code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
from rest_framework import generics, permissions, viewsets from django.core.management import call_command from rest_framework.response import Response from rest_framework.views import APIView from ..serializers import JobCategorySerializer, JobPostSerializer, RecruiterSerializer, JobPostAllSerializer, \ MatchedResumeSerializer from ..models import JobPost, JobCategory, MatchedResumes from accounts.models import Recruiter class JobCategoryListView(generics.ListAPIView): queryset = JobCategory.objects.all() serializer_class = JobCategorySerializer lookup_field = 'id' class RecruiterView(generics.RetrieveAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = RecruiterSerializer def get_object(self): return Recruiter.objects.get(user=self.request.user.id) class JobPostAllView(generics.ListAPIView): serializer_class = JobPostAllSerializer queryset = JobPost.objects.all() lookup_field = 'id' class JobPostAllDetailView(generics.RetrieveUpdateDestroyAPIView): serializer_class = JobPostAllSerializer queryset = JobPost.objects.all() lookup_field = 'id' class JobPostCreateView(APIView): permission_classes = [ permissions.IsAuthenticated ] model = Recruiter def post(self, request): recruiter = Recruiter.objects.get(user=self.request.user.id) print(recruiter) data = request.data data["recruiter"] = recruiter.id print(data["recruiter"]) serializer = JobPostSerializer(data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=201) return Response(serializer.errors, status=400) class JobPostListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = JobPostAllSerializer lookup_field = 'id' def get_queryset(self): queryset = JobPost.objects.filter(recruiter=self.request.user.recruiter) return queryset class JobPostDetailView(APIView): permission_classes = [ permissions.IsAuthenticated ] def get_object(self, id): try: return JobPost.objects.get(id=id) except JobPost.DoesNotExist as e: return Response({"error": "Given question object not found."}, status=404) def get(self, request, id=None): instance = self.get_object(id) serializer = JobPostAllSerializer(instance) return Response(serializer.data) def put(self, request, id=None): data = request.data instance = self.get_object(id) serializer = JobPostSerializer(instance, data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=200) return Response(serializer.errors, status=400) def delete(self, request, id=None): instance = self.get_object(id) instance.delete() return Response(status=204) class EvaluatePostListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = MatchedResumeSerializer def get_queryset(self): call_command('matching', self.request.user.recruiter.id) queryset = MatchedResumes.objects.filter(recruiter=self.request.user.recruiter) return queryset class MatchedResumesListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = MatchedResumeSerializer def get_queryset(self): queryset = MatchedResumes.objects.filter(recruiter=self.request.user.recruiter) return queryset # class JobPostListView(generics.ListAPIView): # queryset = JobPost.objects.all() # # permission_classes = [permissions.IsAuthenticated, ] # serializer_class = JobPostSerializer # lookup_field = 'id' # # filter_backends = [SearchFilter, OrderingFilter, ] # search_fields = [ # 'job_title', # ]
[ "accounts.models.Recruiter.objects.get", "rest_framework.response.Response", "django.core.management.call_command" ]
[((795, 843), 'accounts.models.Recruiter.objects.get', 'Recruiter.objects.get', ([], {'user': 'self.request.user.id'}), '(user=self.request.user.id)\n', (816, 843), False, 'from accounts.models import Recruiter\n'), ((1346, 1394), 'accounts.models.Recruiter.objects.get', 'Recruiter.objects.get', ([], {'user': 'self.request.user.id'}), '(user=self.request.user.id)\n', (1367, 1394), False, 'from accounts.models import Recruiter\n'), ((1708, 1747), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (1716, 1747), False, 'from rest_framework.response import Response\n'), ((2534, 2559), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (2542, 2559), False, 'from rest_framework.response import Response\n'), ((2861, 2900), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (2869, 2900), False, 'from rest_framework.response import Response\n'), ((3022, 3042), 'rest_framework.response.Response', 'Response', ([], {'status': '(204)'}), '(status=204)\n', (3030, 3042), False, 'from rest_framework.response import Response\n'), ((3248, 3304), 'django.core.management.call_command', 'call_command', (['"""matching"""', 'self.request.user.recruiter.id'], {}), "('matching', self.request.user.recruiter.id)\n", (3260, 3304), False, 'from django.core.management import call_command\n'), ((1655, 1692), 'rest_framework.response.Response', 'Response', (['serializer.data'], {'status': '(201)'}), '(serializer.data, status=201)\n', (1663, 1692), False, 'from rest_framework.response import Response\n'), ((2808, 2845), 'rest_framework.response.Response', 'Response', (['serializer.data'], {'status': '(200)'}), '(serializer.data, status=200)\n', (2816, 2845), False, 'from rest_framework.response import Response\n'), ((2322, 2389), 'rest_framework.response.Response', 'Response', (["{'error': 'Given question object not found.'}"], {'status': '(404)'}), "({'error': 'Given question object not found.'}, status=404)\n", (2330, 2389), False, 'from rest_framework.response import Response\n')]
from tensorflow.keras.preprocessing.image import img_to_array from PIL import Image import numpy as np import streamlit as st from huggingface_hub import from_pretrained_keras @st.cache(persist=True,allow_output_mutation=True,show_spinner=False,suppress_st_warning=True) def instantiate_model(): model = from_pretrained_keras("keras-io/lowlight-enhance-mirnet", compile=False) return model @st.cache(persist=True,allow_output_mutation=True,show_spinner=False,suppress_st_warning=True) def enhance_image(uploaded_image, downloaded_image): model = instantiate_model() low_light_img = Image.open(uploaded_image).convert('RGB') #width, height = low_light_img.size #low_light_img = low_light_img.resize((256,256),Image.NEAREST) image = img_to_array(low_light_img) image = image.astype('float32') / 255.0 image = np.expand_dims(image, axis = 0) output = model.predict(image) output_image = output[0] * 255.0 output_image = output_image.clip(0,255) output_image = output_image.reshape((np.shape(output_image)[0],np.shape(output_image)[1],3)) output_image = np.uint32(output_image) final_image = Image.fromarray(output_image.astype('uint8'),'RGB') final_image.save(downloaded_image) @st.cache(persist=True,allow_output_mutation=True,show_spinner=False,suppress_st_warning=True) def download_success(): st.balloons() st.success('✅ Download Successful !!')
[ "numpy.shape", "streamlit.cache", "PIL.Image.open", "streamlit.balloons", "huggingface_hub.from_pretrained_keras", "numpy.uint32", "streamlit.success", "numpy.expand_dims", "tensorflow.keras.preprocessing.image.img_to_array" ]
[((186, 286), 'streamlit.cache', 'st.cache', ([], {'persist': '(True)', 'allow_output_mutation': '(True)', 'show_spinner': '(False)', 'suppress_st_warning': '(True)'}), '(persist=True, allow_output_mutation=True, show_spinner=False,\n suppress_st_warning=True)\n', (194, 286), True, 'import streamlit as st\n'), ((416, 516), 'streamlit.cache', 'st.cache', ([], {'persist': '(True)', 'allow_output_mutation': '(True)', 'show_spinner': '(False)', 'suppress_st_warning': '(True)'}), '(persist=True, allow_output_mutation=True, show_spinner=False,\n suppress_st_warning=True)\n', (424, 516), True, 'import streamlit as st\n'), ((1283, 1383), 'streamlit.cache', 'st.cache', ([], {'persist': '(True)', 'allow_output_mutation': '(True)', 'show_spinner': '(False)', 'suppress_st_warning': '(True)'}), '(persist=True, allow_output_mutation=True, show_spinner=False,\n suppress_st_warning=True)\n', (1291, 1383), True, 'import streamlit as st\n'), ((319, 391), 'huggingface_hub.from_pretrained_keras', 'from_pretrained_keras', (['"""keras-io/lowlight-enhance-mirnet"""'], {'compile': '(False)'}), "('keras-io/lowlight-enhance-mirnet', compile=False)\n", (340, 391), False, 'from huggingface_hub import from_pretrained_keras\n'), ((784, 811), 'tensorflow.keras.preprocessing.image.img_to_array', 'img_to_array', (['low_light_img'], {}), '(low_light_img)\n', (796, 811), False, 'from tensorflow.keras.preprocessing.image import img_to_array\n'), ((870, 899), 'numpy.expand_dims', 'np.expand_dims', (['image'], {'axis': '(0)'}), '(image, axis=0)\n', (884, 899), True, 'import numpy as np\n'), ((1142, 1165), 'numpy.uint32', 'np.uint32', (['output_image'], {}), '(output_image)\n', (1151, 1165), True, 'import numpy as np\n'), ((1407, 1420), 'streamlit.balloons', 'st.balloons', ([], {}), '()\n', (1418, 1420), True, 'import streamlit as st\n'), ((1426, 1464), 'streamlit.success', 'st.success', (['"""✅ Download Successful !!"""'], {}), "('✅ Download Successful !!')\n", (1436, 1464), True, 'import streamlit as st\n'), ((618, 644), 'PIL.Image.open', 'Image.open', (['uploaded_image'], {}), '(uploaded_image)\n', (628, 644), False, 'from PIL import Image\n'), ((1066, 1088), 'numpy.shape', 'np.shape', (['output_image'], {}), '(output_image)\n', (1074, 1088), True, 'import numpy as np\n'), ((1092, 1114), 'numpy.shape', 'np.shape', (['output_image'], {}), '(output_image)\n', (1100, 1114), True, 'import numpy as np\n')]
import contextlib import shutil import tempfile @contextlib.contextmanager def tempdir(): """ This function creates, yields and removes a temporary directory. :yields: str """ tempdir_ = tempfile.mkdtemp() try: yield tempdir_ finally: shutil.rmtree(tempdir_)
[ "tempfile.mkdtemp", "shutil.rmtree" ]
[((211, 229), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (227, 229), False, 'import tempfile\n'), ((284, 307), 'shutil.rmtree', 'shutil.rmtree', (['tempdir_'], {}), '(tempdir_)\n', (297, 307), False, 'import shutil\n')]
# # This file is part of stac2odc # Copyright (C) 2020 INPE. # # stac2odc is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. # import os import click import stac from datacube.index import MissingRecordError from datacube.index.hl import Doc2Dataset from datacube.scripts.dataset import remap_uri_from_doc, dataset_stream from datacube.ui.common import ui_path_doc_stream from datacube.utils import InvalidDocException from datacube.utils.documents import read_documents from loguru import logger import stac2odc.collection import stac2odc.item from stac2odc.logger import logger_message from stac2odc.toolbox import write_odc_element_in_yaml_file, datacube_index, prepare_advanced_filter, \ create_feature_collection_from_stac_elements @click.group() def cli(): """ :return: """ pass @cli.command(name="collection2product", help="Function to convert a STAC Collection JSON to ODC Product YAML") @click.option('-c', '--collection', required=True, help='Collection name (Ex. CB4MOSBR_64_3M_STK).') @click.option('--url', default='https://brazildatacube.dpi.inpe.br/stac/', help='BDC STAC url.') @click.option('-o', '--outdir', help='Output directory', required=True) @click.option('-e', '--engine-file', required=True, help='Mapper configurations to convert STAC Collection to ODC Product') @click.option('--datacube-config', '-dconfig', default=None, required=False) @click.option('--access-token', default=None, is_flag=False, help='Personal Access Token of the BDC Auth') @click.option('--verbose', default=False, is_flag=True, help='Enable verbose mode') def collection2product_cli(collection: str, url: str, outdir: str, engine_file: str, datacube_config: str, access_token, verbose: bool): collection_definition = stac.STAC(url, False, access_token=access_token).collection(collection) odc_element = stac2odc.collection.collection2product(engine_file, collection_definition, verbose=verbose) product_definition_file = write_odc_element_in_yaml_file(odc_element, os.path.join(outdir, f'{collection}.yaml')) # code adapted from: https://github.com/opendatacube/datacube-core/blob/develop/datacube/scripts/product.py for path_descriptor, parsed_doc in read_documents(*[product_definition_file]): try: dc_index = datacube_index(datacube_config) _type = dc_index.products.from_doc(parsed_doc) logger_message(f'Adding {_type.name}', logger.info, verbose) dc_index.products.add(_type) except InvalidDocException as e: logger_message(f'Error to add product: {str(e)}', logger.warning, True) @cli.command(name="item2dataset", help="Function to convert a STAC Collection JSON to ODC Dataset YAML") @click.option('-sc', '--stac-collection', required=True, help='Collection name (e.g. CB4MOSBR_64_3M_STK).') @click.option('-dp', '--dc-product', required=True, help='Product name in Open Data Cube (e.g. CB4MOSBR_64_3M_STK)') @click.option('--url', default='https://brazildatacube.dpi.inpe.br/stac/', help='BDC STAC url.') @click.option('-o', '--outdir', default='./', help='Output directory') @click.option('-m', '--max-items', help='Max items', required=True) @click.option('-e', '--engine-file', required=True, help='Mapper configurations to convert STAC Collection to ODC Product') @click.option('--datacube-config', '-dconfig', default=None, required=False) @click.option('--verbose', default=False, is_flag=True, help='Enable verbose mode') @click.option('--access-token', default=None, is_flag=False, help='Personal Access Token of the BDC Auth') @click.option('--advanced-filter', default=None, help='Search STAC Items with specific parameters') def item2dataset_cli(stac_collection, dc_product, url, outdir, max_items, engine_file, datacube_config, verbose, access_token, advanced_filter): _filter = {"collections": [stac_collection]} if advanced_filter: _filter = { **_filter, **prepare_advanced_filter(advanced_filter) } stac_service = stac.STAC(url, False, access_token=access_token) dc_index = datacube_index(datacube_config) features = create_feature_collection_from_stac_elements(stac_service, int(max_items), _filter) odc_datasets = stac2odc.item.item2dataset(engine_file, dc_product, features, dc_index, verbose=verbose) odc_datasets_definition_files = write_odc_element_in_yaml_file(odc_datasets, outdir) # add datasets definitions on datacube index # code adapted from: https://github.com/opendatacube/datacube-core/blob/develop/datacube/scripts/dataset.py ds_resolve = Doc2Dataset(dc_index, [dc_product]) doc_stream = remap_uri_from_doc(ui_path_doc_stream(odc_datasets_definition_files, uri=True)) datasets_on_stream = dataset_stream(doc_stream, ds_resolve) logger_message(f"Adding datasets", logger.info, True) for dataset in datasets_on_stream: try: dc_index.datasets.add(dataset, with_lineage=True) except (ValueError, MissingRecordError): logger_message(f"Error to add dataset ({dataset.local_uri})", logger.warning, True)
[ "stac2odc.toolbox.datacube_index", "click.group", "click.option", "datacube.ui.common.ui_path_doc_stream", "os.path.join", "stac2odc.toolbox.write_odc_element_in_yaml_file", "stac2odc.logger.logger_message", "datacube.index.hl.Doc2Dataset", "stac.STAC", "stac2odc.toolbox.prepare_advanced_filter", "datacube.utils.documents.read_documents", "datacube.scripts.dataset.dataset_stream" ]
[((828, 841), 'click.group', 'click.group', ([], {}), '()\n', (839, 841), False, 'import click\n'), ((1005, 1109), 'click.option', 'click.option', (['"""-c"""', '"""--collection"""'], {'required': '(True)', 'help': '"""Collection name (Ex. CB4MOSBR_64_3M_STK)."""'}), "('-c', '--collection', required=True, help=\n 'Collection name (Ex. CB4MOSBR_64_3M_STK).')\n", (1017, 1109), False, 'import click\n'), ((1106, 1205), 'click.option', 'click.option', (['"""--url"""'], {'default': '"""https://brazildatacube.dpi.inpe.br/stac/"""', 'help': '"""BDC STAC url."""'}), "('--url', default='https://brazildatacube.dpi.inpe.br/stac/',\n help='BDC STAC url.')\n", (1118, 1205), False, 'import click\n'), ((1203, 1273), 'click.option', 'click.option', (['"""-o"""', '"""--outdir"""'], {'help': '"""Output directory"""', 'required': '(True)'}), "('-o', '--outdir', help='Output directory', required=True)\n", (1215, 1273), False, 'import click\n'), ((1275, 1402), 'click.option', 'click.option', (['"""-e"""', '"""--engine-file"""'], {'required': '(True)', 'help': '"""Mapper configurations to convert STAC Collection to ODC Product"""'}), "('-e', '--engine-file', required=True, help=\n 'Mapper configurations to convert STAC Collection to ODC Product')\n", (1287, 1402), False, 'import click\n'), ((1413, 1488), 'click.option', 'click.option', (['"""--datacube-config"""', '"""-dconfig"""'], {'default': 'None', 'required': '(False)'}), "('--datacube-config', '-dconfig', default=None, required=False)\n", (1425, 1488), False, 'import click\n'), ((1490, 1600), 'click.option', 'click.option', (['"""--access-token"""'], {'default': 'None', 'is_flag': '(False)', 'help': '"""Personal Access Token of the BDC Auth"""'}), "('--access-token', default=None, is_flag=False, help=\n 'Personal Access Token of the BDC Auth')\n", (1502, 1600), False, 'import click\n'), ((1597, 1684), 'click.option', 'click.option', (['"""--verbose"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enable verbose mode"""'}), "('--verbose', default=False, is_flag=True, help=\n 'Enable verbose mode')\n", (1609, 1684), False, 'import click\n'), ((2843, 2954), 'click.option', 'click.option', (['"""-sc"""', '"""--stac-collection"""'], {'required': '(True)', 'help': '"""Collection name (e.g. CB4MOSBR_64_3M_STK)."""'}), "('-sc', '--stac-collection', required=True, help=\n 'Collection name (e.g. CB4MOSBR_64_3M_STK).')\n", (2855, 2954), False, 'import click\n'), ((2951, 3071), 'click.option', 'click.option', (['"""-dp"""', '"""--dc-product"""'], {'required': '(True)', 'help': '"""Product name in Open Data Cube (e.g. CB4MOSBR_64_3M_STK)"""'}), "('-dp', '--dc-product', required=True, help=\n 'Product name in Open Data Cube (e.g. CB4MOSBR_64_3M_STK)')\n", (2963, 3071), False, 'import click\n'), ((3068, 3167), 'click.option', 'click.option', (['"""--url"""'], {'default': '"""https://brazildatacube.dpi.inpe.br/stac/"""', 'help': '"""BDC STAC url."""'}), "('--url', default='https://brazildatacube.dpi.inpe.br/stac/',\n help='BDC STAC url.')\n", (3080, 3167), False, 'import click\n'), ((3165, 3234), 'click.option', 'click.option', (['"""-o"""', '"""--outdir"""'], {'default': '"""./"""', 'help': '"""Output directory"""'}), "('-o', '--outdir', default='./', help='Output directory')\n", (3177, 3234), False, 'import click\n'), ((3236, 3302), 'click.option', 'click.option', (['"""-m"""', '"""--max-items"""'], {'help': '"""Max items"""', 'required': '(True)'}), "('-m', '--max-items', help='Max items', required=True)\n", (3248, 3302), False, 'import click\n'), ((3304, 3431), 'click.option', 'click.option', (['"""-e"""', '"""--engine-file"""'], {'required': '(True)', 'help': '"""Mapper configurations to convert STAC Collection to ODC Product"""'}), "('-e', '--engine-file', required=True, help=\n 'Mapper configurations to convert STAC Collection to ODC Product')\n", (3316, 3431), False, 'import click\n'), ((3442, 3517), 'click.option', 'click.option', (['"""--datacube-config"""', '"""-dconfig"""'], {'default': 'None', 'required': '(False)'}), "('--datacube-config', '-dconfig', default=None, required=False)\n", (3454, 3517), False, 'import click\n'), ((3519, 3606), 'click.option', 'click.option', (['"""--verbose"""'], {'default': '(False)', 'is_flag': '(True)', 'help': '"""Enable verbose mode"""'}), "('--verbose', default=False, is_flag=True, help=\n 'Enable verbose mode')\n", (3531, 3606), False, 'import click\n'), ((3603, 3713), 'click.option', 'click.option', (['"""--access-token"""'], {'default': 'None', 'is_flag': '(False)', 'help': '"""Personal Access Token of the BDC Auth"""'}), "('--access-token', default=None, is_flag=False, help=\n 'Personal Access Token of the BDC Auth')\n", (3615, 3713), False, 'import click\n'), ((3710, 3813), 'click.option', 'click.option', (['"""--advanced-filter"""'], {'default': 'None', 'help': '"""Search STAC Items with specific parameters"""'}), "('--advanced-filter', default=None, help=\n 'Search STAC Items with specific parameters')\n", (3722, 3813), False, 'import click\n'), ((2324, 2366), 'datacube.utils.documents.read_documents', 'read_documents', (['*[product_definition_file]'], {}), '(*[product_definition_file])\n', (2338, 2366), False, 'from datacube.utils.documents import read_documents\n'), ((4164, 4212), 'stac.STAC', 'stac.STAC', (['url', '(False)'], {'access_token': 'access_token'}), '(url, False, access_token=access_token)\n', (4173, 4212), False, 'import stac\n'), ((4228, 4259), 'stac2odc.toolbox.datacube_index', 'datacube_index', (['datacube_config'], {}), '(datacube_config)\n', (4242, 4259), False, 'from stac2odc.toolbox import write_odc_element_in_yaml_file, datacube_index, prepare_advanced_filter, create_feature_collection_from_stac_elements\n'), ((4504, 4556), 'stac2odc.toolbox.write_odc_element_in_yaml_file', 'write_odc_element_in_yaml_file', (['odc_datasets', 'outdir'], {}), '(odc_datasets, outdir)\n', (4534, 4556), False, 'from stac2odc.toolbox import write_odc_element_in_yaml_file, datacube_index, prepare_advanced_filter, create_feature_collection_from_stac_elements\n'), ((4736, 4771), 'datacube.index.hl.Doc2Dataset', 'Doc2Dataset', (['dc_index', '[dc_product]'], {}), '(dc_index, [dc_product])\n', (4747, 4771), False, 'from datacube.index.hl import Doc2Dataset\n'), ((4894, 4932), 'datacube.scripts.dataset.dataset_stream', 'dataset_stream', (['doc_stream', 'ds_resolve'], {}), '(doc_stream, ds_resolve)\n', (4908, 4932), False, 'from datacube.scripts.dataset import remap_uri_from_doc, dataset_stream\n'), ((4938, 4991), 'stac2odc.logger.logger_message', 'logger_message', (['f"""Adding datasets"""', 'logger.info', '(True)'], {}), "(f'Adding datasets', logger.info, True)\n", (4952, 4991), False, 'from stac2odc.logger import logger_message\n'), ((2128, 2170), 'os.path.join', 'os.path.join', (['outdir', 'f"""{collection}.yaml"""'], {}), "(outdir, f'{collection}.yaml')\n", (2140, 2170), False, 'import os\n'), ((4808, 4867), 'datacube.ui.common.ui_path_doc_stream', 'ui_path_doc_stream', (['odc_datasets_definition_files'], {'uri': '(True)'}), '(odc_datasets_definition_files, uri=True)\n', (4826, 4867), False, 'from datacube.ui.common import ui_path_doc_stream\n'), ((1872, 1920), 'stac.STAC', 'stac.STAC', (['url', '(False)'], {'access_token': 'access_token'}), '(url, False, access_token=access_token)\n', (1881, 1920), False, 'import stac\n'), ((2404, 2435), 'stac2odc.toolbox.datacube_index', 'datacube_index', (['datacube_config'], {}), '(datacube_config)\n', (2418, 2435), False, 'from stac2odc.toolbox import write_odc_element_in_yaml_file, datacube_index, prepare_advanced_filter, create_feature_collection_from_stac_elements\n'), ((2508, 2568), 'stac2odc.logger.logger_message', 'logger_message', (['f"""Adding {_type.name}"""', 'logger.info', 'verbose'], {}), "(f'Adding {_type.name}', logger.info, verbose)\n", (2522, 2568), False, 'from stac2odc.logger import logger_message\n'), ((4093, 4133), 'stac2odc.toolbox.prepare_advanced_filter', 'prepare_advanced_filter', (['advanced_filter'], {}), '(advanced_filter)\n', (4116, 4133), False, 'from stac2odc.toolbox import write_odc_element_in_yaml_file, datacube_index, prepare_advanced_filter, create_feature_collection_from_stac_elements\n'), ((5167, 5255), 'stac2odc.logger.logger_message', 'logger_message', (['f"""Error to add dataset ({dataset.local_uri})"""', 'logger.warning', '(True)'], {}), "(f'Error to add dataset ({dataset.local_uri})', logger.\n warning, True)\n", (5181, 5255), False, 'from stac2odc.logger import logger_message\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 综合案例3:井字棋游戏 """ import os def print_board(board): print(board['TL'] + '|' + board['TM'] + '|' + board['TR']) print('-+-+-') print(board['ML'] + '|' + board['MM'] + '|' + board['MR']) print('-+-+-') print(board['BL'] + '|' + board['BM'] + '|' + board['BR']) def judge(board): """ 判断哪个玩家取胜 :param board: :return: """ values = list(board.values()) win = '' # 取胜的所有组合 groups = ['123', '456', '789', '147', '258', '369', '159', '357'] for ele in groups: index = list(ele) if values[int(index[0])-1] == values[int(index[1])-1] == values[int(index[2])-1] == 'x': win = 'x' break elif values[int(index[0])-1] == values[int(index[1])-1] == values[int(index[2])-1] == 'o': win = 'o' break return win def main(): init_board = { 'TL': ' ', 'TM': ' ', 'TR': ' ', 'ML': ' ', 'MM': ' ', 'MR': ' ', 'BL': ' ', 'BM': ' ', 'BR': ' ' } begin = True while begin: curr_board = init_board.copy() begin = False turn = 'x' counter = 0 os.system('cls') print_board(curr_board) result = '' while counter < 9: move = input('轮到%s走棋, 请输入位置: ' % turn) if curr_board[move] == ' ': counter += 1 curr_board[move] = turn if turn == 'x': turn = 'o' else: turn = 'x' os.system('cls') print_board(curr_board) result = judge(curr_board) if result: break if result: print(f'{result}玩家取胜。') else: print('和局。') choice = input('再玩一局?(yes|no)') begin = choice == 'yes' if __name__ == '__main__': main()
[ "os.system" ]
[((1183, 1199), 'os.system', 'os.system', (['"""cls"""'], {}), "('cls')\n", (1192, 1199), False, 'import os\n'), ((1567, 1583), 'os.system', 'os.system', (['"""cls"""'], {}), "('cls')\n", (1576, 1583), False, 'import os\n')]
# Create jobs from apscheduler.schedulers.background import BackgroundScheduler scheduler = BackgroundScheduler() # APScheduler() def job_0(): for e in range(3): print("task: ", e) print("-----end-----") def job_1(): print("updated") def start_job(): # run job once a day at 3:20 AM scheduler.add_job(id = "Task 1", func=job_0, trigger='cron', hour=3, minute=20, second=0) # run job every 30 seconds scheduler.add_job(id = "Task 1", func=job_1, trigger = 'interval', seconds = 30) scheduler.start()
[ "apscheduler.schedulers.background.BackgroundScheduler" ]
[((94, 115), 'apscheduler.schedulers.background.BackgroundScheduler', 'BackgroundScheduler', ([], {}), '()\n', (113, 115), False, 'from apscheduler.schedulers.background import BackgroundScheduler\n')]
import asyncio import json import logging from aiohttp import WSMsgType from .yandex_session import YandexSession _LOGGER = logging.getLogger(__name__) IOT_TYPES = { 'on': 'devices.capabilities.on_off', 'temperature': 'devices.capabilities.range', 'fan_speed': 'devices.capabilities.mode', 'thermostat': 'devices.capabilities.mode', 'volume': 'devices.capabilities.range', 'pause': 'devices.capabilities.toggle', 'mute': 'devices.capabilities.toggle', 'channel': 'devices.capabilities.range', 'input_source': 'devices.capabilities.mode', 'brightness': 'devices.capabilities.range', 'color': 'devices.capabilities.color_setting', 'work_speed': 'devices.capabilities.mode', 'humidity': 'devices.capabilities.range', 'ionization': 'devices.capabilities.toggle', 'backlight': 'devices.capabilities.toggle', # don't work 'hsv': 'devices.capabilities.color_setting', 'rgb': 'devices.capabilities.color_setting', 'temperature_k': 'devices.capabilities.color_setting', } MASK_EN = '0123456789abcdef-' MASK_RU = 'оеаинтсрвлкмдпуяы' URL_USER = 'https://iot.quasar.yandex.ru/m/user' def encode(uid: str) -> str: """Кодируем UID в рус. буквы. Яндекс привередливый.""" return 'ХА ' + ''.join([MASK_RU[MASK_EN.index(s)] for s in uid]) def decode(uid: str) -> str: """Раскодируем UID из рус.букв.""" return ''.join([MASK_EN[MASK_RU.index(s)] for s in uid[3:]]) class YandexQuasar: # all devices devices = None online_updated: asyncio.Event = None updates_task: asyncio.Task = None def __init__(self, session: YandexSession): self.session = session self.online_updated = asyncio.Event() self.online_updated.set() @property def hass_id(self): for device in self.devices: if device['name'] == "Yandex Intents": return device['id'] return None async def init(self): """Основная функция. Возвращает список колонок.""" _LOGGER.debug("Получение списка устройств.") r = await self.session.get(f"{URL_USER}/devices") resp = await r.json() assert resp['status'] == 'ok', resp self.devices = [device for room in resp['rooms'] for device in room['devices']] self.devices += resp['speakers'] + resp['unconfigured_devices'] @property def speakers(self): return [ d for d in self.devices if d['type'].startswith("devices.types.smart_speaker") ] @property def modules(self): # modules don't have cloud scenarios return [d for d in self.devices if ".yandex.module" in d["type"]] async def load_speakers(self) -> list: speakers = self.speakers # Яндекс начали добавлять device_id и platform с полным списком # устройств # for speaker in speakers: # await self.load_speaker_config(speaker) scenarios = await self.load_scenarios() for speaker in speakers: device_id = speaker['id'] if device_id not in scenarios: await self.add_scenario(device_id) scenarios = await self.load_scenarios() speaker['scenario_id'] = scenarios[device_id]['id'] return speakers async def load_speaker_config(self, device: dict): """Загружаем device_id и platform для колонок. Они не приходят с полным списком устройств. """ r = await self.session.get( f"{URL_USER}/devices/{device['id']}/configuration") resp = await r.json() assert resp['status'] == 'ok', resp # device_id and platform device.update(resp['quasar_info']) async def load_scenarios(self) -> dict: """Получает список сценариев, которые мы ранее создали.""" r = await self.session.get(f"{URL_USER}/scenarios") resp = await r.json() assert resp['status'] == 'ok', resp return { decode(d['name']): d for d in resp['scenarios'] if d['name'].startswith('ХА ') } async def add_scenario(self, device_id: str): """Добавляет сценарий-пустышку.""" name = encode(device_id) payload = { 'name': name, 'icon': 'home', 'triggers': [{ 'type': 'scenario.trigger.voice', 'value': name[3:] }], 'requested_speaker_capabilities': [], 'devices': [{ 'id': device_id, 'capabilities': [{ 'type': 'devices.capabilities.quasar.server_action', 'state': { 'instance': 'phrase_action', 'value': 'пустышка' } }] }] } r = await self.session.post(f"{URL_USER}/scenarios", json=payload) resp = await r.json() assert resp['status'] == 'ok', resp async def add_intent(self, name: str, text: str, num: int): speaker = [{ 'type': 'devices.capabilities.quasar.server_action', 'state': { 'instance': 'phrase_action', 'value': text } }] if text else [{ 'type': 'devices.capabilities.quasar.server_action', 'state': { 'instance': 'text_action', 'value': "Yandex Intents громкость 100" } }] payload = { 'name': name, 'icon': 'home', 'triggers': [{ 'type': 'scenario.trigger.voice', 'value': name }], 'requested_speaker_capabilities': speaker, 'devices': [{ 'id': self.hass_id, 'capabilities': [{ 'type': 'devices.capabilities.range', 'state': { 'instance': 'volume', 'relative': False, 'value': num } }] }] } r = await self.session.post(f"{URL_USER}/scenarios", json=payload) resp = await r.json() assert resp['status'] == 'ok', resp async def send(self, device: dict, text: str, is_tts: bool = False): """Запускает сценарий на выполнение команды или TTS.""" # skip send for yandex modules if "scenario_id" not in device: return _LOGGER.debug(f"{device['name']} => cloud | {text}") action = 'phrase_action' if is_tts else 'text_action' name = encode(device['id']) payload = { 'name': name, 'icon': 'home', 'triggers': [{ 'type': 'scenario.trigger.voice', 'value': name[3:] }], 'requested_speaker_capabilities': [], 'devices': [{ 'id': device['id'], 'capabilities': [{ 'type': 'devices.capabilities.quasar.server_action', 'state': { 'instance': action, 'value': text } }] }] } sid = device['scenario_id'] r = await self.session.put(f"{URL_USER}/scenarios/{sid}", json=payload) resp = await r.json() assert resp['status'] == 'ok', resp r = await self.session.post(f"{URL_USER}/scenarios/{sid}/actions") resp = await r.json() assert resp['status'] == 'ok', resp async def load_local_speakers(self): """Загружает список локальных колонок. Не используется.""" try: r = await self.session.get( 'https://quasar.yandex.net/glagol/device_list') resp = await r.json() return [{ 'device_id': d['id'], 'name': d['name'], 'platform': d['platform'] } for d in resp['devices']] except: _LOGGER.exception("Load local speakers") return None async def get_device_config(self, device: dict) -> dict: payload = {'device_id': device['quasar_info']['device_id'], 'platform': device['quasar_info']['platform']} r = await self.session.get( 'https://quasar.yandex.ru/get_device_config', params=payload ) resp = await r.json() assert resp['status'] == 'ok', resp return resp['config'] async def set_device_config(self, device: dict, device_config: dict): _LOGGER.debug(f"Меняем конфиг станции: {device_config}") payload = {'device_id': device['quasar_info']['device_id'], 'platform': device['quasar_info']['platform']} r = await self.session.post( 'https://quasar.yandex.ru/set_device_config', params=payload, json=device_config ) resp = await r.json() assert resp['status'] == 'ok', resp async def get_device(self, deviceid: str): r = await self.session.get(f"{URL_USER}/devices/{deviceid}") resp = await r.json() assert resp['status'] == 'ok', resp return resp async def device_action(self, deviceid: str, **kwargs): _LOGGER.debug(f"Device action: {kwargs}") actions = [] for k, v in kwargs.items(): type_ = ( 'devices.capabilities.custom.button' if k.isdecimal() else IOT_TYPES[k] ) state = ( {'instance': k, 'value': v, 'relative': True} if k in ('volume', 'channel') else {'instance': k, 'value': v} ) actions.append({'type': type_, 'state': state}) r = await self.session.post( f"{URL_USER}/devices/{deviceid}/actions", json={'actions': actions} ) resp = await r.json() assert resp['status'] == 'ok', resp async def update_online_stats(self): if not self.online_updated.is_set(): await self.online_updated.wait() return self.online_updated.clear() # _LOGGER.debug(f"Update speakers online status") try: r = await self.session.get( 'https://quasar.yandex.ru/devices_online_stats') resp = await r.json() assert resp['status'] == 'ok', resp except: return finally: self.online_updated.set() for speaker in resp['items']: for device in self.devices: if 'quasar_info' not in device or \ device['quasar_info']['device_id'] != speaker['id']: continue device["online"] = speaker["online"] break async def _updates_connection(self, handler): r = await self.session.get( 'https://iot.quasar.yandex.ru/m/v3/user/devices' ) resp = await r.json() assert resp['status'] == 'ok', resp ws = await self.session.ws_connect(resp['updates_url'], heartbeat=60) _LOGGER.debug("Start quasar updates connection") async for msg in ws: if msg.type != WSMsgType.TEXT: break resp = msg.json() # "ping", "update_scenario_list" if resp.get("operation") != "update_states": continue try: resp = json.loads(resp['message']) for upd in resp['updated_devices']: if not upd.get('capabilities'): continue for cap in upd['capabilities']: state = cap.get('state') if not state: continue if cap['type'] == \ 'devices.capabilities.quasar.server_action': for speaker in self.speakers: if speaker['id'] == upd['id']: entity = speaker.get('entity') if not entity: break state['entity_id'] = entity.entity_id state['name'] = entity.name await handler(state) break except: _LOGGER.debug(f"Parse quasar update error: {msg.data}") async def _updates_loop(self, handler): while True: try: await self._updates_connection(handler) except Exception as e: _LOGGER.debug(f"Quasar update error: {e}") await asyncio.sleep(30) def handle_updates(self, handler): self.updates_task = asyncio.create_task(self._updates_loop(handler)) def stop(self): if self.updates_task: self.updates_task.cancel() async def set_account_config(self, key: str, value): kv = ACCOUNT_CONFIG.get(key) assert kv and value in kv['values'], f"{key}={value}" if kv.get("api") == "user/settings": # https://iot.quasar.yandex.ru/m/user/settings r = await self.session.post(URL_USER + "/settings", json={ kv["key"]: kv["values"][value] }) else: r = await self.session.get( 'https://quasar.yandex.ru/get_account_config' ) resp = await r.json() assert resp['status'] == 'ok', resp payload: dict = resp['config'] payload[kv['key']] = kv['values'][value] r = await self.session.post( 'https://quasar.yandex.ru/set_account_config', json=payload ) resp = await r.json() assert resp['status'] == 'ok', resp BOOL_CONFIG = {'да': True, 'нет': False} ACCOUNT_CONFIG = { 'без лишних слов': { 'api': 'user/settings', 'key': 'iot', 'values': { 'да': {'response_reaction_type': 'sound'}, 'нет': {'response_reaction_type': 'nlg'}, } }, 'ответить шепотом': { 'api': 'user/settings', 'key': 'tts_whisper', 'values': BOOL_CONFIG }, 'звук активации': { 'key': 'jingle', # /get_account_config 'values': BOOL_CONFIG }, 'одним устройством': { 'key': 'smartActivation', # /get_account_config 'values': BOOL_CONFIG }, 'понимать детей': { 'key': 'useBiometryChildScoring', # /get_account_config 'values': BOOL_CONFIG }, 'рассказывать о навыках': { 'key': 'aliceProactivity', # /get_account_config 'values': BOOL_CONFIG }, 'взрослый голос': { 'key': 'contentAccess', # /get_account_config 'values': { 'умеренный': 'medium', 'семейный': 'children', 'безопасный': 'safe', 'без ограничений': 'without', } }, 'детский голос': { 'key': 'childContentAccess', # /get_account_config 'values': { 'безопасный': 'safe', 'семейный': 'children', } }, 'имя': { 'key': 'spotter', # /get_account_config 'values': { 'алиса': 'alisa', 'яндекс': 'yandex', } }, }
[ "logging.getLogger", "json.loads", "asyncio.Event", "asyncio.sleep" ]
[((127, 154), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (144, 154), False, 'import logging\n'), ((1696, 1711), 'asyncio.Event', 'asyncio.Event', ([], {}), '()\n', (1709, 1711), False, 'import asyncio\n'), ((11587, 11614), 'json.loads', 'json.loads', (["resp['message']"], {}), "(resp['message'])\n", (11597, 11614), False, 'import json\n'), ((12913, 12930), 'asyncio.sleep', 'asyncio.sleep', (['(30)'], {}), '(30)\n', (12926, 12930), False, 'import asyncio\n')]
from django.test import TestCase from base.repository import BaseRepository from film import models, repositories class RepositoryTest(TestCase): def test_movie_repository_class(self): repo = repositories.MovieRepository() self.assertEqual(type(models.Movie), type(repo.get_model())) def test_series_repository_class(self): repo = repositories.SeriesRepository() self.assertEqual(type(models.Series), type(repo.get_model()))
[ "film.repositories.MovieRepository", "film.repositories.SeriesRepository" ]
[((206, 236), 'film.repositories.MovieRepository', 'repositories.MovieRepository', ([], {}), '()\n', (234, 236), False, 'from film import models, repositories\n'), ((366, 397), 'film.repositories.SeriesRepository', 'repositories.SeriesRepository', ([], {}), '()\n', (395, 397), False, 'from film import models, repositories\n')]
import logging import random import time from django.conf import settings from django_aws_xray import records, xray class XRayMiddleware: def __init__(self, get_response): self.get_response = get_response self.sampling_rate = getattr(settings, 'AWS_XRAY_SAMPLING_RATE', 100) self.exclude_paths = getattr(settings, 'AWS_XRAY_EXCLUDE_PATHS', []) self.logger = logging.getLogger(__name__) def __call__(self, request): trace = self._create_trace(request) # Set the thread local trace object xray.set_current_trace(trace) with trace.track('django.request') as record: response = self.get_response(request) record.http = self._create_http_record(request, response) # Send out the traces trace.send() # Set the HTTP header response['X-Amzn-Trace-Id'] = trace.http_header # Cleanup the thread local trace object xray.set_current_trace(None) return response def _create_trace(self, request): # Decide if we need to sample this request sampled = random.randint(0, 100) <= self.sampling_rate for path in self.exclude_paths: if request.path.startswith(path): sampled = False trace_header = request.META.get('HTTP_X_AMZN_TRACE_ID') if trace_header: trace = xray.Trace.from_http_header(trace_header, sampled) else: trace = xray.Trace.generate_new(sampled) return trace def _create_http_record(self, request, response): return records.HttpRecord( request_method=request.method, request_url=request.get_full_path(), request_user_agent=request.META.get('User-Agent'), response_status_code=response.status_code)
[ "logging.getLogger", "django_aws_xray.xray.Trace.generate_new", "django_aws_xray.xray.Trace.from_http_header", "django_aws_xray.xray.set_current_trace", "random.randint" ]
[((398, 425), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (415, 425), False, 'import logging\n'), ((557, 586), 'django_aws_xray.xray.set_current_trace', 'xray.set_current_trace', (['trace'], {}), '(trace)\n', (579, 586), False, 'from django_aws_xray import records, xray\n'), ((958, 986), 'django_aws_xray.xray.set_current_trace', 'xray.set_current_trace', (['None'], {}), '(None)\n', (980, 986), False, 'from django_aws_xray import records, xray\n'), ((1120, 1142), 'random.randint', 'random.randint', (['(0)', '(100)'], {}), '(0, 100)\n', (1134, 1142), False, 'import random\n'), ((1393, 1443), 'django_aws_xray.xray.Trace.from_http_header', 'xray.Trace.from_http_header', (['trace_header', 'sampled'], {}), '(trace_header, sampled)\n', (1420, 1443), False, 'from django_aws_xray import records, xray\n'), ((1478, 1510), 'django_aws_xray.xray.Trace.generate_new', 'xray.Trace.generate_new', (['sampled'], {}), '(sampled)\n', (1501, 1510), False, 'from django_aws_xray import records, xray\n')]
import os import uuid from flask import Flask, render_template, request, url_for, send_from_directory, flash from flask_caching import Cache from flask_service.service_predictor import SatellitePredictor app = Flask(__name__) cache = Cache(app, config={'CACHE_TYPE': 'simple'}) app.secret_key = b'_5#y2L"F4Q8z\n\xec]/' app.config['UPLOAD_FOLDER'] = os.path.join(os.getcwd(), 'uploads') app.config['RESULTS_FOLDER'] = os.path.join(os.getcwd(), 'results') service = SatellitePredictor() @app.route('/uploads/<filename>') def uploaded_file(filename): return send_from_directory(app.config['UPLOAD_FOLDER'], filename) @app.route('/results/<filename>') def results_file(filename): return send_from_directory(app.config['RESULTS_FOLDER'], filename) # 设置允许的文件格式 ALLOWED_EXTENSIONS = ['png', 'jpg', 'JPG', 'PNG', 'bmp'] def allowed_file(filename): return '.' in filename and filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': file = request.files['file'] if not file.filename: flash('未提交图片!请选择一张下列格式的图片提交:{}'.format(ALLOWED_EXTENSIONS)) return render_template("index.html") elif not allowed_file(file.filename): flash('提交的图片不合法!支持的图片格式有:{}'.format(ALLOWED_EXTENSIONS)) return render_template("index.html") threshold = request.form.get("threshold", "0.8") threshold = float(threshold) if threshold else 0.8 top_k = request.form.get("top_k", "1") top_k = int(top_k) if top_k else 1 # 获取缓存 cached_res = cache.get("{}:{}:{}".format(top_k, threshold, file.filename)) if cached_res: source_img_url, result_img_url = cached_res.split(':') cache.set(file.filename, "{}:{}".format(source_img_url, result_img_url)) return render_template("index.html", source_img=source_img_url, res_img=result_img_url) _image_name = "{}.png".format(uuid.uuid4()) upload_path = os.path.join(app.config['UPLOAD_FOLDER'], _image_name) file.save(upload_path) source_img_url = url_for('uploaded_file', filename=_image_name) result_image = service.predict(upload_path, threshold) result_img_url = url_for('results_file', filename=result_image) # 设置缓存 cache.set("{}:{}:{}".format(top_k, threshold, file.filename), "{}:{}".format(source_img_url, result_img_url)) return render_template("index.html", source_img=source_img_url, res_img=result_img_url) else: return render_template("index.html", source_img="/uploads/4c510a77-1777-48c7-878a-0ef93c2438d8.png", res_img="/results/4c510a77-1777-48c7-878a-0ef93c2438d8.png") if __name__ == "__main__": app.run(port=8009, host='0.0.0.0')
[ "flask.render_template", "flask_service.service_predictor.SatellitePredictor", "flask.send_from_directory", "flask.Flask", "os.path.join", "os.getcwd", "flask.request.form.get", "flask.url_for", "flask_caching.Cache", "uuid.uuid4" ]
[((213, 228), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (218, 228), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((237, 280), 'flask_caching.Cache', 'Cache', (['app'], {'config': "{'CACHE_TYPE': 'simple'}"}), "(app, config={'CACHE_TYPE': 'simple'})\n", (242, 280), False, 'from flask_caching import Cache\n'), ((468, 488), 'flask_service.service_predictor.SatellitePredictor', 'SatellitePredictor', ([], {}), '()\n', (486, 488), False, 'from flask_service.service_predictor import SatellitePredictor\n'), ((365, 376), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (374, 376), False, 'import os\n'), ((433, 444), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (442, 444), False, 'import os\n'), ((565, 623), 'flask.send_from_directory', 'send_from_directory', (["app.config['UPLOAD_FOLDER']", 'filename'], {}), "(app.config['UPLOAD_FOLDER'], filename)\n", (584, 623), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((730, 789), 'flask.send_from_directory', 'send_from_directory', (["app.config['RESULTS_FOLDER']", 'filename'], {}), "(app.config['RESULTS_FOLDER'], filename)\n", (749, 789), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((1464, 1500), 'flask.request.form.get', 'request.form.get', (['"""threshold"""', '"""0.8"""'], {}), "('threshold', '0.8')\n", (1480, 1500), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((1576, 1606), 'flask.request.form.get', 'request.form.get', (['"""top_k"""', '"""1"""'], {}), "('top_k', '1')\n", (1592, 1606), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((2099, 2153), 'os.path.join', 'os.path.join', (["app.config['UPLOAD_FOLDER']", '_image_name'], {}), "(app.config['UPLOAD_FOLDER'], _image_name)\n", (2111, 2153), False, 'import os\n'), ((2210, 2256), 'flask.url_for', 'url_for', (['"""uploaded_file"""'], {'filename': '_image_name'}), "('uploaded_file', filename=_image_name)\n", (2217, 2256), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((2345, 2391), 'flask.url_for', 'url_for', (['"""results_file"""'], {'filename': 'result_image'}), "('results_file', filename=result_image)\n", (2352, 2391), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((2542, 2627), 'flask.render_template', 'render_template', (['"""index.html"""'], {'source_img': 'source_img_url', 'res_img': 'result_img_url'}), "('index.html', source_img=source_img_url, res_img=result_img_url\n )\n", (2557, 2627), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((2648, 2812), 'flask.render_template', 'render_template', (['"""index.html"""'], {'source_img': '"""/uploads/4c510a77-1777-48c7-878a-0ef93c2438d8.png"""', 'res_img': '"""/results/4c510a77-1777-48c7-878a-0ef93c2438d8.png"""'}), "('index.html', source_img=\n '/uploads/4c510a77-1777-48c7-878a-0ef93c2438d8.png', res_img=\n '/results/4c510a77-1777-48c7-878a-0ef93c2438d8.png')\n", (2663, 2812), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((1250, 1279), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (1265, 1279), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((1943, 2028), 'flask.render_template', 'render_template', (['"""index.html"""'], {'source_img': 'source_img_url', 'res_img': 'result_img_url'}), "('index.html', source_img=source_img_url, res_img=result_img_url\n )\n", (1958, 2028), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n'), ((2063, 2075), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (2073, 2075), False, 'import uuid\n'), ((1414, 1443), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (1429, 1443), False, 'from flask import Flask, render_template, request, url_for, send_from_directory, flash\n')]
#!/usr/bin/env python3 # Copyright (c) 2020 Graphcore Ltd. All rights reserved. import pytest import torch import poptorch import helpers def slice_test_harness(tensor_x, tensor_y, start_fn, end_fn, step): op = lambda x, y: x[start_fn(x):end_fn(x):step] + y model = helpers.ModelWithWeights(op, tensor_x.shape) # Run on CPU. native_out, _ = model((tensor_x, tensor_y)) # Run on IPU. poptorch_model = poptorch.trainingModel(model) poptorch_out, _ = poptorch_model((tensor_x, tensor_y)) # Inference test - check outputs helpers.assert_allclose(expected=native_out, actual=poptorch_out) # Training test - check weights changed poptorch_model.assert_weights_changed() @pytest.mark.parametrize("step", [1, 2, 3]) def test_slice_idx_size_of(step): def start_fn(tensor_in): return tensor_in.shape[0] // 2 def end_fn(tensor_in): return tensor_in.shape[0] - 1 slice_test_harness(torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([3.0]), start_fn, end_fn, step) @pytest.mark.parametrize("step", [1, 2, 3]) def test_slice_with_sum(step): def start_fn(tensor_in): del tensor_in return torch.sum(torch.tensor([1, 2, 3])) // 3 - 2 def end_fn(tensor_in): del tensor_in return torch.sum(torch.tensor([1, 2, 3])) // 3 + 1 slice_test_harness(torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([-3.0]), start_fn, end_fn, step) @pytest.mark.parametrize("step", [1, 2, 3]) def test_slice_with_branch(step): def start_fn(tensor_in): del tensor_in a = torch.sum(torch.tensor([1, 2, 3])) // 3 - 2 b = torch.sum(torch.tensor([3, 4, 5])) // 3 - 4 return a + b + 1 def end_fn(tensor_in): del tensor_in a = torch.sum(torch.tensor([3, 2, 1])) // 3 + 2 b = torch.sum(torch.tensor([3, 4, 5])) // 3 + 1 return a - 1 + b slice_test_harness(torch.tensor([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([-3.0]), start_fn, end_fn, step) def dynamic_slice_harness(tensor_in, extra_in, start_fn, end_fn, step, test_training=True): if test_training: op = lambda t: t[start_fn(extra_in):end_fn(extra_in):step] model = helpers.ModelWithWeights(op, tensor_in.shape) # Run on CPU. native_out, _ = model((tensor_in, )) # Run on IPU. poptorch_model = poptorch.trainingModel(model) poptorch_out, _ = poptorch_model((tensor_in, )) # Training test - check weights changed poptorch_model.assert_weights_changed() else: model = torch.nn.Module() model.forward = lambda t, e: t[start_fn(e):end_fn(e):step] # Run on CPU. native_out = model(tensor_in, extra_in) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(tensor_in, extra_in) helpers.assert_allclose(expected=native_out, actual=poptorch_out) @pytest.mark.parametrize("step", [1, 2, 3]) def test_dynamic_slice_one_dim_add(step): def start_fn(extra_in): return extra_in def end_fn(extra_in): return extra_in + 4 dynamic_slice_harness( torch.tensor([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([1]), start_fn, end_fn, step) @pytest.mark.parametrize("step", [1, 2, 3]) def test_dynamic_slice_one_dim_subtract(step): def start_fn(extra_in): return extra_in - 4 def end_fn(extra_in): return extra_in dynamic_slice_harness( torch.tensor([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([5]), start_fn, end_fn, step) @pytest.mark.parametrize("step", [1, 2, 3]) def test_dynamic_slice_one_dim_mix_up(step): def start_fn(extra_in): tmp = extra_in + 3 tmp = tmp - 10 tmp = tmp + 3 return tmp def end_fn(extra_in): tmp = extra_in - 6 tmp = tmp + 4 return tmp dynamic_slice_harness( torch.tensor([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([5]), start_fn, end_fn, step) @pytest.mark.parametrize("step", [1, 2, 3]) def test_dynamic_slice_two_dims(step): def start_fn(extra_in): return extra_in.to(torch.int32) def end_fn(extra_in): return extra_in.to(torch.int32) + 1 dynamic_slice_harness( torch.tensor([[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]]), torch.tensor([0]), start_fn, end_fn, step) @pytest.mark.parametrize("step", [1, 2, 3]) def test_dynamic_slice_two_dims_twice_sliced(step): start_dim_one = torch.tensor([1]) start_dim_two = torch.tensor([0]) op = lambda t: t[start_dim_one:start_dim_one + 2:step, start_dim_two: start_dim_two + 4:step] tensor_in = torch.tensor([[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0], [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]]) model = helpers.ModelWithWeights(op, tensor_in.shape) # Run on CPU. native_out, _ = model((tensor_in, )) # Run on IPU. poptorch_model = poptorch.trainingModel(model) poptorch_out, _ = poptorch_model((tensor_in, )) # Inference test - check outputs helpers.assert_allclose(expected=native_out, actual=poptorch_out) # Training test - check weights changed poptorch_model.assert_weights_changed() def test_dynamic_slice_one_dim_equal(): def start_fn(extra_in): return extra_in def end_fn(extra_in): return extra_in error_msg = r"The start and end of a slice must be different." with pytest.raises(poptorch.Error, match=error_msg): # Set test_training=False because we expect inference to fail dynamic_slice_harness(torch.tensor( [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([5]), start_fn, end_fn, 1, test_training=False) def test_dynamic_slice_one_dim_less_than(): def start_fn(extra_in): return extra_in def end_fn(extra_in): return extra_in - 2 error_msg = (r"Taking a slice of a tensor with the end less than the " + r"start is not supported.") with pytest.raises(poptorch.Error, match=error_msg): # Set test_training=False because we expect inference to fail dynamic_slice_harness(torch.tensor( [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([5]), start_fn, end_fn, 2, test_training=False) def test_dynamic_slice_one_dim_multiply(): def start_fn(extra_in): return extra_in def end_fn(extra_in): return extra_in * 2 error_msg = ( r"The size of the sliced tensor must be a constant for each " + r"execution of the model when running on the IPU\.") with pytest.raises(poptorch.Error, match=error_msg): # Set test_training=False because we expect inference to fail dynamic_slice_harness(torch.tensor( [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([5]), start_fn, end_fn, 3, test_training=False) def test_dynamic_slice_one_dim_add_non_factor(): def start_fn(extra_in): return extra_in def end_fn(extra_in): return extra_in + 7 error_msg = (r"The size of the slice \(7\) must be a factor of the " + r"slicing dimension \(8\)\.") with pytest.raises(poptorch.Error, match=error_msg): # Set test_training=False because we expect inference to fail dynamic_slice_harness(torch.tensor( [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([1]), start_fn, end_fn, 1, test_training=False) def test_dynamic_slice_one_dim_mix_up_float(): def start_fn(extra_in): tmp = extra_in + 3 tmp = tmp - 10.5 tmp = tmp + 3.5 return tmp.to(torch.int32) def end_fn(extra_in): tmp = extra_in - 6.5 tmp = tmp + 4.5 return tmp.to(torch.int32) error_msg = ( r"The size of the sliced tensor must be a constant for each " + r"execution of the model when running on the IPU\. In this case, " + r"there is a float added to the slice indices meaning it may change " + r"between runs\.") with pytest.raises(poptorch.Error, match=error_msg): # Set test_training=False because we expect inference to fail dynamic_slice_harness(torch.tensor( [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]), torch.tensor([5]), start_fn, end_fn, 2, test_training=False) @pytest.mark.parametrize("dim", [0, 1, 2]) def test_unbind(dim): op = lambda x: torch.unbind(x, dim) x = torch.randn(2, 3, 4) model = helpers.ModelWithWeights(op, x.shape, out_fn=lambda x: x[0]) poptorch_model = poptorch.trainingModel(model) native_out, _ = model((x, )) poptorch_out, _ = poptorch_model((x, )) # Check the unbound dim length is the same assert len(native_out) == len(poptorch_out) # Inference test - check outputs for tensor_native, tensor_pop in zip(native_out, poptorch_out): helpers.assert_allclose(expected=tensor_native, actual=tensor_pop) # Training test - check weights changed poptorch_model.assert_weights_changed() def test_scalarslice(): class Model(torch.nn.Module): def forward(self, x): return (x / 2)[:] model = Model() poptorch_model = poptorch.inferenceModel(model) input_tensor = torch.tensor([2]) assert poptorch_model(input_tensor) == model(input_tensor) def test_dynamic_length_slice(): class Model(torch.nn.Module): def forward(self, x, l): return x[l:] model = Model() poptorch_model = poptorch.inferenceModel(model) inp, l = torch.rand(10, 10), torch.LongTensor([2]) error_msg = ( r"The size of the sliced tensor must be a constant for each " + r"execution of the model when running on the IPU\.") with pytest.raises(poptorch.Error, match=error_msg): # Set test_training=False because we expect inference to fail poptorch_model(inp, l)
[ "helpers.ModelWithWeights", "torch.LongTensor", "torch.unbind", "torch.tensor", "pytest.mark.parametrize", "helpers.assert_allclose", "poptorch.inferenceModel", "poptorch.trainingModel", "torch.nn.Module", "pytest.raises", "torch.randn", "torch.rand" ]
[((720, 762), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (743, 762), False, 'import pytest\n'), ((1082, 1124), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (1105, 1124), False, 'import pytest\n'), ((1527, 1569), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (1550, 1569), False, 'import pytest\n'), ((3197, 3239), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (3220, 3239), False, 'import pytest\n'), ((3535, 3577), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (3558, 3577), False, 'import pytest\n'), ((3878, 3920), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (3901, 3920), False, 'import pytest\n'), ((4327, 4369), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (4350, 4369), False, 'import pytest\n'), ((4760, 4802), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""step"""', '[1, 2, 3]'], {}), "('step', [1, 2, 3])\n", (4783, 4802), False, 'import pytest\n'), ((9625, 9666), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""dim"""', '[0, 1, 2]'], {}), "('dim', [0, 1, 2])\n", (9648, 9666), False, 'import pytest\n'), ((279, 323), 'helpers.ModelWithWeights', 'helpers.ModelWithWeights', (['op', 'tensor_x.shape'], {}), '(op, tensor_x.shape)\n', (303, 323), False, 'import helpers\n'), ((431, 460), 'poptorch.trainingModel', 'poptorch.trainingModel', (['model'], {}), '(model)\n', (453, 460), False, 'import poptorch\n'), ((562, 627), 'helpers.assert_allclose', 'helpers.assert_allclose', ([], {'expected': 'native_out', 'actual': 'poptorch_out'}), '(expected=native_out, actual=poptorch_out)\n', (585, 627), False, 'import helpers\n'), ((3128, 3193), 'helpers.assert_allclose', 'helpers.assert_allclose', ([], {'expected': 'native_out', 'actual': 'poptorch_out'}), '(expected=native_out, actual=poptorch_out)\n', (3151, 3193), False, 'import helpers\n'), ((4875, 4892), 'torch.tensor', 'torch.tensor', (['[1]'], {}), '([1])\n', (4887, 4892), False, 'import torch\n'), ((4913, 4930), 'torch.tensor', 'torch.tensor', (['[0]'], {}), '([0])\n', (4925, 4930), False, 'import torch\n'), ((5068, 5259), 'torch.tensor', 'torch.tensor', (['[[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, \n 2.0, 1.0], [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, \n 5.0, 4.0, 3.0, 2.0, 1.0]]'], {}), '([[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0,\n 4.0, 3.0, 2.0, 1.0], [2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, \n 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0]])\n', (5080, 5259), False, 'import torch\n'), ((5354, 5399), 'helpers.ModelWithWeights', 'helpers.ModelWithWeights', (['op', 'tensor_in.shape'], {}), '(op, tensor_in.shape)\n', (5378, 5399), False, 'import helpers\n'), ((5500, 5529), 'poptorch.trainingModel', 'poptorch.trainingModel', (['model'], {}), '(model)\n', (5522, 5529), False, 'import poptorch\n'), ((5624, 5689), 'helpers.assert_allclose', 'helpers.assert_allclose', ([], {'expected': 'native_out', 'actual': 'poptorch_out'}), '(expected=native_out, actual=poptorch_out)\n', (5647, 5689), False, 'import helpers\n'), ((9737, 9757), 'torch.randn', 'torch.randn', (['(2)', '(3)', '(4)'], {}), '(2, 3, 4)\n', (9748, 9757), False, 'import torch\n'), ((9770, 9830), 'helpers.ModelWithWeights', 'helpers.ModelWithWeights', (['op', 'x.shape'], {'out_fn': '(lambda x: x[0])'}), '(op, x.shape, out_fn=lambda x: x[0])\n', (9794, 9830), False, 'import helpers\n'), ((9852, 9881), 'poptorch.trainingModel', 'poptorch.trainingModel', (['model'], {}), '(model)\n', (9874, 9881), False, 'import poptorch\n'), ((10488, 10518), 'poptorch.inferenceModel', 'poptorch.inferenceModel', (['model'], {}), '(model)\n', (10511, 10518), False, 'import poptorch\n'), ((10539, 10556), 'torch.tensor', 'torch.tensor', (['[2]'], {}), '([2])\n', (10551, 10556), False, 'import torch\n'), ((10789, 10819), 'poptorch.inferenceModel', 'poptorch.inferenceModel', (['model'], {}), '(model)\n', (10812, 10819), False, 'import poptorch\n'), ((955, 1009), 'torch.tensor', 'torch.tensor', (['[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (967, 1009), False, 'import torch\n'), ((1034, 1053), 'torch.tensor', 'torch.tensor', (['[3.0]'], {}), '([3.0])\n', (1046, 1053), False, 'import torch\n'), ((1399, 1453), 'torch.tensor', 'torch.tensor', (['[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (1411, 1453), False, 'import torch\n'), ((1478, 1498), 'torch.tensor', 'torch.tensor', (['[-3.0]'], {}), '([-3.0])\n', (1490, 1498), False, 'import torch\n'), ((2003, 2057), 'torch.tensor', 'torch.tensor', (['[1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (2015, 2057), False, 'import torch\n'), ((2082, 2102), 'torch.tensor', 'torch.tensor', (['[-3.0]'], {}), '([-3.0])\n', (2094, 2102), False, 'import torch\n'), ((2458, 2503), 'helpers.ModelWithWeights', 'helpers.ModelWithWeights', (['op', 'tensor_in.shape'], {}), '(op, tensor_in.shape)\n', (2482, 2503), False, 'import helpers\n'), ((2620, 2649), 'poptorch.trainingModel', 'poptorch.trainingModel', (['model'], {}), '(model)\n', (2642, 2649), False, 'import poptorch\n'), ((2829, 2846), 'torch.nn.Module', 'torch.nn.Module', ([], {}), '()\n', (2844, 2846), False, 'import torch\n'), ((3033, 3063), 'poptorch.inferenceModel', 'poptorch.inferenceModel', (['model'], {}), '(model)\n', (3056, 3063), False, 'import poptorch\n'), ((3425, 3479), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (3437, 3479), False, 'import torch\n'), ((3489, 3506), 'torch.tensor', 'torch.tensor', (['[1]'], {}), '([1])\n', (3501, 3506), False, 'import torch\n'), ((3768, 3822), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (3780, 3822), False, 'import torch\n'), ((3832, 3849), 'torch.tensor', 'torch.tensor', (['[5]'], {}), '([5])\n', (3844, 3849), False, 'import torch\n'), ((4217, 4271), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (4229, 4271), False, 'import torch\n'), ((4281, 4298), 'torch.tensor', 'torch.tensor', (['[5]'], {}), '([5])\n', (4293, 4298), False, 'import torch\n'), ((4584, 4686), 'torch.tensor', 'torch.tensor', (['[[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0, 4.0, 3.0, \n 2.0, 1.0]]'], {}), '([[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0], [8.0, 7.0, 6.0, 5.0,\n 4.0, 3.0, 2.0, 1.0]])\n', (4596, 4686), False, 'import torch\n'), ((4714, 4731), 'torch.tensor', 'torch.tensor', (['[0]'], {}), '([0])\n', (4726, 4731), False, 'import torch\n'), ((6002, 6048), 'pytest.raises', 'pytest.raises', (['poptorch.Error'], {'match': 'error_msg'}), '(poptorch.Error, match=error_msg)\n', (6015, 6048), False, 'import pytest\n'), ((6716, 6762), 'pytest.raises', 'pytest.raises', (['poptorch.Error'], {'match': 'error_msg'}), '(poptorch.Error, match=error_msg)\n', (6729, 6762), False, 'import pytest\n'), ((7458, 7504), 'pytest.raises', 'pytest.raises', (['poptorch.Error'], {'match': 'error_msg'}), '(poptorch.Error, match=error_msg)\n', (7471, 7504), False, 'import pytest\n'), ((8177, 8223), 'pytest.raises', 'pytest.raises', (['poptorch.Error'], {'match': 'error_msg'}), '(poptorch.Error, match=error_msg)\n', (8190, 8223), False, 'import pytest\n'), ((9194, 9240), 'pytest.raises', 'pytest.raises', (['poptorch.Error'], {'match': 'error_msg'}), '(poptorch.Error, match=error_msg)\n', (9207, 9240), False, 'import pytest\n'), ((9708, 9728), 'torch.unbind', 'torch.unbind', (['x', 'dim'], {}), '(x, dim)\n', (9720, 9728), False, 'import torch\n'), ((10170, 10236), 'helpers.assert_allclose', 'helpers.assert_allclose', ([], {'expected': 'tensor_native', 'actual': 'tensor_pop'}), '(expected=tensor_native, actual=tensor_pop)\n', (10193, 10236), False, 'import helpers\n'), ((10833, 10851), 'torch.rand', 'torch.rand', (['(10)', '(10)'], {}), '(10, 10)\n', (10843, 10851), False, 'import torch\n'), ((10853, 10874), 'torch.LongTensor', 'torch.LongTensor', (['[2]'], {}), '([2])\n', (10869, 10874), False, 'import torch\n'), ((11037, 11083), 'pytest.raises', 'pytest.raises', (['poptorch.Error'], {'match': 'error_msg'}), '(poptorch.Error, match=error_msg)\n', (11050, 11083), False, 'import pytest\n'), ((6150, 6204), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (6162, 6204), False, 'import torch\n'), ((6249, 6266), 'torch.tensor', 'torch.tensor', (['[5]'], {}), '([5])\n', (6261, 6266), False, 'import torch\n'), ((6864, 6918), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (6876, 6918), False, 'import torch\n'), ((6963, 6980), 'torch.tensor', 'torch.tensor', (['[5]'], {}), '([5])\n', (6975, 6980), False, 'import torch\n'), ((7606, 7660), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (7618, 7660), False, 'import torch\n'), ((7705, 7722), 'torch.tensor', 'torch.tensor', (['[5]'], {}), '([5])\n', (7717, 7722), False, 'import torch\n'), ((8325, 8379), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (8337, 8379), False, 'import torch\n'), ((8424, 8441), 'torch.tensor', 'torch.tensor', (['[1]'], {}), '([1])\n', (8436, 8441), False, 'import torch\n'), ((9342, 9396), 'torch.tensor', 'torch.tensor', (['[2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]'], {}), '([2.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0])\n', (9354, 9396), False, 'import torch\n'), ((9441, 9458), 'torch.tensor', 'torch.tensor', (['[5]'], {}), '([5])\n', (9453, 9458), False, 'import torch\n'), ((1232, 1255), 'torch.tensor', 'torch.tensor', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (1244, 1255), False, 'import torch\n'), ((1341, 1364), 'torch.tensor', 'torch.tensor', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (1353, 1364), False, 'import torch\n'), ((1677, 1700), 'torch.tensor', 'torch.tensor', (['[1, 2, 3]'], {}), '([1, 2, 3])\n', (1689, 1700), False, 'import torch\n'), ((1733, 1756), 'torch.tensor', 'torch.tensor', (['[3, 4, 5]'], {}), '([3, 4, 5])\n', (1745, 1756), False, 'import torch\n'), ((1864, 1887), 'torch.tensor', 'torch.tensor', (['[3, 2, 1]'], {}), '([3, 2, 1])\n', (1876, 1887), False, 'import torch\n'), ((1920, 1943), 'torch.tensor', 'torch.tensor', (['[3, 4, 5]'], {}), '([3, 4, 5])\n', (1932, 1943), False, 'import torch\n')]
import json import click from tqdm import tqdm from discopy.parsers.pipeline import ParserPipeline from discopy.utils import init_logger from discopy_data.data.doc import Document from discopy_data.nn.bert import get_sentence_embedder @click.command() @click.argument('bert-model', type=str) @click.argument('model-path', type=str) @click.option('-i', '--src', default='-', type=click.File('r')) @click.option('-o', '--tgt', default='-', type=click.File('w')) @click.option('-l', '--limit', default=0, type=int) def main(bert_model, model_path, src, tgt, limit): logger = init_logger() logger.info('Init Parser...') get_sentence_embeddings = get_sentence_embedder(bert_model) parser = ParserPipeline.from_config(model_path) parser.load(model_path) logger.info('Load pre-trained Parser...') for line_i, line in tqdm(enumerate(src)): if limit and line_i >= limit: break doc = Document.from_json(json.loads(line)) if len(doc.sentences) == 0: continue for sent_i, sent in enumerate(doc.sentences): sent_words = sent.tokens embeddings = get_sentence_embeddings(sent_words) doc.sentences[sent_i].embeddings = embeddings doc = parser(doc) tgt.write(json.dumps(doc.to_json()) + '\n') if __name__ == '__main__': main()
[ "click.argument", "json.loads", "click.option", "click.File", "discopy.parsers.pipeline.ParserPipeline.from_config", "click.command", "discopy_data.nn.bert.get_sentence_embedder", "discopy.utils.init_logger" ]
[((240, 255), 'click.command', 'click.command', ([], {}), '()\n', (253, 255), False, 'import click\n'), ((257, 295), 'click.argument', 'click.argument', (['"""bert-model"""'], {'type': 'str'}), "('bert-model', type=str)\n", (271, 295), False, 'import click\n'), ((297, 335), 'click.argument', 'click.argument', (['"""model-path"""'], {'type': 'str'}), "('model-path', type=str)\n", (311, 335), False, 'import click\n'), ((465, 515), 'click.option', 'click.option', (['"""-l"""', '"""--limit"""'], {'default': '(0)', 'type': 'int'}), "('-l', '--limit', default=0, type=int)\n", (477, 515), False, 'import click\n'), ((580, 593), 'discopy.utils.init_logger', 'init_logger', ([], {}), '()\n', (591, 593), False, 'from discopy.utils import init_logger\n'), ((658, 691), 'discopy_data.nn.bert.get_sentence_embedder', 'get_sentence_embedder', (['bert_model'], {}), '(bert_model)\n', (679, 691), False, 'from discopy_data.nn.bert import get_sentence_embedder\n'), ((705, 743), 'discopy.parsers.pipeline.ParserPipeline.from_config', 'ParserPipeline.from_config', (['model_path'], {}), '(model_path)\n', (731, 743), False, 'from discopy.parsers.pipeline import ParserPipeline\n'), ((383, 398), 'click.File', 'click.File', (['"""r"""'], {}), "('r')\n", (393, 398), False, 'import click\n'), ((447, 462), 'click.File', 'click.File', (['"""w"""'], {}), "('w')\n", (457, 462), False, 'import click\n'), ((953, 969), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (963, 969), False, 'import json\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from http.server import BaseHTTPRequestHandler, HTTPServer import cgi class WebServerHandler(BaseHTTPRequestHandler): def do_GET(self): print("metho do_GET") form_html = self.get_form_body() if self.path.endswith("/hello"): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() message = "" message += "<html><body>" message += "<h1>Hello!</h1>" message += form_html message += "</body></html>" print("MESSAGE={}".format(message)) self.wfile.write(bytes(message, "utf-8")) return if self.path.endswith("/hola"): self.send_response(200) self.send_header('Content-type', 'text/html') self.end_headers() message = "" message += "<html><body>" message += "<h1>Hola!</h1>" message += form_html message += "</body></html>" print("MESSAGE={}".format(message)) self.wfile.write(bytes(message, "utf-8")) return else: self.send_error(404, 'File Not Found: {}'.format(self.path)) def do_POST(self): print("method do_POST") form_html = self.get_form_body() try: self.send_response(200) self.end_headers() form = cgi.FieldStorage( fp=self.rfile, headers=self.headers, environ={'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type'], }) user_text = form.getvalue('message') output = "" output += "<html><body>" output += "<h1>Okay, how about this:</h1>" output += "<h2>{}</h2>".format(user_text) output += form_html output += "<html><body>" print("OUTPUT={}".format(output)) self.wfile.write(bytes(output, "utf-8")) except Exception as e: print(e) @staticmethod def get_form_body(): form_body = ( "<form method='POST' enctype='multipart/form-data' " "action='/hello'>" "<h2>What would you like to say?</h2> " "<input name='message' type='text'>" "<input type='submit' value='Submit'></form >" ) return form_body def main(): try: port = 9080 server = HTTPServer(('', port), WebServerHandler) print("Web Server running on port {}".format(port)) server.serve_forever() except KeyboardInterrupt: print(" ^C entered, stopping web server....") # sudo kill $(sudo lsof -t -i:9080) server.socket.close() # added server.server_close() because port was still open server.server_close() if __name__ == '__main__': main()
[ "http.server.HTTPServer", "cgi.FieldStorage" ]
[((2565, 2605), 'http.server.HTTPServer', 'HTTPServer', (["('', port)", 'WebServerHandler'], {}), "(('', port), WebServerHandler)\n", (2575, 2605), False, 'from http.server import BaseHTTPRequestHandler, HTTPServer\n'), ((1471, 1611), 'cgi.FieldStorage', 'cgi.FieldStorage', ([], {'fp': 'self.rfile', 'headers': 'self.headers', 'environ': "{'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type']}"}), "(fp=self.rfile, headers=self.headers, environ={\n 'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type']})\n", (1487, 1611), False, 'import cgi\n')]
import cv2 as cv import numpy as np img =cv.imread("Photos/Cat.jpeg") cv.imshow("cat", img) blank=np.zeros(img.shape[:2], dtype="uint8") b,g,r=cv.split(img) cv.imshow("b",b) # mavi yoğunluklu bölgeler daha beyaz içinde içermeyen yeerler siyaha yakın cv.imshow("g",g) # yeşil yoğunluklu bölgeler daha beyaz içinde içermeyen yeerler siyaha yakın cv.imshow("r",r) # kırmızı yoğunluklu bölgeler daha beyaz içinde içermeyen yeerler siyaha yakın print(img.shape) #(168, 300, 3) print(b.shape) # (168, 300) print(g.shape) # (168, 300) print(r.shape) # (168, 300) merged =cv.merge([b,g,r]) cv.imshow("merged", merged) blue = cv.merge([b,blank,blank]) green= cv.merge([blank,g,blank]) red = cv.merge([blank,blank,r]) cv.imshow("blue",blue) cv.imshow("green",green) cv.imshow("red",red) cv.waitKey(0)
[ "cv2.merge", "cv2.imshow", "numpy.zeros", "cv2.waitKey", "cv2.split", "cv2.imread" ]
[((42, 70), 'cv2.imread', 'cv.imread', (['"""Photos/Cat.jpeg"""'], {}), "('Photos/Cat.jpeg')\n", (51, 70), True, 'import cv2 as cv\n'), ((71, 92), 'cv2.imshow', 'cv.imshow', (['"""cat"""', 'img'], {}), "('cat', img)\n", (80, 92), True, 'import cv2 as cv\n'), ((100, 138), 'numpy.zeros', 'np.zeros', (['img.shape[:2]'], {'dtype': '"""uint8"""'}), "(img.shape[:2], dtype='uint8')\n", (108, 138), True, 'import numpy as np\n'), ((146, 159), 'cv2.split', 'cv.split', (['img'], {}), '(img)\n', (154, 159), True, 'import cv2 as cv\n'), ((160, 177), 'cv2.imshow', 'cv.imshow', (['"""b"""', 'b'], {}), "('b', b)\n", (169, 177), True, 'import cv2 as cv\n'), ((253, 270), 'cv2.imshow', 'cv.imshow', (['"""g"""', 'g'], {}), "('g', g)\n", (262, 270), True, 'import cv2 as cv\n'), ((347, 364), 'cv2.imshow', 'cv.imshow', (['"""r"""', 'r'], {}), "('r', r)\n", (356, 364), True, 'import cv2 as cv\n'), ((569, 588), 'cv2.merge', 'cv.merge', (['[b, g, r]'], {}), '([b, g, r])\n', (577, 588), True, 'import cv2 as cv\n'), ((587, 614), 'cv2.imshow', 'cv.imshow', (['"""merged"""', 'merged'], {}), "('merged', merged)\n", (596, 614), True, 'import cv2 as cv\n'), ((623, 650), 'cv2.merge', 'cv.merge', (['[b, blank, blank]'], {}), '([b, blank, blank])\n', (631, 650), True, 'import cv2 as cv\n'), ((656, 683), 'cv2.merge', 'cv.merge', (['[blank, g, blank]'], {}), '([blank, g, blank])\n', (664, 683), True, 'import cv2 as cv\n'), ((688, 715), 'cv2.merge', 'cv.merge', (['[blank, blank, r]'], {}), '([blank, blank, r])\n', (696, 715), True, 'import cv2 as cv\n'), ((715, 738), 'cv2.imshow', 'cv.imshow', (['"""blue"""', 'blue'], {}), "('blue', blue)\n", (724, 738), True, 'import cv2 as cv\n'), ((738, 763), 'cv2.imshow', 'cv.imshow', (['"""green"""', 'green'], {}), "('green', green)\n", (747, 763), True, 'import cv2 as cv\n'), ((763, 784), 'cv2.imshow', 'cv.imshow', (['"""red"""', 'red'], {}), "('red', red)\n", (772, 784), True, 'import cv2 as cv\n'), ((785, 798), 'cv2.waitKey', 'cv.waitKey', (['(0)'], {}), '(0)\n', (795, 798), True, 'import cv2 as cv\n')]
from coap import coap MOTE_IP = 'fc00:db20:35b:7399::5:92cc:0:2' UDP_PORT = 61618 # can't be the port used in OV c = coap.coap(udpPort=UDP_PORT) # read the information about the board status p = c.GET('coap://[{0}]/i'.format(MOTE_IP)) print(''.join([chr(b) for b in p])) while True: recv_in = input("Done. Press q to close. ") if recv_in == 'q': print('bye bye.') c.close() break
[ "coap.coap.coap" ]
[((125, 152), 'coap.coap.coap', 'coap.coap', ([], {'udpPort': 'UDP_PORT'}), '(udpPort=UDP_PORT)\n', (134, 152), False, 'from coap import coap\n')]
import maya.cmds as mc from zen.iterable import iterable from zen.isIterable import isIterable from zen.listNodeConnections import listNodeConnections def firstOpenPlug(*args): sel=[] for a in args: sel.extend(iterable(a)) attributes=[] for s in sel: if mc.objExists(s): attributes.append(mc.ls(s)[0]) objects=[] indices=[] for attr in attributes: objects.append(mc.ls(attr,o=True)[0]) objConn=[] for oc in listNodeConnections(objects[-1]): objConn.extend(oc) connections=[] for conn in objConn: if attr in conn: connections.append(conn) endPlug=-1 i=0 while endPlug==-1: ic=False for c in connections: if (attr+'['+(str(i))+']') in c: ic=True break if ic==False: endPlug=i i+=1 indices.append(endPlug) if len(indices)>1: return indices elif len(indices)==1: return indices[0] else: return
[ "zen.iterable.iterable", "zen.listNodeConnections.listNodeConnections", "maya.cmds.ls", "maya.cmds.objExists" ]
[((268, 283), 'maya.cmds.objExists', 'mc.objExists', (['s'], {}), '(s)\n', (280, 283), True, 'import maya.cmds as mc\n'), ((444, 476), 'zen.listNodeConnections.listNodeConnections', 'listNodeConnections', (['objects[-1]'], {}), '(objects[-1])\n', (463, 476), False, 'from zen.listNodeConnections import listNodeConnections\n'), ((217, 228), 'zen.iterable.iterable', 'iterable', (['a'], {}), '(a)\n', (225, 228), False, 'from zen.iterable import iterable\n'), ((393, 412), 'maya.cmds.ls', 'mc.ls', (['attr'], {'o': '(True)'}), '(attr, o=True)\n', (398, 412), True, 'import maya.cmds as mc\n'), ((307, 315), 'maya.cmds.ls', 'mc.ls', (['s'], {}), '(s)\n', (312, 315), True, 'import maya.cmds as mc\n')]
import numpy as np import time start = time.time() matrix = np.loadtxt('inst1_4.csv', dtype=int) min_number = 0 assignment_function_cost = '' assignment_cost = 0 high_number = 100000 while True: # Finds the minimum number and the index in the matrix. min_number = matrix.min() min_index = np.unravel_index(matrix.argmin(), matrix.shape) # If there's no minimum number left in the matrix, the answer has been found and the loop ends. if min_number == high_number: break # Replaces the rows and columns when a minimum number has been found. matrix[:, min_index[1]] = high_number matrix[min_index[0], :] = high_number assignment_cost += min_number assignment_function_cost += '[{}, {}] + '.format(min_index[0], min_index[1]) print(assignment_function_cost[:-2]) print('Total cost:', assignment_cost) end = time.time() total_time = end - start print('\nScript duration:', end - start, 'seconds')
[ "numpy.loadtxt", "time.time" ]
[((43, 54), 'time.time', 'time.time', ([], {}), '()\n', (52, 54), False, 'import time\n'), ((67, 103), 'numpy.loadtxt', 'np.loadtxt', (['"""inst1_4.csv"""'], {'dtype': 'int'}), "('inst1_4.csv', dtype=int)\n", (77, 103), True, 'import numpy as np\n'), ((895, 906), 'time.time', 'time.time', ([], {}), '()\n', (904, 906), False, 'import time\n')]
# boot.py -- run on boot-up # can run arbitrary Python, but best to keep it minimal import pyb from util import * # press the user switch to select what to do sel = selector() if sel == 0: pyb.main('main.py') # main script to run after this one elif sel == 1: pyb.usb_mode('CDC+HID') # act as a serial device and a mouse pyb.main('mouse.py') #elif sel == 1: #pyb.usb_mode('CDC+MSC') # act as a serial and a storage device
[ "pyb.usb_mode", "pyb.main" ]
[((204, 223), 'pyb.main', 'pyb.main', (['"""main.py"""'], {}), "('main.py')\n", (212, 223), False, 'import pyb\n'), ((281, 304), 'pyb.usb_mode', 'pyb.usb_mode', (['"""CDC+HID"""'], {}), "('CDC+HID')\n", (293, 304), False, 'import pyb\n'), ((347, 367), 'pyb.main', 'pyb.main', (['"""mouse.py"""'], {}), "('mouse.py')\n", (355, 367), False, 'import pyb\n')]
import pytest @pytest.fixture(scope='function') def bootstrap_test_manager(session_manager): """Prepares a bootstrappable manager.""" session_manager.wait_for_ssh() # We don't bootstrap here because bootstrapping in the test means that # --pdb will actually be useful as it'll allow investigation before # teardown on bootstrap failure yield session_manager session_manager.teardown()
[ "pytest.fixture" ]
[((17, 49), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (31, 49), False, 'import pytest\n')]
import psycopg2 connection = psycopg2.connect('dbname=example') cursor = connection.cursor() cur = connection.cursor() cur.execute("DROP TABLE IF EXISTS table2;") cur.execute(''' CREATE TABLE table2( id INTEGER PRIMARY KEY, completed BOOLEAN NOT NULL DEFAULT False ); ''') #method 1 - passing in as a string composition as a tuple cursor.execute('INSERT INTO table2 (id, completed) VALUES (%s, %s);', (1,True)) #method 2 - SQL using a template and data variable as a dictionary SQL = 'INSERT INTO table2 (id, completed) VALUES (%(id)s, %(completed)s);' data = { 'id': 2, 'completed': False, 'id': 3, 'completed': False, } cursor.execute(SQL, data) cursor.execute('SELECT * from table2;') result = cursor.fetchone() print('fetchone', result) result2 = cursor.fetchmany(2) print('fetchmany(2)', result2) result3 = cursor.fetchall() print('fetchall', result3) connection.commit() connection.close() cursor.close()
[ "psycopg2.connect" ]
[((30, 64), 'psycopg2.connect', 'psycopg2.connect', (['"""dbname=example"""'], {}), "('dbname=example')\n", (46, 64), False, 'import psycopg2\n')]
# from https://towardsdatascience.com/the-poisson-process-everything-you-need-to-know-322aa0ab9e9a # queuing processing stats generator # TODO - clean up as a event generator import random import math _lambda = 5 _num_arrivals = 100 _arrival_time = 0 print('RAND,INTER_ARRV_T,ARRV_T') for i in range(_num_arrivals): #Get the next probability value from Uniform(0,1) p = random.random() #Plug it into the inverse of the CDF of Exponential(_lamnbda) _inter_arrival_time = -math.log(1.0 - p)/_lambda #Add the inter-arrival time to the running sum _arrival_time = _arrival_time + _inter_arrival_time #print it all out print(str(p)+','+str(_inter_arrival_time)+','+str(_arrival_time))
[ "random.random", "math.log" ]
[((377, 392), 'random.random', 'random.random', ([], {}), '()\n', (390, 392), False, 'import random\n'), ((481, 498), 'math.log', 'math.log', (['(1.0 - p)'], {}), '(1.0 - p)\n', (489, 498), False, 'import math\n')]
import requests import json from tkinter import * from tkinter.messagebox import showinfo,showerror def send_sms(number,message): url='https://www.fast2sms.com/dev/bulk' params={ 'authorization':'<KEY>', 'sender_id':'FSTSMS', 'message':message, 'language':'english', 'route':'p', 'numbers':number } response=requests.get(url,params=params) dic=response.json() print(dic) return dic.get('return') def btn_click(): num=textNumber.get() msg=textMsg.get("1.0",END) r=send_sms(num,msg) if r==True: showinfo("send success","successfully sent") else: showerror("error","something went wrong..") #creating GUI root=Tk() root.title('message sender') root.geometry('400x550') font=("Helvetica",22,"bold") textNumber = Entry(root,font=font) textNumber.pack(fill=X,pady=20) textMsg=Text(root) textMsg.pack(fill=X) sendBtn=Button(root,text="send sms",command=btn_click) sendBtn.pack() root.mainloop()
[ "tkinter.messagebox.showerror", "tkinter.messagebox.showinfo", "requests.get" ]
[((391, 423), 'requests.get', 'requests.get', (['url'], {'params': 'params'}), '(url, params=params)\n', (403, 423), False, 'import requests\n'), ((645, 690), 'tkinter.messagebox.showinfo', 'showinfo', (['"""send success"""', '"""successfully sent"""'], {}), "('send success', 'successfully sent')\n", (653, 690), False, 'from tkinter.messagebox import showinfo, showerror\n'), ((718, 762), 'tkinter.messagebox.showerror', 'showerror', (['"""error"""', '"""something went wrong.."""'], {}), "('error', 'something went wrong..')\n", (727, 762), False, 'from tkinter.messagebox import showinfo, showerror\n')]
__author__ = 'croman' # -*- coding: utf-8 -*- from polyglot.detect import Detector from polyglot.text import Text, Word import rdflib from lxml import etree import subprocess import tweetstotxt import codecs import re def ner(datasetfile, format, language): tweetids = [] tweets = '' tweetdict = {} if format == 'xml-collection': dataset = etree.parse(datasetfile) for tweet in dataset.xpath('//Tweet'): tweetText = tweet.xpath('./TweetText/text()')[0] tweets += ' '.join(re.findall(r"[\w:/!#$%&*+,\-:;?@^_`{|}~.]+|[\"'()[\]<=>]", tweetText))+"\n" tweetids.append(tweet.xpath('./TweetId/text()')[0]) tweets = tweets.encode('utf-8') with codecs.open(datasetfile.split('.xml')[0]+'.txt', 'wb', encoding='utf-8') as txt: tweets = tweets.decode('utf-8') txt.write(tweets) elif format == 'xml-socialtv': dataset = etree.parse(datasetfile) for tweet in dataset.xpath('//tweet'): tweetText = tweet.xpath('./text()')[0] tweets += ' '.join(re.findall(r"[\w:/!#$%&*+,\-:;?@^_`{|}~.]+|[\"'()[\]<=>]", tweetText))+"\n" tweetids.append(tweet.get('id')) tweets = tweets.encode('utf-8') with codecs.open(datasetfile.split('.xml')[0]+'.txt', 'wb', encoding='utf-8') as txt: tweets = tweets.decode('utf-8') txt.write(tweets) elif format == "nif": a = rdflib.Graph() a.parse(datasetfile, format='n3') for s, p, o in a: if s.endswith(',') and p.endswith('isString'): tweetid = s.split('#')[0].split('.xml/')[1] tweetdict[tweetid] = ' '.join(re.findall(r"[\w:/!#$%&*+,\-:;?@^_`{|}~.]+|[\"'()[\]<=>]", o)) for key in sorted(tweetdict): tweetids.append(key) tweets += tweetdict[key]+'\n' tweets = tweets.encode('utf-8') with codecs.open(datasetfile.split('.ttl')[0]+'.txt', 'wb', encoding='utf-8') as txt: tweets = tweets.decode('utf-8') txt.write(tweets) elif format == "text": filename = 'nerdy-input.txt' with codecs.open(filename, 'wb', encoding='utf-8') as txt: txt.write(datasetfile) datasetfile = 'nerdy-input.ttl' """for t in tweets.split('\n'): text = Text(t) detector = Detector(t.decode('utf-8')) print text.string.encode('utf-8') print (detector.language)""" p = subprocess.Popen(['polyglot', '--lang', language, 'ner', '--input', datasetfile.split('.ttl')[0]+'.txt'], stdout=subprocess.PIPE) output,err = p.communicate() results = '' tweetoutput = output.split('\n\n') tweetoutput.pop() for x in range(0, len(tweetoutput)): inEntity = False for line in tweetoutput[x].splitlines(): if len(line.split()) < 2: word = line.split('O')[0].decode('utf-8') entity = u'O' else: word = line.split()[0].decode('utf-8') entity = line.split()[1].decode('utf-8') if entity != 'O' and inEntity: entity = 'I-'+entity.split('I-')[1] elif entity != 'O' and inEntity == False: entity = 'B-'+entity.split('I-')[1] inEntity = True else: inEntity = False results += word + u'/' + entity + u' ' if tweetids: results += u"||"+tweetids[x] results += u"\n" return results #print ner("Xavi marco un gol a Cristiano y Casillas es de Apple Inc", "text", "es") #print ner("<NAME> is the president of the United States of America and the leader of The Beatles", "text", "en") #print ner('El gobierno de Brasil condecoro a Ronaldo en Rio de Janeiro', 'text', 'es') #print ner('Messi scored three goals against Chelsea. Mourinho must be angry.', 'text', 'en')
[ "rdflib.Graph", "re.findall", "lxml.etree.parse", "codecs.open" ]
[((370, 394), 'lxml.etree.parse', 'etree.parse', (['datasetfile'], {}), '(datasetfile)\n', (381, 394), False, 'from lxml import etree\n'), ((937, 961), 'lxml.etree.parse', 'etree.parse', (['datasetfile'], {}), '(datasetfile)\n', (948, 961), False, 'from lxml import etree\n'), ((1461, 1475), 'rdflib.Graph', 'rdflib.Graph', ([], {}), '()\n', (1473, 1475), False, 'import rdflib\n'), ((534, 607), 're.findall', 're.findall', (['"""[\\\\w:/!#$%&*+,\\\\-:;?@^_`{|}~.]+|[\\\\"\'()[\\\\]<=>]"""', 'tweetText'], {}), '(\'[\\\\w:/!#$%&*+,\\\\-:;?@^_`{|}~.]+|[\\\\"\\\'()[\\\\]<=>]\', tweetText)\n', (544, 607), False, 'import re\n'), ((1091, 1164), 're.findall', 're.findall', (['"""[\\\\w:/!#$%&*+,\\\\-:;?@^_`{|}~.]+|[\\\\"\'()[\\\\]<=>]"""', 'tweetText'], {}), '(\'[\\\\w:/!#$%&*+,\\\\-:;?@^_`{|}~.]+|[\\\\"\\\'()[\\\\]<=>]\', tweetText)\n', (1101, 1164), False, 'import re\n'), ((2173, 2218), 'codecs.open', 'codecs.open', (['filename', '"""wb"""'], {'encoding': '"""utf-8"""'}), "(filename, 'wb', encoding='utf-8')\n", (2184, 2218), False, 'import codecs\n'), ((1710, 1775), 're.findall', 're.findall', (['"""[\\\\w:/!#$%&*+,\\\\-:;?@^_`{|}~.]+|[\\\\"\'()[\\\\]<=>]"""', 'o'], {}), '(\'[\\\\w:/!#$%&*+,\\\\-:;?@^_`{|}~.]+|[\\\\"\\\'()[\\\\]<=>]\', o)\n', (1720, 1775), False, 'import re\n')]
import redis import random from . import _connector class Connector( _connector.Connector, ): name = 'redis_cluster' def __init__( self, nodes, ): super().__init__() self.nodes = nodes self.connections = [ redis.StrictRedis( host=node['host'], port=node['port'], password=node['password'], db=node['database'], retry_on_timeout=True, socket_keepalive=True, socket_connect_timeout=10, socket_timeout=60, ) for node in nodes ] self.master_connection = self.connections[0] random.shuffle(self.connections) def rotate_connections( self, ): self.connections = self.connections[1:] + self.connections[:1] def key_set( self, key, value, ): is_new = self.master_connection.set( name=key, value=value, nx=True, ) return is_new is True def key_get( self, key, ): return self.master_connection.get( name=key, ) def key_delete( self, key, ): return self.master_connection.delete(key) def queue_pop( self, queue_name, ): connections = self.connections for connection in connections: value = connection.lpop( name=queue_name, ) self.rotate_connections() if value: return value return None def queue_pop_bulk( self, queue_name, number_of_items, ): values = [] connections = self.connections current_count = number_of_items for connection in connections: pipeline = connection.pipeline() pipeline.lrange(queue_name, 0, current_count - 1) pipeline.ltrim(queue_name, current_count, -1) value = pipeline.execute() self.rotate_connections() values += value[0] if len(values) == number_of_items: return values current_count = number_of_items - len(values) return values def queue_push( self, queue_name, item, priority='NORMAL', ): if priority == 'HIGH': push_returned_value = self.connections[0].lpush(queue_name, item) else: push_returned_value = self.connections[0].rpush(queue_name, item) self.rotate_connections() return push_returned_value def queue_push_bulk( self, queue_name, items, priority='NORMAL', ): if priority == 'HIGH': push_returned_value = self.connections[0].lpush(queue_name, *items) else: push_returned_value = self.connections[0].rpush(queue_name, *items) self.rotate_connections() return push_returned_value def queue_length( self, queue_name, ): total_len = 0 for connection in self.connections: total_len += connection.llen( name=queue_name, ) return total_len def queue_delete( self, queue_name, ): for connection in self.connections: connection.delete(queue_name) def __getstate__( self, ): state = { 'nodes': self.nodes, } return state def __setstate__( self, value, ): self.__init__( nodes=value['nodes'], )
[ "random.shuffle", "redis.StrictRedis" ]
[((722, 754), 'random.shuffle', 'random.shuffle', (['self.connections'], {}), '(self.connections)\n', (736, 754), False, 'import random\n'), ((280, 484), 'redis.StrictRedis', 'redis.StrictRedis', ([], {'host': "node['host']", 'port': "node['port']", 'password': "node['password']", 'db': "node['database']", 'retry_on_timeout': '(True)', 'socket_keepalive': '(True)', 'socket_connect_timeout': '(10)', 'socket_timeout': '(60)'}), "(host=node['host'], port=node['port'], password=node[\n 'password'], db=node['database'], retry_on_timeout=True,\n socket_keepalive=True, socket_connect_timeout=10, socket_timeout=60)\n", (297, 484), False, 'import redis\n')]
from datetime import timedelta import pytest from pyramid.config import Configurator from pyramid.authorization import ACLAuthorizationPolicy from pyramid.renderers import JSON from pyramid.response import Response from pyramid.security import Allow, Authenticated, remember, forget from webtest import TestApp def login_view(request): return {"token": request.create_jwt_token(1)} def login_cookie_view(request): headers = remember(request, 1) return Response(status=200, headers=headers, body="OK") def logout_cookie_view(request): headers = forget(request) return Response(status=200, headers=headers, body="OK") def suspicious_behaviour_view(request): request._jwt_cookie_reissue_revoked = True return Response( status=200, body="Suspicious behaviour detected! Revoking cookie reissue" ) def secure_view(request): return "OK" def dump_claims(request): return request.jwt_claims class Root: __acl__ = [ (Allow, Authenticated, ("read",)), ] def __init__(self, request): pass class NonSerializable(object): pass class Serializable(object): def __json__(self): return "This is JSON Serializable" def extra_claims(request): return { "token": request.create_jwt_token(principal=1, extra_claim=NonSerializable()) } @pytest.fixture(scope="function") def base_config() -> Configurator: config = Configurator() config.set_authorization_policy(ACLAuthorizationPolicy()) config.include("pyramid_jwt") config.set_root_factory(Root) config.add_route("secure", "/secure") config.add_view( secure_view, route_name="secure", renderer="string", permission="read" ) config.add_route("extra_claims", "/extra_claims") config.add_view(extra_claims, route_name="extra_claims", renderer="json") config.add_route("dump_claims", "/dump_claims") config.add_view( dump_claims, route_name="dump_claims", renderer="json", permission="read" ) return config @pytest.fixture(scope="function") def app_config(base_config) -> Configurator: base_config.add_route("login", "/login") base_config.add_view(login_view, route_name="login", renderer="json") # Enable JWT authentication. base_config.set_jwt_authentication_policy("secret", http_header="X-Token") return base_config @pytest.fixture(scope="function") def cookie_config(base_config): base_config.add_route("login", "/login") base_config.add_view(login_cookie_view, route_name="login", renderer="json") base_config.add_route("logout", "/logout") base_config.add_view( logout_cookie_view, route_name="logout", renderer="string", permission="read" ) base_config.add_route("suspicious", "/suspicious") base_config.add_view( suspicious_behaviour_view, route_name="suspicious", renderer="string", permission="read", ) # Enable JWT authentication on Cookies. reissue_time = timedelta(seconds=1) base_config.set_jwt_cookie_authentication_policy( "secret", cookie_name="Token", expiration=5, reissue_time=reissue_time, https_only=False, ) return base_config @pytest.fixture(scope="function") def app(app_config): app = app_config.make_wsgi_app() return TestApp(app) @pytest.fixture(scope="function") def cookie_app(cookie_config): app = cookie_config.make_wsgi_app() return TestApp(app) def test_secure_view_requires_auth(app): app.get("/secure", status=403) def test_login(app): r = app.get("/login") token = str(r.json_body["token"]) # Must be str on all Python versions r = app.get("/secure", headers={"X-Token": token}) assert r.unicode_body == "OK" def test_pyramid_json_encoder_fail(app): with pytest.raises(TypeError) as e: app.get("/extra_claims") assert "NonSerializable" in str(e.value) assert "is not JSON serializable" in str(e.value) def test_pyramid_json_encoder_with_adapter(app): """Test we can define a custom adapter using global json_renderer_factory""" from pyramid.renderers import json_renderer_factory def serialize_anyclass(obj, request): return obj.__class__.__name__ json_renderer_factory.add_adapter(NonSerializable, serialize_anyclass) response = app.get("/extra_claims") token = str(response.json_body["token"]) response = app.get("/dump_claims", headers={"X-Token": token}) assert response.json_body["extra_claim"] == "NonSerializable" def test_pyramid_custom_json_encoder(app_config: Configurator): """Test we can still use user-defined custom adapter""" from pyramid.renderers import json_renderer_factory def serialize_anyclass(obj, request): assert False # This asserts this method will not be called json_renderer_factory.add_adapter(NonSerializable, serialize_anyclass) def other_serializer(obj, request): return "other_serializer" my_renderer = JSON() my_renderer.add_adapter(NonSerializable, other_serializer) app_config.add_renderer("json", my_renderer) app = TestApp(app_config.make_wsgi_app()) response = app.get("/extra_claims") token = str(response.json_body["token"]) response = app.get("/dump_claims", headers={"X-Token": token}) assert response.json_body["extra_claim"] == "other_serializer" def test_cookie_secured(cookie_app): response = cookie_app.get("/secure", expect_errors=True) assert response.status_int == 403 def test_cookie_login(cookie_app): response = cookie_app.get("/login") assert "Token" in cookie_app.cookies assert response.body == b"OK" response = cookie_app.get("/secure") assert response.body == b"OK" def test_cookie_logout(cookie_app): response = cookie_app.get("/login") assert "Token" in cookie_app.cookies assert response.body == b"OK" response = cookie_app.get("/secure") assert response.body == b"OK" response = cookie_app.get("/logout") assert response.body == b"OK" assert "Token" not in cookie_app.cookies response = cookie_app.get("/secure", expect_errors=True) assert response.status_int == 403 @pytest.mark.freeze_time def test_cookie_reissue(cookie_app, freezer): cookie_app.get("/login") token = cookie_app.cookies.get("Token") freezer.tick(delta=4) cookie_app.get("/secure") other_token = cookie_app.cookies.get("Token") assert token != other_token @pytest.mark.freeze_time def test_cookie_reissue_revoke(cookie_app, freezer): cookie_app.get("/login") token = cookie_app.cookies.get("Token") freezer.tick(delta=4) cookie_app.get("/suspicious") other_token = cookie_app.cookies.get("Token") assert token == other_token
[ "pyramid.renderers.JSON", "webtest.TestApp", "pyramid.security.forget", "pyramid.config.Configurator", "pyramid.security.remember", "pyramid.renderers.json_renderer_factory.add_adapter", "pytest.raises", "pyramid.authorization.ACLAuthorizationPolicy", "pytest.fixture", "datetime.timedelta", "pyramid.response.Response" ]
[((1345, 1377), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (1359, 1377), False, 'import pytest\n'), ((2034, 2066), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (2048, 2066), False, 'import pytest\n'), ((2370, 2402), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (2384, 2402), False, 'import pytest\n'), ((3237, 3269), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (3251, 3269), False, 'import pytest\n'), ((3355, 3387), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (3369, 3387), False, 'import pytest\n'), ((437, 457), 'pyramid.security.remember', 'remember', (['request', '(1)'], {}), '(request, 1)\n', (445, 457), False, 'from pyramid.security import Allow, Authenticated, remember, forget\n'), ((469, 517), 'pyramid.response.Response', 'Response', ([], {'status': '(200)', 'headers': 'headers', 'body': '"""OK"""'}), "(status=200, headers=headers, body='OK')\n", (477, 517), False, 'from pyramid.response import Response\n'), ((567, 582), 'pyramid.security.forget', 'forget', (['request'], {}), '(request)\n', (573, 582), False, 'from pyramid.security import Allow, Authenticated, remember, forget\n'), ((594, 642), 'pyramid.response.Response', 'Response', ([], {'status': '(200)', 'headers': 'headers', 'body': '"""OK"""'}), "(status=200, headers=headers, body='OK')\n", (602, 642), False, 'from pyramid.response import Response\n'), ((743, 831), 'pyramid.response.Response', 'Response', ([], {'status': '(200)', 'body': '"""Suspicious behaviour detected! Revoking cookie reissue"""'}), "(status=200, body=\n 'Suspicious behaviour detected! Revoking cookie reissue')\n", (751, 831), False, 'from pyramid.response import Response\n'), ((1426, 1440), 'pyramid.config.Configurator', 'Configurator', ([], {}), '()\n', (1438, 1440), False, 'from pyramid.config import Configurator\n'), ((3000, 3020), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (3009, 3020), False, 'from datetime import timedelta\n'), ((3339, 3351), 'webtest.TestApp', 'TestApp', (['app'], {}), '(app)\n', (3346, 3351), False, 'from webtest import TestApp\n'), ((3470, 3482), 'webtest.TestApp', 'TestApp', (['app'], {}), '(app)\n', (3477, 3482), False, 'from webtest import TestApp\n'), ((4265, 4335), 'pyramid.renderers.json_renderer_factory.add_adapter', 'json_renderer_factory.add_adapter', (['NonSerializable', 'serialize_anyclass'], {}), '(NonSerializable, serialize_anyclass)\n', (4298, 4335), False, 'from pyramid.renderers import json_renderer_factory\n'), ((4854, 4924), 'pyramid.renderers.json_renderer_factory.add_adapter', 'json_renderer_factory.add_adapter', (['NonSerializable', 'serialize_anyclass'], {}), '(NonSerializable, serialize_anyclass)\n', (4887, 4924), False, 'from pyramid.renderers import json_renderer_factory\n'), ((5019, 5025), 'pyramid.renderers.JSON', 'JSON', ([], {}), '()\n', (5023, 5025), False, 'from pyramid.renderers import JSON\n'), ((1477, 1501), 'pyramid.authorization.ACLAuthorizationPolicy', 'ACLAuthorizationPolicy', ([], {}), '()\n', (1499, 1501), False, 'from pyramid.authorization import ACLAuthorizationPolicy\n'), ((3827, 3851), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (3840, 3851), False, 'import pytest\n')]
# Copyright 2017 The Imaging Source Europe GmbH # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ctypes import * MAX_CAMERAS = 64 class CameraNotFoundError(Exception): pass class TcamCamera(Structure): _fields_ = [("model_name", c_char * 64), ("serial_number", c_char * 64), ("current_ip", c_char * 16), ("current_gateway", c_char * 16), ("current_netmask", c_char * 16), ("persistent_ip", c_char * 16), ("persistent_gateway", c_char * 16), ("persistent_netmask", c_char * 16), ("user_defined_name", c_char * 64), ("firmware_version", c_char * 64), ("mac_address", c_char * 64), ("interface_name", c_char * 64), ("is_static_ip", c_int), ("is_dhcp_enabled", c_int), ("is_reachable", c_int), ("is_busy", c_int) ] DISCOVER_CALLBACK_FUNC = CFUNCTYPE(None, TcamCamera) UPLOAD_CALLBACK_FUNC = CFUNCTYPE(None, c_char_p, c_int) def _tobytes(value): if bytes == str: return bytes(value) else: return bytes(value, "utf-8") class CameraController: def __init__(self): try: self.dll = cdll.LoadLibrary("libtcam_gigewrapper.so") except OSError: _path = os.path.dirname(__file__) if not _path: _path = "." self.dll = cdll.LoadLibrary(os.path.join(_path, "libtcam_gigewrapper.so")) self.dll.init() self.dll.set_persistent_parameter_s.argtypes = [c_char_p, c_char_p, c_char_p] self.dll.set_persistent_parameter_i.argtypes = [c_char_p, c_char_p, c_int] self.dll.rescue.argtypes = [c_char_p, c_char_p, c_char_p, c_char_p] self.dll.upload_firmware.argtypes = [c_char_p, c_char_p, UPLOAD_CALLBACK_FUNC] self.cameras = [] SUCCESS = 0x0 FAILURE = 0x8000 NO_DEVICE = 0x8001 INVALID_PARAMETER = 0x8002 @staticmethod def __getdict(struct): d = dict((field, getattr(struct, field)) for field, _ in struct._fields_) for f in d: if type(d[f]) == bytes: d[f] = d[f].decode("utf-8") return d def __discover_callback(self, camera): self.cameras.append(self.__getdict(camera)) def discover(self, get_persistent_values=False): self.cameras = [] self.dll.get_camera_list(DISCOVER_CALLBACK_FUNC(self.__discover_callback), get_persistent_values) return self.cameras def set_persistent_parameter(self, identifier, key, value): if type(value) == str: return self.dll.set_persistent_parameter_s(_tobytes(identifier), _tobytes(key), _tobytes(value)) else: return self.dll.set_persistent_parameter_i(_tobytes(identifier), _tobytes(key), value) def upload_firmware(self, identifier, _path, callback): ret = self.dll.upload_firmware(_tobytes(identifier), _tobytes(_path), UPLOAD_CALLBACK_FUNC(callback)) if ret == -1: raise RuntimeError("DeviceNotRecognized") elif ret == -2: raise RuntimeError("DeviceSupportsFwOnly") elif ret == -3: raise IOError("File not found, corrupt or not matching the camera model") elif ret == -4: raise RuntimeError("NoMatchFoundInPackage") elif ret == -5: raise RuntimeError("WriteError") elif ret == -6: raise RuntimeError("WriteVerificationError") elif ret == -7: raise RuntimeError("DeviceAccessFailed") elif ret == -8: raise RuntimeError("MotorFirmwareUpdateFailed") elif ret == -9: raise RuntimeError("FocusTableUpdateFailed") elif ret == -10: raise RuntimeError("MachXO2UpdateFailed") return ret def get_camera_details(self, identifier): tcam = TcamCamera() self.dll.get_camera_details(_tobytes(identifier), byref(tcam)) cam = self.__getdict(tcam) if not cam["serial_number"]: raise CameraNotFoundError("No such camera: '%s'" % (identifier)) return cam def rescue(self, identifier, ip, netmask, gateway): mac = None for cam in self.cameras: if identifier in [cam["serial_number"], cam["user_defined_name"], cam["mac_address"]]: if mac is not None: print("Camera identifier is ambiguous") return -2 mac = cam["mac_address"] if mac is None: raise CameraNotFoundError("No such camera: '%s'" % (identifier)) self.dll.rescue(_tobytes(mac), _tobytes(ip), _tobytes(netmask), _tobytes(gateway))
[ "os.path.dirname", "os.path.join" ]
[((1892, 1917), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1907, 1917), False, 'import os\n'), ((2012, 2057), 'os.path.join', 'os.path.join', (['_path', '"""libtcam_gigewrapper.so"""'], {}), "(_path, 'libtcam_gigewrapper.so')\n", (2024, 2057), False, 'import os\n')]
from parsimonious import NodeVisitor, Grammar, VisitationError from . import grammars from . import nodes from .exceptions import OutOfContextNodeError class TextOnlySymlParser(NodeVisitor): grammar = Grammar(grammars.text_only_syml_grammar) def reduce_children(self, children): children = [c for c in children if c is not None] if children: return children if len(children) > 1 else children[0] else: return None def visit_blank(self, node, children): return None def visit_line(self, node, children): indent, value, _ = children if value is not None: value.level = indent return value def generic_visit(self, node, children): return self.reduce_children(children) def get_text(self, node, children): return nodes.TextLeafNode(node, node.text) def visit_comment(self, node, children): _, text = children return nodes.Comment(text) visit_text = get_text visit_key = get_text def visit_indent(self, node, children): return len(node.text.replace('\t', ' ' * 4).strip('\n')) def visit_key_value(self, node, children): section, _, value = children section.incorporate_node(value) return section def visit_section(self, node, children): key, _ = children return nodes.KeyValue(node, key) def visit_list_item(self, node, children): _, _, value = children li = nodes.ListItem(node) li.incorporate_node(value) return li def visit_lines(self, node, children): root = nodes.Root(node) current = root children = self.reduce_children(children) if isinstance(children, nodes.LeafNode): children = [children] for child in children: if isinstance(child, nodes.Comment): current.comments.append(child) else: current = current.incorporate_node(child) return root def parse(self, *args, **kwargs): try: return super().parse(*args, **kwargs) except VisitationError as e: # Parsimonious swallows errors inside of `visit_` handlers and # wraps them in VisitationError cruft. if e.args[0].startswith('OutOfContextNodeError'): # Extract the original error message, ignoring the cruft. msg = e.args[0].split('\n\n\n')[0].split(':', 1)[1] raise OutOfContextNodeError(msg) else: raise # pragma: no cover class BooleanSymlParser(TextOnlySymlParser): """Syml with support for YAML-like boolean values. """ grammar = Grammar(grammars.boolean_syml_grammar) def visit_truthy(self, node, children): return nodes.RawValueLeafNode(node, node.text, value=True) def visit_falsey(self, node, children): return nodes.RawValueLeafNode(node, node.text, value=False) def parse(source_syml, filename='', raw=True, booleans=False): parser = BooleanSymlParser if booleans else TextOnlySymlParser return parser().parse(source_syml).as_data(filename, raw=raw)
[ "parsimonious.Grammar" ]
[((208, 248), 'parsimonious.Grammar', 'Grammar', (['grammars.text_only_syml_grammar'], {}), '(grammars.text_only_syml_grammar)\n', (215, 248), False, 'from parsimonious import NodeVisitor, Grammar, VisitationError\n'), ((2745, 2783), 'parsimonious.Grammar', 'Grammar', (['grammars.boolean_syml_grammar'], {}), '(grammars.boolean_syml_grammar)\n', (2752, 2783), False, 'from parsimonious import NodeVisitor, Grammar, VisitationError\n')]
import logging from abc import ABC from .parameters import ATR_COLUMNS class AverageTrueRangeMixin(ABC): @classmethod def _sanitize_atr_columns_mapping(cls, columns: list = None): if columns is None: return ATR_COLUMNS logging.warning(f"ATR cannot verify column accuracy, only their types.") for c in columns: assert isinstance(c, str), f"Columns must be provided as a list of strings." return columns
[ "logging.warning" ]
[((260, 332), 'logging.warning', 'logging.warning', (['f"""ATR cannot verify column accuracy, only their types."""'], {}), "(f'ATR cannot verify column accuracy, only their types.')\n", (275, 332), False, 'import logging\n')]
import unittest import requests from datetime import datetime, timedelta from project import app import pytz class TestWeather(unittest.TestCase): def setUp(self): pass def test_weather_by_city(self): city = 'kowloon' r = requests.get('http://127.0.0.1/api/v1/weather?city='+city) self.assertEqual(r.status_code,200) response = r.json() self.assertIsNone(response['error']) self.assertIn(city,response['data']['city']) def test_weather_by_range(self): hk = pytz.timezone('Asia/Hong_Kong') city = 'kowloon' last_hour_date_time = datetime.now(hk) - timedelta(hours = 1) start = last_hour_date_time.strftime(app.dateformat) end = datetime.now(hk).strftime(app.dateformat) r = requests.get('http://127.0.0.1/api/v1/weather?city='+city+'&start='+start+'&end='+end) self.assertEqual(r.status_code,200) response = r.json() self.assertIsNone(response['error']) if __name__ == '__main__': unittest.main()
[ "pytz.timezone", "requests.get", "datetime.datetime.now", "unittest.main", "datetime.timedelta" ]
[((1028, 1043), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1041, 1043), False, 'import unittest\n'), ((256, 316), 'requests.get', 'requests.get', (["('http://127.0.0.1/api/v1/weather?city=' + city)"], {}), "('http://127.0.0.1/api/v1/weather?city=' + city)\n", (268, 316), False, 'import requests\n'), ((536, 567), 'pytz.timezone', 'pytz.timezone', (['"""Asia/Hong_Kong"""'], {}), "('Asia/Hong_Kong')\n", (549, 567), False, 'import pytz\n'), ((792, 892), 'requests.get', 'requests.get', (["('http://127.0.0.1/api/v1/weather?city=' + city + '&start=' + start +\n '&end=' + end)"], {}), "('http://127.0.0.1/api/v1/weather?city=' + city + '&start=' +\n start + '&end=' + end)\n", (804, 892), False, 'import requests\n'), ((623, 639), 'datetime.datetime.now', 'datetime.now', (['hk'], {}), '(hk)\n', (635, 639), False, 'from datetime import datetime, timedelta\n'), ((642, 660), 'datetime.timedelta', 'timedelta', ([], {'hours': '(1)'}), '(hours=1)\n', (651, 660), False, 'from datetime import datetime, timedelta\n'), ((738, 754), 'datetime.datetime.now', 'datetime.now', (['hk'], {}), '(hk)\n', (750, 754), False, 'from datetime import datetime, timedelta\n')]
""" Looter, Web-Scraping for Humans. Usage: looter genspider <name> [--async] looter shell [<url>] looter (-h | --help | --version) Options: -h --help Show this screen. --version Show version. --async Use async instead of concurrent. """ import os import json import code import webbrowser from operator import itemgetter from itertools import groupby from concurrent import futures from pathlib import Path from typing import Callable import tempfile import requests import aiohttp from parsel import Selector from docopt import docopt from tqdm import tqdm VERSION = '2.21' DEFAULT_HEADERS = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36' } DEFAULT_ENCODING = 'utf-8' BANNER = """ Available objects: url The url of the site. res The response of the site. tree The DOM selector tree. Available functions: fetch Send HTTP request and parse it as a DOM selector. [has async version] view View the page in your browser. (test rendering) save Save what you crawled as a file. (json or csv) Examples: Get all the <li> elements of a <ul> table: >>> items = tree.css('ul li').extract() Get all the links of a page: >>> items = tree.css('a::attr(href)').extract() For more info, plz refer to documentation: [looter]: https://looter.readthedocs.io/en/latest/ """ def fetch(url: str, **kwargs) -> Selector: """ Send HTTP request and parse it as a DOM selector. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions. """ kwargs.setdefault('headers', DEFAULT_HEADERS) try: res = requests.get(url, **kwargs) res.encoding = kwargs.get('encoding', DEFAULT_ENCODING) res.raise_for_status() except requests.RequestException as e: print(e) else: html = res.text tree = Selector(text=html) return tree async def async_fetch(url: str, **kwargs) -> Selector: """ Do the fetch in an async style. Args: url (str): The url of the site. Returns: Selector: allows you to select parts of HTML text using CSS or XPath expressions. """ kwargs.setdefault('headers', DEFAULT_HEADERS) async with aiohttp.ClientSession(**kwargs) as ses: async with ses.get(url, **kwargs) as res: html = await res.text() tree = Selector(text=html) return tree def view(url: str, **kwargs) -> bool: """ View the page whether rendered properly. (ensure the <base> tag to make external links work) Args: url (str): The url of the site. """ kwargs.setdefault('headers', DEFAULT_HEADERS) if b'<base' not in (html := requests.get(url, **kwargs).content): html = html.replace(b'<head>', f'<head><base href={url}>'.encode('utf-8')) fd, fname = tempfile.mkstemp('.html') os.write(fd, html) os.close(fd) return webbrowser.open(f'file://{fname}') def save(total: list, *, name='data.json', sort_by: str = None, no_duplicate=False, order='asc'): """ Save what you crawled as a file, default format is json. Args: total (list): Total of data you crawled. name (str, optional): Defaults to 'data.json'. The name of the file. sort_by (str, optional): Defaults to None. Sort items by a specific key. no_duplicate (bool, optional): Defaults to False. If True, it will remove duplicated data. order (str, optional): Defaults to 'asc'. The opposite option is 'desc'. """ if sort_by: total = sorted(total, key=itemgetter(sort_by), reverse=order == 'desc') if no_duplicate: total = [key for key, _ in groupby(total)] _, ext = name.split('.') if ext == 'json': data = json.dumps(total, ensure_ascii=False) Path(name).write_text(data, encoding='utf-8') elif ext == 'csv': try: import pandas as pd pd.DataFrame(total).to_csv(name, encoding='utf-8') except ImportError: exit('pandas not installed! Plz run `pip install pandas`.') else: exit('Sorry, other formats are not supported yet.') def crawl_all(crawl: Callable, tasklist: list, max_workers=50) -> list: """ Crawl all the tasks in a tasklist. Args: crawl (Callable): The "crawl" function. tasklist (list): A list of url. max_workers (int, optional): Max thread count. Defaults to 50. Returns: list: Total of data you crawled. """ with futures.ThreadPoolExecutor(max_workers) as executor: fs = {executor.submit(crawl, task): task for task in tasklist} completed = futures.as_completed(fs) completed = tqdm(completed, total=len(tasklist)) total = [] for future in completed: task = fs[future] try: result = future.result() except Exception as e: print(f'[{e}] {task}.') else: if result: total.extend(list(result)) return total def cli(): """ Commandline for looter :d """ argv = docopt(__doc__, version=VERSION) if argv['genspider']: template = 'data_async.tmpl' if argv['--async'] else 'data.tmpl' template_path = Path(__file__).parent / 'templates' / template Path(f"{argv['<name>']}.py").write_text(template_path.read_text()) if argv['shell']: url = argv['<url>'] if argv['<url>'] else input('Specify the url: ') res = requests.get(url, headers=DEFAULT_HEADERS) res.encoding = DEFAULT_ENCODING if not res: exit('Failed to fetch the page.') tree = Selector(text=res.text) allvars = {**locals(), **globals()} try: from ptpython.repl import embed print(BANNER) embed(allvars) except ImportError: code.interact(local=allvars, banner=BANNER) if __name__ == '__main__': cli()
[ "aiohttp.ClientSession", "itertools.groupby", "parsel.Selector", "os.close", "os.write", "concurrent.futures.ThreadPoolExecutor", "json.dumps", "pathlib.Path", "webbrowser.open", "requests.get", "concurrent.futures.as_completed", "ptpython.repl.embed", "code.interact", "pandas.DataFrame", "operator.itemgetter", "tempfile.mkstemp", "docopt.docopt" ]
[((3055, 3080), 'tempfile.mkstemp', 'tempfile.mkstemp', (['""".html"""'], {}), "('.html')\n", (3071, 3080), False, 'import tempfile\n'), ((3085, 3103), 'os.write', 'os.write', (['fd', 'html'], {}), '(fd, html)\n', (3093, 3103), False, 'import os\n'), ((3108, 3120), 'os.close', 'os.close', (['fd'], {}), '(fd)\n', (3116, 3120), False, 'import os\n'), ((3132, 3166), 'webbrowser.open', 'webbrowser.open', (['f"""file://{fname}"""'], {}), "(f'file://{fname}')\n", (3147, 3166), False, 'import webbrowser\n'), ((5356, 5388), 'docopt.docopt', 'docopt', (['__doc__'], {'version': 'VERSION'}), '(__doc__, version=VERSION)\n', (5362, 5388), False, 'from docopt import docopt\n'), ((1842, 1869), 'requests.get', 'requests.get', (['url'], {}), '(url, **kwargs)\n', (1854, 1869), False, 'import requests\n'), ((2074, 2093), 'parsel.Selector', 'Selector', ([], {'text': 'html'}), '(text=html)\n', (2082, 2093), False, 'from parsel import Selector\n'), ((2443, 2474), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '(**kwargs)\n', (2464, 2474), False, 'import aiohttp\n'), ((3976, 4013), 'json.dumps', 'json.dumps', (['total'], {'ensure_ascii': '(False)'}), '(total, ensure_ascii=False)\n', (3986, 4013), False, 'import json\n'), ((4732, 4771), 'concurrent.futures.ThreadPoolExecutor', 'futures.ThreadPoolExecutor', (['max_workers'], {}), '(max_workers)\n', (4758, 4771), False, 'from concurrent import futures\n'), ((4876, 4900), 'concurrent.futures.as_completed', 'futures.as_completed', (['fs'], {}), '(fs)\n', (4896, 4900), False, 'from concurrent import futures\n'), ((5747, 5789), 'requests.get', 'requests.get', (['url'], {'headers': 'DEFAULT_HEADERS'}), '(url, headers=DEFAULT_HEADERS)\n', (5759, 5789), False, 'import requests\n'), ((5911, 5934), 'parsel.Selector', 'Selector', ([], {'text': 'res.text'}), '(text=res.text)\n', (5919, 5934), False, 'from parsel import Selector\n'), ((2588, 2607), 'parsel.Selector', 'Selector', ([], {'text': 'html'}), '(text=html)\n', (2596, 2607), False, 'from parsel import Selector\n'), ((6074, 6088), 'ptpython.repl.embed', 'embed', (['allvars'], {}), '(allvars)\n', (6079, 6088), False, 'from ptpython.repl import embed\n'), ((2918, 2945), 'requests.get', 'requests.get', (['url'], {}), '(url, **kwargs)\n', (2930, 2945), False, 'import requests\n'), ((3792, 3811), 'operator.itemgetter', 'itemgetter', (['sort_by'], {}), '(sort_by)\n', (3802, 3811), False, 'from operator import itemgetter\n'), ((3894, 3908), 'itertools.groupby', 'groupby', (['total'], {}), '(total)\n', (3901, 3908), False, 'from itertools import groupby\n'), ((4022, 4032), 'pathlib.Path', 'Path', (['name'], {}), '(name)\n', (4026, 4032), False, 'from pathlib import Path\n'), ((5567, 5595), 'pathlib.Path', 'Path', (['f"""{argv[\'<name>\']}.py"""'], {}), '(f"{argv[\'<name>\']}.py")\n', (5571, 5595), False, 'from pathlib import Path\n'), ((6129, 6172), 'code.interact', 'code.interact', ([], {'local': 'allvars', 'banner': 'BANNER'}), '(local=allvars, banner=BANNER)\n', (6142, 6172), False, 'import code\n'), ((5512, 5526), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (5516, 5526), False, 'from pathlib import Path\n'), ((4148, 4167), 'pandas.DataFrame', 'pd.DataFrame', (['total'], {}), '(total)\n', (4160, 4167), True, 'import pandas as pd\n')]
# M_ADL96_YZ483_Lab2 # <NAME> (ADL96) # <NAME> (YZ483) # Sep 27, 2021 import RPi.GPIO as GPIO import sys, os import pygame from pygame.locals import* import time keep_run = True # Global variable used to track running status # Button 27: quit def GPIO27_callback(channel): print ("Button #27 pressed, quit.") global keep_run keep_run = False # Set the keep_run flag to false in order to quit def run(): pygame.init() pygame.mouse.set_visible(True) WHITE = 255,255,255 BLACK = 0,0,0 size = width, height = 320, 240 #resolution of window screen = pygame.display.set_mode(size) my_font = pygame.font.Font(None, 20) start_btn = {'Start': (80,220)} start_rect = None quit_btn = {'Quit': (240,220)} quit_rect = None faster_btn = {'Faster': (40,220)} faster_rect = None slower_btn = {'Slower': (120,220)} slower_rect = None pause_btn = {'Pause': (200,220)} pause_rect = None back_btn = {'Back': (280,220)} back_rect = None playing = False # Menu level freeze = False # Pause flag # Two collide init speed1 = [1, 1]# speed of ball (pixels in x and y directions speed2 = [1, 1]# speed of ball (pixels in x and y directions ball1 = pygame.image.load("soccer-ball.png") ball2 = pygame.image.load("magic_ball.png") ball1 = pygame.transform.scale(ball1, (50, 50)) ball2 = pygame.transform.scale(ball2, (50, 50)) ballrect1 = ball1.get_rect() ballrect2 = ball2.get_rect() ballrect1.size=(40,40) ballrect2.size=(40,40) ballrect2.center = (280, 150) speed = 0.002 # Speed control screen.fill(BLACK) global keep_run while keep_run: # Exit event detect for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.display.quit() keep_run = False # Blit button text if(playing): # Menu level 2 (four buttons) for my_text, text_pos in faster_btn.items(): # Faster text_surface = my_font.render(my_text, True, WHITE) rect = text_surface.get_rect(center=text_pos) faster_rect = rect screen.blit(text_surface, rect) for my_text, text_pos in slower_btn.items(): # Slower text_surface = my_font.render(my_text, True, WHITE) rect = text_surface.get_rect(center=text_pos) slower_rect = rect screen.blit(text_surface, rect) for my_text, text_pos in pause_btn.items(): # Pause text_surface = my_font.render(my_text, True, WHITE) rect = text_surface.get_rect(center=text_pos) pause_rect = rect screen.blit(text_surface, rect) for my_text, text_pos in back_btn.items(): # Back text_surface = my_font.render(my_text, True, WHITE) rect = text_surface.get_rect(center=text_pos) back_rect = rect screen.blit(text_surface, rect) else: # Menu level 1 (two buttons) for my_text, text_pos in start_btn.items(): # Start text_surface = my_font.render(my_text, True, WHITE) rect = text_surface.get_rect(center=text_pos) start_rect = rect screen.blit(text_surface, rect) for my_text, text_pos in quit_btn.items(): # Quit text_surface = my_font.render(my_text, True, WHITE) rect = text_surface.get_rect(center=text_pos) quit_rect = rect screen.blit(text_surface, rect) # Display Flip pygame.display.flip() # Touch detections for event in pygame.event.get(): if(event.type is MOUSEBUTTONDOWN): pos = pygame.mouse.get_pos() if(playing): # Menu level 2 if faster_rect.collidepoint(pos): # Faster print ("Faster button pressed") if(speed > 0.0005): speed -= 0.0002 elif slower_rect.collidepoint(pos): # Slower print ("Slower button pressed") if(speed < 0.05): speed += 0.0002 elif pause_rect.collidepoint(pos): # Pause print ("Pause button pressed") freeze = not freeze elif back_rect.collidepoint(pos): # Back print ("Back button pressed") playing = False freeze = False else: # Menu level 1 if quit_rect.collidepoint(pos): # Quit print ("Quit button pressed") keep_run = False elif start_rect.collidepoint(pos): # Start print ("Start button pressed") playing = True freeze = False else: # Print screen coordinates print(pos) screen.fill(BLACK) text_surface = my_font.render(("touch at "+str(pos)), True, WHITE) rect = text_surface.get_rect(center=(160,120)) screen.blit(text_surface, rect) elif(event.type is MOUSEBUTTONUP): pos = pygame.mouse.get_pos() x,y = pos # Refresh next screen screen.fill(BLACK) # Two collide animation if(playing): if(not freeze): ballrect1 = ballrect1.move(speed1) ballrect2 = ballrect2.move(speed2) # Collide detect collide = ballrect1.colliderect(ballrect2) if collide: speed1[0] = -speed1[0] speed1[1] = -speed1[1] speed2[0] = -speed2[0] speed2[1] = -speed2[1] # Edge detect if ballrect1.left < 0 or ballrect1.right > width: speed1[0] = -speed1[0] if ballrect1.top < 0 or ballrect1.bottom > height-50: speed1[1] = -speed1[1] if ballrect2.left < 0 or ballrect2.right > width: speed2[0] = -speed2[0] if ballrect2.top < 0 or ballrect2.bottom > height-50: speed2[1] = -speed2[1] screen.blit(ball1, ballrect1) screen.blit(ball2, ballrect2) time.sleep(speed) pygame.display.quit() # Uninitialize the display module pygame.quit() # Shutdown pygame if __name__ == "__main__": os.putenv('SDL_VIDEODRIVER', 'fbcon') # Display on piTFT os.putenv('SDL_FBDEV', '/dev/fb0') # os.putenv('SDL_MOUSEDRV', 'TSLIB') # Track mouse clicks on piTFT os.putenv('SDL_MOUSEDEV', '/dev/input/touchscreen') GPIO.setmode(GPIO.BCM) GPIO.setup(27, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.add_event_detect(27, GPIO.FALLING, callback=GPIO27_callback, bouncetime=300) run() GPIO.cleanup() # clean up GPIO on normal exit
[ "RPi.GPIO.cleanup", "RPi.GPIO.add_event_detect", "pygame.init", "pygame.quit", "pygame.event.get", "pygame.display.set_mode", "os.putenv", "RPi.GPIO.setup", "pygame.display.flip", "pygame.mouse.get_pos", "time.sleep", "pygame.mouse.set_visible", "pygame.display.quit", "pygame.image.load", "pygame.font.Font", "RPi.GPIO.setmode", "pygame.transform.scale" ]
[((440, 453), 'pygame.init', 'pygame.init', ([], {}), '()\n', (451, 453), False, 'import pygame\n'), ((458, 488), 'pygame.mouse.set_visible', 'pygame.mouse.set_visible', (['(True)'], {}), '(True)\n', (482, 488), False, 'import pygame\n'), ((602, 631), 'pygame.display.set_mode', 'pygame.display.set_mode', (['size'], {}), '(size)\n', (625, 631), False, 'import pygame\n'), ((646, 672), 'pygame.font.Font', 'pygame.font.Font', (['None', '(20)'], {}), '(None, 20)\n', (662, 672), False, 'import pygame\n'), ((1289, 1325), 'pygame.image.load', 'pygame.image.load', (['"""soccer-ball.png"""'], {}), "('soccer-ball.png')\n", (1306, 1325), False, 'import pygame\n'), ((1338, 1373), 'pygame.image.load', 'pygame.image.load', (['"""magic_ball.png"""'], {}), "('magic_ball.png')\n", (1355, 1373), False, 'import pygame\n'), ((1386, 1425), 'pygame.transform.scale', 'pygame.transform.scale', (['ball1', '(50, 50)'], {}), '(ball1, (50, 50))\n', (1408, 1425), False, 'import pygame\n'), ((1438, 1477), 'pygame.transform.scale', 'pygame.transform.scale', (['ball2', '(50, 50)'], {}), '(ball2, (50, 50))\n', (1460, 1477), False, 'import pygame\n'), ((6839, 6860), 'pygame.display.quit', 'pygame.display.quit', ([], {}), '()\n', (6858, 6860), False, 'import pygame\n'), ((6905, 6918), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (6916, 6918), False, 'import pygame\n'), ((6983, 7020), 'os.putenv', 'os.putenv', (['"""SDL_VIDEODRIVER"""', '"""fbcon"""'], {}), "('SDL_VIDEODRIVER', 'fbcon')\n", (6992, 7020), False, 'import sys, os\n'), ((7044, 7078), 'os.putenv', 'os.putenv', (['"""SDL_FBDEV"""', '"""/dev/fb0"""'], {}), "('SDL_FBDEV', '/dev/fb0')\n", (7053, 7078), False, 'import sys, os\n'), ((7085, 7119), 'os.putenv', 'os.putenv', (['"""SDL_MOUSEDRV"""', '"""TSLIB"""'], {}), "('SDL_MOUSEDRV', 'TSLIB')\n", (7094, 7119), False, 'import sys, os\n'), ((7154, 7205), 'os.putenv', 'os.putenv', (['"""SDL_MOUSEDEV"""', '"""/dev/input/touchscreen"""'], {}), "('SDL_MOUSEDEV', '/dev/input/touchscreen')\n", (7163, 7205), False, 'import sys, os\n'), ((7215, 7237), 'RPi.GPIO.setmode', 'GPIO.setmode', (['GPIO.BCM'], {}), '(GPIO.BCM)\n', (7227, 7237), True, 'import RPi.GPIO as GPIO\n'), ((7242, 7291), 'RPi.GPIO.setup', 'GPIO.setup', (['(27)', 'GPIO.IN'], {'pull_up_down': 'GPIO.PUD_UP'}), '(27, GPIO.IN, pull_up_down=GPIO.PUD_UP)\n', (7252, 7291), True, 'import RPi.GPIO as GPIO\n'), ((7296, 7381), 'RPi.GPIO.add_event_detect', 'GPIO.add_event_detect', (['(27)', 'GPIO.FALLING'], {'callback': 'GPIO27_callback', 'bouncetime': '(300)'}), '(27, GPIO.FALLING, callback=GPIO27_callback,\n bouncetime=300)\n', (7317, 7381), True, 'import RPi.GPIO as GPIO\n'), ((7396, 7410), 'RPi.GPIO.cleanup', 'GPIO.cleanup', ([], {}), '()\n', (7408, 7410), True, 'import RPi.GPIO as GPIO\n'), ((1803, 1821), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1819, 1821), False, 'import pygame\n'), ((3805, 3826), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (3824, 3826), False, 'import pygame\n'), ((3876, 3894), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (3892, 3894), False, 'import pygame\n'), ((6817, 6834), 'time.sleep', 'time.sleep', (['speed'], {}), '(speed)\n', (6827, 6834), False, 'import time\n'), ((1880, 1901), 'pygame.display.quit', 'pygame.display.quit', ([], {}), '()\n', (1899, 1901), False, 'import pygame\n'), ((3965, 3987), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (3985, 3987), False, 'import pygame\n'), ((5661, 5683), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (5681, 5683), False, 'import pygame\n')]
import os import pandas as pd ####Loading The Batsmen Data####### bb = {} matches = 0 directory = "all_csv/" for root,dirs,files in os.walk(directory): for file in files: if matches>5000: break match_bb = {} #1 match = 1CSV | Each match handling if file.endswith(".csv"): matches += 1 f = open(directory+file,'r') for i in f.readlines(): x = i.split(",") if(x[0]=="version"): continue elif(x[0]=='info'): if(x[1]=='gender' and x[2]=='female'): break elif(x[0]=='ball'): batsmen = x[4] six = 1 if x[7]=='6' else 0 four = 1 if x[7]=='4' else 0 wicket = 1 if len(x[9])>2 else 0 ball = 1 dot = 1 if x[7]=='0' and not wicket else 0 if(batsmen not in match_bb.keys()): match_bb[batsmen] = [int(x[7]),four,six,wicket,1] #run,wicket,4's and 6's,balls faced else: match_bb[batsmen][0] += int(x[7]) #doesn't matter in case of wicket as it will be 0 match_bb[batsmen][1] += four match_bb[batsmen][2] += six match_bb[batsmen][3] = wicket #wicket fallen match_bb[batsmen][4] += ball f.close() for i in match_bb.keys(): # Matches,Runs,4's,6's,Wickets,balls faced,50,100,0's , HighScore if(i not in bb.keys()): bb[i] = [1] + match_bb[i] if(match_bb[i][0]>=50): bb[i] = bb[i] + [1] else: bb[i] = bb[i] + [0] if(match_bb[i][0]>=100): bb[i] = bb[i] + [1] else: bb[i] = bb[i] + [0] if(match_bb[i][0]==0): bb[i] = bb[i] + [1] else: bb[i] = bb[i] + [0] bb[i] = bb[i] + [match_bb[i][0]] else: bb[i][0] = bb[i][0] + 1 bb[i][1] = bb[i][1] + match_bb[i][0] bb[i][2] = bb[i][2] + match_bb[i][1] bb[i][3] = bb[i][3] + match_bb[i][2] bb[i][4] = bb[i][4] + match_bb[i][3] bb[i][5] = bb[i][5] + match_bb[i][4] if(match_bb[i][0]>=50): bb[i][6] = bb[i][6] + 1 if(match_bb[i][0]>=100): bb[i][7] = bb[i][7] + 1 if(match_bb[i][0]==0): bb[i][8] = bb[i][8] + 1 if(bb[i][9] < match_bb[i][0]): bb[i][9] = match_bb[i][0] d = {'Batsmen':[],'Matches':[],'Runs':[],'Wickets':[],'Balls':[],'0':[],'4':[],'6':[],'Strike Rate':[],'Average':[],'50':[],'100':[],'High Score':[]} for i in bb.keys(): d['Batsmen'].append(i) d['Matches'].append(bb[i][0]) d['Runs'].append(bb[i][1]) d['4'].append(bb[i][2]) d['6'].append(bb[i][3]) d['Wickets'].append(bb[i][4]) d['Balls'].append(bb[i][5]) d['50'].append(bb[i][6]) d['100'].append(bb[i][7]) d['0'].append(bb[i][8]) d['High Score'].append(bb[i][9]) d['Strike Rate'].append(float(bb[i][1])*100/int(bb[i][5])) if(int(bb[i][4])==0): d['Average'].append(float(bb[i][1])/int(bb[i][0])) else: d['Average'].append(float(bb[i][1])/int(bb[i][4])) df = pd.DataFrame(d) df.to_csv(r'/content/drive/My Drive/batsmen.csv', index=False) ####Loading The Bowler Data####### bb = {} matches = 0 directory = "all_csv/" for root,dirs,files in os.walk(directory): for file in files: if matches>5000: break match_bb = {} #1 match = 1CSV | Each match handling if file.endswith(".csv"): matches += 1 f = open(directory+file,'r') for i in f.readlines(): x = i.split(",") if(x[0]=="version"): continue elif(x[0]=='info'): if(x[1]=='gender' and x[2]=='female'): break elif(x[0]=='ball'): bowler = x[6] six = 1 if x[7]=='6' else 0 four = 1 if x[7]=='4' else 0 wicket = 1 if len(x[9])>2 else 0 ball = 1 if(bowler not in match_bb.keys()): match_bb[bowler] = [int(x[7]),four,six,wicket,1] #run,wicket,4's and 6's,balls faced else: match_bb[bowler][0] += int(x[7]) #doesn't matter in case of wicket as it will be 0 match_bb[bowler][1] += four match_bb[bowler][2] += six match_bb[bowler][3] += wicket #wicket fallen match_bb[bowler][4] += ball f.close() for i in match_bb.keys(): # Matches,Runs,4's,6's,Wickets,balls faced,50,100,0's , HighScore if(i not in bb.keys()): bb[i] = [1] + match_bb[i] bb[i][5] = int(bb[i][5]/6) + int(bb[i][5]%6) else: bb[i][0] = bb[i][0] + 1 bb[i][1] = bb[i][1] + match_bb[i][0] bb[i][2] = bb[i][2] + match_bb[i][1] bb[i][3] = bb[i][3] + match_bb[i][2] bb[i][4] = bb[i][4] + match_bb[i][3] bb[i][5] = bb[i][5] + match_bb[i][4] d = {'Bowler':[],'Matches':[],'Overs':[],'Runs':[],'4':[],'6':[],'Wickets':[],'Economy':[],'Average':[],'Strike Rate':[]} for i in bb.keys(): d['Bowler'].append(i) d['Matches'].append(bb[i][0]) d['Runs'].append(bb[i][1]) d['4'].append(bb[i][2]) d['6'].append(bb[i][3]) d['Wickets'].append(bb[i][4]) d['Overs'].append(int(bb[i][5]/6)+int(bb[i][5]%6)/10) if(int(bb[i][5]/6)==0): d['Economy'].append(float(bb[i][1])/int(bb[i][5]%6)) else: d['Economy'].append(float(bb[i][1])/int(bb[i][5]/6)) if(int(bb[i][4])==0): d['Average'].append(float(bb[i][1])) else: d['Average'].append(float(bb[i][1])/int(bb[i][4])) if(int(bb[i][4])==0): d['Strike Rate'].append(float(bb[i][5])) else: d['Strike Rate'].append(float(bb[i][5])/int(bb[i][4])) df = pd.DataFrame(d) df.to_csv(r'bowler.csv', index=False)
[ "pandas.DataFrame", "os.walk" ]
[((165, 183), 'os.walk', 'os.walk', (['directory'], {}), '(directory)\n', (172, 183), False, 'import os\n'), ((3675, 3690), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (3687, 3690), True, 'import pandas as pd\n'), ((3889, 3907), 'os.walk', 'os.walk', (['directory'], {}), '(directory)\n', (3896, 3907), False, 'import os\n'), ((6741, 6756), 'pandas.DataFrame', 'pd.DataFrame', (['d'], {}), '(d)\n', (6753, 6756), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy from scrapy.loader import ItemLoader from scrapy.loader.processors import TakeFirst, MapCompose, Join from scrapy.item import Item, Field from collections import defaultdict class Item(scrapy.Item): business_name = scrapy.Field() website = scrapy.Field() phonenumber = scrapy.Field() email = scrapy.Field() location = scrapy.Field() second_location = scrapy.Field() # third_location = scrapy.Field() # fourth_location = scrapy.Field() visit_id = scrapy.Field() visit_status = scrapy.Field()
[ "scrapy.Field" ]
[((388, 402), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (400, 402), False, 'import scrapy\n'), ((417, 431), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (429, 431), False, 'import scrapy\n'), ((450, 464), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (462, 464), False, 'import scrapy\n'), ((477, 491), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (489, 491), False, 'import scrapy\n'), ((507, 521), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (519, 521), False, 'import scrapy\n'), ((544, 558), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (556, 558), False, 'import scrapy\n'), ((654, 668), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (666, 668), False, 'import scrapy\n'), ((688, 702), 'scrapy.Field', 'scrapy.Field', ([], {}), '()\n', (700, 702), False, 'import scrapy\n')]
__author__ = 'rogerjiang' ''' Purposes: 1. Visualization of training data 2. Evaluation of training data augmentation ''' ''' Notes on the data files: train_wkt_v4.csv: training labels with ImageId, ClassType, MultipolygonWKT train_geoson_v3 (similar to train_wkt_v4.csv): training labels with ImageId (folder name), ClassType (detailed, name of .geojson files), Multipolygon (data of .geojson files, also contains detailed ClassType information) grid_size.csv: sizes of all images with ImageId, 0<Xmax<1, -1<Ymin<0 (size of images, assuming origin (0,0) is at the upper left corner) three_band: all 3-band images, in name of ImageId.tif sixteen_band: all 16-band images, in name of ImageId_{A,M,P}.tif sample_submission.csv: submission with ImageId, ClassType, MultipolygonWKT If the order of dimension in all the image data is x-y, this order is switched to y-x in grid_sizes and wkt data from train_wkt_v4. ------------- ''' ''' Basically, the combination of ClassType and MultipolygonWKT gives the voxel-wise class labels. The 'three_band' and 'sixteen_band' folders are the input for training. ImageId connects the class labels with the training data. MultipolygonWKT is relative position in the figure and can be converted to pixel coordinate with the grid_size (Xmax, Ymin) There is slightly mismatch between the three_band and sixteen_band data due to delay in measurements, such that they should be aligned. ''' import shapely.wkt as wkt import pandas as pd import cv2 import numpy as np import matplotlib.pyplot as plt from descartes.patch import PolygonPatch from matplotlib.patches import Patch from matplotlib import cm from shapely import affinity from shapely.affinity import scale from shapely.geometry import MultiPolygon, Polygon from collections import defaultdict import sys import seaborn as sns import os CLASSES = { 1: 'Bldg', 2: 'Struct', 3: 'Road', 4: 'Track', 5: 'Trees', 6: 'Crops', 7: 'Fast H2O', 8: 'Slow H2O', 9: 'Truck', 10: 'Car', } COLORS = { 1: '0.7', 2: '0.4', 3: '#b35806', 4: '#dfc27d', 5: '#1b7837', 6: '#a6dba0', 7: '#74add1', 8: '#4575b4', 9: '#f46d43', 10: '#d73027', } # ZORDER defines the priority for plotting overlay of class labels. ZORDER = { 1: 6, 2: 5, 3: 4, 4: 1, 5: 3, 6: 2, 7: 7, 8: 8, 9: 9, 10: 10, } def resize(im, shape_out): return cv2.resize(im, (shape_out[1], shape_out[0]), interpolation=cv2.INTER_CUBIC) def rgb2gray(rgb): return np.dot(rgb[..., :3], [0.299, 0.587, 0.144]) def crop(img, crop_coord): width, height = img.shape[0], img.shape[1] x_lim = crop_coord[0].astype(np.int) y_lim = crop_coord[1].astype(np.int) assert 0 <= x_lim[0] < x_lim[1] <= width assert 0 <= y_lim[0] < y_lim[1] <= height return img[x_lim[0]: x_lim[1], y_lim[0]: y_lim[1]] def affine_transform(img, warp_matrix, out_shape): ''' Apply affine transformation using warp_matrix to img, and perform interpolation as needed :param img: :param warp_matrix: :param out_shape: :return: ''' new_img = cv2.warpAffine(img, warp_matrix, (out_shape[1], out_shape[0]), flags = cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP, borderMode= cv2.BORDER_REPLICATE) # new_img[new_img == 0] = np.average(new_img) return new_img def get_polygon_list(image_id, class_type, train_wkt_v4): ''' Load the wkt data (relative coordiantes of polygons) from csv file and returns a list of polygons (in the format of shapely multipolygon) :param image_id: :param class_type: :return: ''' all_polygon = train_wkt_v4[train_wkt_v4.ImageId == image_id] polygon = all_polygon[all_polygon.ClassType == class_type].MultipolygonWKT # For empty polygon, polygon is a string of 'MULTIPOLYGON EMPTY' # wkt.loads will automatically handle this and len(polygon_list) returns 0 # But polygon_list will never be None! polygon_list = wkt.loads(polygon.values[0]) return polygon_list def convert_coordinate_to_raster(coords, img_size, xymax): ''' Converts the relative coordinates of contours into raster coordinates. :param coords: :param img_size: :param xymax: :return: ''' xmax, ymax = xymax width, height = img_size coords[:, 0] *= (height + 1) / xmax coords[:, 1] *= (width + 1) / ymax coords = np.round(coords).astype(np.int32) return coords def generate_contours(polygon_list, img_size, xymax): ''' Convert shapely MultipolygonWKT type of data (relative coordinate) into list type of date for polygon raster coordinates :param polygon_list: :param img_size: :param xymax: :return: ''' if len(polygon_list) == 0: return [], [] to_ind = lambda x: np.array(list(x)).astype(np.float32) perim_list = [convert_coordinate_to_raster(to_ind(poly.exterior.coords), img_size, xymax) for poly in polygon_list] inter_list = [convert_coordinate_to_raster( to_ind(poly.coords), img_size, xymax) for poly_ex in polygon_list for poly in poly_ex.interiors] return perim_list, inter_list def generate_mask_from_contours(img_size, perim_list, inter_list, class_id = 1): ''' Create pixel-wise mask from contours from polygon of raster coordinates :param img_size: :param perim_list: :param inter_list: :param class_id: :return: ''' mask = np.zeros(img_size, np.uint8) if perim_list is None: return mask # mask should match the dimension of image # however, cv2.fillpoly assumes the x and y axes are oppsite between mask and # perim_list (inter_list) cv2.fillPoly(mask, perim_list, class_id) cv2.fillPoly(mask, inter_list, 0) return mask def plot_polygon(polygon_list, ax, scaler = None, alpha = 0.7): ''' polygon_list is a dictionary of polygon list for all class types. key is the class id, and value is the polygon list. :param polygon_list: :param ax: :param scaler: :param alpha: :return: ''' legend_list = [] for cl in CLASSES: # Patch is a function in the matplotlib.patches module legend_list.append(Patch( color = COLORS[cl], label = '{}: ({})'.format(CLASSES[cl], len(polygon_list[cl])))) for polygon in polygon_list[cl]: if scaler is not None: # affinity is a function from shapely polygon_rescale = affinity.scale(polygon, xfact = scaler[1], yfact = scaler[0], origin = [0., 0., 0.]) else: polygon_rescale = polygon # PolygonPatch is a function from descartes.patch module # polygon_list is in relative coordinates and they are # generated from get_polygon_list and are further # converted to raster coordinates through scaler. patch = PolygonPatch(polygon = polygon_rescale, color = COLORS[cl], lw = 0, alpha = alpha, zorder = ZORDER[cl]) ax.add_patch(patch) ax.autoscale_view() ax.set_title('Objects') ax.set_xticks([]) ax.set_yticks([]) return legend_list def plot_image(img, ax, image_id, image_key, selected_channel = None): ''' Plot an selected channels of img into ax. :param img: :param ax: :param image_id: :param image_key: :param selected_channel: :return: ''' title_suffix = '' if selected_channel is not None: img = img[:, :, selected_channel] title_suffix = '(' + ','.join(repr(i) for i in selected_channel) + ')' ax.imshow(img) ax.set_title(image_id + '-' + image_key + title_suffix) ax.set_xlabel(img.shape[0]) ax.set_ylabel(img.shape[1]) ax.set_xticks([]) ax.set_yticks([]) def plot_overlay(img, ax, image_id, image_key, polygon_list, scaler = [1., 1.], x_range = None, y_range = None, label = None, alpha = 1.0, rgb = False): ''' Plot image with polygon overlays :param img: :param ax: :param image_id: :param image_key: :param polygon_list: :param scaler: :return: ''' # cm is a function from matplotlib if not x_range: x_range = [0, img.shape[0]] if not y_range: y_range = [0, img.shape[1]] if rgb: ax.imshow(scale_percentile(img), vmax=1., vmin=0.) else: ax.imshow(scale_percentile(rgb2gray(img)), cmap = cm.gray, vmax = 1., vmin = 0.) ax.set_xlabel(x_range[1] - x_range[0]) ax.set_ylabel(y_range[1] - y_range[0]) legend = plot_polygon(polygon_list, ax, scaler, alpha = alpha) ax.set_title(image_id + '-' + image_key + '-Overlay') return legend def scale_percentile(img): ''' Scale an image's 1 - 99 percentiles into 0 - 1 for display :param img: :return: ''' orig_shape = img.shape if len(orig_shape) == 3: img = np.reshape(img, [orig_shape[0] * orig_shape[1], orig_shape[2]] ).astype(np.float32) elif len(orig_shape) == 2: img = np.reshape(img, [orig_shape[0] * orig_shape[1]]).astype(np.float32) mins = np.percentile(img, 1, axis = 0) maxs = np.percentile(img, 99, axis = 0) - mins img = (img - mins) / maxs img.clip(0., 1.) img = np.reshape(img, orig_shape) return img def get_image_area(image_id): ''' Calculate the area of an image :param image_id: :return: ''' xmax = grid_sizes[grid_sizes.ImageId == image_id].Xmax.values[0] ymin = grid_sizes[grid_sizes.ImageId == image_id].Ymin.values[0] return abs(xmax * ymin) def image_stat(image_id): ''' Return the statistics ofd an image as a pd dataframe :param image_id: :return: ''' counts, total_area, mean_area, std_area = {}, {}, {}, {} img_area = get_image_area(image_id) for cl in CLASSES: polygon_list = get_polygon_list(image_id, cl) counts[cl] = len(polygon_list) if len(polygon_list) > 0: total_area[cl] = np.sum([poly.area for poly in polygon_list])\ / img_area * 100. mean_area[cl] = np.mean([poly.area for poly in polygon_list])\ / img_area * 100. std_area[cl] = np.std([poly.area for poly in polygon_list])\ / img_area * 100. return pd.DataFrame({'Class': CLASSES, 'Counts': counts, 'TotalArea': total_area, 'MeanArea': mean_area, 'STDArea': std_area}) def collect_stats(): ''' Collect the area statistics for all images and concatenate them :return: ''' stats = [] total_no = len(all_train_names) - 1 for image_no, image_id in enumerate(all_train_names): stat = image_stat(image_id) stat['ImageId'] = image_id stats.append(stat) sys.stdout.write('\rCollecting class stats [{}{}] {}%'.\ format('=' * image_no, ' ' * (total_no - image_no), 100 * image_no / total_no)) sys.stdout.flush() sys.stdout.write('\n') return pd.concat(stats) def calculate_class_weights(): ''' :return: class-wise true-label-area / false-label-area as a dictionary ''' df = collect_stats() df = df.fillna(0) df = df.pivot(index = 'Class', columns = 'ImageId', values = 'TotalArea') df = df.sum(axis=1) df = df / (2500. - df) return df.to_dict() def plot_stats(value, title): ''' Plot 2D grid plot of statistics of MeanArea, Counts, TotalArea, STDArea. :param value: :param title: :return: ''' stats = collect_stats() pvt = stats.pivot(index='Class', columns='ImageId', values = value) pvt.fillna(0., inplace = True) fig, ax = plt.subplots(figsize = (10, 4)) im = ax.imshow(pvt, interpolation = 'nearest', cmap = plt.cm.plasma, extent = [0 ,25, 10, 0]) ax.set_xlabel('Image') ax.set_ylabel('Class Type') ax.set_xticks(np.arange(0.5, 25.4, 1)) ax.set_yticks(np.arange(0.5, 10.4, 1)) ax.set_xticklabels(np.arange(1, 26)) ax.set_yticklabels(pvt.index) ax.set_title(title) fig.colorbar(im) def plot_bar_stats(): stats = collect_stats() pvt = stats.pivot(index = 'Class', columns = 'ImageId', values = 'TotalArea') perc_area = np.cumsum(pvt, axis = 0) class_r = {} sns.set_style('white') sns.set_context({'figure.figsize': (12, 8)}) for cl in CLASSES: class_r[CLASSES[cl]] = cl for cl in np.arange(1, 11): class_name = perc_area.index[-cl] class_id = class_r[class_name] ax = sns.barplot(x = perc_area.columns, y = perc_area.loc[class_name], color = COLORS[class_id], label = class_name) ax.legend(loc = 2) sns.despine(left = True) ax.set_xlabel('Image ID') ax.set_ylabel('Class Type') ax.set_xticklabels(perc_area.columns, rotation = -60) def jaccard_index(mask_1, mask_2): ''' Calculate jaccard index between two masks :param mask_1: :param mask_2: :return: ''' assert len(mask_1.shape) == len(mask_2.shape) == 2 assert 0 <= np.amax(mask_1) <=1 assert 0 <= np.amax(mask_2) <=1 intersection = np.sum(mask_1.astype(np.float32) * mask_2.astype(np.float32)) union = np.sum(mask_1.astype(np.float32) + mask_2.astype(np.float32)) - \ intersection if union == 0: return 1. return intersection / union def polygon_jaccard(final_polygons, train_polygons): ''' Calcualte the jaccard index of two polygons, based on data type of shapely.geometry.MultiPolygon :param final_polygons: :param train_polygons: :return: ''' return final_polygons.intersection(train_polygons).area /\ final_polygons.union(train_polygons).area
[ "shapely.wkt.loads", "descartes.patch.PolygonPatch", "seaborn.set_style", "numpy.percentile", "shapely.affinity.scale", "numpy.arange", "numpy.mean", "numpy.reshape", "seaborn.despine", "numpy.dot", "pandas.DataFrame", "sys.stdout.flush", "numpy.round", "cv2.fillPoly", "cv2.warpAffine", "numpy.amax", "seaborn.set_context", "numpy.std", "cv2.resize", "numpy.sum", "numpy.zeros", "numpy.cumsum", "seaborn.barplot", "pandas.concat", "matplotlib.pyplot.subplots", "sys.stdout.write" ]
[((2422, 2497), 'cv2.resize', 'cv2.resize', (['im', '(shape_out[1], shape_out[0])'], {'interpolation': 'cv2.INTER_CUBIC'}), '(im, (shape_out[1], shape_out[0]), interpolation=cv2.INTER_CUBIC)\n', (2432, 2497), False, 'import cv2\n'), ((2552, 2595), 'numpy.dot', 'np.dot', (['rgb[..., :3]', '[0.299, 0.587, 0.144]'], {}), '(rgb[..., :3], [0.299, 0.587, 0.144])\n', (2558, 2595), True, 'import numpy as np\n'), ((3156, 3303), 'cv2.warpAffine', 'cv2.warpAffine', (['img', 'warp_matrix', '(out_shape[1], out_shape[0])'], {'flags': '(cv2.INTER_LINEAR + cv2.WARP_INVERSE_MAP)', 'borderMode': 'cv2.BORDER_REPLICATE'}), '(img, warp_matrix, (out_shape[1], out_shape[0]), flags=cv2.\n INTER_LINEAR + cv2.WARP_INVERSE_MAP, borderMode=cv2.BORDER_REPLICATE)\n', (3170, 3303), False, 'import cv2\n'), ((4062, 4090), 'shapely.wkt.loads', 'wkt.loads', (['polygon.values[0]'], {}), '(polygon.values[0])\n', (4071, 4090), True, 'import shapely.wkt as wkt\n'), ((5598, 5626), 'numpy.zeros', 'np.zeros', (['img_size', 'np.uint8'], {}), '(img_size, np.uint8)\n', (5606, 5626), True, 'import numpy as np\n'), ((5838, 5878), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', 'perim_list', 'class_id'], {}), '(mask, perim_list, class_id)\n', (5850, 5878), False, 'import cv2\n'), ((5883, 5916), 'cv2.fillPoly', 'cv2.fillPoly', (['mask', 'inter_list', '(0)'], {}), '(mask, inter_list, 0)\n', (5895, 5916), False, 'import cv2\n'), ((9481, 9510), 'numpy.percentile', 'np.percentile', (['img', '(1)'], {'axis': '(0)'}), '(img, 1, axis=0)\n', (9494, 9510), True, 'import numpy as np\n'), ((9627, 9654), 'numpy.reshape', 'np.reshape', (['img', 'orig_shape'], {}), '(img, orig_shape)\n', (9637, 9654), True, 'import numpy as np\n'), ((10715, 10838), 'pandas.DataFrame', 'pd.DataFrame', (["{'Class': CLASSES, 'Counts': counts, 'TotalArea': total_area, 'MeanArea':\n mean_area, 'STDArea': std_area}"], {}), "({'Class': CLASSES, 'Counts': counts, 'TotalArea': total_area,\n 'MeanArea': mean_area, 'STDArea': std_area})\n", (10727, 10838), True, 'import pandas as pd\n'), ((11482, 11504), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (11498, 11504), False, 'import sys\n'), ((11516, 11532), 'pandas.concat', 'pd.concat', (['stats'], {}), '(stats)\n', (11525, 11532), True, 'import pandas as pd\n'), ((12180, 12209), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 4)'}), '(figsize=(10, 4))\n', (12192, 12209), True, 'import matplotlib.pyplot as plt\n'), ((12745, 12767), 'numpy.cumsum', 'np.cumsum', (['pvt'], {'axis': '(0)'}), '(pvt, axis=0)\n', (12754, 12767), True, 'import numpy as np\n'), ((12791, 12813), 'seaborn.set_style', 'sns.set_style', (['"""white"""'], {}), "('white')\n", (12804, 12813), True, 'import seaborn as sns\n'), ((12818, 12862), 'seaborn.set_context', 'sns.set_context', (["{'figure.figsize': (12, 8)}"], {}), "({'figure.figsize': (12, 8)})\n", (12833, 12862), True, 'import seaborn as sns\n'), ((12928, 12944), 'numpy.arange', 'np.arange', (['(1)', '(11)'], {}), '(1, 11)\n', (12937, 12944), True, 'import numpy as np\n'), ((13204, 13226), 'seaborn.despine', 'sns.despine', ([], {'left': '(True)'}), '(left=True)\n', (13215, 13226), True, 'import seaborn as sns\n'), ((9524, 9554), 'numpy.percentile', 'np.percentile', (['img', '(99)'], {'axis': '(0)'}), '(img, 99, axis=0)\n', (9537, 9554), True, 'import numpy as np\n'), ((11459, 11477), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (11475, 11477), False, 'import sys\n'), ((12406, 12429), 'numpy.arange', 'np.arange', (['(0.5)', '(25.4)', '(1)'], {}), '(0.5, 25.4, 1)\n', (12415, 12429), True, 'import numpy as np\n'), ((12449, 12472), 'numpy.arange', 'np.arange', (['(0.5)', '(10.4)', '(1)'], {}), '(0.5, 10.4, 1)\n', (12458, 12472), True, 'import numpy as np\n'), ((12497, 12513), 'numpy.arange', 'np.arange', (['(1)', '(26)'], {}), '(1, 26)\n', (12506, 12513), True, 'import numpy as np\n'), ((13040, 13148), 'seaborn.barplot', 'sns.barplot', ([], {'x': 'perc_area.columns', 'y': 'perc_area.loc[class_name]', 'color': 'COLORS[class_id]', 'label': 'class_name'}), '(x=perc_area.columns, y=perc_area.loc[class_name], color=COLORS[\n class_id], label=class_name)\n', (13051, 13148), True, 'import seaborn as sns\n'), ((13570, 13585), 'numpy.amax', 'np.amax', (['mask_1'], {}), '(mask_1)\n', (13577, 13585), True, 'import numpy as np\n'), ((13606, 13621), 'numpy.amax', 'np.amax', (['mask_2'], {}), '(mask_2)\n', (13613, 13621), True, 'import numpy as np\n'), ((4484, 4500), 'numpy.round', 'np.round', (['coords'], {}), '(coords)\n', (4492, 4500), True, 'import numpy as np\n'), ((7169, 7266), 'descartes.patch.PolygonPatch', 'PolygonPatch', ([], {'polygon': 'polygon_rescale', 'color': 'COLORS[cl]', 'lw': '(0)', 'alpha': 'alpha', 'zorder': 'ZORDER[cl]'}), '(polygon=polygon_rescale, color=COLORS[cl], lw=0, alpha=alpha,\n zorder=ZORDER[cl])\n', (7181, 7266), False, 'from descartes.patch import PolygonPatch\n'), ((6646, 6731), 'shapely.affinity.scale', 'affinity.scale', (['polygon'], {'xfact': 'scaler[1]', 'yfact': 'scaler[0]', 'origin': '[0.0, 0.0, 0.0]'}), '(polygon, xfact=scaler[1], yfact=scaler[0], origin=[0.0, 0.0,\n 0.0])\n', (6660, 6731), False, 'from shapely import affinity\n'), ((9223, 9286), 'numpy.reshape', 'np.reshape', (['img', '[orig_shape[0] * orig_shape[1], orig_shape[2]]'], {}), '(img, [orig_shape[0] * orig_shape[1], orig_shape[2]])\n', (9233, 9286), True, 'import numpy as np\n'), ((9402, 9450), 'numpy.reshape', 'np.reshape', (['img', '[orig_shape[0] * orig_shape[1]]'], {}), '(img, [orig_shape[0] * orig_shape[1]])\n', (9412, 9450), True, 'import numpy as np\n'), ((10371, 10415), 'numpy.sum', 'np.sum', (['[poly.area for poly in polygon_list]'], {}), '([poly.area for poly in polygon_list])\n', (10377, 10415), True, 'import numpy as np\n'), ((10492, 10537), 'numpy.mean', 'np.mean', (['[poly.area for poly in polygon_list]'], {}), '([poly.area for poly in polygon_list])\n', (10499, 10537), True, 'import numpy as np\n'), ((10612, 10656), 'numpy.std', 'np.std', (['[poly.area for poly in polygon_list]'], {}), '([poly.area for poly in polygon_list])\n', (10618, 10656), True, 'import numpy as np\n')]
#coding=utf-8 ''' filename:triradian_radian.py chap:3 subject:9 10.4 user input a,b,c conditions:side1,a,b,c of sides =3,7,9 solution:radian A,B,C COS_C = (a^2+b^2-c^2 )/(2*a*b) ''' import math #sides = (3,7,9) sides = tuple(eval(input(""" Please enter the 3 sides of triangle with the format of 'a,b,c': """))) #print(sides) results = [] for i in range(3): a = sides[(i+0)%3] b = sides[(i+1)%3] c = sides[(i+2)%3] cos_a = float(c**2 + b**2 - a**2)/float(2*c*b) C = math.acos(cos_a) #print(a,b,c,cos_a,C) results.append(C) message = '''The sides of triradian are a,b,c={0},{1},{2} then It's radians are A,B,C={3},{4},{5} '''.format(*(list(sides)+results) ) print(message)
[ "math.acos" ]
[((518, 534), 'math.acos', 'math.acos', (['cos_a'], {}), '(cos_a)\n', (527, 534), False, 'import math\n')]
#!/usr/bin/env python import sys from cv2 import cv slider_pos = 0 def update_slider(pos): global slider_pos slider_pos = pos def do_pyrdown(in_img, filter=cv.CV_GAUSSIAN_5x5): # verify image is halvable assert(in_img.width % 2 == 0 and in_img.height % 2 == 0) out_img = cv.CreateImage((in_img.width/2, in_img.height/2), in_img.depth, in_img.nChannels) cv.PyrDown(in_img, out_img, filter) return out_img def do_capture(): global slider_pos # Set up the camera capture capture = cv.CreateCameraCapture(0) # Create a window cv.NamedWindow("Exercise5", cv.CV_WINDOW_AUTOSIZE) # Set up the trackbar slider_pos = 0 cv.CreateTrackbar("Reduction", "Exercise5", slider_pos, 4, update_slider) while True: # Capture a frame frame = cv.QueryFrame(capture) if frame == None: continue # Make sure it is divisible by up to 8 out = cv.CreateImage(((frame.width/8)*8, (frame.height/8)*8), frame.depth, frame.nChannels) cv.Resize(frame, out) # Reduce the image by pyramid depending on the slider position if slider_pos != 0: for i in range(slider_pos): out = do_pyrdown(out) cv.ShowImage("Exercise5", out) # Check for esc key c = cv.WaitKey(33) if c == 27: return(0) if __name__ == "__main__": do_capture() sys.exit(0)
[ "cv2.cv.PyrDown", "cv2.cv.Resize", "cv2.cv.CreateCameraCapture", "cv2.cv.NamedWindow", "cv2.cv.CreateTrackbar", "cv2.cv.WaitKey", "cv2.cv.ShowImage", "sys.exit", "cv2.cv.CreateImage", "cv2.cv.QueryFrame" ]
[((286, 376), 'cv2.cv.CreateImage', 'cv.CreateImage', (['(in_img.width / 2, in_img.height / 2)', 'in_img.depth', 'in_img.nChannels'], {}), '((in_img.width / 2, in_img.height / 2), in_img.depth, in_img.\n nChannels)\n', (300, 376), False, 'from cv2 import cv\n'), ((370, 405), 'cv2.cv.PyrDown', 'cv.PyrDown', (['in_img', 'out_img', 'filter'], {}), '(in_img, out_img, filter)\n', (380, 405), False, 'from cv2 import cv\n'), ((505, 530), 'cv2.cv.CreateCameraCapture', 'cv.CreateCameraCapture', (['(0)'], {}), '(0)\n', (527, 530), False, 'from cv2 import cv\n'), ((554, 604), 'cv2.cv.NamedWindow', 'cv.NamedWindow', (['"""Exercise5"""', 'cv.CV_WINDOW_AUTOSIZE'], {}), "('Exercise5', cv.CV_WINDOW_AUTOSIZE)\n", (568, 604), False, 'from cv2 import cv\n'), ((649, 722), 'cv2.cv.CreateTrackbar', 'cv.CreateTrackbar', (['"""Reduction"""', '"""Exercise5"""', 'slider_pos', '(4)', 'update_slider'], {}), "('Reduction', 'Exercise5', slider_pos, 4, update_slider)\n", (666, 722), False, 'from cv2 import cv\n'), ((1314, 1325), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1322, 1325), False, 'import sys\n'), ((772, 794), 'cv2.cv.QueryFrame', 'cv.QueryFrame', (['capture'], {}), '(capture)\n', (785, 794), False, 'from cv2 import cv\n'), ((886, 979), 'cv2.cv.CreateImage', 'cv.CreateImage', (['(frame.width / 8 * 8, frame.height / 8 * 8)', 'frame.depth', 'frame.nChannels'], {}), '((frame.width / 8 * 8, frame.height / 8 * 8), frame.depth,\n frame.nChannels)\n', (900, 979), False, 'from cv2 import cv\n'), ((976, 997), 'cv2.cv.Resize', 'cv.Resize', (['frame', 'out'], {}), '(frame, out)\n', (985, 997), False, 'from cv2 import cv\n'), ((1158, 1188), 'cv2.cv.ShowImage', 'cv.ShowImage', (['"""Exercise5"""', 'out'], {}), "('Exercise5', out)\n", (1170, 1188), False, 'from cv2 import cv\n'), ((1222, 1236), 'cv2.cv.WaitKey', 'cv.WaitKey', (['(33)'], {}), '(33)\n', (1232, 1236), False, 'from cv2 import cv\n')]
from flask import Flask, render_template, request from os import getenv from matplotlib.figure import Figure from .models import DB, tracks, numbers from .predict import get_recommendations from io import BytesIO import matplotlib.pyplot as plt import seaborn as sns import base64 import textwrap import numpy as np import scipy.stats as sps def create_app(): app = Flask(__name__) app.config["SQLALCHEMY_DATABASE_URI"] = getenv("DATABASE_URI") app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False DB.init_app(app) @app.route('/') def root(): return render_template('index.html') @app.route('/didyoumean', methods=['POST', 'GET']) def didyoumean(): song_name = request.values['song_name'] suggestions = tracks.query.filter(tracks.name == song_name).all() pseudo_suggestion_list = [] sugg_form = [] for track in suggestions: if ([track.name, track.artists, track.release_year]) not in pseudo_suggestion_list: pseudo_suggestion_list.append([track.name, track.artists, track.release_year]) sugg_form.append([f'{track.name} by {track.artists}({track.release_year})'.replace('_', ' '), track.id]) if suggestions == []: sugg_form = [["We did not find any tracks that match your search."]] return render_template('didyoumean.html', suggestions=sugg_form) @app.route('/recommendations', methods=['POST', 'GET']) @app.route('/recommendations/<id>', methods=['POST', 'GET']) def recommendations(id=None): if id is None: song_name = request.values['song_name'] track = tracks.query.filter(tracks.name == song_name).one() song_name = f'{track.name}' by_statement = f'by {track.artists}({track.release_year})'.replace('_', ' ') else: song_id = id desired_track = tracks.query.filter(tracks.id == song_id).one() song_name = f'{desired_track.name}' by_statement = f'by {desired_track.artists}({desired_track.release_year})'.replace('_', ' ') track = desired_track # Get the distances and recommended songs' id's from the model dist, rec = get_recommendations(track) # print(rec) # Populate a list with recommended songs' names via query rec_names = [] names_for_plot = [] popularity = [] duration_ms = [] danceability = [] energy = [] speechiness = [] acousticness = [] liveness = [] valence = [] loudness = [] for r in rec: r = int(r) rec_track = tracks.query.filter(tracks.id == r).one() rec_attr_vect = numbers.query.filter(numbers.id == r).one() names_for_plot.append(rec_track.name) rec_names.append(f'{rec_track.name} by {rec_track.artists}({rec_track.release_year})'.replace('_', ' ')) # Create feature vectors popularity.append(rec_attr_vect.popularity) duration_ms.append(rec_attr_vect.duration_ms) danceability.append(rec_attr_vect.danceability) energy.append(rec_attr_vect.energy) speechiness.append(rec_attr_vect.speechiness) acousticness.append(rec_attr_vect.acousticness) liveness.append(rec_attr_vect.liveness) valence.append(rec_attr_vect.valence) loudness.append(rec_attr_vect.loudness) # Create feature array feature_array = [popularity, duration_ms, danceability, energy, speechiness, acousticness, liveness, valence, loudness] feature_names = ['Popularity', 'Length', 'Boogie Factor', 'Energy', 'Speechiness', 'Acousticness', 'Liveness', 'Upbeatness', 'Volume'] feature_plots = dist_plot(feature_array, names_for_plot) plot_dict = {} for i in range(len(feature_names)): plot_dict[feature_names[i]] = feature_plots[i] # print(type(feature_plots)) # print(plot_dict) # print(feature_array) # Plot the similarities relative to the primary query track_plot = plot(rec_names, dist) zip_rec = zip(rec, rec_names) return render_template('song.html', song_name=song_name, by_statement=by_statement, song=track, zip_rec=zip_rec, track_plot=track_plot, feature_plots=feature_plots, plot_dict=plot_dict, feature_names=feature_names) return app def plot(rec_names, distances): print(rec_names) print(distances) fig, ax = plt.subplots() percentages = [100*(1 - x) for x in distances] min_x = min(percentages)-1 max_x = max(percentages)+1 x_range = np.linspace(min_x, max_x, 5) plt.barh([textwrap.fill(name, 15) for name in rec_names], percentages, color=['tab:purple', 'tab:blue', 'tab:orange', 'tab:green', 'tab:red']) ax.set_xlim(left=min_x, right=max_x) plt.gca().invert_yaxis() plt.xticks(x_range, [str(round(x))+"%" for x in x_range]) plt.xlabel("Percent Similarity of Songs") plt.tight_layout() tmpfile = BytesIO() img = fig.savefig(tmpfile, format='png') encoded = base64.b64encode(tmpfile.getvalue()).decode('utf-8') return encoded def dist_plot(feature_array, names): # define the normal distribution and PDF dist = sps.norm(loc=50, scale=10) x = np.linspace(0.1, 100) y = dist.pdf(np.linspace(dist.ppf(.001), dist.ppf(.999))) encoded = [] for i in feature_array: rec_attr = i # calculate PPFs ppfs = {} for ppf in rec_attr: p = dist.ppf(ppf) ppfs.update({ppf * 100: p}) # plot results fig, ax = plt.subplots(figsize=(10, 4)) ax.plot(x, y, color='k') for i, ppf in enumerate(ppfs): ax.axvline(ppfs[ppf], color=f'C{i}', label=f'{ppf:.0f}th: {ppfs[ppf]:.1f}') # Remove incorrect y axis ticks axes = plt.gca() axes.get_yaxis().set_visible(False) ax.legend(labels=names, loc=9, bbox_to_anchor=(0.5, 1.45)) plt.tight_layout(pad=0.1) tmpfile = BytesIO() img = fig.savefig(tmpfile, format='png') encoded.append(base64.b64encode(tmpfile.getvalue()).decode('utf-8')) return encoded
[ "flask.render_template", "os.getenv", "flask.Flask", "scipy.stats.norm", "matplotlib.pyplot.gca", "matplotlib.pyplot.xlabel", "io.BytesIO", "numpy.linspace", "textwrap.fill", "matplotlib.pyplot.tight_layout", "matplotlib.pyplot.subplots" ]
[((371, 386), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (376, 386), False, 'from flask import Flask, render_template, request\n'), ((431, 453), 'os.getenv', 'getenv', (['"""DATABASE_URI"""'], {}), "('DATABASE_URI')\n", (437, 453), False, 'from os import getenv\n'), ((4829, 4843), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (4841, 4843), True, 'import matplotlib.pyplot as plt\n'), ((4971, 4999), 'numpy.linspace', 'np.linspace', (['min_x', 'max_x', '(5)'], {}), '(min_x, max_x, 5)\n', (4982, 4999), True, 'import numpy as np\n'), ((5287, 5328), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Percent Similarity of Songs"""'], {}), "('Percent Similarity of Songs')\n", (5297, 5328), True, 'import matplotlib.pyplot as plt\n'), ((5333, 5351), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (5349, 5351), True, 'import matplotlib.pyplot as plt\n'), ((5367, 5376), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (5374, 5376), False, 'from io import BytesIO\n'), ((5603, 5629), 'scipy.stats.norm', 'sps.norm', ([], {'loc': '(50)', 'scale': '(10)'}), '(loc=50, scale=10)\n', (5611, 5629), True, 'import scipy.stats as sps\n'), ((5638, 5659), 'numpy.linspace', 'np.linspace', (['(0.1)', '(100)'], {}), '(0.1, 100)\n', (5649, 5659), True, 'import numpy as np\n'), ((585, 614), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (600, 614), False, 'from flask import Flask, render_template, request\n'), ((1350, 1407), 'flask.render_template', 'render_template', (['"""didyoumean.html"""'], {'suggestions': 'sugg_form'}), "('didyoumean.html', suggestions=sugg_form)\n", (1365, 1407), False, 'from flask import Flask, render_template, request\n'), ((4422, 4638), 'flask.render_template', 'render_template', (['"""song.html"""'], {'song_name': 'song_name', 'by_statement': 'by_statement', 'song': 'track', 'zip_rec': 'zip_rec', 'track_plot': 'track_plot', 'feature_plots': 'feature_plots', 'plot_dict': 'plot_dict', 'feature_names': 'feature_names'}), "('song.html', song_name=song_name, by_statement=by_statement,\n song=track, zip_rec=zip_rec, track_plot=track_plot, feature_plots=\n feature_plots, plot_dict=plot_dict, feature_names=feature_names)\n", (4437, 4638), False, 'from flask import Flask, render_template, request\n'), ((5981, 6010), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 4)'}), '(figsize=(10, 4))\n', (5993, 6010), True, 'import matplotlib.pyplot as plt\n'), ((6228, 6237), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (6235, 6237), True, 'import matplotlib.pyplot as plt\n'), ((6358, 6383), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {'pad': '(0.1)'}), '(pad=0.1)\n', (6374, 6383), True, 'import matplotlib.pyplot as plt\n'), ((6403, 6412), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (6410, 6412), False, 'from io import BytesIO\n'), ((5014, 5037), 'textwrap.fill', 'textwrap.fill', (['name', '(15)'], {}), '(name, 15)\n', (5027, 5037), False, 'import textwrap\n'), ((5196, 5205), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (5203, 5205), True, 'import matplotlib.pyplot as plt\n')]
#!/usr/bin/env python from nose.tools import raises def Oversampling_2_test(): import numpy as np from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter from ATK.Tools import DoubleOversampling6points5order_2Filter from numpy.testing import assert_almost_equal ref = np.sin(np.arange(2000, dtype=np.float64)[None,:] * 1000 * 2 * np.pi / 96000) input = np.ascontiguousarray(ref[:, ::2]) output = np.ascontiguousarray(np.zeros(2000, dtype=np.float64)[None,:]) inputfilter = DoubleInPointerFilter(input, False) oversamplingfilter = DoubleOversampling6points5order_2Filter() outputfilter = DoubleOutPointerFilter(output, False) inputfilter.output_sampling_rate = 48000 oversamplingfilter.input_sampling_rate = 48000 oversamplingfilter.output_sampling_rate = 96000 outputfilter.input_sampling_rate = 96000 oversamplingfilter.set_input_port(0, inputfilter, 0) outputfilter.set_input_port(0, oversamplingfilter, 0) outputfilter.process(2000) assert_almost_equal(ref[:,994:-6], output[:,1000:], decimal=1) def Oversampling_4_test(): import numpy as np from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter from ATK.Tools import DoubleOversampling6points5order_4Filter from numpy.testing import assert_almost_equal ref = np.sin(np.arange(4000, dtype=np.float64)[None,:] * 1000 * 2 * np.pi / 192000) input = np.ascontiguousarray(ref[:, ::4]) output = np.ascontiguousarray(np.zeros(4000, dtype=np.float64)[None,:]) inputfilter = DoubleInPointerFilter(input, False) oversamplingfilter = DoubleOversampling6points5order_4Filter() outputfilter = DoubleOutPointerFilter(output, False) inputfilter.output_sampling_rate = 48000 oversamplingfilter.input_sampling_rate = 48000 oversamplingfilter.output_sampling_rate = 192000 outputfilter.input_sampling_rate = 192000 oversamplingfilter.set_input_port(0, inputfilter, 0) outputfilter.set_input_port(0, oversamplingfilter, 0) outputfilter.process(4000) assert_almost_equal(ref[:,988:-12], output[:,1000:], decimal=1) def Oversampling_8_test(): import numpy as np from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter from ATK.Tools import DoubleOversampling6points5order_8Filter from numpy.testing import assert_almost_equal ref = np.sin(np.arange(8000, dtype=np.float64)[None,:] * 1000 * 2 * np.pi / 384000) input = np.ascontiguousarray(ref[:, ::8]) output = np.ascontiguousarray(np.zeros(8000, dtype=np.float64)[None,:]) inputfilter = DoubleInPointerFilter(input, False) oversamplingfilter = DoubleOversampling6points5order_8Filter() outputfilter = DoubleOutPointerFilter(output, False) inputfilter.output_sampling_rate = 48000 oversamplingfilter.input_sampling_rate = 48000 oversamplingfilter.output_sampling_rate = 384000 outputfilter.input_sampling_rate = 384000 oversamplingfilter.set_input_port(0, inputfilter, 0) outputfilter.set_input_port(0, oversamplingfilter, 0) outputfilter.process(8000) assert_almost_equal(ref[:,976:-24], output[:,1000:], decimal=1) def Oversampling_16_test(): import numpy as np from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter from ATK.Tools import DoubleOversampling6points5order_16Filter from numpy.testing import assert_almost_equal ref = np.sin(np.arange(16000, dtype=np.float64)[None,:] * 1000 * 2 * np.pi / 768000) input = np.ascontiguousarray(ref[:, ::16]) output = np.ascontiguousarray(np.zeros(16000, dtype=np.float64)[None,:]) inputfilter = DoubleInPointerFilter(input, False) oversamplingfilter = DoubleOversampling6points5order_16Filter() outputfilter = DoubleOutPointerFilter(output, False) inputfilter.output_sampling_rate = 48000 oversamplingfilter.input_sampling_rate = 48000 oversamplingfilter.output_sampling_rate = 768000 outputfilter.input_sampling_rate = 768000 oversamplingfilter.set_input_port(0, inputfilter, 0) outputfilter.set_input_port(0, oversamplingfilter, 0) outputfilter.process(16000) assert_almost_equal(ref[:,952:-48], output[:,1000:], decimal=1) def Oversampling_32_test(): import numpy as np from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter from ATK.Tools import DoubleOversampling6points5order_32Filter from numpy.testing import assert_almost_equal ref = np.sin(np.arange(32000, dtype=np.float64)[None,:] * 1000 * 2 * np.pi / (2*768000)) input = np.ascontiguousarray(ref[:, ::32]) output = np.ascontiguousarray(np.zeros(32000, dtype=np.float64)[None,:]) inputfilter = DoubleInPointerFilter(input, False) oversamplingfilter = DoubleOversampling6points5order_32Filter() outputfilter = DoubleOutPointerFilter(output, False) inputfilter.output_sampling_rate = 48000 oversamplingfilter.input_sampling_rate = 48000 oversamplingfilter.output_sampling_rate = 32*48000 outputfilter.input_sampling_rate = 32*48000 oversamplingfilter.set_input_port(0, inputfilter, 0) outputfilter.set_input_port(0, oversamplingfilter, 0) outputfilter.process(32000) assert_almost_equal(ref[:,904:-96], output[:,1000:], decimal=1) sample_rate = 96000 def filter(input): import numpy as np from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter from ATK.Tools import DoubleOversampling6points5order_32Filter output = np.zeros((1, input.shape[0] * 32), dtype=np.float64) infilter = DoubleInPointerFilter(input, False) infilter.input_sampling_rate = sample_rate overfilter = DoubleOversampling6points5order_32Filter() overfilter.input_sampling_rate = sample_rate overfilter.output_sampling_rate = sample_rate * 32 overfilter.set_input_port(0, infilter, 0) outfilter = DoubleOutPointerFilter(output, False) outfilter.input_sampling_rate = sample_rate * 32 outfilter.set_input_port(0, overfilter, 0) for i in range(10): outfilter.process(input.shape[0] * 32 // 10) return output def OversamplingFilter_test(): import numpy as np samples = 100 t = np.arange(samples, dtype=np.float64) / sample_rate d = np.sin(t * 2 * np.pi * 100) output = filter(d) if __name__ == "__main__": import numpy as np import matplotlib.pyplot as plt samples = 100 t = np.arange(samples, dtype=np.float64) / sample_rate d = np.sin(t * 2 * np.pi * 100) t2 = np.arange(samples * 32, dtype=np.float64) / (sample_rate * 32) d2 = filter(d) plt.plot(t, d, label="input") plt.plot(t2 - 3. / sample_rate, d2, label="output") plt.gcf().suptitle("Oversampling") plt.legend() plt.show()
[ "ATK.Core.DoubleOutPointerFilter", "ATK.Tools.DoubleOversampling6points5order_16Filter", "numpy.arange", "matplotlib.pyplot.gcf", "matplotlib.pyplot.plot", "numpy.ascontiguousarray", "ATK.Tools.DoubleOversampling6points5order_8Filter", "numpy.testing.assert_almost_equal", "ATK.Tools.DoubleOversampling6points5order_4Filter", "numpy.zeros", "ATK.Core.DoubleInPointerFilter", "numpy.sin", "ATK.Tools.DoubleOversampling6points5order_32Filter", "ATK.Tools.DoubleOversampling6points5order_2Filter", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((384, 417), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ref[:, ::2]'], {}), '(ref[:, ::2])\n', (404, 417), True, 'import numpy as np\n'), ((511, 546), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (532, 546), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((570, 611), 'ATK.Tools.DoubleOversampling6points5order_2Filter', 'DoubleOversampling6points5order_2Filter', ([], {}), '()\n', (609, 611), False, 'from ATK.Tools import DoubleOversampling6points5order_2Filter\n'), ((629, 666), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (651, 666), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((1004, 1068), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ref[:, 994:-6]', 'output[:, 1000:]'], {'decimal': '(1)'}), '(ref[:, 994:-6], output[:, 1000:], decimal=1)\n', (1023, 1068), False, 'from numpy.testing import assert_almost_equal\n'), ((1399, 1432), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ref[:, ::4]'], {}), '(ref[:, ::4])\n', (1419, 1432), True, 'import numpy as np\n'), ((1526, 1561), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (1547, 1561), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((1585, 1626), 'ATK.Tools.DoubleOversampling6points5order_4Filter', 'DoubleOversampling6points5order_4Filter', ([], {}), '()\n', (1624, 1626), False, 'from ATK.Tools import DoubleOversampling6points5order_4Filter\n'), ((1644, 1681), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (1666, 1681), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((2021, 2086), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ref[:, 988:-12]', 'output[:, 1000:]'], {'decimal': '(1)'}), '(ref[:, 988:-12], output[:, 1000:], decimal=1)\n', (2040, 2086), False, 'from numpy.testing import assert_almost_equal\n'), ((2417, 2450), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ref[:, ::8]'], {}), '(ref[:, ::8])\n', (2437, 2450), True, 'import numpy as np\n'), ((2544, 2579), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (2565, 2579), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((2603, 2644), 'ATK.Tools.DoubleOversampling6points5order_8Filter', 'DoubleOversampling6points5order_8Filter', ([], {}), '()\n', (2642, 2644), False, 'from ATK.Tools import DoubleOversampling6points5order_8Filter\n'), ((2662, 2699), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (2684, 2699), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((3041, 3106), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ref[:, 976:-24]', 'output[:, 1000:]'], {'decimal': '(1)'}), '(ref[:, 976:-24], output[:, 1000:], decimal=1)\n', (3060, 3106), False, 'from numpy.testing import assert_almost_equal\n'), ((3440, 3474), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ref[:, ::16]'], {}), '(ref[:, ::16])\n', (3460, 3474), True, 'import numpy as np\n'), ((3569, 3604), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (3590, 3604), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((3628, 3670), 'ATK.Tools.DoubleOversampling6points5order_16Filter', 'DoubleOversampling6points5order_16Filter', ([], {}), '()\n', (3668, 3670), False, 'from ATK.Tools import DoubleOversampling6points5order_16Filter\n'), ((3688, 3725), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (3710, 3725), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((4067, 4132), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ref[:, 952:-48]', 'output[:, 1000:]'], {'decimal': '(1)'}), '(ref[:, 952:-48], output[:, 1000:], decimal=1)\n', (4086, 4132), False, 'from numpy.testing import assert_almost_equal\n'), ((4470, 4504), 'numpy.ascontiguousarray', 'np.ascontiguousarray', (['ref[:, ::32]'], {}), '(ref[:, ::32])\n', (4490, 4504), True, 'import numpy as np\n'), ((4599, 4634), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (4620, 4634), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((4658, 4700), 'ATK.Tools.DoubleOversampling6points5order_32Filter', 'DoubleOversampling6points5order_32Filter', ([], {}), '()\n', (4698, 4700), False, 'from ATK.Tools import DoubleOversampling6points5order_32Filter\n'), ((4718, 4755), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (4740, 4755), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((5103, 5168), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['ref[:, 904:-96]', 'output[:, 1000:]'], {'decimal': '(1)'}), '(ref[:, 904:-96], output[:, 1000:], decimal=1)\n', (5122, 5168), False, 'from numpy.testing import assert_almost_equal\n'), ((5380, 5432), 'numpy.zeros', 'np.zeros', (['(1, input.shape[0] * 32)'], {'dtype': 'np.float64'}), '((1, input.shape[0] * 32), dtype=np.float64)\n', (5388, 5432), True, 'import numpy as np\n'), ((5449, 5484), 'ATK.Core.DoubleInPointerFilter', 'DoubleInPointerFilter', (['input', '(False)'], {}), '(input, False)\n', (5470, 5484), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((5548, 5590), 'ATK.Tools.DoubleOversampling6points5order_32Filter', 'DoubleOversampling6points5order_32Filter', ([], {}), '()\n', (5588, 5590), False, 'from ATK.Tools import DoubleOversampling6points5order_32Filter\n'), ((5752, 5789), 'ATK.Core.DoubleOutPointerFilter', 'DoubleOutPointerFilter', (['output', '(False)'], {}), '(output, False)\n', (5774, 5789), False, 'from ATK.Core import DoubleInPointerFilter, DoubleOutPointerFilter\n'), ((6109, 6136), 'numpy.sin', 'np.sin', (['(t * 2 * np.pi * 100)'], {}), '(t * 2 * np.pi * 100)\n', (6115, 6136), True, 'import numpy as np\n'), ((6324, 6351), 'numpy.sin', 'np.sin', (['(t * 2 * np.pi * 100)'], {}), '(t * 2 * np.pi * 100)\n', (6330, 6351), True, 'import numpy as np\n'), ((6444, 6473), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'd'], {'label': '"""input"""'}), "(t, d, label='input')\n", (6452, 6473), True, 'import matplotlib.pyplot as plt\n'), ((6476, 6528), 'matplotlib.pyplot.plot', 'plt.plot', (['(t2 - 3.0 / sample_rate)', 'd2'], {'label': '"""output"""'}), "(t2 - 3.0 / sample_rate, d2, label='output')\n", (6484, 6528), True, 'import matplotlib.pyplot as plt\n'), ((6567, 6579), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (6577, 6579), True, 'import matplotlib.pyplot as plt\n'), ((6582, 6592), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6590, 6592), True, 'import matplotlib.pyplot as plt\n'), ((6052, 6088), 'numpy.arange', 'np.arange', (['samples'], {'dtype': 'np.float64'}), '(samples, dtype=np.float64)\n', (6061, 6088), True, 'import numpy as np\n'), ((6267, 6303), 'numpy.arange', 'np.arange', (['samples'], {'dtype': 'np.float64'}), '(samples, dtype=np.float64)\n', (6276, 6303), True, 'import numpy as np\n'), ((6362, 6403), 'numpy.arange', 'np.arange', (['(samples * 32)'], {'dtype': 'np.float64'}), '(samples * 32, dtype=np.float64)\n', (6371, 6403), True, 'import numpy as np\n'), ((450, 482), 'numpy.zeros', 'np.zeros', (['(2000)'], {'dtype': 'np.float64'}), '(2000, dtype=np.float64)\n', (458, 482), True, 'import numpy as np\n'), ((1465, 1497), 'numpy.zeros', 'np.zeros', (['(4000)'], {'dtype': 'np.float64'}), '(4000, dtype=np.float64)\n', (1473, 1497), True, 'import numpy as np\n'), ((2483, 2515), 'numpy.zeros', 'np.zeros', (['(8000)'], {'dtype': 'np.float64'}), '(8000, dtype=np.float64)\n', (2491, 2515), True, 'import numpy as np\n'), ((3507, 3540), 'numpy.zeros', 'np.zeros', (['(16000)'], {'dtype': 'np.float64'}), '(16000, dtype=np.float64)\n', (3515, 3540), True, 'import numpy as np\n'), ((4537, 4570), 'numpy.zeros', 'np.zeros', (['(32000)'], {'dtype': 'np.float64'}), '(32000, dtype=np.float64)\n', (4545, 4570), True, 'import numpy as np\n'), ((6530, 6539), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (6537, 6539), True, 'import matplotlib.pyplot as plt\n'), ((304, 337), 'numpy.arange', 'np.arange', (['(2000)'], {'dtype': 'np.float64'}), '(2000, dtype=np.float64)\n', (313, 337), True, 'import numpy as np\n'), ((1318, 1351), 'numpy.arange', 'np.arange', (['(4000)'], {'dtype': 'np.float64'}), '(4000, dtype=np.float64)\n', (1327, 1351), True, 'import numpy as np\n'), ((2336, 2369), 'numpy.arange', 'np.arange', (['(8000)'], {'dtype': 'np.float64'}), '(8000, dtype=np.float64)\n', (2345, 2369), True, 'import numpy as np\n'), ((3358, 3392), 'numpy.arange', 'np.arange', (['(16000)'], {'dtype': 'np.float64'}), '(16000, dtype=np.float64)\n', (3367, 3392), True, 'import numpy as np\n'), ((4384, 4418), 'numpy.arange', 'np.arange', (['(32000)'], {'dtype': 'np.float64'}), '(32000, dtype=np.float64)\n', (4393, 4418), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts import render from django.views.decorators.csrf import csrf_exempt from sandbox.settings import APIKEY, ORIGIN, MERCHANTID, ACCOUNTID, URL_PAYU, TEST_PAYU from django.http import HttpResponse, HttpResponseNotFound import md5, string, random # Create your views here. def id_generator(size=6, chars=string.ascii_uppercase + string.digits): return ''.join(random.choice(chars) for _ in range(size)) # end def def pagar(request): currency = "COP" # Moneda en la que se paga referenceCode = id_generator() # Debe ser unico por transacción buyerFullName = "<NAME>" buyerEmail = "<EMAIL>" amount = 20000 # Valor de la compra signature = "%s~%d~%s~%d~%s" % (APIKEY, MERCHANTID, referenceCode, amount, currency) # Es la firma digital creada para cada uno de las transacciones. signatureMD5 = md5.new(signature) # Se le aplica md5 description = "Descripción del producto" confirmationUrl = "http://localhost:8000/payu/confirmacion/pago/" # Url de confirmación return render(request, 'webcheckout/compra.html', {"url": URL_PAYU, "test": TEST_PAYU, "merchantId": MERCHANTID, "accountId":ACCOUNTID, "referenceCode":referenceCode , "buyerFullName":buyerFullName, "description": description, "currency": currency, "amount": amount, "buyerEmail": buyerEmail, "signature":signatureMD5.hexdigest(), "confirmationUrl": confirmationUrl}) #end def def new_value(value): val = value.split(".") try: if val[1] == "00": num = val[0]+".0" else: num = value return num except: return value # end if import os BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) @csrf_exempt def confirmacion(request): if request.method == "POST": form = forms.ConfirmacionPago(request.POST) state_pol = request.POST.get('state_pol', False) sign = request.POST.get('sign', False) if form.is_valid(): con = form.save(commit=False) value = new_value(con.value) validacion = "%s~%d~%s~%s~%s~%s" % (APIKEY, con.merchant_id , con.reference_sale, value, con.currency, con.state_pol) validacionMD5 = md5.new(validacion) firma = validacionMD5.hexdigest() if sign == firma: con.validacion = True else: con.validacion = False # end if con.cita = cita con.save() return HttpResponse(status=200) # end if errors = form.errors.items() file = open(os.path.join(BASE_DIR, "confirmacion_ERROR.txt"), "w+") file.write(str(json.dumps(errors))) file.close() # return HttpResponse(json.dumps(errors), status=400) return HttpResponse(status=400) # end def
[ "random.choice", "django.http.HttpResponse", "os.path.join", "md5.new", "os.path.abspath" ]
[((905, 923), 'md5.new', 'md5.new', (['signature'], {}), '(signature)\n', (912, 923), False, 'import md5, string, random\n'), ((2849, 2873), 'django.http.HttpResponse', 'HttpResponse', ([], {'status': '(400)'}), '(status=400)\n', (2861, 2873), False, 'from django.http import HttpResponse, HttpResponseNotFound\n'), ((1746, 1771), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1761, 1771), False, 'import os\n'), ((446, 466), 'random.choice', 'random.choice', (['chars'], {}), '(chars)\n', (459, 466), False, 'import md5, string, random\n'), ((2274, 2293), 'md5.new', 'md5.new', (['validacion'], {}), '(validacion)\n', (2281, 2293), False, 'import md5, string, random\n'), ((2556, 2580), 'django.http.HttpResponse', 'HttpResponse', ([], {'status': '(200)'}), '(status=200)\n', (2568, 2580), False, 'from django.http import HttpResponse, HttpResponseNotFound\n'), ((2655, 2703), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""confirmacion_ERROR.txt"""'], {}), "(BASE_DIR, 'confirmacion_ERROR.txt')\n", (2667, 2703), False, 'import os\n')]
"""Admin interface.""" from datetime import datetime from typing import Optional from flask import Blueprint, render_template, abort, flash, url_for, redirect from flask import current_app as app from flask_login import current_user from flask_babel import _ from app.database import db from app.utils.utils import redirect_return from app.utils.email import send_email from app.utils.pagination import Pagination from app.decorators import moderator, admin from app.models.location import Location, LocationType from app.models.user import User, Invitation, LoginLog, InvitationState from app.models import event from app.models.event import EventLog from app.forms.admin import MessageForm from app.routes.user import send_invitation from app.routes.message import send_message blueprint = Blueprint('admin', __name__, url_prefix='/admin') def _send_mail_to_all(subject: str, message: str) -> None: """Sends email to all users. Args: subject: Subject of the message message: Message to be sent """ users = User.get() recipients = [] for user in users: recipients.append(user.email) send_email(recipients, subject, message) @blueprint.route('/locations') @blueprint.route('/locations/<int:page>') @blueprint.route('/locations/<string:location>') @blueprint.route('/locations/<string:location>/<int:page>') @moderator def locations(page: int = 1, location: Optional[str] = None): """Lists existing locations. Args: page: Page number for results pagination location: Location type (urbex, underground, private) """ if location is None: query = Location.get(LocationType.ALL) title = _("All locations") elif location == 'urbex': query = Location.get(LocationType.URBEX) title = _("Urbex locations") elif location == 'underground': query = Location.get(LocationType.UNDERGROUND) title = _("Underground locations") elif location == 'private': query = Location.get_unpublished(LocationType.ALL) title = _("Private locations") else: abort(404) query = query.paginate(page, app.config['ITEMS_PER_PAGE'], True) pagination = Pagination(page, query.pages, 'admin.locations', location=location) locations_count = Location.get(LocationType.ALL).count() urbex_count = Location.get(LocationType.URBEX).count() underground_count = Location.get(LocationType.UNDERGROUND).count() private_count = Location.get_unpublished(LocationType.ALL).count() current_user.location_check_ts = datetime.utcnow() db.session.commit() return render_template('admin/locations.html', locations=query.items, title=title, locations_count=locations_count, underground_count=underground_count, urbex_count=urbex_count, private_count=private_count, pagination=pagination) @blueprint.route('/users') @blueprint.route('/users/<int:page>') @blueprint.route('/users/<string:role>') @blueprint.route('/users/<string:role>/<int:page>') @admin def users(page: int = 1, role: Optional[str] = None): """Lists existing users. Args: page: Page number for results pagination role: Select specific users (admins, moderators, bans) """ if role is None: query = User.get() title = _("Users") elif role == 'admins': query = User.get_admins() title = _("Admins") elif role == 'moderators': query = User.get_moderators() title = _("Moderators") elif role == 'bans': query = User.get_banned() title = _("Banned users") else: abort(404) query = query.paginate(page, app.config['ITEMS_PER_PAGE'], True) pagination = Pagination(page, query.pages, 'admin.users', role=role) users_count = User.get().count() admins_count = User.get_admins().count() moderators_count = User.get_moderators().count() bans_count = User.get_banned().count() return render_template('admin/users.html', users=query.items, title=title, users_count=users_count, admins_count=admins_count, moderators_count=moderators_count, bans_count=bans_count, pagination=pagination) @blueprint.route('/invitations') @blueprint.route('/invitations/<int:page>') @blueprint.route('/invitations/<string:state>') @blueprint.route('/invitations/<string:state>/<int:page>') @admin def invitations(page: int = 1, state: Optional[str] = None): """Lists invitations Args: page: Page number for results pagination state: State of the invitation (waiting, approved, denied, registered) """ if state is None: query = Invitation.get() title = _("Invitations") elif state == 'waiting': query = Invitation.get_by_state(InvitationState.WAITING) title = _("Waiting for approval") elif state == 'approved': query = Invitation.get_by_state(InvitationState.APPROVED) title = _("Approved invitations") elif state == 'denied': query = Invitation.get_by_state(InvitationState.DENIED) title = _("Denied invitations") elif state == 'registered': query = Invitation.get_by_state(InvitationState.REGISTERED) title = _("Registered users") else: abort(404) query = query.paginate(page, app.config['ITEMS_PER_PAGE'], True) pagination = Pagination(page, query.pages, 'admin.invitations', state=state) waiting = Invitation.get_by_state(InvitationState.WAITING).count() approved = Invitation.get_by_state(InvitationState.APPROVED).count() denied = Invitation.get_by_state(InvitationState.DENIED).count() registered = Invitation.get_by_state(InvitationState.REGISTERED).count() return render_template('admin/invitations.html', invitations=query.items, waiting=waiting, approved=approved, denied=denied, registered=registered, title=title, pagination=pagination) @blueprint.route('/logins') @blueprint.route('/logins/<int:page>') @blueprint.route('/logins/<string:login_type>') @blueprint.route('/logins/<string:login_type>/<int:page>') @admin def logins(page: int = 1, login_type: Optional[str] = None): """Shows log of login attempts. Args: page: Page number for results pagination login_type: Login type (unique, failed) """ if login_type is None: query = LoginLog.get() title = _("Logins") elif login_type == 'unique': query = LoginLog.get_unique() title = _("Unique IPs") elif login_type == 'failed': query = LoginLog.get_failed() title = _("Failed logins") else: abort(404) attempts = LoginLog.get().count() failed = LoginLog.get_failed().count() unique = LoginLog.get_unique().count() per_month = LoginLog.get_last_month().count() query = query.paginate(page, app.config['ITEMS_PER_PAGE'], True) pagination = Pagination(page, query.pages, 'admin.logins') current_user.login_check_ts = datetime.utcnow() db.session.commit() return render_template('admin/logins.html', logins=query.items, failed=failed, unique=unique, attempts=attempts, per_month=per_month, pagination=pagination, title=title) @blueprint.route('invitations/approve/<int:invite_id>') @admin def invite_approve(invite_id: int): """Approves the user invitation Args: invite_id: ID of the invitation """ invite = Invitation.get_by_id(invite_id) if not invite: abort(404) if invite.state in (InvitationState.WAITING, InvitationState.DENIED): invite.state = InvitationState.APPROVED invite.approved_by = current_user EventLog.log(current_user, event.ApproveInviteEvent(invite)) db.session.commit() send_invitation(invite) return redirect_return() @blueprint.route('invitation/deny/<int:invite_id>') @admin def invite_deny(invite_id: int): """Denies the user invitation Args: invite_id: ID of the invitation """ invite = Invitation.get_by_id(invite_id) if not invite: abort(404) if invite.state in (InvitationState.WAITING, InvitationState.APPROVED): invite.state = InvitationState.DENIED invite.approved_by = current_user EventLog.log(current_user, event.DenyInviteEvent(invite)) db.session.commit() return redirect_return() @blueprint.route('/events') @blueprint.route('/events/<int:page>') @admin def events(page: int = 1): """Shows log of events Args: page: Page number for results pagination """ query = EventLog.get() query = query.paginate(page, app.config['ITEMS_PER_PAGE'], True) pagination = Pagination(page, query.pages, 'admin.events') current_user.event_check_ts = datetime.utcnow() db.session.commit() return render_template('admin/events.html', events=query.items, pagination=pagination) @blueprint.route('/message', methods=['GET', 'POST']) @admin def message(): """Render form to send email/message to all users""" form = MessageForm() if form.validate_on_submit(): subject = form.subject.data message = form.text.data if form.email.data: _send_mail_to_all(subject, message) flash(_("Email to all users was sent"), 'success') else: users = User.get() for user in users: send_message(user, subject, message) flash(_("Message to all users was sent"), 'success') return redirect(url_for('page.index')) return render_template('admin/message.html', form=form)
[ "flask.render_template", "app.utils.utils.redirect_return", "app.models.user.User.get_banned", "app.utils.email.send_email", "app.models.user.Invitation.get_by_state", "app.models.user.LoginLog.get_last_month", "app.models.location.Location.get", "app.models.user.LoginLog.get_failed", "app.models.event.EventLog.get", "app.models.user.LoginLog.get_unique", "app.routes.message.send_message", "flask.abort", "flask_babel._", "app.models.user.User.get_moderators", "app.utils.pagination.Pagination", "app.models.event.DenyInviteEvent", "flask.Blueprint", "app.database.db.session.commit", "app.models.event.ApproveInviteEvent", "app.routes.user.send_invitation", "datetime.datetime.utcnow", "app.models.user.Invitation.get", "app.models.user.User.get", "app.models.user.Invitation.get_by_id", "flask.url_for", "app.models.location.Location.get_unpublished", "app.forms.admin.MessageForm", "app.models.user.User.get_admins", "app.models.user.LoginLog.get" ]
[((795, 844), 'flask.Blueprint', 'Blueprint', (['"""admin"""', '__name__'], {'url_prefix': '"""/admin"""'}), "('admin', __name__, url_prefix='/admin')\n", (804, 844), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((1046, 1056), 'app.models.user.User.get', 'User.get', ([], {}), '()\n', (1054, 1056), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((1143, 1183), 'app.utils.email.send_email', 'send_email', (['recipients', 'subject', 'message'], {}), '(recipients, subject, message)\n', (1153, 1183), False, 'from app.utils.email import send_email\n'), ((2207, 2274), 'app.utils.pagination.Pagination', 'Pagination', (['page', 'query.pages', '"""admin.locations"""'], {'location': 'location'}), "(page, query.pages, 'admin.locations', location=location)\n", (2217, 2274), False, 'from app.utils.pagination import Pagination\n'), ((2604, 2621), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (2619, 2621), False, 'from datetime import datetime\n'), ((2626, 2645), 'app.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (2643, 2645), False, 'from app.database import db\n'), ((2658, 2893), 'flask.render_template', 'render_template', (['"""admin/locations.html"""'], {'locations': 'query.items', 'title': 'title', 'locations_count': 'locations_count', 'underground_count': 'underground_count', 'urbex_count': 'urbex_count', 'private_count': 'private_count', 'pagination': 'pagination'}), "('admin/locations.html', locations=query.items, title=title,\n locations_count=locations_count, underground_count=underground_count,\n urbex_count=urbex_count, private_count=private_count, pagination=pagination\n )\n", (2673, 2893), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((3844, 3899), 'app.utils.pagination.Pagination', 'Pagination', (['page', 'query.pages', '"""admin.users"""'], {'role': 'role'}), "(page, query.pages, 'admin.users', role=role)\n", (3854, 3899), False, 'from app.utils.pagination import Pagination\n'), ((4091, 4300), 'flask.render_template', 'render_template', (['"""admin/users.html"""'], {'users': 'query.items', 'title': 'title', 'users_count': 'users_count', 'admins_count': 'admins_count', 'moderators_count': 'moderators_count', 'bans_count': 'bans_count', 'pagination': 'pagination'}), "('admin/users.html', users=query.items, title=title,\n users_count=users_count, admins_count=admins_count, moderators_count=\n moderators_count, bans_count=bans_count, pagination=pagination)\n", (4106, 4300), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((5547, 5610), 'app.utils.pagination.Pagination', 'Pagination', (['page', 'query.pages', '"""admin.invitations"""'], {'state': 'state'}), "(page, query.pages, 'admin.invitations', state=state)\n", (5557, 5610), False, 'from app.utils.pagination import Pagination\n'), ((5942, 6128), 'flask.render_template', 'render_template', (['"""admin/invitations.html"""'], {'invitations': 'query.items', 'waiting': 'waiting', 'approved': 'approved', 'denied': 'denied', 'registered': 'registered', 'title': 'title', 'pagination': 'pagination'}), "('admin/invitations.html', invitations=query.items, waiting=\n waiting, approved=approved, denied=denied, registered=registered, title\n =title, pagination=pagination)\n", (5957, 6128), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((7182, 7227), 'app.utils.pagination.Pagination', 'Pagination', (['page', 'query.pages', '"""admin.logins"""'], {}), "(page, query.pages, 'admin.logins')\n", (7192, 7227), False, 'from app.utils.pagination import Pagination\n'), ((7263, 7280), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (7278, 7280), False, 'from datetime import datetime\n'), ((7285, 7304), 'app.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (7302, 7304), False, 'from app.database import db\n'), ((7317, 7488), 'flask.render_template', 'render_template', (['"""admin/logins.html"""'], {'logins': 'query.items', 'failed': 'failed', 'unique': 'unique', 'attempts': 'attempts', 'per_month': 'per_month', 'pagination': 'pagination', 'title': 'title'}), "('admin/logins.html', logins=query.items, failed=failed,\n unique=unique, attempts=attempts, per_month=per_month, pagination=\n pagination, title=title)\n", (7332, 7488), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((7770, 7801), 'app.models.user.Invitation.get_by_id', 'Invitation.get_by_id', (['invite_id'], {}), '(invite_id)\n', (7790, 7801), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((8146, 8163), 'app.utils.utils.redirect_return', 'redirect_return', ([], {}), '()\n', (8161, 8163), False, 'from app.utils.utils import redirect_return\n'), ((8364, 8395), 'app.models.user.Invitation.get_by_id', 'Invitation.get_by_id', (['invite_id'], {}), '(invite_id)\n', (8384, 8395), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((8705, 8722), 'app.utils.utils.redirect_return', 'redirect_return', ([], {}), '()\n', (8720, 8722), False, 'from app.utils.utils import redirect_return\n'), ((8933, 8947), 'app.models.event.EventLog.get', 'EventLog.get', ([], {}), '()\n', (8945, 8947), False, 'from app.models.event import EventLog\n'), ((9035, 9080), 'app.utils.pagination.Pagination', 'Pagination', (['page', 'query.pages', '"""admin.events"""'], {}), "(page, query.pages, 'admin.events')\n", (9045, 9080), False, 'from app.utils.pagination import Pagination\n'), ((9116, 9133), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (9131, 9133), False, 'from datetime import datetime\n'), ((9138, 9157), 'app.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (9155, 9157), False, 'from app.database import db\n'), ((9170, 9249), 'flask.render_template', 'render_template', (['"""admin/events.html"""'], {'events': 'query.items', 'pagination': 'pagination'}), "('admin/events.html', events=query.items, pagination=pagination)\n", (9185, 9249), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((9423, 9436), 'app.forms.admin.MessageForm', 'MessageForm', ([], {}), '()\n', (9434, 9436), False, 'from app.forms.admin import MessageForm\n'), ((9933, 9981), 'flask.render_template', 'render_template', (['"""admin/message.html"""'], {'form': 'form'}), "('admin/message.html', form=form)\n", (9948, 9981), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((1645, 1675), 'app.models.location.Location.get', 'Location.get', (['LocationType.ALL'], {}), '(LocationType.ALL)\n', (1657, 1675), False, 'from app.models.location import Location, LocationType\n'), ((1692, 1710), 'flask_babel._', '_', (['"""All locations"""'], {}), "('All locations')\n", (1693, 1710), False, 'from flask_babel import _\n'), ((3407, 3417), 'app.models.user.User.get', 'User.get', ([], {}), '()\n', (3415, 3417), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((3434, 3444), 'flask_babel._', '_', (['"""Users"""'], {}), "('Users')\n", (3435, 3444), False, 'from flask_babel import _\n'), ((4837, 4853), 'app.models.user.Invitation.get', 'Invitation.get', ([], {}), '()\n', (4851, 4853), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((4870, 4886), 'flask_babel._', '_', (['"""Invitations"""'], {}), "('Invitations')\n", (4871, 4886), False, 'from flask_babel import _\n'), ((6639, 6653), 'app.models.user.LoginLog.get', 'LoginLog.get', ([], {}), '()\n', (6651, 6653), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((6670, 6681), 'flask_babel._', '_', (['"""Logins"""'], {}), "('Logins')\n", (6671, 6681), False, 'from flask_babel import _\n'), ((7829, 7839), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (7834, 7839), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((8082, 8101), 'app.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (8099, 8101), False, 'from app.database import db\n'), ((8110, 8133), 'app.routes.user.send_invitation', 'send_invitation', (['invite'], {}), '(invite)\n', (8125, 8133), False, 'from app.routes.user import send_invitation\n'), ((8423, 8433), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (8428, 8433), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((8673, 8692), 'app.database.db.session.commit', 'db.session.commit', ([], {}), '()\n', (8690, 8692), False, 'from app.database import db\n'), ((1757, 1789), 'app.models.location.Location.get', 'Location.get', (['LocationType.URBEX'], {}), '(LocationType.URBEX)\n', (1769, 1789), False, 'from app.models.location import Location, LocationType\n'), ((1806, 1826), 'flask_babel._', '_', (['"""Urbex locations"""'], {}), "('Urbex locations')\n", (1807, 1826), False, 'from flask_babel import _\n'), ((2326, 2356), 'app.models.location.Location.get', 'Location.get', (['LocationType.ALL'], {}), '(LocationType.ALL)\n', (2338, 2356), False, 'from app.models.location import Location, LocationType\n'), ((2383, 2415), 'app.models.location.Location.get', 'Location.get', (['LocationType.URBEX'], {}), '(LocationType.URBEX)\n', (2395, 2415), False, 'from app.models.location import Location, LocationType\n'), ((2448, 2486), 'app.models.location.Location.get', 'Location.get', (['LocationType.UNDERGROUND'], {}), '(LocationType.UNDERGROUND)\n', (2460, 2486), False, 'from app.models.location import Location, LocationType\n'), ((2515, 2557), 'app.models.location.Location.get_unpublished', 'Location.get_unpublished', (['LocationType.ALL'], {}), '(LocationType.ALL)\n', (2539, 2557), False, 'from app.models.location import Location, LocationType\n'), ((3488, 3505), 'app.models.user.User.get_admins', 'User.get_admins', ([], {}), '()\n', (3503, 3505), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((3522, 3533), 'flask_babel._', '_', (['"""Admins"""'], {}), "('Admins')\n", (3523, 3533), False, 'from flask_babel import _\n'), ((3919, 3929), 'app.models.user.User.get', 'User.get', ([], {}), '()\n', (3927, 3929), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((3957, 3974), 'app.models.user.User.get_admins', 'User.get_admins', ([], {}), '()\n', (3972, 3974), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((4006, 4027), 'app.models.user.User.get_moderators', 'User.get_moderators', ([], {}), '()\n', (4025, 4027), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((4053, 4070), 'app.models.user.User.get_banned', 'User.get_banned', ([], {}), '()\n', (4068, 4070), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((4932, 4980), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.WAITING'], {}), '(InvitationState.WAITING)\n', (4955, 4980), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((4997, 5022), 'flask_babel._', '_', (['"""Waiting for approval"""'], {}), "('Waiting for approval')\n", (4998, 5022), False, 'from flask_babel import _\n'), ((5654, 5702), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.WAITING'], {}), '(InvitationState.WAITING)\n', (5677, 5702), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((5726, 5775), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.APPROVED'], {}), '(InvitationState.APPROVED)\n', (5749, 5775), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((5797, 5844), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.DENIED'], {}), '(InvitationState.DENIED)\n', (5820, 5844), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((5870, 5921), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.REGISTERED'], {}), '(InvitationState.REGISTERED)\n', (5893, 5921), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((6731, 6752), 'app.models.user.LoginLog.get_unique', 'LoginLog.get_unique', ([], {}), '()\n', (6750, 6752), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((6769, 6784), 'flask_babel._', '_', (['"""Unique IPs"""'], {}), "('Unique IPs')\n", (6770, 6784), False, 'from flask_babel import _\n'), ((6936, 6950), 'app.models.user.LoginLog.get', 'LoginLog.get', ([], {}), '()\n', (6948, 6950), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((6972, 6993), 'app.models.user.LoginLog.get_failed', 'LoginLog.get_failed', ([], {}), '()\n', (6991, 6993), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((7015, 7036), 'app.models.user.LoginLog.get_unique', 'LoginLog.get_unique', ([], {}), '()\n', (7034, 7036), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((7061, 7086), 'app.models.user.LoginLog.get_last_month', 'LoginLog.get_last_month', ([], {}), '()\n', (7084, 7086), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((8040, 8072), 'app.models.event.ApproveInviteEvent', 'event.ApproveInviteEvent', (['invite'], {}), '(invite)\n', (8064, 8072), False, 'from app.models import event\n'), ((8634, 8663), 'app.models.event.DenyInviteEvent', 'event.DenyInviteEvent', (['invite'], {}), '(invite)\n', (8655, 8663), False, 'from app.models import event\n'), ((9714, 9724), 'app.models.user.User.get', 'User.get', ([], {}), '()\n', (9722, 9724), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((9898, 9919), 'flask.url_for', 'url_for', (['"""page.index"""'], {}), "('page.index')\n", (9905, 9919), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((1879, 1917), 'app.models.location.Location.get', 'Location.get', (['LocationType.UNDERGROUND'], {}), '(LocationType.UNDERGROUND)\n', (1891, 1917), False, 'from app.models.location import Location, LocationType\n'), ((1934, 1960), 'flask_babel._', '_', (['"""Underground locations"""'], {}), "('Underground locations')\n", (1935, 1960), False, 'from flask_babel import _\n'), ((3581, 3602), 'app.models.user.User.get_moderators', 'User.get_moderators', ([], {}), '()\n', (3600, 3602), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((3619, 3634), 'flask_babel._', '_', (['"""Moderators"""'], {}), "('Moderators')\n", (3620, 3634), False, 'from flask_babel import _\n'), ((5069, 5118), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.APPROVED'], {}), '(InvitationState.APPROVED)\n', (5092, 5118), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((5135, 5160), 'flask_babel._', '_', (['"""Approved invitations"""'], {}), "('Approved invitations')\n", (5136, 5160), False, 'from flask_babel import _\n'), ((6834, 6855), 'app.models.user.LoginLog.get_failed', 'LoginLog.get_failed', ([], {}), '()\n', (6853, 6855), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((6872, 6890), 'flask_babel._', '_', (['"""Failed logins"""'], {}), "('Failed logins')\n", (6873, 6890), False, 'from flask_babel import _\n'), ((6909, 6919), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (6914, 6919), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((9635, 9667), 'flask_babel._', '_', (['"""Email to all users was sent"""'], {}), "('Email to all users was sent')\n", (9636, 9667), False, 'from flask_babel import _\n'), ((9772, 9808), 'app.routes.message.send_message', 'send_message', (['user', 'subject', 'message'], {}), '(user, subject, message)\n', (9784, 9808), False, 'from app.routes.message import send_message\n'), ((9827, 9861), 'flask_babel._', '_', (['"""Message to all users was sent"""'], {}), "('Message to all users was sent')\n", (9828, 9861), False, 'from flask_babel import _\n'), ((2009, 2051), 'app.models.location.Location.get_unpublished', 'Location.get_unpublished', (['LocationType.ALL'], {}), '(LocationType.ALL)\n', (2033, 2051), False, 'from app.models.location import Location, LocationType\n'), ((2068, 2090), 'flask_babel._', '_', (['"""Private locations"""'], {}), "('Private locations')\n", (2069, 2090), False, 'from flask_babel import _\n'), ((2109, 2119), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (2114, 2119), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((3676, 3693), 'app.models.user.User.get_banned', 'User.get_banned', ([], {}), '()\n', (3691, 3693), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((3710, 3727), 'flask_babel._', '_', (['"""Banned users"""'], {}), "('Banned users')\n", (3711, 3727), False, 'from flask_babel import _\n'), ((3746, 3756), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (3751, 3756), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n'), ((5205, 5252), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.DENIED'], {}), '(InvitationState.DENIED)\n', (5228, 5252), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((5269, 5292), 'flask_babel._', '_', (['"""Denied invitations"""'], {}), "('Denied invitations')\n", (5270, 5292), False, 'from flask_babel import _\n'), ((5341, 5392), 'app.models.user.Invitation.get_by_state', 'Invitation.get_by_state', (['InvitationState.REGISTERED'], {}), '(InvitationState.REGISTERED)\n', (5364, 5392), False, 'from app.models.user import User, Invitation, LoginLog, InvitationState\n'), ((5409, 5430), 'flask_babel._', '_', (['"""Registered users"""'], {}), "('Registered users')\n", (5410, 5430), False, 'from flask_babel import _\n'), ((5449, 5459), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (5454, 5459), False, 'from flask import Blueprint, render_template, abort, flash, url_for, redirect\n')]
from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale # Metric scale object tests ------------------------------------- # Test the creation of a 10k object print(f"Test #1: Integer Positive Base, Positive Exponent") o_TenKObject = MetricScale("10k") if o_TenKObject.f_Value != 10000: print(f"\tTest #1: Failed! Expected 10000 got {o_TenKObject.f_Value}") else: print("Success!") del o_TenKObject print(f"Test #2: Integer Negative Base, Positive Exponent") o_TestObject = MetricScale("-27G") f_Expected = float(-27000000000) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #3: Integer Positive Base, Negative Exponent") o_TestObject = MetricScale("19n") f_Expected = float(0.000000019) if o_TestObject.f_Value != f_Expected: print("Success!") else: print("Success!") del o_TestObject print(f"Test #4: Integer Negative Base, Negative Exponent") o_TestObject = MetricScale("-24m") f_Expected = float(-0.024) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #5: float Positive Base, Positive Exponent") o_TestObject = MetricScale("2.3M") f_Expected = float(2300000) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #6: float Negative Base, Positive Exponent") o_TestObject = MetricScale("-2.1h") f_Expected = float(-210) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #7: float Positive Base, Negative Exponent") o_TestObject = MetricScale("4.3u") f_Expected = float(0.0000043) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #8: Integer Negative Base, Negative Exponent") o_TestObject = MetricScale("-1.00005p") f_Expected = float(-0.00000000000100005) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #9: Integer input, not string") o_TestObject = MetricScale(1234321) f_Expected = float(1234321) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #10: float input, not string") o_TestObject = MetricScale(105323.0) f_Expected = float(105323.0) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #11: negative float") o_TestObject = MetricScale(-0.435240) f_Expected = float(-0.435240) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print(f"Test #11: empty object") try: o_TestObject = MetricScale() except ValueError as ve: print("Success!") print(f"Test #12: Unitless string") o_TestObject = MetricScale("130.2") f_Expected = float(130.2) if o_TestObject.f_Value != f_Expected: print(f"\tTest #1: Failed! Expected {f_Expected} got {o_TestObject.f_Value}") else: print("Success!") del o_TestObject print("############## End of MetricScale() tests #####################") print("\n############## Testing RCLowPass() ######################") from app.classes.passiveFilters.rcLowpassFilter import RCLowpassFilter print(f"Test #1: Create a low pass filter with R=10k, c=318n") o_TestObject = RCLowpassFilter(o_Resistance="10k", o_Capacitance="318n") f_ExpectedResistance = 10000 f_ExpectedCapacitance = 0.000000318 if o_TestObject.f_Resistance != f_ExpectedResistance and o_TestObject.f_Capacitance != f_ExpectedCapacitance: print(f"\tFailure: Expected R={f_ExpectedResistance} and C={f_ExpectedCapacitance}, got {o_TestObject.o_Resistance} and {o_TestObject.o_Capacitance}") else: print("Success!") del o_TestObject print(f"Test #2: Create a low pass filter with R=5.6M, c=4.2u") o_TestObject = RCLowpassFilter(o_Resistance="5.6M", o_Capacitance="4.2u") f_ExpectedResistance = 5600000 f_ExpectedCapacitance = 0.0000042 if o_TestObject.f_Resistance != f_ExpectedResistance and o_TestObject.f_Capacitance != f_ExpectedCapacitance: print(f"\tFailure: Expected R={f_ExpectedResistance} and C={f_ExpectedCapacitance}, got {o_TestObject.o_Resistance} and {o_TestObject.o_Capacitance}") else: print("Success!") del o_TestObject print(f"Test #3: Create a low pass filter with R=130.2k, c=93.4n and get the cut-off frequency") o_TestObject = RCLowpassFilter(o_Resistance="130.2k", o_Capacitance="93.4n") f_ExpectedFrequency = 13.1 if o_TestObject.f_CutoffFrequency != f_ExpectedFrequency: print(f"\tFailure: Expected Fc={f_ExpectedFrequency} and got {o_TestObject.f_CutoffFrequency}") else: print(f"Success") del o_TestObject print(f"Test #3: Create a low pass filter with R=433, c=42.9u and get the cut-off frequency") o_TestObject = RCLowpassFilter(o_Resistance="433", o_Capacitance="42.9u") f_ExpectedFrequency = 8.57 if o_TestObject.f_CutoffFrequency != f_ExpectedFrequency: print(f"\tFailure: Expected Fc={f_ExpectedFrequency} and got {o_TestObject.f_CutoffFrequency}") else: print(f"Success") print(f"Test #3: Create a low pass filter with R=3.4M, c=5.9n and get the time constant") o_TestObject = RCLowpassFilter(o_Resistance="3.4M", o_Capacitance="5.9n") f_Expected = o_TestObject.f_Capacitance*o_TestObject.f_Resistance if o_TestObject.f_Tau != f_Expected: print(f"\tFailure: Expected Fc={f_Expected} and got {o_TestObject.f_Tau}") else: print(f"Success")
[ "app.filterdesigner.classes.passiveFilters.metricScale.MetricScale", "app.classes.passiveFilters.rcLowpassFilter.RCLowpassFilter" ]
[((261, 279), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""10k"""'], {}), "('10k')\n", (272, 279), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((516, 535), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""-27G"""'], {}), "('-27G')\n", (527, 535), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((822, 840), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""19n"""'], {}), "('19n')\n", (833, 840), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((1067, 1086), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""-24m"""'], {}), "('-24m')\n", (1078, 1086), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((1365, 1384), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""2.3M"""'], {}), "('2.3M')\n", (1376, 1384), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((1664, 1684), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""-2.1h"""'], {}), "('-2.1h')\n", (1675, 1684), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((1961, 1980), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""4.3u"""'], {}), "('4.3u')\n", (1972, 1980), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((2264, 2288), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""-1.00005p"""'], {}), "('-1.00005p')\n", (2275, 2288), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((2568, 2588), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['(1234321)'], {}), '(1234321)\n', (2579, 2588), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((2854, 2875), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['(105323.0)'], {}), '(105323.0)\n', (2865, 2875), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((3134, 3155), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['(-0.43524)'], {}), '(-0.43524)\n', (3145, 3155), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((3534, 3554), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', (['"""130.2"""'], {}), "('130.2')\n", (3545, 3554), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n'), ((4070, 4127), 'app.classes.passiveFilters.rcLowpassFilter.RCLowpassFilter', 'RCLowpassFilter', ([], {'o_Resistance': '"""10k"""', 'o_Capacitance': '"""318n"""'}), "(o_Resistance='10k', o_Capacitance='318n')\n", (4085, 4127), False, 'from app.classes.passiveFilters.rcLowpassFilter import RCLowpassFilter\n'), ((4607, 4665), 'app.classes.passiveFilters.rcLowpassFilter.RCLowpassFilter', 'RCLowpassFilter', ([], {'o_Resistance': '"""5.6M"""', 'o_Capacitance': '"""4.2u"""'}), "(o_Resistance='5.6M', o_Capacitance='4.2u')\n", (4622, 4665), False, 'from app.classes.passiveFilters.rcLowpassFilter import RCLowpassFilter\n'), ((5177, 5238), 'app.classes.passiveFilters.rcLowpassFilter.RCLowpassFilter', 'RCLowpassFilter', ([], {'o_Resistance': '"""130.2k"""', 'o_Capacitance': '"""93.4n"""'}), "(o_Resistance='130.2k', o_Capacitance='93.4n')\n", (5192, 5238), False, 'from app.classes.passiveFilters.rcLowpassFilter import RCLowpassFilter\n'), ((5599, 5657), 'app.classes.passiveFilters.rcLowpassFilter.RCLowpassFilter', 'RCLowpassFilter', ([], {'o_Resistance': '"""433"""', 'o_Capacitance': '"""42.9u"""'}), "(o_Resistance='433', o_Capacitance='42.9u')\n", (5614, 5657), False, 'from app.classes.passiveFilters.rcLowpassFilter import RCLowpassFilter\n'), ((5997, 6055), 'app.classes.passiveFilters.rcLowpassFilter.RCLowpassFilter', 'RCLowpassFilter', ([], {'o_Resistance': '"""3.4M"""', 'o_Capacitance': '"""5.9n"""'}), "(o_Resistance='3.4M', o_Capacitance='5.9n')\n", (6012, 6055), False, 'from app.classes.passiveFilters.rcLowpassFilter import RCLowpassFilter\n'), ((3416, 3429), 'app.filterdesigner.classes.passiveFilters.metricScale.MetricScale', 'MetricScale', ([], {}), '()\n', (3427, 3429), False, 'from app.filterdesigner.classes.passiveFilters.metricScale import MetricScale\n')]
# coding=utf-8 import os def write_file(file_path, *content): os.makedirs(os.path.dirname(file_path), exist_ok=True) with open(file_path, 'a', encoding='utf-8') as f: f.write(''.join(content))
[ "os.path.dirname" ]
[((80, 106), 'os.path.dirname', 'os.path.dirname', (['file_path'], {}), '(file_path)\n', (95, 106), False, 'import os\n')]
# coding: utf-8 from __future__ import unicode_literals try: from collections import OrderedDict except ImportError: # pylint:disable=import-error from ordereddict import OrderedDict # pylint:enable=import-error import six from .genty_args import GentyArgs from .private import format_arg def genty_dataprovider(builder_function): """Decorator defining that this test gets parameters from the given build_function. :param builder_function: A callable that returns parameters that will be passed to the method decorated by this decorator. If the builder_function returns a tuple or list, then that will be passed as *args to the decorated method. If the builder_function returns a :class:`GentyArgs`, then that will be used to pass *args and **kwargs to the decorated method. Any other return value will be treated as a single parameter, and passed as such to the decorated method. :type builder_function: `callable` """ datasets = getattr(builder_function, 'genty_datasets', {None: ()}) def wrap(test_method): # Save the data providers in the test method. This data will be # consumed by the @genty decorator. if not hasattr(test_method, 'genty_dataproviders'): test_method.genty_dataproviders = [] test_method.genty_dataproviders.append( (builder_function, datasets), ) return test_method return wrap def genty_dataset(*args, **kwargs): """Decorator defining data sets to provide to a test. Inspired by http://sebastian-bergmann.de/archives/ 702-Data-Providers-in-PHPUnit-3.2.html The canonical way to call @genty_dataset, with each argument each representing a data set to be injected in the test method call: @genty_dataset( ('a1', 'b1'), ('a2', 'b2'), ) def test_some_function(a, b) ... If the test function takes only one parameter, you can replace the tuples by a single value. So instead of the more verbose: @genty_dataset( ('c1',), ('c2',), ) def test_some_other_function(c) ... One can write: @genty_dataset('c1', 'c2') def test_some_other_function(c) ... For each set of arguments, a suffix identifying that argument set is built by concatenating the string representation of the arguments together. You can control the test names for each data set by passing the data sets as keyword args, where the keyword is the desired suffix. For example: @genty_dataset( ('a1', 'b1), ) def test_function(a, b) ... produces a test named 'test_function_for_a1_and_b1', while @genty_dataset( happy_path=('a1', 'b1'), ) def test_function(a, b) ... produces a test named test_function_for_happy_path. These are just parameters to a method call, so one can have unnamed args first followed by keyword args @genty_dataset( ('x', 'y'), ('p', 'q'), Monday=('a1', 'b1'), Tuesday=('t1', 't2'), ) def test_function(a, b) ... Finally, datasets can be chained. Useful for example if there are distinct sets of params that make sense (cleaner, more readable, or semantically nicer) if kept separate. A fabricated example: @genty_dataset( *([i for i in range(10)] + [(i, i) for i in range(10)]) ) def test_some_other_function(param1, param2=None) ... -- vs -- @genty_dataset(*[i for i in range(10)]) @genty_dataset(*[(i, i) for i in range(10)]) def test_some_other_function(param1, param2=None) ... If the names of datasets conflict across chained genty_datasets, the key&value pair from the outer (first) decorator will override the data from the inner. :param args: Tuple of unnamed data sets. :type args: `tuple` of varies :param kwargs: Dict of pre-named data sets. :type kwargs: `dict` of `unicode` to varies """ datasets = _build_datasets(*args, **kwargs) def wrap(test_method): # Save the datasets in the test method. This data will be consumed # by the @genty decorator. if not hasattr(test_method, 'genty_datasets'): test_method.genty_datasets = OrderedDict() test_method.genty_datasets.update(datasets) return test_method return wrap def _build_datasets(*args, **kwargs): """Build the datasets into a dict, where the keys are the name of the data set and the values are the data sets themselves. :param args: Tuple of unnamed data sets. :type args: `tuple` of varies :param kwargs: Dict of pre-named data sets. :type kwargs: `dict` of `unicode` to varies :return: The dataset dict. :rtype: `dict` """ datasets = OrderedDict() _add_arg_datasets(datasets, args) _add_kwarg_datasets(datasets, kwargs) return datasets def _add_arg_datasets(datasets, args): """Add data sets of the given args. :param datasets: The dict where to accumulate data sets. :type datasets: `dict` :param args: Tuple of unnamed data sets. :type args: `tuple` of varies """ for dataset in args: # turn a value into a 1-tuple. if not isinstance(dataset, (tuple, GentyArgs)): dataset = (dataset,) # Create a test_name_suffix - basically the parameter list if isinstance(dataset, GentyArgs): dataset_strings = dataset # GentyArgs supports iteration else: dataset_strings = [format_arg(data) for data in dataset] test_method_suffix = ", ".join(dataset_strings) datasets[test_method_suffix] = dataset def _add_kwarg_datasets(datasets, kwargs): """Add data sets of the given kwargs. :param datasets: The dict where to accumulate data sets. :type datasets: `dict` :param kwargs: Dict of pre-named data sets. :type kwargs: `dict` of `unicode` to varies """ for test_method_suffix, dataset in six.iteritems(kwargs): datasets[test_method_suffix] = dataset
[ "six.iteritems", "ordereddict.OrderedDict" ]
[((5144, 5157), 'ordereddict.OrderedDict', 'OrderedDict', ([], {}), '()\n', (5155, 5157), False, 'from ordereddict import OrderedDict\n'), ((6422, 6443), 'six.iteritems', 'six.iteritems', (['kwargs'], {}), '(kwargs)\n', (6435, 6443), False, 'import six\n'), ((4564, 4577), 'ordereddict.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4575, 4577), False, 'from ordereddict import OrderedDict\n')]
import argparse from concurrent.futures import ProcessPoolExecutor from article_separation.image_segmentation.net_post_processing.separator_net_post_processor import SeparatorNetPostProcessor from article_separation.image_segmentation.net_post_processing.heading_net_post_processor import HeadingNetPostProcessor from python_util.io.file_loader import load_list_file def run_separator(image_list, path_to_pb, fixed_height, scaling_factor, threshold): post_processor = SeparatorNetPostProcessor(image_list, path_to_pb, fixed_height, scaling_factor, threshold, gpu_devices='') post_processor.run() def run_heading(image_list, path_to_pb, fixed_height=900, scaling_factor=1, is_heading_threshold=0.4, weight_dict=None, thresh_dict=None, text_line_percentage=0.8): if thresh_dict is None: thresh_dict = {'net_thresh': 1.0, 'stroke_width_thresh': 1.0, 'text_height_thresh': 0.9, 'sw_th_thresh': 0.9} if weight_dict is None: weight_dict = {'net': 0.8, 'stroke_width': 0.0, 'text_height': 0.2} post_processor = HeadingNetPostProcessor(image_list, path_to_pb, fixed_height, scaling_factor, weight_dict, is_heading_threshold, thresh_dict, text_line_percentage) post_processor.run(gpu_device='') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--path_to_image_list", type=str, required=True, help="Path to the list file holding the image paths.") parser.add_argument("--path_to_pb", type=str, required=True, help="Path to the TensorFlow pixel labelling graph.") parser.add_argument("--num_processes", type=int, required=False, help="Number of processes that run in parallel.", default=8) parser.add_argument("--fixed_height", type=int, required=False, help="Input image height") parser.add_argument("--scaling_factor", type=float, required=False, help="Scaling factor of images.", default=1.0) parser.add_argument("--mode", type=str, required=True, choices=['heading', 'separator'], help="Which information should be processed, e.g. headings or separator.") parser.add_argument("--threshold", type=float, required=False, help="Threshold for binarization of net output.", default=0.05) args = parser.parse_args() mode = args.mode image_path_list = load_list_file(args.path_to_image_list) path_to_pb = args.path_to_pb num_processes = args.num_processes if args.fixed_height is None: if mode == 'heading': fixed_height = 900 elif mode == 'separator': fixed_height = 1500 else: fixed_height = args.fixed_height scaling_factor = args.scaling_factor threshold = args.threshold MAX_SUBLIST_SIZE = 50 with ProcessPoolExecutor(num_processes) as executor: size_sub_lists = len(image_path_list) // num_processes if size_sub_lists == 0: size_sub_lists = 1 num_processes = len(image_path_list) size_sub_lists = min(MAX_SUBLIST_SIZE, size_sub_lists) image_path_sub_lists = [image_path_list[i: i + size_sub_lists] for i in range(0, len(image_path_list), size_sub_lists)] if mode == 'separator': run_args = ((image_path_sub_list, path_to_pb, fixed_height, scaling_factor, threshold) for image_path_sub_list in image_path_sub_lists) [executor.submit(run_separator, *run_arg) for run_arg in run_args] elif mode == 'heading': run_args = ((image_path_sub_list, path_to_pb, fixed_height, scaling_factor, 0.4, None, None, 0.8) for image_path_sub_list in image_path_sub_lists) [executor.submit(run_heading, *run_arg) for run_arg in run_args]
[ "python_util.io.file_loader.load_list_file", "article_separation.image_segmentation.net_post_processing.separator_net_post_processor.SeparatorNetPostProcessor", "argparse.ArgumentParser", "article_separation.image_segmentation.net_post_processing.heading_net_post_processor.HeadingNetPostProcessor", "concurrent.futures.ProcessPoolExecutor" ]
[((475, 585), 'article_separation.image_segmentation.net_post_processing.separator_net_post_processor.SeparatorNetPostProcessor', 'SeparatorNetPostProcessor', (['image_list', 'path_to_pb', 'fixed_height', 'scaling_factor', 'threshold'], {'gpu_devices': '""""""'}), "(image_list, path_to_pb, fixed_height,\n scaling_factor, threshold, gpu_devices='')\n", (500, 585), False, 'from article_separation.image_segmentation.net_post_processing.separator_net_post_processor import SeparatorNetPostProcessor\n'), ((1108, 1263), 'article_separation.image_segmentation.net_post_processing.heading_net_post_processor.HeadingNetPostProcessor', 'HeadingNetPostProcessor', (['image_list', 'path_to_pb', 'fixed_height', 'scaling_factor', 'weight_dict', 'is_heading_threshold', 'thresh_dict', 'text_line_percentage'], {}), '(image_list, path_to_pb, fixed_height,\n scaling_factor, weight_dict, is_heading_threshold, thresh_dict,\n text_line_percentage)\n', (1131, 1263), False, 'from article_separation.image_segmentation.net_post_processing.heading_net_post_processor import HeadingNetPostProcessor\n'), ((1381, 1406), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1404, 1406), False, 'import argparse\n'), ((2542, 2581), 'python_util.io.file_loader.load_list_file', 'load_list_file', (['args.path_to_image_list'], {}), '(args.path_to_image_list)\n', (2556, 2581), False, 'from python_util.io.file_loader import load_list_file\n'), ((2976, 3010), 'concurrent.futures.ProcessPoolExecutor', 'ProcessPoolExecutor', (['num_processes'], {}), '(num_processes)\n', (2995, 3010), False, 'from concurrent.futures import ProcessPoolExecutor\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals from argparse import ArgumentParser from logging import DEBUG, INFO, basicConfig from exchangelib.util import PrettyXmlHandler from .core import main from .utils import valid_date def cli(): parser = ArgumentParser() parser.add_argument( "-N", "--offset", help="offset day integer.", type=int, default=1 ) parser.add_argument("--date", help="Date formats. (YYYY-MM-DD)", type=valid_date) parser.add_argument("-d", "--debug", help="debug mode", action="store_true") args = parser.parse_args() if args.debug: basicConfig( format="%(asctime)s:%(name)s:%(levelname)s:%(message)s", level=DEBUG, handlers=[PrettyXmlHandler()], ) else: basicConfig(level=INFO) main(date=args.date, n=args.offset) if __name__ == "__main__": cli() # vim fileencoding=utf-8
[ "logging.basicConfig", "exchangelib.util.PrettyXmlHandler", "argparse.ArgumentParser" ]
[((296, 312), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (310, 312), False, 'from argparse import ArgumentParser\n'), ((821, 844), 'logging.basicConfig', 'basicConfig', ([], {'level': 'INFO'}), '(level=INFO)\n', (832, 844), False, 'from logging import DEBUG, INFO, basicConfig\n'), ((772, 790), 'exchangelib.util.PrettyXmlHandler', 'PrettyXmlHandler', ([], {}), '()\n', (788, 790), False, 'from exchangelib.util import PrettyXmlHandler\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Script created by <NAME> [IVT-360] # Game with nature teory import csv def main(): gurvitz_alpha = input("Введите коэффициент для критерия Гурвица [0,1]: ") hojj_leman_alpha = input("Введите коэффициент для критерия Ходжа Лемана [0;1]: ") input_data = matrix_to_float(read_data()) print(input_data) probability_vector = input_data[0] payoff_matrix = input_data[1:] # Calculations vald = Vald_criterium(payoff_matrix) savidge = Savidge_criterium(payoff_matrix) laplas_baies = Laplas_Baies_criterium(probability_vector, payoff_matrix) ghurvitz = Ghurvitz_criterium(gurvitz_alpha, payoff_matrix) ghermeyer = Ghermeyer_criterium(probability_vector, payoff_matrix) hojj_leman = Hojj_Leman_criterium(hojj_leman_alpha, probability_vector, payoff_matrix) # Output with open('output.csv', 'w') as csvfile: csvwriter = csv.writer(csvfile, delimiter=';') # Write header csvwriter.writerow([probability_vector, 'Vald', 'Savidge', 'Laplas-Baies', 'Ghurvitz', 'Ghermeyer', 'Hojj-Leman']) # Write data for i in range(0, len(payoff_matrix)): csvwriter.writerow([payoff_matrix[i], vald[i], savidge[i], laplas_baies[i], ghurvitz[i], ghermeyer[i], hojj_leman[i]]) # read input from csv def read_data(): data = [] with open('input.csv', 'r') as csvfile: csvreader = csv.reader(csvfile, delimiter=';') for row in csvreader: data.append(row) return data # Variuos criteries of "game with nature" teory # Max(Mins) def Vald_criterium(payoff_matrix): criterium_row = [] for row in payoff_matrix: criterium_row.append(min(row)) value_of_best = max(criterium_row) index_of_best = criterium_row.index(value_of_best) return highlight_best_value_row(criterium_row, index_of_best, value_of_best) # Min(Max - Min) def Savidge_criterium(payoff_matrix): criterium_row = [] for row in payoff_matrix: criterium_row.append(max(row) - min(row)) value_of_best = min(criterium_row) index_of_best = criterium_row.index(value_of_best) return highlight_best_value_row(criterium_row, index_of_best, value_of_best) # Max(summ(a_i * q_i)) def Laplas_Baies_criterium(probability_vector, payoff_matrix): criterium_row = [] for row in payoff_matrix: criterium_for_row = 0.0 for i in range(0, len(row)): criterium_for_row += row[i] * probability_vector[i] criterium_row.append(criterium_for_row) value_of_best = max(criterium_row) index_of_best = criterium_row.index(value_of_best) return highlight_best_value_row(criterium_row, index_of_best, value_of_best) # Max(alpha * min(row) + (1-alpha) * max(row)) def Ghurvitz_criterium(alpha, payoff_matrix): criterium_row = [] for row in payoff_matrix: criterium_row.append(alpha * min(row) + (1-alpha) * max(row)) value_of_best = max(criterium_row) index_of_best = criterium_row.index(value_of_best) return highlight_best_value_row(criterium_row, index_of_best, value_of_best) # Min(Max(a_i*q_i of each in row)) def Ghermeyer_criterium(probability_vector, payoff_matrix): criterium_row = [] for row in payoff_matrix: inefficiency_row = [] for i in range(0, len(row)): inefficiency_row.append(row[i] * probability_vector[i]) criterium_for_row = max(inefficiency_row) criterium_row.append(criterium_for_row) value_of_best = min(criterium_row) index_of_best = criterium_row.index(value_of_best) return highlight_best_value_row(criterium_row, index_of_best, value_of_best) # Max(alpha * (a_i * q_i) + (1-alpha) * min(row)) def Hojj_Leman_criterium(alpha, probability_vector, payoff_matrix): criterium_row = [] for row in payoff_matrix: criterium_for_row = 0.0 for i in range(0, len(row)): criterium_for_row += (alpha * (row[i] * probability_vector[i]) + (1-alpha) * min(row)) criterium_row.append(criterium_for_row) value_of_best = max(criterium_row) index_of_best = criterium_row.index(value_of_best) return highlight_best_value_row(criterium_row, index_of_best, value_of_best) # Helpers # highlight best value in criterium row def highlight_best_value_row(criterium_row, index_of_best, value_of_best): criterium_row[index_of_best] = "| {} |".format(str(round(value_of_best, 2))) return criterium_row # Convert matrix os strings to matrix of floats def matrix_to_float(matrix): matrix_height = len(matrix) matrix_width = len(matrix[0]) for row in range(0, matrix_height): for col in range(0, matrix_width): matrix[row][col] = float(matrix[row][col]) return matrix # =============================================================== # Execution # =============================================================== main()
[ "csv.writer", "csv.reader" ]
[((931, 965), 'csv.writer', 'csv.writer', (['csvfile'], {'delimiter': '""";"""'}), "(csvfile, delimiter=';')\n", (941, 965), False, 'import csv\n'), ((1401, 1435), 'csv.reader', 'csv.reader', (['csvfile'], {'delimiter': '""";"""'}), "(csvfile, delimiter=';')\n", (1411, 1435), False, 'import csv\n')]
import argparse import os import shutil import sys import time sys.path.append('..') sys.path.append('../cubenet') import pickle as pkl import numpy as np import tensorflow as tf from skimage.io import imread, imsave from utils import make_dirs, manage_directories from architectures import GVGG from dataloader import DataLoader ##### Training ##### def test(args): print('...Building inputs') tf.reset_default_graph() print('...Connecting data io and preprocessing') with tf.device("/cpu:0"): with tf.name_scope("IO"): test_data = DataLoader(args.test_file, 'test', args.batch_size, args.height, args.jitter, shuffle=False) args.n_classes = test_data.n_classes args.data_size = test_data.data_size print("Found {} test examples".format(args.data_size)) test_iterator = test_data.data.make_initializable_iterator() test_inputs, test_targets = test_iterator.get_next() test_inputs.set_shape([args.batch_size, args.height, args.width, args.depth, 1]) test_init_op = test_iterator.make_initializer(test_data.data) # Outputs print('...Constructing model') with tf.get_default_graph().as_default(): with tf.variable_scope("model", reuse=False): model = GVGG(test_inputs, False, args) test_logits = model.pred_logits test_preds = tf.nn.softmax(test_logits) # Prediction loss print("...Building metrics") preds = tf.to_int32(tf.argmax(test_preds, 1)) test_accuracy = tf.contrib.metrics.accuracy(preds, test_targets) # HACK: Rotation averaging is brittle. preds_rot = tf.to_int32(tf.argmax(tf.reduce_mean(test_preds, 0))) test_targets_rot = test_targets[0] test_accuracy_rot = tf.contrib.metrics.accuracy(preds_rot, test_targets_rot) with tf.Session() as sess: # Load pretrained model, ignoring final layer print('...Restore variables') tf.global_variables_initializer().run() restorer = tf.train.Saver() model_path = tf.train.latest_checkpoint(args.save_dir) restorer.restore(sess, model_path) accuracies = [] accuracies_rotavg = [] print("...Testing") sess.run([test_init_op]) for i in range(args.data_size // args.batch_size): tacc, tacc_rotavg = sess.run([test_accuracy, test_accuracy_rot]) accuracies.append(tacc) accuracies_rotavg.append(tacc_rotavg) sys.stdout.write("[{} | {}] Running acc: {:0.4f}, Running rot acc: {:0.4f}\r".format(i*args.batch_size, args.data_size, np.mean(accuracies), np.mean(accuracies_rotavg))) sys.stdout.flush() print() print("Test accuracy: {:04f}".format(np.mean(accuracies))) print("Test accuracy rot avg: {:04f}".format(np.mean(accuracies_rotavg))) print() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--batch_size", help="minibatch size", type=int, default=12) parser.add_argument("--height", help="input image height", type=int, default=32) parser.add_argument("--width", help="input image width", type=int, default=32) parser.add_argument("--depth", help="input image depth", type=int, default=32) parser.add_argument("--n_channels", help="number of input image channels", type=int, default=9*4) parser.add_argument("--kernel_size", help="number of channel in first layer", type=int, default=3) parser.add_argument("--first_kernel_size", help="number of channel in first layer", type=int, default=5) parser.add_argument("--n_classes", help="number of output classes", type=int, default=10) parser.add_argument("--jitter", help="amount of test time jitter", type=int, default=0) parser.add_argument("--group", help='group', type=str, default='V') parser.add_argument("--drop_sigma", help='dropout rate', type=float, default=0.0) parser.add_argument("--group_rotations", help="whether to rotation average", type=bool, default=True) parser.add_argument("--preprocess", help="whether to preprocess images", type=bool, default=True) parser.add_argument("--min_after_dequeue", help="minimum number of images to keep in RAM", type=int, default=500) parser.add_argument("--test_file", help="directory of test addresses", default="./addresses/modelnet10_test_addresses.txt") parser.add_argument("--save_dir", help="directory to save results", default="./models/model_0/checkpoints") test(parser.parse_args())
[ "architectures.GVGG", "tensorflow.nn.softmax", "tensorflow.reduce_mean", "sys.path.append", "dataloader.DataLoader", "numpy.mean", "argparse.ArgumentParser", "tensorflow.Session", "tensorflow.contrib.metrics.accuracy", "sys.stdout.flush", "tensorflow.get_default_graph", "tensorflow.device", "tensorflow.variable_scope", "tensorflow.train.latest_checkpoint", "tensorflow.reset_default_graph", "tensorflow.train.Saver", "tensorflow.global_variables_initializer", "tensorflow.argmax", "tensorflow.name_scope" ]
[((64, 85), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (79, 85), False, 'import sys\n'), ((86, 115), 'sys.path.append', 'sys.path.append', (['"""../cubenet"""'], {}), "('../cubenet')\n", (101, 115), False, 'import sys\n'), ((410, 434), 'tensorflow.reset_default_graph', 'tf.reset_default_graph', ([], {}), '()\n', (432, 434), True, 'import tensorflow as tf\n'), ((3060, 3085), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (3083, 3085), False, 'import argparse\n'), ((498, 517), 'tensorflow.device', 'tf.device', (['"""/cpu:0"""'], {}), "('/cpu:0')\n", (507, 517), True, 'import tensorflow as tf\n'), ((1965, 1977), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (1975, 1977), True, 'import tensorflow as tf\n'), ((2146, 2162), 'tensorflow.train.Saver', 'tf.train.Saver', ([], {}), '()\n', (2160, 2162), True, 'import tensorflow as tf\n'), ((2184, 2225), 'tensorflow.train.latest_checkpoint', 'tf.train.latest_checkpoint', (['args.save_dir'], {}), '(args.save_dir)\n', (2210, 2225), True, 'import tensorflow as tf\n'), ((532, 551), 'tensorflow.name_scope', 'tf.name_scope', (['"""IO"""'], {}), "('IO')\n", (545, 551), True, 'import tensorflow as tf\n'), ((577, 674), 'dataloader.DataLoader', 'DataLoader', (['args.test_file', '"""test"""', 'args.batch_size', 'args.height', 'args.jitter'], {'shuffle': '(False)'}), "(args.test_file, 'test', args.batch_size, args.height, args.\n jitter, shuffle=False)\n", (587, 674), False, 'from dataloader import DataLoader\n'), ((1291, 1330), 'tensorflow.variable_scope', 'tf.variable_scope', (['"""model"""'], {'reuse': '(False)'}), "('model', reuse=False)\n", (1308, 1330), True, 'import tensorflow as tf\n'), ((1352, 1382), 'architectures.GVGG', 'GVGG', (['test_inputs', '(False)', 'args'], {}), '(test_inputs, False, args)\n', (1356, 1382), False, 'from architectures import GVGG\n'), ((1452, 1478), 'tensorflow.nn.softmax', 'tf.nn.softmax', (['test_logits'], {}), '(test_logits)\n', (1465, 1478), True, 'import tensorflow as tf\n'), ((1637, 1685), 'tensorflow.contrib.metrics.accuracy', 'tf.contrib.metrics.accuracy', (['preds', 'test_targets'], {}), '(preds, test_targets)\n', (1664, 1685), True, 'import tensorflow as tf\n'), ((1894, 1950), 'tensorflow.contrib.metrics.accuracy', 'tf.contrib.metrics.accuracy', (['preds_rot', 'test_targets_rot'], {}), '(preds_rot, test_targets_rot)\n', (1921, 1950), True, 'import tensorflow as tf\n'), ((2805, 2823), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (2821, 2823), False, 'import sys\n'), ((1240, 1262), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (1260, 1262), True, 'import tensorflow as tf\n'), ((1583, 1607), 'tensorflow.argmax', 'tf.argmax', (['test_preds', '(1)'], {}), '(test_preds, 1)\n', (1592, 1607), True, 'import tensorflow as tf\n'), ((2087, 2120), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (2118, 2120), True, 'import tensorflow as tf\n'), ((2898, 2917), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (2905, 2917), True, 'import numpy as np\n'), ((2973, 2999), 'numpy.mean', 'np.mean', (['accuracies_rotavg'], {}), '(accuracies_rotavg)\n', (2980, 2999), True, 'import numpy as np\n'), ((1783, 1812), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['test_preds', '(0)'], {}), '(test_preds, 0)\n', (1797, 1812), True, 'import tensorflow as tf\n'), ((2743, 2762), 'numpy.mean', 'np.mean', (['accuracies'], {}), '(accuracies)\n', (2750, 2762), True, 'import numpy as np\n'), ((2764, 2790), 'numpy.mean', 'np.mean', (['accuracies_rotavg'], {}), '(accuracies_rotavg)\n', (2771, 2790), True, 'import numpy as np\n')]
from utilities.validators import validate_gtfs_representation from utilities.constants import AGENCY_NAME def process_agencies_count_for_gtfs_metadata(gtfs_representation): """Process and count all the agencies in the `agency` file from the GTFS dataset of the representation. Add the agencies count to the representation metadata once processed. :param gtfs_representation: The representation of the GTFS dataset to process. :return: The representation of the GTFS dataset post-execution. """ validate_gtfs_representation(gtfs_representation) dataset = gtfs_representation.dataset metadata = gtfs_representation.metadata agency_is_present = ( dataset.agency is not None and AGENCY_NAME in dataset.agency.columns ) if agency_is_present: # Count agencies agencies_count = dataset.agency[AGENCY_NAME].size # Set the main timezone in the GTFS representation # if there is one agency or more if agencies_count > 0: metadata.agencies_count = agencies_count return gtfs_representation
[ "utilities.validators.validate_gtfs_representation" ]
[((520, 569), 'utilities.validators.validate_gtfs_representation', 'validate_gtfs_representation', (['gtfs_representation'], {}), '(gtfs_representation)\n', (548, 569), False, 'from utilities.validators import validate_gtfs_representation\n')]
from django.db import models from django.contrib.auth.models import User # Create your models here. class AppTag(models.Model): name = models.CharField("Application Tag", max_length=10, blank=False) def __str__(self): return "{}".format(self.name) class Message(models.Model): """ 用户发送的消息 """ user_from = models.ForeignKey(User, on_delete=models.CASCADE, related_name="messages_from") user_to = models.ForeignKey(User, on_delete=models.CASCADE, related_name="messages_to") tag = models.ForeignKey(AppTag, on_delete=models.CASCADE, related_name="messages_tag") message = models.CharField(max_length=1000) date = models.DateTimeField('date created') def __str__(self): return "{}".format(self.message)
[ "django.db.models.DateTimeField", "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((141, 204), 'django.db.models.CharField', 'models.CharField', (['"""Application Tag"""'], {'max_length': '(10)', 'blank': '(False)'}), "('Application Tag', max_length=10, blank=False)\n", (157, 204), False, 'from django.db import models\n'), ((342, 421), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'on_delete': 'models.CASCADE', 'related_name': '"""messages_from"""'}), "(User, on_delete=models.CASCADE, related_name='messages_from')\n", (359, 421), False, 'from django.db import models\n'), ((436, 513), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'on_delete': 'models.CASCADE', 'related_name': '"""messages_to"""'}), "(User, on_delete=models.CASCADE, related_name='messages_to')\n", (453, 513), False, 'from django.db import models\n'), ((524, 609), 'django.db.models.ForeignKey', 'models.ForeignKey', (['AppTag'], {'on_delete': 'models.CASCADE', 'related_name': '"""messages_tag"""'}), "(AppTag, on_delete=models.CASCADE, related_name='messages_tag'\n )\n", (541, 609), False, 'from django.db import models\n'), ((619, 652), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(1000)'}), '(max_length=1000)\n', (635, 652), False, 'from django.db import models\n'), ((664, 700), 'django.db.models.DateTimeField', 'models.DateTimeField', (['"""date created"""'], {}), "('date created')\n", (684, 700), False, 'from django.db import models\n')]
from io import BytesIO from django.conf import settings from django.template.loader import get_template import PyPDF2 from api.pdf import render as render_pdf def generate_pdf(data): # Add date to the payload # today = date.today().strftime('%d-%b-%Y') # data['date'] = today # ####################### # # Notice To Disputant - Response # # # # Make the Violation Ticket Number all upper case # try: # x = data['ticketNumber']['prefix'] # data['ticketNumber']['prefix'] = x.upper() # except KeyError: # pass # # Format the data more user friendly # try: # x = datetime.strptime(data['ticketDate'],'%Y-%m-%d') # data['ticketDate'] = x.strftime('%d-%b-%Y') # except KeyError: # pass template = "notice-to-disputant-response.html" template = get_template(template) html_content = template.render(data) pdf_content = render_pdf(html_content) return pdf_content def merge_pdf(queryset): pdfWriter = PyPDF2.PdfFileWriter() pdfOutput = BytesIO() for preparedPdf in queryset.iterator(): pdf_data = settings.ENCRYPTOR.decrypt(preparedPdf.key_id, preparedPdf.data) pdfReader = PyPDF2.PdfFileReader(BytesIO(pdf_data)) for pageNum in range(pdfReader.numPages): pageObj = pdfReader.getPage(pageNum) pdfWriter.addPage(pageObj) pdfWriter.write(pdfOutput) return pdfOutput
[ "django.conf.settings.ENCRYPTOR.decrypt", "io.BytesIO", "api.pdf.render", "PyPDF2.PdfFileWriter", "django.template.loader.get_template" ]
[((856, 878), 'django.template.loader.get_template', 'get_template', (['template'], {}), '(template)\n', (868, 878), False, 'from django.template.loader import get_template\n'), ((938, 962), 'api.pdf.render', 'render_pdf', (['html_content'], {}), '(html_content)\n', (948, 962), True, 'from api.pdf import render as render_pdf\n'), ((1029, 1051), 'PyPDF2.PdfFileWriter', 'PyPDF2.PdfFileWriter', ([], {}), '()\n', (1049, 1051), False, 'import PyPDF2\n'), ((1068, 1077), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1075, 1077), False, 'from io import BytesIO\n'), ((1141, 1205), 'django.conf.settings.ENCRYPTOR.decrypt', 'settings.ENCRYPTOR.decrypt', (['preparedPdf.key_id', 'preparedPdf.data'], {}), '(preparedPdf.key_id, preparedPdf.data)\n', (1167, 1205), False, 'from django.conf import settings\n'), ((1247, 1264), 'io.BytesIO', 'BytesIO', (['pdf_data'], {}), '(pdf_data)\n', (1254, 1264), False, 'from io import BytesIO\n')]
# =============================================================================== # Copyright 2013 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # =============================================================================== from __future__ import absolute_import from pychron.core.ui import set_qt set_qt() # ============= enthought library imports ======================= from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range from traitsui.api import View, Item, UItem, VGroup, HGroup, spring # from pychron.envisage.tasks.base_editor import BaseTraitsEditor # from pychron.loggable import Loggable # from pychron.canvas.canvas2D.raster_canvas import RasterCanvas from enable.component_editor import ComponentEditor from pychron.lasers.power.power_mapper import PowerMapper from pychron.core.ui.thread import Thread from pychron.lasers.power.power_map_processor import PowerMapProcessor from pychron.managers.data_managers.h5_data_manager import H5DataManager # from pychron.graph.graph import Graph # from pychron.graph.contour_graph import ContourGraph # from chaco.plot_containers import HPlotContainer from pychron.lasers.tasks.editors.laser_editor import LaserEditor # ============= standard library imports ======================== # ============= local library imports ========================== class PowerMapControls(HasTraits): beam_diameter = Float(1) request_power = Float(1) padding = Float(1.0) step_length = Float(0.25) center_x = Float(0) center_y = Float(0) integration = Int(1) discrete_scan = Bool(False) def traits_view(self): v = View( VGroup( Item("discrete_scan"), Item("beam_diameter"), Item("request_power"), Item("padding"), Item("step_length"), Item("center_x"), Item("center_y"), ) ) return v class PowerMapEditor(LaserEditor): percent_threshold = Range(0.0, 100.0) beam_diameter = Float power = Float # canvas = Instance(RasterCanvas, ()) editor = Instance(PowerMapControls, ()) mapper = Instance(PowerMapper, ()) completed = DelegatesTo("mapper") # was_executed = False processor = Instance(PowerMapProcessor) def _percent_threshold_changed(self, new): if self.processor: self.processor.set_percent_threshold(new) def load(self, path): pmp = PowerMapProcessor() reader = H5DataManager() reader.open_data(path) cg = pmp.load_graph(reader) self.beam_diameter, self.power = pmp.extract_attrs(["beam_diameter", "power"]) self.component = cg.plotcontainer self.was_executed = True self.processor = pmp def _do_execute(self): mapper = self.mapper mapper.laser_manager = self._laser_manager editor = self.editor padding = editor.padding # if editor.discrete_scan: # mapper.canvas = self.canvas # self.component = self.canvas # else: c = mapper.make_component(padding) self.component = c bd = editor.beam_diameter rp = editor.request_power cx = editor.center_x cy = editor.center_y step_len = editor.step_length t = Thread( target=mapper.do_power_mapping, args=(bd, rp, cx, cy, padding, step_len) ) t.start() self._execute_thread = t return True def stop(self): self.mapper.stop() def traits_view(self): v = View( HGroup( spring, Item("beam_diameter", style="readonly"), Item("power", style="readonly"), Item("percent_threshold", label="% Threshold"), visible_when="was_executed", ), UItem("component", editor=ComponentEditor()), resizable=True, ) return v if __name__ == "__main__": e = PowerMapEditor() p = "/Users/ross/Sandbox/powermap/powermap-2013-07-26005.hdf5" p = "/Users/ross/Sandbox/powermap/powermap-2013-07-27008.hdf5" e.load(p) e.configure_traits() # ============= EOF =============================================
[ "traits.api.Instance", "pychron.core.ui.set_qt", "traits.api.DelegatesTo", "pychron.lasers.power.power_map_processor.PowerMapProcessor", "pychron.core.ui.thread.Thread", "pychron.managers.data_managers.h5_data_manager.H5DataManager", "enable.component_editor.ComponentEditor", "traitsui.api.Item", "traits.api.Range", "traits.api.Int", "traits.api.Bool", "traits.api.Float" ]
[((807, 815), 'pychron.core.ui.set_qt', 'set_qt', ([], {}), '()\n', (813, 815), False, 'from pychron.core.ui import set_qt\n'), ((1902, 1910), 'traits.api.Float', 'Float', (['(1)'], {}), '(1)\n', (1907, 1910), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((1931, 1939), 'traits.api.Float', 'Float', (['(1)'], {}), '(1)\n', (1936, 1939), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((1954, 1964), 'traits.api.Float', 'Float', (['(1.0)'], {}), '(1.0)\n', (1959, 1964), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((1983, 1994), 'traits.api.Float', 'Float', (['(0.25)'], {}), '(0.25)\n', (1988, 1994), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2010, 2018), 'traits.api.Float', 'Float', (['(0)'], {}), '(0)\n', (2015, 2018), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2034, 2042), 'traits.api.Float', 'Float', (['(0)'], {}), '(0)\n', (2039, 2042), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2061, 2067), 'traits.api.Int', 'Int', (['(1)'], {}), '(1)\n', (2064, 2067), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2088, 2099), 'traits.api.Bool', 'Bool', (['(False)'], {}), '(False)\n', (2092, 2099), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2523, 2540), 'traits.api.Range', 'Range', (['(0.0)', '(100.0)'], {}), '(0.0, 100.0)\n', (2528, 2540), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2646, 2676), 'traits.api.Instance', 'Instance', (['PowerMapControls', '()'], {}), '(PowerMapControls, ())\n', (2654, 2676), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2690, 2715), 'traits.api.Instance', 'Instance', (['PowerMapper', '()'], {}), '(PowerMapper, ())\n', (2698, 2715), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2732, 2753), 'traits.api.DelegatesTo', 'DelegatesTo', (['"""mapper"""'], {}), "('mapper')\n", (2743, 2753), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2798, 2825), 'traits.api.Instance', 'Instance', (['PowerMapProcessor'], {}), '(PowerMapProcessor)\n', (2806, 2825), False, 'from traits.api import HasTraits, Instance, Float, Int, Bool, DelegatesTo, Range\n'), ((2996, 3015), 'pychron.lasers.power.power_map_processor.PowerMapProcessor', 'PowerMapProcessor', ([], {}), '()\n', (3013, 3015), False, 'from pychron.lasers.power.power_map_processor import PowerMapProcessor\n'), ((3034, 3049), 'pychron.managers.data_managers.h5_data_manager.H5DataManager', 'H5DataManager', ([], {}), '()\n', (3047, 3049), False, 'from pychron.managers.data_managers.h5_data_manager import H5DataManager\n'), ((3898, 3983), 'pychron.core.ui.thread.Thread', 'Thread', ([], {'target': 'mapper.do_power_mapping', 'args': '(bd, rp, cx, cy, padding, step_len)'}), '(target=mapper.do_power_mapping, args=(bd, rp, cx, cy, padding, step_len)\n )\n', (3904, 3983), False, 'from pychron.core.ui.thread import Thread\n'), ((2182, 2203), 'traitsui.api.Item', 'Item', (['"""discrete_scan"""'], {}), "('discrete_scan')\n", (2186, 2203), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((2221, 2242), 'traitsui.api.Item', 'Item', (['"""beam_diameter"""'], {}), "('beam_diameter')\n", (2225, 2242), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((2260, 2281), 'traitsui.api.Item', 'Item', (['"""request_power"""'], {}), "('request_power')\n", (2264, 2281), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((2299, 2314), 'traitsui.api.Item', 'Item', (['"""padding"""'], {}), "('padding')\n", (2303, 2314), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((2332, 2351), 'traitsui.api.Item', 'Item', (['"""step_length"""'], {}), "('step_length')\n", (2336, 2351), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((2369, 2385), 'traitsui.api.Item', 'Item', (['"""center_x"""'], {}), "('center_x')\n", (2373, 2385), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((2403, 2419), 'traitsui.api.Item', 'Item', (['"""center_y"""'], {}), "('center_y')\n", (2407, 2419), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((4227, 4266), 'traitsui.api.Item', 'Item', (['"""beam_diameter"""'], {'style': '"""readonly"""'}), "('beam_diameter', style='readonly')\n", (4231, 4266), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((4284, 4315), 'traitsui.api.Item', 'Item', (['"""power"""'], {'style': '"""readonly"""'}), "('power', style='readonly')\n", (4288, 4315), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((4333, 4379), 'traitsui.api.Item', 'Item', (['"""percent_threshold"""'], {'label': '"""% Threshold"""'}), "('percent_threshold', label='% Threshold')\n", (4337, 4379), False, 'from traitsui.api import View, Item, UItem, VGroup, HGroup, spring\n'), ((4479, 4496), 'enable.component_editor.ComponentEditor', 'ComponentEditor', ([], {}), '()\n', (4494, 4496), False, 'from enable.component_editor import ComponentEditor\n')]
""" Defines default values used throughout the library. """ import numpy as np #: Default color to be used for drawing objects. DEFAULT_COLOR = np.array([1, 0.5, 0.2, 1]) #: Default coordinates of a vertex. DEFAULT_COORDINATES = np.array([0, 0, 0])
[ "numpy.array" ]
[((147, 173), 'numpy.array', 'np.array', (['[1, 0.5, 0.2, 1]'], {}), '([1, 0.5, 0.2, 1])\n', (155, 173), True, 'import numpy as np\n'), ((234, 253), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (242, 253), True, 'import numpy as np\n')]
import re from tqdm import tqdm from datetime import datetime from operator import itemgetter from datetime import datetime, timedelta #실시간 검색어 함수 preprocess def preprocess(doc): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) "]+", flags=re.UNICODE) doc = re.sub(r'\s+'," ", doc) doc = doc.lower() doc = re.sub(r'[-=+,#/\?:^$.@*\"※~&%ㆍ!』\\‘|\(\)\[\]\<\>`\'…》]', '', doc) doc = emoji_pattern.sub(r'', doc) doc = re.compile('[^ ㄱ-ㅣ가-힣|a-z]+').sub('', doc) return doc #실시간 검색어 추출 함수 def real_time_keywords(search_input): temp = [i['keyword_split'] for i in search_input] check_list = [] for i in range(len(temp)): temp_word = [] for j in range(len(temp[i])): temp[i][j] = preprocess(temp[i][j]) if len(temp[i][j]) > 1: temp_word.append(temp[i][j]) check_list.append(temp_word) result = {} for words in check_list: # 단일 단어 추가 for i in range(len(words)): if words[i] in result: result[words[i]] += 1 else: result[words[i]] = 1 # 연속 단어 추가(정방향) for i in range(2,len(words)): key = " ".join(words[0:i+1]) if key in result: result[key] += 1 else: result[key] = 1 result = sorted(result.items(), key = itemgetter(0)) temp = [] for i in range(len(result)-1): if ((result[i+1][0].startswith(result[i][0]) or result[i+1][0].endswith(result[i][0])) and result[i+1][1] >= result[i][1]): continue temp.append(result[i]) result = sorted(temp, key = lambda x: len(x[0])) result = sorted(result, key = itemgetter(1), reverse = True) return result def realtime(db, config): search_log_list = list(db['search_log'].find({ 'date': {'$gte': datetime.now() - timedelta(days = config.INDICATORS['REALTIME_EFFECTIVE_DAY'])}}, {'_id': 0, 'keyword_split': 1} )) # 검색 로그 후보군 추출 candidate_keywords = real_time_keywords(search_log_list) if len(candidate_keywords) == 0: return False # 비속어 필터링 result_keywords = [] for keyword in candidate_keywords: if (keyword in config.INDICATORS['BAD_LANGUAGE'] or len(keyword) > config.INDICATORS['REALTIME_KEYWORD_LEN']): continue result_keywords.append(keyword) # 후보군 실시간 검색어 개수가 "REALTIME_KEYWORD_LEN" 보다 적으면, # 가장 최신 실시간 검색어 리스트를 가져와 결합. if len(result_keywords) < config.INDICATORS['REALTIME_KEYWORD_LEN']: latest_realtime = list(db['realtime'].find().sort([('date', -1)]).limit(1))[0]['realtime'] result_keywords.sort(key=lambda x:x[1], reverse=True) latest_realtime.sort(key=lambda x:x[1], reverse=True) # 후보군 실시간 검색어 중 점수가 가장 작은 값 찾고, 0.1 점 감소 min_value = result_keywords[-1][1] min_value -= 0.1 # (현재 후보군 키워드 / 최근 실시간 검색어 키워드) 중 중복 키워드 찾기 overlap_keyword = list(set(dict(result_keywords)) & set(dict(latest_realtime))) for keyword in latest_realtime: flag = False for overlap in overlap_keyword: if keyword[0] == overlap: flag = True if flag: continue if len(result_keywords) == config.INDICATORS['REALTIME_KEYWORD_LEN']: break result_keywords.append([keyword[0], min_value]) db['realtime'].insert_one({ 'realtime': result_keywords[:config.INDICATORS['REALTIME_KEYWORD_LEN']], 'date': datetime.now()}) return result_keywords
[ "re.compile", "operator.itemgetter", "datetime.datetime.now", "re.sub", "datetime.timedelta" ]
[((200, 265), 're.compile', 're.compile', (['"""[😀-🙏🌀-🗿🚀-\U0001f6ff\U0001f1e0-🇿]+"""'], {'flags': 're.UNICODE'}), "('[😀-🙏🌀-🗿🚀-\\U0001f6ff\\U0001f1e0-🇿]+', flags=re.UNICODE)\n", (210, 265), False, 'import re\n'), ((469, 493), 're.sub', 're.sub', (['"""\\\\s+"""', '""" """', 'doc'], {}), "('\\\\s+', ' ', doc)\n", (475, 493), False, 'import re\n'), ((525, 602), 're.sub', 're.sub', (['"""[-=+,#/\\\\?:^$.@*\\\\"※~&%ㆍ!』\\\\\\\\‘|\\\\(\\\\)\\\\[\\\\]\\\\<\\\\>`\\\\\'…》]"""', '""""""', 'doc'], {}), '(\'[-=+,#/\\\\?:^$.@*\\\\"※~&%ㆍ!』\\\\\\\\‘|\\\\(\\\\)\\\\[\\\\]\\\\<\\\\>`\\\\\\\'…》]\', \'\', doc)\n', (531, 602), False, 'import re\n'), ((640, 669), 're.compile', 're.compile', (['"""[^ ㄱ-ㅣ가-힣|a-z]+"""'], {}), "('[^ ㄱ-ㅣ가-힣|a-z]+')\n", (650, 669), False, 'import re\n'), ((1505, 1518), 'operator.itemgetter', 'itemgetter', (['(0)'], {}), '(0)\n', (1515, 1518), False, 'from operator import itemgetter\n'), ((1844, 1857), 'operator.itemgetter', 'itemgetter', (['(1)'], {}), '(1)\n', (1854, 1857), False, 'from operator import itemgetter\n'), ((3719, 3733), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3731, 3733), False, 'from datetime import datetime, timedelta\n'), ((1998, 2012), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2010, 2012), False, 'from datetime import datetime, timedelta\n'), ((2015, 2074), 'datetime.timedelta', 'timedelta', ([], {'days': "config.INDICATORS['REALTIME_EFFECTIVE_DAY']"}), "(days=config.INDICATORS['REALTIME_EFFECTIVE_DAY'])\n", (2024, 2074), False, 'from datetime import datetime, timedelta\n')]
"""Miscellaneous useful functions""" from pathlib import Path from jawa.util.bytecode import Operand, OperandTypes from pyjvm.core.jvm_types import Integer def dump_class(cf, echo): """Display information about a class file Complements the functionality of the JDK javap tool. :param cf: A ClassFile :param echo: A print-like method """ echo(f'{cf.this.name.value} : {cf.super_.name.value}') for field in cf.fields: echo(f'\t{field.name.value}: {field.type}') for method in cf.methods: echo(f'{method} {method.descriptor.value}') if method.code is not None: for instruction in method.code.disassemble(): echo('\t' + str(instruction)) for ex in method.code.exception_table: print(ex) echo() for constant in cf.constants: echo(constant) def split_by_predicate(iterable, predicate): """Split an iterable into two lists the according to a predicate Return a tuple of two lists: The first has the values for which `predicate` returned True The second has the values for which `predicate` returned False :param iterable: An Iterable[T] :param predicate: A function from T to bool """ true, false = [], [] for item in iterable: if predicate(item): true.append(item) else: false.append(item) return true, false def class_as_descriptor(name): """Return the JVM descriptor for the class `name`""" if not name.endswith(';'): return 'L' + name + ';' else: return name def literal_operand(value): """Create an Instruction Operand with type LITERAL and value `value`""" return Operand(OperandTypes.LITERAL, value) def constant_operand(const): """Create an Instruction Operand with type CONSTANT_INDEX and value `const.index`""" return Operand(OperandTypes.CONSTANT_INDEX, const.index) def local_operand(index): """Create an Instruction Operand with type LOCAL_INDEX and value `index`""" return Operand(OperandTypes.LOCAL_INDEX, index) def pull_pairs(flat): """Return a Iterable of pairs of adjacent items in another Iterable `flat` should be of even size: `len(list(flat)) % 2 == 0` >>> list(pull_pairs([1, 2, 3, 4])) [(1, 2), (3, 4)] """ it = iter(flat) return zip(it, it) TRUE = Integer.create_instance(1) FALSE = Integer.create_instance(0) def bool_to_num(b): if b: return TRUE else: return FALSE def field_name_from_field_ref(ref): """Return the class name of the name_and_type attribute of field references The need arises from a weird difference between test behaviour and real class file behaviour. This suggests that I'm not creating the reference properly in tests. But I'm not sure exactly how. Maintainers are welcome to solve this issue. """ name = ref.name_and_type.name.value try: return name.value except AttributeError: return name def named_tuple_replace(instance, **kwargs): # noinspection PyProtectedMember return instance._replace(**kwargs) def path_to_std_lib() -> Path: utils_file = Path(__file__) utils_package = utils_file.parent std_lib = utils_package.joinpath('glibj.zip') return std_lib def path_to_std_lib_as_str(): return str(path_to_std_lib())
[ "jawa.util.bytecode.Operand", "pathlib.Path", "pyjvm.core.jvm_types.Integer.create_instance" ]
[((2383, 2409), 'pyjvm.core.jvm_types.Integer.create_instance', 'Integer.create_instance', (['(1)'], {}), '(1)\n', (2406, 2409), False, 'from pyjvm.core.jvm_types import Integer\n'), ((2418, 2444), 'pyjvm.core.jvm_types.Integer.create_instance', 'Integer.create_instance', (['(0)'], {}), '(0)\n', (2441, 2444), False, 'from pyjvm.core.jvm_types import Integer\n'), ((1721, 1757), 'jawa.util.bytecode.Operand', 'Operand', (['OperandTypes.LITERAL', 'value'], {}), '(OperandTypes.LITERAL, value)\n', (1728, 1757), False, 'from jawa.util.bytecode import Operand, OperandTypes\n'), ((1889, 1938), 'jawa.util.bytecode.Operand', 'Operand', (['OperandTypes.CONSTANT_INDEX', 'const.index'], {}), '(OperandTypes.CONSTANT_INDEX, const.index)\n', (1896, 1938), False, 'from jawa.util.bytecode import Operand, OperandTypes\n'), ((2058, 2098), 'jawa.util.bytecode.Operand', 'Operand', (['OperandTypes.LOCAL_INDEX', 'index'], {}), '(OperandTypes.LOCAL_INDEX, index)\n', (2065, 2098), False, 'from jawa.util.bytecode import Operand, OperandTypes\n'), ((3205, 3219), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (3209, 3219), False, 'from pathlib import Path\n')]
""" Add routes to a FastAPI application to handle OAuth """ import logging from typing import Dict, List, Optional import msal from fastapi import APIRouter, Depends, Request from fastapi.responses import RedirectResponse from .config import get_auth_settings from .frontend.authentication import UserAuthenticated from .types import RemoveCacheCallable, SaveCacheCallable, UserIdentity from .utils import build_msal_app auth_settings = get_auth_settings() user_authenticated = UserAuthenticated() def create_auth_router( f_save_cache: SaveCacheCallable, f_remove_cache: RemoveCacheCallable, ) -> APIRouter: router = APIRouter() def _auth_uri(request: Request) -> str: redirect_uri = request.url_for("authorized") if "http://0.0.0.0" in redirect_uri: redirect_uri = redirect_uri.replace("http://0.0.0.0", "http://localhost") if "http://127.0.0.1" in redirect_uri: redirect_uri = redirect_uri.replace("http://127.0.0.1", "http://localhost") return redirect_uri def _auth_code_flow( request: Request, authority: Optional[str] = None, scopes: Optional[List[str]] = None, ) -> str: flow: Dict[str, str] = build_msal_app( authority=authority ).initiate_auth_code_flow( scopes, redirect_uri=_auth_uri(request), ) request.session["flow"] = flow return flow["auth_uri"] # pylint: disable=W0612 @router.route("/login", include_in_schema=False) async def login(request: Request) -> RedirectResponse: flow_uri = _auth_code_flow(request, scopes=get_auth_settings().scopes) return RedirectResponse(url=flow_uri, status_code=302) # pylint: disable=W0612 @router.get( "/getAToken", include_in_schema=False, ) # Its absolute URL must match your app's redirect_uri set in AAD async def authorized(request: Request) -> RedirectResponse: # see https://github.com/Azure-Samples/ms-identity-python-webapp/blob/e342e93a2a7e0cc4d4955c20660e6a81fd2536c5/app.py#L35-L45 # for try except pattern. Kind of annoying, means you may have to click sign in twice try: cache = msal.SerializableTokenCache() flow = request.session.get("flow", {}) result = build_msal_app(cache=cache).acquire_token_by_auth_code_flow( flow, dict(request.query_params), scopes=get_auth_settings().scopes, ) # Remove flow cookie request.session.pop("flow", None) # Just store the oid (https://docs.microsoft.com/en-us/azure/active-directory/develop/id-tokens) in a signed cookie oid = result.get("id_token_claims").get("oid") await f_save_cache(oid, cache) request.session["user"] = oid except ValueError as error: logging.debug("%s", error) return RedirectResponse(url=request.url_for("home"), status_code=302) @router.get("/logout", include_in_schema=False) async def logout( request: Request, user: UserIdentity = Depends(user_authenticated), ) -> RedirectResponse: """Remove the user from the cache and pop the session cookie. Does not sign out of Microsoft """ # Remove user from cache if user: await f_remove_cache(user.oid) # Remove their session cookie request.session.pop("user", None) return RedirectResponse(url=request.url_for("home")) return router
[ "logging.debug", "msal.SerializableTokenCache", "fastapi.responses.RedirectResponse", "fastapi.APIRouter", "fastapi.Depends" ]
[((635, 646), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (644, 646), False, 'from fastapi import APIRouter, Depends, Request\n'), ((1691, 1738), 'fastapi.responses.RedirectResponse', 'RedirectResponse', ([], {'url': 'flow_uri', 'status_code': '(302)'}), '(url=flow_uri, status_code=302)\n', (1707, 1738), False, 'from fastapi.responses import RedirectResponse\n'), ((3170, 3197), 'fastapi.Depends', 'Depends', (['user_authenticated'], {}), '(user_authenticated)\n', (3177, 3197), False, 'from fastapi import APIRouter, Depends, Request\n'), ((2238, 2267), 'msal.SerializableTokenCache', 'msal.SerializableTokenCache', ([], {}), '()\n', (2265, 2267), False, 'import msal\n'), ((2934, 2960), 'logging.debug', 'logging.debug', (['"""%s"""', 'error'], {}), "('%s', error)\n", (2947, 2960), False, 'import logging\n')]
from django.contrib.staticfiles.testing import StaticLiveServerTestCase from selenium import webdriver from selenium.webdriver.common.keys import Keys class IndexViewTest(StaticLiveServerTestCase): fixtures = ['users.json'] def setUp(self): self.browser = webdriver.PhantomJS() self.browser.set_window_size(1400, 1000) self.browser.implicitly_wait(10) def tearDown(self): self.browser.quit() def test_can_reach_index_page_and_log_in_and_logout(self): self.browser.get(self.live_server_url) body = self.browser.find_element_by_tag_name('body') self.assertIn('Codango', body.text) # logging in username and password username_field = self.browser.find_element_by_name('username') username_field.send_keys('lade') password_field = self.browser.find_element_by_name('password') password_field.send_keys('password') password_field.send_keys(Keys.RETURN) # username and password accepted body = self.browser.find_element_by_tag_name('body') self.assertIn('Share', body.text) # logging out self.browser.find_element_by_link_text('lade').click() self.browser.find_element_by_link_text('LogOut').click() body = self.browser.find_element_by_tag_name('body') self.assertIn('Join Our Community', body.text) class StaticPages(StaticLiveServerTestCase): def setUp(self): self.browser = webdriver.PhantomJS() self.browser.set_window_size(1400, 1000) self.browser.implicitly_wait(10) def tearDown(self): self.browser.quit() def test_can_reach_static_pages(self): self.browser.get(self.live_server_url) # index page body = self.browser.find_element_by_tag_name('body') self.assertIn('Join Our Community', body.text) # about us page self.browser.find_element_by_link_text('About Us').click() body = self.browser.find_element_by_tag_name('body') self.assertIn('About us', body.text) # contact us page self.browser.find_element_by_link_text('Contact Us').click() body = self.browser.find_element_by_tag_name('body') self.assertIn('Contact us', body.text) # team page self.browser.find_element_by_link_text('Team').click() body = self.browser.find_element_by_tag_name('body') self.assertIn('Our Awesome Team', body.text)
[ "selenium.webdriver.PhantomJS" ]
[((275, 296), 'selenium.webdriver.PhantomJS', 'webdriver.PhantomJS', ([], {}), '()\n', (294, 296), False, 'from selenium import webdriver\n'), ((1480, 1501), 'selenium.webdriver.PhantomJS', 'webdriver.PhantomJS', ([], {}), '()\n', (1499, 1501), False, 'from selenium import webdriver\n')]
import csv import requests import xmltodict from json import loads, dumps import urllib.request from bs4 import BeautifulSoup import json #API keys GOODREADS_API_KEY = '' with open('keys.json', 'r', encoding='utf-8') as keys: keys = json.load(keys) GOODREADS_API_KEY= keys['goodreads_key'] #convert ordered dict to normal dict def to_dict(input_ordered_dict): return loads(dumps(input_ordered_dict)) #save intermediate results as csv - append rows def save_as_csv(filename, data): has_data = False with open('csv/' + filename + '.csv', 'r', encoding='latin-1') as f: reader = csv.reader(f) #if already saved for row in reader: has_data = True break with open('csv/' + filename + '.csv', 'a', encoding='utf-8') as f: writer = csv.writer(f) if has_data is False: writer.writerow(data[0].keys()) for datum in data: writer.writerow(datum.values()) #search ids def get_search_obj(author, title): xml = requests.get(url='https://www.goodreads.com/search/index.xml?key=' + GOODREADS_API_KEY + '&q=' + author + ' ' + title.replace('"', '')) obj = to_dict(xmltodict.parse(xml.content)) return obj #get book or author object def get_object(type, id): url = 'https://www.goodreads.com/' + type +'/show/' xml = requests.get(url=url + id + '.xml?key=' + GOODREADS_API_KEY) obj = to_dict(xmltodict.parse(xml.content)) return obj['GoodreadsResponse'][type] def get_html_page(link): response = urllib.request.urlopen(link) return BeautifulSoup(response.read(), 'html.parser')
[ "xmltodict.parse", "csv.writer", "json.dumps", "requests.get", "json.load", "csv.reader" ]
[((238, 253), 'json.load', 'json.load', (['keys'], {}), '(keys)\n', (247, 253), False, 'import json\n'), ((1345, 1405), 'requests.get', 'requests.get', ([], {'url': "(url + id + '.xml?key=' + GOODREADS_API_KEY)"}), "(url=url + id + '.xml?key=' + GOODREADS_API_KEY)\n", (1357, 1405), False, 'import requests\n'), ((388, 413), 'json.dumps', 'dumps', (['input_ordered_dict'], {}), '(input_ordered_dict)\n', (393, 413), False, 'from json import loads, dumps\n'), ((608, 621), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (618, 621), False, 'import csv\n'), ((809, 822), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (819, 822), False, 'import csv\n'), ((1180, 1208), 'xmltodict.parse', 'xmltodict.parse', (['xml.content'], {}), '(xml.content)\n', (1195, 1208), False, 'import xmltodict\n'), ((1424, 1452), 'xmltodict.parse', 'xmltodict.parse', (['xml.content'], {}), '(xml.content)\n', (1439, 1452), False, 'import xmltodict\n')]
import math ONE_THIRD = 1.0/3.0 class DiscretizerException(Exception): pass class BaseDiscretizer(object): def __init__(self, num_bytes, val_min, val_max): if not isinstance(num_bytes, int): raise DiscretizerException('Number of bytes must be an integer.') if num_bytes <= 0: raise DiscretizerException('Number of bytes must be > 0.') if num_bytes >= 8: raise DiscretizerException('Too many bytes, use a 64-bit double ' 'instead.') self._num_bytes = num_bytes num_bits = 8 * self._num_bytes self._num_buckets = 2 ** num_bits self._max_bucket = self._num_buckets - 1 self._max_bucket_float = float(self._max_bucket) if not isinstance(val_min, float): raise DiscretizerException('Minimum value must be a float.') if not isinstance(val_max, float): raise DiscretizerException('Maximum value must be a float.') if val_max <= val_min: raise DiscretizerException('Max/min values invalid.') self._val_min = val_min self._val_max = val_max self._val_range = self._val_max - self._val_min assert self._val_range > 0.0 @property def num_bytes(self): return self._num_bytes @property def num_buckets(self): return self._num_buckets @property def max_bucket(self): return self._max_bucket @property def max_bucket_float(self): return self._max_bucket_float @property def val_min(self): return self._val_min @property def val_max(self): return self._val_max @property def val_range(self): return self._val_range def encode(self, val): bucket_num = self.val_to_bucket_num(val) ba = self.bucket_num_to_bytearray(bucket_num) len_ba = len(ba) if len_ba != self.num_bytes: ba.reverse() for i in range(self.num_bytes - len_ba): ba.append(0) ba.reverse() return ba def decode(self, ba): if not isinstance(ba, bytearray): raise DiscretizerException('Input not bytearray.') if len(ba) != self.num_bytes: raise DiscretizerException('Invalid number of bytes parsed.') bucket_num = self.bytearray_to_bucket_num(ba) return self.bucket_num_to_val(bucket_num) def val_to_bucket_num(self, val): if not isinstance(val, float): raise DiscretizerException('Value must be a float.') # normalise the input value and check bounds (v = [0.0, 1.0]) v = (float(val) - self.val_min) / self.val_range if v <= 0.0: return 0 elif v >= 1.0: return self.max_bucket # execute mapping function b = float(self.map_encoder(v)) # get nearest bucket number, clamp and return bucket_num = int(round(b * self.max_bucket)) if bucket_num < 0: bucket_num = 0 elif bucket_num > self.max_bucket: bucket_num = self.max_bucket return bucket_num def bucket_num_to_val(self, bucket_num): if not isinstance(bucket_num, int): raise DiscretizerException('Bucket number must be an integer.') if bucket_num < 0: raise DiscretizerException('Bucket number must be >= 0.') if bucket_num > self.max_bucket: raise DiscretizerException('Bucket number must be <= maximum.') # compute bucket factor and check bounds (b = [0.0, 1.0]) b = float(bucket_num) / self.max_bucket_float if b <= 0.0: return self.val_min elif b >= 1.0: return self.val_max # execute mapping function v = float(self.map_decoder(b)) # clamp, compute value and return value if v <= 0.0: return self.val_min elif v >= 1.0: return self.val_max val = self.val_min + v * self.val_range return val @staticmethod def bucket_num_to_bytearray(bucket_num): bits = BaseDiscretizer.bucket_num_to_bits(bucket_num) return BaseDiscretizer.bits_to_bytearray(bits) @staticmethod def bytearray_to_bucket_num(ba): bits = BaseDiscretizer.bytearray_to_bits(ba) return BaseDiscretizer.bits_to_bucket_num(bits) @staticmethod def bucket_num_to_bits(bucket_num): if not isinstance(bucket_num, int): raise DiscretizerException('Bucket number must be an integer.') if bucket_num < 0: raise DiscretizerException('Bucket number must be >= 0.') bits = bin(bucket_num).replace('0b', '') len_bits = len(bits) assert len_bits > 0 num_bytes = int(len_bits / 8) if (len_bits % 8) > 0: num_bytes += 1 bits = '0b' + bits.zfill(num_bytes * 8) return bits @staticmethod def bits_to_bucket_num(bits): if not isinstance(bits, str): raise DiscretizerException('Input not a string.') if bits[0:2] != '0b': raise DiscretizerException('Input not a string of bits.') bits = bits.replace('0b', '') if len(bits) <= 0: raise DiscretizerException('No input bits.') bucket_num = int(bits, 2) assert bucket_num >= 0 return bucket_num @staticmethod def bytearray_to_bits(ba): if not isinstance(ba, bytearray): raise DiscretizerException('Input not a bytearray.') if len(ba) <= 0: raise DiscretizerException('Bytearray is empty.') bits = '0b' for i in ba: assert i >= 0 and i <= 255 bits += (bin(i).replace('0b', '').zfill(8)) return bits @staticmethod def bits_to_bytearray(bits): if not isinstance(bits, str): raise DiscretizerException('Input not a string.') if bits[0:2] != '0b': raise DiscretizerException('Input not a string of bits.') bits = bits.replace('0b', '') len_bits = len(bits) if len_bits <= 0: raise DiscretizerException('No input bits.') num_bytes = int(len_bits / 8) if (len_bits % 8) > 0: num_bytes += 1 bits = bits.zfill(num_bytes * 8) ba = bytearray() for i in range(num_bytes): local_bits = bits[i*8:(i+1)*8] ba.append(int(local_bits, 2)) return ba class LinearDiscretizer(BaseDiscretizer): def __init__(self, num_bytes, val_min, val_max): BaseDiscretizer.__init__(self, num_bytes, val_min, val_max) def map_encoder(self, v): return v def map_decoder(self, b): return b class CubeRootDiscretizer(BaseDiscretizer): def __init__(self, num_bytes, val_min, val_max): BaseDiscretizer.__init__(self, num_bytes, val_min, val_max) def map_encoder(self, v): # compute only the real cube root x = (v - 0.5) * 0.25 b = (math.pow(abs(x), ONE_THIRD) * (1, -1)[x < 0.0]) + 0.5 return b def map_decoder(self, b): v = 4.0 * math.pow(b - 0.5, 3.0) + 0.5 return v class SigmoidDiscretizer(BaseDiscretizer): def __init__(self, num_bytes, val_min, val_max, sharpness): BaseDiscretizer.__init__(self, num_bytes, val_min, val_max) if not isinstance(sharpness, float): raise DiscretizerException('Sharpness must be a float.') if sharpness <= 0.0: raise DiscretizerException('Sharpness must be > 0.') self._k = sharpness self._inv_k = 1.0 / self._k self._S = 2.0 / (math.exp(0.5*self._k) - 1.0) self._one_plus_S = 1.0 + self._S self._half_S = 0.5 * self._S def map_encoder(self, v): f = 1.0 + math.exp(self._k * (0.5 - v)) b = self._one_plus_S / f - self._half_S return b def map_decoder(self, b): f = self._one_plus_S / (b + self._half_S) - 1.0 v = 0.5 - self._inv_k * math.log(f) return v
[ "math.pow", "math.exp", "math.log" ]
[((7883, 7912), 'math.exp', 'math.exp', (['(self._k * (0.5 - v))'], {}), '(self._k * (0.5 - v))\n', (7891, 7912), False, 'import math\n'), ((7207, 7229), 'math.pow', 'math.pow', (['(b - 0.5)', '(3.0)'], {}), '(b - 0.5, 3.0)\n', (7215, 7229), False, 'import math\n'), ((7727, 7750), 'math.exp', 'math.exp', (['(0.5 * self._k)'], {}), '(0.5 * self._k)\n', (7735, 7750), False, 'import math\n'), ((8097, 8108), 'math.log', 'math.log', (['f'], {}), '(f)\n', (8105, 8108), False, 'import math\n')]
from requests import Session import json from pprint import pprint class RedditException(Exception): pass class Reddit(object): def __init__(self): self.init_session() def init_session(self): self.session = Session() self.session.headers['user-agent'] = 'Cliddit v0.0.1' self.modhash = None def get(self, path, **kwargs): req = self.session.get('http://reddit.com/' + path, params=kwargs) if req.status_code == 200: return req.json() else: return False def post(self, path, **kwargs): kwargs['api_type'] = 'json' if self.modhash: kwargs['uh'] = self.modhash req = self.session.post('http://www.reddit.com/' + path, data=kwargs) if req.status_code == 200: return req.json() else: return False def login(self, username, password): req = self.post('api/login', user=username, passwd=password)['json'] if req['errors']: raise RedditException(req['errors'][0][1]) else: self.username = username return True def logout(self): self.init_session() def list_posts(self, subreddit=None): if subreddit: path = 'r/' + subreddit else: path = '/' entries = [] top = self.get(path + '.json') for data in top['data']['children']: data = data['data'] entries.append(dict( title=data['title'], user=data['author'], score=data['score'], selftext=data['selftext'] if data['is_self'] else None, comments=data['num_comments'], post=(data['subreddit'], data['id']) )) if subreddit: info = self.get(path + '/about.json')['data'] name, title = info['display_name'], info['title'] else: name, title = 'home', 'Reddit Home' return name, title, entries def get_post(self, id): def parse_comments(comments): _children = comments['data']['children'] children = [] for data in _children: data = data['data'] children.append(dict( user=data['author'], body=data['body'], score=data['ups']-data['downs'], votes=(data['ups'], data['downs']), comments=parse_comments(data['replies']) if data['replies'] else [] )) return children post = self.get('r/%s/comments/%s.json' % id) info, comments = post info = info['data']['children'][0]['data'] return dict( subreddit=info['subreddit'], user=info['author'], score=info['score'], votes=(info['ups'], info['downs']), title=info['title'], selftext=info['selftext'] if info['is_self'] else None, link=info['url'] if not info['is_self'] else None, comments=parse_comments(comments) ) if __name__=='__main__': reddit = Reddit() pprint(reddit.get_post((u'r4r', u'19yfmk'))) pprint(reddit.get_post((u'r4r', u'19ym56')))
[ "requests.Session" ]
[((217, 226), 'requests.Session', 'Session', ([], {}), '()\n', (224, 226), False, 'from requests import Session\n')]
################################################################################ # The Neural Network (NN) based Speech Synthesis System # https://svn.ecdf.ed.ac.uk/repo/inf/dnn_tts/ # # Centre for Speech Technology Research # University of Edinburgh, UK # Copyright (c) 2014-2015 # All Rights Reserved. # # The system as a whole and most of the files in it are distributed # under the following copyright and conditions # # Permission is hereby granted, free of charge, to use and distribute # this software and its documentation without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of this work, and to # permit persons to whom this work is furnished to do so, subject to # the following conditions: # # - Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # - Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # - The authors' names may not be used to endorse or promote products derived # from this software without specific prior written permission. # # THE UNIVERSITY OF EDINBURGH AND THE CONTRIBUTORS TO THIS WORK # DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING # ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT # SHALL THE UNIVERSITY OF EDINBURGH NOR THE CONTRIBUTORS BE LIABLE # FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN # AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, # ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF # THIS SOFTWARE. ################################################################################ import os import numpy, re, sys from multiprocessing import Pool # from io_funcs.binary_io import BinaryIOCollection # from linguistic_base import LinguisticBase import matplotlib.mlab as mlab # import lxml # from lxml import etree # from lxml.etree import * # MODULE_PARSER = etree.XMLParser() # import logging # from logplot.logging_plotting import LoggerPlotter #, MultipleTimeSeriesPlot, SingleWeightMatrixPlot import numpy class BinaryIOCollection(object): def load_binary_file(self, file_name, dimension): fid_lab = open(file_name, 'rb') features = numpy.fromfile(fid_lab, dtype=numpy.float32) fid_lab.close() assert features.size % float(dimension) == 0.0,'specified dimension %s not compatible with data'%(dimension) features = features[:(dimension * (features.size // dimension))] features = features.reshape((-1, dimension)) return features def array_to_binary_file(self, data, output_file_name): data = numpy.array(data, 'float32') fid = open(output_file_name, 'wb') data.tofile(fid) fid.close() def load_binary_file_frame(self, file_name, dimension): fid_lab = open(file_name, 'rb') features = numpy.fromfile(fid_lab, dtype=numpy.float32) fid_lab.close() assert features.size % float(dimension) == 0.0,'specified dimension %s not compatible with data'%(dimension) frame_number = features.size // dimension features = features[:(dimension * frame_number)] features = features.reshape((-1, dimension)) return features, frame_number ## a generic class of linguistic feature extraction ## class LinguisticBase(object): def __init__(self, dimension=0): self.dimension = dimension ##the feature dimensionality of output (should that read 'input' ?) ## the number of utterances to be normalised self.utterance_num = 0 ## the ori_file_list contains the file paths of the raw linguistic data ## the output_file_list contains the file paths of the normalised linguistic data ## def perform_normalisation(self, ori_file_list, output_file_list, label_type="state_align", dur_file_list=None): # logger = logging.getLogger("perform_normalisation") # logger.info('perform linguistic feature extraction') self.utterance_num = len(ori_file_list) if self.utterance_num != len(output_file_list): # logger.error('the number of input and output linguistic files should be the same!\n') sys.exit(1) for i in xrange(self.utterance_num): self.extract_linguistic_features(ori_file_list[i], output_file_list[i], label_type=label_type) # def _perform_normalisation(i): # if not dur_file_list: # self.extract_linguistic_features(ori_file_list[i], output_file_list[i], label_type) # else: # self.extract_linguistic_features(ori_file_list[i], output_file_list[i], label_type, dur_file_list[i]) # # pool = Pool() # pool.map(_perform_normalisation, range(self.utterance_num)) # pool.close() # pool.join() ## the exact function to do the work ## need to be implemented in the specific class ## the function will write the linguistic features directly to the output file def extract_linguistic_features(self, in_file_name, out_file_name, label_type, dur_file_name=None): pass class LabelNormalisation(LinguisticBase): # this class only knows how to deal with a single style of labels (XML or HTS) # (to deal with composite labels, use LabelComposer instead) def __init__(self, question_file_name=None,xpath_file_name=None): pass def extract_linguistic_features(self, in_file_name, out_file_name=None, label_type="state_align", dur_file_name=None): if label_type=="phone_align": A = self.load_labels_with_phone_alignment(in_file_name, dur_file_name) elif label_type=="state_align": A = self.load_labels_with_state_alignment(in_file_name) else: logger.critical("we don't support %s labels as of now!!" % (label_type)) if out_file_name: print('Write: '+out_file_name+':'+str(A.shape)) io_funcs = BinaryIOCollection() io_funcs.array_to_binary_file(A, out_file_name) else: return A # ----------------------------- class HTSLabelNormalisation(LabelNormalisation): """This class is to convert HTS format labels into continous or binary values, and store as binary format with float32 precision. The class supports two kinds of questions: QS and CQS. **QS**: is the same as that used in HTS **CQS**: is the new defined question in the system. Here is an example of the question: CQS C-Syl-Tone {_(\d+)+}. regular expression is used for continous values. Time alignments are expected in the HTS labels. Here is an example of the HTS labels: 3050000 3100000 xx~#-p+l=i:1_4/A/0_0_0/B/1-1-4:1-1&1-4#1-3$1-4>0-1<0-1|i/C/1+1+3/D/0_0/E/content+1:1+3&1+2#0+1/F/content_1/G/0_0/H/4=3:1=1&L-L%/I/0_0/J/4+3-1[2] 3100000 3150000 xx~#-p+l=i:1_4/A/0_0_0/B/1-1-4:1-1&1-4#1-3$1-4>0-1<0-1|i/C/1+1+3/D/0_0/E/content+1:1+3&1+2#0+1/F/content_1/G/0_0/H/4=3:1=1&L-L%/I/0_0/J/4+3-1[3] 3150000 3250000 xx~#-p+l=i:1_4/A/0_0_0/B/1-1-4:1-1&1-4#1-3$1-4>0-1<0-1|i/C/1+1+3/D/0_0/E/content+1:1+3&1+2#0+1/F/content_1/G/0_0/H/4=3:1=1&L-L%/I/0_0/J/4+3-1[4] 3250000 3350000 xx~#-p+l=i:1_4/A/0_0_0/B/1-1-4:1-1&1-4#1-3$1-4>0-1<0-1|i/C/1+1+3/D/0_0/E/content+1:1+3&1+2#0+1/F/content_1/G/0_0/H/4=3:1=1&L-L%/I/0_0/J/4+3-1[5] 3350000 3900000 xx~#-p+l=i:1_4/A/0_0_0/B/1-1-4:1-1&1-4#1-3$1-4>0-1<0-1|i/C/1+1+3/D/0_0/E/content+1:1+3&1+2#0+1/F/content_1/G/0_0/H/4=3:1=1&L-L%/I/0_0/J/4+3-1[6] 305000 310000 are the starting and ending time. [2], [3], [4], [5], [6] mean the HMM state index. """ # this subclass support HTS labels, which include time alignments def __init__(self, question_file_name=None, add_frame_features=True, subphone_feats='full', continuous_flag=True): # logger = logging.getLogger("labels") self.question_dict = {} self.ori_question_dict = {} self.dict_size = 0 self.continuous_flag = continuous_flag try: # self.question_dict, self.ori_question_dict = self.load_question_set(question_file_name) self.discrete_dict, self.continuous_dict = self.load_question_set_continous(question_file_name) except: # logger.critical('error whilst loading HTS question set') raise ###self.dict_size = len(self.question_dict) self.dict_size = len(self.discrete_dict) + len(self.continuous_dict) self.add_frame_features = add_frame_features self.subphone_feats = subphone_feats if self.subphone_feats == 'full': self.frame_feature_size = 9 ## zhizheng's original 5 state features + 4 phoneme features elif self.subphone_feats == 'minimal_frame': self.frame_feature_size = 2 ## the minimal features necessary to go from a state-level to frame-level model elif self.subphone_feats == 'state_only': self.frame_feature_size = 1 ## this is equivalent to a state-based system elif self.subphone_feats == 'none': self.frame_feature_size = 0 ## the phoneme level features only elif self.subphone_feats == 'frame_only': self.frame_feature_size = 1 ## this is equivalent to a frame-based system without relying on state-features elif self.subphone_feats == 'uniform_state': self.frame_feature_size = 2 ## this is equivalent to a frame-based system with uniform state-features elif self.subphone_feats == 'minimal_phoneme': self.frame_feature_size = 3 ## this is equivalent to a frame-based system with minimal features elif self.subphone_feats == 'coarse_coding': self.frame_feature_size = 4 ## this is equivalent to a frame-based positioning system reported in Heiga Zen's work self.cc_features = self.compute_coarse_coding_features(3) else: sys.exit('Unknown value for subphone_feats: %s'%(subphone_feats)) self.dimension = self.dict_size + self.frame_feature_size ### if user wants to define their own input, simply set the question set to empty. if self.dict_size == 0: self.dimension = 0 # logger.debug('HTS-derived input feature dimension is %d + %d = %d' % (self.dict_size, self.frame_feature_size, self.dimension) ) def prepare_dur_data(self, ori_file_list, output_file_list, label_type="state_align", feature_type=None, unit_size=None, feat_size=None): ''' extracting duration binary features or numerical features. ''' # logger = logging.getLogger("dur") utt_number = len(ori_file_list) if utt_number != len(output_file_list): print("the number of input and output files should be the same!\n"); sys.exit(1) ### set default feature type to numerical, if not assigned ### if not feature_type: feature_type = "numerical" ### set default unit size to state, if not assigned ### if not unit_size: unit_size = "state" if label_type=="phone_align": unit_size = "phoneme" ### set default feat size to frame or phoneme, if not assigned ### if feature_type=="binary": if not feat_size: feat_size = "frame" elif feature_type=="numerical": if not feat_size: feat_size = "phoneme" else: # logger.critical("Unknown feature type: %s \n Please use one of the following: binary, numerical\n" %(feature_type)) sys.exit(1) for i in range(utt_number): self.extract_dur_features(ori_file_list[i], output_file_list[i], label_type, feature_type, unit_size, feat_size) def extract_dur_features(self, in_file_name, out_file_name=None, label_type="state_align", feature_type=None, unit_size=None, feat_size=None): # logger = logging.getLogger("dur") if label_type=="phone_align": A = self.extract_dur_from_phone_alignment_labels(in_file_name, feature_type, unit_size, feat_size) elif label_type=="state_align": A = self.extract_dur_from_state_alignment_labels(in_file_name, feature_type, unit_size, feat_size) else: # logger.critical("we don't support %s labels as of now!!" % (label_type)) sys.exit(1) if out_file_name: io_funcs = BinaryIOCollection() io_funcs.array_to_binary_file(A, out_file_name) else: return A def extract_dur_from_state_alignment_labels(self, file_name, feature_type, unit_size, feat_size): # logger = logging.getLogger("dur") state_number = 5 dur_dim = state_number if feature_type=="binary": dur_feature_matrix = numpy.empty((100000, 1)) elif feature_type=="numerical": if unit_size=="state": dur_feature_matrix = numpy.empty((100000, dur_dim)) current_dur_array = numpy.zeros((dur_dim, 1)) else: ## phoneme/syllable/word dur_feature_matrix = numpy.empty((100000, 1)) fid = open(file_name) utt_labels = fid.readlines() fid.close() label_number = len(utt_labels) # logger.info('loaded %s, %3d labels' % (file_name, label_number) ) MLU_dur = [[],[],[]] list_of_silences=['#', 'sil', 'pau', 'SIL'] current_index = 0 dur_feature_index = 0 syllable_duration = 0 word_duration = 0 for line in utt_labels: line = line.strip() if len(line) < 1: continue temp_list = re.split('\s+', line) start_time = int(temp_list[0]) end_time = int(temp_list[1]) full_label = temp_list[2] full_label_length = len(full_label) - 3 # remove state information [k] state_index = full_label[full_label_length + 1] state_index = int(state_index) - 1 current_phone = full_label[full_label.index('-') + 1:full_label.index('+')] frame_number = int(end_time/50000) - int(start_time/50000) if state_index == 1: phone_duration = frame_number for i in range(state_number - 1): line = utt_labels[current_index + i + 1].strip() temp_list = re.split('\s+', line) phone_duration += int((int(temp_list[1]) - int(temp_list[0]))/50000) syllable_duration+=phone_duration word_duration+=phone_duration ### for syllable and word positional information ### label_binary_vector = self.pattern_matching_binary(full_label) label_continuous_vector = self.pattern_matching_continous_position(full_label) ### syllable ending information ### syl_end = 0 if(label_continuous_vector[0, 1]==1 or current_phone in list_of_silences): ##pos-bw and c-silences syl_end = 1 ### word ending information ### word_end = 0 if(syl_end and label_continuous_vector[0, 9]==1 or current_phone in list_of_silences): word_end = 1 if feature_type == "binary": current_block_array = numpy.zeros((frame_number, 1)) if unit_size == "state": current_block_array[-1] = 1 elif unit_size == "phoneme": if state_index == state_number: current_block_array[-1] = 1 else: # logger.critical("Unknown unit size: %s \n Please use one of the following: state, phoneme\n" %(unit_size)) sys.exit(1) elif feature_type == "numerical": if unit_size == "state": current_dur_array[current_index%5] = frame_number if feat_size == "phoneme" and state_index == state_number: current_block_array = current_dur_array.transpose() if feat_size == "frame": current_block_array = numpy.tile(current_dur_array.transpose(), (frame_number, 1)) elif state_index == state_number: if unit_size == "phoneme": current_block_array = numpy.array([phone_duration]) elif unit_size == "syllable": current_block_array = numpy.array([syllable_duration]) elif unit_size == "word": current_block_array = numpy.array([word_duration]) if syl_end: syllable_duration = 0 if word_end: word_duration = 0 ### writing into dur_feature_matrix ### if feat_size == "frame": dur_feature_matrix[dur_feature_index:dur_feature_index+frame_number,] = current_block_array dur_feature_index = dur_feature_index + frame_number elif state_index == state_number: if feat_size == "phoneme": dur_feature_matrix[dur_feature_index:dur_feature_index+1,] = current_block_array dur_feature_index = dur_feature_index + 1 elif current_phone!='#': ## removing silence here if feat_size == "syllable" and syl_end: dur_feature_matrix[dur_feature_index:dur_feature_index+1,] = current_block_array dur_feature_index = dur_feature_index + 1 elif feat_size == "word" and word_end: dur_feature_matrix[dur_feature_index:dur_feature_index+1,] = current_block_array dur_feature_index = dur_feature_index + 1 elif feat_size == "MLU": if word_end: if current_phone=='pau': MLU_dur[0].append(1) else: MLU_dur[0].append(int(label_continuous_vector[0, 24])) if syl_end: if current_phone=='pau': MLU_dur[1].append(1) else: MLU_dur[1].append(int(label_continuous_vector[0, 7])) MLU_dur[2].append(int(phone_duration)) current_index += 1 if feat_size == "MLU": for seg_indx in xrange(len(MLU_dur)): seg_len = len(MLU_dur[seg_indx]) current_block_array = numpy.reshape(numpy.array(MLU_dur[seg_indx]), (-1, 1)) dur_feature_matrix[dur_feature_index:dur_feature_index+seg_len, ] = current_block_array dur_feature_index = dur_feature_index + seg_len dur_feature_matrix = dur_feature_matrix[0:dur_feature_index,] # logger.debug('made duration matrix of %d frames x %d features' % dur_feature_matrix.shape ) return dur_feature_matrix def extract_dur_from_phone_alignment_labels(self, file_name, feature_type, unit_size, feat_size): # logger = logging.getLogger("dur") dur_dim = 1 # hard coded here if feature_type=="binary": dur_feature_matrix = numpy.empty((100000, dur_dim)) elif feature_type=="numerical": if unit_size=="phoneme": dur_feature_matrix = numpy.empty((100000, dur_dim)) fid = open(file_name) utt_labels = fid.readlines() fid.close() label_number = len(utt_labels) # logger.info('loaded %s, %3d labels' % (file_name, label_number) ) current_index = 0 dur_feature_index = 0 for line in utt_labels: line = line.strip() if len(line) < 1: continue temp_list = re.split('\s+', line) start_time = int(temp_list[0]) end_time = int(temp_list[1]) full_label = temp_list[2] frame_number = int(end_time/50000) - int(start_time/50000) phone_duration = frame_number if feature_type == "binary": current_block_array = numpy.zeros((frame_number, 1)) if unit_size == "phoneme": current_block_array[-1] = 1 else: # logger.critical("Unknown unit size: %s \n Please use one of the following: phoneme\n" %(unit_size)) sys.exit(1) elif feature_type == "numerical": if unit_size == "phoneme": current_block_array = numpy.array([phone_duration]) ### writing into dur_feature_matrix ### if feat_size == "frame": dur_feature_matrix[dur_feature_index:dur_feature_index+frame_number,] = current_block_array dur_feature_index = dur_feature_index + frame_number elif feat_size == "phoneme": dur_feature_matrix[dur_feature_index:dur_feature_index+1,] = current_block_array dur_feature_index = dur_feature_index + 1 current_index += 1 dur_feature_matrix = dur_feature_matrix[0:dur_feature_index,] # logger.debug('made duration matrix of %d frames x %d features' % dur_feature_matrix.shape ) return dur_feature_matrix def load_labels_with_phone_alignment(self, file_name, dur_file_name): # this is not currently used ??? -- it works now :D # logger = logging.getLogger("labels") #logger.critical('unused function ???') #raise Exception if dur_file_name: io_funcs = BinaryIOCollection() dur_dim = 1 ## hard coded for now manual_dur_data = io_funcs.load_binary_file(dur_file_name, dur_dim) if self.add_frame_features: assert self.dimension == self.dict_size+self.frame_feature_size elif self.subphone_feats != 'none': assert self.dimension == self.dict_size+self.frame_feature_size else: assert self.dimension == self.dict_size label_feature_matrix = numpy.empty((100000, self.dimension)) ph_count=0 label_feature_index = 0 with open(file_name) as fid: all_data = fid.readlines() for line in all_data: line = line.strip() if len(line) < 1: continue temp_list = re.split('\s+', line) if len(temp_list)==1: frame_number = 0 full_label = temp_list[0] else: start_time = int(temp_list[0]) end_time = int(temp_list[1]) full_label = temp_list[2] # to do - support different frame shift - currently hardwired to 5msec # currently under beta testing: support different frame shift if dur_file_name: frame_number = manual_dur_data[ph_count] else: frame_number = int(end_time/50000) - int(start_time/50000) if self.subphone_feats == "coarse_coding": cc_feat_matrix = self.extract_coarse_coding_features_relative(frame_number) ph_count = ph_count+1 #label_binary_vector = self.pattern_matching(full_label) label_binary_vector = self.pattern_matching_binary(full_label) # if there is no CQS question, the label_continuous_vector will become to empty label_continuous_vector = self.pattern_matching_continous_position(full_label) label_vector = numpy.concatenate([label_binary_vector, label_continuous_vector], axis = 1) if self.add_frame_features: current_block_binary_array = numpy.zeros((frame_number, self.dict_size+self.frame_feature_size)) for i in range(frame_number): current_block_binary_array[i, 0:self.dict_size] = label_vector if self.subphone_feats == 'minimal_phoneme': ## features which distinguish frame position in phoneme current_block_binary_array[i, self.dict_size] = float(i+1)/float(frame_number) # fraction through phone forwards current_block_binary_array[i, self.dict_size+1] = float(frame_number - i)/float(frame_number) # fraction through phone backwards current_block_binary_array[i, self.dict_size+2] = float(frame_number) # phone duration elif self.subphone_feats == 'coarse_coding': ## features which distinguish frame position in phoneme using three continous numerical features current_block_binary_array[i, self.dict_size+0] = cc_feat_matrix[i, 0] current_block_binary_array[i, self.dict_size+1] = cc_feat_matrix[i, 1] current_block_binary_array[i, self.dict_size+2] = cc_feat_matrix[i, 2] current_block_binary_array[i, self.dict_size+3] = float(frame_number) elif self.subphone_feats == 'none': pass else: sys.exit('unknown subphone_feats type') label_feature_matrix[label_feature_index:label_feature_index+frame_number,] = current_block_binary_array label_feature_index = label_feature_index + frame_number elif self.subphone_feats == 'none': current_block_binary_array = label_vector label_feature_matrix[label_feature_index:label_feature_index+1,] = current_block_binary_array label_feature_index = label_feature_index + 1 label_feature_matrix = label_feature_matrix[0:label_feature_index,] # logger.info('loaded %s, %3d labels' % (file_name, ph_count) ) # logger.debug('made label matrix of %d frames x %d labels' % label_feature_matrix.shape ) return label_feature_matrix def load_labels_with_state_alignment(self, file_name): ## setting add_frame_features to False performs either state/phoneme level normalisation # logger = logging.getLogger("labels") if self.add_frame_features: assert self.dimension == self.dict_size+self.frame_feature_size elif self.subphone_feats != 'none': assert self.dimension == self.dict_size+self.frame_feature_size else: assert self.dimension == self.dict_size # label_feature_matrix = numpy.empty((100000, self.dict_size+self.frame_feature_size)) label_feature_matrix = numpy.empty((100000, self.dimension)) label_feature_index = 0 state_number = 5 lab_binary_vector = numpy.zeros((1, self.dict_size)) fid = open(file_name) utt_labels = fid.readlines() fid.close() current_index = 0 label_number = len(utt_labels) # logger.info('loaded %s, %3d labels' % (file_name, label_number) ) phone_duration = 0 state_duration_base = 0 for line in utt_labels: line = line.strip() if len(line) < 1: continue temp_list = re.split('\s+', line) if len(temp_list)==1: frame_number = 0 state_index = 1 full_label = temp_list[0] else: start_time = int(temp_list[0]) end_time = int(temp_list[1]) frame_number = int(end_time/50000) - int(start_time/50000) full_label = temp_list[2] full_label_length = len(full_label) - 3 # remove state information [k] state_index = full_label[full_label_length + 1] state_index = int(state_index) - 1 state_index_backward = 6 - state_index full_label = full_label[0:full_label_length] if state_index == 1: current_frame_number = 0 phone_duration = frame_number state_duration_base = 0 # label_binary_vector = self.pattern_matching(full_label) label_binary_vector = self.pattern_matching_binary(full_label) # if there is no CQS question, the label_continuous_vector will become to empty label_continuous_vector = self.pattern_matching_continous_position(full_label) label_vector = numpy.concatenate([label_binary_vector, label_continuous_vector], axis = 1) if len(temp_list)==1: state_index = state_number else: for i in range(state_number - 1): line = utt_labels[current_index + i + 1].strip() temp_list = re.split('\s+', line) phone_duration += int((int(temp_list[1]) - int(temp_list[0]))/50000) if self.subphone_feats == "coarse_coding": cc_feat_matrix = self.extract_coarse_coding_features_relative(phone_duration) if self.add_frame_features: current_block_binary_array = numpy.zeros((frame_number, self.dict_size+self.frame_feature_size)) for i in range(frame_number): current_block_binary_array[i, 0:self.dict_size] = label_vector if self.subphone_feats == 'full': ## Zhizheng's original 9 subphone features: current_block_binary_array[i, self.dict_size] = float(i+1) / float(frame_number) ## fraction through state (forwards) current_block_binary_array[i, self.dict_size+1] = float(frame_number - i) / float(frame_number) ## fraction through state (backwards) current_block_binary_array[i, self.dict_size+2] = float(frame_number) ## length of state in frames current_block_binary_array[i, self.dict_size+3] = float(state_index) ## state index (counting forwards) current_block_binary_array[i, self.dict_size+4] = float(state_index_backward) ## state index (counting backwards) current_block_binary_array[i, self.dict_size+5] = float(phone_duration) ## length of phone in frames current_block_binary_array[i, self.dict_size+6] = float(frame_number) / float(phone_duration) ## fraction of the phone made up by current state current_block_binary_array[i, self.dict_size+7] = float(phone_duration - i - state_duration_base) / float(phone_duration) ## fraction through phone (backwards) current_block_binary_array[i, self.dict_size+8] = float(state_duration_base + i + 1) / float(phone_duration) ## fraction through phone (forwards) elif self.subphone_feats == 'state_only': ## features which only distinguish state: current_block_binary_array[i, self.dict_size] = float(state_index) ## state index (counting forwards) elif self.subphone_feats == 'frame_only': ## features which distinguish frame position in phoneme: current_frame_number += 1 current_block_binary_array[i, self.dict_size] = float(current_frame_number) / float(phone_duration) ## fraction through phone (counting forwards) elif self.subphone_feats == 'uniform_state': ## features which distinguish frame position in phoneme: current_frame_number += 1 current_block_binary_array[i, self.dict_size] = float(current_frame_number) / float(phone_duration) ## fraction through phone (counting forwards) new_state_index = max(1, round(float(current_frame_number)/float(phone_duration)*5)) current_block_binary_array[i, self.dict_size+1] = float(new_state_index) ## state index (counting forwards) elif self.subphone_feats == "coarse_coding": ## features which distinguish frame position in phoneme using three continous numerical features current_block_binary_array[i, self.dict_size+0] = cc_feat_matrix[current_frame_number, 0] current_block_binary_array[i, self.dict_size+1] = cc_feat_matrix[current_frame_number, 1] current_block_binary_array[i, self.dict_size+2] = cc_feat_matrix[current_frame_number, 2] current_block_binary_array[i, self.dict_size+3] = float(phone_duration) current_frame_number += 1 elif self.subphone_feats == 'minimal_frame': ## features which distinguish state and minimally frame position in state: current_block_binary_array[i, self.dict_size] = float(i+1) / float(frame_number) ## fraction through state (forwards) current_block_binary_array[i, self.dict_size+1] = float(state_index) ## state index (counting forwards) elif self.subphone_feats == 'none': pass else: sys.exit('unknown subphone_feats type') label_feature_matrix[label_feature_index:label_feature_index+frame_number,] = current_block_binary_array label_feature_index = label_feature_index + frame_number elif self.subphone_feats == 'state_only' and state_index == state_number: current_block_binary_array = numpy.zeros((state_number, self.dict_size+self.frame_feature_size)) for i in range(state_number): current_block_binary_array[i, 0:self.dict_size] = label_vector current_block_binary_array[i, self.dict_size] = float(i+1) ## state index (counting forwards) label_feature_matrix[label_feature_index:label_feature_index+state_number,] = current_block_binary_array label_feature_index = label_feature_index + state_number elif self.subphone_feats == 'none' and state_index == state_number: current_block_binary_array = label_vector label_feature_matrix[label_feature_index:label_feature_index+1,] = current_block_binary_array label_feature_index = label_feature_index + 1 state_duration_base += frame_number current_index += 1 label_feature_matrix = label_feature_matrix[0:label_feature_index,] # logger.debug('made label matrix of %d frames x %d labels' % label_feature_matrix.shape ) return label_feature_matrix def extract_durational_features(self, dur_file_name=None, dur_data=None): if dur_file_name: io_funcs = BinaryIOCollection() dur_dim = 1 ## hard coded for now dur_data = io_funcs.load_binary_file(dur_file_name, dur_dim) ph_count = len(dur_data) total_num_of_frames = int(sum(dur_data)) duration_feature_array = numpy.zeros((total_num_of_frames, self.frame_feature_size)) frame_index=0 for i in range(ph_count): frame_number = int(dur_data[i]) if self.subphone_feats == "coarse_coding": cc_feat_matrix = self.extract_coarse_coding_features_relative(frame_number) for j in range(frame_number): duration_feature_array[frame_index, 0] = cc_feat_matrix[j, 0] duration_feature_array[frame_index, 1] = cc_feat_matrix[j, 1] duration_feature_array[frame_index, 2] = cc_feat_matrix[j, 2] duration_feature_array[frame_index, 3] = float(frame_number) frame_index+=1 elif self.subphone_feats == 'full': state_number = 5 # hard coded here phone_duration = sum(dur_data[i, :]) state_duration_base = 0 for state_index in xrange(1, state_number+1): state_index_backward = (state_number - state_index) + 1 frame_number = int(dur_data[i][state_index-1]) for j in xrange(frame_number): duration_feature_array[frame_index, 0] = float(j+1) / float(frame_number) ## fraction through state (forwards) duration_feature_array[frame_index, 1] = float(frame_number - j) / float(frame_number) ## fraction through state (backwards) duration_feature_array[frame_index, 2] = float(frame_number) ## length of state in frames duration_feature_array[frame_index, 3] = float(state_index) ## state index (counting forwards) duration_feature_array[frame_index, 4] = float(state_index_backward) ## state index (counting backwards) duration_feature_array[frame_index, 5] = float(phone_duration) ## length of phone in frames duration_feature_array[frame_index, 6] = float(frame_number) / float(phone_duration) ## fraction of the phone made up by current state duration_feature_array[frame_index, 7] = float(phone_duration - j - state_duration_base) / float(phone_duration) ## fraction through phone (forwards) duration_feature_array[frame_index, 8] = float(state_duration_base + j + 1) / float(phone_duration) ## fraction through phone (backwards) frame_index+=1 state_duration_base += frame_number return duration_feature_array def compute_coarse_coding_features(self, num_states): assert num_states == 3 npoints = 600 cc_features = numpy.zeros((num_states, npoints)) x1 = numpy.linspace(-1.5, 1.5, npoints) x2 = numpy.linspace(-1.0, 2.0, npoints) x3 = numpy.linspace(-0.5, 2.5, npoints) mu1 = 0.0 mu2 = 0.5 mu3 = 1.0 sigma = 0.4 cc_features[0, :] = mlab.normpdf(x1, mu1, sigma) cc_features[1, :] = mlab.normpdf(x2, mu2, sigma) cc_features[2, :] = mlab.normpdf(x3, mu3, sigma) return cc_features def extract_coarse_coding_features_relative(self, phone_duration): dur = int(phone_duration) cc_feat_matrix = numpy.zeros((dur, 3)) for i in range(dur): rel_indx = int((200/float(dur))*i) cc_feat_matrix[i,0] = self.cc_features[0, 300+rel_indx] cc_feat_matrix[i,1] = self.cc_features[1, 200+rel_indx] cc_feat_matrix[i,2] = self.cc_features[2, 100+rel_indx] return cc_feat_matrix ### this function is not used now def extract_coarse_coding_features_absolute(self, phone_duration): dur = int(phone_duration) cc_feat_matrix = numpy.zeros((dur, 3)) npoints1 = (dur*2)*10+1 npoints2 = (dur-1)*10+1 npoints3 = (2*dur-1)*10+1 x1 = numpy.linspace(-dur, dur, npoints1) x2 = numpy.linspace(1, dur, npoints2) x3 = numpy.linspace(1, 2*dur-1, npoints3) mu1 = 0 mu2 = (1+dur)/2 mu3 = dur variance = 1 sigma = variance*((dur/10)+2) sigma1 = sigma sigma2 = sigma-1 sigma3 = sigma y1 = mlab.normpdf(x1, mu1, sigma1) y2 = mlab.normpdf(x2, mu2, sigma2) y3 = mlab.normpdf(x3, mu3, sigma3) for i in range(dur): cc_feat_matrix[i,0] = y1[(dur+1+i)*10] cc_feat_matrix[i,1] = y2[i*10] cc_feat_matrix[i,2] = y3[i*10] for i in range(3): cc_feat_matrix[:,i] = cc_feat_matrix[:,i]/max(cc_feat_matrix[:,i]) return cc_feat_matrix ### this function is not used now def pattern_matching(self, label): # this function is where most time is spent during label preparation # # it might be possible to speed it up by using pre-compiled regular expressions? # (not trying this now, since we may change to to XML tree format for input instead of HTS labels) # label_size = len(label) lab_binary_vector = numpy.zeros((1, self.dict_size)) for i in range(self.dict_size): current_question_list = self.question_dict[str(i)] binary_flag = 0 for iq in range(len(current_question_list)): current_question = current_question_list[iq] current_size = len(current_question) if current_question[0] == '*' and current_question[current_size-1] == '*': temp_question = current_question[1:current_size-1] for il in range(1, label_size-current_size+2): if temp_question == label[il:il+current_size-2]: binary_flag = 1 elif current_question[current_size-1] != '*': temp_question = current_question[1:current_size] if temp_question == label[label_size-current_size+1:label_size]: binary_flag = 1 elif current_question[0] != '*': temp_question = current_question[0:current_size-1] if temp_question == label[0:current_size-1]: binary_flag = 1 if binary_flag == 1: break lab_binary_vector[0, i] = binary_flag return lab_binary_vector def pattern_matching_binary(self, label): dict_size = len(self.discrete_dict) lab_binary_vector = numpy.zeros((1, dict_size)) for i in range(dict_size): current_question_list = self.discrete_dict[str(i)] binary_flag = 0 for iq in range(len(current_question_list)): current_compiled = current_question_list[iq] ms = current_compiled.search(label) if ms is not None: binary_flag = 1 break lab_binary_vector[0, i] = binary_flag return lab_binary_vector def pattern_matching_continous_position(self, label): dict_size = len(self.continuous_dict) lab_continuous_vector = numpy.zeros((1, dict_size)) for i in range(dict_size): continuous_value = -1.0 current_compiled = self.continuous_dict[str(i)] ms = current_compiled.search(label) if ms is not None: # assert len(ms.group()) == 1 continuous_value = ms.group(1) lab_continuous_vector[0, i] = continuous_value return lab_continuous_vector def load_question_set(self, qs_file_name): fid = open(qs_file_name) question_index = 0 question_dict = {} ori_question_dict = {} for line in fid.readlines(): line = line.replace('\n', '') if len(line) > 5: temp_list = line.split('{') temp_line = temp_list[1] temp_list = temp_line.split('}') temp_line = temp_list[0] question_list = temp_line.split(',') question_dict[str(question_index)] = question_list ori_question_dict[str(question_index)] = line question_index += 1 fid.close() # logger = logging.getLogger("labels") # logger.debug('loaded question set with %d questions' % len(question_dict)) return question_dict, ori_question_dict def load_question_set_continous(self, qs_file_name): # logger = logging.getLogger("labels") fid = open(qs_file_name) binary_qs_index = 0 continuous_qs_index = 0 binary_dict = {} continuous_dict = {} LL=re.compile(re.escape('LL-')) for line in fid.readlines(): line = line.replace('\n', '') if len(line) > 5: temp_list = line.split('{') temp_line = temp_list[1] temp_list = temp_line.split('}') temp_line = temp_list[0] temp_line = temp_line.strip() question_list = temp_line.split(',') temp_list = line.split(' ') question_key = temp_list[1] # print line if temp_list[0] == 'CQS': assert len(question_list) == 1 processed_question = self.wildcards2regex(question_list[0], convert_number_pattern=True) continuous_dict[str(continuous_qs_index)] = re.compile(processed_question) #save pre-compiled regular expression continuous_qs_index = continuous_qs_index + 1 elif temp_list[0] == 'QS': re_list = [] for temp_question in question_list: processed_question = self.wildcards2regex(temp_question) if LL.search(question_key): processed_question = '^'+processed_question re_list.append(re.compile(processed_question)) binary_dict[str(binary_qs_index)] = re_list binary_qs_index = binary_qs_index + 1 else: # logger.critical('The question set is not defined correctly: %s' %(line)) raise Exception # question_index = question_index + 1 return binary_dict, continuous_dict def wildcards2regex(self, question, convert_number_pattern=False): """ Convert HTK-style question into regular expression for searching labels. If convert_number_pattern, keep the following sequences unescaped for extracting continuous values): (\d+) -- handles digit without decimal point ([\d\.]+) -- handles digits with and without decimal point """ ## handle HTK wildcards (and lack of them) at ends of label: prefix = "" postfix = "" if '*' in question: if not question.startswith('*'): prefix = "\A" if not question.endswith('*'): postfix = "\Z" question = question.strip('*') question = re.escape(question) ## convert remaining HTK wildcards * and ? to equivalent regex: question = question.replace('\\*', '.*') question = question.replace('\\?', '.') question = prefix + question + postfix if convert_number_pattern: question = question.replace('\\(\\\\d\\+\\)', '(\d+)') question = question.replace('\\(\\[\\\\d\\\\\\.\\]\\+\\)', '([\d\.]+)') return question class HTSDurationLabelNormalisation(HTSLabelNormalisation): """ Unlike HTSLabelNormalisation, HTSDurationLabelNormalisation does not accept timings. One line of labels is converted into 1 datapoint, that is, the label is not 'unpacked' into frames. HTK state index [\d] is not handled in any special way. """ def __init__(self, question_file_name=None, subphone_feats='full', continuous_flag=True): super(HTSDurationLabelNormalisation, self).__init__(question_file_name=question_file_name, \ subphone_feats=subphone_feats, continuous_flag=continuous_flag) ## don't use extra features beyond those in questions for duration labels: self.dimension = self.dict_size def load_labels_with_state_alignment(self, file_name, add_frame_features=False): ## add_frame_features not used in HTSLabelNormalisation -- only in XML version # logger = logging.getLogger("labels") assert self.dimension == self.dict_size label_feature_matrix = numpy.empty((100000, self.dimension)) label_feature_index = 0 lab_binary_vector = numpy.zeros((1, self.dict_size)) fid = open(file_name) utt_labels = fid.readlines() fid.close() current_index = 0 label_number = len(utt_labels) # logger.info('loaded %s, %3d labels' % (file_name, label_number) ) ## remove empty lines utt_labels = [line for line in utt_labels if line != ''] for (line_number, line) in enumerate(utt_labels): temp_list = re.split('\s+', line.strip()) full_label = temp_list[-1] ## take last entry -- ignore timings if present label_binary_vector = self.pattern_matching_binary(full_label) # if there is no CQS question, the label_continuous_vector will become to empty label_continuous_vector = self.pattern_matching_continous_position(full_label) label_vector = numpy.concatenate([label_binary_vector, label_continuous_vector], axis = 1) label_feature_matrix[line_number, :] = label_vector[:] label_feature_matrix = label_feature_matrix[:line_number+1,:] # logger.debug('made label matrix of %d frames x %d labels' % label_feature_matrix.shape ) return label_feature_matrix # ----------------------------- if __name__ == '__main__': qs_file_name = '/afs/inf.ed.ac.uk/group/cstr/projects/blizzard_entries/blizzard2016/straight_voice/Hybrid_duration_experiments/dnn_tts_release/lstm_rnn/data/questions.hed' print(qs_file_name) ori_file_list = ['/afs/inf.ed.ac.uk/group/cstr/projects/blizzard_entries/blizzard2016/straight_voice/Hybrid_duration_experiments/dnn_tts_release/lstm_rnn/data/label_state_align/AMidsummerNightsDream_000_000.lab'] output_file_list = ['/afs/inf.ed.ac.uk/group/cstr/projects/blizzard_entries/blizzard2016/straight_voice/Hybrid_duration_experiments/dnn_tts_release/lstm_rnn/data/binary_label_601/AMidsummerNightsDream_000_000.lab'] #output_file_list = ['/afs/inf.ed.ac.uk/group/cstr/projects/blizzard_entries/blizzard2016/straight_voice/Hybrid_duration_experiments/dnn_tts_release/lstm_rnn/data/dur/AMidsummerNightsDream_000_000.dur'] label_operater = HTSLabelNormalisation(qs_file_name) label_operater.perform_normalisation(ori_file_list, output_file_list) #feature_type="binary" #unit_size = "phoneme" #feat_size = "phoneme" #label_operater.prepare_dur_data(ori_file_list, output_file_list, feature_type, unit_size, feat_size) #label_operater.prepare_dur_data(ori_file_list, output_file_list, feature_type) print(label_operater.dimension)
[ "re.split", "numpy.fromfile", "matplotlib.mlab.normpdf", "re.escape", "re.compile", "numpy.array", "numpy.zeros", "numpy.linspace", "numpy.empty", "numpy.concatenate", "sys.exit" ]
[((2644, 2688), 'numpy.fromfile', 'numpy.fromfile', (['fid_lab'], {'dtype': 'numpy.float32'}), '(fid_lab, dtype=numpy.float32)\n', (2658, 2688), False, 'import numpy\n'), ((3058, 3086), 'numpy.array', 'numpy.array', (['data', '"""float32"""'], {}), "(data, 'float32')\n", (3069, 3086), False, 'import numpy\n'), ((3296, 3340), 'numpy.fromfile', 'numpy.fromfile', (['fid_lab'], {'dtype': 'numpy.float32'}), '(fid_lab, dtype=numpy.float32)\n', (3310, 3340), False, 'import numpy\n'), ((22759, 22796), 'numpy.empty', 'numpy.empty', (['(100000, self.dimension)'], {}), '((100000, self.dimension))\n', (22770, 22796), False, 'import numpy\n'), ((27299, 27336), 'numpy.empty', 'numpy.empty', (['(100000, self.dimension)'], {}), '((100000, self.dimension))\n', (27310, 27336), False, 'import numpy\n'), ((27425, 27457), 'numpy.zeros', 'numpy.zeros', (['(1, self.dict_size)'], {}), '((1, self.dict_size))\n', (27436, 27457), False, 'import numpy\n'), ((35868, 35927), 'numpy.zeros', 'numpy.zeros', (['(total_num_of_frames, self.frame_feature_size)'], {}), '((total_num_of_frames, self.frame_feature_size))\n', (35879, 35927), False, 'import numpy\n'), ((38573, 38607), 'numpy.zeros', 'numpy.zeros', (['(num_states, npoints)'], {}), '((num_states, npoints))\n', (38584, 38607), False, 'import numpy\n'), ((38622, 38656), 'numpy.linspace', 'numpy.linspace', (['(-1.5)', '(1.5)', 'npoints'], {}), '(-1.5, 1.5, npoints)\n', (38636, 38656), False, 'import numpy\n'), ((38670, 38704), 'numpy.linspace', 'numpy.linspace', (['(-1.0)', '(2.0)', 'npoints'], {}), '(-1.0, 2.0, npoints)\n', (38684, 38704), False, 'import numpy\n'), ((38718, 38752), 'numpy.linspace', 'numpy.linspace', (['(-0.5)', '(2.5)', 'npoints'], {}), '(-0.5, 2.5, npoints)\n', (38732, 38752), False, 'import numpy\n'), ((38858, 38886), 'matplotlib.mlab.normpdf', 'mlab.normpdf', (['x1', 'mu1', 'sigma'], {}), '(x1, mu1, sigma)\n', (38870, 38886), True, 'import matplotlib.mlab as mlab\n'), ((38915, 38943), 'matplotlib.mlab.normpdf', 'mlab.normpdf', (['x2', 'mu2', 'sigma'], {}), '(x2, mu2, sigma)\n', (38927, 38943), True, 'import matplotlib.mlab as mlab\n'), ((38972, 39000), 'matplotlib.mlab.normpdf', 'mlab.normpdf', (['x3', 'mu3', 'sigma'], {}), '(x3, mu3, sigma)\n', (38984, 39000), True, 'import matplotlib.mlab as mlab\n'), ((39161, 39182), 'numpy.zeros', 'numpy.zeros', (['(dur, 3)'], {}), '((dur, 3))\n', (39172, 39182), False, 'import numpy\n'), ((39665, 39686), 'numpy.zeros', 'numpy.zeros', (['(dur, 3)'], {}), '((dur, 3))\n', (39676, 39686), False, 'import numpy\n'), ((39800, 39835), 'numpy.linspace', 'numpy.linspace', (['(-dur)', 'dur', 'npoints1'], {}), '(-dur, dur, npoints1)\n', (39814, 39835), False, 'import numpy\n'), ((39849, 39881), 'numpy.linspace', 'numpy.linspace', (['(1)', 'dur', 'npoints2'], {}), '(1, dur, npoints2)\n', (39863, 39881), False, 'import numpy\n'), ((39895, 39935), 'numpy.linspace', 'numpy.linspace', (['(1)', '(2 * dur - 1)', 'npoints3'], {}), '(1, 2 * dur - 1, npoints3)\n', (39909, 39935), False, 'import numpy\n'), ((40135, 40164), 'matplotlib.mlab.normpdf', 'mlab.normpdf', (['x1', 'mu1', 'sigma1'], {}), '(x1, mu1, sigma1)\n', (40147, 40164), True, 'import matplotlib.mlab as mlab\n'), ((40178, 40207), 'matplotlib.mlab.normpdf', 'mlab.normpdf', (['x2', 'mu2', 'sigma2'], {}), '(x2, mu2, sigma2)\n', (40190, 40207), True, 'import matplotlib.mlab as mlab\n'), ((40221, 40250), 'matplotlib.mlab.normpdf', 'mlab.normpdf', (['x3', 'mu3', 'sigma3'], {}), '(x3, mu3, sigma3)\n', (40233, 40250), True, 'import matplotlib.mlab as mlab\n'), ((40989, 41021), 'numpy.zeros', 'numpy.zeros', (['(1, self.dict_size)'], {}), '((1, self.dict_size))\n', (41000, 41021), False, 'import numpy\n'), ((42420, 42447), 'numpy.zeros', 'numpy.zeros', (['(1, dict_size)'], {}), '((1, dict_size))\n', (42431, 42447), False, 'import numpy\n'), ((43069, 43096), 'numpy.zeros', 'numpy.zeros', (['(1, dict_size)'], {}), '((1, dict_size))\n', (43080, 43096), False, 'import numpy\n'), ((47132, 47151), 're.escape', 're.escape', (['question'], {}), '(question)\n', (47141, 47151), False, 'import numpy, re, sys\n'), ((48635, 48672), 'numpy.empty', 'numpy.empty', (['(100000, self.dimension)'], {}), '((100000, self.dimension))\n', (48646, 48672), False, 'import numpy\n'), ((48736, 48768), 'numpy.zeros', 'numpy.zeros', (['(1, self.dict_size)'], {}), '((1, self.dict_size))\n', (48747, 48768), False, 'import numpy\n'), ((4622, 4633), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4630, 4633), False, 'import numpy, re, sys\n'), ((11233, 11244), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (11241, 11244), False, 'import numpy, re, sys\n'), ((13251, 13275), 'numpy.empty', 'numpy.empty', (['(100000, 1)'], {}), '((100000, 1))\n', (13262, 13275), False, 'import numpy\n'), ((14128, 14150), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (14136, 14150), False, 'import numpy, re, sys\n'), ((19892, 19922), 'numpy.empty', 'numpy.empty', (['(100000, dur_dim)'], {}), '((100000, dur_dim))\n', (19903, 19922), False, 'import numpy\n'), ((20473, 20495), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (20481, 20495), False, 'import numpy, re, sys\n'), ((23066, 23088), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (23074, 23088), False, 'import numpy, re, sys\n'), ((24258, 24331), 'numpy.concatenate', 'numpy.concatenate', (['[label_binary_vector, label_continuous_vector]'], {'axis': '(1)'}), '([label_binary_vector, label_continuous_vector], axis=1)\n', (24275, 24331), False, 'import numpy\n'), ((27890, 27912), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (27898, 27912), False, 'import numpy, re, sys\n'), ((44649, 44665), 're.escape', 're.escape', (['"""LL-"""'], {}), "('LL-')\n", (44658, 44665), False, 'import numpy, re, sys\n'), ((49581, 49654), 'numpy.concatenate', 'numpy.concatenate', (['[label_binary_vector, label_continuous_vector]'], {'axis': '(1)'}), '([label_binary_vector, label_continuous_vector], axis=1)\n', (49598, 49654), False, 'import numpy\n'), ((12021, 12032), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (12029, 12032), False, 'import numpy, re, sys\n'), ((12800, 12811), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (12808, 12811), False, 'import numpy, re, sys\n'), ((15830, 15860), 'numpy.zeros', 'numpy.zeros', (['(frame_number, 1)'], {}), '((frame_number, 1))\n', (15841, 15860), False, 'import numpy\n'), ((20813, 20843), 'numpy.zeros', 'numpy.zeros', (['(frame_number, 1)'], {}), '((frame_number, 1))\n', (20824, 20843), False, 'import numpy\n'), ((24420, 24489), 'numpy.zeros', 'numpy.zeros', (['(frame_number, self.dict_size + self.frame_feature_size)'], {}), '((frame_number, self.dict_size + self.frame_feature_size))\n', (24431, 24489), False, 'import numpy\n'), ((29139, 29212), 'numpy.concatenate', 'numpy.concatenate', (['[label_binary_vector, label_continuous_vector]'], {'axis': '(1)'}), '([label_binary_vector, label_continuous_vector], axis=1)\n', (29156, 29212), False, 'import numpy\n'), ((29853, 29922), 'numpy.zeros', 'numpy.zeros', (['(frame_number, self.dict_size + self.frame_feature_size)'], {}), '((frame_number, self.dict_size + self.frame_feature_size))\n', (29864, 29922), False, 'import numpy\n'), ((13388, 13418), 'numpy.empty', 'numpy.empty', (['(100000, dur_dim)'], {}), '((100000, dur_dim))\n', (13399, 13418), False, 'import numpy\n'), ((13455, 13480), 'numpy.zeros', 'numpy.zeros', (['(dur_dim, 1)'], {}), '((dur_dim, 1))\n', (13466, 13480), False, 'import numpy\n'), ((13561, 13585), 'numpy.empty', 'numpy.empty', (['(100000, 1)'], {}), '((100000, 1))\n', (13572, 13585), False, 'import numpy\n'), ((14856, 14878), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (14864, 14878), False, 'import numpy, re, sys\n'), ((19220, 19250), 'numpy.array', 'numpy.array', (['MLU_dur[seg_indx]'], {}), '(MLU_dur[seg_indx])\n', (19231, 19250), False, 'import numpy\n'), ((20037, 20067), 'numpy.empty', 'numpy.empty', (['(100000, dur_dim)'], {}), '((100000, dur_dim))\n', (20048, 20067), False, 'import numpy\n'), ((21099, 21110), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (21107, 21110), False, 'import numpy, re, sys\n'), ((34371, 34440), 'numpy.zeros', 'numpy.zeros', (['(state_number, self.dict_size + self.frame_feature_size)'], {}), '((state_number, self.dict_size + self.frame_feature_size))\n', (34382, 34440), False, 'import numpy\n'), ((45437, 45467), 're.compile', 're.compile', (['processed_question'], {}), '(processed_question)\n', (45447, 45467), False, 'import numpy, re, sys\n'), ((16270, 16281), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (16278, 16281), False, 'import numpy, re, sys\n'), ((21242, 21271), 'numpy.array', 'numpy.array', (['[phone_duration]'], {}), '([phone_duration])\n', (21253, 21271), False, 'import numpy\n'), ((29486, 29508), 're.split', 're.split', (['"""\\\\s+"""', 'line'], {}), "('\\\\s+', line)\n", (29494, 29508), False, 'import numpy, re, sys\n'), ((16890, 16919), 'numpy.array', 'numpy.array', (['[phone_duration]'], {}), '([phone_duration])\n', (16901, 16919), False, 'import numpy\n'), ((25867, 25906), 'sys.exit', 'sys.exit', (['"""unknown subphone_feats type"""'], {}), "('unknown subphone_feats type')\n", (25875, 25906), False, 'import numpy, re, sys\n'), ((45948, 45978), 're.compile', 're.compile', (['processed_question'], {}), '(processed_question)\n', (45958, 45978), False, 'import numpy, re, sys\n'), ((17016, 17048), 'numpy.array', 'numpy.array', (['[syllable_duration]'], {}), '([syllable_duration])\n', (17027, 17048), False, 'import numpy\n'), ((10346, 10411), 'sys.exit', 'sys.exit', (["('Unknown value for subphone_feats: %s' % subphone_feats)"], {}), "('Unknown value for subphone_feats: %s' % subphone_feats)\n", (10354, 10411), False, 'import numpy, re, sys\n'), ((17141, 17169), 'numpy.array', 'numpy.array', (['[word_duration]'], {}), '([word_duration])\n', (17152, 17169), False, 'import numpy\n'), ((34005, 34044), 'sys.exit', 'sys.exit', (['"""unknown subphone_feats type"""'], {}), "('unknown subphone_feats type')\n", (34013, 34044), False, 'import numpy, re, sys\n')]
import os import argparse def main(ops): if ops.train: os.system("python train.py \ --dataroot ./datasets/lol/final_dataset \ --no_dropout \ --name enlightening \ --model single \ --dataset_mode unaligned \ --which_model_netG sid_unet_resize \ --which_model_netD no_norm_4 \ --patchD \ --patch_vgg \ --patchD_3 5 \ --n_layers_D 5 \ --n_layers_patchD 4 \ --fineSize 320 \ --patchSize 32 \ --skip 1 \ --batchSize 32 \ --self_attention \ --use_norm 1 \ --use_wgan 0 \ --use_ragan \ --hybrid_loss \ --times_residual \ --instance_norm 0 \ --vgg 1 \ --vgg_choose relu5_1 \ --gpu_ids 0\ --display_port=" + ops.port) elif ops.predict: for i in range(1): os.system("python predict.py \ --dataroot D:/sangkny/pyTest/MLDL/codes/enlightenGAN/datasets/lol/test_data \ --name enlightening \ --model single \ --which_direction AtoB \ --no_dropout \ --dataset_mode unaligned \ --which_model_netG sid_unet_resize \ --skip 1 \ --use_norm 1 \ --use_wgan 0 \ --self_attention \ --times_residual \ --instance_norm 0 --resize_or_crop='no'\ --which_epoch " + str(200 - i*5)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--port", type=str, default="8097") parser.add_argument("--train", action='store_true') parser.add_argument("--predict", action='store_true') opt = parser.parse_args() # opt.train = True main(opt)
[ "os.system", "argparse.ArgumentParser" ]
[((1254, 1279), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1277, 1279), False, 'import argparse\n'), ((59, 730), 'os.system', 'os.system', (["('python train.py \\t\\t\\t--dataroot ./datasets/lol/final_dataset \\t\\t\\t--no_dropout \\t\\t\\t--name enlightening \\t\\t\\t--model single \\t\\t\\t--dataset_mode unaligned \\t\\t\\t--which_model_netG sid_unet_resize \\t\\t\\t--which_model_netD no_norm_4 \\t\\t\\t--patchD \\t\\t\\t--patch_vgg \\t\\t\\t--patchD_3 5 \\t\\t\\t--n_layers_D 5 \\t\\t\\t--n_layers_patchD 4 \\t\\t\\t--fineSize 320 \\t\\t\\t--patchSize 32 \\t\\t\\t--skip 1 \\t\\t\\t--batchSize 32 \\t\\t\\t--self_attention \\t\\t\\t--use_norm 1 \\t\\t\\t--use_wgan 0 \\t\\t\\t--use_ragan \\t\\t\\t--hybrid_loss \\t\\t\\t--times_residual \\t\\t\\t--instance_norm 0 \\t\\t\\t--vgg 1 \\t\\t\\t--vgg_choose relu5_1 \\t\\t\\t--gpu_ids 0\\t\\t\\t--display_port='\n + ops.port)"], {}), "(\n 'python train.py \\t\\t\\t--dataroot ./datasets/lol/final_dataset \\t\\t\\t--no_dropout \\t\\t\\t--name enlightening \\t\\t\\t--model single \\t\\t\\t--dataset_mode unaligned \\t\\t\\t--which_model_netG sid_unet_resize \\t\\t\\t--which_model_netD no_norm_4 \\t\\t\\t--patchD \\t\\t\\t--patch_vgg \\t\\t\\t--patchD_3 5 \\t\\t\\t--n_layers_D 5 \\t\\t\\t--n_layers_patchD 4 \\t\\t\\t--fineSize 320 \\t\\t\\t--patchSize 32 \\t\\t\\t--skip 1 \\t\\t\\t--batchSize 32 \\t\\t\\t--self_attention \\t\\t\\t--use_norm 1 \\t\\t\\t--use_wgan 0 \\t\\t\\t--use_ragan \\t\\t\\t--hybrid_loss \\t\\t\\t--times_residual \\t\\t\\t--instance_norm 0 \\t\\t\\t--vgg 1 \\t\\t\\t--vgg_choose relu5_1 \\t\\t\\t--gpu_ids 0\\t\\t\\t--display_port='\n + ops.port)\n", (68, 730), False, 'import os\n')]
import os import sys import glob all_files = glob.glob("*.py") for file in all_files: print(file) cmd = "autopep8 --max-line-length=160 --in-place --aggressive --aggressive " + file os.system(cmd) all_files = glob.glob("src/*.py") for file in all_files: print(file) cmd = "autopep8 --max-line-length=160 --in-place --aggressive --aggressive " + file os.system(cmd)
[ "os.system", "glob.glob" ]
[((46, 63), 'glob.glob', 'glob.glob', (['"""*.py"""'], {}), "('*.py')\n", (55, 63), False, 'import glob\n'), ((223, 244), 'glob.glob', 'glob.glob', (['"""src/*.py"""'], {}), "('src/*.py')\n", (232, 244), False, 'import glob\n'), ((195, 209), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (204, 209), False, 'import os\n'), ((376, 390), 'os.system', 'os.system', (['cmd'], {}), '(cmd)\n', (385, 390), False, 'import os\n')]
# Setup Python module from setuptools import setup, find_packages modules = ["ALLSorts." + p for p in sorted(find_packages("./ALLSorts"))] setup( name="ALLSorts", version="0.1.3", description="BALL Subtype Classifier/Investigator.", url="https://github.com/breons/ALLSorts", author="<NAME>", license="MIT", packages=["ALLSorts", *modules], zip_safe=False, include_package_data=True, install_requires=[ "joblib==0.15.1", "matplotlib==3.2.1", "numpy==1.18.1", "pandas==1.0.3", "scikit-learn==0.22.1", "scipy==1.4.1", "umap-learn==0.4.4", "plotly==4.14.3", "kaleido==0.1.0" ], entry_points={ "console_scripts": ["ALLSorts=ALLSorts.allsorts:run"] } )
[ "setuptools.find_packages", "setuptools.setup" ]
[((141, 674), 'setuptools.setup', 'setup', ([], {'name': '"""ALLSorts"""', 'version': '"""0.1.3"""', 'description': '"""BALL Subtype Classifier/Investigator."""', 'url': '"""https://github.com/breons/ALLSorts"""', 'author': '"""<NAME>"""', 'license': '"""MIT"""', 'packages': "['ALLSorts', *modules]", 'zip_safe': '(False)', 'include_package_data': '(True)', 'install_requires': "['joblib==0.15.1', 'matplotlib==3.2.1', 'numpy==1.18.1', 'pandas==1.0.3',\n 'scikit-learn==0.22.1', 'scipy==1.4.1', 'umap-learn==0.4.4',\n 'plotly==4.14.3', 'kaleido==0.1.0']", 'entry_points': "{'console_scripts': ['ALLSorts=ALLSorts.allsorts:run']}"}), "(name='ALLSorts', version='0.1.3', description=\n 'BALL Subtype Classifier/Investigator.', url=\n 'https://github.com/breons/ALLSorts', author='<NAME>', license='MIT',\n packages=['ALLSorts', *modules], zip_safe=False, include_package_data=\n True, install_requires=['joblib==0.15.1', 'matplotlib==3.2.1',\n 'numpy==1.18.1', 'pandas==1.0.3', 'scikit-learn==0.22.1',\n 'scipy==1.4.1', 'umap-learn==0.4.4', 'plotly==4.14.3', 'kaleido==0.1.0'\n ], entry_points={'console_scripts': ['ALLSorts=ALLSorts.allsorts:run']})\n", (146, 674), False, 'from setuptools import setup, find_packages\n'), ((110, 137), 'setuptools.find_packages', 'find_packages', (['"""./ALLSorts"""'], {}), "('./ALLSorts')\n", (123, 137), False, 'from setuptools import setup, find_packages\n')]
from src.binary_search import binary_search def main(): given_array_length = int(input("Długość tablicy: ")) given_array = list(map(int, input("\nLiczny do tablicy: ").strip().split()))[:given_array_length] wanted_number = int(input("Szukany element: ")) given_array.sort() result_index = binary_search(given_array, wanted_number) print("Szukam liczby ", wanted_number, "... Jest na indeksie ", result_index) if __name__ == "__main__": main()
[ "src.binary_search.binary_search" ]
[((313, 354), 'src.binary_search.binary_search', 'binary_search', (['given_array', 'wanted_number'], {}), '(given_array, wanted_number)\n', (326, 354), False, 'from src.binary_search import binary_search\n')]
#!/usr/bin/python3 -I import sys import os import os.path import json import subprocess # check system behavior for suid-sudo original_sys_path = sys.path[0:] sys.path.insert(0, os.path.dirname(__file__)) import common_lib from common_lib import * sys.path[0:] = original_sys_path def extlang_test(lang, cmd): subtest_start("path_examine") l = subprocess.check_output(cmd) if not isinstance(l, str): l = l.decode('utf-8') l = json.loads(l) test_debug(repr(l)) test_ok() libpath, exepath = l subtest_start("exe_safety") ap = check_affected_by(exepath, noexistok=True) if len(ap): test_ng ("%s path %s is affected by some users" % (lang, e,)) else: test_ok ("%s seems to be only affected by root. OK." % (exepath,)) subtest_start("libpath_safety") warn = False for e in libpath: ap = check_affected_by(e, noexistok=True) if len(ap): test_debug ("%s library path %s is affected by some users" % (lang, e,)) warn = True if warn: test_warn ("%s library is affected by the some users: check it." % (lang,)) else: test_ok ("%s library path seems to be only affected by root. OK." % (lang,)) def ruby_test(): for e in [x for x in os.environ.keys() if x.startswith("RUBY")]: del os.environ[e] extlang_test("ruby", ['ruby', '-e', 'require "json"; print JSON.dump([$:, File.readlink("/proc/self/exe")])']) def perl_test(): for e in [x for x in os.environ.keys() if x.startswith("PERL")]: del os.environ[e] extlang_test("perl", ['perl', '-MJSON::PP', '-MConfig', '-e', 'print encode_json([\@INC, $Config{perlpath}])']) if __name__ == '__main__': do_test(ruby_test) do_test(perl_test) test_summary()
[ "subprocess.check_output", "os.path.dirname", "json.loads", "os.environ.keys" ]
[((181, 206), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (196, 206), False, 'import os\n'), ((358, 386), 'subprocess.check_output', 'subprocess.check_output', (['cmd'], {}), '(cmd)\n', (381, 386), False, 'import subprocess\n'), ((456, 469), 'json.loads', 'json.loads', (['l'], {}), '(l)\n', (466, 469), False, 'import json\n'), ((1281, 1298), 'os.environ.keys', 'os.environ.keys', ([], {}), '()\n', (1296, 1298), False, 'import os\n'), ((1509, 1526), 'os.environ.keys', 'os.environ.keys', ([], {}), '()\n', (1524, 1526), False, 'import os\n')]
from tensorboardX import SummaryWriter import time import shutil import sys import numpy as np import json import os from tqdm import tqdm import matplotlib.pyplot as plt import torch from torch import nn from torch import optim from torch.utils.data import DataLoader from sklearn.metrics import precision_score from sklearn.metrics import accuracy_score from sklearn.metrics import recall_score from classifier import loader from classifier import model as M from classifier import utils import torch.backends.cudnn as cudnn cudnn.benchmark = True def cmd_train(context): """Main command do train the network. :param context: this is a dictionary with all data from the configuration file: - 'command': run the specified command (e.g. train, test) - 'gpu': ID of the used GPU - 'bids_path_train': list of relative paths of the BIDS folders of each training center - 'bids_path_validation': list of relative paths of the BIDS folders of each validation center - 'bids_path_test': list of relative paths of the BIDS folders of each test center - 'batch_size' - 'dropout_rate' - 'batch_norm_momentum' - 'num_epochs' - 'initial_lr': initial learning rate - 'log_directory': folder name where log files are saved """ # Set the GPU gpu_number = context["gpu"] torch.cuda.set_device(gpu_number) # This code will iterate over the folders and load the data, filtering # the slices without labels and then concatenating all the datasets together # Training dataset ------------------------------------------------------- ds_train = loader.BIDSIterator(context["bids_path_train"], "training") print(f"Loaded {len(ds_train)} axial slices for the training set.") train_loader = DataLoader(ds_train, batch_size=context["batch_size"], shuffle=True, pin_memory=True, num_workers=1) # Validation dataset ------------------------------------------------------ ds_val = loader.BIDSIterator(context["bids_path_validation"], "validation") print(f"Loaded {len(ds_val)} axial slices for the validation set.") val_loader = DataLoader(ds_val, batch_size=context["batch_size"], shuffle=True, pin_memory=True, num_workers=1) # Model definition --------------------------------------------------------- model = M.Classifier(drop_rate=context["dropout_rate"], bn_momentum=context["batch_norm_momentum"]) model.cuda() num_epochs = context["num_epochs"] initial_lr = context["initial_lr"] # Using SGD with cosine annealing learning rate optimizer = optim.SGD(model.parameters(), lr=initial_lr) scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, num_epochs) # Write the metrics, images, etc to TensorBoard format writer = SummaryWriter(logdir=context["log_directory"]) # Binary Cross Entropy Loss criterion = nn.CrossEntropyLoss() # Training loop ----------------------------------------------------------- best_validation_loss = float("inf") for epoch in tqdm(range(1, num_epochs + 1), desc="Training"): start_time = time.time() scheduler.step() lr = scheduler.get_lr()[0] writer.add_scalar('learning_rate', lr, epoch) model.train() train_loss_total = 0.0 num_steps = 0 for i, batch in enumerate(train_loader): input_samples = batch["data"] input_labels = batch["label"] var_input = input_samples.cuda() var_labels = input_labels.cuda(non_blocking=True) outputs = model(var_input) loss = criterion(outputs, var_labels) train_loss_total += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() num_steps += 1 train_loss_total_avg = train_loss_total / num_steps tqdm.write(f"Epoch {epoch} training loss: {train_loss_total_avg:.4f}.") # Validation loop ----------------------------------------------------- model.eval() val_loss_total = 0.0 num_steps = 0 # setting the lists for confusion matrix true_labels = [] guessed_labels = [] for i, batch in enumerate(val_loader): input_samples = batch["data"] input_labels = batch["label"] true_labels += [int(x) for x in input_labels] with torch.no_grad(): var_input = input_samples.cuda() var_labels = input_labels.cuda(non_blocking=True) outputs = model(var_input) _, preds = torch.max(outputs, 1) lst_labels = [int(x) for x in preds] guessed_labels += lst_labels loss = criterion(outputs, var_labels) val_loss_total += loss.item() num_steps += 1 accuracy = accuracy_score(true_labels, guessed_labels) recall = recall_score(true_labels, guessed_labels, average='macro') precision = precision_score(true_labels, guessed_labels, average='macro') val_loss_total_avg = val_loss_total / num_steps tqdm.write(f"Epoch {epoch} validation loss: {val_loss_total_avg:.4f}.") tqdm.write(f"Epoch {epoch} accuracy : {accuracy :.4f}.") # add metrics for tensorboard writer.add_scalars('validation metrics', { 'accuracy': accuracy, 'recall_avg': recall, 'precision_avg': precision, }, epoch) writer.add_scalars('losses', { 'train_loss': train_loss_total_avg, 'val_loss': val_loss_total_avg, }, epoch) end_time = time.time() total_time = end_time - start_time tqdm.write("Epoch {} took {:.2f} seconds.".format(epoch, total_time)) if val_loss_total_avg < best_validation_loss: best_validation_loss = val_loss_total_avg torch.save(model.state_dict(), "./" + context["log_directory"] + "/best_model.pt") # save final model torch.save(model.state_dict(), "./" + context["log_directory"] + "/final_model.pt") return def cmd_test(context): """ Main function to test the accuracy of the model """ # Set the GPU gpu_number = context["gpu"] torch.cuda.set_device(gpu_number) # Testing dataset ------------------------------------------------------- ds_test = loader.BIDSIterator(context["bids_path_test"], "testing") print(f"Loaded {len(ds_test)} axial slices for the testing set.") test_loader = DataLoader(ds_test, batch_size=context["batch_size"], shuffle=True, pin_memory=True, num_workers=1) model = M.Classifier() model.load_state_dict( torch.load("./" + context["log_directory"] + "/best_model.pt", map_location="cuda:" + str(gpu_number))) model.cuda() model.eval() # setting the lists for confusion matrix true_labels = [] guessed_labels = [] for i, batch in enumerate(test_loader): input_samples = batch["data"] input_labels = batch["label"] true_labels += [int(x) for x in input_labels] with torch.no_grad(): test_input = input_samples.cuda() outputs = model(test_input) _, preds = torch.max(outputs, 1) lst_labels = [int(x) for x in preds] guessed_labels += lst_labels accuracy = accuracy_score(true_labels, guessed_labels) recall = recall_score(true_labels, guessed_labels, average=None) precision = precision_score(true_labels, guessed_labels, average=None) np.set_printoptions(precision=2) if not (os.path.exists("./temp/")): os.makedirs("./temp/") class_names = ["T1w", "T2star", "T2w"] # Plot normalized confusion matrix utils.plot_confusion_matrix(true_labels, guessed_labels, classes=class_names, normalize=True, title='Normalized confusion matrix') # plt.savefig("./temp/test_cm.png") utils.plot_metrics(np.array([recall, precision]), accuracy, class_names) # plt.savefig("./temp/test_accuracy.png") tqdm.write(f"Accuracy over test slices : {accuracy}") tqdm.write(f"Recall over test slices : {recall}") tqdm.write(f"Precision over test slices : {precision}") return def run_main(): if len(sys.argv) <= 1: print("\npython main.py [config.json]\n") return with open(sys.argv[1], "r") as fhandle: context = json.load(fhandle) command = context["command"] if command == 'train': cmd_train(context) shutil.copyfile(sys.argv[1], "./" + context["log_directory"] + "/config_file.json") elif command == 'test': cmd_test(context) if __name__ == "__main__": run_main()
[ "torch.nn.CrossEntropyLoss", "torch.utils.data.DataLoader", "torch.max", "sklearn.metrics.precision_score", "sklearn.metrics.recall_score", "numpy.array", "classifier.loader.BIDSIterator", "os.path.exists", "tensorboardX.SummaryWriter", "tqdm.tqdm.write", "classifier.model.Classifier", "shutil.copyfile", "time.time", "torch.cuda.set_device", "sklearn.metrics.accuracy_score", "numpy.set_printoptions", "os.makedirs", "torch.optim.lr_scheduler.CosineAnnealingLR", "classifier.utils.plot_confusion_matrix", "json.load", "torch.no_grad" ]
[((1571, 1604), 'torch.cuda.set_device', 'torch.cuda.set_device', (['gpu_number'], {}), '(gpu_number)\n', (1592, 1604), False, 'import torch\n'), ((1857, 1916), 'classifier.loader.BIDSIterator', 'loader.BIDSIterator', (["context['bids_path_train']", '"""training"""'], {}), "(context['bids_path_train'], 'training')\n", (1876, 1916), False, 'from classifier import loader\n'), ((2009, 2113), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_train'], {'batch_size': "context['batch_size']", 'shuffle': '(True)', 'pin_memory': '(True)', 'num_workers': '(1)'}), "(ds_train, batch_size=context['batch_size'], shuffle=True,\n pin_memory=True, num_workers=1)\n", (2019, 2113), False, 'from torch.utils.data import DataLoader\n'), ((2264, 2330), 'classifier.loader.BIDSIterator', 'loader.BIDSIterator', (["context['bids_path_validation']", '"""validation"""'], {}), "(context['bids_path_validation'], 'validation')\n", (2283, 2330), False, 'from classifier import loader\n'), ((2421, 2523), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_val'], {'batch_size': "context['batch_size']", 'shuffle': '(True)', 'pin_memory': '(True)', 'num_workers': '(1)'}), "(ds_val, batch_size=context['batch_size'], shuffle=True,\n pin_memory=True, num_workers=1)\n", (2431, 2523), False, 'from torch.utils.data import DataLoader\n'), ((2670, 2766), 'classifier.model.Classifier', 'M.Classifier', ([], {'drop_rate': "context['dropout_rate']", 'bn_momentum': "context['batch_norm_momentum']"}), "(drop_rate=context['dropout_rate'], bn_momentum=context[\n 'batch_norm_momentum'])\n", (2682, 2766), True, 'from classifier import model as M\n'), ((3014, 3073), 'torch.optim.lr_scheduler.CosineAnnealingLR', 'optim.lr_scheduler.CosineAnnealingLR', (['optimizer', 'num_epochs'], {}), '(optimizer, num_epochs)\n', (3050, 3073), False, 'from torch import optim\n'), ((3147, 3193), 'tensorboardX.SummaryWriter', 'SummaryWriter', ([], {'logdir': "context['log_directory']"}), "(logdir=context['log_directory'])\n", (3160, 3193), False, 'from tensorboardX import SummaryWriter\n'), ((3243, 3264), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3262, 3264), False, 'from torch import nn\n'), ((6655, 6688), 'torch.cuda.set_device', 'torch.cuda.set_device', (['gpu_number'], {}), '(gpu_number)\n', (6676, 6688), False, 'import torch\n'), ((6782, 6839), 'classifier.loader.BIDSIterator', 'loader.BIDSIterator', (["context['bids_path_test']", '"""testing"""'], {}), "(context['bids_path_test'], 'testing')\n", (6801, 6839), False, 'from classifier import loader\n'), ((6929, 7032), 'torch.utils.data.DataLoader', 'DataLoader', (['ds_test'], {'batch_size': "context['batch_size']", 'shuffle': '(True)', 'pin_memory': '(True)', 'num_workers': '(1)'}), "(ds_test, batch_size=context['batch_size'], shuffle=True,\n pin_memory=True, num_workers=1)\n", (6939, 7032), False, 'from torch.utils.data import DataLoader\n'), ((7100, 7114), 'classifier.model.Classifier', 'M.Classifier', ([], {}), '()\n', (7112, 7114), True, 'from classifier import model as M\n'), ((7825, 7868), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['true_labels', 'guessed_labels'], {}), '(true_labels, guessed_labels)\n', (7839, 7868), False, 'from sklearn.metrics import accuracy_score\n'), ((7882, 7937), 'sklearn.metrics.recall_score', 'recall_score', (['true_labels', 'guessed_labels'], {'average': 'None'}), '(true_labels, guessed_labels, average=None)\n', (7894, 7937), False, 'from sklearn.metrics import recall_score\n'), ((7954, 8012), 'sklearn.metrics.precision_score', 'precision_score', (['true_labels', 'guessed_labels'], {'average': 'None'}), '(true_labels, guessed_labels, average=None)\n', (7969, 8012), False, 'from sklearn.metrics import precision_score\n'), ((8018, 8050), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'precision': '(2)'}), '(precision=2)\n', (8037, 8050), True, 'import numpy as np\n'), ((8210, 8345), 'classifier.utils.plot_confusion_matrix', 'utils.plot_confusion_matrix', (['true_labels', 'guessed_labels'], {'classes': 'class_names', 'normalize': '(True)', 'title': '"""Normalized confusion matrix"""'}), "(true_labels, guessed_labels, classes=\n class_names, normalize=True, title='Normalized confusion matrix')\n", (8237, 8345), False, 'from classifier import utils\n'), ((8543, 8596), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Accuracy over test slices : {accuracy}"""'], {}), "(f'Accuracy over test slices : {accuracy}')\n", (8553, 8596), False, 'from tqdm import tqdm\n'), ((8601, 8650), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Recall over test slices : {recall}"""'], {}), "(f'Recall over test slices : {recall}')\n", (8611, 8650), False, 'from tqdm import tqdm\n'), ((8655, 8710), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Precision over test slices : {precision}"""'], {}), "(f'Precision over test slices : {precision}')\n", (8665, 8710), False, 'from tqdm import tqdm\n'), ((3474, 3485), 'time.time', 'time.time', ([], {}), '()\n', (3483, 3485), False, 'import time\n'), ((4246, 4317), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Epoch {epoch} training loss: {train_loss_total_avg:.4f}."""'], {}), "(f'Epoch {epoch} training loss: {train_loss_total_avg:.4f}.')\n", (4256, 4317), False, 'from tqdm import tqdm\n'), ((5256, 5299), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['true_labels', 'guessed_labels'], {}), '(true_labels, guessed_labels)\n', (5270, 5299), False, 'from sklearn.metrics import accuracy_score\n'), ((5317, 5375), 'sklearn.metrics.recall_score', 'recall_score', (['true_labels', 'guessed_labels'], {'average': '"""macro"""'}), "(true_labels, guessed_labels, average='macro')\n", (5329, 5375), False, 'from sklearn.metrics import recall_score\n'), ((5396, 5457), 'sklearn.metrics.precision_score', 'precision_score', (['true_labels', 'guessed_labels'], {'average': '"""macro"""'}), "(true_labels, guessed_labels, average='macro')\n", (5411, 5457), False, 'from sklearn.metrics import precision_score\n'), ((5524, 5595), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Epoch {epoch} validation loss: {val_loss_total_avg:.4f}."""'], {}), "(f'Epoch {epoch} validation loss: {val_loss_total_avg:.4f}.')\n", (5534, 5595), False, 'from tqdm import tqdm\n'), ((5604, 5659), 'tqdm.tqdm.write', 'tqdm.write', (['f"""Epoch {epoch} accuracy : {accuracy:.4f}."""'], {}), "(f'Epoch {epoch} accuracy : {accuracy:.4f}.')\n", (5614, 5659), False, 'from tqdm import tqdm\n'), ((6047, 6058), 'time.time', 'time.time', ([], {}), '()\n', (6056, 6058), False, 'import time\n'), ((8064, 8089), 'os.path.exists', 'os.path.exists', (['"""./temp/"""'], {}), "('./temp/')\n", (8078, 8089), False, 'import os\n'), ((8100, 8122), 'os.makedirs', 'os.makedirs', (['"""./temp/"""'], {}), "('./temp/')\n", (8111, 8122), False, 'import os\n'), ((8437, 8466), 'numpy.array', 'np.array', (['[recall, precision]'], {}), '([recall, precision])\n', (8445, 8466), True, 'import numpy as np\n'), ((8896, 8914), 'json.load', 'json.load', (['fhandle'], {}), '(fhandle)\n', (8905, 8914), False, 'import json\n'), ((9012, 9099), 'shutil.copyfile', 'shutil.copyfile', (['sys.argv[1]', "('./' + context['log_directory'] + '/config_file.json')"], {}), "(sys.argv[1], './' + context['log_directory'] +\n '/config_file.json')\n", (9027, 9099), False, 'import shutil\n'), ((7569, 7584), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (7582, 7584), False, 'import torch\n'), ((7696, 7717), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (7705, 7717), False, 'import torch\n'), ((4783, 4798), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4796, 4798), False, 'import torch\n'), ((4986, 5007), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (4995, 5007), False, 'import torch\n')]
from ADLmainloop import ADLmain, ADLmainId from ADLbasic import ADL from utilsADL import dataLoader, plotPerformance import random import torch import numpy as np import argparse import os parser = argparse.ArgumentParser() parser.add_argument('--data_dir', type=str, default='/Users/ng98/Desktop/datasets/NEW/mat/', help='Save Directory') parser.add_argument('--save_dir', type=str, default='/Users/ng98/Desktop/datasets/NEW/mat/', help='Save Directory') parser.add_argument('--random_seed', type=int, default=1, help='Random seed') parser.add_argument('--batch_size', type=int, default=1, help='Batch size for test and train') args = parser.parse_args() # random seed control np.random.seed(args.random_seed) torch.manual_seed(args.random_seed) random.seed(args.random_seed) batch_size = args.batch_size trainingBatchSize = args.batch_size datasets = [ "elecNormNew", "nomao", "WISDM_ar_v1.1_transformed", "covtypeNorm", # "airlines", "RBF_f", "RBF_m", "AGR_a", "AGR_g", "LED_a", "LED_g", # # "kdd99", # # "gisette_scale_class_Nominal", "epsilon_normalized.t_class_Nominal", "SVHN.scale.t.libsvm.sparse_class_Nominal", "spam_corpus", "sector.scale.libsvm.class_Nominal_sparse" ] # for f in AGR_a.arff AGR_g.arff WISDM_ar_v1.1_transformed.arff airlines.arff elecNormNew.arff kdd99.arff nomao.arff; do printf "'%s': [" $f; grep '@attribute' $f |grep -n '{'|awk -F ':' '{printf "%d, ", $1-1}'; printf "],\n"; done # 'AGR_a.arff': [3, 4, 5, 9, ], # 'AGR_g.arff': [3, 4, 5, 9, ], # 'WISDM_ar_v1.1_transformed.arff': [1, 45, ], # 'airlines.arff': [0, 2, 3, 4, 7, ], # 'elecNormNew.arff': [1, 8, ], # 'kdd99.arff': [1, 2, 3, 6, 11, 20, 21, 41, ], # 'nomao.arff': [6, 7, 14, 15, 22, 23, 30, 31, 38, 39, 46, 47, 54, 55, 62, 63, 70, 71, 78, 79, 86, 87, 91, 95, 99, 103, 107, 111, 115, 118, ], onehot_columns = { 'AGR_a': [3, 4, 5], 'AGR_g': [3, 4, 5], 'WISDM_ar_v1.1_transformed': [1], 'airlines': [0, 2, 3, 4], 'elecNormNew': [1], 'kdd99': [1, 2, 3, 6, 11, 20, 21], 'nomao': [6, 7, 14, 15, 22, 23, 30, 31, 38, 39, 46, 47, 54, 55, 62, 63, 70, 71, 78, 79, 86, 87, 91, 95, 99, 103, 107, 111, 115], } for d in datasets: f = os.path.join(args.data_dir, d + '.mat') p_dump_f = os.path.join(args.save_dir, d + '_predictions.csv') # load data dataStreams = dataLoader(f, batchSize=batch_size, onehot_columns = onehot_columns[d] if d in onehot_columns.keys() else None) print('All labeled') # initialization ADLnet = ADL(dataStreams.nInput,dataStreams.nOutput, predictions_dump_file=p_dump_f) ADLnet0, performanceHistory0, allPerformance0 = ADLmain(ADLnet,dataStreams, trainingBatchSize=trainingBatchSize, normalize=True) plotPerformance(performanceHistory0[0],performanceHistory0[1],performanceHistory0[2], performanceHistory0[3],performanceHistory0[4],performanceHistory0[5]) print("Dataset,{},{}".format(d, allPerformance0[0]))
[ "torch.manual_seed", "utilsADL.plotPerformance", "argparse.ArgumentParser", "os.path.join", "ADLbasic.ADL", "random.seed", "numpy.random.seed", "ADLmainloop.ADLmain" ]
[((199, 224), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (222, 224), False, 'import argparse\n'), ((720, 752), 'numpy.random.seed', 'np.random.seed', (['args.random_seed'], {}), '(args.random_seed)\n', (734, 752), True, 'import numpy as np\n'), ((753, 788), 'torch.manual_seed', 'torch.manual_seed', (['args.random_seed'], {}), '(args.random_seed)\n', (770, 788), False, 'import torch\n'), ((789, 818), 'random.seed', 'random.seed', (['args.random_seed'], {}), '(args.random_seed)\n', (800, 818), False, 'import random\n'), ((2444, 2483), 'os.path.join', 'os.path.join', (['args.data_dir', "(d + '.mat')"], {}), "(args.data_dir, d + '.mat')\n", (2456, 2483), False, 'import os\n'), ((2499, 2550), 'os.path.join', 'os.path.join', (['args.save_dir', "(d + '_predictions.csv')"], {}), "(args.save_dir, d + '_predictions.csv')\n", (2511, 2550), False, 'import os\n'), ((2816, 2892), 'ADLbasic.ADL', 'ADL', (['dataStreams.nInput', 'dataStreams.nOutput'], {'predictions_dump_file': 'p_dump_f'}), '(dataStreams.nInput, dataStreams.nOutput, predictions_dump_file=p_dump_f)\n', (2819, 2892), False, 'from ADLbasic import ADL\n'), ((2945, 3031), 'ADLmainloop.ADLmain', 'ADLmain', (['ADLnet', 'dataStreams'], {'trainingBatchSize': 'trainingBatchSize', 'normalize': '(True)'}), '(ADLnet, dataStreams, trainingBatchSize=trainingBatchSize, normalize\n =True)\n', (2952, 3031), False, 'from ADLmainloop import ADLmain, ADLmainId\n'), ((3031, 3198), 'utilsADL.plotPerformance', 'plotPerformance', (['performanceHistory0[0]', 'performanceHistory0[1]', 'performanceHistory0[2]', 'performanceHistory0[3]', 'performanceHistory0[4]', 'performanceHistory0[5]'], {}), '(performanceHistory0[0], performanceHistory0[1],\n performanceHistory0[2], performanceHistory0[3], performanceHistory0[4],\n performanceHistory0[5])\n', (3046, 3198), False, 'from utilsADL import dataLoader, plotPerformance\n')]
from django.db import models from django.utils import timezone from taggit.managers import TaggableManager class Game(models.Model): id = models.BigAutoField(primary_key=True) created_at = models.DateTimeField(blank=True, null=True) updated_at = models.DateTimeField(blank=True, null=True) deleted_at = models.DateTimeField(blank=True, null=True) name = models.CharField(unique=True, max_length=128) img_path = models.CharField(max_length=256, blank=True, null=True) publish_time = models.DateTimeField(blank=True, null=True) class Meta: managed = False db_table = 'monitor_game' verbose_name = '游戏' verbose_name_plural = verbose_name class Article(models.Model): """文章""" STATUS_CHOICES = ( ('draft', 'Draft'), ('published', 'Published'), ) id = models.AutoField(primary_key=True, verbose_name='ID') website_name = models.CharField(max_length=50, verbose_name='来源网站的名称') url = models.CharField(max_length=500, unique=True, verbose_name='文章链接') title = models.CharField(max_length=250, verbose_name='文章标题') content = models.TextField(verbose_name='文章内容') click = models.BigIntegerField(default=0, verbose_name='点击次数') creator = models.CharField(default='niracler', max_length=64, verbose_name='创建者用户名') publish_time = models.DateTimeField(default=timezone.now, verbose_name='发布时间') created = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') updated = models.DateTimeField(auto_now=True, verbose_name='更新时间') status = models.CharField(max_length=10, choices=STATUS_CHOICES, default='draft', verbose_name='状态') tags = TaggableManager() class Meta: ordering = ('-publish_time',) verbose_name = '游戏新闻' verbose_name_plural = verbose_name def __str__(self): return self.title class Event(models.Model): id = models.BigAutoField(primary_key=True, verbose_name='ID') name = models.CharField(max_length=128,unique=True, verbose_name='事件名称') articles = models.ManyToManyField(Article, related_name='articles', verbose_name='新闻列表') creator = models.CharField(default='niracler', max_length=64, verbose_name='创建者用户名') click = models.BigIntegerField(default=0, verbose_name='点击次数') created = models.DateTimeField(auto_now_add=True, verbose_name='创建时间') updated = models.DateTimeField(default=timezone.now, verbose_name='更新时间') class Meta: ordering = ('-updated',) verbose_name = '游戏新闻事件' verbose_name_plural = verbose_name def __str__(self): return self.name
[ "django.db.models.TextField", "django.db.models.ManyToManyField", "taggit.managers.TaggableManager", "django.db.models.AutoField", "django.db.models.BigIntegerField", "django.db.models.BigAutoField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((143, 180), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (162, 180), False, 'from django.db import models\n'), ((198, 241), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (218, 241), False, 'from django.db import models\n'), ((259, 302), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (279, 302), False, 'from django.db import models\n'), ((320, 363), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (340, 363), False, 'from django.db import models\n'), ((375, 420), 'django.db.models.CharField', 'models.CharField', ([], {'unique': '(True)', 'max_length': '(128)'}), '(unique=True, max_length=128)\n', (391, 420), False, 'from django.db import models\n'), ((436, 491), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)', 'blank': '(True)', 'null': '(True)'}), '(max_length=256, blank=True, null=True)\n', (452, 491), False, 'from django.db import models\n'), ((511, 554), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (531, 554), False, 'from django.db import models\n'), ((847, 900), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'verbose_name': '"""ID"""'}), "(primary_key=True, verbose_name='ID')\n", (863, 900), False, 'from django.db import models\n'), ((920, 975), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'verbose_name': '"""来源网站的名称"""'}), "(max_length=50, verbose_name='来源网站的名称')\n", (936, 975), False, 'from django.db import models\n'), ((986, 1052), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(500)', 'unique': '(True)', 'verbose_name': '"""文章链接"""'}), "(max_length=500, unique=True, verbose_name='文章链接')\n", (1002, 1052), False, 'from django.db import models\n'), ((1065, 1118), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(250)', 'verbose_name': '"""文章标题"""'}), "(max_length=250, verbose_name='文章标题')\n", (1081, 1118), False, 'from django.db import models\n'), ((1133, 1170), 'django.db.models.TextField', 'models.TextField', ([], {'verbose_name': '"""文章内容"""'}), "(verbose_name='文章内容')\n", (1149, 1170), False, 'from django.db import models\n'), ((1183, 1237), 'django.db.models.BigIntegerField', 'models.BigIntegerField', ([], {'default': '(0)', 'verbose_name': '"""点击次数"""'}), "(default=0, verbose_name='点击次数')\n", (1205, 1237), False, 'from django.db import models\n'), ((1252, 1326), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""niracler"""', 'max_length': '(64)', 'verbose_name': '"""创建者用户名"""'}), "(default='niracler', max_length=64, verbose_name='创建者用户名')\n", (1268, 1326), False, 'from django.db import models\n'), ((1346, 1409), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'timezone.now', 'verbose_name': '"""发布时间"""'}), "(default=timezone.now, verbose_name='发布时间')\n", (1366, 1409), False, 'from django.db import models\n'), ((1424, 1484), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""创建时间"""'}), "(auto_now_add=True, verbose_name='创建时间')\n", (1444, 1484), False, 'from django.db import models\n'), ((1499, 1555), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'verbose_name': '"""更新时间"""'}), "(auto_now=True, verbose_name='更新时间')\n", (1519, 1555), False, 'from django.db import models\n'), ((1569, 1664), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'choices': 'STATUS_CHOICES', 'default': '"""draft"""', 'verbose_name': '"""状态"""'}), "(max_length=10, choices=STATUS_CHOICES, default='draft',\n verbose_name='状态')\n", (1585, 1664), False, 'from django.db import models\n'), ((1672, 1689), 'taggit.managers.TaggableManager', 'TaggableManager', ([], {}), '()\n', (1687, 1689), False, 'from taggit.managers import TaggableManager\n'), ((1905, 1961), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'primary_key': '(True)', 'verbose_name': '"""ID"""'}), "(primary_key=True, verbose_name='ID')\n", (1924, 1961), False, 'from django.db import models\n'), ((1973, 2039), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(128)', 'unique': '(True)', 'verbose_name': '"""事件名称"""'}), "(max_length=128, unique=True, verbose_name='事件名称')\n", (1989, 2039), False, 'from django.db import models\n'), ((2054, 2131), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['Article'], {'related_name': '"""articles"""', 'verbose_name': '"""新闻列表"""'}), "(Article, related_name='articles', verbose_name='新闻列表')\n", (2076, 2131), False, 'from django.db import models\n'), ((2146, 2220), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""niracler"""', 'max_length': '(64)', 'verbose_name': '"""创建者用户名"""'}), "(default='niracler', max_length=64, verbose_name='创建者用户名')\n", (2162, 2220), False, 'from django.db import models\n'), ((2233, 2287), 'django.db.models.BigIntegerField', 'models.BigIntegerField', ([], {'default': '(0)', 'verbose_name': '"""点击次数"""'}), "(default=0, verbose_name='点击次数')\n", (2255, 2287), False, 'from django.db import models\n'), ((2302, 2362), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'verbose_name': '"""创建时间"""'}), "(auto_now_add=True, verbose_name='创建时间')\n", (2322, 2362), False, 'from django.db import models\n'), ((2377, 2440), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'default': 'timezone.now', 'verbose_name': '"""更新时间"""'}), "(default=timezone.now, verbose_name='更新时间')\n", (2397, 2440), False, 'from django.db import models\n')]
from django.contrib.auth import models import factory from committee_admissions.admissions.models import ( Admission, Committee, CommitteeApplication, UserApplication, ) class RandomUserFactory(factory.DjangoModelFactory): class Meta: model = models.User first_name = factory.Faker("first_name") last_name = factory.Faker("last_name") email = factory.Faker("safe_email") username = factory.Sequence(lambda n: "user_%d" % n) password = factory.PostGenerationMethodCall("set_password", "<PASSWORD>") is_active = True class RandomAdmissionFactory(factory.DjangoModelFactory): class Meta: model = Admission title = factory.Sequence(lambda n: "Opptak %d" % n) open_from = factory.Faker("past_datetime", start_date="-10d", tzinfo=None) public_deadline = factory.Faker("future_datetime", end_date="+15d", tzinfo=None) application_deadline = factory.Faker( "future_datetime", end_date="+15d", tzinfo=None ) class RandomCommitteeFactory(factory.DjangoModelFactory): class Meta: model = Committee django_get_or_create = ("name",) name = factory.Iterator( ["Webkom", "Arrkom", "Bedkom", "Fagkom", "Koskom", "LaBamba", "readme", "PR"] ) description = factory.Faker("text", max_nb_chars=200) response_label = factory.Faker("text", max_nb_chars=50) logo = factory.django.FileField(filename="committee.png") class RandomUserApplicationFactory(factory.DjangoModelFactory): class Meta: model = UserApplication admission = RandomAdmissionFactory() user = factory.SubFactory(RandomUserFactory) text = factory.Faker("text", max_nb_chars=50) time_sent = factory.Faker("past_datetime", start_date="-0d", tzinfo=None) class RandomCommitteeApplicationFactory(factory.DjangoModelFactory): class Meta: model = CommitteeApplication application = factory.SubFactory(RandomUserApplicationFactory) committee = factory.SubFactory(RandomCommitteeFactory) text = factory.Faker("text", max_nb_chars=200)
[ "factory.Iterator", "factory.SubFactory", "factory.Faker", "factory.django.FileField", "factory.PostGenerationMethodCall", "factory.Sequence" ]
[((305, 332), 'factory.Faker', 'factory.Faker', (['"""first_name"""'], {}), "('first_name')\n", (318, 332), False, 'import factory\n'), ((349, 375), 'factory.Faker', 'factory.Faker', (['"""last_name"""'], {}), "('last_name')\n", (362, 375), False, 'import factory\n'), ((388, 415), 'factory.Faker', 'factory.Faker', (['"""safe_email"""'], {}), "('safe_email')\n", (401, 415), False, 'import factory\n'), ((431, 472), 'factory.Sequence', 'factory.Sequence', (["(lambda n: 'user_%d' % n)"], {}), "(lambda n: 'user_%d' % n)\n", (447, 472), False, 'import factory\n'), ((488, 550), 'factory.PostGenerationMethodCall', 'factory.PostGenerationMethodCall', (['"""set_password"""', '"""<PASSWORD>"""'], {}), "('set_password', '<PASSWORD>')\n", (520, 550), False, 'import factory\n'), ((687, 730), 'factory.Sequence', 'factory.Sequence', (["(lambda n: 'Opptak %d' % n)"], {}), "(lambda n: 'Opptak %d' % n)\n", (703, 730), False, 'import factory\n'), ((747, 809), 'factory.Faker', 'factory.Faker', (['"""past_datetime"""'], {'start_date': '"""-10d"""', 'tzinfo': 'None'}), "('past_datetime', start_date='-10d', tzinfo=None)\n", (760, 809), False, 'import factory\n'), ((832, 894), 'factory.Faker', 'factory.Faker', (['"""future_datetime"""'], {'end_date': '"""+15d"""', 'tzinfo': 'None'}), "('future_datetime', end_date='+15d', tzinfo=None)\n", (845, 894), False, 'import factory\n'), ((922, 984), 'factory.Faker', 'factory.Faker', (['"""future_datetime"""'], {'end_date': '"""+15d"""', 'tzinfo': 'None'}), "('future_datetime', end_date='+15d', tzinfo=None)\n", (935, 984), False, 'import factory\n'), ((1154, 1253), 'factory.Iterator', 'factory.Iterator', (["['Webkom', 'Arrkom', 'Bedkom', 'Fagkom', 'Koskom', 'LaBamba', 'readme', 'PR']"], {}), "(['Webkom', 'Arrkom', 'Bedkom', 'Fagkom', 'Koskom',\n 'LaBamba', 'readme', 'PR'])\n", (1170, 1253), False, 'import factory\n'), ((1282, 1321), 'factory.Faker', 'factory.Faker', (['"""text"""'], {'max_nb_chars': '(200)'}), "('text', max_nb_chars=200)\n", (1295, 1321), False, 'import factory\n'), ((1343, 1381), 'factory.Faker', 'factory.Faker', (['"""text"""'], {'max_nb_chars': '(50)'}), "('text', max_nb_chars=50)\n", (1356, 1381), False, 'import factory\n'), ((1393, 1443), 'factory.django.FileField', 'factory.django.FileField', ([], {'filename': '"""committee.png"""'}), "(filename='committee.png')\n", (1417, 1443), False, 'import factory\n'), ((1611, 1648), 'factory.SubFactory', 'factory.SubFactory', (['RandomUserFactory'], {}), '(RandomUserFactory)\n', (1629, 1648), False, 'import factory\n'), ((1660, 1698), 'factory.Faker', 'factory.Faker', (['"""text"""'], {'max_nb_chars': '(50)'}), "('text', max_nb_chars=50)\n", (1673, 1698), False, 'import factory\n'), ((1715, 1776), 'factory.Faker', 'factory.Faker', (['"""past_datetime"""'], {'start_date': '"""-0d"""', 'tzinfo': 'None'}), "('past_datetime', start_date='-0d', tzinfo=None)\n", (1728, 1776), False, 'import factory\n'), ((1920, 1968), 'factory.SubFactory', 'factory.SubFactory', (['RandomUserApplicationFactory'], {}), '(RandomUserApplicationFactory)\n', (1938, 1968), False, 'import factory\n'), ((1985, 2027), 'factory.SubFactory', 'factory.SubFactory', (['RandomCommitteeFactory'], {}), '(RandomCommitteeFactory)\n', (2003, 2027), False, 'import factory\n'), ((2039, 2078), 'factory.Faker', 'factory.Faker', (['"""text"""'], {'max_nb_chars': '(200)'}), "('text', max_nb_chars=200)\n", (2052, 2078), False, 'import factory\n')]
""" Finds the number of pythagorean triangles where the perimeter is less than 100 million and central small square dividing the bigger square Author: <NAME> """ import math from time import time from utils import decompose_primes, prime_factors from decimal import * """ Finds the number of pythagorean triangles where the perimeter is less than 100 million and central small square dividing the bigger square """ def pythagorean_triplets(limit_n): primes = prime_factors(1000) total = 0 t0 = time() for m in range(2,limit_n+1): if 2*m**2+2*m>=limit_n: break factors = decompose_primes(m,primes,True) inc = 1 if m%2==0: inc = 2 complete = False for n in range(1,m,inc): if inc==1 and n%2==1: continue are_coprime=True for p in factors: if n%p==0: are_coprime = False break if are_coprime: a = m**2-n**2 b = 2*m*n c = m**2+n**2 if (a+b+c)>=limit_n: break if c%(b-a)==0: print(a,b,c) total += limit_n//(a+b+c) if complete: break t1= time() print('Time to reach solution: {0} sec'.format(t1-t0)) return total if __name__ == "__main__": limit_n = 10**8 print('The number of pythagorean triangles where the perimeter is less than {0} and match condition is {1}'.format(limit_n,pythagorean_triplets(limit_n)))
[ "utils.decompose_primes", "time.time", "utils.prime_factors" ]
[((465, 484), 'utils.prime_factors', 'prime_factors', (['(1000)'], {}), '(1000)\n', (478, 484), False, 'from utils import decompose_primes, prime_factors\n'), ((508, 514), 'time.time', 'time', ([], {}), '()\n', (512, 514), False, 'from time import time\n'), ((1306, 1312), 'time.time', 'time', ([], {}), '()\n', (1310, 1312), False, 'from time import time\n'), ((616, 649), 'utils.decompose_primes', 'decompose_primes', (['m', 'primes', '(True)'], {}), '(m, primes, True)\n', (632, 649), False, 'from utils import decompose_primes, prime_factors\n')]
import autoarray as aa import autoarray.plot as aplt from autoarray.plot import mat_objs from os import path import matplotlib.pyplot as plt import matplotlib.colors as colors import pytest import os, shutil import numpy as np directory = path.dirname(path.realpath(__file__)) @pytest.fixture(autouse=True) def set_config_path(): aa.conf.instance = aa.conf.Config( path.join(directory, "../test_files/plot"), path.join(directory, "output") ) class TestFigure: def test__aspect_from_shape_2d(self): figure = aplt.Figure(aspect="auto") aspect = figure.aspect_from_shape_2d(shape_2d=(2, 2)) assert aspect == "auto" figure = aplt.Figure(aspect="square") aspect = figure.aspect_from_shape_2d(shape_2d=(2, 2)) assert aspect == 1.0 aspect = figure.aspect_from_shape_2d(shape_2d=(4, 2)) assert aspect == 0.5 def test__open_and_close__open_and_close_figures_correct(self): figure = aplt.Figure() figure.open() assert plt.fignum_exists(num=1) == True figure.close() assert plt.fignum_exists(num=1) == False class TestColorMap: def test__norm_from_array__uses_input_norm_min_and_max_if_input(self): cmap = aplt.ColorMap(norm_min=0.0, norm_max=1.0, norm="linear") norm = cmap.norm_from_array(array=None) assert isinstance(norm, colors.Normalize) assert norm.vmin == 0.0 assert norm.vmax == 1.0 cmap = aplt.ColorMap(norm_min=0.0, norm_max=1.0, norm="log") norm = cmap.norm_from_array(array=None) assert isinstance(norm, colors.LogNorm) assert norm.vmin == 1.0e-4 # Increased from 0.0 to ensure min isn't inf assert norm.vmax == 1.0 cmap = aplt.ColorMap( norm_min=0.0, norm_max=1.0, linthresh=2.0, linscale=3.0, norm="symmetric_log", ) norm = cmap.norm_from_array(array=None) assert isinstance(norm, colors.SymLogNorm) assert norm.vmin == 0.0 assert norm.vmax == 1.0 assert norm.linthresh == 2.0 def test__norm_from_array__uses_array_to_get_norm_min_and_max_if_no_manual_input( self ): array = aa.array.ones(shape_2d=(2, 2)) array[0] = 0.0 cmap = aplt.ColorMap(norm_min=None, norm_max=None, norm="linear") norm = cmap.norm_from_array(array=array) assert isinstance(norm, colors.Normalize) assert norm.vmin == 0.0 assert norm.vmax == 1.0 cmap = aplt.ColorMap(norm_min=None, norm_max=None, norm="log") norm = cmap.norm_from_array(array=array) assert isinstance(norm, colors.LogNorm) assert norm.vmin == 1.0e-4 # Increased from 0.0 to ensure min isn't inf assert norm.vmax == 1.0 cmap = aplt.ColorMap( norm_min=None, norm_max=None, linthresh=2.0, linscale=3.0, norm="symmetric_log", ) norm = cmap.norm_from_array(array=array) assert isinstance(norm, colors.SymLogNorm) assert norm.vmin == 0.0 assert norm.vmax == 1.0 assert norm.linthresh == 2.0 class TestColorBar: def test__plot__works_for_reasonable_range_of_values(self): figure = aplt.Figure() figure.open() plt.imshow(np.ones((2, 2))) cb = aplt.ColorBar(ticksize=1, fraction=1.0, pad=2.0) cb.set() figure.close() figure.open() plt.imshow(np.ones((2, 2))) cb = aplt.ColorBar( ticksize=1, fraction=0.1, pad=0.5, tick_values=[0.25, 0.5, 0.75], tick_labels=[1.0, 2.0, 3.0], ) cb.set() figure.close() figure.open() plt.imshow(np.ones((2, 2))) cb = aplt.ColorBar(ticksize=1, fraction=0.1, pad=0.5) cb.set_with_values(cmap=aplt.ColorMap().cmap, color_values=[1.0, 2.0, 3.0]) figure.close() class TestTicks: def test__set_yx_ticks__works_for_good_values(self): array = aa.array.ones(shape_2d=(2, 2), pixel_scales=1.0) units = aplt.Units(use_scaled=True, conversion_factor=None) ticks = aplt.Ticks(ysize=34, xsize=35) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks = aplt.Ticks(ysize=34, xsize=35) units = aplt.Units(use_scaled=False, conversion_factor=None) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks = aplt.Ticks(ysize=34, xsize=35) units = aplt.Units(use_scaled=True, conversion_factor=2.0) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks = aplt.Ticks(ysize=34, xsize=35) units = aplt.Units(use_scaled=False, conversion_factor=2.0) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=False, ) ticks.set_yticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) ticks.set_xticks( array=array, extent=array.extent_of_zoomed_array(buffer=1), units=units, symmetric_around_centre=True, ) class TestLabels: def test__yx_units_use_plot_in_kpc_if_it_is_passed(self): labels = aplt.Labels() units = aplt.Units(in_kpc=True) assert labels._yunits == None assert labels._xunits == None assert labels.yunits_from_units(units=units) == "kpc" assert labels.xunits_from_units(units=units) == "kpc" labels = aplt.Labels() units = aplt.Units(in_kpc=False) assert labels._yunits == None assert labels._xunits == None assert labels.yunits_from_units(units=units) == "arcsec" assert labels.xunits_from_units(units=units) == "arcsec" labels = aplt.Labels(yunits="hi", xunits="hi2") units = aplt.Units(in_kpc=True) assert labels._yunits == "hi" assert labels._xunits == "hi2" assert labels.yunits_from_units(units=units) == "hi" assert labels.xunits_from_units(units=units) == "hi2" labels = aplt.Labels(yunits="hi", xunits="hi2") units = aplt.Units(in_kpc=False) assert labels._yunits == "hi" assert labels._xunits == "hi2" assert labels.yunits_from_units(units=units) == "hi" assert labels.xunits_from_units(units=units) == "hi2" def test__title_from_func__uses_func_name_if_title_is_none(self): def toy_func(): pass labels = aplt.Labels(title=None) title_from_func = labels.title_from_func(func=toy_func) assert title_from_func == "Toy_func" labels = aplt.Labels(title="Hi") title_from_func = labels.title_from_func(func=toy_func) assert title_from_func == "Hi" def test__yx_units_from_func__uses_function_inputs_if_available(self): def toy_func(): pass labels = aplt.Labels(yunits=None, xunits=None) yunits_from_func = labels.yunits_from_func(func=toy_func) xunits_from_func = labels.xunits_from_func(func=toy_func) assert yunits_from_func == None assert xunits_from_func == None def toy_func(label_yunits="Hi", label_xunits="Hi0"): pass labels = aplt.Labels() yunits_from_func = labels.yunits_from_func(func=toy_func) xunits_from_func = labels.xunits_from_func(func=toy_func) assert yunits_from_func == "Hi" assert xunits_from_func == "Hi0" labels = aplt.Labels(yunits="Hi1", xunits="Hi2") yunits_from_func = labels.yunits_from_func(func=toy_func) xunits_from_func = labels.xunits_from_func(func=toy_func) assert yunits_from_func == "Hi1" assert xunits_from_func == "Hi2" def toy_func(argument, label_yunits="Hi", label_xunits="Hi0"): pass labels = aplt.Labels() yunits_from_func = labels.yunits_from_func(func=toy_func) xunits_from_func = labels.xunits_from_func(func=toy_func) assert yunits_from_func == "Hi" assert xunits_from_func == "Hi0" labels = aplt.Labels(yunits="Hi1", xunits="Hi2") yunits_from_func = labels.yunits_from_func(func=toy_func) xunits_from_func = labels.xunits_from_func(func=toy_func) assert yunits_from_func == "Hi1" assert xunits_from_func == "Hi2" class TestLegend: def test__set_legend_works_for_plot(self): figure = aplt.Figure(aspect="auto") figure.open() liner = aplt.Liner(width=2, style="-", colors="k", pointsize=2) liner.draw_y_vs_x( y=[1.0, 2.0, 3.0], x=[1.0, 2.0, 3.0], plot_axis_type="linear", label="hi" ) legend = aplt.Legend(include=True, fontsize=1) legend.set() figure.close() class TestOutput: def test__input_path_is_created(self): test_path = path.join(directory, "../test_files/output_path") if os.path.exists(test_path): shutil.rmtree(test_path) assert not os.path.exists(test_path) output = aplt.Output(path=test_path) assert os.path.exists(test_path) def test__filename_from_func__returns_function_name_if_no_filename(self): def toy_func(): pass output = aplt.Output(filename=None) filename_from_func = output.filename_from_func(func=toy_func) assert filename_from_func == "toy_func" output = aplt.Output(filename="Hi") filename_from_func = output.filename_from_func(func=toy_func) assert filename_from_func == "Hi" class TestScatterer: def test__scatter_grid__lists_of_coordinates_or_equivalent_2d_grids(self): scatterer = mat_objs.Scatterer(size=2, marker="x", colors="k") scatterer.scatter_grids(grids=[(1.0, 1.0), (2.0, 2.0)]) scatterer.scatter_grids( grids=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0) ) def test__scatter_grid__lists_of_lists_of_coordinates_or_equivalent_2d_grids(self): scatterer = mat_objs.Scatterer(size=2, marker="x", colors="k") scatterer.scatter_grids(grids=[[(1.0, 1.0), (2.0, 2.0)]]) scatterer.scatter_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], [(3.0, 3.0)]]) scatterer.scatter_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], []]) scatterer.scatter_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], [None]]) scatterer.scatter_grids( grids=[ aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), ] ) def test__scatter_colored_grid__lists_of_coordinates_or_equivalent_2d_grids__with_color_array( self ): scatterer = mat_objs.Scatterer(size=2, marker="x", colors="k") cmap = plt.get_cmap("jet") scatterer.scatter_colored_grid( grid=[(1.0, 1.0), (2.0, 2.0), (3.0, 3.0), (4.0, 4.0), (5.0, 5.0)], color_array=np.array([2.0, 2.0, 2.0, 2.0, 2.0]), cmap=cmap, ) scatterer.scatter_colored_grid( grid=aa.grid.uniform(shape_2d=(3, 2), pixel_scales=1.0), color_array=np.array([2.0, 2.0, 2.0, 2.0, 2.0, 2.0]), cmap=cmap, ) def test__scatter_grid_indexes_1d__input_grid_is_ndarray_and_indexes_are_valid( self ): scatterer = mat_objs.Scatterer(size=2, marker="x", colors="k") scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[0, 1, 2] ) scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[[0, 1, 2]] ) scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[[0, 1], [2]], ) def test__scatter_grid_indexes_2d__input_grid_is_ndarray_and_indexes_are_valid( self ): scatterer = mat_objs.Scatterer(size=2, marker="x", colors="k") scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[(0, 0), (0, 1), (0, 2)], ) scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[[(0, 0), (0, 1), (0, 2)]], ) scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[[(0, 0), (0, 1)], [(0, 2)]], ) scatterer.scatter_grid_indexes( grid=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), indexes=[[[0, 0], [0, 1]], [[0, 2]]], ) class TestLiner: def test__draw_y_vs_x__works_for_reasonable_values(self): liner = aplt.Liner(width=2, style="-", colors="k", pointsize=2) liner.draw_y_vs_x(y=[1.0, 2.0, 3.0], x=[1.0, 2.0, 3.0], plot_axis_type="linear") liner.draw_y_vs_x( y=[1.0, 2.0, 3.0], x=[1.0, 2.0, 3.0], plot_axis_type="semilogy" ) liner.draw_y_vs_x(y=[1.0, 2.0, 3.0], x=[1.0, 2.0, 3.0], plot_axis_type="loglog") liner.draw_y_vs_x( y=[1.0, 2.0, 3.0], x=[1.0, 2.0, 3.0], plot_axis_type="scatter" ) def test__draw_vertical_lines__works_for_reasonable_values(self): liner = aplt.Liner(width=2, style="-", colors="k", pointsize=2) liner.draw_vertical_lines(vertical_lines=[[0.0]]) liner.draw_vertical_lines(vertical_lines=[[1.0], [2.0]]) liner.draw_vertical_lines(vertical_lines=[[0.0]], vertical_line_labels=["hi"]) liner.draw_vertical_lines( vertical_lines=[[1.0], [2.0]], vertical_line_labels=["hi1", "hi2"] ) def test__draw_grid__lists_of_coordinates_or_equivalent_2d_grids(self): liner = aplt.Liner(width=2, style="-", colors="k") liner.draw_grids(grids=[(1.0, 1.0), (2.0, 2.0)]) liner.draw_grids(grids=aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0)) liner.draw_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], [(3.0, 3.0), (4.0, 4.0)]]) liner.draw_grids( grids=[ aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), ] ) def test__draw_grid__lists_of_lists_of_coordinates_or_equivalent_2d_grids(self): liner = aplt.Liner(width=2, style="--", colors="k") liner.draw_grids(grids=[[(1.0, 1.0), (2.0, 2.0)]]) liner.draw_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], [(3.0, 3.0)]]) liner.draw_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], []]) liner.draw_grids(grids=[[(1.0, 1.0), (2.0, 2.0)], [None]]) liner.draw_grids( grids=[ aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), aa.grid.uniform(shape_2d=(3, 3), pixel_scales=1.0), ] ) def test__draw_rectangular_grid_lines__draws_for_valid_extent_and_shape(self): liner = aplt.Liner(width=2, style="--", colors="k") liner.draw_rectangular_grid_lines(extent=[0.0, 1.0, 0.0, 1.0], shape_2d=(3, 2)) liner.draw_rectangular_grid_lines( extent=[-4.0, 8.0, -3.0, 10.0], shape_2d=(8, 3) ) class TestVoronoiDrawer: def test__draws_voronoi_pixels_for_sensible_input(self, voronoi_mapper_9_3x3): voronoi_drawer = aplt.VoronoiDrawer(edgewidth=0.5, edgecolor="r", alpha=1.0) voronoi_drawer.draw_voronoi_pixels( mapper=voronoi_mapper_9_3x3, values=None, cmap=None, cb=None ) voronoi_drawer.draw_voronoi_pixels( mapper=voronoi_mapper_9_3x3, values=np.ones(9), cmap="jet", cb=aplt.ColorBar(ticksize=1, fraction=0.1, pad=0.05), )
[ "autoarray.grid.uniform", "numpy.array", "pytest.fixture", "autoarray.array.ones", "os.path.exists", "autoarray.plot.Labels", "autoarray.plot.mat_objs.Scatterer", "autoarray.plot.ColorMap", "autoarray.plot.Figure", "numpy.ones", "autoarray.plot.VoronoiDrawer", "autoarray.plot.Liner", "autoarray.plot.ColorBar", "matplotlib.pyplot.get_cmap", "matplotlib.pyplot.fignum_exists", "autoarray.plot.Ticks", "os.path.join", "os.path.realpath", "autoarray.plot.Legend", "autoarray.plot.Output", "shutil.rmtree", "autoarray.plot.Units" ]
[((284, 312), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (298, 312), False, 'import pytest\n'), ((256, 279), 'os.path.realpath', 'path.realpath', (['__file__'], {}), '(__file__)\n', (269, 279), False, 'from os import path\n'), ((383, 425), 'os.path.join', 'path.join', (['directory', '"""../test_files/plot"""'], {}), "(directory, '../test_files/plot')\n", (392, 425), False, 'from os import path\n'), ((427, 457), 'os.path.join', 'path.join', (['directory', '"""output"""'], {}), "(directory, 'output')\n", (436, 457), False, 'from os import path\n'), ((544, 570), 'autoarray.plot.Figure', 'aplt.Figure', ([], {'aspect': '"""auto"""'}), "(aspect='auto')\n", (555, 570), True, 'import autoarray.plot as aplt\n'), ((685, 713), 'autoarray.plot.Figure', 'aplt.Figure', ([], {'aspect': '"""square"""'}), "(aspect='square')\n", (696, 713), True, 'import autoarray.plot as aplt\n'), ((987, 1000), 'autoarray.plot.Figure', 'aplt.Figure', ([], {}), '()\n', (998, 1000), True, 'import autoarray.plot as aplt\n'), ((1260, 1316), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {'norm_min': '(0.0)', 'norm_max': '(1.0)', 'norm': '"""linear"""'}), "(norm_min=0.0, norm_max=1.0, norm='linear')\n", (1273, 1316), True, 'import autoarray.plot as aplt\n'), ((1497, 1550), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {'norm_min': '(0.0)', 'norm_max': '(1.0)', 'norm': '"""log"""'}), "(norm_min=0.0, norm_max=1.0, norm='log')\n", (1510, 1550), True, 'import autoarray.plot as aplt\n'), ((1778, 1875), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {'norm_min': '(0.0)', 'norm_max': '(1.0)', 'linthresh': '(2.0)', 'linscale': '(3.0)', 'norm': '"""symmetric_log"""'}), "(norm_min=0.0, norm_max=1.0, linthresh=2.0, linscale=3.0, norm\n ='symmetric_log')\n", (1791, 1875), True, 'import autoarray.plot as aplt\n'), ((2268, 2298), 'autoarray.array.ones', 'aa.array.ones', ([], {'shape_2d': '(2, 2)'}), '(shape_2d=(2, 2))\n', (2281, 2298), True, 'import autoarray as aa\n'), ((2338, 2396), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {'norm_min': 'None', 'norm_max': 'None', 'norm': '"""linear"""'}), "(norm_min=None, norm_max=None, norm='linear')\n", (2351, 2396), True, 'import autoarray.plot as aplt\n'), ((2578, 2633), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {'norm_min': 'None', 'norm_max': 'None', 'norm': '"""log"""'}), "(norm_min=None, norm_max=None, norm='log')\n", (2591, 2633), True, 'import autoarray.plot as aplt\n'), ((2862, 2960), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {'norm_min': 'None', 'norm_max': 'None', 'linthresh': '(2.0)', 'linscale': '(3.0)', 'norm': '"""symmetric_log"""'}), "(norm_min=None, norm_max=None, linthresh=2.0, linscale=3.0,\n norm='symmetric_log')\n", (2875, 2960), True, 'import autoarray.plot as aplt\n'), ((3335, 3348), 'autoarray.plot.Figure', 'aplt.Figure', ([], {}), '()\n', (3346, 3348), True, 'import autoarray.plot as aplt\n'), ((3421, 3469), 'autoarray.plot.ColorBar', 'aplt.ColorBar', ([], {'ticksize': '(1)', 'fraction': '(1.0)', 'pad': '(2.0)'}), '(ticksize=1, fraction=1.0, pad=2.0)\n', (3434, 3469), True, 'import autoarray.plot as aplt\n'), ((3582, 3695), 'autoarray.plot.ColorBar', 'aplt.ColorBar', ([], {'ticksize': '(1)', 'fraction': '(0.1)', 'pad': '(0.5)', 'tick_values': '[0.25, 0.5, 0.75]', 'tick_labels': '[1.0, 2.0, 3.0]'}), '(ticksize=1, fraction=0.1, pad=0.5, tick_values=[0.25, 0.5, \n 0.75], tick_labels=[1.0, 2.0, 3.0])\n', (3595, 3695), True, 'import autoarray.plot as aplt\n'), ((3874, 3922), 'autoarray.plot.ColorBar', 'aplt.ColorBar', ([], {'ticksize': '(1)', 'fraction': '(0.1)', 'pad': '(0.5)'}), '(ticksize=1, fraction=0.1, pad=0.5)\n', (3887, 3922), True, 'import autoarray.plot as aplt\n'), ((4123, 4171), 'autoarray.array.ones', 'aa.array.ones', ([], {'shape_2d': '(2, 2)', 'pixel_scales': '(1.0)'}), '(shape_2d=(2, 2), pixel_scales=1.0)\n', (4136, 4171), True, 'import autoarray as aa\n'), ((4189, 4240), 'autoarray.plot.Units', 'aplt.Units', ([], {'use_scaled': '(True)', 'conversion_factor': 'None'}), '(use_scaled=True, conversion_factor=None)\n', (4199, 4240), True, 'import autoarray.plot as aplt\n'), ((4258, 4288), 'autoarray.plot.Ticks', 'aplt.Ticks', ([], {'ysize': '(34)', 'xsize': '(35)'}), '(ysize=34, xsize=35)\n', (4268, 4288), True, 'import autoarray.plot as aplt\n'), ((5057, 5087), 'autoarray.plot.Ticks', 'aplt.Ticks', ([], {'ysize': '(34)', 'xsize': '(35)'}), '(ysize=34, xsize=35)\n', (5067, 5087), True, 'import autoarray.plot as aplt\n'), ((5105, 5157), 'autoarray.plot.Units', 'aplt.Units', ([], {'use_scaled': '(False)', 'conversion_factor': 'None'}), '(use_scaled=False, conversion_factor=None)\n', (5115, 5157), True, 'import autoarray.plot as aplt\n'), ((5926, 5956), 'autoarray.plot.Ticks', 'aplt.Ticks', ([], {'ysize': '(34)', 'xsize': '(35)'}), '(ysize=34, xsize=35)\n', (5936, 5956), True, 'import autoarray.plot as aplt\n'), ((5974, 6024), 'autoarray.plot.Units', 'aplt.Units', ([], {'use_scaled': '(True)', 'conversion_factor': '(2.0)'}), '(use_scaled=True, conversion_factor=2.0)\n', (5984, 6024), True, 'import autoarray.plot as aplt\n'), ((6793, 6823), 'autoarray.plot.Ticks', 'aplt.Ticks', ([], {'ysize': '(34)', 'xsize': '(35)'}), '(ysize=34, xsize=35)\n', (6803, 6823), True, 'import autoarray.plot as aplt\n'), ((6841, 6892), 'autoarray.plot.Units', 'aplt.Units', ([], {'use_scaled': '(False)', 'conversion_factor': '(2.0)'}), '(use_scaled=False, conversion_factor=2.0)\n', (6851, 6892), True, 'import autoarray.plot as aplt\n'), ((7744, 7757), 'autoarray.plot.Labels', 'aplt.Labels', ([], {}), '()\n', (7755, 7757), True, 'import autoarray.plot as aplt\n'), ((7775, 7798), 'autoarray.plot.Units', 'aplt.Units', ([], {'in_kpc': '(True)'}), '(in_kpc=True)\n', (7785, 7798), True, 'import autoarray.plot as aplt\n'), ((8018, 8031), 'autoarray.plot.Labels', 'aplt.Labels', ([], {}), '()\n', (8029, 8031), True, 'import autoarray.plot as aplt\n'), ((8049, 8073), 'autoarray.plot.Units', 'aplt.Units', ([], {'in_kpc': '(False)'}), '(in_kpc=False)\n', (8059, 8073), True, 'import autoarray.plot as aplt\n'), ((8299, 8337), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'yunits': '"""hi"""', 'xunits': '"""hi2"""'}), "(yunits='hi', xunits='hi2')\n", (8310, 8337), True, 'import autoarray.plot as aplt\n'), ((8355, 8378), 'autoarray.plot.Units', 'aplt.Units', ([], {'in_kpc': '(True)'}), '(in_kpc=True)\n', (8365, 8378), True, 'import autoarray.plot as aplt\n'), ((8598, 8636), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'yunits': '"""hi"""', 'xunits': '"""hi2"""'}), "(yunits='hi', xunits='hi2')\n", (8609, 8636), True, 'import autoarray.plot as aplt\n'), ((8654, 8678), 'autoarray.plot.Units', 'aplt.Units', ([], {'in_kpc': '(False)'}), '(in_kpc=False)\n', (8664, 8678), True, 'import autoarray.plot as aplt\n'), ((9010, 9033), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'title': 'None'}), '(title=None)\n', (9021, 9033), True, 'import autoarray.plot as aplt\n'), ((9163, 9186), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'title': '"""Hi"""'}), "(title='Hi')\n", (9174, 9186), True, 'import autoarray.plot as aplt\n'), ((9427, 9464), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'yunits': 'None', 'xunits': 'None'}), '(yunits=None, xunits=None)\n', (9438, 9464), True, 'import autoarray.plot as aplt\n'), ((9776, 9789), 'autoarray.plot.Labels', 'aplt.Labels', ([], {}), '()\n', (9787, 9789), True, 'import autoarray.plot as aplt\n'), ((10023, 10062), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'yunits': '"""Hi1"""', 'xunits': '"""Hi2"""'}), "(yunits='Hi1', xunits='Hi2')\n", (10034, 10062), True, 'import autoarray.plot as aplt\n'), ((10386, 10399), 'autoarray.plot.Labels', 'aplt.Labels', ([], {}), '()\n', (10397, 10399), True, 'import autoarray.plot as aplt\n'), ((10633, 10672), 'autoarray.plot.Labels', 'aplt.Labels', ([], {'yunits': '"""Hi1"""', 'xunits': '"""Hi2"""'}), "(yunits='Hi1', xunits='Hi2')\n", (10644, 10672), True, 'import autoarray.plot as aplt\n'), ((10974, 11000), 'autoarray.plot.Figure', 'aplt.Figure', ([], {'aspect': '"""auto"""'}), "(aspect='auto')\n", (10985, 11000), True, 'import autoarray.plot as aplt\n'), ((11041, 11096), 'autoarray.plot.Liner', 'aplt.Liner', ([], {'width': '(2)', 'style': '"""-"""', 'colors': '"""k"""', 'pointsize': '(2)'}), "(width=2, style='-', colors='k', pointsize=2)\n", (11051, 11096), True, 'import autoarray.plot as aplt\n'), ((11239, 11276), 'autoarray.plot.Legend', 'aplt.Legend', ([], {'include': '(True)', 'fontsize': '(1)'}), '(include=True, fontsize=1)\n', (11250, 11276), True, 'import autoarray.plot as aplt\n'), ((11407, 11456), 'os.path.join', 'path.join', (['directory', '"""../test_files/output_path"""'], {}), "(directory, '../test_files/output_path')\n", (11416, 11456), False, 'from os import path\n'), ((11469, 11494), 'os.path.exists', 'os.path.exists', (['test_path'], {}), '(test_path)\n', (11483, 11494), False, 'import os, shutil\n'), ((11597, 11624), 'autoarray.plot.Output', 'aplt.Output', ([], {'path': 'test_path'}), '(path=test_path)\n', (11608, 11624), True, 'import autoarray.plot as aplt\n'), ((11641, 11666), 'os.path.exists', 'os.path.exists', (['test_path'], {}), '(test_path)\n', (11655, 11666), False, 'import os, shutil\n'), ((11805, 11831), 'autoarray.plot.Output', 'aplt.Output', ([], {'filename': 'None'}), '(filename=None)\n', (11816, 11831), True, 'import autoarray.plot as aplt\n'), ((11970, 11996), 'autoarray.plot.Output', 'aplt.Output', ([], {'filename': '"""Hi"""'}), "(filename='Hi')\n", (11981, 11996), True, 'import autoarray.plot as aplt\n'), ((12234, 12284), 'autoarray.plot.mat_objs.Scatterer', 'mat_objs.Scatterer', ([], {'size': '(2)', 'marker': '"""x"""', 'colors': '"""k"""'}), "(size=2, marker='x', colors='k')\n", (12252, 12284), False, 'from autoarray.plot import mat_objs\n'), ((12572, 12622), 'autoarray.plot.mat_objs.Scatterer', 'mat_objs.Scatterer', ([], {'size': '(2)', 'marker': '"""x"""', 'colors': '"""k"""'}), "(size=2, marker='x', colors='k')\n", (12590, 12622), False, 'from autoarray.plot import mat_objs\n'), ((13268, 13318), 'autoarray.plot.mat_objs.Scatterer', 'mat_objs.Scatterer', ([], {'size': '(2)', 'marker': '"""x"""', 'colors': '"""k"""'}), "(size=2, marker='x', colors='k')\n", (13286, 13318), False, 'from autoarray.plot import mat_objs\n'), ((13335, 13354), 'matplotlib.pyplot.get_cmap', 'plt.get_cmap', (['"""jet"""'], {}), "('jet')\n", (13347, 13354), True, 'import matplotlib.pyplot as plt\n'), ((13903, 13953), 'autoarray.plot.mat_objs.Scatterer', 'mat_objs.Scatterer', ([], {'size': '(2)', 'marker': '"""x"""', 'colors': '"""k"""'}), "(size=2, marker='x', colors='k')\n", (13921, 13953), False, 'from autoarray.plot import mat_objs\n'), ((14513, 14563), 'autoarray.plot.mat_objs.Scatterer', 'mat_objs.Scatterer', ([], {'size': '(2)', 'marker': '"""x"""', 'colors': '"""k"""'}), "(size=2, marker='x', colors='k')\n", (14531, 14563), False, 'from autoarray.plot import mat_objs\n'), ((15336, 15391), 'autoarray.plot.Liner', 'aplt.Liner', ([], {'width': '(2)', 'style': '"""-"""', 'colors': '"""k"""', 'pointsize': '(2)'}), "(width=2, style='-', colors='k', pointsize=2)\n", (15346, 15391), True, 'import autoarray.plot as aplt\n'), ((15884, 15939), 'autoarray.plot.Liner', 'aplt.Liner', ([], {'width': '(2)', 'style': '"""-"""', 'colors': '"""k"""', 'pointsize': '(2)'}), "(width=2, style='-', colors='k', pointsize=2)\n", (15894, 15939), True, 'import autoarray.plot as aplt\n'), ((16369, 16411), 'autoarray.plot.Liner', 'aplt.Liner', ([], {'width': '(2)', 'style': '"""-"""', 'colors': '"""k"""'}), "(width=2, style='-', colors='k')\n", (16379, 16411), True, 'import autoarray.plot as aplt\n'), ((16947, 16990), 'autoarray.plot.Liner', 'aplt.Liner', ([], {'width': '(2)', 'style': '"""--"""', 'colors': '"""k"""'}), "(width=2, style='--', colors='k')\n", (16957, 16990), True, 'import autoarray.plot as aplt\n'), ((17561, 17604), 'autoarray.plot.Liner', 'aplt.Liner', ([], {'width': '(2)', 'style': '"""--"""', 'colors': '"""k"""'}), "(width=2, style='--', colors='k')\n", (17571, 17604), True, 'import autoarray.plot as aplt\n'), ((17943, 18002), 'autoarray.plot.VoronoiDrawer', 'aplt.VoronoiDrawer', ([], {'edgewidth': '(0.5)', 'edgecolor': '"""r"""', 'alpha': '(1.0)'}), "(edgewidth=0.5, edgecolor='r', alpha=1.0)\n", (17961, 18002), True, 'import autoarray.plot as aplt\n'), ((1040, 1064), 'matplotlib.pyplot.fignum_exists', 'plt.fignum_exists', ([], {'num': '(1)'}), '(num=1)\n', (1057, 1064), True, 'import matplotlib.pyplot as plt\n'), ((1113, 1137), 'matplotlib.pyplot.fignum_exists', 'plt.fignum_exists', ([], {'num': '(1)'}), '(num=1)\n', (1130, 1137), True, 'import matplotlib.pyplot as plt\n'), ((3391, 3406), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (3398, 3406), True, 'import numpy as np\n'), ((3552, 3567), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (3559, 3567), True, 'import numpy as np\n'), ((3844, 3859), 'numpy.ones', 'np.ones', (['(2, 2)'], {}), '((2, 2))\n', (3851, 3859), True, 'import numpy as np\n'), ((11508, 11532), 'shutil.rmtree', 'shutil.rmtree', (['test_path'], {}), '(test_path)\n', (11521, 11532), False, 'import os, shutil\n'), ((11553, 11578), 'os.path.exists', 'os.path.exists', (['test_path'], {}), '(test_path)\n', (11567, 11578), False, 'import os, shutil\n'), ((12401, 12451), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (12416, 12451), True, 'import autoarray as aa\n'), ((13499, 13534), 'numpy.array', 'np.array', (['[2.0, 2.0, 2.0, 2.0, 2.0]'], {}), '([2.0, 2.0, 2.0, 2.0, 2.0])\n', (13507, 13534), True, 'import numpy as np\n'), ((13626, 13676), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 2)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 2), pixel_scales=1.0)\n', (13641, 13676), True, 'import autoarray as aa\n'), ((13702, 13742), 'numpy.array', 'np.array', (['[2.0, 2.0, 2.0, 2.0, 2.0, 2.0]'], {}), '([2.0, 2.0, 2.0, 2.0, 2.0, 2.0])\n', (13710, 13742), True, 'import numpy as np\n'), ((14012, 14062), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (14027, 14062), True, 'import autoarray as aa\n'), ((14150, 14200), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (14165, 14200), True, 'import autoarray as aa\n'), ((14290, 14340), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (14305, 14340), True, 'import autoarray as aa\n'), ((14622, 14672), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (14637, 14672), True, 'import autoarray as aa\n'), ((14788, 14838), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (14803, 14838), True, 'import autoarray as aa\n'), ((14956, 15006), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (14971, 15006), True, 'import autoarray as aa\n'), ((15126, 15176), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (15141, 15176), True, 'import autoarray as aa\n'), ((16501, 16551), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (16516, 16551), True, 'import autoarray as aa\n'), ((18236, 18246), 'numpy.ones', 'np.ones', (['(9)'], {}), '(9)\n', (18243, 18246), True, 'import numpy as np\n'), ((18287, 18336), 'autoarray.plot.ColorBar', 'aplt.ColorBar', ([], {'ticksize': '(1)', 'fraction': '(0.1)', 'pad': '(0.05)'}), '(ticksize=1, fraction=0.1, pad=0.05)\n', (18300, 18336), True, 'import autoarray.plot as aplt\n'), ((3955, 3970), 'autoarray.plot.ColorMap', 'aplt.ColorMap', ([], {}), '()\n', (3968, 3970), True, 'import autoarray.plot as aplt\n'), ((12983, 13033), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (12998, 13033), True, 'import autoarray as aa\n'), ((13051, 13101), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (13066, 13101), True, 'import autoarray as aa\n'), ((16700, 16750), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (16715, 16750), True, 'import autoarray as aa\n'), ((16768, 16818), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (16783, 16818), True, 'import autoarray as aa\n'), ((17316, 17366), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (17331, 17366), True, 'import autoarray as aa\n'), ((17384, 17434), 'autoarray.grid.uniform', 'aa.grid.uniform', ([], {'shape_2d': '(3, 3)', 'pixel_scales': '(1.0)'}), '(shape_2d=(3, 3), pixel_scales=1.0)\n', (17399, 17434), True, 'import autoarray as aa\n')]
"""The tests for the Laica Smart Scale ble_parser.""" from ble_monitor.ble_parser import BleParser class TestLaica: """Tests for the Mikrotik parser""" def test_mikrotik_tg_bt5_in(self): """Test Mikrotik TG-BT5-IN parser.""" data_string = "043E2202010300DD7B146E2CDC1615FF4F09010010A90000FDFF010000806BE866000062D5" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Mikrotik" assert sensor_msg["type"] == "TG-BT5-IN" assert sensor_msg["mac"] == "DC2C6E147BDD" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg["version"] == 1 assert sensor_msg["acceleration x"] == 0.0 assert sensor_msg["acceleration y"] == 255.98828125 assert sensor_msg["acceleration z"] == 0.00390625 assert sensor_msg["acceleration"] == 255.9882812798037 assert sensor_msg["uptime"] == 6744171 assert sensor_msg["battery"] == 98 assert sensor_msg["switch"] == 0 assert sensor_msg["tilt"] == 0 assert sensor_msg["dropping"] == 0 assert sensor_msg["impact"] == 0 assert sensor_msg["impact x"] == 0 assert sensor_msg["impact y"] == 0 assert sensor_msg["impact z"] == 0 assert sensor_msg["rssi"] == -43 def test_mikrotik_tg_bt5_out(self): """Test Mikrotik TG-BT5-OUT parser.""" data_string = "043E2202010300DD7B146E2CDC1615FF4F09010010A90000FDFF0100A1196BE866000062D5" data = bytes(bytearray.fromhex(data_string)) # pylint: disable=unused-variable ble_parser = BleParser() sensor_msg, tracker_msg = ble_parser.parse_data(data) assert sensor_msg["firmware"] == "Mikrotik" assert sensor_msg["type"] == "TG-BT5-OUT" assert sensor_msg["mac"] == "DC2C6E147BDD" assert sensor_msg["packet"] == "no packet id" assert sensor_msg["data"] assert sensor_msg['temperature'] == 25.62890625 assert sensor_msg["version"] == 1 assert sensor_msg["acceleration x"] == 0.0 assert sensor_msg["acceleration y"] == 255.98828125 assert sensor_msg["acceleration z"] == 0.00390625 assert sensor_msg["acceleration"] == 255.9882812798037 assert sensor_msg["uptime"] == 6744171 assert sensor_msg["battery"] == 98 assert sensor_msg["switch"] == 0 assert sensor_msg["tilt"] == 0 assert sensor_msg["dropping"] == 0 assert sensor_msg["impact"] == 0 assert sensor_msg["impact x"] == 0 assert sensor_msg["impact y"] == 0 assert sensor_msg["impact z"] == 0 assert sensor_msg["rssi"] == -43
[ "ble_monitor.ble_parser.BleParser" ]
[((459, 470), 'ble_monitor.ble_parser.BleParser', 'BleParser', ([], {}), '()\n', (468, 470), False, 'from ble_monitor.ble_parser import BleParser\n'), ((1776, 1787), 'ble_monitor.ble_parser.BleParser', 'BleParser', ([], {}), '()\n', (1785, 1787), False, 'from ble_monitor.ble_parser import BleParser\n')]
# communicates the actor, the critic and the environment from actor import Actor from critic import Critic class Confront(): def __init__(self, state_dim, actions_dim): self.actor = Actor(state_dim, actions_dim) self.critic = Critic(state_dim + actions_dim) def act(self, state): # Generate noisy-filled actions noisy_actions = self.actor.act(state) # Choose the action with better expected reward choosed_action = self.critic.choose(noisy_actions, state) # train the actor to choose the better action self.actor.fit(state, choosed_action) return choosed_action def observe(self, action, state, reward, done): # train the critic to improve expected reward self.critic.observe(action, state, reward, done)
[ "actor.Actor", "critic.Critic" ]
[((196, 225), 'actor.Actor', 'Actor', (['state_dim', 'actions_dim'], {}), '(state_dim, actions_dim)\n', (201, 225), False, 'from actor import Actor\n'), ((248, 279), 'critic.Critic', 'Critic', (['(state_dim + actions_dim)'], {}), '(state_dim + actions_dim)\n', (254, 279), False, 'from critic import Critic\n')]
from grtoolkit.Math import solveEqs def Resistance(find, printEq=False, **kwargs): """variables: R=resistance p=density l=length A=cross sectional area""" eq = list() eq.append("Eq(R,p*l/A)") return solveEqs(eq, find, printEq=printEq, **kwargs) def InSeries(r_list): """Resistors connected in series is the sum of the individual resistances""" return sum(r_list) def InParallel(r_list): sumOfInverse = sum([1/r for r in r_list]) return 1/sumOfInverse def voltageDivision(v_in, r_list_ordered, showWork=False): """ Voltage is divided among the resistors in direct proportion to their resistances; the larger the resistance, the larger the voltage drop. """ r_total = sum(r_list_ordered) voltages = [r/r_total*v_in for r in r_list_ordered] if showWork: print("Resistor ordered voltage division: ", voltages) print("Adjust directions as necessary after getting result.") return voltages def currentDivision(i_in, r_branch_list_ordered, showWork=False): conductances = [Conductance(r) for r in r_branch_list_ordered] g_total = sum(conductances) currents = [g/g_total*i_in for g in conductances] if showWork: print("Branch ordered current division: ", currents) print("Adjust directions as necessary after getting result.") return currents def delta2wye(Ra, Rb, Rc): """ ''------RA-------''''R2'''''''''R3'''' '''dd''''''''dd'''''''' y'''''y''''''' '''''RC''''RB''''''''''''''y'''''''''' '''''''d''d''''''''''''''''y'''''''''' ''''''''dd'''''''''''''''''R1''''''''' Returns R1, R2, R3 """ Rt = Ra+Rb+Rc R1 = Rb*Rc/Rt R2 = Rc*Ra/Rt R3 = Ra*Rb/Rt return R1, R2, R3 def wye2delta(R1, R2, R3): """ ''------RA-------''''R2'''''''''R3'''' '''dd''''''''dd'''''''' y'''''y''''''' '''''RC''''RB''''''''''''''y'''''''''' '''''''d''d''''''''''''''''y'''''''''' ''''''''dd'''''''''''''''''R1''''''''' Returns Ra, Rb, Rc """ Rx = R1*R2 + R2*R3 + R3*R1 Ra = Rx/R1 Rb = Rx/R2 Rc = Rx/R3 return Ra, Rb, Rc
[ "grtoolkit.Math.solveEqs" ]
[((285, 330), 'grtoolkit.Math.solveEqs', 'solveEqs', (['eq', 'find'], {'printEq': 'printEq'}), '(eq, find, printEq=printEq, **kwargs)\n', (293, 330), False, 'from grtoolkit.Math import solveEqs\n')]
import torch.nn as nn import torch.optim as optim import gym import torch from dqn import ReplayBuffer from torch.distributions import Categorical, Normal from torch.nn.functional import mse_loss import numpy as np from torch.optim.lr_scheduler import StepLR from torch.optim.lr_scheduler import ReduceLROnPlateau # In[]: # TODO : # 2. Fixing target class Critic(nn.Module): def __init__(self, input_size, output_size=1, hidden_size=12): super(Critic, self).__init__() self.layer1 = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU() ) self.layer2 = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU() ) self.layer3 = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU() ) self.output_layer = nn.Linear(hidden_size, output_size) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.output_layer(out) return out class QCritic(nn.Module): def __init__(self, input_size, output_size, hidden_size=12): super(QCritic, self).__init__() self.layer1 = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU() ) self.layer2 = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU() ) self.layer3 = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU() ) self.output_layer = nn.Linear(hidden_size, output_size) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.output_layer(out) return out class Actor(nn.Module): def __init__(self, input_size, output_size, hidden_size=12, continuous=False): super(Actor, self).__init__() self.continuous = continuous self.layer1 = nn.Sequential( nn.Linear(input_size, hidden_size), nn.ReLU() ) self.layer2 = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU() ) self.layer3 = nn.Sequential( nn.Linear(hidden_size, hidden_size), nn.ReLU() ) if continuous: # if its continuous action space then done use a softmax at the last layer self.output_layer = nn.Sequential( nn.Linear(hidden_size, output_size), nn.Sigmoid() # sigmoid is needed to bring the output between 0 to 1, later in forward function we'll # transform this to -1 to 1 ) else: # else use a softmax self.output_layer = nn.Sequential( nn.Linear(hidden_size, output_size), # TODO : Try out log here if any numerical instability occurs nn.Softmax(dim=-1) ) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.output_layer(out) # transform the output between -1 to 1 for continuous action spaces if self.continuous: out = 2*out - 1 return out def select_action(self, current_state): """ selects an action as per some decided exploration :param current_state: the current state :return: the chosen action and the log probility to act as the gradient """ if not self.continuous: # if its not continuous action space then use epsilon greedy selection probs = self(current_state) # probs is the probability of each of the discrete actions possible # No gaussian exploration can be performed since the actions are discrete and not continuous # gaussian would make sense and feasibility only when actions are continuous m = Categorical(probs) action = m.sample() return action, m.log_prob(action) else: # use gaussian or other form of exploration in continuous action space action = self(current_state) # action is the action predicted for this current_state # now time to explore, so sample from a gaussian distribution centered at action # TODO : This scale can be controlled, its the variance around the mean action m = Normal(loc=action, scale=torch.Tensor([0.1])) explored_action = m.sample() # keep sampling new actions until it is within -1 to +1. while not (explored_action <= +1 and explored_action >= -1): explored_action = m.sample() # Note that the log prob should be at the original action, not at the exploration since the gradient used # will be the gradient of actor's prediction, not of actor's exploration return explored_action, m.log_prob(action)
[ "torch.nn.Sigmoid", "torch.nn.ReLU", "torch.distributions.Categorical", "torch.nn.Softmax", "torch.Tensor", "torch.nn.Linear" ]
[((867, 902), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (876, 902), True, 'import torch.nn as nn\n'), ((1591, 1626), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (1600, 1626), True, 'import torch.nn as nn\n'), ((535, 569), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (544, 569), True, 'import torch.nn as nn\n'), ((583, 592), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (590, 592), True, 'import torch.nn as nn\n'), ((652, 687), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (661, 687), True, 'import torch.nn as nn\n'), ((701, 710), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (708, 710), True, 'import torch.nn as nn\n'), ((770, 805), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (779, 805), True, 'import torch.nn as nn\n'), ((819, 828), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (826, 828), True, 'import torch.nn as nn\n'), ((1259, 1293), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (1268, 1293), True, 'import torch.nn as nn\n'), ((1307, 1316), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1314, 1316), True, 'import torch.nn as nn\n'), ((1376, 1411), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (1385, 1411), True, 'import torch.nn as nn\n'), ((1425, 1434), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1432, 1434), True, 'import torch.nn as nn\n'), ((1494, 1529), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (1503, 1529), True, 'import torch.nn as nn\n'), ((1543, 1552), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1550, 1552), True, 'import torch.nn as nn\n'), ((2034, 2068), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'hidden_size'], {}), '(input_size, hidden_size)\n', (2043, 2068), True, 'import torch.nn as nn\n'), ((2082, 2091), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2089, 2091), True, 'import torch.nn as nn\n'), ((2151, 2186), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (2160, 2186), True, 'import torch.nn as nn\n'), ((2200, 2209), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2207, 2209), True, 'import torch.nn as nn\n'), ((2269, 2304), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'hidden_size'], {}), '(hidden_size, hidden_size)\n', (2278, 2304), True, 'import torch.nn as nn\n'), ((2318, 2327), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2325, 2327), True, 'import torch.nn as nn\n'), ((3992, 4010), 'torch.distributions.Categorical', 'Categorical', (['probs'], {}), '(probs)\n', (4003, 4010), False, 'from torch.distributions import Categorical, Normal\n'), ((2511, 2546), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (2520, 2546), True, 'import torch.nn as nn\n'), ((2564, 2576), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (2574, 2576), True, 'import torch.nn as nn\n'), ((2833, 2868), 'torch.nn.Linear', 'nn.Linear', (['hidden_size', 'output_size'], {}), '(hidden_size, output_size)\n', (2842, 2868), True, 'import torch.nn as nn\n'), ((2964, 2982), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(-1)'}), '(dim=-1)\n', (2974, 2982), True, 'import torch.nn as nn\n'), ((4508, 4527), 'torch.Tensor', 'torch.Tensor', (['[0.1]'], {}), '([0.1])\n', (4520, 4527), False, 'import torch\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-02-12 10:55 from __future__ import unicode_literals import django.db.models.deletion from django.db import migrations, models import tuiuiu.contrib.routablepage.models class Migration(migrations.Migration): initial = True dependencies = [ ('tuiuiucore', '0024_alter_page_content_type_on_delete_behaviour'), ] operations = [ migrations.CreateModel( name='RoutablePageTest', fields=[ ('page_ptr', models.OneToOneField(auto_created=True, on_delete=django.db.models.deletion.CASCADE, parent_link=True, primary_key=True, serialize=False, to='tuiuiucore.Page')), ], options={ 'abstract': False, }, bases=(tuiuiu.contrib.routablepage.models.RoutablePageMixin, 'tuiuiucore.page'), ), ]
[ "django.db.models.OneToOneField" ]
[((534, 703), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'auto_created': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'parent_link': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'to': '"""tuiuiucore.Page"""'}), "(auto_created=True, on_delete=django.db.models.deletion\n .CASCADE, parent_link=True, primary_key=True, serialize=False, to=\n 'tuiuiucore.Page')\n", (554, 703), False, 'from django.db import migrations, models\n')]
from cuda import cuda, nvrtc import numpy as np import util.RotRep as Rot import util.Simulation as Gsim from config import Config import h5py import time import gpuarray from collections import Counter from scipy.sparse import coo_matrix from scipy.ndimage import gaussian_filter from run_cuda import run_cuda_function from cuda_python_compile import create_module class Initializer: def __init__(self, Cfg): module = create_module('strain_device_mjw_3.cu') self.sim_strain_func = cuda.cuModuleGetFunction(module, b'Simulate_for_Strain')[1] self.sim_pos_func = cuda.cuModuleGetFunction(module, b'Simulate_for_Pos')[1] self.KL_total_func = cuda.cuModuleGetFunction(module, b'KL_total')[1] self.KL_diff_func = cuda.cuModuleGetFunction(module, b'KL_diff')[1] self.One_func = cuda.cuModuleGetFunction(module, b'ChangeOne')[1] self.hit_func = cuda.cuModuleGetFunction(module, b'Hit_Score')[1] self.Cfg = Cfg self.mode = Cfg.mode self.ImLoaded = False self.GsLoaded = False self.GsGenerated = False self.windowD = gpuarray.to_gpu(np.array(self.Cfg.window).astype(np.int32)) # Det parameters self.Det = Gsim.Detector(psizeJ=Cfg.pixelSize / 1000.0, psizeK=Cfg.pixelSize / 1000.0, J=Cfg.JCenter, K=Cfg.KCenter, trans=np.array([Cfg.Ldistance, 0, 0]), tilt=Rot.EulerZXZ2Mat(np.array(Cfg.tilt) / 180.0 * np.pi)) afDetInfoH = np.concatenate( [[Cfg.JPixelNum, Cfg.KPixelNum, Cfg.pixelSize / 1000.0, Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det.Jvector, self.Det.Kvector]).astype(np.float32) self.afDetInfoD = gpuarray.to_gpu(afDetInfoH) # sample parameters # hack!! only for Hexagonal self.sample = Gsim.CrystalStr() self.sample.PrimA = Cfg.lattice[0] * np.array([1, 0, 0]) self.sample.PrimB = Cfg.lattice[1] * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.sample.PrimC = Cfg.lattice[2] * np.array([0, 0, 1]) Atoms = Cfg.atoms for ii in range(len(Atoms)): self.sample.addAtom(list(map(eval, Atoms[ii][0:3])), Atoms[ii][3]) self.sample.getRecipVec() self.sample.getGs(Cfg.maxQ) if self.mode == 'rec': f = h5py.File(Cfg.peakFile, 'r') # Lim for window position self.LimH = np.array(f['limits']).astype(np.int32) self.LimD = gpuarray.to_gpu(self.LimH) # whichOmega for choosing between omega1 and omega2 self.whichOmega = np.array(f['whichOmega']).astype(np.int32) self.whichOmegaD = gpuarray.to_gpu(self.whichOmega) # MaxInt for normalize the weight of each spot # (because different spots have very different intensity but we want them equal weighted) self.MaxInt = np.array(f['MaxInt'], dtype=np.float32) self.MaxIntD = gpuarray.to_gpu(self.MaxInt) self.Gs = np.array(f['Gs'], dtype=np.float32) self.NumG = len(self.Gs) print(self.NumG) self.orienM = np.array(f['OrienM']) self.avg_distortion = np.array(f['avg_distortion']) self.GsGenerated = True # transfer the ExpImgs and all Gs to texture memory def loadIm(self): f = h5py.File(self.Cfg.peakFile, 'r') AllIm = np.zeros(shape=(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.Cfg.window[2]), dtype=np.uint32, order='F') for ii in range(self.NumG): tmp = np.array(f['Imgs']['Im{0:d}'.format(ii)]) AllIm[:tmp.shape[0], :tmp.shape[1], ii * self.Cfg.window[2]:(ii + 1) * self.Cfg.window[2]] = tmp self.ImLoaded = True Im = np.array(AllIm).astype(np.uint32) self.tcExp = gpuarray.to_gpu(Im.ravel()) def loadGs(self): if not self.GsGenerated: raise RuntimeError('Gs are not generated yet') self.tG = gpuarray.to_gpu(np.array(np.transpose(self.Gs).astype(np.float32),order='F')) self.GsLoaded = True def generateGs(self, pos, orien, avg_distortion): self.pos = np.array(pos) self.orien = np.array(orien) self.orienM = Rot.EulerZXZ2Mat(self.orien / 180.0 * np.pi) self.avg_distortion = avg_distortion Ps, self.Gs, Info = Gsim.GetProjectedVertex(self.Det, self.sample, self.avg_distortion.dot(self.orienM), self.Cfg.etalimit / 180.0 * np.pi, self.pos, getPeaksInfo=True, omegaL=self.Cfg.omgRange[0], omegaU=self.Cfg.omgRange[1], energy=self.Cfg.energy) self.NumG = len(self.Gs) Lims = [] dx = 150 dy = 80 for ii in range(self.NumG): omegid = int((self.Cfg.omgRange[2] - Ps[ii, 2]) / self.Cfg.omgInterval) - 22 # becuase store 45 frames if omegid < 0: omegid += int(self.Cfg.omgRange[2] / self.Cfg.omgInterval) elif omegid >= int(self.Cfg.omgRange[2] / self.Cfg.omgInterval): omegid -= int(self.Cfg.omgRange[2] / self.Cfg.omgInterval) x1 = int(2047 - Ps[ii, 0] - dx) y1 = int(Ps[ii, 1] - dy) x2 = x1 + 2 * dx y2 = y1 + 2 * dy # ignore camera boundary limit, I'm just lazy, will correct it later Lims.append((x1, x2, y1, y2, omegid)) self.LimH = np.array(Lims, dtype=np.int32) self.LimD = gpuarray.to_gpu(self.LimH) # whichOmega for choosing between omega1 and omega2 self.whichOmega = np.zeros(len(Lims), dtype=np.int32) for ii in range(len(Lims)): if Info[ii]['WhichOmega'] == 'b': self.whichOmega[ii] = 2 else: self.whichOmega[ii] = 1 self.whichOmegaD = gpuarray.to_gpu(self.whichOmega) self.GsGenerated = True def MoveDet(self, dJ=0, dK=0, dD=0, dT=np.eye(3)): self.Det.Move(dJ, dK, np.array([dD, 0, 0]), dT) afDetInfoH = np.concatenate( [[self.Cfg.JPixelNum, self.Cfg.KPixelNum, self.Cfg.pixelSize / 1000.0, self.Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det.Jvector, self.Det.Kvector]).astype(np.float32) self.afDetInfoD = gpuarray.to_gpu(afDetInfoH) def ResetDet(self): self.Det.Reset() afDetInfoH = np.concatenate( [[self.Cfg.JPixelNum, self.Cfg.KPixelNum, self.Cfg.pixelSize / 1000.0, self.Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det.Jvector, self.Det.Kvector]).astype(np.float32) self.afDetInfoD = gpuarray.to_gpu(afDetInfoH) def sim_pos_wrapper(self, xs, ys, ss): NumD = len(xs) if self.GsLoaded == False: self.loadGs() XD = gpuarray.empty(self.NumG * NumD, dtype=np.int32) YD = gpuarray.empty(self.NumG * NumD, dtype=np.int32) OffsetD = gpuarray.empty(self.NumG * NumD, dtype=np.int32) MaskD = gpuarray.empty(self.NumG * NumD, dtype=np.bool_) TrueMaskD = gpuarray.empty(self.NumG * NumD, dtype=np.bool_) xsD = gpuarray.to_gpu(xs.astype(np.float32)) ysD = gpuarray.to_gpu(ys.astype(np.float32)) ssD = gpuarray.to_gpu(ss.ravel(order='C').astype(np.float32)) args = [XD, YD, OffsetD, MaskD, TrueMaskD, xsD, ysD, self.afDetInfoD, ssD, self.whichOmegaD, np.array(NumD).astype(np.int32), np.array(self.NumG).astype(np.int32), np.array(self.Cfg.energy).astype(np.float32), np.array(self.Cfg.window[2]).astype(np.int32), self.LimD, np.array(5).astype(np.int32), np.array(self.Cfg.omgInterval).astype(np.float32), self.tG] err = run_cuda_function(self.sim_pos_func,args,(NumD,1,1),(self.NumG,1,1)) xtmp = XD.get().reshape((-1, self.NumG)) ytmp = YD.get().reshape((-1, self.NumG)) otmp = OffsetD.get().reshape((-1, self.NumG)) maskH = MaskD.get().reshape(-1, self.NumG) #, ytmp, otmp, maskH return xtmp, ytmp, otmp, maskH def simMap(self, tmpxx, tmpyy, AllMaxS, blur=False, dtype=np.uint32): if self.GsLoaded == False: self.loadGs() xtmp, ytmp, otmp, maskH = self.sim_pos_wrapper(tmpxx, tmpyy, AllMaxS) print(xtmp.shape) res = np.zeros(shape=(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.Cfg.window[2]), dtype=dtype) for ii in range(self.NumG): tmpMask = maskH[:, ii] tmpX = xtmp[tmpMask, ii] tmpY = ytmp[tmpMask, ii] tmpO = otmp[tmpMask, ii] myMaps = np.zeros((self.Cfg.window[2], self.LimH[ii][3] - self.LimH[ii][2], self.LimH[ii][1] - self.LimH[ii][0]), dtype=dtype) for jj in range(self.Cfg.window[2]): idx = np.where(tmpO == jj)[0] if len(idx) == 0: myMaps[jj] = 0 continue myCounter = Counter(zip(tmpX[idx], tmpY[idx])) val = list(myCounter.values()) xx, yy = zip(*(myCounter.keys())) tmp = coo_matrix((val, (yy, xx)), shape=( self.LimH[ii][3] - self.LimH[ii][2], self.LimH[ii][1] - self.LimH[ii][0])).toarray() if blur: myMaps[jj] = gaussian_filter(tmp, sigma=1, mode='nearest', truncate=4) else: myMaps[jj] = tmp myMaps = np.moveaxis(myMaps, 0, 2) res[:myMaps.shape[0], :myMaps.shape[1], ii * self.Cfg.window[2]:(ii + 1) * self.Cfg.window[2]] = myMaps return res,[xtmp,ytmp,otmp,maskH] # def pair_pix_to_vox(self,xx,yy,ss): # if not self.ImLoaded: # self.loadIm() # if not self.GsLoaded: # self.loadGs() # for x,y,s in zip(xx,yy,ss): # XD = gpuarray.empty(self.NumG , dtype=np.int32) # YD = gpuarray.empty(self.NumG , dtype=np.int32) # OffsetD = gpuarray.empty(self.NumG, dtype=np.int32) # MaskD = gpuarray.empty(self.NumG, dtype=np.bool_) # TrueMaskD = gpuarray.empty(self.NumG, dtype=np.bool_) # S_gpu = gpuarray.to_gpu(s.ravel(order='C').astype(np.float32)) # x = np.array(x).astype(np.float32) # y = np.array(y).astype(np.float32) # args = [XD, YD, OffsetD, MaskD, TrueMaskD, # x, y, self.afDetInfoD, S_gpu, # self.whichOmegaD, np.array(1).astype(np.int32), np.array(self.NumG).astype(np.int32), # np.array(self.Cfg.energy).astype(np.float32), np.array(self.Cfg.window[2]).astype(np.int32), self.LimD, # np.array(5).astype(np.int32), np.array(self.Cfg.omgInterval).astype(np.float32), # self.tG] # err = run_cuda_function(self.sim_strain_func,args,(1,1,1),(self.NumG,1,1)) # print(err) # return XD.get(),YD.get()
[ "util.RotRep.EulerZXZ2Mat", "gpuarray.to_gpu", "numpy.array", "scipy.ndimage.gaussian_filter", "numpy.sin", "numpy.moveaxis", "cuda.cuda.cuModuleGetFunction", "numpy.where", "numpy.concatenate", "scipy.sparse.coo_matrix", "util.Simulation.CrystalStr", "numpy.eye", "h5py.File", "gpuarray.empty", "numpy.cos", "numpy.transpose", "run_cuda.run_cuda_function", "cuda_python_compile.create_module", "numpy.zeros" ]
[((444, 483), 'cuda_python_compile.create_module', 'create_module', (['"""strain_device_mjw_3.cu"""'], {}), "('strain_device_mjw_3.cu')\n", (457, 483), False, 'from cuda_python_compile import create_module\n'), ((1929, 1956), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['afDetInfoH'], {}), '(afDetInfoH)\n', (1944, 1956), False, 'import gpuarray\n'), ((2044, 2061), 'util.Simulation.CrystalStr', 'Gsim.CrystalStr', ([], {}), '()\n', (2059, 2061), True, 'import util.Simulation as Gsim\n'), ((3586, 3619), 'h5py.File', 'h5py.File', (['self.Cfg.peakFile', '"""r"""'], {}), "(self.Cfg.peakFile, 'r')\n", (3595, 3619), False, 'import h5py\n'), ((3636, 3757), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.Cfg.window[2])', 'dtype': 'np.uint32', 'order': '"""F"""'}), "(shape=(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.\n Cfg.window[2]), dtype=np.uint32, order='F')\n", (3644, 3757), True, 'import numpy as np\n'), ((4437, 4450), 'numpy.array', 'np.array', (['pos'], {}), '(pos)\n', (4445, 4450), True, 'import numpy as np\n'), ((4472, 4487), 'numpy.array', 'np.array', (['orien'], {}), '(orien)\n', (4480, 4487), True, 'import numpy as np\n'), ((4510, 4554), 'util.RotRep.EulerZXZ2Mat', 'Rot.EulerZXZ2Mat', (['(self.orien / 180.0 * np.pi)'], {}), '(self.orien / 180.0 * np.pi)\n', (4526, 4554), True, 'import util.RotRep as Rot\n'), ((5900, 5930), 'numpy.array', 'np.array', (['Lims'], {'dtype': 'np.int32'}), '(Lims, dtype=np.int32)\n', (5908, 5930), True, 'import numpy as np\n'), ((5951, 5977), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['self.LimH'], {}), '(self.LimH)\n', (5966, 5977), False, 'import gpuarray\n'), ((6307, 6339), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['self.whichOmega'], {}), '(self.whichOmega)\n', (6322, 6339), False, 'import gpuarray\n'), ((6415, 6424), 'numpy.eye', 'np.eye', (['(3)'], {}), '(3)\n', (6421, 6424), True, 'import numpy as np\n'), ((6818, 6845), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['afDetInfoH'], {}), '(afDetInfoH)\n', (6833, 6845), False, 'import gpuarray\n'), ((7231, 7258), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['afDetInfoH'], {}), '(afDetInfoH)\n', (7246, 7258), False, 'import gpuarray\n'), ((7399, 7447), 'gpuarray.empty', 'gpuarray.empty', (['(self.NumG * NumD)'], {'dtype': 'np.int32'}), '(self.NumG * NumD, dtype=np.int32)\n', (7413, 7447), False, 'import gpuarray\n'), ((7461, 7509), 'gpuarray.empty', 'gpuarray.empty', (['(self.NumG * NumD)'], {'dtype': 'np.int32'}), '(self.NumG * NumD, dtype=np.int32)\n', (7475, 7509), False, 'import gpuarray\n'), ((7528, 7576), 'gpuarray.empty', 'gpuarray.empty', (['(self.NumG * NumD)'], {'dtype': 'np.int32'}), '(self.NumG * NumD, dtype=np.int32)\n', (7542, 7576), False, 'import gpuarray\n'), ((7593, 7641), 'gpuarray.empty', 'gpuarray.empty', (['(self.NumG * NumD)'], {'dtype': 'np.bool_'}), '(self.NumG * NumD, dtype=np.bool_)\n', (7607, 7641), False, 'import gpuarray\n'), ((7662, 7710), 'gpuarray.empty', 'gpuarray.empty', (['(self.NumG * NumD)'], {'dtype': 'np.bool_'}), '(self.NumG * NumD, dtype=np.bool_)\n', (7676, 7710), False, 'import gpuarray\n'), ((8437, 8512), 'run_cuda.run_cuda_function', 'run_cuda_function', (['self.sim_pos_func', 'args', '(NumD, 1, 1)', '(self.NumG, 1, 1)'], {}), '(self.sim_pos_func, args, (NumD, 1, 1), (self.NumG, 1, 1))\n', (8454, 8512), False, 'from run_cuda import run_cuda_function\n'), ((9056, 9162), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.Cfg.window[2])', 'dtype': 'dtype'}), '(shape=(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.\n Cfg.window[2]), dtype=dtype)\n', (9064, 9162), True, 'import numpy as np\n'), ((540, 596), 'cuda.cuda.cuModuleGetFunction', 'cuda.cuModuleGetFunction', (['module', "b'Simulate_for_Strain'"], {}), "(module, b'Simulate_for_Strain')\n", (564, 596), False, 'from cuda import cuda, nvrtc\n'), ((628, 681), 'cuda.cuda.cuModuleGetFunction', 'cuda.cuModuleGetFunction', (['module', "b'Simulate_for_Pos'"], {}), "(module, b'Simulate_for_Pos')\n", (652, 681), False, 'from cuda import cuda, nvrtc\n'), ((714, 759), 'cuda.cuda.cuModuleGetFunction', 'cuda.cuModuleGetFunction', (['module', "b'KL_total'"], {}), "(module, b'KL_total')\n", (738, 759), False, 'from cuda import cuda, nvrtc\n'), ((791, 835), 'cuda.cuda.cuModuleGetFunction', 'cuda.cuModuleGetFunction', (['module', "b'KL_diff'"], {}), "(module, b'KL_diff')\n", (815, 835), False, 'from cuda import cuda, nvrtc\n'), ((863, 909), 'cuda.cuda.cuModuleGetFunction', 'cuda.cuModuleGetFunction', (['module', "b'ChangeOne'"], {}), "(module, b'ChangeOne')\n", (887, 909), False, 'from cuda import cuda, nvrtc\n'), ((937, 983), 'cuda.cuda.cuModuleGetFunction', 'cuda.cuModuleGetFunction', (['module', "b'Hit_Score'"], {}), "(module, b'Hit_Score')\n", (961, 983), False, 'from cuda import cuda, nvrtc\n'), ((2107, 2126), 'numpy.array', 'np.array', (['[1, 0, 0]'], {}), '([1, 0, 0])\n', (2115, 2126), True, 'import numpy as np\n'), ((2277, 2296), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (2285, 2296), True, 'import numpy as np\n'), ((2557, 2585), 'h5py.File', 'h5py.File', (['Cfg.peakFile', '"""r"""'], {}), "(Cfg.peakFile, 'r')\n", (2566, 2585), False, 'import h5py\n'), ((2711, 2737), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['self.LimH'], {}), '(self.LimH)\n', (2726, 2737), False, 'import gpuarray\n'), ((2906, 2938), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['self.whichOmega'], {}), '(self.whichOmega)\n', (2921, 2938), False, 'import gpuarray\n'), ((3127, 3166), 'numpy.array', 'np.array', (["f['MaxInt']"], {'dtype': 'np.float32'}), "(f['MaxInt'], dtype=np.float32)\n", (3135, 3166), True, 'import numpy as np\n'), ((3194, 3222), 'gpuarray.to_gpu', 'gpuarray.to_gpu', (['self.MaxInt'], {}), '(self.MaxInt)\n', (3209, 3222), False, 'import gpuarray\n'), ((3245, 3280), 'numpy.array', 'np.array', (["f['Gs']"], {'dtype': 'np.float32'}), "(f['Gs'], dtype=np.float32)\n", (3253, 3280), True, 'import numpy as np\n'), ((3373, 3394), 'numpy.array', 'np.array', (["f['OrienM']"], {}), "(f['OrienM'])\n", (3381, 3394), True, 'import numpy as np\n'), ((3429, 3458), 'numpy.array', 'np.array', (["f['avg_distortion']"], {}), "(f['avg_distortion'])\n", (3437, 3458), True, 'import numpy as np\n'), ((6457, 6477), 'numpy.array', 'np.array', (['[dD, 0, 0]'], {}), '([dD, 0, 0])\n', (6465, 6477), True, 'import numpy as np\n'), ((9379, 9501), 'numpy.zeros', 'np.zeros', (['(self.Cfg.window[2], self.LimH[ii][3] - self.LimH[ii][2], self.LimH[ii][1] -\n self.LimH[ii][0])'], {'dtype': 'dtype'}), '((self.Cfg.window[2], self.LimH[ii][3] - self.LimH[ii][2], self.\n LimH[ii][1] - self.LimH[ii][0]), dtype=dtype)\n', (9387, 9501), True, 'import numpy as np\n'), ((10333, 10358), 'numpy.moveaxis', 'np.moveaxis', (['myMaps', '(0)', '(2)'], {}), '(myMaps, 0, 2)\n', (10344, 10358), True, 'import numpy as np\n'), ((1503, 1534), 'numpy.array', 'np.array', (['[Cfg.Ldistance, 0, 0]'], {}), '([Cfg.Ldistance, 0, 0])\n', (1511, 1534), True, 'import numpy as np\n'), ((1649, 1828), 'numpy.concatenate', 'np.concatenate', (['[[Cfg.JPixelNum, Cfg.KPixelNum, Cfg.pixelSize / 1000.0, Cfg.pixelSize / \n 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det.Jvector, self.\n Det.Kvector]'], {}), '([[Cfg.JPixelNum, Cfg.KPixelNum, Cfg.pixelSize / 1000.0, Cfg.\n pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det.\n Jvector, self.Det.Kvector])\n', (1663, 1828), True, 'import numpy as np\n'), ((4001, 4016), 'numpy.array', 'np.array', (['AllIm'], {}), '(AllIm)\n', (4009, 4016), True, 'import numpy as np\n'), ((6504, 6702), 'numpy.concatenate', 'np.concatenate', (['[[self.Cfg.JPixelNum, self.Cfg.KPixelNum, self.Cfg.pixelSize / 1000.0, self\n .Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det\n .Jvector, self.Det.Kvector]'], {}), '([[self.Cfg.JPixelNum, self.Cfg.KPixelNum, self.Cfg.pixelSize /\n 1000.0, self.Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.\n Norm, self.Det.Jvector, self.Det.Kvector])\n', (6518, 6702), True, 'import numpy as np\n'), ((6917, 7115), 'numpy.concatenate', 'np.concatenate', (['[[self.Cfg.JPixelNum, self.Cfg.KPixelNum, self.Cfg.pixelSize / 1000.0, self\n .Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det\n .Jvector, self.Det.Kvector]'], {}), '([[self.Cfg.JPixelNum, self.Cfg.KPixelNum, self.Cfg.pixelSize /\n 1000.0, self.Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.\n Norm, self.Det.Jvector, self.Det.Kvector])\n', (6931, 7115), True, 'import numpy as np\n'), ((1171, 1196), 'numpy.array', 'np.array', (['self.Cfg.window'], {}), '(self.Cfg.window)\n', (1179, 1196), True, 'import numpy as np\n'), ((2182, 2203), 'numpy.cos', 'np.cos', (['(np.pi * 2 / 3)'], {}), '(np.pi * 2 / 3)\n', (2188, 2203), True, 'import numpy as np\n'), ((2205, 2226), 'numpy.sin', 'np.sin', (['(np.pi * 2 / 3)'], {}), '(np.pi * 2 / 3)\n', (2211, 2226), True, 'import numpy as np\n'), ((2648, 2669), 'numpy.array', 'np.array', (["f['limits']"], {}), "(f['limits'])\n", (2656, 2669), True, 'import numpy as np\n'), ((2832, 2857), 'numpy.array', 'np.array', (["f['whichOmega']"], {}), "(f['whichOmega'])\n", (2840, 2857), True, 'import numpy as np\n'), ((8058, 8072), 'numpy.array', 'np.array', (['NumD'], {}), '(NumD)\n', (8066, 8072), True, 'import numpy as np\n'), ((8091, 8110), 'numpy.array', 'np.array', (['self.NumG'], {}), '(self.NumG)\n', (8099, 8110), True, 'import numpy as np\n'), ((8159, 8184), 'numpy.array', 'np.array', (['self.Cfg.energy'], {}), '(self.Cfg.energy)\n', (8167, 8184), True, 'import numpy as np\n'), ((8205, 8233), 'numpy.array', 'np.array', (['self.Cfg.window[2]'], {}), '(self.Cfg.window[2])\n', (8213, 8233), True, 'import numpy as np\n'), ((8294, 8305), 'numpy.array', 'np.array', (['(5)'], {}), '(5)\n', (8302, 8305), True, 'import numpy as np\n'), ((8324, 8354), 'numpy.array', 'np.array', (['self.Cfg.omgInterval'], {}), '(self.Cfg.omgInterval)\n', (8332, 8354), True, 'import numpy as np\n'), ((9611, 9631), 'numpy.where', 'np.where', (['(tmpO == jj)'], {}), '(tmpO == jj)\n', (9619, 9631), True, 'import numpy as np\n'), ((10178, 10235), 'scipy.ndimage.gaussian_filter', 'gaussian_filter', (['tmp'], {'sigma': '(1)', 'mode': '"""nearest"""', 'truncate': '(4)'}), "(tmp, sigma=1, mode='nearest', truncate=4)\n", (10193, 10235), False, 'from scipy.ndimage import gaussian_filter\n'), ((4243, 4264), 'numpy.transpose', 'np.transpose', (['self.Gs'], {}), '(self.Gs)\n', (4255, 4264), True, 'import numpy as np\n'), ((9916, 10030), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(val, (yy, xx))'], {'shape': '(self.LimH[ii][3] - self.LimH[ii][2], self.LimH[ii][1] - self.LimH[ii][0])'}), '((val, (yy, xx)), shape=(self.LimH[ii][3] - self.LimH[ii][2], \n self.LimH[ii][1] - self.LimH[ii][0]))\n', (9926, 10030), False, 'from scipy.sparse import coo_matrix\n'), ((1591, 1609), 'numpy.array', 'np.array', (['Cfg.tilt'], {}), '(Cfg.tilt)\n', (1599, 1609), True, 'import numpy as np\n')]
import glob import distutils.dir_util import logging import os import shutil import re import magic logger = logging.getLogger( "chibi.file.chibi_path" ) class Chibi_path( str ): def __new__( cls, *args, chibi_file_class=None, **kw ): args_2 = [] for a in args: if '~' in a: a = os.path.expanduser( a ) args_2.append( a ) result = str.__new__( cls, *args_2, **kw ) result._chibi_file_class = chibi_file_class return result def __add__( self, other ): """ une el path con otro path o una cadena Parameters ========== other: str or Chibi_path Returns ======= Chibi_path """ if isinstance( other, self.__class__ ): if self.is_a_file: return self.dir_name + other return type( self )( os.path.join( str( self ), str( other ) ) ) if isinstance( other, str ): return self + self.__class__( other ) def __eq__( self, other ): if isinstance( other, Chibi_path ): return str( self ) == str( other ) if isinstance( other, str ): return str( self ) == other return False def __hash__( self ): return hash( str( self ) ) def __contains__( self, other ): if isinstance( other, Chibi_path ): return other.startswith( self ) else: return super().__contains__( other ) @property def is_a_folder( self ): """ es una carpeta """ return os.path.isdir( self ) @property def is_a_file( self ): """ es un archivo """ from chibi.file.snippets import is_a_file return is_a_file( self ) @property def is_glob( self ): return glob.has_magic( self ) @property def dir_name( self ): """ regresa la carpeta padre """ from chibi.file.snippets import file_dir return type( self )( os.path.dirname( str( self ) ) ) return self.__class__( file_dir( self ) ) @property def base_name( self ): """ regresa el nombre del archivo o de la carpeta """ return Chibi_path( os.path.basename( self ) ) @property def file_name( self ): """ regresa el nombre del archivo sin la extencion """ file_name, ext = os.path.splitext( self.base_name ) return file_name def open( self, chibi_file_class=None, encoding=None, newline=None ): """ abre el archivo usando un chibi file """ if self.is_a_folder: raise NotImplementedError if chibi_file_class is None: if self._chibi_file_class is None: from .file import Chibi_file chibi_file_class = Chibi_file else: chibi_file_class = self._chibi_file_class return chibi_file_class( self, encoding=encoding, newline=newline ) def relative_to( self, root ): from .snippets import get_relative_path return type( self )( get_relative_path( self, root=root ) ) def mkdir( self, **kw ): """ crea una carpeta en la direcion del chibi path """ try: os.makedirs( self ) logger.info( "se creo el directorio '{}'".format( self ) ) except OSError: pass if kw: logger.warning( "mkdir de chibi path recibio parametros {}".format( kw ) ) def move( self, dest ): """ move the chibi path al destino """ dest = Chibi_path( dest ) if self.is_a_file: if dest.is_a_folder: dest += self.base_name shutil.move( str( self ), str( dest ) ) logger.info( "{} -> {}".format( self, dest ) ) elif self.is_a_folder: shutil.move( str( self ), str( dest ) ) logger.info( "{} -> {}".format( self, dest ) ) elif self.is_glob: if not dest.exists: dest.mkdir() if dest.is_a_folder: return [ f.move( dest + f.base_name ) for f in self.expand ] else: raise NotImplementedError( "el destino no es un folder y la src " "es un glob '{self}'" ) def copy( self, dest, **kw ): """ copia el archivo o carpeta al destino """ from.snippets import copy dest = Chibi_path( dest ) if self.is_a_file: if dest.is_a_folder: dest += self.base_name copy( self, dest, **kw ) return Chibi_path( dest ) elif self.is_a_folder: if dest.is_a_file: raise NotImplementedError( "no se puede copiar un folder dentro de un archivo" ) distutils.dir_util.copy_tree( str( self ), str( dest ) ) return Chibi_path( dest ) elif self.is_glob: if not dest.exists: dest.mkdir() if dest.is_a_folder: return [ f.copy( dest + f.base_name ) for f in self.expand ] else: raise NotImplementedError( "el destino no es un folder y la src " "es un glob '{self}'" ) if not self.exists: raise OSError( f"the file '{self}' not exists" ) else: raise NotImplementedError( f"no esta implementado el copy si " f"no es un archivo o folder '{self}'" ) def delete( self ): """ elimina el archivo o la carpeta """ from.snippets import delete delete( str( self ) ) logger.info( 'delete "{}"'.format( self ) ) def chown( self, verbose=True, user_name=None, group_name=None, recursive=False ): """ cambia el duano del archivo o carpeta """ from chibi.file.snippets import chown chown( self, user_name=user_name, group_name=group_name, recursive=recursive, verbose=verbose ) def chmod( self, mod ): """ cambia los attributos del archivo o carpeta """ os.chmod( str( self ), mod ) @property def properties( self ): from chibi.file.snippets import stat prop = stat( self ) prop.mime = magic.Magic( mime=True ).from_file( self ) prop.extension = os.path.splitext( self )[1][1:] return prop @property def extension( self ): """ regresa la extencion del archivo """ if self.is_a_file: return self.properties.extension else: raise NotImplementedError def replace_extensions( self, *extensions ): """ cambia la extencion del archivo """ file_name, ext = os.path.splitext( self ) extensions = ".".join( extensions ) file_name = ".".join( ( file_name, extensions ) ) return type( self )( file_name ) def add_extensions( self, *extensions ): """ agrega mas extenciones """ file_name, ext = os.path.splitext( self ) extensions = ".".join( extensions ) file_name = ".".join( ( file_name, ext + extensions ) ) return type( self )( file_name ) def ls( self, dirs=True, files=True ): """ regresa un generador con el listado de archivos y carpetas """ from .snippets import ls, ls_only_dir, ls_only_files if dirs and files: return ls( self ) elif dirs and not files: return ls_only_dir( self ) elif not dirs and files: return ls_only_files( self ) else: raise NotImplementedError def find( self, search_term=".*", dirs=True, files=True ): """ busca archivos y carpetas usando una exprecion regular """ if self.is_a_file: raise NotImplementedError( "no esta implementa buscar en un archivo" ) from .snippets import find, find_only_files, find_only_folders if dirs and files: return find( self, search_term ) elif dirs and not files: return find_only_folders( self, search_term ) elif not dirs and files: return find_only_files( self, search_term ) else: raise NotImplementedError @property def exists( self ): """ revisa si el archivo o directorio existe Returns ======= bool """ from .snippets import exists return exists( str( self ) ) def replace( self, *args, **kw ): return Chibi_path( super().replace( *args, **kw ) ) def made_safe( self ): return Chibi_path( re.sub( r'[<>:"|?*]', '', str( self ) ) ) @classmethod def current_dir( cls ): """ regresa el directorio actual de trabajo Returns ======= py:class:`chibi.file.Chibi_path` """ return Chibi_path( os.getcwd() ) @property def expand( self ): if self.is_glob: return ( type( self )( f ) for f in glob.iglob( self ) ) else: raise NotImplementedError( "no se que deberia de hacer" ) def __enter__( self ): return self.open() def __exit__( self, exc_type, exc_value, traceback ): pass def touch( self ): if not self.exists or self.is_a_file: self.open().touch() elif self.is_a_folder: raise NotADirectoryError( f"no implementado touch a un folder '{self}'" ) else: raise NotADirectoryError( f"no implementado touch cuando no es un " f"archivo o folder'{self}'" ) @property def inflate( self ): if '~' in self: return os.path.expanduser( self ) else: return os.path.abspath( self )
[ "logging.getLogger", "glob.has_magic", "os.makedirs", "glob.iglob", "chibi.file.snippets.file_dir", "os.path.splitext", "os.getcwd", "os.path.isdir", "chibi.file.snippets.chown", "os.path.basename", "magic.Magic", "os.path.abspath", "chibi.file.snippets.is_a_file", "os.path.expanduser", "chibi.file.snippets.stat" ]
[((112, 154), 'logging.getLogger', 'logging.getLogger', (['"""chibi.file.chibi_path"""'], {}), "('chibi.file.chibi_path')\n", (129, 154), False, 'import logging\n'), ((1607, 1626), 'os.path.isdir', 'os.path.isdir', (['self'], {}), '(self)\n', (1620, 1626), False, 'import os\n'), ((1782, 1797), 'chibi.file.snippets.is_a_file', 'is_a_file', (['self'], {}), '(self)\n', (1791, 1797), False, 'from chibi.file.snippets import is_a_file\n'), ((1855, 1875), 'glob.has_magic', 'glob.has_magic', (['self'], {}), '(self)\n', (1869, 1875), False, 'import glob\n'), ((2457, 2489), 'os.path.splitext', 'os.path.splitext', (['self.base_name'], {}), '(self.base_name)\n', (2473, 2489), False, 'import os\n'), ((6139, 6236), 'chibi.file.snippets.chown', 'chown', (['self'], {'user_name': 'user_name', 'group_name': 'group_name', 'recursive': 'recursive', 'verbose': 'verbose'}), '(self, user_name=user_name, group_name=group_name, recursive=recursive,\n verbose=verbose)\n', (6144, 6236), False, 'from chibi.file.snippets import chown\n'), ((6505, 6515), 'chibi.file.snippets.stat', 'stat', (['self'], {}), '(self)\n', (6509, 6515), False, 'from chibi.file.snippets import stat\n'), ((7028, 7050), 'os.path.splitext', 'os.path.splitext', (['self'], {}), '(self)\n', (7044, 7050), False, 'import os\n'), ((7322, 7344), 'os.path.splitext', 'os.path.splitext', (['self'], {}), '(self)\n', (7338, 7344), False, 'import os\n'), ((2118, 2132), 'chibi.file.snippets.file_dir', 'file_dir', (['self'], {}), '(self)\n', (2126, 2132), False, 'from chibi.file.snippets import file_dir\n'), ((2284, 2306), 'os.path.basename', 'os.path.basename', (['self'], {}), '(self)\n', (2300, 2306), False, 'import os\n'), ((3341, 3358), 'os.makedirs', 'os.makedirs', (['self'], {}), '(self)\n', (3352, 3358), False, 'import os\n'), ((9246, 9257), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (9255, 9257), False, 'import os\n'), ((10078, 10102), 'os.path.expanduser', 'os.path.expanduser', (['self'], {}), '(self)\n', (10096, 10102), False, 'import os\n'), ((10138, 10159), 'os.path.abspath', 'os.path.abspath', (['self'], {}), '(self)\n', (10153, 10159), False, 'import os\n'), ((332, 353), 'os.path.expanduser', 'os.path.expanduser', (['a'], {}), '(a)\n', (350, 353), False, 'import os\n'), ((6538, 6560), 'magic.Magic', 'magic.Magic', ([], {'mime': '(True)'}), '(mime=True)\n', (6549, 6560), False, 'import magic\n'), ((6606, 6628), 'os.path.splitext', 'os.path.splitext', (['self'], {}), '(self)\n', (6622, 6628), False, 'import os\n'), ((9372, 9388), 'glob.iglob', 'glob.iglob', (['self'], {}), '(self)\n', (9382, 9388), False, 'import glob\n')]
# -*- coding: utf-8 -*- """Console script for audio_korpora_pipeline.""" import argparse import os import sys from audio_korpora_pipeline.audio_korpora_pipeline import ExistingOutputAdapter, ExistingInputAdapter from audio_korpora_pipeline.inputadapter.adapters import CommonVoiceAdapter, UntranscribedVideoAdapter, \ ChJugendspracheAdapter, ArchimobAdapter from audio_korpora_pipeline.outputadapter.adapters import LjSpeechAdapter, MailabsAdapter, FairseqWav2VecAdapter, \ OpenSeq2SeqAdapter from audio_korpora_pipeline.utils import load_config, config_logging def _createInputAdapters(config, inputs): adapters = [] # parse input inputs = inputs.split(",") accepted_input_corpora = [l.value for l in ExistingInputAdapter] # Create Adapters for input in inputs: if input not in accepted_input_corpora: raise ValueError('please enter valid input corpora type(s): {}'.format(accepted_input_corpora)) if (ExistingInputAdapter.COMMON_VOICE.value == input): adapters.append(CommonVoiceAdapter(config)) if (ExistingInputAdapter.UNTRANSCRIBED_VIDEO.value == input): adapters.append(UntranscribedVideoAdapter(config)) if (ExistingInputAdapter.CH_JUGENDSPRACHE.value == input): adapters.append(ChJugendspracheAdapter(config)) if (ExistingInputAdapter.ARCHIMOB.value == input): adapters.append(ArchimobAdapter(config)) return adapters def _createOutputAdapters(config, outputs): adapters = [] # parse input outputs = outputs.split(",") accepted_output_corpora = [l.value for l in ExistingOutputAdapter] print(accepted_output_corpora) # Create Adapters for output in outputs: if output not in accepted_output_corpora: raise ValueError('please enter valid output corpora type(s): {}'.format(accepted_output_corpora)) if (ExistingOutputAdapter.MAILABS.value == output): adapters.append(MailabsAdapter(config)) if (ExistingOutputAdapter.LJ_SPEECH.value == output): adapters.append(LjSpeechAdapter(config)) if (ExistingOutputAdapter.FAIRSEQ_WAV2VEC.value == output): adapters.append(FairseqWav2VecAdapter(config)) if (ExistingOutputAdapter.OPENSEQ2SEQ.value == output): adapters.append(OpenSeq2SeqAdapter(config)) return adapters def _transformMetamodelsToOutputs(metamodels, output_adapters): for index, output_adapter in enumerate(output_adapters): if (index == 0): output_adapter.cleanOutputFolder() for metamodel in metamodels: output_adapter.fromMetamodel(metamodel) pass def _transformInputsToMetamodel(input_adapters): metmodels = [] for input_adapter in input_adapters: metmodels.append(input_adapter.toMetamodel()) return metmodels def main(): """ Console script for audio_korpora_pipeline. Implement here CLI args parsing """ parser = argparse.ArgumentParser() parser.add_argument("-c", "--config", dest="config", help="path to config file", required=True) parser.add_argument("-i", "--input_corpora", dest="input", help="comma separated list of which corpora to transform", required=True) parser.add_argument("-o", "--output_corpora", dest="output", help="comma separated list of which corpora to produce", required=True) args = parser.parse_args() config_path = args.config if not os.path.isfile(config_path): parser.print_help() config = load_config(config_path) config_logging(load_config(config_path)) # Creating Adapters input_adapters = _createInputAdapters(config, args.input) output_adapters = _createOutputAdapters(config, args.output) print("Started with {} input corpora to transform".format(len(input_adapters))) print("Started with {} output corpora as target format".format(len(output_adapters))) # Creating metamodels metamodels = _transformInputsToMetamodel(input_adapters) # Doing output work _transformMetamodelsToOutputs(metamodels, output_adapters) return 0 if __name__ == "__main__": sys.exit(main()) # pragma: no cover
[ "audio_korpora_pipeline.outputadapter.adapters.MailabsAdapter", "audio_korpora_pipeline.inputadapter.adapters.ArchimobAdapter", "argparse.ArgumentParser", "audio_korpora_pipeline.outputadapter.adapters.OpenSeq2SeqAdapter", "audio_korpora_pipeline.inputadapter.adapters.UntranscribedVideoAdapter", "audio_korpora_pipeline.inputadapter.adapters.ChJugendspracheAdapter", "os.path.isfile", "audio_korpora_pipeline.outputadapter.adapters.LjSpeechAdapter", "audio_korpora_pipeline.outputadapter.adapters.FairseqWav2VecAdapter", "audio_korpora_pipeline.inputadapter.adapters.CommonVoiceAdapter", "audio_korpora_pipeline.utils.load_config" ]
[((2829, 2854), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (2852, 2854), False, 'import argparse\n'), ((3422, 3446), 'audio_korpora_pipeline.utils.load_config', 'load_config', (['config_path'], {}), '(config_path)\n', (3433, 3446), False, 'from audio_korpora_pipeline.utils import load_config, config_logging\n'), ((3357, 3384), 'os.path.isfile', 'os.path.isfile', (['config_path'], {}), '(config_path)\n', (3371, 3384), False, 'import os\n'), ((3464, 3488), 'audio_korpora_pipeline.utils.load_config', 'load_config', (['config_path'], {}), '(config_path)\n', (3475, 3488), False, 'from audio_korpora_pipeline.utils import load_config, config_logging\n'), ((1012, 1038), 'audio_korpora_pipeline.inputadapter.adapters.CommonVoiceAdapter', 'CommonVoiceAdapter', (['config'], {}), '(config)\n', (1030, 1038), False, 'from audio_korpora_pipeline.inputadapter.adapters import CommonVoiceAdapter, UntranscribedVideoAdapter, ChJugendspracheAdapter, ArchimobAdapter\n'), ((1128, 1161), 'audio_korpora_pipeline.inputadapter.adapters.UntranscribedVideoAdapter', 'UntranscribedVideoAdapter', (['config'], {}), '(config)\n', (1153, 1161), False, 'from audio_korpora_pipeline.inputadapter.adapters import CommonVoiceAdapter, UntranscribedVideoAdapter, ChJugendspracheAdapter, ArchimobAdapter\n'), ((1248, 1278), 'audio_korpora_pipeline.inputadapter.adapters.ChJugendspracheAdapter', 'ChJugendspracheAdapter', (['config'], {}), '(config)\n', (1270, 1278), False, 'from audio_korpora_pipeline.inputadapter.adapters import CommonVoiceAdapter, UntranscribedVideoAdapter, ChJugendspracheAdapter, ArchimobAdapter\n'), ((1357, 1380), 'audio_korpora_pipeline.inputadapter.adapters.ArchimobAdapter', 'ArchimobAdapter', (['config'], {}), '(config)\n', (1372, 1380), False, 'from audio_korpora_pipeline.inputadapter.adapters import CommonVoiceAdapter, UntranscribedVideoAdapter, ChJugendspracheAdapter, ArchimobAdapter\n'), ((1884, 1906), 'audio_korpora_pipeline.outputadapter.adapters.MailabsAdapter', 'MailabsAdapter', (['config'], {}), '(config)\n', (1898, 1906), False, 'from audio_korpora_pipeline.outputadapter.adapters import LjSpeechAdapter, MailabsAdapter, FairseqWav2VecAdapter, OpenSeq2SeqAdapter\n'), ((1988, 2011), 'audio_korpora_pipeline.outputadapter.adapters.LjSpeechAdapter', 'LjSpeechAdapter', (['config'], {}), '(config)\n', (2003, 2011), False, 'from audio_korpora_pipeline.outputadapter.adapters import LjSpeechAdapter, MailabsAdapter, FairseqWav2VecAdapter, OpenSeq2SeqAdapter\n'), ((2099, 2128), 'audio_korpora_pipeline.outputadapter.adapters.FairseqWav2VecAdapter', 'FairseqWav2VecAdapter', (['config'], {}), '(config)\n', (2120, 2128), False, 'from audio_korpora_pipeline.outputadapter.adapters import LjSpeechAdapter, MailabsAdapter, FairseqWav2VecAdapter, OpenSeq2SeqAdapter\n'), ((2212, 2238), 'audio_korpora_pipeline.outputadapter.adapters.OpenSeq2SeqAdapter', 'OpenSeq2SeqAdapter', (['config'], {}), '(config)\n', (2230, 2238), False, 'from audio_korpora_pipeline.outputadapter.adapters import LjSpeechAdapter, MailabsAdapter, FairseqWav2VecAdapter, OpenSeq2SeqAdapter\n')]
## Copyright 2021 <NAME> ## OpInMod is released under the open source MIT License, see ## https://github.com/hnnngt/OpInMod/blob/main/LICENSE """Modules for providing a convenient data structure for OpInMod results. Check the oemof.solph documentation for further details https://github.com/oemof/oemof-solph """ import oemof.solph.processing as osp import pandas as pd def results(om): result_dict = osp.results(om) for (ores,ires) in result_dict: for (oin, iin) in om.sources_inertia: if om.sources_inertia[oin,iin].provision_type == 'synchronous_generator' and oin == ores and ires == iin: result_dict[ores, ires]['sequences']['inertia_constant'] = om.sources_inertia[oin,iin].inertia_constant result_dict[ores, ires]['sequences']['apparent_power'] = om.sources_inertia[oin,iin].apparent_power elif om.sources_inertia[oin,iin].provision_type == 'synchronous_storage' and oin == ores and ires == iin: result_dict[ores, ires]['sequences']['inertia_constant'] = om.sources_inertia[oin,iin].inertia_constant result_dict[ores, ires]['sequences']['apparent_power'] = om.sources_inertia[oin,iin].apparent_power elif om.sources_inertia[oin,iin].provision_type == 'none' and oin == ores and ires == iin: result_dict[ores, ires]['sequences']['inertia_constant'] = om.sources_inertia[oin,iin].inertia_constant result_dict[ores, ires]['sequences']['apparent_power'] = om.sources_inertia[oin,iin].apparent_power elif om.sources_inertia[oin,iin].provision_type == 'synthetic_wind' and oin == ores and ires == iin: for t in om.TIMESTEPS: if t == 0: result_dict[ores, ires]['sequences']['inertia_constant'] = None result_dict[ores, ires]['sequences']['apparent_power'] = None result_dict[ores, ires]['sequences'].iloc[t, 1] = om.sources_inertia[oin,iin].inertia_constant[t] result_dict[ores, ires]['sequences'].iloc[t, 2] = om.sources_inertia[oin,iin].apparent_power else: result_dict[ores, ires]['sequences'].iloc[t, 1] = om.sources_inertia[oin,iin].inertia_constant[t] result_dict[ores, ires]['sequences'].iloc[t, 2] = om.sources_inertia[oin,iin].apparent_power result_dict[ores, ires]['sequences']['inertia_constant'] = pd.to_numeric(result_dict[ores, ires]['sequences']['inertia_constant']) result_dict[ores, ires]['sequences']['apparent_power'] = pd.to_numeric(result_dict[ores, ires]['sequences']['apparent_power']) elif om.sources_inertia[oin,iin].provision_type == 'synthetic_storage' and oin == ores and ires == iin: result_dict[ores, ires]['sequences']['inertia_constant'] = om.sources_inertia[oin,iin].inertia_constant result_dict[ores, ires]['sequences']['apparent_power'] = om.sources_inertia[oin,iin].apparent_power else: None return result_dict
[ "oemof.solph.processing.results", "pandas.to_numeric" ]
[((412, 427), 'oemof.solph.processing.results', 'osp.results', (['om'], {}), '(om)\n', (423, 427), True, 'import oemof.solph.processing as osp\n'), ((2493, 2564), 'pandas.to_numeric', 'pd.to_numeric', (["result_dict[ores, ires]['sequences']['inertia_constant']"], {}), "(result_dict[ores, ires]['sequences']['inertia_constant'])\n", (2506, 2564), True, 'import pandas as pd\n'), ((2638, 2707), 'pandas.to_numeric', 'pd.to_numeric', (["result_dict[ores, ires]['sequences']['apparent_power']"], {}), "(result_dict[ores, ires]['sequences']['apparent_power'])\n", (2651, 2707), True, 'import pandas as pd\n')]
import pytest from pymc3.distributions.transforms import Transform import pymc3 as pm class TestTransformName(object): cases = [ ('var', 'var_test__'), ('var_test_', 'var_test__test__') ] transform_name = 'test' def test_get_transformed_name(self): test_transform = Transform() test_transform.name = self.transform_name for name, transformed in self.cases: assert pm.util.get_transformed_name(name, test_transform) == transformed def test_is_transformed_name(self): for name, transformed in self.cases: assert pm.util.is_transformed_name(transformed) assert not pm.util.is_transformed_name(name) def test_get_untransformed_name(self): for name, transformed in self.cases: assert pm.util.get_untransformed_name(transformed) == name with pytest.raises(ValueError): pm.util.get_untransformed_name(name)
[ "pymc3.util.get_untransformed_name", "pymc3.util.get_transformed_name", "pymc3.distributions.transforms.Transform", "pymc3.util.is_transformed_name", "pytest.raises" ]
[((310, 321), 'pymc3.distributions.transforms.Transform', 'Transform', ([], {}), '()\n', (319, 321), False, 'from pymc3.distributions.transforms import Transform\n'), ((607, 647), 'pymc3.util.is_transformed_name', 'pm.util.is_transformed_name', (['transformed'], {}), '(transformed)\n', (634, 647), True, 'import pymc3 as pm\n'), ((436, 486), 'pymc3.util.get_transformed_name', 'pm.util.get_transformed_name', (['name', 'test_transform'], {}), '(name, test_transform)\n', (464, 486), True, 'import pymc3 as pm\n'), ((671, 704), 'pymc3.util.is_transformed_name', 'pm.util.is_transformed_name', (['name'], {}), '(name)\n', (698, 704), True, 'import pymc3 as pm\n'), ((813, 856), 'pymc3.util.get_untransformed_name', 'pm.util.get_untransformed_name', (['transformed'], {}), '(transformed)\n', (843, 856), True, 'import pymc3 as pm\n'), ((882, 907), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (895, 907), False, 'import pytest\n'), ((925, 961), 'pymc3.util.get_untransformed_name', 'pm.util.get_untransformed_name', (['name'], {}), '(name)\n', (955, 961), True, 'import pymc3 as pm\n')]
from HR_Processor import HRProcessor from queue import * from tkinter import * # must initialize a tkinter root for the HRProcessor to be able to initialize StringVar root = Tk() sampling_rate_easy = 2/60 # makes be 2 inst hr per 1 min, 10 inst per 5 min (30 second updates) # the following are default values from Main tachycardia = 200.0 bradycardia = 40.0 multi_minute_mean_1 = 1 multi_minute_mean_2 = 5 def test_queue_avg(): queue_avg_5 = Queue() queue_avg_5.put(0) queue_avg_5.put(10) my_processor = HRProcessor(sampling_rate_easy, tachycardia, bradycardia, multi_minute_mean_1, multi_minute_mean_2) assert 5 == my_processor.queue_avg(queue_avg_5) assert not queue_avg_5.empty() assert 0 == queue_avg_5.get() assert 10 == queue_avg_5.get() assert queue_avg_5.empty() def test_update_queue(): putter = 4 queue_simple = Queue() assert queue_simple.empty() my_processor = HRProcessor(sampling_rate_easy, tachycardia, bradycardia, multi_minute_mean_1, multi_minute_mean_2) my_processor.update_queue(queue_simple, putter) assert queue_simple.get() == putter assert queue_simple.empty()
[ "HR_Processor.HRProcessor" ]
[((527, 630), 'HR_Processor.HRProcessor', 'HRProcessor', (['sampling_rate_easy', 'tachycardia', 'bradycardia', 'multi_minute_mean_1', 'multi_minute_mean_2'], {}), '(sampling_rate_easy, tachycardia, bradycardia,\n multi_minute_mean_1, multi_minute_mean_2)\n', (538, 630), False, 'from HR_Processor import HRProcessor\n'), ((934, 1037), 'HR_Processor.HRProcessor', 'HRProcessor', (['sampling_rate_easy', 'tachycardia', 'bradycardia', 'multi_minute_mean_1', 'multi_minute_mean_2'], {}), '(sampling_rate_easy, tachycardia, bradycardia,\n multi_minute_mean_1, multi_minute_mean_2)\n', (945, 1037), False, 'from HR_Processor import HRProcessor\n')]
# -*- coding: utf-8 -*- # # This file is part of Sequana software # # Copyright (c) 2016 - Sequana Development Team # # File author(s): # <NAME> <<EMAIL>> # <NAME> <<EMAIL>>, # <<EMAIL>> # # Distributed under the terms of the 3-clause BSD license. # The full license is in the LICENSE file, distributed with this software. # # website: https://github.com/sequana/sequana # documentation: http://sequana.readthedocs.io # ############################################################################## """ Tools to launch snpEff.""" import re import sys import os import shutil import subprocess as sp from sequana.resources import snpeff from sequana import FastA import colorlog logger = colorlog.getLogger(__name__) class SnpEff(object): """ SnpEff is a tool dedicated to annotate detected variants in a VCF file. This wrapper eases the annotation with a genbank file. It create automatically the custom database. Then, run snpEff with a subprocess. Caution, the locus name (or chromosome name) in genbank file and the sequence name in VCF file must be the same. Otherwise, snpEff is not able to bind informations. Example: :: snpeff = SnpEff('file.gbk') snpeff.launch_snpeff('variants.vcf', 'variant.ann.vcf') If your input is in GFF format, you must also provide the fasta reference file. Will save relevant snpeff data into ./data directory """ def __init__(self, annotation, log=None, snpeff_datadir="data", fastafile=None): """.. rubric:: Constructor :param annotation: annotation reference. :param file_format: format of your file. ('only genbank actually') :param log: log file :param snpeff_datadir: :param fastafile: if a GFF is used, you must provide the FASTA input file as well """ # Check if the input file exist if os.path.isfile(annotation): self.annotation = annotation self.fastafile = fastafile self.ref_name = os.path.basename(annotation).split('.')[0] if self.annotation.endswith(".genbank") or self.annotation.endswith(".gbk"): self.format = "gbk" elif self.annotation.endswith(".gff3") or self.annotation.endswith(".gff"): self.format = "gff3" else: logger.error("Format must be genbank or gff3") sys.exit(1) else: logger.error("FileNotFoundError: The file " + annotation + " does not exist") sys.exit(1) # Keep data directory where everything will be saved self.snpeff_datadir = snpeff_datadir # Set the log file self.log_file = log if log is not None: if os.path.isfile(log): os.remove(log) # Check if snpEff.config is present if not os.path.exists("snpEff.config"): logger.info("snpEff.config file not found, creating one") self._get_snpeff_config() else: logger.info("snpEff.config file exists already. Using it.") # Create custom database if not os.path.exists(self.snpeff_datadir + os.sep + self.ref_name + os.sep + "snpEffectPredictor.bin"): self._add_custom_db() elif not self._check_database(self.ref_name): self._add_db_in_config() else: logger.info("DB already added in your config and database") def _check_database(self, reference): """ Check if your genbank/GFF is already added.""" proc_db = sp.Popen(["snpEff", "databases"], stdout=sp.PIPE) snpeff_db = {line.split()[0] for line in proc_db.stdout} if reference.encode("utf-8") in snpeff_db: return True return False def _get_snpeff_config(self): """ Copy and unzip the snpEff.config file. """ from sequana import sequana_data CONFIG = sequana_data("snpEff.config", "snpeff") shutil.copyfile(CONFIG, "./snpEff.config") def _add_custom_db(self): """ Add your custom file in the local snpEff database. """ # create directory and copy annotation file logger.info("adding custom DB using your input file(s)") logger.info(" - {}".format(self.annotation)) if self.fastafile: logger.info(" - {}".format(self.fastafile)) genome_dir = "data" + os.sep + self.ref_name + os.sep try: os.makedirs(genome_dir) except FileExistsError: pass # add new annotation file in config file self._add_db_in_config() if self.format == "gbk": shutil.copyfile(self.annotation, genome_dir + "genes.gbk") snpeff_build_line = ["snpEff", "build", "-genbank", '-v'] snpeff_build_line += [self.ref_name] elif self.format == "gff3": shutil.copyfile(self.annotation, genome_dir + "genes.gff") if self.fastafile is None or not os.path.exists(self.fastafile): logger.error("Input file {} does not exist".format(self.fastafile)) sys.exit(1) shutil.copyfile(self.fastafile, genome_dir + "sequences.fa") snpeff_build_line = ["snpEff", "build", "-gff3", '-v'] snpeff_build_line += [self.ref_name] if self.log_file: with open(self.log_file, "ab") as fl: snp_build = sp.Popen(snpeff_build_line, stderr=fl, stdout=fl) else: snp_build = sp.Popen(snpeff_build_line) snp_build.wait() rc = snp_build.returncode if rc != 0: logger.error("snpEff build return a non-zero code") sys.exit(rc) def _add_db_in_config(self): """ Add new annotation at the end of snpEff.config file. """ logger.info("Updating configuration file") if not self._check_database(self.ref_name): with open("snpEff.config", "a") as fp: print(self.ref_name + ".genome : " + self.ref_name, file=fp) def launch_snpeff(self, vcf_filename, output, html_output=None, options=""): """ Launch snpEff with the custom genbank file. :param str vcf_filename: input VCF filename. :param str output: output VCF filename. :param str html_output: filename of the HTML creates by snpEff. :param str options: any options recognised by snpEff. """ # Create command line for Popen args_ann = ["snpEff", "-formatEff"] if html_output is not None: args_ann += ["-s", html_output] args_ann += options.split() args_ann += [self.ref_name, '-v', vcf_filename] # Launch snpEff if self.log_file: with open(self.log_file, "ab") as fl, open(output, "wb") as fp: proc_ann = sp.Popen(args_ann, stdout=fp, stderr=fl) proc_ann.wait() else: with open(output, "wb") as fp: proc_ann = sp.Popen(args_ann, stdout=fp) proc_ann.wait() def _get_seq_ids(self): if self.format == "gbk": regex = re.compile(r'^LOCUS\s+([\w\.\-]+)') chrom_regex = re.compile(r'\\chromosome="([\w\.\-]+)"') with open(self.annotation, "r") as fp: line = fp.readline() seq = regex.findall(line) for line in fp: if line.strip().startswith(('gene', 'CDS',)): break chrom = chrom_regex.search(line) if chrom: seq = [chrom.group(1)] regex = chrom_regex seq += [regex.search(line).group(1) for line in fp if regex.search(line)] return seq else: regex = re.compile(r'^##sequence-region\s+([\w\.\-]+)') with open(self.annotation, "r") as fp: line = fp.readline() seq = regex.findall(line) for line in fp: chrom = regex.findall(line) if chrom: seq += chrom return seq def add_locus_in_fasta(self, fasta, output_file): """ Add locus of annotation file in description line of fasta file. If fasta file and genbank file do not have the same names. :param str fasta: input fasta file where you want to add locus. :param str output_file: output file. FIXME: fasta is already known if provided in the init """ fasta_record = FastA(fasta) ids_list = self._get_seq_ids() # check if both files have same number of contigs if len(fasta_record) != len(ids_list): print("fasta and annotation files don't have the same number of " "contigs. Found {} and {}".format(len(fasta_record), len(ids_list))) sys.exit(1) # check if directory exist output_dir = os.path.dirname(output_file) try: if not os.path.exists(output_dir): os.makedirs(output_dir) except FileNotFoundError: pass if sorted(fasta_record.names) == sorted(ids_list): logger.info("Files have same sequence id.") if os.path.isfile(output_file): os.remove(output_file) os.symlink(os.path.realpath(fasta), output_file) return else: logger.info("fasta and GFF seem to have different IDs. Creating a" "new coherent fasta file assuming the chromsome names appear " "in the same order in the fasta and gff") with open(output_file, "w") as fp: # write fasta with seqid of annotation file for n in range(len(fasta_record)): seq_id = ">{0} {1}\n".format(ids_list[n], fasta_record.names[n]) seq = fasta_record.sequences[n] sequence = "\n".join([seq[i:min(i+80, len(seq))] for i in range(0, len(seq), 80)]) + "\n" contigs = seq_id + sequence fp.write(contigs) def download_fasta_and_genbank(identifier, tag, genbank=True, fasta=True): """ :param identifier: valid identifier to retrieve from NCBI (genbank) and ENA (fasta) :param tag: name of the filename for the genbank and fasta files. """ if genbank: from bioservices import EUtils eu = EUtils() data = eu.EFetch(db="nuccore",id=identifier, rettype="gbwithparts", retmode="text") if isinstance(data, int) and data == 400: raise ValueError("{} not found on NCBI".format(identifier)) else: with open("%s.gbk" % tag, "w") as fout: fout.write(data.decode()) if fasta: from bioservices import ENA ena = ENA() data = ena.get_data(identifier, 'fasta') if isinstance(data, int) and data == 400: raise ValueError("{} not found on ENA".format(identifier)) else: with open("%s.fa" % tag, "w") as fout: try: # change in API in v1.7.8 fout.write(data) except: fout.write(data.decode())
[ "os.path.exists", "bioservices.EUtils", "sequana.FastA", "os.makedirs", "re.compile", "bioservices.ENA", "subprocess.Popen", "colorlog.getLogger", "os.path.isfile", "os.path.dirname", "shutil.copyfile", "sequana.sequana_data", "os.path.realpath", "os.path.basename", "sys.exit", "os.remove" ]
[((714, 742), 'colorlog.getLogger', 'colorlog.getLogger', (['__name__'], {}), '(__name__)\n', (732, 742), False, 'import colorlog\n'), ((1933, 1959), 'os.path.isfile', 'os.path.isfile', (['annotation'], {}), '(annotation)\n', (1947, 1959), False, 'import os\n'), ((3679, 3728), 'subprocess.Popen', 'sp.Popen', (["['snpEff', 'databases']"], {'stdout': 'sp.PIPE'}), "(['snpEff', 'databases'], stdout=sp.PIPE)\n", (3687, 3728), True, 'import subprocess as sp\n'), ((4046, 4085), 'sequana.sequana_data', 'sequana_data', (['"""snpEff.config"""', '"""snpeff"""'], {}), "('snpEff.config', 'snpeff')\n", (4058, 4085), False, 'from sequana import sequana_data\n'), ((4094, 4136), 'shutil.copyfile', 'shutil.copyfile', (['CONFIG', '"""./snpEff.config"""'], {}), "(CONFIG, './snpEff.config')\n", (4109, 4136), False, 'import shutil\n'), ((8770, 8782), 'sequana.FastA', 'FastA', (['fasta'], {}), '(fasta)\n', (8775, 8782), False, 'from sequana import FastA\n'), ((9173, 9201), 'os.path.dirname', 'os.path.dirname', (['output_file'], {}), '(output_file)\n', (9188, 9201), False, 'import os\n'), ((10671, 10679), 'bioservices.EUtils', 'EUtils', ([], {}), '()\n', (10677, 10679), False, 'from bioservices import EUtils\n'), ((11080, 11085), 'bioservices.ENA', 'ENA', ([], {}), '()\n', (11083, 11085), False, 'from bioservices import ENA\n'), ((2613, 2624), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2621, 2624), False, 'import sys\n'), ((2831, 2850), 'os.path.isfile', 'os.path.isfile', (['log'], {}), '(log)\n', (2845, 2850), False, 'import os\n'), ((2943, 2974), 'os.path.exists', 'os.path.exists', (['"""snpEff.config"""'], {}), "('snpEff.config')\n", (2957, 2974), False, 'import os\n'), ((3219, 3319), 'os.path.exists', 'os.path.exists', (["(self.snpeff_datadir + os.sep + self.ref_name + os.sep +\n 'snpEffectPredictor.bin')"], {}), "(self.snpeff_datadir + os.sep + self.ref_name + os.sep +\n 'snpEffectPredictor.bin')\n", (3233, 3319), False, 'import os\n'), ((4584, 4607), 'os.makedirs', 'os.makedirs', (['genome_dir'], {}), '(genome_dir)\n', (4595, 4607), False, 'import os\n'), ((4786, 4844), 'shutil.copyfile', 'shutil.copyfile', (['self.annotation', "(genome_dir + 'genes.gbk')"], {}), "(self.annotation, genome_dir + 'genes.gbk')\n", (4801, 4844), False, 'import shutil\n'), ((5642, 5669), 'subprocess.Popen', 'sp.Popen', (['snpeff_build_line'], {}), '(snpeff_build_line)\n', (5650, 5669), True, 'import subprocess as sp\n'), ((5825, 5837), 'sys.exit', 'sys.exit', (['rc'], {}), '(rc)\n', (5833, 5837), False, 'import sys\n'), ((7299, 7337), 're.compile', 're.compile', (['"""^LOCUS\\\\s+([\\\\w\\\\.\\\\-]+)"""'], {}), "('^LOCUS\\\\s+([\\\\w\\\\.\\\\-]+)')\n", (7309, 7337), False, 'import re\n'), ((7361, 7406), 're.compile', 're.compile', (['"""\\\\\\\\chromosome="([\\\\w\\\\.\\\\-]+)\\""""'], {}), '(\'\\\\\\\\chromosome="([\\\\w\\\\.\\\\-]+)"\')\n', (7371, 7406), False, 'import re\n'), ((8008, 8058), 're.compile', 're.compile', (['"""^##sequence-region\\\\s+([\\\\w\\\\.\\\\-]+)"""'], {}), "('^##sequence-region\\\\s+([\\\\w\\\\.\\\\-]+)')\n", (8018, 8058), False, 'import re\n'), ((9104, 9115), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9112, 9115), False, 'import sys\n'), ((9484, 9511), 'os.path.isfile', 'os.path.isfile', (['output_file'], {}), '(output_file)\n', (9498, 9511), False, 'import os\n'), ((2868, 2882), 'os.remove', 'os.remove', (['log'], {}), '(log)\n', (2877, 2882), False, 'import os\n'), ((5012, 5070), 'shutil.copyfile', 'shutil.copyfile', (['self.annotation', "(genome_dir + 'genes.gff')"], {}), "(self.annotation, genome_dir + 'genes.gff')\n", (5027, 5070), False, 'import shutil\n'), ((5272, 5332), 'shutil.copyfile', 'shutil.copyfile', (['self.fastafile', "(genome_dir + 'sequences.fa')"], {}), "(self.fastafile, genome_dir + 'sequences.fa')\n", (5287, 5332), False, 'import shutil\n'), ((5554, 5603), 'subprocess.Popen', 'sp.Popen', (['snpeff_build_line'], {'stderr': 'fl', 'stdout': 'fl'}), '(snpeff_build_line, stderr=fl, stdout=fl)\n', (5562, 5603), True, 'import subprocess as sp\n'), ((6998, 7038), 'subprocess.Popen', 'sp.Popen', (['args_ann'], {'stdout': 'fp', 'stderr': 'fl'}), '(args_ann, stdout=fp, stderr=fl)\n', (7006, 7038), True, 'import subprocess as sp\n'), ((7155, 7184), 'subprocess.Popen', 'sp.Popen', (['args_ann'], {'stdout': 'fp'}), '(args_ann, stdout=fp)\n', (7163, 7184), True, 'import subprocess as sp\n'), ((9234, 9260), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (9248, 9260), False, 'import os\n'), ((9278, 9301), 'os.makedirs', 'os.makedirs', (['output_dir'], {}), '(output_dir)\n', (9289, 9301), False, 'import os\n'), ((9529, 9551), 'os.remove', 'os.remove', (['output_file'], {}), '(output_file)\n', (9538, 9551), False, 'import os\n'), ((9575, 9598), 'os.path.realpath', 'os.path.realpath', (['fasta'], {}), '(fasta)\n', (9591, 9598), False, 'import os\n'), ((2460, 2471), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2468, 2471), False, 'import sys\n'), ((5248, 5259), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5256, 5259), False, 'import sys\n'), ((2070, 2098), 'os.path.basename', 'os.path.basename', (['annotation'], {}), '(annotation)\n', (2086, 2098), False, 'import os\n'), ((5116, 5146), 'os.path.exists', 'os.path.exists', (['self.fastafile'], {}), '(self.fastafile)\n', (5130, 5146), False, 'import os\n')]
# -*- coding: utf-8 -*- from wiki_contribution.run import app, server if __name__ == "__main__": app.run_server(debug=False, port=5000)
[ "wiki_contribution.run.app.run_server" ]
[((102, 140), 'wiki_contribution.run.app.run_server', 'app.run_server', ([], {'debug': '(False)', 'port': '(5000)'}), '(debug=False, port=5000)\n', (116, 140), False, 'from wiki_contribution.run import app, server\n')]
import os from django.core.asgi import get_asgi_application from channels.routing import ProtocolTypeRouter, URLRouter os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'config.settings') django_asgi_app = get_asgi_application() from chat.middlewares import TokenAuthMiddleware import chat.routing application = ProtocolTypeRouter({ 'websocket': TokenAuthMiddleware( URLRouter( chat.routing.websocket_urlpatterns ) ), })
[ "os.environ.setdefault", "channels.routing.URLRouter", "django.core.asgi.get_asgi_application" ]
[((122, 188), 'os.environ.setdefault', 'os.environ.setdefault', (['"""DJANGO_SETTINGS_MODULE"""', '"""config.settings"""'], {}), "('DJANGO_SETTINGS_MODULE', 'config.settings')\n", (143, 188), False, 'import os\n'), ((207, 229), 'django.core.asgi.get_asgi_application', 'get_asgi_application', ([], {}), '()\n', (227, 229), False, 'from django.core.asgi import get_asgi_application\n'), ((384, 429), 'channels.routing.URLRouter', 'URLRouter', (['chat.routing.websocket_urlpatterns'], {}), '(chat.routing.websocket_urlpatterns)\n', (393, 429), False, 'from channels.routing import ProtocolTypeRouter, URLRouter\n')]
import os import webbrowser import tkinter as tk from tkinter import * window = Tk() window.geometry('200x200') window.title("quit finder") window.rowconfigure(0, weight=1) window.columnconfigure(0, weight=1) window.resizable(width=False, height=False) window.eval('tk::PlaceWindow %s center' % window.winfo_toplevel()) def quit(): os.system("defaults write com.apple.finder QuitMenuItem -bool true") os.system("""osascript -e 'quit app "Finder"'""") lbl.configure(text="was it worth it?") btn.config(state='disabled') def tagbtn(): webbrowser.open("http://sahasramesh.com") fr = Frame(window) fr.grid(column=0, row=0) lbl = Label(fr, text="let go of your fear.", font=("Times New Roman", 14)) lbl.grid(column=0, row=0) btn = Button(fr, text="do it.", command=quit, font=("Times New Roman", 14)) btn.grid(column=0, row=1) fr1 = Frame(window) fr1.grid(column=0, row=2) #tag tag = Label(fr1, text="An original project by ", font=('Courier', 6)) tag.pack(side=LEFT) #tag btn4 = Button(fr1, text="<NAME>", fg='#FF4500', anchor=W, highlightbackground='white', highlightcolor='white', highlightthickness=0, command=tagbtn, font=('Courier', 6)) btn4.pack(side=LEFT) window.mainloop()
[ "os.system", "webbrowser.open" ]
[((338, 406), 'os.system', 'os.system', (['"""defaults write com.apple.finder QuitMenuItem -bool true"""'], {}), "('defaults write com.apple.finder QuitMenuItem -bool true')\n", (347, 406), False, 'import os\n'), ((411, 458), 'os.system', 'os.system', (['"""osascript -e \'quit app "Finder"\'"""'], {}), '(\'osascript -e \\\'quit app "Finder"\\\'\')\n', (420, 458), False, 'import os\n'), ((557, 598), 'webbrowser.open', 'webbrowser.open', (['"""http://sahasramesh.com"""'], {}), "('http://sahasramesh.com')\n", (572, 598), False, 'import webbrowser\n')]
#!/usr/bin/env python3 import torch import torch.utils.data import pandas as pd class UNSW_NB15(torch.utils.data.Dataset): def __init__(self, file_path, sequence_length=25, transform=None): #TODO have a sequence_overlap=True flag? Does overlap matter? self.transform = transform self.sequence_length = sequence_length self.columns = ['srcip', 'sport', 'dstip', 'dsport', 'proto', 'state', 'dur', 'sbytes', 'dbytes', 'sttl', 'dttl', 'sloss', 'dloss', 'service', 'sload', 'dload', 'spkts', 'dpkts', 'swin', 'dwin', 'stcpb', 'dtcpb', 'smeansz', 'dmeansz', 'trans_depth', 'res_bdy_len', 'sjit', 'djit', 'stime', 'ltime', 'sintpkt', 'dintpkt', 'tcprtt', 'synack', 'ackdat', 'is_sm_ips_ports', 'ct_state_ttl', 'ct_flw_http_mthd', 'is_ftp_login', 'ct_ftp_cmd', 'ct_srv_src', 'ct_srv_dst', 'ct_dst_ltm', 'ct_src_ltm', 'ct_src_dport_ltm', 'ct_dst_sport_ltm', 'ct_dst_src_ltm', 'attack_cat', 'label'] self.dtypes = dtypes = {"scrip": "str", "sport": "int32", "dstip": "str", "dsport": "int32", "proto": "str", "state": "str", "dur": "float64", "sbytes": "int32", "dbytes": "int32", "sttl": "int32", "dttl": "int32", "sloss": "int32", "dloss": "int32", "service": "str", "sload": "float64", "dload": "float64", "spkts": "int32", "dpkts": "int32", "swin": "int32", "dwin": "int32", "stcpb": "int32", "dtcpb": "int32", "smeansz": "int32", "dmeansz": "int32", "trans_depth": "int32", "res_bdy_len": "int32", "sjit": "float64", "djit": "float64", "stime": "int64", "ltime": "int64", "sintpkt": "float64", "dintpkt": "float64", "tcprtt": "float64", "synack": "float64", "ackdat": "float64", #commenting these because they have mixed values and we aren't going to generate them anyway #"is_sm_ips_ports": "int32", #"ct_state_ttl": "int32", #"ct_flw_httpd_mthd": "int32", #"is_ftp_login": "int32", #"is_ftp_cmd": "int32", #"ct_ftp_cmd": "int32", #"ct_srv_src": "int32", ##"ct_dst_ltm": "int32", #"ct_src_ltm": "int32", #"ct_src_dport_ltm": "int32", #"ct_dst_sport_ltm": "int32", #"ct_dst_src_ltm": "int32", "attack_cat": "str", "label": "int32"} self.categorical_column_values = {"proto":None, "state":None, "service":None, "attack_cat":None} self.dataframe = pd.read_csv(file_path, encoding="latin-1", names=self.columns, header=None, dtype=self.dtypes) self.dataframe.sort_values(by=['stime']) #sort chronologically upon loading #load all the unique values of categorical features at the start #and make these accessible via a fast function call. for key in self.categorical_column_values: self.categorical_column_values[key] = self.dataframe[key].unique() #cache all the maximum values in numeric columns since we'll be using these for feature extraction self.maximums = {} for key in self.dtypes: if "int" in self.dtypes[key] or "float" in self.dtypes[key]: self.maximums[key] = max(self.dataframe[key]) def __len__(self): return len(self.dataframe.index) - self.sequence_length def __getitem__(self, index): #TODO need error checking for out of bounds? #TODO return x,y where y is the category of the example #since none corresponds to "normal" data list_of_dicts = [] for i in range(index,index+self.sequence_length): list_of_dicts.append(self.dataframe.loc[i, :].to_dict()) if self.transform is not None: return self.transform(self, list_of_dicts) return list_of_dicts #get a list of all the unique labels in the dataset def get_labels(self): return self.dataframe['label'].unique().tolist() #get a list of all the unique attack categories in the dataset def get_attack_categories(self): return self.dataframe['attack_cat'].unique().tolist() def get_list_of_categories(self, column_name): pass #TODO #limit the dataset to only examples in the specified category def use_only_category(self, category_name): if category_name not in self.get_attack_categories(): return False new_dataframe = self.dataframe[self.dataframe['attack_cat'] == category_name] new_dataframe = new_dataframe.reset_index() self.dataframe = new_dataframe return True #limit the dataset to only examples with the specified label def use_only_label(self, label): if label not in self.get_labels(): return False new_dataframe = self.dataframe[self.dataframe['label'] == label] new_dataframe = new_dataframe.reset_index() self.dataframe = new_dataframe return True
[ "pandas.read_csv" ]
[((3864, 3962), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'encoding': '"""latin-1"""', 'names': 'self.columns', 'header': 'None', 'dtype': 'self.dtypes'}), "(file_path, encoding='latin-1', names=self.columns, header=None,\n dtype=self.dtypes)\n", (3875, 3962), True, 'import pandas as pd\n')]
from celery.utils.log import get_logger from pocfullstack.celery import app from .settings import IMPORT_CSV_URL, CSV_TMP_FILE from .models import SaleFacts, SaleFactsBad import csv import urllib.request import uuid import traceback logger = get_logger(__name__) @app.task def create_import_chain(): """ Task creates import chain for CSV data """ fetch_csv_file_si = fetch_csv_file.si() read_lines_si = read_lines.si() (fetch_csv_file_si | read_lines_si).delay() @app.task(default_retry_delay=300, max_retries=10) def fetch_csv_file(): """ Task fetching CSV file data. I must assume the URL is not being changed. """ sd = urllib.request.urlopen(IMPORT_CSV_URL) with open(CSV_TMP_FILE, 'wb') as fd: fd.write(sd.read()) @app.task def read_lines(): """ Task is used to insert rows into process queue """ with open(CSV_TMP_FILE, 'r') as csv_fh: csv_reader = csv.reader(csv_fh) for row in csv_reader: process_data.delay(row) @app.task def process_data(row): if len(row) != 15: # wrong row logger.error('Wrong "row" with data: %s' % row) return uid = uuid.UUID(row[0]) if row[14] == 'A': # append row try: logger.info('Creating UID: %s' % uid) SaleFacts.objects.create_from_row(row) except: SaleFactsBad.objects.create(row='%s' % row, exc=traceback.format_exc()) elif row[14] == 'C': # change fact = SaleFacts.objects.filter(transaction_uid=uid).first() if fact is None: try: logger.info('Creating (instead of update) UID: %s' % uid) SaleFacts.objects.create_from_row(row) except: SaleFactsBad.objects.create(row='%s' % row, exc=traceback.format_exc()) else: fact.update_from_row(row) fact.save() logger.info('Updating UID: %s' % uid) elif row[14] == 'D': SaleFacts.objects.filter(transaction_uid=uid).delete() logger.info('Deleting UID: %s' % uid)
[ "pocfullstack.celery.app.task", "traceback.format_exc", "uuid.UUID", "celery.utils.log.get_logger", "csv.reader" ]
[((244, 264), 'celery.utils.log.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (254, 264), False, 'from celery.utils.log import get_logger\n'), ((495, 544), 'pocfullstack.celery.app.task', 'app.task', ([], {'default_retry_delay': '(300)', 'max_retries': '(10)'}), '(default_retry_delay=300, max_retries=10)\n', (503, 544), False, 'from pocfullstack.celery import app\n'), ((1184, 1201), 'uuid.UUID', 'uuid.UUID', (['row[0]'], {}), '(row[0])\n', (1193, 1201), False, 'import uuid\n'), ((939, 957), 'csv.reader', 'csv.reader', (['csv_fh'], {}), '(csv_fh)\n', (949, 957), False, 'import csv\n'), ((1436, 1458), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (1456, 1458), False, 'import traceback\n'), ((1826, 1848), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (1846, 1848), False, 'import traceback\n')]
#coding=utf-8 ''' Created on 2014-1-14 @author: ETHAN ''' from doraemon.automationtesting.models import AutoMobileDevice from django.db.models import Q class DAL_AutoMobileDevice(object): ''' data access class for TestTask model ''' @staticmethod def get_all(): ''' get all mobiledevice ''' return AutoMobileDevice.objects.all().filter(MDIsActive=1) @staticmethod def add_automobiledevice(automobiledevice): ''' add new mobiledevice ''' automobiledevice.save() @staticmethod def get_automobiledevice(id): ''' get mobiledevice by id ''' return AutoMobileDevice.objects.get(id=id) @staticmethod def get_device_byos(deviceos): return AutoMobileDevice.objects.all().filter(MDIsActive=1).filter(MDeviceOS=deviceos).filter(~Q(MDeviceStatus=3))
[ "django.db.models.Q", "doraemon.automationtesting.models.AutoMobileDevice.objects.all", "doraemon.automationtesting.models.AutoMobileDevice.objects.get" ]
[((680, 715), 'doraemon.automationtesting.models.AutoMobileDevice.objects.get', 'AutoMobileDevice.objects.get', ([], {'id': 'id'}), '(id=id)\n', (708, 715), False, 'from doraemon.automationtesting.models import AutoMobileDevice\n'), ((345, 375), 'doraemon.automationtesting.models.AutoMobileDevice.objects.all', 'AutoMobileDevice.objects.all', ([], {}), '()\n', (373, 375), False, 'from doraemon.automationtesting.models import AutoMobileDevice\n'), ((876, 894), 'django.db.models.Q', 'Q', ([], {'MDeviceStatus': '(3)'}), '(MDeviceStatus=3)\n', (877, 894), False, 'from django.db.models import Q\n'), ((789, 819), 'doraemon.automationtesting.models.AutoMobileDevice.objects.all', 'AutoMobileDevice.objects.all', ([], {}), '()\n', (817, 819), False, 'from doraemon.automationtesting.models import AutoMobileDevice\n')]
import random import pandas as pd first_name = ["Mohammed", "Ali", "Bichara", "Hassan", "Jacques", "Marie", "Isabelle", "Christine", "Magne", "Adele", "Chriss", "Bayang", "Benjamin", "Djelassem", "Emile", "Yannick", "Narcisse", "Josue", "Jean", "Idriss", "", "Alain", "Billie", "Moussa", "Ghyslain", "Sylvain",] last_name = ["Al-bachar", "Zakaria", "Oumar", "Djibril", "Abdel", "Issa", "Kalman", "Edison", "Akoro", "Nick", "Iboko", "Bouva", "Abba", "Souleyman", "Hissein", "Adam", "Mounir", "Alphonse", "Itno", "Hinda", "Sankara", "Hadje", "Ache", "Haoua", "Nasser",] names = [] for i in range(1000050): index_f = random.randint(0, len(first_name)-1) index_l = random.randint(0, len(last_name)-1) fname = first_name[index_f] tmp = fname + " "+last_name[index_l] # naissance anne = random.randint(1990, 2000) mois = random.randint(1, 12) mois = "0"+ str(mois) if len(str(mois))==1 else str(mois) jour = 28 if mois == 2 else random.randint(1, 31) jour = "0"+str(jour) if len(str(jour))==1 else str(jour) naissance = str(anne)+"/"+str(mois)+"/"+str(jour) # status status = ["Condamnee", "non Condamnee"] status = status[random.randint(0,1)] tribunal = ["Tribuanl 1", "Tribuanl 2", "Tribuanl 3", "Tribuanl 4", "Tribuanl 5"] idx = random.randint(0, len(tribunal)-1) tribunal = tribunal[idx] if tmp != "": if status == "Condamnee": _anne = random.randint(2009, 2017) _mois = random.randint(1, 12) _mois = "0"+ str(_mois) if len(str(_mois))==1 else str(_mois) _jour = 28 if _mois == 2 else random.randint(1, 31) _jour = "0"+str(_jour) if len(str(_jour))==1 else str(_jour) _naissance = str(_anne)+"/"+str(_mois)+"/"+str(_jour) names.append([tmp, naissance, status, _naissance, tribunal]) else: names.append([tmp, naissance, status, "n/a", "n/a"]) print("citoyen ", i, " : ", names[-1]) # saving to csv file df = pd.DataFrame(names) df.to_csv("citoyen.csv", index=False, header=["Noms", "Naissance", "Status", "cond", "Tribunal"])
[ "pandas.DataFrame", "random.randint" ]
[((1902, 1921), 'pandas.DataFrame', 'pd.DataFrame', (['names'], {}), '(names)\n', (1914, 1921), True, 'import pandas as pd\n'), ((829, 855), 'random.randint', 'random.randint', (['(1990)', '(2000)'], {}), '(1990, 2000)\n', (843, 855), False, 'import random\n'), ((864, 885), 'random.randint', 'random.randint', (['(1)', '(12)'], {}), '(1, 12)\n', (878, 885), False, 'import random\n'), ((974, 995), 'random.randint', 'random.randint', (['(1)', '(31)'], {}), '(1, 31)\n', (988, 995), False, 'import random\n'), ((1174, 1194), 'random.randint', 'random.randint', (['(0)', '(1)'], {}), '(0, 1)\n', (1188, 1194), False, 'import random\n'), ((1404, 1430), 'random.randint', 'random.randint', (['(2009)', '(2017)'], {}), '(2009, 2017)\n', (1418, 1430), False, 'import random\n'), ((1442, 1463), 'random.randint', 'random.randint', (['(1)', '(12)'], {}), '(1, 12)\n', (1456, 1463), False, 'import random\n'), ((1562, 1583), 'random.randint', 'random.randint', (['(1)', '(31)'], {}), '(1, 31)\n', (1576, 1583), False, 'import random\n')]
import pickle import csv from BART import write_to_csv_file submissions = pickle.load(open("emergency_backup.p", "rb")) for pid in submissions: sessions = submissions[pid] all_runs = [] for s in sessions: all_runs += s filename = "{}_emergency_backup".format(pid) write_to_csv_file("data", filename, all_runs)
[ "BART.write_to_csv_file" ]
[((295, 340), 'BART.write_to_csv_file', 'write_to_csv_file', (['"""data"""', 'filename', 'all_runs'], {}), "('data', filename, all_runs)\n", (312, 340), False, 'from BART import write_to_csv_file\n')]
import requests import os import json import time path = '../../temp/2021-03-08 (copy)' with os.scandir(path) as entries: print("analyse path: " + path) try: os.mkdir(path + "/cars") except: pass for entry in entries: start = time.time() if entry.is_file(): if entry.name.endswith('.jpg') or entry.name.endswith('.thumb'): file = open(entry, 'rb') files={"image": file} res=requests.post(url='http://rpi4gb', files=files) if res.status_code == 200: cars=res.json()['cars'] if cars == []: print("no car in file, remove: " + entry.name) os.remove(entry) else: extra_fn = '' for car in cars: extra_fn = extra_fn + "--{}-{}-{}".format(car['make'], car['model'], car['color']) fn_parts = entry.name.split('.') newPath=path + '/cars/' + fn_parts[0] + extra_fn + '.' + fn_parts[1] print("move file to: " + newPath) os.rename(entry.path, newPath) else: print("no picture file, remove: " + entry.name) os.remove(entry) end = time.time() print("[INFO] Object detection took {:.6f} seconds for file {}".format(end - start, entry.name))
[ "requests.post", "os.rename", "os.scandir", "os.mkdir", "time.time", "os.remove" ]
[((100, 116), 'os.scandir', 'os.scandir', (['path'], {}), '(path)\n', (110, 116), False, 'import os\n'), ((186, 210), 'os.mkdir', 'os.mkdir', (["(path + '/cars')"], {}), "(path + '/cars')\n", (194, 210), False, 'import os\n'), ((284, 295), 'time.time', 'time.time', ([], {}), '()\n', (293, 295), False, 'import time\n'), ((1451, 1462), 'time.time', 'time.time', ([], {}), '()\n', (1460, 1462), False, 'import time\n'), ((505, 552), 'requests.post', 'requests.post', ([], {'url': '"""http://rpi4gb"""', 'files': 'files'}), "(url='http://rpi4gb', files=files)\n", (518, 552), False, 'import requests\n'), ((1417, 1433), 'os.remove', 'os.remove', (['entry'], {}), '(entry)\n', (1426, 1433), False, 'import os\n'), ((812, 828), 'os.remove', 'os.remove', (['entry'], {}), '(entry)\n', (821, 828), False, 'import os\n'), ((1285, 1315), 'os.rename', 'os.rename', (['entry.path', 'newPath'], {}), '(entry.path, newPath)\n', (1294, 1315), False, 'import os\n')]
#!/usr/bin/python3 import pytest from brownie import network, Contract, Wei, chain @pytest.fixture(scope="module") def requireMainnetFork(): assert (network.show_active() == "mainnet-fork" or network.show_active() == "mainnet-fork-alchemy") @pytest.fixture(scope="module") def setFeesController(bzx, stakingV1, accounts): bzx.setFeesController(stakingV1, {"from": bzx.owner()}) assets = [ "0x56d811088235F11C8920698a204A5010a788f4b3", # BZRX "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2", # WETH "0x6B175474E89094C44Da98b954EedeAC495271d0F", # DAI "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48", # USDC "0xdAC17F958D2ee523a2206206994597C13D831ec7", # USDT "0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599", # WBTC "0x7Fc66500c84A76Ad7e9c93437bFc5Ac33E2DDaE9", # AAVE "0xdd974D5C2e2928deA5F71b9825b8b646686BD200", # KNC "0x9f8F72aA9304c8B593d555F12eF6589cC3A579A2", # MKR "0x514910771AF9Ca656af840dff83E8264EcF986CA", # LINK "0x0bc529c00C6401aEF6D220BE8C6Ea1667F6Ad93e", # YFI ] bzx.withdrawFees(assets, accounts[8], 0, {'from': stakingV1}) @pytest.fixture(scope="module") def LPT(accounts, TestToken): LPT = loadContractFromAbi( "0xe26A220a341EAca116bDa64cF9D5638A935ae629", "LPT", TestToken.abi) return LPT @pytest.fixture(scope="module") def vBZRX(accounts, BZRXVestingToken): vBZRX = loadContractFromAbi( "0xb72b31907c1c95f3650b64b2469e08edacee5e8f", "vBZRX", BZRXVestingToken.abi) vBZRX.transfer(accounts[0], 1000*10**18, {'from': vBZRX.address}) return vBZRX @pytest.fixture(scope="module") def iUSDC(accounts, LoanTokenLogicStandard): iUSDC = loadContractFromAbi( "0x32E4c68B3A4a813b710595AebA7f6B7604Ab9c15", "iUSDC", LoanTokenLogicStandard.abi) return iUSDC @pytest.fixture(scope="module") def WETH(accounts, TestWeth): WETH = loadContractFromAbi( "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2", "WETH", TestWeth.abi) return WETH @pytest.fixture(scope="module") def USDC(accounts, TestToken): USDC = loadContractFromAbi( "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48", "USDC", TestToken.abi) return USDC @pytest.fixture(scope="module") def BZRX(accounts, TestToken): BZRX = loadContractFromAbi( "0x56d811088235F11C8920698a204A5010a788f4b3", "BZRX", TestToken.abi) BZRX.transfer(accounts[0], 1000*10**18, {'from': BZRX.address}) return BZRX @pytest.fixture(scope="module") def iBZRX(accounts, BZRX, LoanTokenLogicStandard): iBZRX = loadContractFromAbi( "0x18240BD9C07fA6156Ce3F3f61921cC82b2619157", "iBZRX", LoanTokenLogicStandard.abi) BZRX.approve(iBZRX, 10*10**50, {'from': accounts[0]}) iBZRX.mint(accounts[0], 100*10**18, {'from': accounts[0]}) return iBZRX # def loadContractFromEtherscan(address, alias): # try: # return Contract(alias) # except ValueError: # contract = Contract.from_explorer(address) # contract.set_alias(alias) # return contract def loadContractFromAbi(address, alias, abi): try: return Contract(alias) except ValueError: contract = Contract.from_abi(alias, address=address, abi=abi) return contract # TODO add LPToken def testStake_UnStake(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, accounts): # tx = # tx.info() balanceOfBZRX = BZRX.balanceOf(accounts[0]) balanceOfvBZRX = vBZRX.balanceOf(accounts[0]) balanceOfiBZRX = iBZRX.balanceOf(accounts[0]) BZRX.approve(stakingV1, balanceOfBZRX, {'from': accounts[0]}) vBZRX.approve(stakingV1, balanceOfvBZRX, {'from': accounts[0]}) iBZRX.approve(stakingV1, balanceOfiBZRX, {'from': accounts[0]}) tokens = [BZRX, vBZRX, iBZRX] amounts = [balanceOfBZRX, balanceOfvBZRX, balanceOfiBZRX] tx = stakingV1.stake( tokens, amounts) # tx.info() # print("tx", tx.events) balanceOfBZRXAfter = BZRX.balanceOf(accounts[0]) balanceOfvBZRXAfter = vBZRX.balanceOf(accounts[0]) balanceOfiBZRXAfter = iBZRX.balanceOf(accounts[0]) # due to vesting starated we have small balance vested assert(balanceOfBZRXAfter > 0 and balanceOfBZRXAfter/10**18 < 1) assert(balanceOfvBZRXAfter == 0) assert(balanceOfiBZRXAfter == 0) stakedEvents = tx.events['Stake'] for index, stakedEvent in enumerate(stakedEvents, 0): assert(stakedEvent['user'] == accounts[0]) assert(stakedEvent['token'] == tokens[index]) assert(stakedEvent['delegate'] == accounts[0]) assert(stakedEvent['amount'] == amounts[index]) transferEvents = tx.events['Transfer'] i = 0 # due to extra event transfer does not allighn for index, transferEvent in enumerate(transferEvents, 0): # most probably a bug in brownie not doing orderdic properly for events if (transferEvent['from'] == accounts[i]): assert(transferEvent['from'] == accounts[i]) assert(transferEvent['to'] == stakingV1) assert(transferEvent['value'] == amounts[i]) i += 1 tx = stakingV1.unstake(tokens, amounts) # tx.info() unStakedEvents = tx.events['Unstake'] for index, unStakedEvent in enumerate(unStakedEvents, 0): assert(unStakedEvent['user'] == accounts[0]) assert(unStakedEvent['token'] == tokens[index]) assert(unStakedEvent['delegate'] == accounts[0]) assert(unStakedEvent['amount'] == amounts[index]) transferEvents = tx.events['Transfer'] i = 0 # due to extra event transfer does not allighn for index, transferEvent in enumerate(transferEvents, 0): # most probably a bug in brownie not doing orderdic properly for events if (transferEvent['from'] == accounts[i]): assert(transferEvent['from'] == stakingV1) assert(transferEvent['to'] == accounts[0]) assert(transferEvent['value'] == amounts[index]) i += 1 assert True # delegate was removed for now # def testStake_UnStake_WithDelegate(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, accounts): # # tx = # # tx.info() # balanceOfBZRX = BZRX.balanceOf(accounts[0]) # balanceOfvBZRX = vBZRX.balanceOf(accounts[0]) # balanceOfiBZRX = iBZRX.balanceOf(accounts[0]) # BZRX.approve(stakingV1, balanceOfBZRX, {'from': accounts[0]}) # vBZRX.approve(stakingV1, balanceOfvBZRX, {'from': accounts[0]}) # iBZRX.approve(stakingV1, balanceOfiBZRX, {'from': accounts[0]}) # tokens = [BZRX, vBZRX, iBZRX] # amounts = [balanceOfBZRX, balanceOfvBZRX, balanceOfiBZRX] # tx = stakingV1.stake(tokens, amounts) # tx = stakingV1.changeDelegate(accounts[1]) # delegateChanged = tx.events['ChangeDelegate'] # assert(delegateChanged['user'] == accounts[0]) # assert(delegateChanged['oldDelegate'] == # accounts[0]) # assert(delegateChanged['newDelegate'] == accounts[1]) # tx = stakingV1.unstake(tokens, amounts) # # tx.info() # unStakedEvents = tx.events['Unstake'] # for index, unStakedEvent in enumerate(unStakedEvents, 0): # assert(unStakedEvent['user'] == accounts[0]) # assert(unStakedEvent['token'] == tokens[index]) # assert(unStakedEvent['delegate'] == accounts[1]) # assert(unStakedEvent['amount'] == amounts[index]) # transferEvents = tx.events['Transfer'] # for index, transferEvent in enumerate(transferEvents, 0): # assert(transferEvent['from'] == stakingV1) # assert(transferEvent['to'] == accounts[0]) # assert(transferEvent['value'] == amounts[index]) # balances = stakingV1.balanceOfByAssets.call(accounts[0]) # assert(balances[0] == 0) # assert(balances[1] == 0) # assert(balances[2] == 0) # assert(balances[3] == 0) # assert True def testStake_SweeepFees(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, accounts, iUSDC, USDC): tx = stakingV1.sweepFees() withdrawFeesEvent = tx.events['WithdrawFees'] assert(withdrawFeesEvent[0]['sender'] == accounts[0]) convertFeesEvent = tx.events['ConvertFees'] assert(convertFeesEvent[0]['sender'] == accounts[0]) distributeFeesEvent = tx.events['DistributeFees'] assert(distributeFeesEvent[0]['sender'] == accounts[0]) assert True def testStake_BZRXProfit(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, accounts, iUSDC, USDC, WETH): earnedAmounts = stakingV1.earned(accounts[0]) assert(earnedAmounts == (0, 0, 0, 0)) print("earnedAmounts", earnedAmounts) balanceOfBZRX = BZRX.balanceOf(accounts[0]) BZRX.approve(stakingV1, balanceOfBZRX, {'from': accounts[0]}) tokens = [BZRX, vBZRX, iBZRX] amounts = [100*10**18, 0, 0] tx = stakingV1.stake(tokens, amounts) # iUSDC.borrow(0, 100*10**18, 1*10**18, "0x0000000000000000000000000000000000000000", accounts[0], accounts[0], {'value': Wei("1 ether")}) borrowAmount = 100*10**6 borrowTime = 7884000 collateralAmount = 1*10**18 collateralAddress = "0x0000000000000000000000000000000000000000" txBorrow = iUSDC.borrow("", borrowAmount, borrowTime, collateralAmount, collateralAddress, accounts[0], accounts[0], b"", {'from': accounts[0], 'value': Wei(collateralAmount)}) payBorrowingFeeEvent = filterEvents( '0xfb6c38ae4fdd498b3a5003f02ca4ca5340dfedb36b1b100c679eb60633b2c0a7', txBorrow.events) payBorrowingFeeAmount = int(str(payBorrowingFeeEvent['data']), 0) payLendingFeeEvent = filterEvents( '0x40a75ae5f7a5336e75f7c7977e12c4b46a9ac0f30de01a2d5b6c1a4f4af63587', txBorrow.events) payLendingFeeAmount = int(str(payLendingFeeEvent['data']), 0) txSweep = stakingV1.sweepFees() borrowFee = txSweep.events['WithdrawBorrowingFees'][0] assert(borrowFee['sender'] == stakingV1) assert(borrowFee['token'] == WETH) assert(borrowFee['sender'] == stakingV1) assert(borrowFee['amount'] == payBorrowingFeeAmount) lendingFee = txSweep.events['WithdrawLendingFees'][0] assert(lendingFee['sender'] == stakingV1) assert(lendingFee['token'] == USDC) assert(lendingFee['sender'] == stakingV1) assert(lendingFee['amount'] == payLendingFeeAmount) assert(txSweep.events['AddRewards'][0]['sender'] == accounts[0]) bzrxAmount = txSweep.events['AddRewards'][0]['bzrxAmount'] stableCoinAmount = txSweep.events['AddRewards'][0]['stableCoinAmount'] assert(txSweep.events['DistributeFees'][0]['sender'] == accounts[0]) bzrxRewards = txSweep.events['DistributeFees'][0]['bzrxRewards'] stableCoinRewards = txSweep.events['DistributeFees'][0]['stableCoinRewards'] assert(bzrxAmount == bzrxRewards) assert(stableCoinAmount == stableCoinRewards) earned = stakingV1.earned(accounts[0]) # we have roundings for last 1 digit print("roundings bzrx", str(bzrxRewards), str(earned[0])) assert(bzrxRewards - earned[0] <= 1) # we have roundings for last 1 digit print("roundings stableCoin", str(stableCoinAmount), str(earned[1])) assert(stableCoinAmount - earned[1] <= 1) #stakingV1.claim(False, {'from': accounts[0]}) #earned = stakingV1.earned(accounts[0]) # second user staking. he should get zero rewards if he just staked earnedAmounts = stakingV1.earned(accounts[1]) assert(earnedAmounts == (0, 0, 0, 0)) BZRX.transfer(accounts[1], 1000*10**18, {'from': BZRX.address}) balanceOfBZRX = BZRX.balanceOf(accounts[1]) BZRX.approve(stakingV1, balanceOfBZRX, {'from': accounts[1]}) tokens = [BZRX, vBZRX, iBZRX] amounts2 = [100*10**18, 0, 0] tx = stakingV1.stake( tokens, amounts2, {'from': accounts[1]}) earnedAmounts = stakingV1.earned(accounts[1]) print(str(earnedAmounts)) assert(earnedAmounts == (0, 0, 0, 0)) txBorrow = iUSDC.borrow("", borrowAmount, borrowTime, collateralAmount, collateralAddress, accounts[0], accounts[0], b"", {'from': accounts[0], 'value': Wei(collateralAmount)}) txSweepSecondAcc = stakingV1.sweepFees() print(str(amounts), str(amounts2)) assert(amounts[0] == amounts2[0]) assert(stakingV1.balanceOfStored( accounts[0]) == stakingV1.balanceOfStored(accounts[1])) ''' earnedAfter = stakingV1.earned(accounts[0]) earned1After = stakingV1.earned(accounts[1]) print("account[0] before", str(earned[0])) print("account[0] after", str(earnedAfter[0] - earned[0])) print("account[1] after", str(earned1After[0])) print("diff", str(earned1After[0] - earnedAfter[0] + earned[0])) ''' assert True def filterEvents(topic, events): for event in events: for key in event.keys(): if key == 'topic1': if event[key] == topic: payBorrowingFeeEvent = event break return payBorrowingFeeEvent def testStake_VestingFees(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, accounts, iUSDC, USDC, WETH): balanceOfvBZRX = vBZRX.balanceOf(accounts[0]) vBZRX.approve(stakingV1, balanceOfvBZRX, {'from': accounts[0]}) stakingV1.stake([vBZRX], [balanceOfvBZRX]) # borrowing to make fees borrowAmount = 100*10**6 borrowTime = 7884000 collateralAmount = 1*10**18 collateralAddress = "0x0000000000000000000000000000000000000000" txBorrow = iUSDC.borrow("", borrowAmount, borrowTime, collateralAmount, collateralAddress, accounts[0], accounts[0], b"", {'from': accounts[0], 'value': Wei(collateralAmount)}) sweepTx = stakingV1.sweepFees() earningsDuringVesting = stakingV1.earned(accounts[0]) # vesting already started assert(earningsDuringVesting[0] > 0 and earningsDuringVesting[0]/10**18 < 1) assert(earningsDuringVesting[1] > 0) assert(earningsDuringVesting[2] > 0) assert(earningsDuringVesting[3] > 0) totalVestingFeesBzrx = earningsDuringVesting[2] totalVestingFees3Poll = earningsDuringVesting[3] # moving time after vesting end chain.sleep(vBZRX.vestingEndTimestamp() - chain.time() + 100) chain.mine() earnings = stakingV1.earned(accounts[0]) assert(earnings[0] > 0) assert(earnings[1] > 0) assert(earnings[2] == 0) assert(earnings[3] == 0) assert(earnings[0] >= totalVestingFeesBzrx) assert(earnings[1] >= totalVestingFees3Poll) # assert False def testStake_vestingClaimBZRX(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, accounts, iUSDC, USDC, WETH): vBZRX.transfer(accounts[1], 1000*10**18, {'from': vBZRX.address}) balanceOfvBZRX = vBZRX.balanceOf(accounts[1]) vBZRX.approve(stakingV1, balanceOfvBZRX, {'from': accounts[1]}) stakingV1.stake([vBZRX], [balanceOfvBZRX], {'from': accounts[1]}) # moving time to somewhere 1000 sec after vesting start chain.sleep(vBZRX.vestingCliffTimestamp() - chain.time() + 1000) chain.mine() # BZRX.balanceOf+ vBZRX.balanceOf_bzrx_remaining should be equal to 1000 stakingV1.exit({'from': accounts[1]}) assert(BZRX.balanceOf(accounts[1]) > 0) assert True def testStake_vBZRXVotingRigthsShouldDiminishOverTime(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, LPT, accounts, iUSDC, USDC, WETH): vBZRX.transfer(accounts[1], 100e18, {'from': vBZRX}) balanceOfvBZRX = vBZRX.balanceOf(accounts[1]) vBZRX.approve(stakingV1, balanceOfvBZRX, {'from': accounts[1]}) tokens = [vBZRX] amounts = [balanceOfvBZRX] tx = stakingV1.stake(tokens, amounts, {'from': accounts[1]}) votingPower = stakingV1.delegateBalanceOf(accounts[1]) assert(votingPower <= balanceOfvBZRX/2) # moving time to somewhere 1000 sec after vesting start chain.sleep(vBZRX.vestingCliffTimestamp() - chain.time() + 1000) chain.mine() votingPower = stakingV1.delegateBalanceOf(accounts[1]) assert(votingPower <= balanceOfvBZRX/2) # moving time after vesting end chain.sleep(vBZRX.vestingEndTimestamp() - chain.time() + 100) chain.mine() votingPower = stakingV1.delegateBalanceOf(accounts[1]) assert(votingPower <= balanceOfvBZRX) assert True def testStake_vBZRXVotingRigthsShouldDiminishOverTime2(requireMainnetFork, stakingV1, bzx, setFeesController, BZRX, vBZRX, iBZRX, LPT, accounts, iUSDC, USDC, WETH): vBZRX.transfer(accounts[1], 100e18, {'from': vBZRX}) balanceOfvBZRX = vBZRX.balanceOf(accounts[1]) vBZRX.approve(stakingV1, balanceOfvBZRX, {'from': accounts[1]}) tokens = [vBZRX] amounts = [balanceOfvBZRX] tx = stakingV1.stake(tokens, amounts, {'from': accounts[1]}) votingPower = stakingV1.delegateBalanceOf(accounts[1]) assert(votingPower < balanceOfvBZRX/2) # moving time to somewhere 1000 sec after vesting start chain.sleep(vBZRX.vestingCliffTimestamp() - chain.time() + 1000) chain.mine() votingPower = stakingV1.delegateBalanceOf(accounts[1]) assert(votingPower < balanceOfvBZRX/2) # moving time after vesting end chain.sleep(vBZRX.vestingEndTimestamp() - chain.time() + 100) chain.mine() votingPower = stakingV1.delegateBalanceOf(accounts[1]) assert(votingPower < balanceOfvBZRX) assert True
[ "brownie.Wei", "brownie.Contract.from_abi", "brownie.chain.time", "brownie.Contract", "brownie.network.show_active", "brownie.chain.mine", "pytest.fixture" ]
[((87, 117), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (101, 117), False, 'import pytest\n'), ((251, 281), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (265, 281), False, 'import pytest\n'), ((1159, 1189), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (1173, 1189), False, 'import pytest\n'), ((1345, 1375), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (1359, 1375), False, 'import pytest\n'), ((1623, 1653), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (1637, 1653), False, 'import pytest\n'), ((1843, 1873), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (1857, 1873), False, 'import pytest\n'), ((2031, 2061), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (2045, 2061), False, 'import pytest\n'), ((2221, 2251), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (2235, 2251), False, 'import pytest\n'), ((2479, 2509), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (2493, 2509), False, 'import pytest\n'), ((14221, 14233), 'brownie.chain.mine', 'chain.mine', ([], {}), '()\n', (14231, 14233), False, 'from brownie import network, Contract, Wei, chain\n'), ((15041, 15053), 'brownie.chain.mine', 'chain.mine', ([], {}), '()\n', (15051, 15053), False, 'from brownie import network, Contract, Wei, chain\n'), ((15937, 15949), 'brownie.chain.mine', 'chain.mine', ([], {}), '()\n', (15947, 15949), False, 'from brownie import network, Contract, Wei, chain\n'), ((16161, 16173), 'brownie.chain.mine', 'chain.mine', ([], {}), '()\n', (16171, 16173), False, 'from brownie import network, Contract, Wei, chain\n'), ((16991, 17003), 'brownie.chain.mine', 'chain.mine', ([], {}), '()\n', (17001, 17003), False, 'from brownie import network, Contract, Wei, chain\n'), ((17214, 17226), 'brownie.chain.mine', 'chain.mine', ([], {}), '()\n', (17224, 17226), False, 'from brownie import network, Contract, Wei, chain\n'), ((3130, 3145), 'brownie.Contract', 'Contract', (['alias'], {}), '(alias)\n', (3138, 3145), False, 'from brownie import network, Contract, Wei, chain\n'), ((156, 177), 'brownie.network.show_active', 'network.show_active', ([], {}), '()\n', (175, 177), False, 'from brownie import network, Contract, Wei, chain\n'), ((199, 220), 'brownie.network.show_active', 'network.show_active', ([], {}), '()\n', (218, 220), False, 'from brownie import network, Contract, Wei, chain\n'), ((3188, 3238), 'brownie.Contract.from_abi', 'Contract.from_abi', (['alias'], {'address': 'address', 'abi': 'abi'}), '(alias, address=address, abi=abi)\n', (3205, 3238), False, 'from brownie import network, Contract, Wei, chain\n'), ((9363, 9384), 'brownie.Wei', 'Wei', (['collateralAmount'], {}), '(collateralAmount)\n', (9366, 9384), False, 'from brownie import network, Contract, Wei, chain\n'), ((12092, 12113), 'brownie.Wei', 'Wei', (['collateralAmount'], {}), '(collateralAmount)\n', (12095, 12113), False, 'from brownie import network, Contract, Wei, chain\n'), ((13644, 13665), 'brownie.Wei', 'Wei', (['collateralAmount'], {}), '(collateralAmount)\n', (13647, 13665), False, 'from brownie import network, Contract, Wei, chain\n'), ((14197, 14209), 'brownie.chain.time', 'chain.time', ([], {}), '()\n', (14207, 14209), False, 'from brownie import network, Contract, Wei, chain\n'), ((15016, 15028), 'brownie.chain.time', 'chain.time', ([], {}), '()\n', (15026, 15028), False, 'from brownie import network, Contract, Wei, chain\n'), ((15912, 15924), 'brownie.chain.time', 'chain.time', ([], {}), '()\n', (15922, 15924), False, 'from brownie import network, Contract, Wei, chain\n'), ((16137, 16149), 'brownie.chain.time', 'chain.time', ([], {}), '()\n', (16147, 16149), False, 'from brownie import network, Contract, Wei, chain\n'), ((16966, 16978), 'brownie.chain.time', 'chain.time', ([], {}), '()\n', (16976, 16978), False, 'from brownie import network, Contract, Wei, chain\n'), ((17190, 17202), 'brownie.chain.time', 'chain.time', ([], {}), '()\n', (17200, 17202), False, 'from brownie import network, Contract, Wei, chain\n')]
# GENERATED BY KOMAND SDK - DO NOT EDIT import insightconnect_plugin_runtime import json class Component: DESCRIPTION = "Retrieve a list of device references that have specific software installed" class Input: SOFTWARE = "software" class Output: MACHINES = "machines" class FindMachinesWithInstalledSoftwareInput(insightconnect_plugin_runtime.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "software": { "type": "string", "title": "Software", "description": "Name of the software to be searched", "order": 1 } }, "required": [ "software" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class FindMachinesWithInstalledSoftwareOutput(insightconnect_plugin_runtime.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "machines": { "type": "array", "title": "Machines", "description": "List of machines with provided software", "items": { "$ref": "#/definitions/machine_software" }, "order": 1 } }, "required": [ "machines" ], "definitions": { "machine_software": { "type": "object", "title": "machine_software", "properties": { "computerDnsName": { "type": "string", "title": "Computer DNS Name", "description": "Computer DNS name", "order": 2 }, "id": { "type": "string", "title": "ID", "description": "ID", "order": 1 }, "osPlatform": { "type": "string", "title": "OS Platform", "description": "OS platform", "order": 3 }, "rbacGroupId": { "type": "number", "title": "RBAC Group ID", "description": "RBAC group ID", "order": 5 }, "rbacGroupName": { "type": "string", "title": "RBAC Group Name", "description": "RBAC group name", "order": 4 } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
[ "json.loads" ]
[((392, 686), 'json.loads', 'json.loads', (['"""\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "software": {\n "type": "string",\n "title": "Software",\n "description": "Name of the software to be searched",\n "order": 1\n }\n },\n "required": [\n "software"\n ]\n}\n """'], {}), '(\n """\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "software": {\n "type": "string",\n "title": "Software",\n "description": "Name of the software to be searched",\n "order": 1\n }\n },\n "required": [\n "software"\n ]\n}\n """\n )\n', (402, 686), False, 'import json\n'), ((860, 2173), 'json.loads', 'json.loads', (['"""\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "machines": {\n "type": "array",\n "title": "Machines",\n "description": "List of machines with provided software",\n "items": {\n "$ref": "#/definitions/machine_software"\n },\n "order": 1\n }\n },\n "required": [\n "machines"\n ],\n "definitions": {\n "machine_software": {\n "type": "object",\n "title": "machine_software",\n "properties": {\n "computerDnsName": {\n "type": "string",\n "title": "Computer DNS Name",\n "description": "Computer DNS name",\n "order": 2\n },\n "id": {\n "type": "string",\n "title": "ID",\n "description": "ID",\n "order": 1\n },\n "osPlatform": {\n "type": "string",\n "title": "OS Platform",\n "description": "OS platform",\n "order": 3\n },\n "rbacGroupId": {\n "type": "number",\n "title": "RBAC Group ID",\n "description": "RBAC group ID",\n "order": 5\n },\n "rbacGroupName": {\n "type": "string",\n "title": "RBAC Group Name",\n "description": "RBAC group name",\n "order": 4\n }\n }\n }\n }\n}\n """'], {}), '(\n """\n {\n "type": "object",\n "title": "Variables",\n "properties": {\n "machines": {\n "type": "array",\n "title": "Machines",\n "description": "List of machines with provided software",\n "items": {\n "$ref": "#/definitions/machine_software"\n },\n "order": 1\n }\n },\n "required": [\n "machines"\n ],\n "definitions": {\n "machine_software": {\n "type": "object",\n "title": "machine_software",\n "properties": {\n "computerDnsName": {\n "type": "string",\n "title": "Computer DNS Name",\n "description": "Computer DNS name",\n "order": 2\n },\n "id": {\n "type": "string",\n "title": "ID",\n "description": "ID",\n "order": 1\n },\n "osPlatform": {\n "type": "string",\n "title": "OS Platform",\n "description": "OS platform",\n "order": 3\n },\n "rbacGroupId": {\n "type": "number",\n "title": "RBAC Group ID",\n "description": "RBAC group ID",\n "order": 5\n },\n "rbacGroupName": {\n "type": "string",\n "title": "RBAC Group Name",\n "description": "RBAC group name",\n "order": 4\n }\n }\n }\n }\n}\n """\n )\n', (870, 2173), False, 'import json\n')]
import random from locust import HttpLocust, TaskSet, task from data import search_options, market_slugs class UserBehavior(TaskSet): @task(1) def listing_page(self): base_url = '/selling-online-overseas/markets/results' category_count = random.randint(0, 5) categories = [] for _ in xrange(category_count): categories.append(random.choice(search_options['categories'])) country_count = random.randint(0, 5) countries = [] for _ in xrange(country_count): countries.append(random.choice(search_options['countries'])) category_filter = 'product_category={0}'.format('&product_category='.join(categories)) country_filter = 'operating_countries={0}'.format('&operating_countries='.join(countries)) url = "{0}?{1}&{2}".format(base_url, category_filter, country_filter) self.client.get(url, name=base_url) class WebsiteUser(HttpLocust): task_set = UserBehavior min_wait = 5000 max_wait = 9000
[ "random.choice", "locust.task", "random.randint" ]
[((144, 151), 'locust.task', 'task', (['(1)'], {}), '(1)\n', (148, 151), False, 'from locust import HttpLocust, TaskSet, task\n'), ((268, 288), 'random.randint', 'random.randint', (['(0)', '(5)'], {}), '(0, 5)\n', (282, 288), False, 'import random\n'), ((454, 474), 'random.randint', 'random.randint', (['(0)', '(5)'], {}), '(0, 5)\n', (468, 474), False, 'import random\n'), ((384, 427), 'random.choice', 'random.choice', (["search_options['categories']"], {}), "(search_options['categories'])\n", (397, 427), False, 'import random\n'), ((567, 609), 'random.choice', 'random.choice', (["search_options['countries']"], {}), "(search_options['countries'])\n", (580, 609), False, 'import random\n')]
#! /usr/bin/env python3 from .localtyping import * from collections import Counter from .remapper import Remapper def createGramMap( sRawStrSets: Iterable[RawStringSet], ) -> GramMap: gramFreqs = Counter() for sRawStrSet in sRawStrSets: gramFreqs.update(sRawStrSet) gramMapper = Remapper() return { gram: gramMapper.next() for gram, _ in sorted( gramFreqs.items(), key=lambda x: (x[1], x[0]) ) } def updateGramMap( gramMap: GramMap, rRawStrSet: RawStringSet ) -> None: gramMapper = Remapper(start=-1, step=-1) gramMap.update( (gram, gramMapper.next()) for gram in rRawStrSet if gram not in gramMap ) def applyGramMap( gramMap: GramMap, rRawStrSet: RawStringSet ) -> StringSet: return sorted(gramMap[gram] for gram in rRawStrSet)
[ "collections.Counter" ]
[((216, 225), 'collections.Counter', 'Counter', ([], {}), '()\n', (223, 225), False, 'from collections import Counter\n')]
# %% # live demo import mediapipe as mp from PIL import Image import numpy as np import utilities from pathlib import Path image = Image.open(Path(__file__).parent / "face_orig.jpeg") image = np.array(image) mp_drawing = mp.solutions.drawing_utils mp_face_mesh = mp.solutions.face_mesh # For webcam input: drawing_spec = mp_drawing.DrawingSpec(thickness=1, circle_radius=1) with mp_face_mesh.FaceMesh( min_detection_confidence=0.5, min_tracking_confidence=0.5 ) as face_mesh: results = face_mesh.process(image) # Draw the face mesh annotations on the image. image.flags.writeable = True if results.multi_face_landmarks: landmarks = utilities.get_avg_landmarks_from_results( results, utilities.UNIQUE_EYE_COORDINATES ) image = utilities.add_landmarks_to_image(image, landmarks) distance = utilities.get_eye_distance(landmarks) image = utilities.add_distance_to_image(image, distance) image = Image.fromarray(image) image.save(Path(__file__).parent / "face_proc.jpeg")
[ "PIL.Image.fromarray", "utilities.get_eye_distance", "utilities.add_landmarks_to_image", "pathlib.Path", "numpy.array", "utilities.add_distance_to_image", "utilities.get_avg_landmarks_from_results" ]
[((193, 208), 'numpy.array', 'np.array', (['image'], {}), '(image)\n', (201, 208), True, 'import numpy as np\n'), ((1010, 1032), 'PIL.Image.fromarray', 'Image.fromarray', (['image'], {}), '(image)\n', (1025, 1032), False, 'from PIL import Image\n'), ((685, 773), 'utilities.get_avg_landmarks_from_results', 'utilities.get_avg_landmarks_from_results', (['results', 'utilities.UNIQUE_EYE_COORDINATES'], {}), '(results, utilities.\n UNIQUE_EYE_COORDINATES)\n', (725, 773), False, 'import utilities\n'), ((819, 869), 'utilities.add_landmarks_to_image', 'utilities.add_landmarks_to_image', (['image', 'landmarks'], {}), '(image, landmarks)\n', (851, 869), False, 'import utilities\n'), ((893, 930), 'utilities.get_eye_distance', 'utilities.get_eye_distance', (['landmarks'], {}), '(landmarks)\n', (919, 930), False, 'import utilities\n'), ((951, 999), 'utilities.add_distance_to_image', 'utilities.add_distance_to_image', (['image', 'distance'], {}), '(image, distance)\n', (982, 999), False, 'import utilities\n'), ((143, 157), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (147, 157), False, 'from pathlib import Path\n'), ((1044, 1058), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1048, 1058), False, 'from pathlib import Path\n')]
#!/usr/bin/env python # Basic Connection Example - connect1.py import socket import time loops = 5 total_time_elapsed = 0 SERVER = "www.stackoverflow.com" for n in range(1, loops + 1): # print ("Creating socket...",) start = time.perf_counter() s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # print ("done.") # print ("Connecting to remote host...",) try: s.connect((SERVER, 80)) except Exception as e: print("Unable to connect! Error: {} {}".format(type(Exception), e)) end = time.perf_counter() # print ("done.") elapsed = end - start total_time_elapsed += elapsed print("ATTEMPT {}--Time taken to connect to {}: {}" .format(n, SERVER, elapsed)) avg = total_time_elapsed/loops print("\nAverage time taken: {}".format(avg))
[ "time.perf_counter", "socket.socket" ]
[((237, 256), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (254, 256), False, 'import time\n'), ((265, 314), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (278, 314), False, 'import socket\n'), ((538, 557), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (555, 557), False, 'import time\n')]
""" Multivariate polynomial extenders. """ import nzmath.rational as rational import nzmath.ring as ring import nzmath.poly.termorder as termorder import nzmath.poly.ring as poly_ring import nzmath.poly.uniutil as uniutil import nzmath.poly.multivar as multivar import nzmath.poly.ratfunc as ratfunc _MIXIN_MSG = "%s is mix-in" class OrderProvider (object): """ OrderProvider provides order and related operations. """ def __init__(self, order): """ Do not instantiate OrderProvider. This initializer should be called from descendant: OrderProvider.__init__(self, order) """ if type(self) is OrderProvider: raise NotImplementedError(_MIXIN_MSG % self.__class__.__name__) self.order = order class NestProvider (object): """ Provide nest/unnest pair to convert a multivar polynomial to a univar polynomial of polynomial coefficient and opposite direction. """ def leading_variable(self): """ Return the position of the leading variable (the leading term among all total degree one terms). The leading term varies with term orders, so does the result. The term order can be specified via the attribute 'order'. """ if hasattr(self, 'order'): order = self.order pivot, pvar = (1,) + (0,)*(self.number_of_variables - 1), 0 for var in range(1, self.number_of_variables): vindex = (0,)*var + (1,) + (0,)*(self.number_of_variables - var - 1) if order.cmp(pivot, vindex) < 0: pivot, pvar = vindex, var else: pvar = 0 return pvar def nest(self, outer, coeffring): """ Nest the polynomial by extracting outer variable at the given position. """ combined = {} if self.number_of_variables == 2: itercoeff = lambda coeff: [(i[0], c) for (i, c) in coeff] poly = uniutil.polynomial polyring = poly_ring.PolynomialRing.getInstance(coeffring) elif self.number_of_variables >= 3: itercoeff = lambda coeff: coeff poly = self.__class__ polyring = poly_ring.PolynomialRing.getInstance(coeffring, self.number_of_variables - 1) else: raise TypeError("number of variable is not multiple") for index, coeff in self.combine_similar_terms(outer): combined[index] = poly(itercoeff(coeff), coeffring=coeffring) return uniutil.polynomial(combined, coeffring=polyring) def unnest(self, q, outer, coeffring): """ Unnest the nested polynomial q by inserting outer variable at the given position. """ q_coeff = {} for d, cpoly in q: for inner_d, inner_c in cpoly: if isinstance(inner_d, int): inner_d = [inner_d] else: inner_d = list(inner_d) inner_d.insert(outer, d) q_coeff[tuple(inner_d)] = inner_c return self.__class__(q_coeff, coeffring=coeffring) class RingElementProvider (ring.CommutativeRingElement): """ Provides interfaces for ring.CommutativeRingElement. """ def __init__(self): """ Do not instantiate RingElementProvider. This initializer should be called from descendant: RingElementProvider.__init__(self) """ if type(self) is RingElementProvider: raise NotImplementedError(_MIXIN_MSG % self.__class__.__name__) ring.CommutativeRingElement.__init__(self) self._coefficient_ring = None self._ring = None def getRing(self): """ Return an object of a subclass of Ring, to which the element belongs. """ if self._coefficient_ring is None or self._ring is None: myring = None for c in self.itercoefficients(): cring = ring.getRing(c) if not myring or myring != cring and myring.issubring(cring): myring = cring elif not cring.issubring(myring): myring = myring.getCommonSuperring(cring) if not myring: myring = rational.theIntegerRing self.set_coefficient_ring(myring) return self._ring def getCoefficientRing(self): """ Return the coefficient ring. """ return self._coefficient_ring def set_coefficient_ring(self, coeffring): if self._coefficient_ring is None: self._coefficient_ring = coeffring self._ring = poly_ring.PolynomialRing.getInstance(self._coefficient_ring, self.number_of_variables) class PseudoDivisionProvider (object): """ PseudoDivisionProvider provides pseudo divisions for multivariate polynomials. It is assumed that the coefficient ring of the polynomials is a domain. The class should be used with NestProvider, RingElementProvider. """ def pseudo_divmod(self, other): """ self.pseudo_divmod(other) -> (Q, R) Q, R are polynomials such that d**(deg(self) - deg(other) + 1) * self == other * Q + R, w.r.t. a fixed variable, where d is the leading coefficient of other. The leading coefficient varies with term orders, so does the result. The term order can be specified via the attribute 'order'. """ var = self.leading_variable() coeffring = self.getCoefficientRing() s = self.nest(var, coeffring) o = other.nest(var, coeffring) q, r = s.pseudo_divmod(o) qpoly = self.unnest(q, var, coeffring) rpoly = self.unnest(r, var, coeffring) return qpoly, rpoly def pseudo_floordiv(self, other): """ self.pseudo_floordiv(other) -> Q Q is a polynomial such that d**(deg(self) - deg(other) + 1) * self == other * Q + R, where d is the leading coefficient of other and R is a polynomial. The leading coefficient varies with term orders, so does the result. The term order can be specified via the attribute 'order'. """ var = self.leading_variable() coeffring = self.getCoefficientRing() s = self.nest(var, coeffring) o = other.nest(var, coeffring) q = s.pseudo_floordiv(o) return self.unnest(q, var, coeffring) def pseudo_mod(self, other): """ self.pseudo_mod(other) -> R R is a polynomial such that d**(deg(self) - deg(other) + 1) * self == other * Q + R, where d is the leading coefficient of other and Q a polynomial. The leading coefficient varies with term orders, so does the result. The term order can be specified via the attribute 'order'. """ var = self.leading_variable() coeffring = self.getCoefficientRing() s = self.nest(var, coeffring) o = other.nest(var, coeffring) r = s.pseudo_mod(o) return self.unnest(r, var, coeffring) def __truediv__(self, other): """ self / other The result is a rational function. """ return ratfunc.RationalFunction(self, other) def exact_division(self, other): """ Return quotient of exact division. """ coeffring = self.getCoefficientRing() if other in coeffring: new_coeffs = [] keep_ring = True for i, c in self: ratio = c / other if keep_ring and ratio not in coeffring: keep_ring = False new_coeffring = ratio.getRing() new_coeffs.append((i, ratio)) if keep_ring: return self.__class__(new_coeffs, coeffring=coeffring) else: return self.__class__(new_coeffs, coeffring=new_coeffring) var = self.leading_variable() coeffring = self.getCoefficientRing() s = self.nest(var, coeffring) o = other.nest(var, coeffring) q = s.exact_division(o) return self.unnest(q, var, coeffring) class GcdProvider (object): """ Provides greatest common divisor for multivariate polynomial. The class should be used with NestProvider, RingElementProvider. """ def gcd(self, other): """ Return gcd. The nested polynomials' gcd is used. """ var = self.leading_variable() coeffring = self.getCoefficientRing() s = self.nest(var, coeffring) o = other.nest(var, coeffring) if hasattr(s, "gcd"): g = s.gcd(o) elif hasattr(s, "subresultant_gcd"): g = s.subresultant_gcd(o) else: raise TypeError("no gcd method available") return self.unnest(g, var, coeffring) class RingPolynomial (OrderProvider, NestProvider, multivar.BasicPolynomial, RingElementProvider): """ General polynomial with commutative ring coefficients. """ def __init__(self, coefficients, **kwds): """ Initialize the polynomial. Required argument: - coefficients: initializer for polynomial coefficients Keyword arguments should include: - coeffring: domain - number_of_variables: the number of variables """ if "number_of_variables" not in kwds: coefficients = dict(coefficients) for i in coefficients.keys(): kwds["number_of_variables"] = len(i) break multivar.BasicPolynomial.__init__(self, coefficients, **kwds) NestProvider.__init__(self) PseudoDivisionProvider.__init__(self) RingElementProvider.__init__(self) coeffring = None if "coeffring" in kwds: coeffring = kwds["coeffring"] else: coeffring = uniutil.init_coefficient_ring(self._coefficients) if coeffring is not None: self.set_coefficient_ring(coeffring) else: raise TypeError("argument `coeffring' is required") if "order" in kwds: order = kwds["order"] else: order = termorder.lexicographic_order OrderProvider.__init__(self, order) def getRing(self): """ Return an object of a subclass of Ring, to which the element belongs. """ # short-cut self._ring is None case return self._ring def getCoefficientRing(self): """ Return an object of a subclass of Ring, to which the all coefficients belong. """ # short-cut self._coefficient_ring is None case return self._coefficient_ring def __repr__(self): # debug return "%s(%s)" % (self.__class__.__name__, self._coefficients) def __add__(self, other): try: return multivar.BasicPolynomial.__add__(self, other) except (AttributeError, TypeError): one = self.getRing().one try: return multivar.BasicPolynomial.__add__(self, other * one) except Exception: return NotImplemented def __radd__(self, other): one = self.getRing().one try: return other * one + self except Exception: return NotImplemented def __sub__(self, other): try: return multivar.BasicPolynomial.__sub__(self, other) except (AttributeError, TypeError): one = self.getRing().one try: return multivar.BasicPolynomial.__sub__(self, other * one) except Exception: return NotImplemented def __rsub__(self, other): one = self.getRing().one try: return other * one - self except Exception: return NotImplemented class DomainPolynomial (PseudoDivisionProvider, RingPolynomial): """ Polynomial with domain coefficients. """ def __init__(self, coefficients, **kwds): """ Initialize the polynomial. - coefficients: initializer for polynomial coefficients - coeffring: domain """ RingPolynomial.__init__(self, coefficients, **kwds) if not self._coefficient_ring.isdomain(): raise TypeError("coefficient ring has to be a domain") PseudoDivisionProvider.__init__(self) class UniqueFactorizationDomainPolynomial (GcdProvider, DomainPolynomial): """ Polynomial with unique factorization domain coefficients. """ def __init__(self, coefficients, **kwds): """ Initialize the polynomial. - coefficients: initializer for polynomial coefficients - coeffring: unique factorization domain """ DomainPolynomial.__init__(self, coefficients, **kwds) if not self._coefficient_ring.isufd(): raise TypeError("coefficient ring has to be a UFD") GcdProvider.__init__(self) def resultant(self, other, var): """ Return resultant of two polynomials of the same ring, with respect to the variable specified by its position var. """ cring = self._coefficient_ring return self.nest(var, cring).resultant(other.nest(var, cring)) class PolynomialRingAnonymousVariables (ring.CommutativeRing): """ The class of multivariate polynomial ring. There's no need to specify the variable names. """ _instances = {} def __init__(self, coeffring, number_of_variables): if not isinstance(coeffring, ring.Ring): raise TypeError("%s should not be passed as ring" % coeffring.__class__) ring.CommutativeRing.__init__(self) self._coefficient_ring = coeffring if self._coefficient_ring.isufd(): self.properties.setIsufd(True) if self._coefficient_ring.isnoetherian(): self.properties.setIsnoetherian(True) elif self._coefficient_ring.isdomain() in (True, False): self.properties.setIsdomain(self._coefficient_ring.isdomain()) self.number_of_variables = number_of_variables def getCoefficientRing(self): """ Return the coefficient ring. """ return self._coefficient_ring def getQuotientField(self): """ getQuotientField returns the quotient field of the ring if coefficient ring has its quotient field. Otherwise, an exception will be raised. """ coefficientField = self._coefficient_ring.getQuotientField() variables = ["x%d" % i for i in range(self.number_of_variables)] return ratfunc.RationalFunctionField(coefficientField, variables) def __eq__(self, other): if self is other: return True if (isinstance(other, PolynomialRingAnonymousVariables) and self._coefficient_ring == other._coefficient_ring and self.number_of_variables == other.number_of_variables): return True return False def __repr__(self): """ Return 'PolynomialRingAnonymousVariables(Ring, #vars)' """ return "%s(%s, %d)" % (self.__class__.__name__, repr(self._coefficient_ring), self.number_of_variables) def __str__(self): """ Return R[][] """ return str(self._coefficient_ring) + "[]" * self.number_of_variables def __hash__(self): """ hash(self) """ return (hash(self._coefficient_ring) ^ (self.number_of_variables * hash(self.__class__.__name__) + 1)) & 0x7fffffff def __contains__(self, element): """ `in' operator is provided for checking the element be in the ring. """ if element in self._coefficient_ring: return True elem_ring = ring.getRing(element) if elem_ring is not None and elem_ring.issubring(self): return True return False def issubring(self, other): """ reports whether another ring contains this polynomial ring. """ if isinstance(other, poly_ring.PolynomialRing): if (self._coefficient_ring.issubring(other.getCoefficientRing()) and self.number_of_variables <= other.number_of_variables): return True elif isinstance(other, poly_ring.RationalFunctionField): if (len(other.vars) >= self.number_of_variables and other.coefficientField.issuperring(self._coefficient_ring)): return True try: return other.issuperring(self) except RuntimeError: # reach max recursion by calling each other return False def issuperring(self, other): """ reports whether this polynomial ring contains another ring. """ if self._coefficient_ring.issuperring(other): return True if isinstance(other, poly_ring.PolynomialRing): return (self._coefficient_ring.issuperring(other.getCoefficientRing()) and self.number_of_variables >= other.number_of_variables) try: return other.issubring(self) except RuntimeError: # reach max recursion by calling each other return False def getCommonSuperring(self, other): """ Return common superring of two rings. """ if self.issuperring(other): return self elif other.issuperring(self): return other elif (not isinstance(other, PolynomialRingAnonymousVariables) and other.issuperring(self._coefficient_ring)): return self.__class__(other, self.number_of_variables) try: if hasattr(other, "getCommonSuperring"): return other.getCommonSuperring(self) except RuntimeError: # reached recursion limit by calling on each other pass raise TypeError("no common super ring") def createElement(self, seed): """ Return an element of the polynomial ring made from seed overriding ring.createElement. """ if not seed: return polynomial((), coeffring=self._coefficient_ring, number_of_variables=self.number_of_variables) elif seed in self._coefficient_ring: return polynomial([((0,)*self.number_of_variables, seed)], coeffring=self._coefficient_ring) # implementation should be replaced later raise NotImplementedError("unclear which type of polynomial be chosen") def _getOne(self): "getter for one" if self._one is None: self._one = self.createElement(self._coefficient_ring.one) return self._one one = property(_getOne, None, None, "multiplicative unit") def _getZero(self): "getter for zero" if self._zero is None: self._zero = self.createElement(self._coefficient_ring.zero) return self._zero zero = property(_getZero, None, None, "additive unit") def gcd(self, a, b): """ Return the greatest common divisor of given polynomials. The polynomials must be in the polynomial ring. If the coefficient ring is a field, the result is monic. """ if hasattr(a, "gcd"): return a.gcd(b) elif hasattr(a, "subresultant_gcd"): return a.subresultant_gcd(b) raise NotImplementedError("no gcd") def extgcd(self, a, b): """ Return the tuple (u, v, d): d is the greatest common divisor of given polynomials, and they satisfy d = u*a + v*b. The polynomials must be in the polynomial ring. If the coefficient ring is a field, the result is monic. """ if hasattr(a, "extgcd"): return a.extgcd(b) raise NotImplementedError("no extgcd") @classmethod def getInstance(cls, coeffring, number_of_variables): """ Return an instance of the class with specified coefficient ring and number of variables. """ if (coeffring, number_of_variables) not in cls._instances: cls._instances[coeffring, number_of_variables] = cls(coeffring, number_of_variables) return cls._instances[coeffring, number_of_variables] class PolynomialIdeal (ring.Ideal): """ Multivariate polynomial ideal. """ def __init__(self, generators, aring): """ Initialize a polynomial ideal. """ ring.Ideal.__init__(self, generators, aring) def __contains__(self, elem): """ Return whether elem is in the ideal or not. """ if not elem.getRing().issubring(self.ring): return False if self.generators == [self.ring.zero]: return elem == self.ring.zero return not self.reduce(elem) def __bool__(self): """ Report whether the ideal is zero ideal or not. Of course, False is for zero ideal. """ return self.generators and self.generators != [self.ring.zero] def __repr__(self): """ Return repr string. """ return "%s(%r, %r)" % (self.__class__.__name__, self.generators, self.ring) def __str__(self): """ Return str string. """ return "(%s)%s" % (", ".join([str(g) for g in self.generators]), self.ring) # factories special_ring_table = {} def polynomial(coefficients, coeffring, number_of_variables=None): """ Return a polynomial. - coefficients has to be a initializer for dict, whose keys are variable indices and values are coefficients at the indices. - coeffring has to be an object inheriting ring.Ring. - number_of_variables has to be the number of variables. One can override the way to choose a polynomial type from a coefficient ring, by setting: special_ring_table[coeffring_type] = polynomial_type before the function call. """ if type(coeffring) in special_ring_table: poly_type = special_ring_table[type(coeffring)] elif coeffring.isufd(): poly_type = UniqueFactorizationDomainPolynomial elif coeffring.isdomain(): poly_type = DomainPolynomial else: poly_type = multivar.BasicPolynomial if number_of_variables is None: coefficients = dict(coefficients) for k in coefficients: number_of_variables = len(k) break return poly_type(coefficients, coeffring=coeffring, number_of_variables=number_of_variables) def MultiVariableSparsePolynomial(coefficient, variable, coeffring=None): """ MultiVariableSparsePolynomial(coefficient, variable [,coeffring]) - coefficient has to be a dictionary of form {(i1,...,ik): c} - variable has to be a list of character strings. - coeffring has to be, if specified, an object inheriting ring.Ring. This function is provided for backward compatible way of defining multivariate polynomial. The variable names are ignored, but their number is used. """ if not isinstance(variable, list) or not isinstance(coefficient, dict): raise ValueError("You must input MultiVariableSparsePolynomial(dict, list) but (%s, %s)." % (coefficient.__class__, variable.__class__)) if coeffring is None: coeffring = uniutil.init_coefficient_ring(coefficient) return polynomial(coefficient, coeffring=coeffring, number_of_variables=len(variable)) def prepare_indeterminates(names, ctx, coeffring=None): """ From space separated names of indeterminates, prepare variables representing the indeterminates. The result will be stored in ctx dictionary. The variables should be prepared at once, otherwise wrong aliases of variables may confuse you in later calculation. If an optional coeffring is not given, indeterminates will be initialized as integer coefficient polynomials. Example: >>> prepare_indeterminates("X Y Z", globals()) >>> Y UniqueFactorizationDomainPolynomial({(0, 1, 0): 1}) """ split_names = names.split() number_of_variables = len(split_names) if coeffring is None: coeffring = uniutil.init_coefficient_ring({1:1}) for i, name in enumerate(split_names): e_i = tuple([0] * i + [1] + [0] * (number_of_variables - i - 1)) ctx[name] = polynomial({e_i: 1}, coeffring, number_of_variables)
[ "nzmath.poly.uniutil.polynomial", "nzmath.ring.CommutativeRing.__init__", "nzmath.poly.multivar.BasicPolynomial.__init__", "nzmath.ring.Ideal.__init__", "nzmath.poly.multivar.BasicPolynomial.__add__", "nzmath.ring.getRing", "nzmath.poly.ring.PolynomialRing.getInstance", "nzmath.poly.ratfunc.RationalFunction", "nzmath.poly.uniutil.init_coefficient_ring", "nzmath.poly.multivar.BasicPolynomial.__sub__", "nzmath.poly.ratfunc.RationalFunctionField", "nzmath.ring.CommutativeRingElement.__init__" ]
[((2560, 2608), 'nzmath.poly.uniutil.polynomial', 'uniutil.polynomial', (['combined'], {'coeffring': 'polyring'}), '(combined, coeffring=polyring)\n', (2578, 2608), True, 'import nzmath.poly.uniutil as uniutil\n'), ((3630, 3672), 'nzmath.ring.CommutativeRingElement.__init__', 'ring.CommutativeRingElement.__init__', (['self'], {}), '(self)\n', (3666, 3672), True, 'import nzmath.ring as ring\n'), ((7352, 7389), 'nzmath.poly.ratfunc.RationalFunction', 'ratfunc.RationalFunction', (['self', 'other'], {}), '(self, other)\n', (7376, 7389), True, 'import nzmath.poly.ratfunc as ratfunc\n'), ((9809, 9870), 'nzmath.poly.multivar.BasicPolynomial.__init__', 'multivar.BasicPolynomial.__init__', (['self', 'coefficients'], {}), '(self, coefficients, **kwds)\n', (9842, 9870), True, 'import nzmath.poly.multivar as multivar\n'), ((14017, 14052), 'nzmath.ring.CommutativeRing.__init__', 'ring.CommutativeRing.__init__', (['self'], {}), '(self)\n', (14046, 14052), True, 'import nzmath.ring as ring\n'), ((14990, 15048), 'nzmath.poly.ratfunc.RationalFunctionField', 'ratfunc.RationalFunctionField', (['coefficientField', 'variables'], {}), '(coefficientField, variables)\n', (15019, 15048), True, 'import nzmath.poly.ratfunc as ratfunc\n'), ((16173, 16194), 'nzmath.ring.getRing', 'ring.getRing', (['element'], {}), '(element)\n', (16185, 16194), True, 'import nzmath.ring as ring\n'), ((20897, 20941), 'nzmath.ring.Ideal.__init__', 'ring.Ideal.__init__', (['self', 'generators', 'aring'], {}), '(self, generators, aring)\n', (20916, 20941), True, 'import nzmath.ring as ring\n'), ((23748, 23790), 'nzmath.poly.uniutil.init_coefficient_ring', 'uniutil.init_coefficient_ring', (['coefficient'], {}), '(coefficient)\n', (23777, 23790), True, 'import nzmath.poly.uniutil as uniutil\n'), ((24608, 24647), 'nzmath.poly.uniutil.init_coefficient_ring', 'uniutil.init_coefficient_ring', (['{(1): 1}'], {}), '({(1): 1})\n', (24637, 24647), True, 'import nzmath.poly.uniutil as uniutil\n'), ((2057, 2104), 'nzmath.poly.ring.PolynomialRing.getInstance', 'poly_ring.PolynomialRing.getInstance', (['coeffring'], {}), '(coeffring)\n', (2093, 2104), True, 'import nzmath.poly.ring as poly_ring\n'), ((4718, 4809), 'nzmath.poly.ring.PolynomialRing.getInstance', 'poly_ring.PolynomialRing.getInstance', (['self._coefficient_ring', 'self.number_of_variables'], {}), '(self._coefficient_ring, self.\n number_of_variables)\n', (4754, 4809), True, 'import nzmath.poly.ring as poly_ring\n'), ((10133, 10182), 'nzmath.poly.uniutil.init_coefficient_ring', 'uniutil.init_coefficient_ring', (['self._coefficients'], {}), '(self._coefficients)\n', (10162, 10182), True, 'import nzmath.poly.uniutil as uniutil\n'), ((11133, 11178), 'nzmath.poly.multivar.BasicPolynomial.__add__', 'multivar.BasicPolynomial.__add__', (['self', 'other'], {}), '(self, other)\n', (11165, 11178), True, 'import nzmath.poly.multivar as multivar\n'), ((11659, 11704), 'nzmath.poly.multivar.BasicPolynomial.__sub__', 'multivar.BasicPolynomial.__sub__', (['self', 'other'], {}), '(self, other)\n', (11691, 11704), True, 'import nzmath.poly.multivar as multivar\n'), ((2250, 2327), 'nzmath.poly.ring.PolynomialRing.getInstance', 'poly_ring.PolynomialRing.getInstance', (['coeffring', '(self.number_of_variables - 1)'], {}), '(coeffring, self.number_of_variables - 1)\n', (2286, 2327), True, 'import nzmath.poly.ring as poly_ring\n'), ((4032, 4047), 'nzmath.ring.getRing', 'ring.getRing', (['c'], {}), '(c)\n', (4044, 4047), True, 'import nzmath.ring as ring\n'), ((11300, 11351), 'nzmath.poly.multivar.BasicPolynomial.__add__', 'multivar.BasicPolynomial.__add__', (['self', '(other * one)'], {}), '(self, other * one)\n', (11332, 11351), True, 'import nzmath.poly.multivar as multivar\n'), ((11826, 11877), 'nzmath.poly.multivar.BasicPolynomial.__sub__', 'multivar.BasicPolynomial.__sub__', (['self', '(other * one)'], {}), '(self, other * one)\n', (11858, 11877), True, 'import nzmath.poly.multivar as multivar\n')]
import configparser from datetime import datetime, timedelta import os from pathlib import Path from airflow import DAG from airflow.operators.dummy_operator import DummyOperator from airflow.operators.python_operator import PythonOperator from src.remindo_driver import main # Reading configurations config = configparser.ConfigParser() config.read_file(open(os.path.join(Path(__file__).parents[1], "config/prod.cfg"))) default_args = { "owner": "airflow", "depends_on_past": False, "start_date": datetime(2020, 10, 1), "email": ["<EMAIL>"], "email_on_failure": False, "email_on_retry": False, "retries": 10, "retry_delay": timedelta(minutes=5), "catchup": False, # To setup only in production } dag_name = "transform_load_pipeline" dag = DAG( dag_name, default_args=default_args, description="Transform and load data from landing zone to processed zone.\ Populate data from Processed zone to remindo Warehouse.", # schedule_interval=None, schedule_interval=timedelta(minutes=5), max_active_runs=1, ) startOperator = DummyOperator(task_id="BeginExecution", dag=dag) jobOperator = PythonOperator(task_id="TransformLoadJob", python_callable=main, dag=dag) endOperator = DummyOperator(task_id="StopExecution", dag=dag) startOperator >> jobOperator >> endOperator
[ "datetime.datetime", "configparser.ConfigParser", "airflow.operators.dummy_operator.DummyOperator", "airflow.operators.python_operator.PythonOperator", "pathlib.Path", "datetime.timedelta" ]
[((313, 340), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (338, 340), False, 'import configparser\n'), ((1095, 1143), 'airflow.operators.dummy_operator.DummyOperator', 'DummyOperator', ([], {'task_id': '"""BeginExecution"""', 'dag': 'dag'}), "(task_id='BeginExecution', dag=dag)\n", (1108, 1143), False, 'from airflow.operators.dummy_operator import DummyOperator\n'), ((1158, 1231), 'airflow.operators.python_operator.PythonOperator', 'PythonOperator', ([], {'task_id': '"""TransformLoadJob"""', 'python_callable': 'main', 'dag': 'dag'}), "(task_id='TransformLoadJob', python_callable=main, dag=dag)\n", (1172, 1231), False, 'from airflow.operators.python_operator import PythonOperator\n'), ((1246, 1293), 'airflow.operators.dummy_operator.DummyOperator', 'DummyOperator', ([], {'task_id': '"""StopExecution"""', 'dag': 'dag'}), "(task_id='StopExecution', dag=dag)\n", (1259, 1293), False, 'from airflow.operators.dummy_operator import DummyOperator\n'), ((514, 535), 'datetime.datetime', 'datetime', (['(2020)', '(10)', '(1)'], {}), '(2020, 10, 1)\n', (522, 535), False, 'from datetime import datetime, timedelta\n'), ((661, 681), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(5)'}), '(minutes=5)\n', (670, 681), False, 'from datetime import datetime, timedelta\n'), ((1031, 1051), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(5)'}), '(minutes=5)\n', (1040, 1051), False, 'from datetime import datetime, timedelta\n'), ((376, 390), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (380, 390), False, 'from pathlib import Path\n')]