', 'get_event_loop', ([], {}), '()\n', (497, 499), False, 'from asyncio import get_event_loop\n'), ((2910, 2918), 'os.getcwd', 'getcwd', ([], {}), '()\n', (2916, 2918), False, 'from os import mkdir, getcwd\n'), ((1073, 1088), 'csv.writer', 'writer', (['archivo'], {}), '(archivo)\n', (1079, 1088), False, 'from csv import writer\n'), ((1332, 1349), 'os.mkdir', 'mkdir', (['directorio'], {}), '(directorio)\n', (1337, 1349), False, 'from os import mkdir, getcwd\n'), ((1620, 1645), 'os.path.join', 'join', (['directorio', 'archivo'], {}), '(directorio, archivo)\n', (1624, 1645), False, 'from os.path import join\n'), ((692, 727), 'os.path.join', 'join', (['directorio', '"""lista_links.txt"""'], {}), "(directorio, 'lista_links.txt')\n", (696, 727), False, 'from os.path import join\n'), ((1005, 1035), 'os.path.join', 'join', (['directorio', '"""hashes.csv"""'], {}), "(directorio, 'hashes.csv')\n", (1009, 1035), False, 'from os.path import join\n'), ((2227, 2251), 'os.path.join', 'join', (['directorio', 'nombre'], {}), '(directorio, nombre)\n', (2231, 2251), False, 'from os.path import join\n'), ((4393, 4423), 'asyncio.sleep', 'sleep', (['(profundidad / velocidad)'], {}), '(profundidad / velocidad)\n', (4398, 4423), False, 'from asyncio import sleep\n')]
import pytest import torch.cuda from torch import nn from torch.optim import SGD from yann.callbacks import ( History, HistoryPlotter, HistoryWriter, Logger, Checkpoint ) from yann.datasets import TinyDigits from yann.datasets.wrappers import Slice from yann.modules import Flatten from yann.train import Trainer devices = ['cpu', 'cuda'] if torch.cuda.is_available() else ['cpu'] @pytest.mark.slow @pytest.mark.parametrize('device', devices) def test_train(tmpdir, device): """Sanity check train run""" model = nn.Sequential( nn.Conv2d(1, 20, 3), nn.ReLU(inplace=True), nn.Conv2d(20, 20, 3), nn.ReLU(inplace=True), Flatten(), nn.Linear(320, 10) ) train = Trainer( root=tmpdir, model=model, dataset=Slice(TinyDigits(), 0, 256), device=device, optimizer=SGD(model.parameters(), lr=.01, momentum=0.9, weight_decay=.001), loss=nn.CrossEntropyLoss(), callbacks=[ History(), HistoryPlotter(save=True), HistoryWriter(), Logger(batch_freq=20), Checkpoint() ] ) train(2) assert train.paths.checkpoints.is_dir() assert train.history.metrics export_path = train.export() assert export_path assert export_path.is_dir() # @pytest.mark.slow # @pytest.mark.parametrize('device', devices) # def test_train_resolved(tmpdir, device): # from yann.data.transform import ImageTransformer # # train = Trainer( # root=tmpdir, # model='densenet121', # dataset='CIFAR10', # loss='CrossEntropy', # optimizer='SGD', # transform=ImageTransformer(resize=224) # ) # # # train(1) # def test_transforms(): # # t = Trainer( # transform={ # 'mask': 'foo', # 'label': 'foo' # } # )
[ "torch.nn.ReLU", "torch.nn.CrossEntropyLoss", "yann.callbacks.HistoryWriter", "yann.callbacks.HistoryPlotter", "torch.nn.Conv2d", "yann.callbacks.History", "pytest.mark.parametrize", "yann.modules.Flatten", "yann.callbacks.Checkpoint", "torch.nn.Linear", "yann.datasets.TinyDigits", "yann.callbacks.Logger" ]
[((407, 449), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""device"""', 'devices'], {}), "('device', devices)\n", (430, 449), False, 'import pytest\n'), ((543, 562), 'torch.nn.Conv2d', 'nn.Conv2d', (['(1)', '(20)', '(3)'], {}), '(1, 20, 3)\n', (552, 562), False, 'from torch import nn\n'), ((568, 589), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (575, 589), False, 'from torch import nn\n'), ((595, 615), 'torch.nn.Conv2d', 'nn.Conv2d', (['(20)', '(20)', '(3)'], {}), '(20, 20, 3)\n', (604, 615), False, 'from torch import nn\n'), ((621, 642), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (628, 642), False, 'from torch import nn\n'), ((648, 657), 'yann.modules.Flatten', 'Flatten', ([], {}), '()\n', (655, 657), False, 'from yann.modules import Flatten\n'), ((663, 681), 'torch.nn.Linear', 'nn.Linear', (['(320)', '(10)'], {}), '(320, 10)\n', (672, 681), False, 'from torch import nn\n'), ((889, 910), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (908, 910), False, 'from torch import nn\n'), ((758, 770), 'yann.datasets.TinyDigits', 'TinyDigits', ([], {}), '()\n', (768, 770), False, 'from yann.datasets import TinyDigits\n'), ((934, 943), 'yann.callbacks.History', 'History', ([], {}), '()\n', (941, 943), False, 'from yann.callbacks import History, HistoryPlotter, HistoryWriter, Logger, Checkpoint\n'), ((951, 976), 'yann.callbacks.HistoryPlotter', 'HistoryPlotter', ([], {'save': '(True)'}), '(save=True)\n', (965, 976), False, 'from yann.callbacks import History, HistoryPlotter, HistoryWriter, Logger, Checkpoint\n'), ((984, 999), 'yann.callbacks.HistoryWriter', 'HistoryWriter', ([], {}), '()\n', (997, 999), False, 'from yann.callbacks import History, HistoryPlotter, HistoryWriter, Logger, Checkpoint\n'), ((1007, 1028), 'yann.callbacks.Logger', 'Logger', ([], {'batch_freq': '(20)'}), '(batch_freq=20)\n', (1013, 1028), False, 'from yann.callbacks import History, HistoryPlotter, HistoryWriter, Logger, Checkpoint\n'), ((1036, 1048), 'yann.callbacks.Checkpoint', 'Checkpoint', ([], {}), '()\n', (1046, 1048), False, 'from yann.callbacks import History, HistoryPlotter, HistoryWriter, Logger, Checkpoint\n')]
# Load pickled data import pickle import numpy as np import tensorflow as tf tf.python.control_flow_ops = tf #from generator import generator # WAITING FOR CODE PACKAGE TO SYNC UP with open('train.p', mode='rb') as f: data = pickle.load(f) X_train, y_train = data['features'], data['labels'] # Initial Setup for Keras from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout from keras.layers.convolutional import Convolution2D from keras.layers.pooling import MaxPooling2D from keras.layers.convolutional import Conv2D,MaxPooling2D from keras.utils.np_utils import to_categorical # # Build Convolutional Pooling Neural Network with Dropout in Keras Here # model = Sequential() # model.add(Convolution2D(32, 3, 3, input_shape=(32, 32, 3))) # model.add(MaxPooling2D((2, 2))) # model.add(Dropout(0.5)) # model.add(Activation('relu')) # model.add(Flatten()) # model.add(Dense(128)) # model.add(Activation('relu')) # model.add(Dense(43)) # model.add(Activation('softmax')) #LeNet def LeNet(X_train,Y_train): model=Sequential() model.add(Conv2D(filters=5,kernel_size=(3,3),strides=(1,1),input_shape=X_train.shape[1:],padding='same', data_format='channels_last',activation='relu',kernel_initializer='uniform')) #[None,28,28,5] model.add(Dropout(0.2)) model.add(MaxPooling2D((2,2))) #池化核大小[None,14,14,5] model.add(Conv2D(16,(3,3),strides=(1,1),data_format='channels_last',padding='same',activation='relu',kernel_initializer='uniform'))#[None,12,12,16] model.add(Dropout(0.3)) model.add(MaxPooling2D(2,2)) #output_shape=[None,6,6,16] model.add(Conv2D(32, (3, 3), strides=(1, 1), data_format='channels_last', padding='same', activation='relu', kernel_initializer='uniform')) #[None,4,4,32] model.add(Dropout(0.2)) # model.add(MaxPooling2D(2, 2)) model.add(Conv2D(100,(3,3),strides=(1,1),data_format='channels_last',activation='relu',kernel_initializer='uniform')) #[None,2,2,100] model.add(Flatten(data_format='channels_last')) #[None,400] model.add(Dense(168,activation='relu')) #[None,168] model.add(Dense(84,activation='relu')) #[None,84] model.add(Dense(43,activation='softmax')) #[None,10] #打印参数 model.summary() #编译模型 model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']) return model # preprocess data X_normalized = np.array(X_train / 255.0 - 0.5 ) from sklearn.preprocessing import LabelBinarizer label_binarizer = LabelBinarizer() y_one_hot = label_binarizer.fit_transform(y_train) model = LeNet(X_normalized,y_one_hot) model.fit(X_normalized, y_one_hot, epochs=10, validation_split=0.2) # model.compile('adam', 'categorical_crossentropy', ['accuracy']) # history = model.fit(X_normalized, y_one_hot, epochs=10, validation_split=0.2) with open('test.p', 'rb') as f: data_test = pickle.load(f) X_test = data_test['features'] y_test = data_test['labels'] # preprocess data X_normalized_test = np.array(X_test / 255.0 - 0.5 ) y_one_hot_test = label_binarizer.fit_transform(y_test) print("Testing") metrics = model.evaluate(X_normalized_test, y_one_hot_test) for metric_i in range(len(model.metrics_names)): metric_name = model.metrics_names[metric_i] metric_value = metrics[metric_i] print('{}: {}'.format(metric_name, metric_value))
[ "sklearn.preprocessing.LabelBinarizer", "keras.layers.core.Flatten", "pickle.load", "keras.models.Sequential", "numpy.array", "keras.layers.convolutional.Conv2D", "keras.layers.convolutional.MaxPooling2D", "keras.layers.core.Dropout", "keras.layers.core.Dense" ]
[((2525, 2556), 'numpy.array', 'np.array', (['(X_train / 255.0 - 0.5)'], {}), '(X_train / 255.0 - 0.5)\n', (2533, 2556), True, 'import numpy as np\n'), ((2626, 2642), 'sklearn.preprocessing.LabelBinarizer', 'LabelBinarizer', ([], {}), '()\n', (2640, 2642), False, 'from sklearn.preprocessing import LabelBinarizer\n'), ((3111, 3141), 'numpy.array', 'np.array', (['(X_test / 255.0 - 0.5)'], {}), '(X_test / 255.0 - 0.5)\n', (3119, 3141), True, 'import numpy as np\n'), ((230, 244), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (241, 244), False, 'import pickle\n'), ((1068, 1080), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1078, 1080), False, 'from keras.models import Sequential\n'), ((2996, 3010), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (3007, 3010), False, 'import pickle\n'), ((1095, 1283), 'keras.layers.convolutional.Conv2D', 'Conv2D', ([], {'filters': '(5)', 'kernel_size': '(3, 3)', 'strides': '(1, 1)', 'input_shape': 'X_train.shape[1:]', 'padding': '"""same"""', 'data_format': '"""channels_last"""', 'activation': '"""relu"""', 'kernel_initializer': '"""uniform"""'}), "(filters=5, kernel_size=(3, 3), strides=(1, 1), input_shape=X_train.\n shape[1:], padding='same', data_format='channels_last', activation=\n 'relu', kernel_initializer='uniform')\n", (1101, 1283), False, 'from keras.layers.convolutional import Conv2D, MaxPooling2D\n'), ((1319, 1331), 'keras.layers.core.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (1326, 1331), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((1347, 1367), 'keras.layers.convolutional.MaxPooling2D', 'MaxPooling2D', (['(2, 2)'], {}), '((2, 2))\n', (1359, 1367), False, 'from keras.layers.convolutional import Conv2D, MaxPooling2D\n'), ((1405, 1538), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(16)', '(3, 3)'], {'strides': '(1, 1)', 'data_format': '"""channels_last"""', 'padding': '"""same"""', 'activation': '"""relu"""', 'kernel_initializer': '"""uniform"""'}), "(16, (3, 3), strides=(1, 1), data_format='channels_last', padding=\n 'same', activation='relu', kernel_initializer='uniform')\n", (1411, 1538), False, 'from keras.layers.convolutional import Conv2D, MaxPooling2D\n'), ((1557, 1569), 'keras.layers.core.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (1564, 1569), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((1585, 1603), 'keras.layers.convolutional.MaxPooling2D', 'MaxPooling2D', (['(2)', '(2)'], {}), '(2, 2)\n', (1597, 1603), False, 'from keras.layers.convolutional import Conv2D, MaxPooling2D\n'), ((1648, 1781), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(32)', '(3, 3)'], {'strides': '(1, 1)', 'data_format': '"""channels_last"""', 'padding': '"""same"""', 'activation': '"""relu"""', 'kernel_initializer': '"""uniform"""'}), "(32, (3, 3), strides=(1, 1), data_format='channels_last', padding=\n 'same', activation='relu', kernel_initializer='uniform')\n", (1654, 1781), False, 'from keras.layers.convolutional import Conv2D, MaxPooling2D\n'), ((1830, 1842), 'keras.layers.core.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (1837, 1842), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((1894, 2012), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(100)', '(3, 3)'], {'strides': '(1, 1)', 'data_format': '"""channels_last"""', 'activation': '"""relu"""', 'kernel_initializer': '"""uniform"""'}), "(100, (3, 3), strides=(1, 1), data_format='channels_last', activation\n ='relu', kernel_initializer='uniform')\n", (1900, 2012), False, 'from keras.layers.convolutional import Conv2D, MaxPooling2D\n'), ((2033, 2069), 'keras.layers.core.Flatten', 'Flatten', ([], {'data_format': '"""channels_last"""'}), "(data_format='channels_last')\n", (2040, 2069), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((2098, 2127), 'keras.layers.core.Dense', 'Dense', (['(168)'], {'activation': '"""relu"""'}), "(168, activation='relu')\n", (2103, 2127), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((2156, 2184), 'keras.layers.core.Dense', 'Dense', (['(84)'], {'activation': '"""relu"""'}), "(84, activation='relu')\n", (2161, 2184), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n'), ((2213, 2244), 'keras.layers.core.Dense', 'Dense', (['(43)'], {'activation': '"""softmax"""'}), "(43, activation='softmax')\n", (2218, 2244), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout\n')]
import numpy as np import tensorflow as tf def tensor_to_image(tensor): return (np.squeeze(tensor.numpy()).clip(0, 1) * 255).astype(np.uint8) @tf.function def denormalize_tensor(tensor): tensor = tf.math.multiply(tensor, 128) return tf.math.add(tensor, 127.5) @tf.function def tensor_to_uint8(tensor): return tf.image.convert_image_dtype(tensor, dtype=tf.uint8, saturate=True)
[ "tensorflow.math.add", "tensorflow.math.multiply", "tensorflow.image.convert_image_dtype" ]
[((208, 237), 'tensorflow.math.multiply', 'tf.math.multiply', (['tensor', '(128)'], {}), '(tensor, 128)\n', (224, 237), True, 'import tensorflow as tf\n'), ((249, 275), 'tensorflow.math.add', 'tf.math.add', (['tensor', '(127.5)'], {}), '(tensor, 127.5)\n', (260, 275), True, 'import tensorflow as tf\n'), ((331, 398), 'tensorflow.image.convert_image_dtype', 'tf.image.convert_image_dtype', (['tensor'], {'dtype': 'tf.uint8', 'saturate': '(True)'}), '(tensor, dtype=tf.uint8, saturate=True)\n', (359, 398), True, 'import tensorflow as tf\n')]
from Jumpscale import j import krakenex from pykrakenapi import KrakenAPI JSConfigClient = j.application.JSBaseConfigClass class KrakenClient(JSConfigClient): _SCHEMATEXT = """ @url = jumpscale.kraken.clients name* = "" (S) api_key_ = "" (S) private_key_ = "" (S) """ def _init(self): kraken_api = krakenex.API() kraken_api.key = self.api_key_ kraken_api.secret = self.private_key_ self.api = KrakenAPI(kraken_api) def test(self): k = self.api self._log_debug("open orders") self._log_debug(k.get_open_orders()) self._log_debug("get account balance") self._log_debug(k.get_account_balance())
[ "krakenex.API", "pykrakenapi.KrakenAPI" ]
[((358, 372), 'krakenex.API', 'krakenex.API', ([], {}), '()\n', (370, 372), False, 'import krakenex\n'), ((477, 498), 'pykrakenapi.KrakenAPI', 'KrakenAPI', (['kraken_api'], {}), '(kraken_api)\n', (486, 498), False, 'from pykrakenapi import KrakenAPI\n')]
from queue import Queue from base import NeighborSolutionLocator from base.Gate import Gate from base.MySolution import MySolution from base.NeighborSolutionLocator import findBestNeighbor, findAmnestyNeighbor import sys class TabuSearch: threshold = 1000 p = 0.9 def __init__(self, tabulist: list, maxIterations: int): self.tabulist = tabulist self.maxIterations = maxIterations def mustStop(self, currentIteration, bestSolutionFound): if currentIteration > self.maxIterations: print('the search is bounded %s times' %self.maxIterations) sys.exit(-1) return True shortpaths = bestSolutionFound.dist currentLayers = bestSolutionFound.currentLayers i = 0 while i < len(currentLayers): q1 = currentLayers[i].control q2 = currentLayers[i].target l1 = bestSolutionFound.locations[q1] l2 = bestSolutionFound.locations[q2] paths = shortpaths[l1][l2].distance if paths > 3: return False else: g = Gate() g.type = currentLayers[i].type g.control = l1 g.target = l2 bestSolutionFound.circuits.append(g) del currentLayers[i] return True def run(self, initialSolution, type, delta): bestSolution = initialSolution currentIteration = 0 while not self.mustStop(currentIteration, bestSolution): candidateNeighbors = list(bestSolution.getNeighbors(type,delta)) solutionsInTabu = self.tabulist bestneighborfound = findBestNeighbor(candidateNeighbors, solutionsInTabu,type) if bestneighborfound == None: neighbor = bestSolution.getNeighbors(type, delta) if neighbor == None or len(neighbor) <= 0: break else: bestneighborfound = findAmnestyNeighbor( neighbor, solutionsInTabu,type) if len(self.tabulist)>=3: self.tabulist.pop(0) self.tabulist.append(bestSolution.swapped_edge) bestSolution = MySolution(graph=bestneighborfound.graph, dist=bestneighborfound.dist,locations=bestneighborfound.locations,qubits=bestneighborfound.qubits, currentLayers=bestneighborfound.currentLayers,nextLayers_1=bestneighborfound.nextLayers_1) bestSolution.circuits = bestneighborfound.circuits bestSolution.swaps = bestneighborfound.swaps bestSolution.score = bestneighborfound.score bestSolution.subscore = bestneighborfound.subscore bestSolution.swapped_edge = bestneighborfound.swapped_edge # bestSolution=bestneighborfound # currentSolution =bestSolution currentIteration+=1 if self.mustStop(currentIteration, bestSolution): return bestSolution return None
[ "base.NeighborSolutionLocator.findBestNeighbor", "base.NeighborSolutionLocator.findAmnestyNeighbor", "base.Gate.Gate", "sys.exit", "base.MySolution.MySolution" ]
[((607, 619), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (615, 619), False, 'import sys\n'), ((1681, 1740), 'base.NeighborSolutionLocator.findBestNeighbor', 'findBestNeighbor', (['candidateNeighbors', 'solutionsInTabu', 'type'], {}), '(candidateNeighbors, solutionsInTabu, type)\n', (1697, 1740), False, 'from base.NeighborSolutionLocator import findBestNeighbor, findAmnestyNeighbor\n'), ((2234, 2481), 'base.MySolution.MySolution', 'MySolution', ([], {'graph': 'bestneighborfound.graph', 'dist': 'bestneighborfound.dist', 'locations': 'bestneighborfound.locations', 'qubits': 'bestneighborfound.qubits', 'currentLayers': 'bestneighborfound.currentLayers', 'nextLayers_1': 'bestneighborfound.nextLayers_1'}), '(graph=bestneighborfound.graph, dist=bestneighborfound.dist,\n locations=bestneighborfound.locations, qubits=bestneighborfound.qubits,\n currentLayers=bestneighborfound.currentLayers, nextLayers_1=\n bestneighborfound.nextLayers_1)\n', (2244, 2481), False, 'from base.MySolution import MySolution\n'), ((1119, 1125), 'base.Gate.Gate', 'Gate', ([], {}), '()\n', (1123, 1125), False, 'from base.Gate import Gate\n'), ((1995, 2047), 'base.NeighborSolutionLocator.findAmnestyNeighbor', 'findAmnestyNeighbor', (['neighbor', 'solutionsInTabu', 'type'], {}), '(neighbor, solutionsInTabu, type)\n', (2014, 2047), False, 'from base.NeighborSolutionLocator import findBestNeighbor, findAmnestyNeighbor\n')]
#!/usr/bin/env python3 import sys, json import whiplash try: assert len(sys.argv) == 4 except: print("Usage: ./commit_result.py input.json executable_id output.json") sys.exit() # Login as test user db = whiplash.db("localhost", 1337, username="test", password="<PASSWORD>") # Split input into model and property input = json.load(open(sys.argv[1],'r')) params = input.pop('params') input_model = input # Commit input model input_model_id = db.models.commit([input_model])['ids'][0] # Submit query (property creation) executable_id = sys.argv[2] filters = { 'input_model': {'_id': input_model_id}, 'executable': {'_id': executable_id}, 'params': params, 'output_model': {} } settings = { 'manual': 1 } print(db.submit(filters, settings)) # Get property ID filter = { 'input_model_id': input_model_id, 'executable_id': executable_id } for key in params: filter['params.'+key] = params[key] print(db.properties.query(filter, ['_id'])) property_id = db.properties.query(filter, ['_id'])[0]['_id'] # Commit output model output_model = json.load(open(sys.argv[3],'r')) output_model['property_id'] = property_id output_model_id = db.models.commit([output_model])['ids'][0] # Update property with output model ID and set as resolved db.properties.update({'_id': property_id}, {'output_model_id': output_model_id, 'status': 'resolved'})
[ "whiplash.db", "sys.exit" ]
[((218, 288), 'whiplash.db', 'whiplash.db', (['"""localhost"""', '(1337)'], {'username': '"""test"""', 'password': '"""<PASSWORD>"""'}), "('localhost', 1337, username='test', password='<PASSWORD>')\n", (229, 288), False, 'import whiplash\n'), ((180, 190), 'sys.exit', 'sys.exit', ([], {}), '()\n', (188, 190), False, 'import sys, json\n')]
""" X.509 Certificate Tests """ import base64 import subprocess import datetime from asn1crypto import pem from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name from asn1crypto.keys import RSAPublicKey from asn1crypto.csr import CertificationRequest, CertificationRequestInfo import pkcs11 from pkcs11.util.rsa import encode_rsa_public_key from pkcs11.util.dsa import decode_dsa_signature from pkcs11.util.ec import decode_ecdsa_signature from pkcs11.util.x509 import decode_x509_certificate, decode_x509_public_key from pkcs11 import ( Attribute, KeyType, Mechanism, ) from . import TestCase, Not, Only, requires, OPENSSL # X.509 self-signed certificate (generated with OpenSSL) # openssl req -x509 \ # -newkey rsa:512 \ # -keyout key.pem \ # -out cert.pem \ # -days 365 \ # -nodes _, _, CERT = pem.unarmor(b""" -----BEGIN CERTIFICATE----- MI<KEY>IB<KEY> -----END CERTIFICATE----- """) class X509Tests(TestCase): def test_import_ca_certificate_easy(self): cert = self.session.create_object(decode_x509_certificate(CERT)) self.assertIsInstance(cert, pkcs11.Certificate) @Not.nfast @Not.opencryptoki def test_import_ca_certificate(self): cert = self.session.create_object( decode_x509_certificate(CERT, extended_set=True)) self.assertIsInstance(cert, pkcs11.Certificate) self.assertEqual(cert[Attribute.HASH_OF_ISSUER_PUBLIC_KEY], b'\xf9\xc1\xb6\xe3\x43\xf3\xcf\x4c\xba\x8a' b'\x0b\x66\x86\x79\x35\xfb\x52\x85\xbf\xa8') # Cert is self signed self.assertEqual(cert[Attribute.HASH_OF_SUBJECT_PUBLIC_KEY], b'\xf9\xc1\xb6\xe3\x43\xf3\xcf\x4c\xba\x8a' b'\x0b\x66\x86\x79\x35\xfb\x52\x85\xbf\xa8') @requires(Mechanism.SHA1_RSA_PKCS) def test_verify_certificate_rsa(self): # Warning: proof of concept code only! x509 = Certificate.load(CERT) key = self.session.create_object(decode_x509_public_key(CERT)) self.assertIsInstance(key, pkcs11.PublicKey) value = x509['tbs_certificate'].dump() signature = x509.signature assert x509.signature_algo == 'rsassa_pkcs1v15' assert x509.hash_algo == 'sha1' self.assertTrue(key.verify(value, signature, mechanism=Mechanism.SHA1_RSA_PKCS)) @requires(Mechanism.DSA_SHA1) def test_verify_certificate_dsa(self): # Warning: proof of concept code only! CERT = base64.b64decode(""" MIIDbjCCAy6gAwIBAgIJAKPBInGiPjXNMAkGByqGSM44BAMwRTELMAkGA1UEBhMC QVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdp dHMgUHR5IEx0ZDAeFw0xNzA3MDMxMjI1MTBaFw0xOTA3MDMxMjI1MTBaMEUxCzAJ BgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5l dCBXaWRnaXRzIFB0eSBMdGQ<KEY>MSEwHwYD VQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCjwSJxoj41zTAMBgNVHRME BTADAQH/MAkGByqGSM44BAMDLwAwLAIUNE+zTuFe01v0BRTLarPtGK8ZHHcCFB9Y YAwtpblAgUEdGuoAtnoEQ2tc """) x509 = Certificate.load(CERT) key = self.session.create_object(decode_x509_public_key(CERT)) self.assertIsInstance(key, pkcs11.PublicKey) value = x509['tbs_certificate'].dump() assert x509.signature_algo == 'dsa' assert x509.hash_algo == 'sha1' signature = decode_dsa_signature(x509.signature) self.assertTrue(key.verify(value, signature, mechanism=Mechanism.DSA_SHA1)) @requires(Mechanism.ECDSA_SHA1) def test_verify_certificate_ecdsa(self): # Warning: proof of concept code only! CERT = base64.b64decode(""" MIIDGjCCAsKgAwIBAgIJAL+PbwiJUZB1MAkGByqGSM49BAEwRTELMAkGA1UEBhMC QVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdp dHMgUHR5IEx0ZDAeFw0xNzA3MDMxMTUxMTBaFw0xOTA3MDMxMTUxMTBaMEUxCzAJ BgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5l dCBXaWRnaXRzIFB0eSBMdGQwggFLMIIBAwYHKoZIzj0CATCB9wIBATAsBgcqhkjO PQEBAiEA/////wAAAAEAAAAAAAAAAAAAAAD///////////////<KEY> """) x509 = Certificate.load(CERT) key = self.session.create_object(decode_x509_public_key(CERT)) self.assertIsInstance(key, pkcs11.PublicKey) value = x509['tbs_certificate'].dump() assert x509.signature_algo == 'ecdsa' assert x509.hash_algo == 'sha1' signature = decode_ecdsa_signature(x509.signature) self.assertTrue(key.verify(value, signature, mechanism=Mechanism.ECDSA_SHA1)) @Only.openssl @requires(Mechanism.RSA_PKCS_KEY_PAIR_GEN, Mechanism.SHA1_RSA_PKCS) def test_self_sign_certificate(self): # Warning: proof of concept code only! pub, priv = self.session.generate_keypair(KeyType.RSA, 1024) tbs = TbsCertificate({ 'version': 'v1', 'serial_number': 1, 'issuer': Name.build({ 'common_name': 'Test Certificate', }), 'subject': Name.build({ 'common_name': 'Test Certificate', }), 'signature': { 'algorithm': 'sha1_rsa', 'parameters': None, }, 'validity': { 'not_before': Time({ 'utc_time': datetime.datetime(2017, 1, 1, 0, 0), }), 'not_after': Time({ 'utc_time': datetime.datetime(2038, 12, 31, 23, 59), }), }, 'subject_public_key_info': { 'algorithm': { 'algorithm': 'rsa', 'parameters': None, }, 'public_key': RSAPublicKey.load(encode_rsa_public_key(pub)), } }) # Sign the TBS Certificate value = priv.sign(tbs.dump(), mechanism=Mechanism.SHA1_RSA_PKCS) cert = Certificate({ 'tbs_certificate': tbs, 'signature_algorithm': { 'algorithm': 'sha1_rsa', 'parameters': None, }, 'signature_value': value, }) # Pipe our certificate to OpenSSL to verify it with subprocess.Popen((OPENSSL, 'verify'), stdin=subprocess.PIPE, stdout=subprocess.DEVNULL) as proc: proc.stdin.write(pem.armor('CERTIFICATE', cert.dump())) proc.stdin.close() self.assertEqual(proc.wait(), 0) @Only.openssl @requires(Mechanism.RSA_PKCS_KEY_PAIR_GEN, Mechanism.SHA1_RSA_PKCS) def test_sign_csr(self): # Warning: proof of concept code only! pub, priv = self.session.generate_keypair(KeyType.RSA, 1024) info = CertificationRequestInfo({ 'version': 0, 'subject': Name.build({ 'common_name': 'Test Certificate', }), 'subject_pk_info': { 'algorithm': { 'algorithm': 'rsa', 'parameters': None, }, 'public_key': RSAPublicKey.load(encode_rsa_public_key(pub)), }, }) # Sign the CSR Info value = priv.sign(info.dump(), mechanism=Mechanism.SHA1_RSA_PKCS) csr = CertificationRequest({ 'certification_request_info': info, 'signature_algorithm': { 'algorithm': 'sha1_rsa', 'parameters': None, }, 'signature': value, }) # Pipe our CSR to OpenSSL to verify it with subprocess.Popen((OPENSSL, 'req', '-inform', 'der', '-noout', '-verify'), stdin=subprocess.PIPE, stdout=subprocess.DEVNULL) as proc: proc.stdin.write(csr.dump()) proc.stdin.close() self.assertEqual(proc.wait(), 0)
[ "datetime.datetime", "asn1crypto.pem.unarmor", "asn1crypto.x509.Certificate", "asn1crypto.csr.CertificationRequest", "subprocess.Popen", "asn1crypto.x509.Name.build", "pkcs11.util.rsa.encode_rsa_public_key", "base64.b64decode", "pkcs11.util.dsa.decode_dsa_signature", "pkcs11.util.x509.decode_x509_public_key", "pkcs11.util.ec.decode_ecdsa_signature", "pkcs11.util.x509.decode_x509_certificate", "asn1crypto.x509.Certificate.load" ]
[((838, 938), 'asn1crypto.pem.unarmor', 'pem.unarmor', (["b'\\n-----BEGIN CERTIFICATE-----\\nMI<KEY>IB<KEY>\\n-----END CERTIFICATE-----\\n'"], {}), "(\n b'\\n-----BEGIN CERTIFICATE-----\\nMI<KEY>IB<KEY>\\n-----END CERTIFICATE-----\\n'\n )\n", (849, 938), False, 'from asn1crypto import pem\n'), ((1967, 1989), 'asn1crypto.x509.Certificate.load', 'Certificate.load', (['CERT'], {}), '(CERT)\n', (1983, 1989), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((2559, 3118), 'base64.b64decode', 'base64.b64decode', (['"""\n MIIDbjCCAy6gAwIBAgIJAKPBInGiPjXNMAkGByqGSM44BAMwRTELMAkGA1UEBhMC\n QVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdp\n dHMgUHR5IEx0ZDAeFw0xNzA3MDMxMjI1MTBaFw0xOTA3MDMxMjI1MTBaMEUxCzAJ\n BgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5l\n dCBXaWRnaXRzIFB0eSBMdGQ<KEY>MSEwHwYD\n VQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCjwSJxoj41zTAMBgNVHRME\n BTADAQH/MAkGByqGSM44BAMDLwAwLAIUNE+zTuFe01v0BRTLarPtGK8ZHHcCFB9Y\n YAwtpblAgUEdGuoAtnoEQ2tc\n """'], {}), '(\n """\n MIIDbjCCAy6gAwIBAgIJAKPBInGiPjXNMAkGByqGSM44BAMwRTELMAkGA1UEBhMC\n QVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdp\n dHMgUHR5IEx0ZDAeFw0xNzA3MDMxMjI1MTBaFw0xOTA3MDMxMjI1MTBaMEUxCzAJ\n BgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5l\n dCBXaWRnaXRzIFB0eSBMdGQ<KEY>MSEwHwYD\n VQQKExhJbnRlcm5ldCBXaWRnaXRzIFB0eSBMdGSCCQCjwSJxoj41zTAMBgNVHRME\n BTADAQH/MAkGByqGSM44BAMDLwAwLAIUNE+zTuFe01v0BRTLarPtGK8ZHHcCFB9Y\n YAwtpblAgUEdGuoAtnoEQ2tc\n """\n )\n', (2575, 3118), False, 'import base64\n'), ((3125, 3147), 'asn1crypto.x509.Certificate.load', 'Certificate.load', (['CERT'], {}), '(CERT)\n', (3141, 3147), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((3426, 3462), 'pkcs11.util.dsa.decode_dsa_signature', 'decode_dsa_signature', (['x509.signature'], {}), '(x509.signature)\n', (3446, 3462), False, 'from pkcs11.util.dsa import decode_dsa_signature\n'), ((3727, 4199), 'base64.b64decode', 'base64.b64decode', (['"""\n MIIDGjCCAsKgAwIBAgIJAL+PbwiJUZB1MAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n QVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdp\n dHMgUHR5IEx0ZDAeFw0xNzA3MDMxMTUxMTBaFw0xOTA3MDMxMTUxMTBaMEUxCzAJ\n BgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5l\n dCBXaWRnaXRzIFB0eSBMdGQwggFLMIIBAwYHKoZIzj0CATCB9wIBATAsBgcqhkjO\n PQEBAiEA/////wAAAAEAAAAAAAAAAAAAAAD///////////////<KEY>\n """'], {}), '(\n """\n MIIDGjCCAsKgAwIBAgIJAL+PbwiJUZB1MAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n QVUxEzARBgNVBAgTClNvbWUtU3RhdGUxITAfBgNVBAoTGEludGVybmV0IFdpZGdp\n dHMgUHR5IEx0ZDAeFw0xNzA3MDMxMTUxMTBaFw0xOTA3MDMxMTUxMTBaMEUxCzAJ\n BgNVBAYTAkFVMRMwEQYDVQQIEwpTb21lLVN0YXRlMSEwHwYDVQQKExhJbnRlcm5l\n dCBXaWRnaXRzIFB0eSBMdGQwggFLMIIBAwYHKoZIzj0CATCB9wIBATAsBgcqhkjO\n PQEBAiEA/////wAAAAEAAAAAAAAAAAAAAAD///////////////<KEY>\n """\n )\n', (3743, 4199), False, 'import base64\n'), ((4206, 4228), 'asn1crypto.x509.Certificate.load', 'Certificate.load', (['CERT'], {}), '(CERT)\n', (4222, 4228), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((4509, 4547), 'pkcs11.util.ec.decode_ecdsa_signature', 'decode_ecdsa_signature', (['x509.signature'], {}), '(x509.signature)\n', (4531, 4547), False, 'from pkcs11.util.ec import decode_ecdsa_signature\n'), ((6057, 6194), 'asn1crypto.x509.Certificate', 'Certificate', (["{'tbs_certificate': tbs, 'signature_algorithm': {'algorithm': 'sha1_rsa',\n 'parameters': None}, 'signature_value': value}"], {}), "({'tbs_certificate': tbs, 'signature_algorithm': {'algorithm':\n 'sha1_rsa', 'parameters': None}, 'signature_value': value})\n", (6068, 6194), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((7474, 7630), 'asn1crypto.csr.CertificationRequest', 'CertificationRequest', (["{'certification_request_info': info, 'signature_algorithm': {'algorithm':\n 'sha1_rsa', 'parameters': None}, 'signature': value}"], {}), "({'certification_request_info': info,\n 'signature_algorithm': {'algorithm': 'sha1_rsa', 'parameters': None},\n 'signature': value})\n", (7494, 7630), False, 'from asn1crypto.csr import CertificationRequest, CertificationRequestInfo\n'), ((1048, 1077), 'pkcs11.util.x509.decode_x509_certificate', 'decode_x509_certificate', (['CERT'], {}), '(CERT)\n', (1071, 1077), False, 'from pkcs11.util.x509 import decode_x509_certificate, decode_x509_public_key\n'), ((1270, 1318), 'pkcs11.util.x509.decode_x509_certificate', 'decode_x509_certificate', (['CERT'], {'extended_set': '(True)'}), '(CERT, extended_set=True)\n', (1293, 1318), False, 'from pkcs11.util.x509 import decode_x509_certificate, decode_x509_public_key\n'), ((2031, 2059), 'pkcs11.util.x509.decode_x509_public_key', 'decode_x509_public_key', (['CERT'], {}), '(CERT)\n', (2053, 2059), False, 'from pkcs11.util.x509 import decode_x509_certificate, decode_x509_public_key\n'), ((3189, 3217), 'pkcs11.util.x509.decode_x509_public_key', 'decode_x509_public_key', (['CERT'], {}), '(CERT)\n', (3211, 3217), False, 'from pkcs11.util.x509 import decode_x509_certificate, decode_x509_public_key\n'), ((4270, 4298), 'pkcs11.util.x509.decode_x509_public_key', 'decode_x509_public_key', (['CERT'], {}), '(CERT)\n', (4292, 4298), False, 'from pkcs11.util.x509 import decode_x509_certificate, decode_x509_public_key\n'), ((6354, 6446), 'subprocess.Popen', 'subprocess.Popen', (["(OPENSSL, 'verify')"], {'stdin': 'subprocess.PIPE', 'stdout': 'subprocess.DEVNULL'}), "((OPENSSL, 'verify'), stdin=subprocess.PIPE, stdout=\n subprocess.DEVNULL)\n", (6370, 6446), False, 'import subprocess\n'), ((7778, 7905), 'subprocess.Popen', 'subprocess.Popen', (["(OPENSSL, 'req', '-inform', 'der', '-noout', '-verify')"], {'stdin': 'subprocess.PIPE', 'stdout': 'subprocess.DEVNULL'}), "((OPENSSL, 'req', '-inform', 'der', '-noout', '-verify'),\n stdin=subprocess.PIPE, stdout=subprocess.DEVNULL)\n", (7794, 7905), False, 'import subprocess\n'), ((5034, 5081), 'asn1crypto.x509.Name.build', 'Name.build', (["{'common_name': 'Test Certificate'}"], {}), "({'common_name': 'Test Certificate'})\n", (5044, 5081), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((5137, 5184), 'asn1crypto.x509.Name.build', 'Name.build', (["{'common_name': 'Test Certificate'}"], {}), "({'common_name': 'Test Certificate'})\n", (5147, 5184), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((6984, 7031), 'asn1crypto.x509.Name.build', 'Name.build', (["{'common_name': 'Test Certificate'}"], {}), "({'common_name': 'Test Certificate'})\n", (6994, 7031), False, 'from asn1crypto.x509 import Certificate, TbsCertificate, Time, Name\n'), ((5852, 5878), 'pkcs11.util.rsa.encode_rsa_public_key', 'encode_rsa_public_key', (['pub'], {}), '(pub)\n', (5873, 5878), False, 'from pkcs11.util.rsa import encode_rsa_public_key\n'), ((7275, 7301), 'pkcs11.util.rsa.encode_rsa_public_key', 'encode_rsa_public_key', (['pub'], {}), '(pub)\n', (7296, 7301), False, 'from pkcs11.util.rsa import encode_rsa_public_key\n'), ((5431, 5466), 'datetime.datetime', 'datetime.datetime', (['(2017)', '(1)', '(1)', '(0)', '(0)'], {}), '(2017, 1, 1, 0, 0)\n', (5448, 5466), False, 'import datetime\n'), ((5557, 5596), 'datetime.datetime', 'datetime.datetime', (['(2038)', '(12)', '(31)', '(23)', '(59)'], {}), '(2038, 12, 31, 23, 59)\n', (5574, 5596), False, 'import datetime\n')]
from django import forms class SignUpIn(forms.Form): username = forms.CharField(label="Username", max_length=25, widget=forms.TextInput(attrs={'placeholder': 'Username'})) password = forms.CharField(label="Password", max_length=100, widget=forms.TextInput(attrs={'placeholder': 'Password'})) class ChooseRoom(forms.Form): room = forms.CharField(label="Room name", max_length=25, widget=forms.TextInput(attrs={'placeholder': 'Room name'})) class DelaySend(forms.Form): date = forms.DateField(widget=forms.widgets.DateInput(attrs={'type': 'date'})) # time = forms.TimeField(widget=forms.widgets.TimeInput(attrs={'type': 'time'}), format='%Y-%m-%d %H:%M') time = forms.TimeField(widget=forms.widgets.TimeInput(attrs={'type': 'time', 'format': '%H:%M:%S'})) message = forms.CharField(label="Message", max_length=500, widget=forms.Textarea(attrs={'placeholder': 'Message'})) CHOICES = [('Anon', 'Anon'), ('NotAnon', 'NotAnon')] anon = forms.ChoiceField(widget=forms.RadioSelect, choices=CHOICES)
[ "django.forms.widgets.DateInput", "django.forms.widgets.TimeInput", "django.forms.ChoiceField", "django.forms.Textarea", "django.forms.TextInput" ]
[((1093, 1153), 'django.forms.ChoiceField', 'forms.ChoiceField', ([], {'widget': 'forms.RadioSelect', 'choices': 'CHOICES'}), '(widget=forms.RadioSelect, choices=CHOICES)\n', (1110, 1153), False, 'from django import forms\n'), ((157, 207), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'placeholder': 'Username'}"}), "(attrs={'placeholder': 'Username'})\n", (172, 207), False, 'from django import forms\n'), ((312, 362), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'placeholder': 'Password'}"}), "(attrs={'placeholder': 'Password'})\n", (327, 362), False, 'from django import forms\n'), ((491, 542), 'django.forms.TextInput', 'forms.TextInput', ([], {'attrs': "{'placeholder': 'Room name'}"}), "(attrs={'placeholder': 'Room name'})\n", (506, 542), False, 'from django import forms\n'), ((609, 656), 'django.forms.widgets.DateInput', 'forms.widgets.DateInput', ([], {'attrs': "{'type': 'date'}"}), "(attrs={'type': 'date'})\n", (632, 656), False, 'from django import forms\n'), ((803, 872), 'django.forms.widgets.TimeInput', 'forms.widgets.TimeInput', ([], {'attrs': "{'type': 'time', 'format': '%H:%M:%S'}"}), "(attrs={'type': 'time', 'format': '%H:%M:%S'})\n", (826, 872), False, 'from django import forms\n'), ((975, 1023), 'django.forms.Textarea', 'forms.Textarea', ([], {'attrs': "{'placeholder': 'Message'}"}), "(attrs={'placeholder': 'Message'})\n", (989, 1023), False, 'from django import forms\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'Learning.ui' # # Created by: PyQt5 UI code generator 5.7 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(1046, 507) self.resultSave_Button = QtWidgets.QPushButton(Dialog) self.resultSave_Button.setEnabled(False) self.resultSave_Button.setGeometry(QtCore.QRect(330, 460, 150, 40)) self.resultSave_Button.setCheckable(False) self.resultSave_Button.setObjectName("resultSave_Button") self.pause_Button = QtWidgets.QPushButton(Dialog) self.pause_Button.setEnabled(False) self.pause_Button.setGeometry(QtCore.QRect(170, 460, 150, 40)) self.pause_Button.setObjectName("pause_Button") self.Status_GroupBox = QtWidgets.QGroupBox(Dialog) self.Status_GroupBox.setGeometry(QtCore.QRect(10, 10, 1021, 441)) self.Status_GroupBox.setObjectName("Status_GroupBox") self.displayMode_Label = QtWidgets.QLabel(self.Status_GroupBox) self.displayMode_Label.setGeometry(QtCore.QRect(890, 100, 81, 16)) self.displayMode_Label.setObjectName("displayMode_Label") self.displayMode_ComboBox = QtWidgets.QComboBox(self.Status_GroupBox) self.displayMode_ComboBox.setGeometry(QtCore.QRect(890, 120, 121, 22)) self.displayMode_ComboBox.setObjectName("displayMode_ComboBox") self.displayMode_ComboBox.addItem("") self.displayMode_ComboBox.addItem("") self.displayMode_ComboBox.addItem("") self.yAxis_label = QtWidgets.QLabel(self.Status_GroupBox) self.yAxis_label.setGeometry(QtCore.QRect(890, 150, 47, 13)) self.yAxis_label.setObjectName("yAxis_label") self.label_3 = QtWidgets.QLabel(self.Status_GroupBox) self.label_3.setGeometry(QtCore.QRect(940, 170, 21, 16)) self.label_3.setObjectName("label_3") self.yAxisMin_LineEdit = QtWidgets.QLineEdit(self.Status_GroupBox) self.yAxisMin_LineEdit.setGeometry(QtCore.QRect(890, 170, 41, 20)) self.yAxisMin_LineEdit.setAlignment(QtCore.Qt.AlignCenter) self.yAxisMin_LineEdit.setObjectName("yAxisMin_LineEdit") self.yAxisMax_LineEdit = QtWidgets.QLineEdit(self.Status_GroupBox) self.yAxisMax_LineEdit.setGeometry(QtCore.QRect(960, 170, 41, 20)) self.yAxisMax_LineEdit.setAlignment(QtCore.Qt.AlignCenter) self.yAxisMax_LineEdit.setObjectName("yAxisMax_LineEdit") self.cycle_CheckBox = QtWidgets.QCheckBox(self.Status_GroupBox) self.cycle_CheckBox.setGeometry(QtCore.QRect(890, 200, 101, 17)) self.cycle_CheckBox.setObjectName("cycle_CheckBox") self.result_Display_Button = QtWidgets.QPushButton(self.Status_GroupBox) self.result_Display_Button.setGeometry(QtCore.QRect(942, 217, 70, 23)) self.result_Display_Button.setObjectName("result_Display_Button") self.totalEpoch_Label = QtWidgets.QLabel(self.Status_GroupBox) self.totalEpoch_Label.setGeometry(QtCore.QRect(890, 290, 120, 13)) self.totalEpoch_Label.setObjectName("totalEpoch_Label") self.currentLearningSetup_Label = QtWidgets.QLabel(self.Status_GroupBox) self.currentLearningSetup_Label.setGeometry(QtCore.QRect(890, 340, 120, 13)) self.currentLearningSetup_Label.setObjectName("currentLearningSetup_Label") self.currentEpoch_Label = QtWidgets.QLabel(self.Status_GroupBox) self.currentEpoch_Label.setGeometry(QtCore.QRect(890, 390, 120, 13)) self.currentEpoch_Label.setObjectName("currentEpoch_Label") self.currentEpoch_LineEdit = QtWidgets.QLineEdit(self.Status_GroupBox) self.currentEpoch_LineEdit.setGeometry(QtCore.QRect(890, 410, 121, 20)) self.currentEpoch_LineEdit.setAlignment(QtCore.Qt.AlignCenter) self.currentEpoch_LineEdit.setReadOnly(True) self.currentEpoch_LineEdit.setObjectName("currentEpoch_LineEdit") self.totalEpoch_LineEdit = QtWidgets.QLineEdit(self.Status_GroupBox) self.totalEpoch_LineEdit.setGeometry(QtCore.QRect(890, 310, 121, 20)) self.totalEpoch_LineEdit.setAlignment(QtCore.Qt.AlignCenter) self.totalEpoch_LineEdit.setReadOnly(True) self.totalEpoch_LineEdit.setObjectName("totalEpoch_LineEdit") self.currentLearningSetup_LineEdit = QtWidgets.QLineEdit(self.Status_GroupBox) self.currentLearningSetup_LineEdit.setGeometry(QtCore.QRect(890, 360, 121, 20)) self.currentLearningSetup_LineEdit.setAlignment(QtCore.Qt.AlignCenter) self.currentLearningSetup_LineEdit.setReadOnly(True) self.currentLearningSetup_LineEdit.setObjectName("currentLearningSetup_LineEdit") self.graph_Widget = QtWidgets.QWidget(self.Status_GroupBox) self.graph_Widget.setGeometry(QtCore.QRect(10, 20, 871, 411)) self.graph_Widget.setObjectName("graph_Widget") self.verticalLayoutWidget = QtWidgets.QWidget(self.graph_Widget) self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 431, 411)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.weightGraphLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.weightGraphLayout.setContentsMargins(0, 0, 0, 0) self.weightGraphLayout.setObjectName("weightGraphLayout") self.verticalLayoutWidget_2 = QtWidgets.QWidget(self.graph_Widget) self.verticalLayoutWidget_2.setGeometry(QtCore.QRect(440, 0, 421, 411)) self.verticalLayoutWidget_2.setObjectName("verticalLayoutWidget_2") self.progressGraphLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget_2) self.progressGraphLayout.setContentsMargins(0, 0, 0, 0) self.progressGraphLayout.setObjectName("progressGraphLayout") self.macro_Label = QtWidgets.QLabel(self.Status_GroupBox) self.macro_Label.setGeometry(QtCore.QRect(890, 240, 120, 13)) self.macro_Label.setObjectName("macro_Label") self.macro_LineEdit = QtWidgets.QLineEdit(self.Status_GroupBox) self.macro_LineEdit.setGeometry(QtCore.QRect(890, 260, 121, 20)) self.macro_LineEdit.setAlignment(QtCore.Qt.AlignCenter) self.macro_LineEdit.setReadOnly(True) self.macro_LineEdit.setObjectName("macro_LineEdit") self.displayWeight_Label = QtWidgets.QLabel(self.Status_GroupBox) self.displayWeight_Label.setGeometry(QtCore.QRect(890, 20, 81, 16)) self.displayWeight_Label.setObjectName("displayWeight_Label") self.weightName_ComboBox = QtWidgets.QComboBox(self.Status_GroupBox) self.weightName_ComboBox.setGeometry(QtCore.QRect(890, 40, 121, 22)) self.weightName_ComboBox.setObjectName("weightName_ComboBox") self.weight_Display_Button = QtWidgets.QPushButton(self.Status_GroupBox) self.weight_Display_Button.setGeometry(QtCore.QRect(940, 70, 70, 23)) self.weight_Display_Button.setObjectName("weight_Display_Button") self.start_Button = QtWidgets.QPushButton(Dialog) self.start_Button.setGeometry(QtCore.QRect(10, 460, 150, 40)) self.start_Button.setObjectName("start_Button") self.exit_Button = QtWidgets.QPushButton(Dialog) self.exit_Button.setGeometry(QtCore.QRect(880, 460, 150, 40)) self.exit_Button.setObjectName("exit_Button") self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.resultSave_Button.setText(_translate("Dialog", "Result Save")) self.pause_Button.setText(_translate("Dialog", "Pause")) self.Status_GroupBox.setTitle(_translate("Dialog", "Status")) self.displayMode_Label.setText(_translate("Dialog", "Progress Display")) self.displayMode_ComboBox.setItemText(0, _translate("Dialog", "Mean Squared Error")) self.displayMode_ComboBox.setItemText(1, _translate("Dialog", "Cross Entropy")) self.displayMode_ComboBox.setItemText(2, _translate("Dialog", "Semantic Stress")) self.yAxis_label.setText(_translate("Dialog", "Y-Axis")) self.label_3.setText(_translate("Dialog", "~")) self.yAxisMin_LineEdit.setText(_translate("Dialog", "-0.01")) self.yAxisMax_LineEdit.setText(_translate("Dialog", "1.01")) self.cycle_CheckBox.setText(_translate("Dialog", "Use Cycle")) self.result_Display_Button.setText(_translate("Dialog", "Display")) self.totalEpoch_Label.setText(_translate("Dialog", "Total Epoch")) self.currentLearningSetup_Label.setText(_translate("Dialog", "Current Learning Setup")) self.currentEpoch_Label.setText(_translate("Dialog", "Current Epoch")) self.currentEpoch_LineEdit.setText(_translate("Dialog", "-")) self.totalEpoch_LineEdit.setText(_translate("Dialog", "-")) self.currentLearningSetup_LineEdit.setText(_translate("Dialog", "-")) self.macro_Label.setText(_translate("Dialog", "Macro Status")) self.macro_LineEdit.setText(_translate("Dialog", "-")) self.displayWeight_Label.setText(_translate("Dialog", "Weight Display")) self.weight_Display_Button.setText(_translate("Dialog", "Display")) self.start_Button.setText(_translate("Dialog", "Start")) self.exit_Button.setText(_translate("Dialog", "Exit")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Dialog = QtWidgets.QDialog() ui = Ui_Dialog() ui.setupUi(Dialog) Dialog.show() sys.exit(app.exec_())
[ "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QLineEdit", "PyQt5.QtWidgets.QComboBox", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "PyQt5.QtWidgets.QDialog", "PyQt5.QtCore.QRect", "PyQt5.QtWidgets.QGroupBox", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QApplication", "PyQt5.QtWidgets.QVBoxLayout", "PyQt5.QtWidgets.QCheckBox", "PyQt5.QtWidgets.QPushButton" ]
[((9757, 9789), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (9779, 9789), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9804, 9823), 'PyQt5.QtWidgets.QDialog', 'QtWidgets.QDialog', ([], {}), '()\n', (9821, 9823), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((413, 442), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['Dialog'], {}), '(Dialog)\n', (434, 442), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((718, 747), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['Dialog'], {}), '(Dialog)\n', (739, 747), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((954, 981), 'PyQt5.QtWidgets.QGroupBox', 'QtWidgets.QGroupBox', (['Dialog'], {}), '(Dialog)\n', (973, 981), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1154, 1192), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (1170, 1192), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1373, 1414), 'PyQt5.QtWidgets.QComboBox', 'QtWidgets.QComboBox', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (1392, 1414), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1737, 1775), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (1753, 1775), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1925, 1963), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (1941, 1963), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2111, 2152), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (2130, 2152), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2398, 2439), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (2417, 2439), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2682, 2723), 'PyQt5.QtWidgets.QCheckBox', 'QtWidgets.QCheckBox', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (2701, 2723), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2897, 2940), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (2918, 2940), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3129, 3167), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (3145, 3167), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3352, 3390), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (3368, 3390), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3597, 3635), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (3613, 3635), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3821, 3862), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (3840, 3862), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4181, 4222), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (4200, 4222), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4541, 4582), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (4560, 4582), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4934, 4973), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (4951, 4973), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5139, 5175), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['self.graph_Widget'], {}), '(self.graph_Widget)\n', (5156, 5175), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5360, 5408), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', (['self.verticalLayoutWidget'], {}), '(self.verticalLayoutWidget)\n', (5381, 5408), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5578, 5614), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['self.graph_Widget'], {}), '(self.graph_Widget)\n', (5595, 5614), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5809, 5859), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', (['self.verticalLayoutWidget_2'], {}), '(self.verticalLayoutWidget_2)\n', (5830, 5859), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6024, 6062), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (6040, 6062), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6220, 6261), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (6239, 6261), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6545, 6583), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (6561, 6583), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6768, 6809), 'PyQt5.QtWidgets.QComboBox', 'QtWidgets.QComboBox', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (6787, 6809), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6997, 7040), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.Status_GroupBox'], {}), '(self.Status_GroupBox)\n', (7018, 7040), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7224, 7253), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['Dialog'], {}), '(Dialog)\n', (7245, 7253), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7410, 7439), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['Dialog'], {}), '(Dialog)\n', (7431, 7439), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7613, 7658), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['Dialog'], {}), '(Dialog)\n', (7650, 7658), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((537, 568), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(330)', '(460)', '(150)', '(40)'], {}), '(330, 460, 150, 40)\n', (549, 568), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((832, 863), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(170)', '(460)', '(150)', '(40)'], {}), '(170, 460, 150, 40)\n', (844, 863), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1024, 1055), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(10)', '(10)', '(1021)', '(441)'], {}), '(10, 10, 1021, 441)\n', (1036, 1055), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1237, 1267), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(100)', '(81)', '(16)'], {}), '(890, 100, 81, 16)\n', (1249, 1267), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1462, 1493), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(120)', '(121)', '(22)'], {}), '(890, 120, 121, 22)\n', (1474, 1493), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1814, 1844), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(150)', '(47)', '(13)'], {}), '(890, 150, 47, 13)\n', (1826, 1844), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1998, 2028), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(940)', '(170)', '(21)', '(16)'], {}), '(940, 170, 21, 16)\n', (2010, 2028), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2197, 2227), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(170)', '(41)', '(20)'], {}), '(890, 170, 41, 20)\n', (2209, 2227), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2484, 2514), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(960)', '(170)', '(41)', '(20)'], {}), '(960, 170, 41, 20)\n', (2496, 2514), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2765, 2796), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(200)', '(101)', '(17)'], {}), '(890, 200, 101, 17)\n', (2777, 2796), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2989, 3019), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(942)', '(217)', '(70)', '(23)'], {}), '(942, 217, 70, 23)\n', (3001, 3019), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3211, 3242), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(290)', '(120)', '(13)'], {}), '(890, 290, 120, 13)\n', (3223, 3242), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3444, 3475), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(340)', '(120)', '(13)'], {}), '(890, 340, 120, 13)\n', (3456, 3475), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3681, 3712), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(390)', '(120)', '(13)'], {}), '(890, 390, 120, 13)\n', (3693, 3712), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3911, 3942), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(410)', '(121)', '(20)'], {}), '(890, 410, 121, 20)\n', (3923, 3942), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4269, 4300), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(310)', '(121)', '(20)'], {}), '(890, 310, 121, 20)\n', (4281, 4300), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4639, 4670), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(360)', '(121)', '(20)'], {}), '(890, 360, 121, 20)\n', (4651, 4670), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5013, 5043), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(10)', '(20)', '(871)', '(411)'], {}), '(10, 20, 871, 411)\n', (5025, 5043), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5223, 5251), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(431)', '(411)'], {}), '(0, 0, 431, 411)\n', (5235, 5251), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5664, 5694), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(440)', '(0)', '(421)', '(411)'], {}), '(440, 0, 421, 411)\n', (5676, 5694), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6101, 6132), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(240)', '(120)', '(13)'], {}), '(890, 240, 120, 13)\n', (6113, 6132), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6303, 6334), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(260)', '(121)', '(20)'], {}), '(890, 260, 121, 20)\n', (6315, 6334), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6630, 6659), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(20)', '(81)', '(16)'], {}), '(890, 20, 81, 16)\n', (6642, 6659), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6856, 6886), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(890)', '(40)', '(121)', '(22)'], {}), '(890, 40, 121, 22)\n', (6868, 6886), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7089, 7118), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(940)', '(70)', '(70)', '(23)'], {}), '(940, 70, 70, 23)\n', (7101, 7118), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7293, 7323), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(10)', '(460)', '(150)', '(40)'], {}), '(10, 460, 150, 40)\n', (7305, 7323), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7478, 7509), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(880)', '(460)', '(150)', '(40)'], {}), '(880, 460, 150, 40)\n', (7490, 7509), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
import sys import re from collections import defaultdict import numpy if len(sys.argv) >= 2: FILE = sys.argv[1] else: FILE = "20190817T1454-1cc19b18.csv" if len(sys.argv) >= 3: OUTPUT = sys.argv[2] else: # E.g. 20190817T1454-1cc19b18.csv to # 20190817T1454-1cc19b18-medians.csv OUTPUT = re.sub(r"(\.[^.]+)$", r"-medians\1", FILE) def parse_file(filename): results = defaultdict(list) # (variant, t, a) -> [time] with open(filename, "r", encoding="utf-8") as file: file.readline() # skip header for line in file: if line.strip() == "": continue try: variant, t, a, i, time, n_attempts = line.split(",") # n_attempts is suffixed with \n except ValueError: print("Error: could not read line:\n%s" % line) t = int(t) if a != "None": a = int(a) time = float(str(time)) results[(variant, t, a)].append(time) quartiles = {} # (variant, t, a) -> {25: x, 50: y, 75: z} for k, times in results.items(): quartiles[k] = { 25: numpy.percentile(times, 25), 50: numpy.median(times), 75: numpy.percentile(times, 75), } out = "variant,t,a,25,median,75\n" for k in sorted(quartiles.keys()): out += "{},{},{},{},{},{}\n".format(k[0], k[1], k[2], quartiles[k][25], quartiles[k][50], quartiles[k][75]) return out out = parse_file(FILE) with open(OUTPUT, "x") as f: f.write(out)
[ "re.sub", "numpy.median", "collections.defaultdict", "numpy.percentile" ]
[((313, 355), 're.sub', 're.sub', (['"""(\\\\.[^.]+)$"""', '"""-medians\\\\1"""', 'FILE'], {}), "('(\\\\.[^.]+)$', '-medians\\\\1', FILE)\n", (319, 355), False, 'import re\n'), ((397, 414), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (408, 414), False, 'from collections import defaultdict\n'), ((1161, 1188), 'numpy.percentile', 'numpy.percentile', (['times', '(25)'], {}), '(times, 25)\n', (1177, 1188), False, 'import numpy\n'), ((1206, 1225), 'numpy.median', 'numpy.median', (['times'], {}), '(times)\n', (1218, 1225), False, 'import numpy\n'), ((1243, 1270), 'numpy.percentile', 'numpy.percentile', (['times', '(75)'], {}), '(times, 75)\n', (1259, 1270), False, 'import numpy\n')]
import argparse import json import datetime import time import re from tqdm import tqdm from dataset_utils import loop_and_process, name_to_file_name, read_list_from_file from get_songs import raw_songs_dir # parser = argparse.ArgumentParser() # parser.add_argument("--dir_path", type=str, help="Directory will all files") # parser.add_argument("--list_file", type=str, help="List file with list of all songs") # args = parser.parse_args() char_allow_list = {'\n', ' '} def get_context(lyrics, i): return lyrics[max(i - 10, 0): min(i + 10, len(lyrics))] def get_lyric_blocks(song, input_format): if input_format == "raw_song": return [song['lyrics']] elif input_format == "verses": return [verse['lyrics'] for verse in song['verses']] return [] def analyze_characters(dir_path, list_file, input_format, out_file): song_list = read_list_from_file("{}/{}".format(dir_path, list_file)) character_dict = {} j = 1 start = time.time() bar = tqdm(song_list) for song_name in bar: # bar.write("starting {}, {} out of {}".format(song_name, j, len(song_list))) song_file_name = name_to_file_name(song_name.strip()) with open('{}/{}.json'.format(dir_path, song_file_name)) as jsonfile: song = json.load(jsonfile) lyric_blocks = get_lyric_blocks(song, input_format) for lyrics in lyric_blocks: for i in range(0, len(lyrics)): c = lyrics[i] if re.search(r'[^a-zA-Z0-9]+', c) is not None and c not in char_allow_list: # add to characters dictionary if c not in character_dict.keys(): character_dict[c] = { "count" : 1, "context": [{"song": song_name, "line": get_context(lyrics, i)}] } else: character_dict[c]['count'] = character_dict[c]['count'] + 1 character_dict[c]['context'].append({"song": song_name, "line": get_context(lyrics, i)}) j = j + 1 with open("{}.json".format(out_file), "w") as openfile: json.dump(character_dict, openfile) time_taken = str(datetime.timedelta(seconds=time.time() - start)) print("{} for {}".format(time_taken, len(song_list)))
[ "tqdm.tqdm", "json.load", "time.time", "json.dump", "re.search" ]
[((970, 981), 'time.time', 'time.time', ([], {}), '()\n', (979, 981), False, 'import time\n'), ((992, 1007), 'tqdm.tqdm', 'tqdm', (['song_list'], {}), '(song_list)\n', (996, 1007), False, 'from tqdm import tqdm\n'), ((2274, 2309), 'json.dump', 'json.dump', (['character_dict', 'openfile'], {}), '(character_dict, openfile)\n', (2283, 2309), False, 'import json\n'), ((1279, 1298), 'json.load', 'json.load', (['jsonfile'], {}), '(jsonfile)\n', (1288, 1298), False, 'import json\n'), ((2358, 2369), 'time.time', 'time.time', ([], {}), '()\n', (2367, 2369), False, 'import time\n'), ((1508, 1537), 're.search', 're.search', (['"""[^a-zA-Z0-9]+"""', 'c'], {}), "('[^a-zA-Z0-9]+', c)\n", (1517, 1537), False, 'import re\n')]
import numpy as np import tensorflow as tf #Данные with open('data.csv', 'r') as f: xxx=np.loadtxt(f, delimiter=',', skiprows=1) with open('data.csv', 'r') as f: yyy=np.loadtxt(f, delimiter=',', skiprows=1).T[0].T xx=xxx.T for i in range(len(xx[0])): xx[0][i]=1 xx=xx.T qw=[] for i in yyy: qw.append([float(i)]) yy=np.array(qw) #Объявляем входное значение x, вес w, какое значение должны получить y x=tf.placeholder(tf.float32, shape=(len(xx[0]),)) y=tf.placeholder(tf.float32, shape=(1,)) w=tf.Variable(tf.zeros([1, len(xx[0])])) #Получаем выходное значение y2=tf.multiply(x, w) #Рассчитываем ошибку выходных данных loss=tf.reduce_mean(tf.square(y2-y)) optimizer=tf.train.GradientDescentOptimizer(0.05).minimize(loss) #Запуск обучения with tf.Session() as session: tf.global_variables_initializer().run() for i in range(len(xx)): feed_dict={x: xx[i:(i+1)][0], y: yy[i:(i+1)][0]} _, l = session.run([optimizer, loss], feed_dict=feed_dict) print("ошибка: %f" % (l, )) iii=session.run(w)[0] np.savetxt('weights.csv', iii, delimiter=',') print(iii)
[ "tensorflow.placeholder", "tensorflow.Session", "tensorflow.multiply", "tensorflow.train.GradientDescentOptimizer", "numpy.array", "tensorflow.global_variables_initializer", "numpy.savetxt", "tensorflow.square", "numpy.loadtxt" ]
[((322, 334), 'numpy.array', 'np.array', (['qw'], {}), '(qw)\n', (330, 334), True, 'import numpy as np\n'), ((459, 497), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '(1,)'}), '(tf.float32, shape=(1,))\n', (473, 497), True, 'import tensorflow as tf\n'), ((571, 588), 'tensorflow.multiply', 'tf.multiply', (['x', 'w'], {}), '(x, w)\n', (582, 588), True, 'import tensorflow as tf\n'), ((90, 130), 'numpy.loadtxt', 'np.loadtxt', (['f'], {'delimiter': '""","""', 'skiprows': '(1)'}), "(f, delimiter=',', skiprows=1)\n", (100, 130), True, 'import numpy as np\n'), ((647, 664), 'tensorflow.square', 'tf.square', (['(y2 - y)'], {}), '(y2 - y)\n', (656, 664), True, 'import tensorflow as tf\n'), ((752, 764), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (762, 764), True, 'import tensorflow as tf\n'), ((1011, 1056), 'numpy.savetxt', 'np.savetxt', (['"""weights.csv"""', 'iii'], {'delimiter': '""","""'}), "('weights.csv', iii, delimiter=',')\n", (1021, 1056), True, 'import numpy as np\n'), ((674, 713), 'tensorflow.train.GradientDescentOptimizer', 'tf.train.GradientDescentOptimizer', (['(0.05)'], {}), '(0.05)\n', (707, 713), True, 'import tensorflow as tf\n'), ((778, 811), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (809, 811), True, 'import tensorflow as tf\n'), ((169, 209), 'numpy.loadtxt', 'np.loadtxt', (['f'], {'delimiter': '""","""', 'skiprows': '(1)'}), "(f, delimiter=',', skiprows=1)\n", (179, 209), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Main entry point for running BayesOpt experiments. Defines high-level parameters that will be fed into bo_exp. """ from exps.defs import exp_async_synch from exps.exp_utils import get_math_exp_task, \ get_commit_hash, create_default_parser, \ get_interface, get_iters, \ generate_starting_data, create_intial_busy_jobs, \ get_default_hp_priors_and_bounds from ml_utils import timed_print as print # ********* Parser ******** # parser = create_default_parser(synth_time=True) parser.add_argument('-f', '--func', help='Function index.', default=10, type=int) args = parser.parse_args() print(f"Got arguments: \n{args}") # ********* Exp settings ******** # debug = False force_run = False foldername = get_commit_hash(with_date=True) # ********* Overrides ******** # # args.func = 0 # args.proc = 'synch-LP' # args.workers = 4 # args.batch = 4 # ********* Task and data ******** # f, x_lim, true_min_loc, true_min_val = get_math_exp_task(args.func) hp_bounds, hyper_priors, restart_bounds = get_default_hp_priors_and_bounds( args, x_lim) sampler = f async_interface = get_interface(args.workers, synth=args.timer) n_iter = get_iters(args, max_num_queries=200) n_init = 3 * len(x_lim) x_init, y_init = generate_starting_data(n_init, x_lim, sampler, async_interface=async_interface, seed=args.seed) n_busy = args.workers starting_jobs = create_intial_busy_jobs(n_busy, x_lim, sampler, args.seed) # ********* Run ******** # exp_async_synch(args=args, sampler=sampler, true_min_val=true_min_val, x_init=x_init, y_init=y_init, x_lim=x_lim, foldername=foldername, hp_bounds=hp_bounds, restart_bounds=restart_bounds, hyper_priors=hyper_priors, n_iter=n_iter, starting_jobs=starting_jobs, async_interface=async_interface, force_run=force_run, debug=debug)
[ "exps.exp_utils.create_default_parser", "exps.exp_utils.get_default_hp_priors_and_bounds", "exps.defs.exp_async_synch", "exps.exp_utils.generate_starting_data", "ml_utils.timed_print", "exps.exp_utils.get_math_exp_task", "exps.exp_utils.get_interface", "exps.exp_utils.get_iters", "exps.exp_utils.get_commit_hash", "exps.exp_utils.create_intial_busy_jobs" ]
[((487, 525), 'exps.exp_utils.create_default_parser', 'create_default_parser', ([], {'synth_time': '(True)'}), '(synth_time=True)\n', (508, 525), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((656, 692), 'ml_utils.timed_print', 'print', (['f"""Got arguments: \n{args}"""'], {}), '(f"""Got arguments: \n{args}""")\n', (661, 692), True, 'from ml_utils import timed_print as print\n'), ((777, 808), 'exps.exp_utils.get_commit_hash', 'get_commit_hash', ([], {'with_date': '(True)'}), '(with_date=True)\n', (792, 808), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1005, 1033), 'exps.exp_utils.get_math_exp_task', 'get_math_exp_task', (['args.func'], {}), '(args.func)\n', (1022, 1033), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1076, 1121), 'exps.exp_utils.get_default_hp_priors_and_bounds', 'get_default_hp_priors_and_bounds', (['args', 'x_lim'], {}), '(args, x_lim)\n', (1108, 1121), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1158, 1203), 'exps.exp_utils.get_interface', 'get_interface', (['args.workers'], {'synth': 'args.timer'}), '(args.workers, synth=args.timer)\n', (1171, 1203), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1214, 1250), 'exps.exp_utils.get_iters', 'get_iters', (['args'], {'max_num_queries': '(200)'}), '(args, max_num_queries=200)\n', (1223, 1250), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1293, 1393), 'exps.exp_utils.generate_starting_data', 'generate_starting_data', (['n_init', 'x_lim', 'sampler'], {'async_interface': 'async_interface', 'seed': 'args.seed'}), '(n_init, x_lim, sampler, async_interface=\n async_interface, seed=args.seed)\n', (1315, 1393), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1508, 1566), 'exps.exp_utils.create_intial_busy_jobs', 'create_intial_busy_jobs', (['n_busy', 'x_lim', 'sampler', 'args.seed'], {}), '(n_busy, x_lim, sampler, args.seed)\n', (1531, 1566), False, 'from exps.exp_utils import get_math_exp_task, get_commit_hash, create_default_parser, get_interface, get_iters, generate_starting_data, create_intial_busy_jobs, get_default_hp_priors_and_bounds\n'), ((1599, 1942), 'exps.defs.exp_async_synch', 'exp_async_synch', ([], {'args': 'args', 'sampler': 'sampler', 'true_min_val': 'true_min_val', 'x_init': 'x_init', 'y_init': 'y_init', 'x_lim': 'x_lim', 'foldername': 'foldername', 'hp_bounds': 'hp_bounds', 'restart_bounds': 'restart_bounds', 'hyper_priors': 'hyper_priors', 'n_iter': 'n_iter', 'starting_jobs': 'starting_jobs', 'async_interface': 'async_interface', 'force_run': 'force_run', 'debug': 'debug'}), '(args=args, sampler=sampler, true_min_val=true_min_val,\n x_init=x_init, y_init=y_init, x_lim=x_lim, foldername=foldername,\n hp_bounds=hp_bounds, restart_bounds=restart_bounds, hyper_priors=\n hyper_priors, n_iter=n_iter, starting_jobs=starting_jobs,\n async_interface=async_interface, force_run=force_run, debug=debug)\n', (1614, 1942), False, 'from exps.defs import exp_async_synch\n')]
from dataclasses import dataclass, field import numpy as np @dataclass class AnnParameters: """Dataclass for storage of network parameters.""" n_layers: int nodes_per_layer: np.ndarray input_dim: int output_dim: int input_bounds = None output_bounds = None weights: list = field(default_factory=list) bias: list = field(default_factory=list) M_plus: list = field(default_factory=list) M_minus: list = field(default_factory=list) UB: list = field(default_factory=list) LB: list = field(default_factory=list) redundancy_matrix: list = field(default_factory=list)
[ "dataclasses.field" ]
[((307, 334), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (312, 334), False, 'from dataclasses import dataclass, field\n'), ((352, 379), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (357, 379), False, 'from dataclasses import dataclass, field\n'), ((399, 426), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (404, 426), False, 'from dataclasses import dataclass, field\n'), ((447, 474), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (452, 474), False, 'from dataclasses import dataclass, field\n'), ((490, 517), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (495, 517), False, 'from dataclasses import dataclass, field\n'), ((533, 560), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (538, 560), False, 'from dataclasses import dataclass, field\n'), ((591, 618), 'dataclasses.field', 'field', ([], {'default_factory': 'list'}), '(default_factory=list)\n', (596, 618), False, 'from dataclasses import dataclass, field\n')]