code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
from webserver import application if __name__ == '__main__': application.run()
[ "webserver.application.run" ]
[((63, 80), 'webserver.application.run', 'application.run', ([], {}), '()\n', (78, 80), False, 'from webserver import application\n')]
from smartcard.System import readers from smartcard.util import toHexString from smartcard.ATR import ATR from smartcard.CardType import AnyCardType from smartcard.pcsc import PCSCExceptions import sys import logging logging.basicConfig( format='%(asctime)s\t%(levelname)s\t%(message)s') logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) r = None try: r = readers() except PCSCExceptions.EstablishContextException: logger.critical("Could not contact pcscd") exit(1) if len(r) < 1: logger.critical("error: No readers available!") exit(1) logger.info("Available readers: " + str(r)) # TODO: let user pick reader reader = r[0] logger.info("Using: " + str(reader)) connection = reader.createConnection() connection.connect() # ACR magic numbers ACR_MUTE = [0xFF, 0x00, 0x52, 0x00, 0x00] ACR_UNMUTE = [0xFF, 0x00, 0x52, 0xFF, 0x00] ACR_GETUID = [0xFF, 0xCA, 0x00, 0x00, 0x00] ACR_FIRMVER = [0xFF, 0x00, 0x48, 0x00, 0x00] # TODO: check where getuid and firmver belong # General magic numbers data_write_command = [0xff, 0xd6, 0x00] # Append blocknr, data len, data # Desfire specific magic numbers blocknr = 0x0 desfire_write_uid_command_size = 0x0e desfire_write_uid_command = [0xff, 0x00, 0x00, blocknr, desfire_write_uid_command_size, 0xd4, 0x42, 0x90, 0xf0, 0xcc, 0xcc, 0x10] desfire_backdoor_command_one = [0xff, 0xca, 0x00, 0x00, 0x00] desfire_backdoor_command_two = [0xff, 0x00, 0x00, 0x00, 0x04, 0xd4, 0x4a, 0x01, 0x00] # Classic specific magic numbers #TODO def _write(data): data_as_hex = ' '.join(format(x, '02x') for x in data) logger.debug("Writing data: " + str(data_as_hex)) returndata, sw1, sw2=connection.transmit(data) logger.info("Got status words: %02X %02X" % (sw1, sw2)) if ((sw1, sw2) == (0x90, 0x0)): return (True, returndata) elif (sw1, sw2) == (0x63, 0x0): logger.error("Got bad response") return (False, None) def get_uid(): status, retdata = _write(ACR_GETUID) return retdata def write_data_block(blocknr, userdata): userdata_values = bytes.fromhex(userdata) # Note, mfclassic only allows writing of 16 bytes at a time (that's one block) assert len(userdata_values) == 16 write_command = data_write_command + [blocknr, len(userdata_values)] for b in userdata_values: write_command.append(b) _write(write_command) def write_uid_desfire(newuid: str): uid_values = bytes.fromhex(newuid) assert len(uid_values) == 7 logger.info("Setting uid to " + str(uid_values)) write_command = desfire_write_uid_command + [i for i in uid_values] _write(desfire_backdoor_command_one) _write(desfire_backdoor_command_two) _write(write_command) def main(): logger.error("Be careful! Somewhere along the line I borked my only 7B card. This current code is not known-good") ''' write_uid_desfire("aabbccddeeff11") uid = get_uid() print("UID: " + ' '.join('{:02x}'.format(x) for x in uid)) ''' if __name__ == "__main__": main()
[ "logging.basicConfig", "smartcard.System.readers", "logging.getLogger" ]
[((218, 287), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s\t%(levelname)s\t%(message)s"""'}), "(format='%(asctime)s\\t%(levelname)s\\t%(message)s')\n", (237, 287), False, 'import logging\n'), ((302, 329), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (319, 329), False, 'import logging\n'), ((381, 390), 'smartcard.System.readers', 'readers', ([], {}), '()\n', (388, 390), False, 'from smartcard.System import readers\n')]
import pytest from _pytest.monkeypatch import MonkeyPatch from cx_core import ReleaseHoldController from cx_core.controller import Controller from pytest_mock import MockerFixture from tests.test_utils import fake_fn class FakeReleaseHoldController(ReleaseHoldController): def hold_loop(self): pass def default_delay(self) -> int: return 500 @pytest.fixture def sut_before_init(mocker: MockerFixture) -> FakeReleaseHoldController: controller = FakeReleaseHoldController() # type: ignore controller.args = {} mocker.patch.object(Controller, "init") mocker.patch.object(controller, "sleep") return controller @pytest.fixture @pytest.mark.asyncio async def sut(sut_before_init: FakeReleaseHoldController) -> FakeReleaseHoldController: await sut_before_init.init() return sut_before_init @pytest.mark.asyncio async def test_init(sut_before_init: FakeReleaseHoldController, mocker: MockerFixture): await sut_before_init.init() assert sut_before_init.delay == 500 @pytest.mark.asyncio async def test_release(sut: FakeReleaseHoldController): sut.on_hold = True await sut.release() assert not sut.on_hold @pytest.mark.asyncio async def test_hold( sut: FakeReleaseHoldController, monkeypatch: MonkeyPatch, mocker: MockerFixture, ): monkeypatch.setattr(sut, "hold_loop", fake_fn(to_return=True, async_=True)) hold_loop_patch = mocker.patch.object(sut, "hold_loop") await sut.hold() hold_loop_patch.assert_called_once() @pytest.mark.parametrize( "action, on_hold_input, hold_release_toogle, continue_call", [ ("hold", False, False, True), ("hold", True, False, False), ("hold", False, True, True), ("hold", True, True, False), ("release", True, True, True), ("release", True, False, True), ("release", False, True, True), ("release", False, False, True), ], ) @pytest.mark.asyncio async def test_before_action( sut: FakeReleaseHoldController, action: str, on_hold_input: bool, hold_release_toogle: bool, continue_call: bool, ): sut.on_hold = on_hold_input sut.hold_release_toggle = hold_release_toogle output = await sut.before_action(action) assert output == continue_call
[ "pytest.mark.parametrize", "tests.test_utils.fake_fn" ]
[((1529, 1885), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""action, on_hold_input, hold_release_toogle, continue_call"""', "[('hold', False, False, True), ('hold', True, False, False), ('hold', False,\n True, True), ('hold', True, True, False), ('release', True, True, True),\n ('release', True, False, True), ('release', False, True, True), (\n 'release', False, False, True)]"], {}), "(\n 'action, on_hold_input, hold_release_toogle, continue_call', [('hold', \n False, False, True), ('hold', True, False, False), ('hold', False, True,\n True), ('hold', True, True, False), ('release', True, True, True), (\n 'release', True, False, True), ('release', False, True, True), (\n 'release', False, False, True)])\n", (1552, 1885), False, 'import pytest\n'), ((1364, 1400), 'tests.test_utils.fake_fn', 'fake_fn', ([], {'to_return': '(True)', 'async_': '(True)'}), '(to_return=True, async_=True)\n', (1371, 1400), False, 'from tests.test_utils import fake_fn\n')]
import ClientAPI import MarsCommand NamedColors = {} NamedColorsOrig = { 'AliceBlue': ClientAPI.ColorEx.AliceBlue, 'AntiqueWhite': ClientAPI.ColorEx.AntiqueWhite, 'Aqua': ClientAPI.ColorEx.Aqua, 'Aquamarine': ClientAPI.ColorEx.Aquamarine, 'Azure': ClientAPI.ColorEx.Azure, 'Beige': ClientAPI.ColorEx.Beige, 'Bisque': ClientAPI.ColorEx.Bisque, 'Black': ClientAPI.ColorEx.Black, 'BlanchedAlmond': ClientAPI.ColorEx.BlanchedAlmond, 'Blue': ClientAPI.ColorEx.Blue, 'BlueViolet': ClientAPI.ColorEx.BlueViolet, 'Brown': ClientAPI.ColorEx.Brown, 'BurlyWood': ClientAPI.ColorEx.BurlyWood, 'CadetBlue': ClientAPI.ColorEx.CadetBlue, 'Chartreuse': ClientAPI.ColorEx.Chartreuse, 'Chocolate': ClientAPI.ColorEx.Chocolate, 'Coral': ClientAPI.ColorEx.Coral, 'CornflowerBlue': ClientAPI.ColorEx.CornflowerBlue, 'Cornsilk': ClientAPI.ColorEx.Cornsilk, 'Crimson': ClientAPI.ColorEx.Crimson, 'Cyan': ClientAPI.ColorEx.Cyan, 'DarkBlue': ClientAPI.ColorEx.DarkBlue, 'DarkCyan': ClientAPI.ColorEx.DarkCyan, 'DarkGoldenrod': ClientAPI.ColorEx.DarkGoldenrod, 'DarkGray': ClientAPI.ColorEx.DarkGray, 'DarkGreen': ClientAPI.ColorEx.DarkGreen, 'DarkKhaki': ClientAPI.ColorEx.DarkKhaki, 'DarkMagenta': ClientAPI.ColorEx.DarkMagenta, 'DarkOliveGreen': ClientAPI.ColorEx.DarkOliveGreen, 'DarkOrange': ClientAPI.ColorEx.DarkOrange, 'DarkOrchid': ClientAPI.ColorEx.DarkOrchid, 'DarkRed': ClientAPI.ColorEx.DarkRed, 'DarkSalmon': ClientAPI.ColorEx.DarkSalmon, 'DarkSeaGreen': ClientAPI.ColorEx.DarkSeaGreen, 'DarkSlateBlue': ClientAPI.ColorEx.DarkSlateBlue, 'DarkSlateGray': ClientAPI.ColorEx.DarkSlateGray, 'DarkTurquoise': ClientAPI.ColorEx.DarkTurquoise, 'DarkViolet': ClientAPI.ColorEx.DarkViolet, 'DeepPink': ClientAPI.ColorEx.DeepPink, 'DeepSkyBlue': ClientAPI.ColorEx.DeepSkyBlue, 'DimGray': ClientAPI.ColorEx.DimGray, 'DodgerBlue': ClientAPI.ColorEx.DodgerBlue, 'Firebrick': ClientAPI.ColorEx.Firebrick, 'FloralWhite': ClientAPI.ColorEx.FloralWhite, 'ForestGreen': ClientAPI.ColorEx.ForestGreen, 'Fuchsia': ClientAPI.ColorEx.Fuchsia, 'Gainsboro': ClientAPI.ColorEx.Gainsboro, 'GhostWhite': ClientAPI.ColorEx.GhostWhite, 'Gold': ClientAPI.ColorEx.Gold, 'Goldenrod': ClientAPI.ColorEx.Goldenrod, 'Gray': ClientAPI.ColorEx.Gray, 'Green': ClientAPI.ColorEx.Green, 'GreenYellow': ClientAPI.ColorEx.GreenYellow, 'Honeydew': ClientAPI.ColorEx.Honeydew, 'HotPink': ClientAPI.ColorEx.HotPink, 'IndianRed': ClientAPI.ColorEx.IndianRed, 'Indigo': ClientAPI.ColorEx.Indigo, 'Ivory': ClientAPI.ColorEx.Ivory, 'Khaki': ClientAPI.ColorEx.Khaki, 'Lavender': ClientAPI.ColorEx.Lavender, 'LavenderBlush': ClientAPI.ColorEx.LavenderBlush, 'LawnGreen': ClientAPI.ColorEx.LawnGreen, 'LemonChiffon': ClientAPI.ColorEx.LemonChiffon, 'LightBlue': ClientAPI.ColorEx.LightBlue, 'LightCoral': ClientAPI.ColorEx.LightCoral, 'LightCyan': ClientAPI.ColorEx.LightCyan, 'LightGoldenrodYellow': ClientAPI.ColorEx.LightGoldenrodYellow, 'LightGreen': ClientAPI.ColorEx.LightGreen, 'LightGray': ClientAPI.ColorEx.LightGray, 'LightPink': ClientAPI.ColorEx.LightPink, 'LightSalmon': ClientAPI.ColorEx.LightSalmon, 'LightSeaGreen': ClientAPI.ColorEx.LightSeaGreen, 'LightSkyBlue': ClientAPI.ColorEx.LightSkyBlue, 'LightSlateGray': ClientAPI.ColorEx.LightSlateGray, 'LightSteelBlue': ClientAPI.ColorEx.LightSteelBlue, 'LightYellow': ClientAPI.ColorEx.LightYellow, 'Lime': ClientAPI.ColorEx.Lime, 'LimeGreen': ClientAPI.ColorEx.LimeGreen, 'Linen': ClientAPI.ColorEx.Linen, 'Magenta': ClientAPI.ColorEx.Magenta, 'Maroon': ClientAPI.ColorEx.Maroon, 'MediumAquamarine': ClientAPI.ColorEx.MediumAquamarine, 'MediumBlue': ClientAPI.ColorEx.MediumBlue, 'MediumOrchid': ClientAPI.ColorEx.MediumOrchid, 'MediumPurple': ClientAPI.ColorEx.MediumPurple, 'MediumSeaGreen': ClientAPI.ColorEx.MediumSeaGreen, 'MediumSlateBlue': ClientAPI.ColorEx.MediumSlateBlue, 'MediumSpringGreen': ClientAPI.ColorEx.MediumSpringGreen, 'MediumTurquoise': ClientAPI.ColorEx.MediumTurquoise, 'MediumVioletRed': ClientAPI.ColorEx.MediumVioletRed, 'MidnightBlue': ClientAPI.ColorEx.MidnightBlue, 'MistyRose': ClientAPI.ColorEx.MistyRose, 'Moccasin': ClientAPI.ColorEx.Moccasin, 'NavajoWhite': ClientAPI.ColorEx.NavajoWhite, 'Navy': ClientAPI.ColorEx.Navy, 'OldLace': ClientAPI.ColorEx.OldLace, 'Olive': ClientAPI.ColorEx.Olive, 'OliveDrab': ClientAPI.ColorEx.OliveDrab, 'Orange': ClientAPI.ColorEx.Orange, 'OrangeRed': ClientAPI.ColorEx.OrangeRed, 'Orchid': ClientAPI.ColorEx.Orchid, 'PaleGoldenrod': ClientAPI.ColorEx.PaleGoldenrod, 'PaleGreen': ClientAPI.ColorEx.PaleGreen, 'PaleTurquoise': ClientAPI.ColorEx.PaleTurquoise, 'PaleVioletRed': ClientAPI.ColorEx.PaleVioletRed, 'PapayaWhip': ClientAPI.ColorEx.PapayaWhip, 'PeachPuff': ClientAPI.ColorEx.PeachPuff, 'Peru': ClientAPI.ColorEx.Peru, 'Pink': ClientAPI.ColorEx.Pink, 'Plum': ClientAPI.ColorEx.Plum, 'PowderBlue': ClientAPI.ColorEx.PowderBlue, 'Purple': ClientAPI.ColorEx.Purple, 'Red': ClientAPI.ColorEx.Red, 'RosyBrown': ClientAPI.ColorEx.RosyBrown, 'RoyalBlue': ClientAPI.ColorEx.RoyalBlue, 'SaddleBrown': ClientAPI.ColorEx.SaddleBrown, 'Salmon': ClientAPI.ColorEx.Salmon, 'SandyBrown': ClientAPI.ColorEx.SandyBrown, 'SeaGreen': ClientAPI.ColorEx.SeaGreen, 'SeaShell': ClientAPI.ColorEx.SeaShell, 'Sienna': ClientAPI.ColorEx.Sienna, 'Silver': ClientAPI.ColorEx.Silver, 'SkyBlue': ClientAPI.ColorEx.SkyBlue, 'SlateBlue': ClientAPI.ColorEx.SlateBlue, 'SlateGray': ClientAPI.ColorEx.SlateGray, 'Snow': ClientAPI.ColorEx.Snow, 'SpringGreen': ClientAPI.ColorEx.SpringGreen, 'SteelBlue': ClientAPI.ColorEx.SteelBlue, 'Tan': ClientAPI.ColorEx.Tan, 'Teal': ClientAPI.ColorEx.Teal, 'Thistle': ClientAPI.ColorEx.Thistle, 'Tomato': ClientAPI.ColorEx.Tomato, 'Turquoise': ClientAPI.ColorEx.Turquoise, 'Violet': ClientAPI.ColorEx.Violet, 'Wheat': ClientAPI.ColorEx.Wheat, 'White': ClientAPI.ColorEx.White, 'WhiteSmoke': ClientAPI.ColorEx.WhiteSmoke, 'Yellow': ClientAPI.ColorEx.Yellow, 'YellowGreen': ClientAPI.ColorEx.YellowGreen, } def DumpColorNames(args=""): colorStr = "" for colorName in NamedColors.keys(): colorStr = colorStr + '%s, ' % colorName ClientAPI.Write(colorStr) def ColorValue(args): ClientAPI.Write(NamedColors[args.lower()].ToString()) def GetColor(args): colorName = args.lower() if colorName in NamedColors: return NamedColors[colorName] else: return None # make copies of the colors in the dictionary with all lower case names for colorName in NamedColorsOrig.keys(): NamedColors[colorName.lower()] = NamedColorsOrig[colorName] MarsCommand.RegisterCommandHandler("colornames", DumpColorNames) MarsCommand.RegisterCommandHandler("colorvalue", ColorValue)
[ "MarsCommand.RegisterCommandHandler", "ClientAPI.Write" ]
[((7042, 7106), 'MarsCommand.RegisterCommandHandler', 'MarsCommand.RegisterCommandHandler', (['"""colornames"""', 'DumpColorNames'], {}), "('colornames', DumpColorNames)\n", (7076, 7106), False, 'import MarsCommand\n'), ((7107, 7167), 'MarsCommand.RegisterCommandHandler', 'MarsCommand.RegisterCommandHandler', (['"""colorvalue"""', 'ColorValue'], {}), "('colorvalue', ColorValue)\n", (7141, 7167), False, 'import MarsCommand\n'), ((6593, 6618), 'ClientAPI.Write', 'ClientAPI.Write', (['colorStr'], {}), '(colorStr)\n', (6608, 6618), False, 'import ClientAPI\n')]
from PySide2.QtWidgets import QDialog, QVBoxLayout from hexrd.ui.tree_views.base_dict_tree_item_model import ( BaseTreeItemModel, BaseDictTreeItemModel, BaseDictTreeView ) from hexrd.ui.tree_views.tree_item import TreeItem from hexrd.ui.tree_views.value_column_delegate import ValueColumnDelegate # Global constants KEY_COL = BaseTreeItemModel.KEY_COL VALUE_COL = KEY_COL + 1 class DictTreeItemModel(BaseDictTreeItemModel): def __init__(self, dictionary, parent=None): super().__init__(dictionary, parent) self.root_item = TreeItem(['key', 'value']) self.rebuild_tree() def recursive_add_tree_items(self, cur_config, cur_tree_item): if isinstance(cur_config, dict): keys = cur_config.keys() elif isinstance(cur_config, list): keys = range(len(cur_config)) else: # This must be a value. cur_tree_item.set_data(VALUE_COL, cur_config) return for key in keys: path = self.path_to_value(cur_tree_item, 0) + [key] if path in self.blacklisted_paths or str(key).startswith('_'): continue data = [key, None] tree_item = self.add_tree_item(data, cur_tree_item) self.recursive_add_tree_items(cur_config[key], tree_item) def path_to_value(self, tree_item, column): return self.path_to_item(tree_item) class DictTreeView(BaseDictTreeView): def __init__(self, dictionary, parent=None): super().__init__(parent) self.setModel(DictTreeItemModel(dictionary, parent=self)) self.setItemDelegateForColumn( VALUE_COL, ValueColumnDelegate(self)) self.resizeColumnToContents(KEY_COL) self.resizeColumnToContents(VALUE_COL) self.header().resizeSection(KEY_COL, 200) self.header().resizeSection(VALUE_COL, 200) class DictTreeViewDialog(QDialog): def __init__(self, dictionary, parent=None): super().__init__(parent) self.setLayout(QVBoxLayout(self)) self.tree_view = DictTreeView(dictionary, self) self.layout().addWidget(self.tree_view) self.resize(500, 500) def expand_rows(self): return self.tree_view.expand_rows() @property def editable(self): return self.tree_view.editable @editable.setter def editable(self, v): self.tree_view.editable = v def set_single_selection_mode(self): self.tree_view.set_single_selection_mode() def set_multi_selection_mode(self): self.tree_view.set_multi_selection_mode() def set_extended_selection_mode(self): self.tree_view.set_extended_selection_mode() @property def selected_items(self): return self.tree_view.selected_items
[ "hexrd.ui.tree_views.value_column_delegate.ValueColumnDelegate", "hexrd.ui.tree_views.tree_item.TreeItem", "PySide2.QtWidgets.QVBoxLayout" ]
[((554, 580), 'hexrd.ui.tree_views.tree_item.TreeItem', 'TreeItem', (["['key', 'value']"], {}), "(['key', 'value'])\n", (562, 580), False, 'from hexrd.ui.tree_views.tree_item import TreeItem\n'), ((1668, 1693), 'hexrd.ui.tree_views.value_column_delegate.ValueColumnDelegate', 'ValueColumnDelegate', (['self'], {}), '(self)\n', (1687, 1693), False, 'from hexrd.ui.tree_views.value_column_delegate import ValueColumnDelegate\n'), ((2035, 2052), 'PySide2.QtWidgets.QVBoxLayout', 'QVBoxLayout', (['self'], {}), '(self)\n', (2046, 2052), False, 'from PySide2.QtWidgets import QDialog, QVBoxLayout\n')]
#!/usr/bin/env python3 import os import time import sys import argparse from dotenv import load_dotenv from harvester import * ''' LAUNCH ''' # ftp default values server = None port = 21 username = 'anonymous' password = '<PASSWORD>' # load ftp variables load_dotenv() # loads environment vars from the '.env' file if present server = os.getenv('FTP_SERVER') port = os.getenv('FTP_PORT', port) username = os.getenv('FTP_USERNAME', username) password = os.getenv('FTP_PASSWORD', password) # file names used by this script listfile = 'harvestlist.txt' cache_file = '.harvestcache' # the default interval for backups default_interval = 5 # list of files to look for files = [] if not os.path.isfile(listfile): print('ERROR: File \'' + listfile + '\' required, but not found in the current working directory') sys.exit(1) try: with open(listfile, 'r') as f: for one in f.readlines(): one = one.strip() one = one.split('#')[0] if one: # not empty files.append(one) except IOError as e: print('ERROR: File \'' + listfile + '\': ' + str(e)) if server is None: print('ERROR: Environment variable {} not specified'.format('FTP_SERVER')) sys.exit(1) parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description='\ FTP Harvest.\n\ If no arguments are provided, the default behavior is equivalent to:\n\ {} -lb 5\n\n\ Uses these environment variables:\n\ * FTP_SERVER\n\ * FTP_PORT (=21)\n\ * FTP_USERNAME (=anonymous)\n\ * FTP_PASSWORD (=anonymous)\n\ FTP_SERVER must be specified and be a valid FTP server address'.format(sys.argv[0])) parser.add_argument('-l', '--load', action='store_true', help='loads files specified in {} from the FTP server'.format(listfile)) parser.add_argument('-b', '--backup', type=int, metavar='INTERVAL', default=0, help='periodically saves files in {} to the FTP server; INTERVAL is in minutes'.format(listfile)) parser.add_argument('-s', '--save', action='store_true', help='sends current files to the FTP server') result = parser.parse_args(sys.argv[1:]) # default behavior when no arguments are provided if result.backup == 0 and not result.load and not result.save: result.backup = default_interval result.load = True print('Invoking default behavior') print('Connecting to FTP: {}'.format(server)) connection = FTPConnection(server, port, username, password) harvester = Harvester(connection, files) if result.save: print('Sending files to the server...') harvester.save() print('Sending finished') if result.load: print('Loading from server...') harvester.load() if result.backup == 0: # caches file modification times so that the when this program is # run again with -b it can access this data harvester.save_cache(cache_file) print('Loading finished') if result.backup > 0: print('Started backup cycle (interval = {} min)'.format(result.backup)) if not result.load: harvester.load_cache(cache_file) while True: time.sleep(result.backup * 60) harvester.save()
[ "os.getenv", "time.sleep", "dotenv.load_dotenv", "os.path.isfile", "sys.exit" ]
[((260, 273), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (271, 273), False, 'from dotenv import load_dotenv\n'), ((341, 364), 'os.getenv', 'os.getenv', (['"""FTP_SERVER"""'], {}), "('FTP_SERVER')\n", (350, 364), False, 'import os\n'), ((372, 399), 'os.getenv', 'os.getenv', (['"""FTP_PORT"""', 'port'], {}), "('FTP_PORT', port)\n", (381, 399), False, 'import os\n'), ((411, 446), 'os.getenv', 'os.getenv', (['"""FTP_USERNAME"""', 'username'], {}), "('FTP_USERNAME', username)\n", (420, 446), False, 'import os\n'), ((458, 493), 'os.getenv', 'os.getenv', (['"""FTP_PASSWORD"""', 'password'], {}), "('FTP_PASSWORD', password)\n", (467, 493), False, 'import os\n'), ((691, 715), 'os.path.isfile', 'os.path.isfile', (['listfile'], {}), '(listfile)\n', (705, 715), False, 'import os\n'), ((824, 835), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (832, 835), False, 'import sys\n'), ((1225, 1236), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1233, 1236), False, 'import sys\n'), ((3117, 3147), 'time.sleep', 'time.sleep', (['(result.backup * 60)'], {}), '(result.backup * 60)\n', (3127, 3147), False, 'import time\n')]
"""Application config.""" from dataclasses import dataclass import os from typing import Optional from .database import create_conn_config, ConnectionParameters def _get_app_key_from_file() -> Optional[str]: try: with open("/run/secrets/app_key", "r") as key_file: return str(key_file.readline()) except FileNotFoundError: return None def get_app_key() -> str: """Get application key from environment.""" key = os.getenv("APP_KEY", _get_app_key_from_file()) if not key: raise ValueError("An APP_KEY environment variable is required.") return key @dataclass class Config: """Application configuration object.""" database: ConnectionParameters jwt_key: str def create_default_config() -> Config: return Config( database=create_conn_config( user=os.getenv('DB_USER', 'test'), password=os.getenv('DB_PASS', '<PASSWORD>'), host=os.getenv('DB_HOST', 'localhost'), port=int(os.getenv('DB_PORT', '5432')), database=os.getenv('DB_NAME', 'dev')), jwt_key=get_app_key())
[ "os.getenv" ]
[((852, 880), 'os.getenv', 'os.getenv', (['"""DB_USER"""', '"""test"""'], {}), "('DB_USER', 'test')\n", (861, 880), False, 'import os\n'), ((903, 937), 'os.getenv', 'os.getenv', (['"""DB_PASS"""', '"""<PASSWORD>"""'], {}), "('DB_PASS', '<PASSWORD>')\n", (912, 937), False, 'import os\n'), ((956, 989), 'os.getenv', 'os.getenv', (['"""DB_HOST"""', '"""localhost"""'], {}), "('DB_HOST', 'localhost')\n", (965, 989), False, 'import os\n'), ((1064, 1091), 'os.getenv', 'os.getenv', (['"""DB_NAME"""', '"""dev"""'], {}), "('DB_NAME', 'dev')\n", (1073, 1091), False, 'import os\n'), ((1012, 1040), 'os.getenv', 'os.getenv', (['"""DB_PORT"""', '"""5432"""'], {}), "('DB_PORT', '5432')\n", (1021, 1040), False, 'import os\n')]
from .logging import get_logger logger = get_logger(__name__) from asyncio import get_event_loop, gather try: from asyncio import get_running_loop except ImportError: get_running_loop = get_event_loop try: from asyncio import create_task except ImportError: create_task = None try: from asyncio import run except ImportError: run = None try: from contextlib import AsyncExitStack except ImportError: AsyncExitStack = None def create_task_polyfill(coro): loop = get_running_loop() task = loop.create_task(coro) return task def run_polyfill(main): loop = get_running_loop() try: return loop.run_until_complete(main) finally: _cancel_all_tasks(loop) loop.run_until_complete(loop.shutdown_asyncgens()) def _cancel_all_tasks(loop): to_cancel = tasks.all_tasks(loop) if to_cancel: for task in to_cancel: task.cancel() loop.run_until_complete(gather(*to_cancel, loop=loop, return_exceptions=True)) class AsyncExitStackPolyfill: def __init__(self): self._stack = [] async def __aenter__(self): return self async def __aexit__(self, exc_type, exc_val, exc_tb): for cm in reversed(self._stack): try: await cm.__aexit__(exc_type, exc_val, exc_tb) except BaseException as e: logger.exception('cm.__aexit__ failed: %r; cm: %r', e, cm) self._stack = None async def enter_async_context(self, cm): res = await cm.__aenter__() self._stack.append(cm) return res if create_task is None: create_task = create_task_polyfill if run is None: run = run_polyfill if AsyncExitStack is None: AsyncExitStack = AsyncExitStackPolyfill
[ "asyncio.get_running_loop", "asyncio.gather" ]
[((505, 523), 'asyncio.get_running_loop', 'get_running_loop', ([], {}), '()\n', (521, 523), False, 'from asyncio import get_running_loop\n'), ((611, 629), 'asyncio.get_running_loop', 'get_running_loop', ([], {}), '()\n', (627, 629), False, 'from asyncio import get_running_loop\n'), ((964, 1017), 'asyncio.gather', 'gather', (['*to_cancel'], {'loop': 'loop', 'return_exceptions': '(True)'}), '(*to_cancel, loop=loop, return_exceptions=True)\n', (970, 1017), False, 'from asyncio import get_event_loop, gather\n')]
import typing import sys sys.setrecursionlimit(1 << 20) import dataclasses @dataclasses.dataclass class Node(): parent: int size: int = 1 rank: int = 0 class UnionFind(): def __init__( self, n: int, ) -> typing.NoReturn: self.__a = [Node(i) for i in range(n)] def find( self, u: int, ) -> int: a = self.__a pu = a[u].parent if pu == u: return u pu = self.find(pu) a[u].parent = pu return pu def groups(self) -> typing.List[ typing.List[int] ]: n = len(self.__a) g = [[] for _ in range(n)] for u in range(n): g[self.find(u)].append(u) return [x for x in g if x] def same( self, u: int, v: int, ) -> bool: return self.find(u) == self.find(v) def size( self, u: int, ) -> int: return self.__a[self.find(u)].size def unite( self, u: int, v: int, ) -> typing.NoReturn: u = self.find(u) v = self.find(v) if u == v: return a = self.__a if a[u].size < a[v].size: u, v = v, u a[u].size += a[v].size a[v].parent = u
[ "sys.setrecursionlimit" ]
[((25, 55), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(1 << 20)'], {}), '(1 << 20)\n', (46, 55), False, 'import sys\n')]
# -*- coding: utf-8 -*- # desc = 'Scatter plot' #phash = '5fd219cc653c85a5' phash = '5f425b484525bf95' def plot(): from matplotlib import pyplot as plt from matplotlib import style import numpy as np fig = plt.figure() with plt.style.context(('fivethirtyeight')): np.random.seed(123) plt.scatter( np.linspace(0, 100, 101), np.linspace(0, 100, 101) + 15 * np.random.rand(101) ) return fig
[ "numpy.random.rand", "matplotlib.pyplot.figure", "matplotlib.pyplot.style.context", "numpy.linspace", "numpy.random.seed" ]
[((224, 236), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (234, 236), True, 'from matplotlib import pyplot as plt\n'), ((246, 282), 'matplotlib.pyplot.style.context', 'plt.style.context', (['"""fivethirtyeight"""'], {}), "('fivethirtyeight')\n", (263, 282), True, 'from matplotlib import pyplot as plt\n'), ((294, 313), 'numpy.random.seed', 'np.random.seed', (['(123)'], {}), '(123)\n', (308, 313), True, 'import numpy as np\n'), ((351, 375), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(101)'], {}), '(0, 100, 101)\n', (362, 375), True, 'import numpy as np\n'), ((393, 417), 'numpy.linspace', 'np.linspace', (['(0)', '(100)', '(101)'], {}), '(0, 100, 101)\n', (404, 417), True, 'import numpy as np\n'), ((425, 444), 'numpy.random.rand', 'np.random.rand', (['(101)'], {}), '(101)\n', (439, 444), True, 'import numpy as np\n')]
from csignal_tests import * from array import array import random import struct import socket import ctypes import unittest class TestsBitPacker( unittest.TestCase ): def test_get_bytes_add_bits( self ): bitPacker = python_bit_packer_initialize() self.assertNotEquals( bitPacker, None ) data = "\x12\x34\x56\x78" for datum in data: byte = ord( datum ) self.assertEquals( bit_packer_add_bits( ( byte >> 4 ), 4, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( byte, 4, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) string = python_bit_packer_get_bytes( bitPacker ) self.assertNotEquals( string, None ) self.assertEquals( len( string ), len( data ) ) for index in range( len( string ) ): self.assertEquals( string[ index ], data[ index ] ) for datum in data: byte = ord( datum ) self.assertEquals( bit_packer_add_bits( ( byte >> 6 ), 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 4 ), 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 2 ), 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( byte, 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) string = python_bit_packer_get_bytes( bitPacker ) self.assertNotEquals( string, None ) self.assertEquals( len( string ), len( data ) * 2 ) for index in range( len( data ) ): self.assertEquals( string[ index ], data[ index ] ) for index in range( len( data ) ): self.assertEquals( string[ index + len( data ) ], data[ index ] ) for datum in data: byte = ord( datum ) self.assertEquals( bit_packer_add_bits( ( byte >> 7 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 6 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 5 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 4 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 3 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 2 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 1 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( byte, 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) string = python_bit_packer_get_bytes( bitPacker ) self.assertNotEquals( string, None ) self.assertEquals( len( string ), len( data ) * 3 ) for index in range( len( data ) ): self.assertEquals( string[ index ], data[ index ] ) for index in range( len( data ) ): self.assertEquals( string[ index + len( data ) ], data[ index ] ) for index in range( len( data ) ): self.assertEquals( string[ index + ( 2 * len( data ) ) ], data[ index ] ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) def test_get_bytes( self ): bitPacker = python_bit_packer_initialize() self.assertNotEquals( bitPacker, None ) data = "Hello" self.assertEquals ( python_bit_packer_add_bytes ( data, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) string = python_bit_packer_get_bytes( bitPacker ) self.assertNotEquals( string, None ) self.assertEquals( len( string ), len( data ) ) for index in range( len( string ) ): self.assertEquals( string[ index ], data[ index ] ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) bitPacker = python_bit_packer_initialize() data = struct.pack( "I", 1722 ) self.assertEquals ( python_bit_packer_add_bytes ( data, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) string = python_bit_packer_get_bytes( bitPacker ) self.assertNotEquals( string, None ) self.assertEquals( len( string ), len( data ) ) for index in range( len( string ) ): self.assertEquals( string[ index ], data[ index ] ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) bitPacker = python_bit_packer_initialize() data = "" for index in range( 100 ): value = 32767 * random.normalvariate( 0, 1 ) value = socket.htonl( struct.unpack( "I", struct.pack( "i", int( value ) ) )[ 0 ] ) if( 0 > value ): value = struct.pack( "i", value ) value = struct.unpack( "I", value )[ 0 ] value = struct.pack( "I", value ) data = data + value self.assertEquals ( python_bit_packer_add_bytes ( data, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) string = python_bit_packer_get_bytes( bitPacker ) self.assertNotEquals( string, None ) self.assertEquals( len( string ), len( data ) ) for index in range( len( string ) ): self.assertEquals( string[ index ], data[ index ] ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) def test_bit_packer_negative( self ): self.assertNotEquals( bit_packer_destroy( None ), CPC_ERROR_CODE_NO_ERROR ) dataBuffer = array( 'B', "1" ) self.assertNotEquals( bit_packer_add_bits( dataBuffer[ 0 ], 8, None ), CPC_ERROR_CODE_NO_ERROR ) self.assertNotEquals( python_bit_packer_add_bytes( "1", None ), CPC_ERROR_CODE_NO_ERROR ) self.assertNotEquals( python_bit_packer_add_bytes( 1, None ), CPC_ERROR_CODE_NO_ERROR ) bitPacker = python_bit_packer_initialize() self.assertNotEquals( bitPacker, None ) self.assertNotEquals( bit_packer_add_bits( dataBuffer[ 0 ], 12, None ), CPC_ERROR_CODE_NO_ERROR ) self.assertNotEquals( python_bit_packer_add_bytes( None, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) def test_add_bits( self ): bitPacker = python_bit_packer_initialize() self.assertNotEquals( bitPacker, None ) dataBuffer = array( 'B', "\x12\x34\x56\x78" ) for byte in dataBuffer: self.assertEquals( bit_packer_add_bits( ( byte >> 4 ), 4, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( byte, 4, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) for byte in dataBuffer: self.assertEquals( bit_packer_add_bits( ( byte >> 6 ), 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 4 ), 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 2 ), 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( byte, 2, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) for byte in dataBuffer: self.assertEquals( bit_packer_add_bits( ( byte >> 7 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 6 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 5 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 4 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 3 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 2 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( ( byte >> 1 ), 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals( bit_packer_add_bits( byte, 1, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) def test_add_bytes( self ): bitPacker = python_bit_packer_initialize() self.assertNotEquals( bitPacker, None ) data = "Hello" self.assertEquals ( python_bit_packer_add_bytes ( data, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) data = struct.pack( "I", 1722 ) self.assertEquals ( python_bit_packer_add_bytes ( data, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) data = "" for index in range( 100 ): value = 32767 * random.normalvariate( 0, 1 ) value = struct.pack( "i", int( value ) ) data = data + value self.assertEquals ( python_bit_packer_add_bytes ( data, bitPacker ), CPC_ERROR_CODE_NO_ERROR ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) def test_initialize_destroy( self ): bitPacker = python_bit_packer_initialize() self.assertNotEquals( bitPacker, None ) self.assertEquals ( bit_packer_destroy( bitPacker ), CPC_ERROR_CODE_NO_ERROR ) if __name__ == '__main__': cpc_log_set_log_level( CPC_LOG_LEVEL_ERROR ) csignal_initialize() unittest.main() csignal_terminate()
[ "random.normalvariate", "array.array", "struct.pack", "struct.unpack", "unittest.main" ]
[((9398, 9413), 'unittest.main', 'unittest.main', ([], {}), '()\n', (9411, 9413), False, 'import unittest\n'), ((3869, 3891), 'struct.pack', 'struct.pack', (['"""I"""', '(1722)'], {}), "('I', 1722)\n", (3880, 3891), False, 'import struct\n'), ((5550, 5565), 'array.array', 'array', (['"""B"""', '"""1"""'], {}), "('B', '1')\n", (5555, 5565), False, 'from array import array\n'), ((6377, 6398), 'array.array', 'array', (['"""B"""', '"""\x124Vx"""'], {}), "('B', '\\x124Vx')\n", (6382, 6398), False, 'from array import array\n'), ((8367, 8389), 'struct.pack', 'struct.pack', (['"""I"""', '(1722)'], {}), "('I', 1722)\n", (8378, 8389), False, 'import struct\n'), ((4809, 4832), 'struct.pack', 'struct.pack', (['"""I"""', 'value'], {}), "('I', value)\n", (4820, 4832), False, 'import struct\n'), ((4560, 4586), 'random.normalvariate', 'random.normalvariate', (['(0)', '(1)'], {}), '(0, 1)\n', (4580, 4586), False, 'import random\n'), ((4719, 4742), 'struct.pack', 'struct.pack', (['"""i"""', 'value'], {}), "('i', value)\n", (4730, 4742), False, 'import struct\n'), ((8643, 8669), 'random.normalvariate', 'random.normalvariate', (['(0)', '(1)'], {}), '(0, 1)\n', (8663, 8669), False, 'import random\n'), ((4761, 4786), 'struct.unpack', 'struct.unpack', (['"""I"""', 'value'], {}), "('I', value)\n", (4774, 4786), False, 'import struct\n')]
#!/usr/bin/env python # # Cloudlet Infrastructure for Mobile Computing # - Task Assistance # # Author: # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Copyright (C) 2011-2013 Carnegie Mellon University # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import json import multiprocessing import os import pprint import Queue import socket import struct import sys import threading import time from base64 import b64decode, b64encode import cv2 import numpy as np from gabrieltool.statemachine import runner, wca_state_machine_pb2, fsm import gabriel import gabriel.proxy LOG = gabriel.logging.getLogger(__name__) def raw2cv_image(raw_data, gray_scale=False): img_array = np.asarray(bytearray(raw_data), dtype=np.int8) if gray_scale: cv_image = cv2.imdecode(img_array, 0) else: cv_image = cv2.imdecode(img_array, -1) return cv_image class CookingProxy(gabriel.proxy.CognitiveProcessThread): def __init__(self, fsm_path, image_queue, output_queue, engine_id, log_flag=True): super(CookingProxy, self).__init__(image_queue, output_queue, engine_id) self.log_flag = log_flag self._fsm = None with open(fsm_path, 'rb') as f: self._fsm = fsm.StateMachine.from_bytes(f.read()) self._fsm_runner = runner.Runner(self._fsm) def terminate(self): super(CookingProxy, self).terminate() def handle(self, header, data): LOG.info("received new image") # status success is needed header['status'] = "success" # default result = {} img = raw2cv_image(data) inst = self._fsm_runner.feed(img) # gotcha: the Gabriel client expects the absence of 'speech' and 'image' # keys when there is no such feedback if inst.audio: result['speech'] = inst.audio if inst.image: result['image'] = b64encode(inst.image) LOG.info('Current State: {}'.format(self._fsm_runner.current_state)) return json.dumps(result) if __name__ == "__main__": import argparse parser = argparse.ArgumentParser(description='Gabriel FSM Cognitive Engine') parser.add_argument('--fsm_path', action="store", dest="fsm_path", help='Path to the fsm', required=True) args, unknown = parser.parse_known_args() settings = gabriel.util.process_command_line(unknown) ip_addr, port = gabriel.network.get_registry_server_address(settings.address) service_list = gabriel.network.get_service_list(ip_addr, port) LOG.info("Gabriel Server :") LOG.info(pprint.pformat(service_list)) video_ip = service_list.get(gabriel.ServiceMeta.VIDEO_TCP_STREAMING_IP) video_port = service_list.get(gabriel.ServiceMeta.VIDEO_TCP_STREAMING_PORT) ucomm_ip = service_list.get(gabriel.ServiceMeta.UCOMM_SERVER_IP) ucomm_port = service_list.get(gabriel.ServiceMeta.UCOMM_SERVER_PORT) # image receiving thread image_queue = Queue.Queue(gabriel.Const.APP_LEVEL_TOKEN_SIZE) print("TOKEN SIZE OF OFFLOADING ENGINE: %d" % gabriel.Const.APP_LEVEL_TOKEN_SIZE) video_streaming = gabriel.proxy.SensorReceiveClient((video_ip, video_port), image_queue) video_streaming.start() video_streaming.isDaemon = True # app proxy result_queue = multiprocessing.Queue() app_proxy = CookingProxy(args.fsm_path, image_queue, result_queue, engine_id="Sandwich") app_proxy.start() app_proxy.isDaemon = True # result pub/sub result_pub = gabriel.proxy.ResultPublishClient((ucomm_ip, ucomm_port), result_queue) result_pub.start() result_pub.isDaemon = True try: while True: time.sleep(1) except Exception as e: pass except KeyboardInterrupt as e: sys.stdout.write("user exits\n") finally: if video_streaming is not None: video_streaming.terminate() if app_proxy is not None: app_proxy.terminate() result_pub.terminate()
[ "gabriel.logging.getLogger", "gabriel.proxy.SensorReceiveClient", "argparse.ArgumentParser", "gabriel.network.get_service_list", "base64.b64encode", "json.dumps", "pprint.pformat", "gabriel.proxy.ResultPublishClient", "time.sleep", "cv2.imdecode", "gabrieltool.statemachine.runner.Runner", "gabriel.util.process_command_line", "multiprocessing.Queue", "Queue.Queue", "gabriel.network.get_registry_server_address", "sys.stdout.write" ]
[((1104, 1139), 'gabriel.logging.getLogger', 'gabriel.logging.getLogger', (['__name__'], {}), '(__name__)\n', (1129, 1139), False, 'import gabriel\n'), ((2608, 2675), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Gabriel FSM Cognitive Engine"""'}), "(description='Gabriel FSM Cognitive Engine')\n", (2631, 2675), False, 'import argparse\n'), ((2848, 2890), 'gabriel.util.process_command_line', 'gabriel.util.process_command_line', (['unknown'], {}), '(unknown)\n', (2881, 2890), False, 'import gabriel\n'), ((2912, 2973), 'gabriel.network.get_registry_server_address', 'gabriel.network.get_registry_server_address', (['settings.address'], {}), '(settings.address)\n', (2955, 2973), False, 'import gabriel\n'), ((2993, 3040), 'gabriel.network.get_service_list', 'gabriel.network.get_service_list', (['ip_addr', 'port'], {}), '(ip_addr, port)\n', (3025, 3040), False, 'import gabriel\n'), ((3464, 3511), 'Queue.Queue', 'Queue.Queue', (['gabriel.Const.APP_LEVEL_TOKEN_SIZE'], {}), '(gabriel.Const.APP_LEVEL_TOKEN_SIZE)\n', (3475, 3511), False, 'import Queue\n'), ((3620, 3690), 'gabriel.proxy.SensorReceiveClient', 'gabriel.proxy.SensorReceiveClient', (['(video_ip, video_port)', 'image_queue'], {}), '((video_ip, video_port), image_queue)\n', (3653, 3690), False, 'import gabriel\n'), ((3791, 3814), 'multiprocessing.Queue', 'multiprocessing.Queue', ([], {}), '()\n', (3812, 3814), False, 'import multiprocessing\n'), ((4000, 4071), 'gabriel.proxy.ResultPublishClient', 'gabriel.proxy.ResultPublishClient', (['(ucomm_ip, ucomm_port)', 'result_queue'], {}), '((ucomm_ip, ucomm_port), result_queue)\n', (4033, 4071), False, 'import gabriel\n'), ((1289, 1315), 'cv2.imdecode', 'cv2.imdecode', (['img_array', '(0)'], {}), '(img_array, 0)\n', (1301, 1315), False, 'import cv2\n'), ((1345, 1372), 'cv2.imdecode', 'cv2.imdecode', (['img_array', '(-1)'], {}), '(img_array, -1)\n', (1357, 1372), False, 'import cv2\n'), ((1808, 1832), 'gabrieltool.statemachine.runner.Runner', 'runner.Runner', (['self._fsm'], {}), '(self._fsm)\n', (1821, 1832), False, 'from gabrieltool.statemachine import runner, wca_state_machine_pb2, fsm\n'), ((2527, 2545), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (2537, 2545), False, 'import json\n'), ((3087, 3115), 'pprint.pformat', 'pprint.pformat', (['service_list'], {}), '(service_list)\n', (3101, 3115), False, 'import pprint\n'), ((2413, 2434), 'base64.b64encode', 'b64encode', (['inst.image'], {}), '(inst.image)\n', (2422, 2434), False, 'from base64 import b64decode, b64encode\n'), ((4168, 4181), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (4178, 4181), False, 'import time\n'), ((4265, 4297), 'sys.stdout.write', 'sys.stdout.write', (['"""user exits\n"""'], {}), "('user exits\\n')\n", (4281, 4297), False, 'import sys\n')]
import os from io import BytesIO as BaseBytesIO from uuid import uuid4 from django.test import TestCase as BaseTestCase from django_webtest import WebTest as BaseWebTest from elastic_panel import panel from feedhq import es from feedhq.utils import get_redis_connection from rache import job_key from requests import Response TEST_DATA = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'data') _old_pretty_json = panel._pretty_json def _pretty_json(data): pretty = _old_pretty_json(data) if isinstance(pretty, str): pretty = pretty.encode() return pretty panel._pretty_json = _pretty_json class BytesIO(BaseBytesIO): def read(self, *args, **kwargs): kwargs.pop('decode_content', None) return super().read(*args, **kwargs) def data_file(name): return os.path.join(TEST_DATA, name) def responses(code, path=None, redirection=None, data=None, url=None, headers=None): if headers is None: headers = {'Content-Type': 'text/xml'} response = Response() response.status_code = code if path is not None and redirection is None: with open(data_file(path), 'rb') as f: response.raw = BytesIO(f.read()) elif data is not None: response._content = data.encode('utf-8') if redirection is not None: temp = Response() temp.status_code = 301 if 'permanent' in redirection else 302 temp.url = path response.history.append(temp) response.url = redirection headers['location'] = path if url is None: if redirection is not None: url = redirection else: url = 'https://example.com/{}'.format(str(uuid4())) response.url = url response.headers = headers return response def resolve_url(url, *args, **kwargs): response = Response() response.status_code = 200 response.url = url return response class ESTests(object): def counts(self, user, **kwargs): es_entries = es.manager.user(user) for name, filters in kwargs.items(): es_entries = es_entries.query_aggregate(name, **filters) results = es_entries.fetch(per_page=0)['aggregations']['entries'] return {name: results[name]['doc_count'] for name in kwargs} class TestCase(ESTests, BaseTestCase): def tearDown(self): # noqa """Clean up the rache:* redis keys""" get_redis_connection().flushdb() setUp = tearDown class WebTest(ESTests, BaseWebTest): pass def patch_job(name, **kwargs): redis = get_redis_connection() for key, value in list(kwargs.items()): if value is None: redis.hdel(job_key(name), key) kwargs.pop(key) redis.hmset(job_key(name), kwargs)
[ "rache.job_key", "feedhq.utils.get_redis_connection", "feedhq.es.manager.user", "requests.Response", "os.path.join", "uuid.uuid4", "os.path.dirname" ]
[((815, 844), 'os.path.join', 'os.path.join', (['TEST_DATA', 'name'], {}), '(TEST_DATA, name)\n', (827, 844), False, 'import os\n'), ((1046, 1056), 'requests.Response', 'Response', ([], {}), '()\n', (1054, 1056), False, 'from requests import Response\n'), ((1860, 1870), 'requests.Response', 'Response', ([], {}), '()\n', (1868, 1870), False, 'from requests import Response\n'), ((2582, 2604), 'feedhq.utils.get_redis_connection', 'get_redis_connection', ([], {}), '()\n', (2602, 2604), False, 'from feedhq.utils import get_redis_connection\n'), ((370, 395), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (385, 395), False, 'import os\n'), ((1353, 1363), 'requests.Response', 'Response', ([], {}), '()\n', (1361, 1363), False, 'from requests import Response\n'), ((2029, 2050), 'feedhq.es.manager.user', 'es.manager.user', (['user'], {}), '(user)\n', (2044, 2050), False, 'from feedhq import es\n'), ((2762, 2775), 'rache.job_key', 'job_key', (['name'], {}), '(name)\n', (2769, 2775), False, 'from rache import job_key\n'), ((2435, 2457), 'feedhq.utils.get_redis_connection', 'get_redis_connection', ([], {}), '()\n', (2455, 2457), False, 'from feedhq.utils import get_redis_connection\n'), ((2698, 2711), 'rache.job_key', 'job_key', (['name'], {}), '(name)\n', (2705, 2711), False, 'from rache import job_key\n'), ((1720, 1727), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (1725, 1727), False, 'from uuid import uuid4\n')]
'''tzinfo timezone information for Portugal.''' from pytz.tzinfo import DstTzInfo from pytz.tzinfo import memorized_datetime as d from pytz.tzinfo import memorized_ttinfo as i class Portugal(DstTzInfo): '''Portugal timezone definition. See datetime.tzinfo for details''' zone = 'Portugal' _utc_transition_times = [ d(1,1,1,0,0,0), d(1912,1,1,0,36,32), d(1916,6,17,23,0,0), d(1916,11,1,0,0,0), d(1917,2,28,23,0,0), d(1917,10,14,23,0,0), d(1918,3,1,23,0,0), d(1918,10,14,23,0,0), d(1919,2,28,23,0,0), d(1919,10,14,23,0,0), d(1920,2,29,23,0,0), d(1920,10,14,23,0,0), d(1921,2,28,23,0,0), d(1921,10,14,23,0,0), d(1924,4,16,23,0,0), d(1924,10,14,23,0,0), d(1926,4,17,23,0,0), d(1926,10,2,23,0,0), d(1927,4,9,23,0,0), d(1927,10,1,23,0,0), d(1928,4,14,23,0,0), d(1928,10,6,23,0,0), d(1929,4,20,23,0,0), d(1929,10,5,23,0,0), d(1931,4,18,23,0,0), d(1931,10,3,23,0,0), d(1932,4,2,23,0,0), d(1932,10,1,23,0,0), d(1934,4,7,23,0,0), d(1934,10,6,23,0,0), d(1935,3,30,23,0,0), d(1935,10,5,23,0,0), d(1936,4,18,23,0,0), d(1936,10,3,23,0,0), d(1937,4,3,23,0,0), d(1937,10,2,23,0,0), d(1938,3,26,23,0,0), d(1938,10,1,23,0,0), d(1939,4,15,23,0,0), d(1939,11,18,23,0,0), d(1940,2,24,23,0,0), d(1940,10,5,23,0,0), d(1941,4,5,23,0,0), d(1941,10,5,23,0,0), d(1942,3,14,23,0,0), d(1942,4,25,22,0,0), d(1942,8,15,22,0,0), d(1942,10,24,23,0,0), d(1943,3,13,23,0,0), d(1943,4,17,22,0,0), d(1943,8,28,22,0,0), d(1943,10,30,23,0,0), d(1944,3,11,23,0,0), d(1944,4,22,22,0,0), d(1944,8,26,22,0,0), d(1944,10,28,23,0,0), d(1945,3,10,23,0,0), d(1945,4,21,22,0,0), d(1945,8,25,22,0,0), d(1945,10,27,23,0,0), d(1946,4,6,23,0,0), d(1946,10,5,23,0,0), d(1947,4,6,2,0,0), d(1947,10,5,2,0,0), d(1948,4,4,2,0,0), d(1948,10,3,2,0,0), d(1949,4,3,2,0,0), d(1949,10,2,2,0,0), d(1951,4,1,2,0,0), d(1951,10,7,2,0,0), d(1952,4,6,2,0,0), d(1952,10,5,2,0,0), d(1953,4,5,2,0,0), d(1953,10,4,2,0,0), d(1954,4,4,2,0,0), d(1954,10,3,2,0,0), d(1955,4,3,2,0,0), d(1955,10,2,2,0,0), d(1956,4,1,2,0,0), d(1956,10,7,2,0,0), d(1957,4,7,2,0,0), d(1957,10,6,2,0,0), d(1958,4,6,2,0,0), d(1958,10,5,2,0,0), d(1959,4,5,2,0,0), d(1959,10,4,2,0,0), d(1960,4,3,2,0,0), d(1960,10,2,2,0,0), d(1961,4,2,2,0,0), d(1961,10,1,2,0,0), d(1962,4,1,2,0,0), d(1962,10,7,2,0,0), d(1963,4,7,2,0,0), d(1963,10,6,2,0,0), d(1964,4,5,2,0,0), d(1964,10,4,2,0,0), d(1965,4,4,2,0,0), d(1965,10,3,2,0,0), d(1966,4,3,2,0,0), d(1976,9,26,0,0,0), d(1977,3,27,0,0,0), d(1977,9,25,0,0,0), d(1978,4,2,0,0,0), d(1978,10,1,0,0,0), d(1979,4,1,0,0,0), d(1979,9,30,1,0,0), d(1980,3,30,0,0,0), d(1980,9,28,1,0,0), d(1981,3,29,1,0,0), d(1981,9,27,1,0,0), d(1982,3,28,1,0,0), d(1982,9,26,1,0,0), d(1983,3,27,2,0,0), d(1983,9,25,1,0,0), d(1984,3,25,1,0,0), d(1984,9,30,1,0,0), d(1985,3,31,1,0,0), d(1985,9,29,1,0,0), d(1986,3,30,1,0,0), d(1986,9,28,1,0,0), d(1987,3,29,1,0,0), d(1987,9,27,1,0,0), d(1988,3,27,1,0,0), d(1988,9,25,1,0,0), d(1989,3,26,1,0,0), d(1989,9,24,1,0,0), d(1990,3,25,1,0,0), d(1990,9,30,1,0,0), d(1991,3,31,1,0,0), d(1991,9,29,1,0,0), d(1992,3,29,1,0,0), d(1992,9,27,1,0,0), d(1993,3,28,1,0,0), d(1993,9,26,1,0,0), d(1994,3,27,1,0,0), d(1994,9,25,1,0,0), d(1995,3,26,1,0,0), d(1995,9,24,1,0,0), d(1996,3,31,1,0,0), d(1996,10,27,1,0,0), d(1997,3,30,1,0,0), d(1997,10,26,1,0,0), d(1998,3,29,1,0,0), d(1998,10,25,1,0,0), d(1999,3,28,1,0,0), d(1999,10,31,1,0,0), d(2000,3,26,1,0,0), d(2000,10,29,1,0,0), d(2001,3,25,1,0,0), d(2001,10,28,1,0,0), d(2002,3,31,1,0,0), d(2002,10,27,1,0,0), d(2003,3,30,1,0,0), d(2003,10,26,1,0,0), d(2004,3,28,1,0,0), d(2004,10,31,1,0,0), d(2005,3,27,1,0,0), d(2005,10,30,1,0,0), d(2006,3,26,1,0,0), d(2006,10,29,1,0,0), d(2007,3,25,1,0,0), d(2007,10,28,1,0,0), d(2008,3,30,1,0,0), d(2008,10,26,1,0,0), d(2009,3,29,1,0,0), d(2009,10,25,1,0,0), d(2010,3,28,1,0,0), d(2010,10,31,1,0,0), d(2011,3,27,1,0,0), d(2011,10,30,1,0,0), d(2012,3,25,1,0,0), d(2012,10,28,1,0,0), d(2013,3,31,1,0,0), d(2013,10,27,1,0,0), d(2014,3,30,1,0,0), d(2014,10,26,1,0,0), d(2015,3,29,1,0,0), d(2015,10,25,1,0,0), d(2016,3,27,1,0,0), d(2016,10,30,1,0,0), d(2017,3,26,1,0,0), d(2017,10,29,1,0,0), d(2018,3,25,1,0,0), d(2018,10,28,1,0,0), d(2019,3,31,1,0,0), d(2019,10,27,1,0,0), d(2020,3,29,1,0,0), d(2020,10,25,1,0,0), d(2021,3,28,1,0,0), d(2021,10,31,1,0,0), d(2022,3,27,1,0,0), d(2022,10,30,1,0,0), d(2023,3,26,1,0,0), d(2023,10,29,1,0,0), d(2024,3,31,1,0,0), d(2024,10,27,1,0,0), d(2025,3,30,1,0,0), d(2025,10,26,1,0,0), d(2026,3,29,1,0,0), d(2026,10,25,1,0,0), d(2027,3,28,1,0,0), d(2027,10,31,1,0,0), d(2028,3,26,1,0,0), d(2028,10,29,1,0,0), d(2029,3,25,1,0,0), d(2029,10,28,1,0,0), d(2030,3,31,1,0,0), d(2030,10,27,1,0,0), d(2031,3,30,1,0,0), d(2031,10,26,1,0,0), d(2032,3,28,1,0,0), d(2032,10,31,1,0,0), d(2033,3,27,1,0,0), d(2033,10,30,1,0,0), d(2034,3,26,1,0,0), d(2034,10,29,1,0,0), d(2035,3,25,1,0,0), d(2035,10,28,1,0,0), d(2036,3,30,1,0,0), d(2036,10,26,1,0,0), d(2037,3,29,1,0,0), d(2037,10,25,1,0,0), ] _transition_info = [ i(-2220,0,'LMT'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(7200,7200,'WEMT'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,0,'CET'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(7200,3600,'CEST'), i(3600,0,'CET'), i(3600,0,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), i(3600,3600,'WEST'), i(0,0,'WET'), ] Portugal = Portugal()
[ "pytz.tzinfo.memorized_ttinfo", "pytz.tzinfo.memorized_datetime" ]
[((330, 349), 'pytz.tzinfo.memorized_datetime', 'd', (['(1)', '(1)', '(1)', '(0)', '(0)', '(0)'], {}), '(1, 1, 1, 0, 0, 0)\n', (331, 349), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((346, 370), 'pytz.tzinfo.memorized_datetime', 'd', (['(1912)', '(1)', '(1)', '(0)', '(36)', '(32)'], {}), '(1912, 1, 1, 0, 36, 32)\n', (347, 370), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((367, 391), 'pytz.tzinfo.memorized_datetime', 'd', (['(1916)', '(6)', '(17)', '(23)', '(0)', '(0)'], {}), '(1916, 6, 17, 23, 0, 0)\n', (368, 391), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((388, 411), 'pytz.tzinfo.memorized_datetime', 'd', (['(1916)', '(11)', '(1)', '(0)', '(0)', '(0)'], {}), '(1916, 11, 1, 0, 0, 0)\n', (389, 411), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((408, 432), 'pytz.tzinfo.memorized_datetime', 'd', (['(1917)', '(2)', '(28)', '(23)', '(0)', '(0)'], {}), '(1917, 2, 28, 23, 0, 0)\n', (409, 432), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((429, 454), 'pytz.tzinfo.memorized_datetime', 'd', (['(1917)', '(10)', '(14)', '(23)', '(0)', '(0)'], {}), '(1917, 10, 14, 23, 0, 0)\n', (430, 454), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((451, 474), 'pytz.tzinfo.memorized_datetime', 'd', (['(1918)', '(3)', '(1)', '(23)', '(0)', '(0)'], {}), '(1918, 3, 1, 23, 0, 0)\n', (452, 474), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((471, 496), 'pytz.tzinfo.memorized_datetime', 'd', (['(1918)', '(10)', '(14)', '(23)', '(0)', '(0)'], {}), '(1918, 10, 14, 23, 0, 0)\n', (472, 496), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((493, 517), 'pytz.tzinfo.memorized_datetime', 'd', (['(1919)', '(2)', '(28)', '(23)', '(0)', '(0)'], {}), '(1919, 2, 28, 23, 0, 0)\n', (494, 517), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((514, 539), 'pytz.tzinfo.memorized_datetime', 'd', (['(1919)', '(10)', '(14)', '(23)', '(0)', '(0)'], {}), '(1919, 10, 14, 23, 0, 0)\n', (515, 539), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((536, 560), 'pytz.tzinfo.memorized_datetime', 'd', (['(1920)', '(2)', '(29)', '(23)', '(0)', '(0)'], {}), '(1920, 2, 29, 23, 0, 0)\n', (537, 560), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((557, 582), 'pytz.tzinfo.memorized_datetime', 'd', (['(1920)', '(10)', '(14)', '(23)', '(0)', '(0)'], {}), '(1920, 10, 14, 23, 0, 0)\n', (558, 582), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((579, 603), 'pytz.tzinfo.memorized_datetime', 'd', (['(1921)', '(2)', '(28)', '(23)', '(0)', '(0)'], {}), '(1921, 2, 28, 23, 0, 0)\n', (580, 603), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((600, 625), 'pytz.tzinfo.memorized_datetime', 'd', (['(1921)', '(10)', '(14)', '(23)', '(0)', '(0)'], {}), '(1921, 10, 14, 23, 0, 0)\n', (601, 625), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((622, 646), 'pytz.tzinfo.memorized_datetime', 'd', (['(1924)', '(4)', '(16)', '(23)', '(0)', '(0)'], {}), '(1924, 4, 16, 23, 0, 0)\n', (623, 646), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((643, 668), 'pytz.tzinfo.memorized_datetime', 'd', (['(1924)', '(10)', '(14)', '(23)', '(0)', '(0)'], {}), '(1924, 10, 14, 23, 0, 0)\n', (644, 668), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((665, 689), 'pytz.tzinfo.memorized_datetime', 'd', (['(1926)', '(4)', '(17)', '(23)', '(0)', '(0)'], {}), '(1926, 4, 17, 23, 0, 0)\n', (666, 689), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((686, 710), 'pytz.tzinfo.memorized_datetime', 'd', (['(1926)', '(10)', '(2)', '(23)', '(0)', '(0)'], {}), '(1926, 10, 2, 23, 0, 0)\n', (687, 710), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((707, 730), 'pytz.tzinfo.memorized_datetime', 'd', (['(1927)', '(4)', '(9)', '(23)', '(0)', '(0)'], {}), '(1927, 4, 9, 23, 0, 0)\n', (708, 730), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((727, 751), 'pytz.tzinfo.memorized_datetime', 'd', (['(1927)', '(10)', '(1)', '(23)', '(0)', '(0)'], {}), '(1927, 10, 1, 23, 0, 0)\n', (728, 751), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((748, 772), 'pytz.tzinfo.memorized_datetime', 'd', (['(1928)', '(4)', '(14)', '(23)', '(0)', '(0)'], {}), '(1928, 4, 14, 23, 0, 0)\n', (749, 772), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((769, 793), 'pytz.tzinfo.memorized_datetime', 'd', (['(1928)', '(10)', '(6)', '(23)', '(0)', '(0)'], {}), '(1928, 10, 6, 23, 0, 0)\n', (770, 793), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((790, 814), 'pytz.tzinfo.memorized_datetime', 'd', (['(1929)', '(4)', '(20)', '(23)', '(0)', '(0)'], {}), '(1929, 4, 20, 23, 0, 0)\n', (791, 814), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((811, 835), 'pytz.tzinfo.memorized_datetime', 'd', (['(1929)', '(10)', '(5)', '(23)', '(0)', '(0)'], {}), '(1929, 10, 5, 23, 0, 0)\n', (812, 835), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((832, 856), 'pytz.tzinfo.memorized_datetime', 'd', (['(1931)', '(4)', '(18)', '(23)', '(0)', '(0)'], {}), '(1931, 4, 18, 23, 0, 0)\n', (833, 856), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((853, 877), 'pytz.tzinfo.memorized_datetime', 'd', (['(1931)', '(10)', '(3)', '(23)', '(0)', '(0)'], {}), '(1931, 10, 3, 23, 0, 0)\n', (854, 877), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((874, 897), 'pytz.tzinfo.memorized_datetime', 'd', (['(1932)', '(4)', '(2)', '(23)', '(0)', '(0)'], {}), '(1932, 4, 2, 23, 0, 0)\n', (875, 897), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((894, 918), 'pytz.tzinfo.memorized_datetime', 'd', (['(1932)', '(10)', '(1)', '(23)', '(0)', '(0)'], {}), '(1932, 10, 1, 23, 0, 0)\n', (895, 918), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((915, 938), 'pytz.tzinfo.memorized_datetime', 'd', (['(1934)', '(4)', '(7)', '(23)', '(0)', '(0)'], {}), '(1934, 4, 7, 23, 0, 0)\n', (916, 938), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((935, 959), 'pytz.tzinfo.memorized_datetime', 'd', (['(1934)', '(10)', '(6)', '(23)', '(0)', '(0)'], {}), '(1934, 10, 6, 23, 0, 0)\n', (936, 959), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((956, 980), 'pytz.tzinfo.memorized_datetime', 'd', (['(1935)', '(3)', '(30)', '(23)', '(0)', '(0)'], {}), '(1935, 3, 30, 23, 0, 0)\n', (957, 980), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((977, 1001), 'pytz.tzinfo.memorized_datetime', 'd', (['(1935)', '(10)', '(5)', '(23)', '(0)', '(0)'], {}), '(1935, 10, 5, 23, 0, 0)\n', (978, 1001), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((998, 1022), 'pytz.tzinfo.memorized_datetime', 'd', (['(1936)', '(4)', '(18)', '(23)', '(0)', '(0)'], {}), '(1936, 4, 18, 23, 0, 0)\n', (999, 1022), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1019, 1043), 'pytz.tzinfo.memorized_datetime', 'd', (['(1936)', '(10)', '(3)', '(23)', '(0)', '(0)'], {}), '(1936, 10, 3, 23, 0, 0)\n', (1020, 1043), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1040, 1063), 'pytz.tzinfo.memorized_datetime', 'd', (['(1937)', '(4)', '(3)', '(23)', '(0)', '(0)'], {}), '(1937, 4, 3, 23, 0, 0)\n', (1041, 1063), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1060, 1084), 'pytz.tzinfo.memorized_datetime', 'd', (['(1937)', '(10)', '(2)', '(23)', '(0)', '(0)'], {}), '(1937, 10, 2, 23, 0, 0)\n', (1061, 1084), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1081, 1105), 'pytz.tzinfo.memorized_datetime', 'd', (['(1938)', '(3)', '(26)', '(23)', '(0)', '(0)'], {}), '(1938, 3, 26, 23, 0, 0)\n', (1082, 1105), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1102, 1126), 'pytz.tzinfo.memorized_datetime', 'd', (['(1938)', '(10)', '(1)', '(23)', '(0)', '(0)'], {}), '(1938, 10, 1, 23, 0, 0)\n', (1103, 1126), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1123, 1147), 'pytz.tzinfo.memorized_datetime', 'd', (['(1939)', '(4)', '(15)', '(23)', '(0)', '(0)'], {}), '(1939, 4, 15, 23, 0, 0)\n', (1124, 1147), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1144, 1169), 'pytz.tzinfo.memorized_datetime', 'd', (['(1939)', '(11)', '(18)', '(23)', '(0)', '(0)'], {}), '(1939, 11, 18, 23, 0, 0)\n', (1145, 1169), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1166, 1190), 'pytz.tzinfo.memorized_datetime', 'd', (['(1940)', '(2)', '(24)', '(23)', '(0)', '(0)'], {}), '(1940, 2, 24, 23, 0, 0)\n', (1167, 1190), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1187, 1211), 'pytz.tzinfo.memorized_datetime', 'd', (['(1940)', '(10)', '(5)', '(23)', '(0)', '(0)'], {}), '(1940, 10, 5, 23, 0, 0)\n', (1188, 1211), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1208, 1231), 'pytz.tzinfo.memorized_datetime', 'd', (['(1941)', '(4)', '(5)', '(23)', '(0)', '(0)'], {}), '(1941, 4, 5, 23, 0, 0)\n', (1209, 1231), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1228, 1252), 'pytz.tzinfo.memorized_datetime', 'd', (['(1941)', '(10)', '(5)', '(23)', '(0)', '(0)'], {}), '(1941, 10, 5, 23, 0, 0)\n', (1229, 1252), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1249, 1273), 'pytz.tzinfo.memorized_datetime', 'd', (['(1942)', '(3)', '(14)', '(23)', '(0)', '(0)'], {}), '(1942, 3, 14, 23, 0, 0)\n', (1250, 1273), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1270, 1294), 'pytz.tzinfo.memorized_datetime', 'd', (['(1942)', '(4)', '(25)', '(22)', '(0)', '(0)'], {}), '(1942, 4, 25, 22, 0, 0)\n', (1271, 1294), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1291, 1315), 'pytz.tzinfo.memorized_datetime', 'd', (['(1942)', '(8)', '(15)', '(22)', '(0)', '(0)'], {}), '(1942, 8, 15, 22, 0, 0)\n', (1292, 1315), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1312, 1337), 'pytz.tzinfo.memorized_datetime', 'd', (['(1942)', '(10)', '(24)', '(23)', '(0)', '(0)'], {}), '(1942, 10, 24, 23, 0, 0)\n', (1313, 1337), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1334, 1358), 'pytz.tzinfo.memorized_datetime', 'd', (['(1943)', '(3)', '(13)', '(23)', '(0)', '(0)'], {}), '(1943, 3, 13, 23, 0, 0)\n', (1335, 1358), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1355, 1379), 'pytz.tzinfo.memorized_datetime', 'd', (['(1943)', '(4)', '(17)', '(22)', '(0)', '(0)'], {}), '(1943, 4, 17, 22, 0, 0)\n', (1356, 1379), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1376, 1400), 'pytz.tzinfo.memorized_datetime', 'd', (['(1943)', '(8)', '(28)', '(22)', '(0)', '(0)'], {}), '(1943, 8, 28, 22, 0, 0)\n', (1377, 1400), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1397, 1422), 'pytz.tzinfo.memorized_datetime', 'd', (['(1943)', '(10)', '(30)', '(23)', '(0)', '(0)'], {}), '(1943, 10, 30, 23, 0, 0)\n', (1398, 1422), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1419, 1443), 'pytz.tzinfo.memorized_datetime', 'd', (['(1944)', '(3)', '(11)', '(23)', '(0)', '(0)'], {}), '(1944, 3, 11, 23, 0, 0)\n', (1420, 1443), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1440, 1464), 'pytz.tzinfo.memorized_datetime', 'd', (['(1944)', '(4)', '(22)', '(22)', '(0)', '(0)'], {}), '(1944, 4, 22, 22, 0, 0)\n', (1441, 1464), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1461, 1485), 'pytz.tzinfo.memorized_datetime', 'd', (['(1944)', '(8)', '(26)', '(22)', '(0)', '(0)'], {}), '(1944, 8, 26, 22, 0, 0)\n', (1462, 1485), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1482, 1507), 'pytz.tzinfo.memorized_datetime', 'd', (['(1944)', '(10)', '(28)', '(23)', '(0)', '(0)'], {}), '(1944, 10, 28, 23, 0, 0)\n', (1483, 1507), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1504, 1528), 'pytz.tzinfo.memorized_datetime', 'd', (['(1945)', '(3)', '(10)', '(23)', '(0)', '(0)'], {}), '(1945, 3, 10, 23, 0, 0)\n', (1505, 1528), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1525, 1549), 'pytz.tzinfo.memorized_datetime', 'd', (['(1945)', '(4)', '(21)', '(22)', '(0)', '(0)'], {}), '(1945, 4, 21, 22, 0, 0)\n', (1526, 1549), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1546, 1570), 'pytz.tzinfo.memorized_datetime', 'd', (['(1945)', '(8)', '(25)', '(22)', '(0)', '(0)'], {}), '(1945, 8, 25, 22, 0, 0)\n', (1547, 1570), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1567, 1592), 'pytz.tzinfo.memorized_datetime', 'd', (['(1945)', '(10)', '(27)', '(23)', '(0)', '(0)'], {}), '(1945, 10, 27, 23, 0, 0)\n', (1568, 1592), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1589, 1612), 'pytz.tzinfo.memorized_datetime', 'd', (['(1946)', '(4)', '(6)', '(23)', '(0)', '(0)'], {}), '(1946, 4, 6, 23, 0, 0)\n', (1590, 1612), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1609, 1633), 'pytz.tzinfo.memorized_datetime', 'd', (['(1946)', '(10)', '(5)', '(23)', '(0)', '(0)'], {}), '(1946, 10, 5, 23, 0, 0)\n', (1610, 1633), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1630, 1652), 'pytz.tzinfo.memorized_datetime', 'd', (['(1947)', '(4)', '(6)', '(2)', '(0)', '(0)'], {}), '(1947, 4, 6, 2, 0, 0)\n', (1631, 1652), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1649, 1672), 'pytz.tzinfo.memorized_datetime', 'd', (['(1947)', '(10)', '(5)', '(2)', '(0)', '(0)'], {}), '(1947, 10, 5, 2, 0, 0)\n', (1650, 1672), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1669, 1691), 'pytz.tzinfo.memorized_datetime', 'd', (['(1948)', '(4)', '(4)', '(2)', '(0)', '(0)'], {}), '(1948, 4, 4, 2, 0, 0)\n', (1670, 1691), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1688, 1711), 'pytz.tzinfo.memorized_datetime', 'd', (['(1948)', '(10)', '(3)', '(2)', '(0)', '(0)'], {}), '(1948, 10, 3, 2, 0, 0)\n', (1689, 1711), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1708, 1730), 'pytz.tzinfo.memorized_datetime', 'd', (['(1949)', '(4)', '(3)', '(2)', '(0)', '(0)'], {}), '(1949, 4, 3, 2, 0, 0)\n', (1709, 1730), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1727, 1750), 'pytz.tzinfo.memorized_datetime', 'd', (['(1949)', '(10)', '(2)', '(2)', '(0)', '(0)'], {}), '(1949, 10, 2, 2, 0, 0)\n', (1728, 1750), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1747, 1769), 'pytz.tzinfo.memorized_datetime', 'd', (['(1951)', '(4)', '(1)', '(2)', '(0)', '(0)'], {}), '(1951, 4, 1, 2, 0, 0)\n', (1748, 1769), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1766, 1789), 'pytz.tzinfo.memorized_datetime', 'd', (['(1951)', '(10)', '(7)', '(2)', '(0)', '(0)'], {}), '(1951, 10, 7, 2, 0, 0)\n', (1767, 1789), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1786, 1808), 'pytz.tzinfo.memorized_datetime', 'd', (['(1952)', '(4)', '(6)', '(2)', '(0)', '(0)'], {}), '(1952, 4, 6, 2, 0, 0)\n', (1787, 1808), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1805, 1828), 'pytz.tzinfo.memorized_datetime', 'd', (['(1952)', '(10)', '(5)', '(2)', '(0)', '(0)'], {}), '(1952, 10, 5, 2, 0, 0)\n', (1806, 1828), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1825, 1847), 'pytz.tzinfo.memorized_datetime', 'd', (['(1953)', '(4)', '(5)', '(2)', '(0)', '(0)'], {}), '(1953, 4, 5, 2, 0, 0)\n', (1826, 1847), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1844, 1867), 'pytz.tzinfo.memorized_datetime', 'd', (['(1953)', '(10)', '(4)', '(2)', '(0)', '(0)'], {}), '(1953, 10, 4, 2, 0, 0)\n', (1845, 1867), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1864, 1886), 'pytz.tzinfo.memorized_datetime', 'd', (['(1954)', '(4)', '(4)', '(2)', '(0)', '(0)'], {}), '(1954, 4, 4, 2, 0, 0)\n', (1865, 1886), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1883, 1906), 'pytz.tzinfo.memorized_datetime', 'd', (['(1954)', '(10)', '(3)', '(2)', '(0)', '(0)'], {}), '(1954, 10, 3, 2, 0, 0)\n', (1884, 1906), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1903, 1925), 'pytz.tzinfo.memorized_datetime', 'd', (['(1955)', '(4)', '(3)', '(2)', '(0)', '(0)'], {}), '(1955, 4, 3, 2, 0, 0)\n', (1904, 1925), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1922, 1945), 'pytz.tzinfo.memorized_datetime', 'd', (['(1955)', '(10)', '(2)', '(2)', '(0)', '(0)'], {}), '(1955, 10, 2, 2, 0, 0)\n', (1923, 1945), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1942, 1964), 'pytz.tzinfo.memorized_datetime', 'd', (['(1956)', '(4)', '(1)', '(2)', '(0)', '(0)'], {}), '(1956, 4, 1, 2, 0, 0)\n', (1943, 1964), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1961, 1984), 'pytz.tzinfo.memorized_datetime', 'd', (['(1956)', '(10)', '(7)', '(2)', '(0)', '(0)'], {}), '(1956, 10, 7, 2, 0, 0)\n', (1962, 1984), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((1981, 2003), 'pytz.tzinfo.memorized_datetime', 'd', (['(1957)', '(4)', '(7)', '(2)', '(0)', '(0)'], {}), '(1957, 4, 7, 2, 0, 0)\n', (1982, 2003), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2000, 2023), 'pytz.tzinfo.memorized_datetime', 'd', (['(1957)', '(10)', '(6)', '(2)', '(0)', '(0)'], {}), '(1957, 10, 6, 2, 0, 0)\n', (2001, 2023), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2020, 2042), 'pytz.tzinfo.memorized_datetime', 'd', (['(1958)', '(4)', '(6)', '(2)', '(0)', '(0)'], {}), '(1958, 4, 6, 2, 0, 0)\n', (2021, 2042), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2039, 2062), 'pytz.tzinfo.memorized_datetime', 'd', (['(1958)', '(10)', '(5)', '(2)', '(0)', '(0)'], {}), '(1958, 10, 5, 2, 0, 0)\n', (2040, 2062), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2059, 2081), 'pytz.tzinfo.memorized_datetime', 'd', (['(1959)', '(4)', '(5)', '(2)', '(0)', '(0)'], {}), '(1959, 4, 5, 2, 0, 0)\n', (2060, 2081), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2078, 2101), 'pytz.tzinfo.memorized_datetime', 'd', (['(1959)', '(10)', '(4)', '(2)', '(0)', '(0)'], {}), '(1959, 10, 4, 2, 0, 0)\n', (2079, 2101), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2098, 2120), 'pytz.tzinfo.memorized_datetime', 'd', (['(1960)', '(4)', '(3)', '(2)', '(0)', '(0)'], {}), '(1960, 4, 3, 2, 0, 0)\n', (2099, 2120), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2117, 2140), 'pytz.tzinfo.memorized_datetime', 'd', (['(1960)', '(10)', '(2)', '(2)', '(0)', '(0)'], {}), '(1960, 10, 2, 2, 0, 0)\n', (2118, 2140), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2137, 2159), 'pytz.tzinfo.memorized_datetime', 'd', (['(1961)', '(4)', '(2)', '(2)', '(0)', '(0)'], {}), '(1961, 4, 2, 2, 0, 0)\n', (2138, 2159), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2156, 2179), 'pytz.tzinfo.memorized_datetime', 'd', (['(1961)', '(10)', '(1)', '(2)', '(0)', '(0)'], {}), '(1961, 10, 1, 2, 0, 0)\n', (2157, 2179), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2176, 2198), 'pytz.tzinfo.memorized_datetime', 'd', (['(1962)', '(4)', '(1)', '(2)', '(0)', '(0)'], {}), '(1962, 4, 1, 2, 0, 0)\n', (2177, 2198), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2195, 2218), 'pytz.tzinfo.memorized_datetime', 'd', (['(1962)', '(10)', '(7)', '(2)', '(0)', '(0)'], {}), '(1962, 10, 7, 2, 0, 0)\n', (2196, 2218), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2215, 2237), 'pytz.tzinfo.memorized_datetime', 'd', (['(1963)', '(4)', '(7)', '(2)', '(0)', '(0)'], {}), '(1963, 4, 7, 2, 0, 0)\n', (2216, 2237), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2234, 2257), 'pytz.tzinfo.memorized_datetime', 'd', (['(1963)', '(10)', '(6)', '(2)', '(0)', '(0)'], {}), '(1963, 10, 6, 2, 0, 0)\n', (2235, 2257), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2254, 2276), 'pytz.tzinfo.memorized_datetime', 'd', (['(1964)', '(4)', '(5)', '(2)', '(0)', '(0)'], {}), '(1964, 4, 5, 2, 0, 0)\n', (2255, 2276), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2273, 2296), 'pytz.tzinfo.memorized_datetime', 'd', (['(1964)', '(10)', '(4)', '(2)', '(0)', '(0)'], {}), '(1964, 10, 4, 2, 0, 0)\n', (2274, 2296), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2293, 2315), 'pytz.tzinfo.memorized_datetime', 'd', (['(1965)', '(4)', '(4)', '(2)', '(0)', '(0)'], {}), '(1965, 4, 4, 2, 0, 0)\n', (2294, 2315), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2312, 2335), 'pytz.tzinfo.memorized_datetime', 'd', (['(1965)', '(10)', '(3)', '(2)', '(0)', '(0)'], {}), '(1965, 10, 3, 2, 0, 0)\n', (2313, 2335), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2332, 2354), 'pytz.tzinfo.memorized_datetime', 'd', (['(1966)', '(4)', '(3)', '(2)', '(0)', '(0)'], {}), '(1966, 4, 3, 2, 0, 0)\n', (2333, 2354), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2351, 2374), 'pytz.tzinfo.memorized_datetime', 'd', (['(1976)', '(9)', '(26)', '(0)', '(0)', '(0)'], {}), '(1976, 9, 26, 0, 0, 0)\n', (2352, 2374), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2371, 2394), 'pytz.tzinfo.memorized_datetime', 'd', (['(1977)', '(3)', '(27)', '(0)', '(0)', '(0)'], {}), '(1977, 3, 27, 0, 0, 0)\n', (2372, 2394), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2391, 2414), 'pytz.tzinfo.memorized_datetime', 'd', (['(1977)', '(9)', '(25)', '(0)', '(0)', '(0)'], {}), '(1977, 9, 25, 0, 0, 0)\n', (2392, 2414), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2411, 2433), 'pytz.tzinfo.memorized_datetime', 'd', (['(1978)', '(4)', '(2)', '(0)', '(0)', '(0)'], {}), '(1978, 4, 2, 0, 0, 0)\n', (2412, 2433), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2430, 2453), 'pytz.tzinfo.memorized_datetime', 'd', (['(1978)', '(10)', '(1)', '(0)', '(0)', '(0)'], {}), '(1978, 10, 1, 0, 0, 0)\n', (2431, 2453), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2450, 2472), 'pytz.tzinfo.memorized_datetime', 'd', (['(1979)', '(4)', '(1)', '(0)', '(0)', '(0)'], {}), '(1979, 4, 1, 0, 0, 0)\n', (2451, 2472), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2469, 2492), 'pytz.tzinfo.memorized_datetime', 'd', (['(1979)', '(9)', '(30)', '(1)', '(0)', '(0)'], {}), '(1979, 9, 30, 1, 0, 0)\n', (2470, 2492), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2489, 2512), 'pytz.tzinfo.memorized_datetime', 'd', (['(1980)', '(3)', '(30)', '(0)', '(0)', '(0)'], {}), '(1980, 3, 30, 0, 0, 0)\n', (2490, 2512), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2509, 2532), 'pytz.tzinfo.memorized_datetime', 'd', (['(1980)', '(9)', '(28)', '(1)', '(0)', '(0)'], {}), '(1980, 9, 28, 1, 0, 0)\n', (2510, 2532), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2529, 2552), 'pytz.tzinfo.memorized_datetime', 'd', (['(1981)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(1981, 3, 29, 1, 0, 0)\n', (2530, 2552), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2549, 2572), 'pytz.tzinfo.memorized_datetime', 'd', (['(1981)', '(9)', '(27)', '(1)', '(0)', '(0)'], {}), '(1981, 9, 27, 1, 0, 0)\n', (2550, 2572), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2569, 2592), 'pytz.tzinfo.memorized_datetime', 'd', (['(1982)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(1982, 3, 28, 1, 0, 0)\n', (2570, 2592), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2589, 2612), 'pytz.tzinfo.memorized_datetime', 'd', (['(1982)', '(9)', '(26)', '(1)', '(0)', '(0)'], {}), '(1982, 9, 26, 1, 0, 0)\n', (2590, 2612), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2609, 2632), 'pytz.tzinfo.memorized_datetime', 'd', (['(1983)', '(3)', '(27)', '(2)', '(0)', '(0)'], {}), '(1983, 3, 27, 2, 0, 0)\n', (2610, 2632), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2629, 2652), 'pytz.tzinfo.memorized_datetime', 'd', (['(1983)', '(9)', '(25)', '(1)', '(0)', '(0)'], {}), '(1983, 9, 25, 1, 0, 0)\n', (2630, 2652), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2649, 2672), 'pytz.tzinfo.memorized_datetime', 'd', (['(1984)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(1984, 3, 25, 1, 0, 0)\n', (2650, 2672), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2669, 2692), 'pytz.tzinfo.memorized_datetime', 'd', (['(1984)', '(9)', '(30)', '(1)', '(0)', '(0)'], {}), '(1984, 9, 30, 1, 0, 0)\n', (2670, 2692), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2689, 2712), 'pytz.tzinfo.memorized_datetime', 'd', (['(1985)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(1985, 3, 31, 1, 0, 0)\n', (2690, 2712), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2709, 2732), 'pytz.tzinfo.memorized_datetime', 'd', (['(1985)', '(9)', '(29)', '(1)', '(0)', '(0)'], {}), '(1985, 9, 29, 1, 0, 0)\n', (2710, 2732), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2729, 2752), 'pytz.tzinfo.memorized_datetime', 'd', (['(1986)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(1986, 3, 30, 1, 0, 0)\n', (2730, 2752), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2749, 2772), 'pytz.tzinfo.memorized_datetime', 'd', (['(1986)', '(9)', '(28)', '(1)', '(0)', '(0)'], {}), '(1986, 9, 28, 1, 0, 0)\n', (2750, 2772), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2769, 2792), 'pytz.tzinfo.memorized_datetime', 'd', (['(1987)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(1987, 3, 29, 1, 0, 0)\n', (2770, 2792), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2789, 2812), 'pytz.tzinfo.memorized_datetime', 'd', (['(1987)', '(9)', '(27)', '(1)', '(0)', '(0)'], {}), '(1987, 9, 27, 1, 0, 0)\n', (2790, 2812), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2809, 2832), 'pytz.tzinfo.memorized_datetime', 'd', (['(1988)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(1988, 3, 27, 1, 0, 0)\n', (2810, 2832), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2829, 2852), 'pytz.tzinfo.memorized_datetime', 'd', (['(1988)', '(9)', '(25)', '(1)', '(0)', '(0)'], {}), '(1988, 9, 25, 1, 0, 0)\n', (2830, 2852), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2849, 2872), 'pytz.tzinfo.memorized_datetime', 'd', (['(1989)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(1989, 3, 26, 1, 0, 0)\n', (2850, 2872), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2869, 2892), 'pytz.tzinfo.memorized_datetime', 'd', (['(1989)', '(9)', '(24)', '(1)', '(0)', '(0)'], {}), '(1989, 9, 24, 1, 0, 0)\n', (2870, 2892), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2889, 2912), 'pytz.tzinfo.memorized_datetime', 'd', (['(1990)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(1990, 3, 25, 1, 0, 0)\n', (2890, 2912), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2909, 2932), 'pytz.tzinfo.memorized_datetime', 'd', (['(1990)', '(9)', '(30)', '(1)', '(0)', '(0)'], {}), '(1990, 9, 30, 1, 0, 0)\n', (2910, 2932), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2929, 2952), 'pytz.tzinfo.memorized_datetime', 'd', (['(1991)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(1991, 3, 31, 1, 0, 0)\n', (2930, 2952), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2949, 2972), 'pytz.tzinfo.memorized_datetime', 'd', (['(1991)', '(9)', '(29)', '(1)', '(0)', '(0)'], {}), '(1991, 9, 29, 1, 0, 0)\n', (2950, 2972), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2969, 2992), 'pytz.tzinfo.memorized_datetime', 'd', (['(1992)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(1992, 3, 29, 1, 0, 0)\n', (2970, 2992), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((2989, 3012), 'pytz.tzinfo.memorized_datetime', 'd', (['(1992)', '(9)', '(27)', '(1)', '(0)', '(0)'], {}), '(1992, 9, 27, 1, 0, 0)\n', (2990, 3012), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3009, 3032), 'pytz.tzinfo.memorized_datetime', 'd', (['(1993)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(1993, 3, 28, 1, 0, 0)\n', (3010, 3032), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3029, 3052), 'pytz.tzinfo.memorized_datetime', 'd', (['(1993)', '(9)', '(26)', '(1)', '(0)', '(0)'], {}), '(1993, 9, 26, 1, 0, 0)\n', (3030, 3052), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3049, 3072), 'pytz.tzinfo.memorized_datetime', 'd', (['(1994)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(1994, 3, 27, 1, 0, 0)\n', (3050, 3072), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3069, 3092), 'pytz.tzinfo.memorized_datetime', 'd', (['(1994)', '(9)', '(25)', '(1)', '(0)', '(0)'], {}), '(1994, 9, 25, 1, 0, 0)\n', (3070, 3092), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3089, 3112), 'pytz.tzinfo.memorized_datetime', 'd', (['(1995)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(1995, 3, 26, 1, 0, 0)\n', (3090, 3112), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3109, 3132), 'pytz.tzinfo.memorized_datetime', 'd', (['(1995)', '(9)', '(24)', '(1)', '(0)', '(0)'], {}), '(1995, 9, 24, 1, 0, 0)\n', (3110, 3132), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3129, 3152), 'pytz.tzinfo.memorized_datetime', 'd', (['(1996)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(1996, 3, 31, 1, 0, 0)\n', (3130, 3152), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3149, 3173), 'pytz.tzinfo.memorized_datetime', 'd', (['(1996)', '(10)', '(27)', '(1)', '(0)', '(0)'], {}), '(1996, 10, 27, 1, 0, 0)\n', (3150, 3173), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3170, 3193), 'pytz.tzinfo.memorized_datetime', 'd', (['(1997)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(1997, 3, 30, 1, 0, 0)\n', (3171, 3193), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3190, 3214), 'pytz.tzinfo.memorized_datetime', 'd', (['(1997)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(1997, 10, 26, 1, 0, 0)\n', (3191, 3214), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3211, 3234), 'pytz.tzinfo.memorized_datetime', 'd', (['(1998)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(1998, 3, 29, 1, 0, 0)\n', (3212, 3234), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3231, 3255), 'pytz.tzinfo.memorized_datetime', 'd', (['(1998)', '(10)', '(25)', '(1)', '(0)', '(0)'], {}), '(1998, 10, 25, 1, 0, 0)\n', (3232, 3255), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3252, 3275), 'pytz.tzinfo.memorized_datetime', 'd', (['(1999)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(1999, 3, 28, 1, 0, 0)\n', (3253, 3275), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3272, 3296), 'pytz.tzinfo.memorized_datetime', 'd', (['(1999)', '(10)', '(31)', '(1)', '(0)', '(0)'], {}), '(1999, 10, 31, 1, 0, 0)\n', (3273, 3296), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3293, 3316), 'pytz.tzinfo.memorized_datetime', 'd', (['(2000)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(2000, 3, 26, 1, 0, 0)\n', (3294, 3316), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3313, 3337), 'pytz.tzinfo.memorized_datetime', 'd', (['(2000)', '(10)', '(29)', '(1)', '(0)', '(0)'], {}), '(2000, 10, 29, 1, 0, 0)\n', (3314, 3337), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3334, 3357), 'pytz.tzinfo.memorized_datetime', 'd', (['(2001)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(2001, 3, 25, 1, 0, 0)\n', (3335, 3357), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3354, 3378), 'pytz.tzinfo.memorized_datetime', 'd', (['(2001)', '(10)', '(28)', '(1)', '(0)', '(0)'], {}), '(2001, 10, 28, 1, 0, 0)\n', (3355, 3378), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3375, 3398), 'pytz.tzinfo.memorized_datetime', 'd', (['(2002)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(2002, 3, 31, 1, 0, 0)\n', (3376, 3398), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3395, 3419), 'pytz.tzinfo.memorized_datetime', 'd', (['(2002)', '(10)', '(27)', '(1)', '(0)', '(0)'], {}), '(2002, 10, 27, 1, 0, 0)\n', (3396, 3419), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3416, 3439), 'pytz.tzinfo.memorized_datetime', 'd', (['(2003)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(2003, 3, 30, 1, 0, 0)\n', (3417, 3439), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3436, 3460), 'pytz.tzinfo.memorized_datetime', 'd', (['(2003)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(2003, 10, 26, 1, 0, 0)\n', (3437, 3460), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3457, 3480), 'pytz.tzinfo.memorized_datetime', 'd', (['(2004)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(2004, 3, 28, 1, 0, 0)\n', (3458, 3480), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3477, 3501), 'pytz.tzinfo.memorized_datetime', 'd', (['(2004)', '(10)', '(31)', '(1)', '(0)', '(0)'], {}), '(2004, 10, 31, 1, 0, 0)\n', (3478, 3501), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3498, 3521), 'pytz.tzinfo.memorized_datetime', 'd', (['(2005)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(2005, 3, 27, 1, 0, 0)\n', (3499, 3521), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3518, 3542), 'pytz.tzinfo.memorized_datetime', 'd', (['(2005)', '(10)', '(30)', '(1)', '(0)', '(0)'], {}), '(2005, 10, 30, 1, 0, 0)\n', (3519, 3542), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3539, 3562), 'pytz.tzinfo.memorized_datetime', 'd', (['(2006)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(2006, 3, 26, 1, 0, 0)\n', (3540, 3562), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3559, 3583), 'pytz.tzinfo.memorized_datetime', 'd', (['(2006)', '(10)', '(29)', '(1)', '(0)', '(0)'], {}), '(2006, 10, 29, 1, 0, 0)\n', (3560, 3583), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3580, 3603), 'pytz.tzinfo.memorized_datetime', 'd', (['(2007)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(2007, 3, 25, 1, 0, 0)\n', (3581, 3603), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3600, 3624), 'pytz.tzinfo.memorized_datetime', 'd', (['(2007)', '(10)', '(28)', '(1)', '(0)', '(0)'], {}), '(2007, 10, 28, 1, 0, 0)\n', (3601, 3624), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3621, 3644), 'pytz.tzinfo.memorized_datetime', 'd', (['(2008)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(2008, 3, 30, 1, 0, 0)\n', (3622, 3644), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3641, 3665), 'pytz.tzinfo.memorized_datetime', 'd', (['(2008)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(2008, 10, 26, 1, 0, 0)\n', (3642, 3665), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3662, 3685), 'pytz.tzinfo.memorized_datetime', 'd', (['(2009)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(2009, 3, 29, 1, 0, 0)\n', (3663, 3685), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3682, 3706), 'pytz.tzinfo.memorized_datetime', 'd', (['(2009)', '(10)', '(25)', '(1)', '(0)', '(0)'], {}), '(2009, 10, 25, 1, 0, 0)\n', (3683, 3706), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3703, 3726), 'pytz.tzinfo.memorized_datetime', 'd', (['(2010)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(2010, 3, 28, 1, 0, 0)\n', (3704, 3726), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3723, 3747), 'pytz.tzinfo.memorized_datetime', 'd', (['(2010)', '(10)', '(31)', '(1)', '(0)', '(0)'], {}), '(2010, 10, 31, 1, 0, 0)\n', (3724, 3747), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3744, 3767), 'pytz.tzinfo.memorized_datetime', 'd', (['(2011)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(2011, 3, 27, 1, 0, 0)\n', (3745, 3767), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3764, 3788), 'pytz.tzinfo.memorized_datetime', 'd', (['(2011)', '(10)', '(30)', '(1)', '(0)', '(0)'], {}), '(2011, 10, 30, 1, 0, 0)\n', (3765, 3788), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3785, 3808), 'pytz.tzinfo.memorized_datetime', 'd', (['(2012)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(2012, 3, 25, 1, 0, 0)\n', (3786, 3808), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3805, 3829), 'pytz.tzinfo.memorized_datetime', 'd', (['(2012)', '(10)', '(28)', '(1)', '(0)', '(0)'], {}), '(2012, 10, 28, 1, 0, 0)\n', (3806, 3829), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3826, 3849), 'pytz.tzinfo.memorized_datetime', 'd', (['(2013)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(2013, 3, 31, 1, 0, 0)\n', (3827, 3849), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3846, 3870), 'pytz.tzinfo.memorized_datetime', 'd', (['(2013)', '(10)', '(27)', '(1)', '(0)', '(0)'], {}), '(2013, 10, 27, 1, 0, 0)\n', (3847, 3870), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3867, 3890), 'pytz.tzinfo.memorized_datetime', 'd', (['(2014)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(2014, 3, 30, 1, 0, 0)\n', (3868, 3890), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3887, 3911), 'pytz.tzinfo.memorized_datetime', 'd', (['(2014)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(2014, 10, 26, 1, 0, 0)\n', (3888, 3911), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3908, 3931), 'pytz.tzinfo.memorized_datetime', 'd', (['(2015)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(2015, 3, 29, 1, 0, 0)\n', (3909, 3931), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3928, 3952), 'pytz.tzinfo.memorized_datetime', 'd', (['(2015)', '(10)', '(25)', '(1)', '(0)', '(0)'], {}), '(2015, 10, 25, 1, 0, 0)\n', (3929, 3952), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3949, 3972), 'pytz.tzinfo.memorized_datetime', 'd', (['(2016)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(2016, 3, 27, 1, 0, 0)\n', (3950, 3972), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3969, 3993), 'pytz.tzinfo.memorized_datetime', 'd', (['(2016)', '(10)', '(30)', '(1)', '(0)', '(0)'], {}), '(2016, 10, 30, 1, 0, 0)\n', (3970, 3993), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((3990, 4013), 'pytz.tzinfo.memorized_datetime', 'd', (['(2017)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(2017, 3, 26, 1, 0, 0)\n', (3991, 4013), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4010, 4034), 'pytz.tzinfo.memorized_datetime', 'd', (['(2017)', '(10)', '(29)', '(1)', '(0)', '(0)'], {}), '(2017, 10, 29, 1, 0, 0)\n', (4011, 4034), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4031, 4054), 'pytz.tzinfo.memorized_datetime', 'd', (['(2018)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(2018, 3, 25, 1, 0, 0)\n', (4032, 4054), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4051, 4075), 'pytz.tzinfo.memorized_datetime', 'd', (['(2018)', '(10)', '(28)', '(1)', '(0)', '(0)'], {}), '(2018, 10, 28, 1, 0, 0)\n', (4052, 4075), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4072, 4095), 'pytz.tzinfo.memorized_datetime', 'd', (['(2019)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(2019, 3, 31, 1, 0, 0)\n', (4073, 4095), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4092, 4116), 'pytz.tzinfo.memorized_datetime', 'd', (['(2019)', '(10)', '(27)', '(1)', '(0)', '(0)'], {}), '(2019, 10, 27, 1, 0, 0)\n', (4093, 4116), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4113, 4136), 'pytz.tzinfo.memorized_datetime', 'd', (['(2020)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(2020, 3, 29, 1, 0, 0)\n', (4114, 4136), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4133, 4157), 'pytz.tzinfo.memorized_datetime', 'd', (['(2020)', '(10)', '(25)', '(1)', '(0)', '(0)'], {}), '(2020, 10, 25, 1, 0, 0)\n', (4134, 4157), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4154, 4177), 'pytz.tzinfo.memorized_datetime', 'd', (['(2021)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(2021, 3, 28, 1, 0, 0)\n', (4155, 4177), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4174, 4198), 'pytz.tzinfo.memorized_datetime', 'd', (['(2021)', '(10)', '(31)', '(1)', '(0)', '(0)'], {}), '(2021, 10, 31, 1, 0, 0)\n', (4175, 4198), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4195, 4218), 'pytz.tzinfo.memorized_datetime', 'd', (['(2022)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(2022, 3, 27, 1, 0, 0)\n', (4196, 4218), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4215, 4239), 'pytz.tzinfo.memorized_datetime', 'd', (['(2022)', '(10)', '(30)', '(1)', '(0)', '(0)'], {}), '(2022, 10, 30, 1, 0, 0)\n', (4216, 4239), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4236, 4259), 'pytz.tzinfo.memorized_datetime', 'd', (['(2023)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(2023, 3, 26, 1, 0, 0)\n', (4237, 4259), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4256, 4280), 'pytz.tzinfo.memorized_datetime', 'd', (['(2023)', '(10)', '(29)', '(1)', '(0)', '(0)'], {}), '(2023, 10, 29, 1, 0, 0)\n', (4257, 4280), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4277, 4300), 'pytz.tzinfo.memorized_datetime', 'd', (['(2024)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(2024, 3, 31, 1, 0, 0)\n', (4278, 4300), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4297, 4321), 'pytz.tzinfo.memorized_datetime', 'd', (['(2024)', '(10)', '(27)', '(1)', '(0)', '(0)'], {}), '(2024, 10, 27, 1, 0, 0)\n', (4298, 4321), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4318, 4341), 'pytz.tzinfo.memorized_datetime', 'd', (['(2025)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(2025, 3, 30, 1, 0, 0)\n', (4319, 4341), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4338, 4362), 'pytz.tzinfo.memorized_datetime', 'd', (['(2025)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(2025, 10, 26, 1, 0, 0)\n', (4339, 4362), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4359, 4382), 'pytz.tzinfo.memorized_datetime', 'd', (['(2026)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(2026, 3, 29, 1, 0, 0)\n', (4360, 4382), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4379, 4403), 'pytz.tzinfo.memorized_datetime', 'd', (['(2026)', '(10)', '(25)', '(1)', '(0)', '(0)'], {}), '(2026, 10, 25, 1, 0, 0)\n', (4380, 4403), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4400, 4423), 'pytz.tzinfo.memorized_datetime', 'd', (['(2027)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(2027, 3, 28, 1, 0, 0)\n', (4401, 4423), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4420, 4444), 'pytz.tzinfo.memorized_datetime', 'd', (['(2027)', '(10)', '(31)', '(1)', '(0)', '(0)'], {}), '(2027, 10, 31, 1, 0, 0)\n', (4421, 4444), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4441, 4464), 'pytz.tzinfo.memorized_datetime', 'd', (['(2028)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(2028, 3, 26, 1, 0, 0)\n', (4442, 4464), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4461, 4485), 'pytz.tzinfo.memorized_datetime', 'd', (['(2028)', '(10)', '(29)', '(1)', '(0)', '(0)'], {}), '(2028, 10, 29, 1, 0, 0)\n', (4462, 4485), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4482, 4505), 'pytz.tzinfo.memorized_datetime', 'd', (['(2029)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(2029, 3, 25, 1, 0, 0)\n', (4483, 4505), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4502, 4526), 'pytz.tzinfo.memorized_datetime', 'd', (['(2029)', '(10)', '(28)', '(1)', '(0)', '(0)'], {}), '(2029, 10, 28, 1, 0, 0)\n', (4503, 4526), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4523, 4546), 'pytz.tzinfo.memorized_datetime', 'd', (['(2030)', '(3)', '(31)', '(1)', '(0)', '(0)'], {}), '(2030, 3, 31, 1, 0, 0)\n', (4524, 4546), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4543, 4567), 'pytz.tzinfo.memorized_datetime', 'd', (['(2030)', '(10)', '(27)', '(1)', '(0)', '(0)'], {}), '(2030, 10, 27, 1, 0, 0)\n', (4544, 4567), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4564, 4587), 'pytz.tzinfo.memorized_datetime', 'd', (['(2031)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(2031, 3, 30, 1, 0, 0)\n', (4565, 4587), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4584, 4608), 'pytz.tzinfo.memorized_datetime', 'd', (['(2031)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(2031, 10, 26, 1, 0, 0)\n', (4585, 4608), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4605, 4628), 'pytz.tzinfo.memorized_datetime', 'd', (['(2032)', '(3)', '(28)', '(1)', '(0)', '(0)'], {}), '(2032, 3, 28, 1, 0, 0)\n', (4606, 4628), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4625, 4649), 'pytz.tzinfo.memorized_datetime', 'd', (['(2032)', '(10)', '(31)', '(1)', '(0)', '(0)'], {}), '(2032, 10, 31, 1, 0, 0)\n', (4626, 4649), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4646, 4669), 'pytz.tzinfo.memorized_datetime', 'd', (['(2033)', '(3)', '(27)', '(1)', '(0)', '(0)'], {}), '(2033, 3, 27, 1, 0, 0)\n', (4647, 4669), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4666, 4690), 'pytz.tzinfo.memorized_datetime', 'd', (['(2033)', '(10)', '(30)', '(1)', '(0)', '(0)'], {}), '(2033, 10, 30, 1, 0, 0)\n', (4667, 4690), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4687, 4710), 'pytz.tzinfo.memorized_datetime', 'd', (['(2034)', '(3)', '(26)', '(1)', '(0)', '(0)'], {}), '(2034, 3, 26, 1, 0, 0)\n', (4688, 4710), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4707, 4731), 'pytz.tzinfo.memorized_datetime', 'd', (['(2034)', '(10)', '(29)', '(1)', '(0)', '(0)'], {}), '(2034, 10, 29, 1, 0, 0)\n', (4708, 4731), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4728, 4751), 'pytz.tzinfo.memorized_datetime', 'd', (['(2035)', '(3)', '(25)', '(1)', '(0)', '(0)'], {}), '(2035, 3, 25, 1, 0, 0)\n', (4729, 4751), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4748, 4772), 'pytz.tzinfo.memorized_datetime', 'd', (['(2035)', '(10)', '(28)', '(1)', '(0)', '(0)'], {}), '(2035, 10, 28, 1, 0, 0)\n', (4749, 4772), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4769, 4792), 'pytz.tzinfo.memorized_datetime', 'd', (['(2036)', '(3)', '(30)', '(1)', '(0)', '(0)'], {}), '(2036, 3, 30, 1, 0, 0)\n', (4770, 4792), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4789, 4813), 'pytz.tzinfo.memorized_datetime', 'd', (['(2036)', '(10)', '(26)', '(1)', '(0)', '(0)'], {}), '(2036, 10, 26, 1, 0, 0)\n', (4790, 4813), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4810, 4833), 'pytz.tzinfo.memorized_datetime', 'd', (['(2037)', '(3)', '(29)', '(1)', '(0)', '(0)'], {}), '(2037, 3, 29, 1, 0, 0)\n', (4811, 4833), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4830, 4854), 'pytz.tzinfo.memorized_datetime', 'd', (['(2037)', '(10)', '(25)', '(1)', '(0)', '(0)'], {}), '(2037, 10, 25, 1, 0, 0)\n', (4831, 4854), True, 'from pytz.tzinfo import memorized_datetime as d\n'), ((4887, 4905), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(-2220)', '(0)', '"""LMT"""'], {}), "(-2220, 0, 'LMT')\n", (4888, 4905), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((4905, 4919), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (4906, 4919), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((4919, 4940), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (4920, 4940), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((4940, 4954), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (4941, 4954), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((4954, 4975), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (4955, 4975), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((4975, 4989), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (4976, 4989), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((4989, 5010), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (4990, 5010), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5010, 5024), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5011, 5024), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5024, 5045), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5025, 5045), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5045, 5059), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5046, 5059), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5059, 5080), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5060, 5080), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5080, 5094), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5081, 5094), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5094, 5115), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5095, 5115), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5115, 5129), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5116, 5129), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5129, 5150), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5130, 5150), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5150, 5164), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5151, 5164), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5164, 5185), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5165, 5185), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5185, 5199), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5186, 5199), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5199, 5220), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5200, 5220), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5220, 5234), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5221, 5234), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5234, 5255), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5235, 5255), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5255, 5269), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5256, 5269), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5269, 5290), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5270, 5290), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5290, 5304), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5291, 5304), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5304, 5325), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5305, 5325), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5325, 5339), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5326, 5339), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5339, 5360), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5340, 5360), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5360, 5374), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5361, 5374), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5374, 5395), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5375, 5395), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5395, 5409), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5396, 5409), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5409, 5430), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5410, 5430), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5430, 5444), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5431, 5444), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5444, 5465), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5445, 5465), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5465, 5479), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5466, 5479), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5479, 5500), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5480, 5500), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5500, 5514), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5501, 5514), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5514, 5535), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5515, 5535), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5535, 5549), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5536, 5549), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5549, 5570), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5550, 5570), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5570, 5584), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5571, 5584), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5584, 5605), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5585, 5605), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5605, 5619), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5606, 5619), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5619, 5640), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5620, 5640), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5640, 5654), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5641, 5654), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5654, 5675), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5655, 5675), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5675, 5696), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(7200)', '"""WEMT"""'], {}), "(7200, 7200, 'WEMT')\n", (5676, 5696), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5696, 5717), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5697, 5717), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5717, 5731), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5718, 5731), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5731, 5752), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5732, 5752), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5752, 5773), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(7200)', '"""WEMT"""'], {}), "(7200, 7200, 'WEMT')\n", (5753, 5773), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5773, 5794), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5774, 5794), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5794, 5808), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5795, 5808), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5808, 5829), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5809, 5829), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5829, 5850), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(7200)', '"""WEMT"""'], {}), "(7200, 7200, 'WEMT')\n", (5830, 5850), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5850, 5871), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5851, 5871), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5871, 5885), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5872, 5885), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5885, 5906), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5886, 5906), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5906, 5927), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(7200)', '"""WEMT"""'], {}), "(7200, 7200, 'WEMT')\n", (5907, 5927), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5927, 5948), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5928, 5948), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5948, 5962), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5949, 5962), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5962, 5983), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5963, 5983), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5983, 5997), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (5984, 5997), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((5997, 6018), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (5998, 6018), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6018, 6032), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6019, 6032), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6032, 6053), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6033, 6053), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6053, 6067), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6054, 6067), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6067, 6088), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6068, 6088), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6088, 6102), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6089, 6102), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6102, 6123), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6103, 6123), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6123, 6137), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6124, 6137), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6137, 6158), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6138, 6158), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6158, 6172), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6159, 6172), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6172, 6193), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6173, 6193), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6193, 6207), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6194, 6207), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6207, 6228), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6208, 6228), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6228, 6242), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6229, 6242), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6242, 6263), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6243, 6263), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6263, 6277), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6264, 6277), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6277, 6298), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6278, 6298), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6298, 6312), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6299, 6312), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6312, 6333), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6313, 6333), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6333, 6347), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6334, 6347), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6347, 6368), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6348, 6368), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6368, 6382), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6369, 6382), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6382, 6403), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6383, 6403), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6403, 6417), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6404, 6417), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6417, 6438), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6418, 6438), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6438, 6452), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6439, 6452), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6452, 6473), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6453, 6473), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6473, 6487), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6474, 6487), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6487, 6508), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6488, 6508), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6508, 6522), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6509, 6522), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6522, 6543), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6523, 6543), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6543, 6557), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6544, 6557), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6557, 6578), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6558, 6578), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6578, 6592), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6579, 6592), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6592, 6613), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6593, 6613), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6613, 6627), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6614, 6627), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6627, 6644), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(0)', '"""CET"""'], {}), "(3600, 0, 'CET')\n", (6628, 6644), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6644, 6658), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6645, 6658), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6658, 6679), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6659, 6679), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6679, 6693), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6680, 6693), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6693, 6714), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6694, 6714), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6714, 6728), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6715, 6728), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6728, 6749), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6729, 6749), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6749, 6763), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6750, 6763), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6763, 6784), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6764, 6784), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6784, 6798), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6785, 6798), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6798, 6819), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6799, 6819), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6819, 6833), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6820, 6833), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6833, 6854), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6834, 6854), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6854, 6868), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6855, 6868), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6868, 6889), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6869, 6889), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6889, 6903), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6890, 6903), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6903, 6924), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6904, 6924), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6924, 6938), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6925, 6938), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6938, 6959), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6939, 6959), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6959, 6973), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6960, 6973), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6973, 6994), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (6974, 6994), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((6994, 7008), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (6995, 7008), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7008, 7029), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7009, 7029), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7029, 7043), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7030, 7043), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7043, 7064), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7044, 7064), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7064, 7078), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7065, 7078), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7078, 7099), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7079, 7099), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7099, 7113), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7100, 7113), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7113, 7134), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7114, 7134), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7134, 7148), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7135, 7148), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7148, 7169), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7149, 7169), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7169, 7183), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7170, 7183), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7183, 7204), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7184, 7204), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7204, 7221), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(0)', '"""CET"""'], {}), "(3600, 0, 'CET')\n", (7205, 7221), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7221, 7242), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(3600)', '"""CEST"""'], {}), "(7200, 3600, 'CEST')\n", (7222, 7242), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7242, 7259), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(0)', '"""CET"""'], {}), "(3600, 0, 'CET')\n", (7243, 7259), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7259, 7280), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(3600)', '"""CEST"""'], {}), "(7200, 3600, 'CEST')\n", (7260, 7280), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7280, 7297), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(0)', '"""CET"""'], {}), "(3600, 0, 'CET')\n", (7281, 7297), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7297, 7318), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(7200)', '(3600)', '"""CEST"""'], {}), "(7200, 3600, 'CEST')\n", (7298, 7318), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7318, 7335), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(0)', '"""CET"""'], {}), "(3600, 0, 'CET')\n", (7319, 7335), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7335, 7353), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(0)', '"""WEST"""'], {}), "(3600, 0, 'WEST')\n", (7336, 7353), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7353, 7367), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7354, 7367), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7367, 7388), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7368, 7388), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7388, 7402), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7389, 7402), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7402, 7423), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7403, 7423), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7423, 7437), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7424, 7437), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7437, 7458), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7438, 7458), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7458, 7472), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7459, 7472), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7472, 7493), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7473, 7493), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7493, 7507), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7494, 7507), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7507, 7528), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7508, 7528), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7528, 7542), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7529, 7542), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7542, 7563), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7543, 7563), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7563, 7577), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7564, 7577), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7577, 7598), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7578, 7598), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7598, 7612), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7599, 7612), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7612, 7633), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7613, 7633), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7633, 7647), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7634, 7647), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7647, 7668), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7648, 7668), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7668, 7682), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7669, 7682), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7682, 7703), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7683, 7703), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7703, 7717), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7704, 7717), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7717, 7738), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7718, 7738), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7738, 7752), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7739, 7752), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7752, 7773), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7753, 7773), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7773, 7787), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7774, 7787), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7787, 7808), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7788, 7808), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7808, 7822), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7809, 7822), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7822, 7843), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7823, 7843), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7843, 7857), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7844, 7857), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7857, 7878), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7858, 7878), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7878, 7892), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7879, 7892), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7892, 7913), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7893, 7913), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7913, 7927), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7914, 7927), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7927, 7948), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7928, 7948), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7948, 7962), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7949, 7962), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7962, 7983), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7963, 7983), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7983, 7997), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (7984, 7997), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((7997, 8018), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (7998, 8018), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8018, 8032), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8019, 8032), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8032, 8053), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8033, 8053), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8053, 8067), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8054, 8067), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8067, 8088), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8068, 8088), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8088, 8102), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8089, 8102), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8102, 8123), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8103, 8123), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8123, 8137), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8124, 8137), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8137, 8158), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8138, 8158), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8158, 8172), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8159, 8172), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8172, 8193), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8173, 8193), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8193, 8207), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8194, 8207), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8207, 8228), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8208, 8228), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8228, 8242), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8229, 8242), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8242, 8263), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8243, 8263), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8263, 8277), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8264, 8277), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8277, 8298), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8278, 8298), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8298, 8312), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8299, 8312), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8312, 8333), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8313, 8333), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8333, 8347), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8334, 8347), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8347, 8368), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8348, 8368), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8368, 8382), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8369, 8382), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8382, 8403), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8383, 8403), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8403, 8417), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8404, 8417), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8417, 8438), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8418, 8438), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8438, 8452), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8439, 8452), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8452, 8473), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8453, 8473), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8473, 8487), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8474, 8487), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8487, 8508), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8488, 8508), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8508, 8522), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8509, 8522), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8522, 8543), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8523, 8543), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8543, 8557), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8544, 8557), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8557, 8578), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8558, 8578), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8578, 8592), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8579, 8592), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8592, 8613), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8593, 8613), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8613, 8627), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8614, 8627), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8627, 8648), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8628, 8648), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8648, 8662), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8649, 8662), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8662, 8683), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8663, 8683), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8683, 8697), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8684, 8697), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8697, 8718), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8698, 8718), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8718, 8732), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8719, 8732), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8732, 8753), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8733, 8753), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8753, 8767), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8754, 8767), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8767, 8788), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(3600)', '(3600)', '"""WEST"""'], {}), "(3600, 3600, 'WEST')\n", (8768, 8788), True, 'from pytz.tzinfo import memorized_ttinfo as i\n'), ((8788, 8802), 'pytz.tzinfo.memorized_ttinfo', 'i', (['(0)', '(0)', '"""WET"""'], {}), "(0, 0, 'WET')\n", (8789, 8802), True, 'from pytz.tzinfo import memorized_ttinfo as i\n')]
from logging import getLogger import luigi import numpy as np import gokart from redshells.model import FeatureAggregationSimilarityModel from redshells.model.feature_aggregation_similarity_model import FeatureAggregationSimilarityDataset logger = getLogger(__name__) class TrainFeatureAggregationSimilarityModel(gokart.TaskOnKart): dataset_task = gokart.TaskInstanceParameter(description='An instance of task which outputs `FeatureAggregationSimilarityDataset`.') embedding_size = luigi.IntParameter() # type: int learning_rate = luigi.FloatParameter() # type: float batch_size = luigi.IntParameter() # type: int epoch_size = luigi.IntParameter() # type: int test_size_rate = luigi.FloatParameter() # type: float early_stopping_patience = luigi.IntParameter() # type: int max_data_size = luigi.IntParameter() # type: int output_file_path = luigi.Parameter(default='model/feature_aggregation)similarity_model.pkl') # type: str def requires(self): return self.dataset_task def output(self): return self.make_target(self.output_file_path) def run(self): dataset = self.load() # type: FeatureAggregationSimilarityDataset feature_size = dataset.x_item_features.shape[1] item_size = max(np.max(dataset.x_item_indices), np.max(dataset.y_item_indices)) max_feature_index = max(np.max(dataset.x_item_features), np.max(dataset.y_item_features)) logger.debug(f'embedding_size={self.embedding_size},' f'learning_rate={self.learning_rate},' f'feature_size={feature_size},' f'item_size={item_size},' f'max_feature_index={max_feature_index}') model = FeatureAggregationSimilarityModel( embedding_size=self.embedding_size, learning_rate=self.learning_rate, feature_size=feature_size, item_size=item_size, max_feature_index=max_feature_index) model.fit( dataset=dataset.get(size=self.max_data_size, batch_size=self.batch_size), epoch_size=self.epoch_size, test_size_rate=self.test_size_rate, early_stopping_patience=self.early_stopping_patience) self.dump(model)
[ "logging.getLogger", "luigi.FloatParameter", "luigi.IntParameter", "numpy.max", "redshells.model.FeatureAggregationSimilarityModel", "gokart.TaskInstanceParameter", "luigi.Parameter" ]
[((252, 271), 'logging.getLogger', 'getLogger', (['__name__'], {}), '(__name__)\n', (261, 271), False, 'from logging import getLogger\n'), ((358, 479), 'gokart.TaskInstanceParameter', 'gokart.TaskInstanceParameter', ([], {'description': '"""An instance of task which outputs `FeatureAggregationSimilarityDataset`."""'}), "(description=\n 'An instance of task which outputs `FeatureAggregationSimilarityDataset`.')\n", (386, 479), False, 'import gokart\n'), ((496, 516), 'luigi.IntParameter', 'luigi.IntParameter', ([], {}), '()\n', (514, 516), False, 'import luigi\n'), ((550, 572), 'luigi.FloatParameter', 'luigi.FloatParameter', ([], {}), '()\n', (570, 572), False, 'import luigi\n'), ((605, 625), 'luigi.IntParameter', 'luigi.IntParameter', ([], {}), '()\n', (623, 625), False, 'import luigi\n'), ((656, 676), 'luigi.IntParameter', 'luigi.IntParameter', ([], {}), '()\n', (674, 676), False, 'import luigi\n'), ((711, 733), 'luigi.FloatParameter', 'luigi.FloatParameter', ([], {}), '()\n', (731, 733), False, 'import luigi\n'), ((779, 799), 'luigi.IntParameter', 'luigi.IntParameter', ([], {}), '()\n', (797, 799), False, 'import luigi\n'), ((833, 853), 'luigi.IntParameter', 'luigi.IntParameter', ([], {}), '()\n', (851, 853), False, 'import luigi\n'), ((890, 963), 'luigi.Parameter', 'luigi.Parameter', ([], {'default': '"""model/feature_aggregation)similarity_model.pkl"""'}), "(default='model/feature_aggregation)similarity_model.pkl')\n", (905, 963), False, 'import luigi\n'), ((1753, 1950), 'redshells.model.FeatureAggregationSimilarityModel', 'FeatureAggregationSimilarityModel', ([], {'embedding_size': 'self.embedding_size', 'learning_rate': 'self.learning_rate', 'feature_size': 'feature_size', 'item_size': 'item_size', 'max_feature_index': 'max_feature_index'}), '(embedding_size=self.embedding_size,\n learning_rate=self.learning_rate, feature_size=feature_size, item_size=\n item_size, max_feature_index=max_feature_index)\n', (1786, 1950), False, 'from redshells.model import FeatureAggregationSimilarityModel\n'), ((1288, 1318), 'numpy.max', 'np.max', (['dataset.x_item_indices'], {}), '(dataset.x_item_indices)\n', (1294, 1318), True, 'import numpy as np\n'), ((1320, 1350), 'numpy.max', 'np.max', (['dataset.y_item_indices'], {}), '(dataset.y_item_indices)\n', (1326, 1350), True, 'import numpy as np\n'), ((1384, 1415), 'numpy.max', 'np.max', (['dataset.x_item_features'], {}), '(dataset.x_item_features)\n', (1390, 1415), True, 'import numpy as np\n'), ((1417, 1448), 'numpy.max', 'np.max', (['dataset.y_item_features'], {}), '(dataset.y_item_features)\n', (1423, 1448), True, 'import numpy as np\n')]
from typing import Iterable from knx_stack.definition.layer.application.a_group_value_response.con import Msg from knx_stack.decode.layer.application import a_group_value def decode(state: "knx_stack.State", msg: "knx_stack.Msg") -> Iterable[Msg]: group_values = a_group_value.decode(state, msg) group_values_response = [ Msg(asap=group_value.asap, dpt=group_value.dpt, status=state.ldata.status) for group_value in group_values ] return group_values_response
[ "knx_stack.decode.layer.application.a_group_value.decode", "knx_stack.definition.layer.application.a_group_value_response.con.Msg" ]
[((269, 301), 'knx_stack.decode.layer.application.a_group_value.decode', 'a_group_value.decode', (['state', 'msg'], {}), '(state, msg)\n', (289, 301), False, 'from knx_stack.decode.layer.application import a_group_value\n'), ((340, 414), 'knx_stack.definition.layer.application.a_group_value_response.con.Msg', 'Msg', ([], {'asap': 'group_value.asap', 'dpt': 'group_value.dpt', 'status': 'state.ldata.status'}), '(asap=group_value.asap, dpt=group_value.dpt, status=state.ldata.status)\n', (343, 414), False, 'from knx_stack.definition.layer.application.a_group_value_response.con import Msg\n')]
# Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os from StringIO import StringIO from appengine_wrappers import webapp from appengine_wrappers import memcache from appengine_wrappers import urlfetch from branch_utility import BranchUtility from server_instance import ServerInstance import svn_constants import time # The default channel to serve docs for if no channel is specified. _DEFAULT_CHANNEL = 'stable' class Handler(webapp.RequestHandler): def __init__(self, request, response): super(Handler, self).__init__(request, response) def _HandleGet(self, path): channel_name, real_path = BranchUtility.SplitChannelNameFromPath(path) if channel_name == _DEFAULT_CHANNEL: self.redirect('/%s' % real_path) return if channel_name is None: channel_name = _DEFAULT_CHANNEL # TODO(kalman): Check if |path| is a directory and serve path/index.html # rather than special-casing apps/extensions. if real_path.strip('/') == 'apps': real_path = 'apps/index.html' if real_path.strip('/') == 'extensions': real_path = 'extensions/index.html' server_instance = ServerInstance.GetOrCreate(channel_name) canonical_path = server_instance.path_canonicalizer.Canonicalize(real_path) if real_path != canonical_path: self.redirect(canonical_path) return ServerInstance.GetOrCreate(channel_name).Get(real_path, self.request, self.response) def _HandleCron(self, path): # Cron strategy: # # Find all public template files and static files, and render them. Most of # the time these won't have changed since the last cron run, so it's a # little wasteful, but hopefully rendering is really fast (if it isn't we # have a problem). class MockResponse(object): def __init__(self): self.status = 200 self.out = StringIO() self.headers = {} def set_status(self, status): self.status = status def clear(self, *args): pass class MockRequest(object): def __init__(self, path): self.headers = {} self.path = path self.url = '//localhost/%s' % path channel = path.split('/')[-1] logging.info('cron/%s: starting' % channel) server_instance = ServerInstance.GetOrCreate(channel) def run_cron_for_dir(d): error = None start_time = time.time() files = [f for f in server_instance.content_cache.GetFromFileListing(d) if not f.endswith('/')] for f in files: try: server_instance.Get(f, MockRequest(f), MockResponse()) except error: logging.error('cron/%s: error rendering %s/%s: %s' % ( channel, d, f, error)) logging.info('cron/%s: rendering %s files in %s took %s seconds' % ( channel, len(files), d, time.time() - start_time)) return error # Don't use "or" since we want to evaluate everything no matter what. was_error = any((run_cron_for_dir(svn_constants.PUBLIC_TEMPLATE_PATH), run_cron_for_dir(svn_constants.STATIC_PATH))) if was_error: self.response.status = 500 self.response.out.write('Failure') else: self.response.status = 200 self.response.out.write('Success') logging.info('cron/%s: finished' % channel) def _RedirectSpecialCases(self, path): google_dev_url = 'http://developer.google.com/chrome' if path == '/' or path == '/index.html': self.redirect(google_dev_url) return True if path == '/apps.html': self.redirect('/apps/about_apps.html') return True return False def _RedirectFromCodeDotGoogleDotCom(self, path): if (not self.request.url.startswith(('http://code.google.com', 'https://code.google.com'))): return False new_url = 'http://developer.chrome.com/' # switch to https if necessary if (self.request.url.startswith('https')): new_url = new_url.replace('http', 'https', 1) path = path.split('/') if len(path) > 0 and path[0] == 'chrome': path.pop(0) for channel in BranchUtility.GetAllBranchNames(): if channel in path: position = path.index(channel) path.pop(position) path.insert(0, channel) new_url += '/'.join(path) self.redirect(new_url) return True def get(self): path = self.request.path if self._RedirectSpecialCases(path): return if path.startswith('/cron'): self._HandleCron(path) return # Redirect paths like "directory" to "directory/". This is so relative # file paths will know to treat this as a directory. if os.path.splitext(path)[1] == '' and path[-1] != '/': self.redirect(path + '/') return path = path.strip('/') if self._RedirectFromCodeDotGoogleDotCom(path): return self._HandleGet(path)
[ "StringIO.StringIO", "server_instance.ServerInstance.GetOrCreate", "os.path.splitext", "logging.info", "branch_utility.BranchUtility.SplitChannelNameFromPath", "branch_utility.BranchUtility.GetAllBranchNames", "time.time", "logging.error" ]
[((749, 793), 'branch_utility.BranchUtility.SplitChannelNameFromPath', 'BranchUtility.SplitChannelNameFromPath', (['path'], {}), '(path)\n', (787, 793), False, 'from branch_utility import BranchUtility\n'), ((1269, 1309), 'server_instance.ServerInstance.GetOrCreate', 'ServerInstance.GetOrCreate', (['channel_name'], {}), '(channel_name)\n', (1295, 1309), False, 'from server_instance import ServerInstance\n'), ((2424, 2467), 'logging.info', 'logging.info', (["('cron/%s: starting' % channel)"], {}), "('cron/%s: starting' % channel)\n", (2436, 2467), False, 'import logging\n'), ((2491, 2526), 'server_instance.ServerInstance.GetOrCreate', 'ServerInstance.GetOrCreate', (['channel'], {}), '(channel)\n', (2517, 2526), False, 'from server_instance import ServerInstance\n'), ((3502, 3545), 'logging.info', 'logging.info', (["('cron/%s: finished' % channel)"], {}), "('cron/%s: finished' % channel)\n", (3514, 3545), False, 'import logging\n'), ((4358, 4391), 'branch_utility.BranchUtility.GetAllBranchNames', 'BranchUtility.GetAllBranchNames', ([], {}), '()\n', (4389, 4391), False, 'from branch_utility import BranchUtility\n'), ((2595, 2606), 'time.time', 'time.time', ([], {}), '()\n', (2604, 2606), False, 'import time\n'), ((1481, 1521), 'server_instance.ServerInstance.GetOrCreate', 'ServerInstance.GetOrCreate', (['channel_name'], {}), '(channel_name)\n', (1507, 1521), False, 'from server_instance import ServerInstance\n'), ((2082, 2092), 'StringIO.StringIO', 'StringIO', ([], {}), '()\n', (2090, 2092), False, 'from StringIO import StringIO\n'), ((4907, 4929), 'os.path.splitext', 'os.path.splitext', (['path'], {}), '(path)\n', (4923, 4929), False, 'import os\n'), ((2856, 2932), 'logging.error', 'logging.error', (["('cron/%s: error rendering %s/%s: %s' % (channel, d, f, error))"], {}), "('cron/%s: error rendering %s/%s: %s' % (channel, d, f, error))\n", (2869, 2932), False, 'import logging\n'), ((3057, 3068), 'time.time', 'time.time', ([], {}), '()\n', (3066, 3068), False, 'import time\n')]
from django import template from posts.helpers import parse_id_from_url register = template.Library() def zip_lists(a, b): return zip(a, b) def return_first(a): return a.first() def parse_user_id(value): id = parse_id_from_url(value) return id register.filter('zip', zip_lists) register.filter('first', return_first) register.filter('parse_id', parse_user_id)
[ "posts.helpers.parse_id_from_url", "django.template.Library" ]
[((84, 102), 'django.template.Library', 'template.Library', ([], {}), '()\n', (100, 102), False, 'from django import template\n'), ((227, 251), 'posts.helpers.parse_id_from_url', 'parse_id_from_url', (['value'], {}), '(value)\n', (244, 251), False, 'from posts.helpers import parse_id_from_url\n')]
try: from setuptools import setup except ImportError: from distutils.core import setup config = { 'description': 'Spyonweb API wrapper', 'author': '<NAME>', 'url': 'https://github.com/krmaxwell/spyonweb', 'download_url': 'https://github.com/krmaxwell/spyonweb', 'author_email': '<EMAIL>', 'version': '0.1', 'install_requires': ['nose', 'pre-commit', 'requests', 'bottle', 'TRX'], 'packages': ['spyonweb'], 'scripts': [], 'name': 'spyonweb' } setup(**config)
[ "distutils.core.setup" ]
[((492, 507), 'distutils.core.setup', 'setup', ([], {}), '(**config)\n', (497, 507), False, 'from distutils.core import setup\n')]
import pickle import sqlite3 import numpy as np import os from vectorizer import vect def update_model(db_path,model,batch_size=10000): conn = sqlite3.connect(db_path) c = conn.cursor() c.execute('SELECT * from review_db') results = c.fetchmany(batch_size) while results: data = np.array(results) X = data[:,0] y = data[:,1].astype(int) classes = np.array([0,1]) X_train = vect.transform(X) clf.partial_fit(X_train,y,classes=classes) results = c.fetchmany(batch_size) conn.close() return None cur_dir = os.path.dirname(__file__) clf = pickle.load(open(os.path.join(cur_dir, 'pkl_objects', 'classifier.pkl'), 'rb')) db = os.path.join(cur_dir,'reviews.sqlite') update_model(db_path=db,model=clf,batch_size=10000) pickle.dump(clf,open(os.path.join(cur_dir, 'pkl_objects','classifier.pkl'),'wb'), protocol=4)
[ "sqlite3.connect", "os.path.join", "os.path.dirname", "numpy.array", "vectorizer.vect.transform" ]
[((531, 556), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (546, 556), False, 'import os\n'), ((651, 690), 'os.path.join', 'os.path.join', (['cur_dir', '"""reviews.sqlite"""'], {}), "(cur_dir, 'reviews.sqlite')\n", (663, 690), False, 'import os\n'), ((147, 171), 'sqlite3.connect', 'sqlite3.connect', (['db_path'], {}), '(db_path)\n', (162, 171), False, 'import sqlite3\n'), ((290, 307), 'numpy.array', 'np.array', (['results'], {}), '(results)\n', (298, 307), True, 'import numpy as np\n'), ((365, 381), 'numpy.array', 'np.array', (['[0, 1]'], {}), '([0, 1])\n', (373, 381), True, 'import numpy as np\n'), ((393, 410), 'vectorizer.vect.transform', 'vect.transform', (['X'], {}), '(X)\n', (407, 410), False, 'from vectorizer import vect\n'), ((580, 634), 'os.path.join', 'os.path.join', (['cur_dir', '"""pkl_objects"""', '"""classifier.pkl"""'], {}), "(cur_dir, 'pkl_objects', 'classifier.pkl')\n", (592, 634), False, 'import os\n'), ((763, 817), 'os.path.join', 'os.path.join', (['cur_dir', '"""pkl_objects"""', '"""classifier.pkl"""'], {}), "(cur_dir, 'pkl_objects', 'classifier.pkl')\n", (775, 817), False, 'import os\n')]
import sys try: n = int(sys.argv[1]) except: n = 100 import sys # provides getsizeof function data = [] for k in range(n): # NOTE: must fix choice of n a = len(data) # number of elements b = sys.getsizeof(data) # actual size in bytes print('Length: {0:3d}; Size in bytes: {1:4d}'.format(a, b)) data.append(None) # increase length by one
[ "sys.getsizeof" ]
[((279, 298), 'sys.getsizeof', 'sys.getsizeof', (['data'], {}), '(data)\n', (292, 298), False, 'import sys\n')]
import numpy as np import clumpy from clumpy import datasets from clumpy import plots from clumpy.gmeans import make_new_clusterer import hdbscan X = datasets.fetch_10kdiabetes_embedding() cluster_centers = [] clusterer = hdbscan.HDBSCAN(min_cluster_size=100).fit(X) for label in np.unique(clusterer.labels_): if label == -1: continue X[clusterer.labels_ == label] cluster_centers.append(X[clusterer.labels_ == label].mean(axis=0)) clusterer = make_new_clusterer(X, np.array(cluster_centers)) #plots.plot_clusters(X, clusterer.labels_, clusterer.cluster_centers_) print('fitting rules') importances = clumpy.rules.ova_forest_importance(X, clusterer.labels_, top_k=1)
[ "numpy.unique", "clumpy.rules.ova_forest_importance", "numpy.array", "clumpy.datasets.fetch_10kdiabetes_embedding", "hdbscan.HDBSCAN" ]
[((151, 189), 'clumpy.datasets.fetch_10kdiabetes_embedding', 'datasets.fetch_10kdiabetes_embedding', ([], {}), '()\n', (187, 189), False, 'from clumpy import datasets\n'), ((283, 311), 'numpy.unique', 'np.unique', (['clusterer.labels_'], {}), '(clusterer.labels_)\n', (292, 311), True, 'import numpy as np\n'), ((625, 690), 'clumpy.rules.ova_forest_importance', 'clumpy.rules.ova_forest_importance', (['X', 'clusterer.labels_'], {'top_k': '(1)'}), '(X, clusterer.labels_, top_k=1)\n', (659, 690), False, 'import clumpy\n'), ((489, 514), 'numpy.array', 'np.array', (['cluster_centers'], {}), '(cluster_centers)\n', (497, 514), True, 'import numpy as np\n'), ((225, 262), 'hdbscan.HDBSCAN', 'hdbscan.HDBSCAN', ([], {'min_cluster_size': '(100)'}), '(min_cluster_size=100)\n', (240, 262), False, 'import hdbscan\n')]
import numpy as np import cv2 import glob import sys import os VIDEO_MODE = False IMAGE_FILE = "" VIDEO_FOLDER = "./" FRAMES = 100 #Para rodar, inseri-lo na pasta run da aplicação #scp -P4422 <EMAIL>:/home/modfreitas/parsec/parsec-3.0/ext/splash2x/apps/volrend/run/saida__* ~/Documentos/PCD/saidas if(len(sys.argv) == 2 and sys.argv[1]=="-v"): VIDEO_MODE = True elif(len(sys.argv) == 3 and sys.argv[1]=="-v"): VIDEO_MODE = True VIDEO_FOLDER = sys.argv[2] elif(len(sys.argv) == 5 and sys.argv[1]=="-v" and sys.argv[3]=="-f"): VIDEO_MODE = True VIDEO_FOLDER = sys.argv[2] try: FRAMES = int(sys.argv[4]) except: print("Numero inválido de frames") exit(1) elif(len(sys.argv) == 2): IMAGE_FILE = sys.argv[1] else: print("USO:") print("Para geracao imagens: ArquivoTXT") print("Para geracao video: -v [pastaArquivosTXT] -f [frames]") exit(1) if(VIDEO_MODE): files = [f for f in os.listdir(VIDEO_FOLDER) if f.endswith(".txt")] writer = cv2.VideoWriter('output.avi', cv2.VideoWriter_fourcc(*"FMP4"), 20.0, (640,480)) if(len(files)==0): print("Não foram achado arquivos de textos nesta pasta") exit(1) for frameid ,file in enumerate(files): img = np.zeros((380, 380), dtype=np.uint8) i = 0 pad_r = -1 pad_l = -1 pad_t = -1 try: f = open(VIDEO_FOLDER+"/"+file, "r") for line in f.readlines(): if(line == "\n" or line == ""): continue r = np.array(line.replace("\n", "0").split("|"), dtype=np.uint8) if(pad_l == -1): pad_l = pad_t = int((380-len(r))/2) pad_r = int(np.ceil((380-len(r))/2)) img[i+pad_t, :] = np.pad(r, pad_width=(pad_l, pad_r), constant_values=(0, 0)) i += 1 if(frameid > FRAMES): break; img = np.pad(img, ((int((480-380)/2), int((480-380)/2)), (int((640-380)/2), int((640-380)/2))), 'constant', constant_values=((0, 0), (0, 0))) torgb = cv2.cvtColor(img,cv2.COLOR_GRAY2RGB) print(f"Quadro {frameid}, {file}") writer.write(torgb) f.close() except: print("Arquivo de texto não existente: "+VIDEO_FOLDER) exit(1) print('Saída: output.avi') writer.release(); cv2.destroyAllWindows() else: img = np.zeros((380, 380), dtype=np.uint8) try: f = open(IMAGE_FILE, "r") i = 0 pad_r = -1 pad_l = -1 pad_t = -1 for line in f.readlines(): if(line == "\n" or line == ""): continue r = np.array(line.replace("\n", "0").split("|"), dtype=np.uint8) if(pad_l == -1): pad_l = pad_t = int((380-len(r))/2) pad_r = int(np.ceil((380-len(r))/2)) img[i+pad_t, :] = np.pad(r, pad_width=(pad_l, pad_r), constant_values=(0, 0)) i += 1 print("Saída: {}.png".format(IMAGE_FILE.split("/")[-1].split(".")[0])) cv2.imwrite(IMAGE_FILE.split("/")[-1].split(".")[0] + '.png', img) cv2.destroyAllWindows() f.close() except: print("Arquivo não existente") exit(1)
[ "os.listdir", "numpy.zeros", "cv2.destroyAllWindows", "cv2.cvtColor", "cv2.VideoWriter_fourcc", "numpy.pad" ]
[((2489, 2512), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2510, 2512), False, 'import cv2\n'), ((2530, 2566), 'numpy.zeros', 'np.zeros', (['(380, 380)'], {'dtype': 'np.uint8'}), '((380, 380), dtype=np.uint8)\n', (2538, 2566), True, 'import numpy as np\n'), ((1045, 1076), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'FMP4'"], {}), "(*'FMP4')\n", (1067, 1076), False, 'import cv2\n'), ((1257, 1293), 'numpy.zeros', 'np.zeros', (['(380, 380)'], {'dtype': 'np.uint8'}), '((380, 380), dtype=np.uint8)\n', (1265, 1293), True, 'import numpy as np\n'), ((3350, 3373), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3371, 3373), False, 'import cv2\n'), ((954, 978), 'os.listdir', 'os.listdir', (['VIDEO_FOLDER'], {}), '(VIDEO_FOLDER)\n', (964, 978), False, 'import os\n'), ((2175, 2212), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_GRAY2RGB'], {}), '(img, cv2.COLOR_GRAY2RGB)\n', (2187, 2212), False, 'import cv2\n'), ((3108, 3167), 'numpy.pad', 'np.pad', (['r'], {'pad_width': '(pad_l, pad_r)', 'constant_values': '(0, 0)'}), '(r, pad_width=(pad_l, pad_r), constant_values=(0, 0))\n', (3114, 3167), True, 'import numpy as np\n'), ((1821, 1880), 'numpy.pad', 'np.pad', (['r'], {'pad_width': '(pad_l, pad_r)', 'constant_values': '(0, 0)'}), '(r, pad_width=(pad_l, pad_r), constant_values=(0, 0))\n', (1827, 1880), True, 'import numpy as np\n')]
from repro.model.preactresnet import PreActBlock, PreActResNet def build(input_size, num_classes): return PreActResNet(PreActBlock, [3,4,6,3], input_size=input_size, num_classes=num_classes)
[ "repro.model.preactresnet.PreActResNet" ]
[((112, 204), 'repro.model.preactresnet.PreActResNet', 'PreActResNet', (['PreActBlock', '[3, 4, 6, 3]'], {'input_size': 'input_size', 'num_classes': 'num_classes'}), '(PreActBlock, [3, 4, 6, 3], input_size=input_size, num_classes=\n num_classes)\n', (124, 204), False, 'from repro.model.preactresnet import PreActBlock, PreActResNet\n')]
import pandas filename = "data.xlsx" sheet = "stats_104102" book = pandas.read_excel(filename, sheetname=sheet, header=1) book = book.sort_values(by=2015, ascending=False) print(book)
[ "pandas.read_excel" ]
[((69, 123), 'pandas.read_excel', 'pandas.read_excel', (['filename'], {'sheetname': 'sheet', 'header': '(1)'}), '(filename, sheetname=sheet, header=1)\n', (86, 123), False, 'import pandas\n')]
#!/usr/bin/env python """Management Scripts.""" from flask_script import Manager from app import app manager = Manager(app) if __name__ == '__main__': manager.run()
[ "flask_script.Manager" ]
[((114, 126), 'flask_script.Manager', 'Manager', (['app'], {}), '(app)\n', (121, 126), False, 'from flask_script import Manager\n')]
""" """ ## python imports from random import randint ## source.python imports from effects.base import TempEntity from engines.sound import StreamSound from engines.precache import Model from entities.entity import Entity from filters.players import PlayerIter from listeners.tick import Repeat from weapons.manager import weapon_manager ## warcraft.package imports from warcraft.commands.messages import send_wcs_saytext_by_index from warcraft.players import player_dict from warcraft.race import Race from warcraft.registration import events, clientcommands from warcraft.skill import Skill from warcraft.utility import classproperty, CooldownDict ## __all__ declaration __all__ = ("OrcishHorde", ) ## OrcishHorde declaration chain_sound = StreamSound('source-python/warcraft/chain_lightning.wav', download=True) root_sound = StreamSound('source-python/warcraft/root.mp3', download=True) class OrcishHorde(Race): image = "https://liquipedia.net/commons/images/thumb/7/76/Orcrace.png/200px-Orcrace.png" @classproperty def description(cls): return 'Recoded Orcish Horde. (Kryptonite)' @classproperty def max_level(cls): return 99 @classproperty def requirement_sort_key(cls): return 3 @OrcishHorde.add_skill class BloodFury(Skill): laser = Model('sprites/lgtning.vmt', True) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.can_crit = False self.counter = 0 self.repeater = None self.beam = TempEntity('BeamPoints', alpha=255, red=0, green=255, blue=0, life_time=1.0, model_index=self.laser.index, start_width=3, end_width=3, frame_rate=255, halo_index=self.laser.index) @classproperty def description(cls): return 'You are able to hit vital points, causing major damage.' @classproperty def max_level(cls): return 8 _msg_a = '{{GREEN}}Critical strike {{PALE_GREEN}}on {{RED}}{name} {{PALE_GREEN}}caused {{DULL_RED}}vital damage!' @events('player_spawn', 'skill_level_up') def _on_spawn_start_repeat(self, player, **kwargs): self.can_crit = True self.counter = 0 self.repeater = Repeat(self._on_game_tick, kwargs={}, cancel_on_level_end=True) self.repeater.start(0.1) @events('player_death') def _on_death_stop_repeat(self, player, **kwargs): if self.repeater: self.repeater.stop() @events('player_pre_attack') def _on_player_pre_attack(self, attacker, victim, info, **kwargs): if self.level == 0: return if self.can_crit: info.damage *= 1 + 0.2 * self.level send_wcs_saytext_by_index(self._msg_a.format(name=victim.name), attacker.index) weapon = attacker.active_weapon if weapon and weapon.weapon_name.split("_")[-1] not in weapon_manager.projectiles: start_location = weapon.origin.copy() start_location.z += 40 end_location = attacker.get_view_coordinates() self.beam.create(start_point=start_location, end_point=end_location) self.can_crit = False self.counter = 0 def _on_game_tick(self): self.counter += 1 if self.counter == 256 - (self.level * 2): self.can_crit = True @OrcishHorde.add_skill class EarthgrabTotem(Skill): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.model = Model('sprites/blueflare1.vmt', True) self.model._precache() self.effect = TempEntity('BeamRingPoint', start_radius=120, end_radius=0, model_index=self.model.index, halo_index=self.model.index, life_time=1.5, amplitude=10, red=10, green=255, blue=10, alpha=245, flags=0, start_width=6, end_width=6) if not root_sound.is_precached: root_sound.precache() @classproperty def description(cls): return 'Root your enemies to the ground, 16-24% chance.' @classproperty def max_level(cls): return 8 _msg_a = '{{GREEN}}Rooted {{RED}}{name} {{PALE_GREEN}}to the ground.' _msg_b = '{{PALE_GREEN}}You have been {{GREEN}}rooted {{PALE_GREEN}}to the ground by {{RED}}{name}.' @events('player_pre_attack') def _on_player_pre_attack(self, attacker, victim, **kwargs): if self.level == 0: return if randint(1, 100) <= 16 + self.level and not victim.stuck: victim.stuck = True victim.delay(1.5, victim.__setattr__, args=('stuck', False)) send_wcs_saytext_by_index(self._msg_a.format(name=victim.name), attacker.index) send_wcs_saytext_by_index(self._msg_b.format(name=attacker.name), victim.index) root_sound.index = victim.index root_sound.origin = victim.origin root_sound.play() self.effect.create(center=victim.origin) self.effect.create(center=victim.origin, start_radius=80) @OrcishHorde.add_skill class Reincarnation(Skill): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.weapons = [] self.location = None @classproperty def description(cls): return 'Upon death, the shamans will ressurect you in your old location, 25-33% chance.' @classproperty def max_level(cls): return 8 _msg_a = '{ORANGE}Respawning {PALE_GREEN}in {GREEN}1 {PALE_GREEN}second.' def _force_drop_weapons(self, player): for index in player.weapon_indexes(not_filters='knife'): entity = Entity(index) player.drop_weapon(entity.pointer, None, None) @events('player_pre_victim') def _on_pre_death_obtain_weapons(self, victim, **kwargs): self.weapons = [Entity(index).class_name for index in victim.weapon_indexes( not_filters='knife') ] self.location = victim.origin.copy() self.location.z += 1 @events('player_death') def _on_death_respawn(self, player, **kwargs): if self.level == 0: return if randint(1, 101) <= 25 + self.level: player.delay(1.5, player.spawn) player.delay(2, self._force_drop_weapons, args=(player, )) for weapon in self.weapons: player.delay(3, player.give_named_item, args=(weapon, )) if self.location: player.delay(2.2, player.teleport, args=(self.location, )) send_wcs_saytext_by_index(self._msg_a, player.index) @OrcishHorde.add_skill class ChainLightning(Skill): laser = Model('sprites/lgtning.vmt', True) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.cooldowns = CooldownDict() self.beam = TempEntity('BeamPoints', alpha=255, red=255, green=200, blue=200, life_time=1.0, start_width=15, end_width=15, frame_rate=255) self.laser = Model('sprites/lgtning.vmt') self.laser._precache() @classproperty def description(cls): return 'You channel a lightning rod which ricochets from player to player.' @classproperty def max_level(cls): return 8 @classmethod def is_available(cls, player): return player.race.level > 8 _msg_a = '{GREEN}Chain Lightning {RED}hit enemies{PALE_GREEN}!' _msg_c = '{{GREEN}}Chain Lightning {{PALE_GREEN}}is on cooldown for {{DULL_RED}}{time:0.1f} {{PALE_GREEN}}seconds.' _msg_f = '{GREEN}Chain Lightning {PALE_GREEN}found {DULL_RED}no enemies{PALE_GREEN}!' def _find_closest_player(self, player, team_index, length=99999, exclusions=[]): _target = None for target in player_dict.values(): if target.dead or target.team_index == team_index or target in exclusions or target.ultimate_immune: continue _distance = player.origin.get_distance(target.origin) if _distance < length: _target = target length = _distance return _target def _find_chain_players(self, player, length, count): _last_target = player team_index = player.team_index _targets = [] while count > 0: if not _last_target: break _target = self._find_closest_player(_last_target, team_index, length, _targets) _targets.append(_target) _last_target = _target count -= 1 return _targets @events('player_spawn') def _on_player_spawn_reset(self, player, **kwargs): self.cooldowns['ultimate'] = 4 @clientcommands('ultimate') def _on_player_ultimate(self, player, **kwargs): if self.level == 0: return _cooldown = self.cooldowns['ultimate'] if _cooldown <= 0: last_target = player targets = self._find_chain_players(player, 500, 3) if targets[0] == None: send_wcs_saytext_by_index(self._msg_f, player.index) return for target in targets: if not target: continue target.take_damage(20+5*self.level, attacker_index=player.index, skip_hooks=True) location1 = last_target.origin.copy() location2 = target.origin.copy() location1.z += 40 location2.z += 40 self.beam.create(start_point=location1, end_point=location2, halo=self.laser, model=self.laser) last_target = target chain_sound.index = player.index chain_sound.origin = player.origin chain_sound.play() send_wcs_saytext_by_index(self._msg_a, player.index) self.cooldowns['ultimate'] = 20 else: send_wcs_saytext_by_index(self._msg_c.format(time=_cooldown), player.index)
[ "warcraft.players.player_dict.values", "listeners.tick.Repeat", "engines.sound.StreamSound", "entities.entity.Entity", "warcraft.commands.messages.send_wcs_saytext_by_index", "warcraft.utility.CooldownDict", "warcraft.registration.clientcommands", "warcraft.registration.events", "effects.base.TempEntity", "random.randint", "engines.precache.Model" ]
[((753, 825), 'engines.sound.StreamSound', 'StreamSound', (['"""source-python/warcraft/chain_lightning.wav"""'], {'download': '(True)'}), "('source-python/warcraft/chain_lightning.wav', download=True)\n", (764, 825), False, 'from engines.sound import StreamSound\n'), ((839, 900), 'engines.sound.StreamSound', 'StreamSound', (['"""source-python/warcraft/root.mp3"""'], {'download': '(True)'}), "('source-python/warcraft/root.mp3', download=True)\n", (850, 900), False, 'from engines.sound import StreamSound\n'), ((1317, 1351), 'engines.precache.Model', 'Model', (['"""sprites/lgtning.vmt"""', '(True)'], {}), "('sprites/lgtning.vmt', True)\n", (1322, 1351), False, 'from engines.precache import Model\n'), ((2061, 2101), 'warcraft.registration.events', 'events', (['"""player_spawn"""', '"""skill_level_up"""'], {}), "('player_spawn', 'skill_level_up')\n", (2067, 2101), False, 'from warcraft.registration import events, clientcommands\n'), ((2340, 2362), 'warcraft.registration.events', 'events', (['"""player_death"""'], {}), "('player_death')\n", (2346, 2362), False, 'from warcraft.registration import events, clientcommands\n'), ((2483, 2510), 'warcraft.registration.events', 'events', (['"""player_pre_attack"""'], {}), "('player_pre_attack')\n", (2489, 2510), False, 'from warcraft.registration import events, clientcommands\n'), ((4336, 4363), 'warcraft.registration.events', 'events', (['"""player_pre_attack"""'], {}), "('player_pre_attack')\n", (4342, 4363), False, 'from warcraft.registration import events, clientcommands\n'), ((5787, 5814), 'warcraft.registration.events', 'events', (['"""player_pre_victim"""'], {}), "('player_pre_victim')\n", (5793, 5814), False, 'from warcraft.registration import events, clientcommands\n'), ((6093, 6115), 'warcraft.registration.events', 'events', (['"""player_death"""'], {}), "('player_death')\n", (6099, 6115), False, 'from warcraft.registration import events, clientcommands\n'), ((6739, 6773), 'engines.precache.Model', 'Model', (['"""sprites/lgtning.vmt"""', '(True)'], {}), "('sprites/lgtning.vmt', True)\n", (6744, 6773), False, 'from engines.precache import Model\n'), ((8629, 8651), 'warcraft.registration.events', 'events', (['"""player_spawn"""'], {}), "('player_spawn')\n", (8635, 8651), False, 'from warcraft.registration import events, clientcommands\n'), ((8753, 8779), 'warcraft.registration.clientcommands', 'clientcommands', (['"""ultimate"""'], {}), "('ultimate')\n", (8767, 8779), False, 'from warcraft.registration import events, clientcommands\n'), ((1540, 1728), 'effects.base.TempEntity', 'TempEntity', (['"""BeamPoints"""'], {'alpha': '(255)', 'red': '(0)', 'green': '(255)', 'blue': '(0)', 'life_time': '(1.0)', 'model_index': 'self.laser.index', 'start_width': '(3)', 'end_width': '(3)', 'frame_rate': '(255)', 'halo_index': 'self.laser.index'}), "('BeamPoints', alpha=255, red=0, green=255, blue=0, life_time=1.0,\n model_index=self.laser.index, start_width=3, end_width=3, frame_rate=\n 255, halo_index=self.laser.index)\n", (1550, 1728), False, 'from effects.base import TempEntity\n'), ((2237, 2300), 'listeners.tick.Repeat', 'Repeat', (['self._on_game_tick'], {'kwargs': '{}', 'cancel_on_level_end': '(True)'}), '(self._on_game_tick, kwargs={}, cancel_on_level_end=True)\n', (2243, 2300), False, 'from listeners.tick import Repeat\n'), ((3552, 3589), 'engines.precache.Model', 'Model', (['"""sprites/blueflare1.vmt"""', '(True)'], {}), "('sprites/blueflare1.vmt', True)\n", (3557, 3589), False, 'from engines.precache import Model\n'), ((3643, 3880), 'effects.base.TempEntity', 'TempEntity', (['"""BeamRingPoint"""'], {'start_radius': '(120)', 'end_radius': '(0)', 'model_index': 'self.model.index', 'halo_index': 'self.model.index', 'life_time': '(1.5)', 'amplitude': '(10)', 'red': '(10)', 'green': '(255)', 'blue': '(10)', 'alpha': '(245)', 'flags': '(0)', 'start_width': '(6)', 'end_width': '(6)'}), "('BeamRingPoint', start_radius=120, end_radius=0, model_index=\n self.model.index, halo_index=self.model.index, life_time=1.5, amplitude\n =10, red=10, green=255, blue=10, alpha=245, flags=0, start_width=6,\n end_width=6)\n", (3653, 3880), False, 'from effects.base import TempEntity\n'), ((6883, 6897), 'warcraft.utility.CooldownDict', 'CooldownDict', ([], {}), '()\n', (6895, 6897), False, 'from warcraft.utility import classproperty, CooldownDict\n'), ((6918, 7049), 'effects.base.TempEntity', 'TempEntity', (['"""BeamPoints"""'], {'alpha': '(255)', 'red': '(255)', 'green': '(200)', 'blue': '(200)', 'life_time': '(1.0)', 'start_width': '(15)', 'end_width': '(15)', 'frame_rate': '(255)'}), "('BeamPoints', alpha=255, red=255, green=200, blue=200, life_time\n =1.0, start_width=15, end_width=15, frame_rate=255)\n", (6928, 7049), False, 'from effects.base import TempEntity\n'), ((7078, 7106), 'engines.precache.Model', 'Model', (['"""sprites/lgtning.vmt"""'], {}), "('sprites/lgtning.vmt')\n", (7083, 7106), False, 'from engines.precache import Model\n'), ((7829, 7849), 'warcraft.players.player_dict.values', 'player_dict.values', ([], {}), '()\n', (7847, 7849), False, 'from warcraft.players import player_dict\n'), ((5708, 5721), 'entities.entity.Entity', 'Entity', (['index'], {}), '(index)\n', (5714, 5721), False, 'from entities.entity import Entity\n'), ((6238, 6253), 'random.randint', 'randint', (['(1)', '(101)'], {}), '(1, 101)\n', (6245, 6253), False, 'from random import randint\n'), ((6620, 6672), 'warcraft.commands.messages.send_wcs_saytext_by_index', 'send_wcs_saytext_by_index', (['self._msg_a', 'player.index'], {}), '(self._msg_a, player.index)\n', (6645, 6672), False, 'from warcraft.commands.messages import send_wcs_saytext_by_index\n'), ((9842, 9894), 'warcraft.commands.messages.send_wcs_saytext_by_index', 'send_wcs_saytext_by_index', (['self._msg_a', 'player.index'], {}), '(self._msg_a, player.index)\n', (9867, 9894), False, 'from warcraft.commands.messages import send_wcs_saytext_by_index\n'), ((4500, 4515), 'random.randint', 'randint', (['(1)', '(100)'], {}), '(1, 100)\n', (4507, 4515), False, 'from random import randint\n'), ((5901, 5914), 'entities.entity.Entity', 'Entity', (['index'], {}), '(index)\n', (5907, 5914), False, 'from entities.entity import Entity\n'), ((9115, 9167), 'warcraft.commands.messages.send_wcs_saytext_by_index', 'send_wcs_saytext_by_index', (['self._msg_f', 'player.index'], {}), '(self._msg_f, player.index)\n', (9140, 9167), False, 'from warcraft.commands.messages import send_wcs_saytext_by_index\n')]
import logging import os import signal import time from game_runner import GameRunner # from snake_game_executor import SnakeGameExecutor log = logging.getLogger("simulation_controller") class SimulationController(object): def __init__(self, args): self.args = args self.run_counter = 0 self.main_pid = None self.execution_stopped = False def initial_batch(self): raise NotImplementedError() def create_batch_from_results(self, results): """ Create the next batch and return an estimate of the work done in the previous batch. :param results: the list of all the results for the previous batch :return: (new_batch, estimate_work_previous_batch) """ raise NotImplementedError() def simulation_interrupted(self): pass def run_simulation(self): if self.execution_stopped: log.warning("Can't train: the execution has been stopped.") return # Set our own signal handler for SIGINT signal.signal(signal.SIGINT, self.__signal_handler) self.main_pid = os.getpid() global_start_time = time.time() with GameRunner() as executor: # with SnakeGameExecutor(self.args) as executor: batch = self.initial_batch() while len(batch) > 0: start_time = time.time() batch_size = len(batch) log.info('Running new batch: %d jobs.', batch_size) self.run_counter += batch_size result_generator = executor.run_batch(batch) if result_generator: batch = self.create_batch_from_results(result_generator) batch_duration = time.time() - start_time log.info('Batch: %d simulations in %g sec:\n => %g sim/sec', batch_size, batch_duration, batch_size / batch_duration) else: time.sleep(2) if self.execution_stopped: self.training_interrupted() break simulation_duration = time.time() - global_start_time log.info('Ran %d simulations in %g sec.', self.run_counter, simulation_duration) # Unregister the signal handler signal.signal(signal.SIGINT, signal.SIG_DFL) def __signal_handler(self, sig, frame): if os.getpid() != self.main_pid: return if sig == signal.SIGINT: if not self.execution_stopped: log.critical('SIGINT received, stopping...') self.execution_stopped = True # Unregister the signal handler signal.signal(signal.SIGINT, signal.SIG_DFL)
[ "logging.getLogger", "signal.signal", "time.sleep", "game_runner.GameRunner", "os.getpid", "time.time" ]
[((146, 188), 'logging.getLogger', 'logging.getLogger', (['"""simulation_controller"""'], {}), "('simulation_controller')\n", (163, 188), False, 'import logging\n'), ((1050, 1101), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'self.__signal_handler'], {}), '(signal.SIGINT, self.__signal_handler)\n', (1063, 1101), False, 'import signal\n'), ((1126, 1137), 'os.getpid', 'os.getpid', ([], {}), '()\n', (1135, 1137), False, 'import os\n'), ((1167, 1178), 'time.time', 'time.time', ([], {}), '()\n', (1176, 1178), False, 'import time\n'), ((2405, 2449), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'signal.SIG_DFL'], {}), '(signal.SIGINT, signal.SIG_DFL)\n', (2418, 2449), False, 'import signal\n'), ((1192, 1204), 'game_runner.GameRunner', 'GameRunner', ([], {}), '()\n', (1202, 1204), False, 'from game_runner import GameRunner\n'), ((2218, 2229), 'time.time', 'time.time', ([], {}), '()\n', (2227, 2229), False, 'import time\n'), ((2506, 2517), 'os.getpid', 'os.getpid', ([], {}), '()\n', (2515, 2517), False, 'import os\n'), ((1380, 1391), 'time.time', 'time.time', ([], {}), '()\n', (1389, 1391), False, 'import time\n'), ((2804, 2848), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'signal.SIG_DFL'], {}), '(signal.SIGINT, signal.SIG_DFL)\n', (2817, 2848), False, 'import signal\n'), ((2055, 2068), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (2065, 2068), False, 'import time\n'), ((1763, 1774), 'time.time', 'time.time', ([], {}), '()\n', (1772, 1774), False, 'import time\n')]
"""This is a home-rolled class to simplify usage of jinja2 templates. You should be able to follow the example templates in /static/templates and their use in main.py, and never have to touch this class""" import os import jinja2 # This constant references the /static/template folder from the path that core.py lives in. # (.. to go back 1 folder) JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__) + "/../static/template"), extensions=['jinja2.ext.autoescape'], autoescape=True) def respond(template_file, params=None): if params is None: params = {} # params can be a good place to automatically inject GAE's login/logout variables # or user/session variables. tmpl = JINJA_ENVIRONMENT.get_template(template_file) return tmpl.render(params)
[ "os.path.dirname" ]
[((430, 455), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (445, 455), False, 'import os\n')]
#! usr/bin/python3 # -*- coding: utf-8 -*- # # Flicket - copyright <NAME>: <EMAIL> import json import plotly from application.flicket.models.flicket_models import FlicketDomain from application.flicket.models.flicket_models import FlicketInstitute from application.flicket.models.flicket_models import FlicketStatus, FlicketRequestStage from application.flicket.models.flicket_models import FlicketTicket def count_domain_tickets(domain, stage): query = ( FlicketTicket.query.join(FlicketDomain) .join(FlicketRequestStage) .filter(FlicketDomain.domain == domain) .filter(FlicketRequestStage.request_stage == stage) ) return query.count() def create_pie_chart_dict(): """ :return: """ stages = FlicketRequestStage.query domains = FlicketDomain.query graphs = [] for domain in domains: graph_title = domain.domain graph_labels = [] graph_values = [] for stage in stages: graph_labels.append(stage.request_stage) graph_values.append(count_domain_tickets(graph_title, stage.request_stage)) # append graphs if have values. if any(graph_values): graphs.append( dict( data=[ dict( labels=graph_labels, values=graph_values, type="pie", marker=dict( colors=[ "darkorange", "darkgreen", "green", "lightgreen", ] ), sort=False, ) ], layout=dict( title=graph_title, autosize=True, margin=dict(b=0, t=40, l=0, r=0), height=400, ), ) ) ids = [f"Graph {i}" for i, _ in enumerate(graphs)] graph_json = json.dumps(graphs, cls=plotly.utils.PlotlyJSONEncoder) return ids, graph_json
[ "application.flicket.models.flicket_models.FlicketTicket.query.join", "json.dumps" ]
[((2211, 2265), 'json.dumps', 'json.dumps', (['graphs'], {'cls': 'plotly.utils.PlotlyJSONEncoder'}), '(graphs, cls=plotly.utils.PlotlyJSONEncoder)\n', (2221, 2265), False, 'import json\n'), ((475, 514), 'application.flicket.models.flicket_models.FlicketTicket.query.join', 'FlicketTicket.query.join', (['FlicketDomain'], {}), '(FlicketDomain)\n', (499, 514), False, 'from application.flicket.models.flicket_models import FlicketTicket\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('market_data', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='orderhistory', options={'verbose_name': 'Uncompressed History Data', 'verbose_name_plural': 'Uncompressed History Data'}, ), migrations.AlterUniqueTogether( name='itemregionstat', unique_together=set([('mapregion', 'invtype')]), ), migrations.AlterUniqueTogether( name='itemregionstathistory', unique_together=set([('mapregion', 'invtype', 'date')]), ), migrations.AlterUniqueTogether( name='orderhistory', unique_together=set([('mapregion', 'invtype', 'date')]), ), migrations.AlterIndexTogether( name='orders', index_together=set([('mapregion', 'invtype', 'is_active')]), ), ]
[ "django.db.migrations.AlterModelOptions" ]
[((244, 408), 'django.db.migrations.AlterModelOptions', 'migrations.AlterModelOptions', ([], {'name': '"""orderhistory"""', 'options': "{'verbose_name': 'Uncompressed History Data', 'verbose_name_plural':\n 'Uncompressed History Data'}"}), "(name='orderhistory', options={'verbose_name':\n 'Uncompressed History Data', 'verbose_name_plural':\n 'Uncompressed History Data'})\n", (272, 408), False, 'from django.db import models, migrations\n')]
"""Module for registering model fields for translation, for use by django-modeltranslation.""" from modeltranslation.translator import TranslationOptions from modeltranslation.decorators import register from home.translation_helper import add_language_content_panels from .models import AboutPage, AboutSubPage, CaseStudyIndexPage, CaseStudyPage, HistoryPage, PeoplePage @register(AboutPage) class AboutPageTR(TranslationOptions): """Class declaring which fields of the AboutPage model to translate.""" fields = AboutPage.translation_fields add_language_content_panels(AboutPage) @register(AboutSubPage) class AboutSubPageTR(TranslationOptions): """Class declaring which fields of the AboutSubPage model to translate.""" fields = AboutSubPage.translation_fields add_language_content_panels(AboutSubPage) @register(CaseStudyIndexPage) class CaseStudyIndexPageTR(TranslationOptions): """Class declaring which fields of the CaseStudyIndexPage model to translate.""" fields = CaseStudyIndexPage.translation_fields add_language_content_panels(CaseStudyIndexPage) @register(CaseStudyPage) class CaseStudyPageTR(TranslationOptions): """Class declaring which fields of the CaseStudyPage model to translate.""" fields = CaseStudyPage.translation_fields add_language_content_panels(CaseStudyPage) @register(HistoryPage) class HistoryPageTR(TranslationOptions): """Class declaring which fields of the HistoryPage model to translate.""" fields = HistoryPage.translation_fields add_language_content_panels(HistoryPage) @register(PeoplePage) class PeoplePageTR(TranslationOptions): """Class declaring which fields of the PeoplePage model to translate.""" fields = PeoplePage.translation_fields add_language_content_panels(PeoplePage)
[ "modeltranslation.decorators.register", "home.translation_helper.add_language_content_panels" ]
[((376, 395), 'modeltranslation.decorators.register', 'register', (['AboutPage'], {}), '(AboutPage)\n', (384, 395), False, 'from modeltranslation.decorators import register\n'), ((556, 594), 'home.translation_helper.add_language_content_panels', 'add_language_content_panels', (['AboutPage'], {}), '(AboutPage)\n', (583, 594), False, 'from home.translation_helper import add_language_content_panels\n'), ((598, 620), 'modeltranslation.decorators.register', 'register', (['AboutSubPage'], {}), '(AboutSubPage)\n', (606, 620), False, 'from modeltranslation.decorators import register\n'), ((790, 831), 'home.translation_helper.add_language_content_panels', 'add_language_content_panels', (['AboutSubPage'], {}), '(AboutSubPage)\n', (817, 831), False, 'from home.translation_helper import add_language_content_panels\n'), ((835, 863), 'modeltranslation.decorators.register', 'register', (['CaseStudyIndexPage'], {}), '(CaseStudyIndexPage)\n', (843, 863), False, 'from modeltranslation.decorators import register\n'), ((1051, 1098), 'home.translation_helper.add_language_content_panels', 'add_language_content_panels', (['CaseStudyIndexPage'], {}), '(CaseStudyIndexPage)\n', (1078, 1098), False, 'from home.translation_helper import add_language_content_panels\n'), ((1102, 1125), 'modeltranslation.decorators.register', 'register', (['CaseStudyPage'], {}), '(CaseStudyPage)\n', (1110, 1125), False, 'from modeltranslation.decorators import register\n'), ((1298, 1340), 'home.translation_helper.add_language_content_panels', 'add_language_content_panels', (['CaseStudyPage'], {}), '(CaseStudyPage)\n', (1325, 1340), False, 'from home.translation_helper import add_language_content_panels\n'), ((1344, 1365), 'modeltranslation.decorators.register', 'register', (['HistoryPage'], {}), '(HistoryPage)\n', (1352, 1365), False, 'from modeltranslation.decorators import register\n'), ((1532, 1572), 'home.translation_helper.add_language_content_panels', 'add_language_content_panels', (['HistoryPage'], {}), '(HistoryPage)\n', (1559, 1572), False, 'from home.translation_helper import add_language_content_panels\n'), ((1576, 1596), 'modeltranslation.decorators.register', 'register', (['PeoplePage'], {}), '(PeoplePage)\n', (1584, 1596), False, 'from modeltranslation.decorators import register\n'), ((1760, 1799), 'home.translation_helper.add_language_content_panels', 'add_language_content_panels', (['PeoplePage'], {}), '(PeoplePage)\n', (1787, 1799), False, 'from home.translation_helper import add_language_content_panels\n')]
from __future__ import unicode_literals import warnings from django.contrib.sitemaps.views import x_robots_tag from django.contrib.sites.shortcuts import get_current_site from django.core.paginator import EmptyPage, PageNotAnInteger from django.http import Http404 from django.template.response import TemplateResponse import six from .sitemaps import DisplayableSitemap class DisplayableSitemap(DisplayableSitemap): """ Sitemap class for Django's sitemaps framework that returns all published items for models that subclass ``Displayable``. """ @x_robots_tag def sitemap(request, sitemaps, section=None, template_name='sitemap_mobile.xml', content_type='application/xml', mimetype=None): if mimetype: warnings.warn("The mimetype keyword argument is deprecated, use " "content_type instead", DeprecationWarning, stacklevel=2) content_type = mimetype req_protocol = 'https' if request.is_secure() else 'http' req_site = get_current_site(request) if section is not None: if section not in sitemaps: raise Http404("No sitemap available for section: %r" % section) maps = [sitemaps[section]] else: maps = list(six.itervalues(sitemaps)) page = request.GET.get("p", 1) urls = [] for site in maps: try: if callable(site): site = site() urls.extend(site.get_urls(page=page, site=req_site, protocol=req_protocol)) except EmptyPage: raise Http404("Page %s empty" % page) except PageNotAnInteger: raise Http404("No page '%s'" % page) return TemplateResponse(request, template_name, {'urlset': urls}, content_type=content_type)
[ "django.template.response.TemplateResponse", "six.itervalues", "warnings.warn", "django.http.Http404", "django.contrib.sites.shortcuts.get_current_site" ]
[((1045, 1070), 'django.contrib.sites.shortcuts.get_current_site', 'get_current_site', (['request'], {}), '(request)\n', (1061, 1070), False, 'from django.contrib.sites.shortcuts import get_current_site\n'), ((1820, 1910), 'django.template.response.TemplateResponse', 'TemplateResponse', (['request', 'template_name', "{'urlset': urls}"], {'content_type': 'content_type'}), "(request, template_name, {'urlset': urls}, content_type=\n content_type)\n", (1836, 1910), False, 'from django.template.response import TemplateResponse\n'), ((783, 912), 'warnings.warn', 'warnings.warn', (['"""The mimetype keyword argument is deprecated, use content_type instead"""', 'DeprecationWarning'], {'stacklevel': '(2)'}), "(\n 'The mimetype keyword argument is deprecated, use content_type instead',\n DeprecationWarning, stacklevel=2)\n", (796, 912), False, 'import warnings\n'), ((1166, 1223), 'django.http.Http404', 'Http404', (["('No sitemap available for section: %r' % section)"], {}), "('No sitemap available for section: %r' % section)\n", (1173, 1223), False, 'from django.http import Http404\n'), ((1301, 1325), 'six.itervalues', 'six.itervalues', (['sitemaps'], {}), '(sitemaps)\n', (1315, 1325), False, 'import six\n'), ((1683, 1714), 'django.http.Http404', 'Http404', (["('Page %s empty' % page)"], {}), "('Page %s empty' % page)\n", (1690, 1714), False, 'from django.http import Http404\n'), ((1774, 1804), 'django.http.Http404', 'Http404', (['("No page \'%s\'" % page)'], {}), '("No page \'%s\'" % page)\n', (1781, 1804), False, 'from django.http import Http404\n')]
# bot.py import logging import time import traceback from typing import Callable, Dict from urllib import parse from flask import Flask, request from db import * from helper import * from message import Message # Flask App app = Flask(__name__) logging.basicConfig(filename='guide.log', level=logging.INFO) def command_guide(message: Message): title = message.text found, guide = get_guide(message.group_id, title) if found: content, picture_url = guide if picture_url: send_message(message.group_id, content, picture_url=picture_url) else: send_message(message.group_id, content) else: msg = f"Could not find a guide titled: {title}" if len(guide) > 0: msg += "\nPerhaps you meant:\n\t" + \ "\n\t".join([g[0] for g in guide]) send_message(message.group_id, msg) def command_create(message: Message): group_id = message.group_id title = message.read_next() found, ignore = get_guide(group_id, title) if found: send_message(group_id, "The guide already exists") else: if "?latex " in message.text: content, expr = message.text.split("?latex ", 1) try: picture_url = save_image(compile_latex(expr)) create_guide(group_id, title, content, picture_url) send_message(group_id, picture_url=picture_url) except: send_message(group_id, "Oops an error occured while parsing :(\n" "If you want to parse a formula, then surround the " "expression with $") else: create_guide(group_id, title, message.text, message.picture_url) def command_delete(message: Message): delete_guide(message.group_id, message.text) def command_edit(message: Message): group_id = message.group_id title = message.read_next() found, ignore = get_guide(group_id, title) if not found: send_message(group_id, "The guide does not exist") else: if "?latex " in message.text: content, expr = message.text.split("?latex ", 1) try: picture_url = save_image(compile_latex(expr)) edit_guide(group_id, title, content, picture_url) send_message(group_id, picture_url=picture_url) except: send_message(group_id, "Oops an error occured while parsing :(\n" "If you want to parse a formula, then surround the " "expression with $") else: edit_guide(group_id, title, message.text, message.picture_url) def command_search(message: Message): guides = search_guide(message.group_id, message.text) if len(guides) > 0: msg = "Found the following guides:\n\t" + \ "\n\t".join([g[0] for g in guides]) else: msg = "Could not find any guides :(" send_message(message.group_id, msg) def command_latex(message: Message): try: latex = compile_latex(message.text) image_url = save_image(latex) send_message(message.group_id, picture_url=image_url) except: print(traceback.format_exc(), flush=True) send_message(message.group_id, "Oops an error occured while parsing :(\n" "If you want to parse a formula, then surround the " "expression with $") def command_google(message: Message): text = message.text query = "lmgtfy.app/?q=" + parse.quote_plus(text) send_message(message.group_id, query) def command_help(message: Message): help_msg = """𝗚𝘂𝗶𝗱𝗲 bot created by JP ▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀ ?𝗴𝘂𝗶𝗱𝗲 <name> ?𝗰𝗿𝗲𝗮𝘁𝗲 <name | "phrase"> <content> ?𝗲𝗱𝗶𝘁 <name | "phrase"> <content> ?𝗱𝗲𝗹𝗲𝘁𝗲 <name> ?𝘀𝗲𝗮𝗿𝗰𝗵 <name> ?𝗹𝗮𝘁𝗲𝘅 <latex formula> ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄""" send_message(message.group_id, help_msg) commands: Dict[str, Callable] = { 'guide': command_guide, 'create': command_create, 'delete': command_delete, 'edit': command_edit, 'search': command_search, 'latex': command_latex, 'google': command_google, 'help': command_help, } @app.route("/", methods=['POST']) def webhook(): try: if request is None: return "OK", 200 time.sleep(0.5) message = Message(request) if message.from_user(): if message.check_prefix(prefix): command_name = message.read_next(check_quote=False) if command_name in commands: commands[command_name](message) return "OK", 200 except: print(sys.exc_info()) return "Error", 500
[ "logging.basicConfig", "traceback.format_exc", "message.Message", "flask.Flask", "time.sleep", "urllib.parse.quote_plus" ]
[((233, 248), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (238, 248), False, 'from flask import Flask, request\n'), ((250, 311), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': '"""guide.log"""', 'level': 'logging.INFO'}), "(filename='guide.log', level=logging.INFO)\n", (269, 311), False, 'import logging\n'), ((3691, 3713), 'urllib.parse.quote_plus', 'parse.quote_plus', (['text'], {}), '(text)\n', (3707, 3713), False, 'from urllib import parse\n'), ((4450, 4465), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (4460, 4465), False, 'import time\n'), ((4484, 4500), 'message.Message', 'Message', (['request'], {}), '(request)\n', (4491, 4500), False, 'from message import Message\n'), ((3341, 3363), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (3361, 3363), False, 'import traceback\n')]
from PIL import Image import PIL.ExifTags as ExifTags def get_gps(fname): # open img files im = Image.open(fname) # Get exif information in dictionary form exif = { ExifTags.TAGS[k]: v for k, v in im._getexif().items() if k in ExifTags.TAGS } # get gps info gps_tags = exif["GPSInfo"] gps = { ExifTags.GPSTAGS.get(t, t): gps_tags[t] for t in gps_tags } # Get latitude and longitude information def conv_deg(v): # Converting fractions to degrees d = float(v[0]) m = float(v[1]) s = float(v[2]) return d + (m / 60.0) + (s / 3600.0) lat = conv_deg(gps["GPSLatitude"]) lat_ref = gps["GPSLatitudeRef"] if lat_ref != "N": lat = 0 - lat lon = conv_deg(gps["GPSLongitude"]) lon_ref = gps["GPSLongitudeRef"] if lon_ref != "E": lon = 0 - lon return lat, lon if __name__ == "__main__": try: lat, lon = get_gps("./img/IMG_6269.jpg") print(lat, lon) except: print("No GPS info")
[ "PIL.Image.open", "PIL.ExifTags.GPSTAGS.get" ]
[((105, 122), 'PIL.Image.open', 'Image.open', (['fname'], {}), '(fname)\n', (115, 122), False, 'from PIL import Image\n'), ((360, 386), 'PIL.ExifTags.GPSTAGS.get', 'ExifTags.GPSTAGS.get', (['t', 't'], {}), '(t, t)\n', (380, 386), True, 'import PIL.ExifTags as ExifTags\n')]
# Generated by Django 3.2.5 on 2021-07-23 19:39 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('jogos', '0001_initial'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('arbitragem', '0001_initial'), ] operations = [ migrations.AddField( model_name='grupoarbitragem', name='admins_grupo', field=models.ManyToManyField(related_name='admins_grupo', to=settings.AUTH_USER_MODEL, verbose_name='Administradores do Grupo'), ), migrations.AddField( model_name='grupoarbitragem', name='membros_grupo', field=models.ManyToManyField(related_name='membros_grupo', to=settings.AUTH_USER_MODEL, verbose_name='Membros do Grupo'), ), migrations.AddField( model_name='grupoarbitragem', name='requisicao_pendente', field=models.ManyToManyField(related_name='requisicao_pendente', to=settings.AUTH_USER_MODEL, verbose_name='Usuários com Requisição Pendente'), ), migrations.AddField( model_name='escala', name='arbitro', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL, verbose_name='Árbitro'), ), migrations.AddField( model_name='escala', name='partida', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='jogos.partida', verbose_name='Partida'), ), migrations.AddField( model_name='escala', name='posicao', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='arbitragem.posicaoescala', verbose_name='Posição'), ), ]
[ "django.db.migrations.swappable_dependency", "django.db.models.ManyToManyField", "django.db.models.ForeignKey" ]
[((282, 339), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (313, 339), False, 'from django.db import migrations, models\n'), ((529, 655), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'related_name': '"""admins_grupo"""', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Administradores do Grupo"""'}), "(related_name='admins_grupo', to=settings.\n AUTH_USER_MODEL, verbose_name='Administradores do Grupo')\n", (551, 655), False, 'from django.db import migrations, models\n'), ((786, 905), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'related_name': '"""membros_grupo"""', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Membros do Grupo"""'}), "(related_name='membros_grupo', to=settings.\n AUTH_USER_MODEL, verbose_name='Membros do Grupo')\n", (808, 905), False, 'from django.db import migrations, models\n'), ((1042, 1183), 'django.db.models.ManyToManyField', 'models.ManyToManyField', ([], {'related_name': '"""requisicao_pendente"""', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Usuários com Requisição Pendente"""'}), "(related_name='requisicao_pendente', to=settings.\n AUTH_USER_MODEL, verbose_name='Usuários com Requisição Pendente')\n", (1064, 1183), False, 'from django.db import migrations, models\n'), ((1299, 1419), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.PROTECT', 'to': 'settings.AUTH_USER_MODEL', 'verbose_name': '"""Árbitro"""'}), "(on_delete=django.db.models.deletion.PROTECT, to=settings.\n AUTH_USER_MODEL, verbose_name='Árbitro')\n", (1316, 1419), False, 'from django.db import migrations, models\n'), ((1535, 1646), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""jogos.partida"""', 'verbose_name': '"""Partida"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'jogos.partida', verbose_name='Partida')\n", (1552, 1646), False, 'from django.db import migrations, models\n'), ((1762, 1884), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.PROTECT', 'to': '"""arbitragem.posicaoescala"""', 'verbose_name': '"""Posição"""'}), "(on_delete=django.db.models.deletion.PROTECT, to=\n 'arbitragem.posicaoescala', verbose_name='Posição')\n", (1779, 1884), False, 'from django.db import migrations, models\n')]
# -*- coding: utf-8 -*- """ Created on Wed July 08 13:12:15 2020 @author: kunal """ from networkx.generators import line from align.schema import graph, instance from align.schema.graph import Graph from collections import Counter from itertools import combinations from align.schema import SubCircuit, Instance from .util import compare_two_nodes, reduced_SD_neighbors from ..schema.types import set_context from ..schema import constraint import pprint import logging logger = logging.getLogger(__name__) class process_arrays: """ Improves placement for circuits with arrays such as DAC, ADC, equalizer Creates a hierarchy for repeated elements """ def __init__(self, ckt, match_pairs): """ Args: ckt_data (dict): all subckt graph, names and port design_setup (dict): information from setup file library (list): list of library elements in dict format existing_generator (list): list of names of existing generators """ self.dl = ckt.parent self.ckt = ckt self.graph = Graph(ckt) self.stop_points = list() self.condition = True self.is_digital = False for const in ckt.constraints: if isinstance(const, constraint.PowerPorts) or\ isinstance(const, constraint.GroundPorts) or \ isinstance(const, constraint.ClockPorts): self.stop_points.extend(const.ports) elif isinstance(const, constraint.IdentifyArray): self.condition = const.isTrue elif isinstance(const, constraint.IsDigital): self.is_digital = const.isTrue self.match_pairs = {k: v for k, v in match_pairs.items() if len(v) > 1} self.name = ckt.name self.iconst = ckt.constraints self.hier_sp = set() self.align_block_const = dict() self.new_hier_instances = dict() self._filter_start_points_from_match_pairs() self._check_array_start_points(self.stop_points) def _filter_start_points_from_match_pairs(self): for k, pair in self.match_pairs.items(): logger.debug(f"all pairs from {k}:{pair}") if "start_point" in pair.keys(): if pair["start_point"] and isinstance(pair["start_point"][0], str): # Check later for CTDTDSM self.hier_sp.update(pair["start_point"]) del pair["start_point"] logger.debug(f"New symmetrical start points {pair}") logger.debug(f"updated match pairs: {pprint.pformat(self.match_pairs, indent=4)}") def _check_array_start_points(self, traversed): logger.debug(f"new hier start points: {self.hier_sp}") for sp in sorted(self.hier_sp): logger.debug( f"Searching arrays from:{sp}\ traversed: {traversed} \ existing match pairs: {pprint.pformat(self.match_pairs, indent=4)}" ) if sp not in self.graph.nodes(): logger.debug(f"{sp} not found in graph {self.graph.nodes()}") continue array = self.find_array(sp, traversed) if array: logger.debug(f"found array instances {array}") logger.debug(f"updated match pairs: {pprint.pformat(self.match_pairs, indent=4)}") def find_array(self, start_node: str, traversed: list): """ Creates array hierarchies starting from input node Parameters ---------- node : str node with high fanout. traversed : list DESCRIPTION. """ if not self.condition: logger.info(f"auto-array generation set to false") return elif self.is_digital: logger.info(f'cant identify array in digital ckt {self.name}') return node_hier = {} lvl1 = list(set(self.graph.neighbors(start_node)) - set(traversed)) node_hier[start_node] = self.matching_groups(start_node, lvl1) logger.debug(f"new hierarchy points {node_hier} from {start_node}") if len(node_hier[start_node]) == 0: return for group in sorted(node_hier[start_node], key=lambda group: len(group)): if len(group) > 0: templates = {} match_grps = {} for el in sorted(group): match_grps[el] = [el] templates[start_node] = list() visited = group + self.stop_points + [el] + [start_node] array = match_grps.copy() self.trace_template(match_grps, visited, templates[start_node], array) logger.debug(f"similar groups final from {start_node}:{array}") # converts results to a 2D/1D list return self.process_results(start_node, array) def process_results(self, start_node, array): if not array: logger.debug(f"no symmetry from {start_node}") return array_2D = list() for inst_list in array.values(): array_2D.append([inst for inst in inst_list \ if self.ckt.get_element(inst)]) if len(array_2D[0])==1: self.align_block_const[start_node] = [inst[0] for inst in array_2D] return self.align_block_const[start_node] else: self.new_hier_instances[start_node] = array_2D return array_2D def matching_groups(self, node, lvl1: list): similar_groups = list() logger.debug(f"creating groups for all neighbors: {lvl1}") # TODO: modify this best case complexity from n*(n-1) to n complexity for l1_node1, l1_node2 in combinations(lvl1, 2): if compare_two_nodes(self.graph, l1_node1, l1_node2) and \ self.graph.get_edge_data(node, l1_node1)['pin'] == \ self.graph.get_edge_data(node, l1_node2)['pin']: found_flag = 0 logger.debug(f"similar groups {similar_groups}") for index, sublist in enumerate(similar_groups): if l1_node1 in sublist and l1_node2 in sublist: found_flag = 1 break if l1_node1 in sublist: similar_groups[index].append(l1_node2) found_flag = 1 break elif l1_node2 in sublist: similar_groups[index].append(l1_node1) found_flag = 1 break if found_flag == 0: similar_groups.append([l1_node1, l1_node2]) return similar_groups def trace_template(self, match_grps, visited, template, array): next_match = {} traversed = visited.copy() logger.debug(f"tracing groups {match_grps} visited {visited}") for source, groups in match_grps.items(): next_match[source] = list() for node in groups: nbrs = set(self.graph.neighbors(node)) - set(traversed) lvl1 = [nbr for nbr in nbrs if reduced_SD_neighbors(self.graph, node, nbr)] # logger.debug(f"lvl1 {lvl1} {set(self.graph.neighbors(node))} {traversed}") next_match[source].extend(lvl1) visited += lvl1 if not next_match[source]: del next_match[source] if next_match and self.match_branches(next_match): for source in array.keys(): if source in next_match.keys(): array[source] += next_match[source] template += next_match[list(next_match.keys())[0]] logger.debug(f"found matching lvl {template}, {match_grps}") if self.check_non_convergence(next_match): self.trace_template(next_match, visited, template, array) def match_branches(self, nodes_dict): logger.debug(f"matching next lvl branches {nodes_dict} stop points: {self.stop_points}") nbr_values = {} for node, nbrs in nodes_dict.items(): super_list = list() for nbr in nbrs: if self.graph._is_element(self.graph.nodes[nbr]): inst = self.graph.element(nbr) # logger.debug(f"instance {inst}") # super_list.append(inst.model) super_list.append(inst.abstract_name) else: super_list.append("net") logger.debug(f"all probable neighbors from {node} {super_list}") nbr_values[node] = Counter(super_list) logger.debug(f"all nbr properties {nbr_values}") _, main = nbr_values.popitem() for node, val in nbr_values.items(): if val == main: continue else: return False return True def check_non_convergence(self, match: dict): vals = list() for val in match.values(): common_node = set(val).intersection(vals) common_element = [node for node in common_node if self.graph._is_element(node)] if common_element: logger.debug(f"{common_element} already existing , ending further array search") return False else: vals += val logger.debug("not converging level") return True def add_align_block_const(self): logger.debug(f"AlignBlock const: {self.align_block_const}") for key, inst_list in self.align_block_const.items(): logger.debug(f"align instances: {inst_list}") h_blocks = [inst for inst in inst_list \ if inst in self.graph] if len(h_blocks) > 0: with set_context(self.iconst): self.iconst.append(constraint.Align(line="h_center", instances=h_blocks)) # del self.match_pairs[key] logger.debug(f"AlignBlock const update {self.iconst}") # hier_keys = [key for key, value in self.match_pairs.items() if "name" in value.keys()] # for key in hier_keys: # del self.match_pairs[key] # return hier_keys def add_new_array_hier(self): logger.debug(f"New hierarchy instances: {self.new_hier_instances}") sub_hier_elements = set() for key, array_2D in self.new_hier_instances.items(): logger.debug(f"new hier instances: {array_2D}") all_inst = [inst for template in array_2D for inst in template if inst in self.graph and inst not in sub_hier_elements] #Filter repeated elements across array of obejcts repeated_elements = set([inst for inst, count in Counter(all_inst).items() if count>1]) all_inst = set(all_inst) - repeated_elements array_2D = [list(set(array_1D) - repeated_elements) for array_1D in array_2D] sub_hier_elements.update(all_inst) if len(all_inst) <=1: logger.debug(f"not enough elements to create a hierarchy") continue new_array_hier_name = "ARRAY_HIER_" + key create_new_hiearchy(self.dl, self.name, new_array_hier_name, all_inst) all_template_names = list() for template in array_2D: template_name = self.get_new_subckt_name("ARRAY_TEMPLATE") create_new_hiearchy(self.dl, new_array_hier_name, template_name, template) all_template_names.append(template_name) self.add_array_placement_constraints(new_array_hier_name, all_template_names) def add_array_placement_constraints(self, hier, modules): #TODO make it sizing aware # array placement constraint arre_hier_const = self.dl.find(hier).constraints with set_context(arre_hier_const): instances = ['X_'+module for module in modules] arre_hier_const.append(constraint.Align(line="h_center", instances=instances)) arre_hier_const.append(constraint.SameTemplate(instances=instances)) # template placement constraint # for template in modules: # template_module = self.dl.find(template) # all_inst = [inst.name for inst in template_module.elements] # with set_context(template_module.constraints): # template_module.constraints.append(constraint.Align(line="v_center", instances=all_inst)) def get_new_subckt_name(self, name): count =1 new_name = name while self.ckt.parent.find(new_name): new_name = name + str(count) count +=1 return new_name def create_new_hiearchy(dl, parent_name, child_name, elements, pins_map=None): parent = dl.find(parent_name) # Create a subckt and add to library logger.info(f"adding new array hierarchy {child_name} elements {elements}") if not pins_map: pins_map = {} G = Graph(parent) logger.debug(f"{parent.elements}") for ele in elements: if parent.get_element(ele): pins_map.update({net:net for net in G.neighbors(ele)}) logger.debug(f"pins {pins_map} {elements} {parent.pins}") pins_map = { net:net for net in pins_map.keys() if net in parent.pins or (set(G.neighbors(net))-set(elements)) } if not pins_map: logger.error(f"can't create module with no pins") return logger.debug(f"new subckt pins : {pins_map}") assert not dl.find(child_name), f"subcircuit {child_name} already existing" with set_context(dl): logger.debug(pins_map.keys) child = SubCircuit(name=child_name, pins=list(pins_map.keys())) dl.append(child) # Add all instances of groupblock to new subckt pes = list() with set_context(child.elements): for ele in elements: pe = parent.get_element(ele) if pe: pes.append(pe) child.elements.append(pe) # Transfer global constraints with set_context(child.constraints): for const in list(parent.constraints): if any( isinstance(const, x) for x in [ constraint.HorizontalDistance, constraint.VerticalDistance, constraint.BlockDistance, constraint.CompactPlacement, ] ): child.constraints.append(const) # Remove elements from subckt then add new_subckt instance inst_name = "X_"+child_name with set_context(parent.elements): for pe in pes: parent.elements.remove(pe) X1 = Instance( name=inst_name, model=child_name, pins=pins_map, generator=child_name, abstract_name = child_name ) parent.elements.append(X1)
[ "logging.getLogger", "align.schema.graph.Graph", "pprint.pformat", "collections.Counter", "itertools.combinations", "align.schema.Instance" ]
[((483, 510), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (500, 510), False, 'import logging\n'), ((1094, 1104), 'align.schema.graph.Graph', 'Graph', (['ckt'], {}), '(ckt)\n', (1099, 1104), False, 'from align.schema.graph import Graph\n'), ((5761, 5782), 'itertools.combinations', 'combinations', (['lvl1', '(2)'], {}), '(lvl1, 2)\n', (5773, 5782), False, 'from itertools import combinations\n'), ((13080, 13093), 'align.schema.graph.Graph', 'Graph', (['parent'], {}), '(parent)\n', (13085, 13093), False, 'from align.schema.graph import Graph\n'), ((14844, 14954), 'align.schema.Instance', 'Instance', ([], {'name': 'inst_name', 'model': 'child_name', 'pins': 'pins_map', 'generator': 'child_name', 'abstract_name': 'child_name'}), '(name=inst_name, model=child_name, pins=pins_map, generator=\n child_name, abstract_name=child_name)\n', (14852, 14954), False, 'from align.schema import SubCircuit, Instance\n'), ((8705, 8724), 'collections.Counter', 'Counter', (['super_list'], {}), '(super_list)\n', (8712, 8724), False, 'from collections import Counter\n'), ((2601, 2643), 'pprint.pformat', 'pprint.pformat', (['self.match_pairs'], {'indent': '(4)'}), '(self.match_pairs, indent=4)\n', (2615, 2643), False, 'import pprint\n'), ((3343, 3385), 'pprint.pformat', 'pprint.pformat', (['self.match_pairs'], {'indent': '(4)'}), '(self.match_pairs, indent=4)\n', (3357, 3385), False, 'import pprint\n'), ((2972, 3014), 'pprint.pformat', 'pprint.pformat', (['self.match_pairs'], {'indent': '(4)'}), '(self.match_pairs, indent=4)\n', (2986, 3014), False, 'import pprint\n'), ((10838, 10855), 'collections.Counter', 'Counter', (['all_inst'], {}), '(all_inst)\n', (10845, 10855), False, 'from collections import Counter\n')]
""" Problem: 1.4 Palindrome Permutation: Given a texting, write a function to check if it is a permutation of a palin­ drome. A palindrome is a word or phrase that is the same forwards and backwards. A permutation is a rearrangement of letters. The palindrome does not need to be limited to just dictionary words. EXAMPLE Input: <NAME> Output: True (permutations: "taco cat", "atco eta", etc.) Hints: #106, #121, #134, #136 -- Questions: - Do we ignore case sensitive letters? A: I think we should convert to lowercase. - Should spaces be ignored? A: I would remove all of them - Is an empty texting a valid palindrome? A: Yes -- Algorithm: Examples: '': True 'a': True 'ab': False 'bb': True 'bba': True 'Tact Coa': True 'aaabbb' = 'ababab': False We can have only one letter with an odd count. So, we can check for it and if we find more than one, we can return False. """ from collections import Counter def palindrome_permutation(text): if text == "": return True text = text.lower().replace(" ", "") letter_count = Counter(text) odd_count_letters = 0 for key in letter_count: if letter_count[key] % 2 != 0: odd_count_letters += 1 if odd_count_letters > 1: return False return True def test(text, expected_answer): answer = palindrome_permutation(text) if answer != expected_answer: raise Exception( f"Answer {answer} is wrong. Expected answer is {expected_answer}" ) if __name__ == "__main__": test("", True) test("a", True) test("ab", False) test("bb", True) test("bba", True) test("Tact Coa", True) test("aaabbb", False) print("All tests passed!")
[ "collections.Counter" ]
[((1057, 1070), 'collections.Counter', 'Counter', (['text'], {}), '(text)\n', (1064, 1070), False, 'from collections import Counter\n')]
# ----------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # ----------------------------------------------------------------------------- import configparser import unittest from unittest import mock from azdev.operations.style import _config_file_path class TestConfigFilePath(unittest.TestCase): def test_unsupported_code_style_checker(self): with self.assertRaises(ValueError): _config_file_path(style_type="unknown") def test_pylint_config_without_setup(self): mocked_config = configparser.ConfigParser() mocked_config.add_section("cli") mocked_config.set("cli", "repo_path", "") mocked_config.add_section("ext") mocked_config.set("ext", "repo_paths", "") with mock.patch("azdev.operations.style.get_azdev_config", return_value=mocked_config): r = _config_file_path(style_type="pylint") self.assertTrue(r[0].endswith("/config_files/cli_pylintrc")) self.assertTrue(r[1].endswith("/config_files/ext_pylintrc")) def test_pylint_config_with_partially_setup(self): cli_repo_path = "~/Azure/azure-cli" mocked_config = configparser.ConfigParser() mocked_config.add_section("cli") mocked_config.set("cli", "repo_path", cli_repo_path) mocked_config.add_section("ext") mocked_config.set("ext", "repo_paths", "") with mock.patch("azdev.operations.style.get_azdev_config", return_value=mocked_config): r = _config_file_path(style_type="pylint") self.assertEqual(r[0], cli_repo_path + "/pylintrc") self.assertTrue(r[1].endswith("/config_files/ext_pylintrc")) def test_pylint_config_with_all_setup(self): cli_repo_path = "~/Azure/azure-cli" ext_repo_path = "~/Azure/azure-cli-extensions" mocked_config = configparser.ConfigParser() mocked_config.add_section("cli") mocked_config.set("cli", "repo_path", cli_repo_path) mocked_config.add_section("ext") mocked_config.set("ext", "repo_paths", ext_repo_path) with mock.patch("azdev.operations.style.get_azdev_config", return_value=mocked_config): r = _config_file_path() self.assertEqual(r[0], cli_repo_path + "/pylintrc") self.assertTrue(r[1], "/pylintrc") def test_flake8_config_wihtout_setup(self): mocked_config = configparser.ConfigParser() mocked_config.add_section("cli") mocked_config.set("cli", "repo_path", "") mocked_config.add_section("ext") mocked_config.set("ext", "repo_paths", "") with mock.patch("azdev.operations.style.get_azdev_config", return_value=mocked_config): r = _config_file_path(style_type="flake8") self.assertTrue(r[0].endswith("/config_files/cli.flake8")) self.assertTrue(r[1].endswith("/config_files/ext.flake8")) def test_flake8_config_with_partially_setup(self): ext_repo_path = "~/Azure/azure-cli-extensions" mocked_config = configparser.ConfigParser() mocked_config.add_section("cli") mocked_config.set("cli", "repo_path", "") mocked_config.add_section("ext") mocked_config.set("ext", "repo_paths", ext_repo_path) with mock.patch("azdev.operations.style.get_azdev_config", return_value=mocked_config): r = _config_file_path(style_type="flake8") self.assertTrue(r[0].endswith("/config_files/cli.flake8")) self.assertTrue(r[1].endswith(ext_repo_path + "/.flake8")) def test_flake9_config_with_all_setup(self): cli_repo_path = "~/Azure/azure-cli" ext_repo_path = "~/Azure/azure-cli-extensions" mocked_config = configparser.ConfigParser() mocked_config.add_section("cli") mocked_config.set("cli", "repo_path", cli_repo_path) mocked_config.add_section("ext") mocked_config.set("ext", "repo_paths", ext_repo_path) with mock.patch("azdev.operations.style.get_azdev_config", return_value=mocked_config): r = _config_file_path(style_type="flake8") self.assertTrue(r[0].endswith(cli_repo_path + "/.flake8")) self.assertTrue(r[1].endswith(ext_repo_path + "/.flake8"))
[ "unittest.mock.patch", "configparser.ConfigParser", "azdev.operations.style._config_file_path" ]
[((701, 728), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (726, 728), False, 'import configparser\n'), ((1334, 1361), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (1359, 1361), False, 'import configparser\n'), ((2018, 2045), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (2043, 2045), False, 'import configparser\n'), ((2568, 2595), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (2593, 2595), False, 'import configparser\n'), ((3209, 3236), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (3234, 3236), False, 'import configparser\n'), ((3899, 3926), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (3924, 3926), False, 'import configparser\n'), ((588, 627), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {'style_type': '"""unknown"""'}), "(style_type='unknown')\n", (605, 627), False, 'from azdev.operations.style import _config_file_path\n'), ((926, 1012), 'unittest.mock.patch', 'mock.patch', (['"""azdev.operations.style.get_azdev_config"""'], {'return_value': 'mocked_config'}), "('azdev.operations.style.get_azdev_config', return_value=\n mocked_config)\n", (936, 1012), False, 'from unittest import mock\n'), ((1025, 1063), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {'style_type': '"""pylint"""'}), "(style_type='pylint')\n", (1042, 1063), False, 'from azdev.operations.style import _config_file_path\n'), ((1570, 1656), 'unittest.mock.patch', 'mock.patch', (['"""azdev.operations.style.get_azdev_config"""'], {'return_value': 'mocked_config'}), "('azdev.operations.style.get_azdev_config', return_value=\n mocked_config)\n", (1580, 1656), False, 'from unittest import mock\n'), ((1669, 1707), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {'style_type': '"""pylint"""'}), "(style_type='pylint')\n", (1686, 1707), False, 'from azdev.operations.style import _config_file_path\n'), ((2265, 2351), 'unittest.mock.patch', 'mock.patch', (['"""azdev.operations.style.get_azdev_config"""'], {'return_value': 'mocked_config'}), "('azdev.operations.style.get_azdev_config', return_value=\n mocked_config)\n", (2275, 2351), False, 'from unittest import mock\n'), ((2364, 2383), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {}), '()\n', (2381, 2383), False, 'from azdev.operations.style import _config_file_path\n'), ((2793, 2879), 'unittest.mock.patch', 'mock.patch', (['"""azdev.operations.style.get_azdev_config"""'], {'return_value': 'mocked_config'}), "('azdev.operations.style.get_azdev_config', return_value=\n mocked_config)\n", (2803, 2879), False, 'from unittest import mock\n'), ((2892, 2930), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {'style_type': '"""flake8"""'}), "(style_type='flake8')\n", (2909, 2930), False, 'from azdev.operations.style import _config_file_path\n'), ((3445, 3531), 'unittest.mock.patch', 'mock.patch', (['"""azdev.operations.style.get_azdev_config"""'], {'return_value': 'mocked_config'}), "('azdev.operations.style.get_azdev_config', return_value=\n mocked_config)\n", (3455, 3531), False, 'from unittest import mock\n'), ((3544, 3582), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {'style_type': '"""flake8"""'}), "(style_type='flake8')\n", (3561, 3582), False, 'from azdev.operations.style import _config_file_path\n'), ((4146, 4232), 'unittest.mock.patch', 'mock.patch', (['"""azdev.operations.style.get_azdev_config"""'], {'return_value': 'mocked_config'}), "('azdev.operations.style.get_azdev_config', return_value=\n mocked_config)\n", (4156, 4232), False, 'from unittest import mock\n'), ((4245, 4283), 'azdev.operations.style._config_file_path', '_config_file_path', ([], {'style_type': '"""flake8"""'}), "(style_type='flake8')\n", (4262, 4283), False, 'from azdev.operations.style import _config_file_path\n')]
import tensorflow as tf import tensorflow_probability as tfp class HSCIC() : def __init__(self, amplitude = 1.0, length_scale = 0.1, regularization = 0.01, **kwargs): # kernel model self.kernel = tfp.math.psd_kernels.ExponentiatedQuadratic( amplitude = amplitude, length_scale = length_scale ) self.regularization = regularization # get loss givne a single instance z def __call__(self, Y : tf.Tensor, A : tf.Tensor, X : tf.Tensor, H : tf.Tensor): # reshape arrays if tf.rank(A) == 1 : A = tf.reshape(A, [tf.shape(A)[0], 1]) if tf.rank(X) == 1 : X = tf.reshape(X, [tf.shape(X)[0], 1]) if tf.rank(Y) == 1 : Y = tf.reshape(Y, [tf.shape(Y)[0], 1]) if tf.rank(H) == 1 : H = tf.reshape(H, [tf.shape(H)[0], 1]) A = tf.cast(A, dtype='float32') X = tf.cast(X, dtype='float32') Y = tf.cast(Y, dtype='float32') H = tf.cast(H, dtype='float32') X = tf.concat([X, H], axis = 1) # get Kernel matrices gram_A = self.kernel.matrix(A, A) gram_X = self.kernel.matrix(X, X) gram_Y = self.kernel.matrix(Y, Y) gram_A = tf.cast(gram_A, dtype='float32') gram_X = tf.cast(gram_X, dtype='float32') gram_Y = tf.cast(gram_Y, dtype='float32') # get HSCIC loss res = tf.map_fn(fn=lambda X: self.inner_loss(X, gram_A, gram_X, gram_Y), elems=gram_X) res = tf.math.reduce_mean(res) return res # get loss givne a single instance z def inner_loss(self, X, gram_A, gram_X, gram_Y) : # get number of samples and make matrix W n_samples = tf.cast(tf.shape(gram_Y)[0], dtype = 'float32') identity = tf.eye(n_samples, dtype = 'float32') W = gram_X + n_samples * self.regularization * identity # solve linear system if tf.rank(X) == 1: X = tf.reshape(X, [tf.shape(X)[0], 1]) f = tf.linalg.solve(tf.transpose(W), X) fT = tf.transpose(f) # get distributions res = tf.einsum('ij,jk,kl', fT, gram_A * gram_Y, f) M = tf.einsum('ij,jk', gram_A, f) N = tf.einsum('ij,jk', gram_Y, f) res = res - 2 * tf.einsum('ij,jk', fT, M * N) P = tf.einsum('ij,jk,kl', fT, gram_A, f) Q = tf.einsum('ij,jk,kl', fT, gram_Y, f) res = res + P * Q return res
[ "tensorflow.eye", "tensorflow.shape", "tensorflow.transpose", "tensorflow.rank", "tensorflow.einsum", "tensorflow.concat", "tensorflow.math.reduce_mean", "tensorflow_probability.math.psd_kernels.ExponentiatedQuadratic", "tensorflow.cast" ]
[((287, 382), 'tensorflow_probability.math.psd_kernels.ExponentiatedQuadratic', 'tfp.math.psd_kernels.ExponentiatedQuadratic', ([], {'amplitude': 'amplitude', 'length_scale': 'length_scale'}), '(amplitude=amplitude,\n length_scale=length_scale)\n', (330, 382), True, 'import tensorflow_probability as tfp\n'), ((966, 993), 'tensorflow.cast', 'tf.cast', (['A'], {'dtype': '"""float32"""'}), "(A, dtype='float32')\n", (973, 993), True, 'import tensorflow as tf\n'), ((1006, 1033), 'tensorflow.cast', 'tf.cast', (['X'], {'dtype': '"""float32"""'}), "(X, dtype='float32')\n", (1013, 1033), True, 'import tensorflow as tf\n'), ((1046, 1073), 'tensorflow.cast', 'tf.cast', (['Y'], {'dtype': '"""float32"""'}), "(Y, dtype='float32')\n", (1053, 1073), True, 'import tensorflow as tf\n'), ((1086, 1113), 'tensorflow.cast', 'tf.cast', (['H'], {'dtype': '"""float32"""'}), "(H, dtype='float32')\n", (1093, 1113), True, 'import tensorflow as tf\n'), ((1127, 1152), 'tensorflow.concat', 'tf.concat', (['[X, H]'], {'axis': '(1)'}), '([X, H], axis=1)\n', (1136, 1152), True, 'import tensorflow as tf\n'), ((1332, 1364), 'tensorflow.cast', 'tf.cast', (['gram_A'], {'dtype': '"""float32"""'}), "(gram_A, dtype='float32')\n", (1339, 1364), True, 'import tensorflow as tf\n'), ((1382, 1414), 'tensorflow.cast', 'tf.cast', (['gram_X'], {'dtype': '"""float32"""'}), "(gram_X, dtype='float32')\n", (1389, 1414), True, 'import tensorflow as tf\n'), ((1432, 1464), 'tensorflow.cast', 'tf.cast', (['gram_Y'], {'dtype': '"""float32"""'}), "(gram_Y, dtype='float32')\n", (1439, 1464), True, 'import tensorflow as tf\n'), ((1624, 1648), 'tensorflow.math.reduce_mean', 'tf.math.reduce_mean', (['res'], {}), '(res)\n', (1643, 1648), True, 'import tensorflow as tf\n'), ((1904, 1938), 'tensorflow.eye', 'tf.eye', (['n_samples'], {'dtype': '"""float32"""'}), "(n_samples, dtype='float32')\n", (1910, 1938), True, 'import tensorflow as tf\n'), ((2164, 2179), 'tensorflow.transpose', 'tf.transpose', (['f'], {}), '(f)\n', (2176, 2179), True, 'import tensorflow as tf\n'), ((2223, 2268), 'tensorflow.einsum', 'tf.einsum', (['"""ij,jk,kl"""', 'fT', '(gram_A * gram_Y)', 'f'], {}), "('ij,jk,kl', fT, gram_A * gram_Y, f)\n", (2232, 2268), True, 'import tensorflow as tf\n'), ((2281, 2310), 'tensorflow.einsum', 'tf.einsum', (['"""ij,jk"""', 'gram_A', 'f'], {}), "('ij,jk', gram_A, f)\n", (2290, 2310), True, 'import tensorflow as tf\n'), ((2323, 2352), 'tensorflow.einsum', 'tf.einsum', (['"""ij,jk"""', 'gram_Y', 'f'], {}), "('ij,jk', gram_Y, f)\n", (2332, 2352), True, 'import tensorflow as tf\n'), ((2419, 2455), 'tensorflow.einsum', 'tf.einsum', (['"""ij,jk,kl"""', 'fT', 'gram_A', 'f'], {}), "('ij,jk,kl', fT, gram_A, f)\n", (2428, 2455), True, 'import tensorflow as tf\n'), ((2468, 2504), 'tensorflow.einsum', 'tf.einsum', (['"""ij,jk,kl"""', 'fT', 'gram_Y', 'f'], {}), "('ij,jk,kl', fT, gram_Y, f)\n", (2477, 2504), True, 'import tensorflow as tf\n'), ((693, 703), 'tensorflow.rank', 'tf.rank', (['A'], {}), '(A)\n', (700, 703), True, 'import tensorflow as tf\n'), ((761, 771), 'tensorflow.rank', 'tf.rank', (['X'], {}), '(X)\n', (768, 771), True, 'import tensorflow as tf\n'), ((829, 839), 'tensorflow.rank', 'tf.rank', (['Y'], {}), '(Y)\n', (836, 839), True, 'import tensorflow as tf\n'), ((897, 907), 'tensorflow.rank', 'tf.rank', (['H'], {}), '(H)\n', (904, 907), True, 'import tensorflow as tf\n'), ((2047, 2057), 'tensorflow.rank', 'tf.rank', (['X'], {}), '(X)\n', (2054, 2057), True, 'import tensorflow as tf\n'), ((2131, 2146), 'tensorflow.transpose', 'tf.transpose', (['W'], {}), '(W)\n', (2143, 2146), True, 'import tensorflow as tf\n'), ((1844, 1860), 'tensorflow.shape', 'tf.shape', (['gram_Y'], {}), '(gram_Y)\n', (1852, 1860), True, 'import tensorflow as tf\n'), ((2377, 2406), 'tensorflow.einsum', 'tf.einsum', (['"""ij,jk"""', 'fT', '(M * N)'], {}), "('ij,jk', fT, M * N)\n", (2386, 2406), True, 'import tensorflow as tf\n'), ((730, 741), 'tensorflow.shape', 'tf.shape', (['A'], {}), '(A)\n', (738, 741), True, 'import tensorflow as tf\n'), ((798, 809), 'tensorflow.shape', 'tf.shape', (['X'], {}), '(X)\n', (806, 809), True, 'import tensorflow as tf\n'), ((866, 877), 'tensorflow.shape', 'tf.shape', (['Y'], {}), '(Y)\n', (874, 877), True, 'import tensorflow as tf\n'), ((934, 945), 'tensorflow.shape', 'tf.shape', (['H'], {}), '(H)\n', (942, 945), True, 'import tensorflow as tf\n'), ((2083, 2094), 'tensorflow.shape', 'tf.shape', (['X'], {}), '(X)\n', (2091, 2094), True, 'import tensorflow as tf\n')]
import json import sys from direct.showbase.ShowBase import ShowBase import panda3d.core as p3d import cefpanda p3d.load_prc_file_data('', 'win-size 1280 720') class Game(ShowBase): def __init__(self): ShowBase.__init__(self) self.accept('escape', sys.exit) # Setup ui self.ui = cefpanda.CEFPanda() self.ui.set_js_function('update_options', self.update_options) self.ui.load_file('ui/main.html') options = json.dumps(self.get_options()) self.ui.exec_js_func('ui_update_options', options) def get_options(self): winprops = self.win.get_properties() disp_info = self.pipe.get_display_information() options = { 'selected_resolution': '{} x {}'.format(winprops.get_x_size(), winprops.get_y_size()), 'resolutions': sorted(list({ '{} x {}'.format( disp_info.get_display_mode_width(i), disp_info.get_display_mode_height(i) ) for i in range(disp_info.get_total_display_modes()) }), key=lambda x: -int(x.split(' x ')[1])), 'fullscreen': winprops.get_fullscreen(), } return options def update_options(self, options): winprops = p3d.WindowProperties() resx, resy = [int(i) for i in options['selected_resolution'].split(' x ')] winprops.set_size(resx, resy) winprops.set_fullscreen(options['fullscreen']) self.win.request_properties(winprops) if __name__ == '__main__': APP = Game() APP.run()
[ "direct.showbase.ShowBase.ShowBase.__init__", "panda3d.core.load_prc_file_data", "cefpanda.CEFPanda", "panda3d.core.WindowProperties" ]
[((115, 162), 'panda3d.core.load_prc_file_data', 'p3d.load_prc_file_data', (['""""""', '"""win-size 1280 720"""'], {}), "('', 'win-size 1280 720')\n", (137, 162), True, 'import panda3d.core as p3d\n'), ((219, 242), 'direct.showbase.ShowBase.ShowBase.__init__', 'ShowBase.__init__', (['self'], {}), '(self)\n', (236, 242), False, 'from direct.showbase.ShowBase import ShowBase\n'), ((322, 341), 'cefpanda.CEFPanda', 'cefpanda.CEFPanda', ([], {}), '()\n', (339, 341), False, 'import cefpanda\n'), ((1289, 1311), 'panda3d.core.WindowProperties', 'p3d.WindowProperties', ([], {}), '()\n', (1309, 1311), True, 'import panda3d.core as p3d\n')]
from rdflib.graph import Graph, ConjunctiveGraph from rdflib import Literal from rdflib import RDF from rdflib import RDFS from rdflib import URIRef from rdflib import Namespace from rdflib import plugin from rdflib.store import Store from rdflib.term import BNode import rdflib import delphin.mrs import delphin.variable import delphin.predicate # some useful namespaces MRS = Namespace("http://www.delph-in.net/schema/mrs#") ERG = Namespace("http://www.delph-in.net/schema/erg#") DELPH = Namespace("http://www.delph-in.net/schema/") POS = Namespace("http://www.delph-in.net/schema/pos#") def mrs_to_rdf(m:delphin.mrs._mrs.MRS, MRSI:rdflib.term.URIRef, defaultGraph:rdflib.graph.ConjunctiveGraph=None) -> rdflib.graph.ConjunctiveGraph: """ Takes a PyDelphin MRS object "m" and serializes it into a named RDF graph inside a store. Args: m: a PyDelphin MRS instance to be converted into RDF format MRSI: URI of the MRS instance being converted defaultGraph : the conjunctive graph representing the profile graph. If not given, creates one. Inplace function that alters the conjunctive graph with the serialized MRS and return the conjunctive graph as well. In case of using it without giving the graph, it creates one and returns it. """ # Making the arguments behave well: if defaultGraph is None: defaultGraph = ConjunctiveGraph() # MRS graph: mrsGraph = Graph(store=defaultGraph.store, identifier=MRSI) mrsGraph.add((MRSI, RDF.type, MRS.mrs)) # Creating the prefix of the MRS elements and relevant namespaces insprefix = Namespace(MRSI + '#') VARS = Namespace(insprefix + "variable-") RELS = Namespace(insprefix + "EP-") PREDS = Namespace(insprefix + "predicate-") SORTINFO = Namespace(insprefix + "sortinfo-") HCONS = Namespace(insprefix + "hcons-") ICONS = Namespace(insprefix + "icons-") # Adding top and index mrsGraph.add((MRSI, RDF.type, MRS.mrs)) mrsGraph.add((MRSI, DELPH['hasTop'], VARS[m.top])) mrsGraph.add((MRSI, DELPH['hasIndex'], VARS[m.index])) # ALTERNATIVE: (BNode, DELPH['hasTop'], VARS[m.top]) # Populating the graphs _vars_to_rdf(m, mrsGraph, VARS, SORTINFO) _rels_to_rdf(m, mrsGraph, defaultGraph, MRSI, RELS, PREDS, VARS) _hcons_to_rdf(m, mrsGraph, defaultGraph, MRSI, HCONS, VARS) _icons_to_rdf(m, mrsGraph, defaultGraph, MRSI, ICONS, VARS) return defaultGraph def _vars_to_rdf(m, mrsGraph, VARS, SORTINFO): """ Converts the variables of a MRS to the RDF graph Args: m: a delphin mrs instance to be converted into RDF format mrsGraph: a rdflib Graph where the MRS triples will be put. VARS: the URI namespace dedicated to variables. SORTINFO: the URI namespace dedicated to the sortinfo (morphosemantic information). """ for v in m.variables.items(): if delphin.variable.is_valid(v[0]): # typing variables if delphin.variable.type(v[0]) != 'h': mrsGraph.add((VARS[v[0]], RDF.type, DELPH[delphin.variable.type(v[0])])) else : mrsGraph.add((VARS[v[0]], RDF.type, MRS['h'])) # variable properties: if v[1] != {}: mrsGraph.add((SORTINFO[v[0]], RDF.type, DELPH.SortInfo)) mrsGraph.add((VARS[v[0]], DELPH.hasSortInfo, SORTINFO[v[0]])) for props in v[1].items(): mrsGraph.add((SORTINFO[v[0]], ERG[props[0].lower()], Literal(props[1]))) # it wouldn't be harmful to reassure that the property is defined in ERG, but it'll be like that for now. else: # very rare event, should it be removed? print("Invalid variable name") def _rels_to_rdf(m, mrsGraph, defaultGraph, MRSI, RELS, PREDS, VARS): """ Converts the EPs of a MRS to the graph Args: m: a delphin mrs instance to be converted into RDF format mrsGraph: a rdflib Graph where the MRS triples will be put. defaultGraph: the conjunctive graph of the profile MRSI: the node of the MRS instance being converted RELS: the URI namespace dedicated to EPs PREDS: the URI namespace dedicated to predicates VARS: the URI namespace dedicated to variables """ for rel in range(len(m.rels)): mrs_rel = m.rels[rel] EPNode = RELS[f"{rel}"] #maybe label EPs in a different manner is better because they aren't ordered. predNode = PREDS[f"{rel}"] mrsGraph.add((MRSI, MRS.hasEP, EPNode)) mrsGraph.add((EPNode, RDF.type, MRS.ElementaryPredication)) mrsGraph.add((EPNode, MRS.hasLabel, VARS[mrs_rel.label])) # graph.add((rdf_rel, MRS.var, VARS[mrs_rel.iv])) #not needed because ARG0 is already being included at the end of function splittedPredicate = delphin.predicate.split(delphin.predicate.normalize(mrs_rel.predicate)) if delphin.predicate.is_surface(mrs_rel.predicate): mrsGraph.add((predNode, RDF.type, DELPH.SurfacePredicate)) elif delphin.predicate.is_abstract(mrs_rel.predicate): mrsGraph.add((predNode, RDF.type, DELPH.AbstractPredicate)) else: #not(delphin.predicate.is_valid(mrs_rel.predicate)) print("{} is an invalid predicate.".format(mrs_rel.predicate)) #revise; maybe something stronger. mrsGraph.add((predNode, RDF.type, DELPH.Predicate)) #revise mrsGraph.add((EPNode, DELPH.hasPredicate, predNode)) mrsGraph.add((predNode, DELPH.predText, Literal(delphin.predicate.normalize(mrs_rel.predicate)))) mrsGraph.add((EPNode, RDFS.label, Literal(f"{delphin.predicate.normalize(mrs_rel.predicate)}<{mrs_rel.cfrom},{mrs_rel.cto}>"))) if splittedPredicate[0] is not None: #here, lemma = name by now. mrsGraph.add((predNode, DELPH.hasLemma, Literal(splittedPredicate[0]))) if splittedPredicate[1] is not None: mrsGraph.add((predNode, DELPH.hasPos, POS[splittedPredicate[1]])) if splittedPredicate[2] is not None: mrsGraph.add((predNode, DELPH.hasSense, Literal(splittedPredicate[2]))) #lnk: if mrs_rel.cfrom is not None: mrsGraph.add((EPNode, DELPH.cfrom, Literal(mrs_rel.cfrom))) #integer if mrs_rel.cto is not None: mrsGraph.add((EPNode, DELPH.cto, Literal(mrs_rel.cto))) #integer # parse arguments for hole, arg in mrs_rel.args.items(): # mrs variables as arguments if hole.lower() != "carg" : mrsGraph.add((EPNode, MRS[hole.lower()], VARS[arg])) else : mrsGraph.add((EPNode, DELPH.carg, Literal(arg))) def _hcons_to_rdf(m, mrsGraph, defaultGraph, MRSI, HCONS, VARS): """ Describes handle constraints "HCONS" in an MRS-RDF format Args: m: a delphin mrs instance to be converted into RDF format mrsGraph: a rdflib Graph where the MRS triples will be put. defaultGraph: the conjunctive graph of the profile MRSI: the node of the MRS instance being converted HCONS: the URI namespace dedicated to handle constraints VARS: the URI namespace dedicated to variables """ for id_hcons in range(len(m.hcons)): mrs_hcons = m.hcons[id_hcons] HCONSNode = HCONS[f"{id_hcons}"] # adds hcons to graphs mrsGraph.add((MRSI, MRS.hasHcons, HCONSNode)) mrsGraph.add((HCONSNode, RDF.type, MRS[mrs_hcons.relation.capitalize()])) mrsGraph.add((HCONSNode, MRS.highHcons, VARS[mrs_hcons.hi])) mrsGraph.add((HCONSNode, MRS.lowHcons, VARS[mrs_hcons.lo])) def _icons_to_rdf(m, mrsGraph, defaultGraph, MRSI, ICONS, VARS): """ Describes individual constraints "ICONS" in MRS-RDF format Args: m: a delphin mrs instance to be converted into RDF format mrsGraph: a rdflib Graph where the MRS triples will be put. defaultGraph: the conjunctive graph of the profile MRSI: the node of the MRS instance being converted ICONS: the URI namespace dedicated to individual constraints VARS: the URI namespace dedicated to variables """ for id_icons in range(len(m.icons)): mrs_icons = m.icons[id_icons] ICONSNode = ICONS[f"{id_icons}"] # adds icons to graphs mrsGraph.add((MRSI, MRS.hasIcons, ICONSNode)) mrsGraph.add((ICONSNode, RDF.type, ERG[mrs_icons.relation])) mrsGraph.add((ICONSNode, MRS.leftIcons, VARS[mrs_icons.left])) # should be revisited mrsGraph.add((ICONSNode, MRS.rightIcons, VARS[mrs_icons.right])) # should be revisited # by now, the ICONSs seems to be grammar-specific # and this relation must be defined in ERG as an icons. # As we don't have an exhaustive list of the possible icons in ERG (and any other grammar), # we'll create on the final graph those icons. This is provisory defaultGraph.add((ERG[mrs_icons.relation], RDF.type, RDFS.Class)) defaultGraph.add((ERG[mrs_icons.relation], RDFS.subClassOf, MRS.Icons))
[ "rdflib.Namespace", "rdflib.graph.ConjunctiveGraph", "rdflib.graph.Graph", "rdflib.Literal" ]
[((381, 429), 'rdflib.Namespace', 'Namespace', (['"""http://www.delph-in.net/schema/mrs#"""'], {}), "('http://www.delph-in.net/schema/mrs#')\n", (390, 429), False, 'from rdflib import Namespace\n'), ((436, 484), 'rdflib.Namespace', 'Namespace', (['"""http://www.delph-in.net/schema/erg#"""'], {}), "('http://www.delph-in.net/schema/erg#')\n", (445, 484), False, 'from rdflib import Namespace\n'), ((493, 537), 'rdflib.Namespace', 'Namespace', (['"""http://www.delph-in.net/schema/"""'], {}), "('http://www.delph-in.net/schema/')\n", (502, 537), False, 'from rdflib import Namespace\n'), ((544, 592), 'rdflib.Namespace', 'Namespace', (['"""http://www.delph-in.net/schema/pos#"""'], {}), "('http://www.delph-in.net/schema/pos#')\n", (553, 592), False, 'from rdflib import Namespace\n'), ((1468, 1516), 'rdflib.graph.Graph', 'Graph', ([], {'store': 'defaultGraph.store', 'identifier': 'MRSI'}), '(store=defaultGraph.store, identifier=MRSI)\n', (1473, 1516), False, 'from rdflib.graph import Graph, ConjunctiveGraph\n'), ((1653, 1674), 'rdflib.Namespace', 'Namespace', (["(MRSI + '#')"], {}), "(MRSI + '#')\n", (1662, 1674), False, 'from rdflib import Namespace\n'), ((1686, 1720), 'rdflib.Namespace', 'Namespace', (["(insprefix + 'variable-')"], {}), "(insprefix + 'variable-')\n", (1695, 1720), False, 'from rdflib import Namespace\n'), ((1732, 1760), 'rdflib.Namespace', 'Namespace', (["(insprefix + 'EP-')"], {}), "(insprefix + 'EP-')\n", (1741, 1760), False, 'from rdflib import Namespace\n'), ((1773, 1808), 'rdflib.Namespace', 'Namespace', (["(insprefix + 'predicate-')"], {}), "(insprefix + 'predicate-')\n", (1782, 1808), False, 'from rdflib import Namespace\n'), ((1824, 1858), 'rdflib.Namespace', 'Namespace', (["(insprefix + 'sortinfo-')"], {}), "(insprefix + 'sortinfo-')\n", (1833, 1858), False, 'from rdflib import Namespace\n'), ((1871, 1902), 'rdflib.Namespace', 'Namespace', (["(insprefix + 'hcons-')"], {}), "(insprefix + 'hcons-')\n", (1880, 1902), False, 'from rdflib import Namespace\n'), ((1915, 1946), 'rdflib.Namespace', 'Namespace', (["(insprefix + 'icons-')"], {}), "(insprefix + 'icons-')\n", (1924, 1946), False, 'from rdflib import Namespace\n'), ((1416, 1434), 'rdflib.graph.ConjunctiveGraph', 'ConjunctiveGraph', ([], {}), '()\n', (1432, 1434), False, 'from rdflib.graph import Graph, ConjunctiveGraph\n'), ((5941, 5970), 'rdflib.Literal', 'Literal', (['splittedPredicate[0]'], {}), '(splittedPredicate[0])\n', (5948, 5970), False, 'from rdflib import Literal\n'), ((6215, 6244), 'rdflib.Literal', 'Literal', (['splittedPredicate[2]'], {}), '(splittedPredicate[2])\n', (6222, 6244), False, 'from rdflib import Literal\n'), ((6346, 6368), 'rdflib.Literal', 'Literal', (['mrs_rel.cfrom'], {}), '(mrs_rel.cfrom)\n', (6353, 6368), False, 'from rdflib import Literal\n'), ((6461, 6481), 'rdflib.Literal', 'Literal', (['mrs_rel.cto'], {}), '(mrs_rel.cto)\n', (6468, 6481), False, 'from rdflib import Literal\n'), ((6791, 6803), 'rdflib.Literal', 'Literal', (['arg'], {}), '(arg)\n', (6798, 6803), False, 'from rdflib import Literal\n'), ((3564, 3581), 'rdflib.Literal', 'Literal', (['props[1]'], {}), '(props[1])\n', (3571, 3581), False, 'from rdflib import Literal\n')]
import os import sys import numpy as np import pandas as pd from sklearn.ensemble import GradientBoostingClassifier from sklearn.neural_network import MLPClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler lib_path = os.path.abspath(os.path.join('Ml models')) sys.path.append(lib_path) from features_processing import features_processing from grid_search_function import grid_search_function if __name__ == '__main__': train_original = pd.read_csv('Data/titanic_train_READY.csv') train_original.set_index('PassengerId',inplace=True) train = train_original.copy() target = 'Survived' [scaler, train] = features_processing(train, target, normalization=True) # Choose all predictors except target predictors = [x for x in train.columns if x not in [target]] # # Oversampling with SMOTE # X_res, y_res = SMOTE(kind='regular').fit_sample(train[predictors], train[target]) # # train_res = pd.DataFrame(X_res, columns=train[predictors].columns) # train_res.loc[:,'Survived'] = y_res # train = train_res # Random undersampling rus = RandomUnderSampler(random_state=10) X_res, y_res = rus.fit_sample(train[predictors], train[target]) train_res = pd.DataFrame(X_res, columns=train[predictors].columns) train_res.loc[:,'Survived'] = y_res train = train_res param_test1 = {#'C':[0.5, 1, 2, 3, 5, 10, 20, 30, 35, 40, 50, 60], 'C': np.arange(0.1,2.1,0.05), 'penalty': ['l1', 'l2'] } gsearch1 = GridSearchCV(estimator = LogisticRegression( random_state=10, max_iter=1000, solver='saga' ), param_grid = param_test1, scoring='accuracy',n_jobs=-1,iid=False, cv=5) # gsearch1.fit(train[predictors], train[target]) # clf = gsearch1 gsearch_chosen = LogisticRegression( random_state=10, max_iter=1000, solver='saga', C=1.1, penalty='l1' ) # gsearch_chosen.fit(train[predictors], train[target]) # # Print results # print("Best parameters set found on development set:") # print(clf.best_params_) # # print("Grid scores on development set:") # means = clf.cv_results_['mean_test_score'] # stds = clf.cv_results_['std_test_score'] # # for mean, std, params in zip(means, stds, clf.cv_results_['params']): # print("%0.3f (+/-%0.03f) for %r" # % (mean, std * 2, params)) # Predicting result for submission submitting = False if submitting: # Lading test data test = pd.read_csv('Data/titanic_test_READY.csv') test.set_index('PassengerId',inplace=True) [scaler, test_X] = features_processing(test, target, normalization=True, training=False, scaler=scaler) y_predicted = gsearch_chosen.predict(test_X) y_predicted_df = pd.DataFrame(y_predicted, columns={'Survived'}, index=test_X.index) # y_predicted_df.sort_index(inplace=True) y_predicted_df.to_csv('Kaggle submissions/titanic_submission2_accuracy_undersampled_LogR2.csv', sep=',', encoding='utf-8')
[ "pandas.read_csv", "numpy.arange", "os.path.join", "sklearn.linear_model.LogisticRegression", "features_processing.features_processing", "pandas.DataFrame", "sys.path.append", "imblearn.under_sampling.RandomUnderSampler" ]
[((418, 443), 'sys.path.append', 'sys.path.append', (['lib_path'], {}), '(lib_path)\n', (433, 443), False, 'import sys\n'), ((391, 416), 'os.path.join', 'os.path.join', (['"""Ml models"""'], {}), "('Ml models')\n", (403, 416), False, 'import os\n'), ((602, 645), 'pandas.read_csv', 'pd.read_csv', (['"""Data/titanic_train_READY.csv"""'], {}), "('Data/titanic_train_READY.csv')\n", (613, 645), True, 'import pandas as pd\n'), ((784, 838), 'features_processing.features_processing', 'features_processing', (['train', 'target'], {'normalization': '(True)'}), '(train, target, normalization=True)\n', (803, 838), False, 'from features_processing import features_processing\n'), ((1250, 1285), 'imblearn.under_sampling.RandomUnderSampler', 'RandomUnderSampler', ([], {'random_state': '(10)'}), '(random_state=10)\n', (1268, 1285), False, 'from imblearn.under_sampling import RandomUnderSampler\n'), ((1371, 1425), 'pandas.DataFrame', 'pd.DataFrame', (['X_res'], {'columns': 'train[predictors].columns'}), '(X_res, columns=train[predictors].columns)\n', (1383, 1425), True, 'import pandas as pd\n'), ((2223, 2313), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(10)', 'max_iter': '(1000)', 'solver': '"""saga"""', 'C': '(1.1)', 'penalty': '"""l1"""'}), "(random_state=10, max_iter=1000, solver='saga', C=1.1,\n penalty='l1')\n", (2241, 2313), False, 'from sklearn.linear_model import LogisticRegression\n'), ((1586, 1611), 'numpy.arange', 'np.arange', (['(0.1)', '(2.1)', '(0.05)'], {}), '(0.1, 2.1, 0.05)\n', (1595, 1611), True, 'import numpy as np\n'), ((3141, 3183), 'pandas.read_csv', 'pd.read_csv', (['"""Data/titanic_test_READY.csv"""'], {}), "('Data/titanic_test_READY.csv')\n", (3152, 3183), True, 'import pandas as pd\n'), ((3262, 3350), 'features_processing.features_processing', 'features_processing', (['test', 'target'], {'normalization': '(True)', 'training': '(False)', 'scaler': 'scaler'}), '(test, target, normalization=True, training=False,\n scaler=scaler)\n', (3281, 3350), False, 'from features_processing import features_processing\n'), ((3426, 3493), 'pandas.DataFrame', 'pd.DataFrame', (['y_predicted'], {'columns': "{'Survived'}", 'index': 'test_X.index'}), "(y_predicted, columns={'Survived'}, index=test_X.index)\n", (3438, 3493), True, 'import pandas as pd\n'), ((1715, 1780), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {'random_state': '(10)', 'max_iter': '(1000)', 'solver': '"""saga"""'}), "(random_state=10, max_iter=1000, solver='saga')\n", (1733, 1780), False, 'from sklearn.linear_model import LogisticRegression\n')]
from PyQt5.Qt import QObject from PyQt5.QtWidgets import QWidget from PyQt5.Qt import Qt from PyQt5.Qt import QVBoxLayout from mc.tools.DockTitleBarWidget import DockTitleBarWidget from PyQt5.Qt import QActionGroup from PyQt5.Qt import QKeySequence from PyQt5.Qt import QAction from mc.common.globalvars import gVar from .BookmarksSideBar import BookmarksSideBar from .HistorySideBar import HistorySideBar class SideBar(QWidget): def __init__(self, manager, window): super().__init__(window) self._window = window # BrowserWindow self._layout = None # QVBoxLayout self._titleBar = None # DockTitleBarWidget self._manager = manager # SideBarManager self.setObjectName('sidebar') self.setAttribute(Qt.WA_DeleteOnClose) self._layout = QVBoxLayout(self) self._layout.setContentsMargins(0, 0, 0, 0) self._layout.setSpacing(0) self.setLayout(self._layout) self._titleBar = DockTitleBarWidget('', self) self._layout.addWidget(self._titleBar) def showBookmarks(self): self._titleBar.setTitle(_('Bookmarks')) bar = BookmarksSideBar(self._window) self.setWidget(bar) def showHistory(self): self._titleBar.setTitle(_('History')) bar = HistorySideBar(self._window) self.setWidget(bar) def setTitle(self, title): self._titleBar.setTitle(title) def setWidget(self, widget): if self._layout.count() == 2: self._layout.removeItem(self._layout.itemAt(1)) if widget: self._layout.addWidget(widget) # Q_SLOTS def close(self): self._manager.closeSideBar() p = self.parentWidget() if p: p.setFocus() super().close() class SideBarManager(QObject): # for plugins only _s_sidebars = {} # QHash<QString, QPointer<SideBarInterface>> def __init__(self, parent): ''' @param: parent BrowserWindow ''' super().__init__(parent) self._window = parent self._sideBar = None # QPointer<SideBar> self._menu = None # QMenu self._activeBar = '' def activeSideBar(self): ''' @return: QString ''' return self._activeBar def createMenu(self, menu): ''' @param: menu QMenu ''' self._window.removeActions(menu.actions()) menu.clear() group = QActionGroup(menu) act = menu.addAction(_('Bookmarks'), self._slotShowSideBar) act.setCheckable(True) act.setShortcut(QKeySequence('Ctrl+Shift+B')) act.setData('Bookmarks') act.setChecked(self._activeBar == 'Bookmarks') group.addAction(act) act = menu.addAction(_('History'), self._slotShowSideBar) act.setCheckable(True) act.setShortcut(QKeySequence('Ctrl+H')) act.setData('History') act.setChecked(self._activeBar == 'History') group.addAction(act) for key, sidebar in self._s_sidebars.items(): if not sidebar: continue # QAction act = sidebar.createMenuAction() act.setData(key) act.setChecked(self._activeBar == key) act.triggered.connect(self._slotShowSideBar) menu.addAction(act) group.addAction(act) self._window.addActions(menu.actions()) def showSideBar(self, id_, toggle=True): ''' @param: id_ QString ''' if not id_ or id_ == 'None': return if not self._sideBar: self._sideBar = self._window.addSideBar() def destroyedFunc(): self._activeBar = '' self._window.setSideBarNone() # TODO: needed? self._window.saveSideBarSettings() self._sideBar = None self._sideBar.destroyed.connect(destroyedFunc) if id_ == self._activeBar: if not toggle: return self._sideBar.close() self._activeBar = '' self._window.saveSideBarSettings() return if id_ == 'Bookmarks': self._sideBar.showBookmarks() elif id_ == 'History': self._sideBar.showHistory() else: sidebar = self._s_sidebars.get(id_) if not sidebar: self._sideBar.close() return self._sideBar.setTitle(sidebar.title()) self._sideBar.setWidget(sidebar.createSideBarWidget(self._window)) self._activeBar = id_ self._window.saveSideBarSettings() def sideBarRemoved(self, id_): ''' @param: id_ QString ''' if self._activeBar == id_ and self._sideBar: self._sideBar.setWidget(None) self._sideBar.close() def closeSideBar(self): if gVar.app.isClosing(): return self._activeBar = '' self._window.saveSideBarSettings() def addSidebar(self, id_, interface): ''' @param: id_ QString @param: interface SideBarInterface ''' self._s_sidebars[id_] = interface def removeSidebar(self, interface): ''' @param: interface SideBarInterface ''' id_ = '' for key, interf in self._s_sidebars.items(): if interface == interf: id_ = key break else: return self._s_sidebars.pop(id_) for window in gVar.app.windows(): window.sideBarManager().sideBarRemoved(id_) # Q_SLOTS def _slotShowSideBar(self): act = self.sender() if isinstance(act, QAction): self.showSideBar(act.data())
[ "PyQt5.Qt.QActionGroup", "mc.tools.DockTitleBarWidget.DockTitleBarWidget", "PyQt5.Qt.QVBoxLayout", "PyQt5.Qt.QKeySequence", "mc.common.globalvars.gVar.app.windows", "mc.common.globalvars.gVar.app.isClosing" ]
[((807, 824), 'PyQt5.Qt.QVBoxLayout', 'QVBoxLayout', (['self'], {}), '(self)\n', (818, 824), False, 'from PyQt5.Qt import QVBoxLayout\n'), ((975, 1003), 'mc.tools.DockTitleBarWidget.DockTitleBarWidget', 'DockTitleBarWidget', (['""""""', 'self'], {}), "('', self)\n", (993, 1003), False, 'from mc.tools.DockTitleBarWidget import DockTitleBarWidget\n'), ((2458, 2476), 'PyQt5.Qt.QActionGroup', 'QActionGroup', (['menu'], {}), '(menu)\n', (2470, 2476), False, 'from PyQt5.Qt import QActionGroup\n'), ((4930, 4950), 'mc.common.globalvars.gVar.app.isClosing', 'gVar.app.isClosing', ([], {}), '()\n', (4948, 4950), False, 'from mc.common.globalvars import gVar\n'), ((5577, 5595), 'mc.common.globalvars.gVar.app.windows', 'gVar.app.windows', ([], {}), '()\n', (5593, 5595), False, 'from mc.common.globalvars import gVar\n'), ((2601, 2629), 'PyQt5.Qt.QKeySequence', 'QKeySequence', (['"""Ctrl+Shift+B"""'], {}), "('Ctrl+Shift+B')\n", (2613, 2629), False, 'from PyQt5.Qt import QKeySequence\n'), ((2870, 2892), 'PyQt5.Qt.QKeySequence', 'QKeySequence', (['"""Ctrl+H"""'], {}), "('Ctrl+H')\n", (2882, 2892), False, 'from PyQt5.Qt import QKeySequence\n')]
from django.db import models class Author(models.Model): name = models.CharField(max_length=64) def __str__(self): return self.name class Book(models.Model): name = models.CharField(max_length=64) author = models.ForeignKey( Author, on_delete=models.PROTECT, related_name="books" ) def __str__(self): return self.name
[ "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((70, 101), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(64)'}), '(max_length=64)\n', (86, 101), False, 'from django.db import models\n'), ((190, 221), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(64)'}), '(max_length=64)\n', (206, 221), False, 'from django.db import models\n'), ((235, 308), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Author'], {'on_delete': 'models.PROTECT', 'related_name': '"""books"""'}), "(Author, on_delete=models.PROTECT, related_name='books')\n", (252, 308), False, 'from django.db import models\n')]
import pymongo import time def get_db(): retries = 5 while True: try: client = pymongo.MongoClient(host="datastore", port=27017) db = client["chat_db"] return db except pymongo.errors.ConnectionFailure as e: if retries == 0: raise e retries -= 1 time.sleep(0.5) db = get_db() users_collection = db["Users"] rooms_collection = db["Rooms"] messages_collection = db["Messages"]
[ "pymongo.MongoClient", "time.sleep" ]
[((108, 157), 'pymongo.MongoClient', 'pymongo.MongoClient', ([], {'host': '"""datastore"""', 'port': '(27017)'}), "(host='datastore', port=27017)\n", (127, 157), False, 'import pymongo\n'), ((359, 374), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (369, 374), False, 'import time\n')]
from ..builder import PIPELINES import numpy as np from ..builder import PIPELINES import nibabel as nib @PIPELINES.register_module() class LoadImageFromNIIFile(object): """Load an image from file. Required keys are "img_prefix" and "img_info" (a dict that must contain the key "filename"). Added or updated keys are "filename", "img", "img_shape", "ori_shape" (same as `img_shape`), "pad_shape" (same as `img_shape`), "scale_factor" (1.0) and "img_norm_cfg" (means=0 and stds=1). Args: to_float32 (bool): Whether to convert the loaded image to a float32 numpy array. If set to False, the loaded image is an uint8 array. Defaults to False. color_type (str): The flag argument for :func:`mmcv.imfrombytes`. Defaults to 'color'. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'cv2' """ def __init__(self): pass def __call__(self, results): """Call functions to load image and get image meta information. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded image and meta information. """ # filename = None # img = None if isinstance(results["img_info"]['filename'], list) or \ isinstance(results["img_info"]['filename'], tuple): filename = [] img = [] for img_path in results["img_info"]['filename']: filename.append(img_path) results['img_affine_matrix'] = [] if "nii.gz" in img_path: img_nii = nib.load(img_path) # img_np = np.squeeze(img_nii.get_fdata(dtype=np.float32)) results['img_affine_matrix'].append(img_nii.affine) if len(img) != 0: assert img_nii.shape == img[0].shape, "different mode must have same image shape" img.append(img_nii) else: print("[ERROR] Unspported 3D image format") raise ValueError results['img_shape'] = img[0].shape results['ori_shape'] = img[0].shape results['pad_shape'] = img[0].shape results["num_mode"] = len(img) else: img_nii = nib.load(results["img_info"]['filename']) # img_np = np.squeeze(img_nii.get_fdata(dtype=np.float32)) img = img_nii filename = results['img_info']['filename'] results['img_affine_matrix'] = img_nii.affine results['img_shape'] = img.shape results['ori_shape'] = img.shape results['pad_shape'] = img.shape results["num_mode"] = 1 results['filename'] = filename results['ori_filename'] = results['img_info']['filename'] results['img'] = img try: results['image_id'] = results['img_info']['image_id'] except: results['image_id'] = None results['scale_factor'] = 1.0 return results def __repr__(self): repr_str = self.__class__.__name__ # repr_str += f'(to_float32={self.to_float32},' # repr_str += f"color_type='{self.color_type}'," # repr_str += f"imdecode_backend='{self.imdecode_backend}')" return repr_str @PIPELINES.register_module() class LoadAnnotationsFromNIIFile(object): """Load annotations for semantic segmentation. Args: reduce_zero_label (bool): Whether reduce all label value by 1. Usually used for datasets where 0 is background label. Default: False. file_client_args (dict): Arguments to instantiate a FileClient. See :class:`mmcv.fileio.FileClient` for details. Defaults to ``dict(backend='disk')``. imdecode_backend (str): Backend for :func:`mmcv.imdecode`. Default: 'pillow' """ def __init__(self, reduce_zero_label=False): self.reduce_zero_label = reduce_zero_label # self.ignore_black_area = ignore_black_area # self.file_client_args = file_client_args.copy() # self.file_client = None # self.imdecode_backend = imdecode_backend def __call__(self, results): """Call function to load multiple types annotations. Args: results (dict): Result dict from :obj:`mmseg.CustomDataset`. Returns: dict: The dict contains loaded semantic segmentation annotations. """ filename = results['ann_info']['seg_map'] img_nii = nib.load(filename) results["seg_affine_matrix"] = img_nii.affine # gt_semantic_seg = np.squeeze(img_nii.get_fdata(dtype=np.float32)) # if results.get('label_map', None) is not None: # for old_id, new_id in results['label_map'].items(): # gt_semantic_seg[gt_semantic_seg == old_id] = new_id # # reduce zero_label # if self.reduce_zero_label: # # avoid using underflow conversion # gt_semantic_seg[gt_semantic_seg == 0] = 255 # gt_semantic_seg = gt_semantic_seg - 1 # gt_semantic_seg[gt_semantic_seg == 254] = 255 results['gt_semantic_seg'] = img_nii results['seg_fields'].append('gt_semantic_seg') return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f'(reduce_zero_label={self.reduce_zero_label},' return repr_str
[ "nibabel.load" ]
[((4847, 4865), 'nibabel.load', 'nib.load', (['filename'], {}), '(filename)\n', (4855, 4865), True, 'import nibabel as nib\n'), ((2574, 2615), 'nibabel.load', 'nib.load', (["results['img_info']['filename']"], {}), "(results['img_info']['filename'])\n", (2582, 2615), True, 'import nibabel as nib\n'), ((1874, 1892), 'nibabel.load', 'nib.load', (['img_path'], {}), '(img_path)\n', (1882, 1892), True, 'import nibabel as nib\n')]
from acme import Product import random as rand ADJECTIVES = ['Awesome', 'Shiny', 'Impressive', 'Portable', 'Improved'] NOUNS = ['Anvil', 'Catapult' 'Disguise' 'Mousetrap', '???'] def generate_products(n: int=30) -> list: products = [] for _ in range(n): name = rand.choice(ADJECTIVES) + ' ' + rand.choice(NOUNS) price = rand.randint(5, 100) weight = rand.randint(5, 100) flammability = rand.uniform(0, 2.5) products.append(Product(name, price, weight, flammability)) return products def inventory_report(prods: list) -> None: names = set() total_price, total_weight, total_flam = 0,0,0 for prod in prods: names.add(prod.name) total_price += prod.price total_weight += prod.weight total_flam += prod.flammability print(f'Number of Unique Names: {len(names)}') print(f'Average Price: {total_price / len(prods)}') print(f'Average Weight: {total_weight / len(prods)}') print(f'Average Flammability: {total_flam / len(prods)}') if __name__ == '__main__': inventory_report(generate_products())
[ "acme.Product", "random.uniform", "random.choice", "random.randint" ]
[((356, 376), 'random.randint', 'rand.randint', (['(5)', '(100)'], {}), '(5, 100)\n', (368, 376), True, 'import random as rand\n'), ((395, 415), 'random.randint', 'rand.randint', (['(5)', '(100)'], {}), '(5, 100)\n', (407, 415), True, 'import random as rand\n'), ((440, 460), 'random.uniform', 'rand.uniform', (['(0)', '(2.5)'], {}), '(0, 2.5)\n', (452, 460), True, 'import random as rand\n'), ((320, 338), 'random.choice', 'rand.choice', (['NOUNS'], {}), '(NOUNS)\n', (331, 338), True, 'import random as rand\n'), ((488, 530), 'acme.Product', 'Product', (['name', 'price', 'weight', 'flammability'], {}), '(name, price, weight, flammability)\n', (495, 530), False, 'from acme import Product\n'), ((288, 311), 'random.choice', 'rand.choice', (['ADJECTIVES'], {}), '(ADJECTIVES)\n', (299, 311), True, 'import random as rand\n')]
import numpy as np #np.random.seed(10) #随机种子 t = np.random.randint(0,20,(3,4)) print(t) #创建d0-dn维度的均匀分布的随机数组,浮点数,范围从0-1 t1 = np.random.rand(2,2) print(t1) #创建d0-dn维度的标准正态分布随机数,浮点数,平均数0,标准差1 t2 = np.random.randn(4,5) print(t2) #产生具有均匀分布的数组 t3 = np.random.uniform(0,20,(3,4)) print(t3) #从指定正态分布中随机抽取样本,分布中心是loc(概率分布的均值),标准差是scale t4 = np.random.normal(14,3,(2,3)) print(t4) print("*"*100) t5 = np.arange(6).reshape(2,3) t5[[0,1],:] = t5[[1,0],:] # 行交换 print(t5) t6 = np.arange(6,12).reshape(2,3) t6[:,[1,2]] = t6[:,[2,1]] # 列交换 print(t6) print("*"*50) t7 = np.vstack((t5,t6)) print(t7) print("*"*25) t8 = np.hstack((t5,t6)) print(t8) print("*"*50) print(np.argmax(t7, axis=0)) #显示的是位置,而不是值 print(np.argmin(t8, axis=1)) print("*"*50) p = np.tile(np.arange(0, 10, 2), (5, 1)) print(p) print("*"*50) value_sum = p.sum(axis=0) print(value_sum) value_mean = p.mean(axis=1) print(value_mean) value_median = np.median(p, axis=1) print(value_median) print(p.max(axis=0)) print(p.min(axis=1)) value_p = np.ptp(p, axis=1) print(value_p) value_std = p.std(axis=1) print(value_std) print("*"*50) q1 = p<4 q2 = p[p<4] print(q1) print(q2) print("*"*50) r = np.where(p<4, 0, 1) print(r) print("*"*50) s = np.clip(p, 2, 6) print(s)
[ "numpy.random.normal", "numpy.ptp", "numpy.clip", "numpy.median", "numpy.random.rand", "numpy.hstack", "numpy.where", "numpy.argmax", "numpy.random.randint", "numpy.vstack", "numpy.random.uniform", "numpy.argmin", "numpy.random.randn", "numpy.arange" ]
[((52, 84), 'numpy.random.randint', 'np.random.randint', (['(0)', '(20)', '(3, 4)'], {}), '(0, 20, (3, 4))\n', (69, 84), True, 'import numpy as np\n'), ((129, 149), 'numpy.random.rand', 'np.random.rand', (['(2)', '(2)'], {}), '(2, 2)\n', (143, 149), True, 'import numpy as np\n'), ((200, 221), 'numpy.random.randn', 'np.random.randn', (['(4)', '(5)'], {}), '(4, 5)\n', (215, 221), True, 'import numpy as np\n'), ((250, 282), 'numpy.random.uniform', 'np.random.uniform', (['(0)', '(20)', '(3, 4)'], {}), '(0, 20, (3, 4))\n', (267, 282), True, 'import numpy as np\n'), ((340, 371), 'numpy.random.normal', 'np.random.normal', (['(14)', '(3)', '(2, 3)'], {}), '(14, 3, (2, 3))\n', (356, 371), True, 'import numpy as np\n'), ((568, 587), 'numpy.vstack', 'np.vstack', (['(t5, t6)'], {}), '((t5, t6))\n', (577, 587), True, 'import numpy as np\n'), ((616, 635), 'numpy.hstack', 'np.hstack', (['(t5, t6)'], {}), '((t5, t6))\n', (625, 635), True, 'import numpy as np\n'), ((917, 937), 'numpy.median', 'np.median', (['p'], {'axis': '(1)'}), '(p, axis=1)\n', (926, 937), True, 'import numpy as np\n'), ((1010, 1027), 'numpy.ptp', 'np.ptp', (['p'], {'axis': '(1)'}), '(p, axis=1)\n', (1016, 1027), True, 'import numpy as np\n'), ((1161, 1182), 'numpy.where', 'np.where', (['(p < 4)', '(0)', '(1)'], {}), '(p < 4, 0, 1)\n', (1169, 1182), True, 'import numpy as np\n'), ((1209, 1225), 'numpy.clip', 'np.clip', (['p', '(2)', '(6)'], {}), '(p, 2, 6)\n', (1216, 1225), True, 'import numpy as np\n'), ((666, 687), 'numpy.argmax', 'np.argmax', (['t7'], {'axis': '(0)'}), '(t7, axis=0)\n', (675, 687), True, 'import numpy as np\n'), ((711, 732), 'numpy.argmin', 'np.argmin', (['t8'], {'axis': '(1)'}), '(t8, axis=1)\n', (720, 732), True, 'import numpy as np\n'), ((761, 780), 'numpy.arange', 'np.arange', (['(0)', '(10)', '(2)'], {}), '(0, 10, 2)\n', (770, 780), True, 'import numpy as np\n'), ((400, 412), 'numpy.arange', 'np.arange', (['(6)'], {}), '(6)\n', (409, 412), True, 'import numpy as np\n'), ((475, 491), 'numpy.arange', 'np.arange', (['(6)', '(12)'], {}), '(6, 12)\n', (484, 491), True, 'import numpy as np\n')]
from mainPackage.Functions import RigidDomainFinder from GraphPackage.Graph_Config import List_Colors if __name__ == '__main__': rf = RigidDomainFinder() # VMD likewise xyz format PredictedLabels, ProtG = rf.segment_by_xyzFormat('./data/lysozyme.xyz') print(PredictedLabels)
[ "mainPackage.Functions.RigidDomainFinder" ]
[((138, 157), 'mainPackage.Functions.RigidDomainFinder', 'RigidDomainFinder', ([], {}), '()\n', (155, 157), False, 'from mainPackage.Functions import RigidDomainFinder\n')]
from setuptools import setup from setuptools import find_packages package_name = 'ros2_annotation_api' setup( name=package_name, version='0.0.1', packages=find_packages(exclude=['test']), data_files=[ ('share/' + package_name, ['package.xml']), ], py_modules=[ 'ros2_annotation_api.ros' ], install_requires=['setuptools'], author='<NAME>', keywords=['ROS'], zip_safe=True, classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Programming Language :: Python', 'Topic :: Software Development', ], license='Apache License, Version 2.0' )
[ "setuptools.find_packages" ]
[((169, 200), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['test']"}), "(exclude=['test'])\n", (182, 200), False, 'from setuptools import find_packages\n')]
import bisect, collections, copy, heapq, itertools, math, string, sys, queue, time, random input = lambda: sys.stdin.readline().rstrip() sys.setrecursionlimit(10**7) def I(): return input() def IS(): return input().split() def II(): return int(input()) def IIS(): return map(int, input().split()) def LIIS(): return list(map(int, input().split())) def Base_n_to_10(X, n): out = 0 for i in range(1, len(str(X)) + 1): out += int(X[-i]) * (n**(i - 1)) return out #int out def Base_10_to_n(X, n): if (X // n): return Base_10_to_n(X // n, n) + str(X % n) return str(X % n) INF = 10**18 MOD = 10**9 + 7 sys.setrecursionlimit(10**8) ############################################################################## n, q = IIS() path = [[] for i in range(n)] for i in range(n - 1): a, b = IIS() path[a - 1].append(b - 1) path[b - 1].append(a - 1) used = [False for i in range(n)] st = set() li = [0 for i in range(n)] def EulerTour(n, X, i0): done = [0] * n Q = [~i0, i0] # 根をスタックに追加 ET = [] while Q: i = Q.pop() if i >= 0: # 行きがけの処理 done[i] = 1 ET.append(i) for a in X[i][::-1]: if done[a]: continue Q.append(~a) # 帰りがけの処理をスタックに追加 Q.append(a) # 行きがけの処理をスタックに追加 else: # 帰りがけの処理 ET.append(~i) return ET li2 = [-1 for i in range(n)] li3 = [0 for i in range(n)] li = EulerTour(n, path, 0) for i in range(n * 2): if li2[li[i]] == -1: li2[li[i]] = i else: li3[li[i]] = i for i in range(q): c, d = IIS() if min(abs(li3[c - 1] - li2[d - 1]), abs(li2[c - 1] - li3[d - 1])) % 2: print("Town") else: print("Road")
[ "sys.stdin.readline", "sys.setrecursionlimit" ]
[((138, 168), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(10 ** 7)'], {}), '(10 ** 7)\n', (159, 168), False, 'import bisect, collections, copy, heapq, itertools, math, string, sys, queue, time, random\n'), ((671, 701), 'sys.setrecursionlimit', 'sys.setrecursionlimit', (['(10 ** 8)'], {}), '(10 ** 8)\n', (692, 701), False, 'import bisect, collections, copy, heapq, itertools, math, string, sys, queue, time, random\n'), ((108, 128), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (126, 128), False, 'import bisect, collections, copy, heapq, itertools, math, string, sys, queue, time, random\n')]
from flask import Flask from app.settings.config import config_dict from utils import contants import os, sys BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, BASE_PATH + '/common') def create_flask_app(type): """ 内部调用生产app的方法 :param type: app对象的配置信息 :return: 对应配置的app对象 """ app = Flask(__name__) app.config.from_object(config_dict[type]) app.config.from_envvar(contants.EXTRA_EVN_CONFIG,silent=True) return app def create_app(type): """ 外部调用生产app的工厂方法 :param type: 配置的类型 :return: app """ # 1.调用内容方法生产app app = create_flask_app(type) # 2.注册拓展初始化组件 # 3.注册蓝图初始化组件 return app
[ "os.path.abspath", "sys.path.insert", "flask.Flask" ]
[((189, 230), 'sys.path.insert', 'sys.path.insert', (['(0)', "(BASE_PATH + '/common')"], {}), "(0, BASE_PATH + '/common')\n", (204, 230), False, 'import os, sys\n'), ((365, 380), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (370, 380), False, 'from flask import Flask\n'), ((160, 185), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (175, 185), False, 'import os, sys\n')]
from setuptools import setup, find_packages from os import path # Copy README.md to project description this_directory = path.abspath(path.dirname(__file__)) with open(path.join(this_directory, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="houston-client", packages=find_packages(), description="Houston Python Client", long_description=long_description, long_description_content_type="text/markdown", version="1.1.1", url="https://github.com/datasparq-intelligent-products/houston-python", author="<NAME>, <NAME> & <NAME>", license="MIT", author_email="<EMAIL>", install_requires=[ "requests>=2.18.0,<3.0.0dev", "requests[security]>=2.18.0,<3.0.0dev"], extras_require={ "gcp": [ "google-cloud-pubsub>=1.2.0,<2.0.0"], "azure": [ "azure-eventgrid>=1.2.0,<2.0.0", "azure-mgmt-eventgrid>=2.2.0,<3.0.0"]}, keywords=["houston"], )
[ "os.path.dirname", "setuptools.find_packages", "os.path.join" ]
[((135, 157), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (147, 157), False, 'from os import path\n'), ((169, 207), 'os.path.join', 'path.join', (['this_directory', '"""README.md"""'], {}), "(this_directory, 'README.md')\n", (178, 207), False, 'from os import path\n'), ((313, 328), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (326, 328), False, 'from setuptools import setup, find_packages\n')]
import re from inquirer import errors def isbn_validation(answers, current): if not re.match(r'\d{11}', current): raise errors.ValidationError('', reason='Wrong ISBN!') return True def num_validation(answers, current): if not re.match(r'\d+', current): raise errors.ValidationError('', reason='Wrong number!') return True #def clippings_validation(answers, current): # if not re.match(r'.*My Clippings\.txt', current): # raise errors.ValidationError('', reason='Rename it to My Clippings.txt') # # return True
[ "re.match", "inquirer.errors.ValidationError" ]
[((89, 117), 're.match', 're.match', (['"""\\\\d{11}"""', 'current'], {}), "('\\\\d{11}', current)\n", (97, 117), False, 'import re\n'), ((133, 181), 'inquirer.errors.ValidationError', 'errors.ValidationError', (['""""""'], {'reason': '"""Wrong ISBN!"""'}), "('', reason='Wrong ISBN!')\n", (155, 181), False, 'from inquirer import errors\n'), ((248, 273), 're.match', 're.match', (['"""\\\\d+"""', 'current'], {}), "('\\\\d+', current)\n", (256, 273), False, 'import re\n'), ((289, 339), 'inquirer.errors.ValidationError', 'errors.ValidationError', (['""""""'], {'reason': '"""Wrong number!"""'}), "('', reason='Wrong number!')\n", (311, 339), False, 'from inquirer import errors\n')]
from alpineunittest import AlpineTestCase from alpine.apiclient import APIClient from future.datasource import * class TestDataSource(AlpineTestCase): def setUp(self): super(TestDataSource, self).setUp() global db_datasource_id global hadoop_datasource_id global ds # To pass the tests, we need a Hadoop Data Source with Name "API_Test_Hadoop" # and GPDB datas ource with name "API_Test_GPDB" created gpdb_datasource_name = "API_Test_GPDB" hadoop_datasource_name = "API_Test_Hadoop" database_name = "miner_demo" alpine_session = APIClient(self.host, self.port) alpine_session.login(self.username, self.password) ds = DataSource(alpine_session.base_url, alpine_session.session, alpine_session.token) ds = DataSource(alpine_session.base_url, alpine_session.session, alpine_session.token) ds.delete_db_data_source_if_exists(gpdb_datasource_name) datasource = ds.add_greenplum_data_source(gpdb_datasource_name, "Test Greenplum", "10.10.0.151", 5432, "miner_demo", "miner_demo", "miner_demo") # Creating a Hadoop Datasource for test get/update functions ds.delete_hadoop_data_source_if_exists(hadoop_datasource_name) additional_parameters = [ {"key": "mapreduce.jobhistory.address", "value": "awscdh57singlenode.alpinenow.local:10020"}, {"key": "mapreduce.jobhistory.webapp.address", "value": "awscdh57singlenode.alpinenow.local:19888"}, {"key": "yarn.app.mapreduce.am.staging-dir", "value": "/tmp"}, {"key": "yarn.resourcemanager.admin.address", "value": "awscdh57singlenode.alpinenow.local:8033"}, {"key": "yarn.resourcemanager.resource-tracker.address", "value": "awscdh57singlenode.alpinenow.local:8031"}, {"key": "yarn.resourcemanager.scheduler.address", "value": "awscdh57singlenode.alpinenow.local:8030"} ] datasource_hadoop = ds.add_hadoop_data_source("Cloudera CDH5.4-5.7", hadoop_datasource_name, "Test Cloudera", "awscdh57singlenode.alpinenow.local", 8020, "awscdh57singlenode.alpinenow.local", 8032, "yarn", "hadoop", additional_parameters ) # Creating a Database Datasource for test get/update functions ds.delete_db_data_source_if_exists("Test_GP") datasource = ds.add_greenplum_data_source("Test_GP", "Test Greenplum", "10.10.0.151", 5432, "miner_demo", "miner_demo", "miner_demo") db_datasource_id = datasource['id'] # Creating a Hadoop Datasource for test get/update functions ds.delete_hadoop_data_source_if_exists("Test_Cloudera") additional_parameters = [ {"key": "mapreduce.jobhistory.address", "value": "awscdh57singlenode.alpinenow.local:10020"}, {"key": "mapreduce.jobhistory.webapp.address", "value": "awscdh57singlenode.alpinenow.local:19888"}, {"key": "yarn.app.mapreduce.am.staging-dir", "value": "/tmp"}, {"key": "yarn.resourcemanager.admin.address", "value": "awscdh57singlenode.alpinenow.local:8033"}, {"key": "yarn.resourcemanager.resource-tracker.address", "value": "awscdh57singlenode.alpinenow.local:8031"}, {"key": "yarn.resourcemanager.scheduler.address", "value": "awscdh57singlenode.alpinenow.local:8030"} ] datasource_hadoop = ds.add_hadoop_data_source("Cloudera CDH5.4-5.7", "Test_Cloudera", "Test Cloudera", "awscdh57singlenode.alpinenow.local", 8020, "awscdh57singlenode.alpinenow.local", 8032, "yarn", "hadoop", additional_parameters ) hadoop_datasource_id = datasource_hadoop['id'] hadoop_datasource_id = alpine_session.datasource.get_id("Test_Cloudera") def tearDown(self): # Drop the datasources created in setup alpine_session = APIClient(self.host, self.port) alpine_session.login(self.username, self.password) ds = DataSource(alpine_session.base_url, alpine_session.session, alpine_session.token) ds.delete_db_data_source_if_exists("Test_GP") ds.delete_db_data_source_if_exists("Test_Cloudera") def test_add_greenplum_data_source(self): ds.delete_db_data_source_if_exists("Test_GP_add") datasource = ds.add_greenplum_data_source("Test_GP_add", "Test Greenplum", "10.10.0.151", 5432, "miner_demo","miner_demo", "miner_demo") self.assertEqual(datasource['name'], "Test_GP_add") def test_add_postgres_data_source(self): self.fail() def test_add_hawq_data_source(self): self.fail() def test_add_oracle_data_source(self): self.fail() def test_add_jdbc_data_source(self): self.fail() def test_add_jdbc_hive_data_source(self): self.fail() def test_add_hadoop_data_source(self): alpine_session = APIClient(self.host, self.port) alpine_session.login(self.username, self.password) ds = DataSource(alpine_session.base_url, alpine_session.session, alpine_session.token) ds.delete_hadoop_data_source_if_exists("Test_Cloudera_add") additional_parameters = [ {"key": "mapreduce.jobhistory.address", "value": "awscdh57singlenode.alpinenow.local:10020"}, {"key": "mapreduce.jobhistory.webapp.address", "value": "awscdh57singlenode.alpinenow.local:19888"}, {"key": "yarn.app.mapreduce.am.staging-dir", "value": "/tmp"}, {"key": "yarn.resourcemanager.admin.address", "value": "awscdh57singlenode.alpinenow.local:8033"}, {"key": "yarn.resourcemanager.resource-tracker.address", "value": "awscdh57singlenode.alpinenow.local:8031"}, {"key": "yarn.resourcemanager.scheduler.address", "value": "awscdh57singlenode.alpinenow.local:8030"} ] datasource = ds.add_hadoop_data_source("Cloudera CDH5.4-5.7", "Test_Cloudera_add","Test Cloudera", "awscdh57singlenode.alpinenow.local", 8020, "awscdh57singlenode.alpinenow.local", 8032, "yarn", "hadoop",additional_parameters ) self.assertEqual(datasource['name'], "Test_Cloudera_add") def test_add_hadoop_hive_data_source(self): self.fail() def test_delete_db_data_source(self): alpine_session = APIClient(self.host, self.port) alpine_session.login(self.username, self.password) ds.delete_db_data_source_if_exists("Test_GP_delete") ds.add_greenplum_data_source("Test_GP_delete", "Test Greenplum", "10.10.0.151", 5432, "miner_demo", "miner_demo", "miner_demo") response = ds.delete_db_data_source("Test_GP_delete") self.assertEqual(response.status_code, 200) try: alpine_session.datasource.get("Test_GP_delete","Database") except DataSourceNotFoundException: pass else: self.fail("Failed to Delete the Datasource {0}".format("Test_GP_delete")) def test_delete_hadoop_data_source(self): alpine_session = APIClient(self.host, self.port) alpine_session.login(self.username, self.password) ds.delete_hadoop_data_source_if_exists("Test_Cloudera_delete") additional_parameters = [ {"key": "mapreduce.jobhistory.address", "value": "awscdh57singlenode.alpinenow.local:10020"}, {"key": "mapreduce.jobhistory.webapp.address", "value": "awscdh57singlenode.alpinenow.local:19888"}, {"key": "yarn.app.mapreduce.am.staging-dir", "value": "/tmp"}, {"key": "yarn.resourcemanager.admin.address", "value": "awscdh57singlenode.alpinenow.local:8033"}, {"key": "yarn.resourcemanager.resource-tracker.address", "value": "awscdh57singlenode.alpinenow.local:8031"}, {"key": "yarn.resourcemanager.scheduler.address", "value": "awscdh57singlenode.alpinenow.local:8030"} ] ds.add_hadoop_data_source("Cloudera CDH5.4-5.7", "Test_Cloudera_delete", "Test Cloudera", "awscdh57singlenode.alpinenow.local", 8020, "awscdh57singlenode.alpinenow.local", 8032, "yarn", "hadoop", additional_parameters ) response = ds.delete_hadoop_data_source("Test_Cloudera_delete") self.assertEqual(response.status_code, 200) try: alpine_session.datasource.get("Test_Cloudera_delete", "Hadoop") except DataSourceNotFoundException: pass else: self.fail("Failed to Delete the Datasource {0}".format("Test_Cloudera_delete")) def test_get_db_data_source_username(self): self.fail() def test_enable_db_data_source(self): self.fail() def test_disable_db_data_source(self): self.fail() def test_enable_hdfs_data_source(self): self.fail() def test_disable_hdfs_data_source(self): self.fail() def test_add_user_to_datasource(self): self.fail() def test_get_users_on_a_data_source(self): self.fail() def test_remove_user_from_datasource(self): self.fail() def test_change_owner_of_datasource(self): self.fail()
[ "alpine.apiclient.APIClient" ]
[((616, 647), 'alpine.apiclient.APIClient', 'APIClient', (['self.host', 'self.port'], {}), '(self.host, self.port)\n', (625, 647), False, 'from alpine.apiclient import APIClient\n'), ((4440, 4471), 'alpine.apiclient.APIClient', 'APIClient', (['self.host', 'self.port'], {}), '(self.host, self.port)\n', (4449, 4471), False, 'from alpine.apiclient import APIClient\n'), ((5507, 5538), 'alpine.apiclient.APIClient', 'APIClient', (['self.host', 'self.port'], {}), '(self.host, self.port)\n', (5516, 5538), False, 'from alpine.apiclient import APIClient\n'), ((7138, 7169), 'alpine.apiclient.APIClient', 'APIClient', (['self.host', 'self.port'], {}), '(self.host, self.port)\n', (7147, 7169), False, 'from alpine.apiclient import APIClient\n'), ((7923, 7954), 'alpine.apiclient.APIClient', 'APIClient', (['self.host', 'self.port'], {}), '(self.host, self.port)\n', (7932, 7954), False, 'from alpine.apiclient import APIClient\n')]
from datetime import date from matplotlib.pyplot import hist class Contract(object): def __init__(self, date, customer, contract_type): self.__date = date self.__customer = customer self.__type = contract_type @property def date(self): return self.__date @date.setter def date(self, date): self.__date = date @property def customer(self): return self.__customer @customer.setter def customer(self, customer): self.__customer = customer @property def contract_type(self): return self.__type @contract_type.setter def contract_type(self, contract_type): self.__type = contract_type def advance(self): if self.__type == 'NEW': self.__type = 'IN PROGRESS' elif self.__type == 'IN PROGRESS': self.__type = 'DEAL' elif self.__type == 'DEAL': self.__type = 'DONE' def save_state(self): return State(Contract(date=self.__date, customer=self.__customer, contract_type=self.__type)) def restore_state(self, state): self.__customer = state.contract.customer self.__date = state.contract.date self.__type = state.contract.contract_type class State(object): def __init__(self, contract): self.__contract = contract @property def contract(self): return self.__contract class History(object): def __init__(self): self.__saved_states = [] def get_state(self, index): return self.__saved_states[index] def add_state(self, state): self.__saved_states.append(state) if __name__ == '__main__': history = History() contract = Contract(date=date.today(), customer='<NAME>', contract_type='NEW') contract.advance() history.add_state(contract.save_state()) contract.advance() contract.customer = '<NAME>' history.add_state(contract.save_state()) contract.advance() history.add_state(contract.save_state()) contract.advance() history.add_state(contract.save_state()) print(contract.contract_type) contract.restore_state(history.get_state(1)) print(contract.contract_type) print(contract.customer)
[ "datetime.date.today" ]
[((1745, 1757), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1755, 1757), False, 'from datetime import date\n')]
#!/usr/bin/env python import argparse import logging import simple_websocket from filestreams import FilePublisher, FileSource from edfstreams import EdfFileSource from proxy import SubscriberProxy from wsm import WebSocketMessenger def file_source(file_path, file_format): if file_format.upper() == 'EDF': return EdfFileSource(file_path) else: return FileSource(file_path) def main(file_path, file_format, endpoint): logging.info(f"main(): file_path: {file_path} endpoint: {endpoint}") try: count = 0 ws = simple_websocket.Client(endpoint) messenger = WebSocketMessenger(ws) publisher = FilePublisher(file_source=file_source(file_path, file_format)) subscriber = SubscriberProxy(publisher, messenger=messenger) logging.debug("main() starting receive loop...") while True: message = ws.receive() count += 1 logging.debug(f"main() ws.receive({count}) message: {message}") subscriber.event(message) except (simple_websocket.ConnectionClosed, simple_websocket.ws.ConnectionClosed): pass except (KeyboardInterrupt, EOFError): ws.close() parser = argparse.ArgumentParser() parser.add_argument('--input', type=str) parser.add_argument('--format', type=str, default='text') parser.add_argument('--endpoint', type=str) parser.add_argument('--log-file', type=str, default='publish-file.log') parser.add_argument('--log-level', type=str, default='DEBUG') args = parser.parse_args() # initialize logging logging.basicConfig(format='%(asctime)s - %(levelname)s - %(message)s', filename=args.log_file, level=getattr(logging, args.log_level.upper())) main(args.input, args.format, args.endpoint)
[ "wsm.WebSocketMessenger", "proxy.SubscriberProxy", "simple_websocket.Client", "logging.debug", "argparse.ArgumentParser", "edfstreams.EdfFileSource", "filestreams.FileSource", "logging.info" ]
[((1206, 1231), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1229, 1231), False, 'import argparse\n'), ((449, 517), 'logging.info', 'logging.info', (['f"""main(): file_path: {file_path} endpoint: {endpoint}"""'], {}), "(f'main(): file_path: {file_path} endpoint: {endpoint}')\n", (461, 517), False, 'import logging\n'), ((328, 352), 'edfstreams.EdfFileSource', 'EdfFileSource', (['file_path'], {}), '(file_path)\n', (341, 352), False, 'from edfstreams import EdfFileSource\n'), ((378, 399), 'filestreams.FileSource', 'FileSource', (['file_path'], {}), '(file_path)\n', (388, 399), False, 'from filestreams import FilePublisher, FileSource\n'), ((558, 591), 'simple_websocket.Client', 'simple_websocket.Client', (['endpoint'], {}), '(endpoint)\n', (581, 591), False, 'import simple_websocket\n'), ((612, 634), 'wsm.WebSocketMessenger', 'WebSocketMessenger', (['ws'], {}), '(ws)\n', (630, 634), False, 'from wsm import WebSocketMessenger\n'), ((739, 786), 'proxy.SubscriberProxy', 'SubscriberProxy', (['publisher'], {'messenger': 'messenger'}), '(publisher, messenger=messenger)\n', (754, 786), False, 'from proxy import SubscriberProxy\n'), ((795, 843), 'logging.debug', 'logging.debug', (['"""main() starting receive loop..."""'], {}), "('main() starting receive loop...')\n", (808, 843), False, 'import logging\n'), ((934, 997), 'logging.debug', 'logging.debug', (['f"""main() ws.receive({count}) message: {message}"""'], {}), "(f'main() ws.receive({count}) message: {message}')\n", (947, 997), False, 'import logging\n')]
from django.views import generic from django.db.models import get_model from django.http import HttpResponseRedirect from django.contrib import messages from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from oscar.apps.dashboard.catalogue import forms from oscar.core.loading import get_classes ProductForm, CategoryForm, StockRecordForm, StockAlertSearchForm, ProductCategoryFormSet, ProductImageFormSet = get_classes( 'dashboard.catalogue.forms', ('ProductForm', 'CategoryForm', 'StockRecordForm', 'StockAlertSearchForm', 'ProductCategoryFormSet', 'ProductImageFormSet')) Product = get_model('catalogue', 'Product') Category = get_model('catalogue', 'Category') ProductCategory = get_model('catalogue', 'ProductCategory') ProductClass = get_model('catalogue', 'ProductClass') StockRecord = get_model('partner', 'StockRecord') StockAlert = get_model('partner', 'StockAlert') class ProductListView(generic.ListView): template_name = 'dashboard/catalogue/product_list.html' model = Product context_object_name = 'products' form_class = forms.ProductSearchForm description_template = _(u'Products %(upc_filter)s %(title_filter)s') paginate_by = 20 def get_context_data(self, **kwargs): ctx = super(ProductListView, self).get_context_data(**kwargs) ctx['product_classes'] = ProductClass.objects.all() ctx['form'] = self.form ctx['queryset_description'] = self.description return ctx def get_queryset(self): """ Build the queryset for this list and also update the title that describes the queryset """ description_ctx = {'upc_filter': '', 'title_filter': ''} queryset = self.model.objects.all().order_by('-date_created').prefetch_related( 'product_class', 'stockrecord__partner') self.form = self.form_class(self.request.GET) if not self.form.is_valid(): self.description = self.description_template % description_ctx return queryset data = self.form.cleaned_data if data['upc']: queryset = queryset.filter(upc=data['upc']) description_ctx['upc_filter'] = _(" including an item with UPC '%s'") % data['upc'] if data['title']: queryset = queryset.filter(title__icontains=data['title']).distinct() description_ctx['title_filter'] = _(" including an item with title matching '%s'") % data['title'] self.description = self.description_template % description_ctx return queryset class ProductCreateRedirectView(generic.RedirectView): def get_redirect_url(self, **kwargs): product_class_id = self.request.GET.get('product_class', None) if not product_class_id or not product_class_id.isdigit(): messages.error(self.request, _("Please choose a product class")) return reverse('dashboard:catalogue-product-list') try: product_class = ProductClass.objects.get(id=product_class_id) except ProductClass.DoesNotExist: messages.error(self.request, _("Please choose a product class")) return reverse('dashboard:catalogue-product-list') else: return reverse('dashboard:catalogue-product-create', kwargs={'product_class_id': product_class.id}) class ProductCreateView(generic.CreateView): template_name = 'dashboard/catalogue/product_update.html' model = Product context_object_name = 'product' form_class = ProductForm def get_context_data(self, **kwargs): ctx = super(ProductCreateView, self).get_context_data(**kwargs) pclass = self.get_product_class() if 'stockrecord_form' not in ctx: ctx['stockrecord_form'] = StockRecordForm(pclass) if 'category_formset' not in ctx: ctx['category_formset'] = ProductCategoryFormSet() if 'image_formset' not in ctx: ctx['image_formset'] = ProductImageFormSet() ctx['title'] = _('Create new %s product') % pclass.name ctx['product_class'] = pclass return ctx def get_product_class(self): return ProductClass.objects.get(id=self.kwargs['product_class_id']) def get_form_kwargs(self): kwargs = super(ProductCreateView, self).get_form_kwargs() kwargs['product_class'] = self.get_product_class() return kwargs def is_stockrecord_submitted(self): return len(self.request.POST.get('partner', '')) > 0 def get_stockrecord_form(self): pclass = self.get_product_class() if self.is_stockrecord_submitted(): return StockRecordForm(pclass, self.request.POST) return StockRecordForm(pclass) def form_invalid(self, form): category_formset = ProductCategoryFormSet(self.request.POST) image_formset = ProductImageFormSet(self.request.POST, self.request.FILES) messages.error(self.request, _("Your submitted data was not valid - please " "correct the below errors")) ctx = self.get_context_data(form=form, stockrecord_form=self.get_stockrecord_form(), category_formset=category_formset, image_formset=image_formset) return self.render_to_response(ctx) def form_valid(self, form): product = form.save() category_formset = ProductCategoryFormSet(self.request.POST, instance=product) image_formset = ProductImageFormSet(self.request.POST, self.request.FILES, instance=product) stockrecord_form = self.get_stockrecord_form() if self.is_stockrecord_submitted(): is_valid = all([stockrecord_form.is_valid(), category_formset.is_valid(), image_formset.is_valid()]) else: is_valid = all([category_formset.is_valid(), image_formset.is_valid()]) if is_valid: if self.is_stockrecord_submitted(): # Save stock record stockrecord = stockrecord_form.save(commit=False) stockrecord.product = product stockrecord.save() # Save formsets category_formset.save() image_formset.save() return HttpResponseRedirect(self.get_success_url(product)) messages.error(self.request, _("Your submitted data was not valid - please " "correct the below errors")) # Delete product as its relations were not valid product.delete() ctx = self.get_context_data(form=form, stockrecord_form=stockrecord_form, category_formset=category_formset, image_formset=image_formset) return self.render_to_response(ctx) def get_success_url(self, product): messages.success(self.request, _("Created product '%s'") % product.title) return reverse('dashboard:catalogue-product-list') class ProductUpdateView(generic.UpdateView): template_name = 'dashboard/catalogue/product_update.html' model = Product context_object_name = 'product' form_class = ProductForm def get_context_data(self, **kwargs): ctx = super(ProductUpdateView, self).get_context_data(**kwargs) if 'stockrecord_form' not in ctx: ctx['stockrecord_form'] = self.get_stockrecord_form() if 'category_formset' not in ctx: ctx['category_formset'] = ProductCategoryFormSet(instance=self.object) if 'image_formset' not in ctx: ctx['image_formset'] = ProductImageFormSet(instance=self.object) ctx['title'] = _('Update product') return ctx def get_form_kwargs(self): kwargs = super(ProductUpdateView, self).get_form_kwargs() kwargs['product_class'] = self.object.product_class return kwargs def is_stockrecord_submitted(self): return len(self.request.POST.get('partner', '')) > 0 def get_stockrecord_form(self): """ Get the the ``StockRecordForm`` prepopulated with POST data if available. If the product in this view has a stock record it will be passed into the form as ``instance``. """ stockrecord = None if self.object.has_stockrecord: stockrecord = self.object.stockrecord if not self.is_stockrecord_submitted(): return StockRecordForm(self.object.product_class, instance=stockrecord) return StockRecordForm( self.object.product_class, self.request.POST, instance=stockrecord) def form_invalid(self, form): stockrecord_form = self.get_stockrecord_form() category_formset = ProductCategoryFormSet(self.request.POST, instance=self.object) image_formset = ProductImageFormSet(self.request.POST, self.request.FILES, instance=self.object) ctx = self.get_context_data(form=form, stockrecord_form=stockrecord_form, category_formset=category_formset, image_formset=image_formset) return self.render_to_response(ctx) def form_valid(self, form): stockrecord_form = self.get_stockrecord_form() category_formset = ProductCategoryFormSet(self.request.POST, instance=self.object) image_formset = ProductImageFormSet(self.request.POST, self.request.FILES, instance=self.object) if self.is_stockrecord_submitted(): is_valid = all([stockrecord_form.is_valid(), category_formset.is_valid(), image_formset.is_valid()]) else: is_valid = all([category_formset.is_valid(), image_formset.is_valid()]) if is_valid: form.save() if self.is_stockrecord_submitted(): stockrecord = stockrecord_form.save(commit=False) stockrecord.product = self.object stockrecord.save() category_formset.save() image_formset.save() return HttpResponseRedirect(self.get_success_url()) ctx = self.get_context_data(form=form, stockrecord_form=stockrecord_form, category_formset=category_formset, image_formset=image_formset) return self.render_to_response(ctx) def get_success_url(self): messages.success(self.request, _("Updated product '%s'") % self.object.title) return reverse('dashboard:catalogue-product-list') class StockAlertListView(generic.ListView): template_name = 'dashboard/catalogue/stockalert_list.html' model = StockAlert context_object_name = 'alerts' paginate_by = 20 def get_context_data(self, **kwargs): ctx = super(StockAlertListView, self).get_context_data(**kwargs) ctx['form'] = self.form ctx['description'] = self.description return ctx def get_queryset(self): if 'status' in self.request.GET: self.form = StockAlertSearchForm(self.request.GET) if self.form.is_valid(): status = self.form.cleaned_data['status'] self.description = _('Alerts with status "%s"') % status return self.model.objects.filter(status=status) else: self.description = _('All alerts') self.form = StockAlertSearchForm() return self.model.objects.all() class CategoryListView(generic.TemplateView): template_name = 'dashboard/catalogue/category_list.html' def get_context_data(self, *args, **kwargs): ctx = super(CategoryListView, self).get_context_data(*args, **kwargs) ctx['child_categories'] = Category.get_root_nodes() return ctx class CategoryDetailListView(generic.DetailView): template_name = 'dashboard/catalogue/category_list.html' model = Category context_object_name = 'category' def get_context_data(self, *args, **kwargs): ctx = super(CategoryDetailListView, self).get_context_data(*args, **kwargs) ctx['child_categories'] = self.object.get_children() ctx['ancestors'] = self.object.get_ancestors() return ctx class CategoryListMixin(object): def get_success_url(self): parent = self.object.get_parent() if parent is None: return reverse("dashboard:catalogue-category-list") else: return reverse("dashboard:catalogue-category-detail-list", args=(parent.pk,)) class CategoryCreateView(CategoryListMixin, generic.CreateView): template_name = 'dashboard/catalogue/category_form.html' model = Category form_class = CategoryForm def get_context_data(self, **kwargs): ctx = super(CategoryCreateView, self).get_context_data(**kwargs) ctx['title'] = "Add a new category" return ctx def get_success_url(self): messages.info(self.request, "Category created successfully") return super(CategoryCreateView, self).get_success_url() class CategoryUpdateView(CategoryListMixin, generic.UpdateView): template_name = 'dashboard/catalogue/category_form.html' model = Category form_class = CategoryForm def get_context_data(self, **kwargs): ctx = super(CategoryUpdateView, self).get_context_data(**kwargs) ctx['title'] = "Update category '%s'" % self.object.name return ctx def get_success_url(self): messages.info(self.request, "Category updated successfully") return super(CategoryUpdateView, self).get_success_url() class CategoryDeleteView(CategoryListMixin, generic.DeleteView): template_name = 'dashboard/catalogue/category_delete.html' model = Category def get_context_data(self, *args, **kwargs): ctx = super(CategoryDeleteView, self).get_context_data(*args, **kwargs) ctx['parent'] = self.object.get_parent() return ctx def get_success_url(self): messages.info(self.request, "Category deleted successfully") return super(CategoryDeleteView, self).get_success_url()
[ "django.utils.translation.ugettext_lazy", "django.db.models.get_model", "oscar.core.loading.get_classes", "django.contrib.messages.info", "django.core.urlresolvers.reverse" ]
[((460, 633), 'oscar.core.loading.get_classes', 'get_classes', (['"""dashboard.catalogue.forms"""', "('ProductForm', 'CategoryForm', 'StockRecordForm', 'StockAlertSearchForm',\n 'ProductCategoryFormSet', 'ProductImageFormSet')"], {}), "('dashboard.catalogue.forms', ('ProductForm', 'CategoryForm',\n 'StockRecordForm', 'StockAlertSearchForm', 'ProductCategoryFormSet',\n 'ProductImageFormSet'))\n", (471, 633), False, 'from oscar.core.loading import get_classes\n'), ((743, 776), 'django.db.models.get_model', 'get_model', (['"""catalogue"""', '"""Product"""'], {}), "('catalogue', 'Product')\n", (752, 776), False, 'from django.db.models import get_model\n'), ((788, 822), 'django.db.models.get_model', 'get_model', (['"""catalogue"""', '"""Category"""'], {}), "('catalogue', 'Category')\n", (797, 822), False, 'from django.db.models import get_model\n'), ((841, 882), 'django.db.models.get_model', 'get_model', (['"""catalogue"""', '"""ProductCategory"""'], {}), "('catalogue', 'ProductCategory')\n", (850, 882), False, 'from django.db.models import get_model\n'), ((898, 936), 'django.db.models.get_model', 'get_model', (['"""catalogue"""', '"""ProductClass"""'], {}), "('catalogue', 'ProductClass')\n", (907, 936), False, 'from django.db.models import get_model\n'), ((951, 986), 'django.db.models.get_model', 'get_model', (['"""partner"""', '"""StockRecord"""'], {}), "('partner', 'StockRecord')\n", (960, 986), False, 'from django.db.models import get_model\n'), ((1000, 1034), 'django.db.models.get_model', 'get_model', (['"""partner"""', '"""StockAlert"""'], {}), "('partner', 'StockAlert')\n", (1009, 1034), False, 'from django.db.models import get_model\n'), ((1263, 1309), 'django.utils.translation.ugettext_lazy', '_', (['u"""Products %(upc_filter)s %(title_filter)s"""'], {}), "(u'Products %(upc_filter)s %(title_filter)s')\n", (1264, 1309), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((7464, 7507), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-product-list"""'], {}), "('dashboard:catalogue-product-list')\n", (7471, 7507), False, 'from django.core.urlresolvers import reverse\n'), ((8189, 8208), 'django.utils.translation.ugettext_lazy', '_', (['"""Update product"""'], {}), "('Update product')\n", (8190, 8208), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((11512, 11555), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-product-list"""'], {}), "('dashboard:catalogue-product-list')\n", (11519, 11555), False, 'from django.core.urlresolvers import reverse\n'), ((13956, 14016), 'django.contrib.messages.info', 'messages.info', (['self.request', '"""Category created successfully"""'], {}), "(self.request, 'Category created successfully')\n", (13969, 14016), False, 'from django.contrib import messages\n'), ((14501, 14561), 'django.contrib.messages.info', 'messages.info', (['self.request', '"""Category updated successfully"""'], {}), "(self.request, 'Category updated successfully')\n", (14514, 14561), False, 'from django.contrib import messages\n'), ((15016, 15076), 'django.contrib.messages.info', 'messages.info', (['self.request', '"""Category deleted successfully"""'], {}), "(self.request, 'Category deleted successfully')\n", (15029, 15076), False, 'from django.contrib import messages\n'), ((3059, 3102), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-product-list"""'], {}), "('dashboard:catalogue-product-list')\n", (3066, 3102), False, 'from django.core.urlresolvers import reverse\n'), ((3405, 3501), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-product-create"""'], {'kwargs': "{'product_class_id': product_class.id}"}), "('dashboard:catalogue-product-create', kwargs={'product_class_id':\n product_class.id})\n", (3412, 3501), False, 'from django.core.urlresolvers import reverse\n'), ((4204, 4230), 'django.utils.translation.ugettext_lazy', '_', (['"""Create new %s product"""'], {}), "('Create new %s product')\n", (4205, 4230), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((5166, 5238), 'django.utils.translation.ugettext_lazy', '_', (['"""Your submitted data was not valid - please correct the below errors"""'], {}), "('Your submitted data was not valid - please correct the below errors')\n", (5167, 5238), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((6843, 6915), 'django.utils.translation.ugettext_lazy', '_', (['"""Your submitted data was not valid - please correct the below errors"""'], {}), "('Your submitted data was not valid - please correct the below errors')\n", (6844, 6915), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((12367, 12382), 'django.utils.translation.ugettext_lazy', '_', (['"""All alerts"""'], {}), "('All alerts')\n", (12368, 12382), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((13381, 13425), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-category-list"""'], {}), "('dashboard:catalogue-category-list')\n", (13388, 13425), False, 'from django.core.urlresolvers import reverse\n'), ((13459, 13529), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-category-detail-list"""'], {'args': '(parent.pk,)'}), "('dashboard:catalogue-category-detail-list', args=(parent.pk,))\n", (13466, 13529), False, 'from django.core.urlresolvers import reverse\n'), ((2357, 2394), 'django.utils.translation.ugettext_lazy', '_', (['""" including an item with UPC \'%s\'"""'], {}), '(" including an item with UPC \'%s\'")\n', (2358, 2394), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2564, 2612), 'django.utils.translation.ugettext_lazy', '_', (['""" including an item with title matching \'%s\'"""'], {}), '(" including an item with title matching \'%s\'")\n', (2565, 2612), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((3004, 3038), 'django.utils.translation.ugettext_lazy', '_', (['"""Please choose a product class"""'], {}), "('Please choose a product class')\n", (3005, 3038), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((3328, 3371), 'django.core.urlresolvers.reverse', 'reverse', (['"""dashboard:catalogue-product-list"""'], {}), "('dashboard:catalogue-product-list')\n", (3335, 3371), False, 'from django.core.urlresolvers import reverse\n'), ((7406, 7431), 'django.utils.translation.ugettext_lazy', '_', (['"""Created product \'%s\'"""'], {}), '("Created product \'%s\'")\n', (7407, 7431), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((11425, 11450), 'django.utils.translation.ugettext_lazy', '_', (['"""Updated product \'%s\'"""'], {}), '("Updated product \'%s\'")\n', (11426, 11450), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((3273, 3307), 'django.utils.translation.ugettext_lazy', '_', (['"""Please choose a product class"""'], {}), "('Please choose a product class')\n", (3274, 3307), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((12220, 12248), 'django.utils.translation.ugettext_lazy', '_', (['"""Alerts with status "%s\\""""'], {}), '(\'Alerts with status "%s"\')\n', (12221, 12248), True, 'from django.utils.translation import ugettext_lazy as _\n')]
#!/usr/bin/python3 # # Author: <NAME>, (C) Aalto University. # Only for student use on the Aalto course CS-E4800/CS-EJ4801. # Do not redistribute. # import time import queue import itertools from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid from BFS import breadthFirstSearch from Astar import ASTAR grid3I= ["........", "........", "........", "........", "........", "32......", "14......"] grid3G= ["........", "........", "........", "..31....", "..24....", "........", "........"] #plan,cost = breadthFirstSearch(MAPPGridState(init3,xsize=xs3,ysize=ys3,walls=w3), # lambda state: (state.agents == goal3)) print("CORRECT RESULT: optimal cost is 16.0") print("RUNTIME ESTIMATE: < 5 seconds") init3,xs3,ys3,w3 = createMAPPgrid(grid3I) goal3,xs3,ys3,w3 = createMAPPgrid(grid3G) plan,cost = ASTAR(MAPPGridState(init3,xsize=xs3,ysize=ys3,walls=w3), lambda state: (state.agents == goal3), # goal test MAPPdistance(goal3)) # function: distance to goal for s in plan: s.show() grid1I= ["...#.........", "...#.........", "...#.........", "...########..", "..12......34.", "...###..###..", "...######....", "........#....", "........#...."] grid1G= ["...#.........", "...#.........", "...#.........", "...########..", "...34.....21.", "...###..###..", "...######....", "........#....", "........#...."] print("CORRECT RESULT: optimal cost is 34.0") print("RUNTIME ESTIMATE: < 15 seconds") init1,xs1,ys1,w1 = createMAPPgrid(grid1I) goal1,xs1,ys1,w1 = createMAPPgrid(grid1G) plan,cost = ASTAR(MAPPGridState(init1,xsize=xs1,ysize=ys1,walls=w1), lambda state: (state.agents == goal1), # goal test MAPPdistance(goal1)) # function: distance to goal for s in plan: s.show() grid0I= ["...........", "...........", "..12.......", "..34.......", "...........", "...........", "..........."] grid0G= ["...........", "...........", "...........", "...........", "...........", "........12.", "........34"] print("CORRECT RESULT: optimal cost is 36.0") print("RUNTIME ESTIMATE: < 40 seconds") init0,xs0,ys0,w0 = createMAPPgrid(grid0I) goal0,xs0,ys0,w0 = createMAPPgrid(grid0G) plan,cost = ASTAR(MAPPGridState(init0,xsize=xs0,ysize=ys0,walls=w0), lambda state: (state.agents == goal0), # goal test MAPPdistance(goal0)) # function: distance to goal for s in plan: s.show() grid2I= ["..1#....", "..2#....", "........", "...#3...", "...#4...", "...#...."] grid2G= ["...#1...", "...#2...", "........", "..3#....", "..4#....", "...#...."] init2,xs,ys,w = createMAPPgrid(grid1I) goal2,xs,ys,w = createMAPPgrid(grid1G) print("CORRECT RESULT: optimal cost is 24.0") print("RUNTIME ESTIMATE: < 5 minutes") init2,xs2,ys2,w2 = createMAPPgrid(grid2I) goal2,xs2,ys2,w2 = createMAPPgrid(grid2G) plan,cost = ASTAR(MAPPGridState(init2,xsize=xs2,ysize=ys2,walls=w2), lambda state: (state.agents == goal2), # goal test MAPPdistance(goal2)) # function: distance to goal for s in plan: s.show()
[ "MAPP.MAPPGridState", "MAPP.createMAPPgrid", "MAPP.MAPPdistance" ]
[((884, 906), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid3I'], {}), '(grid3I)\n', (898, 906), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((926, 948), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid3G'], {}), '(grid3G)\n', (940, 948), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((1759, 1781), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid1I'], {}), '(grid1I)\n', (1773, 1781), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((1801, 1823), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid1G'], {}), '(grid1G)\n', (1815, 1823), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((2501, 2523), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid0I'], {}), '(grid0I)\n', (2515, 2523), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((2543, 2565), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid0G'], {}), '(grid0G)\n', (2557, 2565), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((3070, 3092), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid1I'], {}), '(grid1I)\n', (3084, 3092), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((3109, 3131), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid1G'], {}), '(grid1G)\n', (3123, 3131), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((3237, 3259), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid2I'], {}), '(grid2I)\n', (3251, 3259), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((3279, 3301), 'MAPP.createMAPPgrid', 'createMAPPgrid', (['grid2G'], {}), '(grid2G)\n', (3293, 3301), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((967, 1019), 'MAPP.MAPPGridState', 'MAPPGridState', (['init3'], {'xsize': 'xs3', 'ysize': 'ys3', 'walls': 'w3'}), '(init3, xsize=xs3, ysize=ys3, walls=w3)\n', (980, 1019), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((1105, 1124), 'MAPP.MAPPdistance', 'MAPPdistance', (['goal3'], {}), '(goal3)\n', (1117, 1124), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((1842, 1894), 'MAPP.MAPPGridState', 'MAPPGridState', (['init1'], {'xsize': 'xs1', 'ysize': 'ys1', 'walls': 'w1'}), '(init1, xsize=xs1, ysize=ys1, walls=w1)\n', (1855, 1894), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((1980, 1999), 'MAPP.MAPPdistance', 'MAPPdistance', (['goal1'], {}), '(goal1)\n', (1992, 1999), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((2584, 2636), 'MAPP.MAPPGridState', 'MAPPGridState', (['init0'], {'xsize': 'xs0', 'ysize': 'ys0', 'walls': 'w0'}), '(init0, xsize=xs0, ysize=ys0, walls=w0)\n', (2597, 2636), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((2722, 2741), 'MAPP.MAPPdistance', 'MAPPdistance', (['goal0'], {}), '(goal0)\n', (2734, 2741), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((3320, 3372), 'MAPP.MAPPGridState', 'MAPPGridState', (['init2'], {'xsize': 'xs2', 'ysize': 'ys2', 'walls': 'w2'}), '(init2, xsize=xs2, ysize=ys2, walls=w2)\n', (3333, 3372), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n'), ((3458, 3477), 'MAPP.MAPPdistance', 'MAPPdistance', (['goal2'], {}), '(goal2)\n', (3470, 3477), False, 'from MAPP import MAPPGridState, MAPPdistance, MAPPdistance0, createMAPPgrid\n')]
from . import views from django.urls import path app_name = 'app' urlpatterns = [ path('', views.app, name='app'), ]
[ "django.urls.path" ]
[((88, 119), 'django.urls.path', 'path', (['""""""', 'views.app'], {'name': '"""app"""'}), "('', views.app, name='app')\n", (92, 119), False, 'from django.urls import path\n')]
import unittest from cloudsplaining.shared.validation import check_authorization_details_schema import os import json class FindExcessiveWildcardsTestCase(unittest.TestCase): def test_check_authorization_details_schema(self): """test_scanning.validate.check_authorization_details_schema""" example_authz_details_file = os.path.abspath( os.path.join( os.path.dirname(__file__), os.path.pardir, "files", "example-authz-details.json", ) ) with open(example_authz_details_file, "r") as json_file: cfg = json.load(json_file) decision = check_authorization_details_schema(cfg) self.assertTrue(decision)
[ "json.load", "os.path.dirname", "cloudsplaining.shared.validation.check_authorization_details_schema" ]
[((637, 657), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (646, 657), False, 'import json\n'), ((681, 720), 'cloudsplaining.shared.validation.check_authorization_details_schema', 'check_authorization_details_schema', (['cfg'], {}), '(cfg)\n', (715, 720), False, 'from cloudsplaining.shared.validation import check_authorization_details_schema\n'), ((400, 425), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (415, 425), False, 'import os\n')]
import asyncio import functools from prompt_toolkit.mouse_events import MouseEventType from prompt_toolkit.layout.containers import Container from prompt_toolkit.layout.screen import Point from prompt_toolkit.layout.dimension import LayoutDimension from pymux.screen import BetterScreen from pymux.stream import BetterStream from ..lib.ssh import _SSHInteractiveHandler from .tab import Tab def create_interactive_tab(tosh, session): tab = Vt100Tab(tosh, session) session.switch_handler(functools.partial(_SSHInteractiveHandler, tab)) return tab class Vt100Tab(Tab): def __init__(self, tosh, session): super().__init__(tosh) self.title = 'SSH' self._session = session self._screen = BetterScreen(20, 80, self.write_to_ssh) self._stream = BetterStream(self._screen) self._stream.attach(self._screen) self.layout = Vt100Window(self._screen, self) def paste(self, event): self.write_to_ssh(event.data) def write_to_ssh(self, data): self._session.channel.write(data) def write_to_screen(self, data): self._stream.feed(data) self._tosh.refresh() def set_size(self, w, h): self._session.channel.change_terminal_size(w, h) self._screen.resize(h, w) class Vt100Window(Container): """ Container that holds the VT100 control. """ def __init__(self, screen, tab): self.screen = screen self._tab = tab self._scroll_pos = 0 def reset(self): pass def preferred_width(self, cli, max_available_width): return LayoutDimension() def preferred_height(self, cli, width, max_available_height): return LayoutDimension() def _mouse_handler(self, cli, mouse_event): if mouse_event.event_type == MouseEventType.SCROLL_DOWN: self._scroll_pos = min(0, self._scroll_pos + 3) elif mouse_event.event_type == MouseEventType.SCROLL_UP: max_scroll = min(max(0, self.screen.max_y - self.screen.lines), self.screen.get_history_limit()) self._scroll_pos = max(-max_scroll, self._scroll_pos - 3) def write_to_screen(self, cli, screen, mouse_handlers, write_position): """ Write window to screen. This renders the user control, the margins and copies everything over to the absolute position at the given screen. """ self._tab.set_size(write_position.width, write_position.height) xmin = write_position.xpos xmax = xmin + write_position.width ymin = write_position.ypos ymax = ymin + write_position.height mouse_handlers.set_mouse_handler_for_range(xmin, xmax, ymin, ymax, self._mouse_handler) # Render UserControl. temp_screen = self.screen.pt_screen # Write body to screen. self._copy_body(cli, temp_screen, screen, write_position, write_position.width) def _copy_body(self, cli, temp_screen, new_screen, write_position, width): """ Copy characters from the temp screen that we got from the `UIControl` to the real screen. """ xpos = write_position.xpos ypos = write_position.ypos height = write_position.height temp_buffer = temp_screen.data_buffer new_buffer = new_screen.data_buffer temp_screen_height = temp_screen.height vertical_scroll = self.screen.line_offset y = 0 # Now copy the region we need to the real screen. for y in range(0, height): # We keep local row variables. (Don't look up the row in the dict # for each iteration of the nested loop.) new_row = new_buffer[y + ypos] if y >= temp_screen_height and y >= write_position.height: # Break out of for loop when we pass after the last row of the # temp screen. (We use the 'y' position for calculation of new # screen's height.) break else: temp_row = temp_buffer[y + vertical_scroll + self._scroll_pos] # Copy row content, except for transparent tokens. # (This is useful in case of floats.) for x in range(0, width): new_row[x + xpos] = temp_row[x] new_screen.cursor_position = Point( y=temp_screen.cursor_position.y + ypos - vertical_scroll, x=temp_screen.cursor_position.x + xpos) new_screen.show_cursor = temp_screen.show_cursor and self._scroll_pos == 0 # Update height of the output screen. (new_screen.write_data is not # called, so the screen is not aware of its height.) new_screen.height = max(new_screen.height, ypos + y + 1) def walk(self, cli): # Only yield self. A window doesn't have children. yield self
[ "prompt_toolkit.layout.screen.Point", "prompt_toolkit.layout.dimension.LayoutDimension", "pymux.screen.BetterScreen", "pymux.stream.BetterStream", "functools.partial" ]
[((499, 545), 'functools.partial', 'functools.partial', (['_SSHInteractiveHandler', 'tab'], {}), '(_SSHInteractiveHandler, tab)\n', (516, 545), False, 'import functools\n'), ((738, 777), 'pymux.screen.BetterScreen', 'BetterScreen', (['(20)', '(80)', 'self.write_to_ssh'], {}), '(20, 80, self.write_to_ssh)\n', (750, 777), False, 'from pymux.screen import BetterScreen\n'), ((801, 827), 'pymux.stream.BetterStream', 'BetterStream', (['self._screen'], {}), '(self._screen)\n', (813, 827), False, 'from pymux.stream import BetterStream\n'), ((1608, 1625), 'prompt_toolkit.layout.dimension.LayoutDimension', 'LayoutDimension', ([], {}), '()\n', (1623, 1625), False, 'from prompt_toolkit.layout.dimension import LayoutDimension\n'), ((1708, 1725), 'prompt_toolkit.layout.dimension.LayoutDimension', 'LayoutDimension', ([], {}), '()\n', (1723, 1725), False, 'from prompt_toolkit.layout.dimension import LayoutDimension\n'), ((4354, 4462), 'prompt_toolkit.layout.screen.Point', 'Point', ([], {'y': '(temp_screen.cursor_position.y + ypos - vertical_scroll)', 'x': '(temp_screen.cursor_position.x + xpos)'}), '(y=temp_screen.cursor_position.y + ypos - vertical_scroll, x=\n temp_screen.cursor_position.x + xpos)\n', (4359, 4462), False, 'from prompt_toolkit.layout.screen import Point\n')]
# -*- coding: utf-8 -*- import sys import getpass from .models import Entry, Group from .crypto import AESCipher def read_string(prompt="[^] Input: "): ''' Read a string from stdin :params prompt The string to display before reading (without \n) ''' print("%s" % prompt, end='', flush=True) inp = sys.stdin.readline().splitlines() if len(inp) == 0: return '' return inp[0] def list_entries(): ''' Print all the entries owned by you on the console grouped by groups ''' print("[^] Listing Groups and entries!\n") groups = {} for entry in Entry.list(params={'embedded': {'group': 1}}): if entry.group: if entry.group.name not in groups: groups[entry.group.name] = [] groups[entry.group.name].append(entry) for group in Group.list(): if group.name not in groups: groups[group.name] = [] for group in groups: print("├── %s" % group) if len(groups.get(group)) == 0: print("[^] Empty !") for entry in groups.get(group): print("├ ├── %s - %s" % (entry._id, entry.name)) print("\n[+] Done!") return True def create_group(): ''' It creates a group in the API ''' name = read_string(prompt="[^] Group name: ") print("[^] Creating group '%s'" % name) group = Group() group.icon = None group.name = name return group.save() def _find_group(): found = False while not found: group = Group.find_one(params={'where': {'name': read_string('[^] Group Name: ')}}) if group is not None: found = True else: print("Group not found ! try again !") return group def _find_entry(): found = False while not found: entry = Entry.find_one(params={ 'where': { '_id': read_string('[+] Entry ID: ') }, 'embedded': { 'group': 1 } }) if entry is not None: found = True else: print("Entry not found ! try again !") return entry def _read_password(prompt="[^] Password: "): ''' Read password from stdin ''' print("%s" % prompt, end='', flush=True) return getpass.getpass() def _read_passwords(): ''' Read the two passwords from stdin ''' ok = False while not ok: value1 = _read_password(prompt="[^] Password to store: ") value2 = _read_password(prompt="[^] Repeat password: ") if value1 == value2 and len(value1) > 0: ok = True else: print("[-] Passwords incorrects, try again") return value1 def create_entry(): ''' It creates an entry in the API ''' entry = Entry() entry.icon = None entry.name = read_string("[^] Entry name: ") entry.username = read_string("[^] Username: ") entry.group = _find_group()._id entry.url = read_string("[^] Url: ") aes = AESCipher(key=_read_password(prompt="[^] Master password: ")) entry.value = aes.encrypt(_read_passwords()) return entry.save() def delete_group(): ''' It deletes a group from the eve api ''' name = read_string(prompt='[+] Group name: ') group = Group.find_one(params={'where': {'name': name}}) status = False if group is not None: status = Group.delete(identifier=group._id, etag=group._etag) if not status: print("[-] Failed to delete group %s:'%s'" % (group._id, group.name)) else: print("[-] Group by name '%s' was not found" % name) return status def delete_entry(): ''' Delete a stored entry ''' entry = _find_entry() print("[^] Deleting entry '%s'" % entry.name) return Entry.delete(identifier=entry._id, etag=entry._etag) def get_entry(): ''' Retrieve entry password ''' entry = _find_entry() aes = AESCipher(key=_read_password(prompt="[+] Master password")) password = aes.decrypt(entry.value) print("[^] Here is your entry: ") print("[^]\t Name: %s" % entry.name) print("[^]\t URL: %s" % entry.url) print("[^]\t Username: %s" % entry.username) print("[^]\t Password: %s" % password) if entry.group is not None: print("[^]\t Group: %s" % entry.group.name) return True
[ "sys.stdin.readline", "getpass.getpass" ]
[((2287, 2304), 'getpass.getpass', 'getpass.getpass', ([], {}), '()\n', (2302, 2304), False, 'import getpass\n'), ((329, 349), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (347, 349), False, 'import sys\n')]
import sys import os import time import shutil from glob import glob from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * from pathlib import Path import cv2 import numpy as np import torch import torch.backends.cudnn as cudnn from models.experimental import attempt_load from utils.datasets import LoadStreams, LoadImages from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, \ increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER from utils.plots import Annotator, colors from utils.torch_utils import load_classifier, select_device, time_sync from utils.augmentations import letterbox ### pyinstaller에 묶기 위한 tresh import ### import seaborn import yaml import PIL import scipy import utils import models ########################################## dir = os.getcwd() FILE = Path(__file__).absolute() sys.path.append(FILE.parents[0].as_posix()) # add yolov5/ to path IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes FORMATS = IMG_FORMATS + VID_FORMATS # class LoadImages: # # YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4` # def __init__(self, path, img_size=640, stride=32, auto=True): # p = str(Path(path).resolve()) # os-agnostic absolute path # if '*' in p: # files = sorted(glob(p, recursive=True)) # glob # elif os.path.isdir(p): # files = sorted(glob(os.path.join(p, '*.*'))) # dir # elif os.path.isfile(p): # files = [p] # files # else: # raise Exception(f'ERROR: {p} does not exist') # # images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] # videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] # ni, nv = len(images), len(videos) # # self.img_size = img_size # self.stride = stride # self.files = images + videos # self.nf = ni + nv # number of files # self.video_flag = [False] * ni + [True] * nv # self.mode = 'image' # self.auto = auto # if any(videos): # self.new_video(videos[0]) # new video # else: # self.cap = None # assert self.nf > 0, f'No images or videos found in {p}. ' \ # f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' # # def __iter__(self): # self.count = 0 # return self # # def __next__(self): # if self.count == self.nf: # raise StopIteration # path = self.files[self.count] # # if self.video_flag[self.count]: # # Read video # self.mode = 'video' # ret_val, img0 = self.cap.read() # if not ret_val: # self.count += 1 # self.cap.release() # if self.count == self.nf: # last video # raise StopIteration # else: # path = self.files[self.count] # self.new_video(path) # ret_val, img0 = self.cap.read() # # self.frame += 1 # s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: ' # # else: # # Read image # self.count += 1 # # # 변경부분 # ff = np.fromfile(path, np.uint8) # # img0 = cv2.imdecode(ff, cv2.IMREAD_COLOR) # # # img0 = cv2.imread(path) # BGR # # assert img0 is not None, f'Image Not Found {path}' # s = f'image {self.count}/{self.nf} {path}: ' # # # Padded resize # img = letterbox(img0, self.img_size, stride=self.stride, auto=self.auto)[0] # # # Convert # img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB # img = np.ascontiguousarray(img) # # return path, img, img0, self.cap, s # # def new_video(self, path): # self.frame = 0 # self.cap = cv2.VideoCapture(path) # self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) # # def __len__(self): # return self.nf # number of files class DetThread(QThread): # 쓰레드 정의 send_img = pyqtSignal(np.ndarray) # 처리 이미지 신호 send_raw = pyqtSignal(np.ndarray) # 원본 이미지 신호 send_statistic = pyqtSignal(dict) # detecting 결과 신호 def __init__(self): super(DetThread, self).__init__() self.weights = './yolov5s.pt' self.source = '0' self.conf_thres = 0.25 @torch.no_grad() # detect.py def run(self, weights=dir + '/yolov5s.pt', # model.pt path(s) source=dir + '/data/images', # file/dir/URL/glob, 0 for webcam imgsz=640, # inference size (pixels) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=dir + '/runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference unknown=True, ): source = str(source) save_img = not nosave and not source.endswith('.txt') # save inference images webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Initialize device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # Load model w = str(weights[0] if isinstance(weights, list) else weights) classify, suffix, suffixes = False, Path(w).suffix.lower(), ['.pt', '.onnx', '.tflite', '.pb', ''] check_suffix(w, suffixes) # check weights have acceptable suffix pt, onnx, tflite, pb, saved_model = (suffix == x for x in suffixes) # backend booleans stride, names = 64, [f'class{i}' for i in range(1000)] # assign defaults if pt: model = torch.jit.load(w) if 'torchscript' in w else attempt_load(weights, map_location=device) stride = int(model.stride.max()) # model stride names = model.module.names if hasattr(model, 'module') else model.names # get class names if unknown: names.append('Unknown') if half: model.half() # to FP16 if classify: # second-stage classifier modelc = load_classifier(name='resnet50', n=2) # initialize modelc.load_state_dict(torch.load('resnet50.pt', map_location=device)['model']).to(device).eval() elif onnx: if dnn: check_requirements(('opencv-python>=4.5.4',)) net = cv2.dnn.readNetFromONNX(w) else: check_requirements(('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime')) import onnxruntime session = onnxruntime.InferenceSession(w, None) else: # TensorFlow models check_requirements(('tensorflow>=2.4.1',)) import tensorflow as tf if pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt def wrap_frozen_graph(gd, inputs, outputs): x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped import return x.prune(tf.nest.map_structure(x.graph.as_graph_element, inputs), tf.nest.map_structure(x.graph.as_graph_element, outputs)) graph_def = tf.Graph().as_graph_def() graph_def.ParseFromString(open(w, 'rb').read()) frozen_func = wrap_frozen_graph(gd=graph_def, inputs="x:0", outputs="Identity:0") elif saved_model: model = tf.keras.models.load_model(w) elif tflite: interpreter = tf.lite.Interpreter(model_path=w) # load TFLite model interpreter.allocate_tensors() # allocate input_details = interpreter.get_input_details() # inputs output_details = interpreter.get_output_details() # outputs int8 = input_details[0]['dtype'] == np.uint8 # is TFLite quantized uint8 model imgsz = check_img_size(imgsz, s=stride) # check image size # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference if pt and device.type != 'cpu': model(torch.zeros(1, 3, *imgsz).to(device).type_as(next(model.parameters()))) # run once dt, seen = [0.0, 0.0, 0.0], 0 temp = "" # for name in names[:-1]: # exec(f'{name}_list = set([])') goranilist = set([]) wildboarlist = set([]) humanlist = set([]) for path, img, im0s, vid_cap, s in dataset: if temp is not path: # for name in names[:-1]: # exec(f'{name}_cnt = 0') cnt_gorani = 0 cnt_wildboar = 0 cnt_human = 0 temp = path statistic_dic = {name: 0 for name in names} t1 = time_sync() if onnx: img = img.astype('float32') else: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if len(img.shape) == 3: img = img[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference if pt: visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(img, augment=augment, visualize=visualize)[0] elif onnx: if dnn: net.setInput(img) pred = torch.tensor(net.forward()) else: pred = torch.tensor( session.run([session.get_outputs()[0].name], {session.get_inputs()[0].name: img})) else: # tensorflow model (tflite, pb, saved_model) imn = img.permute(0, 2, 3, 1).cpu().numpy() # image in numpy if pb: pred = frozen_func(x=tf.constant(imn)).numpy() elif saved_model: pred = model(imn, training=False).numpy() elif tflite: if int8: scale, zero_point = input_details[0]['quantization'] imn = (imn / scale + zero_point).astype(np.uint8) # de-scale interpreter.set_tensor(input_details[0]['index'], imn) interpreter.invoke() pred = interpreter.get_tensor(output_details[0]['index']) if int8: scale, zero_point = output_details[0]['quantization'] pred = (pred.astype(np.float32) - zero_point) * scale # re-scale pred[..., 0] *= imgsz[1] # x pred[..., 1] *= imgsz[0] # y pred[..., 2] *= imgsz[1] # w pred[..., 3] *= imgsz[0] # h pred = torch.tensor(pred) t3 = time_sync() dt[1] += t3 - t2 # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det, unknown=unknown) dt[2] += time_sync() - t3 # Second-stage classifier (optional) if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image' else f'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) imr = im0.copy() if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class statistic_dic[names[c]] += 1 label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Print time (inference-only) # LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') print(f'{s}Done. ({t3 - t2:.3f}s)') # Stream results im0 = annotator.result() if view_img: p = str(p).split('\\')[-1] # img_array = np.fromfile(str(p), np.uint8) #한글명 디코딩 # img = cv2.imdecode(img_array, cv2.IMREAD_COLOR) # cv2.imshow(p, im0) # cv2.imshow('raw', imr) # cv2.moveWindow(p, 50, 50) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # time.sleep(0.025) self.send_img.emit(im0) # 처리영상 self.send_raw.emit(imr if isinstance(im0s, np.ndarray) else imr[0]) # 원본영상 self.send_statistic.emit(statistic_dic) # detecting 결과 # # # 파일분리 (하드코딩) # if 'Wildboar' in s: # cnt_wildboar = cnt_wildboar + 1 # elif 'Deer' in s: # cnt_gorani = cnt_gorani + 1 # elif 'human' in s: # cnt_human = cnt_human + 1 # # # if not webcam: # ext = path.split('.')[-1].lower() # 파일 확장자 분리 # # if ext in FORMATS: # 사진 리스트 분리 # if 'Deer' in s: # goranilist.add(path) # elif 'Wildboar' in s: # wildboarlist.add(path) # elif 'human' in s: # humanlist.add(path) # # # if ext in VID_FORMATS: # 동영상 리스트 분리 # # if cnt_gorani >= 1: # # goranilist.add(path) # # elif cnt_wildboar >= 1: # # wildboarlist.add(path) # # elif cnt_human >= 1: # # humanlist.add(path) # print(goranilist) # print(wildboarlist) # # if len(wildboarlist) > 0: # 파일 옮기기 # to = './Wildboar' # if not os.path.isdir(to): # os.mkdir(to) # for i in wildboarlist: # try: # shutil.move(i, to) # except: # pass # # if len(goranilist) > 0: # to = './Deer' # if not os.path.isdir(to): # os.mkdir(to) # for i in goranilist: # try: # shutil.move(i, to) # except: # pass # # if len(humanlist) > 0: # to = './human' # if not os.path.isdir(to): # os.mkdir(to) # for i in humanlist: # shutil.move(i, to) cv2.destroyAllWindows() # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image # LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights) # update model (to fix SourceChangeWarning) # if cnt_gorani > 0 and cnt_gorani > cnt_wildboar: # from_ = save_path # to_ = './gorani' # shutil.move(from_, to_) class MyApp(QMainWindow): # 메인윈도우 정의 def __init__(self): super().__init__() self.initUI() def initUI(self): self.setWindowTitle('Detect Yolov5') # 툴 제목 self.setWindowIcon(QIcon('logo2.png')) # 로고 이미지 self.statusBar() # 상태바 # QWidget과 연결 self.cent_widget = CentWidget() self.setCentralWidget(self.cent_widget.tabs) self.show() class CentWidget(QWidget): # 위젯정의 def __init__(self): super().__init__() self.det_thread = DetThread() self.det_thread.send_img.connect(lambda x: self.show_image(x, self.img2)) self.det_thread.send_raw.connect(lambda x: self.show_image(x, self.img1)) self.det_thread.send_statistic.connect(self.show_statistic) griddir = QGridLayout() gridopt = QGridLayout() font = QFont() font.setBold(True) font.setPointSize(10) # weights : model.pt path(s) self.lbl_weight = QLabel(dir + '/last.pt', self) # 고정값 self.lbl_weight.setFont(font) self.lbl_weight.setStyleSheet('background-color: #FFFFFF') self.lbl_weight.setStatusTip('Set model.pt path .pt파일의 경로를 설정합니다.') self.lbl_weight.setToolTip('Set model.pt path\n.pt파일의 경로를 설정합니다.') btn_weight = QPushButton('Weights', self) btn_weight.setFont(font) btn_weight.setStatusTip('Set model.pt path .pt파일의 경로를 설정합니다.') btn_weight.setToolTip('Set model.pt path\n.pt파일의 경로를 설정합니다.') btn_weight.clicked.connect(self.weights) # source : file/dir/URL/glob, 0 for webcam # self.lbl_source = QLabel(dir, self) self.lbl_source = QLabel('D:/project/NationalPark_upgrade/PYQT5/yolov5_master/sample') # 고정값 self.lbl_source.setFont(font) self.lbl_source.setStyleSheet('background-color: #FFFFFF') self.lbl_source.setStatusTip("Set foldername to detect 분류/감지할 '폴더'를 설정합니다. *경로상에 한글이 들어가면 오류가 발생할 수 있음!") self.lbl_source.setToolTip("Set foldername to detect\n분류/감지할 '폴더'를 설정합니다.\n*경로상에 한글이 들어가면 오류가 발생할 수 있음!") btn_source = QPushButton('Source', self) btn_source.setFont(font) btn_source.setStatusTip("Set foldername to detect 분류/감지할 '폴더'를 설정합니다. *경로상에 한글이 들어가면 오류가 발생할 수 있음!") btn_source.setToolTip("Set foldername to detect\n분류/감지할 '폴더'를 설정합니다.\n*경로상에 한글이 들어가면 오류가 발생할 수 있음!") btn_source.clicked.connect(self.source) # imgsz : inference size (pixels) self.lbl_imgsz = QLabel(self) self.lbl_imgsz.setNum(480) self.lbl_imgsz.setFont(font) self.lbl_imgsz.setStyleSheet('background-color: #FFFFFF') self.lbl_imgsz.setStatusTip('Set inference size (pixels) 1~1280') self.lbl_imgsz.setToolTip('Set inference size (pixels)\n1~1280') btn_imgsz = QPushButton('Image Size', self) btn_imgsz.setFont(font) # menu = QMenu(self) # menu.addAction('160') # menu.addAction('320') # menu.addAction('480') # menu.addAction('640') # menu.addAction('960') # menu.addAction('1280') # menu..connect(self.imgsz) # cb = QComboBox(self) btn_imgsz.setStatusTip('Set inference size (pixels) 1~1280') btn_imgsz.setToolTip('Set inference size (pixels)\n1~1280') # btn_imgsz.setMenu(menu) # btn_imgsz.menu().connect(self.imgsz) # menu.activeAction(self.imgsz)#.connect(self.imgsz) btn_imgsz.clicked.connect(self.imgsz) # conf_thres : confidence threshold self.lbl_conf = QLabel(self) self.lbl_conf.setText('70%') self.setFont(font) self.lbl_conf.setStyleSheet('background-color: #FFFFFF') btn_conf = QPushButton('Conf-Thres', self) btn_conf.setFont(font) btn_conf.setStatusTip('Set confidence(%) threshold 1% ~ 99%') btn_conf.setToolTip('Set confidence(%) threshold\n1% ~ 99%') btn_conf.clicked.connect(self.conf) # iou_thres : NMS IOU threshold self.lbl_iou = QLabel(self) self.lbl_iou.setText('25%') self.setFont(font) self.lbl_iou.setStyleSheet('background-color: #FFFFFF') btn_iou = QPushButton('Iou-Thres', self) btn_iou.setFont(font) btn_iou.setStatusTip('NMS IOU(%) threshold 1% ~ 99%') btn_iou.setToolTip('NMS IOU(%) threshold\n1% ~ 99%') btn_iou.clicked.connect(self.iou) # max_det : maximum detections per image self.lbl_mxd = QLabel(self) self.lbl_mxd.setNum(100) self.setFont(font) self.lbl_mxd.setStyleSheet('background-color: #FFFFFF') btn_mxd = QPushButton('Max-Det', self) btn_mxd.setFont(font) btn_mxd.setStatusTip('maximum detections per image recommend set under 100') btn_mxd.setToolTip('maximum detections per image\nrecommend set under 100') btn_mxd.clicked.connect(self.det_num) # project : save results to project/name self.lbl_prj = QLabel(dir + '\\runs\\detect', self) self.lbl_prj.setFont(font) self.lbl_prj.setStyleSheet('background-color: #FFFFFF') btn_prj = QPushButton('Project', self) btn_prj.setFont(font) btn_prj.setStatusTip('Save results to Project/Name') btn_prj.setToolTip('Save results to Project/Name') btn_prj.clicked.connect(self.project) # name : save results to project/name self.lbl_name = QLabel('exp', self) self.lbl_name.setFont(font) self.lbl_name.setStyleSheet('background-color: #FFFFFF') btn_name = QPushButton('Name', self) btn_name.setFont(font) btn_name.setStatusTip('Save results to Project/Name') btn_name.setToolTip('Save results to Project/Name') btn_name.clicked.connect(self.name) # line_thickness : bounding box thickness (pixels) self.lbl_ltk = QLabel(self) self.lbl_ltk.setNum(3) self.setFont(font) self.lbl_ltk.setStyleSheet('background-color: #FFFFFF') btn_ltk = QPushButton('Thickness', self) btn_ltk.setFont(font) btn_ltk.setStatusTip('Bbox thickness (pixels) Bbox굵기(pixels)를 설정합니다.') btn_ltk.setToolTip('Bbox thickness (pixels)\nBbox굵기(pixels)를 설정합니다.') btn_ltk.clicked.connect(self.ltk) btn_start = QPushButton('Start', self) btn_start.setFont(font) btn_start.clicked.connect(self.run) self.chk_cam = QCheckBox('Webcam') self.chk_cam.setFont(font) self.chk_cam.setChecked(False) self.chk_cam.toggled.connect(self.webcam) self.lbl_rst = QLabel() # self.lbl_rst.setEnabled(False) # font = QFont() # font.setFamily("Agency FB") # font.setPointSize(11) # font.setStyleStrategy(QFont.PreferDefault) # self.lbl_rst.setFont(font) # self.lbl_rst.setAcceptDrops(False) # self.lbl_rst.setAutoFillBackground(False) self.lbl_rst.setText('인식결과물') self.lbl_dict = QListWidget() # font = QFont() # font.setPointSize(9) # self.lbl_dict.setFont(font) # self.lbl_dict.setStyleSheet("background:transparent") # self.lbl_dict.setFrameShadow(QFrame.Plain) # self.lbl_dict.setProperty("showDropIndicator", True) # self.lbl_dict.setObjectName("listWidget") self.lbl_raw = QLabel() self.lbl_raw.setText('원본이미지') self.lbl_prc = QLabel() self.lbl_prc.setText('처리이미지') self.img1 = QLabel() self.img2 = QLabel() self.sliconf = QSlider(Qt.Horizontal, self) self.sliconf.setRange(1, 99) self.sliconf.setSingleStep(1) self.sliconf.setValue(45) self.sliconf.valueChanged.connect(self.conf_chg) self.sliiou = QSlider(Qt.Horizontal, self) self.sliiou.setRange(1, 99) self.sliiou.setSingleStep(1) self.sliiou.setValue(25) self.sliiou.valueChanged.connect(self.iou_chg) # girddir griddir.addWidget(btn_weight, 0, 0, 1, 10) griddir.addWidget(btn_source, 1, 0, 1, 10) griddir.addWidget(btn_prj, 2, 0, 1, 10) griddir.addWidget(btn_name, 3, 0, 1, 10) griddir.addWidget(self.lbl_weight, 0, 10, 1, 10) griddir.addWidget(self.lbl_source, 1, 10, 1, 10) griddir.addWidget(self.chk_cam, 1, 20, 1, 2) griddir.addWidget(self.lbl_prj, 2, 10, 1, 10) griddir.addWidget(self.lbl_name, 3, 10, 1, 10) griddir.addWidget(self.img1, 5, 0, 10, 10) griddir.addWidget(self.img2, 5, 10, 10, 10) griddir.addWidget(self.lbl_raw, 4, 0, 1, 10) griddir.addWidget(self.lbl_prc, 4, 10, 1, 10) griddir.addWidget(self.lbl_rst, 4, 20, 1, 2) griddir.addWidget(self.lbl_dict, 5, 20, 10, 2) griddir.addWidget(btn_start, 15, 8, 1, 6) # 이거 dir로 옮기면서 이미지 찌그러짐 발생 # gridopt gridopt.addWidget(btn_imgsz, 0, 0, 1, 10) gridopt.addWidget(self.lbl_imgsz, 0, 10, 1, 3) gridopt.addWidget(btn_conf, 1, 0, 1, 10) gridopt.addWidget(self.lbl_conf, 1, 10, 1, 3) gridopt.addWidget(self.sliconf, 1, 13, 1, 17) gridopt.addWidget(btn_iou, 2, 0, 1, 10) gridopt.addWidget(self.lbl_iou, 2, 10, 1, 3) gridopt.addWidget(self.sliiou, 2, 13, 1, 17) gridopt.addWidget(btn_mxd, 3, 0, 1, 10) gridopt.addWidget(self.lbl_mxd, 3, 10, 1, 3) gridopt.addWidget(btn_ltk, 4, 0, 1, 10) gridopt.addWidget(self.lbl_ltk, 4, 10, 1, 3) gridopt.addWidget(self.saveoptions(), 5, 0, 10, 10) gridopt.addWidget(self.visualize(), 5, 10, 10, 10) gridopt.addWidget(self.category(), 5, 20, 10, 10) directory = QWidget() directory.setLayout(griddir) options = QWidget() options.setLayout(gridopt) self.tabs = QTabWidget(self) self.tabs.addTab(directory, 'Directory') self.tabs.addTab(options, 'Options') def saveoptions(self): groupbox = QGroupBox('Save Options') vbox = QVBoxLayout() vbox.addWidget(self.save()) vbox.addWidget(self.savetxt()) self.chk_savecrop = QCheckBox('Save Crop') self.chk_savecrop.setStatusTip('If check, save cropped prediction boxes 체크시 프레임별 예측된 bbox의 사진을 카테고리별로 저장합니다') self.chk_savecrop.setToolTip('If check, save cropped prediction boxes\n체크시 프레임별 예측된 bbox의 사진을 카테고리별로 저장합니다') vbox.addWidget(self.chk_savecrop) groupbox.setLayout(vbox) return groupbox def save(self): self.groupbox1 = QGroupBox('Save') self.groupbox1.setCheckable(True) self.groupbox1.setChecked(False) self.groupbox1.setStatusTip('If check off, do not save images/videos 체크해제시 처리된 이미지나 동영상을 저장하지 않습니다.') self.groupbox1.setToolTip('If check off, do not save images/videos\n체크해제시 처리된 이미지나 동영상을 저장하지 않습니다.') vbox = QVBoxLayout() self.chk_exok = QCheckBox('Exist Ok') self.chk_exok.setStatusTip( 'If check, existing project/name ok, do not increment 체크시 디렉토리를 추가로 생성하지 않습니다. 처리된 영상/이미지의 파일명이 같다면 기존파일을 덮어씁니다.') self.chk_exok.setToolTip( 'If check, existing project/name ok, do not increment\n체크시 디렉토리를 추가로 생성하지 않습니다.\n처리된 영상/이미지의 파일명이 같다면 기존파일을 덮어씁니다.') self.groupbox1.toggled.connect(self.signal1) vbox.addWidget(self.chk_exok) self.groupbox1.setLayout(vbox) return self.groupbox1 def savetxt(self): self.groupbox2 = QGroupBox('Save txt') self.groupbox2.setCheckable(True) self.groupbox2.setChecked(False) self.groupbox2.setStatusTip('If check, save results to *.txt 체크해제시 인식 결과(카테고리, bbox좌표)를 txt파일로 저장합니다.') self.groupbox2.setToolTip('If check, save results to *.txt\n체크해제시 인식 결과(카테고리, bbox좌표)를 txt파일로 저장합니다.') vbox = QVBoxLayout() self.chk_saveconf = QCheckBox('Save Conf') self.chk_saveconf.setStatusTip('If check, save confidences in --save-txt labels 체크시 신뢰도값을 txt파일에 추가합니다.') self.chk_saveconf.setToolTip('If check, save confidences in --save-txt labels\n체크시 신뢰도값을 txt파일에 추가합니다.') self.groupbox2.toggled.connect(self.signal2) vbox.addWidget(self.chk_saveconf) self.groupbox2.setLayout(vbox) return self.groupbox2 # def developermode(self): # 개발자모드 # self.groupbox3 = QGroupBox('Developer Options') # self.groupbox3.setCheckable(True) # self.groupbox3.setChecked(False) # vbox = QVBoxLayout() # chk1 = QCheckBox('Agnostic_nms') # vbox.addWidget(chk1) # chk2 = QCheckBox('Augment') # vbox.addWidget(chk2) # chk3 = QCheckBox('Update') # vbox.addWidget(chk3) # chk4 = QCheckBox('Half') # vbox.addWidget(chk4) # chk5 = QCheckBox('Dnn') # vbox.addWidget(chk5) # chk6 = QCheckBox('Visualize') # vbox.addWidget(chk6) # chk1.setStatusTip('If check, class-agnostic NMS') # chk1.setToolTip('If check, class-agnostic NMS') # chk2.setStatusTip('If check, augmented inference') # chk2.setToolTip('If check, augmented inference') # chk3.setStatusTip('If check, update all models') # chk3.setToolTip('If check, update all models') # chk4.setStatusTip('If check, use FP16 haself.lf-precision inference') # chk4.setToolTip('If check, use FP16 half-precision inference') # chk5.setStatusTip('If check, use OpenCV DNN for ONNX inference') # chk5.setToolTip('If check, use OpenCV DNN for ONNX inference') # chk6.setStatusTip('If check, visualize features') # chk6.setToolTip('If check, visualize features') # self.groupbox3.toggled.connect(self.signal3) # self.groupbox3.setLayout(vbox) # return self.groupbox3 def category(self): gbx = QGroupBox('Category Filter') gbx.setStatusTip('If check off, do not classify specific animal 체크 해제시 해당 동물을 분류하지 않습니다.') gbx.setToolTip('If check off, do not classify specific animal\n체크 해제시 해당 동물을 분류하지 않습니다.') self.chkcat1 = QCheckBox('WildBoar') self.chkcat1.setStatusTip('멧돼지') self.chkcat1.setToolTip('멧돼지') self.chkcat1.setChecked(True) self.chkcat2 = QCheckBox('WaterDeer') self.chkcat2.setStatusTip('고라니') self.chkcat2.setToolTip('고라니') self.chkcat2.setChecked(True) self.chkcat3 = QCheckBox('HalfMoonBear') self.chkcat3.setStatusTip('반달가슴곰') self.chkcat3.setToolTip('반달가슴곰') self.chkcat3.setChecked(True) self.chkcat4 = QCheckBox('Goral') self.chkcat4.setStatusTip('산양') self.chkcat4.setToolTip('산양') self.chkcat4.setChecked(True) vbox = QVBoxLayout() vbox.addWidget(self.chkcat1) vbox.addWidget(self.chkcat2) vbox.addWidget(self.chkcat3) vbox.addWidget(self.chkcat4) gbx.setLayout(vbox) return gbx def visualize(self): gbx = QGroupBox('Visualize Options') self.chk_view = QCheckBox('View Image') self.chk_view.setChecked(True) self.chk_view.setStatusTip('If check, show results 체크시 영상을 직접 화면에 띄웁니다.') self.chk_view.setToolTip('If check, show results\n체크시 영상을 직접 화면에 띄웁니다.') self.chk_hlbl = QCheckBox('Hide Labels') self.chk_hlbl.setStatusTip('If check, hide labels 체크시 처리된 영상이 분류된 종 이름을 띄우지 않습니다.') self.chk_hlbl.setToolTip('If check, hide labels\n 체크시 처리된 영상이 분류된 종 이름을 띄우지 않습니다.') self.chk_hconf = QCheckBox('Hide Conf') self.chk_hconf.setStatusTip('If check, hide confidences 체크시 처리된 영상이 confidence값을 띄우지 않습니다.') self.chk_hconf.setToolTip('If check, hide confidences\n체크시 처리된 영상이 confidence값을 띄우지 않습니다.') vbox = QVBoxLayout() vbox.addWidget(self.chk_view) vbox.addWidget(self.chk_hlbl) vbox.addWidget(self.chk_hconf) gbx.setLayout(vbox) return gbx def weights(self): fname = QFileDialog.getOpenFileName(self, 'Weights', filter='*.pt') self.lbl_weight.setText(str(fname[0])) self.lbl_weight.adjustSize() def source(self): fname = QFileDialog.getExistingDirectory(self, 'Source') self.lbl_source.setText(str(fname)) self.lbl_source.adjustSize() def webcam(self): if self.chk_cam.isChecked(): self.lbl_source.setNum(0) def imgsz(self, num): # self.lbl_imgsz.setNum(int(num)) # self.lbl_imgsz.adjustSize() dlg = QInputDialog(self) dlg.setInputMode(QInputDialog.IntInput) dlg.setWindowTitle('Image Size') dlg.setLabelText("inference size (pixels)\n1~1280") dlg.resize(500, 100) dlg.setIntRange(1, 1280) dlg.setIntValue(int(self.lbl_imgsz.text())) ok = dlg.exec_() num = dlg.intValue() if ok: self.lbl_imgsz.setNum(num) self.lbl_imgsz.adjustSize() def conf(self): dlg = QInputDialog(self) dlg.setInputMode(QInputDialog.IntInput) dlg.setWindowTitle('Conf Thres') dlg.setLabelText("confidence(%) threshold\n1% ~ 99%") dlg.resize(500, 100) dlg.setIntRange(1, 99) dlg.setIntValue(int(self.lbl_conf.text()[:-1])) ok = dlg.exec_() num = dlg.intValue() if ok: self.lbl_conf.setText(str(num) + '%') self.lbl_conf.adjustSize() self.sliconf.setValue(num) def conf_chg(self): self.lbl_conf.setText(str(self.sliconf.value()) + '%') def iou(self): dlg = QInputDialog(self) dlg.setInputMode(QInputDialog.IntInput) dlg.setWindowTitle('Iou Thres') dlg.setLabelText("NMS IOU(%) threshold\n1%~99%") dlg.resize(500, 100) dlg.setIntRange(1, 99) dlg.setIntValue(int(self.lbl_iou.text()[:-1])) ok = dlg.exec_() num = dlg.intValue() if ok: self.lbl_iou.setText(str(num) + '%') self.lbl_iou.adjustSize() self.sliiou.setValue(num) def iou_chg(self): self.lbl_iou.setText(str(self.sliiou.value()) + '%') def det_num(self): dlg = QInputDialog(self) dlg.setInputMode(QInputDialog.IntInput) dlg.setWindowTitle('Max detection') dlg.setLabelText("maximum detections per image\n1~9999\nrecommend set under 100") dlg.resize(500, 100) dlg.setIntRange(1, 9999) dlg.setIntValue(int(self.lbl_mxd.text())) ok = dlg.exec_() num = dlg.intValue() if ok: self.lbl_mxd.setNum(num) self.lbl_mxd.adjustSize() def project(self): fname = QFileDialog.getExistingDirectory(self, 'Project') self.lbl_prj.setText(str(fname)) self.lbl_prj.adjustSize() def name(self): dlg = QInputDialog(self) dlg.setInputMode(QInputDialog.TextInput) dlg.setWindowTitle('Name') dlg.setLabelText( f"save results to Project/Name\n저장할 폴더명\n현재 경로 : {self.lbl_prj.text()}\\{self.lbl_name.text()}") dlg.setTextValue(self.lbl_name.text()) dlg.resize(700, 100) ok = dlg.exec_() text = dlg.textValue() if ok: self.lbl_name.setText(str(text)) self.lbl_name.adjustSize() def ltk(self): dlg = QInputDialog(self) dlg.setInputMode(QInputDialog.IntInput) dlg.setWindowTitle('Line Thickness') dlg.setLabelText("Bbox Line Thickness (Pixels)\n1~10") dlg.resize(500, 100) dlg.setIntRange(1, 10) dlg.setIntValue(int(self.lbl_ltk.text())) ok = dlg.exec_() num = dlg.intValue() if ok: self.lbl_ltk.setNum(num) self.lbl_ltk.adjustSize() def signal1(self): if not self.groupbox1.isChecked(): self.chk_exok.setCheckState(False) def signal2(self): if not self.groupbox2.isChecked(): self.chk_saveconf.setCheckState(False) # def signal3(self): # password # if self.groupbox3.isChecked(): # dlg = QInputDialog(self) # dlg.setInputMode(QInputDialog.TextInput) # dlg.setWindowTitle('Enter Password') # dlg.setLabelText("Made by BigleaderTeam") # dlg.resize(700, 100) # ok = dlg.exec_() # text = dlg.textValue() # if ok: # if not str(text) == 'rlacksdlf': # self.groupbox3.setChecked(False) # else: # self.groupbox3.setChecked(False) def run(self): li = [] if self.chkcat1.isChecked(): li.append(1) if self.chkcat2.isChecked(): li.append(2) if self.chkcat3.isChecked(): li.append(3) if self.chkcat4.isChecked(): li.append(4) self.det_thread.run( weights=self.lbl_weight.text(), source=self.lbl_source.text(), imgsz=[int(self.lbl_imgsz.text()), int(self.lbl_imgsz.text())], conf_thres=float(int(self.lbl_conf.text()[:-1]) / 100), iou_thres=float(int(self.lbl_iou.text()[:-1]) / 100), max_det=int(self.lbl_mxd.text()), device='', view_img=self.chk_view.isChecked(), save_txt=self.groupbox2.isChecked(), save_conf=self.chk_saveconf.isChecked(), save_crop=self.chk_savecrop.isChecked(), nosave=not self.groupbox1.isChecked(), classes=None, # if len(li) == 0 else li, agnostic_nms=False, augment=False, visualize=False, update=False, project=self.lbl_prj.text(), name=self.lbl_name.text(), exist_ok=self.chk_exok.isChecked(), line_thickness=int(self.lbl_ltk.text()), hide_labels=self.chk_hlbl.isChecked(), hide_conf=self.chk_hconf.isChecked(), half=False, dnn=False ) @staticmethod def show_image(img_src, label): try: ih, iw, _ = img_src.shape w = label.geometry().width() h = label.geometry().height() if iw > ih: scal = w / iw nw = w nh = int(scal * ih) img_src_ = cv2.resize(img_src, (nw, nh)) else: scal = h / ih nw = int(scal * iw) nh = h img_src_ = cv2.resize(img_src, (nw, nh)) frame = cv2.cvtColor(img_src_, cv2.COLOR_BGR2RGB) img = QImage(frame.data, frame.shape[1], frame.shape[0], frame.shape[2] * frame.shape[1], QImage.Format_RGB888) label.setPixmap(QPixmap.fromImage(img)) except Exception as e: print(repr(e)) def show_statistic(self, statistic_dic): try: self.lbl_dict.clear() statistic_dic = sorted(statistic_dic.items(), key=lambda x: x[1], reverse=True) statistic_dic = [i for i in statistic_dic if i[1] > 0] results = [str(i[0]) + ':' + str(i[1]) for i in statistic_dic] self.lbl_dict.addItems(results) except Exception as e: print(repr(e)) # class GroupBox(QGroupBox): # reverse gbx # def paintEvent(self, event): # painter = QStylePainter(self) # option = QStyleOptionGroupBox() # self.initStyleOption(option) # if self.isCheckable(): # option.state &= ~QStyle.State_Off & ~QStyle.State_On # option.state |= ( # QStyle.State_Off # if self.isChecked() # else QStyle.State_On # ) # painter.drawComplexControl(QStyle.CC_GroupBox, option) if __name__ == '__main__': app = QApplication(sys.argv) screen = app.primaryScreen() size = screen.size() w = size.width() h = size.height() ex = MyApp() ex.setGeometry(int(0.1 * w), int(0.1 * h), int(0.8 * w), int(0.8 * h)) ex.showMaximized() sys.exit(app.exec_())
[ "utils.general.check_img_size", "utils.general.save_one_box", "torch.from_numpy", "cv2.destroyAllWindows", "utils.datasets.LoadStreams", "utils.torch_utils.load_classifier", "tensorflow.keras.models.load_model", "utils.general.colorstr", "tensorflow.lite.Interpreter", "tensorflow.Graph", "pathlib.Path", "utils.general.apply_classifier", "torch.jit.load", "tensorflow.compat.v1.import_graph_def", "utils.general.strip_optimizer", "utils.torch_utils.time_sync", "cv2.dnn.readNetFromONNX", "utils.general.scale_coords", "cv2.VideoWriter_fourcc", "cv2.waitKey", "utils.general.check_suffix", "utils.plots.colors", "cv2.cvtColor", "cv2.resize", "tensorflow.nest.map_structure", "cv2.imwrite", "utils.general.check_imshow", "models.experimental.attempt_load", "utils.torch_utils.select_device", "torch.load", "onnxruntime.InferenceSession", "utils.datasets.LoadImages", "os.getcwd", "torch.tensor", "utils.general.non_max_suppression", "tensorflow.constant", "torch.no_grad", "torch.zeros", "utils.general.check_requirements" ]
[((944, 955), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (953, 955), False, 'import os\n'), ((4905, 4920), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4918, 4920), False, 'import torch\n'), ((964, 978), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (968, 978), False, 'from pathlib import Path\n'), ((7015, 7036), 'utils.torch_utils.select_device', 'select_device', (['device'], {}), '(device)\n', (7028, 7036), False, 'from utils.torch_utils import load_classifier, select_device, time_sync\n'), ((7328, 7353), 'utils.general.check_suffix', 'check_suffix', (['w', 'suffixes'], {}), '(w, suffixes)\n', (7340, 7353), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((10005, 10036), 'utils.general.check_img_size', 'check_img_size', (['imgsz'], {'s': 'stride'}), '(imgsz, s=stride)\n', (10019, 10036), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((20452, 20475), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (20473, 20475), False, 'import cv2\n'), ((10125, 10139), 'utils.general.check_imshow', 'check_imshow', ([], {}), '()\n', (10137, 10139), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((10253, 10312), 'utils.datasets.LoadStreams', 'LoadStreams', (['source'], {'img_size': 'imgsz', 'stride': 'stride', 'auto': 'pt'}), '(source, img_size=imgsz, stride=stride, auto=pt)\n', (10264, 10312), False, 'from utils.datasets import LoadStreams, LoadImages\n'), ((10396, 10454), 'utils.datasets.LoadImages', 'LoadImages', (['source'], {'img_size': 'imgsz', 'stride': 'stride', 'auto': 'pt'}), '(source, img_size=imgsz, stride=stride, auto=pt)\n', (10406, 10454), False, 'from utils.datasets import LoadStreams, LoadImages\n'), ((11323, 11334), 'utils.torch_utils.time_sync', 'time_sync', ([], {}), '()\n', (11332, 11334), False, 'from utils.torch_utils import load_classifier, select_device, time_sync\n'), ((11718, 11729), 'utils.torch_utils.time_sync', 'time_sync', ([], {}), '()\n', (11727, 11729), False, 'from utils.torch_utils import load_classifier, select_device, time_sync\n'), ((13513, 13524), 'utils.torch_utils.time_sync', 'time_sync', ([], {}), '()\n', (13522, 13524), False, 'from utils.torch_utils import load_classifier, select_device, time_sync\n'), ((13596, 13705), 'utils.general.non_max_suppression', 'non_max_suppression', (['pred', 'conf_thres', 'iou_thres', 'classes', 'agnostic_nms'], {'max_det': 'max_det', 'unknown': 'unknown'}), '(pred, conf_thres, iou_thres, classes, agnostic_nms,\n max_det=max_det, unknown=unknown)\n', (13615, 13705), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((20959, 20983), 'utils.general.strip_optimizer', 'strip_optimizer', (['weights'], {}), '(weights)\n', (20974, 20983), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((44335, 44376), 'cv2.cvtColor', 'cv2.cvtColor', (['img_src_', 'cv2.COLOR_BGR2RGB'], {}), '(img_src_, cv2.COLOR_BGR2RGB)\n', (44347, 44376), False, 'import cv2\n'), ((6811, 6824), 'pathlib.Path', 'Path', (['project'], {}), '(project)\n', (6815, 6824), False, 'from pathlib import Path\n'), ((7611, 7628), 'torch.jit.load', 'torch.jit.load', (['w'], {}), '(w)\n', (7625, 7628), False, 'import torch\n'), ((7656, 7698), 'models.experimental.attempt_load', 'attempt_load', (['weights'], {'map_location': 'device'}), '(weights, map_location=device)\n', (7668, 7698), False, 'from models.experimental import attempt_load\n'), ((8073, 8110), 'utils.torch_utils.load_classifier', 'load_classifier', ([], {'name': '"""resnet50"""', 'n': '(2)'}), "(name='resnet50', n=2)\n", (8088, 8110), False, 'from utils.torch_utils import load_classifier, select_device, time_sync\n'), ((8665, 8707), 'utils.general.check_requirements', 'check_requirements', (["('tensorflow>=2.4.1',)"], {}), "(('tensorflow>=2.4.1',))\n", (8683, 8707), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((13764, 13775), 'utils.torch_utils.time_sync', 'time_sync', ([], {}), '()\n', (13773, 13775), False, 'from utils.torch_utils import load_classifier, select_device, time_sync\n'), ((13883, 13924), 'utils.general.apply_classifier', 'apply_classifier', (['pred', 'modelc', 'img', 'im0s'], {}), '(pred, modelc, img, im0s)\n', (13899, 13924), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((14335, 14342), 'pathlib.Path', 'Path', (['p'], {}), '(p)\n', (14339, 14342), False, 'from pathlib import Path\n'), ((44111, 44140), 'cv2.resize', 'cv2.resize', (['img_src', '(nw, nh)'], {}), '(img_src, (nw, nh))\n', (44121, 44140), False, 'import cv2\n'), ((44282, 44311), 'cv2.resize', 'cv2.resize', (['img_src', '(nw, nh)'], {}), '(img_src, (nw, nh))\n', (44292, 44311), False, 'import cv2\n'), ((8298, 8343), 'utils.general.check_requirements', 'check_requirements', (["('opencv-python>=4.5.4',)"], {}), "(('opencv-python>=4.5.4',))\n", (8316, 8343), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((8367, 8393), 'cv2.dnn.readNetFromONNX', 'cv2.dnn.readNetFromONNX', (['w'], {}), '(w)\n', (8390, 8393), False, 'import cv2\n'), ((8430, 8518), 'utils.general.check_requirements', 'check_requirements', (["('onnx', 'onnxruntime-gpu' if torch.has_cuda else 'onnxruntime')"], {}), "(('onnx', 'onnxruntime-gpu' if torch.has_cuda else\n 'onnxruntime'))\n", (8448, 8518), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((8578, 8615), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['w', 'None'], {}), '(w, None)\n', (8606, 8615), False, 'import onnxruntime\n'), ((13476, 13494), 'torch.tensor', 'torch.tensor', (['pred'], {}), '(pred)\n', (13488, 13494), False, 'import torch\n'), ((14648, 14671), 'torch.tensor', 'torch.tensor', (['im0.shape'], {}), '(im0.shape)\n', (14660, 14671), False, 'import torch\n'), ((17073, 17087), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (17084, 17087), False, 'import cv2\n'), ((7256, 7263), 'pathlib.Path', 'Path', (['w'], {}), '(w)\n', (7260, 7263), False, 'from pathlib import Path\n'), ((9536, 9565), 'tensorflow.keras.models.load_model', 'tf.keras.models.load_model', (['w'], {}), '(w)\n', (9562, 9565), True, 'import tensorflow as tf\n'), ((11444, 11465), 'torch.from_numpy', 'torch.from_numpy', (['img'], {}), '(img)\n', (11460, 11465), False, 'import torch\n'), ((17267, 17294), 'cv2.imwrite', 'cv2.imwrite', (['save_path', 'im0'], {}), '(save_path, im0)\n', (17278, 17294), False, 'import cv2\n'), ((20893, 20919), 'utils.general.colorstr', 'colorstr', (['"""bold"""', 'save_dir'], {}), "('bold', save_dir)\n", (20901, 20919), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((9108, 9163), 'tensorflow.nest.map_structure', 'tf.nest.map_structure', (['x.graph.as_graph_element', 'inputs'], {}), '(x.graph.as_graph_element, inputs)\n', (9129, 9163), True, 'import tensorflow as tf\n'), ((9201, 9257), 'tensorflow.nest.map_structure', 'tf.nest.map_structure', (['x.graph.as_graph_element', 'outputs'], {}), '(x.graph.as_graph_element, outputs)\n', (9222, 9257), True, 'import tensorflow as tf\n'), ((9290, 9300), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (9298, 9300), True, 'import tensorflow as tf\n'), ((9623, 9656), 'tensorflow.lite.Interpreter', 'tf.lite.Interpreter', ([], {'model_path': 'w'}), '(model_path=w)\n', (9642, 9656), True, 'import tensorflow as tf\n'), ((15038, 15088), 'utils.general.scale_coords', 'scale_coords', (['img.shape[2:]', 'det[:, :4]', 'im0.shape'], {}), '(img.shape[2:], det[:, :4], im0.shape)\n', (15050, 15088), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((8954, 8996), 'tensorflow.compat.v1.import_graph_def', 'tf.compat.v1.import_graph_def', (['gd'], {'name': '""""""'}), "(gd, name='')\n", (8983, 8996), True, 'import tensorflow as tf\n'), ((10633, 10658), 'torch.zeros', 'torch.zeros', (['(1)', '(3)', '*imgsz'], {}), '(1, 3, *imgsz)\n', (10644, 10658), False, 'import torch\n'), ((11862, 11872), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (11866, 11872), False, 'from pathlib import Path\n'), ((16362, 16453), 'utils.general.save_one_box', 'save_one_box', (['xyxy', 'imc'], {'file': "(save_dir / 'crops' / names[c] / f'{p.stem}.jpg')", 'BGR': '(True)'}), "(xyxy, imc, file=save_dir / 'crops' / names[c] /\n f'{p.stem}.jpg', BGR=True)\n", (16374, 16453), False, 'from utils.general import apply_classifier, check_img_size, check_imshow, check_requirements, check_suffix, colorstr, increment_path, non_max_suppression, print_args, save_one_box, scale_coords, strip_optimizer, xyxy2xywh, LOGGER\n'), ((18157, 18188), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (18179, 18188), False, 'import cv2\n'), ((16269, 16284), 'utils.plots.colors', 'colors', (['c', '(True)'], {}), '(c, True)\n', (16275, 16284), False, 'from utils.plots import Annotator, colors\n'), ((8165, 8211), 'torch.load', 'torch.load', (['"""resnet50.pt"""'], {'map_location': 'device'}), "('resnet50.pt', map_location=device)\n", (8175, 8211), False, 'import torch\n'), ((12518, 12534), 'tensorflow.constant', 'tf.constant', (['imn'], {}), '(imn)\n', (12529, 12534), True, 'import tensorflow as tf\n'), ((15552, 15570), 'torch.tensor', 'torch.tensor', (['xyxy'], {}), '(xyxy)\n', (15564, 15570), False, 'import torch\n')]
""" Abero (c) 2020 <NAME>. File analysis tool """ import os import re import sys import zipfile from statistics import mean from itertools import groupby from arkivist import Arkivist def analyze(directory, extension="txt", threshold=80, template=None, skipnames=0, group=0, unzip=0, convert=0, reset=0): if not check_path(directory): print(f"\nAberoError: The directory was not found: {directory}") sys.exit(0) if not check_path(f"{directory}/abero"): os.makedirs(f"{directory}/abero") if not isinstance(directory, str): print("\nAberoError: 'directory' parameter must be a string.") return if not isinstance(extension, str): print("\nAberoWarning: 'extension' parameter must be a string.") text_based = -1 extensions_text = ["html", "xml", "css", "svg", "json", "c", "cpp", "h", "cs", "js", "py", "java", "rb", "pl", "php", "sh", "txt", "tex", "markdown", "asciidoc", "rtf", "ps", "ini", "cfg", "rc", "reg", "csv", "tsv"] extensions_binary = ["jpg", "png", "gif", "bmp", "tiff", "psd", "mp4", "mkv", "avi", "mov", "mpg", "vob", "mp3", "aac", "wav", "flac", "ogg", "mka", "wma", "pdf", "doc", "xls", "ppt", "docx", "odt", "zip", "rar", "7z", "tar", "iso", "mdb", "accde", "frm", "sqlite", "exe", "dll", "so", "class"] if extension in extensions_text: text_based = 1 elif extension in extensions_binary: text_based = 0 print(f"AberoWarning: The `{extension}` is a binary file, a separate analyzer will be used.") else: print(f"AberoWarning: The `{extension}` is currently unsupported for analysis," \ "errors might be encountered during execution.") threshold = validate(threshold, 1, 100, 80) skipnames = validate(skipnames, 0, 1, 0) group = validate(group, 0, 1, 0) unzip = validate(unzip, 0, 1, 0) convert = validate(convert, 0, 1, 0) reset = validate(reset, 0, 1, 0) template_filename = "" if isinstance(template, str): if not check_path(template): print("\nAberoWarning: Template file was not found.") template = None if unzip == 1: print("\nUnzipping files:") for filename in get_filenames(directory, "zip"): print(f" - {filename}") extract(f"{directory}/{filename}", f"{directory}") if convert == 1: print("\nConverting notebooks:") for filename in get_filenames(directory, "ipynb"): print(f" - {filename}") ipynb2py(f"{directory}/{filename}") print("\nAnalyzing files...") prev = "" if template is not None: template_filename = template.split("\\")[-1:][0] analysis = Arkivist(f"{directory}/abero/analysis.json") if reset == 1: analysis.clear() filenames = get_filenames(f"{directory}", extension) for index, filename in enumerate(filenames): if template_filename != filename: duplicates = {} filepath = f"{directory}/{filename}" for compare in filenames: uid = compare if template_filename == compare: uid = "template" if filename != compare: skip = False if skipnames == 1: cid = None common = common_string(filename, compare) if common in compare: if len(common) >= 10: skip = True if group == 1: skip = True rcommon = common_string(filename, compare, reverse=True) if rcommon != "": if rcommon in compare: skip = False if not skip: if text_based == 1: result = similarity(filepath, f"{directory}/{compare}") else: result = bin_diff(filepath, f"{directory}/{compare}") duplicates.update({uid: result}) metadata = analysis.get(filename, {}) metadata.update({"text": text_based}) metadata.update({"duplicates": duplicates}) analysis.set(filename, metadata) print("\nGenerating report...") count = 0 analysis.reload() for filename, metadata in analysis.show().items(): count += 1 print(f"\n File #{count}: {filename}") originality = 0 duplicates = metadata.get("duplicates", {}) control = duplicates.get("template", {}) if metadata.get("text", -1) == 1: duplication = [0] control_avg = average(list(control.values()), threshold) for uid, result in duplicates.items(): if uid != "template": avg = average(list(result.values()), threshold) avg = avg - control_avg if avg > 0: duplication.append(avg) print(f" - {avg:.2f}% {uid}") originality = (100 - max(duplication)) else: duplication = [0] control_matches = duplicates.get("template", {}).get("matches", []) for uid, result in duplicates.items(): if uid != "template": duplicated = [] matches = result.get("matches", []) duplicated = [x for x in matches if x not in control_matches] file_length = result.get("size", 1) avg = (len(duplicated) / file_length) * 100 if avg > 0: duplication.append(avg) print(f" - {avg:.2f}% {compare}") originality = 100 - max(duplication) print(f" * Originality Rating: {originality:.2f}%") statistics = metadata.get("statistics", {}) statistics.update({"originality": originality}) metadata.update({"statistics": statistics}) analysis.set(filename, metadata) def average(results, threshold): if len(results) == 0: return 0 values = [] for value in results: rate = value.get("1", 0) if rate < threshold: rate = 0 values.append(rate) return round(mean(values), 2) def similarity(original, compare): """ Compare original file to other files """ duplicates = {} data1, data2 = "", "" with open(original, "r", encoding="utf-8") as file1: try: data1 = file1.read() except: data1 = "" with open(compare, "r", encoding="utf-8") as file2: try: data2 = file2.read() except: data2 = "" for line1 in data1.split("\n"): rate = 0 words1 = pad(line1).split(" ") words1 = [i for i in words1 if i.strip() != ""] # words1.sort() if len(set(words1)) > 0: line = "" for line2 in data2.split("\n"): words2 = pad(line2).split(" ") words2 = [i for i in words2 if i.strip() != ""] if len(set(words2)) > 0: if line1.strip() == line2.strip(): rate = 100 line = line2 else: diff1 = difference(words2, words1) diff2 = difference(words1, words2) words3 = [] words3.extend(words1) words3.extend(words2) remain = len(diff1) + len(diff2) if remain == 0: rate = 100 line = line2 else: temp = ((len(words3) - remain) / len(words3)) * 100 if temp > rate: rate = temp line = line2 duplicates.update({line1: {"0": line, "1": rate}}) return duplicates def bin_diff(original, compare): # https://stackoverflow.com/a/15798718/4943299 matches = [] with open(original, "rb") as file1: content1 = file1.read() with open(compare, "rb") as file2: content2 = file2.read() for k, g in groupby(range(min(len(content1), len(content2))), key=lambda i: content1[i] == content2[i]): if k: pos = next(g) length = len(list(g)) + 1 matches.append((pos, length)) return dict({"size": len(content1), "matches": matches}) def pad(string): """ Decongest statements """ padded = string.replace("\r", "").replace("\t", " ") symbols = ["#", "%", "*", ")", "+", "-", "=", "{", "}", "]", "\"", "'", "<", ">" ] for item in symbols: padded = padded.replace(item, f" {item} ") return padded.replace("(", "( ") def difference(diff, words): paired = [] diff = [i for i in diff] pairs = {"(": ")", "{": "}", "[": "]", "\"": "\"", "'": "'" } for item in words: if item in diff: if item in paired: paired.remove(item) diff.remove(item) else: if len(item) > 1 and item in diff: diff.remove(item) for pair in pairs.keys(): if pair in item and not ("\\\"" in item) and not ("\\\'" in item): paired.append(pairs.get(pair, "")) if item in diff: diff.remove(item) else: if item in diff: diff.remove(item) return diff def ipynb2py(filepath): script = [] ipynb = Arkivist(filepath).show() for cell in ipynb.get("cells", []): cell_type = cell.get("cell_type", "") outputs = cell.get("outputs", []) source = cell.get("source", []) if cell_type == "code" and len(outputs) > 0: for line in source: script.append(line) else: script.append(f"# {line}") new_filepath = filepath.replace(".ipynb", ".py") with open(new_filepath, "w+", encoding="utf-8") as file: file.wrtie("\n".join(script)) def validate(value, minimum, maximum, fallback): if not isinstance(value, int): print("KymeraWarning: Parameter must be an integer.") value = int(fallback) if not (minimum <= value <= maximum): print(f"AberoWarning: Parameter must be an integer between {minimum}-{maximum}.") value = int(fallback) return value def extract(path, destination): try: with zipfile.ZipFile(path, "r") as zip: zip.extractall(destination) except: print(f"\nAberoWarning: Error in processing ZIP file: {path}") pass def common_string(original, compare, reverse=False): if reverse: extension = list(original.split("."))[-1] original = "".join(list(reversed(original.replace(f".{extension}", "").strip()))) compare = "".join(list(reversed(compare.replace(f".{extension}", "").strip()))) common = [] limit = min((len(original), len(compare))) for i in range(0, limit): if original[i] != compare[i]: break common.append(original[i]) if reverse: return "".join(list(reversed(common))) return "".join(common) def defaults(value, minimum, maximum, fallback): if value is not None: if not (minimum <= value <= maximum): return fallback return value return fallback # file/folder io def get_folders(source): return [f.name for f in os.scandir(source) if f.is_dir()] def check_path(path): if path.strip() == "": return False return os.path.exists(path) def get_filenames(path, extension): filenames = [] for filepath in os.listdir(path): if filepath.split(".")[-1].lower() == extension: filenames.append(filepath) return filenames
[ "statistics.mean", "os.path.exists", "os.listdir", "os.makedirs", "zipfile.ZipFile", "os.scandir", "arkivist.Arkivist", "sys.exit" ]
[((2861, 2905), 'arkivist.Arkivist', 'Arkivist', (['f"""{directory}/abero/analysis.json"""'], {}), "(f'{directory}/abero/analysis.json')\n", (2869, 2905), False, 'from arkivist import Arkivist\n'), ((12148, 12168), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (12162, 12168), False, 'import os\n'), ((12245, 12261), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (12255, 12261), False, 'import os\n'), ((437, 448), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (445, 448), False, 'import sys\n'), ((507, 540), 'os.makedirs', 'os.makedirs', (['f"""{directory}/abero"""'], {}), "(f'{directory}/abero')\n", (518, 540), False, 'import os\n'), ((6579, 6591), 'statistics.mean', 'mean', (['values'], {}), '(values)\n', (6583, 6591), False, 'from statistics import mean\n'), ((10077, 10095), 'arkivist.Arkivist', 'Arkivist', (['filepath'], {}), '(filepath)\n', (10085, 10095), False, 'from arkivist import Arkivist\n'), ((11026, 11052), 'zipfile.ZipFile', 'zipfile.ZipFile', (['path', '"""r"""'], {}), "(path, 'r')\n", (11041, 11052), False, 'import zipfile\n'), ((12032, 12050), 'os.scandir', 'os.scandir', (['source'], {}), '(source)\n', (12042, 12050), False, 'import os\n')]
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for TPU Embeddings mid level API on TPU.""" from absl.testing import parameterized from tensorflow.python.compat import v2_compat from tensorflow.python.distribute import distribute_lib from tensorflow.python.eager import def_function from tensorflow.python.framework import config from tensorflow.python.platform import test from tensorflow.python.tpu import tpu_embedding_v2 from tensorflow.python.tpu import tpu_embedding_v2_utils from tensorflow.python.tpu.tests import tpu_embedding_base_test class TPUEmbeddingTest(tpu_embedding_base_test.TPUEmbeddingBaseTest): def test_tables_with_same_name(self): with self.assertRaisesRegex( ValueError, 'Multiple tables with name table found.'): with self._get_strategy().scope(): tpu_embedding_v2.TPUEmbedding( (tpu_embedding_v2_utils.FeatureConfig( table=tpu_embedding_v2_utils.TableConfig( name='table', vocabulary_size=4, dim=2, initializer=self.initializer,), name='watched'), tpu_embedding_v2_utils.FeatureConfig( table=tpu_embedding_v2_utils.TableConfig( name='table', vocabulary_size=4, dim=2, initializer=self.initializer), name='favorited')), tpu_embedding_v2_utils.SGD(learning_rate=0.1)) def test_pass_non_tensor_to_apply_gradients(self): strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') # We aren't going to actually run anything, so the batch_size here does not # matter. mid_level_api.build(64) # Test pass non tensor to apply_gradients. @def_function.function def test_apply_1(): mid_level_api.apply_gradients((1, 2, 3)) with self.assertRaisesRegex(ValueError, 'found non-tensor type'): strategy.run(test_apply_1) # Test pass different structure to apply_gradients. @def_function.function def test_apply_2(): # This should be a tuple as feature_config is a tuple of 3 configs. mid_level_api.apply_gradients([1, 2, 3]) with self.assertRaisesRegex( TypeError, 'The two structures don\'t have the same nested structure.'): strategy.run(test_apply_2) def test_enqueue_weight_for_dense_tensor(self): strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') dataset = self._create_dense_dataset(strategy, include_weights=True) dense_iter = iter( strategy.experimental_distribute_dataset( dataset, options=distribute_lib.InputOptions( experimental_fetch_to_device=False))) @def_function.function def test_fn(): def step(): return mid_level_api.dequeue() features, weights = next(dense_iter) mid_level_api.enqueue(features, weights=weights, training=False) return strategy.run(step) with self.assertRaisesRegex(ValueError, 'Weight specified for dense input'): test_fn() def test_enqueue_wrong_weight_type_for_sparse_and_ragged_tensor(self): self.skip_if_oss() strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') sparse = self._create_sparse_dataset(strategy, include_weights=True) ragged = self._create_ragged_dataset(strategy, include_weights=True) sparse_iter = iter( strategy.experimental_distribute_dataset( sparse, options=distribute_lib.InputOptions( experimental_fetch_to_device=False))) ragged_iter = iter( strategy.experimental_distribute_dataset( ragged, options=distribute_lib.InputOptions( experimental_fetch_to_device=False))) @def_function.function def test_sparse_fn(): def step(): return mid_level_api.dequeue() features, _ = next(sparse_iter) _, weights = next(ragged_iter) mid_level_api.enqueue(features, weights=weights, training=False) return strategy.run(step) with self.assertRaisesRegex( ValueError, 'which does not match type input which is SparseTensor.'): test_sparse_fn() @def_function.function def test_ragged_fn(): def step(): return mid_level_api.dequeue() _, weights = next(sparse_iter) features, _ = next(ragged_iter) mid_level_api.enqueue(features, weights=weights, training=False) return strategy.run(step) with self.assertRaisesRegex( ValueError, 'which does not match type input which is RaggedTensor.'): test_ragged_fn() def test_enqueue_incorrect_structure_for_features_and_weights(self): self.skip_if_oss() strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') sparse = self._create_sparse_dataset(strategy, include_weights=True) sparse_iter = iter( strategy.experimental_distribute_dataset( sparse, options=distribute_lib.InputOptions( experimental_fetch_to_device=False))) @def_function.function def test_features_fn(): def step(): return mid_level_api.dequeue() features = next(sparse_iter) features = (features[0],) mid_level_api.enqueue(features, training=False) return strategy.run(step) # The error here is raised from nest.assert_same_structure with self.assertRaises(ValueError): test_features_fn() @def_function.function def test_weights_fn(): def step(): return mid_level_api.dequeue() features, weights = next(sparse_iter) weights = (weights[0],) mid_level_api.enqueue(features, weights=weights, training=False) return strategy.run(step) # The error here is raised from nest.assert_same_structure with self.assertRaises(ValueError): test_weights_fn() def test_enqueue_cpu_tensor(self): strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') dataset = self._create_dense_dataset(strategy) dense_iter = iter(strategy.experimental_distribute_dataset(dataset)) @def_function.function def test_fn(): def get_activations(): return mid_level_api.dequeue() features = next(dense_iter) mid_level_api.enqueue(features, training=False) activations = strategy.run(get_activations) return activations with self.assertRaisesRegex(ValueError, 'which is on a TPU input device'): test_fn() @parameterized.parameters([True, False]) def test_enqueue_cpu_tensor_with_outside_compilation(self, use_mlir): if use_mlir: config.enable_mlir_bridge() strategy, mid_level_api, _ = self._create_strategy_and_mid_level('sgd') dataset = self._create_dense_dataset(strategy) dense_iter = iter(strategy.experimental_distribute_dataset(dataset)) @def_function.function def test_fn(): def get_activations(features): mid_level_api.enqueue(features, training=False) return mid_level_api.dequeue() activations = strategy.run(get_activations, args=(next(dense_iter),)) return activations with self.assertRaisesRegex(ValueError, 'which is on a TPU input device'): test_fn() if __name__ == '__main__': v2_compat.enable_v2_behavior() test.main()
[ "tensorflow.python.framework.config.enable_mlir_bridge", "tensorflow.python.compat.v2_compat.enable_v2_behavior", "tensorflow.python.tpu.tpu_embedding_v2_utils.SGD", "tensorflow.python.tpu.tpu_embedding_v2_utils.TableConfig", "tensorflow.python.distribute.distribute_lib.InputOptions", "absl.testing.parameterized.parameters", "tensorflow.python.platform.test.main" ]
[((7207, 7246), 'absl.testing.parameterized.parameters', 'parameterized.parameters', (['[True, False]'], {}), '([True, False])\n', (7231, 7246), False, 'from absl.testing import parameterized\n'), ((7980, 8010), 'tensorflow.python.compat.v2_compat.enable_v2_behavior', 'v2_compat.enable_v2_behavior', ([], {}), '()\n', (8008, 8010), False, 'from tensorflow.python.compat import v2_compat\n'), ((8013, 8024), 'tensorflow.python.platform.test.main', 'test.main', ([], {}), '()\n', (8022, 8024), False, 'from tensorflow.python.platform import test\n'), ((7343, 7370), 'tensorflow.python.framework.config.enable_mlir_bridge', 'config.enable_mlir_bridge', ([], {}), '()\n', (7368, 7370), False, 'from tensorflow.python.framework import config\n'), ((2094, 2139), 'tensorflow.python.tpu.tpu_embedding_v2_utils.SGD', 'tpu_embedding_v2_utils.SGD', ([], {'learning_rate': '(0.1)'}), '(learning_rate=0.1)\n', (2120, 2139), False, 'from tensorflow.python.tpu import tpu_embedding_v2_utils\n'), ((3335, 3398), 'tensorflow.python.distribute.distribute_lib.InputOptions', 'distribute_lib.InputOptions', ([], {'experimental_fetch_to_device': '(False)'}), '(experimental_fetch_to_device=False)\n', (3362, 3398), False, 'from tensorflow.python.distribute import distribute_lib\n'), ((4201, 4264), 'tensorflow.python.distribute.distribute_lib.InputOptions', 'distribute_lib.InputOptions', ([], {'experimental_fetch_to_device': '(False)'}), '(experimental_fetch_to_device=False)\n', (4228, 4264), False, 'from tensorflow.python.distribute import distribute_lib\n'), ((4398, 4461), 'tensorflow.python.distribute.distribute_lib.InputOptions', 'distribute_lib.InputOptions', ([], {'experimental_fetch_to_device': '(False)'}), '(experimental_fetch_to_device=False)\n', (4425, 4461), False, 'from tensorflow.python.distribute import distribute_lib\n'), ((5692, 5755), 'tensorflow.python.distribute.distribute_lib.InputOptions', 'distribute_lib.InputOptions', ([], {'experimental_fetch_to_device': '(False)'}), '(experimental_fetch_to_device=False)\n', (5719, 5755), False, 'from tensorflow.python.distribute import distribute_lib\n'), ((1559, 1667), 'tensorflow.python.tpu.tpu_embedding_v2_utils.TableConfig', 'tpu_embedding_v2_utils.TableConfig', ([], {'name': '"""table"""', 'vocabulary_size': '(4)', 'dim': '(2)', 'initializer': 'self.initializer'}), "(name='table', vocabulary_size=4, dim=2,\n initializer=self.initializer)\n", (1593, 1667), False, 'from tensorflow.python.tpu import tpu_embedding_v2_utils\n'), ((1854, 1962), 'tensorflow.python.tpu.tpu_embedding_v2_utils.TableConfig', 'tpu_embedding_v2_utils.TableConfig', ([], {'name': '"""table"""', 'vocabulary_size': '(4)', 'dim': '(2)', 'initializer': 'self.initializer'}), "(name='table', vocabulary_size=4, dim=2,\n initializer=self.initializer)\n", (1888, 1962), False, 'from tensorflow.python.tpu import tpu_embedding_v2_utils\n')]
import requests import json import re import shutil import os import base64 from util import * def __handle__error(j): if 'error' in j: if 'error_summery' in j: raise Exception(j['error_summery']) else: raise Exception(j['error']) def __get_page(token,cursor): url = "https://api.dropboxapi.com/2/files/list_folder/continue" headers = { "Authorization": "Bearer {}".format(token), "Content-Type": "application/json" } data = { "cursor": cursor } r = requests.post(url, headers=headers, data=json.dumps(data)) if r.ok: j = r.json() __handle__error(j) yield from __yield__files(j ,token) def __yield__files(j,token): for e in j['entries']: if e['.tag'] == 'file': if e['is_downloadable']: yield { 'name': e['name'], 'id': e['id'], 'id_stripped': re.sub('id: ','',e['id']), 'path': e['path_lower'], 'content_hash': e['content_hash'] } else: print("Warning file {} isn't downloadable".format(e['name'])) if j['has_more']: yield from __get_page(token,j['cursor']) def getFileMeta(token): url = "https://api.dropboxapi.com/2/files/list_folder" headers = { "Authorization": "Bearer {}".format(token), "Content-Type": "application/json" } data = { "path": "/Photography/Published", "recursive": False, "include_media_info": False, "include_deleted": False, "limit": 200 } r = requests.post(url, headers=headers, data=json.dumps(data)) if r.ok: j = r.json() __handle__error(j) yield from __yield__files(j ,token) else: print(r) print(r.text) print(r.json()) raise Exception('Failed to request file information') def downloadFile(dropbox,token): url = "https://content.dropboxapi.com/2/files/download" headers = { "Authorization": "Bearer {}".format(token), "Dropbox-API-Arg": "{\"path\":\""+dropbox['id']+"\"}" } r = requests.post(url, headers=headers,stream=True) if r.ok: r.raw.decode_content=True match = re.match("([^/\\\\]+)\.([jJ][pP][gG])",dropbox['name']) if match: filename = "img/raw/{}.jpg".format(match[1]) if match[2] != "jpg": print("Renamed {} to {}.jpg".format(dropbox['name'],match[1])) with open(filename,'wb') as f: shutil.copyfileobj(r.raw,f) print("Downloaded {} ({})".format(dropbox['name'],sizeof_fmt(os.path.getsize(filename)))) else: raise Exception("File extension of ({}) ins't valid, expected .jpg".format(dropbox['name'])) else: print("Failed to download {} from dropbox".format(dropbox['name'])) print(r) print(r.text) print(r.json()) raise Exception('Failed to request file information') def downloadSitedata(dropbox,token): url = "https://content.dropboxapi.com/2/files/download" headers = { "Authorization": "Bearer {}".format(token), "Dropbox-API-Arg": "{\"path\":\""+dropbox['id']+"\"}" } r = requests.post(url, headers=headers,stream=True) if r.ok: r.raw.decode_content=True match = re.match("sitedata\.json",dropbox['name']) if match: filename = "api/sitedata.json" with open(filename,'wb') as f: shutil.copyfileobj(r.raw,f) print("Downloaded {} ({})".format(dropbox['name'],sizeof_fmt(os.path.getsize(filename)))) else: raise Exception("Expected sitedata.json not {}".format(dropbox['name'])) else: print("Failed to download {} from dropbox".format(dropbox['name'])) print(r) print(r.text) print(r.json()) raise Exception('Failed to request file information')
[ "os.path.getsize", "requests.post", "shutil.copyfileobj", "json.dumps", "re.match", "re.sub" ]
[((2271, 2319), 'requests.post', 'requests.post', (['url'], {'headers': 'headers', 'stream': '(True)'}), '(url, headers=headers, stream=True)\n', (2284, 2319), False, 'import requests\n'), ((3388, 3436), 'requests.post', 'requests.post', (['url'], {'headers': 'headers', 'stream': '(True)'}), '(url, headers=headers, stream=True)\n', (3401, 3436), False, 'import requests\n'), ((2382, 2439), 're.match', 're.match', (['"""([^/\\\\\\\\]+)\\\\.([jJ][pP][gG])"""', "dropbox['name']"], {}), "('([^/\\\\\\\\]+)\\\\.([jJ][pP][gG])', dropbox['name'])\n", (2390, 2439), False, 'import re\n'), ((3499, 3543), 're.match', 're.match', (['"""sitedata\\\\.json"""', "dropbox['name']"], {}), "('sitedata\\\\.json', dropbox['name'])\n", (3507, 3543), False, 'import re\n'), ((585, 601), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (595, 601), False, 'import json\n'), ((1769, 1785), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1779, 1785), False, 'import json\n'), ((2686, 2714), 'shutil.copyfileobj', 'shutil.copyfileobj', (['r.raw', 'f'], {}), '(r.raw, f)\n', (2704, 2714), False, 'import shutil\n'), ((3663, 3691), 'shutil.copyfileobj', 'shutil.copyfileobj', (['r.raw', 'f'], {}), '(r.raw, f)\n', (3681, 3691), False, 'import shutil\n'), ((996, 1023), 're.sub', 're.sub', (['"""id: """', '""""""', "e['id']"], {}), "('id: ', '', e['id'])\n", (1002, 1023), False, 'import re\n'), ((2787, 2812), 'os.path.getsize', 'os.path.getsize', (['filename'], {}), '(filename)\n', (2802, 2812), False, 'import os\n'), ((3764, 3789), 'os.path.getsize', 'os.path.getsize', (['filename'], {}), '(filename)\n', (3779, 3789), False, 'import os\n')]
import tensorflow as tf from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch def smooth_l1(y_true, y_pred): HUBER_DELTA = 1.0 x = abs(y_true - y_pred) x = switch(x < HUBER_DELTA, 0.5*x**2, HUBER_DELTA*(x - 0.5*HUBER_DELTA)) return x def balanced_l1(y_true, y_pred): ''' https://arxiv.org/pdf/1904.02701.pdf ''' alpha = 0.5 gamma = 1.5 b = 19.085 C = 0 x = abs(y_true - y_pred) x = switch(x < 1.0, (alpha*x + alpha/b)*tf.math.log(b*x + 1) - alpha*x, gamma*x + C) return x def rpn_loss(y_true, y_pred): ''' Arguments y_true: (batch_size, h, w, 6k) y_pred: (batch_size, h, w, 6k) Return loss ''' K = y_pred.shape[3]//6 true_clz_4dtensor = y_true[:, :, :, :2*K] # (batch_size, h, w, 2k) true_bbe_4dtensor = y_true[:, :, :, 2*K:] # (batch_size, h, w, 4k) pred_clz_4dtensor = y_pred[:, :, :, :2*K] # (batch_size, h, w, 2k) pred_bbe_4dtensor = y_pred[:, :, :, 2*K:] # (batch_size, h, w, 4k) true_clz_2dtensor = tf.reshape(tensor=true_clz_4dtensor, shape=[-1, 2]) # (h*w*k, 2) true_bbe_2dtensor = tf.reshape(tensor=true_bbe_4dtensor, shape=[-1, 4]) # (h*w*k, 4) pred_clz_2dtensor = tf.reshape(tensor=pred_clz_4dtensor, shape=[-1, 2]) # (h*w*k, 2) pred_bbe_2dtensor = tf.reshape(tensor=pred_bbe_4dtensor, shape=[-1, 4]) # (h*w*k, 4) # add small value when output is zeros, avoid log(0) = -inf pred_clz_2dtensor = tf.where( condition=tf.math.equal(x=pred_clz_2dtensor, y=0.0), x=0.00001, y=pred_clz_2dtensor) LAMBDA = 1.0 L_clz = categorical_crossentropy(target=true_clz_2dtensor, output=pred_clz_2dtensor) # (h*w*k) L_bbe = balanced_l1(true_bbe_2dtensor, pred_bbe_2dtensor) # (h*w*k, 4) L_bbe = sum(x=L_bbe, axis=-1) # (h*w*k) L = mean(L_clz) + LAMBDA*mean(true_clz_2dtensor[:, 0]*L_bbe) return L def det_loss(y_true, y_pred): ''' Arguments y_true: (batch_size, num_of_rois, num_of_classes+4) y_pred: (batch_size, num_of_rois, num_of_classes+4) Return loss ''' num_of_classes = y_pred.shape[2]-4 true_clz_3dtensor = y_true[:, :, :num_of_classes] # (batch_size, num_of_rois, num_of_classes) true_bbe_3dtensor = y_true[:, :, num_of_classes:] # (batch_size, num_of_rois, 4) pred_clz_3dtensor = y_pred[:, :, :num_of_classes] # (batch_size, num_of_rois, num_of_classes) pred_bbe_3dtensor = y_pred[:, :, num_of_classes:] # (batch_size, num_of_rois, 4) true_clz_2dtensor = tf.reshape(tensor=true_clz_3dtensor, shape=[-1, num_of_classes]) # (num_of_rois, num_of_classes) true_bbe_2dtensor = tf.reshape(tensor=true_bbe_3dtensor, shape=[-1, 4]) # (num_of_rois, 4) pred_clz_2dtensor = tf.reshape(tensor=pred_clz_3dtensor, shape=[-1, num_of_classes]) # (num_of_rois, num_of_classes) pred_bbe_2dtensor = tf.reshape(tensor=pred_bbe_3dtensor, shape=[-1, 4]) # (num_of_rois, 4) # add small value when output is zeros, avoid log(0) = -inf pred_clz_2dtensor = tf.where( condition=tf.math.equal(x=pred_clz_2dtensor, y=0.0), x=0.0001, y=pred_clz_2dtensor) valid_3dtensor = tf.math.reduce_max(input_tensor=true_clz_3dtensor, axis=2, keepdims=True) # (batch_size, num_of_rois, 1) valid_1dtensor = tf.reshape(tensor=valid_3dtensor, shape=[-1]) # (num_of_rois) LAMBDA = 1.0 L_clz = categorical_crossentropy(target=true_clz_2dtensor, output=pred_clz_2dtensor) # (num_of_rois) L_bbe = balanced_l1(true_bbe_2dtensor, pred_bbe_2dtensor) # (num_of_rois, 4) L_bbe = sum(x=L_bbe, axis=-1) # (num_of_rois) L = mean(L_clz) + LAMBDA*mean(valid_1dtensor*L_bbe) return L def dumpy_loss(y_true, y_pred): ''' For inference, loss is no need ''' return 0.0 def build_train_maskrcnn_non_fpn(ishape, anchor_4dtensor, classes, max_num_of_rois, nsm_iou_threshold, nsm_score_threshold, unified_roi_size, rpn_head_dim, fc_denses, block_settings, base_block_trainable=True): ''' Arguments ishape: anchor_4dtensor: classes: max_num_of_rois: nsm_iou_threshold: nsm_score_threshold: unified_roi_size: rpn_head_dim: fc_denses: block_settings: base_block_trainable: Return rpn_model: detection_model: ''' from net_blocks import non_fpn, rpn, classifier_net_non_fpn num_of_classes = len(classes) k = anchor_4dtensor.shape[2] input_tensor = Input(shape=ishape) roi_tensor = Input(shape=(max_num_of_rois, 4)) fmap_tensor = non_fpn( input_tensor=input_tensor, block_settings=block_settings, trainable=base_block_trainable) rpn_clzbbe_tensor = rpn(input_tensor=fmap_tensor, k=k, f=rpn_head_dim) clzbbe_tensor = classifier_net_non_fpn( input_tensor=fmap_tensor, ishape=ishape, roi_tensor=roi_tensor, unified_roi_size=unified_roi_size, num_of_classes=num_of_classes, fc_denses=fc_denses) rpn_model = Model( inputs=input_tensor, outputs=rpn_clzbbe_tensor, name='RPN') detection_model = Model( inputs=[input_tensor, roi_tensor], outputs=clzbbe_tensor, name='DETECTION') rpn_model.compile( optimizer=Adam(lr=0.001), loss=rpn_loss) detection_model.compile( optimizer=Adam(lr=0.001), loss=det_loss) return rpn_model, detection_model def build_inference_maskrcnn_non_fpn(ishape, anchor_4dtensor, classes, max_num_of_rois, nsm_iou_threshold, nsm_score_threshold, unified_roi_size, rpn_head_dim, fc_denses, block_settings, base_block_trainable=False): ''' Arguments ishape: anchor_4dtensor: classes: max_num_of_rois: nsm_iou_threshold: nsm_score_threshold: unified_roi_size: rpn_head_dim: fc_denses: block_settings: base_block_trainable: Return rpn_model: detection_model: ''' from net_blocks import non_fpn, rpn, nsm_block_non_fpn, classifier_net_non_fpn, output_block num_of_classes = len(classes) k = anchor_4dtensor.shape[2] input_tensor = Input(shape=ishape) fmap_tensor = non_fpn( input_tensor=input_tensor, block_settings=block_settings, trainable=base_block_trainable) rpn_clzbbe_tensor = rpn(input_tensor=fmap_tensor, k=k, f=rpn_head_dim) roi_tensor = nsm_block_non_fpn( input_tensor=rpn_clzbbe_tensor, ishape=ishape, num_of_rois=max_num_of_rois, nsm_iou_threshold=nsm_iou_threshold, nsm_score_threshold=nsm_score_threshold, anchor_4dtensor=anchor_4dtensor) clzbbe_tensor = classifier_net_non_fpn( input_tensor=fmap_tensor, ishape=ishape, roi_tensor=roi_tensor, unified_roi_size=unified_roi_size, num_of_classes=num_of_classes, fc_denses=fc_denses) output_tensor = output_block( input_tensor=clzbbe_tensor, roi_tensor=roi_tensor, num_of_rois=max_num_of_rois, ishape=ishape) rpn_model = Model(inputs=input_tensor, outputs=roi_tensor, name='RPN') detection_model = Model(inputs=input_tensor, outputs=output_tensor, name='DETECTION') rpn_model.compile(optimizer=Adam(lr=0.001), loss=dumpy_loss) detection_model.compile(optimizer=Adam(lr=0.001), loss=dumpy_loss) return rpn_model, detection_model def build_train_maskrcnn_fpn(ishape, anchor_4dtensors, classes, max_num_of_rois, nsm_iou_threshold, nsm_score_threshold, unified_roi_size, k0, top_down_pyramid_size, rpn_head_dim, fc_denses, block_settings, base_block_trainable=True): ''' Arguments ishape: anchor_4dtensors: classes: max_num_of_rois: nsm_iou_threshold: nsm_score_threshold: unified_roi_size: k0: top_down_pyramid_size: rpn_head_dim: fc_denses: block_settings: base_block_trainable: Return rpn_model: detection_model: ''' from net_blocks import fpn, rpn, classifier_net_fpn num_of_classes = len(classes) k1 = anchor_4dtensors[0].shape[2] k2 = anchor_4dtensors[0].shape[2] k3 = anchor_4dtensors[0].shape[2] k4 = anchor_4dtensors[0].shape[2] input_tensor = Input(shape=ishape) roi_tensor = Input(shape=(max_num_of_rois, 4)) P2, P3, P4, P5 = fpn( input_tensor=input_tensor, block_settings=block_settings, top_down_pyramid_size=top_down_pyramid_size, trainable=base_block_trainable) lvl1_rpn_clzbbe_tensor = rpn(input_tensor=P2, k=k1, f=rpn_head_dim) lvl2_rpn_clzbbe_tensor = rpn(input_tensor=P3, k=k2, f=rpn_head_dim) lvl3_rpn_clzbbe_tensor = rpn(input_tensor=P4, k=k3, f=rpn_head_dim) lvl4_rpn_clzbbe_tensor = rpn(input_tensor=P5, k=k4, f=rpn_head_dim) clzbbe_tensor = classifier_net_fpn( input_tensors=[P2, P3, P4, P5], ishape=ishape, roi_tensor=roi_tensor, unified_roi_size=unified_roi_size, k0=k0, num_of_classes=num_of_classes, fc_denses=fc_denses) rpn_model = Model( inputs=input_tensor, outputs=[ lvl1_rpn_clzbbe_tensor, lvl2_rpn_clzbbe_tensor, lvl3_rpn_clzbbe_tensor, lvl4_rpn_clzbbe_tensor], name='RPN') detection_model = Model( inputs=[input_tensor, roi_tensor], outputs=clzbbe_tensor, name='DETECTION') rpn_model.compile( optimizer=Adam(lr=0.001), loss=[ rpn_loss, rpn_loss, rpn_loss, rpn_loss]) detection_model.compile( optimizer=Adam(lr=0.001), loss=det_loss) return rpn_model, detection_model def build_inference_maskrcnn_fpn(ishape, anchor_4dtensors, classes, max_num_of_rois, nsm_iou_threshold, nsm_score_threshold, unified_roi_size, k0, top_down_pyramid_size, rpn_head_dim, fc_denses, block_settings, base_block_trainable=False): ''' Arguments ishape: anchor_4dtensors: classes: max_num_of_rois: nsm_iou_threshold: nsm_score_threshold: unified_roi_size: k0: top_down_pyramid_size: rpn_head_dim: fc_denses: block_settings: base_block_trainable: Return rpn_model: detection_model: ''' from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block num_of_classes = len(classes) k1 = anchor_4dtensors[0].shape[2] k2 = anchor_4dtensors[1].shape[2] k3 = anchor_4dtensors[2].shape[2] k4 = anchor_4dtensors[3].shape[2] input_tensor = Input(shape=ishape) P2, P3, P4, P5 = fpn( input_tensor=input_tensor, block_settings=block_settings, top_down_pyramid_size=top_down_pyramid_size, trainable=base_block_trainable) lvl1_rpn_clzbbe_tensor = rpn(input_tensor=P2, k=k1, f=rpn_head_dim) lvl2_rpn_clzbbe_tensor = rpn(input_tensor=P3, k=k2, f=rpn_head_dim) lvl3_rpn_clzbbe_tensor = rpn(input_tensor=P4, k=k3, f=rpn_head_dim) lvl4_rpn_clzbbe_tensor = rpn(input_tensor=P5, k=k4, f=rpn_head_dim) roi_tensor = nsm_block_fpn( input_tensors=[ lvl1_rpn_clzbbe_tensor, lvl2_rpn_clzbbe_tensor, lvl3_rpn_clzbbe_tensor, lvl4_rpn_clzbbe_tensor], ishape=ishape, num_of_rois=max_num_of_rois, nsm_iou_threshold=nsm_iou_threshold, nsm_score_threshold=nsm_score_threshold, anchor_4dtensors=anchor_4dtensors) clzbbe_tensor = classifier_net_fpn( input_tensors=[P2, P3, P4, P5], ishape=ishape, roi_tensor=roi_tensor, unified_roi_size=unified_roi_size, k0=k0, num_of_classes=num_of_classes, fc_denses=fc_denses) output_tensor = output_block( input_tensor=clzbbe_tensor, roi_tensor=roi_tensor, num_of_rois=max_num_of_rois, ishape=ishape) rpn_model = Model(inputs=input_tensor, outputs=roi_tensor, name='RPN') detection_model = Model(inputs=input_tensor, outputs=output_tensor, name='DETECTION') rpn_model.compile(optimizer=Adam(lr=0.001), loss=dumpy_loss) detection_model.compile(optimizer=Adam(lr=0.001), loss=dumpy_loss) return rpn_model, detection_model
[ "net_blocks.classifier_net_non_fpn", "net_blocks.classifier_net_fpn", "tensorflow.math.log", "tensorflow.keras.backend.categorical_crossentropy", "net_blocks.rpn", "tensorflow.keras.layers.Input", "tensorflow.keras.backend.mean", "net_blocks.nsm_block_non_fpn", "net_blocks.nsm_block_fpn", "tensorflow.keras.backend.switch", "tensorflow.math.reduce_max", "tensorflow.math.equal", "tensorflow.keras.models.Model", "net_blocks.fpn", "net_blocks.output_block", "tensorflow.reshape", "tensorflow.keras.backend.sum", "net_blocks.non_fpn", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.backend.abs" ]
[((298, 318), 'tensorflow.keras.backend.abs', 'abs', (['(y_true - y_pred)'], {}), '(y_true - y_pred)\n', (301, 318), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((324, 400), 'tensorflow.keras.backend.switch', 'switch', (['(x < HUBER_DELTA)', '(0.5 * x ** 2)', '(HUBER_DELTA * (x - 0.5 * HUBER_DELTA))'], {}), '(x < HUBER_DELTA, 0.5 * x ** 2, HUBER_DELTA * (x - 0.5 * HUBER_DELTA))\n', (330, 400), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((538, 558), 'tensorflow.keras.backend.abs', 'abs', (['(y_true - y_pred)'], {}), '(y_true - y_pred)\n', (541, 558), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((1109, 1160), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'true_clz_4dtensor', 'shape': '[-1, 2]'}), '(tensor=true_clz_4dtensor, shape=[-1, 2])\n', (1119, 1160), True, 'import tensorflow as tf\n'), ((1195, 1246), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'true_bbe_4dtensor', 'shape': '[-1, 4]'}), '(tensor=true_bbe_4dtensor, shape=[-1, 4])\n', (1205, 1246), True, 'import tensorflow as tf\n'), ((1281, 1332), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'pred_clz_4dtensor', 'shape': '[-1, 2]'}), '(tensor=pred_clz_4dtensor, shape=[-1, 2])\n', (1291, 1332), True, 'import tensorflow as tf\n'), ((1367, 1418), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'pred_bbe_4dtensor', 'shape': '[-1, 4]'}), '(tensor=pred_bbe_4dtensor, shape=[-1, 4])\n', (1377, 1418), True, 'import tensorflow as tf\n'), ((1640, 1716), 'tensorflow.keras.backend.categorical_crossentropy', 'categorical_crossentropy', ([], {'target': 'true_clz_2dtensor', 'output': 'pred_clz_2dtensor'}), '(target=true_clz_2dtensor, output=pred_clz_2dtensor)\n', (1664, 1716), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((1808, 1829), 'tensorflow.keras.backend.sum', 'sum', ([], {'x': 'L_bbe', 'axis': '(-1)'}), '(x=L_bbe, axis=-1)\n', (1811, 1829), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((2502, 2566), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'true_clz_3dtensor', 'shape': '[-1, num_of_classes]'}), '(tensor=true_clz_3dtensor, shape=[-1, num_of_classes])\n', (2512, 2566), True, 'import tensorflow as tf\n'), ((2620, 2671), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'true_bbe_3dtensor', 'shape': '[-1, 4]'}), '(tensor=true_bbe_3dtensor, shape=[-1, 4])\n', (2630, 2671), True, 'import tensorflow as tf\n'), ((2712, 2776), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'pred_clz_3dtensor', 'shape': '[-1, num_of_classes]'}), '(tensor=pred_clz_3dtensor, shape=[-1, num_of_classes])\n', (2722, 2776), True, 'import tensorflow as tf\n'), ((2830, 2881), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'pred_bbe_3dtensor', 'shape': '[-1, 4]'}), '(tensor=pred_bbe_3dtensor, shape=[-1, 4])\n', (2840, 2881), True, 'import tensorflow as tf\n'), ((3104, 3177), 'tensorflow.math.reduce_max', 'tf.math.reduce_max', ([], {'input_tensor': 'true_clz_3dtensor', 'axis': '(2)', 'keepdims': '(True)'}), '(input_tensor=true_clz_3dtensor, axis=2, keepdims=True)\n', (3122, 3177), True, 'import tensorflow as tf\n'), ((3227, 3272), 'tensorflow.reshape', 'tf.reshape', ([], {'tensor': 'valid_3dtensor', 'shape': '[-1]'}), '(tensor=valid_3dtensor, shape=[-1])\n', (3237, 3272), True, 'import tensorflow as tf\n'), ((3313, 3389), 'tensorflow.keras.backend.categorical_crossentropy', 'categorical_crossentropy', ([], {'target': 'true_clz_2dtensor', 'output': 'pred_clz_2dtensor'}), '(target=true_clz_2dtensor, output=pred_clz_2dtensor)\n', (3337, 3389), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((3493, 3514), 'tensorflow.keras.backend.sum', 'sum', ([], {'x': 'L_bbe', 'axis': '(-1)'}), '(x=L_bbe, axis=-1)\n', (3496, 3514), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((4294, 4313), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': 'ishape'}), '(shape=ishape)\n', (4299, 4313), False, 'from tensorflow.keras.layers import Input\n'), ((4328, 4361), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(max_num_of_rois, 4)'}), '(shape=(max_num_of_rois, 4))\n', (4333, 4361), False, 'from tensorflow.keras.layers import Input\n'), ((4378, 4480), 'net_blocks.non_fpn', 'non_fpn', ([], {'input_tensor': 'input_tensor', 'block_settings': 'block_settings', 'trainable': 'base_block_trainable'}), '(input_tensor=input_tensor, block_settings=block_settings, trainable\n =base_block_trainable)\n', (4385, 4480), False, 'from net_blocks import non_fpn, rpn, nsm_block_non_fpn, classifier_net_non_fpn, output_block\n'), ((4507, 4557), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'fmap_tensor', 'k': 'k', 'f': 'rpn_head_dim'}), '(input_tensor=fmap_tensor, k=k, f=rpn_head_dim)\n', (4510, 4557), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((4576, 4759), 'net_blocks.classifier_net_non_fpn', 'classifier_net_non_fpn', ([], {'input_tensor': 'fmap_tensor', 'ishape': 'ishape', 'roi_tensor': 'roi_tensor', 'unified_roi_size': 'unified_roi_size', 'num_of_classes': 'num_of_classes', 'fc_denses': 'fc_denses'}), '(input_tensor=fmap_tensor, ishape=ishape, roi_tensor=\n roi_tensor, unified_roi_size=unified_roi_size, num_of_classes=\n num_of_classes, fc_denses=fc_denses)\n', (4598, 4759), False, 'from net_blocks import non_fpn, rpn, nsm_block_non_fpn, classifier_net_non_fpn, output_block\n'), ((4782, 4847), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'input_tensor', 'outputs': 'rpn_clzbbe_tensor', 'name': '"""RPN"""'}), "(inputs=input_tensor, outputs=rpn_clzbbe_tensor, name='RPN')\n", (4787, 4847), False, 'from tensorflow.keras.models import Model\n'), ((4877, 4963), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': '[input_tensor, roi_tensor]', 'outputs': 'clzbbe_tensor', 'name': '"""DETECTION"""'}), "(inputs=[input_tensor, roi_tensor], outputs=clzbbe_tensor, name=\n 'DETECTION')\n", (4882, 4963), False, 'from tensorflow.keras.models import Model\n'), ((5792, 5811), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': 'ishape'}), '(shape=ishape)\n', (5797, 5811), False, 'from tensorflow.keras.layers import Input\n'), ((5827, 5929), 'net_blocks.non_fpn', 'non_fpn', ([], {'input_tensor': 'input_tensor', 'block_settings': 'block_settings', 'trainable': 'base_block_trainable'}), '(input_tensor=input_tensor, block_settings=block_settings, trainable\n =base_block_trainable)\n', (5834, 5929), False, 'from net_blocks import non_fpn, rpn, nsm_block_non_fpn, classifier_net_non_fpn, output_block\n'), ((5956, 6006), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'fmap_tensor', 'k': 'k', 'f': 'rpn_head_dim'}), '(input_tensor=fmap_tensor, k=k, f=rpn_head_dim)\n', (5959, 6006), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((6022, 6234), 'net_blocks.nsm_block_non_fpn', 'nsm_block_non_fpn', ([], {'input_tensor': 'rpn_clzbbe_tensor', 'ishape': 'ishape', 'num_of_rois': 'max_num_of_rois', 'nsm_iou_threshold': 'nsm_iou_threshold', 'nsm_score_threshold': 'nsm_score_threshold', 'anchor_4dtensor': 'anchor_4dtensor'}), '(input_tensor=rpn_clzbbe_tensor, ishape=ishape,\n num_of_rois=max_num_of_rois, nsm_iou_threshold=nsm_iou_threshold,\n nsm_score_threshold=nsm_score_threshold, anchor_4dtensor=anchor_4dtensor)\n', (6039, 6234), False, 'from net_blocks import non_fpn, rpn, nsm_block_non_fpn, classifier_net_non_fpn, output_block\n'), ((6262, 6445), 'net_blocks.classifier_net_non_fpn', 'classifier_net_non_fpn', ([], {'input_tensor': 'fmap_tensor', 'ishape': 'ishape', 'roi_tensor': 'roi_tensor', 'unified_roi_size': 'unified_roi_size', 'num_of_classes': 'num_of_classes', 'fc_denses': 'fc_denses'}), '(input_tensor=fmap_tensor, ishape=ishape, roi_tensor=\n roi_tensor, unified_roi_size=unified_roi_size, num_of_classes=\n num_of_classes, fc_denses=fc_denses)\n', (6284, 6445), False, 'from net_blocks import non_fpn, rpn, nsm_block_non_fpn, classifier_net_non_fpn, output_block\n'), ((6472, 6584), 'net_blocks.output_block', 'output_block', ([], {'input_tensor': 'clzbbe_tensor', 'roi_tensor': 'roi_tensor', 'num_of_rois': 'max_num_of_rois', 'ishape': 'ishape'}), '(input_tensor=clzbbe_tensor, roi_tensor=roi_tensor, num_of_rois\n =max_num_of_rois, ishape=ishape)\n', (6484, 6584), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((6606, 6664), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'input_tensor', 'outputs': 'roi_tensor', 'name': '"""RPN"""'}), "(inputs=input_tensor, outputs=roi_tensor, name='RPN')\n", (6611, 6664), False, 'from tensorflow.keras.models import Model\n'), ((6684, 6751), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'input_tensor', 'outputs': 'output_tensor', 'name': '"""DETECTION"""'}), "(inputs=input_tensor, outputs=output_tensor, name='DETECTION')\n", (6689, 6751), False, 'from tensorflow.keras.models import Model\n'), ((7689, 7708), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': 'ishape'}), '(shape=ishape)\n', (7694, 7708), False, 'from tensorflow.keras.layers import Input\n'), ((7723, 7756), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': '(max_num_of_rois, 4)'}), '(shape=(max_num_of_rois, 4))\n', (7728, 7756), False, 'from tensorflow.keras.layers import Input\n'), ((7775, 7922), 'net_blocks.fpn', 'fpn', ([], {'input_tensor': 'input_tensor', 'block_settings': 'block_settings', 'top_down_pyramid_size': 'top_down_pyramid_size', 'trainable': 'base_block_trainable'}), '(input_tensor=input_tensor, block_settings=block_settings,\n top_down_pyramid_size=top_down_pyramid_size, trainable=base_block_trainable\n )\n', (7778, 7922), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((7953, 7995), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P2', 'k': 'k1', 'f': 'rpn_head_dim'}), '(input_tensor=P2, k=k1, f=rpn_head_dim)\n', (7956, 7995), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((8022, 8064), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P3', 'k': 'k2', 'f': 'rpn_head_dim'}), '(input_tensor=P3, k=k2, f=rpn_head_dim)\n', (8025, 8064), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((8091, 8133), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P4', 'k': 'k3', 'f': 'rpn_head_dim'}), '(input_tensor=P4, k=k3, f=rpn_head_dim)\n', (8094, 8133), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((8160, 8202), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P5', 'k': 'k4', 'f': 'rpn_head_dim'}), '(input_tensor=P5, k=k4, f=rpn_head_dim)\n', (8163, 8202), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((8221, 8411), 'net_blocks.classifier_net_fpn', 'classifier_net_fpn', ([], {'input_tensors': '[P2, P3, P4, P5]', 'ishape': 'ishape', 'roi_tensor': 'roi_tensor', 'unified_roi_size': 'unified_roi_size', 'k0': 'k0', 'num_of_classes': 'num_of_classes', 'fc_denses': 'fc_denses'}), '(input_tensors=[P2, P3, P4, P5], ishape=ishape,\n roi_tensor=roi_tensor, unified_roi_size=unified_roi_size, k0=k0,\n num_of_classes=num_of_classes, fc_denses=fc_denses)\n', (8239, 8411), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((8439, 8591), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'input_tensor', 'outputs': '[lvl1_rpn_clzbbe_tensor, lvl2_rpn_clzbbe_tensor, lvl3_rpn_clzbbe_tensor,\n lvl4_rpn_clzbbe_tensor]', 'name': '"""RPN"""'}), "(inputs=input_tensor, outputs=[lvl1_rpn_clzbbe_tensor,\n lvl2_rpn_clzbbe_tensor, lvl3_rpn_clzbbe_tensor, lvl4_rpn_clzbbe_tensor],\n name='RPN')\n", (8444, 8591), False, 'from tensorflow.keras.models import Model\n'), ((8626, 8712), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': '[input_tensor, roi_tensor]', 'outputs': 'clzbbe_tensor', 'name': '"""DETECTION"""'}), "(inputs=[input_tensor, roi_tensor], outputs=clzbbe_tensor, name=\n 'DETECTION')\n", (8631, 8712), False, 'from tensorflow.keras.models import Model\n'), ((9740, 9759), 'tensorflow.keras.layers.Input', 'Input', ([], {'shape': 'ishape'}), '(shape=ishape)\n', (9745, 9759), False, 'from tensorflow.keras.layers import Input\n'), ((9778, 9925), 'net_blocks.fpn', 'fpn', ([], {'input_tensor': 'input_tensor', 'block_settings': 'block_settings', 'top_down_pyramid_size': 'top_down_pyramid_size', 'trainable': 'base_block_trainable'}), '(input_tensor=input_tensor, block_settings=block_settings,\n top_down_pyramid_size=top_down_pyramid_size, trainable=base_block_trainable\n )\n', (9781, 9925), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((9956, 9998), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P2', 'k': 'k1', 'f': 'rpn_head_dim'}), '(input_tensor=P2, k=k1, f=rpn_head_dim)\n', (9959, 9998), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10025, 10067), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P3', 'k': 'k2', 'f': 'rpn_head_dim'}), '(input_tensor=P3, k=k2, f=rpn_head_dim)\n', (10028, 10067), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10094, 10136), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P4', 'k': 'k3', 'f': 'rpn_head_dim'}), '(input_tensor=P4, k=k3, f=rpn_head_dim)\n', (10097, 10136), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10163, 10205), 'net_blocks.rpn', 'rpn', ([], {'input_tensor': 'P5', 'k': 'k4', 'f': 'rpn_head_dim'}), '(input_tensor=P5, k=k4, f=rpn_head_dim)\n', (10166, 10205), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10221, 10515), 'net_blocks.nsm_block_fpn', 'nsm_block_fpn', ([], {'input_tensors': '[lvl1_rpn_clzbbe_tensor, lvl2_rpn_clzbbe_tensor, lvl3_rpn_clzbbe_tensor,\n lvl4_rpn_clzbbe_tensor]', 'ishape': 'ishape', 'num_of_rois': 'max_num_of_rois', 'nsm_iou_threshold': 'nsm_iou_threshold', 'nsm_score_threshold': 'nsm_score_threshold', 'anchor_4dtensors': 'anchor_4dtensors'}), '(input_tensors=[lvl1_rpn_clzbbe_tensor, lvl2_rpn_clzbbe_tensor,\n lvl3_rpn_clzbbe_tensor, lvl4_rpn_clzbbe_tensor], ishape=ishape,\n num_of_rois=max_num_of_rois, nsm_iou_threshold=nsm_iou_threshold,\n nsm_score_threshold=nsm_score_threshold, anchor_4dtensors=anchor_4dtensors)\n', (10234, 10515), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10552, 10742), 'net_blocks.classifier_net_fpn', 'classifier_net_fpn', ([], {'input_tensors': '[P2, P3, P4, P5]', 'ishape': 'ishape', 'roi_tensor': 'roi_tensor', 'unified_roi_size': 'unified_roi_size', 'k0': 'k0', 'num_of_classes': 'num_of_classes', 'fc_denses': 'fc_denses'}), '(input_tensors=[P2, P3, P4, P5], ishape=ishape,\n roi_tensor=roi_tensor, unified_roi_size=unified_roi_size, k0=k0,\n num_of_classes=num_of_classes, fc_denses=fc_denses)\n', (10570, 10742), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10774, 10886), 'net_blocks.output_block', 'output_block', ([], {'input_tensor': 'clzbbe_tensor', 'roi_tensor': 'roi_tensor', 'num_of_rois': 'max_num_of_rois', 'ishape': 'ishape'}), '(input_tensor=clzbbe_tensor, roi_tensor=roi_tensor, num_of_rois\n =max_num_of_rois, ishape=ishape)\n', (10786, 10886), False, 'from net_blocks import fpn, rpn, nsm_block_fpn, classifier_net_fpn, output_block\n'), ((10908, 10966), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'input_tensor', 'outputs': 'roi_tensor', 'name': '"""RPN"""'}), "(inputs=input_tensor, outputs=roi_tensor, name='RPN')\n", (10913, 10966), False, 'from tensorflow.keras.models import Model\n'), ((10986, 11053), 'tensorflow.keras.models.Model', 'Model', ([], {'inputs': 'input_tensor', 'outputs': 'output_tensor', 'name': '"""DETECTION"""'}), "(inputs=input_tensor, outputs=output_tensor, name='DETECTION')\n", (10991, 11053), False, 'from tensorflow.keras.models import Model\n'), ((1845, 1856), 'tensorflow.keras.backend.mean', 'mean', (['L_clz'], {}), '(L_clz)\n', (1849, 1856), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((3536, 3547), 'tensorflow.keras.backend.mean', 'mean', (['L_clz'], {}), '(L_clz)\n', (3540, 3547), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((1537, 1578), 'tensorflow.math.equal', 'tf.math.equal', ([], {'x': 'pred_clz_2dtensor', 'y': '(0.0)'}), '(x=pred_clz_2dtensor, y=0.0)\n', (1550, 1578), True, 'import tensorflow as tf\n'), ((1866, 1903), 'tensorflow.keras.backend.mean', 'mean', (['(true_clz_2dtensor[:, 0] * L_bbe)'], {}), '(true_clz_2dtensor[:, 0] * L_bbe)\n', (1870, 1903), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((3006, 3047), 'tensorflow.math.equal', 'tf.math.equal', ([], {'x': 'pred_clz_2dtensor', 'y': '(0.0)'}), '(x=pred_clz_2dtensor, y=0.0)\n', (3019, 3047), True, 'import tensorflow as tf\n'), ((3557, 3585), 'tensorflow.keras.backend.mean', 'mean', (['(valid_1dtensor * L_bbe)'], {}), '(valid_1dtensor * L_bbe)\n', (3561, 3585), False, 'from tensorflow.keras.backend import mean, sum, categorical_crossentropy, abs, switch\n'), ((5001, 5015), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (5005, 5015), False, 'from tensorflow.keras.optimizers import Adam\n'), ((5073, 5087), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (5077, 5087), False, 'from tensorflow.keras.optimizers import Adam\n'), ((6782, 6796), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (6786, 6796), False, 'from tensorflow.keras.optimizers import Adam\n'), ((6850, 6864), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (6854, 6864), False, 'from tensorflow.keras.optimizers import Adam\n'), ((8750, 8764), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (8754, 8764), False, 'from tensorflow.keras.optimizers import Adam\n'), ((8867, 8881), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (8871, 8881), False, 'from tensorflow.keras.optimizers import Adam\n'), ((11084, 11098), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (11088, 11098), False, 'from tensorflow.keras.optimizers import Adam\n'), ((11152, 11166), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (11156, 11166), False, 'from tensorflow.keras.optimizers import Adam\n'), ((600, 622), 'tensorflow.math.log', 'tf.math.log', (['(b * x + 1)'], {}), '(b * x + 1)\n', (611, 622), True, 'import tensorflow as tf\n')]
# Themes are containers which are composed of: # Theme Components: # are containers within a theme that can specify an item type the theme colors/styles target # Theme Colors: # items that are added to a theme component and set colors # Theme Styles: # items that are added to a theme component and set styles # The theme can be: # bound as the default theme. This will have a global effect across all windows and propagate. # bound to a container. This will propagate to its children if applicable theme components are in the theme. # bound to an item type if applicable theme components are in the theme. a item container, or a specific item. # Theme components must have a specified item type. This can either be mvAll for all items or a specific item type. # Style and color items have a named constant and will apply that constant to their components named item type. # Style and color items must have a named category. Constants contain their category in the name. import dearpygui.dearpygui as dpg def theme(): with dpg.window(label="Tutorial", pos=(20, 50), width=275, height=225) as win1: t1 = dpg.add_input_text(default_value="some text") t2 = dpg.add_input_text(default_value="some text") with dpg.child_window(height=100): t3 = dpg.add_input_text(default_value="some text") dpg.add_input_int() dpg.add_input_text(default_value="some text") with dpg.window(label="Tutorial", pos=(320, 50), width=275, height=225) as win2: dpg.add_input_text(default_value="some text") dpg.add_input_int() with dpg.theme() as global_theme: with dpg.theme_component(dpg.mvAll): dpg.add_theme_color(dpg.mvThemeCol_FrameBg, (255, 140, 23), category=dpg.mvThemeCat_Core) dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5, category=dpg.mvThemeCat_Core) with dpg.theme_component(dpg.mvInputInt): dpg.add_theme_color(dpg.mvThemeCol_FrameBg, (140, 255, 23), category=dpg.mvThemeCat_Core) dpg.add_theme_style(dpg.mvStyleVar_FrameRounding, 5, category=dpg.mvThemeCat_Core) dpg.bind_theme(global_theme) # control style dpg.show_style_editor() dpg.create_viewport(title='Custom Title', width=800, height=600) dpg.setup_dearpygui() dpg.show_viewport() dpg.start_dearpygui() if __name__ == '__main__': dpg.create_context() theme() dpg.destroy_context()
[ "dearpygui.dearpygui.show_viewport", "dearpygui.dearpygui.add_input_text", "dearpygui.dearpygui.create_viewport", "dearpygui.dearpygui.add_input_int", "dearpygui.dearpygui.create_context", "dearpygui.dearpygui.show_style_editor", "dearpygui.dearpygui.destroy_context", "dearpygui.dearpygui.add_theme_color", "dearpygui.dearpygui.theme", "dearpygui.dearpygui.bind_theme", "dearpygui.dearpygui.setup_dearpygui", "dearpygui.dearpygui.window", "dearpygui.dearpygui.add_theme_style", "dearpygui.dearpygui.child_window", "dearpygui.dearpygui.start_dearpygui", "dearpygui.dearpygui.theme_component" ]
[((2126, 2154), 'dearpygui.dearpygui.bind_theme', 'dpg.bind_theme', (['global_theme'], {}), '(global_theme)\n', (2140, 2154), True, 'import dearpygui.dearpygui as dpg\n'), ((2180, 2203), 'dearpygui.dearpygui.show_style_editor', 'dpg.show_style_editor', ([], {}), '()\n', (2201, 2203), True, 'import dearpygui.dearpygui as dpg\n'), ((2209, 2273), 'dearpygui.dearpygui.create_viewport', 'dpg.create_viewport', ([], {'title': '"""Custom Title"""', 'width': '(800)', 'height': '(600)'}), "(title='Custom Title', width=800, height=600)\n", (2228, 2273), True, 'import dearpygui.dearpygui as dpg\n'), ((2278, 2299), 'dearpygui.dearpygui.setup_dearpygui', 'dpg.setup_dearpygui', ([], {}), '()\n', (2297, 2299), True, 'import dearpygui.dearpygui as dpg\n'), ((2304, 2323), 'dearpygui.dearpygui.show_viewport', 'dpg.show_viewport', ([], {}), '()\n', (2321, 2323), True, 'import dearpygui.dearpygui as dpg\n'), ((2328, 2349), 'dearpygui.dearpygui.start_dearpygui', 'dpg.start_dearpygui', ([], {}), '()\n', (2347, 2349), True, 'import dearpygui.dearpygui as dpg\n'), ((2383, 2403), 'dearpygui.dearpygui.create_context', 'dpg.create_context', ([], {}), '()\n', (2401, 2403), True, 'import dearpygui.dearpygui as dpg\n'), ((2420, 2441), 'dearpygui.dearpygui.destroy_context', 'dpg.destroy_context', ([], {}), '()\n', (2439, 2441), True, 'import dearpygui.dearpygui as dpg\n'), ((1038, 1103), 'dearpygui.dearpygui.window', 'dpg.window', ([], {'label': '"""Tutorial"""', 'pos': '(20, 50)', 'width': '(275)', 'height': '(225)'}), "(label='Tutorial', pos=(20, 50), width=275, height=225)\n", (1048, 1103), True, 'import dearpygui.dearpygui as dpg\n'), ((1126, 1171), 'dearpygui.dearpygui.add_input_text', 'dpg.add_input_text', ([], {'default_value': '"""some text"""'}), "(default_value='some text')\n", (1144, 1171), True, 'import dearpygui.dearpygui as dpg\n'), ((1185, 1230), 'dearpygui.dearpygui.add_input_text', 'dpg.add_input_text', ([], {'default_value': '"""some text"""'}), "(default_value='some text')\n", (1203, 1230), True, 'import dearpygui.dearpygui as dpg\n'), ((1377, 1422), 'dearpygui.dearpygui.add_input_text', 'dpg.add_input_text', ([], {'default_value': '"""some text"""'}), "(default_value='some text')\n", (1395, 1422), True, 'import dearpygui.dearpygui as dpg\n'), ((1433, 1499), 'dearpygui.dearpygui.window', 'dpg.window', ([], {'label': '"""Tutorial"""', 'pos': '(320, 50)', 'width': '(275)', 'height': '(225)'}), "(label='Tutorial', pos=(320, 50), width=275, height=225)\n", (1443, 1499), True, 'import dearpygui.dearpygui as dpg\n'), ((1517, 1562), 'dearpygui.dearpygui.add_input_text', 'dpg.add_input_text', ([], {'default_value': '"""some text"""'}), "(default_value='some text')\n", (1535, 1562), True, 'import dearpygui.dearpygui as dpg\n'), ((1571, 1590), 'dearpygui.dearpygui.add_input_int', 'dpg.add_input_int', ([], {}), '()\n', (1588, 1590), True, 'import dearpygui.dearpygui as dpg\n'), ((1601, 1612), 'dearpygui.dearpygui.theme', 'dpg.theme', ([], {}), '()\n', (1610, 1612), True, 'import dearpygui.dearpygui as dpg\n'), ((1244, 1272), 'dearpygui.dearpygui.child_window', 'dpg.child_window', ([], {'height': '(100)'}), '(height=100)\n', (1260, 1272), True, 'import dearpygui.dearpygui as dpg\n'), ((1291, 1336), 'dearpygui.dearpygui.add_input_text', 'dpg.add_input_text', ([], {'default_value': '"""some text"""'}), "(default_value='some text')\n", (1309, 1336), True, 'import dearpygui.dearpygui as dpg\n'), ((1349, 1368), 'dearpygui.dearpygui.add_input_int', 'dpg.add_input_int', ([], {}), '()\n', (1366, 1368), True, 'import dearpygui.dearpygui as dpg\n'), ((1644, 1674), 'dearpygui.dearpygui.theme_component', 'dpg.theme_component', (['dpg.mvAll'], {}), '(dpg.mvAll)\n', (1663, 1674), True, 'import dearpygui.dearpygui as dpg\n'), ((1688, 1782), 'dearpygui.dearpygui.add_theme_color', 'dpg.add_theme_color', (['dpg.mvThemeCol_FrameBg', '(255, 140, 23)'], {'category': 'dpg.mvThemeCat_Core'}), '(dpg.mvThemeCol_FrameBg, (255, 140, 23), category=dpg.\n mvThemeCat_Core)\n', (1707, 1782), True, 'import dearpygui.dearpygui as dpg\n'), ((1790, 1877), 'dearpygui.dearpygui.add_theme_style', 'dpg.add_theme_style', (['dpg.mvStyleVar_FrameRounding', '(5)'], {'category': 'dpg.mvThemeCat_Core'}), '(dpg.mvStyleVar_FrameRounding, 5, category=dpg.\n mvThemeCat_Core)\n', (1809, 1877), True, 'import dearpygui.dearpygui as dpg\n'), ((1887, 1922), 'dearpygui.dearpygui.theme_component', 'dpg.theme_component', (['dpg.mvInputInt'], {}), '(dpg.mvInputInt)\n', (1906, 1922), True, 'import dearpygui.dearpygui as dpg\n'), ((1936, 2030), 'dearpygui.dearpygui.add_theme_color', 'dpg.add_theme_color', (['dpg.mvThemeCol_FrameBg', '(140, 255, 23)'], {'category': 'dpg.mvThemeCat_Core'}), '(dpg.mvThemeCol_FrameBg, (140, 255, 23), category=dpg.\n mvThemeCat_Core)\n', (1955, 2030), True, 'import dearpygui.dearpygui as dpg\n'), ((2038, 2125), 'dearpygui.dearpygui.add_theme_style', 'dpg.add_theme_style', (['dpg.mvStyleVar_FrameRounding', '(5)'], {'category': 'dpg.mvThemeCat_Core'}), '(dpg.mvStyleVar_FrameRounding, 5, category=dpg.\n mvThemeCat_Core)\n', (2057, 2125), True, 'import dearpygui.dearpygui as dpg\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ :::==== :::==== ::: :::= === ::: === ::: === ::: :::===== === === === === === ======== === === === === === === ==== ====== ======= === === === Developer: Chris "cmaddy" Maddalena Version: 2.0.0 "Huginn" Description: Observation, Detection, and Investigation of Networks ODIN was designed to assist with OSINT automation for penetration testing clients and their networks, both the types with IP address and social. Provide a client's name and some domains to gather information from sources like RDAP, DNS, Shodan, and so much more. ODIN is made possible through the help, input, and work provided by others. Therefore, this project is entirely open source and available to all to use/modify. """ import os import click from multiprocess import Process,Manager from lib import reporter,asciis,verification,htmlreporter,grapher,helpers VERSION = "2.0.0" CODENAME = "HUGINN" def setup_reports(client): """Function to create a reports directory structure for the target organization.""" if not os.path.exists("reports/{}".format(client)): try: os.makedirs("reports/{}".format(client)) os.makedirs("reports/{}/screenshots".format(client)) os.makedirs("reports/{}/file_downloads".format(client)) os.makedirs("reports/{}/html_report".format(client)) except OSError as error: click.secho("[!] Could not create the reports directory!",fg="red") click.secho("L.. Details: {}".format(error),fg="red") # Setup a class for CLICK class AliasedGroup(click.Group): """Allows commands to be called by their first unique character.""" def get_command(self,ctx,cmd_name): """ Allows commands to be called by their first unique character :param ctx: Context information from click :param cmd_name: Calling command name :return: """ command = click.Group.get_command(self,ctx,cmd_name) if command is not None: return command matches = [x for x in self.list_commands(ctx) if x.startswith(cmd_name)] if not matches: return None elif len(matches) == 1: return click.Group.get_command(self,ctx,matches[0]) ctx.fail("Too many matches: %s" % ", ".join(sorted(matches))) # That's right, we support -h and --help! Not using -h for an argument like 'host'! ;D CONTEXT_SETTINGS = dict(help_option_names=['-h','--help'],max_content_width=200) @click.group(cls=AliasedGroup,context_settings=CONTEXT_SETTINGS) # Note: The following function descriptors will look weird and some will contain '\n' in spots. # This is necessary for CLICK. These are displayed with the help info and need to be written # just like we want them to be displayed in the user's terminal. Whitespace really matters. def odin(): """ Welcome to ODIN! To use ODIN, select a module you wish to run. Functions are split into modules to support a few different use cases.\n Run 'odin.py <MODULE> --help' for more information on a specific module. """ # Everything starts here pass # The OSINT module -- This is the primary module that does all the stuff # Basic, required arguments @odin.command(name='osint',short_help="The full OSINT suite of tools will be run (see README).") @click.option('-o','--organization',help='The target client, such as "ABC Company," to use for \ report titles and searches for domains and cloud storage buckets.',required=True) @click.option('-d','--domain',help="The target's primary domain, such as example.com. Use \ whatever the target uses for email and their main website. Provide additional domains in a scope \ file using --scope-file.",required=True) # Optional arguments @click.option('-sf','--scope-file',type=click.Path(exists=True,readable=True,\ resolve_path=True),help="A text file containing additional domain names you want to include. IP \ addresses can also be provided, if necessary. List each one on a new line.",required=False) @click.option('--whoxy-limit',default=10,help="The maximum number of domains discovered via \ reverse WHOIS that ODIN will resolve and use when searching services like Censys and Shodan. \ You may get hundreds of results from reverse WHOIS, so this is intended to save time and \ API credits. Default is 10 domains and setting it above maybe 20 or 30 is not recommended. \ It is preferable to perform a search using a tool like Vincent Yiu's DomLink and then provide \ the newly discovered domains in your scope file with --scope-file.") @click.option('--typo',is_flag=True,help="Generate a list of lookalike domain names for the \ provided domain (--domain), check if they have been registered, and then check those domains \ against URLVoid and Cymon.io to see if the domains or associated IP addresses have been \ flagged as malicious.") # File searching arguments @click.option('--files',is_flag=True,help="Use this option to use Google to search for files \ under the provided domain (--domain), download files, and extract metadata.") @click.option('-e','--ext',default="all",help="File extensions to look for with --file. \ Default is 'all' or you can pick from key, pdf, doc, docx, xls, xlsx, and ppt.") # Cloud-related arguments @click.option('-w','--aws',help="A list of additional keywords to be used when searching for \ cloud sotrage buckets.",type=click.Path(exists=True,readable=True,resolve_path=True)) @click.option('-wf','--aws-fixes',help="A list of strings to be added to the start and end of \ the cloud storage bucket names.",type=click.Path(exists=True,readable=True,resolve_path=True)) # Reporting-related arguments @click.option('--html',is_flag=True,help="Create an HTML report at the end for easy browsing.") @click.option('--graph',is_flag=True,help="Create a Neo4j graph database from the completed \ SQLite3 database.") @click.option('--nuke',is_flag=True,help="Clear the Neo4j project before converting the \ database. This is only used with --graph.") @click.option('--screenshots',is_flag=True,help="Attempt to take screenshots of discovered \ web services.") @click.option('--unsafe',is_flag=True,help="Adding this flag will spawn the headless Chrome \ browser with the --no-sandbox command line flag. This is NOT recommended for any users who are \ NOT running ODIN on a Kali Linux VM as root. Chrome will not run as the root user on Kali \ without this option.") # Pass the above arguments on to your osint function @click.pass_context def osint(self,organization,domain,files,ext,scope_file,aws,aws_fixes,html, screenshots,graph,nuke,whoxy_limit,typo,unsafe): """ The OSINT toolkit: This is ODIN's primary module. ODIN will take the tagret organization, domain, and other data provided and hunt for information. On the human side, ODIN looks for employee names, email addresses, and social media profiles. Names and emails are cross-referenced with HaveIBeenPwned, Twitter's API, and search engines to collect additional information. ODIN also uses various tools and APIs to collect information on the provided IP addresses and domain names, including things like DNS and IP address history. View the wiki for the full details, reporting information, and lists of API keys. Note: If providing any IP addresses in a scope file, acceptable IP addresses/ranges include: * Single Address: 8.8.8.8 * Basic CIDR: 172.16.58.3/24 * Nmap-friendly Range: 8.8.8.8-10 * Underscores? OK: 8.8.8.8_172.16.17.32 """ click.clear() click.secho(asciis.print_art(),fg="magenta") click.secho("\tRelease v{}, {}".format(VERSION,CODENAME),fg="magenta") click.secho("[+] OSINT Module Selected: ODIN will run all recon modules.",fg="green") # Perform prep work for reporting setup_reports(organization) report_path = "reports/{}/".format(organization) output_report = report_path + "OSINT_DB.db" if __name__ == "__main__": # Create manager server to handle variables shared between jobs manager = Manager() ip_list = manager.list() domain_list = manager.list() rev_domain_list = manager.list() # Create reporter object and generate lists of everything, just IP addresses, and just domains browser = helpers.setup_headless_chrome(unsafe) report = reporter.Reporter(organization,report_path,output_report,browser) report.create_tables() scope,ip_list,domain_list = report.prepare_scope(ip_list,domain_list,scope_file,domain) # Create some jobs and put Python to work! # Job queue 1 is for the initial phase jobs = [] # Job queue 2 is used for jobs using data from job queue 1 more_jobs = [] # Job queue 3 is used for jobs that take a while and use the progress bar, i.e. AWS enum even_more_jobs = [] # Phase 1 jobs company_info = Process(name="Company Info Collector", target=report.create_company_info_table, args=(domain,)) jobs.append(company_info) employee_report = Process(name="<NAME>", target=report.create_people_table, args=(domain_list,rev_domain_list,organization)) jobs.append(employee_report) domain_report = Process(name="Domain and IP Hunter", target=report.create_domain_report_table, args=(organization,scope,ip_list,domain_list,rev_domain_list,whoxy_limit)) jobs.append(domain_report) # Phase 2 jobs shodan_report = Process(name="<NAME>", target=report.create_shodan_table, args=(ip_list,domain_list)) more_jobs.append(shodan_report) if typo: lookalike_report = Process(name="Lookalike Domain Reviewer", target=report.create_lookalike_table, args=(organization,domain)) more_jobs.append(lookalike_report) if screenshots: take_screenshots = Process(name="Screenshot Snapper", target=report.capture_web_snapshots, args=(report_path,browser)) more_jobs.append(take_screenshots) if files: files_report = Process(name="File Hunter", target=report.create_metadata_table, args=(domain,ext,report_path)) more_jobs.append(files_report) # Phase 3 jobs cloud_report = Process(name="<NAME>", target=report.create_cloud_table, args=(organization,domain,aws,aws_fixes)) even_more_jobs.append(cloud_report) # Process the lists of jobs in phases, starting with phase 1 click.secho("[+] Beginning initial discovery phase! This could take some time...",fg="green") for job in jobs: click.secho("[+] Starting new process: {}".format(job.name),fg="green") job.start() for job in jobs: job.join() # Wait for phase 1 and then begin phase 2 jobs click.secho("[+] Initial discovery is complete! Proceeding with additional queries...",fg="green") for job in more_jobs: click.secho("[+] Starting new process: {}".format(job.name),fg="green") job.start() for job in more_jobs: job.join() # Wait for phase 2 and then begin phase 3 jobs click.secho("[+] Final phase: checking the cloud and web services...",fg="green") for job in even_more_jobs: click.secho("[+] Starting new process: {}".format(job.name),fg="green") job.start() for job in even_more_jobs: job.join() # All jobs are done, so close out the SQLIte3 database connection report.close_out_reporting() click.secho("[+] Job's done! Your results are in {} and can be viewed and queried with \ any SQLite browser.".format(output_report),fg="green") # Perform additional tasks depending on the user's command line options if graph: graph_reporter = grapher.Grapher(output_report) click.secho("[+] Loading ODIN database file {} for conversion to Neo4j".format(output_report),fg="green") if nuke: if click.confirm(click.style("[!] You set the --nuke option. This wipes out all nodes for a \ fresh start. Proceed?",fg="red"),default=True): try: graph_reporter.clear_neo4j_database() click.secho("[+] Database successfully wiped!\n",fg="green") except Exception as error: click.secho("[!] Failed to clear the database! Check the Neo4j console and \ your configuration and try running grapher.py again.",fg="red") click.secho("L.. Details: {}".format(error),fg="red") else: click.secho("[!] You can convert your database to a graph database later. \ Run lib/grapher.py with the appropriate options.",fg="red") try: graph_reporter.convert() except Exception as error: click.secho("[!] Failed to convert the database! Check the Neo4j console and \ your configuration and try running grapher.py again.",fg="red") click.secho("L.. Details: {}".format(error),fg="red") if html: click.secho("\n[+] Creating the HTML report using {}.".format(output_report),fg="green") try: html_reporter = htmlreporter.HTMLReporter(organization,report_path + "/html_report/",output_report) html_reporter.generate_full_report() except Exception as error: click.secho("[!] Failed to create the HTML report!",fg="red") click.secho("L.. Details: {}".format(error),fg="red") # The VERIFY module -- No OSINT, just a way to check a ownership of a list of IPs @odin.command(name='verify',short_help="This module assists with verifying ownership of a list \ of IP addresses. This returns a csv file with SSL cert, WHOIS, and other data for verification.") @click.option('-o','--organization',help='The target client, such as "ABC Company," to use for \ report titles and some keyword searches.',required=True) @click.option('-sf','--scope-file',help="Name of the file with your IP addresses.",\ type=click.Path(exists=True,readable=True,resolve_path=True),required=True) @click.option('-r','--report',default="Verification.csv",help="Output file (CSV) for the \ findings.") # Pass the above arguments on to your verify function @click.pass_context def verify(self,organization,scope_file,report): """ The Verify module: Uses reverse DNS, ARIN, and SSL/TLS certificate information to help you verify ownership of a list of IP addresses. This is only for verifying IP addresses. Domains may not have public ownership information available. Compare the IP ownership information from ARIN and certificate information to what you know about the presumed owner to determine ownership. Acceptable IP addresses/ranges include: * Single Address: 8.8.8.8 * Basic CIDR: 172.16.58.3/24 * Nmap-friendly Range: 8.8.8.8-10 * Underscores? OK: 8.8.8.8_8.8.8.10 """ click.secho(asciis.print_art(),fg="magenta") click.secho("\tRelease v{}, {}".format(VERSION,CODENAME),fg="magenta") click.secho("[+] Scope Verification Module Selected: ODIN will attempt to verify who owns \ the provided IP addresses.",fg="green") setup_reports(organization) report_path = "reports/{}/{}".format(organization,report) expanded_scope = [] results = {} try: verification.prepare_scope(scope_file,expanded_scope) verification.perform_whois(expanded_scope,results) verification.print_output(results,report_path) except Exception as error: click.secho("[!] Verification failed!",fg="red") click.secho("L.. Details: {}".format(error),fg="red") click.secho("[+] Job's done! Your identity report is in {}.".format(report_path),fg="green") if __name__ == "__main__": odin()
[ "multiprocess.Process", "lib.asciis.print_art", "lib.verification.prepare_scope", "lib.htmlreporter.HTMLReporter", "click.secho", "click.group", "click.option", "lib.helpers.setup_headless_chrome", "lib.reporter.Reporter", "lib.verification.print_output", "click.style", "lib.grapher.Grapher", "click.Path", "lib.verification.perform_whois", "multiprocess.Manager", "click.Group.get_command", "click.clear" ]
[((2662, 2726), 'click.group', 'click.group', ([], {'cls': 'AliasedGroup', 'context_settings': 'CONTEXT_SETTINGS'}), '(cls=AliasedGroup, context_settings=CONTEXT_SETTINGS)\n', (2673, 2726), False, 'import click\n'), ((3484, 3672), 'click.option', 'click.option', (['"""-o"""', '"""--organization"""'], {'help': '"""The target client, such as "ABC Company," to use for report titles and searches for domains and cloud storage buckets."""', 'required': '(True)'}), '(\'-o\', \'--organization\', help=\n \'The target client, such as "ABC Company," to use for report titles and searches for domains and cloud storage buckets.\'\n , required=True)\n', (3496, 3672), False, 'import click\n'), ((3663, 3902), 'click.option', 'click.option', (['"""-d"""', '"""--domain"""'], {'help': '"""The target\'s primary domain, such as example.com. Use whatever the target uses for email and their main website. Provide additional domains in a scope file using --scope-file."""', 'required': '(True)'}), '(\'-d\', \'--domain\', help=\n "The target\'s primary domain, such as example.com. Use whatever the target uses for email and their main website. Provide additional domains in a scope file using --scope-file."\n , required=True)\n', (3675, 3902), False, 'import click\n'), ((4185, 4723), 'click.option', 'click.option', (['"""--whoxy-limit"""'], {'default': '(10)', 'help': '"""The maximum number of domains discovered via reverse WHOIS that ODIN will resolve and use when searching services like Censys and Shodan. You may get hundreds of results from reverse WHOIS, so this is intended to save time and API credits. Default is 10 domains and setting it above maybe 20 or 30 is not recommended. It is preferable to perform a search using a tool like Vincent Yiu\'s DomLink and then provide the newly discovered domains in your scope file with --scope-file."""'}), '(\'--whoxy-limit\', default=10, help=\n "The maximum number of domains discovered via reverse WHOIS that ODIN will resolve and use when searching services like Censys and Shodan. You may get hundreds of results from reverse WHOIS, so this is intended to save time and API credits. Default is 10 domains and setting it above maybe 20 or 30 is not recommended. It is preferable to perform a search using a tool like Vincent Yiu\'s DomLink and then provide the newly discovered domains in your scope file with --scope-file."\n )\n', (4197, 4723), False, 'import click\n'), ((4723, 5030), 'click.option', 'click.option', (['"""--typo"""'], {'is_flag': '(True)', 'help': '"""Generate a list of lookalike domain names for the provided domain (--domain), check if they have been registered, and then check those domains against URLVoid and Cymon.io to see if the domains or associated IP addresses have been flagged as malicious."""'}), "('--typo', is_flag=True, help=\n 'Generate a list of lookalike domain names for the provided domain (--domain), check if they have been registered, and then check those domains against URLVoid and Cymon.io to see if the domains or associated IP addresses have been flagged as malicious.'\n )\n", (4735, 5030), False, 'import click\n'), ((5053, 5234), 'click.option', 'click.option', (['"""--files"""'], {'is_flag': '(True)', 'help': '"""Use this option to use Google to search for files under the provided domain (--domain), download files, and extract metadata."""'}), "('--files', is_flag=True, help=\n 'Use this option to use Google to search for files under the provided domain (--domain), download files, and extract metadata.'\n )\n", (5065, 5234), False, 'import click\n'), ((5226, 5406), 'click.option', 'click.option', (['"""-e"""', '"""--ext"""'], {'default': '"""all"""', 'help': '"""File extensions to look for with --file. Default is \'all\' or you can pick from key, pdf, doc, docx, xls, xlsx, and ppt."""'}), '(\'-e\', \'--ext\', default=\'all\', help=\n "File extensions to look for with --file. Default is \'all\' or you can pick from key, pdf, doc, docx, xls, xlsx, and ppt."\n )\n', (5238, 5406), False, 'import click\n'), ((5825, 5926), 'click.option', 'click.option', (['"""--html"""'], {'is_flag': '(True)', 'help': '"""Create an HTML report at the end for easy browsing."""'}), "('--html', is_flag=True, help=\n 'Create an HTML report at the end for easy browsing.')\n", (5837, 5926), False, 'import click\n'), ((5921, 6038), 'click.option', 'click.option', (['"""--graph"""'], {'is_flag': '(True)', 'help': '"""Create a Neo4j graph database from the completed SQLite3 database."""'}), "('--graph', is_flag=True, help=\n 'Create a Neo4j graph database from the completed SQLite3 database.')\n", (5933, 6038), False, 'import click\n'), ((6035, 6177), 'click.option', 'click.option', (['"""--nuke"""'], {'is_flag': '(True)', 'help': '"""Clear the Neo4j project before converting the database. This is only used with --graph."""'}), "('--nuke', is_flag=True, help=\n 'Clear the Neo4j project before converting the database. This is only used with --graph.'\n )\n", (6047, 6177), False, 'import click\n'), ((6169, 6281), 'click.option', 'click.option', (['"""--screenshots"""'], {'is_flag': '(True)', 'help': '"""Attempt to take screenshots of discovered web services."""'}), "('--screenshots', is_flag=True, help=\n 'Attempt to take screenshots of discovered web services.')\n", (6181, 6281), False, 'import click\n'), ((6278, 6588), 'click.option', 'click.option', (['"""--unsafe"""'], {'is_flag': '(True)', 'help': '"""Adding this flag will spawn the headless Chrome browser with the --no-sandbox command line flag. This is NOT recommended for any users who are NOT running ODIN on a Kali Linux VM as root. Chrome will not run as the root user on Kali without this option."""'}), "('--unsafe', is_flag=True, help=\n 'Adding this flag will spawn the headless Chrome browser with the --no-sandbox command line flag. This is NOT recommended for any users who are NOT running ODIN on a Kali Linux VM as root. Chrome will not run as the root user on Kali without this option.'\n )\n", (6290, 6588), False, 'import click\n'), ((14606, 14769), 'click.option', 'click.option', (['"""-o"""', '"""--organization"""'], {'help': '"""The target client, such as "ABC Company," to use for report titles and some keyword searches."""', 'required': '(True)'}), '(\'-o\', \'--organization\', help=\n \'The target client, such as "ABC Company," to use for report titles and some keyword searches.\'\n , required=True)\n', (14618, 14769), False, 'import click\n'), ((14935, 15042), 'click.option', 'click.option', (['"""-r"""', '"""--report"""'], {'default': '"""Verification.csv"""', 'help': '"""Output file (CSV) for the findings."""'}), "('-r', '--report', default='Verification.csv', help=\n 'Output file (CSV) for the findings.')\n", (14947, 15042), False, 'import click\n'), ((7686, 7699), 'click.clear', 'click.clear', ([], {}), '()\n', (7697, 7699), False, 'import click\n'), ((7828, 7918), 'click.secho', 'click.secho', (['"""[+] OSINT Module Selected: ODIN will run all recon modules."""'], {'fg': '"""green"""'}), "('[+] OSINT Module Selected: ODIN will run all recon modules.',\n fg='green')\n", (7839, 7918), False, 'import click\n'), ((15889, 16029), 'click.secho', 'click.secho', (['"""[+] Scope Verification Module Selected: ODIN will attempt to verify who owns the provided IP addresses."""'], {'fg': '"""green"""'}), "(\n '[+] Scope Verification Module Selected: ODIN will attempt to verify who owns the provided IP addresses.'\n , fg='green')\n", (15900, 16029), False, 'import click\n'), ((2075, 2119), 'click.Group.get_command', 'click.Group.get_command', (['self', 'ctx', 'cmd_name'], {}), '(self, ctx, cmd_name)\n', (2098, 2119), False, 'import click\n'), ((7716, 7734), 'lib.asciis.print_art', 'asciis.print_art', ([], {}), '()\n', (7732, 7734), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((8206, 8215), 'multiprocess.Manager', 'Manager', ([], {}), '()\n', (8213, 8215), False, 'from multiprocess import Process, Manager\n'), ((8448, 8485), 'lib.helpers.setup_headless_chrome', 'helpers.setup_headless_chrome', (['unsafe'], {}), '(unsafe)\n', (8477, 8485), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((8503, 8571), 'lib.reporter.Reporter', 'reporter.Reporter', (['organization', 'report_path', 'output_report', 'browser'], {}), '(organization, report_path, output_report, browser)\n', (8520, 8571), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((9073, 9173), 'multiprocess.Process', 'Process', ([], {'name': '"""Company Info Collector"""', 'target': 'report.create_company_info_table', 'args': '(domain,)'}), "(name='Company Info Collector', target=report.\n create_company_info_table, args=(domain,))\n", (9080, 9173), False, 'from multiprocess import Process, Manager\n'), ((9291, 9403), 'multiprocess.Process', 'Process', ([], {'name': '"""<NAME>"""', 'target': 'report.create_people_table', 'args': '(domain_list, rev_domain_list, organization)'}), "(name='<NAME>', target=report.create_people_table, args=(domain_list,\n rev_domain_list, organization))\n", (9298, 9403), False, 'from multiprocess import Process, Manager\n'), ((9527, 9694), 'multiprocess.Process', 'Process', ([], {'name': '"""Domain and IP Hunter"""', 'target': 'report.create_domain_report_table', 'args': '(organization, scope, ip_list, domain_list, rev_domain_list, whoxy_limit)'}), "(name='Domain and IP Hunter', target=report.\n create_domain_report_table, args=(organization, scope, ip_list,\n domain_list, rev_domain_list, whoxy_limit))\n", (9534, 9694), False, 'from multiprocess import Process, Manager\n'), ((9827, 9917), 'multiprocess.Process', 'Process', ([], {'name': '"""<NAME>"""', 'target': 'report.create_shodan_table', 'args': '(ip_list, domain_list)'}), "(name='<NAME>', target=report.create_shodan_table, args=(ip_list,\n domain_list))\n", (9834, 9917), False, 'from multiprocess import Process, Manager\n'), ((10876, 10981), 'multiprocess.Process', 'Process', ([], {'name': '"""<NAME>"""', 'target': 'report.create_cloud_table', 'args': '(organization, domain, aws, aws_fixes)'}), "(name='<NAME>', target=report.create_cloud_table, args=(organization,\n domain, aws, aws_fixes))\n", (10883, 10981), False, 'from multiprocess import Process, Manager\n'), ((11158, 11261), 'click.secho', 'click.secho', (['"""[+] Beginning initial discovery phase! This could take some time..."""'], {'fg': '"""green"""'}), "(\n '[+] Beginning initial discovery phase! This could take some time...',\n fg='green')\n", (11169, 11261), False, 'import click\n'), ((11496, 11604), 'click.secho', 'click.secho', (['"""[+] Initial discovery is complete! Proceeding with additional queries..."""'], {'fg': '"""green"""'}), "(\n '[+] Initial discovery is complete! Proceeding with additional queries...',\n fg='green')\n", (11507, 11604), False, 'import click\n'), ((11849, 11936), 'click.secho', 'click.secho', (['"""[+] Final phase: checking the cloud and web services..."""'], {'fg': '"""green"""'}), "('[+] Final phase: checking the cloud and web services...', fg=\n 'green')\n", (11860, 11936), False, 'import click\n'), ((3955, 4012), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'readable': '(True)', 'resolve_path': '(True)'}), '(exists=True, readable=True, resolve_path=True)\n', (3965, 4012), False, 'import click\n'), ((5546, 5603), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'readable': '(True)', 'resolve_path': '(True)'}), '(exists=True, readable=True, resolve_path=True)\n', (5556, 5603), False, 'import click\n'), ((5737, 5794), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'readable': '(True)', 'resolve_path': '(True)'}), '(exists=True, readable=True, resolve_path=True)\n', (5747, 5794), False, 'import click\n'), ((15777, 15795), 'lib.asciis.print_art', 'asciis.print_art', ([], {}), '()\n', (15793, 15795), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((16173, 16227), 'lib.verification.prepare_scope', 'verification.prepare_scope', (['scope_file', 'expanded_scope'], {}), '(scope_file, expanded_scope)\n', (16199, 16227), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((16235, 16286), 'lib.verification.perform_whois', 'verification.perform_whois', (['expanded_scope', 'results'], {}), '(expanded_scope, results)\n', (16261, 16286), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((16294, 16341), 'lib.verification.print_output', 'verification.print_output', (['results', 'report_path'], {}), '(results, report_path)\n', (16319, 16341), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((14863, 14920), 'click.Path', 'click.Path', ([], {'exists': '(True)', 'readable': '(True)', 'resolve_path': '(True)'}), '(exists=True, readable=True, resolve_path=True)\n', (14873, 14920), False, 'import click\n'), ((10065, 10178), 'multiprocess.Process', 'Process', ([], {'name': '"""Lookalike Domain Reviewer"""', 'target': 'report.create_lookalike_table', 'args': '(organization, domain)'}), "(name='Lookalike Domain Reviewer', target=report.\n create_lookalike_table, args=(organization, domain))\n", (10072, 10178), False, 'from multiprocess import Process, Manager\n'), ((10351, 10455), 'multiprocess.Process', 'Process', ([], {'name': '"""Screenshot Snapper"""', 'target': 'report.capture_web_snapshots', 'args': '(report_path, browser)'}), "(name='Screenshot Snapper', target=report.capture_web_snapshots,\n args=(report_path, browser))\n", (10358, 10455), False, 'from multiprocess import Process, Manager\n'), ((10621, 10723), 'multiprocess.Process', 'Process', ([], {'name': '"""File Hunter"""', 'target': 'report.create_metadata_table', 'args': '(domain, ext, report_path)'}), "(name='File Hunter', target=report.create_metadata_table, args=(\n domain, ext, report_path))\n", (10628, 10723), False, 'from multiprocess import Process, Manager\n'), ((12522, 12552), 'lib.grapher.Grapher', 'grapher.Grapher', (['output_report'], {}), '(output_report)\n', (12537, 12552), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((16380, 16429), 'click.secho', 'click.secho', (['"""[!] Verification failed!"""'], {'fg': '"""red"""'}), "('[!] Verification failed!', fg='red')\n", (16391, 16429), False, 'import click\n'), ((1530, 1598), 'click.secho', 'click.secho', (['"""[!] Could not create the reports directory!"""'], {'fg': '"""red"""'}), "('[!] Could not create the reports directory!', fg='red')\n", (1541, 1598), False, 'import click\n'), ((2376, 2422), 'click.Group.get_command', 'click.Group.get_command', (['self', 'ctx', 'matches[0]'], {}), '(self, ctx, matches[0])\n', (2399, 2422), False, 'import click\n'), ((14003, 14092), 'lib.htmlreporter.HTMLReporter', 'htmlreporter.HTMLReporter', (['organization', "(report_path + '/html_report/')", 'output_report'], {}), "(organization, report_path + '/html_report/',\n output_report)\n", (14028, 14092), False, 'from lib import reporter, asciis, verification, htmlreporter, grapher, helpers\n'), ((12725, 12843), 'click.style', 'click.style', (['"""[!] You set the --nuke option. This wipes out all nodes for a fresh start. Proceed?"""'], {'fg': '"""red"""'}), "(\n '[!] You set the --nuke option. This wipes out all nodes for a fresh start. Proceed?'\n , fg='red')\n", (12736, 12843), False, 'import click\n'), ((13354, 13498), 'click.secho', 'click.secho', (['"""[!] You can convert your database to a graph database later. Run lib/grapher.py with the appropriate options."""'], {'fg': '"""red"""'}), "(\n '[!] You can convert your database to a graph database later. Run lib/grapher.py with the appropriate options.'\n , fg='red')\n", (13365, 13498), False, 'import click\n'), ((14195, 14257), 'click.secho', 'click.secho', (['"""[!] Failed to create the HTML report!"""'], {'fg': '"""red"""'}), "('[!] Failed to create the HTML report!', fg='red')\n", (14206, 14257), False, 'import click\n'), ((12961, 13022), 'click.secho', 'click.secho', (['"""[+] Database successfully wiped!\n"""'], {'fg': '"""green"""'}), "('[+] Database successfully wiped!\\n', fg='green')\n", (12972, 13022), False, 'import click\n'), ((13619, 13770), 'click.secho', 'click.secho', (['"""[!] Failed to convert the database! Check the Neo4j console and your configuration and try running grapher.py again."""'], {'fg': '"""red"""'}), "(\n '[!] Failed to convert the database! Check the Neo4j console and your configuration and try running grapher.py again.'\n , fg='red')\n", (13630, 13770), False, 'import click\n'), ((13093, 13242), 'click.secho', 'click.secho', (['"""[!] Failed to clear the database! Check the Neo4j console and your configuration and try running grapher.py again."""'], {'fg': '"""red"""'}), "(\n '[!] Failed to clear the database! Check the Neo4j console and your configuration and try running grapher.py again.'\n , fg='red')\n", (13104, 13242), False, 'import click\n')]
import numpy as np import keras.backend as K K.set_image_data_format('channels_last') class DataConfig(object): """Input frame configuration and data augmentation setup.""" def __init__(self, crop_resolution=(256, 256), image_channels=(3,), angles=[0], fixed_angle=0, scales=[1], fixed_scale=1, trans_x=[0], fixed_trans_x=0, trans_y=[0], fixed_trans_y=0, hflips=[0, 1], fixed_hflip=0, chpower=0.01*np.array(range(90, 110+1, 2)), fixed_chpower=1, geoocclusion=None, fixed_geoocclusion=None, subsampling=[1], fixed_subsampling=1): self.crop_resolution = crop_resolution self.image_channels = image_channels if K.image_data_format() == 'channels_last': self.input_shape = crop_resolution + image_channels else: self.input_shape = image_channels + crop_resolution self.angles = angles self.fixed_angle = fixed_angle self.scales = scales self.fixed_scale = fixed_scale self.trans_x = trans_x self.trans_y = trans_y self.fixed_trans_x = fixed_trans_x self.fixed_trans_y = fixed_trans_y self.hflips = hflips self.fixed_hflip = fixed_hflip self.chpower = chpower self.fixed_chpower = fixed_chpower self.geoocclusion = geoocclusion self.fixed_geoocclusion = fixed_geoocclusion self.subsampling = subsampling self.fixed_subsampling = fixed_subsampling def get_fixed_config(self): return {'angle': self.fixed_angle, 'scale': self.fixed_scale, 'transx': self.fixed_trans_x, 'transy': self.fixed_trans_y, 'hflip': self.fixed_hflip, 'chpower': self.fixed_chpower, 'geoocclusion': self.fixed_geoocclusion, 'subspl': self.fixed_subsampling} def random_data_generator(self): angle = DataConfig._getrand(self.angles) scale = DataConfig._getrand(self.scales) trans_x = DataConfig._getrand(self.trans_x) trans_y = DataConfig._getrand(self.trans_y) hflip = DataConfig._getrand(self.hflips) chpower = (DataConfig._getrand(self.chpower), DataConfig._getrand(self.chpower), DataConfig._getrand(self.chpower)) geoocclusion = self.__get_random_geoocclusion() subsampling = DataConfig._getrand(self.subsampling) return {'angle': angle, 'scale': scale, 'transx': trans_x, 'transy': trans_y, 'hflip': hflip, 'chpower': chpower, 'geoocclusion': geoocclusion, 'subspl': subsampling} def __get_random_geoocclusion(self): if self.geoocclusion is not None: w = int(DataConfig._getrand(self.geoocclusion) / 2) h = int(DataConfig._getrand(self.geoocclusion) / 2) xmin = w + 1 xmax = self.crop_resolution[0] - xmin ymin = h + 1 ymax = self.crop_resolution[1] - ymin x = DataConfig._getrand(range(xmin, xmax, 5)) y = DataConfig._getrand(range(ymin, ymax, 5)) bbox = (x-w, y-h, x+w, y+h) return bbox else: return None @staticmethod def _getrand(x): return x[np.random.randint(0, len(x))] # Data generation and configuration setup mpii_sp_dataconf = DataConfig( crop_resolution=(256, 256), angles=np.array(range(-40, 40+1, 5)), scales=np.array([0.7, 1., 1.3]), ) pennaction_dataconf = DataConfig( crop_resolution=(256, 256), angles=np.array(range(-30, 30+1, 5)), scales=np.array([0.7, 1.0, 1.3, 2.5]), trans_x=np.array(range(-40, 40+1, 5)), trans_y=np.array(range(-40, 40+1, 5)), subsampling=[1, 2] ) pennaction_ar_dataconf = DataConfig( crop_resolution=(256, 256), angles=np.array(range(-30, 30+1, 5)), scales=np.array([0.7, 1.0, 1.3]), trans_x=np.array(range(-40, 40+1, 5)), trans_y=np.array(range(-40, 40+1, 5)), subsampling=[1, 2, 3], fixed_subsampling=2 ) human36m_dataconf = DataConfig( crop_resolution=(256, 256), angles=np.array(range(-10, 10+1, 5)), scales=np.array([0.8, 1.0, 1.2]), geoocclusion=np.array(range(20, 90)), ) ntu_ar_dataconf = DataConfig( crop_resolution=(256, 256), angles=[0], scales=np.array([0.7, 1.0, 1.3]), trans_x=range(-40, 40+1, 5), trans_y=range(-40, 40+1, 5), subsampling=[1, 2, 3], fixed_subsampling=2 ) ntu_pe_dataconf = DataConfig( crop_resolution=(256, 256), angles=np.array(range(-15, 15+1, 5)), scales=np.array([0.8, 1.0, 1.2, 2.0]), trans_x=np.array(range(-40, 40+1, 5)), trans_y=np.array(range(-10, 10+1, 5)), subsampling=[1, 2, 4] ) # Aliases. mpii_dataconf = mpii_sp_dataconf
[ "keras.backend.set_image_data_format", "numpy.array", "keras.backend.image_data_format" ]
[((46, 86), 'keras.backend.set_image_data_format', 'K.set_image_data_format', (['"""channels_last"""'], {}), "('channels_last')\n", (69, 86), True, 'import keras.backend as K\n'), ((3635, 3660), 'numpy.array', 'np.array', (['[0.7, 1.0, 1.3]'], {}), '([0.7, 1.0, 1.3])\n', (3643, 3660), True, 'import numpy as np\n'), ((3803, 3833), 'numpy.array', 'np.array', (['[0.7, 1.0, 1.3, 2.5]'], {}), '([0.7, 1.0, 1.3, 2.5])\n', (3811, 3833), True, 'import numpy as np\n'), ((4101, 4126), 'numpy.array', 'np.array', (['[0.7, 1.0, 1.3]'], {}), '([0.7, 1.0, 1.3])\n', (4109, 4126), True, 'import numpy as np\n'), ((4421, 4446), 'numpy.array', 'np.array', (['[0.8, 1.0, 1.2]'], {}), '([0.8, 1.0, 1.2])\n', (4429, 4446), True, 'import numpy as np\n'), ((4606, 4631), 'numpy.array', 'np.array', (['[0.7, 1.0, 1.3]'], {}), '([0.7, 1.0, 1.3])\n', (4614, 4631), True, 'import numpy as np\n'), ((4904, 4934), 'numpy.array', 'np.array', (['[0.8, 1.0, 1.2, 2.0]'], {}), '([0.8, 1.0, 1.2, 2.0])\n', (4912, 4934), True, 'import numpy as np\n'), ((740, 761), 'keras.backend.image_data_format', 'K.image_data_format', ([], {}), '()\n', (759, 761), True, 'import keras.backend as K\n')]
'''Test CIFAR10 with PyTorch.''' import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.backends.cudnn as cudnn import torchvision import torchvision.transforms as transforms import os import argparse import numpy as np import foolbox as fb import pdb from nearest_neighbor import nnclass, create_cifar_coreset_tensor from utils import model_picker parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Testing') parser.add_argument('--model_name', default='googlenet', type=str, help='Model name') parser.add_argument('--cifar_ckpt_dir', default='/vulcanscratch/psando/cifar_model_ckpts/', help='resume from checkpoint') parser.add_argument('--cifar_dir', default='./data', help='location of the cifar-10 dataset') parser.add_argument('--workers', default=1, type=int, help='number of data loading workers') parser.add_argument('--batch_size', default=128, type=int, help='input batch size') parser.add_argument('--runs', default=1, type=int, help='number of runs') parser.add_argument('--no_progress_bar', action='store_true', help='whether to show progress bar') parser.add_argument('--no_download_data', action='store_true', help='whether to download data') # Adversarial attack settings parser.add_argument('--adversarial', action='store_true', help='Whether or not to perform adversarial attack during testing') parser.add_argument('--attack_iters', type=int, default=20, help='Number of iterations for the attack') parser.add_argument('--epsilon', type=float, default=8., help='Epsilon (default=8) for the attack. Script will divide by 255.') args = parser.parse_args() device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'==> Using device {device}..') # Data print('==> Preparing data..') transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) # Dataset mean and std for normalization dm = torch.tensor([0.4914, 0.4822, 0.4465])[None, :, None, None].cuda() ds = torch.tensor([0.2023, 0.1994, 0.2010])[None, :, None, None].cuda() trainset = torchvision.datasets.CIFAR10( root=args.cifar_dir, train=True, download=(not args.no_download_data), transform=transform_test) testset = torchvision.datasets.CIFAR10( root=args.cifar_dir, train=False, download=(not args.no_download_data), transform=transform_test) testloader = torch.utils.data.DataLoader( testset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') # Model print('==> Building model..') net = model_picker(args.model_name) net = net.to(device) if device == 'cuda': net = torch.nn.DataParallel(net) cudnn.benchmark = True if args.cifar_ckpt_dir: # Load checkpoint. print('==> Resuming from checkpoint..') assert os.path.isdir(args.cifar_ckpt_dir), 'Error: no checkpoint directory found!' checkpoint = torch.load(os.path.join(args.cifar_ckpt_dir, f'{args.model_name}.pt')) net.load_state_dict(checkpoint['model']) criterion = nn.CrossEntropyLoss() def test(epoch, adversarial=False, epsilon=(8./255), attack_iters=10): global best_acc net.eval() test_loss = 0 attack_success = 0 standard_correct = 0 coreset_correct = 0 total = 0 # Create coreset loader coreset_matrix, coreset_target = create_cifar_coreset_tensor(net, trainset) nnc = nnclass(coreset_matrix, coreset_target) if adversarial: # no preprocessing since data from testloader is already normalized # no bounds since adversarial examples are in normalized range fmodel = fb.models.PyTorchModel(net, bounds=(-np.inf, np.inf), preprocessing=None) attack = fb.attacks.LinfPGD(abs_stepsize=(epsilon / attack_iters * 2.5), steps=attack_iters, random_start=False) print(f'LinfPGD Attack Parameters: epsilon={epsilon} iters={attack_iters}') for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) if adversarial: _, inputs, success = attack(fmodel, inputs, targets, epsilons=epsilon) attack_success += success.sum().item() with torch.no_grad(): outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) standard_correct += predicted.eq(targets).sum().item() # Compute coreset accuracy embedded = net(inputs, last_layer=True) outputs_nn = nnc.classify(embedded) coreset_correct += outputs_nn.eq(targets).sum().item() if not args.no_progress_bar: from utils import progress_bar progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*standard_correct/total, standard_correct, total)) print('\n') acc = 100.*standard_correct/total print(f'[Epoch {epoch}] Test Accuracy: {acc:.2f} %') coreset_acc = 100.*coreset_correct/total print(f'[Epoch {epoch}] Coreset Accuracy: {coreset_acc:.2f} %') if adversarial: attack_success_rate = 100.*attack_success/total print(f'[Epoch {epoch}] Attack Success: {attack_success_rate:.2f} %') return acc acc = test(0, adversarial=args.adversarial, epsilon=(args.epsilon / 255), attack_iters=args.attack_iters)
[ "utils.model_picker", "torch.nn.CrossEntropyLoss", "argparse.ArgumentParser", "nearest_neighbor.nnclass", "torch.nn.DataParallel", "os.path.join", "foolbox.models.PyTorchModel", "foolbox.attacks.LinfPGD", "torch.tensor", "torchvision.datasets.CIFAR10", "torch.cuda.is_available", "os.path.isdir", "nearest_neighbor.create_cifar_coreset_tensor", "torch.utils.data.DataLoader", "torchvision.transforms.Normalize", "torch.no_grad", "torchvision.transforms.ToTensor" ]
[((415, 477), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""PyTorch CIFAR10 Testing"""'}), "(description='PyTorch CIFAR10 Testing')\n", (438, 477), False, 'import argparse\n'), ((2161, 2288), 'torchvision.datasets.CIFAR10', 'torchvision.datasets.CIFAR10', ([], {'root': 'args.cifar_dir', 'train': '(True)', 'download': '(not args.no_download_data)', 'transform': 'transform_test'}), '(root=args.cifar_dir, train=True, download=not\n args.no_download_data, transform=transform_test)\n', (2189, 2288), False, 'import torchvision\n'), ((2302, 2430), 'torchvision.datasets.CIFAR10', 'torchvision.datasets.CIFAR10', ([], {'root': 'args.cifar_dir', 'train': '(False)', 'download': '(not args.no_download_data)', 'transform': 'transform_test'}), '(root=args.cifar_dir, train=False, download=not\n args.no_download_data, transform=transform_test)\n', (2330, 2430), False, 'import torchvision\n'), ((2447, 2557), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['testset'], {'batch_size': 'args.batch_size', 'shuffle': '(False)', 'num_workers': 'args.workers'}), '(testset, batch_size=args.batch_size, shuffle=\n False, num_workers=args.workers)\n', (2474, 2557), False, 'import torch\n'), ((2706, 2735), 'utils.model_picker', 'model_picker', (['args.model_name'], {}), '(args.model_name)\n', (2718, 2735), False, 'from utils import model_picker\n'), ((3167, 3188), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3186, 3188), True, 'import torch.nn as nn\n'), ((1704, 1729), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1727, 1729), False, 'import torch\n'), ((2788, 2814), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['net'], {}), '(net)\n', (2809, 2814), False, 'import torch\n'), ((2945, 2979), 'os.path.isdir', 'os.path.isdir', (['args.cifar_ckpt_dir'], {}), '(args.cifar_ckpt_dir)\n', (2958, 2979), False, 'import os\n'), ((3467, 3509), 'nearest_neighbor.create_cifar_coreset_tensor', 'create_cifar_coreset_tensor', (['net', 'trainset'], {}), '(net, trainset)\n', (3494, 3509), False, 'from nearest_neighbor import nnclass, create_cifar_coreset_tensor\n'), ((3520, 3559), 'nearest_neighbor.nnclass', 'nnclass', (['coreset_matrix', 'coreset_target'], {}), '(coreset_matrix, coreset_target)\n', (3527, 3559), False, 'from nearest_neighbor import nnclass, create_cifar_coreset_tensor\n'), ((1859, 1880), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1878, 1880), True, 'import torchvision.transforms as transforms\n'), ((1886, 1957), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.4914, 0.4822, 0.4465)', '(0.2023, 0.1994, 0.201)'], {}), '((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.201))\n', (1906, 1957), True, 'import torchvision.transforms as transforms\n'), ((3049, 3107), 'os.path.join', 'os.path.join', (['args.cifar_ckpt_dir', 'f"""{args.model_name}.pt"""'], {}), "(args.cifar_ckpt_dir, f'{args.model_name}.pt')\n", (3061, 3107), False, 'import os\n'), ((3745, 3818), 'foolbox.models.PyTorchModel', 'fb.models.PyTorchModel', (['net'], {'bounds': '(-np.inf, np.inf)', 'preprocessing': 'None'}), '(net, bounds=(-np.inf, np.inf), preprocessing=None)\n', (3767, 3818), True, 'import foolbox as fb\n'), ((3837, 3943), 'foolbox.attacks.LinfPGD', 'fb.attacks.LinfPGD', ([], {'abs_stepsize': '(epsilon / attack_iters * 2.5)', 'steps': 'attack_iters', 'random_start': '(False)'}), '(abs_stepsize=epsilon / attack_iters * 2.5, steps=\n attack_iters, random_start=False)\n', (3855, 3943), True, 'import foolbox as fb\n'), ((2010, 2048), 'torch.tensor', 'torch.tensor', (['[0.4914, 0.4822, 0.4465]'], {}), '([0.4914, 0.4822, 0.4465])\n', (2022, 2048), False, 'import torch\n'), ((2082, 2119), 'torch.tensor', 'torch.tensor', (['[0.2023, 0.1994, 0.201]'], {}), '([0.2023, 0.1994, 0.201])\n', (2094, 2119), False, 'import torch\n'), ((4330, 4345), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4343, 4345), False, 'import torch\n')]
from unittest.mock import create_autospec, call, MagicMock import pytest from dynamixel_adapter import DynamixelAdapter from mayday_robot import LegFactory from motor_state import MotorState class TestLeg: @pytest.fixture() def mock_leg(self): self.mock_adapter = create_autospec(DynamixelAdapter) leg_factory = LegFactory() leg = leg_factory.create_basic(1, self.mock_adapter, 'left') return leg def test_given_position__when_set_joint_positions__then_calls_write_goal_position_on_all_joints(self, mock_leg): joint_positions = (2, 3, 5) mock_leg.set_joint_positions(joint_positions) for joint, position in zip(mock_leg.joints, joint_positions): assert call.write_goal_position(joint.id, position) in joint.adapter.method_calls def test_given_mock_joint_positions__when_get_joint_positions__then_returns_those(self, mock_leg): joint_positions = [3, 5, 7] motor_states = [MotorState(pos) for pos in joint_positions] self.mock_adapter.read_state = MagicMock(side_effect=motor_states) actual = mock_leg.get_joint_positions() assert actual == joint_positions
[ "mayday_robot.LegFactory", "unittest.mock.call.write_goal_position", "unittest.mock.create_autospec", "unittest.mock.MagicMock", "pytest.fixture", "motor_state.MotorState" ]
[((215, 231), 'pytest.fixture', 'pytest.fixture', ([], {}), '()\n', (229, 231), False, 'import pytest\n'), ((284, 317), 'unittest.mock.create_autospec', 'create_autospec', (['DynamixelAdapter'], {}), '(DynamixelAdapter)\n', (299, 317), False, 'from unittest.mock import create_autospec, call, MagicMock\n'), ((340, 352), 'mayday_robot.LegFactory', 'LegFactory', ([], {}), '()\n', (350, 352), False, 'from mayday_robot import LegFactory\n'), ((1063, 1098), 'unittest.mock.MagicMock', 'MagicMock', ([], {'side_effect': 'motor_states'}), '(side_effect=motor_states)\n', (1072, 1098), False, 'from unittest.mock import create_autospec, call, MagicMock\n'), ((980, 995), 'motor_state.MotorState', 'MotorState', (['pos'], {}), '(pos)\n', (990, 995), False, 'from motor_state import MotorState\n'), ((741, 785), 'unittest.mock.call.write_goal_position', 'call.write_goal_position', (['joint.id', 'position'], {}), '(joint.id, position)\n', (765, 785), False, 'from unittest.mock import create_autospec, call, MagicMock\n')]
from __future__ import print_function import argparse import datetime from utils.load_data.data_loader_instances import load_dataset from utils.utils import importing_model import torch import math import os from utils.utils import save_model, load_model from utils.optimizer import AdamNormGrad import time from utils.training import train_one_epoch from utils.evaluation import evaluate_loss, final_evaluation import random def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser(description='VAE+VampPrior') parser.add_argument('--batch_size', type=int, default=100, metavar='BStrain', help='input batch size for training (default: 100)') parser.add_argument('--test_batch_size', type=int, default=100, metavar='BStest', help='input batch size for testing (default: 100)') parser.add_argument('--epochs', type=int, default=2000, metavar='E', help='number of epochs to train (default: 2000)') parser.add_argument('--lr', type=float, default=0.0005, metavar='LR', help='learning rate (default: 0.0005)') parser.add_argument('--early_stopping_epochs', type=int, default=50, metavar='ES', help='number of epochs for early stopping') parser.add_argument('--z1_size', type=int, default=40, metavar='M1', help='latent size') parser.add_argument('--z2_size', type=int, default=40, metavar='M2', help='latent size') parser.add_argument('--input_size', type=int, default=[1, 28, 28], metavar='D', help='input size') parser.add_argument('--number_components', type=int, default=50000, metavar='NC', help='number of pseudo-inputs') parser.add_argument('--pseudoinputs_mean', type=float, default=-0.05, metavar='PM', help='mean for init pseudo-inputs') parser.add_argument('--pseudoinputs_std', type=float, default=0.01, metavar='PS', help='std for init pseudo-inputs') parser.add_argument('--use_training_data_init', action='store_true', default=False, help='initialize pseudo-inputs with randomly chosen training data') parser.add_argument('--model_name', type=str, default='vae', metavar='MN', help='model name: vae, hvae_2level, convhvae_2level') parser.add_argument('--prior', type=str, default='vampprior', metavar='P', help='prior: standard, vampprior, exemplar_prior') parser.add_argument('--input_type', type=str, default='binary', metavar='IT', help='type of the input: binary, gray, continuous, pca') parser.add_argument('--S', type=int, default=5000, metavar='SLL', help='number of samples used for approximating log-likelihood,' 'i.e. number of samples in IWAE') parser.add_argument('--MB', type=int, default=100, metavar='MBLL', help='size of a mini-batch used for approximating log-likelihood') parser.add_argument('--use_whole_train', type=str2bool, default=False, help='use whole training data points at the test time') parser.add_argument('--dataset_name', type=str, default='freyfaces', metavar='DN', help='name of the dataset: static_mnist, dynamic_mnist, omniglot, caltech101silhouettes,' ' histopathologyGray, freyfaces, cifar10') parser.add_argument('--dynamic_binarization', action='store_true', default=False, help='allow dynamic binarization') parser.add_argument('--seed', type=int, default=14, metavar='S', help='random seed (default: 14)') parser.add_argument('--no_mask', action='store_true', default=False, help='no leave one out') parser.add_argument('--parent_dir', type=str, default='') parser.add_argument('--same_variational_var', type=str2bool, default=False, help='use same variance for different dimentions') parser.add_argument('--model_signature', type=str, default='', help='load from this directory and continue training') parser.add_argument('--warmup', type=int, default=100, metavar='WU', help='number of epochs for warmu-up') parser.add_argument('--slurm_task_id', type=str, default='') parser.add_argument('--slurm_job_id', type=str, default='') parser.add_argument('--approximate_prior', type=str2bool, default=False) parser.add_argument('--just_evaluate', type=str2bool, default=False) parser.add_argument('--no_attention', type=str2bool, default=False) parser.add_argument('--approximate_k', type=int, default=10) parser.add_argument('--hidden_size', type=int, default=300) parser.add_argument('--base_dir', type=str, default='snapshots/') parser.add_argument('--continuous', type=str2bool, default=False) parser.add_argument('--use_logit', type=str2bool, default=False) parser.add_argument('--lambd', type=float, default=1e-4) parser.add_argument('--bottleneck', type=int, default=6) parser.add_argument('--training_set_size', type=int, default=50000) def initial_or_load(checkpoint_path_load, model, optimizer, dir): if os.path.exists(checkpoint_path_load): model_loaded_str = "******model is loaded*********" print(model_loaded_str) with open(dir + 'whole_log.txt', 'a') as f: print(model_loaded_str, file=f) checkpoint = load_model(checkpoint_path_load, model, optimizer) begin_epoch = checkpoint['epoch'] best_loss = checkpoint['best_loss'] e = checkpoint['e'] else: torch.manual_seed(args.seed) if args.device=='cuda': torch.cuda.manual_seed(args.seed) random.seed(args.seed) begin_epoch = 1 best_loss = math.inf e = 0 return begin_epoch, best_loss, e def save_loss_files(folder, train_loss_history, train_re_history, train_kl_history, val_loss_history, val_re_history, val_kl_history): torch.save(train_loss_history, folder + '.train_loss') torch.save(train_re_history, folder + '.train_re') torch.save(train_kl_history, folder + '.train_kl') torch.save(val_loss_history, folder + '.val_loss') torch.save(val_re_history, folder + '.val_re') torch.save(val_kl_history, folder + '.val_kl') def run_density_estimation(args, train_loader_input, val_loader_input, test_loader_input, model, optimizer, dir, model_name='vae'): torch.save(args, dir + args.model_name + '.config') train_loss_history, train_re_history, train_kl_history, val_loss_history, val_re_history, val_kl_history, \ time_history = [], [], [], [], [], [], [] checkpoint_path_save = os.path.join(dir, 'checkpoint_temp.pth') checkpoint_path_load = os.path.join(dir, 'checkpoint.pth') best_model_path_load = os.path.join(dir, 'checkpoint_best.pth') decayed = False time_history = [] # with torch.autograd.detect_anomaly(): begin_epoch, best_loss, e = initial_or_load(checkpoint_path_load, model, optimizer, dir) if args.just_evaluate is False: for epoch in range(begin_epoch, args.epochs + 1): time_start = time.time() train_loss_epoch, train_re_epoch, train_kl_epoch \ = train_one_epoch(epoch, args, train_loader_input, model, optimizer) with torch.no_grad(): val_loss_epoch, val_re_epoch, val_kl_epoch = evaluate_loss(args, model, val_loader_input, dataset=train_loader_input.dataset) time_end = time.time() time_elapsed = time_end - time_start content = {'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'best_loss': best_loss, 'e': e} if epoch % 10 == 0: save_model(checkpoint_path_save, checkpoint_path_load, content) if val_loss_epoch < best_loss: e = 0 best_loss = val_loss_epoch print('->model saved<-') save_model(checkpoint_path_save, best_model_path_load, content) else: e += 1 if epoch < args.warmup: e = 0 if e > args.early_stopping_epochs: break if math.isnan(val_loss_epoch): print("***** val loss is Nan *******") break for param_group in optimizer.param_groups: learning_rate = param_group['lr'] break time_history.append(time_elapsed) epoch_report = 'Epoch: {}/{}, Time elapsed: {:.2f}s\n' \ 'learning rate: {:.5f}\n' \ '* Train loss: {:.2f} (RE: {:.2f}, KL: {:.2f})\n' \ 'o Val. loss: {:.2f} (RE: {:.2f}, KL: {:.2f})\n' \ '--> Early stopping: {}/{} (BEST: {:.2f})\n'.format(epoch, args.epochs, time_elapsed, learning_rate, train_loss_epoch, train_re_epoch, train_kl_epoch, val_loss_epoch, val_re_epoch, val_kl_epoch, e, args.early_stopping_epochs, best_loss) if args.prior == 'exemplar_prior': print("Prior Variance", model.prior_log_variance.item()) if args.continuous is True: print("Decoder Variance", model.decoder_logstd.item()) print(epoch_report) with open(dir + 'whole_log.txt', 'a') as f: print(epoch_report, file=f) train_loss_history.append(train_loss_epoch), train_re_history.append( train_re_epoch), train_kl_history.append(train_kl_epoch) val_loss_history.append(val_loss_epoch), val_re_history.append(val_re_epoch), val_kl_history.append( val_kl_epoch) save_loss_files(dir + args.model_name, train_loss_history, train_re_history, train_kl_history, val_loss_history, val_re_history, val_kl_history) with torch.no_grad(): final_evaluation(train_loader_input, test_loader_input, val_loader_input, best_model_path_load, model, optimizer, args, dir) def run(args, kwargs): print('create model') # importing model VAE = importing_model(args) print('load data') train_loader, val_loader, test_loader, args = load_dataset(args, use_fixed_validation=True, **kwargs) if args.slurm_job_id != '': args.model_signature = str(args.seed) # base_dir = 'checkpoints/final_report/' elif args.model_signature == '': args.model_signature = str(datetime.datetime.now())[0:19] if args.parent_dir == '': args.parent_dir = args.prior + '_on_' + args.dataset_name+'_model_name='+args.model_name model_name = args.dataset_name + '_' + args.model_name + '_' + args.prior \ + '_(components_' + str(args.number_components) + ', lr=' + str(args.lr) + ')' snapshots_path = os.path.join(args.base_dir, args.parent_dir) + '/' dir = snapshots_path + args.model_signature + '_' + model_name + '_' + args.parent_dir + '/' if args.just_evaluate: config = torch.load(dir + args.model_name + '.config') config.translation = False config.hidden_size = 300 model = VAE(config) else: model = VAE(args) if not os.path.exists(dir): os.makedirs(dir) model.to(args.device) optimizer = AdamNormGrad(model.parameters(), lr=args.lr) print(args) config_file = dir+'vae_config.txt' with open(config_file, 'a') as f: print(args, file=f) run_density_estimation(args, train_loader, val_loader, test_loader, model, optimizer, dir, model_name = args.model_name) if __name__ == "__main__": args = parser.parse_args() args.device = 'cuda' if torch.cuda.is_available() else 'cpu' kwargs = {'num_workers': 2, 'pin_memory': True} if args.device=='cuda' else {} run(args, kwargs)
[ "utils.utils.load_model", "torch.cuda.is_available", "utils.utils.importing_model", "utils.evaluation.evaluate_loss", "os.path.exists", "argparse.ArgumentParser", "utils.utils.save_model", "utils.training.train_one_epoch", "argparse.ArgumentTypeError", "torch.save", "time.time", "utils.evaluation.final_evaluation", "torch.manual_seed", "os.makedirs", "torch.load", "os.path.join", "utils.load_data.data_loader_instances.load_dataset", "random.seed", "datetime.datetime.now", "torch.no_grad", "torch.cuda.manual_seed", "math.isnan" ]
[((724, 776), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""VAE+VampPrior"""'}), "(description='VAE+VampPrior')\n", (747, 776), False, 'import argparse\n'), ((5347, 5383), 'os.path.exists', 'os.path.exists', (['checkpoint_path_load'], {}), '(checkpoint_path_load)\n', (5361, 5383), False, 'import os\n'), ((6180, 6234), 'torch.save', 'torch.save', (['train_loss_history', "(folder + '.train_loss')"], {}), "(train_loss_history, folder + '.train_loss')\n", (6190, 6234), False, 'import torch\n'), ((6239, 6289), 'torch.save', 'torch.save', (['train_re_history', "(folder + '.train_re')"], {}), "(train_re_history, folder + '.train_re')\n", (6249, 6289), False, 'import torch\n'), ((6294, 6344), 'torch.save', 'torch.save', (['train_kl_history', "(folder + '.train_kl')"], {}), "(train_kl_history, folder + '.train_kl')\n", (6304, 6344), False, 'import torch\n'), ((6349, 6399), 'torch.save', 'torch.save', (['val_loss_history', "(folder + '.val_loss')"], {}), "(val_loss_history, folder + '.val_loss')\n", (6359, 6399), False, 'import torch\n'), ((6404, 6450), 'torch.save', 'torch.save', (['val_re_history', "(folder + '.val_re')"], {}), "(val_re_history, folder + '.val_re')\n", (6414, 6450), False, 'import torch\n'), ((6455, 6501), 'torch.save', 'torch.save', (['val_kl_history', "(folder + '.val_kl')"], {}), "(val_kl_history, folder + '.val_kl')\n", (6465, 6501), False, 'import torch\n'), ((6640, 6691), 'torch.save', 'torch.save', (['args', "(dir + args.model_name + '.config')"], {}), "(args, dir + args.model_name + '.config')\n", (6650, 6691), False, 'import torch\n'), ((6877, 6917), 'os.path.join', 'os.path.join', (['dir', '"""checkpoint_temp.pth"""'], {}), "(dir, 'checkpoint_temp.pth')\n", (6889, 6917), False, 'import os\n'), ((6945, 6980), 'os.path.join', 'os.path.join', (['dir', '"""checkpoint.pth"""'], {}), "(dir, 'checkpoint.pth')\n", (6957, 6980), False, 'import os\n'), ((7008, 7048), 'os.path.join', 'os.path.join', (['dir', '"""checkpoint_best.pth"""'], {}), "(dir, 'checkpoint_best.pth')\n", (7020, 7048), False, 'import os\n'), ((10883, 10904), 'utils.utils.importing_model', 'importing_model', (['args'], {}), '(args)\n', (10898, 10904), False, 'from utils.utils import importing_model\n'), ((10978, 11033), 'utils.load_data.data_loader_instances.load_dataset', 'load_dataset', (['args'], {'use_fixed_validation': '(True)'}), '(args, use_fixed_validation=True, **kwargs)\n', (10990, 11033), False, 'from utils.load_data.data_loader_instances import load_dataset\n'), ((5594, 5644), 'utils.utils.load_model', 'load_model', (['checkpoint_path_load', 'model', 'optimizer'], {}), '(checkpoint_path_load, model, optimizer)\n', (5604, 5644), False, 'from utils.utils import save_model, load_model\n'), ((5777, 5805), 'torch.manual_seed', 'torch.manual_seed', (['args.seed'], {}), '(args.seed)\n', (5794, 5805), False, 'import torch\n'), ((5892, 5914), 'random.seed', 'random.seed', (['args.seed'], {}), '(args.seed)\n', (5903, 5914), False, 'import random\n'), ((10625, 10640), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10638, 10640), False, 'import torch\n'), ((10650, 10778), 'utils.evaluation.final_evaluation', 'final_evaluation', (['train_loader_input', 'test_loader_input', 'val_loader_input', 'best_model_path_load', 'model', 'optimizer', 'args', 'dir'], {}), '(train_loader_input, test_loader_input, val_loader_input,\n best_model_path_load, model, optimizer, args, dir)\n', (10666, 10778), False, 'from utils.evaluation import evaluate_loss, final_evaluation\n'), ((11590, 11634), 'os.path.join', 'os.path.join', (['args.base_dir', 'args.parent_dir'], {}), '(args.base_dir, args.parent_dir)\n', (11602, 11634), False, 'import os\n'), ((11783, 11828), 'torch.load', 'torch.load', (["(dir + args.model_name + '.config')"], {}), "(dir + args.model_name + '.config')\n", (11793, 11828), False, 'import torch\n'), ((11972, 11991), 'os.path.exists', 'os.path.exists', (['dir'], {}), '(dir)\n', (11986, 11991), False, 'import os\n'), ((12001, 12017), 'os.makedirs', 'os.makedirs', (['dir'], {}), '(dir)\n', (12012, 12017), False, 'import os\n'), ((12439, 12464), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (12462, 12464), False, 'import torch\n'), ((659, 712), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (685, 712), False, 'import argparse\n'), ((5850, 5883), 'torch.cuda.manual_seed', 'torch.cuda.manual_seed', (['args.seed'], {}), '(args.seed)\n', (5872, 5883), False, 'import torch\n'), ((7347, 7358), 'time.time', 'time.time', ([], {}), '()\n', (7356, 7358), False, 'import time\n'), ((7440, 7506), 'utils.training.train_one_epoch', 'train_one_epoch', (['epoch', 'args', 'train_loader_input', 'model', 'optimizer'], {}), '(epoch, args, train_loader_input, model, optimizer)\n', (7455, 7506), False, 'from utils.training import train_one_epoch\n'), ((7781, 7792), 'time.time', 'time.time', ([], {}), '()\n', (7790, 7792), False, 'import time\n'), ((8548, 8574), 'math.isnan', 'math.isnan', (['val_loss_epoch'], {}), '(val_loss_epoch)\n', (8558, 8574), False, 'import math\n'), ((7524, 7539), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7537, 7539), False, 'import torch\n'), ((7602, 7687), 'utils.evaluation.evaluate_loss', 'evaluate_loss', (['args', 'model', 'val_loader_input'], {'dataset': 'train_loader_input.dataset'}), '(args, model, val_loader_input, dataset=train_loader_input.dataset\n )\n', (7615, 7687), False, 'from utils.evaluation import evaluate_loss, final_evaluation\n'), ((8055, 8118), 'utils.utils.save_model', 'save_model', (['checkpoint_path_save', 'checkpoint_path_load', 'content'], {}), '(checkpoint_path_save, checkpoint_path_load, content)\n', (8065, 8118), False, 'from utils.utils import save_model, load_model\n'), ((8284, 8347), 'utils.utils.save_model', 'save_model', (['checkpoint_path_save', 'best_model_path_load', 'content'], {}), '(checkpoint_path_save, best_model_path_load, content)\n', (8294, 8347), False, 'from utils.utils import save_model, load_model\n'), ((11233, 11256), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11254, 11256), False, 'import datetime\n')]
import matplotlib.pyplot as plt import autograd.numpy as np from autograd import grad a = 0.025 B = 0.25 C = 0.12 b = B/2 c = C/2 h = 0.2 m0 = 4*np.pi/10000000 N = 100 I1 = 20 f = 30 def l(th): f1 = 1/(np.sqrt(h**2 + b**2 + c**2 + 2*c*h*np.sin(th))) f2 = 1/(np.sqrt(h**2 + b**2 + c**2 - 2*c*h*np.sin(th))) f3 = 1/(h**2 + c**2 + 2*c*h*np.sin(th)) f4 = 1/(h**2 + c**2 - 2*c*h*np.sin(th)) f5 = (2*b*np.cos(th)/(b**2 + h**2*(np.cos(th))**2)) return (m0*a**2/4) * (f5*((h*np.sin(th) + c)*f1 - (h*np.sin(th) - c)*f2) + (2*b*c*np.cos(th)*f1*f3) + (2*b*c*np.cos(th)*f2*f4)) L = np.vectorize(l) DerL = np.vectorize(grad(l)) def th(t): return 2*np.pi*f*t def aux(t): return N*I1*l(th(t)) e = grad(aux) E = np.vectorize(e) theta = np.linspace(0, 4*np.pi, 1000) # plot L fig, ax = plt.subplots() ax.set(xlabel='Θ(rad)', ylabel='L(Θ)(H)', title='Αλληλεπαγωγή L(Θ)') ax.grid() ax.plot(theta, L(theta)) plt.show() # plot DerL fig, ax = plt.subplots() ax.set(xlabel='Θ(rad)', ylabel="dL(Θ)/dΘ (H/rad)", title='Ρυθμός Mεταβολής Αλληλεπαγωγής dL(Θ)/dΘ') ax.grid() ax.plot(theta, DerL(theta)) plt.show() # plot E(f)^2 t = np.linspace(0, 5/f, 1000) timestep = ((5/f) + 1) / t.size E_f = np.fft.fft(E(t)) E_f = np.absolute(E_f) freq = np.fft.fftfreq(t.size, d=timestep) fig, ax = plt.subplots() ax.set(xlabel='f(Hz)', ylabel='E(f)^2 ((V*s)^2)', title='Φασματική Πυκνότητα Ενέργειας E(f)^2') ax.grid() ax.plot(freq, np.power(E_f, 2)) plt.show() # fourier series coefficients with monte carlo integration, using 10000 samples monte_time = np.linspace(0, 1/f, 10000) E_t = E(monte_time) def an(n): a = E_t * np.cos(2*np.pi*n*f*monte_time) return (2*a.sum())/a.size def bn(n): b = E_t * np.sin(2*np.pi*n*f*monte_time) return (2*b.sum())/b.size def approx(x, N): fourier = np.array([an(i) * np.cos(2*np.pi*i*f*x) + bn(i) * np.sin(2*np.pi*i*f*x) for i in range(1, N+1)]) return fourier.sum() + (an(0) / 2) Nh = 10 # pano orio tou athroismatos sthn seira fourier def fourier(x): return approx(x, Nh) fourier = np.vectorize(fourier) # plot e(t) and fourier series approximation t = np.linspace(0, 5/f, 10000) fig, ax = plt.subplots() ax.set(xlabel='t(s)', ylabel='e(t)(Volt)', title='Ηλεκτρεργετική Δύναμη e(t)') ax.grid() ax.plot(t, E(t), t, fourier(t)) plt.show() pinakas = [[]] pinakas[0].append('n') pinakas[0].append('a_n') pinakas[0].append('b_n') print('a0 = ' + str(an(0))) for i in range(1, 100 + 1): pinakas.append([]) row = pinakas[i] row.append(str(i)) row.append(an(i)) row.append(bn(i)) pinakas = np.array(pinakas) print(pinakas)
[ "autograd.numpy.vectorize", "autograd.numpy.cos", "autograd.numpy.sin", "autograd.grad", "autograd.numpy.absolute", "autograd.numpy.array", "autograd.numpy.linspace", "autograd.numpy.power", "autograd.numpy.fft.fftfreq", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((651, 666), 'autograd.numpy.vectorize', 'np.vectorize', (['l'], {}), '(l)\n', (663, 666), True, 'import autograd.numpy as np\n'), ((789, 798), 'autograd.grad', 'grad', (['aux'], {}), '(aux)\n', (793, 798), False, 'from autograd import grad\n'), ((804, 819), 'autograd.numpy.vectorize', 'np.vectorize', (['e'], {}), '(e)\n', (816, 819), True, 'import autograd.numpy as np\n'), ((831, 862), 'autograd.numpy.linspace', 'np.linspace', (['(0)', '(4 * np.pi)', '(1000)'], {}), '(0, 4 * np.pi, 1000)\n', (842, 862), True, 'import autograd.numpy as np\n'), ((884, 898), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (896, 898), True, 'import matplotlib.pyplot as plt\n'), ((1009, 1019), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1017, 1019), True, 'import matplotlib.pyplot as plt\n'), ((1046, 1060), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1058, 1060), True, 'import matplotlib.pyplot as plt\n'), ((1213, 1223), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1221, 1223), True, 'import matplotlib.pyplot as plt\n'), ((1246, 1273), 'autograd.numpy.linspace', 'np.linspace', (['(0)', '(5 / f)', '(1000)'], {}), '(0, 5 / f, 1000)\n', (1257, 1273), True, 'import autograd.numpy as np\n'), ((1336, 1352), 'autograd.numpy.absolute', 'np.absolute', (['E_f'], {}), '(E_f)\n', (1347, 1352), True, 'import autograd.numpy as np\n'), ((1361, 1395), 'autograd.numpy.fft.fftfreq', 'np.fft.fftfreq', (['t.size'], {'d': 'timestep'}), '(t.size, d=timestep)\n', (1375, 1395), True, 'import autograd.numpy as np\n'), ((1407, 1421), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1419, 1421), True, 'import matplotlib.pyplot as plt\n'), ((1574, 1584), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1582, 1584), True, 'import matplotlib.pyplot as plt\n'), ((1682, 1710), 'autograd.numpy.linspace', 'np.linspace', (['(0)', '(1 / f)', '(10000)'], {}), '(0, 1 / f, 10000)\n', (1693, 1710), True, 'import autograd.numpy as np\n'), ((2240, 2261), 'autograd.numpy.vectorize', 'np.vectorize', (['fourier'], {}), '(fourier)\n', (2252, 2261), True, 'import autograd.numpy as np\n'), ((2315, 2343), 'autograd.numpy.linspace', 'np.linspace', (['(0)', '(5 / f)', '(10000)'], {}), '(0, 5 / f, 10000)\n', (2326, 2343), True, 'import autograd.numpy as np\n'), ((2353, 2367), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2365, 2367), True, 'import matplotlib.pyplot as plt\n'), ((2495, 2505), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2503, 2505), True, 'import matplotlib.pyplot as plt\n'), ((2785, 2802), 'autograd.numpy.array', 'np.array', (['pinakas'], {}), '(pinakas)\n', (2793, 2802), True, 'import autograd.numpy as np\n'), ((688, 695), 'autograd.grad', 'grad', (['l'], {}), '(l)\n', (692, 695), False, 'from autograd import grad\n'), ((1555, 1571), 'autograd.numpy.power', 'np.power', (['E_f', '(2)'], {}), '(E_f, 2)\n', (1563, 1571), True, 'import autograd.numpy as np\n'), ((1761, 1799), 'autograd.numpy.cos', 'np.cos', (['(2 * np.pi * n * f * monte_time)'], {}), '(2 * np.pi * n * f * monte_time)\n', (1767, 1799), True, 'import autograd.numpy as np\n'), ((1854, 1892), 'autograd.numpy.sin', 'np.sin', (['(2 * np.pi * n * f * monte_time)'], {}), '(2 * np.pi * n * f * monte_time)\n', (1860, 1892), True, 'import autograd.numpy as np\n'), ((440, 450), 'autograd.numpy.cos', 'np.cos', (['th'], {}), '(th)\n', (446, 450), True, 'import autograd.numpy as np\n'), ((368, 378), 'autograd.numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (374, 378), True, 'import autograd.numpy as np\n'), ((413, 423), 'autograd.numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (419, 423), True, 'import autograd.numpy as np\n'), ((261, 271), 'autograd.numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (267, 271), True, 'import autograd.numpy as np\n'), ((322, 332), 'autograd.numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (328, 332), True, 'import autograd.numpy as np\n'), ((465, 475), 'autograd.numpy.cos', 'np.cos', (['th'], {}), '(th)\n', (471, 475), True, 'import autograd.numpy as np\n'), ((1972, 2001), 'autograd.numpy.cos', 'np.cos', (['(2 * np.pi * i * f * x)'], {}), '(2 * np.pi * i * f * x)\n', (1978, 2001), True, 'import autograd.numpy as np\n'), ((2029, 2058), 'autograd.numpy.sin', 'np.sin', (['(2 * np.pi * i * f * x)'], {}), '(2 * np.pi * i * f * x)\n', (2035, 2058), True, 'import autograd.numpy as np\n'), ((623, 633), 'autograd.numpy.cos', 'np.cos', (['th'], {}), '(th)\n', (629, 633), True, 'import autograd.numpy as np\n'), ((596, 606), 'autograd.numpy.cos', 'np.cos', (['th'], {}), '(th)\n', (602, 606), True, 'import autograd.numpy as np\n'), ((516, 526), 'autograd.numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (522, 526), True, 'import autograd.numpy as np\n'), ((540, 550), 'autograd.numpy.sin', 'np.sin', (['th'], {}), '(th)\n', (546, 550), True, 'import autograd.numpy as np\n')]
from sqlalchemy import Column, Integer, String from modules.core import source as core class User(core.Base): """ Sample module user """ __tablename__ = "sample_users" id = Column(Integer, primary_key=True) string = Column(String) def __init__(self, id_, string_): self.id = id_ self.string = string_
[ "sqlalchemy.Column" ]
[((198, 231), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (204, 231), False, 'from sqlalchemy import Column, Integer, String\n'), ((245, 259), 'sqlalchemy.Column', 'Column', (['String'], {}), '(String)\n', (251, 259), False, 'from sqlalchemy import Column, Integer, String\n')]
import datetime import traceback from typing import Any, List import aiohttp import discord from discord import AsyncWebhookAdapter, Webhook from discord.ext import commands, flags from dotenv import load_dotenv import config from ... import errors from ...classes.bot import Bot IGNORED_ERRORS = [commands.CommandNotFound, errors.AllCommandsDisabled] EXPECTED_ERRORS = [ errors.ConversionError, errors.DoesNotExist, errors.AlreadyExists, errors.CommandDisabled, commands.MissingRequiredArgument, commands.ChannelNotFound, commands.RoleNotFound, commands.NotOwner, commands.CommandOnCooldown, discord.Forbidden, discord.InvalidArgument, flags.ArgumentParsingError, ] UPTIME = config.UPTIME_WEBHOOK ERROR = config.ERROR_WEBHOOK GUILD = config.GUILD_WEBHOOK load_dotenv() async def uptime_log(content: str) -> None: if not UPTIME: return async with aiohttp.ClientSession() as session: webhook = Webhook.from_url( UPTIME, adapter=AsyncWebhookAdapter(session) ) await webhook.send( content, username="Starboard Uptime" ) async def error_log(content: str) -> None: if not ERROR: return async with aiohttp.ClientSession() as session: webhook = Webhook.from_url( ERROR, adapter=AsyncWebhookAdapter(session) ) await webhook.send( content, username="Starboard Errors" ) async def join_leave_log(embed: discord.Embed) -> None: if not GUILD: return async with aiohttp.ClientSession() as session: webhook = Webhook.from_url( GUILD, adapter=AsyncWebhookAdapter(session) ) await webhook.send( embed=embed, username="Starboard Guild Log" ) class BaseEvents(commands.Cog): def __init__(self, bot: Bot) -> None: self.bot = bot self.type_map = { "error": {"color": self.bot.error_color, "title": "Error"}, "info": {"color": self.bot.theme_color, "title": "Info"}, } @commands.Cog.listener() async def on_guild_join(self, guild: discord.Guild) -> None: embed = discord.Embed( title=f"Joined **{guild.name}**", description=f"**{guild.member_count} members**", color=self.bot.theme_color, ) embed.timestamp = datetime.datetime.utcnow() await join_leave_log(embed) @commands.Cog.listener() async def on_guild_remove(self, guild: discord.Guild) -> None: embed = discord.Embed( title=f"Left **{guild.name}**", description=f"**{guild.member_count} members**", color=self.bot.dark_theme_color, ) embed.timestamp = datetime.datetime.utcnow() await join_leave_log(embed) @commands.Cog.listener() async def on_log_error( self, title: str, error: Exception, args: List[Any] = [], kwargs: dict = {}, ) -> None: p = commands.Paginator(prefix="```python") p.add_line(title) p.add_line(empty=True) p.add_line(f"{type(error)}: {error}") p.add_line(empty=True) p.add_line(f"Args: {args}") p.add_line(f"Kwargs: {kwargs}") p.add_line(empty=True) tb = traceback.format_tb(error.__traceback__) for line in tb: p.add_line(line=line) for page in p.pages: await error_log(page) @commands.Cog.listener() async def on_shard_ready(self, shard_id: int) -> None: self.bot.log.info( f"[Cluster#{self.bot.cluster_name}] Shard {shard_id} ready" ) @commands.Cog.listener() async def on_ready(self) -> None: self.bot.log.info(f"[Cluster#{self.bot.cluster_name}] Ready") await uptime_log( f":green_circle: Cluster **{self.bot.cluster_name}** ready!" ) try: self.bot.pipe.send(1) except BrokenPipeError: pass @commands.Cog.listener() async def on_message(self, message: discord.Message) -> None: if message.author.bot: return if message.content.replace("!", "") == self.bot.user.mention: await message.channel.send("My prefix is `sb!`") else: await self.bot.process_commands(message) @commands.Cog.listener() async def on_command_error( self, ctx: commands.Context, e: Exception ) -> None: try: e = e.original except AttributeError: pass if type(e) in IGNORED_ERRORS: return elif type(e) in EXPECTED_ERRORS: await ctx.send(e) elif type(e) == discord.errors.Forbidden: try: await ctx.message.author.send( "I can't send messages in " f"{ctx.message.channel.mention}, " "or I'm missing the `Embed Links` " "permission there." ) except discord.Forbidden: pass else: embed = discord.Embed( title="Something's Not Right", description=( "Something went wrong while " "running this command. If the " "problem persists, please report " "this in the support server." ), color=self.bot.error_color, ) tb = "".join(traceback.format_tb(e.__traceback__)) full_tb = f"{e}\b" f"```{tb}```" if len(full_tb) > 1024: to_remove = (len(full_tb) - 1024) + 10 full_tb = f"{e}\n```...{tb[to_remove:]}```" embed.add_field(name=e.__class__.__name__, value=full_tb) await ctx.send(embed=embed) self.bot.dispatch( "log_error", "Command Error", e, ctx.args, ctx.kwargs ) @commands.Cog.listener() async def on_guild_log( self, message: str, log_type: str, guild: discord.Guild ) -> None: sql_guild = await self.bot.db.get_guild(guild.id) if sql_guild["log_channel"] is None: return log_channel = guild.get_channel(int(sql_guild["log_channel"])) if not log_channel: return embed = discord.Embed( title=self.type_map[log_type]["title"], description=message, color=self.type_map[log_type]["color"], ) embed.timestamp = datetime.datetime.utcnow() await log_channel.send(embed=embed) def setup(bot: Bot) -> None: bot.add_cog(BaseEvents(bot)) @bot.before_invoke async def create_data(message: discord.Message) -> None: await bot.db.create_guild(message.guild.id) await bot.db.create_user(message.author.id, message.author.bot) await bot.db.create_member(message.author.id, message.guild.id)
[ "discord.ext.commands.Cog.listener", "aiohttp.ClientSession", "traceback.format_tb", "datetime.datetime.utcnow", "dotenv.load_dotenv", "discord.ext.commands.Paginator", "discord.AsyncWebhookAdapter", "discord.Embed" ]
[((809, 822), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (820, 822), False, 'from dotenv import load_dotenv\n'), ((2084, 2107), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (2105, 2107), False, 'from discord.ext import commands, flags\n'), ((2456, 2479), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (2477, 2479), False, 'from discord.ext import commands, flags\n'), ((2833, 2856), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (2854, 2856), False, 'from discord.ext import commands, flags\n'), ((3493, 3516), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (3514, 3516), False, 'from discord.ext import commands, flags\n'), ((3691, 3714), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (3712, 3714), False, 'from discord.ext import commands, flags\n'), ((4034, 4057), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (4055, 4057), False, 'from discord.ext import commands, flags\n'), ((4378, 4401), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (4399, 4401), False, 'from discord.ext import commands, flags\n'), ((6006, 6029), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (6027, 6029), False, 'from discord.ext import commands, flags\n'), ((918, 941), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (939, 941), False, 'import aiohttp\n'), ((1237, 1260), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (1258, 1260), False, 'import aiohttp\n'), ((1568, 1591), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (1589, 1591), False, 'import aiohttp\n'), ((2189, 2318), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Joined **{guild.name}**"""', 'description': 'f"""**{guild.member_count} members**"""', 'color': 'self.bot.theme_color'}), "(title=f'Joined **{guild.name}**', description=\n f'**{guild.member_count} members**', color=self.bot.theme_color)\n", (2202, 2318), False, 'import discord\n'), ((2387, 2413), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2411, 2413), False, 'import datetime\n'), ((2563, 2695), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Left **{guild.name}**"""', 'description': 'f"""**{guild.member_count} members**"""', 'color': 'self.bot.dark_theme_color'}), "(title=f'Left **{guild.name}**', description=\n f'**{guild.member_count} members**', color=self.bot.dark_theme_color)\n", (2576, 2695), False, 'import discord\n'), ((2764, 2790), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2788, 2790), False, 'import datetime\n'), ((3029, 3067), 'discord.ext.commands.Paginator', 'commands.Paginator', ([], {'prefix': '"""```python"""'}), "(prefix='```python')\n", (3047, 3067), False, 'from discord.ext import commands, flags\n'), ((3324, 3364), 'traceback.format_tb', 'traceback.format_tb', (['error.__traceback__'], {}), '(error.__traceback__)\n', (3343, 3364), False, 'import traceback\n'), ((6394, 6512), 'discord.Embed', 'discord.Embed', ([], {'title': "self.type_map[log_type]['title']", 'description': 'message', 'color': "self.type_map[log_type]['color']"}), "(title=self.type_map[log_type]['title'], description=message,\n color=self.type_map[log_type]['color'])\n", (6407, 6512), False, 'import discord\n'), ((6582, 6608), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (6606, 6608), False, 'import datetime\n'), ((1018, 1046), 'discord.AsyncWebhookAdapter', 'AsyncWebhookAdapter', (['session'], {}), '(session)\n', (1037, 1046), False, 'from discord import AsyncWebhookAdapter, Webhook\n'), ((1336, 1364), 'discord.AsyncWebhookAdapter', 'AsyncWebhookAdapter', (['session'], {}), '(session)\n', (1355, 1364), False, 'from discord import AsyncWebhookAdapter, Webhook\n'), ((1667, 1695), 'discord.AsyncWebhookAdapter', 'AsyncWebhookAdapter', (['session'], {}), '(session)\n', (1686, 1695), False, 'from discord import AsyncWebhookAdapter, Webhook\n'), ((5139, 5352), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Something\'s Not Right"""', 'description': '"""Something went wrong while running this command. If the problem persists, please report this in the support server."""', 'color': 'self.bot.error_color'}), '(title="Something\'s Not Right", description=\n \'Something went wrong while running this command. If the problem persists, please report this in the support server.\'\n , color=self.bot.error_color)\n', (5152, 5352), False, 'import discord\n'), ((5540, 5576), 'traceback.format_tb', 'traceback.format_tb', (['e.__traceback__'], {}), '(e.__traceback__)\n', (5559, 5576), False, 'import traceback\n')]
# Generated by Django 3.0.4 on 2020-03-24 23:23 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('opsserver', '0004_auto_20200324_2313'), ] operations = [ migrations.AddField( model_name='requestdata', name='country', field=models.CharField(blank=True, max_length=256, null=True), ), ]
[ "django.db.models.CharField" ]
[((342, 397), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(256)', 'null': '(True)'}), '(blank=True, max_length=256, null=True)\n', (358, 397), False, 'from django.db import migrations, models\n')]
# -*- coding: utf-8 -*- import pytest from amrex import base as amrex @pytest.fixture(autouse=True, scope='session') def amrex_init(): amrex.AMReX.initialize(args=["amrex.verbose=-1"]) yield amrex.AMReX.finalize() @pytest.fixture(scope='module') def boxarr(): """BoxArray for MultiFab creation""" bx = amrex.Box.new((0, 0, 0), (63, 63, 63)) ba = amrex.BoxArray.new(bx) ba.max_size(32) return ba @pytest.fixture(scope='module') def distmap(boxarr): """DistributionMapping for MultiFab creation""" dm = amrex.DistributionMapping.new(boxarr) return dm
[ "amrex.base.BoxArray.new", "amrex.base.AMReX.finalize", "amrex.base.DistributionMapping.new", "amrex.base.Box.new", "pytest.fixture", "amrex.base.AMReX.initialize" ]
[((73, 118), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)', 'scope': '"""session"""'}), "(autouse=True, scope='session')\n", (87, 118), False, 'import pytest\n'), ((230, 260), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (244, 260), False, 'import pytest\n'), ((432, 462), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (446, 462), False, 'import pytest\n'), ((141, 190), 'amrex.base.AMReX.initialize', 'amrex.AMReX.initialize', ([], {'args': "['amrex.verbose=-1']"}), "(args=['amrex.verbose=-1'])\n", (163, 190), True, 'from amrex import base as amrex\n'), ((205, 227), 'amrex.base.AMReX.finalize', 'amrex.AMReX.finalize', ([], {}), '()\n', (225, 227), True, 'from amrex import base as amrex\n'), ((325, 363), 'amrex.base.Box.new', 'amrex.Box.new', (['(0, 0, 0)', '(63, 63, 63)'], {}), '((0, 0, 0), (63, 63, 63))\n', (338, 363), True, 'from amrex import base as amrex\n'), ((373, 395), 'amrex.base.BoxArray.new', 'amrex.BoxArray.new', (['bx'], {}), '(bx)\n', (391, 395), True, 'from amrex import base as amrex\n'), ((545, 582), 'amrex.base.DistributionMapping.new', 'amrex.DistributionMapping.new', (['boxarr'], {}), '(boxarr)\n', (574, 582), True, 'from amrex import base as amrex\n')]
import torch import numpy as np import torch.nn.functional as F ''' ''' dic2 = np.load('ClipGradByGlobalNorm.npz') x = dic2['x'] w = dic2['w'] b = dic2['b'] loss_2 = dic2['loss'] w_2 = dic2['w_2'] b_2 = dic2['b_2'] x = torch.from_numpy(x) linear = torch.nn.Linear(in_features=10, out_features=2) w = w.transpose(1, 0) linear.weight.data = torch.from_numpy(w) linear.bias.data = torch.from_numpy(b) # 建立优化器 scaler = torch.cuda.amp.GradScaler(enabled=False) # 不使用混合精度训练 param_groups = [] base_lr = 0.1 param_group_conv = {'params': [linear.weight]} param_group_conv['lr'] = base_lr param_group_conv['need_clip'] = True param_group_conv['clip_norm'] = 1.0 # param_group_conv['weight_decay'] = base_wd param_groups.append(param_group_conv) if linear.bias is not None: if linear.bias.requires_grad: param_group_conv_bias = {'params': [linear.bias]} param_group_conv_bias['lr'] = base_lr param_group_conv_bias['need_clip'] = False # param_group_conv_bias['weight_decay'] = 0.0 param_groups.append(param_group_conv_bias) optimizer = torch.optim.SGD( param_groups, lr=base_lr ) # 计算损失 out = linear(x) loss = 1000.0 * torch.mean(out) # 乘以1000.0放大损失,使得梯度的模很大 optimizer.zero_grad() scaler.scale(loss).backward() # 梯度裁剪 for param_group in optimizer.param_groups: if param_group['need_clip']: torch.nn.utils.clip_grad_norm_(param_group['params'], max_norm=param_group['clip_norm'], norm_type=2) scaler.step(optimizer) scaler.update() www2 = linear.weight.data.cpu().detach().numpy() www2 = www2.transpose(1, 0) bbb2 = linear.bias.data.cpu().detach().numpy() ddd = np.sum((w_2 - www2)**2) print('ddd=%.6f' % ddd) ddd = np.sum((b_2 - bbb2)**2) print('ddd=%.6f' % ddd) print()
[ "torch.optim.SGD", "torch.cuda.amp.GradScaler", "torch.mean", "torch.nn.utils.clip_grad_norm_", "torch.from_numpy", "numpy.sum", "torch.nn.Linear", "numpy.load" ]
[((84, 119), 'numpy.load', 'np.load', (['"""ClipGradByGlobalNorm.npz"""'], {}), "('ClipGradByGlobalNorm.npz')\n", (91, 119), True, 'import numpy as np\n'), ((229, 248), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (245, 248), False, 'import torch\n'), ((260, 307), 'torch.nn.Linear', 'torch.nn.Linear', ([], {'in_features': '(10)', 'out_features': '(2)'}), '(in_features=10, out_features=2)\n', (275, 307), False, 'import torch\n'), ((351, 370), 'torch.from_numpy', 'torch.from_numpy', (['w'], {}), '(w)\n', (367, 370), False, 'import torch\n'), ((390, 409), 'torch.from_numpy', 'torch.from_numpy', (['b'], {}), '(b)\n', (406, 409), False, 'import torch\n'), ((428, 468), 'torch.cuda.amp.GradScaler', 'torch.cuda.amp.GradScaler', ([], {'enabled': '(False)'}), '(enabled=False)\n', (453, 468), False, 'import torch\n'), ((1085, 1126), 'torch.optim.SGD', 'torch.optim.SGD', (['param_groups'], {'lr': 'base_lr'}), '(param_groups, lr=base_lr)\n', (1100, 1126), False, 'import torch\n'), ((1635, 1660), 'numpy.sum', 'np.sum', (['((w_2 - www2) ** 2)'], {}), '((w_2 - www2) ** 2)\n', (1641, 1660), True, 'import numpy as np\n'), ((1689, 1714), 'numpy.sum', 'np.sum', (['((b_2 - bbb2) ** 2)'], {}), '((b_2 - bbb2) ** 2)\n', (1695, 1714), True, 'import numpy as np\n'), ((1174, 1189), 'torch.mean', 'torch.mean', (['out'], {}), '(out)\n', (1184, 1189), False, 'import torch\n'), ((1361, 1467), 'torch.nn.utils.clip_grad_norm_', 'torch.nn.utils.clip_grad_norm_', (["param_group['params']"], {'max_norm': "param_group['clip_norm']", 'norm_type': '(2)'}), "(param_group['params'], max_norm=param_group[\n 'clip_norm'], norm_type=2)\n", (1391, 1467), False, 'import torch\n')]
# Functions that would be used to create the topography of the neuraal net # The neurons and weights are taken as matrices # Neurons are 1D arrays or lists of the dimension 1 X col import numpy as np import pandas as pa def collectData (sheet_name): """ Returns an array (numpy) of the input data from the excel sheet """ Input = pa.read_excel(sheet_name) # I is the input data matrix, data has to be extracted one by one from the columns Input = np.array(Input) return Input def getError(Input, row, Output): """ Returns the error value of the network """ col = int(np.shape(Input)[1]) - 1 error = 0.5* ( (Input[row][col] - Output)**2 ) # MSE return error def inputNeurons (Input, row): """ Returns an input matrix based on the data matrix with data set present in column 'column' """ n_row = int(np.shape(Input)[0]) n_col = int(np.shape(Input)[1]) I = [0]*(n_col - 1) for c in range(n_col-1): I[c] = Input[row][c] return I def transposeMat (M): """ Returns the transpose of matrix M, used for neurons in the next layer """ # Not used in the current program M = np.array(M) row = int(np.shape(M)[0]) col = int(np.shape(M)[1]) M_trans = np.zeros((col, row)) for r in range(row): for c in range(col): M_trans[c][r] = M[r][c].copy() M_trans = M_trans.tolist() return M_trans def getNextLayer (n_out_mat, w_mat): """ Gets the next layer from output matrix of neurons and weights """ # The layer is in the form of 1 X col array/matrix N = np.array(n_out_mat) W = np.array(w_mat) if (W.ndim == 1): col_wt = int(np.shape(W)[0]) else: col_wt = int(np.shape(W)[1]) col_n = int(np.shape(N)[0]) M_mult = np.zeros((1, col_wt)) # Only designed for neurons i.e. matrices of size 1 X col for c_w in range(col_wt): for c_n in range(col_n): if (W.ndim == 1): M_mult[0][c_w] = M_mult[0][c_w] + ( N[c_n] * W[c_w] ) else: M_mult[0][c_w] = M_mult[0][c_w] + ( N[c_n] * W[c_n][c_w] ) # r X c Type matrix multiplication M_mult = M_mult.tolist() return M_mult[0]
[ "numpy.array", "numpy.zeros", "numpy.shape", "pandas.read_excel" ]
[((342, 367), 'pandas.read_excel', 'pa.read_excel', (['sheet_name'], {}), '(sheet_name)\n', (355, 367), True, 'import pandas as pa\n'), ((463, 478), 'numpy.array', 'np.array', (['Input'], {}), '(Input)\n', (471, 478), True, 'import numpy as np\n'), ((1156, 1167), 'numpy.array', 'np.array', (['M'], {}), '(M)\n', (1164, 1167), True, 'import numpy as np\n'), ((1243, 1263), 'numpy.zeros', 'np.zeros', (['(col, row)'], {}), '((col, row))\n', (1251, 1263), True, 'import numpy as np\n'), ((1591, 1610), 'numpy.array', 'np.array', (['n_out_mat'], {}), '(n_out_mat)\n', (1599, 1610), True, 'import numpy as np\n'), ((1619, 1634), 'numpy.array', 'np.array', (['w_mat'], {}), '(w_mat)\n', (1627, 1634), True, 'import numpy as np\n'), ((1788, 1809), 'numpy.zeros', 'np.zeros', (['(1, col_wt)'], {}), '((1, col_wt))\n', (1796, 1809), True, 'import numpy as np\n'), ((849, 864), 'numpy.shape', 'np.shape', (['Input'], {}), '(Input)\n', (857, 864), True, 'import numpy as np\n'), ((885, 900), 'numpy.shape', 'np.shape', (['Input'], {}), '(Input)\n', (893, 900), True, 'import numpy as np\n'), ((1182, 1193), 'numpy.shape', 'np.shape', (['M'], {}), '(M)\n', (1190, 1193), True, 'import numpy as np\n'), ((1212, 1223), 'numpy.shape', 'np.shape', (['M'], {}), '(M)\n', (1220, 1223), True, 'import numpy as np\n'), ((1758, 1769), 'numpy.shape', 'np.shape', (['N'], {}), '(N)\n', (1766, 1769), True, 'import numpy as np\n'), ((599, 614), 'numpy.shape', 'np.shape', (['Input'], {}), '(Input)\n', (607, 614), True, 'import numpy as np\n'), ((1679, 1690), 'numpy.shape', 'np.shape', (['W'], {}), '(W)\n', (1687, 1690), True, 'import numpy as np\n'), ((1726, 1737), 'numpy.shape', 'np.shape', (['W'], {}), '(W)\n', (1734, 1737), True, 'import numpy as np\n')]
from collections import deque queue = deque(["Eric", "John", "Michael"]) print(queue) queue.append("Terry") print(queue) queue.popleft() print(queue)
[ "collections.deque" ]
[((40, 74), 'collections.deque', 'deque', (["['Eric', 'John', 'Michael']"], {}), "(['Eric', 'John', 'Michael'])\n", (45, 74), False, 'from collections import deque\n')]
import gym import cv2 import numpy as np from abc import abstractmethod from collections import deque from copy import copy import imutils import gym_super_mario_bros from nes_py.wrappers import JoypadSpace from gym_super_mario_bros.actions import SIMPLE_MOVEMENT, COMPLEX_MOVEMENT from torch.multiprocessing import Pipe, Process from model import * from config import * from PIL import Image import cv2 import os train_method = default_config['TrainMethod'] max_step_per_episode = int(default_config['MaxStepPerEpisode']) import glob class Environment(Process): @abstractmethod def run(self): pass @abstractmethod def reset(self): pass @abstractmethod def pre_proc(self, x): pass @abstractmethod def get_init_state(self, x): pass def unwrap(env): if hasattr(env, "unwrapped"): return env.unwrapped elif hasattr(env, "env"): return unwrap(env.env) elif hasattr(env, "leg_env"): return unwrap(env.leg_env) else: return env class MaxAndSkipEnv(gym.Wrapper): def __init__(self, env, is_render, skip=4): """Return only every `skip`-th frame""" gym.Wrapper.__init__(self, env) # most recent raw observations (for max pooling across time steps) self._obs_buffer = np.zeros((2,) + env.observation_space.shape, dtype=np.uint8) self._skip = skip self.is_render = is_render def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if self.is_render: self.env.render() if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame # doesn't matter max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info def reset(self, **kwargs): return self.env.reset(**kwargs) class MontezumaInfoWrapper(gym.Wrapper): def __init__(self, env, room_address): super(MontezumaInfoWrapper, self).__init__(env) self.room_address = room_address self.visited_rooms = set() def get_current_room(self): ram = unwrap(self.env).ale.getRAM() assert len(ram) == 128 return int(ram[self.room_address]) def step(self, action): obs, rew, done, info = self.env.step(action) self.visited_rooms.add(self.get_current_room()) if 'episode' not in info: info['episode'] = {} info['episode'].update(visited_rooms=copy(self.visited_rooms)) if done: self.visited_rooms.clear() return obs, rew, done, info def reset(self): return self.env.reset() class AtariEnvironment(Environment): def __init__( self, env_id, is_render, env_idx, child_conn, history_size=4, h=84, w=84, life_done=True, sticky_action=True, p=0.25): super(AtariEnvironment, self).__init__() self.daemon = True self.env = MaxAndSkipEnv(gym.make(env_id), is_render) if 'Montezuma' in env_id: self.env = MontezumaInfoWrapper(self.env, room_address=3 if 'Montezuma' in env_id else 1) self.env_id = env_id self.is_render = is_render self.env_idx = env_idx self.steps = 0 self.episode = 0 self.rall = 0 self.recent_rlist = deque(maxlen=100) self.child_conn = child_conn self.sticky_action = sticky_action self.last_action = 0 self.p = p self.history_size = history_size self.history = np.zeros([history_size, h, w]) self.h = h self.w = w self.reset() def run(self): super(AtariEnvironment, self).run() while True: action = self.child_conn.recv() if 'Breakout' in self.env_id: action += 1 # sticky action if self.sticky_action: if np.random.rand() <= self.p: action = self.last_action self.last_action = action s, reward, done, info = self.env.step(action) if max_step_per_episode < self.steps: done = True log_reward = reward force_done = done self.history[:3, :, :] = self.history[1:, :, :] self.history[3, :, :] = self.pre_proc(s) self.rall += reward self.steps += 1 if done: self.recent_rlist.append(self.rall) print("[Episode {}({})] Step: {} Reward: {} Recent Reward: {} Visited Room: [{}]".format( self.episode, self.env_idx, self.steps, self.rall, np.mean(self.recent_rlist), info.get('episode', {}).get('visited_rooms', {}))) self.history = self.reset() self.child_conn.send( [self.history[:, :, :], reward, force_done, done, log_reward]) def reset(self): self.last_action = 0 self.steps = 0 self.episode += 1 self.rall = 0 s = self.env.reset() self.get_init_state( self.pre_proc(s)) return self.history[:, :, :] def pre_proc(self, X): X = np.array(Image.fromarray(X).convert('L')).astype('float32') x = cv2.resize(X, (self.h, self.w)) return x def get_init_state(self, s): for i in range(self.history_size): self.history[i, :, :] = self.pre_proc(s) class MarioEnvironment(Process): def __init__( self, env_id, is_render, env_idx, child_conn, history_size=4, life_done=False, h=84, w=84, movement=COMPLEX_MOVEMENT, sticky_action=True, p=0.25): super(MarioEnvironment, self).__init__() self.daemon = True self.env = JoypadSpace( gym_super_mario_bros.make(env_id), COMPLEX_MOVEMENT) self.is_render = is_render self.env_idx = env_idx self.steps = 0 self.episode = 0 self.rall = 0 self.recent_rlist = deque(maxlen=100) self.child_conn = child_conn self.life_done = life_done self.sticky_action = sticky_action self.last_action = 0 self.p = p self.history_size = history_size self.history = np.zeros([history_size, h, w]) self.h = h self.w = w self.reset() def run(self): super(MarioEnvironment, self).run() self.env = gym_super_mario_bros.make('SuperMarioBros-1-1-v0') self.env = JoypadSpace(self.env, COMPLEX_MOVEMENT) if not os.path.exists("data"): os.makedirs("data") done = True min_area = 20 max_area = 100 subtractor = cv2.createBackgroundSubtractorKNN(history=5, detectShadows=True) while True: if done : self.reset() action = self.child_conn.recv() if self.is_render: self.env.render() # sticky action if self.sticky_action: if np.random.rand() <= self.p: action = self.last_action self.last_action = action # 4 frame skip reward = 0.0 done = None # list_img = os.listdir('data') # total_img = len(list_img) # img_last = total_img+1 # #print(int(list_img[-1][:-4]),img_last) # img_last = str(img_last)+".jpg" # path = "data/"+img_last # print(path) for i in range(4): obs, r, done, info = self.env.step(action) temp_frame = cv2.cvtColor(obs,cv2.COLOR_BGR2RGB) temp_obs = np.array(cv2.cvtColor(obs,cv2.COLOR_BGR2RGB)) temp_frame = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2GRAY) temp_frame = cv2.GaussianBlur(temp_frame, (5, 5), 0) subtr_frame = subtractor.apply(temp_frame) #edges = cv2.Canny(temp_frame, 50, 100) mask_sub = cv2.bitwise_and(temp_frame, subtr_frame) _, thr = cv2.threshold(mask_sub, 100, 255, 0,cv2.THRESH_BINARY) cnts = cv2.findContours(thr, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) for c in cnts: if cv2.contourArea(c) < min_area or cv2.contourArea(c)>max_area : continue (x, y, w, h) = cv2.boundingRect(c) #temp_obs = cv2.rectangle(temp_obs, (x-50, y-50), (x + w+50, y +50+ h), (0, 255, 0), 3) temp_obs = temp_obs[y-5:y+h+5,x-5:x+w+5] list_img = os.listdir('data') total_img = len(list_img) img_last = total_img + 1 img_last = str(img_last)+".jpg" path = "data/"+img_last try: cv2.imwrite(path,cv2.resize(temp_obs, (40, 40))) except: pass # cv2.imshow("frame",temp_frame) # cv2.imshow("edge",edges) #cv2.imwrite(path,obs) if self.is_render: self.env.render() reward += r if done: break # when Mario loses life, changes the state to the terminal # state. if self.life_done: if self.lives > info['life'] and info['life'] > 0: force_done = True self.lives = info['life'] else: force_done = done self.lives = info['life'] else: force_done = done # reward range -15 ~ 15 log_reward = reward / 15 self.rall += log_reward r = int(info.get('flag_get', False)) self.history[:3, :, :] = self.history[1:, :, :] self.history[3, :, :] = self.pre_proc(obs) self.steps += 1 if done: self.recent_rlist.append(self.rall) print( "[Episode {}({})] Step: {} Reward: {} Recent Reward: {} Stage: {} current x:{} max x:{}".format( self.episode, self.env_idx, self.steps, self.rall, np.mean( self.recent_rlist), info['stage'], info['x_pos'], self.max_pos)) self.history = self.reset() self.child_conn.send([self.history[:, :, :], r, force_done, done, log_reward]) def reset(self): self.last_action = 0 self.steps = 0 self.episode += 1 self.rall = 0 self.lives = 3 self.stage = 1 self.max_pos = 0 self.get_init_state(self.env.reset()) return self.history[:, :, :] def pre_proc(self, X): # grayscaling x = cv2.cvtColor(X, cv2.COLOR_RGB2GRAY) # resize x = cv2.resize(x, (self.h, self.w)) return x def get_init_state(self, s): for i in range(self.history_size): self.history[i, :, :] = self.pre_proc(s)
[ "numpy.random.rand", "nes_py.wrappers.JoypadSpace", "copy.copy", "gym.make", "os.path.exists", "gym_super_mario_bros.make", "os.listdir", "collections.deque", "numpy.mean", "cv2.threshold", "cv2.contourArea", "imutils.grab_contours", "cv2.cvtColor", "cv2.resize", "cv2.GaussianBlur", "PIL.Image.fromarray", "os.makedirs", "cv2.bitwise_and", "numpy.zeros", "gym.Wrapper.__init__", "cv2.findContours", "cv2.createBackgroundSubtractorKNN", "cv2.boundingRect" ]
[((1184, 1215), 'gym.Wrapper.__init__', 'gym.Wrapper.__init__', (['self', 'env'], {}), '(self, env)\n', (1204, 1215), False, 'import gym\n'), ((1318, 1378), 'numpy.zeros', 'np.zeros', (['((2,) + env.observation_space.shape)'], {'dtype': 'np.uint8'}), '((2,) + env.observation_space.shape, dtype=np.uint8)\n', (1326, 1378), True, 'import numpy as np\n'), ((3809, 3826), 'collections.deque', 'deque', ([], {'maxlen': '(100)'}), '(maxlen=100)\n', (3814, 3826), False, 'from collections import deque\n'), ((4021, 4051), 'numpy.zeros', 'np.zeros', (['[history_size, h, w]'], {}), '([history_size, h, w])\n', (4029, 4051), True, 'import numpy as np\n'), ((5757, 5788), 'cv2.resize', 'cv2.resize', (['X', '(self.h, self.w)'], {}), '(X, (self.h, self.w))\n', (5767, 5788), False, 'import cv2\n'), ((6594, 6611), 'collections.deque', 'deque', ([], {'maxlen': '(100)'}), '(maxlen=100)\n', (6599, 6611), False, 'from collections import deque\n'), ((6841, 6871), 'numpy.zeros', 'np.zeros', (['[history_size, h, w]'], {}), '([history_size, h, w])\n', (6849, 6871), True, 'import numpy as np\n'), ((7014, 7064), 'gym_super_mario_bros.make', 'gym_super_mario_bros.make', (['"""SuperMarioBros-1-1-v0"""'], {}), "('SuperMarioBros-1-1-v0')\n", (7039, 7064), False, 'import gym_super_mario_bros\n'), ((7084, 7123), 'nes_py.wrappers.JoypadSpace', 'JoypadSpace', (['self.env', 'COMPLEX_MOVEMENT'], {}), '(self.env, COMPLEX_MOVEMENT)\n', (7095, 7123), False, 'from nes_py.wrappers import JoypadSpace\n'), ((7281, 7345), 'cv2.createBackgroundSubtractorKNN', 'cv2.createBackgroundSubtractorKNN', ([], {'history': '(5)', 'detectShadows': '(True)'}), '(history=5, detectShadows=True)\n', (7314, 7345), False, 'import cv2\n'), ((11683, 11718), 'cv2.cvtColor', 'cv2.cvtColor', (['X', 'cv2.COLOR_RGB2GRAY'], {}), '(X, cv2.COLOR_RGB2GRAY)\n', (11695, 11718), False, 'import cv2\n'), ((11748, 11779), 'cv2.resize', 'cv2.resize', (['x', '(self.h, self.w)'], {}), '(x, (self.h, self.w))\n', (11758, 11779), False, 'import cv2\n'), ((3451, 3467), 'gym.make', 'gym.make', (['env_id'], {}), '(env_id)\n', (3459, 3467), False, 'import gym\n'), ((6376, 6409), 'gym_super_mario_bros.make', 'gym_super_mario_bros.make', (['env_id'], {}), '(env_id)\n', (6401, 6409), False, 'import gym_super_mario_bros\n'), ((7139, 7161), 'os.path.exists', 'os.path.exists', (['"""data"""'], {}), "('data')\n", (7153, 7161), False, 'import os\n'), ((7175, 7194), 'os.makedirs', 'os.makedirs', (['"""data"""'], {}), "('data')\n", (7186, 7194), False, 'import os\n'), ((2861, 2885), 'copy.copy', 'copy', (['self.visited_rooms'], {}), '(self.visited_rooms)\n', (2865, 2885), False, 'from copy import copy\n'), ((8206, 8242), 'cv2.cvtColor', 'cv2.cvtColor', (['obs', 'cv2.COLOR_BGR2RGB'], {}), '(obs, cv2.COLOR_BGR2RGB)\n', (8218, 8242), False, 'import cv2\n'), ((8344, 8388), 'cv2.cvtColor', 'cv2.cvtColor', (['temp_frame', 'cv2.COLOR_BGR2GRAY'], {}), '(temp_frame, cv2.COLOR_BGR2GRAY)\n', (8356, 8388), False, 'import cv2\n'), ((8418, 8457), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['temp_frame', '(5, 5)', '(0)'], {}), '(temp_frame, (5, 5), 0)\n', (8434, 8457), False, 'import cv2\n'), ((8600, 8640), 'cv2.bitwise_and', 'cv2.bitwise_and', (['temp_frame', 'subtr_frame'], {}), '(temp_frame, subtr_frame)\n', (8615, 8640), False, 'import cv2\n'), ((8666, 8721), 'cv2.threshold', 'cv2.threshold', (['mask_sub', '(100)', '(255)', '(0)', 'cv2.THRESH_BINARY'], {}), '(mask_sub, 100, 255, 0, cv2.THRESH_BINARY)\n', (8679, 8721), False, 'import cv2\n'), ((8744, 8805), 'cv2.findContours', 'cv2.findContours', (['thr', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(thr, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (8760, 8805), False, 'import cv2\n'), ((8829, 8856), 'imutils.grab_contours', 'imutils.grab_contours', (['cnts'], {}), '(cnts)\n', (8850, 8856), False, 'import imutils\n'), ((4394, 4410), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (4408, 4410), True, 'import numpy as np\n'), ((7609, 7625), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (7623, 7625), True, 'import numpy as np\n'), ((8278, 8314), 'cv2.cvtColor', 'cv2.cvtColor', (['obs', 'cv2.COLOR_BGR2RGB'], {}), '(obs, cv2.COLOR_BGR2RGB)\n', (8290, 8314), False, 'import cv2\n'), ((9042, 9061), 'cv2.boundingRect', 'cv2.boundingRect', (['c'], {}), '(c)\n', (9058, 9061), False, 'import cv2\n'), ((9262, 9280), 'os.listdir', 'os.listdir', (['"""data"""'], {}), "('data')\n", (9272, 9280), False, 'import os\n'), ((5140, 5166), 'numpy.mean', 'np.mean', (['self.recent_rlist'], {}), '(self.recent_rlist)\n', (5147, 5166), True, 'import numpy as np\n'), ((11034, 11060), 'numpy.mean', 'np.mean', (['self.recent_rlist'], {}), '(self.recent_rlist)\n', (11041, 11060), True, 'import numpy as np\n'), ((5694, 5712), 'PIL.Image.fromarray', 'Image.fromarray', (['X'], {}), '(X)\n', (5709, 5712), False, 'from PIL import Image\n'), ((8911, 8929), 'cv2.contourArea', 'cv2.contourArea', (['c'], {}), '(c)\n', (8926, 8929), False, 'import cv2\n'), ((8944, 8962), 'cv2.contourArea', 'cv2.contourArea', (['c'], {}), '(c)\n', (8959, 8962), False, 'import cv2\n'), ((9534, 9564), 'cv2.resize', 'cv2.resize', (['temp_obs', '(40, 40)'], {}), '(temp_obs, (40, 40))\n', (9544, 9564), False, 'import cv2\n')]
import os import time import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate from keras.layers import Input from keras.models import Model from keras.utils import plot_model, to_categorical from keras.callbacks import EarlyStopping from numpy.core.multiarray import ndarray from scipy.signal import savgol_filter from helpers.io import inputter_train, inputter_test, outputter from helpers.preprocessing import transform_proba stopper = EarlyStopping(monitor='val_loss', min_delta=0, patience=2, verbose=1) def build(_base_shape): inputer = Input(shape=_base_shape, name='input') split = Lambda(lambda x: tf.split(x, num_or_size_splits=3, axis=1))(inputer) conv1 = Conv1D(filters=16, kernel_size=11, activation='relu', padding='valid', name='conv1')(split[0]) maxpool1 = MaxPooling1D()(conv1) conv2 = Conv1D(filters=32, kernel_size=5, activation='relu', padding='valid', name='conv2')(maxpool1) maxpool2 = MaxPooling1D()(conv2) conv3 = Conv1D(filters=64, kernel_size=5, activation='relu', padding='valid', name='conv3')(maxpool2) maxpool3 = MaxPooling1D()(conv3) conv4 = Conv1D(filters=128, kernel_size=5, activation='relu', padding='valid', name='conv4')(maxpool3) maxpool4_1 = MaxPooling1D()(conv4) conv1 = Conv1D(filters=16, kernel_size=11, activation='relu', padding='valid', name='conv1_2')(split[1]) maxpool1 = MaxPooling1D()(conv1) conv2 = Conv1D(filters=32, kernel_size=5, activation='relu', padding='valid', name='conv2_2')(maxpool1) maxpool2 = MaxPooling1D()(conv2) conv3 = Conv1D(filters=64, kernel_size=5, activation='relu', padding='valid', name='conv3_2')(maxpool2) maxpool3 = MaxPooling1D()(conv3) conv4 = Conv1D(filters=128, kernel_size=5, activation='relu', padding='valid', name='conv4_2')(maxpool3) maxpool4_2 = MaxPooling1D()(conv4) conv1 = Conv1D(filters=16, kernel_size=11, activation='relu', padding='valid', name='conv1_3')(split[1]) maxpool1 = MaxPooling1D()(conv1) conv2 = Conv1D(filters=32, kernel_size=5, activation='relu', padding='valid', name='conv2_3')(maxpool1) maxpool2 = MaxPooling1D()(conv2) conv3 = Conv1D(filters=64, kernel_size=5, activation='relu', padding='valid', name='conv3_3')(maxpool2) maxpool3 = MaxPooling1D()(conv3) conv4 = Conv1D(filters=128, kernel_size=5, activation='relu', padding='valid', name='conv4_3')(maxpool3) maxpool4_3 = MaxPooling1D()(conv4) merger = Concatenate(axis=1)([maxpool4_1, maxpool4_2, maxpool4_3]) flatten = Flatten()(merger) dense1 = Dense(1024, activation='relu', name='dense1')(flatten) dense2 = Dense(512, activation='relu', name='dense2')(dense1) outputer = Dense(3, activation='softmax')(dense2) _model = Model(inputs=inputer, outputs=outputer) # type: Model return _model eeg1, eeg2, emg, lab = inputter_train() print('Each data input shape: ', eeg1.shape) data = np.concatenate((np.reshape(eeg1, (-1, 128)), np.reshape(eeg2, (-1, 128)), np.reshape(emg, (-1, 128))), axis=1) data = data[..., np.newaxis] print("Data format: ", data.shape) del eeg1 del eeg2 del emg print(lab.shape) labels = np.reshape(lab, (-1, 1)) labels = np.concatenate((labels, labels, labels, labels), axis=1) print(labels.shape) labels = np.reshape(labels, (-1, 1)) labels = np.subtract(labels, 1) labels = to_categorical(labels, num_classes=None) # type: ndarray base_shape = (data.shape[1], data.shape[2]) print('Input shape: ', base_shape) print('Label shape: ', labels.shape) print('Input done.') model = build(base_shape) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['categorical_accuracy']) print(model.summary()) plot_model(model, to_file=os.getcwd() + '/data/' + str(time.strftime("%Y%m%d-%H%M%S")) + '_model.png', show_shapes=True, show_layer_names=True, rankdir='TB') print("Unique labels: ", np.unique(lab)) model.fit(data, labels, batch_size=128, epochs=50, verbose=1, validation_split=0.1, callbacks=[stopper]) model.save_weights("/model/conv2d_model.h5") eeg1_t, eeg2_t, emg_t = inputter_test() data_t = np.concatenate((np.reshape(eeg1_t, (-1, 128)), np.reshape(eeg2_t, (-1, 128)), np.reshape(emg_t, (-1, 128))), axis=1) data_t = data_t[..., np.newaxis] del eeg1_t del eeg2_t del emg_t print("Data format: ", data_t.shape) y_pred_t = model.predict(data_t) y_pred_t = transform_proba(y_pred=y_pred_t, exponential=False) smoothened = np.reshape(y_pred_t, (2, -1)) smoothened = np.round(smoothened) print(smoothened.shape) smoothened = savgol_filter(smoothened, polyorder=1, axis=1, window_length=5, mode='nearest') plt.plot(smoothened.T[:5000, 1]) smoothened = np.round(smoothened) print(smoothened.shape) # plt.plot(y_pred_t, alpha=0.15) plt.plot(smoothened.T[:5000, 1]) plt.show() smoothened = np.reshape(smoothened, (-1, 1)) outputter(smoothened)
[ "helpers.io.inputter_train", "tensorflow.split", "scipy.signal.savgol_filter", "keras.utils.to_categorical", "keras.layers.Dense", "keras.layers.MaxPooling1D", "numpy.reshape", "matplotlib.pyplot.plot", "numpy.subtract", "keras.models.Model", "numpy.concatenate", "keras.callbacks.EarlyStopping", "numpy.round", "keras.layers.Flatten", "helpers.io.inputter_test", "keras.layers.Concatenate", "matplotlib.pyplot.show", "numpy.unique", "helpers.preprocessing.transform_proba", "time.strftime", "helpers.io.outputter", "os.getcwd", "keras.layers.Input", "keras.layers.Conv1D" ]
[((543, 612), 'keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'min_delta': '(0)', 'patience': '(2)', 'verbose': '(1)'}), "(monitor='val_loss', min_delta=0, patience=2, verbose=1)\n", (556, 612), False, 'from keras.callbacks import EarlyStopping\n'), ((2925, 2941), 'helpers.io.inputter_train', 'inputter_train', ([], {}), '()\n', (2939, 2941), False, 'from helpers.io import inputter_train, inputter_test, outputter\n'), ((3224, 3248), 'numpy.reshape', 'np.reshape', (['lab', '(-1, 1)'], {}), '(lab, (-1, 1))\n', (3234, 3248), True, 'import numpy as np\n'), ((3258, 3314), 'numpy.concatenate', 'np.concatenate', (['(labels, labels, labels, labels)'], {'axis': '(1)'}), '((labels, labels, labels, labels), axis=1)\n', (3272, 3314), True, 'import numpy as np\n'), ((3344, 3371), 'numpy.reshape', 'np.reshape', (['labels', '(-1, 1)'], {}), '(labels, (-1, 1))\n', (3354, 3371), True, 'import numpy as np\n'), ((3381, 3403), 'numpy.subtract', 'np.subtract', (['labels', '(1)'], {}), '(labels, 1)\n', (3392, 3403), True, 'import numpy as np\n'), ((3413, 3453), 'keras.utils.to_categorical', 'to_categorical', (['labels'], {'num_classes': 'None'}), '(labels, num_classes=None)\n', (3427, 3453), False, 'from keras.utils import plot_model, to_categorical\n'), ((4184, 4199), 'helpers.io.inputter_test', 'inputter_test', ([], {}), '()\n', (4197, 4199), False, 'from helpers.io import inputter_train, inputter_test, outputter\n'), ((4526, 4577), 'helpers.preprocessing.transform_proba', 'transform_proba', ([], {'y_pred': 'y_pred_t', 'exponential': '(False)'}), '(y_pred=y_pred_t, exponential=False)\n', (4541, 4577), False, 'from helpers.preprocessing import transform_proba\n'), ((4592, 4621), 'numpy.reshape', 'np.reshape', (['y_pred_t', '(2, -1)'], {}), '(y_pred_t, (2, -1))\n', (4602, 4621), True, 'import numpy as np\n'), ((4635, 4655), 'numpy.round', 'np.round', (['smoothened'], {}), '(smoothened)\n', (4643, 4655), True, 'import numpy as np\n'), ((4693, 4772), 'scipy.signal.savgol_filter', 'savgol_filter', (['smoothened'], {'polyorder': '(1)', 'axis': '(1)', 'window_length': '(5)', 'mode': '"""nearest"""'}), "(smoothened, polyorder=1, axis=1, window_length=5, mode='nearest')\n", (4706, 4772), False, 'from scipy.signal import savgol_filter\n'), ((4773, 4805), 'matplotlib.pyplot.plot', 'plt.plot', (['smoothened.T[:5000, 1]'], {}), '(smoothened.T[:5000, 1])\n', (4781, 4805), True, 'import matplotlib.pyplot as plt\n'), ((4819, 4839), 'numpy.round', 'np.round', (['smoothened'], {}), '(smoothened)\n', (4827, 4839), True, 'import numpy as np\n'), ((4897, 4929), 'matplotlib.pyplot.plot', 'plt.plot', (['smoothened.T[:5000, 1]'], {}), '(smoothened.T[:5000, 1])\n', (4905, 4929), True, 'import matplotlib.pyplot as plt\n'), ((4930, 4940), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4938, 4940), True, 'import matplotlib.pyplot as plt\n'), ((4954, 4985), 'numpy.reshape', 'np.reshape', (['smoothened', '(-1, 1)'], {}), '(smoothened, (-1, 1))\n', (4964, 4985), True, 'import numpy as np\n'), ((4987, 5008), 'helpers.io.outputter', 'outputter', (['smoothened'], {}), '(smoothened)\n', (4996, 5008), False, 'from helpers.io import inputter_train, inputter_test, outputter\n'), ((653, 691), 'keras.layers.Input', 'Input', ([], {'shape': '_base_shape', 'name': '"""input"""'}), "(shape=_base_shape, name='input')\n", (658, 691), False, 'from keras.layers import Input\n'), ((2827, 2866), 'keras.models.Model', 'Model', ([], {'inputs': 'inputer', 'outputs': 'outputer'}), '(inputs=inputer, outputs=outputer)\n', (2832, 2866), False, 'from keras.models import Model\n'), ((3982, 3996), 'numpy.unique', 'np.unique', (['lab'], {}), '(lab)\n', (3991, 3996), True, 'import numpy as np\n'), ((786, 875), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(16)', 'kernel_size': '(11)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv1"""'}), "(filters=16, kernel_size=11, activation='relu', padding='valid', name\n ='conv1')\n", (792, 875), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((896, 910), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (908, 910), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((930, 1018), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(32)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv2"""'}), "(filters=32, kernel_size=5, activation='relu', padding='valid', name=\n 'conv2')\n", (936, 1018), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1039, 1053), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1051, 1053), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1073, 1161), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(64)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv3"""'}), "(filters=64, kernel_size=5, activation='relu', padding='valid', name=\n 'conv3')\n", (1079, 1161), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1182, 1196), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1194, 1196), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1216, 1305), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(128)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv4"""'}), "(filters=128, kernel_size=5, activation='relu', padding='valid', name\n ='conv4')\n", (1222, 1305), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1328, 1342), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1340, 1342), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1363, 1454), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(16)', 'kernel_size': '(11)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv1_2"""'}), "(filters=16, kernel_size=11, activation='relu', padding='valid', name\n ='conv1_2')\n", (1369, 1454), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1475, 1489), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1487, 1489), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1509, 1599), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(32)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv2_2"""'}), "(filters=32, kernel_size=5, activation='relu', padding='valid', name=\n 'conv2_2')\n", (1515, 1599), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1620, 1634), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1632, 1634), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1654, 1744), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(64)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv3_2"""'}), "(filters=64, kernel_size=5, activation='relu', padding='valid', name=\n 'conv3_2')\n", (1660, 1744), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1765, 1779), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1777, 1779), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1799, 1890), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(128)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv4_2"""'}), "(filters=128, kernel_size=5, activation='relu', padding='valid', name\n ='conv4_2')\n", (1805, 1890), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1913, 1927), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (1925, 1927), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((1948, 2039), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(16)', 'kernel_size': '(11)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv1_3"""'}), "(filters=16, kernel_size=11, activation='relu', padding='valid', name\n ='conv1_3')\n", (1954, 2039), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2060, 2074), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (2072, 2074), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2094, 2184), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(32)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv2_3"""'}), "(filters=32, kernel_size=5, activation='relu', padding='valid', name=\n 'conv2_3')\n", (2100, 2184), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2205, 2219), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (2217, 2219), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2239, 2329), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(64)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv3_3"""'}), "(filters=64, kernel_size=5, activation='relu', padding='valid', name=\n 'conv3_3')\n", (2245, 2329), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2350, 2364), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (2362, 2364), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2384, 2475), 'keras.layers.Conv1D', 'Conv1D', ([], {'filters': '(128)', 'kernel_size': '(5)', 'activation': '"""relu"""', 'padding': '"""valid"""', 'name': '"""conv4_3"""'}), "(filters=128, kernel_size=5, activation='relu', padding='valid', name\n ='conv4_3')\n", (2390, 2475), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2498, 2512), 'keras.layers.MaxPooling1D', 'MaxPooling1D', ([], {}), '()\n', (2510, 2512), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2534, 2553), 'keras.layers.Concatenate', 'Concatenate', ([], {'axis': '(1)'}), '(axis=1)\n', (2545, 2553), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2607, 2616), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (2614, 2616), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2638, 2683), 'keras.layers.Dense', 'Dense', (['(1024)'], {'activation': '"""relu"""', 'name': '"""dense1"""'}), "(1024, activation='relu', name='dense1')\n", (2643, 2683), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2706, 2750), 'keras.layers.Dense', 'Dense', (['(512)'], {'activation': '"""relu"""', 'name': '"""dense2"""'}), "(512, activation='relu', name='dense2')\n", (2711, 2750), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((2774, 2804), 'keras.layers.Dense', 'Dense', (['(3)'], {'activation': '"""softmax"""'}), "(3, activation='softmax')\n", (2779, 2804), False, 'from keras.layers import Conv1D, MaxPooling1D, Dense, Flatten, Lambda, Concatenate\n'), ((3011, 3038), 'numpy.reshape', 'np.reshape', (['eeg1', '(-1, 128)'], {}), '(eeg1, (-1, 128))\n', (3021, 3038), True, 'import numpy as np\n'), ((3040, 3067), 'numpy.reshape', 'np.reshape', (['eeg2', '(-1, 128)'], {}), '(eeg2, (-1, 128))\n', (3050, 3067), True, 'import numpy as np\n'), ((3069, 3095), 'numpy.reshape', 'np.reshape', (['emg', '(-1, 128)'], {}), '(emg, (-1, 128))\n', (3079, 3095), True, 'import numpy as np\n'), ((4226, 4255), 'numpy.reshape', 'np.reshape', (['eeg1_t', '(-1, 128)'], {}), '(eeg1_t, (-1, 128))\n', (4236, 4255), True, 'import numpy as np\n'), ((4282, 4311), 'numpy.reshape', 'np.reshape', (['eeg2_t', '(-1, 128)'], {}), '(eeg2_t, (-1, 128))\n', (4292, 4311), True, 'import numpy as np\n'), ((4338, 4366), 'numpy.reshape', 'np.reshape', (['emg_t', '(-1, 128)'], {}), '(emg_t, (-1, 128))\n', (4348, 4366), True, 'import numpy as np\n'), ((721, 762), 'tensorflow.split', 'tf.split', (['x'], {'num_or_size_splits': '(3)', 'axis': '(1)'}), '(x, num_or_size_splits=3, axis=1)\n', (729, 762), True, 'import tensorflow as tf\n'), ((3813, 3824), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3822, 3824), False, 'import os\n'), ((3842, 3872), 'time.strftime', 'time.strftime', (['"""%Y%m%d-%H%M%S"""'], {}), "('%Y%m%d-%H%M%S')\n", (3855, 3872), False, 'import time\n')]
from setuptools import setup with open('README.md') as r: desc=r.read() setup( name="fifa_simulator", version="1.0.2", description='A Python Package for Simulation of fifa-like tournament fifa_simulator', long_description=desc, long_description_content_type='text/markdown', url='https://github.com/Abhishek741119/fifa_simulator', license="MIT", author="<NAME>", author_email="<EMAIL>", classifiers=[ 'Programming Language :: Python :: 3', ], python_requires='>=3.0', packages=['fixtures'], include_package_data=True, install_requires=["pandas"], )
[ "setuptools.setup" ]
[((79, 580), 'setuptools.setup', 'setup', ([], {'name': '"""fifa_simulator"""', 'version': '"""1.0.2"""', 'description': '"""A Python Package for Simulation of fifa-like tournament fifa_simulator"""', 'long_description': 'desc', 'long_description_content_type': '"""text/markdown"""', 'url': '"""https://github.com/Abhishek741119/fifa_simulator"""', 'license': '"""MIT"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'classifiers': "['Programming Language :: Python :: 3']", 'python_requires': '""">=3.0"""', 'packages': "['fixtures']", 'include_package_data': '(True)', 'install_requires': "['pandas']"}), "(name='fifa_simulator', version='1.0.2', description=\n 'A Python Package for Simulation of fifa-like tournament fifa_simulator',\n long_description=desc, long_description_content_type='text/markdown',\n url='https://github.com/Abhishek741119/fifa_simulator', license='MIT',\n author='<NAME>', author_email='<EMAIL>', classifiers=[\n 'Programming Language :: Python :: 3'], python_requires='>=3.0',\n packages=['fixtures'], include_package_data=True, install_requires=[\n 'pandas'])\n", (84, 580), False, 'from setuptools import setup\n')]
import unittest from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.select import Select class selectMetodos (unittest.TestCase): def setUp(self): global driver driver = webdriver.Firefox() driver.get("http://www.goodstartbooks.com/pruebas/") def test1(self): opcion = driver.find_element_by_xpath("//*[@id='noImportante']/td[2]") if opcion is not None: print("Texto", opcion.text) def test2(self): opcion2 = driver.find_element_by_id("importante") if opcion2 is not None: valorAtributo=opcion2.get_attribute("class") print("Clase", valorAtributo) def tearDown(self): driver.quit() if __name__ == '__main__': unittest.main()
[ "unittest.main", "selenium.webdriver.Firefox" ]
[((711, 726), 'unittest.main', 'unittest.main', ([], {}), '()\n', (724, 726), False, 'import unittest\n'), ((233, 252), 'selenium.webdriver.Firefox', 'webdriver.Firefox', ([], {}), '()\n', (250, 252), False, 'from selenium import webdriver\n')]
# from server.controllers import transaction_controller # from server.controllers import contact_controller # from server.controllers import profile_controller # from server.controllers import currently_controller # from server.controllers import balance_controller # from server.controllers import books_controller # from server.controllers import user_controller import os from dotenv import load_dotenv from flask import Flask from flask_mysqldb import MySQL load_dotenv() db = MySQL() def create_app(): app = Flask(__name__, static_folder='../client/build', static_url_path='/') app.config['SECRET_KEY'] = os.urandom(12) # database connection credentials app.config['MYSQL_USER'] = 'b2393fd53cce34' app.config['MYSQL_PASSWORD'] = '<PASSWORD>' app.config['MYSQL_HOST'] = 'us-cdbr-east-02.cleardb.com' app.config['MYSQL_DB'] = 'heroku_c28054944c75e38' app.config['MYSQL_CURSORCLASS'] = 'DictCursor' app.config['SESSION_COOKIE_SAMESITE'] = "Strict" app.config.update( MAIL_SERVER=os.getenv("MAIL_SERVER"), MAIL_PORT=os.getenv("MAIL_PORT"), MAIL_USE_SSL=True, MAIL_USERNAME=os.getenv("MAIL_USERNAME"), MAIL_PASSWORD=os.getenv("MAIL_PASSWORD"), MAIL_DEFAULT_SENDER=os.getenv("MAIL_DEFAULT_SENDER") ) db.init_app(app) # app.register_blueprint(user_controller.bp) # # app.register_blueprint(books_controller.bp) # # app.register_blueprint(balance_controller.bp) # # app.register_blueprint(currently_controller.bp) # # app.register_blueprint(profile_controller.bp) # # app.register_blueprint(contact_controller.bp) # # app.register_blueprint(transaction_controller.bp) return app
[ "flask_mysqldb.MySQL", "os.getenv", "flask.Flask", "os.urandom", "dotenv.load_dotenv" ]
[((464, 477), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (475, 477), False, 'from dotenv import load_dotenv\n'), ((485, 492), 'flask_mysqldb.MySQL', 'MySQL', ([], {}), '()\n', (490, 492), False, 'from flask_mysqldb import MySQL\n'), ((523, 592), 'flask.Flask', 'Flask', (['__name__'], {'static_folder': '"""../client/build"""', 'static_url_path': '"""/"""'}), "(__name__, static_folder='../client/build', static_url_path='/')\n", (528, 592), False, 'from flask import Flask\n'), ((624, 638), 'os.urandom', 'os.urandom', (['(12)'], {}), '(12)\n', (634, 638), False, 'import os\n'), ((1036, 1060), 'os.getenv', 'os.getenv', (['"""MAIL_SERVER"""'], {}), "('MAIL_SERVER')\n", (1045, 1060), False, 'import os\n'), ((1080, 1102), 'os.getenv', 'os.getenv', (['"""MAIL_PORT"""'], {}), "('MAIL_PORT')\n", (1089, 1102), False, 'import os\n'), ((1153, 1179), 'os.getenv', 'os.getenv', (['"""MAIL_USERNAME"""'], {}), "('MAIL_USERNAME')\n", (1162, 1179), False, 'import os\n'), ((1203, 1229), 'os.getenv', 'os.getenv', (['"""MAIL_PASSWORD"""'], {}), "('MAIL_PASSWORD')\n", (1212, 1229), False, 'import os\n'), ((1259, 1291), 'os.getenv', 'os.getenv', (['"""MAIL_DEFAULT_SENDER"""'], {}), "('MAIL_DEFAULT_SENDER')\n", (1268, 1291), False, 'import os\n')]
# version 1.0 import csv import math # função para calcular a taxa. def calc_taxa(mf,msp,tq): return ((mf - msp) / tq) # criando uma lista para cada tipo de dado da tabela.(usando apenas as colunas necessárias para o cálculo). tempo = [] accx = [] accy = [] accz = [] vet_aceleracao = [] # vetor para armazenar os valores da aceleração. vet_massa = [] # vetor para armazenar os valores dos dados de massa. print('BASE DE DADOS:\n', end="\n") # abrindo o arquivo csv e colocando os valores de cada dado em sua respectiva lista criada acima. with open('data_baseex.csv', 'r') as file: reader = csv.reader(file) next(reader) for lin in reader: time,x,y,z = lin tempo.append(float(time)) # atribuindo os dados do tempo da base de dados na lista tempo[]. accx.append(float(x)) # atribuindo os dados da aceleração em x da base de dados na lista accx[]. accy.append(float(y)) # atribuindo os dados da aceleração em y da base de dados na lista accy[]. accz.append(float(z)) # atribuindo os dados da aceleração em z da base de dados na lista accz[]. print(lin) file.close() print('\n', end="\n") # calculo da aceleração. print('-------------------------- CALCULANDO ACELERAÇÃO ------------------------') for i in range(0, len(accx)): aceleracao = math.pow(accx[i], 2) + math.pow(accy[i], 2) + math.pow(accz[i], 2) aceleracao = math.sqrt(aceleracao) vet_aceleracao.append(aceleracao) # passando os valores da aceleração para o vetor print('Aceleração({}) = {:.4f}'.format(i,aceleracao), end="\n") print('-------------------------------------------------------------------------\n', end="\n") # calculo da força. print('-------------------------- CALCULANDO FORÇA -----------------------------') for i in range(0, len(vet_aceleracao)): print('Valor da Massa: ', end="") massa = float(input()) vet_massa.append(massa) # passando os valores da massa para o vetor. forca = massa * vet_aceleracao[i] print('Força({}) = {:.4f}\n'.format(i,forca), end="\n") print('-------------------------------------------------------------------------\n', end='\n') # pegando valores da taxa e realizando o cálculo. print('-------------------------- VALORES DA TAXA ------------------------------') print('Valor da massa Final: ', end="") massa_final = float(input()) print('Valor da massa sem propelente: ', end="") massa_semprop = float(input()) print('Valor do tempo de queima: ', end="") temp_queima = float(input()) result_taxa = calc_taxa(massa_final,massa_semprop,temp_queima) print('Resulatado da taxa: {:.4f}'.format(result_taxa), end="\n") print('-------------------------------------------------------------------------\n', end="")
[ "math.pow", "math.sqrt", "csv.reader" ]
[((604, 620), 'csv.reader', 'csv.reader', (['file'], {}), '(file)\n', (614, 620), False, 'import csv\n'), ((1408, 1429), 'math.sqrt', 'math.sqrt', (['aceleracao'], {}), '(aceleracao)\n', (1417, 1429), False, 'import math\n'), ((1370, 1390), 'math.pow', 'math.pow', (['accz[i]', '(2)'], {}), '(accz[i], 2)\n', (1378, 1390), False, 'import math\n'), ((1324, 1344), 'math.pow', 'math.pow', (['accx[i]', '(2)'], {}), '(accx[i], 2)\n', (1332, 1344), False, 'import math\n'), ((1347, 1367), 'math.pow', 'math.pow', (['accy[i]', '(2)'], {}), '(accy[i], 2)\n', (1355, 1367), False, 'import math\n')]
import os import json import sys sys.path.append("../") from lambda_base import LambdaBase from helper import AwsHelper class GetCredentialsLambda(LambdaBase): def __init__(self): # implementation-specific args and/or kwargs pass def handle(self, event, context): print("event: {}".format(event)) sts = AwsHelper().getClient('sts') transcribeCredentials = sts.assume_role( RoleArn=os.environ['TRANSCRIBE_ACCESS_ROLEARN'], RoleSessionName="access_transcribe_role" )['Credentials'] print(transcribeCredentials) result = {} result['accessKeyId'] = transcribeCredentials['AccessKeyId'] result['secretAccessKey'] = transcribeCredentials['SecretAccessKey'] result['sessionToken'] = transcribeCredentials['SessionToken'] result['region'] = os.environ['AWS_REGION'] return { "isBase64Encoded": False, "statusCode": 200, 'body': json.dumps(result), "headers": { 'Content-Type': 'application/json', 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Headers': '*', 'Access-Control-Allow-Methods': 'GET,POST,OPTIONS' } } lambda_handler = GetCredentialsLambda.get_handler() # input values for args and/or kwargs
[ "helper.AwsHelper", "json.dumps", "sys.path.append" ]
[((34, 56), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (49, 56), False, 'import sys\n'), ((988, 1006), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (998, 1006), False, 'import json\n'), ((339, 350), 'helper.AwsHelper', 'AwsHelper', ([], {}), '()\n', (348, 350), False, 'from helper import AwsHelper\n')]
from django.shortcuts import redirect def index(request): return redirect('/blog/')
[ "django.shortcuts.redirect" ]
[((67, 85), 'django.shortcuts.redirect', 'redirect', (['"""/blog/"""'], {}), "('/blog/')\n", (75, 85), False, 'from django.shortcuts import redirect\n')]
# -*- coding: utf-8 -*- """Generate numpy data from .edf files.""" # Author: <NAME> <<EMAIL>> import os from tqdm import tqdm from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from urllib.request import urlretrieve import zipfile import mne import numpy as np import pandas as pd def generate_df(src_dir): def is_responder(row): if row['Healthy']: return 'h' else: if row['Subject Number'] < 17: return 'r' else: return 'nr' data_paths = [os.path.abspath(os.path.join(src_dir, data_dir)) for data_dir in os.listdir(src_dir)] subject_number = [int(os.path.basename(path).split()[1][1:]) for path in data_paths] healthy = [True if 'H ' in path else False for path in data_paths] mdd = [True if 'MDD ' in path else False for path in data_paths] eo = [True if ' EO' in path else False for path in data_paths] ec = [True if ' EC' in path else False for path in data_paths] erp = [True if ' TASK' in path else False for path in data_paths] mapping_dict = {'Path': data_paths, 'Subject Number': subject_number, 'Healthy': healthy, 'MDD': mdd, 'EO': eo, 'EC': ec, 'ERP': erp} data = pd.DataFrame(mapping_dict) data['Responder'] = data.apply(is_responder, axis=1) eyes_closed = data[data['EC'] == True].copy() eyes_closed.drop(['EC', 'EO', 'ERP'], axis=1, inplace=True) eyes_opened = data[data['EO'] == True].copy() eyes_opened.drop(['EC', 'EO', 'ERP'], axis=1, inplace=True) df = pd.concat([eyes_opened, eyes_closed]) return df def generate_data(src_dir, dst_dir, n_channels=19): """Loads each trial, multiplies by 1e6 and saves the normalized array as numpy array. """ ignore = ['H S14 EO.edf', 'H S18 EO.edf', 'H S19 EO.edf', 'H S21 EO.edf', 'H S22 EO.edf', 'H S23 EO.edf', 'H S26 EO.edf', 'H S4 EO.edf', 'H S5 EO.edf', 'H S8 EO.edf', 'H S9 EO.edf', 'MDD S23 EO.edf', 'MDD S5 EO.edf', 'H S13 EC.edf', 'H S14 EC.edf', 'H S15 EC.edf', 'H S19 EC.edf', 'H S21 EC.edf', 'H S23 EC.edf', 'H S26 EC.edf', 'H S4 EC.edf', 'H S5 EC.edf', 'H S8 EC.edf', 'MDD S27 EC.edf'] df = generate_df(src_dir) s = df.iloc[0] raw = mne.io.read_raw_edf(s['Path'], preload=True, verbose=False) raw.pick_types(eeg=True) channels = raw.ch_names[:n_channels] if not os.path.exists(dst_dir): os.mkdir(dst_dir) print('Loading samples ...') with tqdm(total=len(df)) as pbar: for i, subject in enumerate(df.values): path = subject[0] file_name = os.path.basename(path) if file_name in ignore: print('ignored ', file_name) pbar.update(1) continue raw = mne.io.read_raw_edf(path, preload=True, verbose=False) raw.pick_types(eeg=True) raw.pick_channels(channels) arr = raw.get_data() * 1e6 label = subject[-1] path_to_save = os.path.join(dst_dir, 's{}_{}.npy'.format(i + 1, label)) np.save(path_to_save, arr) pbar.update(1) return def download_data(download_dir): zip_file_name = 'eeg_data.zip' zip_file_path = os.path.join(download_dir, zip_file_name) data_dir = os.path.join(download_dir, 'eeg_data') if os.path.exists(data_dir): print('Data exists.') return elif os.path.exists(zip_file_path): print('Zip file exists.') else: url = 'https://ndownloader.figshare.com/articles/4244171/versions/2' print('Downloading file {} ...'.format(zip_file_name)) urlretrieve(url, zip_file_path) print('File downloaded to ', zip_file_path) with zipfile.ZipFile(zip_file_path, 'r') as zip_ref: zip_ref.extractall(data_dir) print('Zip file extracted to ', data_dir) os.remove(os.path.join(data_dir, '6921143_H S15 EO.edf')) os.rename(os.path.join(data_dir, '6921959_H S15 EO.edf'), os.path.join(data_dir, 'H S15 EO.edf')) if __name__ == '__main__': parser = ArgumentParser(description='', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('--data_dir', required=True, type=str, help='Complete path to the folder containing edf data.') parser.add_argument('--dst_folder', required=False, type=str, default='data') args = parser.parse_args() src_dir = args.data_dir dst_dir = os.path.abspath(os.path.join(os.path.dirname(src_dir), args.dst_folder)) generate_data(src_dir=src_dir, dst_dir=dst_dir)
[ "os.path.exists", "os.listdir", "argparse.ArgumentParser", "zipfile.ZipFile", "urllib.request.urlretrieve", "os.path.join", "os.path.dirname", "mne.io.read_raw_edf", "os.mkdir", "os.path.basename", "pandas.DataFrame", "pandas.concat", "numpy.save" ]
[((1244, 1270), 'pandas.DataFrame', 'pd.DataFrame', (['mapping_dict'], {}), '(mapping_dict)\n', (1256, 1270), True, 'import pandas as pd\n'), ((1568, 1605), 'pandas.concat', 'pd.concat', (['[eyes_opened, eyes_closed]'], {}), '([eyes_opened, eyes_closed])\n', (1577, 1605), True, 'import pandas as pd\n'), ((2272, 2331), 'mne.io.read_raw_edf', 'mne.io.read_raw_edf', (["s['Path']"], {'preload': '(True)', 'verbose': '(False)'}), "(s['Path'], preload=True, verbose=False)\n", (2291, 2331), False, 'import mne\n'), ((3273, 3314), 'os.path.join', 'os.path.join', (['download_dir', 'zip_file_name'], {}), '(download_dir, zip_file_name)\n', (3285, 3314), False, 'import os\n'), ((3330, 3368), 'os.path.join', 'os.path.join', (['download_dir', '"""eeg_data"""'], {}), "(download_dir, 'eeg_data')\n", (3342, 3368), False, 'import os\n'), ((3377, 3401), 'os.path.exists', 'os.path.exists', (['data_dir'], {}), '(data_dir)\n', (3391, 3401), False, 'import os\n'), ((4125, 4202), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '""""""', 'formatter_class': 'ArgumentDefaultsHelpFormatter'}), "(description='', formatter_class=ArgumentDefaultsHelpFormatter)\n", (4139, 4202), False, 'from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter\n'), ((2414, 2437), 'os.path.exists', 'os.path.exists', (['dst_dir'], {}), '(dst_dir)\n', (2428, 2437), False, 'import os\n'), ((2447, 2464), 'os.mkdir', 'os.mkdir', (['dst_dir'], {}), '(dst_dir)\n', (2455, 2464), False, 'import os\n'), ((3457, 3486), 'os.path.exists', 'os.path.exists', (['zip_file_path'], {}), '(zip_file_path)\n', (3471, 3486), False, 'import os\n'), ((3774, 3809), 'zipfile.ZipFile', 'zipfile.ZipFile', (['zip_file_path', '"""r"""'], {}), "(zip_file_path, 'r')\n", (3789, 3809), False, 'import zipfile\n'), ((3919, 3965), 'os.path.join', 'os.path.join', (['data_dir', '"""6921143_H S15 EO.edf"""'], {}), "(data_dir, '6921143_H S15 EO.edf')\n", (3931, 3965), False, 'import os\n'), ((3981, 4027), 'os.path.join', 'os.path.join', (['data_dir', '"""6921959_H S15 EO.edf"""'], {}), "(data_dir, '6921959_H S15 EO.edf')\n", (3993, 4027), False, 'import os\n'), ((4043, 4081), 'os.path.join', 'os.path.join', (['data_dir', '"""H S15 EO.edf"""'], {}), "(data_dir, 'H S15 EO.edf')\n", (4055, 4081), False, 'import os\n'), ((569, 600), 'os.path.join', 'os.path.join', (['src_dir', 'data_dir'], {}), '(src_dir, data_dir)\n', (581, 600), False, 'import os\n'), ((618, 637), 'os.listdir', 'os.listdir', (['src_dir'], {}), '(src_dir)\n', (628, 637), False, 'import os\n'), ((2639, 2661), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (2655, 2661), False, 'import os\n'), ((2817, 2871), 'mne.io.read_raw_edf', 'mne.io.read_raw_edf', (['path'], {'preload': '(True)', 'verbose': '(False)'}), '(path, preload=True, verbose=False)\n', (2836, 2871), False, 'import mne\n'), ((3118, 3144), 'numpy.save', 'np.save', (['path_to_save', 'arr'], {}), '(path_to_save, arr)\n', (3125, 3144), True, 'import numpy as np\n'), ((3680, 3711), 'urllib.request.urlretrieve', 'urlretrieve', (['url', 'zip_file_path'], {}), '(url, zip_file_path)\n', (3691, 3711), False, 'from urllib.request import urlretrieve\n'), ((4509, 4533), 'os.path.dirname', 'os.path.dirname', (['src_dir'], {}), '(src_dir)\n', (4524, 4533), False, 'import os\n'), ((666, 688), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (682, 688), False, 'import os\n')]
#!/usr/bin/env python2 # # Combine a set of a source files into a single C file. # # Overview of the process: # # * Parse user supplied C files. Add automatic #undefs at the end # of each C file to avoid defines bleeding from one file to another. # # * Combine the C files in specified order. If sources have ordering # dependencies (depends on application), order may matter. # # * Process #include statements in the combined source, categorizing # them either as "internal" (found in specified include path) or # "external". Internal includes, unless explicitly excluded, are # inlined into the result while extenal includes are left as is. # Duplicate internal #include statements are replaced with a comment. # # At every step, source and header lines are represented with explicit # line objects which keep track of original filename and line. The # output contains #line directives, if requested, to ensure error # throwing and other diagnostic info will work in a useful manner when # deployed. It's also possible to generate a combined source with no # #line directives. # # Making the process deterministic is important, so that if users have # diffs that they apply to the combined source, such diffs would apply # for as long as possible. # # Limitations and notes: # # * While there are automatic #undef's for #define's introduced in each # C file, it's not possible to "undefine" structs, unions, etc. If # there are structs/unions/typedefs with conflicting names, these # have to be resolved in the source files first. # # * Because duplicate #include statements are suppressed, currently # assumes #include statements are not conditional. # # * A system header might be #include'd in multiple source files with # different feature defines (like _BSD_SOURCE). Because the #include # file will only appear once in the resulting source, the first # occurrence wins. The result may not work correctly if the feature # defines must actually be different between two or more source files. # import logging import sys logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='%(name)-21s %(levelname)-7s %(message)s') logger = logging.getLogger('combine_src.py') logger.setLevel(logging.INFO) import os import re import json import optparse import logging # Include path for finding include files which are amalgamated. include_paths = [] # Include files specifically excluded from being inlined. include_excluded = [] class File: filename_full = None filename = None lines = None def __init__(self, filename, lines): self.filename = os.path.basename(filename) self.filename_full = filename self.lines = lines class Line: filename_full = None filename = None lineno = None data = None def __init__(self, filename, lineno, data): self.filename = os.path.basename(filename) self.filename_full = filename self.lineno = lineno self.data = data def readFile(filename): lines = [] with open(filename, 'rb') as f: lineno = 0 for line in f: lineno += 1 if len(line) > 0 and line[-1] == '\n': line = line[:-1] lines.append(Line(filename, lineno, line)) return File(filename, lines) def lookupInclude(incfn): re_sep = re.compile(r'/|\\') inccomp = re.split(re_sep, incfn) # split include path, support / and \ for path in include_paths: fn = apply(os.path.join, [ path ] + inccomp) if os.path.exists(fn): return fn # Return full path to first match return None def addAutomaticUndefs(f): defined = {} re_def = re.compile(r'#define\s+(\w+).*$') re_undef = re.compile(r'#undef\s+(\w+).*$') for line in f.lines: m = re_def.match(line.data) if m is not None: #logger.debug('DEFINED: %s' % repr(m.group(1))) defined[m.group(1)] = True m = re_undef.match(line.data) if m is not None: # Could just ignore #undef's here: we'd then emit # reliable #undef's (though maybe duplicates) at # the end. #logger.debug('UNDEFINED: %s' % repr(m.group(1))) if defined.has_key(m.group(1)): del defined[m.group(1)] # Undefine anything that seems to be left defined. This not a 100% # process because some #undef's might be conditional which we don't # track at the moment. Note that it's safe to #undef something that's # not defined. keys = sorted(defined.keys()) # deterministic order if len(keys) > 0: #logger.debug('STILL DEFINED: %r' % repr(defined.keys())) f.lines.append(Line(f.filename, len(f.lines) + 1, '')) f.lines.append(Line(f.filename, len(f.lines) + 1, '/* automatic undefs */')) for k in keys: logger.debug('automatic #undef for ' + k) f.lines.append(Line(f.filename, len(f.lines) + 1, '#undef %s' % k)) def createCombined(files, prologue_filename, line_directives): res = [] line_map = [] # indicate combined source lines where uncombined file/line would change metadata = { 'line_map': line_map } emit_state = [ None, None ] # curr_filename, curr_lineno def emit(line): if isinstance(line, (str, unicode)): res.append(line) emit_state[1] += 1 else: if line.filename != emit_state[0] or line.lineno != emit_state[1]: if line_directives: res.append('#line %d "%s"' % (line.lineno, line.filename)) line_map.append({ 'original_file': line.filename, 'original_line': line.lineno, 'combined_line': len(res) + 1 }) res.append(line.data) emit_state[0] = line.filename emit_state[1] = line.lineno + 1 included = {} # headers already included if prologue_filename is not None: with open(prologue_filename, 'rb') as f: for line in f.read().split('\n'): res.append(line) re_inc = re.compile(r'^#include\s+(<|\")(.*?)(>|\").*$') # Process a file, appending it to the result; the input may be a # source or an include file. #include directives are handled # recursively. def processFile(f): logger.debug('Process file: ' + f.filename) for line in f.lines: if not line.data.startswith('#include'): emit(line) continue m = re_inc.match(line.data) if m is None: raise Exception('Couldn\'t match #include line: %s' % repr(line.data)) incpath = m.group(2) if incpath in include_excluded: # Specific include files excluded from the # inlining / duplicate suppression process. emit(line) # keep as is continue if included.has_key(incpath): # We suppress duplicate includes, both internal and # external, based on the assumption that includes are # not behind #if defined() checks. This is the case for # Duktape (except for the include files excluded). emit('/* #include %s -> already included */' % incpath) continue included[incpath] = True # An include file is considered "internal" and is amalgamated # if it is found in the include path provided by the user. incfile = lookupInclude(incpath) if incfile is not None: logger.debug('Include considered internal: %s -> %s' % (repr(line.data), repr(incfile))) emit('/* #include %s */' % incpath) processFile(readFile(incfile)) else: logger.debug('Include considered external: %s' % repr(line.data)) emit(line) # keep as is for f in files: processFile(f) return '\n'.join(res) + '\n', metadata def main(): global include_paths, include_excluded parser = optparse.OptionParser() parser.add_option('--include-path', dest='include_paths', action='append', default=[], help='Include directory for "internal" includes, can be specified multiple times') parser.add_option('--include-exclude', dest='include_excluded', action='append', default=[], help='Include file excluded from being considered internal (even if found in include dirs)') parser.add_option('--prologue', dest='prologue', help='Prologue to prepend to start of file') parser.add_option('--output-source', dest='output_source', help='Output source filename') parser.add_option('--output-metadata', dest='output_metadata', help='Output metadata filename') parser.add_option('--line-directives', dest='line_directives', action='store_true', default=False, help='Use #line directives in combined source') parser.add_option('--quiet', dest='quiet', action='store_true', default=False, help='Suppress info messages (show warnings)') parser.add_option('--verbose', dest='verbose', action='store_true', default=False, help='Show verbose debug messages') (opts, args) = parser.parse_args() assert(opts.include_paths is not None) include_paths = opts.include_paths # global for easy access include_excluded = opts.include_excluded assert(opts.output_source) assert(opts.output_metadata) # Log level. if opts.quiet: logger.setLevel(logging.WARNING) elif opts.verbose: logger.setLevel(logging.DEBUG) # Read input files, add automatic #undefs sources = args files = [] for fn in sources: res = readFile(fn) logger.debug('Add automatic undefs for: ' + fn) addAutomaticUndefs(res) files.append(res) combined_source, metadata = \ createCombined(files, opts.prologue, opts.line_directives) with open(opts.output_source, 'wb') as f: f.write(combined_source) with open(opts.output_metadata, 'wb') as f: f.write(json.dumps(metadata, indent=4)) logger.info('Combined %d source files, %d bytes written to %s' % (len(files), len(combined_source), opts.output_source)) if __name__ == '__main__': main()
[ "logging.basicConfig", "re.split", "logging.getLogger", "os.path.exists", "re.compile", "json.dumps", "optparse.OptionParser", "os.path.basename" ]
[((2135, 2248), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'stream': 'sys.stdout', 'format': '"""%(name)-21s %(levelname)-7s %(message)s"""'}), "(level=logging.INFO, stream=sys.stdout, format=\n '%(name)-21s %(levelname)-7s %(message)s')\n", (2154, 2248), False, 'import logging\n'), ((2253, 2288), 'logging.getLogger', 'logging.getLogger', (['"""combine_src.py"""'], {}), "('combine_src.py')\n", (2270, 2288), False, 'import logging\n'), ((3421, 3441), 're.compile', 're.compile', (['"""/|\\\\\\\\"""'], {}), "('/|\\\\\\\\')\n", (3431, 3441), False, 'import re\n'), ((3456, 3479), 're.split', 're.split', (['re_sep', 'incfn'], {}), '(re_sep, incfn)\n', (3464, 3479), False, 'import re\n'), ((3768, 3802), 're.compile', 're.compile', (['"""#define\\\\s+(\\\\w+).*$"""'], {}), "('#define\\\\s+(\\\\w+).*$')\n", (3778, 3802), False, 'import re\n'), ((3817, 3850), 're.compile', 're.compile', (['"""#undef\\\\s+(\\\\w+).*$"""'], {}), "('#undef\\\\s+(\\\\w+).*$')\n", (3827, 3850), False, 'import re\n'), ((6247, 6296), 're.compile', 're.compile', (['"""^#include\\\\s+(<|\\\\")(.*?)(>|\\\\").*$"""'], {}), '(\'^#include\\\\s+(<|\\\\")(.*?)(>|\\\\").*$\')\n', (6257, 6296), False, 'import re\n'), ((8263, 8286), 'optparse.OptionParser', 'optparse.OptionParser', ([], {}), '()\n', (8284, 8286), False, 'import optparse\n'), ((2689, 2715), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (2705, 2715), False, 'import os\n'), ((2946, 2972), 'os.path.basename', 'os.path.basename', (['filename'], {}), '(filename)\n', (2962, 2972), False, 'import os\n'), ((3615, 3633), 'os.path.exists', 'os.path.exists', (['fn'], {}), '(fn)\n', (3629, 3633), False, 'import os\n'), ((10234, 10264), 'json.dumps', 'json.dumps', (['metadata'], {'indent': '(4)'}), '(metadata, indent=4)\n', (10244, 10264), False, 'import json\n')]
import unittest from mock import MagicMock from tests.KeypadGPIOStub import KeypadGPIOStub from keypad.MatrixKeypad import MatrixKeypad class TestStringMethods(unittest.TestCase): def setUp(self): key_map = [ [1, 2, 3, "A"], [4, 5, 6, "B"], [7, 8, 9, "C"], ["*", 0, "#", "D"] ] rows = [29, 31, 33, 35] columns = [37, 36, 38, 40] self.gpio = KeypadGPIOStub() self.key_matrix = MatrixKeypad(key_map, rows, columns, self.gpio) def test_init(self): key_map = [ [1, 2, 3, "A"], [4, 5, 6, "B"], [7, 8, 9, "C"], ["*", 0, "#", "D"] ] rows = [] columns = [] self.gpio.setmode = MagicMock() self.key_matrix = MatrixKeypad(key_map, rows, columns, self.gpio) self.gpio.setmode.assert_called_with("") def test_get_key_gpio_setup(self): self.gpio.setup = MagicMock() self.key_matrix.get_key() expected_setup = [ "call([37, 36, 38, 40], 'out')", "call([29, 31, 33, 35], '', pull_up_down='')", "call(29, '', pull_up_down='')", "call(31, '', pull_up_down='')", "call(33, '', pull_up_down='')", "call(35, '', pull_up_down='')", "call([37, 36, 38, 40], '', pull_up_down='')", ]; for item in self.gpio.setup.call_args_list: self.assertIn(str(item), expected_setup, "Setup of " + str(item) + " not found.") self.assertEquals(4, self.gpio.setup.call_count) def test_get_key_gpio_output(self): self.gpio.output = MagicMock() self.key_matrix.get_key() expected_output = [ "call(37, 0)", "call(36, 0)", "call(38, 0)", "call(40, 0)", ]; for item in self.gpio.output.call_args_list: self.assertIn(str(item), expected_output) self.assertEquals(4, self.gpio.output.call_count) @staticmethod def my_side_effect(*args, **kwargs): if args[0] == 29: return 0 elif args[0] == 37: return 1 else: return 2 def test_get_key_reads_input(self): self.gpio.input = MagicMock(side_effect=self.my_side_effect) self.key_matrix.get_key() self.assertEquals(8, self.gpio.input.call_count) def test_get_key_one_one(self): self.gpio.input = MagicMock(side_effect=self.my_side_effect) pressed_key = self.key_matrix.get_key() self.assertEquals(1, pressed_key) def test_get_key_round_trip(self): self.gpio.input = MagicMock(side_effect=self.my_side_effect) self.gpio.setup = MagicMock() self.gpio.output = MagicMock() self.key_matrix.get_key() self.assertEquals(8, self.gpio.input.call_count) self.assertEquals(5, self.gpio.output.call_count) self.assertEquals(6, self.gpio.setup.call_count) if __name__ == '__main__': unittest.main()
[ "unittest.main", "tests.KeypadGPIOStub.KeypadGPIOStub", "keypad.MatrixKeypad.MatrixKeypad", "mock.MagicMock" ]
[((3043, 3058), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3056, 3058), False, 'import unittest\n'), ((435, 451), 'tests.KeypadGPIOStub.KeypadGPIOStub', 'KeypadGPIOStub', ([], {}), '()\n', (449, 451), False, 'from tests.KeypadGPIOStub import KeypadGPIOStub\n'), ((478, 525), 'keypad.MatrixKeypad.MatrixKeypad', 'MatrixKeypad', (['key_map', 'rows', 'columns', 'self.gpio'], {}), '(key_map, rows, columns, self.gpio)\n', (490, 525), False, 'from keypad.MatrixKeypad import MatrixKeypad\n'), ((764, 775), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (773, 775), False, 'from mock import MagicMock\n'), ((802, 849), 'keypad.MatrixKeypad.MatrixKeypad', 'MatrixKeypad', (['key_map', 'rows', 'columns', 'self.gpio'], {}), '(key_map, rows, columns, self.gpio)\n', (814, 849), False, 'from keypad.MatrixKeypad import MatrixKeypad\n'), ((965, 976), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (974, 976), False, 'from mock import MagicMock\n'), ((1666, 1677), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (1675, 1677), False, 'from mock import MagicMock\n'), ((2285, 2327), 'mock.MagicMock', 'MagicMock', ([], {'side_effect': 'self.my_side_effect'}), '(side_effect=self.my_side_effect)\n', (2294, 2327), False, 'from mock import MagicMock\n'), ((2483, 2525), 'mock.MagicMock', 'MagicMock', ([], {'side_effect': 'self.my_side_effect'}), '(side_effect=self.my_side_effect)\n', (2492, 2525), False, 'from mock import MagicMock\n'), ((2683, 2725), 'mock.MagicMock', 'MagicMock', ([], {'side_effect': 'self.my_side_effect'}), '(side_effect=self.my_side_effect)\n', (2692, 2725), False, 'from mock import MagicMock\n'), ((2752, 2763), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2761, 2763), False, 'from mock import MagicMock\n'), ((2791, 2802), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (2800, 2802), False, 'from mock import MagicMock\n')]
from hakka import HakkaRedisClient from os import environ if __name__ == '__main__': client = HakkaRedisClient( host=environ.get('REDIS_HOST', 'localhost'), port=environ.get('REDIS_PORT', 6379) ) message = { "name": "hakka", "reading": "books" } for i in range(10): message.update({ "msg": "Hello World x {}!".format(i), }) client.set_value('hello:msg', message)
[ "os.environ.get" ]
[((130, 168), 'os.environ.get', 'environ.get', (['"""REDIS_HOST"""', '"""localhost"""'], {}), "('REDIS_HOST', 'localhost')\n", (141, 168), False, 'from os import environ\n'), ((183, 214), 'os.environ.get', 'environ.get', (['"""REDIS_PORT"""', '(6379)'], {}), "('REDIS_PORT', 6379)\n", (194, 214), False, 'from os import environ\n')]
# -*- coding: utf-8 -*- """ test_pandas ~~~~~~~~~~~ Test optional pandas functionality. """ import pytest from pubchempy import * import logging log = logging.getLogger(__name__) # Import pandas as pd, skipping tests in this module if pandas is not installed pd = pytest.importorskip('pandas') def test_compounds_dataframe(): """""" df = get_compounds('C20H41Br', 'formula', as_dataframe=True) assert df.ndim == 2 assert df.index.names == ['cid'] assert len(df.index) > 5 columns = df.columns.values.tolist() assert 'atom_stereo_count' in columns assert 'atoms' in columns assert 'canonical_smiles' in columns assert 'exact_mass' in columns def test_substances_dataframe(): df = get_substances([1, 2, 3, 4], as_dataframe=True) assert df.ndim == 2 assert df.index.names == ['sid'] assert len(df.index) == 4 assert df.columns.values.tolist() == ['source_id', 'source_name', 'standardized_cid', 'synonyms'] def test_properties_dataframe(): df = get_properties(['isomeric_smiles', 'xlogp', 'inchikey'], '1,2,3,4', 'cid', as_dataframe=True) assert df.ndim == 2 assert df.index.names == ['CID'] assert len(df.index) == 4 assert df.columns.values.tolist() == ['InChIKey', 'IsomericSMILES', 'XLogP'] def test_compound_series(): s = Compound.from_cid(241).to_series() assert isinstance(s, pd.Series) def test_substance_series(): s = Substance.from_sid(1234).to_series() assert isinstance(s, pd.Series) def test_compound_to_frame(): s = compounds_to_frame(Compound.from_cid(241)) assert isinstance(s, pd.DataFrame) def test_substance_to_frame(): s = substances_to_frame(Substance.from_sid(1234)) assert isinstance(s, pd.DataFrame)
[ "logging.getLogger", "pytest.importorskip" ]
[((157, 184), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (174, 184), False, 'import logging\n'), ((272, 301), 'pytest.importorskip', 'pytest.importorskip', (['"""pandas"""'], {}), "('pandas')\n", (291, 301), False, 'import pytest\n')]
from functools import reduce from django.utils.safestring import mark_safe from django.utils.translation import ugettext from pyston.exception import RESTException from pyston.utils import rfs, LOOKUP_SEP from pyston.utils.helpers import get_field_or_none, get_method_or_none from pyston.serializer import get_resource_or_none from .exceptions import OrderIdentifierError from .parsers import DefaultOrderParser, OrderParserError from .utils import DIRECTION from .sorters import DefaultSorter def get_allowed_order_fields_rfs_from_model(model): return rfs(model._rest_meta.extra_order_fields).join(rfs(model._rest_meta.order_fields)) class ModelOrderManager: """ Order manager is used inside model resource for order response queryset according to input values. This is abstract class that provides methods to obtain concrete order strings from resource and model methods and fields. """ def _get_real_field_name(self, resource, field_name): return resource.renamed_fields.get(field_name, field_name) if resource else field_name def _get_sorter_from_method(self, method, identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs): """ :param method: method from which we can get order string. :param identifiers_prefix: because order strings are recursive if model relations property contains list of identifiers that was used for recursive searching the order string. :param identifiers: list of identifiers that conclusively identifies order string. :param direction: direction of ordering ASC or DESC. :param model: django model class. :param resource: resource object. :param request: django HTTP request. :param order_fields_rfs: RFS of fields that is allowed to order. :return: db order method string that is obtained from method. """ if hasattr(method, 'order_by'): # If method has order_by attribute order string is being searched according to this value. order_identifiers = method.order_by.split(LOOKUP_SEP) # Because method must be inside allowed order fields RFS, we must add value order_by of the method # to the next RFS. next_order_fields_rfs = rfs(order_identifiers) return self._get_sorter_recursive( identifiers_prefix, order_identifiers, direction, model, resource, request, next_order_fields_rfs ) if not identifiers_prefix and hasattr(method, 'sorter'): return method.sorter(identifiers_prefix + identifiers, direction) raise OrderIdentifierError def _get_sorter_from_resource(self, identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs): """ :param identifiers_prefix: because order strings are recursive if model relations property contains list of identifiers that was used for recursive searching the order string. :param identifiers: list of identifiers that conclusively identifies order string. :param direction: direction of ordering ASC or DESC. :param model: django model class. :param resource: resource object. :param request: django HTTP request. :param order_fields_rfs: RFS of fields that is allowed to order. :return: db order method string that is obtained from resource object. """ full_identifiers_string = self._get_real_field_name(resource, LOOKUP_SEP.join(identifiers)) resource_method = resource.get_method_returning_field_value(full_identifiers_string) if resource else None if full_identifiers_string in order_fields_rfs and resource_method: return self._get_sorter_from_method(resource_method, identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs) def _get_sorter_from_model(self, identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs): """ :param identifiers_prefix: because order strings are recursive if model relations property contains list of identifiers that was used for recursive searching the order string. :param identifiers: list of identifiers that conclusively identifies order string. :param direction: direction of ordering ASC or DESC. :param model: django model class. :param resource: resource object. :param request: django HTTP request. :param order_fields_rfs: RFS of fields that is allowed to order. :return: db order method string that is obtained from model fields or methods. """ current_identifier = self._get_real_field_name(resource, identifiers[0]) identifiers_suffix = identifiers[1:] if current_identifier not in order_fields_rfs: raise OrderIdentifierError model_field = get_field_or_none(model, current_identifier) model_method = get_method_or_none(model, current_identifier) if model_field and not identifiers_suffix and (not model_field.is_relation or model_field.related_model): return DefaultSorter(identifiers_prefix + identifiers, direction) elif model_field and model_field.is_relation and model_field.related_model: next_model = model_field.related_model next_resource = get_resource_or_none(request, next_model, getattr(resource, 'resource_typemapper', None)) return self._get_sorter_recursive( identifiers_prefix + [identifiers[0]], identifiers[1:], direction, next_model, next_resource, request, order_fields_rfs[current_identifier].subfieldset ) elif model_method and not identifiers_suffix: return self._get_sorter_from_method( model_method, identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs ) def _get_sorter_recursive(self, identifiers_prefix, identifiers, direction, model, resource, request, extra_order_fields_rfs=None): """ :param identifiers_prefix: because order strings are recursive if model relations property contains list of identifiers that was used for recursive searching the order string. :param identifiers: list of identifiers that conclusively identifies order string. :param direction: direction of ordering ASC or DESC. :param model: django model class. :param resource: resource object. :param request: django HTTP request. :param extra_order_fields_rfs: RFS of fields that is allowed to order. :return: method search resursice order string with order_string_from_model or order_string_from_resource getters. """ extra_order_fields_rfs = rfs() if extra_order_fields_rfs is None else extra_order_fields_rfs order_fields_rfs = ( extra_order_fields_rfs.join( resource.get_order_fields_rfs() if resource else get_allowed_order_fields_rfs_from_model(model) ) ) order_string = ( self._get_sorter_from_resource( identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs) or self._get_sorter_from_model( identifiers_prefix, identifiers, direction, model, resource, request, order_fields_rfs) ) if not order_string: raise OrderIdentifierError return order_string def get_sorter(self, identifiers, direction, resource, request): """ :param identifiers: list of identifiers that conclusively identifies a order string. :param direction: direction of ordering ASC or DESC. :param resource: resource object. :param request: django HTTP request. :return: method returns filter string according to input identifiers, resource and request. """ return self._get_sorter_recursive([], identifiers, direction, resource.model, resource, request) class ParserModelOrderManager(ModelOrderManager): """ Manager that uses parser to parse input order data to the list of order strings. """ parser = None def _get_sorters(self, parsed_order_terms, resource, request): """ Converts order terms to sorter classes """ sorters = [] for ordering_term in parsed_order_terms: try: sorters.append(self.get_sorter(ordering_term.identifiers, ordering_term.direction, resource, request)) except OrderIdentifierError: raise RESTException( mark_safe(ugettext('Invalid identifier of ordering "{}"').format(ordering_term.source)) ) return sorters def _convert_order_terms(self, sorters): """ Converts sorters to the django query order strings. """ return [sorter.get_order_term() for sorter in sorters] def _update_queryset(self, qs, sorters): """ Update queryset for extra sorter class (it is used for annotations before ordering) """ return reduce( lambda qs, sorter: sorter.update_queryset(qs) if hasattr(sorter, 'update_queryset') else qs, sorters, qs ) def sort(self, resource, qs, request): try: parsed_order_terms = self.parser.parse(request) sorters = self._get_sorters(parsed_order_terms or (), resource, request) qs = self._update_queryset(qs, sorters) return qs.order_by(*self._convert_order_terms(sorters)) if sorters else qs except OrderParserError as ex: raise RESTException(ex) class DefaultModelOrderManager(ParserModelOrderManager): """ Default order manager. """ parser = DefaultOrderParser()
[ "pyston.utils.rfs", "pyston.utils.LOOKUP_SEP.join", "pyston.exception.RESTException", "pyston.utils.helpers.get_field_or_none", "pyston.utils.helpers.get_method_or_none", "django.utils.translation.ugettext" ]
[((608, 642), 'pyston.utils.rfs', 'rfs', (['model._rest_meta.order_fields'], {}), '(model._rest_meta.order_fields)\n', (611, 642), False, 'from pyston.utils import rfs, LOOKUP_SEP\n'), ((5097, 5141), 'pyston.utils.helpers.get_field_or_none', 'get_field_or_none', (['model', 'current_identifier'], {}), '(model, current_identifier)\n', (5114, 5141), False, 'from pyston.utils.helpers import get_field_or_none, get_method_or_none\n'), ((5165, 5210), 'pyston.utils.helpers.get_method_or_none', 'get_method_or_none', (['model', 'current_identifier'], {}), '(model, current_identifier)\n', (5183, 5210), False, 'from pyston.utils.helpers import get_field_or_none, get_method_or_none\n'), ((562, 602), 'pyston.utils.rfs', 'rfs', (['model._rest_meta.extra_order_fields'], {}), '(model._rest_meta.extra_order_fields)\n', (565, 602), False, 'from pyston.utils import rfs, LOOKUP_SEP\n'), ((2342, 2364), 'pyston.utils.rfs', 'rfs', (['order_identifiers'], {}), '(order_identifiers)\n', (2345, 2364), False, 'from pyston.utils import rfs, LOOKUP_SEP\n'), ((3608, 3636), 'pyston.utils.LOOKUP_SEP.join', 'LOOKUP_SEP.join', (['identifiers'], {}), '(identifiers)\n', (3623, 3636), False, 'from pyston.utils import rfs, LOOKUP_SEP\n'), ((7058, 7063), 'pyston.utils.rfs', 'rfs', ([], {}), '()\n', (7061, 7063), False, 'from pyston.utils import rfs, LOOKUP_SEP\n'), ((9947, 9964), 'pyston.exception.RESTException', 'RESTException', (['ex'], {}), '(ex)\n', (9960, 9964), False, 'from pyston.exception import RESTException\n'), ((8925, 8972), 'django.utils.translation.ugettext', 'ugettext', (['"""Invalid identifier of ordering "{}\\""""'], {}), '(\'Invalid identifier of ordering "{}"\')\n', (8933, 8972), False, 'from django.utils.translation import ugettext\n')]
from uuid import uuid4 class DynamoDbFixtures: @staticmethod def get_cognito_dynamo_json(): return { "address": {"S": "killians-amazing-address"}, "birthdate": {"S": "killians-amazing-birthdate"}, "email": {"S": "killians-amazing-email"}, "family_name": {"S": "killians-amazing-family_name"}, "gender": {"S": "killians-amazing-gender"}, "given_name": {"S": "killians-amazing-given_name"}, "locale": {"S": "killians-amazing-locale"}, "role": {"S": "killians-amazing-role"}, "preferred_username": {"S": "killians-amazing-preferred_username"}, } @staticmethod def get_member_no_role_dynamo_json(member_id=None): if member_id is None: member_id = str(uuid4()) return { "id": {"S": member_id}, "details": {"M": DynamoDbFixtures.get_cognito_dynamo_json()}, "manager": {"NULL": True}, "officer": {"NULL": True}, "academy_player": {"NULL": True}, "player": {"NULL": True}, } @staticmethod def get_player_dynamo_json(player_id=None): if player_id is None: player_id = str(uuid4()) return { "id": {"S": player_id}, "details": {"M": DynamoDbFixtures.get_cognito_dynamo_json()}, "manager": {"NULL": True}, "officer": {"NULL": True}, "academy_player": {"NULL": True}, "player": { "M": { "achievements": {"L": []}, "all_time_appearances": {"N": "0"}, "all_time_assists": {"N": "0"}, "all_time_goals": {"N": "0"}, "positions": {"L": []}, "season_appearances": {"N": "0"}, "season_assists": {"N": "0"}, "season_goals": {"N": "0"}, } }, } @staticmethod def get_manager_dynamo_json(manager_id=None): if manager_id is None: manager_id = str(uuid4()) return { "id": {"S": manager_id}, "details": {"M": DynamoDbFixtures.get_cognito_dynamo_json()}, "manager": { "M": { "favorite_formation": {"S": "killians-amazing-favorite_formation"}, "win_record": {"N": "0"}, "loss_record": {"N": "0"}, "achievements": {"L": []}, } }, "officer": {"NULL": True}, "academy_player": {"NULL": True}, "player": {"NULL": True}, } @staticmethod def get_fixture_dynamodb_json(): return { "home_team": {"S": "killians-amazing-home-team"}, "away_team": {"S": "killians-amazing-away-team"}, "competition": {"S": "killians-amazing-competition"}, "location": {"S": "killians-amazing-location"}, "kick_off_time": {"S": "killians-amazing-kick-off-time"}, "meeting_time": {"S": "killians-amazing-meeting-time"}, } @staticmethod def get_team_dynamodb_json(team_id=None, players=None, managers=None, fixtures=None): if team_id is None: team_id = str(uuid4()) if managers is None: managers = [] if players is None: players = [] if fixtures is None: fixtures = [{"M": DynamoDbFixtures.get_fixture_dynamodb_json()}] return { "id": {"S": team_id}, "name": {"S": "killians-amazing-team-name"}, "managers": {"L": [{"S": manager} for manager in managers]}, "players": {"L": [{"S": player} for player in players]}, "training_times": {"L": [{"S": "killians-amazing-training_times"}]}, "fixtures": {"L": fixtures}, } @staticmethod def get_news_story_dynamodb_json(story_id, key): return { "id": {"S": story_id}, "category": {"L": [{"S": "killians-cool-category"}]}, "title": {"S": "killians-terrible-title"}, "description": {"S": "killians-deceptive-description"}, "thumbnail_key": {"S": key}, }
[ "uuid.uuid4" ]
[((810, 817), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (815, 817), False, 'from uuid import uuid4\n'), ((1243, 1250), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (1248, 1250), False, 'from uuid import uuid4\n'), ((2123, 2130), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (2128, 2130), False, 'from uuid import uuid4\n'), ((3336, 3343), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (3341, 3343), False, 'from uuid import uuid4\n')]
import os import errno import torch import random from sklearn.externals import joblib import numpy as np import pandas as pd from sklearn.utils import shuffle from sklearn.preprocessing import OneHotEncoder from src.configuration.settings_module_loader import SettingsModuleLoader from src.configuration.settings_template import Settings from src.io.read_data_input import Dataset from src.run.model_runner import ModelRunner from src.tasks.bert_multilabel_train import * # If there's a GPU available... ngpu = 0 if torch.cuda.is_available(): # Tell PyTorch to use the GPU. device = torch.device("cuda") ngpu = torch.cuda.device_count() print('There are %d GPU(s) available.' % ngpu) print('We will use the GPU:', torch.cuda.get_device_name(0)) # If not... else: print('No GPU available, using the CPU instead.') device = torch.device("cpu") random.seed(42) np.random.seed(42) torch.manual_seed(42) if ngpu > 0: torch.cuda.manual_seed_all(42) def run_predictions(base_dir): tokenizer = get_bert_tokenizer() sentence_column = Settings.BERT_FEATURES.sentence_column_name data_loader = None for model_run_instance in ModelRunner.get_all_model_run_instances(): label_instance = model_run_instance.label model_dir = os.path.join(Settings.IO.BERT_MODEL_DIR, label_instance) results_per_fold_dir = os.path.join(base_dir, 'results_per_fold', label_instance) results_dir = os.path.join(base_dir, 'results', label_instance) print("\nPredicting for label: {}".format(model_run_instance.label)) X, y, le = Dataset().get(model_run_instance.label, model_run_instance.feature_source, custom_column_filters=Settings.COLUMNS.BERT_PREDICT_FILTERS) X, y = shuffle(X, y, random_state=Settings.RANDOM_STATE) print("\nNum Test Examples: {}".format(len(X))) instance_config = Settings.COLUMNS.BERT_LABELS[label_instance] BATCH_SIZE = Settings.CROSS_VALIDATION.HYPER_PARAMS.BERT['batch_size'] if \ 'batch_size' in Settings.CROSS_VALIDATION.HYPER_PARAMS.BERT else 32 MAX_LEN = Settings.CROSS_VALIDATION.HYPER_PARAMS.BERT['max_seq_len'] if 'max_seq_len' in Settings.CROSS_VALIDATION.HYPER_PARAMS.BERT else 128 num_folds = Settings.CROSS_VALIDATION.NUM_TRAIN_TEST_FOLDS num_labels = instance_config['num_labels'] if instance_config['is_multilabel']: label_list = instance_config['label_list'] else: label_list = ["0", "1"] num_labels = 2 overall_predictions = None for fold_num in range(1, num_folds+1): # paths for loading model for fold model_path = os.path.join(model_dir, str(fold_num), 'model.bin') fold_result_path = os.path.join(results_per_fold_dir, str(fold_num)) # Get data for fold print('Collecting data for fold {}'.format(fold_num)) X_test, y_test = X, y print('Num Test: ', len(y_test)) # Loading BERT model print('Loading model for fold: {}'.format(fold_num)) # Load model to make sure it works model = load_bert_model(model_path, num_labels=num_labels) # Convert labels to floats print('Parsing data for predictions...') # Evaluate model predictions, data_loader = predict_from_model(model, X_test, tokenizer, label_list=label_list, batch_size=BATCH_SIZE, max_seq_len=MAX_LEN, data_loader=data_loader) # Write results to file write_predictions_to_disk(fold_result_path, predictions,label_list) #Add to Overall Predictions if overall_predictions is None: overall_predictions = predictions else: overall_predictions[predictions.columns[2:]] += predictions[predictions.columns[2:]] print('Testing Complete.') overall_predictions[predictions.columns[2:]] /= num_folds write_predictions_to_disk(results_dir, overall_predictions, label_list) def main(): SettingsModuleLoader.init_settings() base_dir = Settings.IO.RESULTS_OUTPUT_FOLDER run_predictions(base_dir) if __name__ == '__main__': main()
[ "torch.cuda.manual_seed_all", "torch.manual_seed", "torch.cuda.get_device_name", "src.run.model_runner.ModelRunner.get_all_model_run_instances", "sklearn.utils.shuffle", "os.path.join", "torch.cuda.device_count", "random.seed", "src.io.read_data_input.Dataset", "torch.cuda.is_available", "numpy.random.seed", "src.configuration.settings_module_loader.SettingsModuleLoader.init_settings", "torch.device" ]
[((523, 548), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (546, 548), False, 'import torch\n'), ((880, 895), 'random.seed', 'random.seed', (['(42)'], {}), '(42)\n', (891, 895), False, 'import random\n'), ((896, 914), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (910, 914), True, 'import numpy as np\n'), ((915, 936), 'torch.manual_seed', 'torch.manual_seed', (['(42)'], {}), '(42)\n', (932, 936), False, 'import torch\n'), ((599, 619), 'torch.device', 'torch.device', (['"""cuda"""'], {}), "('cuda')\n", (611, 619), False, 'import torch\n'), ((631, 656), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (654, 656), False, 'import torch\n'), ((860, 879), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (872, 879), False, 'import torch\n'), ((954, 984), 'torch.cuda.manual_seed_all', 'torch.cuda.manual_seed_all', (['(42)'], {}), '(42)\n', (980, 984), False, 'import torch\n'), ((1174, 1215), 'src.run.model_runner.ModelRunner.get_all_model_run_instances', 'ModelRunner.get_all_model_run_instances', ([], {}), '()\n', (1213, 1215), False, 'from src.run.model_runner import ModelRunner\n'), ((4098, 4134), 'src.configuration.settings_module_loader.SettingsModuleLoader.init_settings', 'SettingsModuleLoader.init_settings', ([], {}), '()\n', (4132, 4134), False, 'from src.configuration.settings_module_loader import SettingsModuleLoader\n'), ((743, 772), 'torch.cuda.get_device_name', 'torch.cuda.get_device_name', (['(0)'], {}), '(0)\n', (769, 772), False, 'import torch\n'), ((1287, 1343), 'os.path.join', 'os.path.join', (['Settings.IO.BERT_MODEL_DIR', 'label_instance'], {}), '(Settings.IO.BERT_MODEL_DIR, label_instance)\n', (1299, 1343), False, 'import os\n'), ((1375, 1433), 'os.path.join', 'os.path.join', (['base_dir', '"""results_per_fold"""', 'label_instance'], {}), "(base_dir, 'results_per_fold', label_instance)\n", (1387, 1433), False, 'import os\n'), ((1456, 1505), 'os.path.join', 'os.path.join', (['base_dir', '"""results"""', 'label_instance'], {}), "(base_dir, 'results', label_instance)\n", (1468, 1505), False, 'import os\n'), ((1753, 1802), 'sklearn.utils.shuffle', 'shuffle', (['X', 'y'], {'random_state': 'Settings.RANDOM_STATE'}), '(X, y, random_state=Settings.RANDOM_STATE)\n', (1760, 1802), False, 'from sklearn.utils import shuffle\n'), ((1602, 1611), 'src.io.read_data_input.Dataset', 'Dataset', ([], {}), '()\n', (1609, 1611), False, 'from src.io.read_data_input import Dataset\n')]
import json import logging import os import re import sys from http.server import BaseHTTPRequestHandler as httpHandler from xmlrpc.client import ServerProxy from xmlrpc.server import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler from argon2 import PasswordHasher, extract_parameters from argon2.exceptions import InvalidHash, VerifyMismatchError, VerificationError from defusedxml.xmlrpc import monkey_patch from dotmap import DotMap # Monkey patch xmlrpc to protect it from attacks https://github.com/tiran/defusedxml monkey_patch() logging.basicConfig(stream=sys.stdout, format="%(asctime)s - %(levelname)s - %(message)s", level=logging.DEBUG) log = logging.getLogger() def log_message(self, format, *args): """Overrides the logging used by the xmlrpc server with our custom one""" log.info("%s - - [%s] %s" % (self.address_string(), self.log_date_time_string(), format % args)) httpHandler.log_message = log_message class LoopiaProxyFunctions: # Regex to validate domains _domain_re = re.compile("^((?!-)[A-Za-z0-9-]{1,63}(?<!-)\\.)+[A-Za-z]{2,}$") def __init__(self): self._ph = PasswordHasher() # Read and hash any un-hashed passwords with open('config/settings.json', encoding='utf-8', mode='r+t') as f: self._users = DotMap(json.load(f)) updated = False for name, user in self._users.items(): try: extract_parameters(user.password) except InvalidHash: user.password = self._ph.hash(user.password) updated = True # Update the file if we have hashed the password if updated: f.seek(0) json.dump(self._users.toDict(), f, indent=2) f.truncate() self._loopia = ServerProxy("https://api.loopia.se/RPCSERV") self._api_user = os.environ['LOOPIA_USER'] self._api_pass = os.environ['LOOPIA_PASS'] def _updateUser(self, username, password): log.debug(f"Updating user {username=}") self._users[username].password = self._ph.hash(password) with open('config/settings.json', encoding='utf-8', mode='w') as f: json.dump(self._users.toDict(), f, indent=2) # Authenticates the username against the local file def _auth(self, username, password): if username in self._users: try: user = self._users[username] self._ph.verify(user.password, password) if self._ph.check_needs_rehash(user.password): self._updateUser(username, password) return True except (VerificationError, VerifyMismatchError, InvalidHash): pass return False def _checkAndRun(self, username, password, domain, subdomain, func): # Filter out bad input if domain == "" or (subdomain is not None and subdomain == "") or not self._domain_re.match(domain): return ["BAD_INDATA"] if not self._auth(username, password): return ["AUTH_ERROR"] user = self._users[username] if domain not in user.domains: return ["UNKNOWN_ERROR"] return func() def getDomains(self, username, password): """Returns a list of domains that the account has access to""" log.info(f"getting domains: {username}") if not self._auth(username, password): return ["AUTH_ERROR"] user = self._users[username] domains = self._loopia.getDomains(self._api_user, self._api_pass) result = [] for domain in domains: if domain['domain'] in user.domains: result.append(domain) return result def getSubdomains(self, username, password, domain): """Returns a list of subdomains on the provided domain""" log.info(f"getting subdomains: {username} -> {domain}") return self._checkAndRun(username, password, domain, None, lambda: self._loopia.getSubdomains(self._api_user, self._api_pass, domain)) def getZoneRecords(self, username, password, domain, subdomain): """Returns a list of zone records for the provided subdomain on the provided domain""" log.info(f"getting zone records: {username} -> {subdomain}.{domain}") return self._checkAndRun(username, password, domain, subdomain, lambda: self._loopia.getZoneRecords(self._api_user, self._api_pass, domain, subdomain)) def addSubdomain(self, username, password, domain, subdomain): """Adds a subdomain to the provided domain""" log.info(f"adding subdomain: {username} -> {subdomain}.{domain}") return self._checkAndRun(username, password, domain, subdomain, lambda: self._loopia.addSubdomain(self._api_user, self._api_pass, domain, subdomain)) def removeSubdomain(self, username, password, domain, subdomain): """Removes a subdomain on the provided domain""" log.info(f"removing subdomain: {username} -> {subdomain}.{domain}") return self._checkAndRun(username, password, domain, subdomain, lambda: self._loopia.removeSubdomain(self._api_user, self._api_pass, domain, subdomain)) def addZoneRecord(self, username, password, domain, subdomain, record): """Adds a zone records to the provided subdomain for the provided domain""" log.info(f"adding zone record to subdomain: {username} -> {subdomain}.{domain}") return self._checkAndRun(username, password, domain, subdomain, lambda: self._loopia.addZoneRecord(self._api_user, self._api_pass, domain, subdomain, record)) def removeZoneRecord(self, username, password, domain, subdomain, record_id): """Removes a zone record from the provided subdomain for the provided domain""" log.info(f"removing zone record on subdomain: {username} -> {subdomain}.{domain}. ID: {record_id}") return self._checkAndRun(username, password, domain, subdomain, lambda: self._loopia.removeZoneRecord(self._api_user, self._api_pass, domain, subdomain, record_id)) def updateZoneRecord(self, username, password, domain, subdomain, record): """Updates a zone record on the provided subdomain for the provided domain""" if 'record_id' not in record: return 'BAD_INDATA' log.info(f"updating zone record on subdomain: {username} -> {subdomain}.{domain}. ID: {record['record_id']}") return self._checkAndRun(username, password, domain, subdomain, lambda: self._loopia.updateZoneRecord(self._api_user, self._api_pass, domain, subdomain, record)) def __close(self): self._loopia("close") def __call__(self, attr): if attr == "close": return self.__close class RequestHandler(SimpleXMLRPCRequestHandler): rpc_paths = ('/RPCSERV',) def do_GET(self): """Return 404 on all GET requests""" self.report_404() # Host available on POST http://localhost:8000/RPCSERV port = int(os.environ.get('PORT', '8000')) host = os.environ.get('HOST', 'localhost') log.info("Starting server on: " + host + ':' + str(port)) with SimpleXMLRPCServer((host, port), RequestHandler) as server: server.register_introspection_functions() proxy = LoopiaProxyFunctions() server.register_instance(proxy) try: server.serve_forever() except KeyboardInterrupt as err: log.error(f"Stopping from keyboard interrupt: {err=}") proxy("close") sys.exit(0)
[ "logging.basicConfig", "logging.getLogger", "defusedxml.xmlrpc.monkey_patch", "xmlrpc.server.SimpleXMLRPCServer", "argon2.PasswordHasher", "re.compile", "os.environ.get", "xmlrpc.client.ServerProxy", "sys.exit", "json.load", "argon2.extract_parameters" ]
[((523, 537), 'defusedxml.xmlrpc.monkey_patch', 'monkey_patch', ([], {}), '()\n', (535, 537), False, 'from defusedxml.xmlrpc import monkey_patch\n'), ((539, 655), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stdout', 'format': '"""%(asctime)s - %(levelname)s - %(message)s"""', 'level': 'logging.DEBUG'}), "(stream=sys.stdout, format=\n '%(asctime)s - %(levelname)s - %(message)s', level=logging.DEBUG)\n", (558, 655), False, 'import logging\n'), ((657, 676), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (674, 676), False, 'import logging\n'), ((7283, 7318), 'os.environ.get', 'os.environ.get', (['"""HOST"""', '"""localhost"""'], {}), "('HOST', 'localhost')\n", (7297, 7318), False, 'import os\n'), ((1015, 1078), 're.compile', 're.compile', (['"""^((?!-)[A-Za-z0-9-]{1,63}(?<!-)\\\\.)+[A-Za-z]{2,}$"""'], {}), "('^((?!-)[A-Za-z0-9-]{1,63}(?<!-)\\\\.)+[A-Za-z]{2,}$')\n", (1025, 1078), False, 'import re\n'), ((7244, 7274), 'os.environ.get', 'os.environ.get', (['"""PORT"""', '"""8000"""'], {}), "('PORT', '8000')\n", (7258, 7274), False, 'import os\n'), ((7382, 7430), 'xmlrpc.server.SimpleXMLRPCServer', 'SimpleXMLRPCServer', (['(host, port)', 'RequestHandler'], {}), '((host, port), RequestHandler)\n', (7400, 7430), False, 'from xmlrpc.server import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler\n'), ((1123, 1139), 'argon2.PasswordHasher', 'PasswordHasher', ([], {}), '()\n', (1137, 1139), False, 'from argon2 import PasswordHasher, extract_parameters\n'), ((1831, 1875), 'xmlrpc.client.ServerProxy', 'ServerProxy', (['"""https://api.loopia.se/RPCSERV"""'], {}), "('https://api.loopia.se/RPCSERV')\n", (1842, 1875), False, 'from xmlrpc.client import ServerProxy\n'), ((7730, 7741), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (7738, 7741), False, 'import sys\n'), ((1300, 1312), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1309, 1312), False, 'import json\n'), ((1435, 1468), 'argon2.extract_parameters', 'extract_parameters', (['user.password'], {}), '(user.password)\n', (1453, 1468), False, 'from argon2 import PasswordHasher, extract_parameters\n')]