code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
""" Banner object -- Author : DrLarck Last update : 27/01/21 by DrLarck """ import asyncio import random # util from utility.entity.character import CharacterGetter from utility.entity.config_parser import ConfigParser # tool from utility.global_tool import GlobalTool class Banner: def __init__(self): # Public self.name = "" self.image = "" self.characters = [] self.sorted = False self.multi = 10 # Private self.__lr = [] self.__ur = [] self.__ssr = [] self.__sr = [] self.__r = [] self.__n = [] # Droprate as % self.__lr_droprate = 0.07 self.__ur_droprate = 3 self.__ssr_droprate = 15 self.__sr_droprate = 33 self.__r_droprate = 50 self.__n_droprate = 100 # tool self.__global_tool = GlobalTool() # Public async def sort(self): """ Sort the banner -- :return: `None` """ if self.sorted is False: # Sort the characters for character in self.characters: await asyncio.sleep(0) # Put the character in the LR list if character.rarity.value == 5: self.__lr.append(character) # Put the character in the UR list elif character.rarity.value == 4: self.__ur.append(character) elif character.rarity.value == 3: self.__ssr.append(character) elif character.rarity.value == 2: self.__sr.append(character) elif character.rarity.value == 1: self.__r.append(character) elif character.rarity.value == 0: self.__n.append(character) self.sorted = True return async def summon(self): """ Summon a random character -- :return: `Character` or `None` in case of problem """ # Init roll = random.uniform(0, 100) # Get a character according to the player's roll right above # Check if the list is not empty if len(self.__lr) > 0 and roll <= self.__lr_droprate: # If the player get a LR character # Get a random LR character form the LR list character = random.choice(self.__lr) return character elif len(self.__ur) > 0 and roll <= self.__ur_droprate: character = random.choice(self.__ur) return character elif len(self.__ssr) > 0 and roll <= self.__ssr_droprate: character = random.choice(self.__ssr) return character elif len(self.__sr) > 0 and roll <= self.__sr_droprate: character = random.choice(self.__sr) return character elif len(self.__r) > 0 and roll <= self.__r_droprate: character = random.choice(self.__r) return character elif len(self.__n) > 0 and roll <= self.__n_droprate: character = random.choice(self.__n) return character return async def multi_summon(self): """ Proceed to a multi summon -- :return: `list` of `Character` """ # Init characters = [] for i in range(self.multi): await asyncio.sleep(0) summoned = await self.summon() if summoned is not None: characters.append(summoned) else: i -= 1 return characters async def generate(self, client, name="", image="", characters=""): """ Generate a banner object :param client: discord.ext.commands.Bot :param name: (`str`) :param image: (`str`) Valid url :param characters: (`str`) -- :return: `Banner` """ # Init getter = CharacterGetter() # Set the attributes self.name = name self.image = image self.characters = characters # Get the character instances self.characters = self.characters.split() # Init the new character list new_character_list = [] # The character are stored as reference id in the characters[] attribute for reference in self.characters: await asyncio.sleep(0) # Convert the str reference to int reference = int(reference) character = await getter.get_reference_character(reference, client) # Add the character into the list new_character_list.append(character) # Replace the old character list by the new one self.characters = new_character_list # Sort the banner await self.sort() return self async def set_unique_id(self, client): """ Generate an unique id for the characters that have 'NONE' as unique id -- :return: `None` """ # Get the characters that have 'NONE' as unique id characters = await client.database.fetch_row(""" SELECT reference FROM character_unique WHERE character_unique_id is NULL; """) # Generate a unique id for each of them for character in characters: await asyncio.sleep(0) # Get the unique character's reference reference = character[0] unique_id = await self.__global_tool.generate_unique_id(reference) # Update the character's unique id await client.database.execute(""" UPDATE character_unique SET character_unique_id = $1 WHERE reference = $2; """, [unique_id, reference]) return class BannerGetter: # Private __cache = [] __cache_ok = False __current_banner = 1 # Public async def set_cache(self, client): """ Set the banner cache -- :return: `None` """ if self.__cache_ok is False: data = await client.database.fetch_row(""" SELECT banner_name, banner_image, banner_content FROM banner ORDER BY reference; """) if len(data) > 0: for banner in data: await asyncio.sleep(0) # Generate the banner object banner_ = Banner() await banner_.generate(client, name=banner[0], image=banner[1], characters=banner[2]) self.__cache.append(banner_) self.__cache_ok = True print("Banner Cache : DONE") else: print("Banner Cache : The cache has already been filled.") return async def get_banner(self, reference): """ Return a banner object from the cache :param reference: (`int`) -- :return: `Banner` or `None` if not found """ # Get the banner object from the cache if reference > 0 and reference - 1 < len(self.__cache): return self.__cache[reference - 1] else: print(f"Banner {reference} not found.") return None async def get_current_banner(self): """ Return the last banner out -- :return: `Banner` """ self.__current_banner = await ConfigParser().get_config_for("banner current") return self.__cache[self.__current_banner - 1]
[ "random.uniform", "random.choice", "utility.entity.character.CharacterGetter", "utility.entity.config_parser.ConfigParser", "asyncio.sleep", "utility.global_tool.GlobalTool" ]
[((881, 893), 'utility.global_tool.GlobalTool', 'GlobalTool', ([], {}), '()\n', (891, 893), False, 'from utility.global_tool import GlobalTool\n'), ((2106, 2128), 'random.uniform', 'random.uniform', (['(0)', '(100)'], {}), '(0, 100)\n', (2120, 2128), False, 'import random\n'), ((4048, 4065), 'utility.entity.character.CharacterGetter', 'CharacterGetter', ([], {}), '()\n', (4063, 4065), False, 'from utility.entity.character import CharacterGetter\n'), ((2430, 2454), 'random.choice', 'random.choice', (['self.__lr'], {}), '(self.__lr)\n', (2443, 2454), False, 'import random\n'), ((2574, 2598), 'random.choice', 'random.choice', (['self.__ur'], {}), '(self.__ur)\n', (2587, 2598), False, 'import random\n'), ((3458, 3474), 'asyncio.sleep', 'asyncio.sleep', (['(0)'], {}), '(0)\n', (3471, 3474), False, 'import asyncio\n'), ((4487, 4503), 'asyncio.sleep', 'asyncio.sleep', (['(0)'], {}), '(0)\n', (4500, 4503), False, 'import asyncio\n'), ((5617, 5633), 'asyncio.sleep', 'asyncio.sleep', (['(0)'], {}), '(0)\n', (5630, 5633), False, 'import asyncio\n'), ((1155, 1171), 'asyncio.sleep', 'asyncio.sleep', (['(0)'], {}), '(0)\n', (1168, 1171), False, 'import asyncio\n'), ((2720, 2745), 'random.choice', 'random.choice', (['self.__ssr'], {}), '(self.__ssr)\n', (2733, 2745), False, 'import random\n'), ((7992, 8006), 'utility.entity.config_parser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (8004, 8006), False, 'from utility.entity.config_parser import ConfigParser\n'), ((2865, 2889), 'random.choice', 'random.choice', (['self.__sr'], {}), '(self.__sr)\n', (2878, 2889), False, 'import random\n'), ((6902, 6918), 'asyncio.sleep', 'asyncio.sleep', (['(0)'], {}), '(0)\n', (6915, 6918), False, 'import asyncio\n'), ((3007, 3030), 'random.choice', 'random.choice', (['self.__r'], {}), '(self.__r)\n', (3020, 3030), False, 'import random\n'), ((3148, 3171), 'random.choice', 'random.choice', (['self.__n'], {}), '(self.__n)\n', (3161, 3171), False, 'import random\n')]
# import the code from this package from shell_command_logger import print_color from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION SUBCOMMAND_NAMES = ["c", "config"] ARG_PARSER_OPTIONS = { "description": f"This subcommand can be used to view or modify the config file. You can also manually modify the config file located at {CONFIG_FILE}.", "help": "view and modify config", } def populate_agrument_parser(ap) -> None: """ Populates an argparse.ArgumentParser or an subcommand argument parser """ mutex = ap.add_mutually_exclusive_group() mutex.add_argument("-d", "--defaults", action="store_true", help="reset all settings back to the defaults") mutex.add_argument("-g", "--get", metavar="<key>", help="get the value of <key>") mutex.add_argument("-s", "--set", metavar=("<key>", "<new_value>"), nargs=2, help="set an option: <key> = <new_value>") def subcommand_main(args) -> int: """ This method expects the parsed arguments from an argument parser that was set up with `populate_agrument_parser()`. It returns an unix-like status code (0 -> success, everything else -> error). """ scl_config = load_config() if args.set: key, new_value = args.set parser = config_to_parser(scl_config) parser[_KEY_SECTION][key] = new_value save_parser_as_config(parser) elif args.get: key = args.get parser = config_to_parser(scl_config) try: print(parser[_KEY_SECTION][key]) except KeyError: print(f"The value '{key}' does not exist!") return 1 elif args.defaults: parser = config_to_parser(DEFAULT_CONFIG) save_parser_as_config(parser) else: # By default print out the current config parser = config_to_parser(scl_config) text = parser_to_text(parser) print(text.rstrip()) try: sanitize_config(load_config()) return 0 except Exception as ex: print_color(f"Error validating config: {ex}", "red", bold=True) return 1 # By default return 0 (success)
[ "shell_command_logger.config.save_parser_as_config", "shell_command_logger.config.config_to_parser", "shell_command_logger.print_color", "shell_command_logger.config.parser_to_text", "shell_command_logger.config.load_config" ]
[((1279, 1292), 'shell_command_logger.config.load_config', 'load_config', ([], {}), '()\n', (1290, 1292), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((1362, 1390), 'shell_command_logger.config.config_to_parser', 'config_to_parser', (['scl_config'], {}), '(scl_config)\n', (1378, 1390), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((1445, 1474), 'shell_command_logger.config.save_parser_as_config', 'save_parser_as_config', (['parser'], {}), '(parser)\n', (1466, 1474), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((1534, 1562), 'shell_command_logger.config.config_to_parser', 'config_to_parser', (['scl_config'], {}), '(scl_config)\n', (1550, 1562), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((2042, 2055), 'shell_command_logger.config.load_config', 'load_config', ([], {}), '()\n', (2053, 2055), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((2110, 2173), 'shell_command_logger.print_color', 'print_color', (['f"""Error validating config: {ex}"""', '"""red"""'], {'bold': '(True)'}), "(f'Error validating config: {ex}', 'red', bold=True)\n", (2121, 2173), False, 'from shell_command_logger import print_color\n'), ((1764, 1796), 'shell_command_logger.config.config_to_parser', 'config_to_parser', (['DEFAULT_CONFIG'], {}), '(DEFAULT_CONFIG)\n', (1780, 1796), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((1805, 1834), 'shell_command_logger.config.save_parser_as_config', 'save_parser_as_config', (['parser'], {}), '(parser)\n', (1826, 1834), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((1912, 1940), 'shell_command_logger.config.config_to_parser', 'config_to_parser', (['scl_config'], {}), '(scl_config)\n', (1928, 1940), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n'), ((1956, 1978), 'shell_command_logger.config.parser_to_text', 'parser_to_text', (['parser'], {}), '(parser)\n', (1970, 1978), False, 'from shell_command_logger.config import load_config, sanitize_config, config_to_parser, save_parser_as_config, parser_to_text, DEFAULT_CONFIG, CONFIG_FILE, _KEY_SECTION\n')]
"""Takes an unrolled StencilModel and converts it to a C++ AST. The third stage in processing. Input must be processed with StencilUnrollNeighborIter first to remove neighbor loops and InputElementZeroOffset nodes. Done once per call. """ import ast import asp.codegen.cpp_ast as cpp_ast import asp.codegen.ast_tools as ast_tools import stencil_model from assert_utils import * class StencilConvertAST(ast_tools.ConvertAST): def __init__(self, model, input_grids, output_grid, inject_failure=None): assert_has_type(model, stencil_model.StencilModel) assert len(input_grids) == len(model.input_grids), 'Incorrect number of input grids' self.model = model self.input_grids = input_grids self.output_grid = output_grid self.output_grid_name = 'out_grid' self.dim_vars = [] self.var_names = [self.output_grid_name] self.next_fresh_var = 0 self.inject_failure = inject_failure super(StencilConvertAST, self).__init__() def run(self): self.model = self.visit(self.model) assert_has_type(self.model, cpp_ast.FunctionBody) StencilConvertAST.VerifyOnlyCppNodes().visit(self.model) return self.model class VerifyOnlyCppNodes(ast_tools.NodeVisitorCustomNodes): def visit(self, node): for field, value in ast.iter_fields(node): if type(value) in [StringType, IntType, LongType, FloatType]: pass elif isinstance(value, list): for item in value: if ast_tools.is_cpp_node(item): self.visit(item) elif ast_tools.is_cpp_node(value): self.visit(value) else: assert False, 'Expected only codepy.cgen.Generable nodes and primitives but found %s' % value # Visitors def visit_StencilModel(self, node): self.argdict = dict() for i in range(len(node.input_grids)): self.var_names.append(node.input_grids[i].name) self.argdict[node.input_grids[i].name] = self.input_grids[i] self.argdict[self.output_grid_name] = self.output_grid assert node.border_kernel.body == [], 'Border kernels not yet implemented' func_name = "kernel" arg_names = [x.name for x in node.input_grids] + [self.output_grid_name] args = [cpp_ast.Pointer(cpp_ast.Value("PyObject", x)) for x in arg_names] body = cpp_ast.Block() # generate the code to unpack arrays into C++ pointers and macros for accessing # the arrays body.extend([self.gen_array_macro_definition(x) for x in self.argdict]) body.extend(self.gen_array_unpack()) body.append(self.visit_interior_kernel(node.interior_kernel)) return cpp_ast.FunctionBody(cpp_ast.FunctionDeclaration(cpp_ast.Value("void", func_name), args), body) def visit_interior_kernel(self, node): cur_node, ret_node = self.gen_loops(node) body = cpp_ast.Block() self.output_index_var = cpp_ast.CName(self.gen_fresh_var()) body.append(cpp_ast.Value("int", self.output_index_var)) body.append(cpp_ast.Assign(self.output_index_var, self.gen_array_macro( self.output_grid_name, [cpp_ast.CName(x) for x in self.dim_vars]))) replaced_body = None for gridname in self.argdict.keys(): replaced_body = [ast_tools.ASTNodeReplacer( ast.Name(gridname, None), ast.Name("_my_"+gridname, None)).visit(x) for x in node.body] body.extend([self.visit(x) for x in replaced_body]) cur_node.body = body return ret_node def visit_OutputAssignment(self, node): return cpp_ast.Assign(self.visit(stencil_model.OutputElement()), self.visit(node.value)) def visit_Constant(self, node): return node.value def visit_ScalarBinOp(self, node): return super(StencilConvertAST, self).visit_BinOp(ast.BinOp(node.left, node.op, node.right)) def visit_OutputElement(self, node): return cpp_ast.Subscript("_my_" + self.output_grid_name, self.output_index_var) def visit_InputElement(self, node): index = self.gen_array_macro(node.grid.name, map(lambda x,y: cpp_ast.BinOp(cpp_ast.CName(x), "+", cpp_ast.CNumber(y)), self.dim_vars, node.offset_list)) return cpp_ast.Subscript("_my_" + node.grid.name, index) def visit_InputElementExprIndex(self, node): return cpp_ast.Subscript("_my_" + node.grid.name, self.visit(node.index)) def visit_MathFunction(self, node): return cpp_ast.FunctionCall(cpp_ast.CName(node.name), params=map(self.visit, node.args)) # Helper functions def gen_array_macro_definition(self, arg): array = self.argdict[arg] defname = "_"+arg+"_array_macro" params = "(" + ','.join(["_d"+str(x) for x in xrange(array.dim)]) + ")" calc = "(_d%d" % (array.dim-1) for x in range(0,array.dim-1): calc += "+(_d%s * %s)" % (str(x), str(array.data.strides[x]/array.data.itemsize)) calc += ")" return cpp_ast.Define(defname+params, calc) def gen_array_macro(self, arg, point): name = "_%s_array_macro" % arg return cpp_ast.Call(cpp_ast.CName(name), point) def gen_array_unpack(self): ret = [cpp_ast.Assign(cpp_ast.Pointer(cpp_ast.Value("npy_double", "_my_"+x)), cpp_ast.TypeCast(cpp_ast.Pointer(cpp_ast.Value("npy_double", "")), cpp_ast.FunctionCall(cpp_ast.CName("PyArray_DATA"), params=[cpp_ast.CName(x)]))) for x in self.argdict.keys()] return ret def gen_loops(self, node): dim = len(self.output_grid.shape) ret_node = None cur_node = None def add_one(n): if self.inject_failure == 'loop_off_by_one': return cpp_ast.CNumber(n.num + 1) else: return n for d in xrange(dim): dim_var = self.gen_fresh_var() self.dim_vars.append(dim_var) initial = cpp_ast.CNumber(self.output_grid.ghost_depth) end = cpp_ast.CNumber(self.output_grid.shape[d]-self.output_grid.ghost_depth-1) increment = cpp_ast.CNumber(1) if d == 0: ret_node = cpp_ast.For(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node = ret_node elif d == dim-2: # add OpenMP parallel pragma to 2nd innermost loop pragma = cpp_ast.Pragma("omp parallel for") for_node = cpp_ast.For(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node.body = cpp_ast.Block(contents=[pragma, for_node]) cur_node = for_node elif d == dim-1: # add ivdep pragma to innermost node pragma = cpp_ast.Pragma("ivdep") for_node = cpp_ast.For(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node.body = cpp_ast.Block(contents=[pragma, for_node]) cur_node = for_node else: cur_node.body = cpp_ast.For(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node = cur_node.body return (cur_node, ret_node) def gen_fresh_var(self): while True: self.next_fresh_var += 1 var = "x%d" % self.next_fresh_var if var not in self.var_names: return var class StencilConvertASTCilk(StencilConvertAST): class CilkFor(cpp_ast.For): def intro_line(self): return "cilk_for (%s; %s; %s += %s)" % (self.start, self.condition, self.loopvar, self.increment) def gen_loops(self, node): dim = len(self.output_grid.shape) ret_node = None cur_node = None for d in xrange(dim): dim_var = self.gen_fresh_var() self.dim_vars.append(dim_var) initial = cpp_ast.CNumber(self.output_grid.ghost_depth) end = cpp_ast.CNumber(self.output_grid.shape[d]-self.output_grid.ghost_depth-1) increment = cpp_ast.CNumber(1) if d == 0: ret_node = cpp_ast.For(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node = ret_node elif d == dim-2: cur_node.body = StencilConvertASTCilk.CilkFor(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node = cur_node.body else: cur_node.body = cpp_ast.For(dim_var, add_one(initial), add_one(end), increment, cpp_ast.Block()) cur_node = cur_node.body return (cur_node, ret_node)
[ "stencil_model.OutputElement", "asp.codegen.cpp_ast.Subscript", "asp.codegen.cpp_ast.Define", "ast.iter_fields", "asp.codegen.cpp_ast.Value", "asp.codegen.cpp_ast.Pragma", "ast.Name", "asp.codegen.cpp_ast.Block", "asp.codegen.ast_tools.is_cpp_node", "ast.BinOp", "asp.codegen.cpp_ast.CNumber", "asp.codegen.cpp_ast.CName" ]
[((2514, 2529), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (2527, 2529), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((3093, 3108), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (3106, 3108), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((4238, 4310), 'asp.codegen.cpp_ast.Subscript', 'cpp_ast.Subscript', (["('_my_' + self.output_grid_name)", 'self.output_index_var'], {}), "('_my_' + self.output_grid_name, self.output_index_var)\n", (4255, 4310), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((4647, 4696), 'asp.codegen.cpp_ast.Subscript', 'cpp_ast.Subscript', (["('_my_' + node.grid.name)", 'index'], {}), "('_my_' + node.grid.name, index)\n", (4664, 4696), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((5405, 5443), 'asp.codegen.cpp_ast.Define', 'cpp_ast.Define', (['(defname + params)', 'calc'], {}), '(defname + params, calc)\n', (5419, 5443), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((1350, 1371), 'ast.iter_fields', 'ast.iter_fields', (['node'], {}), '(node)\n', (1365, 1371), False, 'import ast\n'), ((3206, 3249), 'asp.codegen.cpp_ast.Value', 'cpp_ast.Value', (['"""int"""', 'self.output_index_var'], {}), "('int', self.output_index_var)\n", (3219, 3249), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((4138, 4179), 'ast.BinOp', 'ast.BinOp', (['node.left', 'node.op', 'node.right'], {}), '(node.left, node.op, node.right)\n', (4147, 4179), False, 'import ast\n'), ((4906, 4930), 'asp.codegen.cpp_ast.CName', 'cpp_ast.CName', (['node.name'], {}), '(node.name)\n', (4919, 4930), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((5553, 5572), 'asp.codegen.cpp_ast.CName', 'cpp_ast.CName', (['name'], {}), '(name)\n', (5566, 5572), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((6369, 6414), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['self.output_grid.ghost_depth'], {}), '(self.output_grid.ghost_depth)\n', (6384, 6414), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((6433, 6510), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['(self.output_grid.shape[d] - self.output_grid.ghost_depth - 1)'], {}), '(self.output_grid.shape[d] - self.output_grid.ghost_depth - 1)\n', (6448, 6510), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((6531, 6549), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['(1)'], {}), '(1)\n', (6546, 6549), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((8389, 8434), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['self.output_grid.ghost_depth'], {}), '(self.output_grid.ghost_depth)\n', (8404, 8434), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((8453, 8530), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['(self.output_grid.shape[d] - self.output_grid.ghost_depth - 1)'], {}), '(self.output_grid.shape[d] - self.output_grid.ghost_depth - 1)\n', (8468, 8530), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((8551, 8569), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['(1)'], {}), '(1)\n', (8566, 8569), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((2448, 2476), 'asp.codegen.cpp_ast.Value', 'cpp_ast.Value', (['"""PyObject"""', 'x'], {}), "('PyObject', x)\n", (2461, 2476), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((2900, 2932), 'asp.codegen.cpp_ast.Value', 'cpp_ast.Value', (['"""void"""', 'func_name'], {}), "('void', func_name)\n", (2913, 2932), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((3921, 3950), 'stencil_model.OutputElement', 'stencil_model.OutputElement', ([], {}), '()\n', (3948, 3950), False, 'import stencil_model\n'), ((6160, 6186), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['(n.num + 1)'], {}), '(n.num + 1)\n', (6175, 6186), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((5661, 5700), 'asp.codegen.cpp_ast.Value', 'cpp_ast.Value', (['"""npy_double"""', "('_my_' + x)"], {}), "('npy_double', '_my_' + x)\n", (5674, 5700), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((6664, 6679), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (6677, 6679), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((6838, 6872), 'asp.codegen.cpp_ast.Pragma', 'cpp_ast.Pragma', (['"""omp parallel for"""'], {}), "('omp parallel for')\n", (6852, 6872), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((7013, 7055), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {'contents': '[pragma, for_node]'}), '(contents=[pragma, for_node])\n', (7026, 7055), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((8684, 8699), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (8697, 8699), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((1683, 1711), 'asp.codegen.ast_tools.is_cpp_node', 'ast_tools.is_cpp_node', (['value'], {}), '(value)\n', (1704, 1711), True, 'import asp.codegen.ast_tools as ast_tools\n'), ((3429, 3445), 'asp.codegen.cpp_ast.CName', 'cpp_ast.CName', (['x'], {}), '(x)\n', (3442, 3445), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((4472, 4488), 'asp.codegen.cpp_ast.CName', 'cpp_ast.CName', (['x'], {}), '(x)\n', (4485, 4488), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((4495, 4513), 'asp.codegen.cpp_ast.CNumber', 'cpp_ast.CNumber', (['y'], {}), '(y)\n', (4510, 4513), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((5751, 5782), 'asp.codegen.cpp_ast.Value', 'cpp_ast.Value', (['"""npy_double"""', '""""""'], {}), "('npy_double', '')\n", (5764, 5782), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((5806, 5835), 'asp.codegen.cpp_ast.CName', 'cpp_ast.CName', (['"""PyArray_DATA"""'], {}), "('PyArray_DATA')\n", (5819, 5835), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((6964, 6979), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (6977, 6979), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((7199, 7222), 'asp.codegen.cpp_ast.Pragma', 'cpp_ast.Pragma', (['"""ivdep"""'], {}), "('ivdep')\n", (7213, 7222), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((7407, 7449), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {'contents': '[pragma, for_node]'}), '(contents=[pragma, for_node])\n', (7420, 7449), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((8880, 8895), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (8893, 8895), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((9052, 9067), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (9065, 9067), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((1588, 1615), 'asp.codegen.ast_tools.is_cpp_node', 'ast_tools.is_cpp_node', (['item'], {}), '(item)\n', (1609, 1615), True, 'import asp.codegen.ast_tools as ast_tools\n'), ((3632, 3656), 'ast.Name', 'ast.Name', (['gridname', 'None'], {}), '(gridname, None)\n', (3640, 3656), False, 'import ast\n'), ((3658, 3691), 'ast.Name', 'ast.Name', (["('_my_' + gridname)", 'None'], {}), "('_my_' + gridname, None)\n", (3666, 3691), False, 'import ast\n'), ((7358, 7373), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (7371, 7373), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((7600, 7615), 'asp.codegen.cpp_ast.Block', 'cpp_ast.Block', ([], {}), '()\n', (7613, 7615), True, 'import asp.codegen.cpp_ast as cpp_ast\n'), ((5845, 5861), 'asp.codegen.cpp_ast.CName', 'cpp_ast.CName', (['x'], {}), '(x)\n', (5858, 5861), True, 'import asp.codegen.cpp_ast as cpp_ast\n')]
"""utlity methods running on the underlying database. Copyright (c) 2016-present, Facebook, Inc. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. An additional grant of patent rights can be found in the PATENTS file in the same directory. """ import uuid import django def get_db_time(connection): cursor = connection.cursor() cursor.execute("SELECT statement_timestamp();") return cursor.fetchone()[0] def format_transaction(tansaction_date=None, transaction_type=False): # Generating new transaction id using old transaction and date if tansaction_date is None: dt = django.utils.timezone.now() else: dt = tansaction_date uuid_transaction = str(uuid.uuid4().hex[:6]) transaction = '{0}id{1}'.format(str(dt.date()).replace('-', ''), uuid_transaction) if transaction_type: return '-%s' % (transaction,) else: return transaction
[ "django.utils.timezone.now", "uuid.uuid4" ]
[((702, 729), 'django.utils.timezone.now', 'django.utils.timezone.now', ([], {}), '()\n', (727, 729), False, 'import django\n'), ((796, 808), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (806, 808), False, 'import uuid\n')]
import unittest from EEGNAS_experiment import get_configurations, parse_args, set_params_by_dataset from EEGNAS.global_vars import init_config from EEGNAS import global_vars from EEGNAS.utilities import NAS_utils class TestModelGeneration(unittest.TestCase): def setUp(self): args = parse_args(['-e', 'tests', '-c', '../configurations/config.ini']) init_config(args.config) configs = get_configurations('tests') assert(len(configs) == 1) global_vars.set_config(configs[0]) set_params_by_dataset() def test_perm_ensemble_fitness(self): global_vars.set('pop_size', 10) global_vars.set('ensemble_size', 2) global_vars.set('ga_objective', 'accuracy') global_vars.set('permanent_ensembles', True) dummy_weighted_pop = [{'val_raw': [[1-(1/i), 0, 0, 1/i]], 'val_target': [3]} for i in range(1, 11)] old_len = len(dummy_weighted_pop) NAS_utils.permanent_ensemble_fitness(dummy_weighted_pop) NAS_utils.sort_population(dummy_weighted_pop) assert len(dummy_weighted_pop) == old_len print(dummy_weighted_pop[-1])
[ "EEGNAS_experiment.parse_args", "EEGNAS.global_vars.init_config", "EEGNAS.utilities.NAS_utils.sort_population", "EEGNAS.utilities.NAS_utils.permanent_ensemble_fitness", "EEGNAS_experiment.set_params_by_dataset", "EEGNAS_experiment.get_configurations", "EEGNAS.global_vars.set_config", "EEGNAS.global_vars.set" ]
[((297, 362), 'EEGNAS_experiment.parse_args', 'parse_args', (["['-e', 'tests', '-c', '../configurations/config.ini']"], {}), "(['-e', 'tests', '-c', '../configurations/config.ini'])\n", (307, 362), False, 'from EEGNAS_experiment import get_configurations, parse_args, set_params_by_dataset\n'), ((371, 395), 'EEGNAS.global_vars.init_config', 'init_config', (['args.config'], {}), '(args.config)\n', (382, 395), False, 'from EEGNAS.global_vars import init_config\n'), ((414, 441), 'EEGNAS_experiment.get_configurations', 'get_configurations', (['"""tests"""'], {}), "('tests')\n", (432, 441), False, 'from EEGNAS_experiment import get_configurations, parse_args, set_params_by_dataset\n'), ((484, 518), 'EEGNAS.global_vars.set_config', 'global_vars.set_config', (['configs[0]'], {}), '(configs[0])\n', (506, 518), False, 'from EEGNAS import global_vars\n'), ((527, 550), 'EEGNAS_experiment.set_params_by_dataset', 'set_params_by_dataset', ([], {}), '()\n', (548, 550), False, 'from EEGNAS_experiment import get_configurations, parse_args, set_params_by_dataset\n'), ((602, 633), 'EEGNAS.global_vars.set', 'global_vars.set', (['"""pop_size"""', '(10)'], {}), "('pop_size', 10)\n", (617, 633), False, 'from EEGNAS import global_vars\n'), ((642, 677), 'EEGNAS.global_vars.set', 'global_vars.set', (['"""ensemble_size"""', '(2)'], {}), "('ensemble_size', 2)\n", (657, 677), False, 'from EEGNAS import global_vars\n'), ((686, 729), 'EEGNAS.global_vars.set', 'global_vars.set', (['"""ga_objective"""', '"""accuracy"""'], {}), "('ga_objective', 'accuracy')\n", (701, 729), False, 'from EEGNAS import global_vars\n'), ((738, 782), 'EEGNAS.global_vars.set', 'global_vars.set', (['"""permanent_ensembles"""', '(True)'], {}), "('permanent_ensembles', True)\n", (753, 782), False, 'from EEGNAS import global_vars\n'), ((941, 997), 'EEGNAS.utilities.NAS_utils.permanent_ensemble_fitness', 'NAS_utils.permanent_ensemble_fitness', (['dummy_weighted_pop'], {}), '(dummy_weighted_pop)\n', (977, 997), False, 'from EEGNAS.utilities import NAS_utils\n'), ((1006, 1051), 'EEGNAS.utilities.NAS_utils.sort_population', 'NAS_utils.sort_population', (['dummy_weighted_pop'], {}), '(dummy_weighted_pop)\n', (1031, 1051), False, 'from EEGNAS.utilities import NAS_utils\n')]
""" Helper functions for both fabfiles """ from fabric.api import runs_once, prompt, abort from requests import get from json import loads def _download_gush_map(muni_name, topojson=False): r = get('https://raw.githubusercontent.com/niryariv/israel_gushim/master/%s.%s' % (muni_name, 'topojson' if topojson else 'geojson')) if r.status_code != 200: abort('Failed to download gushim map') try: res = loads(r.text) except: abort('Gushim map is an invalid JSON file') return res
[ "json.loads", "fabric.api.abort", "requests.get" ]
[((201, 334), 'requests.get', 'get', (["('https://raw.githubusercontent.com/niryariv/israel_gushim/master/%s.%s' %\n (muni_name, 'topojson' if topojson else 'geojson'))"], {}), "('https://raw.githubusercontent.com/niryariv/israel_gushim/master/%s.%s' %\n (muni_name, 'topojson' if topojson else 'geojson'))\n", (204, 334), False, 'from requests import get\n'), ((368, 406), 'fabric.api.abort', 'abort', (['"""Failed to download gushim map"""'], {}), "('Failed to download gushim map')\n", (373, 406), False, 'from fabric.api import runs_once, prompt, abort\n'), ((435, 448), 'json.loads', 'loads', (['r.text'], {}), '(r.text)\n', (440, 448), False, 'from json import loads\n'), ((469, 512), 'fabric.api.abort', 'abort', (['"""Gushim map is an invalid JSON file"""'], {}), "('Gushim map is an invalid JSON file')\n", (474, 512), False, 'from fabric.api import runs_once, prompt, abort\n')]
from enum import Enum from typing import Dict, List, Optional, Set from fastapi import Body, Cookie, FastAPI, Path, Query from pydantic import BaseModel, Field, HttpUrl # FastAPI object instance app = FastAPI() # ---------- # Root end point @app.get("/") async def root(): return {"message": "Hello World"} # ---------- # Dynamic input # localhost:8000/items/42/ @app.get("/items/{item_id}") # item_id from address path -> input args item_id async def read_item(item_id: int): # auto type validation with type hints return {"item_id": item_id} # Static input @app.get("/users/me") async def read_user_me(): return {"user_id": "the current user"} # Dynamic address str type @app.get("/users/{user_id}") async def read_user(user_id: str): # String type return {"user_id": user_id} class ModelName(str, Enum): alexnet = "alexnet" resnet = "resnet" lenet = "lenet" @app.get("/models/{model_name}") async def get_model( model_name: ModelName, ): # Use Enum to constraint available types and values if model_name == ModelName.alexnet: return {"model_name": model_name, "message": "Deep Learning FTW!"} if model_name.value == "lenet": return {"model_name": model_name, "message": "LeCNN all the images"} return {"model_name": model_name, "message": "Have some residuals"} @app.get( "/files/{file_path:path}" ) # :path indicate match any path (i.e. /files//home/johndoe/myfiles.txt) async def read_file(file_path: str): return {"file_path": file_path} # ---------- fake_items_db = [{"item_name": "Foo"}, {"item_name": "Bar"}, {"item_name": "Baz"}] # localhost:8000/items2/?skip=0&limit=10 @app.get("/items2/") async def items2(skip: int = 0, limit: int = 10): return fake_items_db[skip : skip + limit] @app.get("/items3/{item_id}") async def items3( item_id: str, q: Optional[str] = None ): # FastAPI knows optional because of `= None`, Optional is only for editor static check if q: return {"item_id": item_id, "q": q} return {"item_id": item_id} # localhost:8000/items4/foo?short=True # localhost:8000/items4/foo?short=true # localhost:8000/items4/foo?short=1 -> truthy # localhost:8000/items4/foo?short=on -> truthy # localhost:8000/items4/foo?short=yes -> truthy @app.get("/items4/{item_id}") async def item4(item_id: str, q: Optional[str] = None, short: bool = False): item = {"item_id": item_id} if q: item.update({"q": q}) if not short: item.update({"description": "long description"}) return item # localhost:8000/items5/foo?needy=soneedy @app.get("/items5/{item_id}") async def items5(item_id: str, needy: str): # required parameters item = {"item_id": item_id, "needy": needy} return item # localhost:8000/item6/foo?needy=soneedy&skip=0&limit=0 @app.get("/items6/{item_id}") async def items6( item_id: str, needy: str, skip: int = 0, limit: Optional[int] = None ): # needy = required str, skip = required int with default 0, limit = optional int item = {"item_id": item_id, "needy": needy, "skip": skip, "limit": limit} return item # ---------- class Item(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None # Body # { # "name": "some name", # "prince": 50.1 # } # { # "name": "some name", # "prince": 50.1, # "description": "some description", # "tax": "100" # } @app.post("/items7/") async def items7(item: Item): # expect fields from inside the Item class return item @app.post("/items8") async def items8(item: Item): item_dict = item.dict() # convert item json to dict first if item.tax: # use dot notation or indexing to access price_with_tax = item.price + item.tax item_dict.update({"price_with_tax": price_with_tax}) return item_dict @app.put("/items9/{item_id}") async def items9(item_id: int, item: Item): return {"item_id": item_id, **item.dict()} # Unroll dict # localhost:8000/100/?q=foo @app.put("/items10/{item_id}") async def items10(item_id: int, item: Item, q: Optional[str] = None): result = {"item_id": item_id, **item.dict()} if q: result.update({"q": q}) return result # ---------- @app.get("/items11/") async def items11( q: Optional[str] = Query(None, min_length=3, max_length=50, regex="^fixedquery$") ): # User Query for additional validation, first param set default values, # None means optional, min_length and max_length limits length for q, # regex: ^ means start with following chars, fixedquery means exact value fixedquery, # $ ends there, no more chars after fixedquery results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results @app.get("/items12/") async def items12( q: str = Query(..., min_length=3, max_length=50) ): # Query first param means default, ... means non-optional, q param is required results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results # localhost:8000/items13/?q=foo&q=bar&q=woot @app.get("/items13/") async def items13( q: Optional[List[str]] = Query(None), ): # Optional List accepts multiple input by declaring q multiple times query_items = {"q": q} # { # "q": [ # "foo", # "bar", # "woot" # ] # } return query_items @app.get("/items14/") async def items14( q: List[str] = Query(["foo", "bar", "woot"], title="Query string", min_length=3) ): # Required list, default values are declared inside Query # Can also just use q: list = Query([]) query_items = {"q": q} return query_items # for example you want parameter to be item-query # localhost:8000/items15/?item-query=foobaritem # this way, Query will help to match item-query and assign correctly to q @app.get("/items15/") async def items15(q: Optional[str] = Query(None, alias="item-query")): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results # Add deprecated args = True to indicate endpoint is deprecated # Will showup in Swagger @app.get("/items16/") async def items16(q: Optional[str] = Query(None, deprecated=True)): results = {"items": [{"item_id": "Foo"}, {"item_id": "Bar"}]} if q: results.update({"q": q}) return results # ---------- @app.get("/items17/{item_id}") async def items17( item_id: int = Path( ..., title="The ID of item to get" ), # path parameter is always required, use ... as placeholder q: Optional[str] = Query( None, alias="item-query" ), # move q to first pos if it doesnt have default ): results = {"item_id": item_id} if q: results.update({"q": q}) return results # If order of args matter and q without default needs to be last, use * in the first pos @app.get("/items18/{item_id}") async def items18(*, item_id: int = Path(..., title="The ID"), q: str): results = {"item_id": item_id} if q: results.update({"q": q}) return results # Both Query and Path can use string/number validation @app.get("/items19/{item_id}") async def items19( *, item_id: int = Path(..., title="ID", ge=0, le=1000), q: str, size: float = Query(..., gt=0, lt=10), ): results = {"item_id": item_id} if q: results.update({"q": q}) return results # ---------- class Item2(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None @app.put("/items20/{item_id}") async def items20( *, item_id: int = Path(..., title="ID", ge=0, le=1000), q: Optional[str] = None, item: Optional[Item2] = None, # can set body parameter as optional ): results = {"item_id": item_id} if q: results.update({"q": q}) if item: results.update({"item": item}) return results class User(BaseModel): username: str full_name: Optional[str] = None # Body # { # "item": { # "name": "Foo", # "description": "The pretender", # "price": 42.0, # "tax": 3.2 # }, # "user": { # "username": "dave", # "full_name": "<NAME>" # } # } @app.put("/items21/{item_id}") async def items21(item_id: int, item: Item2, user: User): results = {"item_id": item_id, "item": item, "user": user} return results # { # "item": { # "name": "Foo", # "description": "The pretender", # "price": 42.0, # "tax": 3.2 # }, # "user": { # "username": "dave", # "full_name": "<NAME>" # }, # "importance": 5 # } @app.put("/items22/{item_id}") async def items22( item_id: int, item: Item2, user: User, importance: int = Body(...) ): # use Body(...) for singular value body results = {"item_id": item_id, "item": item, "user": user} return results @app.put("/items23/{item_id}") async def items23( *, item_id: int, item: Item2, user: User, importance: int = Body(..., gt=0), # Body also support validation q: Optional[str] = None, ): results = {"item_id": item_id, "item": item, "user": user, "importance": importance} if q: results.update({"q": q}) return results # Expect body like this # { # "item": { # "name": "Foo", # "description": "The pretender", # "price": 42.0, # "tax": 3.2 # } # } # instead of this # { # "name": "Foo", # "description": "The pretender", # "price": 42.0, # "tax": 3.2 # } @app.put("/items24/{item_id}") async def items24(item_id: int, item: Item2 = Body(..., embed=True)): results = {"item_id": item_id, "item": item} return results # ---------- class Item3(BaseModel): name: str description: Optional[str] = Field( # field works the same as Query, Path and Body None, title="item", max_length=300 ) price: float = Field(..., gt=0, description="price > 0") tax: Optional[float] = None @app.put("/items25/{item_id}") async def items25(item_id: int, item: Item3 = Body(..., embed=True)): results = {"item_id": item_id, "item": item} return results # ---------- class Item4(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None tags: list = [] # define list attribute or use the List typing for type hint # tags: List[str] = [] # tags: Set[str] = set() for using set @app.put("/items26/{item_id}") async def items26(item_id: int, item: Item4): results = {"item_id": item_id, "item": item} return results # ---------- class Image1(BaseModel): # url: str url: HttpUrl # use HttpUrl for URL validation, else use string above name: str class Item5(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None tags: Set[str] = set() image: Optional[Image1] = None # Use Image1 type # Body # { # "name": "Foo", # "description": "The pretender", # "price": 42.0, # "tax": 3.2, # "tags": ["rock", "metal", "bar"], # "image": { # "url": "http://example.com/baz.jpg", # "name": "The Foo live" # } # } @app.put("/items27/{item_id}") async def items27(item_id: int, item: Item5): results = {"item_id": item_id, "item": item} return results # Body # { # "name": "Foo", # "description": "The pretender", # "price": 42.0, # "tax": 3.2, # "tags": [ # "rock", # "metal", # "bar" # ], # "images": [ # { # "url": "http://example.com/baz.jpg", # "name": "The Foo live" # }, # { # "url": "http://example.com/dave.jpg", # "name": "The Baz" # } # ] # } class Item6(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None tags: Set[str] = set() images: Optional[List[Image1]] = None @app.put("/items28/{item_id}") async def items28(item_id: int, item: Item6): results = {"item_id": item_id, "item": item} return results class Offer1(BaseModel): name: str description: Optional[str] = None price: float items: List[Item6] # Deep nested models @app.post("/offers1/") async def offers1(offer: Offer1): return offer # [ # { # "url": "http://example.com/baz.jpg", # "name": "The Foo live" # }, # { # "url": "http://example.com/dave.jpg", # "name": "The Baz" # } # ] @app.post("/images1/multiple") async def images1(images: List[Image1]): # JSON body with a list at the top level value return images # { # 1: 1.1, # 2: 2.2 # } @app.post("/index-weights1") async def index_weights1(weights: Dict[int, float]): return weights # ---------- class Item7(BaseModel): name: str description: Optional[str] = None price: float tax: Optional[float] = None class Config: # keyword for pydantic schema_extra = { # keyword for pydantic "example": { # example will show up in JSON schema "name": "Foo", "description": "A very nice Item", "price": 35.4, "tax": 3.2, } } @app.put("/items29/{item_id}") async def items29(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results class Item8(BaseModel): name: str = Field(..., example="Foo") # Example stated will pass to JSON schema description: Optional[str] = Field(None, example="A very nice item") price: float = Field(..., example=35.4) tax: Optional[float] = Field(None, example=3.2) @app.put("/items30/{item_id}") async def items30(item_id: int, item: Item): results = {"item_id": item_id, "item": item} return results @app.put("/items31/{item_id}") async def items31( item_id: int, item: Item7 = Body( ..., example={ # declare examples straight in the Body "name": "Foo", "description": "A very nice item", "price": 35.4, "tax": 3.2, }, ), ): results = {"item_id": item_id, "item": item} return results @app.put("/items32/{item_id}") async def items32( *, item_id: int, item: Item7 = Body( ..., examples={ # multiple examples, shown as dropdown in Swagger UI "normal": { "summary": "A normal example", "description": "A **normal** item works correctly", "value": { "name": "Foo", "description": "A very nice item", "price": 35.4, "tax": 3.2, }, }, "converted": { "summary": "An example with converted data", "description": "convert price to actual num", "value": { # description and tax optional "name": "Bar", "price": "35.3", }, }, "invalid": { "summary": "Invalid data is rejected with an error", "value": { "name": "Baz", "price": "thirty five point four", }, }, }, ), ): results = {"item_id": item_id, "item": item} return results # ---------- @app.get("/items33/") async def items33(ads_id: Optional[str] = Cookie(None)): return {"ads_id": ads_id}
[ "fastapi.FastAPI", "pydantic.Field", "fastapi.Body", "fastapi.Query", "fastapi.Path", "fastapi.Cookie" ]
[((203, 212), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (210, 212), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((4300, 4362), 'fastapi.Query', 'Query', (['None'], {'min_length': '(3)', 'max_length': '(50)', 'regex': '"""^fixedquery$"""'}), "(None, min_length=3, max_length=50, regex='^fixedquery$')\n", (4305, 4362), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((4838, 4877), 'fastapi.Query', 'Query', (['...'], {'min_length': '(3)', 'max_length': '(50)'}), '(..., min_length=3, max_length=50)\n', (4843, 4877), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((5206, 5217), 'fastapi.Query', 'Query', (['None'], {}), '(None)\n', (5211, 5217), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((5512, 5577), 'fastapi.Query', 'Query', (["['foo', 'bar', 'woot']"], {'title': '"""Query string"""', 'min_length': '(3)'}), "(['foo', 'bar', 'woot'], title='Query string', min_length=3)\n", (5517, 5577), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((5967, 5998), 'fastapi.Query', 'Query', (['None'], {'alias': '"""item-query"""'}), "(None, alias='item-query')\n", (5972, 5998), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((6279, 6307), 'fastapi.Query', 'Query', (['None'], {'deprecated': '(True)'}), '(None, deprecated=True)\n', (6284, 6307), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((6522, 6562), 'fastapi.Path', 'Path', (['...'], {'title': '"""The ID of item to get"""'}), "(..., title='The ID of item to get')\n", (6526, 6562), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((6662, 6693), 'fastapi.Query', 'Query', (['None'], {'alias': '"""item-query"""'}), "(None, alias='item-query')\n", (6667, 6693), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((7016, 7041), 'fastapi.Path', 'Path', (['...'], {'title': '"""The ID"""'}), "(..., title='The ID')\n", (7020, 7041), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((7282, 7318), 'fastapi.Path', 'Path', (['...'], {'title': '"""ID"""', 'ge': '(0)', 'le': '(1000)'}), "(..., title='ID', ge=0, le=1000)\n", (7286, 7318), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((7350, 7373), 'fastapi.Query', 'Query', (['...'], {'gt': '(0)', 'lt': '(10)'}), '(..., gt=0, lt=10)\n', (7355, 7373), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((7693, 7729), 'fastapi.Path', 'Path', (['...'], {'title': '"""ID"""', 'ge': '(0)', 'le': '(1000)'}), "(..., title='ID', ge=0, le=1000)\n", (7697, 7729), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((8847, 8856), 'fastapi.Body', 'Body', (['...'], {}), '(...)\n', (8851, 8856), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((9115, 9130), 'fastapi.Body', 'Body', (['...'], {'gt': '(0)'}), '(..., gt=0)\n', (9119, 9130), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((9720, 9741), 'fastapi.Body', 'Body', (['...'], {'embed': '(True)'}), '(..., embed=True)\n', (9724, 9741), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((9898, 9939), 'pydantic.Field', 'Field', (['None'], {'title': '"""item"""', 'max_length': '(300)'}), "(None, title='item', max_length=300)\n", (9903, 9939), False, 'from pydantic import BaseModel, Field, HttpUrl\n'), ((10021, 10062), 'pydantic.Field', 'Field', (['...'], {'gt': '(0)', 'description': '"""price > 0"""'}), "(..., gt=0, description='price > 0')\n", (10026, 10062), False, 'from pydantic import BaseModel, Field, HttpUrl\n'), ((10174, 10195), 'fastapi.Body', 'Body', (['...'], {'embed': '(True)'}), '(..., embed=True)\n', (10178, 10195), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((13598, 13623), 'pydantic.Field', 'Field', (['...'], {'example': '"""Foo"""'}), "(..., example='Foo')\n", (13603, 13623), False, 'from pydantic import BaseModel, Field, HttpUrl\n'), ((13700, 13739), 'pydantic.Field', 'Field', (['None'], {'example': '"""A very nice item"""'}), "(None, example='A very nice item')\n", (13705, 13739), False, 'from pydantic import BaseModel, Field, HttpUrl\n'), ((13759, 13783), 'pydantic.Field', 'Field', (['...'], {'example': '(35.4)'}), '(..., example=35.4)\n', (13764, 13783), False, 'from pydantic import BaseModel, Field, HttpUrl\n'), ((13811, 13835), 'pydantic.Field', 'Field', (['None'], {'example': '(3.2)'}), '(None, example=3.2)\n', (13816, 13835), False, 'from pydantic import BaseModel, Field, HttpUrl\n'), ((14070, 14170), 'fastapi.Body', 'Body', (['...'], {'example': "{'name': 'Foo', 'description': 'A very nice item', 'price': 35.4, 'tax': 3.2}"}), "(..., example={'name': 'Foo', 'description': 'A very nice item',\n 'price': 35.4, 'tax': 3.2})\n", (14074, 14170), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((14457, 14964), 'fastapi.Body', 'Body', (['...'], {'examples': "{'normal': {'summary': 'A normal example', 'description':\n 'A **normal** item works correctly', 'value': {'name': 'Foo',\n 'description': 'A very nice item', 'price': 35.4, 'tax': 3.2}},\n 'converted': {'summary': 'An example with converted data',\n 'description': 'convert price to actual num', 'value': {'name': 'Bar',\n 'price': '35.3'}}, 'invalid': {'summary':\n 'Invalid data is rejected with an error', 'value': {'name': 'Baz',\n 'price': 'thirty five point four'}}}"}), "(..., examples={'normal': {'summary': 'A normal example', 'description':\n 'A **normal** item works correctly', 'value': {'name': 'Foo',\n 'description': 'A very nice item', 'price': 35.4, 'tax': 3.2}},\n 'converted': {'summary': 'An example with converted data',\n 'description': 'convert price to actual num', 'value': {'name': 'Bar',\n 'price': '35.3'}}, 'invalid': {'summary':\n 'Invalid data is rejected with an error', 'value': {'name': 'Baz',\n 'price': 'thirty five point four'}}})\n", (14461, 14964), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n'), ((15634, 15646), 'fastapi.Cookie', 'Cookie', (['None'], {}), '(None)\n', (15640, 15646), False, 'from fastapi import Body, Cookie, FastAPI, Path, Query\n')]
# from pprint import pprint from requests import get from bs4 import BeautifulSoup from requests.models import Response # In Google: what is my user agent HEADERS = { "user-agent": ("Mozilla/5.0 (Windows NT 10.0; Win64; x64) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/95.0.4638.54 Safari/537.36") } def get_porsche(city:str="kansascity", model: str="porsche%20944") -> Response: """GET current Craigslist porsche 944 postings""" if model: model = build_search(model) url = f"https://{city}.craigslist.org/d/cars-trucks/search/cta?query={model}&sort=rel" response = get(url, headers=HEADERS) response.raise_for_status() return response def build_search(model: str) -> str: """Build search for craigslist""" car = "" search = model.split() if len(search) <= 1: pass else: for item in range(len(search) - 1): car = car + search[item] + "%20" return car + search[-1] def get_soup(response: Response) -> list: """Parse the reponse into a nested list""" _cars = [] html_soup = BeautifulSoup(response.text, "html.parser") posts = html_soup.find_all("li", class_= "result-row") # Find all porsche postings for post in posts: url = post.find("a", class_="result-title hdrlnk")['href'] _cars.append( { "datelisted": post.find("time", class_= "result-date")['datetime'], "price": post.a.text.strip(), "title": post.find("a", class_="result-title hdrlnk").text, "url": url, "location": url.split("https://")[1].split(".")[0], # Splits url at 'https://' and the 1st . after city } ) cars = remove_dupes(_cars) return cars def remove_dupes(car_list): """Remove duplicate dicts from list""" x = set() cars = [] for i in car_list: if i['title'] not in x: x.add(i['title']) cars.append(i) else: continue return cars if __name__ == "__main__": response = get_porsche() x = get_soup(response)
[ "bs4.BeautifulSoup", "requests.get" ]
[((661, 686), 'requests.get', 'get', (['url'], {'headers': 'HEADERS'}), '(url, headers=HEADERS)\n', (664, 686), False, 'from requests import get\n'), ((1141, 1184), 'bs4.BeautifulSoup', 'BeautifulSoup', (['response.text', '"""html.parser"""'], {}), "(response.text, 'html.parser')\n", (1154, 1184), False, 'from bs4 import BeautifulSoup\n')]
#!/usr/bin/env python3 """Permute an LMDB database according to the given key map.""" import argparse import contextlib import sys import lmdb def main(): parser = argparse.ArgumentParser(description=__doc__) parser.add_argument('src_db_path', metavar='INPUT-DB', help='the input database path') parser.add_argument('tgt_db_path', metavar='OUTPUT-DB', help='the output database path') parser.add_argument('key_map_path', metavar='KEY-MAP', help='a TSV file containing on each line a source key and a target key') args = parser.parse_args() with contextlib.ExitStack() as ctx: key_map_file = ctx.enter_context(open(args.key_map_path)) src_db = ctx.enter_context( lmdb.open(args.src_db_path, subdir=False, readonly=True, lock=False)) tgt_db = ctx.enter_context( lmdb.open(args.tgt_db_path, subdir=False, readonly=False, lock=False, map_size=2 * src_db.info()['map_size'])) src_txn = ctx.enter_context(src_db.begin(buffers=True)) tgt_txn = ctx.enter_context(tgt_db.begin(buffers=True, write=True)) total = 0 missing = 0 for line in key_map_file: src_key, tgt_key = line.rstrip('\n').split('\t') val = src_txn.get(src_key.encode()) if val is None: missing += 1 continue if not tgt_txn.put(tgt_key.encode(), val, overwrite=False): raise RuntimeError('Duplicate key') total += 1 print('Wrote {} / {} entries; {} keys missing'.format( total, src_db.stat()['entries'], missing), file=sys.stderr) if __name__ == '__main__': main()
[ "contextlib.ExitStack", "lmdb.open", "argparse.ArgumentParser" ]
[((171, 215), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (194, 215), False, 'import argparse\n'), ((645, 667), 'contextlib.ExitStack', 'contextlib.ExitStack', ([], {}), '()\n', (665, 667), False, 'import contextlib\n'), ((790, 858), 'lmdb.open', 'lmdb.open', (['args.src_db_path'], {'subdir': '(False)', 'readonly': '(True)', 'lock': '(False)'}), '(args.src_db_path, subdir=False, readonly=True, lock=False)\n', (799, 858), False, 'import lmdb\n')]
## Extraction code based on: https://github.com/fabiocarrara/visual-sentiment-analysis/blob/main/predict.py import os, sys, json import argparse import numpy as np import torch import torchvision.transforms as t from torch.utils.data import Dataset, DataLoader from torchvision.datasets.folder import default_loader from tqdm import tqdm from t4sa.alexnet import KitModel as AlexNet from t4sa.vgg19 import KitModel as VGG19 class ImageListDataset (Dataset): def __init__(self, img_names, root=None, transform=None): super(ImageListDataset).__init__() self.list = img_names self.root = root self.transform = transform def __getitem__(self, index): path = self.list[index] if self.root: path = os.path.join(self.root, path) x = default_loader(path) if self.transform: x = self.transform(x) return x, self.list[index].strip('.png') def __len__(self): return len(self.list) def main(args): feats1, logits, im_names = [], [], [] data_dict = {} def feature_hook(module, input, output): return feats2.extend(output.view(-1,output.shape[1]).data.cpu().numpy().tolist()) transform = t.Compose([ t.Resize((224, 224)), t.ToTensor(), t.Lambda(lambda x: x[[2,1,0], ...] * 255), # RGB -> BGR and [0,1] -> [0,255] t.Normalize(mean=[116.8007, 121.2751, 130.4602], std=[1,1,1]), # mean subtraction ]) dloc = 'data/%s/images'%(args.dset) image_list = os.listdir(dloc) data = ImageListDataset(image_list, root=dloc, transform=transform) dataloader = DataLoader(data, batch_size=args.batch_size, num_workers=2) model = AlexNet if 'hybrid' in args.model else VGG19 model = model('t4sa/{}.pth'.format(args.model)).to('cuda') model.eval() model._modules.get('fc7_1').register_forward_hook(feature_hook) with torch.no_grad(): for x, im_nms in tqdm(dataloader): p, logs = model(x.to('cuda')) # order is (NEG, NEU, POS) logits.extend(logs.cpu().numpy().tolist()) im_names.extend(im_nms) data_dict['feats_fc7'] = {name:feat for name,feat in zip(im_names, feats1)} data_dict['logits'] = {name:feat for name,feat in zip(im_names, logits)} if not os.path.exists('features/image/'): os.makedirs('features/image/') json.dump(data_dict, open('features/image/%s_t4sa_%s.json'%(args.dset, args.model), 'w')) if __name__ == '__main__': models = ('hybrid_finetuned_fc6+', 'hybrid_finetuned_all', 'vgg19_finetuned_fc6+', 'vgg19_finetuned_all') parser = argparse.ArgumentParser(description='Extract Visual Sentiment Features') parser.add_argument('-d', '--dset', default=None, help='Which dataset (clef_en | clef_ar | mediaeval | lesa)') parser.add_argument('-m', '--model', type=str, choices=models, default='vgg19_finetuned_all', help='Pretrained model') parser.add_argument('-b', '--batch-size', type=int, default=32, help='Batch size') args = parser.parse_args() main(args)
[ "os.path.exists", "os.listdir", "argparse.ArgumentParser", "os.makedirs", "tqdm.tqdm", "os.path.join", "torchvision.transforms.Lambda", "torchvision.datasets.folder.default_loader", "torchvision.transforms.Normalize", "torch.utils.data.DataLoader", "torchvision.transforms.Resize", "torch.no_grad", "torchvision.transforms.ToTensor" ]
[((1581, 1597), 'os.listdir', 'os.listdir', (['dloc'], {}), '(dloc)\n', (1591, 1597), False, 'import os, sys, json\n'), ((1687, 1746), 'torch.utils.data.DataLoader', 'DataLoader', (['data'], {'batch_size': 'args.batch_size', 'num_workers': '(2)'}), '(data, batch_size=args.batch_size, num_workers=2)\n', (1697, 1746), False, 'from torch.utils.data import Dataset, DataLoader\n'), ((2718, 2790), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Extract Visual Sentiment Features"""'}), "(description='Extract Visual Sentiment Features')\n", (2741, 2790), False, 'import argparse\n'), ((835, 855), 'torchvision.datasets.folder.default_loader', 'default_loader', (['path'], {}), '(path)\n', (849, 855), False, 'from torchvision.datasets.folder import default_loader\n'), ((1972, 1987), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1985, 1987), False, 'import torch\n'), ((2014, 2030), 'tqdm.tqdm', 'tqdm', (['dataloader'], {}), '(dataloader)\n', (2018, 2030), False, 'from tqdm import tqdm\n'), ((2364, 2397), 'os.path.exists', 'os.path.exists', (['"""features/image/"""'], {}), "('features/image/')\n", (2378, 2397), False, 'import os, sys, json\n'), ((2407, 2437), 'os.makedirs', 'os.makedirs', (['"""features/image/"""'], {}), "('features/image/')\n", (2418, 2437), False, 'import os, sys, json\n'), ((780, 809), 'os.path.join', 'os.path.join', (['self.root', 'path'], {}), '(self.root, path)\n', (792, 809), False, 'import os, sys, json\n'), ((1290, 1310), 'torchvision.transforms.Resize', 't.Resize', (['(224, 224)'], {}), '((224, 224))\n', (1298, 1310), True, 'import torchvision.transforms as t\n'), ((1320, 1332), 'torchvision.transforms.ToTensor', 't.ToTensor', ([], {}), '()\n', (1330, 1332), True, 'import torchvision.transforms as t\n'), ((1342, 1385), 'torchvision.transforms.Lambda', 't.Lambda', (['(lambda x: x[[2, 1, 0], ...] * 255)'], {}), '(lambda x: x[[2, 1, 0], ...] * 255)\n', (1350, 1385), True, 'import torchvision.transforms as t\n'), ((1428, 1491), 'torchvision.transforms.Normalize', 't.Normalize', ([], {'mean': '[116.8007, 121.2751, 130.4602]', 'std': '[1, 1, 1]'}), '(mean=[116.8007, 121.2751, 130.4602], std=[1, 1, 1])\n', (1439, 1491), True, 'import torchvision.transforms as t\n')]
from constants import * import subprocess import ffmpeg import gzip import numpy as np class ProcessWrite: def __init__(self, filename, height, width, framerate): _args = ( ffmpeg .input('pipe:', format='rawvideo', pix_fmt='bgr24', s='{}x{}'.format(width, height), framerate=str(framerate)) .output(filename, pix_fmt='yuv420p', vsync='0', framerate=str(SAVE_FRAMERATE)) # OpenCV uses the BGR format .overwrite_output() .compile() ) self.p = subprocess.Popen(_args, stdin=subprocess.PIPE) def write(self, _frame): # TODO Resize here?? self.p.stdin.write( _frame .astype(np.uint8) .tobytes() ) def close(self): self.p.stdin.close() self.p.wait() def __del__(self): self.close() class NumpyWrite: def __init__(self, filename, compression=True): if compression: self.file = gzip.GzipFile(filename, "w") else: self.file = filename self.data = [] print("Warning, output.NumpyWrite saves only when file is closed.") def write(self, data): self.data.append(data) def close(self): np.save(file=self.file, arr=self.data, allow_pickle=True) self.file.close() def __del__(self): self.close()
[ "subprocess.Popen", "gzip.GzipFile", "numpy.save" ]
[((551, 597), 'subprocess.Popen', 'subprocess.Popen', (['_args'], {'stdin': 'subprocess.PIPE'}), '(_args, stdin=subprocess.PIPE)\n', (567, 597), False, 'import subprocess\n'), ((1269, 1326), 'numpy.save', 'np.save', ([], {'file': 'self.file', 'arr': 'self.data', 'allow_pickle': '(True)'}), '(file=self.file, arr=self.data, allow_pickle=True)\n', (1276, 1326), True, 'import numpy as np\n'), ((1005, 1033), 'gzip.GzipFile', 'gzip.GzipFile', (['filename', '"""w"""'], {}), "(filename, 'w')\n", (1018, 1033), False, 'import gzip\n')]
import decimal import logging import os import smtplib import time import warnings from datetime import datetime import pandas as pd import zmq from binance.client import Client from coinmarketcap import Market from colorama import init, Fore, Back, Style # noinspection PyUnresolvedReferences from sentimentAnalyse import SentimentAnalyse init(convert=True) warnings.filterwarnings("ignore") log_file = os.path.join(os.getcwd(), 'logs', str(time.strftime('%Y %m %d %H')) + ' activity.log') logging.basicConfig(filename=log_file, level=logging.INFO, format='%(asctime)s:%(levelname)s:%(message)s') # TODO: read korean jgl 101 tips # TODO: explain why this code is so good to client write on pad # TODO: binance.products() class Coin: def __init__(self, symbol, mode, take_profit, backend, client, sentiment_analyse, interval_list, sma_fast_length, sma_slow_length, user_email, symbol_info): # symbol info self.symbolPair = symbol self.base_currency_symbol = symbol_info['base_asset'] self.quote_currency_symbol = symbol_info['quote_asset'] # price, qty and take profit info for trade buy/sell settings self.price = float() self.quantity = float() self.investment = float(symbol_info['investment']) self.entry_price = float() self.exit_price = float() self.min_step = float(symbol_info[8]) self.round_factor = abs(decimal.Decimal(str(self.min_step)).as_tuple().exponent) self.take_profit = take_profit / 100 self.in_trade = False # 1 for automatic - 0 for semi-auto self.mode = mode self.local_time = time.strftime("%Y-%m-%d %H:%M:%S") # binance client and sentiment class objects self.client = client self.sentiment_analyse = sentiment_analyse self.backend = backend self.gui_dict = dict() # settings for technical indicator self.interval_list = interval_list self.sma_fast_length = sma_fast_length self.sma_slow_length = sma_slow_length # base currency and quote currency balance for checking trades can be done try: self.base_currency_balance = float(self.client.get_asset_balance(asset=self.base_currency_symbol)['free']) self.quote_currency_balance = float(self.client.get_asset_balance(asset=self.quote_currency_symbol)['free']) except: self.base_currency_balance = 0.0 self.quote_currency_balance = 0.0 # sma market position to keep track of status of technical indicator for the coin self.sma_market_position = int() # track of market sentiment self.sentiment = float() self.sentiment_list = list() # email settings self.bot_email = '<EMAIL>' self.bot_password = '<PASSWORD>' self.user_email = user_email # contains the time, close price for all the intervals of the coin data self.data = list(pd.DataFrame()) self._init_historic_data() self._init_sma() def _init_historic_data(self): # create pandas data frame for each interval in the interval list and append it to self.data list for interval in self.interval_list: # convert the 12 element list from historical klines to a pandas data frame temp_df = pd.DataFrame(data=self.client.get_historical_klines(self.symbolPair, interval, self.__day_count_required(interval)) ) # pick only the time and close price columns temp_df = temp_df[[0, 4]] # rename the columns from numeric to strings temp_df.columns = ['Time', 'Close_price'] temp_df.Time = temp_df.Time.apply(lambda x: self.__binance_time_to_pandas_time(x)) self.data.append(temp_df) def _init_sma(self): """ mutates the data frame by adding/replacing the sma_fast and sma_slow columns""" for data_frame in self.data: data_frame['sma_fast'] = data_frame.Close_price.rolling(self.sma_fast_length).mean().astype('float64') data_frame['sma_slow'] = data_frame.Close_price.rolling(self.sma_slow_length).mean().astype('float64') def __day_count_required(self, interval): """ Inputs : interval -> string which tells us about the interval i.e. minutes(m), hour(h)... sma_slow, sma_fast -> tells us about how much data we need to look for This function computes the amount of days required in order to compute the latest sma_slow candle, this function operates in terms of X day ago UTC, we have to compute X such that it will give us enough candles for at least 1 data point of sma_slow update: it will work on the biggest interval from the interval list - because giving the time of biggest interval will always make sure, it works with the smaller time frames """ day_time_minutes = 1440 day_count = 1 minutes_required = 1 if interval[-1] == 'm': minutes_required = int(interval[:-1]) elif interval[-1] == 'h': minutes_required = int(interval[:-1]) * 60 elif interval[-1] == 'd': minutes_required = int(interval[:-1]) * 60 * 24 elif interval[-1] == 'w': minutes_required = int(interval[:-1]) * 60 * 24 * 7 elif interval[-1] == 'M': minutes_required = int(interval[:-1]) * 60 * 24 * 30 while 1: time_required = day_count * day_time_minutes / minutes_required if time_required >= self.sma_slow_length: break day_count += 1 return str(day_count) + " day ago UTC" @staticmethod def __binance_time_to_pandas_time(gt): """ Converts binance time from milliseconds in a datetime - time stamp Then converts from python time to pandas datetime """ return pd.to_datetime(datetime.fromtimestamp(gt / 1000)) def monitor(self): # print("round factor check: ", self.round_factor) # state variables self.local_time = time.strftime("%Y-%m-%d %H:%M:%S") if self.investment: print('{} - monitoring {}'.format(self.local_time, self.symbolPair)) try: self.price = float( [pair['price'] for pair in self.client.get_all_tickers() if pair['symbol'] == self.symbolPair][0]) except: logging.critical( 'binance rate limit reached - could not retrieve quote, base, and current price balances') print('binance rate limit reached') logging.info('\nSymbol name: ' + str(self.symbolPair) + '\ncurrent price: ' + str(self.price) + '\ncurrent budget allocation: ' + str(self.investment) + '\nbase currency: ' + str(self.base_currency_symbol) + '- base currency balance: ' + str( self.base_currency_balance) + '\nquote currency: ' + str(self.quote_currency_symbol) + '- quote currency balance: ' + str( self.quote_currency_balance)) for idx, (interval, data_frame) in enumerate(zip(self.interval_list, self.data)): # acquire latest candle from binance api, append it is a row at the end of self.data try: latest_candle = self.client.get_klines(symbol=self.symbolPair, interval=interval, limit=1) except: print("Binance rate limit reached for the day.") logging.critical('binance rate limit reached most probably - could not retrieve latest candle') return latest_time = self.__binance_time_to_pandas_time(latest_candle[0][0]) latest_price = latest_candle[0][4] latest_row = pd.Series(data=[latest_time, latest_price, 0, 0], index=data_frame.columns) # check to see if the latest candle is adding any new data if data_frame.Time.max() != latest_time: # append latest row to existing data frame self.data[idx] = data_frame.append(latest_row, ignore_index=True) # recalculate sma for latest candle self._init_sma() if self.in_trade is False: self._get_sma_market_position() self.sentiment = self.sentiment_analyse.get_sentiment() self.sentiment_list.append(self.sentiment) logging.info('market position: {}'.format(self.sma_market_position)) logging.info('market sentiment: {}'.format(self.sentiment)) # change this to abs() when working with sell orders also if self.sma_market_position and self.sentiment > 0.15: try: self.base_currency_balance = float( self.client.get_asset_balance(asset=self.base_currency_symbol)['free']) self.quote_currency_balance = float( self.client.get_asset_balance(asset=self.quote_currency_symbol)['free']) except: self.base_currency_balance = 0.0 self.quote_currency_balance = 0.0 if self.quote_currency_balance > self.investment and self.quote_currency_balance > 0: self._buy_order() self.sma_market_position = 0 return if self.in_trade: logging.info('trade was placed earlier, waiting for take profit to sell...') logging.info('current market price: {} '.format(self.price)) logging.info('entry price at trade: {}'.format(self.entry_price)) logging.info('req to sell: {}'.format(self.exit_price)) if self.price >= round(self.exit_price, 6): try: self.base_currency_balance = float( self.client.get_asset_balance(asset=self.base_currency_symbol)['free']) self.quote_currency_balance = float( self.client.get_asset_balance(asset=self.quote_currency_symbol)['free']) except: self.base_currency_balance = 0.0 self.quote_currency_balance = 0.0 self._sell_order() self.sma_market_position = 0 return self.sma_market_position = 0 return def _get_sma_market_position(self): """ function compares sma_fast and sma_slow across all intervals in the self.data and sets market position""" self.gui_dict['data1'] = (self.data[0].loc[self.data[0].index[-1], 'sma_fast']) \ > (self.data[0].loc[self.data[0].index[-1], 'sma_slow']) self.gui_dict['data2'] = (self.data[1].loc[self.data[1].index[-1], 'sma_fast']) \ > (self.data[1].loc[self.data[1].index[-1], 'sma_slow']) self.gui_dict['data3'] = (self.data[2].loc[self.data[2].index[-1], 'sma_fast']) \ > (self.data[2].loc[self.data[2].index[-1], 'sma_slow']) logging.info('SMA-data 1 state: {} \n SMA-data 2 state: {} \n SMA-data 3 state: {}'.format( self.gui_dict['data1'], self.gui_dict['data2'], self.gui_dict['data3'] )) if all(data_frame.loc[data_frame.index[-1], 'sma_fast'] > data_frame.loc[data_frame.index[-1], 'sma_slow'] for data_frame in self.data): self.sma_market_position = 1 elif all(data_frame.loc[data_frame.index[-1], 'sma_fast'] < data_frame.loc[data_frame.index[-1], 'sma_slow'] for data_frame in self.data): self.sma_market_position = -1 else: self.sma_market_position = 0 def _buy_order(self): # checks the sma_market_position and if it is positive or negative - places a market order for buy/sell # resets the market position intended at the end of the cycle if self.sma_market_position == 1 and self.sentiment > 0.15: self.__calculate_qty() # consume all of the investment in 1 market order if self.mode: try: self.client.order_market_buy(symbol=self.symbolPair, quantity=self.quantity) self.in_trade = True self.entry_price = self.price self.exit_price = round(self.entry_price + (self.entry_price * self.take_profit), 6) print(Back.WHITE + Fore.RED + '{} - placed buy order at market\nentry price: {}\nexit target: {}\ntake profit %: {}' .format(self.local_time, self.entry_price, self.exit_price, self.take_profit * 100)) self.__send_email_notification() logging.critical('placing buy order at market for {}'.format(self.symbolPair)) except Exception as e: logging.critical('buy order: {}'.format(e)) print(e) else: self.__send_email_notification() self.in_trade = True self.entry_price = self.price print(Style.RESET_ALL) def _sell_order(self): print('placing sell order at market') logging.critical('placing sell order at market for {}'.format(self.symbolPair)) logging.critical('base currency balance: {}'.format(self.base_currency_balance)) self.sma_market_position = -1 if self.mode: try: self.client.order_market_sell(symbol=self.symbolPair, quantity=round(self.base_currency_balance - self.min_step, abs(self.round_factor))) self.in_trade = False print( '{}{}{} placed sell order on binance for symbol: {}\nentry price: {}\nexit price: {}\nprofit: {}' .format(Back.WHITE, Fore.GREEN, self.local_time, self.symbolPair, self.entry_price, self.exit_price, round(self.exit_price - self.entry_price, 6))) self.__send_email_notification() self.entry_price = 0 except Exception as e: logging.critical('sell order {}'.format(e)) print(e) print(Style.RESET_ALL) else: self.__send_email_notification() self.in_trade = False self.entry_price = 0 def __calculate_qty(self): self.quantity = round(self.investment / self.price, self.round_factor) logging.critical('quantity calculated: {}'.format(self.quantity)) def __send_email_notification(self, special_message=''): try: if not special_message: email_text = str(self.local_time)\ + 'Placed order on binance \n' \ + 'Symbol: ' + str(self.symbolPair) + '\n' \ + 'market position ( 1 = Buy, -1 = Sell): ' + str(self.sma_market_position) + '\n' \ + 'Quantity: ' + str(self.quantity) + '\n' \ + 'Entry price: ' + str(self.entry_price) + '\n' \ + 'Exit price: ' + str(self.exit_price) + '\n' \ + 'Investment: ' + str(self.investment) + '\n' \ + 'market sentiment: ' + str(self.sentiment) else: email_text = special_message server = smtplib.SMTP_SSL('smtp.gmail.com', 465) server.ehlo() server.login(self.bot_email, self.bot_password) server.sendmail(self.bot_email, self.user_email, email_text) server.close() print('email sent') logging.critical('email sent') except Exception as e: logging.critical('{}'.format(e)) class CCTP: def __init__(self): """ relative to quote currency: [-len(quote_currency):] will return quote currency [:-len(quote_currency)] will return base currency relative to base currency: [len(base_currency):] will return will return quote currency [:len(base_currency)] will return will return base currency """ # zmq for communication with frontend self.zmq_context = zmq.Context() self.backend = self.zmq_context.socket(zmq.REP) self.backend.bind('tcp://*:17000') # initialization parameters from input self.input_dict = self.backend.recv_pyobj() # binance for communication with binance website self.public_key = self.input_dict['public'] self.private_key = self.input_dict['private'] self.binance_client = Client(self.public_key, self.private_key) # sma lengths and intervals for technical indicators self.sma_fast_len = self.input_dict['sma_fast_len'] self.sma_slow_len = self.input_dict['sma_slow_len'] self.interval_list = self.input_dict['interval_list'] # user email id for informing about trade details self.user_email_id = self.input_dict['email'] # 1 for automatic - 0 for semi auto self.mode = self.input_dict['mode'] self.take_profit = self.input_dict['take_profit'] # all USDT pairs - 20 - symbol_count_1 is for internal use only - to speedup load times self.symbol_count_1 = int() self.quote_currency_1 = 'USDT' self.base_currency_1 = str() self.symbol_count_2 = int(self.input_dict['symbol_count']) self.quote_currency_2 = self.input_dict['variable_quote'] self.base_currency_2 = str() # all TUSD/XXX pairs 3 markets - symbol_count_3 is for internal use only self.symbol_count_3 = int() self.quote_currency_3 = str() self.base_currency_3 = 'TUSD' self.init_dataframe = pd.DataFrame() # contains the symbol to full name mappings self.symbol_to_fullname_dict = {} # contains symbol details from binance self.symbol_info_dict = {} self.coin_list = [] print('getting data from binance and coinbase... (one time loading) (apox 60 seconds - 140 seconds)') logging.info('getting data from binance and coinbase... (one time loading) (apox 60 seconds - 140 seconds)') self._get_full_name_data() self._get_binance_data() if self.binance_client.get_system_status()['status'] == 0: self.backend.send_pyobj(0) else: self.backend.send_pyobj(1) logging.critical('Binance down - 1') exit() # send this dict through zmq to the GUI - the GUI will update the keys and resend back self.backend.recv_pyobj() # # iterate this dict on the GUI to get the names of all pairs involved self.backend.send_pyobj(self.init_dataframe) # get back updated dataframe with investments self.init_dataframe = self.backend.recv_pyobj() print('Total currencies we will be dealing with') logging.info('Total currencies we will be dealing with') with pd.option_context('display.max_rows', None, 'display.max_columns', None): print(Back.BLUE) print(self.init_dataframe.reset_index()) print(Style.RESET_ALL) print('getting historical data from binance for technical analysis... (one time loading) (apox 100 seconds)') logging.info( 'getting historical data from binance for technical analysis... (one time loading) (apox 100 seconds)') for symbol, row in self.init_dataframe.iterrows(): logging.info(str(symbol)) try: coin_object = Coin(symbol=symbol, backend=self.backend, client=self.binance_client, mode=self.mode, take_profit=self.take_profit, sentiment_analyse=SentimentAnalyse(row[0]), interval_list=self.interval_list, sma_fast_length=self.sma_fast_len, sma_slow_length=self.sma_slow_len, user_email=self.user_email_id, symbol_info=row ) self.coin_list.append(coin_object) except: print(symbol, ' not available currently.') logging.debug('something wrong with {}'.format(symbol)) # send back reply once the data collection is complete self.backend.send_pyobj('') while 1: start_time = time.time() for coin_object in self.coin_list: coin_object.monitor() end_time = time.time() - start_time print('\n') time.sleep(max(0, 60 - end_time)) def _get_binance_data(self): self.init_dataframe = pd.DataFrame(self.binance_client.get_ticker(), columns=['symbol', 'quoteVolume']) self.init_dataframe.quoteVolume = pd.to_numeric(self.init_dataframe.quoteVolume) # Adding name and investment columns self.init_dataframe['name'] = '' self.init_dataframe['investment'] = float() self.init_dataframe['base_asset'] = '' self.init_dataframe['quote_asset'] = '' self.init_dataframe['base_asset_balance'] = float() self.init_dataframe['quote_asset_balance'] = float() self.init_dataframe['min_investment'] = float() self.init_dataframe['min_qty'] = float() self.init_dataframe['min_step'] = float() # filtering selected pairs for trade out of all 398 cryptocurrencies # filter for all USDT pairs condition1 = self.init_dataframe.symbol.str[-len(self.quote_currency_1):] == self.quote_currency_1 condition1 = self.init_dataframe.loc[condition1, :] condition1 = condition1.loc[condition1.quoteVolume > 1, :] # condition1 = condition1.nlargest(self.symbol_count_1, 'quoteVolume') # filter all BNB pairs excluding TUSD as base currency and pick top 10 by 24H volume condition2 = (self.init_dataframe.symbol.str[-len(self.quote_currency_2):] == self.quote_currency_2) & \ (self.init_dataframe.symbol.str[:-len(self.quote_currency_2)] != self.base_currency_3) condition2 = self.init_dataframe.loc[condition2, :] condition2 = condition2.nlargest(self.symbol_count_2, 'quoteVolume') # pick all pairs with base currency as TUSD condition3 = (self.init_dataframe.symbol.str[:len(self.base_currency_3)] == self.base_currency_3) & \ (self.init_dataframe.symbol.str[len(self.base_currency_3):] != 'USDT') condition3 = self.init_dataframe.loc[condition3, :] # condition3 = condition3.nlargest(self.symbol_count_3, 'quoteVolume') self.init_dataframe = pd.concat([condition1, condition2, condition3]) # make index as name of the symbol to make it behave like a dict-ish self.init_dataframe = self.init_dataframe[['symbol', 'name', 'investment', 'base_asset', 'base_asset_balance', 'quote_asset', 'quote_asset_balance', 'min_investment', 'min_qty', 'min_step']] self.init_dataframe = self.init_dataframe.drop_duplicates(subset=['symbol'], keep=False) self.__get_symbol_info_data() self.init_dataframe.base_asset = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['base_asset'] ) self.init_dataframe.base_asset_balance = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['base_asset_balance'] ) self.init_dataframe.name = self.init_dataframe.base_asset.apply( lambda x: self._get_symbol_to_full_name(x) ) self.init_dataframe.min_investment = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['min_investment'] ) self.init_dataframe.min_qty = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['min_qty'] ) self.init_dataframe.quote_asset = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['quote_asset'] ) self.init_dataframe.quote_asset_balance = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['quote_asset_balance'] ) self.init_dataframe.min_step = self.init_dataframe.symbol.apply( lambda x: self.symbol_info_dict[x]['min_step'] ) self.init_dataframe.set_index('symbol', inplace=True) def _get_full_name_data(self): """ returns a dict which converts crypto symbol to full name from coin market cap """ cmp = Market() cmp_data = cmp.listings() for details in cmp_data['data']: self.symbol_to_fullname_dict[details['symbol']] = details['website_slug'] self.symbol_to_fullname_dict['BCC'] = 'Bitcoin Cash' self.symbol_to_fullname_dict['IOTA'] = 'IOTA' def _get_symbol_to_full_name(self, symbol): try: return self.symbol_to_fullname_dict[symbol] except: return symbol def __get_symbol_info_data(self): for index, row in self.init_dataframe.iterrows(): pair = row[0] symbol_info = self.binance_client.get_symbol_info(pair) base_asset = symbol_info['baseAsset'] quote_asset = symbol_info['quoteAsset'] min_investment = float(symbol_info['filters'][2]['minNotional']) min_qty = float(symbol_info['filters'][1]['minQty']) min_step = float(symbol_info['filters'][1]['stepSize']) base_asset_balance = float(self.binance_client.get_asset_balance(asset=base_asset)['free']) quote_asset_balance = float(self.binance_client.get_asset_balance(asset=quote_asset)['free']) self.symbol_info_dict[pair] = {'base_asset': base_asset, 'quote_asset': quote_asset, 'min_investment': min_investment, 'min_qty': min_qty, 'min_step': min_step, 'base_asset_balance': base_asset_balance, 'quote_asset_balance': quote_asset_balance} try: CCTP() except Exception as bigE: logging.exception('program crashed {}'.format(bigE))
[ "smtplib.SMTP_SSL", "zmq.Context", "pandas.option_context", "logging.info", "colorama.init", "binance.client.Client", "logging.critical", "pandas.DataFrame", "sentimentAnalyse.SentimentAnalyse", "coinmarketcap.Market", "time.time", "warnings.filterwarnings", "logging.basicConfig", "pandas.Series", "datetime.datetime.fromtimestamp", "time.strftime", "os.getcwd", "pandas.to_numeric", "pandas.concat" ]
[((341, 359), 'colorama.init', 'init', ([], {'convert': '(True)'}), '(convert=True)\n', (345, 359), False, 'from colorama import init, Fore, Back, Style\n'), ((361, 394), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (384, 394), False, 'import warnings\n'), ((493, 604), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': 'log_file', 'level': 'logging.INFO', 'format': '"""%(asctime)s:%(levelname)s:%(message)s"""'}), "(filename=log_file, level=logging.INFO, format=\n '%(asctime)s:%(levelname)s:%(message)s')\n", (512, 604), False, 'import logging\n'), ((419, 430), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (428, 430), False, 'import os\n'), ((1701, 1735), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (1714, 1735), False, 'import time\n'), ((6428, 6462), 'time.strftime', 'time.strftime', (['"""%Y-%m-%d %H:%M:%S"""'], {}), "('%Y-%m-%d %H:%M:%S')\n", (6441, 6462), False, 'import time\n'), ((17214, 17227), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (17225, 17227), False, 'import zmq\n'), ((17621, 17662), 'binance.client.Client', 'Client', (['self.public_key', 'self.private_key'], {}), '(self.public_key, self.private_key)\n', (17627, 17662), False, 'from binance.client import Client\n'), ((18769, 18783), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (18781, 18783), True, 'import pandas as pd\n'), ((19106, 19224), 'logging.info', 'logging.info', (['"""getting data from binance and coinbase... (one time loading) (apox 60 seconds - 140 seconds)"""'], {}), "(\n 'getting data from binance and coinbase... (one time loading) (apox 60 seconds - 140 seconds)'\n )\n", (19118, 19224), False, 'import logging\n'), ((19952, 20008), 'logging.info', 'logging.info', (['"""Total currencies we will be dealing with"""'], {}), "('Total currencies we will be dealing with')\n", (19964, 20008), False, 'import logging\n'), ((20340, 20466), 'logging.info', 'logging.info', (['"""getting historical data from binance for technical analysis... (one time loading) (apox 100 seconds)"""'], {}), "(\n 'getting historical data from binance for technical analysis... (one time loading) (apox 100 seconds)'\n )\n", (20352, 20466), False, 'import logging\n'), ((21924, 21970), 'pandas.to_numeric', 'pd.to_numeric', (['self.init_dataframe.quoteVolume'], {}), '(self.init_dataframe.quoteVolume)\n', (21937, 21970), True, 'import pandas as pd\n'), ((23786, 23833), 'pandas.concat', 'pd.concat', (['[condition1, condition2, condition3]'], {}), '([condition1, condition2, condition3])\n', (23795, 23833), True, 'import pandas as pd\n'), ((25802, 25810), 'coinmarketcap.Market', 'Market', ([], {}), '()\n', (25808, 25810), False, 'from coinmarketcap import Market\n'), ((444, 472), 'time.strftime', 'time.strftime', (['"""%Y %m %d %H"""'], {}), "('%Y %m %d %H')\n", (457, 472), False, 'import time\n'), ((3039, 3053), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3051, 3053), True, 'import pandas as pd\n'), ((6257, 6290), 'datetime.datetime.fromtimestamp', 'datetime.fromtimestamp', (['(gt / 1000)'], {}), '(gt / 1000)\n', (6279, 6290), False, 'from datetime import datetime\n'), ((16374, 16413), 'smtplib.SMTP_SSL', 'smtplib.SMTP_SSL', (['"""smtp.gmail.com"""', '(465)'], {}), "('smtp.gmail.com', 465)\n", (16390, 16413), False, 'import smtplib\n'), ((16644, 16674), 'logging.critical', 'logging.critical', (['"""email sent"""'], {}), "('email sent')\n", (16660, 16674), False, 'import logging\n'), ((19455, 19491), 'logging.critical', 'logging.critical', (['"""Binance down - 1"""'], {}), "('Binance down - 1')\n", (19471, 19491), False, 'import logging\n'), ((20022, 20094), 'pandas.option_context', 'pd.option_context', (['"""display.max_rows"""', 'None', '"""display.max_columns"""', 'None'], {}), "('display.max_rows', None, 'display.max_columns', None)\n", (20039, 20094), True, 'import pandas as pd\n'), ((21518, 21529), 'time.time', 'time.time', ([], {}), '()\n', (21527, 21529), False, 'import time\n'), ((8233, 8308), 'pandas.Series', 'pd.Series', ([], {'data': '[latest_time, latest_price, 0, 0]', 'index': 'data_frame.columns'}), '(data=[latest_time, latest_price, 0, 0], index=data_frame.columns)\n', (8242, 8308), True, 'import pandas as pd\n'), ((9985, 10061), 'logging.info', 'logging.info', (['"""trade was placed earlier, waiting for take profit to sell..."""'], {}), "('trade was placed earlier, waiting for take profit to sell...')\n", (9997, 10061), False, 'import logging\n'), ((21640, 21651), 'time.time', 'time.time', ([], {}), '()\n', (21649, 21651), False, 'import time\n'), ((6781, 6898), 'logging.critical', 'logging.critical', (['"""binance rate limit reached - could not retrieve quote, base, and current price balances"""'], {}), "(\n 'binance rate limit reached - could not retrieve quote, base, and current price balances'\n )\n", (6797, 6898), False, 'import logging\n'), ((7944, 8049), 'logging.critical', 'logging.critical', (['"""binance rate limit reached most probably - could not retrieve latest candle"""'], {}), "(\n 'binance rate limit reached most probably - could not retrieve latest candle'\n )\n", (7960, 8049), False, 'import logging\n'), ((20853, 20877), 'sentimentAnalyse.SentimentAnalyse', 'SentimentAnalyse', (['row[0]'], {}), '(row[0])\n', (20869, 20877), False, 'from sentimentAnalyse import SentimentAnalyse\n')]
# !/usr/bin/env python3 import math import logging import csv import time from planet import Direction logger = logging.getLogger('Odometry') class Odometry: def __init__(self, robo): """ Initializes odometry module """ self.robot = robo self.distance_per_tick = (5.5 * math.pi) / self.robot.m_left.count_per_rot self.wheelbase = 15 # min(12.3) max(17.4) self.dataList = [] self.rot = 0 self.pos = [0,0] self.direction = Direction.NORTH self.firstNode = True self.oldNode = [1, 1] self.currentNode = [1, 1] self.fromDirection = Direction.NORTH self.toDirection = Direction.NORTH def addData(self, left, right): """ adds left and right motor position to dataList :param int: left motor position :param int: right motor position """ d = [left, right] self.dataList.append(d) def calc(self, color): self.oldNode = self.currentNode # first node was set by mothership if self.firstNode: # self.robot.comm.set_testplanet(self.robot.comm._planetName) self.robot.comm.send_ready() time.sleep(3) return prev = self.dataList[0] gamma = self.rot delta_x = 0 delta_y = 0 for el in self.dataList: dist_left = self.motorPosToDist(prev[0], el[0]) dist_right = self.motorPosToDist(prev[1], el[1]) alpha = (dist_right - dist_left) / self.wheelbase beta = alpha / 2 if alpha != 0: s = ((dist_right + dist_left) / alpha) * math.sin(beta) else: s = dist_left dx = math.sin(gamma + beta) * s dy = math.cos(gamma + beta) * s gamma -= alpha delta_x += dx delta_y += dy prev = el self.pos[0] += delta_x self.pos[1] += delta_y self.dataList.clear() self.rot = gamma self.rot = self.normAngleRad(self.rot) self.rot = self.roundRotation() self.direction = self.angleToDirection(self.rot) self.pos[0], self.pos[1] = self.roundPos() x, y = self.getNodeCoord() self.currentNode = [x, y] # send path to mothership e = self.currentNode.copy() self.toDirection = self.oppositeDirection(self.direction) endNode = [e[0], e[1], self.toDirection] s = self.oldNode.copy() startNode = [s[0], s[1], self.fromDirection] logger.debug('Start Node: ') logger.debug(startNode) logger.debug('End Node: ') logger.debug(endNode) self.robot.comm.sendPath(startNode, endNode, "free") def radToDeg(self, rad): """ converts an angle from radians to degrees :param float: angle (rad) :return float: angle (deg) """ deg = math.degrees(rad) return deg def degToRad(self, deg): """ converts an angle from degrees to radians :param float: angle (deg) :return float: angle(rad) """ rad = math.radians(deg) return rad def addOffset(self, offset): """ adds an offset to the current view :param float: angle in degrees """ self.rot += self.degToRad(offset) self.rot = self.normAngleRad(self.rot) self.direction = self.angleToDirection(self.rot) def normAngleRad(self, angle): """ normalizes an angle (0/2*pi) :param float: angle :return void """ angle = angle % (2*math.pi) return angle def normAngleDeg(self, angle): """ normalizes an angle(0/360) :param float: angle :return void """ #while(angle <= -180): # angle += 360 #while(angle > 180): # angle -= 360 angle = angle % 360 return angle def currentDirection(self): """ returns the current direction :return Direction """ return self.angleToDirection(self.rot) def angleToDirection(self, angle): """ returns a directions from an angle :param float: angle :return Direction """ angle = angle % (2*math.pi) if angle <= (math.pi * 1/4) or angle > (math.pi * 7/4): return Direction.NORTH elif angle >= (math.pi * 1/4) and angle < (math.pi * 3/4): return Direction.EAST elif angle >= (math.pi * 3/4) and angle < (math.pi * 5/4): return Direction.SOUTH elif angle >= (math.pi * 5/4) and angle < (math.pi * 7/4): return Direction.WEST def directionToAngle(self, dir: Direction): if dir == Direction.NORTH: return 0 elif dir == Direction.EAST: return 90 elif dir == Direction.SOUTH: return 180 elif dir == Direction.WEST: return 270 def directionToRadian(self, dir: Direction): if dir == Direction.NORTH: return 0 elif dir == Direction.EAST: return (1/2 * math.pi) elif dir == Direction.SOUTH: return math.pi elif dir == Direction.WEST: return (6/4 * math.pi) def motorPosToDist(self, start, end): """ converts two motor positions to a distance :param int: start :param int: end :return float: distance """ dist = (end-start) * self.distance_per_tick return dist def roundPos(self): """ rounds the current position to n*50 :return int, int """ return (round(self.pos[0]/50) * 50), (round(self.pos[1]/50) * 50) def getNodeCoord(self): """ returns the current position in node coordinates return int, int """ posX, posY = self.roundPos() return (posX//50), (posY//50) def roundRotation(self): """ rounds the current rotation :return float """ deg = self.radToDeg(self.rot) deg = round(deg / 90) * 90 return self.degToRad(deg) def updateRobo(self, posX, posY, direction): self.pos[0] = posX * 50 self.pos[1] = posY * 50 self.direction = self.oppositeDirection(Direction(direction)) self.toDirection = self.direction self.currentNode = [posX, posY] self.rot = self.directionToRadian(self.direction) logger.debug('Updated Robo: ' + str(self.pos[0]) + '/' + str(self.pos[1]) + ' ' + str(self.direction)) def setupRobo(self, posX, posY, startDirection): self.pos[0] = posX * 50 self.pos[1] = posY * 50 self.direction = Direction(startDirection) self.oldNode = [posX, posY] self.currentNode = [posX, posY] logger.debug('Robot was set up...') def oppositeDirection(self, dir: Direction): if dir == Direction.NORTH: return Direction.SOUTH elif dir == Direction.SOUTH: return Direction.NORTH elif dir == Direction.WEST: return Direction.EAST elif dir == Direction.EAST: return Direction.WEST
[ "logging.getLogger", "math.degrees", "time.sleep", "math.radians", "math.cos", "planet.Direction", "math.sin" ]
[((114, 143), 'logging.getLogger', 'logging.getLogger', (['"""Odometry"""'], {}), "('Odometry')\n", (131, 143), False, 'import logging\n'), ((3052, 3069), 'math.degrees', 'math.degrees', (['rad'], {}), '(rad)\n', (3064, 3069), False, 'import math\n'), ((3275, 3292), 'math.radians', 'math.radians', (['deg'], {}), '(deg)\n', (3287, 3292), False, 'import math\n'), ((6955, 6980), 'planet.Direction', 'Direction', (['startDirection'], {}), '(startDirection)\n', (6964, 6980), False, 'from planet import Direction\n'), ((1239, 1252), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (1249, 1252), False, 'import time\n'), ((6538, 6558), 'planet.Direction', 'Direction', (['direction'], {}), '(direction)\n', (6547, 6558), False, 'from planet import Direction\n'), ((1816, 1838), 'math.sin', 'math.sin', (['(gamma + beta)'], {}), '(gamma + beta)\n', (1824, 1838), False, 'import math\n'), ((1860, 1882), 'math.cos', 'math.cos', (['(gamma + beta)'], {}), '(gamma + beta)\n', (1868, 1882), False, 'import math\n'), ((1703, 1717), 'math.sin', 'math.sin', (['beta'], {}), '(beta)\n', (1711, 1717), False, 'import math\n')]
from flask import request from app.models import User, UserType from flask_restful import Resource from app.requests.users import PostRequest, PutRequest from app.middlewares.validation import validate from app.middlewares.auth import user_auth, admin_auth from app.utils import decoded_qs class UserResource(Resource): @admin_auth def get(self, user_id): # exists? ... user = User.query.get(user_id) if not user: return { 'success': False, 'message': 'User not found.', }, 404 fields = decoded_qs() if fields and fields.get('fields') is not None: fields = fields.get('fields').split(',') return { 'success': True, 'message': 'User successfully retrieved.', 'user': user.to_dict(fields=fields) } @admin_auth @validate(PutRequest) def put(self, user_id): # check exists? ... user = User.query.get(user_id) if not user: return { 'success': False, 'message': 'User not found', }, 404 fields = decoded_qs() if fields and fields.get('fields') is not None: fields = fields.get('fields').split(',') role = request.json.get('role') if role and role == UserType.SUPER_ADMIN: return { 'success': False, 'message': 'Only one super admin is allowed', }, 400 # now update... user.update(request.json) return { 'success': True, 'message': 'User successfully updated.', 'user': user.to_dict(fields=fields) } @admin_auth def delete(self, user_id): # exists? ... user = User.query.get(user_id) if not user: return { 'success': False, 'message': 'User not found.', }, 404 if user.is_super_admin(): return { 'success': False, 'message': 'You cannot delete this users account.', }, 401 user.delete() return { 'success': True, 'message': 'User successfully deleted.', } class UserListResource(Resource): @admin_auth def get(self): resp = User.paginate( filters=decoded_qs(), name='users' ) resp['message'] = 'Successfully retrieved users.' resp['success'] = True return resp @admin_auth @validate(PostRequest) def post(self): user = User.create(request.json) return { 'success': True, 'message': 'Successfully saved user.', 'user': user.to_dict() }, 201
[ "app.utils.decoded_qs", "app.middlewares.validation.validate", "app.models.User.create", "flask.request.json.get", "app.models.User.query.get" ]
[((891, 911), 'app.middlewares.validation.validate', 'validate', (['PutRequest'], {}), '(PutRequest)\n', (899, 911), False, 'from app.middlewares.validation import validate\n'), ((2604, 2625), 'app.middlewares.validation.validate', 'validate', (['PostRequest'], {}), '(PostRequest)\n', (2612, 2625), False, 'from app.middlewares.validation import validate\n'), ((403, 426), 'app.models.User.query.get', 'User.query.get', (['user_id'], {}), '(user_id)\n', (417, 426), False, 'from app.models import User, UserType\n'), ((587, 599), 'app.utils.decoded_qs', 'decoded_qs', ([], {}), '()\n', (597, 599), False, 'from app.utils import decoded_qs\n'), ((983, 1006), 'app.models.User.query.get', 'User.query.get', (['user_id'], {}), '(user_id)\n', (997, 1006), False, 'from app.models import User, UserType\n'), ((1165, 1177), 'app.utils.decoded_qs', 'decoded_qs', ([], {}), '()\n', (1175, 1177), False, 'from app.utils import decoded_qs\n'), ((1304, 1328), 'flask.request.json.get', 'request.json.get', (['"""role"""'], {}), "('role')\n", (1320, 1328), False, 'from flask import request\n'), ((1829, 1852), 'app.models.User.query.get', 'User.query.get', (['user_id'], {}), '(user_id)\n', (1843, 1852), False, 'from app.models import User, UserType\n'), ((2661, 2686), 'app.models.User.create', 'User.create', (['request.json'], {}), '(request.json)\n', (2672, 2686), False, 'from app.models import User, UserType\n'), ((2424, 2436), 'app.utils.decoded_qs', 'decoded_qs', ([], {}), '()\n', (2434, 2436), False, 'from app.utils import decoded_qs\n')]
from antarest.study.storage.rawstudy.model.filesystem.config.model import ( FileStudyTreeConfig, ) from antarest.study.storage.rawstudy.model.filesystem.folder_node import ( FolderNode, ) from antarest.study.storage.rawstudy.model.filesystem.inode import TREE from antarest.study.storage.rawstudy.model.filesystem.root.desktop import ( Desktop, ) from antarest.study.storage.rawstudy.model.filesystem.root.input.input import ( Input, ) from antarest.study.storage.rawstudy.model.filesystem.root.layers.layers import ( Layers, ) from antarest.study.storage.rawstudy.model.filesystem.root.logs import Logs from antarest.study.storage.rawstudy.model.filesystem.root.output.output import ( Output, ) from antarest.study.storage.rawstudy.model.filesystem.root.settings.settings import ( Settings, ) from antarest.study.storage.rawstudy.model.filesystem.root.study_antares import ( StudyAntares, ) from antarest.study.storage.rawstudy.model.filesystem.root.user import User class FileStudyTree(FolderNode): """ Top level node of antares tree structure """ def build(self) -> TREE: children: TREE = { "Desktop": Desktop( self.context, self.config.next_file("Desktop.ini") ), "study": StudyAntares( self.context, self.config.next_file("study.antares") ), "settings": Settings( self.context, self.config.next_file("settings") ), "layers": Layers(self.context, self.config.next_file("layers")), "logs": Logs(self.context, self.config.next_file("logs")), "input": Input(self.context, self.config.next_file("input")), "user": User(self.context, self.config.next_file("user")), } if self.config.outputs: output_config = self.config.next_file("output") output_config.path = self.config.output_path or output_config.path children["output"] = Output(self.context, output_config) return children
[ "antarest.study.storage.rawstudy.model.filesystem.root.output.output.Output" ]
[((2007, 2042), 'antarest.study.storage.rawstudy.model.filesystem.root.output.output.Output', 'Output', (['self.context', 'output_config'], {}), '(self.context, output_config)\n', (2013, 2042), False, 'from antarest.study.storage.rawstudy.model.filesystem.root.output.output import Output\n')]
import asyncio import navilog class TaskScheduler: def __init__(self, bot): """Componente composto de um dicionário de rotinas, capaz de agendar uma rotina para ser executada de acordo com seu intervalo. Args: bot (NaviBot): A instância do bot em questão. """ self._tasks = {} self._bot = bot def schedule(self, task, key=None, append=False): """Recebe uma tarefa para ser agendada, ou seja, rodar em um loop a cada intervalo de tempo determinado. Args: task (NaviRoutine): A rotina a ser rodada constantemente. key (str, optional): Chave que identifica qual o conjunto de rotinas, caso omitida, será utilizado task.name. append (bool, optional): Permitir mais de única rotina em um conjunto de rotinas. """ # Se a chave não for informada, utilizar o próprio nome da tarefa if key is None: key = task.name if not key in self._tasks: self._tasks[key] = [task] else: # Define que, caso append seja falso, apenas inclua uma única tarefa por chave if len(self._tasks[key]) == 0 or append: self._tasks[key].append(task) else: self._bot.log.write(f"A tarefa '{task.name}' foi solicitada, porém já existe", logtype=navilog.WARNING) return task.running_task = asyncio.get_running_loop().create_task(self._loopTask(task, key)) async def _loopTask(self, task, key): """Procedimento utilizado para continuar executando em loop a tarefa/rotina. Args: task (NaviRoutine): A rotina a ser rodada constantemente. key (str): Chave pertencente. """ try: segundos = task.get_timespan_seconds() while task.enabled: task.running = True await asyncio.sleep(segundos - task.get_timespent()) if task.enabled: await task.run(self._bot) if task.get_timespent() >= segundos: self._bot.log.write(f"Perdido um ciclo de execução da tarefa '{task.name}', timespent={task.get_timespent():.3f}, timespan={segundos}s", logtype=navilog.WARNING) task.running = False except asyncio.CancelledError: self._bot.log.write(f"Cancelado a tarefa '{task.name}'", logtype=navilog.WARNING) task.running_task = None finally: # Tenta retirar do cojunto de rotinas. self.cancel(task, key) def cancel(self, task, key=None): """Pede o cancelamento da tarefa, caso esteja em execução e também retira do conjunto de tarefas pertencente. Args: task (NaviRoutine): A rotina a ser cancelada. key (str, optional): A chave que representa o conjunto, caso omitida, será utilizado por padrão task.name. """ if key is None: key = task.name if key in self._tasks.keys(): # Caso esteja já desabilitada, é só uma questão de tempo até ser cancelada, não faça nada. if task.running_task != None and task.enabled: try: task.running_task.cancel() except asyncio.CancelledError: self._bot.log.write(f"Ignorando cancelamento da tarefa '{task.name}' pois a mesma já foi cancelada", logtype=navilog.WARNING) try: self._tasks[key].remove(task) except ValueError: # Não está na lista pass def get(self, key): """Retorna a lista de tarefas presente em uma chave. Args: key (str): A chave presentando o conjunto. Returns: list(NaviRoutine), None: Uma lista de rotinas, caso não exista nenhuma na determinada chave, retorna None. """ try: return self._tasks[key] except KeyError: return None def get_all_keys(self): """Retorna todas as chaves existentes. Returns: list(str): Lista de chaves presentes. """ return self._tasks.keys()
[ "asyncio.get_running_loop" ]
[((1282, 1308), 'asyncio.get_running_loop', 'asyncio.get_running_loop', ([], {}), '()\n', (1306, 1308), False, 'import asyncio\n')]
import pandas as pd from tl.exceptions import RequiredInputParameterMissingException, UnsupportTypeError from tl.file_formats_validator import FFV def get_kg_links(score_column, file_path=None, df=None, label_column='label', top_k=5, k_rows=False): if file_path is None and df is None: raise RequiredInputParameterMissingException( 'One of the input parameters is required: {} or {}'.format("file_path", "df")) if score_column is None: raise RequiredInputParameterMissingException( 'One of the input parameters is required: {}'.format('score_column')) if file_path: df = pd.read_csv(file_path, dtype=object) df[score_column].fillna(0.0, inplace=True) df.fillna("", inplace=True) df = df.astype(dtype={score_column: "float64"}) ffv = FFV() if not (ffv.is_candidates_file(df)): raise UnsupportTypeError("The input file is not a candidate file!") topk_df = df.groupby(['column', 'row']).apply(lambda x: x.sort_values([score_column], ascending=False)) \ .reset_index(drop=True) is_gt_present = 'evaluation_label' in df.columns final_list = [] grouped_obj = topk_df.groupby(['column', 'row']) for key, grouped in grouped_obj: grouped['rank'] = list(grouped[score_column].rank(method='first', ascending=False).astype(int)) grouped.drop_duplicates(subset='kg_id', inplace=True) new_top_k = top_k gt_rank = -1 if is_gt_present: gt_rank_values = grouped[grouped['evaluation_label'].astype(int) == 1]['rank'].values if len(gt_rank_values) > 0: gt_rank = gt_rank_values[0] if gt_rank > top_k: new_top_k -= 1 if not (k_rows): _ = {} kg_ids = list(grouped['kg_id'])[:new_top_k] kg_labels = list(grouped['kg_labels'])[:new_top_k] kg_descriptions = list(grouped['kg_descriptions'])[:new_top_k] kg_aliases = list(grouped['kg_aliases'])[:new_top_k] scores = [str(score) for score in list(grouped[score_column])[:new_top_k]] if gt_rank > top_k: kg_ids.extend(list(grouped['kg_id'])[gt_rank]) kg_labels.extend(list(grouped['kg_labels'])[gt_rank]) kg_descriptions.extend(list(grouped['kg_descriptions'])[gt_rank]) kg_aliases.extend(list(grouped['kg_aliases'])[gt_rank]) scores.append(str(list(grouped[score_column])[gt_rank])) _['column'] = key[0] _['row'] = key[1] _['label'] = grouped[label_column].unique()[0] _['kg_id'] = '|'.join(kg_ids) _['kg_labels'] = '|'.join(kg_labels) _['kg_descriptions'] = '|'.join(kg_descriptions) _['kg_aliases'] = '|'.join(kg_aliases) _['ranking_score'] = '|'.join(scores) final_list.append(_) else: if gt_rank > top_k: topk_df_row = pd.concat([grouped.head(new_top_k), grouped[grouped['rank'] == gt_rank]]) else: topk_df_row = grouped.head(new_top_k) final_list.extend(topk_df_row.to_dict(orient='records')) odf = pd.DataFrame(final_list) return odf
[ "pandas.DataFrame", "tl.exceptions.UnsupportTypeError", "tl.file_formats_validator.FFV", "pandas.read_csv" ]
[((813, 818), 'tl.file_formats_validator.FFV', 'FFV', ([], {}), '()\n', (816, 818), False, 'from tl.file_formats_validator import FFV\n'), ((3225, 3249), 'pandas.DataFrame', 'pd.DataFrame', (['final_list'], {}), '(final_list)\n', (3237, 3249), True, 'import pandas as pd\n'), ((635, 671), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'dtype': 'object'}), '(file_path, dtype=object)\n', (646, 671), True, 'import pandas as pd\n'), ((874, 935), 'tl.exceptions.UnsupportTypeError', 'UnsupportTypeError', (['"""The input file is not a candidate file!"""'], {}), "('The input file is not a candidate file!')\n", (892, 935), False, 'from tl.exceptions import RequiredInputParameterMissingException, UnsupportTypeError\n')]
""" This file is borrowed directly from allennlp """ import logging logger = logging.getLogger(__name__) class ConfigurationError(Exception): """ The exception is raised by any mv object when it's misconfigured """ def __init__(self, message): super(ConfigurationError, self).__init__() self.message = message def __str__(self): return repr(self.message) def log_pytorch_version_info(): # import torch logger.info("Pytorch version is: {}".format(torch.__version__)) def check_dimensions_match(dim_1: int, dim_2: int, dim_1_name: str, dim_2_name: str) -> None: if dim_1 != dim_2: raise ConfigurationError("{} must match {}, but got {} and {} instead".format(dim_1_name, dim_2_name, dim_1, dim_2))
[ "logging.getLogger" ]
[((79, 106), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (96, 106), False, 'import logging\n')]
# -*- coding: utf-8 -*- import scrapy class LoginSpider(scrapy.Spider): name = 'login' allowed_domains = ['webscraping.com'] start_urls = ['http://example.webscraping.com/places/default/user/login'] def parse(self, response): return scrapy.FormRequest.from_response( response, formdata={ 'email': '<EMAIL>', 'password': '<PASSWORD>' }, callback=self.after_login ) def after_login(self, response): # check login succeed before going on if response.css('div#pagination').get(): self.logger.info("Login Success!") return
[ "scrapy.FormRequest.from_response" ]
[((264, 394), 'scrapy.FormRequest.from_response', 'scrapy.FormRequest.from_response', (['response'], {'formdata': "{'email': '<EMAIL>', 'password': '<PASSWORD>'}", 'callback': 'self.after_login'}), "(response, formdata={'email': '<EMAIL>',\n 'password': '<PASSWORD>'}, callback=self.after_login)\n", (296, 394), False, 'import scrapy\n')]
import glob import logging import os import shutil import subprocess import sys import unittest import time from os import chdir as cd from os import mkdir TESTDIR='/tmp/git-bzr-test' BZRBRANCHNAME='bzrtest' BZRBRANCH='%s/%s' % (TESTDIR, BZRBRANCHNAME) ROOTDIR=os.path.dirname(os.path.dirname(__file__)) VENDOR=os.path.join(ROOTDIR, 'vendor') GITBZR=os.path.join(ROOTDIR, 'git-bzr') PYFASTIMPORT=os.path.join(VENDOR, 'python-fastimport') PLUGINDIR=os.path.join(VENDOR, 'plugins') BZRFASTIMPORT=os.path.join(PLUGINDIR, 'fastimport') BZRFASTIMPORT_STABLE=os.path.join(VENDOR, 'fastimport_stable') BZRFASTIMPORT_STABLE_TARBALL=os.path.join(VENDOR, 'bzr-fastimport-0.10.0') BZRFASTIMPORT_HEAD=os.path.join(VENDOR, 'fastimport_head') BZRPATH = os.path.join(VENDOR, 'bzr-%s') BZR = os.path.join(VENDOR, 'bzr') VERSIONS = [ ('2.2', '2.2.0'), ('2.2', '2.2.1'), ('2.2', '2.2.2'), ('2.2', '2.2.3'), ('2.2', '2.2.4'), ('2.3', '2.3.0'), ('2.3', '2.3.1') ] # Set a timestamp at load time so that we can memoize our setup step TIMESTAMP = time.time() # From python 2.7 def check_output(*popenargs, **kwargs): r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT. >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') logging.debug(' '.join(popenargs[0])) process = subprocess.Popen(stdout=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd) return output def bzr(*args): return check_output(['bzr'] + list(args)) def git(*args): return check_output(['git'] + list(args)) def gitbzr(*args): return check_output([GITBZR] + list(args)) def rmdir(path): try: shutil.rmtree(path) except Exception: pass class SetupVendorOnly(object): BZR = BZRPATH % '2.3.1' BZRFASTIMPORT = BZRFASTIMPORT_STABLE def setup_vendor(self): logging.getLogger().setLevel(logging.INFO) self._ensure_checkouts() self._symlink_plugin() def _symlink_plugin(self): try: os.unlink(BZRFASTIMPORT) except Exception: pass os.symlink(self.BZRFASTIMPORT, BZRFASTIMPORT) def _symlink_bzr(self, force=None): try: os.unlink(BZR) except Exception: pass path = force and force or self.BZR os.symlink(path, BZR) def _ensure_checkouts(self): exec_path = ('PATH' in os.environ and os.environ['PATH'] or '') if not exec_path.startswith(BZR): os.environ['PATH'] = '%s:%s' % (BZR, exec_path) download_url = 'http://launchpad.net/bzr/%s/%s/+download/bzr-%s.tar.gz' tarball = 'bzr-%s.tar.gz' for v in VERSIONS: if not os.path.exists(BZRPATH % v[1]): logging.info('Downloading %s', download_url % (v[0], v[1], v[1])) cd(VENDOR) check_output(['curl', '-O', '-L', download_url % (v[0], v[1], v[1]) ]) check_output(['tar', '-xzf', tarball % v[1]]) # we need a functional bzr on our path to get anything else self._symlink_bzr(BZRPATH % '2.3.1') bzr_head = BZRPATH % 'head' if not os.path.exists(bzr_head): logging.info('Getting HEAD of bzr') cd(VENDOR) bzr('branch', 'lp:bzr', BZRPATH % 'head') if not os.path.exists(PYFASTIMPORT): logging.info('Getting a HEAD of python-fastimport') cd(VENDOR) bzr('branch', 'lp:python-fastimport') if not os.path.exists(PLUGINDIR): os.mkdir(PLUGINDIR) if not os.path.exists(BZRFASTIMPORT_STABLE): logging.info('Getting revision 307 of bzr-fastimport') cd(VENDOR) bzr('branch', 'lp:bzr-fastimport', '-r', '307', BZRFASTIMPORT_STABLE) if not os.path.exists(BZRFASTIMPORT_HEAD): logging.info('Getting HEAD of bzr-fastimport') cd(VENDOR) bzr('branch', 'lp:bzr-fastimport', BZRFASTIMPORT_HEAD) if not os.path.exists(BZRFASTIMPORT_STABLE_TARBALL): logging.info('Downloading bzr-fastimport version 0.10') cd(VENDOR) check_output(['curl', '-O', '-L', 'http://launchpad.net/bzr-fastimport/trunk/' '0.10.0/+download/bzr-fastimport-0.10.0.tar.gz' ]) check_output(['tar', '-xzf', 'bzr-fastimport-0.10.0.tar.gz']) python_path = ('PYTHONPATH' in os.environ and os.environ['PYTHONPATH'] or '') if not python_path.startswith(PYFASTIMPORT): os.environ['PYTHONPATH'] = '%s:%s' % (PYFASTIMPORT, BZR) os.environ['BZR_PLUGIN_PATH'] = PLUGINDIR os.environ['BZR_PDB'] = '1' class GitBzrTest(SetupVendorOnly, unittest.TestCase): BZR = BZRPATH % '2.3.1' BZRFASTIMPORT = BZRFASTIMPORT_STABLE def setUp(self): #SetupVendorOnly.setUp(self) self._ensure_checkouts() self._symlink_plugin() self._setup_bzr_branches() def tearDown(self): pass def _setup_bzr_branches(self): memo = '%s_%s_%s' % (TESTDIR, self.__class__.__name__, TIMESTAMP) if os.path.exists(memo): rmdir(TESTDIR) shutil.copytree(memo, TESTDIR) else: # make a bzr branch to interact with rmdir(TESTDIR) mkdir(TESTDIR) cd(TESTDIR) bzr('init', BZRBRANCH) cd(BZRBRANCH) open('touch.txt', 'w').write('touch') bzr('add', '-v', 'touch.txt') bzr('commit', '-v', '-m', 'touch test') open('touch2.txt', 'w').write('touch2') bzr('add', 'touch2.txt') bzr('commit', '-m', 'touch2 test') bzr('tag', 'some_tag') # make another branch to test import later cd(TESTDIR) bzr('branch', BZRBRANCH, '%s_imported' % BZRBRANCH) # make a default clone cd(TESTDIR) gitbzr('clone', BZRBRANCH, '%s_cloned' % BZRBRANCHNAME) # clear old memos and copy it to our memo old_memo_glob = '%s_%s_*' % (TESTDIR, self.__class__.__name__) old_memos = glob.iglob(old_memo_glob) for path in old_memos: shutil.rmtree(path) shutil.copytree(TESTDIR, memo) def test_all(self): """Test most of the functionality. This test is a bit large, it is ported directly from a shell script. """ # TEST: clone with git-bzr-ng # it should guess the name correctly but notice that the directory already # exists and failed cd(TESTDIR) self.assertRaises(subprocess.CalledProcessError, gitbzr, 'clone', BZRBRANCH) # TEST: clone it again with a better name gitbzr('clone', BZRBRANCH, '%s_git' % BZRBRANCHNAME) # Check for the branches we want cd('%s_git' % BZRBRANCH) branches = git('branch', '-a') if 'bzr/master' not in branches: self.fail('no bzr/master branch') if '* master' not in branches: self.fail('not on master branch') # Check for files we expect self.assertEqual('touch', open('touch.txt').read()) # push to a new branch git('checkout', '-b', 'pushed') open('touch2.txt', 'w').write('touch3') git('add', 'touch2.txt') git('commit', '-m', 'touch3 test') gitbzr('push', '%s_pushed' % BZRBRANCH) # do it again open('touch2.txt', 'w').write('touch4') git('add', 'touch2.txt') git('commit', '-m', 'touch4 test') gitbzr('push') # update the bzr branch and sync the changes # that bzr repo is not a working tree repo so we need to branch it in bzr # and then push the changes back cd(TESTDIR) bzr('branch', '%s_pushed' % BZRBRANCH, '%s_branched' % BZRBRANCH) cd('%s_branched' % BZRBRANCH) open('touch2.txt', 'w').write('touch5') bzr('commit', '-m', 'touch5') bzr('push', '%s_pushed' % BZRBRANCH) cd('%s_git' % BZRBRANCH) gitbzr('sync') # try to push again from git, should fail because we have not merged the # changes self.assertEquals('touch4', open('touch2.txt').read()) self.assertRaises(subprocess.CalledProcessError, gitbzr, 'push') # this one should fail since there is nothing to commit git('pull', '.', '--', 'bzr/pushed') self.assertEquals('touch5', open('touch2.txt').read()) self.assertRaises(subprocess.CalledProcessError, gitbzr, 'push') # edit a file and try to push open('touch2.txt', 'w').write('touch6') git('add', 'touch2.txt') git('commit', '-m', 'touch6') gitbzr('push') # pull in our bzr branch and make sure we get the change cd('%s_branched' % BZRBRANCH) bzr('pull') self.assertEquals('touch6', open('touch2.txt').read()) # TEST: import another branch and pull changes from `pushed` cd('%s_git' % BZRBRANCH) gitbzr('import', '%s_imported' % BZRBRANCH, 'imported') git('checkout', 'imported') git('pull', '.', '--', 'pushed') gitbzr('push') def test_push_relative_path(self): cd('%s_cloned' % BZRBRANCH) open('touch2.txt', 'w').write('CLONED') git('add', 'touch2.txt') git('commit', '-m', 'touched touch2') # push back to previous bzr branch gitbzr('push', '../%s' % BZRBRANCHNAME) self.assertEqual('CLONED', open('%s/touch2.txt' % BZRBRANCH).read()) open('touch2.txt', 'w').write('CLONED2') git('add', 'touch2.txt') git('commit', '-m', 'touched2 touch2') gitbzr('push') self.assertEqual('CLONED2', open('%s/touch2.txt' % BZRBRANCH).read()) # push to a new repo gitbzr('push', '../%s_new' % BZRBRANCHNAME) cd('%s_new' % BZRBRANCH) bzr('checkout', '.') self.assertEqual('CLONED2', open('%s_new/touch2.txt' % BZRBRANCH).read()) def test_import_no_url(self): self.assertRaises(subprocess.CalledProcessError, gitbzr, 'import') def test_import_strip_tags(self): # assert that the imported repo has our tag cd(TESTDIR) cd('%s_cloned' % BZRBRANCHNAME) rv = git('tag') self.assert_('some_tag' in rv) # add an invalid tag and make sure it doesn't get imported cd('%s_imported' % BZRBRANCH) bzr('tag', 'some~invalid!tag') cd(TESTDIR) cd('%s_cloned' % BZRBRANCHNAME) # the first try should fail due to an invalid tag self.assertRaises(subprocess.CalledProcessError, gitbzr, 'import', '%s_imported' % BZRBRANCH, 'import_fail') gitbzr('import', '--strip_tags', '%s_imported' % BZRBRANCH, 'import_win') rv = git('tag') self.assert_('some~invalid!tag' not in rv) # test that clone supports the flag also cd(TESTDIR) self.assertRaises(subprocess.CalledProcessError, gitbzr, 'clone', '%s_imported' % BZRBRANCH, 'import_fail') gitbzr('clone', '--strip_tags', '%s_imported' % BZRBRANCH, 'import_win') def test_gitbzr_init_master(self): # make a new git repo INITGIT = os.path.join(TESTDIR, 'init_master_git') INITBZR = os.path.join(TESTDIR, 'init_master_bzr') cd(TESTDIR) git('init', INITGIT) cd(INITGIT) open('touch.txt', 'w').write('touch') git('add', 'touch.txt') git('commit', '-a', '-m', 'touch1') gitbzr('init') gitbzr('push', INITBZR) cd(TESTDIR) bzr('branch', INITBZR, '%s_working' % INITBZR) cd('%s_working' % INITBZR) self.assertEquals('touch', open('touch.txt').read()) def test_gitbzr_init_branch(self): # make a new git repo INITGIT = os.path.join(TESTDIR, 'init_branch_git') INITBZR = os.path.join(TESTDIR, 'init_branch_bzr') cd(TESTDIR) git('init', INITGIT) cd(INITGIT) open('touch.txt', 'w').write('touch') git('add', 'touch.txt') git('commit', '-a', '-m', 'touch1') git('checkout', '-b', 'new_branch') open('touch.txt', 'w').write('touch2') git('commit', '-a', '-m', 'touch2') gitbzr('init') gitbzr('push', INITBZR) cd(TESTDIR) bzr('branch', INITBZR, '%s_working' % INITBZR) cd('%s_working' % INITBZR) self.assertEquals('touch2', open('touch.txt').read()) class GitBzrHeadTest(GitBzrTest): BZRFASTIMPORT = BZRFASTIMPORT_HEAD class GitBzrHeadHeadTest(GitBzrTest): BZR = BZRPATH % 'head' BZRFASTIMPORT = BZRFASTIMPORT_HEAD class GitBzrStableTarballTest(GitBzrTest): BZRFASTIMPORT = BZRFASTIMPORT_STABLE_TARBALL class GitBzrStable_2_2_0(GitBzrStableTarballTest): BZR = BZRPATH % '2.2.0' class GitBzrStable_2_2_1(GitBzrStableTarballTest): BZR = BZRPATH % '2.2.1' class GitBzrStable_2_2_2(GitBzrStableTarballTest): BZR = BZRPATH % '2.2.2' class GitBzrStable_2_2_3(GitBzrStableTarballTest): BZR = BZRPATH % '2.2.3' class GitBzrStable_2_2_4(GitBzrStableTarballTest): BZR = BZRPATH % '2.2.4' class GitBzrStable_2_3_0(GitBzrStableTarballTest): BZR = BZRPATH % '2.3.0' class GitBzrStable_2_2_0(GitBzrStableTarballTest): BZR = BZRPATH % '2.2.0'
[ "logging.getLogger", "os.path.exists", "glob.iglob", "subprocess.Popen", "subprocess.CalledProcessError", "os.path.join", "os.symlink", "logging.info", "os.chdir", "os.path.dirname", "shutil.copytree", "os.unlink", "os.mkdir", "shutil.rmtree", "time.time" ]
[((314, 345), 'os.path.join', 'os.path.join', (['ROOTDIR', '"""vendor"""'], {}), "(ROOTDIR, 'vendor')\n", (326, 345), False, 'import os\n'), ((353, 385), 'os.path.join', 'os.path.join', (['ROOTDIR', '"""git-bzr"""'], {}), "(ROOTDIR, 'git-bzr')\n", (365, 385), False, 'import os\n'), ((399, 440), 'os.path.join', 'os.path.join', (['VENDOR', '"""python-fastimport"""'], {}), "(VENDOR, 'python-fastimport')\n", (411, 440), False, 'import os\n'), ((451, 482), 'os.path.join', 'os.path.join', (['VENDOR', '"""plugins"""'], {}), "(VENDOR, 'plugins')\n", (463, 482), False, 'import os\n'), ((497, 534), 'os.path.join', 'os.path.join', (['PLUGINDIR', '"""fastimport"""'], {}), "(PLUGINDIR, 'fastimport')\n", (509, 534), False, 'import os\n'), ((556, 597), 'os.path.join', 'os.path.join', (['VENDOR', '"""fastimport_stable"""'], {}), "(VENDOR, 'fastimport_stable')\n", (568, 597), False, 'import os\n'), ((627, 672), 'os.path.join', 'os.path.join', (['VENDOR', '"""bzr-fastimport-0.10.0"""'], {}), "(VENDOR, 'bzr-fastimport-0.10.0')\n", (639, 672), False, 'import os\n'), ((692, 731), 'os.path.join', 'os.path.join', (['VENDOR', '"""fastimport_head"""'], {}), "(VENDOR, 'fastimport_head')\n", (704, 731), False, 'import os\n'), ((742, 772), 'os.path.join', 'os.path.join', (['VENDOR', '"""bzr-%s"""'], {}), "(VENDOR, 'bzr-%s')\n", (754, 772), False, 'import os\n'), ((779, 806), 'os.path.join', 'os.path.join', (['VENDOR', '"""bzr"""'], {}), "(VENDOR, 'bzr')\n", (791, 806), False, 'import os\n'), ((1063, 1074), 'time.time', 'time.time', ([], {}), '()\n', (1072, 1074), False, 'import time\n'), ((280, 305), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (295, 305), False, 'import os\n'), ((2041, 2103), 'subprocess.Popen', 'subprocess.Popen', (['*popenargs'], {'stdout': 'subprocess.PIPE'}), '(*popenargs, stdout=subprocess.PIPE, **kwargs)\n', (2057, 2103), False, 'import subprocess\n'), ((2274, 2317), 'subprocess.CalledProcessError', 'subprocess.CalledProcessError', (['retcode', 'cmd'], {}), '(retcode, cmd)\n', (2303, 2317), False, 'import subprocess\n'), ((2554, 2573), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (2567, 2573), False, 'import shutil\n'), ((2938, 2983), 'os.symlink', 'os.symlink', (['self.BZRFASTIMPORT', 'BZRFASTIMPORT'], {}), '(self.BZRFASTIMPORT, BZRFASTIMPORT)\n', (2948, 2983), False, 'import os\n'), ((3129, 3150), 'os.symlink', 'os.symlink', (['path', 'BZR'], {}), '(path, BZR)\n', (3139, 3150), False, 'import os\n'), ((5831, 5851), 'os.path.exists', 'os.path.exists', (['memo'], {}), '(memo)\n', (5845, 5851), False, 'import os\n'), ((7123, 7134), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (7125, 7134), True, 'from os import chdir as cd\n'), ((7384, 7408), 'os.chdir', 'cd', (["('%s_git' % BZRBRANCH)"], {}), "('%s_git' % BZRBRANCH)\n", (7386, 7408), True, 'from os import chdir as cd\n'), ((8224, 8235), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (8226, 8235), True, 'from os import chdir as cd\n'), ((8310, 8339), 'os.chdir', 'cd', (["('%s_branched' % BZRBRANCH)"], {}), "('%s_branched' % BZRBRANCH)\n", (8312, 8339), True, 'from os import chdir as cd\n'), ((8463, 8487), 'os.chdir', 'cd', (["('%s_git' % BZRBRANCH)"], {}), "('%s_git' % BZRBRANCH)\n", (8465, 8487), True, 'from os import chdir as cd\n'), ((9184, 9213), 'os.chdir', 'cd', (["('%s_branched' % BZRBRANCH)"], {}), "('%s_branched' % BZRBRANCH)\n", (9186, 9213), True, 'from os import chdir as cd\n'), ((9359, 9383), 'os.chdir', 'cd', (["('%s_git' % BZRBRANCH)"], {}), "('%s_git' % BZRBRANCH)\n", (9361, 9383), True, 'from os import chdir as cd\n'), ((9574, 9601), 'os.chdir', 'cd', (["('%s_cloned' % BZRBRANCH)"], {}), "('%s_cloned' % BZRBRANCH)\n", (9576, 9601), True, 'from os import chdir as cd\n'), ((10163, 10187), 'os.chdir', 'cd', (["('%s_new' % BZRBRANCH)"], {}), "('%s_new' % BZRBRANCH)\n", (10165, 10187), True, 'from os import chdir as cd\n'), ((10484, 10495), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (10486, 10495), True, 'from os import chdir as cd\n'), ((10500, 10531), 'os.chdir', 'cd', (["('%s_cloned' % BZRBRANCHNAME)"], {}), "('%s_cloned' % BZRBRANCHNAME)\n", (10502, 10531), True, 'from os import chdir as cd\n'), ((10655, 10684), 'os.chdir', 'cd', (["('%s_imported' % BZRBRANCH)"], {}), "('%s_imported' % BZRBRANCH)\n", (10657, 10684), True, 'from os import chdir as cd\n'), ((10724, 10735), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (10726, 10735), True, 'from os import chdir as cd\n'), ((10740, 10771), 'os.chdir', 'cd', (["('%s_cloned' % BZRBRANCHNAME)"], {}), "('%s_cloned' % BZRBRANCHNAME)\n", (10742, 10771), True, 'from os import chdir as cd\n'), ((11223, 11234), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (11225, 11234), True, 'from os import chdir as cd\n'), ((11524, 11564), 'os.path.join', 'os.path.join', (['TESTDIR', '"""init_master_git"""'], {}), "(TESTDIR, 'init_master_git')\n", (11536, 11564), False, 'import os\n'), ((11579, 11619), 'os.path.join', 'os.path.join', (['TESTDIR', '"""init_master_bzr"""'], {}), "(TESTDIR, 'init_master_bzr')\n", (11591, 11619), False, 'import os\n'), ((11624, 11635), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (11626, 11635), True, 'from os import chdir as cd\n'), ((11665, 11676), 'os.chdir', 'cd', (['INITGIT'], {}), '(INITGIT)\n', (11667, 11676), True, 'from os import chdir as cd\n'), ((11838, 11849), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (11840, 11849), True, 'from os import chdir as cd\n'), ((11905, 11931), 'os.chdir', 'cd', (["('%s_working' % INITBZR)"], {}), "('%s_working' % INITBZR)\n", (11907, 11931), True, 'from os import chdir as cd\n'), ((12067, 12107), 'os.path.join', 'os.path.join', (['TESTDIR', '"""init_branch_git"""'], {}), "(TESTDIR, 'init_branch_git')\n", (12079, 12107), False, 'import os\n'), ((12122, 12162), 'os.path.join', 'os.path.join', (['TESTDIR', '"""init_branch_bzr"""'], {}), "(TESTDIR, 'init_branch_bzr')\n", (12134, 12162), False, 'import os\n'), ((12167, 12178), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (12169, 12178), True, 'from os import chdir as cd\n'), ((12208, 12219), 'os.chdir', 'cd', (['INITGIT'], {}), '(INITGIT)\n', (12210, 12219), True, 'from os import chdir as cd\n'), ((12504, 12515), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (12506, 12515), True, 'from os import chdir as cd\n'), ((12571, 12597), 'os.chdir', 'cd', (["('%s_working' % INITBZR)"], {}), "('%s_working' % INITBZR)\n", (12573, 12597), True, 'from os import chdir as cd\n'), ((2876, 2900), 'os.unlink', 'os.unlink', (['BZRFASTIMPORT'], {}), '(BZRFASTIMPORT)\n', (2885, 2900), False, 'import os\n'), ((3038, 3052), 'os.unlink', 'os.unlink', (['BZR'], {}), '(BZR)\n', (3047, 3052), False, 'import os\n'), ((3972, 3996), 'os.path.exists', 'os.path.exists', (['bzr_head'], {}), '(bzr_head)\n', (3986, 3996), False, 'import os\n'), ((4004, 4039), 'logging.info', 'logging.info', (['"""Getting HEAD of bzr"""'], {}), "('Getting HEAD of bzr')\n", (4016, 4039), False, 'import logging\n'), ((4046, 4056), 'os.chdir', 'cd', (['VENDOR'], {}), '(VENDOR)\n', (4048, 4056), True, 'from os import chdir as cd\n'), ((4117, 4145), 'os.path.exists', 'os.path.exists', (['PYFASTIMPORT'], {}), '(PYFASTIMPORT)\n', (4131, 4145), False, 'import os\n'), ((4153, 4204), 'logging.info', 'logging.info', (['"""Getting a HEAD of python-fastimport"""'], {}), "('Getting a HEAD of python-fastimport')\n", (4165, 4204), False, 'import logging\n'), ((4211, 4221), 'os.chdir', 'cd', (['VENDOR'], {}), '(VENDOR)\n', (4213, 4221), True, 'from os import chdir as cd\n'), ((4278, 4303), 'os.path.exists', 'os.path.exists', (['PLUGINDIR'], {}), '(PLUGINDIR)\n', (4292, 4303), False, 'import os\n'), ((4311, 4330), 'os.mkdir', 'os.mkdir', (['PLUGINDIR'], {}), '(PLUGINDIR)\n', (4319, 4330), False, 'import os\n'), ((4343, 4379), 'os.path.exists', 'os.path.exists', (['BZRFASTIMPORT_STABLE'], {}), '(BZRFASTIMPORT_STABLE)\n', (4357, 4379), False, 'import os\n'), ((4387, 4441), 'logging.info', 'logging.info', (['"""Getting revision 307 of bzr-fastimport"""'], {}), "('Getting revision 307 of bzr-fastimport')\n", (4399, 4441), False, 'import logging\n'), ((4448, 4458), 'os.chdir', 'cd', (['VENDOR'], {}), '(VENDOR)\n', (4450, 4458), True, 'from os import chdir as cd\n'), ((4547, 4581), 'os.path.exists', 'os.path.exists', (['BZRFASTIMPORT_HEAD'], {}), '(BZRFASTIMPORT_HEAD)\n', (4561, 4581), False, 'import os\n'), ((4589, 4635), 'logging.info', 'logging.info', (['"""Getting HEAD of bzr-fastimport"""'], {}), "('Getting HEAD of bzr-fastimport')\n", (4601, 4635), False, 'import logging\n'), ((4642, 4652), 'os.chdir', 'cd', (['VENDOR'], {}), '(VENDOR)\n', (4644, 4652), True, 'from os import chdir as cd\n'), ((4726, 4770), 'os.path.exists', 'os.path.exists', (['BZRFASTIMPORT_STABLE_TARBALL'], {}), '(BZRFASTIMPORT_STABLE_TARBALL)\n', (4740, 4770), False, 'import os\n'), ((4778, 4833), 'logging.info', 'logging.info', (['"""Downloading bzr-fastimport version 0.10"""'], {}), "('Downloading bzr-fastimport version 0.10')\n", (4790, 4833), False, 'import logging\n'), ((4840, 4850), 'os.chdir', 'cd', (['VENDOR'], {}), '(VENDOR)\n', (4842, 4850), True, 'from os import chdir as cd\n'), ((5880, 5910), 'shutil.copytree', 'shutil.copytree', (['memo', 'TESTDIR'], {}), '(memo, TESTDIR)\n', (5895, 5910), False, 'import shutil\n'), ((5991, 6005), 'os.mkdir', 'mkdir', (['TESTDIR'], {}), '(TESTDIR)\n', (5996, 6005), False, 'from os import mkdir\n'), ((6012, 6023), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (6014, 6023), True, 'from os import chdir as cd\n'), ((6059, 6072), 'os.chdir', 'cd', (['BZRBRANCH'], {}), '(BZRBRANCH)\n', (6061, 6072), True, 'from os import chdir as cd\n'), ((6402, 6413), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (6404, 6413), True, 'from os import chdir as cd\n'), ((6508, 6519), 'os.chdir', 'cd', (['TESTDIR'], {}), '(TESTDIR)\n', (6510, 6519), True, 'from os import chdir as cd\n'), ((6718, 6743), 'glob.iglob', 'glob.iglob', (['old_memo_glob'], {}), '(old_memo_glob)\n', (6728, 6743), False, 'import glob\n'), ((6807, 6837), 'shutil.copytree', 'shutil.copytree', (['TESTDIR', 'memo'], {}), '(TESTDIR, memo)\n', (6822, 6837), False, 'import shutil\n'), ((2732, 2751), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (2749, 2751), False, 'import logging\n'), ((3520, 3550), 'os.path.exists', 'os.path.exists', (['(BZRPATH % v[1])'], {}), '(BZRPATH % v[1])\n', (3534, 3550), False, 'import os\n'), ((3560, 3625), 'logging.info', 'logging.info', (['"""Downloading %s"""', '(download_url % (v[0], v[1], v[1]))'], {}), "('Downloading %s', download_url % (v[0], v[1], v[1]))\n", (3572, 3625), False, 'import logging\n'), ((3634, 3644), 'os.chdir', 'cd', (['VENDOR'], {}), '(VENDOR)\n', (3636, 3644), True, 'from os import chdir as cd\n'), ((6781, 6800), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (6794, 6800), False, 'import shutil\n')]
import calendar from datetime import datetime from typing import List, Optional, Tuple, Union from discord import Colour, Embed from discord.ext.commands import Context from discord.utils import escape_markdown import emojis import pss_assert import pss_core as core import pss_entity as entity from pss_exception import Error import pss_fleet as fleet import pss_login as login import pss_lookups as lookups import pss_sprites as sprites import pss_tournament as tourney import pss_user as user import settings from typehints import EntitiesData, EntityInfo import utils # ---------- Constants ---------- ALLOWED_DIVISION_LETTERS: List[str] = sorted([letter for letter in lookups.DIVISION_CHAR_TO_DESIGN_ID.keys() if letter != '-']) DIVISION_DESIGN_BASE_PATH: str = 'DivisionService/ListAllDivisionDesigns2' DIVISION_DESIGN_DESCRIPTION_PROPERTY_NAME: str = 'DivisionName' DIVISION_DESIGN_KEY_NAME: str = 'DivisionDesignId' STARS_BASE_PATH: str = 'AllianceService/ListAlliancesWithDivision' TOP_FLEETS_BASE_PATH: str = 'AllianceService/ListAlliancesByRanking?skip=0&take=' # ---------- Top fleets info ---------- async def get_top_fleets(ctx: Context, take: int = 100, as_embed: bool = settings.USE_EMBEDS) -> Union[List[Embed], List[str]]: tourney_running = tourney.is_tourney_running() divisions_designs_data = await divisions_designs_retriever.get_data_dict3() fleets_divisions_max_ranks = [int(fleet_division_design_info['MaxRank']) for fleet_division_design_info in __get_fleet_division_designs(divisions_designs_data).values()] raw_data = await core.get_data_from_path(TOP_FLEETS_BASE_PATH + str(take)) data = utils.convert.xmltree_to_dict3(raw_data) if data: title = f'Top {take} fleets' prepared_data = __prepare_top_fleets(data) body_lines = __create_body_lines_top_fleets(prepared_data, tourney_running, fleets_divisions_max_ranks) if tourney_running: footer = f'Properties displayed: Ranking. Fleet name (Trophy count {emojis.trophy} Member count {emojis.members} Star count {emojis.star})' else: footer = f'Properties displayed: Ranking. Fleet name (Trophy count {emojis.trophy} Member count {emojis.members})' if as_embed: colour = utils.discord.get_bot_member_colour(ctx.bot, ctx.guild) return __create_top_embeds(title, body_lines, colour, footer) else: result = [ f'**{title}**', *body_lines, footer, ] return result else: raise Error(f'An unknown error occured while retrieving the top fleets. Please contact the bot\'s author!') def __create_body_lines_top_fleets(prepared_data: List[Tuple[int, str, str, str, str]], tourney_running: bool, fleets_divisions_max_ranks: List[int]) -> List[str]: if tourney_running: result = [ f'**{position}.** {fleet_name} ({trophies} {emojis.trophy} {number_of_approved_members} {emojis.members} {stars} {emojis.star})' for position, fleet_name, trophies, stars, number_of_approved_members in prepared_data ] else: result = [ f'**{position}.** {fleet_name} ({trophies} {emojis.trophy} {number_of_approved_members} {emojis.members})' for position, fleet_name, trophies, _, number_of_approved_members in prepared_data ] for rank in sorted(fleets_divisions_max_ranks, reverse=True): if rank < len(result): result.insert(rank, utils.discord.ZERO_WIDTH_SPACE) return result def __prepare_top_fleets(fleets_data: EntitiesData) -> List[Tuple[int, str, str, str, str]]: """ Returns: List[ Tuple[ fleet rank (int), fleet name (str), fleet trophies (str), fleet stars (str), number of approved members (str) ] ] """ result = [ ( position, escape_markdown(fleet_info[fleet.FLEET_DESCRIPTION_PROPERTY_NAME]), fleet_info['Trophy'], fleet_info['Score'], fleet_info['NumberOfApprovedMembers'] ) for position, fleet_info in enumerate(fleets_data.values(), start=1) ] return result # ---------- Top captains info ---------- async def get_top_captains(ctx: Context, take: int = 100, as_embed: bool = settings.USE_EMBEDS) -> Union[List[Embed], List[str]]: skip = 0 data = await __get_top_captains_data(skip, take) if data: title = f'Top {take} captains' prepared_data = __prepare_top_captains(data, skip, take) body_lines = __create_body_lines_top_captains(prepared_data) footer = f'Properties displayed: Ranking. Player name (Fleet name) - Trophies {emojis.trophy}' if as_embed: colour = utils.discord.get_bot_member_colour(ctx.bot, ctx.guild) result = __create_top_embeds(title, body_lines, colour, footer) else: result = [ f'**{title}**', *body_lines, footer, ] return result else: raise Error(f'An unknown error occured while retrieving the top captains. Please contact the bot\'s author!') def __create_body_lines_top_captains(prepared_data: List[Tuple[int, str, str, str]]) -> List[str]: result = [ f'**{position}.** {user_name} ({fleet_name}) - {trophies} {emojis.trophy}' for position, user_name, fleet_name, trophies in prepared_data ] return result async def __get_top_captains_data(skip: int, take: int) -> EntitiesData: path = await __get_top_captains_path(skip, take) raw_data = await core.get_data_from_path(path) data = utils.convert.xmltree_to_dict3(raw_data) return data async def __get_top_captains_path(skip: int, take: int) -> str: skip += 1 access_token = await login.DEVICES.get_access_token() result = f'LadderService/ListUsersByRanking?accessToken={access_token}&from={skip}&to={take}' return result def __prepare_top_captains(users_data: EntitiesData, skip: int, take: int) -> List[Tuple]: start = skip + 1 end = skip + take result = [ ( position, escape_markdown(user_info[user.USER_DESCRIPTION_PROPERTY_NAME]), escape_markdown(user_info[fleet.FLEET_DESCRIPTION_PROPERTY_NAME]), user_info['Trophy'] ) for position, user_info in enumerate(users_data.values(), start=start) if position >= start and position <= end ] return result # ---------- Stars info ---------- async def get_division_stars(ctx: Context, division: str = None, fleet_data: dict = None, retrieved_date: datetime = None, as_embed: bool = settings.USE_EMBEDS) -> Union[List[Embed], List[str]]: if division: pss_assert.valid_parameter_value(division, 'division', min_length=1, allowed_values=ALLOWED_DIVISION_LETTERS) if division == '-': division = None else: division = None if fleet_data is None or retrieved_date is None: fleet_infos = await get_alliances_with_division() else: fleet_infos = fleet_data divisions_designs_infos = await divisions_designs_retriever.get_data_dict3() divisions = {} if division: division_design_id = lookups.DIVISION_CHAR_TO_DESIGN_ID[division.upper()] divisions[division_design_id] = [fleet_info for fleet_info in fleet_infos.values() if fleet_info[DIVISION_DESIGN_KEY_NAME] == division_design_id] else: for division_design_id in lookups.DIVISION_DESIGN_ID_TO_CHAR.keys(): if division_design_id != '0': divisions[division_design_id] = [fleet_info for fleet_info in fleet_infos.values() if fleet_info[DIVISION_DESIGN_KEY_NAME] == division_design_id] if divisions: divisions_texts = [] for division_design_id, fleet_infos in divisions.items(): divisions_texts.append((division_design_id, __get_division_stars_as_text(fleet_infos))) result = [] footer = f'Properties displayed: Rank. Stars (Difference to next) Fleet name (Total trophies {emojis.trophy}, Member count {emojis.members})' historic_data_note = utils.datetime.get_historic_data_note(retrieved_date) if historic_data_note: if as_embed: footer += f'\n\n{historic_data_note}' else: footer += f'\n{historic_data_note}' colour = utils.discord.get_bot_member_colour(ctx.bot, ctx.guild) for division_design_id, division_text in divisions_texts: if as_embed: division_title = get_division_title(division_design_id, divisions_designs_infos, False, retrieved_date) thumbnail_url = await sprites.get_download_sprite_link(divisions_designs_infos[division_design_id]['BackgroundSpriteId']) embed_bodies = utils.discord.create_posts_from_lines(division_text, utils.discord.MAXIMUM_CHARACTERS_EMBED_DESCRIPTION) for i, embed_body in enumerate(embed_bodies): thumbnail_url = thumbnail_url if i == 0 else None embed = utils.discord.create_embed(division_title, description=embed_body, footer=footer, thumbnail_url=thumbnail_url, colour=colour) result.append(embed) else: division_title = get_division_title(division_design_id, divisions_designs_infos, True, retrieved_date) result.append(division_title) result.extend(division_text) result.append(utils.discord.ZERO_WIDTH_SPACE) if not as_embed: result = result[:-1] if footer: result.append(f'```{footer}```') return result else: raise Error(f'An unknown error occured while retrieving division info. Please contact the bot\'s author!') def __get_division_stars_as_text(fleet_infos: List[EntityInfo]) -> List[str]: lines = [] fleet_infos = entity.sort_entities_by(fleet_infos, [('Score', int, True)]) fleet_infos_count = len(fleet_infos) for i, fleet_info in enumerate(fleet_infos, start=1): fleet_name = escape_markdown(fleet_info['AllianceName']) additional_info: List[Tuple[str, str]] = [] trophies = fleet_info.get('Trophy') if trophies: additional_info.append((trophies, emojis.trophy)) member_count = fleet_info.get('NumberOfMembers') if member_count: additional_info.append((str(member_count), emojis.members)) stars = fleet_info['Score'] if i < fleet_infos_count: difference = int(stars) - int(fleet_infos[i]['Score']) else: difference = 0 if additional_info: additional_str = f' ({" ".join([" ".join(info) for info in additional_info])})' else: additional_str = '' lines.append(f'**{i:d}.** {stars} (+{difference}) {emojis.star} {fleet_name}{additional_str}') return lines def get_division_title(division_design_id: str, divisions_designs_infos: EntitiesData, include_markdown: bool, retrieved_date: datetime) -> str: title = divisions_designs_infos[division_design_id][DIVISION_DESIGN_DESCRIPTION_PROPERTY_NAME] if retrieved_date: is_monthly_data = (retrieved_date + utils.datetime.ONE_DAY).month != retrieved_date.month if is_monthly_data: title = f'{title} - {calendar.month_abbr[retrieved_date.month]} {retrieved_date.year}' else: title = f'{title} - {calendar.month_abbr[retrieved_date.month]} {retrieved_date.day}, {retrieved_date.year}' if include_markdown: return f'__**{title}**__' else: return title # ---------- Helper functions ---------- def filter_targets(user_infos: List[EntityInfo], division_design_id: str, last_month_user_data: EntitiesData, current_fleet_data: EntitiesData = {}, min_star_value: int = None, max_star_value: int = None, min_trophies_value: int = None, max_trophies_value: int = None, max_highest_trophies: int = None) -> List[EntityInfo]: result = [] for user_info in user_infos: current_division_design_id = current_fleet_data.get(user_info.get(fleet.FLEET_KEY_NAME), {}).get(DIVISION_DESIGN_KEY_NAME) user_division_design_id = user_info.get('Alliance', {}).get(DIVISION_DESIGN_KEY_NAME, '0') alliance_division_design_id = current_division_design_id or user_division_design_id trophies = int(user_info.get('Trophy', 0)) highest_trophies = int(user_info.get('HighestTrophy', 0)) division_matches = division_design_id == alliance_division_design_id if division_matches and (not min_trophies_value or trophies >= min_trophies_value) and (not max_trophies_value or trophies <= max_trophies_value) and (not max_highest_trophies or highest_trophies <= max_highest_trophies): star_value, _ = user.get_star_value_from_user_info(user_info, star_count=user_info.get('AllianceScore')) if (not min_star_value or star_value >= min_star_value) and (not max_star_value or star_value <= max_star_value): user_id = user_info[user.USER_KEY_NAME] user_info['StarValue'] = star_value or 0 user_info['LastMonthStarValue'] = last_month_user_data.get(user_id, {}).get('AllianceScore') or '-' result.append(user_info) result = sorted(result, key=lambda user_info: (user_info.get('StarValue', 0), int(user_info.get('AllianceScore', 0)), int(user_info.get('Trophy', 0))), reverse=True) return result async def get_alliances_with_division() -> EntitiesData: data = await core.get_data_from_path(STARS_BASE_PATH) fleet_infos = utils.convert.xmltree_to_dict3(data) return fleet_infos def get_targets_parameters(star_value: str = None, trophies: str = None, highest_trophies: int = None) -> Tuple[List[str], Optional[int], Optional[int], Optional[int], Optional[int], Optional[int]]: star_values = [int(value) for value in (star_value or '').split('-') if value] trophies_values = [int(value) for value in (trophies or '').split('-') if value] criteria_lines = [] if star_values and len(star_values) > 2: raise ValueError('Only 1 minimum and 1 maximum star value may be specified.') min_star_value, max_star_value = None, None if star_values: min_star_value = min(star_values) if len(star_values) > 1: max_star_value = max(star_values) criteria_lines.append(f'Star value: {min_star_value} - {max_star_value}') else: max_star_value = None criteria_lines.append(f'Minimum star value: {min_star_value}') if trophies_values and len(trophies_values) > 2: raise ValueError('Only 1 minimum and 1 maximum trophy count may be specified.') min_trophies_value, max_trophies_value = None, None if trophies_values: max_trophies_value = max(trophies_values) if len(trophies_values) > 1: min_trophies_value = min(trophies_values) criteria_lines.append(f'Trophy count: {min_trophies_value} - {max_trophies_value}') else: min_trophies_value = None criteria_lines.append(f'Maximum trophy count: {max_trophies_value}') if highest_trophies is not None: if highest_trophies < 0: raise ValueError('The highest trophy count must not be negative.') elif any(value > highest_trophies for value in trophies_values): raise ValueError('The highest trophy count for a player must not be lower than any current trophy count value.') criteria_lines.append(f'Maximum highest trophy count: {highest_trophies}') return criteria_lines, min_star_value, max_star_value, min_trophies_value, max_trophies_value, highest_trophies def is_valid_division_letter(div_letter: str) -> bool: if div_letter is None: result = True else: result = div_letter.lower() in [letter.lower() for letter in ALLOWED_DIVISION_LETTERS] return result def make_target_output_lines(user_infos: List[EntityInfo], include_fleet_name: bool = True) -> List[str]: footer = f'Properties displayed: Star value (Current, Last month\'s star count) {emojis.star} Trophies (Max Trophies) {emojis.trophy} Player name' if include_fleet_name: footer += ' (Fleet name)' result = [] for user_rank, user_info in enumerate(user_infos, 1): player_star_value = user_info.get('StarValue', 0) stars = int(user_info.get('AllianceScore', 0)) user_name = escape_markdown(user_info.get(user.USER_DESCRIPTION_PROPERTY_NAME, '')) fleet_name = escape_markdown(user_info.get('Alliance', {}).get(fleet.FLEET_DESCRIPTION_PROPERTY_NAME, '')) trophies = int(user_info.get('Trophy', 0)) highest_trophies = int(user_info.get('HighestTrophy', 0)) or '-' last_month_stars = user_info.get('LastMonthStarValue', '-') line = f'**{user_rank}.** {player_star_value} ({stars}, {last_month_stars}) {emojis.star} {trophies} ({highest_trophies}) {emojis.trophy} {user_name}' if include_fleet_name: line += f' ({fleet_name})' if user_rank > 1 or not result: result.append(line) else: result[-1] += f'\n{line}' return footer, result def __create_top_embeds(title: str, body_lines: List[str], colour: Colour, footer: str) -> List[Embed]: bodies = utils.discord.create_posts_from_lines(body_lines, utils.discord.MAXIMUM_CHARACTERS_EMBED_DESCRIPTION) result = [] for body in bodies: result.append(utils.discord.create_embed(title, description=body, colour=colour, footer=footer)) return result def __get_fleet_division_designs(divisions_designs_data: EntitiesData) -> EntitiesData: result = {key: value for key, value in divisions_designs_data.items() if value.get('DivisionType') == 'Fleet'} return result # ---------- Initilization ---------- divisions_designs_retriever: entity.EntityRetriever = entity.EntityRetriever( DIVISION_DESIGN_BASE_PATH, DIVISION_DESIGN_KEY_NAME, DIVISION_DESIGN_DESCRIPTION_PROPERTY_NAME, cache_name='DivisionDesigns' )
[ "pss_entity.EntityRetriever", "utils.convert.xmltree_to_dict3", "utils.datetime.get_historic_data_note", "pss_entity.sort_entities_by", "utils.discord.get_bot_member_colour", "discord.utils.escape_markdown", "utils.discord.create_embed", "pss_login.DEVICES.get_access_token", "pss_lookups.DIVISION_CHAR_TO_DESIGN_ID.keys", "pss_lookups.DIVISION_DESIGN_ID_TO_CHAR.keys", "pss_assert.valid_parameter_value", "pss_core.get_data_from_path", "pss_sprites.get_download_sprite_link", "utils.discord.create_posts_from_lines", "pss_exception.Error", "pss_tournament.is_tourney_running" ]
[((18187, 18339), 'pss_entity.EntityRetriever', 'entity.EntityRetriever', (['DIVISION_DESIGN_BASE_PATH', 'DIVISION_DESIGN_KEY_NAME', 'DIVISION_DESIGN_DESCRIPTION_PROPERTY_NAME'], {'cache_name': '"""DivisionDesigns"""'}), "(DIVISION_DESIGN_BASE_PATH, DIVISION_DESIGN_KEY_NAME,\n DIVISION_DESIGN_DESCRIPTION_PROPERTY_NAME, cache_name='DivisionDesigns')\n", (18209, 18339), True, 'import pss_entity as entity\n'), ((1277, 1305), 'pss_tournament.is_tourney_running', 'tourney.is_tourney_running', ([], {}), '()\n', (1303, 1305), True, 'import pss_tournament as tourney\n'), ((1650, 1690), 'utils.convert.xmltree_to_dict3', 'utils.convert.xmltree_to_dict3', (['raw_data'], {}), '(raw_data)\n', (1680, 1690), False, 'import utils\n'), ((5769, 5809), 'utils.convert.xmltree_to_dict3', 'utils.convert.xmltree_to_dict3', (['raw_data'], {}), '(raw_data)\n', (5799, 5809), False, 'import utils\n'), ((10098, 10158), 'pss_entity.sort_entities_by', 'entity.sort_entities_by', (['fleet_infos', "[('Score', int, True)]"], {}), "(fleet_infos, [('Score', int, True)])\n", (10121, 10158), True, 'import pss_entity as entity\n'), ((13842, 13878), 'utils.convert.xmltree_to_dict3', 'utils.convert.xmltree_to_dict3', (['data'], {}), '(data)\n', (13872, 13878), False, 'import utils\n'), ((17601, 17707), 'utils.discord.create_posts_from_lines', 'utils.discord.create_posts_from_lines', (['body_lines', 'utils.discord.MAXIMUM_CHARACTERS_EMBED_DESCRIPTION'], {}), '(body_lines, utils.discord.\n MAXIMUM_CHARACTERS_EMBED_DESCRIPTION)\n', (17638, 17707), False, 'import utils\n'), ((2584, 2694), 'pss_exception.Error', 'Error', (['f"""An unknown error occured while retrieving the top fleets. Please contact the bot\'s author!"""'], {}), '(\n f"An unknown error occured while retrieving the top fleets. Please contact the bot\'s author!"\n )\n', (2589, 2694), False, 'from pss_exception import Error\n'), ((5173, 5285), 'pss_exception.Error', 'Error', (['f"""An unknown error occured while retrieving the top captains. Please contact the bot\'s author!"""'], {}), '(\n f"An unknown error occured while retrieving the top captains. Please contact the bot\'s author!"\n )\n', (5178, 5285), False, 'from pss_exception import Error\n'), ((5728, 5757), 'pss_core.get_data_from_path', 'core.get_data_from_path', (['path'], {}), '(path)\n', (5751, 5757), True, 'import pss_core as core\n'), ((5931, 5963), 'pss_login.DEVICES.get_access_token', 'login.DEVICES.get_access_token', ([], {}), '()\n', (5961, 5963), True, 'import pss_login as login\n'), ((6882, 6995), 'pss_assert.valid_parameter_value', 'pss_assert.valid_parameter_value', (['division', '"""division"""'], {'min_length': '(1)', 'allowed_values': 'ALLOWED_DIVISION_LETTERS'}), "(division, 'division', min_length=1,\n allowed_values=ALLOWED_DIVISION_LETTERS)\n", (6914, 6995), False, 'import pss_assert\n'), ((7636, 7677), 'pss_lookups.DIVISION_DESIGN_ID_TO_CHAR.keys', 'lookups.DIVISION_DESIGN_ID_TO_CHAR.keys', ([], {}), '()\n', (7675, 7677), True, 'import pss_lookups as lookups\n'), ((8297, 8350), 'utils.datetime.get_historic_data_note', 'utils.datetime.get_historic_data_note', (['retrieved_date'], {}), '(retrieved_date)\n', (8334, 8350), False, 'import utils\n'), ((8548, 8603), 'utils.discord.get_bot_member_colour', 'utils.discord.get_bot_member_colour', (['ctx.bot', 'ctx.guild'], {}), '(ctx.bot, ctx.guild)\n', (8583, 8603), False, 'import utils\n'), ((9884, 9993), 'pss_exception.Error', 'Error', (['f"""An unknown error occured while retrieving division info. Please contact the bot\'s author!"""'], {}), '(\n f"An unknown error occured while retrieving division info. Please contact the bot\'s author!"\n )\n', (9889, 9993), False, 'from pss_exception import Error\n'), ((10279, 10322), 'discord.utils.escape_markdown', 'escape_markdown', (["fleet_info['AllianceName']"], {}), "(fleet_info['AllianceName'])\n", (10294, 10322), False, 'from discord.utils import escape_markdown\n'), ((13783, 13823), 'pss_core.get_data_from_path', 'core.get_data_from_path', (['STARS_BASE_PATH'], {}), '(STARS_BASE_PATH)\n', (13806, 13823), True, 'import pss_core as core\n'), ((678, 719), 'pss_lookups.DIVISION_CHAR_TO_DESIGN_ID.keys', 'lookups.DIVISION_CHAR_TO_DESIGN_ID.keys', ([], {}), '()\n', (717, 719), True, 'import pss_lookups as lookups\n'), ((2268, 2323), 'utils.discord.get_bot_member_colour', 'utils.discord.get_bot_member_colour', (['ctx.bot', 'ctx.guild'], {}), '(ctx.bot, ctx.guild)\n', (2303, 2323), False, 'import utils\n'), ((3995, 4061), 'discord.utils.escape_markdown', 'escape_markdown', (['fleet_info[fleet.FLEET_DESCRIPTION_PROPERTY_NAME]'], {}), '(fleet_info[fleet.FLEET_DESCRIPTION_PROPERTY_NAME])\n', (4010, 4061), False, 'from discord.utils import escape_markdown\n'), ((4859, 4914), 'utils.discord.get_bot_member_colour', 'utils.discord.get_bot_member_colour', (['ctx.bot', 'ctx.guild'], {}), '(ctx.bot, ctx.guild)\n', (4894, 4914), False, 'import utils\n'), ((6275, 6338), 'discord.utils.escape_markdown', 'escape_markdown', (['user_info[user.USER_DESCRIPTION_PROPERTY_NAME]'], {}), '(user_info[user.USER_DESCRIPTION_PROPERTY_NAME])\n', (6290, 6338), False, 'from discord.utils import escape_markdown\n'), ((6352, 6417), 'discord.utils.escape_markdown', 'escape_markdown', (['user_info[fleet.FLEET_DESCRIPTION_PROPERTY_NAME]'], {}), '(user_info[fleet.FLEET_DESCRIPTION_PROPERTY_NAME])\n', (6367, 6417), False, 'from discord.utils import escape_markdown\n'), ((17765, 17851), 'utils.discord.create_embed', 'utils.discord.create_embed', (['title'], {'description': 'body', 'colour': 'colour', 'footer': 'footer'}), '(title, description=body, colour=colour, footer=\n footer)\n', (17791, 17851), False, 'import utils\n'), ((8984, 9093), 'utils.discord.create_posts_from_lines', 'utils.discord.create_posts_from_lines', (['division_text', 'utils.discord.MAXIMUM_CHARACTERS_EMBED_DESCRIPTION'], {}), '(division_text, utils.discord.\n MAXIMUM_CHARACTERS_EMBED_DESCRIPTION)\n', (9021, 9093), False, 'import utils\n'), ((8853, 8957), 'pss_sprites.get_download_sprite_link', 'sprites.get_download_sprite_link', (["divisions_designs_infos[division_design_id]['BackgroundSpriteId']"], {}), "(divisions_designs_infos[division_design_id\n ]['BackgroundSpriteId'])\n", (8885, 8957), True, 'import pss_sprites as sprites\n'), ((9249, 9379), 'utils.discord.create_embed', 'utils.discord.create_embed', (['division_title'], {'description': 'embed_body', 'footer': 'footer', 'thumbnail_url': 'thumbnail_url', 'colour': 'colour'}), '(division_title, description=embed_body, footer=\n footer, thumbnail_url=thumbnail_url, colour=colour)\n', (9275, 9379), False, 'import utils\n')]
import os import sys import numpy as np import skimage import argparse import onnxruntime import fine_grained_segmentation from fine_grained_segmentation import model from fine_grained_segmentation import visualize from fine_grained_segmentation import utils # list of fashion class names CLASS_NAMES = ['BG', 'shirt, blouse', 'top, t-shirt, sweatshirt', 'sweater', 'cardigan', 'jacket', 'vest', 'pants', 'shorts', 'skirt', 'coat', 'dress', 'jumpsuit', 'cape', 'glasses', 'hat', 'headband, head covering, hair accessory', 'tie', 'glove', 'watch', 'belt', 'leg warmer', 'tights, stockings', 'sock', 'shoe', 'bag, wallet', 'scarf', 'umbrella', 'hood', 'collar', 'lapel', 'epaulette', 'sleeve', 'pocket', 'neckline', 'buckle', 'zipper', 'applique', 'bead', 'bow', 'flower', 'fringe', 'ribbon', 'rivet', 'ruffle', 'sequin', 'tassel'] LIB_DIR = fine_grained_segmentation.__path__[0] def generate_image(images, molded_images, windows, results): results_final = [] for i, image in enumerate(images): final_rois, final_class_ids, final_scores, final_masks = \ model.unmold_detections(results[0][i], results[3][i], # detections[i], mrcnn_mask[i] image.shape, molded_images[i].shape, windows[i]) results_final.append({ "rois": final_rois, "class_ids": final_class_ids, "scores": final_scores, "masks": final_masks, }) r = results_final[i] visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], CLASS_NAMES, r['scores']) return results_final def detect(filename): BATCH_SIZE = 1 ONNX_WEIGHTS_URL = r"https://github.com/vinny-palumbo/fine_grained_segmentation/releases/download/v0.1-alpha/mrcnn.onnx" # get onnx weights model_file_name = os.path.join(LIB_DIR, 'mrcnn.onnx') # download onnx weights if it doesn't exist if not os.path.exists(model_file_name): utils.download_file(ONNX_WEIGHTS_URL, model_file_name) # create onnx runtime session session = onnxruntime.InferenceSession(model_file_name) # get image print("* Running detection on:", filename) image = skimage.io.imread(filename)[:,:,:3] image = utils.modify_white_pixels(image) images = [image] # preprocessing molded_images, image_metas, windows = model.mold_inputs(images) anchors = model.get_anchors(molded_images[0].shape) anchors = np.broadcast_to(anchors, (BATCH_SIZE,) + anchors.shape) # run inference results = \ session.run(None, {"input_image": molded_images.astype(np.float32), "input_anchors": anchors, "input_image_meta": image_metas.astype(np.float32)}) # postprocessing results_final = generate_image(images, molded_images, windows, results)
[ "fine_grained_segmentation.model.unmold_detections", "os.path.exists", "fine_grained_segmentation.utils.download_file", "onnxruntime.InferenceSession", "os.path.join", "fine_grained_segmentation.visualize.display_instances", "skimage.io.imread", "fine_grained_segmentation.model.mold_inputs", "fine_grained_segmentation.utils.modify_white_pixels", "fine_grained_segmentation.model.get_anchors", "numpy.broadcast_to" ]
[((2035, 2070), 'os.path.join', 'os.path.join', (['LIB_DIR', '"""mrcnn.onnx"""'], {}), "(LIB_DIR, 'mrcnn.onnx')\n", (2047, 2070), False, 'import os\n'), ((2284, 2329), 'onnxruntime.InferenceSession', 'onnxruntime.InferenceSession', (['model_file_name'], {}), '(model_file_name)\n', (2312, 2329), False, 'import onnxruntime\n'), ((2454, 2486), 'fine_grained_segmentation.utils.modify_white_pixels', 'utils.modify_white_pixels', (['image'], {}), '(image)\n', (2479, 2486), False, 'from fine_grained_segmentation import utils\n'), ((2575, 2600), 'fine_grained_segmentation.model.mold_inputs', 'model.mold_inputs', (['images'], {}), '(images)\n', (2592, 2600), False, 'from fine_grained_segmentation import model\n'), ((2615, 2656), 'fine_grained_segmentation.model.get_anchors', 'model.get_anchors', (['molded_images[0].shape'], {}), '(molded_images[0].shape)\n', (2632, 2656), False, 'from fine_grained_segmentation import model\n'), ((2671, 2726), 'numpy.broadcast_to', 'np.broadcast_to', (['anchors', '((BATCH_SIZE,) + anchors.shape)'], {}), '(anchors, (BATCH_SIZE,) + anchors.shape)\n', (2686, 2726), True, 'import numpy as np\n'), ((1224, 1330), 'fine_grained_segmentation.model.unmold_detections', 'model.unmold_detections', (['results[0][i]', 'results[3][i]', 'image.shape', 'molded_images[i].shape', 'windows[i]'], {}), '(results[0][i], results[3][i], image.shape,\n molded_images[i].shape, windows[i])\n', (1247, 1330), False, 'from fine_grained_segmentation import model\n'), ((1651, 1754), 'fine_grained_segmentation.visualize.display_instances', 'visualize.display_instances', (['image', "r['rois']", "r['masks']", "r['class_ids']", 'CLASS_NAMES', "r['scores']"], {}), "(image, r['rois'], r['masks'], r['class_ids'],\n CLASS_NAMES, r['scores'])\n", (1678, 1754), False, 'from fine_grained_segmentation import visualize\n'), ((2135, 2166), 'os.path.exists', 'os.path.exists', (['model_file_name'], {}), '(model_file_name)\n', (2149, 2166), False, 'import os\n'), ((2176, 2230), 'fine_grained_segmentation.utils.download_file', 'utils.download_file', (['ONNX_WEIGHTS_URL', 'model_file_name'], {}), '(ONNX_WEIGHTS_URL, model_file_name)\n', (2195, 2230), False, 'from fine_grained_segmentation import utils\n'), ((2406, 2433), 'skimage.io.imread', 'skimage.io.imread', (['filename'], {}), '(filename)\n', (2423, 2433), False, 'import skimage\n')]
import os import time import torch import argparse import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data from SceneRecognitionCNN import SceneRecognitionCNN from Libs.Datasets.Places365Dataset import Places365Dataset from Libs.Utils import utils import numpy as np import yaml import pickle """ Evaluation file to obtain all the necessary Scene Recognition statistics for the attribution method. Fully developed by <NAME> """ parser = argparse.ArgumentParser(description='Semantic-Aware Scene Recognition Evaluation') parser.add_argument('--ConfigPath', metavar='DIR', help='Configuration file path', required=True) def evaluationDataLoader(dataloader, model, set): batch_time = utils.AverageMeter() losses = utils.AverageMeter() top1 = utils.AverageMeter() top2 = utils.AverageMeter() top5 = utils.AverageMeter() ClassTPs_Top1 = torch.zeros(1, len(classes), dtype=torch.uint8).cuda() ClassTPs_Top2 = torch.zeros(1, len(classes), dtype=torch.uint8).cuda() ClassTPs_Top5 = torch.zeros(1, len(classes), dtype=torch.uint8).cuda() Predictions = list() SceneGTLabels = list() # Extract batch size batch_size = CONFIG['VALIDATION']['BATCH_SIZE']['TEST'] # Enable the extract of semantic occlusions sem_oclusions = CONFIG['VALIDATION']['SEM_OCCLUSIONS'] SampleCounter = 1 # Start data time data_time_start = time.time() with torch.no_grad(): for i, (mini_batch) in enumerate(dataloader): start_time = time.time() if USE_CUDA: RGB_image = mini_batch['Image'].cuda() semantic_mask = mini_batch['Semantic'].cuda() sceneLabelGT = mini_batch['Scene Index'].cuda() # Model Forward outputSceneLabel = model(RGB_image) # Get predictions batch_predictions = utils.obtainPredictedClasses(outputSceneLabel) # Save Predictions and Ground-Truth Predictions.extend(batch_predictions.tolist()) SceneGTLabels.extend(sceneLabelGT.cpu().numpy().tolist()) # Analyze Semantic Occlusions if sem_oclusions: # Mean ImageNet value mean = [0.485, 0.456, 0.406] # Get Top1 Semantic Labels semantic_mask = semantic_mask[:, 2, :, :] # Intermediate array to save results results_array = np.zeros([CONFIG['DATASET']['N_CLASSES_SEM'], CONFIG['DATASET']['N_CLASSES_SCENE'], batch_size]) # Original Scene Prediction goes in the first row of the matrix results_array[0, :, :] = np.transpose(torch.nn.functional.softmax(outputSceneLabel, dim=1).cpu().numpy()) # There is no semantic label = 0 (or it is not-annotated label) so we start in label = 1 for j in range(1, CONFIG['DATASET']['N_CLASSES_SEM']): RGB_image_occluded = RGB_image.clone() # Select areas of the image corresponding to semantic class j indices = (semantic_mask == j) # Change RGB Images in those indices pixels. Original paper puts RGB values to the mean ImageNet Distribution value R = RGB_image_occluded[:, 0, :, :] G = RGB_image_occluded[:, 1, :, :] B = RGB_image_occluded[:, 2, :, :] R[indices] = mean[0] G[indices] = mean[1] B[indices] = mean[2] R = torch.unsqueeze(R, dim=1) G = torch.unsqueeze(G, dim=1) B = torch.unsqueeze(B, dim=1) # Reconstruct again the images RGB_image_occluded = torch.cat((R, G, B), dim=1) # Obtained new predictions with the occluded RGB images outputSceneLabel_occluded = model(RGB_image_occluded) # Save the correspondent results results_array[j, :, :] = np.transpose(torch.nn.functional.softmax(outputSceneLabel_occluded, dim=1).cpu().numpy()) for k in range(batch_size): # Save each matrix in an indeppendent file # sio.savemat('Occlusion Matrices Results/Mat Files/RGB_matrix_pred_' + str(SampleCounter).zfill(5) + '.mat', # {'image_' + str(SampleCounter): results_array[:, :, k]}) with open(os.path.join(ResultPathMatrices, 'RGB_matrix_pred_' + str(SampleCounter).zfill(5) + '.pkl'), 'wb') as filehandle: # store the data as binary data stream pickle.dump(results_array[:, :, k], filehandle) SampleCounter += 1 # Compute class accuracy ClassTPs = utils.getclassAccuracy(outputSceneLabel, sceneLabelGT, len(classes), topk=(1, 2, 5)) ClassTPs_Top1 += ClassTPs[0] ClassTPs_Top2 += ClassTPs[1] ClassTPs_Top5 += ClassTPs[2] # Compute Loss loss = model.loss(outputSceneLabel, sceneLabelGT) # Measure Top1, Top2 and Top5 accuracy prec1, prec2, prec5 = utils.accuracy(outputSceneLabel.data, sceneLabelGT, topk=(1, 2, 5)) # Update values losses.update(loss.item(), batch_size) top1.update(prec1.item(), batch_size) top2.update(prec2.item(), batch_size) top5.update(prec5.item(), batch_size) # Measure batch elapsed time batch_time.update(time.time() - start_time) # Print information if i % CONFIG['VALIDATION']['PRINT_FREQ'] == 0: print('Testing {} set batch: [{}/{}] ' 'Batch Time {batch_time.val:.3f} (avg: {batch_time.avg:.3f}) ' 'Loss {loss.val:.3f} (avg: {loss.avg:.3f}) ' 'Prec@1 {top1.val:.3f} (avg: {top1.avg:.3f}) ' 'Prec@2 {top2.val:.3f} (avg: {top2.avg:.3f}) ' 'Prec@5 {top5.val:.3f} (avg: {top5.avg:.3f})'. format(set, i, len(dataloader), set, batch_time=batch_time, loss=losses, top1=top1, top2=top2, top5=top5)) ClassTPDic = {'Top1': ClassTPs_Top1.cpu().numpy(), 'Top2': ClassTPs_Top2.cpu().numpy(), 'Top5': ClassTPs_Top5.cpu().numpy()} print('Elapsed time for {} set evaluation {time:.3f} seconds'.format(set, time=time.time() - data_time_start)) print("") # Save predictions and Scene GT in pickle files with open(os.path.join(ResultPath, set + '_Predictions.pkl'), 'wb') as filehandle: # store the data as binary data stream pickle.dump(Predictions, filehandle) with open(os.path.join(ResultPath, set + 'SceneGTLabels.pkl'), 'wb') as filehandle: # store the data as binary data stream pickle.dump(SceneGTLabels, filehandle) return top1.avg, top2.avg, top5.avg, losses.avg, ClassTPDic global USE_CUDA, classes, CONFIG # ----------------------------- # # Configuration # # ----------------------------- # # Decode CONFIG file information args = parser.parse_args() CONFIG = yaml.safe_load(open(args.ConfigPath, 'r')) USE_CUDA = torch.cuda.is_available() print('-' * 65) print("Evaluation starting...") print('-' * 65) ResultPath = os.path.join(CONFIG['RESULTS']['OUTPUT_DIR'], CONFIG['DATASET']['NAME']) ResultPathMatrices = os.path.join(ResultPath, 'Occlusion Matrices') if not os.path.isdir(ResultPathMatrices): os.makedirs(ResultPathMatrices) # ----------------------------- # # Model # # ----------------------------- # print('Evaluating Scene Recognition model.') print('Selected Scene Recognition architecture: ' + CONFIG['MODEL']['ARCH']) model = SceneRecognitionCNN(arch=CONFIG['MODEL']['ARCH'], scene_classes=CONFIG['DATASET']['N_CLASSES_SCENE']) # Load the trained model completePath = CONFIG['MODEL']['PATH'] + CONFIG['MODEL']['NAME'] + '.pth.tar' if os.path.isfile(completePath): print("Loading model {} from path {}...".format(CONFIG['MODEL']['NAME'], completePath)) checkpoint = torch.load(completePath) best_prec1 = checkpoint['best_prec1'] model.load_state_dict(checkpoint['state_dict']) print("Loaded model {} from path {}.".format(CONFIG['MODEL']['NAME'], completePath)) print(" Epochs {}".format(checkpoint['epoch'])) print(" Single crop reported precision {}".format(best_prec1)) else: print("No checkpoint found at '{}'. Check configuration file MODEL field".format(completePath)) quit() # Move Model to GPU an set it to evaluation mode if USE_CUDA: model.cuda() cudnn.benchmark = USE_CUDA model.eval() # Model Parameters model_parameters = filter(lambda p: p.requires_grad, model.parameters()) params = sum([np.prod(p.size()) for p in model_parameters]) # ----------------------------- # # Dataset # # ----------------------------- # print('-' * 65) print('Loading dataset {}...'.format(CONFIG['DATASET']['NAME'])) traindir = os.path.join(CONFIG['DATASET']['ROOT'], CONFIG['DATASET']['NAME']) valdir = os.path.join(CONFIG['DATASET']['ROOT'], CONFIG['DATASET']['NAME']) val_dataset = Places365Dataset(valdir, "val") val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=CONFIG['VALIDATION']['BATCH_SIZE']['TEST'], shuffle=False, num_workers=CONFIG['DATALOADER']['NUM_WORKERS'], pin_memory=True) classes = val_dataset.classes # Get Histogram of class samples ValHist = utils.getHistogramOfClasses(val_loader, classes) # ----------------------------- # # Printing Info # # ----------------------------- # # Print dataset information print('Dataset loaded!') print('Dataset Information:') print('Validation set. Size {}. Batch size {}. Nbatches {}' .format(len(val_loader) * CONFIG['VALIDATION']['BATCH_SIZE']['TEST'], CONFIG['VALIDATION']['BATCH_SIZE']['TEST'], len(val_loader))) print('Number of scenes: {}' .format(len(classes))) print('-' * 65) print('Computing histogram of scene classes...') print('-' * 65) print('Number of params: {}'. format(params)) print('-' * 65) print('GPU in use: {} with {} memory'.format(torch.cuda.get_device_name(0), torch.cuda.max_memory_allocated(0))) print('-' * 65) # ----------------------------- # # Evaluation # # ----------------------------- # print('Evaluating dataset ...') # Evaluate model on validation set val_top1, val_top2, val_top5, val_loss, val_ClassTPDic = evaluationDataLoader(val_loader, model, set='Validation') # Save Validation Class Accuracy val_ClassAcc_top1 = (val_ClassTPDic['Top1'] / (ValHist + 0.0001)) * 100 # Print complete evaluation information print('-' * 65) print('Evaluation statistics:') print('Validation results: Loss {val_loss:.3f}, Prec@1 {top1:.3f}, Prec@2 {top2:.3f}, Prec@5 {top5:.3f}, ' 'Mean Class Accuracy {MCA:.3f}'.format(val_loss=val_loss, top1=val_top1, top2=val_top2, top5=val_top5, MCA=np.mean(val_ClassAcc_top1)))
[ "torch.cuda.is_available", "torch.nn.functional.softmax", "numpy.mean", "argparse.ArgumentParser", "torch.unsqueeze", "Libs.Utils.utils.obtainPredictedClasses", "os.path.isdir", "Libs.Utils.utils.getHistogramOfClasses", "os.path.isfile", "Libs.Utils.utils.accuracy", "torch.cuda.max_memory_allocated", "time.time", "torch.cat", "Libs.Datasets.Places365Dataset.Places365Dataset", "torch.cuda.get_device_name", "pickle.dump", "os.makedirs", "torch.load", "os.path.join", "SceneRecognitionCNN.SceneRecognitionCNN", "Libs.Utils.utils.AverageMeter", "numpy.zeros", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((492, 579), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Semantic-Aware Scene Recognition Evaluation"""'}), "(description=\n 'Semantic-Aware Scene Recognition Evaluation')\n", (515, 579), False, 'import argparse\n'), ((7407, 7432), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (7430, 7432), False, 'import torch\n'), ((7512, 7584), 'os.path.join', 'os.path.join', (["CONFIG['RESULTS']['OUTPUT_DIR']", "CONFIG['DATASET']['NAME']"], {}), "(CONFIG['RESULTS']['OUTPUT_DIR'], CONFIG['DATASET']['NAME'])\n", (7524, 7584), False, 'import os\n'), ((7606, 7652), 'os.path.join', 'os.path.join', (['ResultPath', '"""Occlusion Matrices"""'], {}), "(ResultPath, 'Occlusion Matrices')\n", (7618, 7652), False, 'import os\n'), ((7966, 8072), 'SceneRecognitionCNN.SceneRecognitionCNN', 'SceneRecognitionCNN', ([], {'arch': "CONFIG['MODEL']['ARCH']", 'scene_classes': "CONFIG['DATASET']['N_CLASSES_SCENE']"}), "(arch=CONFIG['MODEL']['ARCH'], scene_classes=CONFIG[\n 'DATASET']['N_CLASSES_SCENE'])\n", (7985, 8072), False, 'from SceneRecognitionCNN import SceneRecognitionCNN\n'), ((8175, 8203), 'os.path.isfile', 'os.path.isfile', (['completePath'], {}), '(completePath)\n', (8189, 8203), False, 'import os\n'), ((9237, 9303), 'os.path.join', 'os.path.join', (["CONFIG['DATASET']['ROOT']", "CONFIG['DATASET']['NAME']"], {}), "(CONFIG['DATASET']['ROOT'], CONFIG['DATASET']['NAME'])\n", (9249, 9303), False, 'import os\n'), ((9313, 9379), 'os.path.join', 'os.path.join', (["CONFIG['DATASET']['ROOT']", "CONFIG['DATASET']['NAME']"], {}), "(CONFIG['DATASET']['ROOT'], CONFIG['DATASET']['NAME'])\n", (9325, 9379), False, 'import os\n'), ((9395, 9426), 'Libs.Datasets.Places365Dataset.Places365Dataset', 'Places365Dataset', (['valdir', '"""val"""'], {}), "(valdir, 'val')\n", (9411, 9426), False, 'from Libs.Datasets.Places365Dataset import Places365Dataset\n'), ((9440, 9626), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['val_dataset'], {'batch_size': "CONFIG['VALIDATION']['BATCH_SIZE']['TEST']", 'shuffle': '(False)', 'num_workers': "CONFIG['DATALOADER']['NUM_WORKERS']", 'pin_memory': '(True)'}), "(val_dataset, batch_size=CONFIG['VALIDATION'][\n 'BATCH_SIZE']['TEST'], shuffle=False, num_workers=CONFIG['DATALOADER'][\n 'NUM_WORKERS'], pin_memory=True)\n", (9467, 9626), False, 'import torch\n'), ((9733, 9781), 'Libs.Utils.utils.getHistogramOfClasses', 'utils.getHistogramOfClasses', (['val_loader', 'classes'], {}), '(val_loader, classes)\n', (9760, 9781), False, 'from Libs.Utils import utils\n'), ((742, 762), 'Libs.Utils.utils.AverageMeter', 'utils.AverageMeter', ([], {}), '()\n', (760, 762), False, 'from Libs.Utils import utils\n'), ((776, 796), 'Libs.Utils.utils.AverageMeter', 'utils.AverageMeter', ([], {}), '()\n', (794, 796), False, 'from Libs.Utils import utils\n'), ((808, 828), 'Libs.Utils.utils.AverageMeter', 'utils.AverageMeter', ([], {}), '()\n', (826, 828), False, 'from Libs.Utils import utils\n'), ((840, 860), 'Libs.Utils.utils.AverageMeter', 'utils.AverageMeter', ([], {}), '()\n', (858, 860), False, 'from Libs.Utils import utils\n'), ((872, 892), 'Libs.Utils.utils.AverageMeter', 'utils.AverageMeter', ([], {}), '()\n', (890, 892), False, 'from Libs.Utils import utils\n'), ((1433, 1444), 'time.time', 'time.time', ([], {}), '()\n', (1442, 1444), False, 'import time\n'), ((7661, 7694), 'os.path.isdir', 'os.path.isdir', (['ResultPathMatrices'], {}), '(ResultPathMatrices)\n', (7674, 7694), False, 'import os\n'), ((7700, 7731), 'os.makedirs', 'os.makedirs', (['ResultPathMatrices'], {}), '(ResultPathMatrices)\n', (7711, 7731), False, 'import os\n'), ((8314, 8338), 'torch.load', 'torch.load', (['completePath'], {}), '(completePath)\n', (8324, 8338), False, 'import torch\n'), ((1455, 1470), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (1468, 1470), False, 'import torch\n'), ((10408, 10437), 'torch.cuda.get_device_name', 'torch.cuda.get_device_name', (['(0)'], {}), '(0)\n', (10434, 10437), False, 'import torch\n'), ((10439, 10473), 'torch.cuda.max_memory_allocated', 'torch.cuda.max_memory_allocated', (['(0)'], {}), '(0)\n', (10470, 10473), False, 'import torch\n'), ((1551, 1562), 'time.time', 'time.time', ([], {}), '()\n', (1560, 1562), False, 'import time\n'), ((1909, 1955), 'Libs.Utils.utils.obtainPredictedClasses', 'utils.obtainPredictedClasses', (['outputSceneLabel'], {}), '(outputSceneLabel)\n', (1937, 1955), False, 'from Libs.Utils import utils\n'), ((5278, 5345), 'Libs.Utils.utils.accuracy', 'utils.accuracy', (['outputSceneLabel.data', 'sceneLabelGT'], {'topk': '(1, 2, 5)'}), '(outputSceneLabel.data, sceneLabelGT, topk=(1, 2, 5))\n', (5292, 5345), False, 'from Libs.Utils import utils\n'), ((6844, 6880), 'pickle.dump', 'pickle.dump', (['Predictions', 'filehandle'], {}), '(Predictions, filehandle)\n', (6855, 6880), False, 'import pickle\n'), ((7037, 7075), 'pickle.dump', 'pickle.dump', (['SceneGTLabels', 'filehandle'], {}), '(SceneGTLabels, filehandle)\n', (7048, 7075), False, 'import pickle\n'), ((11195, 11221), 'numpy.mean', 'np.mean', (['val_ClassAcc_top1'], {}), '(val_ClassAcc_top1)\n', (11202, 11221), True, 'import numpy as np\n'), ((2478, 2579), 'numpy.zeros', 'np.zeros', (["[CONFIG['DATASET']['N_CLASSES_SEM'], CONFIG['DATASET']['N_CLASSES_SCENE'],\n batch_size]"], {}), "([CONFIG['DATASET']['N_CLASSES_SEM'], CONFIG['DATASET'][\n 'N_CLASSES_SCENE'], batch_size])\n", (2486, 2579), True, 'import numpy as np\n'), ((6708, 6758), 'os.path.join', 'os.path.join', (['ResultPath', "(set + '_Predictions.pkl')"], {}), "(ResultPath, set + '_Predictions.pkl')\n", (6720, 6758), False, 'import os\n'), ((6900, 6951), 'os.path.join', 'os.path.join', (['ResultPath', "(set + 'SceneGTLabels.pkl')"], {}), "(ResultPath, set + 'SceneGTLabels.pkl')\n", (6912, 6951), False, 'import os\n'), ((3597, 3622), 'torch.unsqueeze', 'torch.unsqueeze', (['R'], {'dim': '(1)'}), '(R, dim=1)\n', (3612, 3622), False, 'import torch\n'), ((3647, 3672), 'torch.unsqueeze', 'torch.unsqueeze', (['G'], {'dim': '(1)'}), '(G, dim=1)\n', (3662, 3672), False, 'import torch\n'), ((3697, 3722), 'torch.unsqueeze', 'torch.unsqueeze', (['B'], {'dim': '(1)'}), '(B, dim=1)\n', (3712, 3722), False, 'import torch\n'), ((3816, 3843), 'torch.cat', 'torch.cat', (['(R, G, B)'], {'dim': '(1)'}), '((R, G, B), dim=1)\n', (3825, 3843), False, 'import torch\n'), ((5648, 5659), 'time.time', 'time.time', ([], {}), '()\n', (5657, 5659), False, 'import time\n'), ((4745, 4792), 'pickle.dump', 'pickle.dump', (['results_array[:, :, k]', 'filehandle'], {}), '(results_array[:, :, k], filehandle)\n', (4756, 4792), False, 'import pickle\n'), ((6583, 6594), 'time.time', 'time.time', ([], {}), '()\n', (6592, 6594), False, 'import time\n'), ((2710, 2762), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['outputSceneLabel'], {'dim': '(1)'}), '(outputSceneLabel, dim=1)\n', (2737, 2762), False, 'import torch\n'), ((4107, 4168), 'torch.nn.functional.softmax', 'torch.nn.functional.softmax', (['outputSceneLabel_occluded'], {'dim': '(1)'}), '(outputSceneLabel_occluded, dim=1)\n', (4134, 4168), False, 'import torch\n')]
import pandas as pd import pytlwall import pytlwall.plot_util as plot read_cfg = pytlwall.CfgIo('ex_surface_impedance/ex_surface_impedance.cfg') mywall = read_cfg.read_pytlwall() mywall.calc_ZLong() mywall.calc_ZTrans() # save all the data in a dataframe savedir = 'ex_surface_impedance/output/' data = {'f': mywall.f, 'ZLong real': mywall.ZLong.real, 'ZLong imag': mywall.ZLong.imag, 'ZTrans real': mywall.ZTrans.real, 'ZTrans imag': mywall.ZTrans.imag, 'ZLong Equivalent Surface real': mywall.ZLongSurf.real, 'ZLong Equivalent Surface imag': mywall.ZLongSurf.imag, 'ZTrans Equivalent Surface real': mywall.ZTransSurf.real, 'ZTrans Equivalent Surface imag': mywall.ZTransSurf.imag} df = pd.DataFrame(data) df.to_excel(savedir + 'output.xlsx') # plot the impedances savedir = 'ex_surface_impedance/img/' savename = 'ZLongSurf.png' title = 'Eq. Long. Surface imp.' plot.plot_Z_vs_f_simple(mywall.f, mywall.ZLongSurf, 'S', title, savedir, savename, xscale='log', yscale='log') savename = 'ZTrans.png' title = 'Eq. Trans. Surface imp.' plot.plot_Z_vs_f_simple(mywall.f, mywall.ZTransSurf, 'S', title, savedir, savename, xscale='log', yscale='log')
[ "pandas.DataFrame", "pytlwall.plot_util.plot_Z_vs_f_simple", "pytlwall.CfgIo" ]
[((82, 145), 'pytlwall.CfgIo', 'pytlwall.CfgIo', (['"""ex_surface_impedance/ex_surface_impedance.cfg"""'], {}), "('ex_surface_impedance/ex_surface_impedance.cfg')\n", (96, 145), False, 'import pytlwall\n'), ((754, 772), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (766, 772), True, 'import pandas as pd\n'), ((931, 1045), 'pytlwall.plot_util.plot_Z_vs_f_simple', 'plot.plot_Z_vs_f_simple', (['mywall.f', 'mywall.ZLongSurf', '"""S"""', 'title', 'savedir', 'savename'], {'xscale': '"""log"""', 'yscale': '"""log"""'}), "(mywall.f, mywall.ZLongSurf, 'S', title, savedir,\n savename, xscale='log', yscale='log')\n", (954, 1045), True, 'import pytlwall.plot_util as plot\n'), ((1149, 1264), 'pytlwall.plot_util.plot_Z_vs_f_simple', 'plot.plot_Z_vs_f_simple', (['mywall.f', 'mywall.ZTransSurf', '"""S"""', 'title', 'savedir', 'savename'], {'xscale': '"""log"""', 'yscale': '"""log"""'}), "(mywall.f, mywall.ZTransSurf, 'S', title, savedir,\n savename, xscale='log', yscale='log')\n", (1172, 1264), True, 'import pytlwall.plot_util as plot\n')]
# !/usr/bin/env python3 # -*- Coding: UTF-8 -*- # # -*- System: Linux -*- # # -*- Usage: *.py -*- # # Owner: Cloud-Technology LLC. # Source: gitlab.cloud-technology.io # License: BSD 3-Clause License """ ... """ # ============================================================================= # Local Imports # ============================================================================= import dataclasses import ipaddress from . import * import Mongo.Gaming.Schemas.Base # ============================================================================= # Reference Type(s) # ============================================================================= Scheme = Mongo.Gaming.Schemas.Base.Model Setup = Scheme.Configuration # ============================================================================= # Class (Schema) Initialization # ============================================================================= __module__ = __name__ class Address(Scheme): """ ... """ Assignment: String = Field( ..., alias = "Assignment", description = "Game Server Public IPv4 || IPv6 Address" ) FQDN: Optional[String] = Field( ..., alias = "FQDN", description = "Public-Facing Hostname via DNS A Record" ) V6: Boolean = Field( ..., alias = "V6", description = "Boolean Flag Evaluating the IP-V6 Assignment Property" ) class Port(Scheme): """ ... """ Name: String = Field( ..., alias = "Name", description = "Canonical Human-Readable Title of Attributed Port" ) Value: Integer = Field( ..., alias = "Value", description = "Network Assigned Port Value" ) Protocol: String = Field( ..., alias = "Protocol", description = "UDP, TCP, UDP+TCP Enumeration Communication Protocol" ) Type: String = Field( "Port", alias = "Network-Type", description = "XOR Port || Socket" ) Description: String = Field( ..., alias = "Description", description = "Server Port Functional Purpose + Description" ) class Base(Scheme): """ ... """ Host: Address = Field( default = Address( Assignment = "0.0.0.0", FQDN = None, V6 = False ), description = "Game Server Public IP(v4|v6) Address" ) Game: Port = Field( default = Port( Name = "Game", Type = "Port", Value = 27015, Protocol = "UDP+TCP", Description = """\ Game Transmission, Ping(s) and RCON Forward Port via TCP + UDP """.strip() ), alias = "Game-Port", description = "Game Transmission Port" ) Client: Port = Field( default = Port( Name = "Client", Type = "Port", Value = 27005, Protocol = "UDP", Description = "Client Connection Port" ), alias = "Client-Port", description = "Client Transmission Port" ) TV: Port = Field( default = Port( Name = "Valve-T-V", Type = "Port", Value = 27020, Protocol = "UDP", Description = "Valve TV Connection Port" ), alias = "Source-T-V-Port", description = "Valve TV Transmission Port" ) Map: String = Field( default = "de_mirage", alias = "Default-Map", description = "The Default Server Map" ) Maps: Optional[List[String]] = Field( default = ["de_mirage"], alias = "Map-Rotation", description = "Available Server Ingame Map Rotation" ) Players: Integer = Field( default = 16, alias = "Max-Players", description = "Maximum Server-Connected Players" ) Tick: Integer = Field( default = 64, alias = "Tick-Rate", description = "Ingame Server-State Refresh Rate" ) class Config(Setup): title = "{0}".format(__module__.split(".").pop()) class Create(Base): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "Create" class Shard(Base): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "Shard" class Update(Base): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "Update" class Delete(Scheme): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "Delete" class Schema(Base): """ ... """ _id: PydanticObjectId = None ID: Union[PydanticObjectId, String, None] = String(_id) if _id else None class Config(Base.Config): title = Base.Config.title + "-" + "Schema" class Association(Schema): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "Association" class Generator(Schema): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "Generator" class JSON(Generator): """ ... """ class Config(Base.Config): title = Base.Config.title + "-" + "JSON" @dataclasses.dataclass() class Response: Mutation: String = Field(...) Status: Integer = Field(...) Message: String = Field(...) @dataclasses.dataclass() class Success(Response): Mutation: String = Field("N/A") Status: Integer = Field(200, alias = "Status-Code") Message: String = Field("Success", description = "...") @dataclasses.dataclass() class Error(Response): Mutation: String = Field("N/A") Status: Integer = Field(400, alias = "Status-Code") Message: String = Field("Error", description = "...")
[ "dataclasses.dataclass" ]
[((5229, 5252), 'dataclasses.dataclass', 'dataclasses.dataclass', ([], {}), '()\n', (5250, 5252), False, 'import dataclasses\n'), ((5382, 5405), 'dataclasses.dataclass', 'dataclasses.dataclass', ([], {}), '()\n', (5403, 5405), False, 'import dataclasses\n'), ((5596, 5619), 'dataclasses.dataclass', 'dataclasses.dataclass', ([], {}), '()\n', (5617, 5619), False, 'import dataclasses\n')]
import gc from .qfit import QFitRotamericResidue, QFitRotamericResidueOptions from .qfit import QFitSegment, QFitSegmentOptions import multiprocessing as mp from tqdm import tqdm import os.path import os import sys import time import argparse from .custom_argparsers import ToggleActionFlag, CustomHelpFormatter import logging import traceback from .logtools import setup_logging, log_run_info, poolworker_setup_logging, QueueListener from . import MapScaler, Structure, XMap from .structure.rotamers import ROTAMERS logger = logging.getLogger(__name__) os.environ["OMP_NUM_THREADS"] = "1" def build_argparser(): p = argparse.ArgumentParser(formatter_class=CustomHelpFormatter, description=__doc__) p.add_argument("map", type=str, help="Density map in CCP4 or MRC format, or an MTZ file " "containing reflections and phases. For MTZ files " "use the --label options to specify columns to read.") p.add_argument("structure", help="PDB-file containing structure.") # Map input options p.add_argument("-l", "--label", default="FWT,PHWT", metavar="<F,PHI>", help="MTZ column labels to build density") p.add_argument('-r', "--resolution", default=None, metavar="<float>", type=float, help="Map resolution (Å) (only use when providing CCP4 map files)") p.add_argument("-m", "--resolution-min", default=None, metavar="<float>", type=float, help="Lower resolution bound (Å) (only use when providing CCP4 map files)") p.add_argument("-z", "--scattering", choices=["xray", "electron"], default="xray", help="Scattering type") p.add_argument("-rb", "--randomize-b", action="store_true", dest="randomize_b", help="Randomize B-factors of generated conformers") p.add_argument('-o', '--omit', action="store_true", help="Treat map file as an OMIT map in map scaling routines") # Map prep options p.add_argument("--scale", action=ToggleActionFlag, dest="scale", default=True, help="Scale density") p.add_argument("-sv", "--scale-rmask", dest="scale_rmask", default=1.0, metavar="<float>", type=float, help="Scaling factor for soft-clash mask radius") p.add_argument("-dc", "--density-cutoff", default=0.3, metavar="<float>", type=float, help="Density values below this value are set to <density-cutoff-value>") p.add_argument("-dv", "--density-cutoff-value", default=-1, metavar="<float>", type=float, help="Density values below <density-cutoff> are set to this value") p.add_argument("--subtract", action=ToggleActionFlag, dest="subtract", default=True, help="Subtract Fcalc of neighboring residues when running qFit") p.add_argument("-pad", "--padding", default=8.0, metavar="<float>", type=float, help="Padding size for map creation") p.add_argument("--waters-clash", action=ToggleActionFlag, dest="waters_clash", default=True, help="Consider waters for soft clash detection") # Sampling options p.add_argument("--backbone", action=ToggleActionFlag, dest="sample_backbone", default=True, help="Sample backbone using inverse kinematics") p.add_argument('-bbs', "--backbone-step", default=0.1, dest="sample_backbone_step", metavar="<float>", type=float, help="Stepsize for the amplitude of backbone sampling (Å)") p.add_argument('-bba', "--backbone-amplitude", default=0.3, dest="sample_backbone_amplitude", metavar="<float>", type=float, help="Maximum backbone amplitude (Å)") p.add_argument('-bbv', "--backbone-sigma", default=0.125, dest="sample_backbone_sigma", metavar="<float>", type=float, help="Backbone random-sampling displacement (Å)") p.add_argument("--sample-angle", action=ToggleActionFlag, dest="sample_angle", default=True, help="Sample CA-CB-CG angle for aromatic F/H/W/Y residues") p.add_argument('-sas', "--sample-angle-step", default=3.75, dest="sample_angle_step", metavar="<float>", type=float, help="CA-CB-CG bond angle sampling step in degrees") p.add_argument('-sar', "--sample-angle-range", default=7.5, dest="sample_angle_range", metavar="<float>", type=float, help="CA-CB-CG bond angle sampling range in degrees [-x,x]") p.add_argument("--sample-rotamers", action=ToggleActionFlag, dest="sample_rotamers", default=True, help="Sample sidechain rotamers") p.add_argument("-b", "--dofs-per-iteration", default=2, metavar="<int>", type=int, help="Number of internal degrees that are sampled/built per iteration") p.add_argument("-s", "--dihedral-stepsize", default=10, metavar="<float>", type=float, help="Stepsize for dihedral angle sampling in degrees") p.add_argument("-rn", "--rotamer-neighborhood", default=60, metavar="<float>", type=float, help="Chi dihedral-angle sampling range around each rotamer in degrees [-x,x]") p.add_argument("--remove-conformers-below-cutoff", action="store_true", dest="remove_conformers_below_cutoff", help=("Remove conformers during sampling that have atoms " "with no density support, i.e. atoms are positioned " "at density values below <density-cutoff>")) p.add_argument('-cf', "--clash-scaling-factor", default=0.75, metavar="<float>", type=float, help="Set clash scaling factor") p.add_argument('-ec', "--external-clash", action="store_true", dest="external_clash", help="Enable external clash detection during sampling") p.add_argument("-bs", "--bulk-solvent-level", default=0.3, metavar="<float>", type=float, help="Bulk solvent level in absolute values") p.add_argument("-c", "--cardinality", default=5, metavar="<int>", type=int, help="Cardinality constraint used during MIQP") p.add_argument("-t", "--threshold", default=0.2, metavar="<float>", type=float, help="Threshold constraint used during MIQP") p.add_argument("-hy", "--hydro", action="store_true", dest="hydro", help="Include hydrogens during calculations") p.add_argument('-rmsd', "--rmsd-cutoff", default=0.01, metavar="<float>", type=float, help="RMSD cutoff for removal of identical conformers") p.add_argument("--threshold-selection", dest="bic_threshold", action=ToggleActionFlag, default=True, help="Use BIC to select the most parsimonious MIQP threshold") p.add_argument("-p", "--nproc", type=int, default=1, metavar="<int>", help="Number of processors to use") # qFit Segment options p.add_argument("-f", "--fragment-length", default=4, dest="fragment_length", metavar="<int>", type=int, help="Fragment length used during qfit_segment") p.add_argument("--segment-threshold-selection", action=ToggleActionFlag, dest="seg_bic_threshold", default=True, help="Use BIC to select the most parsimonious MIQP threshold (segment)") # Global options p.add_argument("--random-seed", dest="random_seed", metavar="<int>", type=int, help="Seed value for PRNG") # Output options p.add_argument("-d", "--directory", default='.', metavar="<dir>", type=os.path.abspath, help="Directory to store results") p.add_argument("-v", "--verbose", action="store_true", help="Be verbose") p.add_argument("--debug", action="store_true", help="Log as much information as possible") p.add_argument("--write-intermediate-conformers", action="store_true", help="Write intermediate structures to file (useful with debugging)") p.add_argument("--pdb", help="Name of the input PDB") return p class QFitProteinOptions(QFitRotamericResidueOptions, QFitSegmentOptions): def __init__(self): super().__init__() self.nproc = 1 self.verbose = True self.omit = False self.checkpoint = False self.pdb = None class QFitProtein: def __init__(self, structure, xmap, options): self.xmap = xmap self.structure = structure self.options = options def run(self): if self.options.pdb is not None: self.pdb = self.options.pdb + '_' else: self.pdb = '' multiconformer = self._run_qfit_residue_parallel() structure = Structure.fromfile('multiconformer_model.pdb') # .reorder() structure = structure.extract('e', 'H', '!=') multiconformer = self._run_qfit_segment(structure) return multiconformer def _run_qfit_residue_parallel(self): """Run qfit independently over all residues.""" # This function hands out the job in parallel to a Pool of Workers. # To create Workers, we will use "forkserver" where possible, # and default to "spawn" elsewhere (e.g. on Windows). try: ctx = mp.get_context(method="forkserver") except ValueError: ctx = mp.get_context(method="spawn") # Print execution stats residues = list(self.structure.single_conformer_residues) logger.info(f"RESIDUES: {len(residues)}") logger.info(f"NPROC: {self.options.nproc}") # Build a Manager, have it construct a Queue. This will conduct # thread-safe and process-safe passing of LogRecords. # Then launch a QueueListener Thread to read & handle LogRecords # that are placed on the Queue. mgr = mp.Manager() logqueue = mgr.Queue() listener = QueueListener(logqueue) listener.start() # Initialise progress bar progress = tqdm(total=len(residues), desc="Sampling residues", unit="residue", unit_scale=True, leave=True, miniters=1) # Define callbacks and error callbacks to be attached to Jobs def _cb(result): if result: logger.info(result) progress.update() def _error_cb(e): tb = ''.join(traceback.format_exception(e.__class__, e, e.__traceback__)) logger.critical(tb) progress.update() # Launch a Pool and run Jobs # Here, we calculate alternate conformers for individual residues. with ctx.Pool(processes=self.options.nproc, maxtasksperchild=4) as pool: futures = [pool.apply_async(QFitProtein._run_qfit_residue, kwds={'residue': residue, 'structure': self.structure, 'xmap': self.xmap, 'options': self.options, 'logqueue': logqueue}, callback=_cb, error_callback=_error_cb) for residue in residues] # Make sure all jobs are finished for f in futures: f.wait() # Close the progressbar pool.close() pool.join() progress.close() # There are no more sub-processes, so we stop the QueueListener listener.stop() listener.join() # Extract non-protein atoms hetatms = self.structure.extract('record', 'HETATM', '==') waters = self.structure.extract('record', 'ATOM', '==') waters = waters.extract('resn', 'HOH', '==') hetatms = hetatms.combine(waters) # Combine all multiconformer residues into one structure for residue in residues: if residue.resn[0] not in ROTAMERS: hetatms = hetatms.combine(residue) continue chain = residue.chain[0] resid, icode = residue.id directory = os.path.join(self.options.directory, f"{chain}_{resid}") if icode: directory += f"_{icode}" fname = os.path.join(directory, 'multiconformer_residue.pdb') if not os.path.exists(fname): continue residue_multiconformer = Structure.fromfile(fname) try: multiconformer = multiconformer.combine(residue_multiconformer) except UnboundLocalError: multiconformer = residue_multiconformer except FileNotFoundError: logger.error(f"File \"{fname}\" not found!") pass multiconformer = multiconformer.combine(hetatms) fname = os.path.join(self.options.directory, "multiconformer_model.pdb") if self.structure.scale or self.structure.cryst_info: multiconformer.tofile(fname, self.structure.scale, self.structure.cryst_info) else: multiconformer.tofile(fname) return multiconformer def _run_qfit_segment(self, multiconformer): self.options.randomize_b = False self.options.bic_threshold = self.options.seg_bic_threshold if self.options.seg_bic_threshold: self.options.fragment_length = 3 else: self.options.threshold = 0.2 self.xmap = self.xmap.extract(self.structure.coor, padding=5) qfit = QFitSegment(multiconformer, self.xmap, self.options) multiconformer = qfit() fname = os.path.join(self.options.directory, self.pdb + "multiconformer_model2.pdb") if self.structure.scale or self.structure.cryst_info: multiconformer.tofile(fname, self.structure.scale, self.structure.cryst_info) else: multiconformer.tofile(fname) return multiconformer @staticmethod def _run_qfit_residue(residue, structure, xmap, options, logqueue): """Run qfit on a single residue to determine density-supported conformers.""" # Don't run qfit if we have a ligand or water if residue.type != 'rotamer-residue': return # Set up logger hierarchy in this subprocess poolworker_setup_logging(logqueue) # This function is run in a subprocess, so `structure` and `residue` have # been 'copied' (pickled+unpickled) as best as possible. # However, `structure`/`residue` objects pickled and passed to subprocesses do # not contain attributes decorated by @_structure_properties. # This decorator attaches 'getter' and 'setter' _local_ functions to the attrs # (defined within, and local to the _structure_properties function). # Local functions are **unpickleable**, and as a result, so are these attrs. # This includes: # (record, atomid, name, altloc, resn, chain, resi, icode, # q, b, e, charge, coor, active, u00, u11, u22, u01, u02, u12) # Similarly, these objects are also missing attributes wrapped by @property: # (covalent_radius, vdw_radius) # Finally, the _selector object is only partially pickleable, # as it contains a few methods that are defined by a local lambda inside # pyparsing._trim_arity(). # Since all these attributes are attached by __init__ of the # qfit.structure.base_structure._BaseStructure class, # here, we call __init__ again, to make sure these objects are # correctly initialised in a subprocess. structure.__init__( structure.data, selection=structure._selection, parent=structure.parent, ) residue.__init__( residue.data, resi=residue.id[0], icode=residue.id[1], type=residue.type, selection=residue._selection, parent=residue.parent, ) # Build the residue results directory chainid = residue.chain[0] resi, icode = residue.id identifier = f"{chainid}_{resi}" if icode: identifier += f'_{icode}' base_directory = options.directory options.directory = os.path.join(base_directory, identifier) try: os.makedirs(options.directory) except OSError: pass # Exit early if we have already run qfit for this residue fname = os.path.join(options.directory, 'multiconformer_residue.pdb') if os.path.exists(fname): return # Copy the structure structure_new = structure structure_resi = structure.extract(f'resi {resi} and chain {chainid}') if icode: structure_resi = structure_resi.extract('icode', icode) chain = structure_resi[chainid] conformer = chain.conformers[0] residue = conformer[residue.id] altlocs = sorted(list(set(residue.altloc))) if len(altlocs) > 1: try: altlocs.remove('') except ValueError: pass for altloc in altlocs[1:]: sel_str = f"resi {resi} and chain {chainid} and altloc {altloc}" sel_str = f"not ({sel_str})" structure_new = structure_new.extract(sel_str) # Copy the map xmap_reduced = xmap.extract(residue.coor, padding=options.padding) # Exception handling in case qFit-residue fails: qfit = QFitRotamericResidue(residue, structure_new, xmap_reduced, options) try: qfit.run() except RuntimeError as e: tb = ''.join(traceback.format_exception(e.__class__, e, e.__traceback__)) logger.warning(f"[{qfit.identifier}] " f"Unable to produce an alternate conformer. " f"Using deposited conformer A for this residue.") logger.info(f"[{qfit.identifier}] This is a result of the following exception:\n" f"{tb})") qfit.conformer = residue.copy() qfit._occupancies = [residue.q] qfit._coor_set = [residue.coor] qfit._bs = [residue.b] # Save multiconformer_residue qfit.tofile() qfit_id = qfit.identifier # How many conformers were found? n_conformers = len(qfit.get_conformers()) # Freeing up some memory to avoid memory issues: del xmap_reduced del qfit gc.collect() # Return a string about the residue that was completed. return f"[{qfit_id}]: {n_conformers} conformers" def prepare_qfit_protein(options): """Loads files to build a QFitProtein job.""" # Load structure and prepare it structure = Structure.fromfile(options.structure).reorder() if not options.hydro: structure = structure.extract('e', 'H', '!=') # Load map and prepare it xmap = XMap.fromfile( options.map, resolution=options.resolution, label=options.label ) xmap = xmap.canonical_unit_cell() if options.scale is True: scaler = MapScaler(xmap, scattering=options.scattering) radius = 1.5 reso = None if xmap.resolution.high is not None: reso = xmap.resolution.high elif options.resolution is not None: reso = options.resolution if reso is not None: radius = 0.5 + reso / 3.0 scaler.scale(structure, radius=options.scale_rmask*radius) return QFitProtein(structure, xmap, options) def main(): """Default entrypoint for qfit_protein.""" # Collect and act on arguments # (When args==None, argparse will default to sys.argv[1:]) p = build_argparser() args = p.parse_args(args=None) try: os.mkdir(args.directory) except OSError: pass # Apply the arguments to options options = QFitProteinOptions() options.apply_command_args(args) # Setup logger setup_logging(options=options) log_run_info(options, logger) # Build a QFitProtein job qfit = prepare_qfit_protein(options=options) # Run the QFitProtein job time0 = time.time() multiconformer = qfit.run() logger.info(f"Total time: {time.time() - time0}s")
[ "logging.getLogger", "os.path.exists", "argparse.ArgumentParser", "os.makedirs", "os.path.join", "multiprocessing.get_context", "traceback.format_exception", "os.mkdir", "gc.collect", "multiprocessing.Manager", "time.time" ]
[((528, 555), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (545, 555), False, 'import logging\n'), ((625, 711), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'CustomHelpFormatter', 'description': '__doc__'}), '(formatter_class=CustomHelpFormatter, description=\n __doc__)\n', (648, 711), False, 'import argparse\n'), ((21123, 21134), 'time.time', 'time.time', ([], {}), '()\n', (21132, 21134), False, 'import time\n'), ((10376, 10388), 'multiprocessing.Manager', 'mp.Manager', ([], {}), '()\n', (10386, 10388), True, 'import multiprocessing as mp\n'), ((13563, 13627), 'os.path.join', 'os.path.join', (['self.options.directory', '"""multiconformer_model.pdb"""'], {}), "(self.options.directory, 'multiconformer_model.pdb')\n", (13575, 13627), False, 'import os\n'), ((14382, 14458), 'os.path.join', 'os.path.join', (['self.options.directory', "(self.pdb + 'multiconformer_model2.pdb')"], {}), "(self.options.directory, self.pdb + 'multiconformer_model2.pdb')\n", (14394, 14458), False, 'import os\n'), ((17118, 17158), 'os.path.join', 'os.path.join', (['base_directory', 'identifier'], {}), '(base_directory, identifier)\n', (17130, 17158), False, 'import os\n'), ((17339, 17400), 'os.path.join', 'os.path.join', (['options.directory', '"""multiconformer_residue.pdb"""'], {}), "(options.directory, 'multiconformer_residue.pdb')\n", (17351, 17400), False, 'import os\n'), ((17412, 17433), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (17426, 17433), False, 'import os\n'), ((19440, 19452), 'gc.collect', 'gc.collect', ([], {}), '()\n', (19450, 19452), False, 'import gc\n'), ((20743, 20767), 'os.mkdir', 'os.mkdir', (['args.directory'], {}), '(args.directory)\n', (20751, 20767), False, 'import os\n'), ((9797, 9832), 'multiprocessing.get_context', 'mp.get_context', ([], {'method': '"""forkserver"""'}), "(method='forkserver')\n", (9811, 9832), True, 'import multiprocessing as mp\n'), ((12817, 12873), 'os.path.join', 'os.path.join', (['self.options.directory', 'f"""{chain}_{resid}"""'], {}), "(self.options.directory, f'{chain}_{resid}')\n", (12829, 12873), False, 'import os\n'), ((12994, 13047), 'os.path.join', 'os.path.join', (['directory', '"""multiconformer_residue.pdb"""'], {}), "(directory, 'multiconformer_residue.pdb')\n", (13006, 13047), False, 'import os\n'), ((17184, 17214), 'os.makedirs', 'os.makedirs', (['options.directory'], {}), '(options.directory)\n', (17195, 17214), False, 'import os\n'), ((9878, 9908), 'multiprocessing.get_context', 'mp.get_context', ([], {'method': '"""spawn"""'}), "(method='spawn')\n", (9892, 9908), True, 'import multiprocessing as mp\n'), ((11008, 11067), 'traceback.format_exception', 'traceback.format_exception', (['e.__class__', 'e', 'e.__traceback__'], {}), '(e.__class__, e, e.__traceback__)\n', (11034, 11067), False, 'import traceback\n'), ((13067, 13088), 'os.path.exists', 'os.path.exists', (['fname'], {}), '(fname)\n', (13081, 13088), False, 'import os\n'), ((18587, 18646), 'traceback.format_exception', 'traceback.format_exception', (['e.__class__', 'e', 'e.__traceback__'], {}), '(e.__class__, e, e.__traceback__)\n', (18613, 18646), False, 'import traceback\n'), ((21198, 21209), 'time.time', 'time.time', ([], {}), '()\n', (21207, 21209), False, 'import time\n')]
from genericpath import exists import threading import queue import socket import json import time import sys from eventHandler import handleEvents from abc import ABC, abstractmethod from DDSlogger import logger, config # HELPER FUNCTION def recvall(sock): """ recvall implementation, receives data of whatever size in several chunks Args: sock (socket): connected socket Returns: [byte]: data received from the socket """ BUFF_SIZE = 4096 # 4 KiB, §EDIT buffer size data = b'' while True: part = sock.recv(BUFF_SIZE) data += part if len(part) < BUFF_SIZE: # either 0 or end of data break return data # abstract class class FairLossLink(ABC): @abstractmethod def send(self, pid_receiver, message): pass @abstractmethod def deliver(self, pid_sender, message): pass class FairLossLink_vTCP_simple(FairLossLink): """ # 2.4.2 Fair-Loss Links This implementation relies on TCP sockets and on three threads: 1) one that keeps a listening socket open and waits for new connections 2) one that take care of receiving sequentially messages from all incoming connections 3) ona that transmit all messages enqueued to send """ def __init__(self, pid, servicePort : int, dest_addresses : dict) -> None: """ Args: servicePort (int): port for the incoming connections dest_addresses (dict): map pid -> IP address """ self.pid = pid self.servicePort = servicePort self.pid_to_address = dest_addresses self.address_to_pid = dict((v,k) for k,v in self.pid_to_address.items()) self.to_receive = queue.Queue() # (socket, sourceIP) self.to_send = queue.Queue() # (destIP, messageByte) self.deliver_events = None # (pid_source, message) linkInThread = threading.Thread(target=self.manage_links_in, args=()) # this thread should die with its parent process linkInThread.start() linkOutThread = threading.Thread(target=self.manage_links_out, args=()) # this thread should die with its parent process linkOutThread.start() receiveThread = threading.Thread(target=self.receive_message, args=()) # this thread should die with its parent process receiveThread.start() ### LINK MANAGEMENT def manage_links_in(self): while True: # if the socket fails, re-open try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # TCP socket s.bind(('', self.servicePort)) # the socket is reachable by any address the machine happens to have. s.listen(1) # we want it to queue up as many as * connect requests before refusing outside connections. §EDIT while True: sock, addr = s.accept() self.to_receive.put((sock,addr)) except socket.error as err: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) continue except Exception as ex: _, _, exc_tb = sys.exc_info() logger.debug('Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(ex))+' : '+str(ex)) def manage_links_out(self): while True: ipDestionation, message = self.to_send.get() try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.settimeout(2) # connect timeout s.connect((ipDestionation, self.servicePort)) s.settimeout(None) # back to a blocking socket s.sendall(message) if config['LOG'].getboolean('fairlosslink'): logger.info('pid:'+self.pid+' - '+'fll_send: sent '+str(message) +' to '+self.address_to_pid[ipDestionation]) except socket.error as err: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) continue except Exception as ex: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(ex))+' : '+str(ex)) def receive_message(self): while True: sock, addr = self.to_receive.get() try: with sock: received_data = recvall(sock) message = json.loads(received_data.decode('utf-8')) #§NOTE what about decoding errors? self.deliver(self.address_to_pid[addr[0]], message['msg']) #§NOTE direct delivery except socket.error as err: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) continue except Exception as ex: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) ### INTERFACES def send(self, pid_receiver, message): data_to_send = {'msg' : message} #§NOTE message needs to be convertible in JSON data_to_send_byte = json.dumps(data_to_send).encode('utf-8') self.to_send.put((self.pid_to_address[pid_receiver],data_to_send_byte)) if config['LOG'].getboolean('fairlosslink'): logger.info('pid:'+self.pid+' - '+'fll_send: sending '+str(message)+' to '+str(pid_receiver)) def deliver(self, pid_sender, message): if config['LOG'].getboolean('fairlosslink'): logger.info('pid:'+self.pid+' - '+'fll_deliver: delivered '+str(message)+' from '+str(pid_sender)) if self.deliver_events != None: self.deliver_events.put((pid_sender,message)) ### INTERCONNECTION def getDeliverEvents(self): self.deliver_events = queue.Queue() return self.deliver_events class FairLossLink_vTCP_MTC(FairLossLink): """ # 2.4.2 Fair-Loss Links MTC: Multiple Threads Connection This version improves with respect to FairLossLink_vTCP_simple employing multiple threads handling the incoming and outgoing connections """ def __init__(self, pid, servicePort : int, dest_addresses : dict, n_threads_in : int = 1, n_threads_out : int = 1) -> None: """ Args: servicePort (int): port for the incoming connections dest_addresses (dict): map pid -> IP address n_threads_in (int): number of threads managing incoming connections n_threads_out (int): number of threads managing outgoing connections """ self.pid = pid self.servicePort = servicePort self.pid_to_address = dest_addresses self.address_to_pid = dict((v,k) for k,v in self.pid_to_address.items()) self.to_receive = queue.Queue() # (socket, sourceIP) self.to_send = queue.Queue() # (destIP, messageByte) self.deliver_events = None # (pid_source, message) linkInThread = threading.Thread(target=self.manage_links_in, args=(n_threads_in,)) # this thread should die with its parent process linkInThread.start() self.manage_links_out(n_threads_out) ### LINK MANAGEMENT def manage_links_in(self, n_thread : int): # creating multiple threads that handles the incoming connections for i in range(n_thread): receiveThread = threading.Thread(target=self.receive_message, args=()) # this thread should die with its parent process receiveThread.start() while True: # if the socket fails, re-open try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: # TCP socket s.bind(('', self.servicePort)) # the socket is reachable by any address the machine happens to have. s.listen(1) # we want it to queue up as many as * connect requests before refusing outside connections. §EDIT while True: sock, addr = s.accept() self.to_receive.put((sock,addr)) except socket.error as err: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) continue except Exception as ex: _, _, exc_tb = sys.exc_info() logger.debug('Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(ex))+' : '+str(ex)) def manage_links_out(self, n_thread : int): for i in range(n_thread): sendThread = threading.Thread(target=self.send_message, args=()) # this thread should die with its parent process sendThread.start() def receive_message(self): while True: sock, addr = self.to_receive.get() try: with sock: received_data = recvall(sock) message = json.loads(received_data.decode('utf-8')) #§NOTE what about decoding errors? self.deliver(self.address_to_pid[addr[0]], message['msg']) #§NOTE direct delivery except socket.error as err: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) continue except Exception as ex: _, _, exc_tb = sys.exc_info() logger.debug('Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(ex))+' : '+str(ex)) def send_message(self): while True: ipDestionation, message = self.to_send.get() try: with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.settimeout(2) # connect timeout s.connect((ipDestionation, self.servicePort)) s.settimeout(None) # back to a blocking socket s.sendall(message) if config['LOG'].getboolean('fairlosslink'): logger.info('pid:'+self.pid+' - '+'fll_send: sent '+str(message) +' to '+self.address_to_pid[ipDestionation]) except socket.error as err: _, _, exc_tb = sys.exc_info() logger.debug('pid:'+self.pid+' - Exception in '+str(sys._getframe( ).f_code.co_name)+":"+str(exc_tb.tb_lineno)+" - "+str(type(err))+' : '+str(err)) continue except Exception as ex: #§TO-DO proper exeception handling, except socket.error: logger.debug('pid:'+self.pid+' - EXCEPTION, '+self.manage_link_out.__name__+str(type(ex))+':'+str(ex)+' - '+str(ipDestionation)) ### INTERFACES def send(self, pid_receiver, message): data_to_send = {'msg' : message} #§NOTE message needs to be convertible in JSON data_to_send_byte = json.dumps(data_to_send).encode('utf-8') self.to_send.put((self.pid_to_address[pid_receiver],data_to_send_byte)) if config['LOG'].getboolean('fairlosslink'): logger.info('pid:'+self.pid+' - '+'fll_send: sending '+str(message)+' to '+str(pid_receiver)) def deliver(self, pid_sender, message): if config['LOG'].getboolean('fairlosslink'): logger.info('pid:'+self.pid+' - '+'fll_deliver: delivered '+str(message)+' from '+str(pid_sender)) if self.deliver_events != None: self.deliver_events.put((pid_sender,message)) ### INTERCONNECTION def getDeliverEvents(self): self.deliver_events = queue.Queue() return self.deliver_events class StubbornLink: """ 2.4.3 Stubborn Links """ def __init__(self, fll : FairLossLink, timeout) -> None: self.fll = fll self.pid = fll.pid self.sent = [] self.fllDeliverEvents = self.fll.getDeliverEvents() # interconnection self.send_events = queue.Queue() self.deliver_events = None # handle timeout events timeoutEventHandlerThread = threading.Thread(target=self.onEventTimeout, args=(timeout, )) # this thread should die with its parent process timeoutEventHandlerThread.start() # handle fll_deliver events fllDeliverEventHandlerThread = threading.Thread(target=handleEvents, args=(self.fllDeliverEvents, self.onEventFllDeliver)) fllDeliverEventHandlerThread.start() # handle fll_deliver events sendEventHandlerThread = threading.Thread(target=handleEvents, args=(self.send_events, self.onEventFlSend)) sendEventHandlerThread.start() ### EVENT HANDLERS def onEventTimeout(self, seconds : float) -> None: while True: time.sleep(seconds) for pid_receiver, message in self.sent: self.fll.send(pid_receiver, message) def onEventFllDeliver(self, pid_sender, message): self.deliver(pid_sender, message) def onEventFlSend(self, pid_receiver, message): self.fll.send(pid_receiver,message) self.sent.append((pid_receiver,message)) ### INTERFACES def send(self, pid_receiver, message): if config['LOG'].getboolean('stubbornlink'): logger.info('pid:'+self.pid+' - '+'sl_send: sending '+str(message)+' to '+str(pid_receiver)) self.send_events.put((pid_receiver, message)) def deliver(self, pid_sender, message): if config['LOG'].getboolean('stubbornlink'): logger.info('pid:'+self.pid+' - '+'sl_deliver: delivered '+str(message)+' from '+str(pid_sender)) if self.deliver_events != None: self.deliver_events.put((pid_sender,message)) ### INTERCONNECTION def getDeliverEvents(self): self.deliver_events = queue.Queue() return self.deliver_events # abstract class class PerfectLink(ABC): @abstractmethod def send(self, pid_receiver, message): pass @abstractmethod def deliver(self, pid_sender, message): pass class PerfectLinkOnStubborn(PerfectLink): """ 2.4.4 Perfect Links """ def __init__(self, sl : StubbornLink) -> None: self.sl = sl self.pid = sl.pid self.delivered = [] self.send_events = queue.Queue() self.tagged_deliver_events = {} # collect deliver events with a specific message tag self.deliver_events = None self.slDeliverEvents = self.sl.getDeliverEvents() slDeliverEventHandlerThread = threading.Thread(target=handleEvents, args=(self.slDeliverEvents, self.onEventSlDeliver)) slDeliverEventHandlerThread.start() plSendEventHandlerThread = threading.Thread(target=handleEvents, args=(self.send_events, self.onEventPlSend)) plSendEventHandlerThread.start() ### EVENT HANDLERS def onEventSlDeliver(self, pid_sender, message): pid_sender_message_tuple = (pid_sender, message) if pid_sender_message_tuple not in self.delivered: self.delivered.append(pid_sender_message_tuple) self.deliver(pid_sender_message_tuple[0], pid_sender_message_tuple[1]) def onEventPlSend(self, pid_receiver, message): self.sl.send(pid_receiver,message) ### INTERFACES def send(self, pid_receiver, message): self.send_events.put((pid_receiver,message)) if config['LOG'].getboolean('perfectlink'): logger.info('pid:'+self.pid+' - '+'pl_send: sending '+str(message)+' to '+str(pid_receiver)) def deliver(self, pid_sender, message): if config['LOG'].getboolean('perfectlink'): logger.info('pid:'+self.pid+' - '+'pl_deliver: delivered '+str(message)+' from '+str(pid_sender)) if len(message) > 1 and isinstance(message[0],str) and message[0][:3] == 'MT:' and message[0] in self.tagged_deliver_events: self.tagged_deliver_events[message[0]].put((pid_sender,message)) elif self.deliver_events != None: self.deliver_events.put((pid_sender,message)) ### INTERCONNECTION def getDeliverEvents(self): self.deliver_events = queue.Queue() return self.deliver_events def getTaggedDeliverEvents(self, msg_tag : str) -> queue.Queue: """ msg_tag (str) : get delivery events for a specific message tag (msg_tag DO NOT include the prefix 'MT:') """ self.tagged_deliver_events['MT:'+msg_tag] = queue.Queue() return self.tagged_deliver_events['MT:'+msg_tag] class PerfectLinkPingPong(PerfectLink): """ PerfectLink implementation on a Fairloss link, based on ack mechanism to avoid infinite retransmissions """ def __init__(self, fll : FairLossLink, timeout : int) -> None: self.fll = fll self.pid = fll.pid self.delivered = [] self.waitingForAck = [] self.send_events = queue.Queue() self.tagged_deliver_events = {} # collect deliver events with a specific message tag self.deliver_events = None self.flDeliverEvents = self.fll.getDeliverEvents() # handle timeout events timeoutEventHandlerThread = threading.Thread(target=self.onEventTimeout, args=(timeout, )) # this thread should die with its parent process timeoutEventHandlerThread.start() flDeliverEventHandlerThread = threading.Thread(target=handleEvents, args=(self.flDeliverEvents, self.onEventFlDeliver)) flDeliverEventHandlerThread.start() plSendEventHandlerThread = threading.Thread(target=handleEvents, args=(self.send_events, self.onEventPlSend)) plSendEventHandlerThread.start() ### EVENT HANDLERS def onEventTimeout(self, seconds : float) -> None: while True: time.sleep(seconds) for pid_receiver, message in self.waitingForAck: self.fll.send(pid_receiver, message) def onEventFlDeliver(self, pid_sender, message): if message[0] == 'pl_ACK': innerMessage = message[1:] pid_sender_message_tuple = (pid_sender, innerMessage) if pid_sender_message_tuple in self.waitingForAck: self.waitingForAck.remove(pid_sender_message_tuple) else: pid_sender_message_tuple = (pid_sender, message) if pid_sender_message_tuple not in self.delivered: self.delivered.append(pid_sender_message_tuple) self.deliver(pid_sender, message) messageToAck = ['pl_ACK'] + message self.fll.send(pid_receiver=pid_sender, message=messageToAck) def onEventPlSend(self, pid_receiver, message): self.fll.send(pid_receiver,message) self.waitingForAck.append((pid_receiver, message)) ### INTERFACES def send(self, pid_receiver, message): self.send_events.put((pid_receiver,message)) if config['LOG'].getboolean('perfectlink'): logger.info('pid:'+self.pid+' - '+'pl_send: sending '+str(message)+' to '+str(pid_receiver)) def deliver(self, pid_sender, message): if config['LOG'].getboolean('perfectlink'): logger.info('pid:'+self.pid+' - '+'pl_deliver: delivered '+str(message)+' from '+str(pid_sender)) if len(message) > 1 and isinstance(message[0],str) and message[0][:3] == 'MT:' and message[0] in self.tagged_deliver_events: self.tagged_deliver_events[message[0]].put((pid_sender,message)) elif self.deliver_events != None: self.deliver_events.put((pid_sender,message)) ### INTERCONNECTION def getDeliverEvents(self): self.deliver_events = queue.Queue() return self.deliver_events def getTaggedDeliverEvents(self, msg_tag : str) -> queue.Queue: """ msg_tag (str) : get delivery events for a specific message tag (msg_tag DO NOT include the prefix 'MT:') """ self.tagged_deliver_events['MT:'+msg_tag] = queue.Queue() return self.tagged_deliver_events['MT:'+msg_tag]
[ "socket.socket", "json.dumps", "time.sleep", "sys._getframe", "sys.exc_info", "threading.Thread", "queue.Queue" ]
[((1831, 1844), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (1842, 1844), False, 'import queue\n'), ((1890, 1903), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (1901, 1903), False, 'import queue\n'), ((2030, 2084), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.manage_links_in', 'args': '()'}), '(target=self.manage_links_in, args=())\n', (2046, 2084), False, 'import threading\n'), ((2200, 2255), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.manage_links_out', 'args': '()'}), '(target=self.manage_links_out, args=())\n', (2216, 2255), False, 'import threading\n'), ((2377, 2431), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.receive_message', 'args': '()'}), '(target=self.receive_message, args=())\n', (2393, 2431), False, 'import threading\n'), ((6653, 6666), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (6664, 6666), False, 'import queue\n'), ((7688, 7701), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (7699, 7701), False, 'import queue\n'), ((7747, 7760), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (7758, 7760), False, 'import queue\n'), ((7887, 7954), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.manage_links_in', 'args': '(n_threads_in,)'}), '(target=self.manage_links_in, args=(n_threads_in,))\n', (7903, 7954), False, 'import threading\n'), ((12742, 12755), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (12753, 12755), False, 'import queue\n'), ((13112, 13125), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (13123, 13125), False, 'import queue\n'), ((13237, 13298), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.onEventTimeout', 'args': '(timeout,)'}), '(target=self.onEventTimeout, args=(timeout,))\n', (13253, 13298), False, 'import threading\n'), ((13480, 13576), 'threading.Thread', 'threading.Thread', ([], {'target': 'handleEvents', 'args': '(self.fllDeliverEvents, self.onEventFllDeliver)'}), '(target=handleEvents, args=(self.fllDeliverEvents, self.\n onEventFllDeliver))\n', (13496, 13576), False, 'import threading\n'), ((13691, 13778), 'threading.Thread', 'threading.Thread', ([], {'target': 'handleEvents', 'args': '(self.send_events, self.onEventFlSend)'}), '(target=handleEvents, args=(self.send_events, self.\n onEventFlSend))\n', (13707, 13778), False, 'import threading\n'), ((15007, 15020), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (15018, 15020), False, 'import queue\n'), ((15519, 15532), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (15530, 15532), False, 'import queue\n'), ((15764, 15858), 'threading.Thread', 'threading.Thread', ([], {'target': 'handleEvents', 'args': '(self.slDeliverEvents, self.onEventSlDeliver)'}), '(target=handleEvents, args=(self.slDeliverEvents, self.\n onEventSlDeliver))\n', (15780, 15858), False, 'import threading\n'), ((15937, 16024), 'threading.Thread', 'threading.Thread', ([], {'target': 'handleEvents', 'args': '(self.send_events, self.onEventPlSend)'}), '(target=handleEvents, args=(self.send_events, self.\n onEventPlSend))\n', (15953, 16024), False, 'import threading\n'), ((17409, 17422), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (17420, 17422), False, 'import queue\n'), ((17727, 17740), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (17738, 17740), False, 'import queue\n'), ((18191, 18204), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (18202, 18204), False, 'import queue\n'), ((18468, 18529), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.onEventTimeout', 'args': '(timeout,)'}), '(target=self.onEventTimeout, args=(timeout,))\n', (18484, 18529), False, 'import threading\n'), ((18665, 18759), 'threading.Thread', 'threading.Thread', ([], {'target': 'handleEvents', 'args': '(self.flDeliverEvents, self.onEventFlDeliver)'}), '(target=handleEvents, args=(self.flDeliverEvents, self.\n onEventFlDeliver))\n', (18681, 18759), False, 'import threading\n'), ((18838, 18925), 'threading.Thread', 'threading.Thread', ([], {'target': 'handleEvents', 'args': '(self.send_events, self.onEventPlSend)'}), '(target=handleEvents, args=(self.send_events, self.\n onEventPlSend))\n', (18854, 18925), False, 'import threading\n'), ((20993, 21006), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (21004, 21006), False, 'import queue\n'), ((21311, 21324), 'queue.Queue', 'queue.Queue', ([], {}), '()\n', (21322, 21324), False, 'import queue\n'), ((8317, 8371), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.receive_message', 'args': '()'}), '(target=self.receive_message, args=())\n', (8333, 8371), False, 'import threading\n'), ((9636, 9687), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.send_message', 'args': '()'}), '(target=self.send_message, args=())\n', (9652, 9687), False, 'import threading\n'), ((13932, 13951), 'time.sleep', 'time.sleep', (['seconds'], {}), '(seconds)\n', (13942, 13951), False, 'import time\n'), ((19079, 19098), 'time.sleep', 'time.sleep', (['seconds'], {}), '(seconds)\n', (19089, 19098), False, 'import time\n'), ((5962, 5986), 'json.dumps', 'json.dumps', (['data_to_send'], {}), '(data_to_send)\n', (5972, 5986), False, 'import json\n'), ((12051, 12075), 'json.dumps', 'json.dumps', (['data_to_send'], {}), '(data_to_send)\n', (12061, 12075), False, 'import json\n'), ((2674, 2723), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (2687, 2723), False, 'import socket\n'), ((3209, 3223), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (3221, 3223), False, 'import sys\n'), ((3485, 3499), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (3497, 3499), False, 'import sys\n'), ((3801, 3850), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (3814, 3850), False, 'import socket\n'), ((4361, 4375), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4373, 4375), False, 'import sys\n'), ((4638, 4652), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (4650, 4652), False, 'import sys\n'), ((5313, 5327), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (5325, 5327), False, 'import sys\n'), ((5589, 5603), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (5601, 5603), False, 'import sys\n'), ((8551, 8600), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (8564, 8600), False, 'import socket\n'), ((9086, 9100), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (9098, 9100), False, 'import sys\n'), ((9362, 9376), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (9374, 9376), False, 'import sys\n'), ((10266, 10280), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (10278, 10280), False, 'import sys\n'), ((10542, 10556), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (10554, 10556), False, 'import sys\n'), ((10852, 10901), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (10865, 10901), False, 'import socket\n'), ((11412, 11426), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (11424, 11426), False, 'import sys\n'), ((3293, 3308), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (3306, 3308), False, 'import sys\n'), ((3550, 3565), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (3563, 3565), False, 'import sys\n'), ((4445, 4460), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (4458, 4460), False, 'import sys\n'), ((4722, 4737), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (4735, 4737), False, 'import sys\n'), ((5397, 5412), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (5410, 5412), False, 'import sys\n'), ((5673, 5688), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (5686, 5688), False, 'import sys\n'), ((9170, 9185), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (9183, 9185), False, 'import sys\n'), ((9427, 9442), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (9440, 9442), False, 'import sys\n'), ((10350, 10365), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (10363, 10365), False, 'import sys\n'), ((10607, 10622), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (10620, 10622), False, 'import sys\n'), ((11496, 11511), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (11509, 11511), False, 'import sys\n')]
from django.shortcuts import render # Create your views here. def home(request): return render(request, 'webpages/home.html') def about(request): return render(request, 'webpages/about.html') def services(request): return render(request, 'webpages/services.html') def contact(request): return render(request, 'webpages/contact.html')
[ "django.shortcuts.render" ]
[((95, 132), 'django.shortcuts.render', 'render', (['request', '"""webpages/home.html"""'], {}), "(request, 'webpages/home.html')\n", (101, 132), False, 'from django.shortcuts import render\n'), ((166, 204), 'django.shortcuts.render', 'render', (['request', '"""webpages/about.html"""'], {}), "(request, 'webpages/about.html')\n", (172, 204), False, 'from django.shortcuts import render\n'), ((241, 282), 'django.shortcuts.render', 'render', (['request', '"""webpages/services.html"""'], {}), "(request, 'webpages/services.html')\n", (247, 282), False, 'from django.shortcuts import render\n'), ((318, 358), 'django.shortcuts.render', 'render', (['request', '"""webpages/contact.html"""'], {}), "(request, 'webpages/contact.html')\n", (324, 358), False, 'from django.shortcuts import render\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import rospy from rospy import Publisher, Service from gs_interfaces.srv import Live, LiveResponse from gs_interfaces.srv import Log,LogResponse from gs_interfaces.srv import Led,LedResponse from gs_interfaces.srv import Event,EventResponse from gs_interfaces.srv import Time, TimeResponse from gs_interfaces.srv import Info, InfoResponse from gs_interfaces.srv import NavigationSystem,NavigationSystemResponse from gs_interfaces.srv import SetNavigationSystem,SetNavigationSystemResponse from gs_interfaces.srv import Position, PositionResponse from gs_interfaces.srv import PositionGPS, PositionGPSResponse from gs_interfaces.srv import Yaw, YawResponse from gs_interfaces.srv import ParametersList, ParametersListResponse from gs_interfaces.srv import SetParametersList, SetParametersListResponse from gs_interfaces.msg import SimpleBatteryState, OptVelocity, PointGPS, SatellitesGPS, Orientation from std_msgs.msg import Float32, Int32, String, Int8 from geometry_msgs.msg import Point from std_srvs.srv import Empty, EmptyResponse from std_srvs.srv import SetBool, SetBoolResponse from threading import Thread from math import degrees, sqrt from time import sleep TIME_FOR_RESTART = 5 # приблизительное время необходимое для перезапуска платы class ROSSimNode(): # класс ноды ros_plaz_node def __init__(self, rate = None, start_x = 0.0, start_y = 0.0, start_z = 0.0): self.live = False # состояние подключение к базовой платы АП self.event_messages = (10, 12, 23, 2) # доступные события(команды) АП self.callback_event_messages = (255, 26, 31, 32, 42, 43, 51, 56, 65) # события, возвращаемые АП self.state_event = -1 # последнеее событие, отправленное в АП self.state_callback_event = -1 # полседнее событие пришедшее от АП self.state_position = [0., 0., 0., 0.] # последняя точка, на которую был отправлен коптер (в локальных координатах) self.rate = rate # таймер self.log = [] self.preflight_state = False self.takeoff_state = False self.__start_x = start_x self.__start_y = start_y self.__start_z = start_z self.x = start_x self.y = start_y self.z = start_z self.yaw = 90.0 self.logger = Service("geoscan/get_log", Log, self.handle_log) self.alive = Service("geoscan/alive", Live, self.handle_live) # сервис, показывающий состояние подключения self.info_service = Service("geoscan/board/get_info", Info, self.handle_info) self.time_service = Service("geoscan/board/get_time", Time, self.handle_time) self.uptime_service = Service("geoscan/board/get_uptime", Time, self.handle_uptime) self.flight_time_service = Service("geoscan/board/get_flight_time", Time, self.handle_flight_time) self.get_autopilot_params_service = Service("geoscan/board/get_parameters", ParametersList, self.handle_get_autopilot_params) # сервис, возвращающий параметры АП self.set_autopilot_params_service = Service("geoscan/board/set_parameters", SetParametersList, self.handle_set_autopilot_params) # сервис, устанавливающий параметры АП self.restart_service = Service("geoscan/board/restart", Empty, self.handle_restart) # сервиc перезапуска базововй платы self.get_navigation_service = Service("geoscan/navigation/get_system", NavigationSystem, self.handle_get_navigation_system) # сервис, возвращающий текущую систему позиционирования self.set_navigation_service = Service("geoscan/navigation/set_system", SetNavigationSystem, self.handle_set_navigation_system) # сервис, устанавливающий текущую систему позиционирования self.local_position_service = Service("geoscan/flight/set_local_position", Position, self.handle_local_pos) # сервис полета в локальную точку self.global_position_service = Service("geoscan/flight/set_global_position",PositionGPS, self.handle_gps_pos) self.yaw_service = Service("geoscan/flight/set_yaw", Yaw, self.handle_yaw) # сервис управления рысканьем self.event_service = Service("geoscan/flight/set_event", Event, self.handle_event) # севрис управления событиями АП self.module_led_service = Service("geoscan/led/module/set", Led, self.handle_led) # сервис управления светодиодами на LED-модуле self.board_led_service = Service("geoscan/led/board/set", Led, self.handle_led) self.logger_publisher = Publisher("geoscan/log", String, queue_size=10) self.battery_publisher = Publisher("geoscan/battery_state", SimpleBatteryState, queue_size=10) # издатель темы состояния АКБ self.local_position_publisher = Publisher("geoscan/navigation/local/position", Point, queue_size=10) # издатель темы позиции в LPS self.local_yaw_publisher = Publisher("geoscan/navigation/local/yaw", Float32, queue_size=10) # издаетель темы рысканья в LPS self.local_velocity_publisher = Publisher("geoscan/navigation/local/velocity", Point, queue_size=10) self.global_position_publisher = Publisher("geoscan/navigation/global/position", PointGPS, queue_size=10) self.global_status_publisher = Publisher("geoscan/navigation/global/status", Int8, queue_size=10) self.satellites_publisher = Publisher("geoscan/navigation/satellites", SatellitesGPS, queue_size=10) self.opt_velocity_publisher = Publisher("geoscan/navigation/opt/velocity", OptVelocity, queue_size=10) # издатель темы ускорения в OPT self.callback_event_publisher = Publisher("geoscan/flight/callback_event", Int32, queue_size=10) # издатель темы событий, возвращаемых АП self.gyro_publisher = Publisher("geoscan/sensors/gyro", Point, queue_size=10) self.accel_publisher = Publisher("geoscan/sensors/accel", Point, queue_size=10) self.orientation_publisher = Publisher("geoscan/sensors/orientation", Orientation, queue_size=10) self.altitude_publisher = Publisher("geoscan/sensors/altitude", Float32, queue_size=10) self.mag_publisher = Publisher("geoscan/sensors/mag", Point, queue_size=10) def __preflight(self): sleep(0.5) self.preflight_state = True self.callback_event_publisher.publish(7) def __takeoff(self): if self.preflight_state and not self.takeoff_state: for _ in range(0, 200): self.z += 0.01 sleep(0.05) self.takeoff_state = True self.callback_event_publisher.publish(6) def __landing(self, time=0.1): if self.takeoff_state: for _ in range(int(self.z * 100),0,-1): self.z -= 0.01 sleep(time) self.callback_event_publisher.publish(1) else: self.callback_event_publisher.publish(0) self.takeoff_state = False self.preflight_state = False def __go_to_point(self, x, y, z): delta_x = x - self.x delta_y = y - self.y delta_z = z - self.z l = sqrt(delta_x**2 + delta_y**2 + delta_z**2) for _ in range(0,int(l*100) - 1): self.x += delta_x / l * 0.01 self.y += delta_y / l * 0.01 self.z += delta_z / l * 0.01 sleep(0.03) self.callback_event_publisher.publish(5) self.x += x - self.x self.y += y - self.y self.z += z - self.z self.callback_event_publisher.publish(4) def __update_yaw(self, angle): if self.takeoff_state: old_angle = int(self.yaw) pri = 1 if angle < 0.0: pri = -1 for new_angle in range(old_angle, old_angle + int(angle / 2), pri): self.yaw = new_angle sleep(0.03) def __get_time(self): return rospy.Time().now().to_sec() def handle_restart(self, request): # функция обработки запроса на перезагрузку return EmptyResponse() # возвращаем пустой ответ def handle_log(self, request): return LogResponse(self.log) def handle_live(self, request): return LiveResponse(self.live) def handle_info(self, request): return InfoResponse() def handle_time(self, request): return TimeResponse(self.__get_time()) def handle_uptime(self, reuest): return TimeResponse(self.__get_time()) def handle_flight_time(self, request): return TimeResponse(0.) def handle_event(self, request): # функция обработки запроса на отправление события в АП if self.state_event != request.event: if request.event == 0: Thread(target=self.__preflight).start() elif request.event == 1: Thread(target=self.__takeoff).start() elif request.event == 2: Thread(target=self.__landing).start() elif request.event == 3: self.x = self.__start_x self.y = self.__start_y self.z = self.__start_z self.takeoff_state = False self.preflight_state = False self.state_event = request.event return EventResponse(1) def handle_local_pos(self, request): # функция обработки запроса на полет в локальную точку request_position = [request.position.x, request.position.y, request.position.z] # запоминаем координаты точки из запроса if self.takeoff_state: # сравниваем координаты точки с предыдущими координатами Thread(target=self.__go_to_point, args = [request_position[0], request_position[1], request_position[2]]).start() self.state_position = request_position return PositionResponse(True) # возвращаем True - команда выполнена def handle_gps_pos(self, request): return PositionGPSResponse(False) def handle_yaw(self, request): # функция обработки запроса на изменение угла рысканья Thread(target=self.__update_yaw, args=[degrees(request.angle), ]).start() return YawResponse(True) # возвращаем True - команда выполнена def handle_led(self, request): # функция обработки запроса на изменение цвета светодиодов на LED-модуле return LedResponse(True) # возвращаем True - команда выполнена def handle_get_navigation_system(self, request): # функция обработки запроса на получение текущей системы навигации return NavigationSystemResponse("LPS") # возвращаем имя системы позиционирования def handle_set_navigation_system(self, request): return SetNavigationSystemResponse(True) # возвращаем True - команда выполнена def handle_get_autopilot_params(self, request): return ParametersListResponse([]) def handle_set_autopilot_params(self, request): return SetParametersListResponse(True) # возвращаем True - команда выполнена def connect(self): rospy.loginfo("Try to connect ...") self.state_event = -1 self.state_callback_event = -1 rospy.loginfo("Board start connect - done") self.live = True def data_exchange(self): if self.live: battery_state = SimpleBatteryState() battery_state.header.stamp = rospy.Time.now() battery_state.charge = 8.33 self.battery_publisher.publish(battery_state) self.accel_publisher.publish(Point()) self.gyro_publisher.publish(Point()) self.orientation_publisher.publish(Orientation()) self.altitude_publisher.publish(self.z) local_point = Point() local_point.x = self.x local_point.y = self.y local_point.z = self.z self.local_position_publisher.publish(local_point) self.local_yaw_publisher.publish(self.yaw) def spin(self): if self.live: self.data_exchange() else: self.connect() if self.rate is not None: self.rate.sleep() return True if __name__ == "__main__": rospy.init_node("ros_plaz_node") # инициализируем ноду x = rospy.get_param(rospy.search_param("start_x")) # получение имени порта, как параметра ноды if type(x) == dict: x = 0.0 y = rospy.get_param(rospy.search_param("start_y")) # получение скорости обмена данными, как параметра ноды if type(y) == dict: y = 0.0 z = rospy.get_param(rospy.search_param("start_z")) # получение скорости обмена данными, как параметра ноды if type(z) == dict: z = 0.0 rate = rospy.Rate(100) ros_plaz_node = ROSSimNode(rate, x, y, z) while not rospy.is_shutdown(): if not ros_plaz_node.spin(): break
[ "rospy.init_node", "gs_interfaces.srv.LiveResponse", "math.sqrt", "time.sleep", "rospy.Rate", "gs_interfaces.srv.TimeResponse", "gs_interfaces.srv.ParametersListResponse", "rospy.Service", "gs_interfaces.msg.SimpleBatteryState", "gs_interfaces.srv.EventResponse", "gs_interfaces.msg.Orientation", "std_srvs.srv.EmptyResponse", "math.degrees", "gs_interfaces.srv.LogResponse", "gs_interfaces.srv.SetParametersListResponse", "rospy.Time.now", "rospy.search_param", "geometry_msgs.msg.Point", "gs_interfaces.srv.PositionResponse", "rospy.Time", "gs_interfaces.srv.LedResponse", "gs_interfaces.srv.YawResponse", "rospy.Publisher", "gs_interfaces.srv.SetNavigationSystemResponse", "rospy.loginfo", "gs_interfaces.srv.PositionGPSResponse", "gs_interfaces.srv.InfoResponse", "rospy.is_shutdown", "threading.Thread", "gs_interfaces.srv.NavigationSystemResponse" ]
[((12076, 12108), 'rospy.init_node', 'rospy.init_node', (['"""ros_plaz_node"""'], {}), "('ros_plaz_node')\n", (12091, 12108), False, 'import rospy\n'), ((12586, 12601), 'rospy.Rate', 'rospy.Rate', (['(100)'], {}), '(100)\n', (12596, 12601), False, 'import rospy\n'), ((2301, 2349), 'rospy.Service', 'Service', (['"""geoscan/get_log"""', 'Log', 'self.handle_log'], {}), "('geoscan/get_log', Log, self.handle_log)\n", (2308, 2349), False, 'from rospy import Publisher, Service\n'), ((2372, 2420), 'rospy.Service', 'Service', (['"""geoscan/alive"""', 'Live', 'self.handle_live'], {}), "('geoscan/alive', Live, self.handle_live)\n", (2379, 2420), False, 'from rospy import Publisher, Service\n'), ((2495, 2552), 'rospy.Service', 'Service', (['"""geoscan/board/get_info"""', 'Info', 'self.handle_info'], {}), "('geoscan/board/get_info', Info, self.handle_info)\n", (2502, 2552), False, 'from rospy import Publisher, Service\n'), ((2581, 2638), 'rospy.Service', 'Service', (['"""geoscan/board/get_time"""', 'Time', 'self.handle_time'], {}), "('geoscan/board/get_time', Time, self.handle_time)\n", (2588, 2638), False, 'from rospy import Publisher, Service\n'), ((2669, 2730), 'rospy.Service', 'Service', (['"""geoscan/board/get_uptime"""', 'Time', 'self.handle_uptime'], {}), "('geoscan/board/get_uptime', Time, self.handle_uptime)\n", (2676, 2730), False, 'from rospy import Publisher, Service\n'), ((2766, 2837), 'rospy.Service', 'Service', (['"""geoscan/board/get_flight_time"""', 'Time', 'self.handle_flight_time'], {}), "('geoscan/board/get_flight_time', Time, self.handle_flight_time)\n", (2773, 2837), False, 'from rospy import Publisher, Service\n'), ((2882, 2976), 'rospy.Service', 'Service', (['"""geoscan/board/get_parameters"""', 'ParametersList', 'self.handle_get_autopilot_params'], {}), "('geoscan/board/get_parameters', ParametersList, self.\n handle_get_autopilot_params)\n", (2889, 2976), False, 'from rospy import Publisher, Service\n'), ((3052, 3149), 'rospy.Service', 'Service', (['"""geoscan/board/set_parameters"""', 'SetParametersList', 'self.handle_set_autopilot_params'], {}), "('geoscan/board/set_parameters', SetParametersList, self.\n handle_set_autopilot_params)\n", (3059, 3149), False, 'from rospy import Publisher, Service\n'), ((3215, 3275), 'rospy.Service', 'Service', (['"""geoscan/board/restart"""', 'Empty', 'self.handle_restart'], {}), "('geoscan/board/restart', Empty, self.handle_restart)\n", (3222, 3275), False, 'from rospy import Publisher, Service\n'), ((3359, 3457), 'rospy.Service', 'Service', (['"""geoscan/navigation/get_system"""', 'NavigationSystem', 'self.handle_get_navigation_system'], {}), "('geoscan/navigation/get_system', NavigationSystem, self.\n handle_get_navigation_system)\n", (3366, 3457), False, 'from rospy import Publisher, Service\n'), ((3547, 3648), 'rospy.Service', 'Service', (['"""geoscan/navigation/set_system"""', 'SetNavigationSystem', 'self.handle_set_navigation_system'], {}), "('geoscan/navigation/set_system', SetNavigationSystem, self.\n handle_set_navigation_system)\n", (3554, 3648), False, 'from rospy import Publisher, Service\n'), ((3742, 3819), 'rospy.Service', 'Service', (['"""geoscan/flight/set_local_position"""', 'Position', 'self.handle_local_pos'], {}), "('geoscan/flight/set_local_position', Position, self.handle_local_pos)\n", (3749, 3819), False, 'from rospy import Publisher, Service\n'), ((3893, 3972), 'rospy.Service', 'Service', (['"""geoscan/flight/set_global_position"""', 'PositionGPS', 'self.handle_gps_pos'], {}), "('geoscan/flight/set_global_position', PositionGPS, self.handle_gps_pos)\n", (3900, 3972), False, 'from rospy import Publisher, Service\n'), ((3999, 4054), 'rospy.Service', 'Service', (['"""geoscan/flight/set_yaw"""', 'Yaw', 'self.handle_yaw'], {}), "('geoscan/flight/set_yaw', Yaw, self.handle_yaw)\n", (4006, 4054), False, 'from rospy import Publisher, Service\n'), ((4114, 4175), 'rospy.Service', 'Service', (['"""geoscan/flight/set_event"""', 'Event', 'self.handle_event'], {}), "('geoscan/flight/set_event', Event, self.handle_event)\n", (4121, 4175), False, 'from rospy import Publisher, Service\n'), ((4244, 4299), 'rospy.Service', 'Service', (['"""geoscan/led/module/set"""', 'Led', 'self.handle_led'], {}), "('geoscan/led/module/set', Led, self.handle_led)\n", (4251, 4299), False, 'from rospy import Publisher, Service\n'), ((4380, 4434), 'rospy.Service', 'Service', (['"""geoscan/led/board/set"""', 'Led', 'self.handle_led'], {}), "('geoscan/led/board/set', Led, self.handle_led)\n", (4387, 4434), False, 'from rospy import Publisher, Service\n'), ((4468, 4515), 'rospy.Publisher', 'Publisher', (['"""geoscan/log"""', 'String'], {'queue_size': '(10)'}), "('geoscan/log', String, queue_size=10)\n", (4477, 4515), False, 'from rospy import Publisher, Service\n'), ((4550, 4619), 'rospy.Publisher', 'Publisher', (['"""geoscan/battery_state"""', 'SimpleBatteryState'], {'queue_size': '(10)'}), "('geoscan/battery_state', SimpleBatteryState, queue_size=10)\n", (4559, 4619), False, 'from rospy import Publisher, Service\n'), ((4691, 4759), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/local/position"""', 'Point'], {'queue_size': '(10)'}), "('geoscan/navigation/local/position', Point, queue_size=10)\n", (4700, 4759), False, 'from rospy import Publisher, Service\n'), ((4825, 4890), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/local/yaw"""', 'Float32'], {'queue_size': '(10)'}), "('geoscan/navigation/local/yaw', Float32, queue_size=10)\n", (4834, 4890), False, 'from rospy import Publisher, Service\n'), ((4963, 5031), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/local/velocity"""', 'Point'], {'queue_size': '(10)'}), "('geoscan/navigation/local/velocity', Point, queue_size=10)\n", (4972, 5031), False, 'from rospy import Publisher, Service\n'), ((5074, 5146), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/global/position"""', 'PointGPS'], {'queue_size': '(10)'}), "('geoscan/navigation/global/position', PointGPS, queue_size=10)\n", (5083, 5146), False, 'from rospy import Publisher, Service\n'), ((5186, 5252), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/global/status"""', 'Int8'], {'queue_size': '(10)'}), "('geoscan/navigation/global/status', Int8, queue_size=10)\n", (5195, 5252), False, 'from rospy import Publisher, Service\n'), ((5289, 5361), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/satellites"""', 'SatellitesGPS'], {'queue_size': '(10)'}), "('geoscan/navigation/satellites', SatellitesGPS, queue_size=10)\n", (5298, 5361), False, 'from rospy import Publisher, Service\n'), ((5401, 5473), 'rospy.Publisher', 'Publisher', (['"""geoscan/navigation/opt/velocity"""', 'OptVelocity'], {'queue_size': '(10)'}), "('geoscan/navigation/opt/velocity', OptVelocity, queue_size=10)\n", (5410, 5473), False, 'from rospy import Publisher, Service\n'), ((5547, 5611), 'rospy.Publisher', 'Publisher', (['"""geoscan/flight/callback_event"""', 'Int32'], {'queue_size': '(10)'}), "('geoscan/flight/callback_event', Int32, queue_size=10)\n", (5556, 5611), False, 'from rospy import Publisher, Service\n'), ((5684, 5739), 'rospy.Publisher', 'Publisher', (['"""geoscan/sensors/gyro"""', 'Point'], {'queue_size': '(10)'}), "('geoscan/sensors/gyro', Point, queue_size=10)\n", (5693, 5739), False, 'from rospy import Publisher, Service\n'), ((5771, 5827), 'rospy.Publisher', 'Publisher', (['"""geoscan/sensors/accel"""', 'Point'], {'queue_size': '(10)'}), "('geoscan/sensors/accel', Point, queue_size=10)\n", (5780, 5827), False, 'from rospy import Publisher, Service\n'), ((5865, 5933), 'rospy.Publisher', 'Publisher', (['"""geoscan/sensors/orientation"""', 'Orientation'], {'queue_size': '(10)'}), "('geoscan/sensors/orientation', Orientation, queue_size=10)\n", (5874, 5933), False, 'from rospy import Publisher, Service\n'), ((5968, 6029), 'rospy.Publisher', 'Publisher', (['"""geoscan/sensors/altitude"""', 'Float32'], {'queue_size': '(10)'}), "('geoscan/sensors/altitude', Float32, queue_size=10)\n", (5977, 6029), False, 'from rospy import Publisher, Service\n'), ((6059, 6113), 'rospy.Publisher', 'Publisher', (['"""geoscan/sensors/mag"""', 'Point'], {'queue_size': '(10)'}), "('geoscan/sensors/mag', Point, queue_size=10)\n", (6068, 6113), False, 'from rospy import Publisher, Service\n'), ((6150, 6160), 'time.sleep', 'sleep', (['(0.5)'], {}), '(0.5)\n', (6155, 6160), False, 'from time import sleep\n'), ((7031, 7079), 'math.sqrt', 'sqrt', (['(delta_x ** 2 + delta_y ** 2 + delta_z ** 2)'], {}), '(delta_x ** 2 + delta_y ** 2 + delta_z ** 2)\n', (7035, 7079), False, 'from math import degrees, sqrt\n'), ((7941, 7956), 'std_srvs.srv.EmptyResponse', 'EmptyResponse', ([], {}), '()\n', (7954, 7956), False, 'from std_srvs.srv import Empty, EmptyResponse\n'), ((8034, 8055), 'gs_interfaces.srv.LogResponse', 'LogResponse', (['self.log'], {}), '(self.log)\n', (8045, 8055), False, 'from gs_interfaces.srv import Log, LogResponse\n'), ((8109, 8132), 'gs_interfaces.srv.LiveResponse', 'LiveResponse', (['self.live'], {}), '(self.live)\n', (8121, 8132), False, 'from gs_interfaces.srv import Live, LiveResponse\n'), ((8185, 8199), 'gs_interfaces.srv.InfoResponse', 'InfoResponse', ([], {}), '()\n', (8197, 8199), False, 'from gs_interfaces.srv import Info, InfoResponse\n'), ((8432, 8449), 'gs_interfaces.srv.TimeResponse', 'TimeResponse', (['(0.0)'], {}), '(0.0)\n', (8444, 8449), False, 'from gs_interfaces.srv import Time, TimeResponse\n'), ((9219, 9235), 'gs_interfaces.srv.EventResponse', 'EventResponse', (['(1)'], {}), '(1)\n', (9232, 9235), False, 'from gs_interfaces.srv import Event, EventResponse\n'), ((9742, 9764), 'gs_interfaces.srv.PositionResponse', 'PositionResponse', (['(True)'], {}), '(True)\n', (9758, 9764), False, 'from gs_interfaces.srv import Position, PositionResponse\n'), ((9858, 9884), 'gs_interfaces.srv.PositionGPSResponse', 'PositionGPSResponse', (['(False)'], {}), '(False)\n', (9877, 9884), False, 'from gs_interfaces.srv import PositionGPS, PositionGPSResponse\n'), ((10073, 10090), 'gs_interfaces.srv.YawResponse', 'YawResponse', (['(True)'], {}), '(True)\n', (10084, 10090), False, 'from gs_interfaces.srv import Yaw, YawResponse\n'), ((10253, 10270), 'gs_interfaces.srv.LedResponse', 'LedResponse', (['(True)'], {}), '(True)\n', (10264, 10270), False, 'from gs_interfaces.srv import Led, LedResponse\n'), ((10445, 10476), 'gs_interfaces.srv.NavigationSystemResponse', 'NavigationSystemResponse', (['"""LPS"""'], {}), "('LPS')\n", (10469, 10476), False, 'from gs_interfaces.srv import NavigationSystem, NavigationSystemResponse\n'), ((10592, 10625), 'gs_interfaces.srv.SetNavigationSystemResponse', 'SetNavigationSystemResponse', (['(True)'], {}), '(True)\n', (10619, 10625), False, 'from gs_interfaces.srv import SetNavigationSystem, SetNavigationSystemResponse\n'), ((10732, 10758), 'gs_interfaces.srv.ParametersListResponse', 'ParametersListResponse', (['[]'], {}), '([])\n', (10754, 10758), False, 'from gs_interfaces.srv import ParametersList, ParametersListResponse\n'), ((10827, 10858), 'gs_interfaces.srv.SetParametersListResponse', 'SetParametersListResponse', (['(True)'], {}), '(True)\n', (10852, 10858), False, 'from gs_interfaces.srv import SetParametersList, SetParametersListResponse\n'), ((10929, 10964), 'rospy.loginfo', 'rospy.loginfo', (['"""Try to connect ..."""'], {}), "('Try to connect ...')\n", (10942, 10964), False, 'import rospy\n'), ((11044, 11087), 'rospy.loginfo', 'rospy.loginfo', (['"""Board start connect - done"""'], {}), "('Board start connect - done')\n", (11057, 11087), False, 'import rospy\n'), ((12155, 12184), 'rospy.search_param', 'rospy.search_param', (['"""start_x"""'], {}), "('start_x')\n", (12173, 12184), False, 'import rospy\n'), ((12295, 12324), 'rospy.search_param', 'rospy.search_param', (['"""start_y"""'], {}), "('start_y')\n", (12313, 12324), False, 'import rospy\n'), ((12447, 12476), 'rospy.search_param', 'rospy.search_param', (['"""start_z"""'], {}), "('start_z')\n", (12465, 12476), False, 'import rospy\n'), ((12663, 12682), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (12680, 12682), False, 'import rospy\n'), ((7251, 7262), 'time.sleep', 'sleep', (['(0.03)'], {}), '(0.03)\n', (7256, 7262), False, 'from time import sleep\n'), ((11193, 11213), 'gs_interfaces.msg.SimpleBatteryState', 'SimpleBatteryState', ([], {}), '()\n', (11211, 11213), False, 'from gs_interfaces.msg import SimpleBatteryState, OptVelocity, PointGPS, SatellitesGPS, Orientation\n'), ((11255, 11271), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (11269, 11271), False, 'import rospy\n'), ((11611, 11618), 'geometry_msgs.msg.Point', 'Point', ([], {}), '()\n', (11616, 11618), False, 'from geometry_msgs.msg import Point\n'), ((6415, 6426), 'time.sleep', 'sleep', (['(0.05)'], {}), '(0.05)\n', (6420, 6426), False, 'from time import sleep\n'), ((6689, 6700), 'time.sleep', 'sleep', (['time'], {}), '(time)\n', (6694, 6700), False, 'from time import sleep\n'), ((7760, 7771), 'time.sleep', 'sleep', (['(0.03)'], {}), '(0.03)\n', (7765, 7771), False, 'from time import sleep\n'), ((11412, 11419), 'geometry_msgs.msg.Point', 'Point', ([], {}), '()\n', (11417, 11419), False, 'from geometry_msgs.msg import Point\n'), ((11461, 11468), 'geometry_msgs.msg.Point', 'Point', ([], {}), '()\n', (11466, 11468), False, 'from geometry_msgs.msg import Point\n'), ((11517, 11530), 'gs_interfaces.msg.Orientation', 'Orientation', ([], {}), '()\n', (11528, 11530), False, 'from gs_interfaces.msg import SimpleBatteryState, OptVelocity, PointGPS, SatellitesGPS, Orientation\n'), ((9562, 9669), 'threading.Thread', 'Thread', ([], {'target': 'self.__go_to_point', 'args': '[request_position[0], request_position[1], request_position[2]]'}), '(target=self.__go_to_point, args=[request_position[0],\n request_position[1], request_position[2]])\n', (9568, 9669), False, 'from threading import Thread\n'), ((7814, 7826), 'rospy.Time', 'rospy.Time', ([], {}), '()\n', (7824, 7826), False, 'import rospy\n'), ((8648, 8679), 'threading.Thread', 'Thread', ([], {'target': 'self.__preflight'}), '(target=self.__preflight)\n', (8654, 8679), False, 'from threading import Thread\n'), ((8749, 8778), 'threading.Thread', 'Thread', ([], {'target': 'self.__takeoff'}), '(target=self.__takeoff)\n', (8755, 8778), False, 'from threading import Thread\n'), ((10023, 10045), 'math.degrees', 'degrees', (['request.angle'], {}), '(request.angle)\n', (10030, 10045), False, 'from math import degrees, sqrt\n'), ((8848, 8877), 'threading.Thread', 'Thread', ([], {'target': 'self.__landing'}), '(target=self.__landing)\n', (8854, 8877), False, 'from threading import Thread\n')]
from __future__ import print_function import argparse import logging import sys from simplesat.dependency_solver import DependencySolver from simplesat.pool import Pool from simplesat.sat.policy import InstalledFirstPolicy from simplesat.test_utils import Scenario from simplesat.errors import SatisfiabilityError def solve_and_print(request, remote_repositories, installed_repository, print_ids, prune=True, prefer_installed=True, debug=0, simple=False, strict=False): pool = Pool(remote_repositories) pool.add_repository(installed_repository) policy = InstalledFirstPolicy(pool, installed_repository, prefer_installed=prefer_installed) solver = DependencySolver( pool, remote_repositories, installed_repository, policy=policy, use_pruning=prune, strict=strict) fmt = "ELAPSED : {description:20} : {elapsed:e}" try: transaction = solver.solve(request) if simple: print(transaction.to_simple_string()) else: print(transaction) except SatisfiabilityError as e: msg = "UNSATISFIABLE: {}" print(msg.format(e.unsat.to_string(pool))) print(e.unsat._find_requirement_time.pretty(fmt), file=sys.stderr) if debug: counts, hist = solver._policy._log_histogram() print(hist, file=sys.stderr) report = solver._policy._log_report(with_assignments=debug > 1) print(report, file=sys.stderr) print(solver._last_rules_time.pretty(fmt), file=sys.stderr) print(solver._last_solver_init_time.pretty(fmt), file=sys.stderr) print(solver._last_solve_time.pretty(fmt), file=sys.stderr) def main(argv=None): argv = argv or sys.argv[1:] p = argparse.ArgumentParser() p.add_argument("scenario", help="Path to the YAML scenario file.") p.add_argument("--print-ids", action="store_true") p.add_argument("--no-prune", dest="prune", action="store_false") p.add_argument("--no-prefer-installed", dest="prefer_installed", action="store_false") p.add_argument("-d", "--debug", default=0, action="count") p.add_argument("--simple", action="store_true", help="Show a simpler description of the transaction.") p.add_argument("--strict", action="store_true", help="Use stricter error checking for package metadata.") ns = p.parse_args(argv) logging.basicConfig( format=('%(asctime)s %(levelname)-8.8s [%(name)s:%(lineno)s]' ' %(message)s'), datefmt='%Y-%m-%d %H:%M:%S', level=('INFO', 'WARNING', 'DEBUG')[ns.debug]) scenario = Scenario.from_yaml(ns.scenario) solve_and_print(scenario.request, scenario.remote_repositories, scenario.installed_repository, ns.print_ids, prune=ns.prune, prefer_installed=ns.prefer_installed, debug=ns.debug, simple=ns.simple, strict=ns.strict) if __name__ == '__main__': main()
[ "logging.basicConfig", "argparse.ArgumentParser", "simplesat.sat.policy.InstalledFirstPolicy", "simplesat.dependency_solver.DependencySolver", "simplesat.test_utils.Scenario.from_yaml", "simplesat.pool.Pool" ]
[((525, 550), 'simplesat.pool.Pool', 'Pool', (['remote_repositories'], {}), '(remote_repositories)\n', (529, 550), False, 'from simplesat.pool import Pool\n'), ((611, 699), 'simplesat.sat.policy.InstalledFirstPolicy', 'InstalledFirstPolicy', (['pool', 'installed_repository'], {'prefer_installed': 'prefer_installed'}), '(pool, installed_repository, prefer_installed=\n prefer_installed)\n', (631, 699), False, 'from simplesat.sat.policy import InstalledFirstPolicy\n'), ((742, 861), 'simplesat.dependency_solver.DependencySolver', 'DependencySolver', (['pool', 'remote_repositories', 'installed_repository'], {'policy': 'policy', 'use_pruning': 'prune', 'strict': 'strict'}), '(pool, remote_repositories, installed_repository, policy=\n policy, use_pruning=prune, strict=strict)\n', (758, 861), False, 'from simplesat.dependency_solver import DependencySolver\n'), ((1772, 1797), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1795, 1797), False, 'import argparse\n'), ((2455, 2632), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s %(levelname)-8.8s [%(name)s:%(lineno)s] %(message)s"""', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""', 'level': "('INFO', 'WARNING', 'DEBUG')[ns.debug]"}), "(format=\n '%(asctime)s %(levelname)-8.8s [%(name)s:%(lineno)s] %(message)s',\n datefmt='%Y-%m-%d %H:%M:%S', level=('INFO', 'WARNING', 'DEBUG')[ns.debug])\n", (2474, 2632), False, 'import logging\n'), ((2686, 2717), 'simplesat.test_utils.Scenario.from_yaml', 'Scenario.from_yaml', (['ns.scenario'], {}), '(ns.scenario)\n', (2704, 2717), False, 'from simplesat.test_utils import Scenario\n')]
''' Docstring ''' from flask import Flask from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'postgresql://postgres:[email protected]:5432/example' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) class Person(db.Model): __tablename__ = 'persons' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(), nullable=False) def __repr__(self): return f'<Person ID: {self.id}, name: {self.name}>' db.create_all() @app.route('/') def index(): person = Person.query.first() return 'Hello ' + person.name
[ "flask_sqlalchemy.SQLAlchemy", "flask.Flask" ]
[((90, 105), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (95, 105), False, 'from flask import Flask\n'), ((260, 275), 'flask_sqlalchemy.SQLAlchemy', 'SQLAlchemy', (['app'], {}), '(app)\n', (270, 275), False, 'from flask_sqlalchemy import SQLAlchemy\n')]
''' Author: <NAME> Project: Jisho grabber Description: Main script for taking in user input via the GUI and outputting an Anki deck and json with all word information. ''' import sys import json import os import wx import genanki from search_gui import SearchFrame from ankify import jisho_vocab, jisho_deck if __name__ == '__main__': # get paths for file dumping and make sure they exist dumpsdir = os.path.join(os.getcwd(), 'vocab_dumps') if not os.path.isdir(dumpsdir): sys.exit("Error: vocab_dumps folder is missing or you are in the wrong" +\ "directory. Please try again.") jsonpath = os.path.join(dumpsdir, 'vocab_words.json') ankipath = os.path.join(dumpsdir, 'jisho_search_deck.apkg') # create json if none exists if not os.path.exists(jsonpath): with open(jsonpath, 'w') as outfile: json.dump([], outfile, indent=2) # load existing vocab words with open(jsonpath, 'r') as infile: print("Loading json...") all_vocab = json.load(infile) print("Finished loading json.") # run gui app = wx.App() frame = SearchFrame() app.MainLoop() # add new vocab to existing vocab and export as an Anki deck all_vocab.extend(frame.fields_list) fields_len = len(jisho_vocab.fields) if len(all_vocab) > 0: field_pad = fields_len - len(all_vocab[0]) else: sys.exit("No vocab was added and no vocab existed in json. Exiting program.") if field_pad < 0: print("Warning: There are fewer note fields than there are fields for each vocab word.") elif field_pad > 0: print("Warning: There are more note fields than there are fields for each vocab word.") for note_fields in all_vocab: note_fields.extend([''] * field_pad) new_note = genanki.Note( model=jisho_vocab, fields=note_fields[:fields_len] ) jisho_deck.add_note(new_note) if len(all_vocab) > 0: genanki.Package(jisho_deck).write_to_file(ankipath) with open(jsonpath, 'w') as outfile: print("Dumping words into json...") json.dump(all_vocab, outfile, indent=2) print("Json has taken a dump. Or been dumped or whatever")
[ "os.path.exists", "genanki.Note", "ankify.jisho_deck.add_note", "genanki.Package", "os.path.join", "os.getcwd", "search_gui.SearchFrame", "os.path.isdir", "sys.exit", "json.load", "wx.App", "json.dump" ]
[((694, 736), 'os.path.join', 'os.path.join', (['dumpsdir', '"""vocab_words.json"""'], {}), "(dumpsdir, 'vocab_words.json')\n", (706, 736), False, 'import os\n'), ((753, 801), 'os.path.join', 'os.path.join', (['dumpsdir', '"""jisho_search_deck.apkg"""'], {}), "(dumpsdir, 'jisho_search_deck.apkg')\n", (765, 801), False, 'import os\n'), ((1186, 1194), 'wx.App', 'wx.App', ([], {}), '()\n', (1192, 1194), False, 'import wx\n'), ((1208, 1221), 'search_gui.SearchFrame', 'SearchFrame', ([], {}), '()\n', (1219, 1221), False, 'from search_gui import SearchFrame\n'), ((478, 489), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (487, 489), False, 'import os\n'), ((518, 541), 'os.path.isdir', 'os.path.isdir', (['dumpsdir'], {}), '(dumpsdir)\n', (531, 541), False, 'import os\n'), ((552, 662), 'sys.exit', 'sys.exit', (["('Error: vocab_dumps folder is missing or you are in the wrong' +\n 'directory. Please try again.')"], {}), "('Error: vocab_dumps folder is missing or you are in the wrong' +\n 'directory. Please try again.')\n", (560, 662), False, 'import sys\n'), ((850, 874), 'os.path.exists', 'os.path.exists', (['jsonpath'], {}), '(jsonpath)\n', (864, 874), False, 'import os\n'), ((1099, 1116), 'json.load', 'json.load', (['infile'], {}), '(infile)\n', (1108, 1116), False, 'import json\n'), ((1493, 1571), 'sys.exit', 'sys.exit', (['"""No vocab was added and no vocab existed in json. Exiting program."""'], {}), "('No vocab was added and no vocab existed in json. Exiting program.')\n", (1501, 1571), False, 'import sys\n'), ((1916, 1980), 'genanki.Note', 'genanki.Note', ([], {'model': 'jisho_vocab', 'fields': 'note_fields[:fields_len]'}), '(model=jisho_vocab, fields=note_fields[:fields_len])\n', (1928, 1980), False, 'import genanki\n'), ((2027, 2056), 'ankify.jisho_deck.add_note', 'jisho_deck.add_note', (['new_note'], {}), '(new_note)\n', (2046, 2056), False, 'from ankify import jisho_vocab, jisho_deck\n'), ((2244, 2283), 'json.dump', 'json.dump', (['all_vocab', 'outfile'], {'indent': '(2)'}), '(all_vocab, outfile, indent=2)\n', (2253, 2283), False, 'import json\n'), ((935, 967), 'json.dump', 'json.dump', (['[]', 'outfile'], {'indent': '(2)'}), '([], outfile, indent=2)\n', (944, 967), False, 'import json\n'), ((2094, 2121), 'genanki.Package', 'genanki.Package', (['jisho_deck'], {}), '(jisho_deck)\n', (2109, 2121), False, 'import genanki\n')]
""" This module contains the class OffloadingCommon, which is the base class of all algorithms (benchmarks, cco and decor). OffloadingCommon defines several points in a computation offloading problem. [-- In order to avoid Multiple Inheritance, CcoAlgorithm only inherit from Racos. Similar methods and properties are copied from OffloadingCommon, which are marked by annotations. --] Author: <NAME>, <NAME> """ from cross_edge_offloading.utils.tool_function import ToolFunction import numpy as np import random class OffloadingCommon(object): """ This class contains several points in a computation offloading problem, including: (1) the objective function of the cross-edge computation offloading problem; (2) the solution of the problem (edge_selection, harvested_energys). """ def __init__(self, parameter): """ Initialize key parameters in offloading problems of one time slot. :param parameter: the instance of class Parameter """ self.__parameter = parameter # =============================== state information =============================== self.__battery_energy_levels = np.repeat(parameter.get_perturbation_para() / 2, parameter.get_user_num()) self.__virtual_energy_levels = self.__battery_energy_levels - \ np.repeat(parameter.get_perturbation_para(), parameter.get_user_num()) # =============================== independent variables =============================== # edge_selections is a list with every element (edge_selection) being a numpy array, # which is the feasible solution (independent var) of the problem $\mathcal{P}_2^{es}$ # 'self.edge_selections' stores the final optimal solution self.__edge_selections = [] self.__harvested_energys = [] def obtain_time_consumption(self, division, edge_selection, channel_power_gains): """ Calculate the time consumption on transmission and edge execution for one mobile device. :param division: the number of chosen edge sites (not zero) :param edge_selection: the edge selection decision of one mobile devices :param channel_power_gains: the channel power gains of one mobile devices to every connectable servers :return: the time consumption on transmission and edge execution """ parameter = self.get_parameter() transmit_times = ToolFunction.obtain_transmit_times(division, edge_selection, parameter, channel_power_gains) edge_exe_times = ToolFunction.obtain_edge_exe_times(division, parameter) edge_times = transmit_times + edge_exe_times time_consumption = max(edge_times) + parameter.get_local_exe_time() + parameter.get_coordinate_cost() * division return time_consumption def obtain_overall_costs(self, edge_selections): """ Calculate the overall costs, which is the sum of cost of each mobile device. :param edge_selections: the edge selection decisions for all mobile devices :return: overall costs """ parameter = self.get_parameter() overall_costs = 0 for i in range(parameter.get_user_num()): if parameter.get_task_requests()[i] == 1: division = int(sum(edge_selections[i])) if division: # cost = self.obtain_time_consumption( # division, edge_selections[i], parameter.get_connectable_gains[i]) transmit_times = ToolFunction.obtain_transmit_times(division, edge_selections[i], parameter, parameter.get_connectable_gains()[i]) edge_exe_times = ToolFunction.obtain_edge_exe_times(division, parameter) edge_times = transmit_times + edge_exe_times cost = max(edge_times) + parameter.get_local_exe_time() + parameter.get_coordinate_cost() * division else: cost = parameter.get_drop_penalty() else: cost = 0 overall_costs += cost return overall_costs def obtain_edge_selections(self): """ Obtain the feasible solution with random policy. :return: edge_selections, every row denotes a mobile device who has task request """ parameter = self.get_parameter() # first initialize with zero edge_selections = [] for i in range(parameter.get_user_num()): edge_selection = np.repeat(0, len(parameter.get_connectable_servers()[i])) edge_selections.append(edge_selection) # for every edge site, generate a random integer with [0, max_assign], and distribute connections to # connectable mobile devices for j in range(parameter.get_server_num()): assign_num = random.randint(0, parameter.get_max_assign()) connectable_user_num = len(parameter.get_connectable_users()[j]) if assign_num >= connectable_user_num: # every mobile device in it can be chosen for i in range(connectable_user_num): user_index = parameter.get_connectable_users()[j][i] edge_index = list.index(parameter.get_connectable_servers()[user_index], j) edge_selections[user_index][edge_index] = 1 else: # randomly choose assign_num users to distribute j's computation capacity user_indices = random.sample(parameter.get_connectable_users()[j], assign_num) for i in range(len(user_indices)): user_index = user_indices[i] edge_index = list.index(parameter.get_connectable_servers()[user_index], j) edge_selections[user_index][edge_index] = 1 # set those mobile devices who do not have task request to [0, 0, ..., 0] # we can not delete them from the list because every row is the index of the corresponding mobile device for i in range(parameter.get_user_num()): if parameter.get_task_requests()[i] == 0: edge_selections[i] = np.zeros(len(edge_selections[i])) else: division = int(sum(edge_selections[i])) if division: times = self.obtain_time_consumption(division, edge_selections[i], parameter.get_connectable_gains()[i]) energys = ToolFunction.obtain_transmit_energy(division, edge_selections[i], parameter, parameter.get_connectable_gains()[i]) # satisfy the constraint if times >= parameter.get_ddl() or energys > self.__battery_energy_levels[i]: edge_selections[i] = np.zeros(len(edge_selections[i])) return edge_selections def obtain_harvested_energys(self): """ Randomly choose energy between $[0, E_i^H]$ for every mobile device, and then set self.harvested_energys. :return: no return """ parameter = self.get_parameter() return list(map(random.uniform, [0] * parameter.get_user_num(), parameter.get_harvestable_energys())) def update_energy_levels(self): """ Update the cost & virtual energy levels according to the involution expression \eqref{10}. :return: no return """ parameter = self.get_parameter() for i in range(parameter.get_user_num()): division = int(sum(self.__edge_selections[i])) if division: self.__battery_energy_levels[i] = self.__battery_energy_levels[i] + \ self.__harvested_energys[i] - ToolFunction.obtain_transmit_energy( division, self.__edge_selections[i], parameter, parameter.get_connectable_gains()[i]) - \ parameter.get_local_exe_energy() else: # check whether need to minus local_exe_energys # if self.__battery_energy_levels[i] < parameter.get_local_exe_energy(): # self.__battery_energy_levels[i] = self.__battery_energy_levels[i] + self.__harvested_energys[i] # else: # self.__battery_energy_levels[i] = self.__battery_energy_levels[i] + \ # self.__harvested_energys[i] - parameter.get_local_exe_energy() self.__battery_energy_levels[i] = self.__battery_energy_levels[i] + self.__harvested_energys[i] self.__virtual_energy_levels[i] = self.__battery_energy_levels[i] - parameter.get_perturbation_para() def get_parameter(self): return self.__parameter def get_battery_energy_levels(self): return self.__battery_energy_levels def get_virtual_energy_levels(self): return self.__virtual_energy_levels def get_harvested_energys(self): return self.__harvested_energys def set_harvested_energys(self, harvested_energys): self.__harvested_energys = harvested_energys def get_edge_selections(self): return self.__edge_selections def set_edge_selections(self, edge_selections): self.__edge_selections = edge_selections
[ "cross_edge_offloading.utils.tool_function.ToolFunction.obtain_transmit_times", "cross_edge_offloading.utils.tool_function.ToolFunction.obtain_edge_exe_times" ]
[((2436, 2532), 'cross_edge_offloading.utils.tool_function.ToolFunction.obtain_transmit_times', 'ToolFunction.obtain_transmit_times', (['division', 'edge_selection', 'parameter', 'channel_power_gains'], {}), '(division, edge_selection, parameter,\n channel_power_gains)\n', (2470, 2532), False, 'from cross_edge_offloading.utils.tool_function import ToolFunction\n'), ((2554, 2609), 'cross_edge_offloading.utils.tool_function.ToolFunction.obtain_edge_exe_times', 'ToolFunction.obtain_edge_exe_times', (['division', 'parameter'], {}), '(division, parameter)\n', (2588, 2609), False, 'from cross_edge_offloading.utils.tool_function import ToolFunction\n'), ((3762, 3817), 'cross_edge_offloading.utils.tool_function.ToolFunction.obtain_edge_exe_times', 'ToolFunction.obtain_edge_exe_times', (['division', 'parameter'], {}), '(division, parameter)\n', (3796, 3817), False, 'from cross_edge_offloading.utils.tool_function import ToolFunction\n')]
import os import nox @nox.session(venv_backend="none") def ansible_lint(session): session.run("ansible-lint") @nox.session(venv_backend="none") @nox.parametrize( "playbook", sorted(playbook.name for playbook in os.scandir("playbooks") if playbook.is_file()), ) def ansible_syntax(session, playbook): session.run("ansible-playbook", "--syntax-check", f"playbooks/{playbook}") @nox.session(venv_backend="none") def yamllint(session): session.run("yamllint", ".")
[ "os.scandir", "nox.session" ]
[((25, 57), 'nox.session', 'nox.session', ([], {'venv_backend': '"""none"""'}), "(venv_backend='none')\n", (36, 57), False, 'import nox\n'), ((120, 152), 'nox.session', 'nox.session', ([], {'venv_backend': '"""none"""'}), "(venv_backend='none')\n", (131, 152), False, 'import nox\n'), ((399, 431), 'nox.session', 'nox.session', ([], {'venv_backend': '"""none"""'}), "(venv_backend='none')\n", (410, 431), False, 'import nox\n'), ((228, 251), 'os.scandir', 'os.scandir', (['"""playbooks"""'], {}), "('playbooks')\n", (238, 251), False, 'import os\n')]
# MIT License # Copyright (c) 2017 MassChallenge, Inc. from django.db.models import F from impact.v1.helpers.criterion_helper import CriterionHelper class JudgeCriterionHelper(CriterionHelper): '''Helper for JudgeCriteria. JudgeCriteria specify a feature which all applications are "looking for", for example "All startups should be read by at least one female judge". JudgeCriteria require one CriterionOptionSpec for each feature sought, for example, "one female judge and one male judge" would require two OptionSpecs. Weight and count can be set independently for each option. ''' def option_for_field(self, field): return field def judge_matches_option(self, judge_data, option): return option == judge_data.get(self.cache_key) def analysis_fields(self): return [ self.judge_field, ] def analysis_annotate_fields(self): return { self.cache_key: F(self.judge_field), }
[ "django.db.models.F" ]
[((965, 984), 'django.db.models.F', 'F', (['self.judge_field'], {}), '(self.judge_field)\n', (966, 984), False, 'from django.db.models import F\n')]
import json import aiohttp import asyncio from datetime import datetime from .const import ( API_URI, API_VERSION ) from .errors import InvalidPasswordOrEmail, UnexpectedResponse class Api: """The class to handle communicating with the api""" def __init__(self, auth, base_url=API_URI + "/v" + API_VERSION + "/gizwits/"): """ constructor """ self.auth = auth self.base_url = base_url async def send_command(self, command, query_string={}): async with aiohttp.ClientSession() as session: async with session.post(self.base_url+command, data=self.auth,params=query_string) as r: if r.status == 200: return await r.json() if r.status == 403: raise InvalidPasswordOrEmail((await r.json())["errors"]) r.raise_for_status() raise UnexpectedResponse(await r.text())
[ "aiohttp.ClientSession" ]
[((527, 550), 'aiohttp.ClientSession', 'aiohttp.ClientSession', ([], {}), '()\n', (548, 550), False, 'import aiohttp\n')]
from requests import get as rget from re import compile as reg_compile def get_word_freq(inputs, init_data): url = init_data.get("url") regex = reg_compile('[^a-zA-Z:-]') data = rget(url).text word_dict = {} for word in data.split(): try: word.encode("ascii") except UnicodeEncodeError: continue word = word.lower() if word.endswith(',') or word.endswith('.'): word = word[:-1] if regex.search(word): continue if word in word_dict: word_dict[word] += 1 else: word_dict[word] = 1 for word in inputs: freq = word_dict.get(word, 0) print("{0} : {1}".format(word, freq))
[ "requests.get", "re.compile" ]
[((153, 179), 're.compile', 'reg_compile', (['"""[^a-zA-Z:-]"""'], {}), "('[^a-zA-Z:-]')\n", (164, 179), True, 'from re import compile as reg_compile\n'), ((191, 200), 'requests.get', 'rget', (['url'], {}), '(url)\n', (195, 200), True, 'from requests import get as rget\n')]
import numpy as np import tensorflow as tf class MutualInformation(object): """ Compute mutual-information-based metrics. Inspired by https://github.com/airlab-unibas/airlab/blob/master/airlab/loss/pairwise.py. """ def __init__(self, n_bins=64, sigma=3, **kwargs): self.n_bins = n_bins self.sigma = 2*sigma**2 self.kwargs = kwargs self.eps = kwargs.pop('eps', 1e-10) self.win = kwargs.pop('win', 7); assert self.win % 2 == 1 # window size for local metrics self._normalizer_1d = np.sqrt(2.0 * np.pi) * sigma self._normalizer_2d = 2.0 * np.pi * sigma ** 2 self.background_method = kwargs.pop('background_method', 'min') if self.background_method is None: self.background_value = kwargs.pop('background_value') def _compute_marginal_entropy(self, values, bins): """ Compute the marginal entropy using Parzen window estimation. :param values: a tensor of shape [n_batch, *vol_shape, channels] :param bins: a tensor of shape [n_bins, 1] :return: entropy - the marginal entropy; p - the probability distribution """ p = tf.math.exp(-(tf.math.square(tf.reshape(tf.reduce_mean(values, axis=-1), [-1]) - bins) / self.sigma)) / self._normalizer_1d p_norm = tf.reduce_mean(p, axis=1) p_norm = p_norm / (tf.reduce_sum(p_norm) + self.eps) entropy = - tf.reduce_sum(p_norm * tf.math.log(p_norm + self.eps)) return entropy, p def mi(self, target, source): """ Compute mutual information: I(target, source) = H(target) + H(source) - H(target, source). :param target: :param source: :return: """ target=target source =source if self.background_method == 'min': background_fixed = tf.reduce_min(target) background_moving = tf.reduce_min(source) elif self.background_method == 'mean': background_fixed = tf.reduce_mean(target) background_moving = tf.reduce_mean(source) elif self.background_method is None: background_fixed = self.background_value background_moving = self.background_value else: raise NotImplementedError bins_target = tf.expand_dims(tf.linspace(background_fixed, tf.reduce_max(target), self.n_bins), axis=-1) bins_source = tf.expand_dims(tf.linspace(background_moving, tf.reduce_max(source), self.n_bins), axis=-1) # TODO: add masks # Compute marginal entropy entropy_target, p_t = self._compute_marginal_entropy(target, bins_target) entropy_source, p_s = self._compute_marginal_entropy(source, bins_source) # compute joint entropy p_joint = tf.matmul(p_t, tf.transpose(p_s, perm=[1, 0])) / self._normalizer_2d p_joint = p_joint / (tf.reduce_sum(p_joint) + self.eps) entropy_joint = - tf.reduce_sum(p_joint * tf.math.log(p_joint + self.eps)) return -(entropy_target + entropy_source - entropy_joint) def nmi(self, target, source): """ Compute normalized mutual information: NMI(target, source) = (H(target) + H(source)) / H(target, source). :param target: :param source: :return: """ target=target source =source if self.background_method == 'min': background_fixed = tf.reduce_min(target) background_moving = tf.reduce_min(source) elif self.background_method == 'mean': background_fixed = tf.reduce_mean(target) background_moving = tf.reduce_mean(source) elif self.background_method is None: background_fixed = self.background_value background_moving = self.background_value else: raise NotImplementedError bins_target = tf.expand_dims(tf.linspace(background_fixed, tf.reduce_max(target), self.n_bins), axis=-1) bins_source = tf.expand_dims(tf.linspace(background_moving, tf.reduce_max(source), self.n_bins), axis=-1) # TODO: add masks # Compute marginal entropy entropy_target, p_t = self._compute_marginal_entropy(target, bins_target) entropy_source, p_s = self._compute_marginal_entropy(source, bins_source) # compute joint entropy p_joint = tf.matmul(p_t, tf.transpose(p_s, perm=[1, 0])) / self._normalizer_2d p_joint = p_joint / (tf.reduce_sum(p_joint) + self.eps) entropy_joint = - tf.reduce_sum(p_joint * tf.math.log(p_joint + self.eps)) return -(entropy_target + entropy_source) / (entropy_joint + self.eps) def _normalize(self, data): data -= tf.reduce_min(data) data /= (tf.reduce_max(data) + self.eps) return data def ecc(self, target, source): """ Compute entropy correlation coefficient: ECC(target, source) = 2 - 2 / NMI(target, source). :param target: :param source: :return: """ return 2 - 2 / (self.nmi(target, source) + self.eps) def ce(self, target, source): """ Compute conditional entropy: H(target|source) = H(target, source) - H(source). :param target: :param source: :return: """ if self.background_method == 'min': background_fixed = tf.reduce_min(target) background_moving = tf.reduce_min(source) elif self.background_method == 'mean': background_fixed = tf.reduce_mean(target) background_moving = tf.reduce_mean(source) elif self.background_method is None: background_fixed = self.background_value background_moving = self.background_value else: raise NotImplementedError bins_target = tf.expand_dims(tf.linspace(background_fixed, tf.reduce_max(target), self.n_bins), axis=-1) bins_source = tf.expand_dims(tf.linspace(background_moving, tf.reduce_max(source), self.n_bins), axis=-1) # TODO: add masks # Compute marginal entropy entropy_target, p_t = self._compute_marginal_entropy(target, bins_target) entropy_source, p_s = self._compute_marginal_entropy(source, bins_source) # compute joint entropy p_joint = tf.matmul(p_t, tf.transpose(p_s, perm=[1, 0])) / self._normalizer_2d p_joint = p_joint / (tf.reduce_sum(p_joint) + self.eps) entropy_joint = - tf.reduce_sum(p_joint * tf.math.log(p_joint + self.eps)) return entropy_joint - entropy_source
[ "tensorflow.reduce_min", "numpy.sqrt", "tensorflow.transpose", "tensorflow.math.log", "tensorflow.reduce_sum", "tensorflow.reduce_max", "tensorflow.reduce_mean" ]
[((1343, 1368), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['p'], {'axis': '(1)'}), '(p, axis=1)\n', (1357, 1368), True, 'import tensorflow as tf\n'), ((4749, 4768), 'tensorflow.reduce_min', 'tf.reduce_min', (['data'], {}), '(data)\n', (4762, 4768), True, 'import tensorflow as tf\n'), ((551, 571), 'numpy.sqrt', 'np.sqrt', (['(2.0 * np.pi)'], {}), '(2.0 * np.pi)\n', (558, 571), True, 'import numpy as np\n'), ((1874, 1895), 'tensorflow.reduce_min', 'tf.reduce_min', (['target'], {}), '(target)\n', (1887, 1895), True, 'import tensorflow as tf\n'), ((1928, 1949), 'tensorflow.reduce_min', 'tf.reduce_min', (['source'], {}), '(source)\n', (1941, 1949), True, 'import tensorflow as tf\n'), ((3457, 3478), 'tensorflow.reduce_min', 'tf.reduce_min', (['target'], {}), '(target)\n', (3470, 3478), True, 'import tensorflow as tf\n'), ((3511, 3532), 'tensorflow.reduce_min', 'tf.reduce_min', (['source'], {}), '(source)\n', (3524, 3532), True, 'import tensorflow as tf\n'), ((4786, 4805), 'tensorflow.reduce_max', 'tf.reduce_max', (['data'], {}), '(data)\n', (4799, 4805), True, 'import tensorflow as tf\n'), ((5408, 5429), 'tensorflow.reduce_min', 'tf.reduce_min', (['target'], {}), '(target)\n', (5421, 5429), True, 'import tensorflow as tf\n'), ((5462, 5483), 'tensorflow.reduce_min', 'tf.reduce_min', (['source'], {}), '(source)\n', (5475, 5483), True, 'import tensorflow as tf\n'), ((1396, 1417), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['p_norm'], {}), '(p_norm)\n', (1409, 1417), True, 'import tensorflow as tf\n'), ((2028, 2050), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target'], {}), '(target)\n', (2042, 2050), True, 'import tensorflow as tf\n'), ((2083, 2105), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['source'], {}), '(source)\n', (2097, 2105), True, 'import tensorflow as tf\n'), ((2378, 2399), 'tensorflow.reduce_max', 'tf.reduce_max', (['target'], {}), '(target)\n', (2391, 2399), True, 'import tensorflow as tf\n'), ((2492, 2513), 'tensorflow.reduce_max', 'tf.reduce_max', (['source'], {}), '(source)\n', (2505, 2513), True, 'import tensorflow as tf\n'), ((2831, 2861), 'tensorflow.transpose', 'tf.transpose', (['p_s'], {'perm': '[1, 0]'}), '(p_s, perm=[1, 0])\n', (2843, 2861), True, 'import tensorflow as tf\n'), ((2914, 2936), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['p_joint'], {}), '(p_joint)\n', (2927, 2936), True, 'import tensorflow as tf\n'), ((3611, 3633), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target'], {}), '(target)\n', (3625, 3633), True, 'import tensorflow as tf\n'), ((3666, 3688), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['source'], {}), '(source)\n', (3680, 3688), True, 'import tensorflow as tf\n'), ((3961, 3982), 'tensorflow.reduce_max', 'tf.reduce_max', (['target'], {}), '(target)\n', (3974, 3982), True, 'import tensorflow as tf\n'), ((4075, 4096), 'tensorflow.reduce_max', 'tf.reduce_max', (['source'], {}), '(source)\n', (4088, 4096), True, 'import tensorflow as tf\n'), ((4414, 4444), 'tensorflow.transpose', 'tf.transpose', (['p_s'], {'perm': '[1, 0]'}), '(p_s, perm=[1, 0])\n', (4426, 4444), True, 'import tensorflow as tf\n'), ((4497, 4519), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['p_joint'], {}), '(p_joint)\n', (4510, 4519), True, 'import tensorflow as tf\n'), ((5562, 5584), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['target'], {}), '(target)\n', (5576, 5584), True, 'import tensorflow as tf\n'), ((5617, 5639), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['source'], {}), '(source)\n', (5631, 5639), True, 'import tensorflow as tf\n'), ((5912, 5933), 'tensorflow.reduce_max', 'tf.reduce_max', (['target'], {}), '(target)\n', (5925, 5933), True, 'import tensorflow as tf\n'), ((6026, 6047), 'tensorflow.reduce_max', 'tf.reduce_max', (['source'], {}), '(source)\n', (6039, 6047), True, 'import tensorflow as tf\n'), ((6365, 6395), 'tensorflow.transpose', 'tf.transpose', (['p_s'], {'perm': '[1, 0]'}), '(p_s, perm=[1, 0])\n', (6377, 6395), True, 'import tensorflow as tf\n'), ((6448, 6470), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['p_joint'], {}), '(p_joint)\n', (6461, 6470), True, 'import tensorflow as tf\n'), ((1473, 1503), 'tensorflow.math.log', 'tf.math.log', (['(p_norm + self.eps)'], {}), '(p_norm + self.eps)\n', (1484, 1503), True, 'import tensorflow as tf\n'), ((3000, 3031), 'tensorflow.math.log', 'tf.math.log', (['(p_joint + self.eps)'], {}), '(p_joint + self.eps)\n', (3011, 3031), True, 'import tensorflow as tf\n'), ((4583, 4614), 'tensorflow.math.log', 'tf.math.log', (['(p_joint + self.eps)'], {}), '(p_joint + self.eps)\n', (4594, 4614), True, 'import tensorflow as tf\n'), ((6534, 6565), 'tensorflow.math.log', 'tf.math.log', (['(p_joint + self.eps)'], {}), '(p_joint + self.eps)\n', (6545, 6565), True, 'import tensorflow as tf\n'), ((1242, 1273), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['values'], {'axis': '(-1)'}), '(values, axis=-1)\n', (1256, 1273), True, 'import tensorflow as tf\n')]
import copy from delairstack.core.config import ConnectionConfig from delairstack.core.errors import ConfigError from delairstack.core.utils.utils import (new_instance, flatten_dict, find, dict_merge) from tests.delairstacktest import DelairStackTestBase d1 = { 'a': { 'b': { 'c': 'd' } } } d2 = { 'a': { 'b': { 'c': 'd', 'e': 'f' } } } d3 = { 'a': { 'b': { 'c': 'g' } } } class TestUtils(DelairStackTestBase): """Tests for utilities. """ def test_new_instance_existing(self): """Test instance creation for existing module and class.""" instance = new_instance('delairstack.core.config', 'ConnectionConfig') self.assertNotEqual(instance, None) self.assertIsInstance(instance, ConnectionConfig) def test_new_instance_non_existing(self): """Test instance creation for non existing module or class.""" with self.assertRaises(ConfigError): new_instance('blabla', class_name=None) with self.assertRaises(ConfigError): new_instance(module_path=None, class_name=None) with self.assertRaises(ConfigError): new_instance('delairstack.core.config', 'FakeClass') with self.assertRaises(ConfigError): new_instance('delairstack.fake_module', 'TestClass') def test_flatten(self): res = flatten_dict(copy.deepcopy(d1)) self.assertEqual(res['a.b.c'], 'd') d = {} res = flatten_dict(d) self.assertEqual(len(res), 0) d = { 'a': 'b' } res = flatten_dict(d) self.assertEqual(res['a'], 'b') def test_find(self): self.assertEqual(find(copy.deepcopy(d1), 'a.b.c'), 'd') def test_merge_dict(self): res = dict_merge(copy.deepcopy(d1), copy.deepcopy(d2)) self.assertEqual(res, {'a': {'b': {'c': 'd', 'e': 'f'}}}) def test_merge_dict_in_place(self): h = copy.deepcopy(d1) dict_merge(h, {'a': {'y':2}}) self.assertEqual(h, {'a': {'b': {'c': 'd'}, 'y': 2}}) def test_merge_dict_with_add_keys(self): res = dict_merge(copy.deepcopy(d1), copy.deepcopy(d2), add_keys=False) self.assertEqual(res, {'a': {'b': {'c': 'd'}}})
[ "delairstack.core.utils.utils.flatten_dict", "delairstack.core.utils.utils.dict_merge", "copy.deepcopy", "delairstack.core.utils.utils.new_instance" ]
[((741, 800), 'delairstack.core.utils.utils.new_instance', 'new_instance', (['"""delairstack.core.config"""', '"""ConnectionConfig"""'], {}), "('delairstack.core.config', 'ConnectionConfig')\n", (753, 800), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1595, 1610), 'delairstack.core.utils.utils.flatten_dict', 'flatten_dict', (['d'], {}), '(d)\n', (1607, 1610), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1714, 1729), 'delairstack.core.utils.utils.flatten_dict', 'flatten_dict', (['d'], {}), '(d)\n', (1726, 1729), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((2074, 2091), 'copy.deepcopy', 'copy.deepcopy', (['d1'], {}), '(d1)\n', (2087, 2091), False, 'import copy\n'), ((2100, 2130), 'delairstack.core.utils.utils.dict_merge', 'dict_merge', (['h', "{'a': {'y': 2}}"], {}), "(h, {'a': {'y': 2}})\n", (2110, 2130), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1078, 1117), 'delairstack.core.utils.utils.new_instance', 'new_instance', (['"""blabla"""'], {'class_name': 'None'}), "('blabla', class_name=None)\n", (1090, 1117), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1176, 1223), 'delairstack.core.utils.utils.new_instance', 'new_instance', ([], {'module_path': 'None', 'class_name': 'None'}), '(module_path=None, class_name=None)\n', (1188, 1223), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1282, 1334), 'delairstack.core.utils.utils.new_instance', 'new_instance', (['"""delairstack.core.config"""', '"""FakeClass"""'], {}), "('delairstack.core.config', 'FakeClass')\n", (1294, 1334), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1393, 1445), 'delairstack.core.utils.utils.new_instance', 'new_instance', (['"""delairstack.fake_module"""', '"""TestClass"""'], {}), "('delairstack.fake_module', 'TestClass')\n", (1405, 1445), False, 'from delairstack.core.utils.utils import new_instance, flatten_dict, find, dict_merge\n'), ((1502, 1519), 'copy.deepcopy', 'copy.deepcopy', (['d1'], {}), '(d1)\n', (1515, 1519), False, 'import copy\n'), ((1917, 1934), 'copy.deepcopy', 'copy.deepcopy', (['d1'], {}), '(d1)\n', (1930, 1934), False, 'import copy\n'), ((1936, 1953), 'copy.deepcopy', 'copy.deepcopy', (['d2'], {}), '(d2)\n', (1949, 1953), False, 'import copy\n'), ((2263, 2280), 'copy.deepcopy', 'copy.deepcopy', (['d1'], {}), '(d1)\n', (2276, 2280), False, 'import copy\n'), ((2282, 2299), 'copy.deepcopy', 'copy.deepcopy', (['d2'], {}), '(d2)\n', (2295, 2299), False, 'import copy\n'), ((1826, 1843), 'copy.deepcopy', 'copy.deepcopy', (['d1'], {}), '(d1)\n', (1839, 1843), False, 'import copy\n')]
from conans.test.utils.tools import TestClient def test_cmake_lib_template(): client = TestClient(path_with_spaces=False) client.run("new hello/0.1 --template=cmake_lib") # Local flow works client.run("install . -if=install") client.run("build . -if=install") # Create works client.run("create .") assert "hello/0.1: Hello World Release!" in client.out client.run("create . -s build_type=Debug") assert "hello/0.1: Hello World Debug!" in client.out # Create + shared works client.run("create . -o hello:shared=True") assert "hello/0.1: Hello World Release!" in client.out def test_cmake_exe_template(): client = TestClient(path_with_spaces=False) client.run("new greet/0.1 --template=cmake_exe") # Local flow works client.run("install . -if=install") client.run("build . -if=install") # Create works client.run("create .") assert "greet/0.1: Hello World Release!" in client.out client.run("create . -s build_type=Debug") assert "greet/0.1: Hello World Debug!" in client.out
[ "conans.test.utils.tools.TestClient" ]
[((93, 127), 'conans.test.utils.tools.TestClient', 'TestClient', ([], {'path_with_spaces': '(False)'}), '(path_with_spaces=False)\n', (103, 127), False, 'from conans.test.utils.tools import TestClient\n'), ((675, 709), 'conans.test.utils.tools.TestClient', 'TestClient', ([], {'path_with_spaces': '(False)'}), '(path_with_spaces=False)\n', (685, 709), False, 'from conans.test.utils.tools import TestClient\n')]
import pyblish.api class IntegrateStarterAsset(pyblish.api.InstancePlugin): """Move user data to shared location This plug-in exposes your data to others by encapsulating it into a new version. Schema: Data is written in the following format. ____________________ | | | version | | ________________ | | | | | | | representation | | | |________________| | | | | | | | ... | | | |________________| | |____________________| """ label = "Starter Asset" order = pyblish.api.IntegratorOrder families = [ "starter.model", "starter.rig", "starter.animation" ] def process(self, instance): import os import json import errno import shutil from pyblish_starter import api context = instance.context # Atomicity # # Guarantee atomic publishes - each asset contains # an identical set of members. # __ # / o # / \ # | o | # \ / # o __/ # if not all(result["success"] for result in context.data["results"]): raise Exception("Atomicity not held, aborting.") # Assemble # # | # v # ---> <---- # ^ # | # stagingdir = instance.data.get("stagingDir") assert stagingdir, ( "Incomplete instance \"%s\": " "Missing reference to staging area." % instance ) root = context.data["workspaceDir"] instancedir = os.path.join(root, "shared", instance.data["name"]) try: os.makedirs(instancedir) except OSError as e: if e.errno != errno.EEXIST: # Already exists self.log.critical("An unexpected error occurred.") raise version = api.find_latest_version(os.listdir(instancedir)) + 1 versiondir = os.path.join(instancedir, api.format_version(version)) # Metadata # _________ # | |.key = value # | | # | | # | | # | | # |_________| # fname = os.path.join(stagingdir, ".metadata.json") try: with open(fname) as f: metadata = json.load(f) except IOError: metadata = { "schema": "pyblish-starter:version-1.0", "version": version, "path": versiondir, "representations": list(), # Collected by pyblish-base "time": context.data["date"], "author": context.data["user"], # Collected by pyblish-maya "source": os.path.join( "{root}", os.path.relpath( context.data["currentFile"], api.root() ) ), } for filename in instance.data.get("files", list()): name, ext = os.path.splitext(filename) metadata["representations"].append( { "schema": "pyblish-starter:representation-1.0", "format": ext, "path": "{dirname}/%s{format}" % name } ) # Write to disk # _ # | | # _| |_ # ____\ / # |\ \ / \ # \ \ v \ # \ \________. # \|________| # with open(fname, "w") as f: json.dump(metadata, f, indent=4) # Metadata is written before being validated - # this way, if validation fails, the data can be # inspected by hand from within the user directory. api.schema.validate(metadata, "version") shutil.copytree(stagingdir, versiondir) self.log.info("Successfully integrated \"%s\" to \"%s\"" % ( instance, versiondir))
[ "os.listdir", "pyblish_starter.api.root", "os.makedirs", "os.path.join", "os.path.splitext", "pyblish_starter.api.schema.validate", "shutil.copytree", "json.load", "pyblish_starter.api.format_version", "json.dump" ]
[((1792, 1843), 'os.path.join', 'os.path.join', (['root', '"""shared"""', "instance.data['name']"], {}), "(root, 'shared', instance.data['name'])\n", (1804, 1843), False, 'import os\n'), ((2430, 2472), 'os.path.join', 'os.path.join', (['stagingdir', '""".metadata.json"""'], {}), "(stagingdir, '.metadata.json')\n", (2442, 2472), False, 'import os\n'), ((4076, 4116), 'pyblish_starter.api.schema.validate', 'api.schema.validate', (['metadata', '"""version"""'], {}), "(metadata, 'version')\n", (4095, 4116), False, 'from pyblish_starter import api\n'), ((4125, 4164), 'shutil.copytree', 'shutil.copytree', (['stagingdir', 'versiondir'], {}), '(stagingdir, versiondir)\n', (4140, 4164), False, 'import shutil\n'), ((1870, 1894), 'os.makedirs', 'os.makedirs', (['instancedir'], {}), '(instancedir)\n', (1881, 1894), False, 'import os\n'), ((2190, 2217), 'pyblish_starter.api.format_version', 'api.format_version', (['version'], {}), '(version)\n', (2208, 2217), False, 'from pyblish_starter import api\n'), ((3303, 3329), 'os.path.splitext', 'os.path.splitext', (['filename'], {}), '(filename)\n', (3319, 3329), False, 'import os\n'), ((3862, 3894), 'json.dump', 'json.dump', (['metadata', 'f'], {'indent': '(4)'}), '(metadata, f, indent=4)\n', (3871, 3894), False, 'import json\n'), ((2114, 2137), 'os.listdir', 'os.listdir', (['instancedir'], {}), '(instancedir)\n', (2124, 2137), False, 'import os\n'), ((2549, 2561), 'json.load', 'json.load', (['f'], {}), '(f)\n', (2558, 2561), False, 'import json\n'), ((3152, 3162), 'pyblish_starter.api.root', 'api.root', ([], {}), '()\n', (3160, 3162), False, 'from pyblish_starter import api\n')]
import cv2 import numpy as np cap=cv2.VideoCapture("line.mp4") while (cap.isOpened()): _,frame=cap.read() frame=cv2.resize(frame,(640,480)) hsvFrame=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) # HSV değerlerini bulmak istediğimiz rengi google yazarak bulabiliriz buna göre alt kısmı doldurabiliriz l_lineValue=np.array([18,94,140],np.uint8) h_lineValue=np.array([48,255,255],np.uint8) mask=cv2.inRange(hsvFrame,l_lineValue,h_lineValue) edgesFrame=cv2.Canny(mask,75,250) lines=cv2.HoughLinesP(edgesFrame,1,np.pi/180,50,minLineLength=10,maxLineGap=50) for line in lines: (x1,y1,x2,y2)=line[0] cv2.line(frame,(x1,y1),(x2,y2),(255,0,0),2) cv2.imshow("Original Video",frame) cv2.imshow("Mask Video",mask) if cv2.waitKey(1) & 0xFF==ord("q"): break cap.release() cv2.destroyAllWindows()
[ "cv2.HoughLinesP", "cv2.inRange", "cv2.line", "cv2.imshow", "numpy.array", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.cvtColor", "cv2.resize", "cv2.Canny", "cv2.waitKey" ]
[((35, 63), 'cv2.VideoCapture', 'cv2.VideoCapture', (['"""line.mp4"""'], {}), "('line.mp4')\n", (51, 63), False, 'import cv2\n'), ((839, 862), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (860, 862), False, 'import cv2\n'), ((122, 151), 'cv2.resize', 'cv2.resize', (['frame', '(640, 480)'], {}), '(frame, (640, 480))\n', (132, 151), False, 'import cv2\n'), ((163, 201), 'cv2.cvtColor', 'cv2.cvtColor', (['frame', 'cv2.COLOR_BGR2HSV'], {}), '(frame, cv2.COLOR_BGR2HSV)\n', (175, 201), False, 'import cv2\n'), ((327, 360), 'numpy.array', 'np.array', (['[18, 94, 140]', 'np.uint8'], {}), '([18, 94, 140], np.uint8)\n', (335, 360), True, 'import numpy as np\n'), ((374, 408), 'numpy.array', 'np.array', (['[48, 255, 255]', 'np.uint8'], {}), '([48, 255, 255], np.uint8)\n', (382, 408), True, 'import numpy as np\n'), ((415, 462), 'cv2.inRange', 'cv2.inRange', (['hsvFrame', 'l_lineValue', 'h_lineValue'], {}), '(hsvFrame, l_lineValue, h_lineValue)\n', (426, 462), False, 'import cv2\n'), ((476, 500), 'cv2.Canny', 'cv2.Canny', (['mask', '(75)', '(250)'], {}), '(mask, 75, 250)\n', (485, 500), False, 'import cv2\n'), ((509, 594), 'cv2.HoughLinesP', 'cv2.HoughLinesP', (['edgesFrame', '(1)', '(np.pi / 180)', '(50)'], {'minLineLength': '(10)', 'maxLineGap': '(50)'}), '(edgesFrame, 1, np.pi / 180, 50, minLineLength=10, maxLineGap=50\n )\n', (524, 594), False, 'import cv2\n'), ((700, 735), 'cv2.imshow', 'cv2.imshow', (['"""Original Video"""', 'frame'], {}), "('Original Video', frame)\n", (710, 735), False, 'import cv2\n'), ((739, 769), 'cv2.imshow', 'cv2.imshow', (['"""Mask Video"""', 'mask'], {}), "('Mask Video', mask)\n", (749, 769), False, 'import cv2\n'), ((647, 698), 'cv2.line', 'cv2.line', (['frame', '(x1, y1)', '(x2, y2)', '(255, 0, 0)', '(2)'], {}), '(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)\n', (655, 698), False, 'import cv2\n'), ((777, 791), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (788, 791), False, 'import cv2\n')]
import sys def sum_triangular_numbers(n): if n <= 0: return 0 else: t = [int((i + 1) * (i + 2) / 2) for i in range(n)] return sum(t) if __name__ == "__main__": if len(sys.argv) == 2: print(sum_triangular_numbers(n=int(sys.argv[1]))) else: sys.exit(1)
[ "sys.exit" ]
[((298, 309), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (306, 309), False, 'import sys\n')]
"""Test messages with attachments.""" import future.backports.email as email import mailmerge from tests.test_smtp_base import TestSMTPBase class TestSendAttachment(TestSMTPBase): """Test messages with attachments.""" def _validate_message_contents(self, message): """Validate the contents and attachments of the message.""" self.assertTrue(message.is_multipart()) # Make sure the attachments are all present and valid email_body_present = False expected_attachments = { "test_send_attachment_1.txt": False, "test_send_attachment_2.pdf": False, "test_send_attachment_17.txt": False, } for part in message.walk(): if part.get_content_maintype() == 'multipart': continue if part['content-type'].startswith('text/plain'): # This is the email body email_body = part.get_payload() expected_email_body = 'Hi, Myself,\n\nYour number is 17.' self.assertEqual(email_body.rstrip(), expected_email_body) email_body_present = True elif part['content-type'].startswith('application/octet-stream'): # This is an attachment filename = part.get_param('name') file_contents = part.get_payload(decode=True) self.assertIn(filename, expected_attachments) self.assertFalse(expected_attachments[filename]) with open(filename, 'rb') as expected_attachment: correct_file_contents = expected_attachment.read() self.assertEqual(file_contents, correct_file_contents) expected_attachments[filename] = True self.assertTrue(email_body_present) self.assertNotIn(False, expected_attachments.values()) def test_send_attachment(self): """Attachments should be sent as part of the email.""" mailmerge.api.main( database_filename=self.DATABASE_FILENAME, config_filename=self.SERVER_CONFIG_FILENAME, template_filename="test_send_attachment.template.txt", no_limit=False, dry_run=False, ) # Check SMTP server after self.assertEqual(self.smtp.msg_from, "<NAME> <<EMAIL>>") recipients = ["<EMAIL>"] self.assertEqual(self.smtp.msg_to, recipients) # Check that the message is multipart message = email.parser.Parser().parsestr(self.smtp.msg) self._validate_message_contents(message)
[ "mailmerge.api.main", "future.backports.email.parser.Parser" ]
[((1976, 2176), 'mailmerge.api.main', 'mailmerge.api.main', ([], {'database_filename': 'self.DATABASE_FILENAME', 'config_filename': 'self.SERVER_CONFIG_FILENAME', 'template_filename': '"""test_send_attachment.template.txt"""', 'no_limit': '(False)', 'dry_run': '(False)'}), "(database_filename=self.DATABASE_FILENAME,\n config_filename=self.SERVER_CONFIG_FILENAME, template_filename=\n 'test_send_attachment.template.txt', no_limit=False, dry_run=False)\n", (1994, 2176), False, 'import mailmerge\n'), ((2492, 2513), 'future.backports.email.parser.Parser', 'email.parser.Parser', ([], {}), '()\n', (2511, 2513), True, 'import future.backports.email as email\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals """Tests for `epages_client.dataobjects.product_create` package.""" import unittest # import the package import epages_client from epages_client.dataobjects.product_update import ProductUpdate from epages_client.dataobjects.remove_value import RemoveValue # import base class for unit testing from .base_unit_test import BaseUnitTest class TestStringMethods(BaseUnitTest): def setUp(self): pass def test_1001_correct_inputs(self): product = ProductUpdate() product.productNumber = "prod_1" self.assertEqual(product.productNumber, "prod_1") product.name = "Deddy Bear" self.assertEqual(product.name, "Deddy Bear") product.shortDescription = "Soft Deddy Bear" self.assertEqual(product.shortDescription, "Soft Deddy Bear") product.description = "Tom’s 18″ Teddy Bear" self.assertEqual(product.description, "Tom’s 18″ Teddy Bear") product.manufacturer = "<NAME>" self.assertEqual(product.manufacturer, "<NAME>") product.upc = "9501101530003" self.assertEqual(product.upc, "9501101530003") product.ean = "0012345678905" self.assertEqual(product.ean, "0012345678905") product.essentialFeatures = "yellow eyes" self.assertEqual(product.essentialFeatures, "yellow eyes") product.price = 29.99 self.assertEqual(product.price, 29.99) product.manufacturerPrice = 49.90 self.assertEqual(product.manufacturerPrice, 49.90) product.depositPrice = 0.00 self.assertEqual(product.depositPrice, 0.00) product.deliveryPeriod = "5 days" self.assertEqual(product.deliveryPeriod, "5 days") product.minStocklevel = 6 self.assertEqual(product.minStocklevel, 6) product.manufacturerProductNumber = "00000001ZDEDDY" self.assertEqual(product.manufacturerProductNumber, "00000001ZDEDDY") product.productLength = 50 self.assertEqual(product.productLength, 50) product.productWidth = 60 self.assertEqual(product.productWidth, 60) product.productHeight = 457 self.assertEqual(product.productHeight, 457) product.taxClassId = "tax01" self.assertEqual(product.taxClassId, "tax01") product.productImage = "teddy0001_big.jpg" self.assertEqual(product.productImage, "teddy0001_big.jpg") product.stocklevel = 5 self.assertEqual(product.stocklevel, 5) product.visible = True self.assertEqual(product.visible, True) product.searchKeywords.add('deddy') self.assertEqual(product.searchKeywords.get(), ['deddy']) product.searchKeywords.add('toy') self.assertEqual(product.searchKeywords.get(), ['deddy', 'toy']) patch_values = [ {'op': 'replace', 'path': '/priceInfo/taxClass/taxClassId', 'value': 'tax01'}, {'op': 'add', 'path': '/visible', 'value': True}, {'op': 'add', 'path': '/productNumber', 'value': 'prod_1'}, {'op': 'add', 'path': '/productImage', 'value': 'teddy0001_big.jpg'}, {'op': 'add', 'path': '/deliveryPeriod', 'value': '5 days'}, {'op': 'add', 'path': '/essentialFeatures', 'value': 'yellow eyes'}, {'op': 'add', 'path': '/description', 'value': 'Tom’s 18″ Teddy Bear'}, {'op': 'add', 'path': '/shortDescription', 'value': 'Soft Deddy Bear'}, {'op': 'add', 'path': '/productWidth', 'value': 60}, {'op': 'add', 'path': '/upc', 'value': '9501101530003'}, {'op': 'add', 'path': '/searchKeywords', 'value': ['deddy', 'toy']}, {'op': 'add', 'path': '/priceInfo/manufacturerPrice/amount', 'value': 49.9}, {'op': 'add', 'path': '/manufacturerProductNumber', 'value': '00000001ZDEDDY'}, {'op': 'add', 'path': '/priceInfo/price/amount', 'value': 29.99}, {'op': 'add', 'path': '/productLength', 'value': 50}, {'op': 'add', 'path': '/name', 'value': '<NAME>'}, {'op': 'add', 'path': '/manufacturer', 'value': '<NAME>'}, {'op': 'add', 'path': '/ean', 'value': '0012345678905'}, {'op': 'add', 'path': '/priceInfo/depositPrice/amount', 'value': 0.0}, {'op': 'add', 'path': '/stocklevel', 'value': 5}, {'op': 'add', 'path': '/productHeight', 'value': 457}, {'op': 'add', 'path': '/minStocklevel', 'value': 6} ] self.assert_count_items_equal(product.get_patch(), patch_values) def test_1201_correct_removes(self): product = ProductUpdate() product.name = RemoveValue() # test str patch_value = [{'op': 'remove', 'path': '/name'}] self.assert_count_items_equal(product.get_patch(), patch_value) # test numeric product.minStocklevel = RemoveValue() patch_value = [{'op': 'remove', 'path': '/name'}, {'op': 'remove', 'path': '/minStocklevel'}] self.assert_count_items_equal(product.get_patch(), patch_value) # ListOfObject - user overwrites when he/she wants to remove values product.searchKeywords = RemoveValue() self.assertIsInstance(product.searchKeywords, RemoveValue) patch_value = [{'op': 'remove', 'path': '/name'}, {'op': 'remove', 'path': '/minStocklevel'}, {'op': 'remove', 'path': "/searchKeywords"}] self.assert_count_items_equal(product.get_patch(), patch_value) def test_2000_invalid_inputs(self): product = ProductUpdate() with self.assertRaises(TypeError) as e: product.price = "12.21 €" with self.assertRaises(TypeError) as e: product.visible = "True" if __name__ == '__main__': unittest.main()
[ "unittest.main", "epages_client.dataobjects.remove_value.RemoveValue", "epages_client.dataobjects.product_update.ProductUpdate" ]
[((5925, 5940), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5938, 5940), False, 'import unittest\n'), ((536, 551), 'epages_client.dataobjects.product_update.ProductUpdate', 'ProductUpdate', ([], {}), '()\n', (549, 551), False, 'from epages_client.dataobjects.product_update import ProductUpdate\n'), ((4705, 4720), 'epages_client.dataobjects.product_update.ProductUpdate', 'ProductUpdate', ([], {}), '()\n', (4718, 4720), False, 'from epages_client.dataobjects.product_update import ProductUpdate\n'), ((4744, 4757), 'epages_client.dataobjects.remove_value.RemoveValue', 'RemoveValue', ([], {}), '()\n', (4755, 4757), False, 'from epages_client.dataobjects.remove_value import RemoveValue\n'), ((4964, 4977), 'epages_client.dataobjects.remove_value.RemoveValue', 'RemoveValue', ([], {}), '()\n', (4975, 4977), False, 'from epages_client.dataobjects.remove_value import RemoveValue\n'), ((5285, 5298), 'epages_client.dataobjects.remove_value.RemoveValue', 'RemoveValue', ([], {}), '()\n', (5296, 5298), False, 'from epages_client.dataobjects.remove_value import RemoveValue\n'), ((5703, 5718), 'epages_client.dataobjects.product_update.ProductUpdate', 'ProductUpdate', ([], {}), '()\n', (5716, 5718), False, 'from epages_client.dataobjects.product_update import ProductUpdate\n')]
from django.utils.translation import ugettext_lazy as _ from django_celery_results.apps import CeleryResultConfig from oauth2_provider.apps import DOTConfig class GiscubeOauth2ProviderConfig(DOTConfig): verbose_name = _('Security') class GiscubeCeleryResultConfig(CeleryResultConfig): verbose_name = _('Internal Processes Results')
[ "django.utils.translation.ugettext_lazy" ]
[((225, 238), 'django.utils.translation.ugettext_lazy', '_', (['"""Security"""'], {}), "('Security')\n", (226, 238), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((313, 344), 'django.utils.translation.ugettext_lazy', '_', (['"""Internal Processes Results"""'], {}), "('Internal Processes Results')\n", (314, 344), True, 'from django.utils.translation import ugettext_lazy as _\n')]
#!/usr/bin/env python3 """Functions to create a positions file.""" ######################################################################## # File: makePositionsFiles.py # executable: makePositionsFiles.py # # Author: <NAME> # History: 5/21/18 Created ######################################################################## import os import sys import string import array import subprocess import numpy as np import pandas as pd import pysam from contextlib import closing from collections import Counter from signalalign.utils.parsers import read_fasta from py3helpers.utils import find_substring_indices, all_string_permutations def find_gatc_motifs(sequence): """Generate index of 'A' within the 'GATC' motifs in a nucleotide sequence :param sequence: since GATC motif is in DNA, expecting a DNA nucleotide sequence :return: generator yielding index of 'A' within the 'GATC' """ return find_substring_indices(sequence.upper(), "GATC", offset=1) def find_different_char_index(start_string, edit_string): """Compares standard and modified string and identifies the index of the modified character ex: find_char_difference_index("CCAGG","CFAGG") = 1 :param start_string: starting string :param edit_string: string with a single character edit from start_string :return: index of string difference """ assert len(start_string) == len(edit_string), "" pos = [i for i in range(len(start_string)) if start_string[i] != edit_string[i]] assert len(pos) == 1, "Only one character difference allowed. " \ "start_string={}, edit_string={}".format(start_string, edit_string) return pos[0] def find_modification_index_and_character(canonical_motif, replacement_motif): """Compares canonical and modified motif and identifies the index of the modified nucleotide, canonical character, and replacement character. note. everything is converted to uppercase ex. find_modification_index_and_character("ATGC", "ETGC") = 0, "A", "E" :param canonical_motif: canonical nucleotide bases :param replacement_motif: replacement motif :return: mod_index, old_char, new_char """ canonical_motif = canonical_motif.upper() replacement_motif = replacement_motif.upper() assert canonical_motif != replacement_motif, "Canonical motif cannot be the same as replacement motif" assert set(canonical_motif) <= set("ATGC"), "Canonical motif must only have canonical nucleotides" pos = find_different_char_index(canonical_motif, replacement_motif) old_char = canonical_motif[pos] new_char = replacement_motif[pos] return pos, old_char, new_char def make_positions_file(reference, output_path, motifs, overlap=False): """Creates a tsv file with the following format ("contig", "position", "strand", "change_from", "change_to"). Given a reference sequence and sets of sequence motif changes we report the location of each change. NOTE: the motifs cannot create new characters on the opposite strand! :param reference: path to reference sequence :param output_path: output path of positions file :param motifs: list of lists of find replace motifs ex: [("CCAGG","CFAGG"), ("CCTGG","CFTGG")] :param overlap: if the motif can overlap with its self, find index of overlap if set to true """ rev_motifs = [] for motif in motifs: rev_motifs.append([x[::-1] for x in motif]) with open(output_path, "w") as outfile: for header, comment, sequence in read_fasta(reference): fwd_seq = sequence bwd_seq = reverse_complement(fwd_seq, reverse=False, complement=True).upper() for index, old_char, substitution_char in find_motifs_sequence_positions(fwd_seq, motifs, overlap=overlap): outfile.write(header + "\t" + np.str(index) + "\t" + "+" + "\t" + old_char + "\t" + substitution_char + "\n") for index, old_char, substitution_char in find_motifs_sequence_positions(bwd_seq, rev_motifs, overlap=overlap): outfile.write(header + "\t" + np.str(index) + "\t" + "-" + "\t" + old_char + "\t" + substitution_char + "\n") return output_path def replace_motifs_sequence_positions(sequence, motifs, overlap=False): """Edit nucleotide sequence using find and replace motifs note: we convert sequence to uppercase :param sequence: nucleotide sequence :param motifs: list of motif's which need to be replaced: eg [[find, replace]], [["CCAGG", "CEAGG"]] :param overlap: boolean option to look for motif overlaps """ new_sequence = list(sequence) for index, old_char, substitution_char in find_motifs_sequence_positions(sequence, motifs, overlap=overlap): new_sequence[index] = substitution_char subst_sequence = ''.join(new_sequence).upper() return subst_sequence def find_motifs_sequence_positions(sequence, motifs, overlap=False): """Find locations of edited nucleotide nucleotide sequence using find and replace motifs note: we convert sequence to uppercase :param sequence: nucleotide sequence :param motifs: list of motif's which need to be replaced: eg [[find, replace]], [["CCAGG", "CEAGG"]] :param overlap: boolean option to look for motif overlaps """ already_repaced_indexes = set() # gather motifs for motif_pair in motifs: assert len(motif_pair) == 2 and type( motif_pair) is list, "Motifs must be structured as list of lists, even for one motif find and replace" # find edit character and offset offset, old_char, substitution_char = find_modification_index_and_character(motif_pair[0], motif_pair[1]) for index in find_substring_indices(sequence.upper(), motif_pair[0].upper(), offset=offset, overlap=overlap): # make sure that there is no overlapping assignments of characters assert index not in already_repaced_indexes, "Motifs has two different edits to a single nucleotide " \ "location. Check motifs {}".format(motifs) already_repaced_indexes.add(index) yield index, old_char, substitution_char def replace_periodic_sequence_positions(sequence, step_size, offset, substitution_char): """Edit nucleotide sequence using by replacing every 'step_size' nucleotides with an offset note: we convert sequence to uppercase eg: replace_periodic_sequence_positions("ATGCATGC", 3, 1, "F") = "AFGCFTGF" :param sequence: nucleotide sequence :param step_size: every 'step_size' locations the offset position is changed :param offset: the :param substitution_char: replacement character """ assert offset < step_size, "Offset has to be less than step size" sequence = list(sequence) for i in range(offset, len(sequence), step_size): sequence[i] = substitution_char subst_sequence = ''.join(sequence).upper() return subst_sequence def replace_periodic_reference_positions(reference_location, sub_fasta_path, step, offset, substitution_char='X'): """Edit and write a reference sequence to a specified path by replacing periodic characters note: if sub_fasta_path exists it will return the path without creating a new file :param reference_location: input reference :param sub_fasta_path: location of edited reference :param step: size of gap between substitution characters :param offset: offset of when to start creating substiutions :param substitution_char: character to replace original character """ if os.path.isfile(sub_fasta_path): print("[substitute_reference_positions] Substituted reference fasta file exists: {}".format( sub_fasta_path)) return sub_fasta_path else: print("[substitute_reference_positions] Creating substituted reference fasta file: {}".format( sub_fasta_path)) # write with open(sub_fasta_path, 'w') as outfasta: for header, comment, sequence in read_fasta(reference_location): subst_sequence = replace_periodic_sequence_positions(sequence, step, offset, substitution_char) print( ">%s %s\n%s" % (header, "substituted:{},step:{},offset:{}".format(substitution_char, step, offset), subst_sequence), file=outfasta) return sub_fasta_path def replace_motif_reference_positions(reference_location, sub_fasta_path, motifs, overlap=False): """Replace motif reference sequence to a specific path :param reference_location: input reference :param sub_fasta_path: location of edited reference :param motifs: list of motif's which need to be replaced: eg [[find, replace]], [["CCAGG", "CEAGG"]] :param overlap: of overlap is possible, replace with overlap: eg [["AAA", "AAT"]] : AAAA -> AATT """ if os.path.isfile(sub_fasta_path): print("[substitute_reference_positions] Substituted reference fasta file exists: {}".format( sub_fasta_path)) return sub_fasta_path else: print("[substitute_reference_positions] Creating substituted reference fasta file: {}".format( sub_fasta_path)) # write with open(sub_fasta_path, 'w') as outfasta: for header, comment, sequence in read_fasta(reference_location): subst_sequence = replace_motifs_sequence_positions(sequence, motifs, overlap) print(">%s %s\n%s" % (header, "substituted:{}".format(motifs), subst_sequence), file=outfasta) return sub_fasta_path def samtools_faidx_fasta(fasta_path, log=None): """Index fasta using samtools faidx note: samtools must be in PATH :param fasta_path: path to fasta file """ # produce faidx file assert os.path.isfile(fasta_path), "Path to fasta file does not exist" index_path = "{}.fai".format(fasta_path) if not os.path.exists(index_path): if log: print("[{}] indexing reference {}".format(log, fasta_path)) args = ["samtools", "faidx", fasta_path] subprocess.check_call(args) assert os.path.isfile(index_path), "Error creating FAIDX file for: {}".format(fasta_path) return index_path def count_all_sequence_kmers(seq, k=5, rev_comp=False): """Count all the 5'-3' kmers of a nucleotide sequence, rev_comp counts rev_comp seq IN ADDITION to given sequence :param seq: nucleotide sequence :param k: size of kmer :param rev_comp: boolean option to count reverse complement kmers as well :return: dictionary of kmers with counts as values """ # loop through kmers kmers = Counter() for kmer in kmer_iterator(seq, k): kmers[kmer] += 1 if rev_comp: # loop through rev_comp kmers seq1 = reverse_complement(seq, reverse=True, complement=True) for kmer in kmer_iterator(seq1, k): kmers[kmer] += 1 return kmers def get_sequence_kmers(seq, k=5, rev_comp=False): """Get the set of all kmers from a sequence. :param seq: nucleotide sequence :param k: size of kmer :param rev_comp: boolean option to count reverse complement kmers as well :return: set of kmers """ return set(count_all_sequence_kmers(seq, k=k, rev_comp=rev_comp).keys()) def get_motif_kmers(motif_pair, k, alphabet="ATGC"): """Given a motif pair, create a list of all kmers which contain modification """ assert len(motif_pair) == 2, "Motif pair must be a list of length 2. len(motif_pair) = {}".format(len(motif_pair)) canonical = motif_pair[0] modified = motif_pair[1] motif_len = len(canonical) # get mod index and chars mod_index, old_char, new_char = find_modification_index_and_character(canonical, modified) bases_after = motif_len - mod_index - 1 # get overlaps for front and back of kmer front_overlap, back_overlap = get_front_back_kmer_overlap(k, motif_len, mod_index) # pre-compute kmers kmer_set_dict = dict() for i in range(1, max(front_overlap, back_overlap) + 1): kmer_set_dict[i] = [x for x in all_string_permutations(alphabet, i)] kmer_set_dict[0] = [''] motif_kmers = [] for i in range(k): # get prepend kmers and index for front of motif if i >= front_overlap: front_index = i - front_overlap prepend_kmers = [''] else: prepend_kmers = kmer_set_dict[front_overlap - i] front_index = 0 # get append kmers and index for back of motif if i > bases_after: append_kmers = kmer_set_dict[i - bases_after] back_index = motif_len else: back_index = mod_index + i + 1 append_kmers = [''] kmer = modified[front_index:back_index] motif_kmers.extend( [front + kmer + back for front in prepend_kmers for back in append_kmers if front + kmer + back is not '']) return set(motif_kmers) def get_front_back_kmer_overlap(k, motif_len, mod_index): """Get the largest number of bases overlap at front and back of motif eg: k=3 , motif_len = 2, mod_index = 1 motif = GE X G E X _ _ _ max front_overlap = 1 _ _ _ max back_overlap = 1 :param k: length of kmer :param motif_len: length of motif :param mod_index: index position of modification :return: largest overlap in the front and back of a generated kmer """ assert k >= 1, "k cannot be less than 1. k: {}".format(k) front_overlap = k - mod_index - 1 back_overlap = k - (motif_len - mod_index) return front_overlap, back_overlap # TODO write these tests ya dig def getFastaDictionary(fastaFile): """Returns a dictionary of the first words of fasta headers to their corresponding fasta sequence """ namesAndSequences = [(x[0].split()[0], x[1]) for x in fastaRead(open(fastaFile, 'r'))] names = [x[0] for x in namesAndSequences] assert len(names) == len(set(names)) # Check all the names are unique return dict(namesAndSequences) # Hash of names to sequences def fastaRead(fileHandleOrFile): """iteratively yields a sequence for each '>' it encounters, ignores '#' lines """ fileHandle = _getFileHandle(fileHandleOrFile) line = fileHandle.readline() chars_to_remove = "\n " valid_chars = {x for x in string.ascii_letters + "-"} while line != '': if line[0] == '>': name = line[1:-1] line = fileHandle.readline() seq = array.array('b') while line != '' and line[0] != '>': line = line.translate(str.maketrans('', '', chars_to_remove)) if len(line) > 0 and line[0] != '#': seq.extend(list(map(ord, line))) line = fileHandle.readline() try: assert all(chr(x) in valid_chars for x in seq) except AssertionError: bad_chars = {chr(x) for x in seq if chr(x) not in valid_chars} raise RuntimeError("Invalid FASTA character(s) see in fasta sequence: {}".format(bad_chars)) yield name, seq.tobytes() else: line = fileHandle.readline() if isinstance(fileHandleOrFile, "".__class__): fileHandle.close() def _getFileHandle(fileHandleOrFile, mode="r"): if isinstance(fileHandleOrFile, "".__class__): return open(fileHandleOrFile, mode) else: return fileHandleOrFile def fastaWrite(fileHandleOrFile, name, seq, mode="w"): """Writes out fasta file """ fileHandle = _getFileHandle(fileHandleOrFile, mode) valid_chars = {x for x in string.ascii_letters + "-"} try: assert any([isinstance(seq, str), isinstance(seq, str)]) except AssertionError: raise RuntimeError("Sequence is not unicode or string") try: assert all(x in valid_chars for x in seq) except AssertionError: bad_chars = {x for x in seq if x not in valid_chars} raise RuntimeError("Invalid FASTA character(s) see in fasta sequence: {}".format(bad_chars)) fileHandle.write(">%s\n" % name) chunkSize = 100 for i in range(0, len(seq), chunkSize): fileHandle.write("%s\n" % seq[i:i + chunkSize]) if isinstance(fileHandleOrFile, "".__class__): fileHandle.close() def getFastaDictionary(fastaFile): """Returns a dictionary of the first words of fasta headers to their corresponding fasta sequence """ namesAndSequences = [(x[0].split()[0], x[1]) for x in fastaRead(open(fastaFile, 'r'))] names = [x[0] for x in namesAndSequences] assert len(names) == len(set(names)) # Check all the names are unique return dict(namesAndSequences) # Hash of names to sequences def kmer_iterator(dna, k): """Generates kmers of length k from a string with one step between kmers :param dna: string to generate kmers from :param k: size of kmer to generate """ assert len(dna) >= 1, "You must select a substring with len(dna) >= 1: {}".format(dna) assert k >= 1, "You must select a main_string with k >= 1: {}".format(k) for i in range(len(dna)): kmer = dna[i:(i + k)] if len(kmer) == k: yield kmer def reverse_complement(dna, reverse=True, complement=True): """ Make the reverse complement of a DNA sequence. You can also just make the complement or the reverse strand (see options). Input: A DNA sequence containing 'ATGC' base pairs and wild card letters Output: DNA sequence as a string. Options: Specify reverse and/or complement as False to get the complement or reverse of the input DNA. If both are False, input is returned. """ # Make translation table trans_table = str.maketrans('ACGTMKRYBVDHNacgtmkrybvdhn', "TGCAKMYRVBHDNtgcakmyrvbhdn") # Make complement to DNA comp_dna = dna.translate(trans_table) # Output all as strings if reverse and complement: return comp_dna[::-1] if reverse and not complement: return dna[::-1] if complement and not reverse: return comp_dna if not complement and not reverse: return dna def count_kmers(dna, k): """Count all kmers of length k in a string :param dna: string to search and count kmers :param k: size of kmer """ assert len(dna) >= 1, "You must select a substring with len(dna) >= 1: {}".format(dna) assert k >= 1, "You must select a main_string with k >= 1: {}".format(k) kmer_count = Counter() for i in range(len(dna)): kmer = dna[i:(i + k)] if len(kmer) == k: kmer_count[kmer] += 1 return kmer_count def parse_full_alignment_file(alignment_file): data = pd.read_table(alignment_file, usecols=(1, 4, 5, 9, 12, 13), dtype={'ref_pos': np.int64, 'strand': np.str, 'event_index': np.int64, 'kmer': np.str, 'posterior_prob': np.float64, 'event_mean': np.float64}, header=None, names=['ref_pos', 'strand', 'event_index', 'kmer', 'posterior_prob', 'event_mean']) return data class CustomAmbiguityPositions(object): def __init__(self, ambig_filepath): """Deal with ambiguous positions from a tsv ambiguity position file with the format of contig position strand change_from change_to 'name' 0 indexed position +/- C E :param ambig_filepath: path to ambiguity position file""" self.ambig_df = self.parseAmbiguityFile(ambig_filepath) @staticmethod def parseAmbiguityFile(ambig_filepath): """Parses a 'ambiguity position file' that should have the format: contig position strand change_from change_to :param ambig_filepath: path to ambiguity position file """ return pd.read_table(ambig_filepath, usecols=(0, 1, 2, 3, 4), names=["contig", "position", "strand", "change_from", "change_to"], dtype={"contig": np.str, "position": np.int, "strand": np.str, "change_from": np.str, "change_to": np.str}) def getForwardSequence(self, contig, raw_sequence): """Edit 'raw_sequence' given a ambiguity positions file. Assumes raw_sequence is forward direction( 5'-3') :param contig: which contig the sequence belongs (aka header) :param raw_sequence: raw nucleotide sequence :return: edited nucleotide sequence """ return self._get_substituted_sequence(contig, raw_sequence, "+") def getBackwardSequence(self, contig, raw_sequence): """Edit 'raw_sequence' given a ambiguity positions file, Assumes raw_sequence is forward direction( 5'-3') :param contig: which contig the sequence belongs (aka header) :param raw_sequence: raw nucleotide sequence :return: edited nucleotide sequence """ raw_sequence = reverse_complement(raw_sequence, reverse=False, complement=True) return self._get_substituted_sequence(contig, raw_sequence, "-") def _get_substituted_sequence(self, contig, raw_sequence, strand): """Change the given raw nucleotide sequence using the edits defined in the positions file :param contig: name of contig to find :param raw_sequence: nucleotide sequence (note: this is note edited in this function) :param strand: '+' or '-' to indicate strand """ contif_df = self._get_contig_positions(contig, strand) raw_sequence = list(raw_sequence) for _, row in contif_df.iterrows(): if raw_sequence[row["position"]] != row["change_from"]: raise RuntimeError( "[CustomAmbiguityPositions._get_substituted_sequence]Illegal substitution requesting " "change from %s to %s, row: %s" % (raw_sequence[row["position"]], row["change_to"], row)) raw_sequence[row["position"]] = row["change_to"] return "".join(raw_sequence) def _get_contig_positions(self, contig, strand): """Get all unique locations within the positions file :param contig: name of contig to find :param strand: '+' or '-' to indicate strand """ df = self.ambig_df.loc[ (self.ambig_df["contig"] == contig) & (self.ambig_df["strand"] == strand)].drop_duplicates() assert len(df['position']) == len(set(df['position'])), "Multiple different changes for a single position. {}" \ .format(df['position']) return df def processReferenceFasta(fasta, work_folder, name, motifs=None, positions_file=None): """loops over all of the contigs in the reference file, writes the forward and backward sequences as flat files (no headers or anything) for signalMachine, returns a dict that has the sequence names as keys and the paths to the processed sequence as keys :param fasta: path to un-edited fasta file :param work_folder: FolderHandler object :param motifs: list of tuple pairs for motif edits. ex [["CCAGG", "CEAGG"]] :param positions_file: ambiguous positions file which can be processed via CustomAmbiguityPositions :return: paths to possibly edited forward reference sequence and backward reference sequence """ positions = None # if no processing needs to happen if positions_file is None and motifs is None: return fasta, None # Cant pass positions file and motifs if positions_file is not None and motifs is not None: raise RuntimeError("[processReferenceFasta] Cannot specify motif key and ambiguity position file") # get positions object (if appropriate) if positions_file: if not os.path.exists(positions_file): raise RuntimeError("[processReferenceFasta] Did not find ambiguity position file here: %s" % positions_file) positions = CustomAmbiguityPositions(positions_file) # process fasta fw_fasta_path = work_folder.add_file_path("forward.{}.{}".format(name, os.path.basename(fasta))) bw_fasta_path = work_folder.add_file_path("backward.{}.{}".format(name, os.path.basename(fasta))) print("[SignalAlignment.run] NOTICE: Creating forward and backward fasta files.") with open(bw_fasta_path, 'w') as bw_outfasta, open(fw_fasta_path, 'w') as fw_outfasta: for header, comment, sequence in read_fasta(fasta): # signalAlign likes uppercase if positions is not None: fw_sequence = positions.getForwardSequence(contig=header, raw_sequence=sequence.upper()) bw_sequence = positions.getBackwardSequence(contig=header, raw_sequence=sequence.upper()) else: fw_sequence = sequence.upper() bw_sequence = reverse_complement(fw_sequence, reverse=False, complement=True).upper() if motifs: fw_sequence = replace_motifs_sequence_positions(fw_sequence, motifs, True) bw_sequence = replace_motifs_sequence_positions(bw_sequence, motifs, True) print(">%s %s\n%s" % (header, "backward", bw_sequence), file=bw_outfasta) print(">%s %s\n%s" % (header, "forward", fw_sequence), file=fw_outfasta) return fw_fasta_path, bw_fasta_path def get_full_nucleotide_read_from_alignment(alignment_location, read_name, hardclip_character=None): sequence, qualities, hardclipped_start, hardclipped_end = None, None, 0, 0 with closing(pysam.AlignmentFile(alignment_location, 'rb' if alignment_location.endswith("bam") else 'r')) as aln: for aligned_segment in aln.fetch(until_eof=True): if read_name not in aligned_segment.qname: continue BAM_CHARD_CLIP = 5 # get data and sanity check sequence = aligned_segment.query_sequence.upper() qualities = aligned_segment.qual cigar_tuples = aligned_segment.cigartuples if cigar_tuples is None or len(cigar_tuples) == 0: print("[get_full_nucleotide_read_from_alignment] no alignment found for {} in {}".format( read_name, alignment_location), file=sys.stderr) break # check for hard clipping if cigar_tuples[0][0] == BAM_CHARD_CLIP: hardclipped_start = cigar_tuples[0][1] if hardclip_character is not None: sequence = (hardclip_character * hardclipped_start) + sequence if qualities is not None and len(qualities) != 0: qualities = ("!" * hardclipped_start) + qualities if cigar_tuples[-1][0] == BAM_CHARD_CLIP: hardclipped_end = cigar_tuples[-1][1] if hardclip_character is not None: sequence = sequence + (hardclip_character * hardclipped_end) if qualities is not None and len(qualities) != 0: qualities = qualities + ("!" * hardclipped_end) # check for reverse mapping if aligned_segment.is_reverse: sequence = reverse_complement(sequence, reverse=True, complement=True) if qualities is not None and len(qualities) != 0: qualities = ''.join(reversed(list(qualities))) tmp = hardclipped_end hardclipped_end = hardclipped_start hardclipped_start = tmp # stop looking (assuming only one alignment per read in file) break return sequence, qualities, hardclipped_start, hardclipped_end, aligned_segment
[ "os.path.exists", "array.array", "subprocess.check_call", "signalalign.utils.parsers.read_fasta", "os.path.isfile", "collections.Counter", "os.path.basename", "pandas.read_table", "py3helpers.utils.all_string_permutations", "numpy.str" ]
[((7680, 7710), 'os.path.isfile', 'os.path.isfile', (['sub_fasta_path'], {}), '(sub_fasta_path)\n', (7694, 7710), False, 'import os\n'), ((8995, 9025), 'os.path.isfile', 'os.path.isfile', (['sub_fasta_path'], {}), '(sub_fasta_path)\n', (9009, 9025), False, 'import os\n'), ((9956, 9982), 'os.path.isfile', 'os.path.isfile', (['fasta_path'], {}), '(fasta_path)\n', (9970, 9982), False, 'import os\n'), ((10288, 10314), 'os.path.isfile', 'os.path.isfile', (['index_path'], {}), '(index_path)\n', (10302, 10314), False, 'import os\n'), ((10811, 10820), 'collections.Counter', 'Counter', ([], {}), '()\n', (10818, 10820), False, 'from collections import Counter\n'), ((18750, 18759), 'collections.Counter', 'Counter', ([], {}), '()\n', (18757, 18759), False, 'from collections import Counter\n'), ((18963, 19281), 'pandas.read_table', 'pd.read_table', (['alignment_file'], {'usecols': '(1, 4, 5, 9, 12, 13)', 'dtype': "{'ref_pos': np.int64, 'strand': np.str, 'event_index': np.int64, 'kmer': np\n .str, 'posterior_prob': np.float64, 'event_mean': np.float64}", 'header': 'None', 'names': "['ref_pos', 'strand', 'event_index', 'kmer', 'posterior_prob', 'event_mean']"}), "(alignment_file, usecols=(1, 4, 5, 9, 12, 13), dtype={\n 'ref_pos': np.int64, 'strand': np.str, 'event_index': np.int64, 'kmer':\n np.str, 'posterior_prob': np.float64, 'event_mean': np.float64}, header\n =None, names=['ref_pos', 'strand', 'event_index', 'kmer',\n 'posterior_prob', 'event_mean'])\n", (18976, 19281), True, 'import pandas as pd\n'), ((3543, 3564), 'signalalign.utils.parsers.read_fasta', 'read_fasta', (['reference'], {}), '(reference)\n', (3553, 3564), False, 'from signalalign.utils.parsers import read_fasta\n'), ((10076, 10102), 'os.path.exists', 'os.path.exists', (['index_path'], {}), '(index_path)\n', (10090, 10102), False, 'import os\n'), ((10249, 10276), 'subprocess.check_call', 'subprocess.check_call', (['args'], {}), '(args)\n', (10270, 10276), False, 'import subprocess\n'), ((20240, 20483), 'pandas.read_table', 'pd.read_table', (['ambig_filepath'], {'usecols': '(0, 1, 2, 3, 4)', 'names': "['contig', 'position', 'strand', 'change_from', 'change_to']", 'dtype': "{'contig': np.str, 'position': np.int, 'strand': np.str, 'change_from': np.\n str, 'change_to': np.str}"}), "(ambig_filepath, usecols=(0, 1, 2, 3, 4), names=['contig',\n 'position', 'strand', 'change_from', 'change_to'], dtype={'contig': np.\n str, 'position': np.int, 'strand': np.str, 'change_from': np.str,\n 'change_to': np.str})\n", (20253, 20483), True, 'import pandas as pd\n'), ((24974, 24991), 'signalalign.utils.parsers.read_fasta', 'read_fasta', (['fasta'], {}), '(fasta)\n', (24984, 24991), False, 'from signalalign.utils.parsers import read_fasta\n'), ((8127, 8157), 'signalalign.utils.parsers.read_fasta', 'read_fasta', (['reference_location'], {}), '(reference_location)\n', (8137, 8157), False, 'from signalalign.utils.parsers import read_fasta\n'), ((9442, 9472), 'signalalign.utils.parsers.read_fasta', 'read_fasta', (['reference_location'], {}), '(reference_location)\n', (9452, 9472), False, 'from signalalign.utils.parsers import read_fasta\n'), ((14710, 14726), 'array.array', 'array.array', (['"""b"""'], {}), "('b')\n", (14721, 14726), False, 'import array\n'), ((24287, 24317), 'os.path.exists', 'os.path.exists', (['positions_file'], {}), '(positions_file)\n', (24301, 24317), False, 'import os\n'), ((24628, 24651), 'os.path.basename', 'os.path.basename', (['fasta'], {}), '(fasta)\n', (24644, 24651), False, 'import os\n'), ((24730, 24753), 'os.path.basename', 'os.path.basename', (['fasta'], {}), '(fasta)\n', (24746, 24753), False, 'import os\n'), ((12264, 12300), 'py3helpers.utils.all_string_permutations', 'all_string_permutations', (['alphabet', 'i'], {}), '(alphabet, i)\n', (12287, 12300), False, 'from py3helpers.utils import find_substring_indices, all_string_permutations\n'), ((3853, 3866), 'numpy.str', 'np.str', (['index'], {}), '(index)\n', (3859, 3866), True, 'import numpy as np\n'), ((4134, 4147), 'numpy.str', 'np.str', (['index'], {}), '(index)\n', (4140, 4147), True, 'import numpy as np\n')]
import os, sys, re, clr import math, cmath import collections import json win64_dir = oDesktop.GetExeDir() dll_dir = os.path.join(win64_dir, 'common/IronPython/DLLs') sys.path.append(dll_dir) clr.AddReference('IronPython.Wpf') import wpf from System.Windows import Window, Visibility from System.Windows.Controls import ListBoxItem from System.Windows.Forms import OpenFileDialog, SaveFileDialog, DialogResult, FolderBrowserDialog os.chdir(os.path.dirname(__file__)) oProject = oDesktop.GetActiveProject() oDesign = oProject.GetActiveDesign() oEditor = oDesign.GetActiveEditor() oDesktop.ClearMessages("", "", 2) #Functions---------------------------------------------------------------------| def switch(bw_name): unit = oEditor.GetActiveUnits() start_layer = oEditor.GetPropertyValue("BaseElementTab", bw_name, 'Start Layer') end_layer = oEditor.GetPropertyValue("BaseElementTab", bw_name, 'End Layer') pt0 = oEditor.GetPropertyValue("BaseElementTab", bw_name, 'Pt0').split(',') pt1 = oEditor.GetPropertyValue("BaseElementTab", bw_name, 'Pt1').split(',') try: oEditor.ChangeProperty( [ "NAME:AllTabs", [ "NAME:BaseElementTab", [ "NAME:PropServers", bw_name ], [ "NAME:ChangedProps", [ "NAME:Start Layer", "Value:=" , end_layer ] ] ] ]) oEditor.ChangeProperty( [ "NAME:AllTabs", [ "NAME:BaseElementTab", [ "NAME:PropServers", bw_name ], [ "NAME:ChangedProps", [ "NAME:End Layer", "Value:=" , start_layer ] ] ] ]) oEditor.ChangeProperty( [ "NAME:AllTabs", [ "NAME:BaseElementTab", [ "NAME:PropServers", bw_name ], [ "NAME:ChangedProps", [ "NAME:Pt0", "X:=" , "{}{}".format(pt1[0], unit), "Y:=" , "{}{}".format(pt1[1], unit) ] ] ] ]) oEditor.ChangeProperty( [ "NAME:AllTabs", [ "NAME:BaseElementTab", [ "NAME:PropServers", bw_name ], [ "NAME:ChangedProps", [ "NAME:Pt1", "X:=" , "{}{}".format(pt0[0], unit), "Y:=" , "{}{}".format(pt0[1], unit) ] ] ] ]) AddWarningMessage('{} is switched!'.format(bw_name)) except: AddWarningMessage('{} failed in switching!'.format(bw_name)) def change(bondwire_name, direction, distance): pt0 = oEditor.GetPropertyValue("BaseElementTab", bondwire_name, 'pt0') pt1 = oEditor.GetPropertyValue("BaseElementTab", bondwire_name, 'pt1') x0, y0 = map(float, pt0.strip().split(',')) x1, y1 = map(float, pt1.strip().split(',')) if direction == "Move in x": x, y = x1 + distance, y1 elif direction == "Move in y": x, y = x1, y1 + distance elif direction == "Move along": length = math.sqrt((x1-x0)**2+(y1-y0)**2) x, y = x1 + distance*(x1-x0)/(length), y1 + distance*(y1-y0)/(length) elif direction == "Switch Pts": switch(bondwire_name) return None else: pass oEditor.ChangeProperty( [ "NAME:AllTabs", [ "NAME:BaseElementTab", [ "NAME:PropServers", bondwire_name ], [ "NAME:ChangedProps", [ "NAME:Pt1", "X:=" , "{}mm".format(x), "Y:=" , "{}mm".format(y) ] ] ] ]) def getProfile(): profile = {} for bondwire_name in oEditor.FindObjects('Type', 'bondwire'): name = oEditor.GetPropertyValue("BaseElementTab", bondwire_name, 'Profile') try: profile[name]+=[bondwire_name] except: profile[name]=[bondwire_name] return profile #GUI---------------------------------------------------------------------------| class MyWindow(Window): def __init__(self): wpf.LoadComponent(self, 'MoveBondWire.xaml') try: with open('movebw.json') as f: data = json.load(f) self.direction_cb.Text = data['direction'] self.dist_tb.Text = data['dist'] except: pass self.profiles = getProfile() for i in self.profiles: self.profile_cb.Items.Add(i) def direction_cb_SelectionChanged(self, sender, e): if self.direction_cb.SelectedItem.Content == 'Switch Pts': self.dist_tb.Visibility = Visibility.Hidden self.move_bt.Content = 'Switch' else: self.dist_tb.Visibility = Visibility.Visible self.move_bt.Content = 'Move' def dist_tb_TextChanged(self, sender, e): pass def move_bt_Click(self, sender, e): selected = oEditor.GetSelections() for i in selected: change(i, self.direction_cb.Text, float(self.dist_tb.Text)) data = {'direction': self.direction_cb.Text, 'dist': self.dist_tb.Text} with open('movebw.json', 'w') as f: json.dump(data, f, indent=4) oEditor.Select(selected) def profile_cb_SelectionChanged(self, sender, e): AddWarningMessage(str(self.profiles[self.profile_cb.SelectedValue])) oEditor.Select(self.profiles[self.profile_cb.SelectedValue]) ''' class MyWindow(Window): def __init__(self): wpf.LoadComponent(self, 'moveBondwire.xaml') try: with open('movebw.json') as f: data = json.load(f) self.direction_cb.Text = data['direction'] self.dist_tb.Text = data['dist'] except: pass self.profiles = getProfile() for i in self.profiles: self.profile_cb.Items.Add(i) def Button_Click(self, sender, e): selected = oEditor.GetSelections() for i in selected: change(i, self.direction_cb.Text, float(self.dist_tb.Text)) data = {'direction': self.direction_cb.Text, 'dist': self.dist_tb.Text} with open('movebw.json', 'w') as f: json.dump(data, f, indent=4) oEditor.Select(selected) def profile_cb_SelectionChanged(self, sender, e): AddWarningMessage(str(self.profiles[self.profile_cb.SelectedValue])) oEditor.Select(self.profiles[self.profile_cb.SelectedValue]) def direction_cb_SelectionChanged(self, sender, e): if self.direction_cb.SelectedValue == "Switch Pts": self.dist_tb.IsEnabled= False ''' #Code End----------------------------------------------------------------------| MyWindow().ShowDialog()
[ "os.path.join", "math.sqrt", "os.path.dirname", "clr.AddReference", "wpf.LoadComponent", "json.load", "sys.path.append", "json.dump" ]
[((122, 171), 'os.path.join', 'os.path.join', (['win64_dir', '"""common/IronPython/DLLs"""'], {}), "(win64_dir, 'common/IronPython/DLLs')\n", (134, 171), False, 'import os, sys, re, clr\n'), ((173, 197), 'sys.path.append', 'sys.path.append', (['dll_dir'], {}), '(dll_dir)\n', (188, 197), False, 'import os, sys, re, clr\n'), ((199, 233), 'clr.AddReference', 'clr.AddReference', (['"""IronPython.Wpf"""'], {}), "('IronPython.Wpf')\n", (215, 233), False, 'import os, sys, re, clr\n'), ((454, 479), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (469, 479), False, 'import os, sys, re, clr\n'), ((5392, 5436), 'wpf.LoadComponent', 'wpf.LoadComponent', (['self', '"""MoveBondWire.xaml"""'], {}), "(self, 'MoveBondWire.xaml')\n", (5409, 5436), False, 'import wpf\n'), ((6589, 6617), 'json.dump', 'json.dump', (['data', 'f'], {'indent': '(4)'}), '(data, f, indent=4)\n', (6598, 6617), False, 'import json\n'), ((4136, 4178), 'math.sqrt', 'math.sqrt', (['((x1 - x0) ** 2 + (y1 - y0) ** 2)'], {}), '((x1 - x0) ** 2 + (y1 - y0) ** 2)\n', (4145, 4178), False, 'import math, cmath\n'), ((5521, 5533), 'json.load', 'json.load', (['f'], {}), '(f)\n', (5530, 5533), False, 'import json\n')]
from django.test import Client, TestCase from django.contrib.auth import authenticate from users.models import CustomUser from users.forms import CustomUserChangeForm from users.custom_social_auth_pipeline import allowed_email from django.test.utils import override_settings from django.contrib.staticfiles.testing import StaticLiveServerTestCase from drives.models import * import RideOn.SeleniumTester as selenium_tester class UserTester(TestCase): """ Social auth tests. """ def setUp(self): pass def testCreateValidNewUser(self): self.user = CustomUser.objects.create_user(username='<EMAIL>', email='<EMAIL>', password='<PASSWORD>') self.user.set_password('<PASSWORD>') self.user.save() self.assertEqual(CustomUser.objects.all().count(), 1) def testCreateUserInvalidEmail(self): self.user = CustomUser.objects.create_user(username='testuser', email='<EMAIL>', password='<PASSWORD>') self.assertFalse(allowed_email(self.user.email)) def testUserLogin(self): self.user = CustomUser.objects.create_user(username='testuser', email='<EMAIL>', password='<PASSWORD>') self.user.set_password('<PASSWORD>') self.user.save() authenticated_user = authenticate(username='testuser', password='<PASSWORD>') self.assertEqual(self.user, authenticated_user) class UserEditsTester(TestCase): def setUp(self): self.user = CustomUser.objects.create_user(username='<EMAIL>', email='<EMAIL>', password='<PASSWORD>') def testFormEditAllFieldsValid(self): form = CustomUserChangeForm(data={'username':'John_Doe' , 'gender':'Male', 'phone':'+17037561234', 'about':'Some About'}) self.assertTrue(form.is_valid()) def testFormEditInvalidPhone(self): form = CustomUserChangeForm(data={'username':'John_Doe' , 'gender':'Male', 'phone':'+1703756123w', 'about':'Some About'}) self.assertFalse(form.is_valid()) def testProfileEditAllFieldsValid(self): local_fields = ['username', 'gender', 'phone', 'about'] correct_data = {'username':'striker417' , 'gender':'Male', 'phone':'+17037561234', 'about':'I am a god at soccer'} self.form = CustomUserChangeForm(data={'username':'striker417' , 'gender':'Male', 'phone':'+17037561234', 'about':'I am a god at soccer'}, instance=self.user) if self.form.is_valid(): self.form.save() for field in local_fields: self.assertTrue(getattr(self.user, field, '') == correct_data[field] ) ''' Used to test the review sub-system from a GUI perspective. Verifies underlying models as well. Does not test API endpoints. ''' @override_settings(DEBUG=True) class UserTestReviews(StaticLiveServerTestCase): # Setup for all tests # Creates a sample drive with default values and none of the optional values def setUp(self): self.start_location, self.end_location, self.driver, self.drive, self.dropoff = create_drive( "Name", start_location_str = "Start Location", end_location_str = "End Location", title_str = "Drive Title", description_str = "Drive Description") self.start_location2, self.end_location2, self.driver2, self.drive2, self.dropoff2 = create_drive( "Name2", start_location_str = "Start Location2", end_location_str = "End Location2", title_str = "Drive Title2", description_str = "Drive Description2") self.browser = selenium_tester.create_chrome_driver() self.browser.get(self.live_server_url) def tearDown(self): self.browser.close() # Ensures driver review exists when drive is completed def testDriverReviewExists(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver2) self.browser.get(self.live_server_url + '/users/' + str(self.driver2.id) + '/myrides/') # Verify that the review driver button exists driver_review = self.browser.find_element_by_id("driverReviewBtn") self.assertEqual(driver_review.text, "Review " + self.driver.username) # Ensures driver review does not exist for driver def testDriverReviewNotExist(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as driver and go to reviews # View the ride as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver) self.browser.get(self.live_server_url + '/users/' + str(self.driver.id) + '/myrides/') # Verify that the review driver button exists driver_review = selenium_tester.safe_find_element_by_id(self.browser, "driverReviewBtn") self.assertEqual(driver_review, None) # Ensures passenger review exists when drive is completed def testPassengerReviewExists(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver) self.browser.get(self.live_server_url + '/users/' + str(self.driver.id) + '/myrides/') # Verify that the review driver button exists passenger_review = self.browser.find_element_by_id("passengerReviewBtn") self.assertEqual(passenger_review.text, "Review " + self.driver2.username) # Ensures passenger review does not exist for passenger def testPassengerReviewNotExist(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as driver and go to reviews # View the ride as passenger self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver2) self.browser.get(self.live_server_url + '/users/' + str(self.driver2.id) + '/myrides/') # Verify that the review driver button exists passenger_review = selenium_tester.safe_find_element_by_id(self.browser, "passengerReviewBtn") self.assertEqual(passenger_review, None) def submitReview(self): # Sleep to make sure the modal loads properly import time time.sleep(3) title = self.browser.find_element_by_id("reviewTitle") title.send_keys("Test Title") rating = self.browser.find_element_by_id("reviewRating") rating.send_keys("4") description = self.browser.find_element_by_id("reviewDescription") description.send_keys("Test Description") submit = self.browser.find_element_by_id("reviewSubmitBtn") submit.click() # Sleep to make sure the modal loads properly import time time.sleep(3) # Ensures driver review submission works def testDriverReviewSubmits(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver2) self.browser.get(self.live_server_url + '/users/' + str(self.driver2.id) + '/myrides/') # Submit a review driver_review = self.browser.find_element_by_id("driverReviewBtn") driver_review.click() self.submitReview() # Ensures passenger review submission works def testPassengerReviewSubmits(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver) self.browser.get(self.live_server_url + '/users/' + str(self.driver.id) + '/myrides/') # Submit a review passenger_review = self.browser.find_element_by_id("passengerReviewBtn") passenger_review.click() self.submitReview() # Asserts that after the review is submitted # the button to submit no longer shows def testPassengerReviewGone(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver) self.browser.get(self.live_server_url + '/users/' + str(self.driver.id) + '/myrides/') # Submit a review passenger_review = self.browser.find_element_by_id("passengerReviewBtn") passenger_review.click() self.submitReview() # Assert that the submit button is gone passenger_review = selenium_tester.safe_find_element_by_id(self.browser, "passengerReviewBtn") self.assertEqual(passenger_review, None) # Asserts that after the review is submitted # the button to submit no longer shows def testDriverReviewGone(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver2) self.browser.get(self.live_server_url + '/users/' + str(self.driver2.id) + '/myrides/') # Submit a review driver_review = self.browser.find_element_by_id("driverReviewBtn") driver_review.click() self.submitReview() # Assert that the submit button is gone driver_review = selenium_tester.safe_find_element_by_id(self.browser, "driverReviewBtn") self.assertEqual(driver_review, None) # Asserts that the driver rating changes after a review # is submitted def testDriverRatingChanges(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver2) self.browser.get(self.live_server_url + '/users/' + str(self.driver2.id) + '/myrides/') # Submit a review driver_review = self.browser.find_element_by_id("driverReviewBtn") driver_review.click() self.submitReview() # View the rating self.browser.get(self.live_server_url + '/users/' + str(self.driver.id)) rating = self.browser.find_element_by_id("driverRating") self.assertEqual(rating.text.strip(), "4.00") def testPassengerRatingChanges(self): # Add passenger and complete drive self.drive.add_passenger(self.driver2) Drive.objects.filter(id=self.drive.id).update(status="Completed") # Login as passenger and go to reviews # View the ride not as the owner self.browser.delete_all_cookies() selenium_tester.login_as(self.browser, self.driver) self.browser.get(self.live_server_url + '/users/' + str(self.driver.id) + '/myrides/') # Submit a review passenger_review = self.browser.find_element_by_id("passengerReviewBtn") passenger_review.click() self.submitReview() # View the rating self.browser.get(self.live_server_url + '/users/' + str(self.driver2.id)) rating = self.browser.find_element_by_id("riderRating") self.assertEqual(rating.text.strip(), "4.00")
[ "django.contrib.auth.authenticate", "RideOn.SeleniumTester.safe_find_element_by_id", "users.models.CustomUser.objects.create_user", "time.sleep", "RideOn.SeleniumTester.create_chrome_driver", "users.models.CustomUser.objects.all", "users.forms.CustomUserChangeForm", "users.custom_social_auth_pipeline.allowed_email", "django.test.utils.override_settings", "RideOn.SeleniumTester.login_as" ]
[((2710, 2739), 'django.test.utils.override_settings', 'override_settings', ([], {'DEBUG': '(True)'}), '(DEBUG=True)\n', (2727, 2739), False, 'from django.test.utils import override_settings\n'), ((585, 679), 'users.models.CustomUser.objects.create_user', 'CustomUser.objects.create_user', ([], {'username': '"""<EMAIL>"""', 'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "(username='<EMAIL>', email='<EMAIL>',\n password='<PASSWORD>')\n", (615, 679), False, 'from users.models import CustomUser\n'), ((879, 974), 'users.models.CustomUser.objects.create_user', 'CustomUser.objects.create_user', ([], {'username': '"""testuser"""', 'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "(username='testuser', email='<EMAIL>',\n password='<PASSWORD>')\n", (909, 974), False, 'from users.models import CustomUser\n'), ((1082, 1177), 'users.models.CustomUser.objects.create_user', 'CustomUser.objects.create_user', ([], {'username': '"""testuser"""', 'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "(username='testuser', email='<EMAIL>',\n password='<PASSWORD>')\n", (1112, 1177), False, 'from users.models import CustomUser\n'), ((1282, 1338), 'django.contrib.auth.authenticate', 'authenticate', ([], {'username': '"""testuser"""', 'password': '"""<PASSWORD>"""'}), "(username='testuser', password='<PASSWORD>')\n", (1294, 1338), False, 'from django.contrib.auth import authenticate\n'), ((1474, 1568), 'users.models.CustomUser.objects.create_user', 'CustomUser.objects.create_user', ([], {'username': '"""<EMAIL>"""', 'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "(username='<EMAIL>', email='<EMAIL>',\n password='<PASSWORD>')\n", (1504, 1568), False, 'from users.models import CustomUser\n'), ((1623, 1744), 'users.forms.CustomUserChangeForm', 'CustomUserChangeForm', ([], {'data': "{'username': 'John_Doe', 'gender': 'Male', 'phone': '+17037561234', 'about':\n 'Some About'}"}), "(data={'username': 'John_Doe', 'gender': 'Male',\n 'phone': '+17037561234', 'about': 'Some About'})\n", (1643, 1744), False, 'from users.forms import CustomUserChangeForm\n'), ((1835, 1956), 'users.forms.CustomUserChangeForm', 'CustomUserChangeForm', ([], {'data': "{'username': 'John_Doe', 'gender': 'Male', 'phone': '+1703756123w', 'about':\n 'Some About'}"}), "(data={'username': 'John_Doe', 'gender': 'Male',\n 'phone': '+1703756123w', 'about': 'Some About'})\n", (1855, 1956), False, 'from users.forms import CustomUserChangeForm\n'), ((2245, 2403), 'users.forms.CustomUserChangeForm', 'CustomUserChangeForm', ([], {'data': "{'username': 'striker417', 'gender': 'Male', 'phone': '+17037561234',\n 'about': 'I am a god at soccer'}", 'instance': 'self.user'}), "(data={'username': 'striker417', 'gender': 'Male',\n 'phone': '+17037561234', 'about': 'I am a god at soccer'}, instance=\n self.user)\n", (2265, 2403), False, 'from users.forms import CustomUserChangeForm\n'), ((3443, 3481), 'RideOn.SeleniumTester.create_chrome_driver', 'selenium_tester.create_chrome_driver', ([], {}), '()\n', (3479, 3481), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((3927, 3979), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver2'], {}), '(self.browser, self.driver2)\n', (3951, 3979), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((4609, 4660), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver'], {}), '(self.browser, self.driver)\n', (4633, 4660), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((4819, 4891), 'RideOn.SeleniumTester.safe_find_element_by_id', 'selenium_tester.safe_find_element_by_id', (['self.browser', '"""driverReviewBtn"""'], {}), "(self.browser, 'driverReviewBtn')\n", (4858, 4891), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((5291, 5342), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver'], {}), '(self.browser, self.driver)\n', (5315, 5342), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((5990, 6042), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver2'], {}), '(self.browser, self.driver2)\n', (6014, 6042), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((6205, 6280), 'RideOn.SeleniumTester.safe_find_element_by_id', 'selenium_tester.safe_find_element_by_id', (['self.browser', '"""passengerReviewBtn"""'], {}), "(self.browser, 'passengerReviewBtn')\n", (6244, 6280), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((6420, 6433), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (6430, 6433), False, 'import time\n'), ((6876, 6889), 'time.sleep', 'time.sleep', (['(3)'], {}), '(3)\n', (6886, 6889), False, 'import time\n'), ((7233, 7285), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver2'], {}), '(self.browser, self.driver2)\n', (7257, 7285), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((7864, 7915), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver'], {}), '(self.browser, self.driver)\n', (7888, 7915), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((8541, 8592), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver'], {}), '(self.browser, self.driver)\n', (8565, 8592), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((8895, 8970), 'RideOn.SeleniumTester.safe_find_element_by_id', 'selenium_tester.safe_find_element_by_id', (['self.browser', '"""passengerReviewBtn"""'], {}), "(self.browser, 'passengerReviewBtn')\n", (8934, 8970), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((9400, 9452), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver2'], {}), '(self.browser, self.driver2)\n', (9424, 9452), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((9744, 9816), 'RideOn.SeleniumTester.safe_find_element_by_id', 'selenium_tester.safe_find_element_by_id', (['self.browser', '"""driverReviewBtn"""'], {}), "(self.browser, 'driverReviewBtn')\n", (9783, 9816), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((10232, 10284), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver2'], {}), '(self.browser, self.driver2)\n', (10256, 10284), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((11026, 11077), 'RideOn.SeleniumTester.login_as', 'selenium_tester.login_as', (['self.browser', 'self.driver'], {}), '(self.browser, self.driver)\n', (11050, 11077), True, 'import RideOn.SeleniumTester as selenium_tester\n'), ((996, 1026), 'users.custom_social_auth_pipeline.allowed_email', 'allowed_email', (['self.user.email'], {}), '(self.user.email)\n', (1009, 1026), False, 'from users.custom_social_auth_pipeline import allowed_email\n'), ((771, 795), 'users.models.CustomUser.objects.all', 'CustomUser.objects.all', ([], {}), '()\n', (793, 795), False, 'from users.models import CustomUser\n')]
from django.db import models from backend.models.driver import Driver from backend.models.client import Client from backend.models.routeList import RouteList class Route(models.Model): id = models.AutoField(primary_key=True) assigned_to = models.ForeignKey(Driver, on_delete=models.CASCADE) created_on = models.DateTimeField(auto_now_add=True, editable=False) total_quantity = models.PositiveIntegerField(blank=True, null=True) total_distance = models.DecimalField(max_digits=40, decimal_places=20, blank=True, null=True) total_duration = models.DecimalField(max_digits=40, decimal_places=20, blank=True, null=True) itinerary = models.JSONField(null=True) route_list = models.ForeignKey(RouteList, related_name='routes', on_delete=models.CASCADE, blank=True, null=True)
[ "django.db.models.ForeignKey", "django.db.models.JSONField", "django.db.models.AutoField", "django.db.models.PositiveIntegerField", "django.db.models.DateTimeField", "django.db.models.DecimalField" ]
[((196, 230), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)'}), '(primary_key=True)\n', (212, 230), False, 'from django.db import models\n'), ((249, 300), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Driver'], {'on_delete': 'models.CASCADE'}), '(Driver, on_delete=models.CASCADE)\n', (266, 300), False, 'from django.db import models\n'), ((318, 373), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'editable': '(False)'}), '(auto_now_add=True, editable=False)\n', (338, 373), False, 'from django.db import models\n'), ((395, 445), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (422, 445), False, 'from django.db import models\n'), ((467, 543), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'max_digits': '(40)', 'decimal_places': '(20)', 'blank': '(True)', 'null': '(True)'}), '(max_digits=40, decimal_places=20, blank=True, null=True)\n', (486, 543), False, 'from django.db import models\n'), ((565, 641), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'max_digits': '(40)', 'decimal_places': '(20)', 'blank': '(True)', 'null': '(True)'}), '(max_digits=40, decimal_places=20, blank=True, null=True)\n', (584, 641), False, 'from django.db import models\n'), ((658, 685), 'django.db.models.JSONField', 'models.JSONField', ([], {'null': '(True)'}), '(null=True)\n', (674, 685), False, 'from django.db import models\n'), ((703, 808), 'django.db.models.ForeignKey', 'models.ForeignKey', (['RouteList'], {'related_name': '"""routes"""', 'on_delete': 'models.CASCADE', 'blank': '(True)', 'null': '(True)'}), "(RouteList, related_name='routes', on_delete=models.\n CASCADE, blank=True, null=True)\n", (720, 808), False, 'from django.db import models\n')]
from datetime import datetime from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint from sqlalchemy.orm import relationship from .base import Base class SpeciesStatusRating(Base): """ Class representing the a conservation status scheme rating """ DATE_FORMAT = "%Y-%m-%d %H:%M:%S" DISPLAY_DATE_FORMAT = "%d/%m/%Y" IMPORT_DATE_FORMAT = "%d/%m/%Y" __tablename__ = "SpeciesStatusRatings" __table_args__ = (CheckConstraint("LENGTH(TRIM(region)) > 0"), CheckConstraint("(end IS NULL) or (end >= start)")) #: Primary key id = Column(Integer, primary_key=True) #: Related Species Id speciesId = Column(Integer, ForeignKey("Species.id"), nullable=False) #: Related Rating Id statusRatingId = Column(Integer, ForeignKey("StatusRatings.id"), nullable=False) #: Region where the rating applies region = Column(String, nullable=False) #: Start date for the rating. The database is shared between .NET and Python code and Entity Framework #: creates a TEXT column in SQLite where data's written in the form YYYY-MM-DD HH:MM:SS. So, while #: this field is the one that's persisted to the DB the intention is that it should be accessed via #: the corresponding property start = Column(String, nullable=False) #: End date for the rating - see comments about the start date end = Column(String, nullable=True) #: Related species species = relationship("Species", lazy="joined") #: Related status rating rating = relationship("StatusRating", lazy="joined") def __repr__(self): return f"{type(self).__name__}(id={self.id!r}, " \ f"speciesId={self.speciesId!r}, " \ f"statusRatingId={self.statusRatingId!r}, " \ f"region={self.region!r}, " \ f"start={self.start!r}," \ f"end={self.end!r})" @property def start_date(self): return datetime.strptime(self.start, self.DATE_FORMAT).date() @start_date.setter def start_date(self, value): self.start = value.strftime(self.DATE_FORMAT) if value else None @property def end_date(self): return datetime.strptime(self.end, self.DATE_FORMAT).date() if self.end is not None else None @end_date.setter def end_date(self, value): self.end = value.strftime(self.DATE_FORMAT) if value else None @property def display_start_date(self): return self.start_date.strftime(self.DISPLAY_DATE_FORMAT) @property def display_end_date(self): date = self.end_date return date.strftime(self.DISPLAY_DATE_FORMAT) if date else None
[ "sqlalchemy.orm.relationship", "datetime.datetime.strptime", "sqlalchemy.ForeignKey", "sqlalchemy.CheckConstraint", "sqlalchemy.Column" ]
[((608, 641), 'sqlalchemy.Column', 'Column', (['Integer'], {'primary_key': '(True)'}), '(Integer, primary_key=True)\n', (614, 641), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((904, 934), 'sqlalchemy.Column', 'Column', (['String'], {'nullable': '(False)'}), '(String, nullable=False)\n', (910, 934), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((1295, 1325), 'sqlalchemy.Column', 'Column', (['String'], {'nullable': '(False)'}), '(String, nullable=False)\n', (1301, 1325), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((1403, 1432), 'sqlalchemy.Column', 'Column', (['String'], {'nullable': '(True)'}), '(String, nullable=True)\n', (1409, 1432), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((1471, 1509), 'sqlalchemy.orm.relationship', 'relationship', (['"""Species"""'], {'lazy': '"""joined"""'}), "('Species', lazy='joined')\n", (1483, 1509), False, 'from sqlalchemy.orm import relationship\n'), ((1552, 1595), 'sqlalchemy.orm.relationship', 'relationship', (['"""StatusRating"""'], {'lazy': '"""joined"""'}), "('StatusRating', lazy='joined')\n", (1564, 1595), False, 'from sqlalchemy.orm import relationship\n'), ((460, 503), 'sqlalchemy.CheckConstraint', 'CheckConstraint', (['"""LENGTH(TRIM(region)) > 0"""'], {}), "('LENGTH(TRIM(region)) > 0')\n", (475, 503), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((527, 577), 'sqlalchemy.CheckConstraint', 'CheckConstraint', (['"""(end IS NULL) or (end >= start)"""'], {}), "('(end IS NULL) or (end >= start)')\n", (542, 577), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((700, 724), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""Species.id"""'], {}), "('Species.id')\n", (710, 724), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((804, 834), 'sqlalchemy.ForeignKey', 'ForeignKey', (['"""StatusRatings.id"""'], {}), "('StatusRatings.id')\n", (814, 834), False, 'from sqlalchemy import Column, Integer, String, ForeignKey, CheckConstraint\n'), ((1971, 2018), 'datetime.datetime.strptime', 'datetime.strptime', (['self.start', 'self.DATE_FORMAT'], {}), '(self.start, self.DATE_FORMAT)\n', (1988, 2018), False, 'from datetime import datetime\n'), ((2210, 2255), 'datetime.datetime.strptime', 'datetime.strptime', (['self.end', 'self.DATE_FORMAT'], {}), '(self.end, self.DATE_FORMAT)\n', (2227, 2255), False, 'from datetime import datetime\n')]
import numpy as np # Part one boards = [] with open('input.txt') as f: numbers_drawn = [int(i) for i in f.readline().split(',')] board = [] for line in f: if line.strip(): board.append(np.array([int(i) for i in line.split()])) else: if board: boards.append(np.array(board)) board = [] boards.append(np.array(board)) def check(board): def sum_unmarked(): return board[board != -1].sum() for row in board: if row.sum() == -board.shape[1]: return sum_unmarked() for col in board.T: if col.sum() == -board.shape[0]: return sum_unmarked() def play(until='first win'): wins = 0 for n in numbers_drawn: for i, board in enumerate(boards): if board is None: continue board[board == n] = -1 if (s := check(board)): wins += 1 score = s*n if until == 'first win' or wins == len(boards): return score boards[i] = None score = play() print('part one:', score) # Part two score = play('last win') print('part two:', score)
[ "numpy.array" ]
[((384, 399), 'numpy.array', 'np.array', (['board'], {}), '(board)\n', (392, 399), True, 'import numpy as np\n'), ((326, 341), 'numpy.array', 'np.array', (['board'], {}), '(board)\n', (334, 341), True, 'import numpy as np\n')]
import click def role_id_arg(f): return click.argument("role_id")(f)
[ "click.argument" ]
[((46, 71), 'click.argument', 'click.argument', (['"""role_id"""'], {}), "('role_id')\n", (60, 71), False, 'import click\n')]
#!/usr/bin/env python import rospy from geometry_msgs.msg import PoseStamped from styx_msgs.msg import Lane, Waypoint from std_msgs.msg import Int32 from scipy.spatial import KDTree import numpy as np import math ''' This node will publish waypoints from the car's current position to some `x` distance ahead. As mentioned in the doc, you should ideally first implement a version which does not care about traffic lights or obstacles. Once you have created dbw_node, you will update this node to use the status of traffic lights too. Please note that our simulator also provides the exact location of traffic lights and their current status in `/vehicle/traffic_lights` message. You can use this message to build this node as well as to verify your TL classifier. TODO (for Yousuf and Aaron): Stopline location for each traffic light. ''' #LOOKAHEAD_WPS = 200 # Number of waypoints we will publish. You can change this number LOOKAHEAD_WPS = 100 # Number of waypoints we will publish. You can change this number MAX_DECEL = 0.5 class WaypointUpdater(object): def __init__(self): rospy.init_node('waypoint_updater') rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) # basic_waypoints are static and will not change so will # be loaded only subscribed only once rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) # TODO: Add a subscriber for /traffic_waypoint and /obstacle_waypoint below # get the traffic light info to adjust final published way points # in case need to slow down and stop at the traffic light stop line rospy.Subscriber('/traffic_waypoint', Int32, self.traffic_cb) # TODO: Add other member variables you need below self.pose = None self.base_lane = None self.waypoints_2d = None self.waypoint_tree = None self.stopline_wp_idx = -1 self.final_waypoints_pub = rospy.Publisher('final_waypoints', Lane, queue_size=1) self.loop() def loop(self): rate = rospy.Rate(20) while not rospy.is_shutdown(): if self.pose and self.base_lane: # get the closest waypoints closest_waypoint_idx = self.get_closest_waypoint_idx() self.publish_waypoints(closest_waypoint_idx) rate.sleep() def get_closest_waypoint_idx(self): # get the currenty position of the car x = self.pose.pose.position.x y = self.pose.pose.position.y # find the index of the points that is cloese to the current car position # we ask to return 1 closet point KDTree returns the position as well as the index of # the cloese waypoint, index would be the same order as we construct the KDTree closest_idx = self.waypoint_tree.query([x,y],1)[1] # check the closet way point is ahead or behind the car closest_coord = self.waypoints_2d[closest_idx] prev_coord = self.waypoints_2d[closest_idx-1] # equation for hyperplane through closest_coords # test to see if the prev_vect and cl_vect are the same direction as # from current to cl_vect cl_vect = np.array(closest_coord) prev_vect = np.array(prev_coord) pos_vect = np.array([x,y]) val = np.dot(cl_vect-prev_vect,pos_vect-cl_vect) if val > 0: # the direction is opposite the closet point is behind the car # we need to use the next points insteand , modula len to wrap around closest_idx = (closest_idx + 1) % len(self.waypoints_2d) return closest_idx def publish_waypoints(self, closest_idx): final_lane = self.generate_lane() self.final_waypoints_pub.publish(final_lane) """ lane = Lane() lane.header = self.base_lane.header # same format we do not need hearder anyway # no need to worry about the greater than the base waypoint len since python slice will # just slice to the end if the lengths is greater lane.waypoints = self.base_lane.waypoints[closest_idx: closest_idx + LOOKAHEAD_WPS] self.final_waypoints_pub.publish(lane) """ def generate_lane(self): lane = Lane() closest_idx = self.get_closest_waypoint_idx() farthest_idx = closest_idx + LOOKAHEAD_WPS base_waypoints = self.base_lane.waypoints[closest_idx:farthest_idx] # if there is no traffic light or the traffic light is further away # than th e furthest planing rout we just publish the base_waypoint ahead of the car if self.stopline_wp_idx == -1 or (self.stopline_wp_idx >= farthest_idx): lane.waypoints = base_waypoints # else there is a red traffic light in the planning route and need to deaccelarte # to stop at the traffic light stop line else: lane.waypoints = self.decelerate_waypoints(base_waypoints,closest_idx) return lane def decelerate_waypoints(self,waypoints, closest_idx): temp = [] for i , wp in enumerate(waypoints): p = Waypoint() p.pose = wp.pose # since the current waypoint of the car is based on the centre of the car # we want to back 2 waypoints to let the front of the car to stop at the # stop line instead of the centre of the car stop_idx = max(self.stopline_wp_idx - closest_idx - 2,0) # calculate distance of the current waypoint to the stoping point dist = self.distance(waypoints,i,stop_idx) # based on the distance to the stoping point we fit in a sqrt curve # for smooth deacceleration # could use just a linear factor as well vel = math.sqrt(2*MAX_DECEL * dist) if vel < 1: vel = 0.0 # when the distance is large the sqrt computed velocity could be # large as well, so we need to cap it with the original velocity p.twist.twist.linear.x = min(vel, wp.twist.twist.linear.x) temp.append(p) return temp def pose_cb(self, msg): # TODO: Implement self.pose = msg # store the car's pose about 50hz def waypoints_cb(self, waypoints): # TODO: Implement # base_waypoints will be called only once since the base way point # would not change ,so it will be stroed in the class self.base_lane = waypoints if not self.waypoints_2d: # just to get the coordinates of the waypoints (x,y) self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] \ for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) # constructa KDTree using the 2d waypoints def traffic_cb(self, msg): # TODO: Callback for /traffic_waypoint message. Implement self.stopline_wp_idx = msg.data def obstacle_cb(self, msg): # TODO: Callback for /obstacle_waypoint message. We will implement it later pass def get_waypoint_velocity(self, waypoint): return waypoint.twist.twist.linear.x def set_waypoint_velocity(self, waypoints, waypoint, velocity): waypoints[waypoint].twist.twist.linear.x = velocity def distance(self, waypoints, wp1, wp2): dist = 0 dl = lambda a, b: math.sqrt((a.x-b.x)**2 + (a.y-b.y)**2 + (a.z-b.z)**2) for i in range(wp1, wp2+1): dist += dl(waypoints[wp1].pose.pose.position, waypoints[i].pose.pose.position) wp1 = i return dist if __name__ == '__main__': try: WaypointUpdater() except rospy.ROSInterruptException: rospy.logerr('Could not start waypoint updater node.')
[ "rospy.logerr", "rospy.Subscriber", "rospy.is_shutdown", "rospy.init_node", "scipy.spatial.KDTree", "math.sqrt", "numpy.array", "numpy.dot", "rospy.Rate", "styx_msgs.msg.Waypoint", "rospy.Publisher", "styx_msgs.msg.Lane" ]
[((1102, 1137), 'rospy.init_node', 'rospy.init_node', (['"""waypoint_updater"""'], {}), "('waypoint_updater')\n", (1117, 1137), False, 'import rospy\n'), ((1147, 1207), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/current_pose"""', 'PoseStamped', 'self.pose_cb'], {}), "('/current_pose', PoseStamped, self.pose_cb)\n", (1163, 1207), False, 'import rospy\n'), ((1328, 1388), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/base_waypoints"""', 'Lane', 'self.waypoints_cb'], {}), "('/base_waypoints', Lane, self.waypoints_cb)\n", (1344, 1388), False, 'import rospy\n'), ((1632, 1693), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/traffic_waypoint"""', 'Int32', 'self.traffic_cb'], {}), "('/traffic_waypoint', Int32, self.traffic_cb)\n", (1648, 1693), False, 'import rospy\n'), ((1946, 2000), 'rospy.Publisher', 'rospy.Publisher', (['"""final_waypoints"""', 'Lane'], {'queue_size': '(1)'}), "('final_waypoints', Lane, queue_size=1)\n", (1961, 2000), False, 'import rospy\n'), ((2058, 2072), 'rospy.Rate', 'rospy.Rate', (['(20)'], {}), '(20)\n', (2068, 2072), False, 'import rospy\n'), ((3209, 3232), 'numpy.array', 'np.array', (['closest_coord'], {}), '(closest_coord)\n', (3217, 3232), True, 'import numpy as np\n'), ((3253, 3273), 'numpy.array', 'np.array', (['prev_coord'], {}), '(prev_coord)\n', (3261, 3273), True, 'import numpy as np\n'), ((3293, 3309), 'numpy.array', 'np.array', (['[x, y]'], {}), '([x, y])\n', (3301, 3309), True, 'import numpy as np\n'), ((3324, 3371), 'numpy.dot', 'np.dot', (['(cl_vect - prev_vect)', '(pos_vect - cl_vect)'], {}), '(cl_vect - prev_vect, pos_vect - cl_vect)\n', (3330, 3371), True, 'import numpy as np\n'), ((4244, 4250), 'styx_msgs.msg.Lane', 'Lane', ([], {}), '()\n', (4248, 4250), False, 'from styx_msgs.msg import Lane, Waypoint\n'), ((2091, 2110), 'rospy.is_shutdown', 'rospy.is_shutdown', ([], {}), '()\n', (2108, 2110), False, 'import rospy\n'), ((5132, 5142), 'styx_msgs.msg.Waypoint', 'Waypoint', ([], {}), '()\n', (5140, 5142), False, 'from styx_msgs.msg import Lane, Waypoint\n'), ((5822, 5853), 'math.sqrt', 'math.sqrt', (['(2 * MAX_DECEL * dist)'], {}), '(2 * MAX_DECEL * dist)\n', (5831, 5853), False, 'import math\n'), ((6843, 6868), 'scipy.spatial.KDTree', 'KDTree', (['self.waypoints_2d'], {}), '(self.waypoints_2d)\n', (6849, 6868), False, 'from scipy.spatial import KDTree\n'), ((7491, 7556), 'math.sqrt', 'math.sqrt', (['((a.x - b.x) ** 2 + (a.y - b.y) ** 2 + (a.z - b.z) ** 2)'], {}), '((a.x - b.x) ** 2 + (a.y - b.y) ** 2 + (a.z - b.z) ** 2)\n', (7500, 7556), False, 'import math\n'), ((7825, 7879), 'rospy.logerr', 'rospy.logerr', (['"""Could not start waypoint updater node."""'], {}), "('Could not start waypoint updater node.')\n", (7837, 7879), False, 'import rospy\n')]
import os import logging import pandas as pd import src.tests.testconfig as tc from collections import namedtuple from src.parsedata import PDFParser from src.capitalgains import CapitalGains from src.initialize import Logger class MFTestError(Exception): pass class UnitTest(): def __init__(self, show_logs:bool = False): logger = Logger() logger.initilaze_logging('no') logging.info(f'{"*" * 50}Start Of Unit Test{"*" * 50}') def _is_hdr_output_ok(self, file_path_cas:str, file_path_hdr_out:str, password:str )->bool: ''' Comapres the sum of units to sell from the csv output file ''' dp = PDFParser() mf_trans_df, mf_hdr_df = dp.parse_mf_data(file_path_cas, password) target_ltcg = 100000 cg = CapitalGains(mf_hdr_df, mf_trans_df) cg.prepare_final_data(target_ltcg) hdr_df_act = cg.output_hdr_df #convert from decimal to Float target_units_sum_act = float(hdr_df_act.target_units.sum()) # Read expected data hdr_df_exp = pd.read_csv(file_path_hdr_out) target_units_sum_exp = round(hdr_df_exp.target_units.sum(), 3) if target_units_sum_act == target_units_sum_exp: return True else: logging.error(f"Target Units Do not Match: Expected {target_units_sum_exp}, Got {target_units_sum_act}") return False def run_basic_test(self): print("running Basic Test:", end = " ") file_path_cas = os.path.join( tc.unit_test_base_dir, 'cas_jul_29_21.pdf') file_path_actual = os.path.join( tc.unit_test_base_dir, 'output_mf_totals_jul_29_21.csv') logging.info(f"running Basic Test for input file {file_path_cas}") ok = self._is_hdr_output_ok(file_path_cas,file_path_actual, tc.password) res = tc.PASS if ok else tc.FAIL print(f"{res}") logging.info(f"Result:{res}\n") if not ok: msg = f"Test Failed for input file {file_path_cas}, output file {file_path_actual}" logging.error(msg) raise MFTestError(msg) def test_redemption(self): print("running test for rdemeption", end = " ") dp = PDFParser() file_path_cas = os.path.join( tc.unit_test_base_dir, 'cas_jul_19_21.pdf') logging.info(f"running test for rdemeption for file {file_path_cas}") mf_trans_df, mf_hdr_df = dp.parse_mf_data(file_path_cas, tc.password) cg = CapitalGains(mf_hdr_df, mf_trans_df) test_data = [] Data = namedtuple('Data', ['scheme_name', 'redeemed_units']) icici_nf = Data('ICICI Prudential Nifty Next 50 Index Fund - Direct Plan - Growth', 11130.000 ) test_data.append(icici_nf) dsp_scf = Data('DSP Small Cap Fund - Direct Plan - Growth', 0) test_data.append(dsp_scf) for data in test_data: mf_trans_single_df = cg.calc_redeemed_units(data.scheme_name, mf_trans_df) redeemed_units = mf_trans_single_df.units_redeemed.sum() if not redeemed_units == data.redeemed_units: res = tc.FAIL print(f"{res}") msg = f"Test Failed for input file { file_path_cas}, scheme {data.scheme_name }: Expected Redeemmed units {data.redeemed_units} , Got {redeemed_units}" logging.error(msg) raise MFTestError(msg) res = tc.PASS print(f"{res}") logging.info(f"Result:{res}\n") def test_invested_current_amounts(self): print("running test for Current Amount and Invested Amount :", end = " ") dp = PDFParser() file_path_cas = os.path.join( tc.unit_test_base_dir, 'cas_jul_19_21.pdf') logging.info(f"running test for Current Amount and Invested Amount for file {file_path_cas}") mf_trans_df, mf_hdr_df = dp.parse_mf_data(file_path_cas, tc.password) cg = CapitalGains(mf_hdr_df, mf_trans_df) cg._set_gf_nav() mf_trans_df = cg.mf_trans_df test_data = [] Data = namedtuple('Data', ['scheme_name', 'invested_amt', 'current_amt']) icici_nf = Data('ICICI Prudential Nifty Next 50 Index Fund - Direct Plan - Growth', 277741, 411315 ) test_data.append(icici_nf) ft_ldf = Data('Franklin India Low Duration Fund - Direct Plan - Growth', 33068, 42704 ) test_data.append(ft_ldf) dsp_scf = Data('DSP Small Cap Fund - Direct Plan - Growth', 759990, 1405390 ) test_data.append(dsp_scf) # Method to test mf_trans_df = cg.set_units_amts_for_redemptions(mf_trans_df) ok = True for data in test_data: mf_trans_single = mf_trans_df[mf_trans_df.scheme_name == data.scheme_name] total_invested_amt = round(mf_trans_single.invested_amt.sum(), 0) total_current_amt = round(mf_trans_single.current_amt.sum(), 0) if total_invested_amt != data.invested_amt: msg = ( f"Test Failed for input file { file_path_cas}, scheme {data.scheme_name }:\n" f"expected invested amount: {data.invested_amt}, got {total_invested_amt}" ) ok = False break if total_current_amt != data.current_amt: msg = ( f"Test Failed for input file { file_path_cas}, scheme {data.scheme_name }:\n" f"expected current amount: {data.current_amt}, got {total_current_amt}" ) ok = False break res = tc.PASS if ok else tc.FAIL print(res) logging.info(f"Result:{res}\n") if not ok: logging.error(msg) raise MFTestError(msg) def test_hdr_amounts(self): ''' Test Aggregate Invested and Current Amount for all MF schemes This has been validated against VRO portfolio on 30-07-2021 ''' print("running test for Aggregate Current Amount and Invested Amount :", end = " ") file_path_cas = os.path.join( tc.unit_test_base_dir, 'cas_jul_29_21.pdf') logging.info(f"running test for Aggregate Current Amount and Invested Amount for file {file_path_cas}") dp =PDFParser() mf_trans_df, mf_hdr_df = dp.parse_mf_data(file_path_cas, password=tc.password) cg = CapitalGains(mf_hdr_df, mf_trans_df) cg._set_gf_nav() cg.mf_trans_df = cg.set_units_amts_for_redemptions(cg.mf_trans_df) cg.mf_trans_df= cg._calculate_capital_gains(cg.mf_trans_df) # Method to be tested mf_hdr_df = cg.prepare_hdr_data(cg.mf_hdr_df, cg.mf_trans_df) invested_amt_act = round(mf_hdr_df.invested_amt.sum(), 0) invested_amt_exp = 8666344.0 current_amt_act = round(mf_hdr_df.current_amt.sum(), 0) current_amt_exp = 12911991.0 ok = True if invested_amt_act != invested_amt_exp: msg = ( f"Test Failed for input file { file_path_cas}: " f"expected invested amount: { invested_amt_exp}, got: {invested_amt_act}" ) ok = False if current_amt_act != current_amt_exp: msg = ( f"Test Failed for input file { file_path_cas}: " f"expected invested amount: { current_amt_exp}, got: {current_amt_act}" ) ok = False res = tc.PASS if ok else tc.FAIL print(res) logging.info(f"Result:{res}\n") if not ok: logging.error(msg) raise MFTestError(msg)
[ "collections.namedtuple", "src.initialize.Logger", "pandas.read_csv", "os.path.join", "logging.info", "src.parsedata.PDFParser", "src.capitalgains.CapitalGains", "logging.error" ]
[((358, 366), 'src.initialize.Logger', 'Logger', ([], {}), '()\n', (364, 366), False, 'from src.initialize import Logger\n'), ((418, 473), 'logging.info', 'logging.info', (['f"""{\'*\' * 50}Start Of Unit Test{\'*\' * 50}"""'], {}), '(f"{\'*\' * 50}Start Of Unit Test{\'*\' * 50}")\n', (430, 473), False, 'import logging\n'), ((675, 686), 'src.parsedata.PDFParser', 'PDFParser', ([], {}), '()\n', (684, 686), False, 'from src.parsedata import PDFParser\n'), ((813, 849), 'src.capitalgains.CapitalGains', 'CapitalGains', (['mf_hdr_df', 'mf_trans_df'], {}), '(mf_hdr_df, mf_trans_df)\n', (825, 849), False, 'from src.capitalgains import CapitalGains\n'), ((1095, 1125), 'pandas.read_csv', 'pd.read_csv', (['file_path_hdr_out'], {}), '(file_path_hdr_out)\n', (1106, 1125), True, 'import pandas as pd\n'), ((1566, 1622), 'os.path.join', 'os.path.join', (['tc.unit_test_base_dir', '"""cas_jul_29_21.pdf"""'], {}), "(tc.unit_test_base_dir, 'cas_jul_29_21.pdf')\n", (1578, 1622), False, 'import os\n'), ((1651, 1720), 'os.path.join', 'os.path.join', (['tc.unit_test_base_dir', '"""output_mf_totals_jul_29_21.csv"""'], {}), "(tc.unit_test_base_dir, 'output_mf_totals_jul_29_21.csv')\n", (1663, 1720), False, 'import os\n'), ((1732, 1798), 'logging.info', 'logging.info', (['f"""running Basic Test for input file {file_path_cas}"""'], {}), "(f'running Basic Test for input file {file_path_cas}')\n", (1744, 1798), False, 'import logging\n'), ((1962, 1993), 'logging.info', 'logging.info', (['f"""Result:{res}\n"""'], {}), "(f'Result:{res}\\n')\n", (1974, 1993), False, 'import logging\n'), ((2307, 2318), 'src.parsedata.PDFParser', 'PDFParser', ([], {}), '()\n', (2316, 2318), False, 'from src.parsedata import PDFParser\n'), ((2347, 2403), 'os.path.join', 'os.path.join', (['tc.unit_test_base_dir', '"""cas_jul_19_21.pdf"""'], {}), "(tc.unit_test_base_dir, 'cas_jul_19_21.pdf')\n", (2359, 2403), False, 'import os\n'), ((2414, 2483), 'logging.info', 'logging.info', (['f"""running test for rdemeption for file {file_path_cas}"""'], {}), "(f'running test for rdemeption for file {file_path_cas}')\n", (2426, 2483), False, 'import logging\n'), ((2576, 2612), 'src.capitalgains.CapitalGains', 'CapitalGains', (['mf_hdr_df', 'mf_trans_df'], {}), '(mf_hdr_df, mf_trans_df)\n', (2588, 2612), False, 'from src.capitalgains import CapitalGains\n'), ((2652, 2705), 'collections.namedtuple', 'namedtuple', (['"""Data"""', "['scheme_name', 'redeemed_units']"], {}), "('Data', ['scheme_name', 'redeemed_units'])\n", (2662, 2705), False, 'from collections import namedtuple\n'), ((3592, 3623), 'logging.info', 'logging.info', (['f"""Result:{res}\n"""'], {}), "(f'Result:{res}\\n')\n", (3604, 3623), False, 'import logging\n'), ((3774, 3785), 'src.parsedata.PDFParser', 'PDFParser', ([], {}), '()\n', (3783, 3785), False, 'from src.parsedata import PDFParser\n'), ((3814, 3870), 'os.path.join', 'os.path.join', (['tc.unit_test_base_dir', '"""cas_jul_19_21.pdf"""'], {}), "(tc.unit_test_base_dir, 'cas_jul_19_21.pdf')\n", (3826, 3870), False, 'import os\n'), ((3881, 3984), 'logging.info', 'logging.info', (['f"""running test for Current Amount and Invested Amount for file {file_path_cas}"""'], {}), "(\n f'running test for Current Amount and Invested Amount for file {file_path_cas}'\n )\n", (3893, 3984), False, 'import logging\n'), ((4067, 4103), 'src.capitalgains.CapitalGains', 'CapitalGains', (['mf_hdr_df', 'mf_trans_df'], {}), '(mf_hdr_df, mf_trans_df)\n', (4079, 4103), False, 'from src.capitalgains import CapitalGains\n'), ((4206, 4272), 'collections.namedtuple', 'namedtuple', (['"""Data"""', "['scheme_name', 'invested_amt', 'current_amt']"], {}), "('Data', ['scheme_name', 'invested_amt', 'current_amt'])\n", (4216, 4272), False, 'from collections import namedtuple\n'), ((5809, 5840), 'logging.info', 'logging.info', (['f"""Result:{res}\n"""'], {}), "(f'Result:{res}\\n')\n", (5821, 5840), False, 'import logging\n'), ((6240, 6296), 'os.path.join', 'os.path.join', (['tc.unit_test_base_dir', '"""cas_jul_29_21.pdf"""'], {}), "(tc.unit_test_base_dir, 'cas_jul_29_21.pdf')\n", (6252, 6296), False, 'import os\n'), ((6307, 6420), 'logging.info', 'logging.info', (['f"""running test for Aggregate Current Amount and Invested Amount for file {file_path_cas}"""'], {}), "(\n f'running test for Aggregate Current Amount and Invested Amount for file {file_path_cas}'\n )\n", (6319, 6420), False, 'import logging\n'), ((6424, 6435), 'src.parsedata.PDFParser', 'PDFParser', ([], {}), '()\n', (6433, 6435), False, 'from src.parsedata import PDFParser\n'), ((6542, 6578), 'src.capitalgains.CapitalGains', 'CapitalGains', (['mf_hdr_df', 'mf_trans_df'], {}), '(mf_hdr_df, mf_trans_df)\n', (6554, 6578), False, 'from src.capitalgains import CapitalGains\n'), ((7639, 7670), 'logging.info', 'logging.info', (['f"""Result:{res}\n"""'], {}), "(f'Result:{res}\\n')\n", (7651, 7670), False, 'import logging\n'), ((1314, 1428), 'logging.error', 'logging.error', (['f"""Target Units Do not Match: Expected {target_units_sum_exp}, Got {target_units_sum_act}"""'], {}), "(\n f'Target Units Do not Match: Expected {target_units_sum_exp}, Got {target_units_sum_act}'\n )\n", (1327, 1428), False, 'import logging\n'), ((2134, 2152), 'logging.error', 'logging.error', (['msg'], {}), '(msg)\n', (2147, 2152), False, 'import logging\n'), ((5872, 5890), 'logging.error', 'logging.error', (['msg'], {}), '(msg)\n', (5885, 5890), False, 'import logging\n'), ((7702, 7720), 'logging.error', 'logging.error', (['msg'], {}), '(msg)\n', (7715, 7720), False, 'import logging\n'), ((3467, 3485), 'logging.error', 'logging.error', (['msg'], {}), '(msg)\n', (3480, 3485), False, 'import logging\n')]
import pygame import cmg from cmg.color import Colors from study_tool.config import Config from study_tool.entities.entity import Entity class StudyProficiencyBar(Entity): """ Bar that displays the proficiency histogram of a study set. """ def __init__(self, study_set, center_y=0, left=0, right=0): super().__init__() self.center_y = center_y self.left = left self.right = right self.study_set = study_set self.__proficiency_counts = {} self.__score = 0 self.__total_cards = 0 self.__font_bar_text = pygame.font.Font(None, 30) def on_create(self): """Called when the entity is created.""" self.recalculate() def recalculate(self): cards = [] if isinstance(self.study_set, list): cards = self.study_set else: cards = list(self.study_set.cards) self.__total_cards = len(cards) self.__proficiency_counts = {} self.__score = 0 for level in range(Config.proficiency_levels, -1, -1): self.__proficiency_counts[level] = 0 for card in cards: study_data = self.context.study_database.get_card_study_data(card) self.__proficiency_counts[study_data.get_proficiency_level()] += 1 for level in range(Config.proficiency_levels, -1, -1): count = self.__proficiency_counts[level] self.__score += count * max(0, level - 1) #for level in range(Config.proficiency_levels, -1, -1): # count = len([c for c in cards if c.proficiency_level == level]) # self.__proficiency_counts[level] = count # if count > 0: # self.__score += count * max(0, level - 1) self.__score /= max(1.0, float((Config.proficiency_levels - 1) * len(cards))) self.__score = int(round(self.__score * 100)) def update(self, dt): """Update the entity.""" def draw(self, g): """Draw the entity.""" cards = [] if isinstance(self.study_set, list): cards = self.study_set else: cards = list(self.study_set.cards) total_cards = len(cards) font = self.__font_bar_text left_margin = g.measure_text("100%", font=font)[0] + 4 right_margin = g.measure_text(str(9999), font=font)[0] + 4 bar_height = g.measure_text("1", font=font)[1] bar_width = self.right - self.left - left_margin - right_margin top = self.center_y - (bar_height / 2) if False: cards = sorted( cards, key=lambda x: x.get_history_score(), reverse=True) for index, card in enumerate(cards): score = card.get_history_score() x = self.left + left_margin + bar_width * \ (float(index) / len(cards)) w = max(1, math.ceil(float(bar_width) / len(cards))) c = math.lerp(Colors.RED, Colors.GREEN, score) h = math.ceil(score * bar_height) g.fill_rect(x, top + bar_height - h, w, h, color=c) else: x = self.left + left_margin for level in range(Config.proficiency_levels, -1, -1): count = self.__proficiency_counts[level] if count > 0: level_width = int( round(bar_width * (float(count) / self.__total_cards))) if x + level_width > self.left + left_margin + bar_width: level_width = (self.left + left_margin + bar_width) - x g.fill_rect(x, top, level_width, bar_height, color=Config.proficiency_level_colors[level]) x += level_width g.draw_text(self.left + left_margin - 4, self.center_y, text="{}%".format(self.__score), color=cmg.Theme.color_text, align=cmg.Align.MiddleRight, font=font) g.draw_text(self.right - right_margin + 4, self.center_y, text=str(self.__total_cards), color=cmg.Theme.color_text, align=cmg.Align.MiddleLeft, font=font)
[ "pygame.font.Font" ]
[((591, 617), 'pygame.font.Font', 'pygame.font.Font', (['None', '(30)'], {}), '(None, 30)\n', (607, 617), False, 'import pygame\n')]
import os import sys import numpy as np from shapeworks import * success = True def pointsTest(): mesh = Mesh(os.environ["DATA"] + "/simple_ellipsoid.ply") points = mesh.points() v0 = points[0] g0 = [1.12801208e+01, 1.84252377e+01, 2.66504917e+01] vn = points[points.shape[0]-1] gn = [3.35370102e+01, 1.25301433e+00, 3.71165695e+01] return points.shape[0] == 14 and points.shape[1] == 3 and np.linalg.norm(v0-g0) < 1e-4 and np.linalg.norm(vn-gn) < 1e-4 success &= utils.test(pointsTest) sys.exit(not success)
[ "numpy.linalg.norm", "sys.exit" ]
[((510, 531), 'sys.exit', 'sys.exit', (['(not success)'], {}), '(not success)\n', (518, 531), False, 'import sys\n'), ((412, 435), 'numpy.linalg.norm', 'np.linalg.norm', (['(v0 - g0)'], {}), '(v0 - g0)\n', (426, 435), True, 'import numpy as np\n'), ((445, 468), 'numpy.linalg.norm', 'np.linalg.norm', (['(vn - gn)'], {}), '(vn - gn)\n', (459, 468), True, 'import numpy as np\n')]
import cv2 import numpy def grayscale_smooth(np_image): """ Convert an image to black+white and apply a bilarteral smooth filter """ clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) gray_img = cv2.cvtColor(np_image, cv2.COLOR_RGB2GRAY) norm_img = clahe.apply(gray_img) smooth_img = cv2.bilateralFilter(norm_img, 3, 75, 75) return smooth_img # Takes 4 corner points and use them to try and unwarp a rectangular image def four_point_transform(image, pts): """ transforms an image using four given points to flatten and transform into a rectangle Magic taken from http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ """ # obtain a consistent order of the points and unpack them # individually rect = order_points(pts) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates width_a = numpy.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) width_b = numpy.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) max_width = max(int(width_a), int(width_b)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates height_a = numpy.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) height_b = numpy.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) max_height = max(int(height_a), int(height_b)) # now that we have the dimensions of the new image, construct # the set of destination points to obtain a "birds eye view", # (i.e. top-down view) of the image, again specifying points # in the top-left, top-right, bottom-right, and bottom-left # order dst = numpy.array([ [0, 0], [max_width - 1, 0], [max_width - 1, max_height - 1], [0, max_height - 1]], dtype="float32") # compute the perspective transform matrix and then apply it transform_matrix = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(image, transform_matrix, (max_width, max_height)) # return the warped image return warped def order_points(pts): """ takes a tuple of four point tuples and order then in the following order; [topLeft, topRight, bottomRight, bottomLeft] Magic taken from http://www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/ """ # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = numpy.zeros((4, 2), dtype="float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis=1) rect[0] = pts[numpy.argmin(s)] rect[2] = pts[numpy.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = numpy.diff(pts, axis=1) rect[1] = pts[numpy.argmin(diff)] rect[3] = pts[numpy.argmax(diff)] # return the ordered coordinates return rect def guess_colour(r, g, b): # Use the average RGB values of a stickyNote and then using the difference between them # to establish which of the four supported colours it is. r = int(r) g = int(g) b = int(b) rg = r - g rb = r - b gb = g - b colour_thresholds = { "ORANGE": { "min_rg": 20, "max_rg": 110, "min_rb": 60, "max_rb": 180, "min_gb": 25, "max_gb": 100 }, "YELLOW": { "min_rg": -30, "max_rg": 15, "min_rb": 35, "max_rb": 150, "min_gb": 40, "max_gb": 150 }, "BLUE": { "min_rg": -110, "max_rg": -20, "min_rb": -140, "max_rb": -40, "min_gb": -45, "max_gb": 0 }, "MAGENTA": { "min_rg": 40, "max_rg": 135, "min_rb": 25, "max_rb": 100, "min_gb": -55, "max_gb": -10 }, } for colour in colour_thresholds: if ((rg >= colour_thresholds[colour]["min_rg"]) and (rg <= colour_thresholds[colour]["max_rg"]) and (rb >= colour_thresholds[colour]["min_rb"]) and (rb <= colour_thresholds[colour]["max_rb"]) and (gb >= colour_thresholds[colour]["min_gb"]) and (gb <= colour_thresholds[colour]["max_gb"])): return colour return None def binarize(image, lightest=True): # Process converts an image to black and white using clustering to the lightest and darkest areas Z = image.reshape((-1,3)) # convert to np.float32 Z = numpy.float32(Z) # define criteria, number of clusters(K) and apply kmeans() criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, 1.0) if lightest: K = 3 else: K = 2 ret,label,center = cv2.kmeans(data=Z, K=K, bestLabels=None, criteria=criteria, attempts=10, flags=cv2.KMEANS_RANDOM_CENTERS) # Now convert back into uint8, and make original image center = numpy.uint8(center) res = center[label.flatten()] res2 = res.reshape((image.shape)) bmin = res2[..., 0].min() gmin = res2[..., 1].min() rmin = res2[..., 2].min() bmax = res2[..., 0].max() gmax = res2[..., 1].max() rmax = res2[..., 2].max() if lightest: image[numpy.where((res2 < [bmax, gmax, rmax]).all(axis=2))] = [0, 0, 0] image[numpy.where((res2 == [bmax, gmax, rmax ]).all(axis=2))] = [255, 255, 255] else: image[numpy.where((res2 > [0, 0, 0]).all(axis=2))] = [0, 0, 0] image[numpy.where((res2 > [bmin, gmin, rmin]).all(axis=2))] = [255, 255, 255] return image def edge(img): kernel = numpy.ones((5, 5), numpy.uint8) #img = cv2.medianBlur(img, 9) img = cv2.bilateralFilter(img,9,75,75) gray_image = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) edged = cv2.Canny(gray_image, 1, 30) return edged def get_area(points): #if len(points) == 4: # points = self.order_points(points) pointsum = 0 for index in range(-1, len(points) - 1): pointsum = pointsum + (points[index][0] * points[index + 1][1] - points[index][1] * points[index + 1][0]) area = abs(pointsum / 2) return area
[ "numpy.uint8", "numpy.sqrt", "numpy.ones", "cv2.bilateralFilter", "cv2.getPerspectiveTransform", "cv2.kmeans", "numpy.diff", "numpy.argmax", "cv2.createCLAHE", "numpy.array", "cv2.warpPerspective", "numpy.zeros", "cv2.cvtColor", "numpy.argmin", "cv2.Canny", "numpy.float32" ]
[((159, 210), 'cv2.createCLAHE', 'cv2.createCLAHE', ([], {'clipLimit': '(2.0)', 'tileGridSize': '(8, 8)'}), '(clipLimit=2.0, tileGridSize=(8, 8))\n', (174, 210), False, 'import cv2\n'), ((226, 268), 'cv2.cvtColor', 'cv2.cvtColor', (['np_image', 'cv2.COLOR_RGB2GRAY'], {}), '(np_image, cv2.COLOR_RGB2GRAY)\n', (238, 268), False, 'import cv2\n'), ((323, 363), 'cv2.bilateralFilter', 'cv2.bilateralFilter', (['norm_img', '(3)', '(75)', '(75)'], {}), '(norm_img, 3, 75, 75)\n', (342, 363), False, 'import cv2\n'), ((1059, 1114), 'numpy.sqrt', 'numpy.sqrt', (['((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2)'], {}), '((br[0] - bl[0]) ** 2 + (br[1] - bl[1]) ** 2)\n', (1069, 1114), False, 'import numpy\n'), ((1133, 1188), 'numpy.sqrt', 'numpy.sqrt', (['((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2)'], {}), '((tr[0] - tl[0]) ** 2 + (tr[1] - tl[1]) ** 2)\n', (1143, 1188), False, 'import numpy\n'), ((1446, 1501), 'numpy.sqrt', 'numpy.sqrt', (['((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2)'], {}), '((tr[0] - br[0]) ** 2 + (tr[1] - br[1]) ** 2)\n', (1456, 1501), False, 'import numpy\n'), ((1521, 1576), 'numpy.sqrt', 'numpy.sqrt', (['((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2)'], {}), '((tl[0] - bl[0]) ** 2 + (tl[1] - bl[1]) ** 2)\n', (1531, 1576), False, 'import numpy\n'), ((1916, 2033), 'numpy.array', 'numpy.array', (['[[0, 0], [max_width - 1, 0], [max_width - 1, max_height - 1], [0, \n max_height - 1]]'], {'dtype': '"""float32"""'}), "([[0, 0], [max_width - 1, 0], [max_width - 1, max_height - 1], [\n 0, max_height - 1]], dtype='float32')\n", (1927, 2033), False, 'import numpy\n'), ((2151, 2189), 'cv2.getPerspectiveTransform', 'cv2.getPerspectiveTransform', (['rect', 'dst'], {}), '(rect, dst)\n', (2178, 2189), False, 'import cv2\n'), ((2203, 2272), 'cv2.warpPerspective', 'cv2.warpPerspective', (['image', 'transform_matrix', '(max_width, max_height)'], {}), '(image, transform_matrix, (max_width, max_height))\n', (2222, 2272), False, 'import cv2\n'), ((2844, 2880), 'numpy.zeros', 'numpy.zeros', (['(4, 2)'], {'dtype': '"""float32"""'}), "((4, 2), dtype='float32')\n", (2855, 2880), False, 'import numpy\n'), ((3283, 3306), 'numpy.diff', 'numpy.diff', (['pts'], {'axis': '(1)'}), '(pts, axis=1)\n', (3293, 3306), False, 'import numpy\n'), ((5167, 5183), 'numpy.float32', 'numpy.float32', (['Z'], {}), '(Z)\n', (5180, 5183), False, 'import numpy\n'), ((5403, 5512), 'cv2.kmeans', 'cv2.kmeans', ([], {'data': 'Z', 'K': 'K', 'bestLabels': 'None', 'criteria': 'criteria', 'attempts': '(10)', 'flags': 'cv2.KMEANS_RANDOM_CENTERS'}), '(data=Z, K=K, bestLabels=None, criteria=criteria, attempts=10,\n flags=cv2.KMEANS_RANDOM_CENTERS)\n', (5413, 5512), False, 'import cv2\n'), ((5751, 5770), 'numpy.uint8', 'numpy.uint8', (['center'], {}), '(center)\n', (5762, 5770), False, 'import numpy\n'), ((6423, 6454), 'numpy.ones', 'numpy.ones', (['(5, 5)', 'numpy.uint8'], {}), '((5, 5), numpy.uint8)\n', (6433, 6454), False, 'import numpy\n'), ((6499, 6534), 'cv2.bilateralFilter', 'cv2.bilateralFilter', (['img', '(9)', '(75)', '(75)'], {}), '(img, 9, 75, 75)\n', (6518, 6534), False, 'import cv2\n'), ((6549, 6586), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_RGB2GRAY'], {}), '(img, cv2.COLOR_RGB2GRAY)\n', (6561, 6586), False, 'import cv2\n'), ((6600, 6628), 'cv2.Canny', 'cv2.Canny', (['gray_image', '(1)', '(30)'], {}), '(gray_image, 1, 30)\n', (6609, 6628), False, 'import cv2\n'), ((3041, 3056), 'numpy.argmin', 'numpy.argmin', (['s'], {}), '(s)\n', (3053, 3056), False, 'import numpy\n'), ((3076, 3091), 'numpy.argmax', 'numpy.argmax', (['s'], {}), '(s)\n', (3088, 3091), False, 'import numpy\n'), ((3325, 3343), 'numpy.argmin', 'numpy.argmin', (['diff'], {}), '(diff)\n', (3337, 3343), False, 'import numpy\n'), ((3363, 3381), 'numpy.argmax', 'numpy.argmax', (['diff'], {}), '(diff)\n', (3375, 3381), False, 'import numpy\n')]
from unittest import mock import pytest from mopidy_radionet import backend from mopidy_radionet.radionet import RadioNetClient from mopidy_radionet.library import RadioNetLibraryProvider @pytest.fixture def backend_mock(): backend_mock = mock.Mock(spec=backend.RadioNetBackend) backend_mock.radionet = RadioNetClient(proxy_config=None) backend_mock.library = RadioNetLibraryProvider(backend=backend_mock) backend_mock.radionet.set_apikey('test') backend_mock.radionet.set_favorites({'lush'}) return backend_mock @pytest.fixture def library(backend_mock): return backend_mock.library @pytest.fixture def radionet(backend_mock): return backend_mock.radionet
[ "mopidy_radionet.radionet.RadioNetClient", "unittest.mock.Mock", "mopidy_radionet.library.RadioNetLibraryProvider" ]
[((246, 285), 'unittest.mock.Mock', 'mock.Mock', ([], {'spec': 'backend.RadioNetBackend'}), '(spec=backend.RadioNetBackend)\n', (255, 285), False, 'from unittest import mock\n'), ((314, 347), 'mopidy_radionet.radionet.RadioNetClient', 'RadioNetClient', ([], {'proxy_config': 'None'}), '(proxy_config=None)\n', (328, 347), False, 'from mopidy_radionet.radionet import RadioNetClient\n'), ((375, 420), 'mopidy_radionet.library.RadioNetLibraryProvider', 'RadioNetLibraryProvider', ([], {'backend': 'backend_mock'}), '(backend=backend_mock)\n', (398, 420), False, 'from mopidy_radionet.library import RadioNetLibraryProvider\n')]
# Generated by Django 3.0.5 on 2020-04-15 10:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('academics', '0002_semester'), ] operations = [ migrations.AddField( model_name='program', name='desc', field=models.TextField(default=''), ), ]
[ "django.db.models.TextField" ]
[((325, 353), 'django.db.models.TextField', 'models.TextField', ([], {'default': '""""""'}), "(default='')\n", (341, 353), False, 'from django.db import migrations, models\n')]
# Generated by Django 2.0.9 on 2019-02-05 11:45 from django.db import migrations, models import fadderanmalan.models class Migration(migrations.Migration): dependencies = [ ('fadderanmalan', '0003_auto_20190205_1121'), ] operations = [ migrations.AlterField( model_name='job', name='hidden', field=models.BooleanField(help_text='Om jobbet ska döljas från frontend:en. Överskrider datumen nedan'), ), migrations.AlterField( model_name='job', name='hidden_after', field=models.DateField(default=fadderanmalan.models.default_hidden_after, help_text='EFTER detta datum kommer jobbet att döljas.'), ), migrations.AlterField( model_name='job', name='hidden_until', field=models.DateField(default=fadderanmalan.models.default_hidden_until, help_text='Jobbet kommer att visas PÅ detta datum.'), ), migrations.AlterField( model_name='job', name='locked', field=models.BooleanField(help_text='Om jobbet ska vara låst. Överskrider datumen nedan.'), ), migrations.AlterField( model_name='job', name='locked_after', field=models.DateField(default=fadderanmalan.models.default_locked_after, help_text='EFTER detta datum kommer jobbet att låsas.'), ), migrations.AlterField( model_name='job', name='locked_until', field=models.DateField(default=fadderanmalan.models.default_locked_until, help_text='Jobbet kommer att låsas upp PÅ detta datum.'), ), ]
[ "django.db.models.DateField", "django.db.models.BooleanField" ]
[((367, 469), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'help_text': '"""Om jobbet ska döljas från frontend:en. Överskrider datumen nedan"""'}), "(help_text=\n 'Om jobbet ska döljas från frontend:en. Överskrider datumen nedan')\n", (386, 469), False, 'from django.db import migrations, models\n'), ((589, 717), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'fadderanmalan.models.default_hidden_after', 'help_text': '"""EFTER detta datum kommer jobbet att döljas."""'}), "(default=fadderanmalan.models.default_hidden_after,\n help_text='EFTER detta datum kommer jobbet att döljas.')\n", (605, 717), False, 'from django.db import migrations, models\n'), ((838, 962), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'fadderanmalan.models.default_hidden_until', 'help_text': '"""Jobbet kommer att visas PÅ detta datum."""'}), "(default=fadderanmalan.models.default_hidden_until,\n help_text='Jobbet kommer att visas PÅ detta datum.')\n", (854, 962), False, 'from django.db import migrations, models\n'), ((1077, 1166), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'help_text': '"""Om jobbet ska vara låst. Överskrider datumen nedan."""'}), "(help_text=\n 'Om jobbet ska vara låst. Överskrider datumen nedan.')\n", (1096, 1166), False, 'from django.db import migrations, models\n'), ((1286, 1413), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'fadderanmalan.models.default_locked_after', 'help_text': '"""EFTER detta datum kommer jobbet att låsas."""'}), "(default=fadderanmalan.models.default_locked_after,\n help_text='EFTER detta datum kommer jobbet att låsas.')\n", (1302, 1413), False, 'from django.db import migrations, models\n'), ((1534, 1662), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'fadderanmalan.models.default_locked_until', 'help_text': '"""Jobbet kommer att låsas upp PÅ detta datum."""'}), "(default=fadderanmalan.models.default_locked_until,\n help_text='Jobbet kommer att låsas upp PÅ detta datum.')\n", (1550, 1662), False, 'from django.db import migrations, models\n')]
from __future__ import division from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy import numpy as np from scipy.sparse import csr_matrix B = np.array([ [1,1,1,1], [1,1,1,0], [1,1,0,0], [1,0,0,0], ]) N = np.array([ [2,3,4,2], [2,3,4,2], [2,3,3,2], [2,1,3,4] ]) W = np.array([ [4,3,2,1], [3,2,1,0], [2,1,0,0], [1,0,0,0], ]) def test_jaccard_scipy(): """ Test Jaccard: scipy.spatial.dist.jaccard """ u = np.array([2,3,4,5]) v = np.array([2,3,4,2]) d = _jaccard_coef_scipy(u,v,min_support=1) assert (d == 0.75) def test_jaccard_binary(): """ Test Jaccard: binary (bitwise) coef """ u = np.array([1,1,1,1]) v = np.array([1,1,1,0]) d = _jaccard_coef_binary(u,v,min_support=1) assert (d == 0.75) def test_jaccard_set(): """ Test Jaccard: set coef """ u = np.array([4,3,2,1]) v = np.array([3,2,1,0]) d = _jaccard_coef_set(u,v,min_support=1) assert (d == 0.6) def test_jaccard_weighted(): """ Test Jaccard: weighted coef """ u = np.array([4,3,2,1]) v = np.array([3,2,1,0]) d = _jaccard_coef_weighted_numpy(u,v,min_support=1) print assert (d == 0.6) def test_pairwise_distance_numpy_scipy(): """ Test pairwise distance: using the Numpy (dense matrix) implemmentation for numer jaccard (scipy) coef """ D = pairwise_proximity(N, metric='jaccard') true = np.array([ [ 1. , 1. , 0.75, 0.25], [ 1. , 1. , 0.75, 0.25], [ 0.75, 0.75, 1. , 0.5 ], [ 0.25, 0.25, 0.5 , 1. ], ], dtype=float) assert np.isclose(D, true). all() def test_pairwise_distance_numpy_binary(): """ Test pairwise distance: using the Numpy (dense matrix) implementation for jaccard binary coef """ D = pairwise_proximity(B, metric='jaccard_binary', min_support=1, verbose=True) true = np.array([ [ 1., 0.75, 0.5, 0.25 ], [ 0.75, 1., 0.66666667, 0.33333333], [ 0.5, 0.66666667, 1., 0.5 ], [ 0.25, 0.33333333, 0.5, 1. ], ], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_numpy_set(): """ Test pairwise distance: using the Numpy (dense matrix) implementation for jaccard set coef """ D = pairwise_proximity(W, metric='jaccard_set', min_support=1) true = np.array([ [ 1., 0.6, 0.4, 0.2, ], [ 0.6, 1., 0.75, 0.5, ], [ 0.4, 0.75, 1., 0.66666667,], [ 0.2, 0.5, 0.66666667, 1., ], ], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_numpy_weighted(): """ Test pairwise distance: using Numpy (dense matrix) using weighted jaccard """ D = pairwise_proximity(W, metric='weighted_jaccard', min_support=10) true = np.array([ [ 1., 0.6, 0.3, 0.1], [ 0.6, 1., 0., 0. ], [ 0.3, 0., 1., 0. ], [ 0.1, 0., 0., 1. ], ], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_sparse_scipy(): """ Test pairwise distance: using the Scipy (sparse matrix) implemmentation for jaccard scipy coef """ N_sparse = csr_matrix(N) D = pairwise_proximity(N_sparse, metric='jaccard', min_support=1) true = np.array([ [ 1. , 1. , 0.75, 0.25], [ 1. , 1. , 0.75, 0.25], [ 0.75, 0.75, 1. , 0.5 ], [ 0.25, 0.25, 0.5 , 1. ], ], dtype=float) assert np.isclose(D.todense(), true). all() def test_pairwise_distance_sparse_binary(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation for jaccard bitwise coef """ B_sparse = csr_matrix(B) D = pairwise_proximity(B_sparse, metric='jaccard_binary', min_support=1) #print D.todense() true = np.array([ [ 1., 0.75, 0.5, 0.25 ], [ 0.75, 1., 0.66666667, 0.33333333], [ 0.5, 0.66666667, 1., 0.5 ], [ 0.25, 0.33333333, 0.5, 1. ], ], dtype=float) assert np.isclose(D.todense(), true).all() def test_pairwise_distance_sparse_set(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation for jaccard set coef """ W_sparse = csr_matrix(W) D = pairwise_proximity(W_sparse, metric='jaccard_set', min_support=1) true = np.array([ [ 1., 0.75, 0.5, 0.25 ], [ 0.75, 1., 0.66666667, 0.33333333], [ 0.5, 0.66666667, 1., 0.5 ], [ 0.25, 0.33333333, 0.5, 1. ], ], dtype=float) assert np.isclose(D.todense(), true).all() def test_pairwise_distance_sparse_weighted(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation for jaccard weighted coef """ W_sparse = csr_matrix(W) D = pairwise_proximity(W_sparse, metric='jaccard_weighted', min_support=1) true = np.array([ [ 1., 0.6, 0.3, 0.1], [ 0.6, 1., 0., 0. ], [ 0.3, 0., 1., 0. ], [ 0.1, 0., 0., 1. ], ], dtype=float) assert np.isclose(D.todense(), true).all() def test_pairwise_distance_dense_my_own_metric(): """ Test pairwise distance: using the numpy (dense matrix) implementation and my own metric function """ def my_coef(u,v): return 0.25 D = pairwise_proximity(W, metric=my_coef, verbose=True) true = np.array([ [1., .25, .25, .25], [ .25, 1., .25, .25], [ .25, .25, 1., .25], [ .25, .25, .25, 1. ], ], dtype=float) assert np.isclose(D, true).all() def test_pairwise_distance_sparse_my_own_metric(): """ Test pairwise distance: using the Scipy (sparse matrix) implementation and my own metric function """ def my_coef(u,v): return 0.25 W_sparse = csr_matrix(W) D = pairwise_proximity(W_sparse, metric=('indices',my_coef), verbose=True) true = np.array([ [1., .25, .25, .25], [ .25, 1., .25, .25], [ .25, .25, 1., .25], [ .25, .25, .25, 1. ], ], dtype=float) assert np.isclose(D.todense(), true).all()
[ "distanceclosure.distance._jaccard_coef_set", "distanceclosure.distance._jaccard_coef_weighted_numpy", "numpy.isclose", "distanceclosure.distance.pairwise_proximity", "numpy.array", "distanceclosure.distance._jaccard_coef_scipy", "distanceclosure.distance._jaccard_coef_binary", "scipy.sparse.csr_matrix" ]
[((240, 306), 'numpy.array', 'np.array', (['[[1, 1, 1, 1], [1, 1, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0]]'], {}), '([[1, 1, 1, 1], [1, 1, 1, 0], [1, 1, 0, 0], [1, 0, 0, 0]])\n', (248, 306), True, 'import numpy as np\n'), ((307, 373), 'numpy.array', 'np.array', (['[[2, 3, 4, 2], [2, 3, 4, 2], [2, 3, 3, 2], [2, 1, 3, 4]]'], {}), '([[2, 3, 4, 2], [2, 3, 4, 2], [2, 3, 3, 2], [2, 1, 3, 4]])\n', (315, 373), True, 'import numpy as np\n'), ((373, 439), 'numpy.array', 'np.array', (['[[4, 3, 2, 1], [3, 2, 1, 0], [2, 1, 0, 0], [1, 0, 0, 0]]'], {}), '([[4, 3, 2, 1], [3, 2, 1, 0], [2, 1, 0, 0], [1, 0, 0, 0]])\n', (381, 439), True, 'import numpy as np\n'), ((517, 539), 'numpy.array', 'np.array', (['[2, 3, 4, 5]'], {}), '([2, 3, 4, 5])\n', (525, 539), True, 'import numpy as np\n'), ((542, 564), 'numpy.array', 'np.array', (['[2, 3, 4, 2]'], {}), '([2, 3, 4, 2])\n', (550, 564), True, 'import numpy as np\n'), ((567, 607), 'distanceclosure.distance._jaccard_coef_scipy', '_jaccard_coef_scipy', (['u', 'v'], {'min_support': '(1)'}), '(u, v, min_support=1)\n', (586, 607), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((704, 726), 'numpy.array', 'np.array', (['[1, 1, 1, 1]'], {}), '([1, 1, 1, 1])\n', (712, 726), True, 'import numpy as np\n'), ((729, 751), 'numpy.array', 'np.array', (['[1, 1, 1, 0]'], {}), '([1, 1, 1, 0])\n', (737, 751), True, 'import numpy as np\n'), ((754, 795), 'distanceclosure.distance._jaccard_coef_binary', '_jaccard_coef_binary', (['u', 'v'], {'min_support': '(1)'}), '(u, v, min_support=1)\n', (774, 795), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((877, 899), 'numpy.array', 'np.array', (['[4, 3, 2, 1]'], {}), '([4, 3, 2, 1])\n', (885, 899), True, 'import numpy as np\n'), ((902, 924), 'numpy.array', 'np.array', (['[3, 2, 1, 0]'], {}), '([3, 2, 1, 0])\n', (910, 924), True, 'import numpy as np\n'), ((927, 965), 'distanceclosure.distance._jaccard_coef_set', '_jaccard_coef_set', (['u', 'v'], {'min_support': '(1)'}), '(u, v, min_support=1)\n', (944, 965), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((1055, 1077), 'numpy.array', 'np.array', (['[4, 3, 2, 1]'], {}), '([4, 3, 2, 1])\n', (1063, 1077), True, 'import numpy as np\n'), ((1080, 1102), 'numpy.array', 'np.array', (['[3, 2, 1, 0]'], {}), '([3, 2, 1, 0])\n', (1088, 1102), True, 'import numpy as np\n'), ((1105, 1154), 'distanceclosure.distance._jaccard_coef_weighted_numpy', '_jaccard_coef_weighted_numpy', (['u', 'v'], {'min_support': '(1)'}), '(u, v, min_support=1)\n', (1133, 1154), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((1338, 1377), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['N'], {'metric': '"""jaccard"""'}), "(N, metric='jaccard')\n", (1356, 1377), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((1386, 1509), 'numpy.array', 'np.array', (['[[1.0, 1.0, 0.75, 0.25], [1.0, 1.0, 0.75, 0.25], [0.75, 0.75, 1.0, 0.5], [\n 0.25, 0.25, 0.5, 1.0]]'], {'dtype': 'float'}), '([[1.0, 1.0, 0.75, 0.25], [1.0, 1.0, 0.75, 0.25], [0.75, 0.75, 1.0,\n 0.5], [0.25, 0.25, 0.5, 1.0]], dtype=float)\n', (1394, 1509), True, 'import numpy as np\n'), ((1730, 1805), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['B'], {'metric': '"""jaccard_binary"""', 'min_support': '(1)', 'verbose': '(True)'}), "(B, metric='jaccard_binary', min_support=1, verbose=True)\n", (1748, 1805), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((1814, 1961), 'numpy.array', 'np.array', (['[[1.0, 0.75, 0.5, 0.25], [0.75, 1.0, 0.66666667, 0.33333333], [0.5, \n 0.66666667, 1.0, 0.5], [0.25, 0.33333333, 0.5, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.75, 0.5, 0.25], [0.75, 1.0, 0.66666667, 0.33333333], [0.5,\n 0.66666667, 1.0, 0.5], [0.25, 0.33333333, 0.5, 1.0]], dtype=float)\n', (1822, 1961), True, 'import numpy as np\n'), ((2247, 2305), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['W'], {'metric': '"""jaccard_set"""', 'min_support': '(1)'}), "(W, metric='jaccard_set', min_support=1)\n", (2265, 2305), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((2314, 2446), 'numpy.array', 'np.array', (['[[1.0, 0.6, 0.4, 0.2], [0.6, 1.0, 0.75, 0.5], [0.4, 0.75, 1.0, 0.66666667],\n [0.2, 0.5, 0.66666667, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.6, 0.4, 0.2], [0.6, 1.0, 0.75, 0.5], [0.4, 0.75, 1.0, \n 0.66666667], [0.2, 0.5, 0.66666667, 1.0]], dtype=float)\n', (2322, 2446), True, 'import numpy as np\n'), ((2740, 2804), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['W'], {'metric': '"""weighted_jaccard"""', 'min_support': '(10)'}), "(W, metric='weighted_jaccard', min_support=10)\n", (2758, 2804), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((2813, 2928), 'numpy.array', 'np.array', (['[[1.0, 0.6, 0.3, 0.1], [0.6, 1.0, 0.0, 0.0], [0.3, 0.0, 1.0, 0.0], [0.1, \n 0.0, 0.0, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.6, 0.3, 0.1], [0.6, 1.0, 0.0, 0.0], [0.3, 0.0, 1.0, 0.0],\n [0.1, 0.0, 0.0, 1.0]], dtype=float)\n', (2821, 2928), True, 'import numpy as np\n'), ((3148, 3161), 'scipy.sparse.csr_matrix', 'csr_matrix', (['N'], {}), '(N)\n', (3158, 3161), False, 'from scipy.sparse import csr_matrix\n'), ((3167, 3228), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['N_sparse'], {'metric': '"""jaccard"""', 'min_support': '(1)'}), "(N_sparse, metric='jaccard', min_support=1)\n", (3185, 3228), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((3237, 3360), 'numpy.array', 'np.array', (['[[1.0, 1.0, 0.75, 0.25], [1.0, 1.0, 0.75, 0.25], [0.75, 0.75, 1.0, 0.5], [\n 0.25, 0.25, 0.5, 1.0]]'], {'dtype': 'float'}), '([[1.0, 1.0, 0.75, 0.25], [1.0, 1.0, 0.75, 0.25], [0.75, 0.75, 1.0,\n 0.5], [0.25, 0.25, 0.5, 1.0]], dtype=float)\n', (3245, 3360), True, 'import numpy as np\n'), ((3601, 3614), 'scipy.sparse.csr_matrix', 'csr_matrix', (['B'], {}), '(B)\n', (3611, 3614), False, 'from scipy.sparse import csr_matrix\n'), ((3620, 3688), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['B_sparse'], {'metric': '"""jaccard_binary"""', 'min_support': '(1)'}), "(B_sparse, metric='jaccard_binary', min_support=1)\n", (3638, 3688), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((3717, 3864), 'numpy.array', 'np.array', (['[[1.0, 0.75, 0.5, 0.25], [0.75, 1.0, 0.66666667, 0.33333333], [0.5, \n 0.66666667, 1.0, 0.5], [0.25, 0.33333333, 0.5, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.75, 0.5, 0.25], [0.75, 1.0, 0.66666667, 0.33333333], [0.5,\n 0.66666667, 1.0, 0.5], [0.25, 0.33333333, 0.5, 1.0]], dtype=float)\n', (3725, 3864), True, 'import numpy as np\n'), ((4169, 4182), 'scipy.sparse.csr_matrix', 'csr_matrix', (['W'], {}), '(W)\n', (4179, 4182), False, 'from scipy.sparse import csr_matrix\n'), ((4188, 4253), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['W_sparse'], {'metric': '"""jaccard_set"""', 'min_support': '(1)'}), "(W_sparse, metric='jaccard_set', min_support=1)\n", (4206, 4253), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((4262, 4409), 'numpy.array', 'np.array', (['[[1.0, 0.75, 0.5, 0.25], [0.75, 1.0, 0.66666667, 0.33333333], [0.5, \n 0.66666667, 1.0, 0.5], [0.25, 0.33333333, 0.5, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.75, 0.5, 0.25], [0.75, 1.0, 0.66666667, 0.33333333], [0.5,\n 0.66666667, 1.0, 0.5], [0.25, 0.33333333, 0.5, 1.0]], dtype=float)\n', (4270, 4409), True, 'import numpy as np\n'), ((4724, 4737), 'scipy.sparse.csr_matrix', 'csr_matrix', (['W'], {}), '(W)\n', (4734, 4737), False, 'from scipy.sparse import csr_matrix\n'), ((4743, 4813), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['W_sparse'], {'metric': '"""jaccard_weighted"""', 'min_support': '(1)'}), "(W_sparse, metric='jaccard_weighted', min_support=1)\n", (4761, 4813), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((4822, 4937), 'numpy.array', 'np.array', (['[[1.0, 0.6, 0.3, 0.1], [0.6, 1.0, 0.0, 0.0], [0.3, 0.0, 1.0, 0.0], [0.1, \n 0.0, 0.0, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.6, 0.3, 0.1], [0.6, 1.0, 0.0, 0.0], [0.3, 0.0, 1.0, 0.0],\n [0.1, 0.0, 0.0, 1.0]], dtype=float)\n', (4830, 4937), True, 'import numpy as np\n'), ((5204, 5255), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['W'], {'metric': 'my_coef', 'verbose': '(True)'}), '(W, metric=my_coef, verbose=True)\n', (5222, 5255), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((5264, 5392), 'numpy.array', 'np.array', (['[[1.0, 0.25, 0.25, 0.25], [0.25, 1.0, 0.25, 0.25], [0.25, 0.25, 1.0, 0.25],\n [0.25, 0.25, 0.25, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.25, 0.25, 0.25], [0.25, 1.0, 0.25, 0.25], [0.25, 0.25, \n 1.0, 0.25], [0.25, 0.25, 0.25, 1.0]], dtype=float)\n', (5272, 5392), True, 'import numpy as np\n'), ((5652, 5665), 'scipy.sparse.csr_matrix', 'csr_matrix', (['W'], {}), '(W)\n', (5662, 5665), False, 'from scipy.sparse import csr_matrix\n'), ((5671, 5742), 'distanceclosure.distance.pairwise_proximity', 'pairwise_proximity', (['W_sparse'], {'metric': "('indices', my_coef)", 'verbose': '(True)'}), "(W_sparse, metric=('indices', my_coef), verbose=True)\n", (5689, 5742), False, 'from distanceclosure.distance import pairwise_proximity, _jaccard_coef_scipy, _jaccard_coef_binary, _jaccard_coef_set, _jaccard_coef_weighted_numpy\n'), ((5750, 5878), 'numpy.array', 'np.array', (['[[1.0, 0.25, 0.25, 0.25], [0.25, 1.0, 0.25, 0.25], [0.25, 0.25, 1.0, 0.25],\n [0.25, 0.25, 0.25, 1.0]]'], {'dtype': 'float'}), '([[1.0, 0.25, 0.25, 0.25], [0.25, 1.0, 0.25, 0.25], [0.25, 0.25, \n 1.0, 0.25], [0.25, 0.25, 0.25, 1.0]], dtype=float)\n', (5758, 5878), True, 'import numpy as np\n'), ((1551, 1570), 'numpy.isclose', 'np.isclose', (['D', 'true'], {}), '(D, true)\n', (1561, 1570), True, 'import numpy as np\n'), ((2075, 2094), 'numpy.isclose', 'np.isclose', (['D', 'true'], {}), '(D, true)\n', (2085, 2094), True, 'import numpy as np\n'), ((2580, 2599), 'numpy.isclose', 'np.isclose', (['D', 'true'], {}), '(D, true)\n', (2590, 2599), True, 'import numpy as np\n'), ((2962, 2981), 'numpy.isclose', 'np.isclose', (['D', 'true'], {}), '(D, true)\n', (2972, 2981), True, 'import numpy as np\n'), ((5420, 5439), 'numpy.isclose', 'np.isclose', (['D', 'true'], {}), '(D, true)\n', (5430, 5439), True, 'import numpy as np\n')]
# Generated by Django 3.0.5 on 2020-06-07 11:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('homework_app', '0005_auto_20200607_1456'), ] operations = [ migrations.AlterField( model_name='comment', name='importance', field=models.CharField(choices=[('высочайшая', '0'), ('высокая', '1'), ('средняя', '2'), ('низкая', '3')], max_length=10), ), ]
[ "django.db.models.CharField" ]
[((346, 465), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('высочайшая', '0'), ('высокая', '1'), ('средняя', '2'), ('низкая', '3')]", 'max_length': '(10)'}), "(choices=[('высочайшая', '0'), ('высокая', '1'), ('средняя',\n '2'), ('низкая', '3')], max_length=10)\n", (362, 465), False, 'from django.db import migrations, models\n')]
from django.contrib import admin from auditlog.registry import auditlog for model in auditlog.get_models(): admin.site.register(model)
[ "django.contrib.admin.site.register", "auditlog.registry.auditlog.get_models" ]
[((87, 108), 'auditlog.registry.auditlog.get_models', 'auditlog.get_models', ([], {}), '()\n', (106, 108), False, 'from auditlog.registry import auditlog\n'), ((114, 140), 'django.contrib.admin.site.register', 'admin.site.register', (['model'], {}), '(model)\n', (133, 140), False, 'from django.contrib import admin\n')]
import os import logging import asyncio from aiologger.loggers.json import JsonLogger from aioelasticsearch import Elasticsearch from asgard.sdk.options import get_option LOGLEVEL_CONF = os.getenv("ASGARD_COUNTS_LOGLEVEL", "INFO") loglevel = getattr(logging, LOGLEVEL_CONF, logging.INFO) logger = None async def init_logger(): global logger logger = await JsonLogger.with_default_handlers(level=loglevel, flatten=True) loop = asyncio.get_event_loop() init_logger_task = loop.create_task(init_logger()) ELASTIC_SEARCH_ADDRESSES = get_option("ELASTICSEARCH", "ADDRESS") elasticsearch = Elasticsearch(hosts=ELASTIC_SEARCH_ADDRESSES) RABBITMQ_HOST = os.getenv("COUNTS_RABBITMQ_HOST", "127.0.0.1") RABBITMQ_USER = os.getenv("COUNTS_RABBITMQ_USER", "guest") RABBITMQ_PWD = os.getenv("COUNTS_RABBITMQ_PWD", "<PASSWORD>") RABBITMQ_PREFETCH = int(os.getenv("COUNTS_RABBITMQ_PREFETCH", 32)) RABBITMQ_VHOST = os.getenv("COUNTS_RABBITMQ_VHOST", "/") COUNTS_QUEUE_NAMES = [item.strip() for item in os.getenv("COUNTS_QUEUE_NAMES", "").split(",")]
[ "os.getenv", "aioelasticsearch.Elasticsearch", "asgard.sdk.options.get_option", "aiologger.loggers.json.JsonLogger.with_default_handlers", "asyncio.get_event_loop" ]
[((190, 233), 'os.getenv', 'os.getenv', (['"""ASGARD_COUNTS_LOGLEVEL"""', '"""INFO"""'], {}), "('ASGARD_COUNTS_LOGLEVEL', 'INFO')\n", (199, 233), False, 'import os\n'), ((440, 464), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (462, 464), False, 'import asyncio\n'), ((544, 582), 'asgard.sdk.options.get_option', 'get_option', (['"""ELASTICSEARCH"""', '"""ADDRESS"""'], {}), "('ELASTICSEARCH', 'ADDRESS')\n", (554, 582), False, 'from asgard.sdk.options import get_option\n'), ((600, 645), 'aioelasticsearch.Elasticsearch', 'Elasticsearch', ([], {'hosts': 'ELASTIC_SEARCH_ADDRESSES'}), '(hosts=ELASTIC_SEARCH_ADDRESSES)\n', (613, 645), False, 'from aioelasticsearch import Elasticsearch\n'), ((663, 709), 'os.getenv', 'os.getenv', (['"""COUNTS_RABBITMQ_HOST"""', '"""127.0.0.1"""'], {}), "('COUNTS_RABBITMQ_HOST', '127.0.0.1')\n", (672, 709), False, 'import os\n'), ((726, 768), 'os.getenv', 'os.getenv', (['"""COUNTS_RABBITMQ_USER"""', '"""guest"""'], {}), "('COUNTS_RABBITMQ_USER', 'guest')\n", (735, 768), False, 'import os\n'), ((784, 830), 'os.getenv', 'os.getenv', (['"""COUNTS_RABBITMQ_PWD"""', '"""<PASSWORD>"""'], {}), "('COUNTS_RABBITMQ_PWD', '<PASSWORD>')\n", (793, 830), False, 'import os\n'), ((915, 954), 'os.getenv', 'os.getenv', (['"""COUNTS_RABBITMQ_VHOST"""', '"""/"""'], {}), "('COUNTS_RABBITMQ_VHOST', '/')\n", (924, 954), False, 'import os\n'), ((855, 896), 'os.getenv', 'os.getenv', (['"""COUNTS_RABBITMQ_PREFETCH"""', '(32)'], {}), "('COUNTS_RABBITMQ_PREFETCH', 32)\n", (864, 896), False, 'import os\n'), ((369, 431), 'aiologger.loggers.json.JsonLogger.with_default_handlers', 'JsonLogger.with_default_handlers', ([], {'level': 'loglevel', 'flatten': '(True)'}), '(level=loglevel, flatten=True)\n', (401, 431), False, 'from aiologger.loggers.json import JsonLogger\n'), ((1002, 1037), 'os.getenv', 'os.getenv', (['"""COUNTS_QUEUE_NAMES"""', '""""""'], {}), "('COUNTS_QUEUE_NAMES', '')\n", (1011, 1037), False, 'import os\n')]
from django.http import HttpResponse from django.shortcuts import redirect from hostelapp.models import student_room from django.contrib import messages def unauthenticated_user(view_func): def wrapper_func(request, *args, **kwargs): if request.user.is_authenticated: return redirect('default_home_name') else: return view_func(request, *args, **kwargs) return wrapper_func def is_student_booked(view_func): def wrapper_func(request, *args, **kwargs): student = student_room.objects.filter(user=request.user) if len(student) > 0: message = "You already Booked the Room One can Book Only one Room" messages.error(request, message) return redirect('default_home_name') else: return view_func(request, *args, **kwargs) return wrapper_func def allowed_users(allowed_roles=[]): def decorator(view_func): def wrapper_func(request, *args, **kwargs): group = None if request.user.groups.exists(): group = request.user.groups.all()[0].name if group in allowed_roles: return view_func(request, *args, **kwargs) else: message = "You are not authorized to view this page" messages.success(request, message) return redirect('default_home_name') # return HttpResponse('') return wrapper_func return decorator # def student_wanden_cheif_only(view_func): # def wrapper_function(request, *args, **kwargs): # group = None # if request.user.groups.exists(): # group = request.user.groups.all()[0].name # # if group == 'student': # return redirect('home') # # if group == 'wanden': # return redirect('home') # # return view_func(request, *args, **kwargs) # if group == 'chief warden': # return redirect('cheif_warden_home') # # return wrapper_function
[ "django.contrib.messages.error", "hostelapp.models.student_room.objects.filter", "django.shortcuts.redirect", "django.contrib.messages.success" ]
[((526, 572), 'hostelapp.models.student_room.objects.filter', 'student_room.objects.filter', ([], {'user': 'request.user'}), '(user=request.user)\n', (553, 572), False, 'from hostelapp.models import student_room\n'), ((300, 329), 'django.shortcuts.redirect', 'redirect', (['"""default_home_name"""'], {}), "('default_home_name')\n", (308, 329), False, 'from django.shortcuts import redirect\n'), ((693, 725), 'django.contrib.messages.error', 'messages.error', (['request', 'message'], {}), '(request, message)\n', (707, 725), False, 'from django.contrib import messages\n'), ((745, 774), 'django.shortcuts.redirect', 'redirect', (['"""default_home_name"""'], {}), "('default_home_name')\n", (753, 774), False, 'from django.shortcuts import redirect\n'), ((1321, 1355), 'django.contrib.messages.success', 'messages.success', (['request', 'message'], {}), '(request, message)\n', (1337, 1355), False, 'from django.contrib import messages\n'), ((1379, 1408), 'django.shortcuts.redirect', 'redirect', (['"""default_home_name"""'], {}), "('default_home_name')\n", (1387, 1408), False, 'from django.shortcuts import redirect\n')]
import numpy as np import matplotlib.pyplot as plt from matplotlib import animation import json from tqdm import tqdm from collections import deque from fourier_transform import FourierTransform from epicycle_frame import EpicycleFrame from draw_it_yourself import draw_it_yourself # Draw it yourself diy_or_not = input("Draw image by yourself ? (y/n) ") if diy_or_not == 'y': draw_it_yourself() # Show original sample points fig = plt.figure() ax = fig.add_subplot(111) ax.set_axis_off() ax.set_aspect('equal') # To have symmetric axes # Load coords f = open('input/coords', 'r') coords = json.load(f) f.close() x_list = [coord[0] for coord in coords] x_list = x_list - np.mean(x_list) y_list = [-coord[1] for coord in coords] y_list = y_list - np.mean(y_list) ax.plot(x_list, y_list) xlim = plt.xlim() ylim = plt.ylim() plt.show(block=False) plt.pause(2) plt.close() # Ask for settings order = min(int(input("Max order: ")), int(np.ceil((len(coords)-1)/2))) mode = input("Fourier Transform type (fft/mydft/myfft/myfftplus): ") suffix = input("Save file type (mp4/gif): ") # Compute fourier coeffients ft = FourierTransform(x_list, y_list, order, mode=mode) # Draw animation fig, ax = plt.subplots() ax.set_xlim(xlim[0]-100, xlim[1]+100) ax.set_ylim(ylim[0]-100, ylim[1]+100) ax.set_axis_off() ax.set_aspect('equal') # Frame params frames = 300 original_drawing, = ax.plot([], [], '-', color='mediumaquamarine', linewidth=0.5) circles = [ax.plot([], [], '-', color='pink', alpha=0.3, linewidth=0.75)[0] for i in range(-order, order+1)] lines = [ax.plot([], [], '-', color='mediumpurple', alpha=0.7, linewidth=0.75)[0] for i in range(-order, order+1)] paintbrush_x = deque() paintbrush_y = deque() drawing, = ax.plot([], [], '-', color='plum', linewidth=2) # Generate animation print("Generating animation ...") pbar = tqdm(total=frames, desc='Progress') # Progress bar # Draw frame at time t (t goes from 0 to 2*pi for complete cycle) def generate_frame(k, ft, t_list): global pbar t = t_list[k] # Draw original image original_drawing.set_data(x_list, y_list) epicycle_frame = EpicycleFrame(ft, t) for i in range(-order, order+1): # Draw circles circles[i].set_data(*epicycle_frame.circles[i]) # Draw lines lines[i].set_data(*epicycle_frame.lines[i]) # Draw paintbrush paintbrush_x.append(epicycle_frame.paintbrush[0]) paintbrush_y.append(epicycle_frame.paintbrush[1]) drawing.set_data(list(paintbrush_x), list(paintbrush_y)) # Update progress bar pbar.update(1) # Generate mp4 / gif t_list = np.linspace(0, 1, num=frames) anim = animation.FuncAnimation(fig, generate_frame, frames=frames, fargs=(ft, t_list), interval=1) # Set up formatting for the video file Writer = animation.writers['ffmpeg'] writer = Writer(fps=30, metadata=dict(artist='Tequila-Sunrise'), bitrate=7200) anim.save('output/fourier-epicycle.'+suffix, writer=writer) pbar.close() print(f"Generating {suffix} file successfully!")
[ "numpy.mean", "epicycle_frame.EpicycleFrame", "collections.deque", "matplotlib.animation.FuncAnimation", "tqdm.tqdm", "matplotlib.pyplot.close", "matplotlib.pyplot.figure", "fourier_transform.FourierTransform", "numpy.linspace", "draw_it_yourself.draw_it_yourself", "json.load", "matplotlib.pyplot.ylim", "matplotlib.pyplot.xlim", "matplotlib.pyplot.pause", "matplotlib.pyplot.subplots", "matplotlib.pyplot.show" ]
[((440, 452), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (450, 452), True, 'import matplotlib.pyplot as plt\n'), ((600, 612), 'json.load', 'json.load', (['f'], {}), '(f)\n', (609, 612), False, 'import json\n'), ((804, 814), 'matplotlib.pyplot.xlim', 'plt.xlim', ([], {}), '()\n', (812, 814), True, 'import matplotlib.pyplot as plt\n'), ((822, 832), 'matplotlib.pyplot.ylim', 'plt.ylim', ([], {}), '()\n', (830, 832), True, 'import matplotlib.pyplot as plt\n'), ((834, 855), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (842, 855), True, 'import matplotlib.pyplot as plt\n'), ((856, 868), 'matplotlib.pyplot.pause', 'plt.pause', (['(2)'], {}), '(2)\n', (865, 868), True, 'import matplotlib.pyplot as plt\n'), ((869, 880), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (878, 880), True, 'import matplotlib.pyplot as plt\n'), ((1122, 1172), 'fourier_transform.FourierTransform', 'FourierTransform', (['x_list', 'y_list', 'order'], {'mode': 'mode'}), '(x_list, y_list, order, mode=mode)\n', (1138, 1172), False, 'from fourier_transform import FourierTransform\n'), ((1201, 1215), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1213, 1215), True, 'import matplotlib.pyplot as plt\n'), ((1683, 1690), 'collections.deque', 'deque', ([], {}), '()\n', (1688, 1690), False, 'from collections import deque\n'), ((1706, 1713), 'collections.deque', 'deque', ([], {}), '()\n', (1711, 1713), False, 'from collections import deque\n'), ((1836, 1871), 'tqdm.tqdm', 'tqdm', ([], {'total': 'frames', 'desc': '"""Progress"""'}), "(total=frames, desc='Progress')\n", (1840, 1871), False, 'from tqdm import tqdm\n'), ((2597, 2626), 'numpy.linspace', 'np.linspace', (['(0)', '(1)'], {'num': 'frames'}), '(0, 1, num=frames)\n', (2608, 2626), True, 'import numpy as np\n'), ((2634, 2729), 'matplotlib.animation.FuncAnimation', 'animation.FuncAnimation', (['fig', 'generate_frame'], {'frames': 'frames', 'fargs': '(ft, t_list)', 'interval': '(1)'}), '(fig, generate_frame, frames=frames, fargs=(ft,\n t_list), interval=1)\n', (2657, 2729), False, 'from matplotlib import animation\n'), ((384, 402), 'draw_it_yourself.draw_it_yourself', 'draw_it_yourself', ([], {}), '()\n', (400, 402), False, 'from draw_it_yourself import draw_it_yourself\n'), ((682, 697), 'numpy.mean', 'np.mean', (['x_list'], {}), '(x_list)\n', (689, 697), True, 'import numpy as np\n'), ((757, 772), 'numpy.mean', 'np.mean', (['y_list'], {}), '(y_list)\n', (764, 772), True, 'import numpy as np\n'), ((2119, 2139), 'epicycle_frame.EpicycleFrame', 'EpicycleFrame', (['ft', 't'], {}), '(ft, t)\n', (2132, 2139), False, 'from epicycle_frame import EpicycleFrame\n')]
from argparse import Namespace def namespace(d): assert isinstance(d, dict) return Namespace(**d) def feed_args_dict(func, args={}, force_return=None): assert callable(func) args = namespace(args) def _feed_args(*argsignore, **kwargsignore): output = func(args) if force_return is not None: return force_return return output return _feed_args
[ "argparse.Namespace" ]
[((93, 107), 'argparse.Namespace', 'Namespace', ([], {}), '(**d)\n', (102, 107), False, 'from argparse import Namespace\n')]
import numpy as np import os import argparse import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler import umap parser = argparse.ArgumentParser(description='AE model runner') parser.add_argument('--name', '-n', dest="model_name", help= 'string of model name') parser.add_argument('--data_path', '-d', dest="data_path", help= 'path to the latent variables') args = parser.parse_args() name = args.model_name out_path = args.data_path # Data # data = np.load('vae_latents.npy') data = np.load(os.path.join(out_path,'latents.npy')) latents = data[:,:-1] det_label = data[:,-1] # UMAP Object reducer = umap.UMAP() scaled_latents = StandardScaler().fit_transform(latents) embedding = reducer.fit_transform(scaled_latents) print(embedding.shape) # Plot # plt.scatter( # embedding[:, 0], # embedding[:, 1], # c=det_label, # cmap='plasma' # ) plt.scatter( embedding[det_label==0, 0], embedding[det_label==0, 1], c='b', label='Normal' ) plt.scatter( embedding[det_label==1, 0], embedding[det_label==1, 1], c='y', label='Anomaly' ) plt.legend(loc="upper left") plt.gca().set_aspect('equal', 'datalim') plt.title('UMAP projection of the '+name.upper()+' Latent Space', fontsize=24) plt.savefig(os.path.join(out_path,name.lower()+'-latent-umap-scaled.png'),bbox_inches='tight')
[ "argparse.ArgumentParser", "matplotlib.pyplot.gca", "os.path.join", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.scatter", "umap.UMAP", "matplotlib.pyplot.legend" ]
[((148, 202), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""AE model runner"""'}), "(description='AE model runner')\n", (171, 202), False, 'import argparse\n'), ((712, 723), 'umap.UMAP', 'umap.UMAP', ([], {}), '()\n', (721, 723), False, 'import umap\n'), ((970, 1069), 'matplotlib.pyplot.scatter', 'plt.scatter', (['embedding[det_label == 0, 0]', 'embedding[det_label == 0, 1]'], {'c': '"""b"""', 'label': '"""Normal"""'}), "(embedding[det_label == 0, 0], embedding[det_label == 0, 1], c=\n 'b', label='Normal')\n", (981, 1069), True, 'import matplotlib.pyplot as plt\n'), ((1083, 1183), 'matplotlib.pyplot.scatter', 'plt.scatter', (['embedding[det_label == 1, 0]', 'embedding[det_label == 1, 1]'], {'c': '"""y"""', 'label': '"""Anomaly"""'}), "(embedding[det_label == 1, 0], embedding[det_label == 1, 1], c=\n 'y', label='Anomaly')\n", (1094, 1183), True, 'import matplotlib.pyplot as plt\n'), ((1197, 1225), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper left"""'}), "(loc='upper left')\n", (1207, 1225), True, 'import matplotlib.pyplot as plt\n'), ((604, 641), 'os.path.join', 'os.path.join', (['out_path', '"""latents.npy"""'], {}), "(out_path, 'latents.npy')\n", (616, 641), False, 'import os\n'), ((741, 757), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (755, 757), False, 'from sklearn.preprocessing import StandardScaler\n'), ((1226, 1235), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1233, 1235), True, 'import matplotlib.pyplot as plt\n')]
from argparse import ArgumentParser def convert_vga(file_name: str) -> None: """ Open a BMP file and convert it into a VGA data file. :param file_name: The file name of the bmp file. """ bmp_data = [] with open(file_name, "rb") as bmp_file: bmp_data = bmp_file.read() vga_pointer = bmp_data[10] # This is the flag in BMP header # holding location of Pixel Data. vga_data = bmp_data[vga_pointer:vga_pointer + 320 * 200] with open(file_name.replace(".bmp", ".vga"), "wb") as output: output.write(vga_data) if __name__ == '__main__': parser = ArgumentParser(prog="BMP2VGA Converter", description="Convert a BMP file to a VGA data file.") parser.add_argument("--file", action="store", help="The name of the BMP file") args = parser.parse_args() convert_vga(args.file)
[ "argparse.ArgumentParser" ]
[((613, 712), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'prog': '"""BMP2VGA Converter"""', 'description': '"""Convert a BMP file to a VGA data file."""'}), "(prog='BMP2VGA Converter', description=\n 'Convert a BMP file to a VGA data file.')\n", (627, 712), False, 'from argparse import ArgumentParser\n')]
# Copyright 2021 the Ithaca Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Text processing functions.""" import random import re import unicodedata import numpy as np def idx_to_text(idxs, alphabet, strip_sos=True, strip_pad=True): """Converts a list of indices to a string.""" idxs = np.array(idxs) out = '' for i in range(idxs.size): idx = idxs[i] if strip_pad and idx == alphabet.pad_idx: break elif strip_sos and idx == alphabet.sos_idx: pass else: out += alphabet.idx2char[idx] return out def idx_to_text_batch(idxs, alphabet, lengths=None): """Converts batched lists of indices to strings.""" b = [] for i in range(idxs.shape[0]): idxs_i = idxs[i] if lengths: idxs_i = idxs_i[:lengths[i]] b.append(idx_to_text(idxs_i, alphabet)) return b def random_mask_span(t, geometric_p=0.2, limit_chars=None): """Masks a span of sequential words.""" # Obtain span indexes (indlusive) span_idx = [(ele.start(), ele.end()) for ele in re.finditer(r'[\w\s]+', t)] if not span_idx: return [] # Select a span to mask span_start, span_end = random.choice(span_idx) # Sample a random span length using a geomteric distribution if geometric_p and limit_chars: span_len = np.clip( np.random.geometric(geometric_p), 1, min(limit_chars, span_end - span_start)) elif geometric_p: span_len = np.clip( np.random.geometric(geometric_p), 1, span_end - span_start) elif limit_chars: span_len = min(limit_chars, span_end - span_start) else: raise ValueError('geometric_p or limit_chars should be set.') # Pick a random start index span_start = np.random.randint(span_start, span_end - span_len + 1) assert span_start + span_len <= span_end # Clip to limit chars if limit_chars is not None and span_len >= limit_chars: span_len = limit_chars # Create mask indices mask_idx = list(range(span_start, span_start + span_len)) return mask_idx def random_sentence_swap(sentences, p): """Swaps sentences with probability p.""" def swap_sentence(s): idx_1 = random.randint(0, len(s) - 1) idx_2 = idx_1 counter = 0 while idx_2 == idx_1: idx_2 = random.randint(0, len(s) - 1) counter += 1 if counter > 3: return s s[idx_1], s[idx_2] = s[idx_2], s[idx_1] return s new_sentences = sentences.copy() n = int(p * len(sentences)) for _ in range(n): new_sentences = swap_sentence(new_sentences) return new_sentences def random_word_delete(sentence, p): """Deletes a word from a sentence with probability p.""" words = sentence.split(' ') # Return if one word. if len(words) == 1: return words[0] # Randomly delete words. new_words = [] for word in words: if random.uniform(0, 1) > p: new_words.append(word) # If all words are removed return one. if not new_words: rand_int = random.randint(0, len(words) - 1) return words[rand_int] sentence = ' '.join(new_words) return sentence def random_word_swap(sentence, p): """Swaps words from a sentence with probability p.""" def swap_word(new_words): idx_1 = random.randint(0, len(new_words) - 1) idx_2 = idx_1 counter = 0 while idx_2 == idx_1: idx_2 = random.randint(0, len(new_words) - 1) counter += 1 if counter > 3: return new_words new_words[idx_1], new_words[idx_2] = new_words[idx_2], new_words[idx_1] return new_words words = sentence.split(' ') new_words = words.copy() n = int(p * len(words)) for _ in range(n): new_words = swap_word(new_words) sentence = ' '.join(new_words) return sentence def strip_accents(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn') def text_to_idx(t, alphabet): """Converts a string to character indices.""" return np.array([alphabet.char2idx[c] for c in t], dtype=np.int32) def text_to_word_idx(t, alphabet): """Converts a string to word indices.""" out = np.full(len(t), alphabet.word2idx[alphabet.unk], dtype=np.int32) for m in re.finditer(r'\w+', t): if m.group() in alphabet.word2idx: out[m.start():m.end()] = alphabet.word2idx[m.group()] return out
[ "numpy.random.geometric", "random.choice", "random.uniform", "numpy.array", "numpy.random.randint", "unicodedata.category", "re.finditer", "unicodedata.normalize" ]
[((804, 818), 'numpy.array', 'np.array', (['idxs'], {}), '(idxs)\n', (812, 818), True, 'import numpy as np\n'), ((1635, 1658), 'random.choice', 'random.choice', (['span_idx'], {}), '(span_idx)\n', (1648, 1658), False, 'import random\n'), ((2190, 2244), 'numpy.random.randint', 'np.random.randint', (['span_start', '(span_end - span_len + 1)'], {}), '(span_start, span_end - span_len + 1)\n', (2207, 2244), True, 'import numpy as np\n'), ((4419, 4478), 'numpy.array', 'np.array', (['[alphabet.char2idx[c] for c in t]'], {'dtype': 'np.int32'}), '([alphabet.char2idx[c] for c in t], dtype=np.int32)\n', (4427, 4478), True, 'import numpy as np\n'), ((4643, 4665), 're.finditer', 're.finditer', (['"""\\\\w+"""', 't'], {}), "('\\\\w+', t)\n", (4654, 4665), False, 'import re\n'), ((1522, 1549), 're.finditer', 're.finditer', (['"""[\\\\w\\\\s]+"""', 't'], {}), "('[\\\\w\\\\s]+', t)\n", (1533, 1549), False, 'import re\n'), ((1789, 1821), 'numpy.random.geometric', 'np.random.geometric', (['geometric_p'], {}), '(geometric_p)\n', (1808, 1821), True, 'import numpy as np\n'), ((3305, 3325), 'random.uniform', 'random.uniform', (['(0)', '(1)'], {}), '(0, 1)\n', (3319, 3325), False, 'import random\n'), ((1927, 1959), 'numpy.random.geometric', 'np.random.geometric', (['geometric_p'], {}), '(geometric_p)\n', (1946, 1959), True, 'import numpy as np\n'), ((4256, 4287), 'unicodedata.normalize', 'unicodedata.normalize', (['"""NFD"""', 's'], {}), "('NFD', s)\n", (4277, 4287), False, 'import unicodedata\n'), ((4297, 4320), 'unicodedata.category', 'unicodedata.category', (['c'], {}), '(c)\n', (4317, 4320), False, 'import unicodedata\n')]
"""Release Granularity metric.""" import logging import sqlalchemy from typing import Text, Dict from database import db from database import models from metrics import base class ReleaseGranularityMetric(base.Metric): """A metric tracking the average number of commits between releases.""" UNIT = 'commits/release' def _format_value(self, avg_commits: float) -> Text: return '%d c/r' % round(avg_commits) def _score_value(self, avg_commits: float) -> models.MetricScore: if avg_commits > 1000: return models.MetricScore.CRITICAL elif avg_commits > 500: return models.MetricScore.POOR elif avg_commits > 100: return models.MetricScore.MODERATE elif avg_commits > 10: return models.MetricScore.GOOD else: return models.MetricScore.EXCELLENT def _compute_value(self) -> float: """Computes the average number of commits per release over the last 90 days. Considering only production releases, we can just count all commits committed between the first and last release of the 90-day window, and divide be the number of releases (excluding the last one). Raises: ValueError: if less than two releases exist. Returns: The average number of commits per release. """ logging.info('Counting commits per release') session = db.Session() releases = session.query(models.Release).filter( models.Release.is_last_90_days(base_time=self.base_time)).order_by( models.Release.published_at.desc()).all() release_count = len(releases) if release_count < 2: raise ValueError('Not enough releases to determine a range of commits.') last_release_date = releases[0].published_at first_release_date = releases[-1].published_at commits_count = session.query(models.Commit).filter( models.Commit.committed_at.between(first_release_date, last_release_date)).count() session.close() # Subtract one from release count since commits from the last release are # not included. return commits_count / (release_count - 1) base.Metric.register(ReleaseGranularityMetric)
[ "database.models.Commit.committed_at.between", "database.models.Release.published_at.desc", "database.db.Session", "metrics.base.Metric.register", "database.models.Release.is_last_90_days", "logging.info" ]
[((2134, 2180), 'metrics.base.Metric.register', 'base.Metric.register', (['ReleaseGranularityMetric'], {}), '(ReleaseGranularityMetric)\n', (2154, 2180), False, 'from metrics import base\n'), ((1278, 1322), 'logging.info', 'logging.info', (['"""Counting commits per release"""'], {}), "('Counting commits per release')\n", (1290, 1322), False, 'import logging\n'), ((1337, 1349), 'database.db.Session', 'db.Session', ([], {}), '()\n', (1347, 1349), False, 'from database import db\n'), ((1491, 1525), 'database.models.Release.published_at.desc', 'models.Release.published_at.desc', ([], {}), '()\n', (1523, 1525), False, 'from database import models\n'), ((1840, 1913), 'database.models.Commit.committed_at.between', 'models.Commit.committed_at.between', (['first_release_date', 'last_release_date'], {}), '(first_release_date, last_release_date)\n', (1874, 1913), False, 'from database import models\n'), ((1411, 1467), 'database.models.Release.is_last_90_days', 'models.Release.is_last_90_days', ([], {'base_time': 'self.base_time'}), '(base_time=self.base_time)\n', (1441, 1467), False, 'from database import models\n')]
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class ApplicationUsage(object): """ Application usage during a specified time period. An application is a Java application that can be executed by a Java Runtime installation. An application is independent of the Java Runtime or its installation. """ def __init__(self, **kwargs): """ Initializes a new ApplicationUsage object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param application_id: The value to assign to the application_id property of this ApplicationUsage. :type application_id: str :param display_name: The value to assign to the display_name property of this ApplicationUsage. :type display_name: str :param application_type: The value to assign to the application_type property of this ApplicationUsage. :type application_type: str :param operating_systems: The value to assign to the operating_systems property of this ApplicationUsage. :type operating_systems: list[oci.jms.models.OperatingSystem] :param approximate_installation_count: The value to assign to the approximate_installation_count property of this ApplicationUsage. :type approximate_installation_count: int :param approximate_jre_count: The value to assign to the approximate_jre_count property of this ApplicationUsage. :type approximate_jre_count: int :param approximate_managed_instance_count: The value to assign to the approximate_managed_instance_count property of this ApplicationUsage. :type approximate_managed_instance_count: int :param time_start: The value to assign to the time_start property of this ApplicationUsage. :type time_start: datetime :param time_end: The value to assign to the time_end property of this ApplicationUsage. :type time_end: datetime :param time_first_seen: The value to assign to the time_first_seen property of this ApplicationUsage. :type time_first_seen: datetime :param time_last_seen: The value to assign to the time_last_seen property of this ApplicationUsage. :type time_last_seen: datetime """ self.swagger_types = { 'application_id': 'str', 'display_name': 'str', 'application_type': 'str', 'operating_systems': 'list[OperatingSystem]', 'approximate_installation_count': 'int', 'approximate_jre_count': 'int', 'approximate_managed_instance_count': 'int', 'time_start': 'datetime', 'time_end': 'datetime', 'time_first_seen': 'datetime', 'time_last_seen': 'datetime' } self.attribute_map = { 'application_id': 'applicationId', 'display_name': 'displayName', 'application_type': 'applicationType', 'operating_systems': 'operatingSystems', 'approximate_installation_count': 'approximateInstallationCount', 'approximate_jre_count': 'approximateJreCount', 'approximate_managed_instance_count': 'approximateManagedInstanceCount', 'time_start': 'timeStart', 'time_end': 'timeEnd', 'time_first_seen': 'timeFirstSeen', 'time_last_seen': 'timeLastSeen' } self._application_id = None self._display_name = None self._application_type = None self._operating_systems = None self._approximate_installation_count = None self._approximate_jre_count = None self._approximate_managed_instance_count = None self._time_start = None self._time_end = None self._time_first_seen = None self._time_last_seen = None @property def application_id(self): """ **[Required]** Gets the application_id of this ApplicationUsage. An internal identifier for the application that is unique to a Fleet. :return: The application_id of this ApplicationUsage. :rtype: str """ return self._application_id @application_id.setter def application_id(self, application_id): """ Sets the application_id of this ApplicationUsage. An internal identifier for the application that is unique to a Fleet. :param application_id: The application_id of this ApplicationUsage. :type: str """ self._application_id = application_id @property def display_name(self): """ **[Required]** Gets the display_name of this ApplicationUsage. The name of the application. :return: The display_name of this ApplicationUsage. :rtype: str """ return self._display_name @display_name.setter def display_name(self, display_name): """ Sets the display_name of this ApplicationUsage. The name of the application. :param display_name: The display_name of this ApplicationUsage. :type: str """ self._display_name = display_name @property def application_type(self): """ **[Required]** Gets the application_type of this ApplicationUsage. The type of the application, denoted by how the application was started. :return: The application_type of this ApplicationUsage. :rtype: str """ return self._application_type @application_type.setter def application_type(self, application_type): """ Sets the application_type of this ApplicationUsage. The type of the application, denoted by how the application was started. :param application_type: The application_type of this ApplicationUsage. :type: str """ self._application_type = application_type @property def operating_systems(self): """ Gets the operating_systems of this ApplicationUsage. The operating systems running this application. :return: The operating_systems of this ApplicationUsage. :rtype: list[oci.jms.models.OperatingSystem] """ return self._operating_systems @operating_systems.setter def operating_systems(self, operating_systems): """ Sets the operating_systems of this ApplicationUsage. The operating systems running this application. :param operating_systems: The operating_systems of this ApplicationUsage. :type: list[oci.jms.models.OperatingSystem] """ self._operating_systems = operating_systems @property def approximate_installation_count(self): """ Gets the approximate_installation_count of this ApplicationUsage. The approximate count of installations running this application. :return: The approximate_installation_count of this ApplicationUsage. :rtype: int """ return self._approximate_installation_count @approximate_installation_count.setter def approximate_installation_count(self, approximate_installation_count): """ Sets the approximate_installation_count of this ApplicationUsage. The approximate count of installations running this application. :param approximate_installation_count: The approximate_installation_count of this ApplicationUsage. :type: int """ self._approximate_installation_count = approximate_installation_count @property def approximate_jre_count(self): """ Gets the approximate_jre_count of this ApplicationUsage. The approximate count of Java Runtimes running this application. :return: The approximate_jre_count of this ApplicationUsage. :rtype: int """ return self._approximate_jre_count @approximate_jre_count.setter def approximate_jre_count(self, approximate_jre_count): """ Sets the approximate_jre_count of this ApplicationUsage. The approximate count of Java Runtimes running this application. :param approximate_jre_count: The approximate_jre_count of this ApplicationUsage. :type: int """ self._approximate_jre_count = approximate_jre_count @property def approximate_managed_instance_count(self): """ Gets the approximate_managed_instance_count of this ApplicationUsage. The approximate count of managed instances reporting this application. :return: The approximate_managed_instance_count of this ApplicationUsage. :rtype: int """ return self._approximate_managed_instance_count @approximate_managed_instance_count.setter def approximate_managed_instance_count(self, approximate_managed_instance_count): """ Sets the approximate_managed_instance_count of this ApplicationUsage. The approximate count of managed instances reporting this application. :param approximate_managed_instance_count: The approximate_managed_instance_count of this ApplicationUsage. :type: int """ self._approximate_managed_instance_count = approximate_managed_instance_count @property def time_start(self): """ Gets the time_start of this ApplicationUsage. Lower bound of the specified time period filter. :return: The time_start of this ApplicationUsage. :rtype: datetime """ return self._time_start @time_start.setter def time_start(self, time_start): """ Sets the time_start of this ApplicationUsage. Lower bound of the specified time period filter. :param time_start: The time_start of this ApplicationUsage. :type: datetime """ self._time_start = time_start @property def time_end(self): """ Gets the time_end of this ApplicationUsage. Upper bound of the specified time period filter. :return: The time_end of this ApplicationUsage. :rtype: datetime """ return self._time_end @time_end.setter def time_end(self, time_end): """ Sets the time_end of this ApplicationUsage. Upper bound of the specified time period filter. :param time_end: The time_end of this ApplicationUsage. :type: datetime """ self._time_end = time_end @property def time_first_seen(self): """ Gets the time_first_seen of this ApplicationUsage. The date and time the resource was _first_ reported to JMS. This is potentially _before_ the specified time period provided by the filters. For example, a resource can be first reported to JMS before the start of a specified time period, if it is also reported during the time period. :return: The time_first_seen of this ApplicationUsage. :rtype: datetime """ return self._time_first_seen @time_first_seen.setter def time_first_seen(self, time_first_seen): """ Sets the time_first_seen of this ApplicationUsage. The date and time the resource was _first_ reported to JMS. This is potentially _before_ the specified time period provided by the filters. For example, a resource can be first reported to JMS before the start of a specified time period, if it is also reported during the time period. :param time_first_seen: The time_first_seen of this ApplicationUsage. :type: datetime """ self._time_first_seen = time_first_seen @property def time_last_seen(self): """ Gets the time_last_seen of this ApplicationUsage. The date and time the resource was _last_ reported to JMS. This is potentially _after_ the specified time period provided by the filters. For example, a resource can be last reported to JMS before the start of a specified time period, if it is also reported during the time period. :return: The time_last_seen of this ApplicationUsage. :rtype: datetime """ return self._time_last_seen @time_last_seen.setter def time_last_seen(self, time_last_seen): """ Sets the time_last_seen of this ApplicationUsage. The date and time the resource was _last_ reported to JMS. This is potentially _after_ the specified time period provided by the filters. For example, a resource can be last reported to JMS before the start of a specified time period, if it is also reported during the time period. :param time_last_seen: The time_last_seen of this ApplicationUsage. :type: datetime """ self._time_last_seen = time_last_seen def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
[ "oci.util.formatted_flat_dict" ]
[((13600, 13625), 'oci.util.formatted_flat_dict', 'formatted_flat_dict', (['self'], {}), '(self)\n', (13619, 13625), False, 'from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel\n')]
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsRegressor from sklearn.metrics import explained_variance_score import sys import os #Funcao auxiliar para estimar uso de memoria def mem_usage(pandas_obj): if isinstance(pandas_obj,pd.DataFrame): usage_b = pandas_obj.memory_usage(deep=True).sum() else: # we assume if not a df it's a series usage_b = pandas_obj.memory_usage(deep=True) usage_mb = usage_b / 1024 ** 2 # convert bytes to megabytes return "{:03.2f} MB".format(usage_mb) #Funcao para exibir mensagem e terminar o programa def print_and_exit(msg, memory_usage): print(msg, memory_usage) sys.exit() #Funcao para carregar e preparar os arquivos def load_and_prepare_files(): print("********************CARREGANDO ARQUIVOS********************") colspecs = [(2,10),(12,24),(56,69),(108,121)] names = ["DataPregao", "Ticker", "PrecoAbertura", "PrecoUltimoNegocio"] frames = [] for root, dirs, files in os.walk("./data"): for filename in files: print("Carregando o arquivo: ", filename) temp_dataset = pd.read_fwf('data/' + filename, header=None, colspecs=colspecs, names=names) temp_dataset.drop([0], inplace=True) temp_dataset = temp_dataset[:-1] frames.append(temp_dataset) dataset = pd.concat(frames) print("Todos os arquivos carregados e tratados\n") return dataset def otimiza_memoria(data_frame): print("********************OTIMIZANDO MEMORIA********************") print("Total de memoria: ", mem_usage(data_frame)) data_frame['DataPregao'] = data_frame['DataPregao'].astype('category') data_frame['Ticker'] = data_frame['Ticker'].astype('category') data_frame_float = data_frame.select_dtypes(include=['float']) converted_float = data_frame_float.apply(pd.to_numeric,downcast='float') data_frame[converted_float.columns] = converted_float print("Total de memoria: ", mem_usage(data_frame), "\n") return data_frame data_frame = load_and_prepare_files() data_frame = otimiza_memoria(data_frame) print("********************EXECUTANDO MODELO********************") # Here we normalize date and ticker data_frame['DataPregao'] = data_frame['DataPregao'].cat.codes data_frame['Ticker'] = data_frame['Ticker'].cat.codes #Ordena o dataset para evitar problemas na estimativa data_frame.sort_values(by=['DataPregao', 'Ticker'], inplace=True) # Slicing the data_frame to define X and Y X = data_frame.values[:, 0:3] Y = data_frame.values[:,3] X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size = 0.3, random_state = 100) rgr_knn = KNeighborsRegressor(n_neighbors=5, weights='distance') rgr_knn.fit(X_train, y_train) y_pred_knn = rgr_knn.predict(X_test) print("KRR accuracy is ", explained_variance_score(y_test,y_pred_knn)*100) X_test_knn_2 = [[482, 46229, 2308], [481, 46229, 2329], [480, 46229, 2374]] y_pred_knn_2 = rgr_knn.predict(X_test_knn_2) print(y_pred_knn_2) X_test_knn_3 = [[481, 46229, 2329]] y_pred_knn_3 = rgr_knn.predict(X_test_knn_3) print(y_pred_knn_3)
[ "sklearn.model_selection.train_test_split", "sklearn.neighbors.KNeighborsRegressor", "pandas.read_fwf", "sys.exit", "pandas.concat", "sklearn.metrics.explained_variance_score", "os.walk" ]
[((2651, 2706), 'sklearn.model_selection.train_test_split', 'train_test_split', (['X', 'Y'], {'test_size': '(0.3)', 'random_state': '(100)'}), '(X, Y, test_size=0.3, random_state=100)\n', (2667, 2706), False, 'from sklearn.model_selection import train_test_split\n'), ((2774, 2828), 'sklearn.neighbors.KNeighborsRegressor', 'KNeighborsRegressor', ([], {'n_neighbors': '(5)', 'weights': '"""distance"""'}), "(n_neighbors=5, weights='distance')\n", (2793, 2828), False, 'from sklearn.neighbors import KNeighborsRegressor\n'), ((723, 733), 'sys.exit', 'sys.exit', ([], {}), '()\n', (731, 733), False, 'import sys\n'), ((1055, 1072), 'os.walk', 'os.walk', (['"""./data"""'], {}), "('./data')\n", (1062, 1072), False, 'import os\n'), ((1412, 1429), 'pandas.concat', 'pd.concat', (['frames'], {}), '(frames)\n', (1421, 1429), True, 'import pandas as pd\n'), ((2922, 2966), 'sklearn.metrics.explained_variance_score', 'explained_variance_score', (['y_test', 'y_pred_knn'], {}), '(y_test, y_pred_knn)\n', (2946, 2966), False, 'from sklearn.metrics import explained_variance_score\n'), ((1186, 1262), 'pandas.read_fwf', 'pd.read_fwf', (["('data/' + filename)"], {'header': 'None', 'colspecs': 'colspecs', 'names': 'names'}), "('data/' + filename, header=None, colspecs=colspecs, names=names)\n", (1197, 1262), True, 'import pandas as pd\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import textwrap import logging from optparse import make_option from django.core.management.base import BaseCommand from ralph.cmdb import models_changes as chdb from ralph.cmdb.models_signals import register_issue_signal logger = logging.getLogger(__name__) class Command(BaseCommand): """This tool synchronize database with Jira tickets in case of errors.""" help = textwrap.dedent(__doc__).strip() requires_model_validation = True option_list = BaseCommand.option_list + ( make_option( '--run', action='store_true', dest='run', default=False, help='Deprecated. Does nothing.', ), ) def handle(self, *args, **options): logger.debug('Syncing tickets.') for change in chdb.CIChange.objects.filter( registration_type=chdb.CI_CHANGE_REGISTRATION_TYPES.WAITING): register_issue_signal.send(sender=self, change_id=change.id) logger.debug('Finished syncing tickets.')
[ "logging.getLogger", "textwrap.dedent", "ralph.cmdb.models_signals.register_issue_signal.send", "ralph.cmdb.models_changes.CIChange.objects.filter", "optparse.make_option" ]
[((385, 412), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (402, 412), False, 'import logging\n'), ((943, 1037), 'ralph.cmdb.models_changes.CIChange.objects.filter', 'chdb.CIChange.objects.filter', ([], {'registration_type': 'chdb.CI_CHANGE_REGISTRATION_TYPES.WAITING'}), '(registration_type=chdb.\n CI_CHANGE_REGISTRATION_TYPES.WAITING)\n', (971, 1037), True, 'from ralph.cmdb import models_changes as chdb\n'), ((533, 557), 'textwrap.dedent', 'textwrap.dedent', (['__doc__'], {}), '(__doc__)\n', (548, 557), False, 'import textwrap\n'), ((658, 765), 'optparse.make_option', 'make_option', (['"""--run"""'], {'action': '"""store_true"""', 'dest': '"""run"""', 'default': '(False)', 'help': '"""Deprecated. Does nothing."""'}), "('--run', action='store_true', dest='run', default=False, help=\n 'Deprecated. Does nothing.')\n", (669, 765), False, 'from optparse import make_option\n'), ((1063, 1123), 'ralph.cmdb.models_signals.register_issue_signal.send', 'register_issue_signal.send', ([], {'sender': 'self', 'change_id': 'change.id'}), '(sender=self, change_id=change.id)\n', (1089, 1123), False, 'from ralph.cmdb.models_signals import register_issue_signal\n')]
#!/usr/bin/env python3 # coding: utf-8 # Copyright 2019 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: mean""" import akg.topi import akg.tvm from akg.ops.math import sum from akg.utils import format_transform as ft_util from akg.utils import validation_check as vc_util from akg.utils import custom_tiling as ct_util from akg.utils.dynamic_shape import shape_is_dynamic INT16_MAX = 65536 def get_attrs(tensor): """generate default attrs.""" if shape_is_dynamic(tensor): return {"enable_double_buffer": 0, "enable_divide_var": 1} return {} def mean_dynamic_tiling_strategy(tensor, axis): """custom tiling for mean with dynamic shape""" strategy = list() inner_most_to_full = True resnet_inner_most_axis_pos = 4 reduce_axis_to_1 = True reduce_axis_to_no_iso = False multicore_axis_to_1 = True resnet_outer_most_axis_pos = 0 if inner_most_to_full: strategy += ct_util.create_constraint_on_tensor(tensor=tensor, values="FULL", constraints=ct_util.TileConstraint.MAX, tensor_pos=resnet_inner_most_axis_pos) if reduce_axis_to_1: strategy += ct_util.create_constraint_on_tensor(tensor=tensor, values=[1 for _ in axis], constraints=ct_util.TileConstraint.FACTOR, tensor_pos=axis) elif reduce_axis_to_no_iso: strategy += ct_util.create_constraint_on_tensor(tensor=tensor, values=[1 for _ in axis], constraints=ct_util.TileConstraint.FORBID_ISOLATE, tensor_pos=axis) if multicore_axis_to_1: strategy += ct_util.create_constraint_on_tensor(tensor=tensor, values=1, constraints=ct_util.TileConstraint.FACTOR, tensor_pos=resnet_outer_most_axis_pos) return strategy @vc_util.check_input_type(akg.tvm.tensor.Tensor, (list, tuple, int, type(None)), (bool, type(None))) def mean(data, axis=None, keepdims=False): """ Computes the mean of the values of a Tensor over the whole dataset. Note: If the tuple's elements are unsorted, this function will call preprocess_axis firstly to let these elements sorted. if tuple is empty, this function will compute all elements' sum. if the data type is folat 16 and the whole dim not less than 65536, this function will compute the mean by divide 65535 first to avoid whole dim too large. Args: data (tvm.tensor.Tensor): Tensor of type float16, float32. axis (Union[list, tuple, int, None]): If the tuple is empty, the axis equal to None. keepdims (bool): If keepdims equal to True, the result shape length is same to input shape length. Returns: tvm.tensor.Tensor, has the same type as data. If keepdims equal to True, all reduced dimensions are retained with length 1. else these reduced axis will be eliminate. """ # Check types vc_util.ops_dtype_check(data.dtype, vc_util.DtypeForDavinci.ALL_FLOAT) # Check shape shape = ft_util.get_shape(data) vc_util.reduce_axis_check(shape, axis) axis = ft_util.refine_reduce_axis(data, axis) count = 1 for i in axis: count *= shape[i] output, _ = sum.sum_value(data, axis, keepdims) if shape_is_dynamic(data): res = akg.tvm.compute(output.shape, lambda *i: akg.lang.cce.divide_var(output(*i), count), name="res") else: res = akg.topi.divide(output, count) attrs = get_attrs(data) if shape_is_dynamic(data): attrs["custom_tiling"] = mean_dynamic_tiling_strategy(data, axis) return res, attrs @vc_util.check_input_type(akg.tvm.tensor.Tensor, (list, tuple, int, type(None)), (bool, type(None))) def mean_v2(data, axis=None, keepdims=False): """Simple implementation of mean.""" # Check types vc_util.ops_dtype_check(data.dtype, vc_util.DtypeForDavinci.ALL_FLOAT) # Check shape shape = [x.value for x in data.shape] vc_util.reduce_axis_check(shape, axis) axis = ft_util.refine_reduce_axis(data, axis) dtype = data.dtype count = 1 for i in axis: count *= shape[i] count_rec = 1 / count output, _ = sum.sum_v2(data, axis, keepdims) res = output * akg.tvm.const(count_rec, dtype) attrs = get_attrs(data) if shape_is_dynamic(data): attrs["custom_tiling"] = mean_dynamic_tiling_strategy(data, axis) return res, attrs
[ "akg.utils.custom_tiling.create_constraint_on_tensor", "akg.utils.dynamic_shape.shape_is_dynamic", "akg.utils.format_transform.refine_reduce_axis", "akg.ops.math.sum.sum_v2", "akg.utils.validation_check.reduce_axis_check", "akg.utils.validation_check.ops_dtype_check", "akg.ops.math.sum.sum_value", "akg.utils.format_transform.get_shape" ]
[((1008, 1032), 'akg.utils.dynamic_shape.shape_is_dynamic', 'shape_is_dynamic', (['tensor'], {}), '(tensor)\n', (1024, 1032), False, 'from akg.utils.dynamic_shape import shape_is_dynamic\n'), ((4010, 4080), 'akg.utils.validation_check.ops_dtype_check', 'vc_util.ops_dtype_check', (['data.dtype', 'vc_util.DtypeForDavinci.ALL_FLOAT'], {}), '(data.dtype, vc_util.DtypeForDavinci.ALL_FLOAT)\n', (4033, 4080), True, 'from akg.utils import validation_check as vc_util\n'), ((4112, 4135), 'akg.utils.format_transform.get_shape', 'ft_util.get_shape', (['data'], {}), '(data)\n', (4129, 4135), True, 'from akg.utils import format_transform as ft_util\n'), ((4140, 4178), 'akg.utils.validation_check.reduce_axis_check', 'vc_util.reduce_axis_check', (['shape', 'axis'], {}), '(shape, axis)\n', (4165, 4178), True, 'from akg.utils import validation_check as vc_util\n'), ((4190, 4228), 'akg.utils.format_transform.refine_reduce_axis', 'ft_util.refine_reduce_axis', (['data', 'axis'], {}), '(data, axis)\n', (4216, 4228), True, 'from akg.utils import format_transform as ft_util\n'), ((4305, 4340), 'akg.ops.math.sum.sum_value', 'sum.sum_value', (['data', 'axis', 'keepdims'], {}), '(data, axis, keepdims)\n', (4318, 4340), False, 'from akg.ops.math import sum\n'), ((4349, 4371), 'akg.utils.dynamic_shape.shape_is_dynamic', 'shape_is_dynamic', (['data'], {}), '(data)\n', (4365, 4371), False, 'from akg.utils.dynamic_shape import shape_is_dynamic\n'), ((4575, 4597), 'akg.utils.dynamic_shape.shape_is_dynamic', 'shape_is_dynamic', (['data'], {}), '(data)\n', (4591, 4597), False, 'from akg.utils.dynamic_shape import shape_is_dynamic\n'), ((4907, 4977), 'akg.utils.validation_check.ops_dtype_check', 'vc_util.ops_dtype_check', (['data.dtype', 'vc_util.DtypeForDavinci.ALL_FLOAT'], {}), '(data.dtype, vc_util.DtypeForDavinci.ALL_FLOAT)\n', (4930, 4977), True, 'from akg.utils import validation_check as vc_util\n'), ((5043, 5081), 'akg.utils.validation_check.reduce_axis_check', 'vc_util.reduce_axis_check', (['shape', 'axis'], {}), '(shape, axis)\n', (5068, 5081), True, 'from akg.utils import validation_check as vc_util\n'), ((5093, 5131), 'akg.utils.format_transform.refine_reduce_axis', 'ft_util.refine_reduce_axis', (['data', 'axis'], {}), '(data, axis)\n', (5119, 5131), True, 'from akg.utils import format_transform as ft_util\n'), ((5258, 5290), 'akg.ops.math.sum.sum_v2', 'sum.sum_v2', (['data', 'axis', 'keepdims'], {}), '(data, axis, keepdims)\n', (5268, 5290), False, 'from akg.ops.math import sum\n'), ((5377, 5399), 'akg.utils.dynamic_shape.shape_is_dynamic', 'shape_is_dynamic', (['data'], {}), '(data)\n', (5393, 5399), False, 'from akg.utils.dynamic_shape import shape_is_dynamic\n'), ((1484, 1637), 'akg.utils.custom_tiling.create_constraint_on_tensor', 'ct_util.create_constraint_on_tensor', ([], {'tensor': 'tensor', 'values': '"""FULL"""', 'constraints': 'ct_util.TileConstraint.MAX', 'tensor_pos': 'resnet_inner_most_axis_pos'}), "(tensor=tensor, values='FULL',\n constraints=ct_util.TileConstraint.MAX, tensor_pos=\n resnet_inner_most_axis_pos)\n", (1519, 1637), True, 'from akg.utils import custom_tiling as ct_util\n'), ((1842, 1984), 'akg.utils.custom_tiling.create_constraint_on_tensor', 'ct_util.create_constraint_on_tensor', ([], {'tensor': 'tensor', 'values': '[(1) for _ in axis]', 'constraints': 'ct_util.TileConstraint.FACTOR', 'tensor_pos': 'axis'}), '(tensor=tensor, values=[(1) for _ in\n axis], constraints=ct_util.TileConstraint.FACTOR, tensor_pos=axis)\n', (1877, 1984), True, 'from akg.utils import custom_tiling as ct_util\n'), ((2560, 2707), 'akg.utils.custom_tiling.create_constraint_on_tensor', 'ct_util.create_constraint_on_tensor', ([], {'tensor': 'tensor', 'values': '(1)', 'constraints': 'ct_util.TileConstraint.FACTOR', 'tensor_pos': 'resnet_outer_most_axis_pos'}), '(tensor=tensor, values=1, constraints=\n ct_util.TileConstraint.FACTOR, tensor_pos=resnet_outer_most_axis_pos)\n', (2595, 2707), True, 'from akg.utils import custom_tiling as ct_util\n'), ((2199, 2349), 'akg.utils.custom_tiling.create_constraint_on_tensor', 'ct_util.create_constraint_on_tensor', ([], {'tensor': 'tensor', 'values': '[(1) for _ in axis]', 'constraints': 'ct_util.TileConstraint.FORBID_ISOLATE', 'tensor_pos': 'axis'}), '(tensor=tensor, values=[(1) for _ in\n axis], constraints=ct_util.TileConstraint.FORBID_ISOLATE, tensor_pos=axis)\n', (2234, 2349), True, 'from akg.utils import custom_tiling as ct_util\n')]
import pickle import sys import gensim from gensim.test.utils import common_texts, get_tmpfile from gensim.models import Word2Vec, KeyedVectors embeddings_name = "input100_connection2_dim200_windowsize70.emb" id_to_check = "27236" with open('id_to_name.pkl', 'rb') as f: pkl = pickle.load(f) vectors = KeyedVectors.load_word2vec_format(embeddings_name, binary=False) node_to_check = pkl[id_to_check] similar = wv_from_text.most_similar(positive=id_to_check) print("similar to: ", node_to_check["verb"], node_to_check["subject"], node_to_check["object"]) print("--------------") for index, score in similar: node = pkl[index] print(node["verb"], node["subject"], node["object"], score)
[ "gensim.models.KeyedVectors.load_word2vec_format", "pickle.load" ]
[((309, 373), 'gensim.models.KeyedVectors.load_word2vec_format', 'KeyedVectors.load_word2vec_format', (['embeddings_name'], {'binary': '(False)'}), '(embeddings_name, binary=False)\n', (342, 373), False, 'from gensim.models import Word2Vec, KeyedVectors\n'), ((283, 297), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (294, 297), False, 'import pickle\n')]
from django.template import loader from django.shortcuts import render from django.contrib.auth.decorators import login_required @login_required(login_url='/accounts/login') def home(request): print() return render(request, 'service/index.html', {})
[ "django.shortcuts.render", "django.contrib.auth.decorators.login_required" ]
[((143, 186), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/accounts/login"""'}), "(login_url='/accounts/login')\n", (157, 186), False, 'from django.contrib.auth.decorators import login_required\n'), ((232, 273), 'django.shortcuts.render', 'render', (['request', '"""service/index.html"""', '{}'], {}), "(request, 'service/index.html', {})\n", (238, 273), False, 'from django.shortcuts import render\n')]
import pandas as pd import json from datetime import date, timedelta, datetime import numpy as np from project.items import ProjectItem import scrapy class Project(scrapy.Spider): name = 'Project' start_urls = ['Your_URL&pagenums=1'] def parse(self, response): data = json.loads(response.text) stop = data['pages'] # get total page numbers for i in range(1, stop+1): q_url = f'Your_URL&pagenums={i}' yield scrapy.Request(url=q_url, callback=self.parse_data_process) def parse_data_process(self,response): item = ProjectItem() item['date'] = date.today().strftime('%Y-%m-%d') item['log'] = response.text item['createdtime'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S') return item
[ "json.loads", "project.items.ProjectItem", "datetime.datetime.now", "scrapy.Request", "datetime.date.today" ]
[((290, 315), 'json.loads', 'json.loads', (['response.text'], {}), '(response.text)\n', (300, 315), False, 'import json\n'), ((587, 600), 'project.items.ProjectItem', 'ProjectItem', ([], {}), '()\n', (598, 600), False, 'from project.items import ProjectItem\n'), ((468, 527), 'scrapy.Request', 'scrapy.Request', ([], {'url': 'q_url', 'callback': 'self.parse_data_process'}), '(url=q_url, callback=self.parse_data_process)\n', (482, 527), False, 'import scrapy\n'), ((624, 636), 'datetime.date.today', 'date.today', ([], {}), '()\n', (634, 636), False, 'from datetime import date, timedelta, datetime\n'), ((724, 738), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (736, 738), False, 'from datetime import date, timedelta, datetime\n')]
import pandas as pd from matplotlib import pyplot as plt from glob import glob def vplo_dmp2df(filename): # df = pd.read_csv(filename, skiprows=1, delimiter = "\s+", names= ['s', 'x', 'y', 'Ue/Vinf', 'Dstar', 'Theta', 'Cf', 'H']) df = pd.read_csv(filename, skiprows=1, delimiter = "\s+", header=None) df = df[df.columns[:8]] df.columns = ['s', 'x', 'y', 'Ue/Vinf', 'Dstar', 'Theta', 'Cf', 'H'] sufrace_df = df[df['x'] <=1.0] # removes the wake sufrace_df['Ue/Vinf'] = abs(sufrace_df['Ue/Vinf']) # upper_surface_df = sufrace_df[sufrace_df['y'] >=0.0] # lower_surface_df = sufrace_df[sufrace_df['y'] <=0.0] # Previously upper and lower surfaces were differentiated by y value. # for cambered foils where the bottom can go back to positive this wont work # so LE is figured from min(x) le_index = sufrace_df[['x']].idxmin()[0] upper_surface_df = sufrace_df.loc[:le_index] lower_surface_df = sufrace_df.loc[le_index:] # import pdb; pdb.set_trace() upper_surface_df.label = filename[:-4] lower_surface_df.label = filename[:-4] return upper_surface_df, lower_surface_df def gen_vplo_figure(surface): fig = plt.figure(figsize=(6,24), tight_layout = True) fig.canvas.set_window_title('XFoil_BL_Data : {}'.format(surface)) ax1 = fig.add_subplot(511) ax2 = fig.add_subplot(512, sharex=ax1) ax3 = fig.add_subplot(513, sharex=ax1) ax4 = fig.add_subplot(514, sharex=ax1) ax5 = fig.add_subplot(515, sharex=ax1) for ax in fig.get_axes(): ax.set_xlim(0,1) ax.grid() ax1.set_ylabel("Ue/Vinf") ax2.set_ylabel("Dstar") ax3.set_ylabel("Theta") ax4.set_ylabel("Cf") ax5.set_ylabel("H") return fig def proc_plot_vplo(fig, df): ax1, ax2, ax3, ax4, ax5 = fig.get_axes() ax1.plot(df['x'], df["Ue/Vinf"] ,linewidth=1 , label=df.label) ax2.plot(df['x'], df["Dstar"] ,linewidth=1) ax3.plot(df['x'], df["Theta"] ,linewidth=1) ax4.plot(df['x'], df["Cf"] ,linewidth=1) ax5.plot(df['x'], df["H"] ,linewidth=1) ax1.legend(loc = 'lower left', frameon=False, fontsize='small') plt.show(block=False) if __name__ == '__main__': plt.ion() upper_fig = gen_vplo_figure(surface = 'Upper_Surface') lower_fig = gen_vplo_figure(surface = 'Lower_Surface') file_list = glob('*.dmp') for idx, filename in enumerate(file_list): upper_surface_df, lower_surface_df = vplo_dmp2df(filename) with pd.ExcelWriter('extracted_polar.xlsx') as writer: upper_surface_df.to_excel(writer, sheet_name='{}_Upper_Surface'.format(idx), index=False) lower_surface_df.to_excel(writer, sheet_name='{}_Lpper_Surface'.format(idx), index=False) proc_plot_vplo(upper_fig, upper_surface_df) proc_plot_vplo(lower_fig, lower_surface_df)
[ "pandas.read_csv", "matplotlib.pyplot.figure", "matplotlib.pyplot.ion", "pandas.ExcelWriter", "glob.glob", "matplotlib.pyplot.show" ]
[((246, 310), 'pandas.read_csv', 'pd.read_csv', (['filename'], {'skiprows': '(1)', 'delimiter': '"""\\\\s+"""', 'header': 'None'}), "(filename, skiprows=1, delimiter='\\\\s+', header=None)\n", (257, 310), True, 'import pandas as pd\n'), ((1154, 1200), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 24)', 'tight_layout': '(True)'}), '(figsize=(6, 24), tight_layout=True)\n', (1164, 1200), True, 'from matplotlib import pyplot as plt\n'), ((2066, 2087), 'matplotlib.pyplot.show', 'plt.show', ([], {'block': '(False)'}), '(block=False)\n', (2074, 2087), True, 'from matplotlib import pyplot as plt\n'), ((2120, 2129), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (2127, 2129), True, 'from matplotlib import pyplot as plt\n'), ((2260, 2273), 'glob.glob', 'glob', (['"""*.dmp"""'], {}), "('*.dmp')\n", (2264, 2273), False, 'from glob import glob\n'), ((2391, 2429), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['"""extracted_polar.xlsx"""'], {}), "('extracted_polar.xlsx')\n", (2405, 2429), True, 'import pandas as pd\n')]
import numpy as np import pandas as pd import seaborn as sns import networkx as nx import matplotlib.pyplot as plt import matplotlib import time import ot from scipy import linalg from scipy import sparse import gromovWassersteinAveraging as gwa import spectralGW as sgw from geodesicVisualization import * from GromovWassersteinFramework import * import json from sklearn import manifold from sklearn.model_selection import train_test_split # Load the S-GWL code import DataIO as DataIO import EvaluationMeasure as Eval import GromovWassersteinGraphToolkit as GwGt import pickle import warnings from graphProcessing import load_graph # Load modules for network partitioning experiments import community from networkx.algorithms.community import greedy_modularity_communities from networkx.algorithms.community.asyn_fluid import asyn_fluidc from networkx.algorithms.community.quality import modularity from sklearn import metrics from infomap import Infomap warnings.filterwarnings("ignore") def get_sbm(ns,ps): # convert ps from 1d to 2d array n = len(ns) if n*(n+1)/2 != len(ps): print('Error: check size of ps') return None else: R,C = np.triu_indices(n) pm = np.zeros((n,n)) pm[R,C] = ps pm[C,R] = ps G = nx.stochastic_block_model(ns, pm) gt = [] for i in range(len(ns)): for j in range(ns[i]): gt.append(i) return G,gt,pm def get_gw_ami(G,t,gt): # G -- graph # t -- heat kernel scale parameter # gt -- ground truth distribution_exponent_hk = 0.001 distribution_offset_hk = 0 C1 = sgw.undirected_normalized_heat_kernel(G,t) p1 = sgw.node_distribution(G,distribution_offset_hk,distribution_exponent_hk) p2 = np.ravel(GwGt.estimate_target_distribution({0: p1.reshape(-1,1)}, dim_t=len(np.unique(gt)))) # Note that we are inserting prior information about the number of clusters C2 = np.diag(p2) coup, log = ot.gromov.gromov_wasserstein(C1, C2, p1, p2, loss_fun = 'square_loss', log = True) est_idx = np.argmax(coup, axis=1) ami = metrics.adjusted_mutual_info_score(est_idx,gt,average_method='max') comms = [set() for v in np.unique(est_idx)] for idx,val in enumerate(est_idx): comms[val].add(idx) mod = modularity(G,comms) return ami,mod ## Construct sequence of SBMs that are increasingly indistinguishable ns = [75,75] ps = [0.5,0.35,0.5] ts = np.linspace(0,20,20) amis = [] mods = [] pvals = [] tvals = [] iterate = [] As = [] p_range = np.arange(0.15,0.35,0.02) # Calculate modularity and AMI for iteration in range(10): for p in p_range: p_copy = ps.copy() p_copy[1] = p G,gt,pm = get_sbm(ns,p_copy) A = nx.adjacency_matrix(G).toarray() if iteration==0: As.append(A) for t in ts: ami, mod = get_gw_ami(G,t,gt) amis.append(ami) mods.append(mod) tvals.append(t) pvals.append(p) iterate.append(iteration) sbm_df = pd.DataFrame() sbm_df['t'] = tvals sbm_df['off-diag-p'] = pvals sbm_df['AMI'] = amis sbm_df['Modularity'] = mods sbm_df['iteration'] = iterate fig,axs = plt.subplots(2,5) axs = axs.flatten() for i in range(len(As)): ax = axs[i] ax.imshow(As[i]) fig.suptitle('SBMs with increasing cross-block edge densities') fig.tight_layout() fig.savefig('res_sbmAmiModularity_blocks.png',bbox_inches='tight',dpi=150) melted = pd.melt(sbm_df,['off-diag-p','t','iteration']) f = sns.FacetGrid(melted,col = 'off-diag-p',col_wrap=5,margin_titles=True) fg = plt.gcf() fg.dpi = 50 f.map_dataframe(sns.lineplot, x='t', y='value',hue='variable') f.set_axis_labels("t", "value") f.add_legend() cn = [round(v,2) for v in f.col_names] fg = plt.gcf() fg.suptitle('AMI and Modularity peaks across scales') axes = f.axes.flatten() for i,val in enumerate(cn): axes[i].set_title("cross-block edge density = %2.2f" % cn[i]) fg.savefig('res_sbmAmiModularity.png',bbox_inches='tight',dpi=300) plt.show()
[ "numpy.arange", "numpy.linspace", "pandas.DataFrame", "pandas.melt", "networkx.algorithms.community.quality.modularity", "numpy.triu_indices", "networkx.adjacency_matrix", "matplotlib.pyplot.gcf", "numpy.argmax", "ot.gromov.gromov_wasserstein", "networkx.stochastic_block_model", "warnings.filterwarnings", "matplotlib.pyplot.show", "seaborn.FacetGrid", "spectralGW.undirected_normalized_heat_kernel", "numpy.unique", "sklearn.metrics.adjusted_mutual_info_score", "spectralGW.node_distribution", "numpy.diag", "numpy.zeros", "matplotlib.pyplot.subplots" ]
[((962, 995), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (985, 995), False, 'import warnings\n'), ((2485, 2507), 'numpy.linspace', 'np.linspace', (['(0)', '(20)', '(20)'], {}), '(0, 20, 20)\n', (2496, 2507), True, 'import numpy as np\n'), ((2582, 2609), 'numpy.arange', 'np.arange', (['(0.15)', '(0.35)', '(0.02)'], {}), '(0.15, 0.35, 0.02)\n', (2591, 2609), True, 'import numpy as np\n'), ((3109, 3123), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3121, 3123), True, 'import pandas as pd\n'), ((3263, 3281), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(2)', '(5)'], {}), '(2, 5)\n', (3275, 3281), True, 'import matplotlib.pyplot as plt\n'), ((3538, 3587), 'pandas.melt', 'pd.melt', (['sbm_df', "['off-diag-p', 't', 'iteration']"], {}), "(sbm_df, ['off-diag-p', 't', 'iteration'])\n", (3545, 3587), True, 'import pandas as pd\n'), ((3590, 3661), 'seaborn.FacetGrid', 'sns.FacetGrid', (['melted'], {'col': '"""off-diag-p"""', 'col_wrap': '(5)', 'margin_titles': '(True)'}), "(melted, col='off-diag-p', col_wrap=5, margin_titles=True)\n", (3603, 3661), True, 'import seaborn as sns\n'), ((3666, 3675), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (3673, 3675), True, 'import matplotlib.pyplot as plt\n'), ((3844, 3853), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (3851, 3853), True, 'import matplotlib.pyplot as plt\n'), ((4105, 4115), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4113, 4115), True, 'import matplotlib.pyplot as plt\n'), ((1292, 1325), 'networkx.stochastic_block_model', 'nx.stochastic_block_model', (['ns', 'pm'], {}), '(ns, pm)\n', (1317, 1325), True, 'import networkx as nx\n'), ((1644, 1687), 'spectralGW.undirected_normalized_heat_kernel', 'sgw.undirected_normalized_heat_kernel', (['G', 't'], {}), '(G, t)\n', (1681, 1687), True, 'import spectralGW as sgw\n'), ((1696, 1770), 'spectralGW.node_distribution', 'sgw.node_distribution', (['G', 'distribution_offset_hk', 'distribution_exponent_hk'], {}), '(G, distribution_offset_hk, distribution_exponent_hk)\n', (1717, 1770), True, 'import spectralGW as sgw\n'), ((1965, 1976), 'numpy.diag', 'np.diag', (['p2'], {}), '(p2)\n', (1972, 1976), True, 'import numpy as np\n'), ((1993, 2071), 'ot.gromov.gromov_wasserstein', 'ot.gromov.gromov_wasserstein', (['C1', 'C2', 'p1', 'p2'], {'loss_fun': '"""square_loss"""', 'log': '(True)'}), "(C1, C2, p1, p2, loss_fun='square_loss', log=True)\n", (2021, 2071), False, 'import ot\n'), ((2090, 2113), 'numpy.argmax', 'np.argmax', (['coup'], {'axis': '(1)'}), '(coup, axis=1)\n', (2099, 2113), True, 'import numpy as np\n'), ((2129, 2198), 'sklearn.metrics.adjusted_mutual_info_score', 'metrics.adjusted_mutual_info_score', (['est_idx', 'gt'], {'average_method': '"""max"""'}), "(est_idx, gt, average_method='max')\n", (2163, 2198), False, 'from sklearn import metrics\n'), ((2331, 2351), 'networkx.algorithms.community.quality.modularity', 'modularity', (['G', 'comms'], {}), '(G, comms)\n', (2341, 2351), False, 'from networkx.algorithms.community.quality import modularity\n'), ((1184, 1202), 'numpy.triu_indices', 'np.triu_indices', (['n'], {}), '(n)\n', (1199, 1202), True, 'import numpy as np\n'), ((1217, 1233), 'numpy.zeros', 'np.zeros', (['(n, n)'], {}), '((n, n))\n', (1225, 1233), True, 'import numpy as np\n'), ((2225, 2243), 'numpy.unique', 'np.unique', (['est_idx'], {}), '(est_idx)\n', (2234, 2243), True, 'import numpy as np\n'), ((2795, 2817), 'networkx.adjacency_matrix', 'nx.adjacency_matrix', (['G'], {}), '(G)\n', (2814, 2817), True, 'import networkx as nx\n'), ((1854, 1867), 'numpy.unique', 'np.unique', (['gt'], {}), '(gt)\n', (1863, 1867), True, 'import numpy as np\n')]
import boto3 import json def ExtractEntitiesFromArticle(event, context): retVal= {} retVal["data"] = [] # Data is sent to Lambda via a HTTPS POST call. We want to get to the payload send by Snowflake event_body = event["body"] payload = json.loads(event_body) for row in payload["data"]: sflkRowRef = row[0] # This is how Snowflake keeps track of data as it gets returned inputText = row[1] client = boto3.client('comprehend') comprehendResponse = client.detect_entities( Text=inputText, LanguageCode='en' ) retVal["data"].append([sflkRowRef,comprehendResponse]) return retVal
[ "json.loads", "boto3.client" ]
[((259, 281), 'json.loads', 'json.loads', (['event_body'], {}), '(event_body)\n', (269, 281), False, 'import json\n'), ((456, 482), 'boto3.client', 'boto3.client', (['"""comprehend"""'], {}), "('comprehend')\n", (468, 482), False, 'import boto3\n')]
from django.contrib import admin from .models import Domicilio, Localidad, Persona, Profesional, Titulo admin.site.register(Domicilio) admin.site.register(Localidad) admin.site.register(Persona) admin.site.register(Profesional) admin.site.register(Titulo)
[ "django.contrib.admin.site.register" ]
[((106, 136), 'django.contrib.admin.site.register', 'admin.site.register', (['Domicilio'], {}), '(Domicilio)\n', (125, 136), False, 'from django.contrib import admin\n'), ((137, 167), 'django.contrib.admin.site.register', 'admin.site.register', (['Localidad'], {}), '(Localidad)\n', (156, 167), False, 'from django.contrib import admin\n'), ((168, 196), 'django.contrib.admin.site.register', 'admin.site.register', (['Persona'], {}), '(Persona)\n', (187, 196), False, 'from django.contrib import admin\n'), ((197, 229), 'django.contrib.admin.site.register', 'admin.site.register', (['Profesional'], {}), '(Profesional)\n', (216, 229), False, 'from django.contrib import admin\n'), ((230, 257), 'django.contrib.admin.site.register', 'admin.site.register', (['Titulo'], {}), '(Titulo)\n', (249, 257), False, 'from django.contrib import admin\n')]
# SPDX-FileCopyrightText: : 2017-2020 The PyPSA-Eur Authors # # SPDX-License-Identifier: MIT # coding: utf-8 """ Lifts electrical transmission network to a single 380 kV voltage layer, removes dead-ends of the network, and reduces multi-hop HVDC connections to a single link. Relevant Settings ----------------- .. code:: yaml costs: USD2013_to_EUR2013: discountrate: marginal_cost: capital_cost: electricity: max_hours: renewables: (keys) {technology}: potential: lines: length_factor: links: p_max_pu: solving: solver: name: .. seealso:: Documentation of the configuration file ``config.yaml`` at :ref:`costs_cf`, :ref:`electricity_cf`, :ref:`renewable_cf`, :ref:`lines_cf`, :ref:`links_cf`, :ref:`solving_cf` Inputs ------ - ``data/costs.csv``: The database of cost assumptions for all included technologies for specific years from various sources; e.g. discount rate, lifetime, investment (CAPEX), fixed operation and maintenance (FOM), variable operation and maintenance (VOM), fuel costs, efficiency, carbon-dioxide intensity. - ``resources/regions_onshore.geojson``: confer :ref:`busregions` - ``resources/regions_offshore.geojson``: confer :ref:`busregions` - ``networks/elec.nc``: confer :ref:`electricity` Outputs ------- - ``resources/regions_onshore_elec_s{simpl}.geojson``: .. image:: ../img/regions_onshore_elec_s.png :scale: 33 % - ``resources/regions_offshore_elec_s{simpl}.geojson``: .. image:: ../img/regions_offshore_elec_s .png :scale: 33 % - ``resources/busmap_elec_s{simpl}.csv``: Mapping of buses from ``networks/elec.nc`` to ``networks/elec_s{simpl}.nc``; - ``networks/elec_s{simpl}.nc``: .. image:: ../img/elec_s.png :scale: 33 % Description ----------- The rule :mod:`simplify_network` does up to four things: 1. Create an equivalent transmission network in which all voltage levels are mapped to the 380 kV level by the function ``simplify_network(...)``. 2. DC only sub-networks that are connected at only two buses to the AC network are reduced to a single representative link in the function ``simplify_links(...)``. The components attached to buses in between are moved to the nearest endpoint. The grid connection cost of offshore wind generators are added to the captial costs of the generator. 3. Stub lines and links, i.e. dead-ends of the network, are sequentially removed from the network in the function ``remove_stubs(...)``. Components are moved along. 4. Optionally, if an integer were provided for the wildcard ``{simpl}`` (e.g. ``networks/elec_s500.nc``), the network is clustered to this number of clusters with the routines from the ``cluster_network`` rule with the function ``cluster_network.cluster(...)``. This step is usually skipped! """ import logging from _helpers import configure_logging, update_p_nom_max from cluster_network import clustering_for_n_clusters, cluster_regions from add_electricity import load_costs import pandas as pd import numpy as np import scipy as sp from scipy.sparse.csgraph import connected_components, dijkstra from functools import reduce import pypsa from pypsa.io import import_components_from_dataframe, import_series_from_dataframe from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap, _make_consense logger = logging.getLogger(__name__) def simplify_network_to_380(n): ## All goes to v_nom == 380 logger.info("Mapping all network lines onto a single 380kV layer") n.buses['v_nom'] = 380. linetype_380, = n.lines.loc[n.lines.v_nom == 380., 'type'].unique() lines_v_nom_b = n.lines.v_nom != 380. n.lines.loc[lines_v_nom_b, 'num_parallel'] *= (n.lines.loc[lines_v_nom_b, 'v_nom'] / 380.)**2 n.lines.loc[lines_v_nom_b, 'v_nom'] = 380. n.lines.loc[lines_v_nom_b, 'type'] = linetype_380 n.lines.loc[lines_v_nom_b, 's_nom'] = ( np.sqrt(3) * n.lines['type'].map(n.line_types.i_nom) * n.lines.bus0.map(n.buses.v_nom) * n.lines.num_parallel ) # Replace transformers by lines trafo_map = pd.Series(n.transformers.bus1.values, index=n.transformers.bus0.values) trafo_map = trafo_map[~trafo_map.index.duplicated(keep='first')] several_trafo_b = trafo_map.isin(trafo_map.index) trafo_map.loc[several_trafo_b] = trafo_map.loc[several_trafo_b].map(trafo_map) missing_buses_i = n.buses.index.difference(trafo_map.index) trafo_map = trafo_map.append(pd.Series(missing_buses_i, missing_buses_i)) for c in n.one_port_components|n.branch_components: df = n.df(c) for col in df.columns: if col.startswith('bus'): df[col] = df[col].map(trafo_map) n.mremove("Transformer", n.transformers.index) n.mremove("Bus", n.buses.index.difference(trafo_map)) return n, trafo_map def _prepare_connection_costs_per_link(n): if n.links.empty: return {} Nyears = n.snapshot_weightings.objective.sum() / 8760 costs = load_costs(Nyears, snakemake.input.tech_costs, snakemake.config['costs'], snakemake.config['electricity']) connection_costs_per_link = {} for tech in snakemake.config['renewable']: if tech.startswith('offwind'): connection_costs_per_link[tech] = ( n.links.length * snakemake.config['lines']['length_factor'] * (n.links.underwater_fraction * costs.at[tech + '-connection-submarine', 'capital_cost'] + (1. - n.links.underwater_fraction) * costs.at[tech + '-connection-underground', 'capital_cost']) ) return connection_costs_per_link def _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link=None, buses=None): if connection_costs_per_link is None: connection_costs_per_link = _prepare_connection_costs_per_link(n) if buses is None: buses = busmap.index[busmap.index != busmap.values] connection_costs_to_bus = pd.DataFrame(index=buses) for tech in connection_costs_per_link: adj = n.adjacency_matrix(weights=pd.concat(dict(Link=connection_costs_per_link[tech].reindex(n.links.index), Line=pd.Series(0., n.lines.index)))) costs_between_buses = dijkstra(adj, directed=False, indices=n.buses.index.get_indexer(buses)) connection_costs_to_bus[tech] = costs_between_buses[np.arange(len(buses)), n.buses.index.get_indexer(busmap.loc[buses])] return connection_costs_to_bus def _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus): connection_costs = {} for tech in connection_costs_to_bus: tech_b = n.generators.carrier == tech costs = n.generators.loc[tech_b, "bus"].map(connection_costs_to_bus[tech]).loc[lambda s: s>0] if not costs.empty: n.generators.loc[costs.index, "capital_cost"] += costs logger.info("Displacing {} generator(s) and adding connection costs to capital_costs: {} " .format(tech, ", ".join("{:.0f} Eur/MW/a for `{}`".format(d, b) for b, d in costs.iteritems()))) connection_costs[tech] = costs pd.DataFrame(connection_costs).to_csv(snakemake.output.connection_costs) def _aggregate_and_move_components(n, busmap, connection_costs_to_bus, aggregate_one_ports={"Load", "StorageUnit"}): def replace_components(n, c, df, pnl): n.mremove(c, n.df(c).index) import_components_from_dataframe(n, df, c) for attr, df in pnl.items(): if not df.empty: import_series_from_dataframe(n, df, c, attr) _adjust_capital_costs_using_connection_costs(n, connection_costs_to_bus) generators, generators_pnl = aggregategenerators(n, busmap, custom_strategies={'p_nom_min': np.sum}) replace_components(n, "Generator", generators, generators_pnl) for one_port in aggregate_one_ports: df, pnl = aggregateoneport(n, busmap, component=one_port) replace_components(n, one_port, df, pnl) buses_to_del = n.buses.index.difference(busmap) n.mremove("Bus", buses_to_del) for c in n.branch_components: df = n.df(c) n.mremove(c, df.index[df.bus0.isin(buses_to_del) | df.bus1.isin(buses_to_del)]) def simplify_links(n): ## Complex multi-node links are folded into end-points logger.info("Simplifying connected link components") if n.links.empty: return n, n.buses.index.to_series() # Determine connected link components, ignore all links but DC adjacency_matrix = n.adjacency_matrix(branch_components=['Link'], weights=dict(Link=(n.links.carrier == 'DC').astype(float))) _, labels = connected_components(adjacency_matrix, directed=False) labels = pd.Series(labels, n.buses.index) G = n.graph() def split_links(nodes): nodes = frozenset(nodes) seen = set() supernodes = {m for m in nodes if len(G.adj[m]) > 2 or (set(G.adj[m]) - nodes)} for u in supernodes: for m, ls in G.adj[u].items(): if m not in nodes or m in seen: continue buses = [u, m] links = [list(ls)] #[name for name in ls]] while m not in (supernodes | seen): seen.add(m) for m2, ls in G.adj[m].items(): if m2 in seen or m2 == u: continue buses.append(m2) links.append(list(ls)) # [name for name in ls]) break else: # stub break m = m2 if m != u: yield pd.Index((u, m)), buses, links seen.add(u) busmap = n.buses.index.to_series() connection_costs_per_link = _prepare_connection_costs_per_link(n) connection_costs_to_bus = pd.DataFrame(0., index=n.buses.index, columns=list(connection_costs_per_link)) for lbl in labels.value_counts().loc[lambda s: s > 2].index: for b, buses, links in split_links(labels.index[labels == lbl]): if len(buses) <= 2: continue logger.debug('nodes = {}'.format(labels.index[labels == lbl])) logger.debug('b = {}\nbuses = {}\nlinks = {}'.format(b, buses, links)) m = sp.spatial.distance_matrix(n.buses.loc[b, ['x', 'y']], n.buses.loc[buses[1:-1], ['x', 'y']]) busmap.loc[buses] = b[np.r_[0, m.argmin(axis=0), 1]] connection_costs_to_bus.loc[buses] += _compute_connection_costs_to_bus(n, busmap, connection_costs_per_link, buses) all_links = [i for _, i in sum(links, [])] p_max_pu = snakemake.config['links'].get('p_max_pu', 1.) lengths = n.links.loc[all_links, 'length'] name = lengths.idxmax() + '+{}'.format(len(links) - 1) params = dict( carrier='DC', bus0=b[0], bus1=b[1], length=sum(n.links.loc[[i for _, i in l], 'length'].mean() for l in links), p_nom=min(n.links.loc[[i for _, i in l], 'p_nom'].sum() for l in links), underwater_fraction=sum(lengths/lengths.sum() * n.links.loc[all_links, 'underwater_fraction']), p_max_pu=p_max_pu, p_min_pu=-p_max_pu, underground=False, under_construction=False ) logger.info("Joining the links {} connecting the buses {} to simple link {}".format(", ".join(all_links), ", ".join(buses), name)) n.mremove("Link", all_links) static_attrs = n.components["Link"]["attrs"].loc[lambda df: df.static] for attr, default in static_attrs.default.iteritems(): params.setdefault(attr, default) n.links.loc[name] = pd.Series(params) # n.add("Link", **params) logger.debug("Collecting all components using the busmap") _aggregate_and_move_components(n, busmap, connection_costs_to_bus) return n, busmap def remove_stubs(n): logger.info("Removing stubs") busmap = busmap_by_stubs(n) # ['country']) connection_costs_to_bus = _compute_connection_costs_to_bus(n, busmap) _aggregate_and_move_components(n, busmap, connection_costs_to_bus) return n, busmap def aggregate_to_substations(n, buses_i=None): # can be used to aggregate a selection of buses to electrically closest neighbors # if no buses are given, nodes that are no substations or without offshore connection are aggregated if buses_i is None: logger.info("Aggregating buses that are no substations or have no valid offshore connection") buses_i = list(set(n.buses.index)-set(n.generators.bus)-set(n.loads.bus)) weight = pd.concat({'Line': n.lines.length/n.lines.s_nom.clip(1e-3), 'Link': n.links.length/n.links.p_nom.clip(1e-3)}) adj = n.adjacency_matrix(branch_components=['Line', 'Link'], weights=weight) bus_indexer = n.buses.index.get_indexer(buses_i) dist = pd.DataFrame(dijkstra(adj, directed=False, indices=bus_indexer), buses_i, n.buses.index) dist[buses_i] = np.inf # bus in buses_i should not be assigned to different bus in buses_i for c in n.buses.country.unique(): incountry_b = n.buses.country == c dist.loc[incountry_b, ~incountry_b] = np.inf busmap = n.buses.index.to_series() busmap.loc[buses_i] = dist.idxmin(1) clustering = get_clustering_from_busmap(n, busmap, bus_strategies=dict(country=_make_consense("Bus", "country")), aggregate_generators_weighted=True, aggregate_generators_carriers=None, aggregate_one_ports=["Load", "StorageUnit"], line_length_factor=1.0, generator_strategies={'p_nom_max': 'sum'}, scale_link_capital_costs=False) return clustering.network, busmap def cluster(n, n_clusters): logger.info(f"Clustering to {n_clusters} buses") focus_weights = snakemake.config.get('focus_weights', None) renewable_carriers = pd.Index([tech for tech in n.generators.carrier.unique() if tech.split('-', 2)[0] in snakemake.config['renewable']]) def consense(x): v = x.iat[0] assert ((x == v).all() or x.isnull().all()), ( "The `potential` configuration option must agree for all renewable carriers, for now!" ) return v potential_mode = (consense(pd.Series([snakemake.config['renewable'][tech]['potential'] for tech in renewable_carriers])) if len(renewable_carriers) > 0 else 'conservative') clustering = clustering_for_n_clusters(n, n_clusters, custom_busmap=False, potential_mode=potential_mode, solver_name=snakemake.config['solving']['solver']['name'], focus_weights=focus_weights) return clustering.network, clustering.busmap if __name__ == "__main__": if 'snakemake' not in globals(): from _helpers import mock_snakemake snakemake = mock_snakemake('simplify_network', simpl='', network='elec') configure_logging(snakemake) n = pypsa.Network(snakemake.input.network) n, trafo_map = simplify_network_to_380(n) n, simplify_links_map = simplify_links(n) n, stub_map = remove_stubs(n) busmaps = [trafo_map, simplify_links_map, stub_map] if snakemake.config.get('clustering', {}).get('simplify', {}).get('to_substations', False): n, substation_map = aggregate_to_substations(n) busmaps.append(substation_map) if snakemake.wildcards.simpl: n, cluster_map = cluster(n, int(snakemake.wildcards.simpl)) busmaps.append(cluster_map) # some entries in n.buses are not updated in previous functions, therefore can be wrong. as they are not needed # and are lost when clustering (for example with the simpl wildcard), we remove them for consistency: buses_c = {'symbol', 'tags', 'under_construction', 'substation_lv', 'substation_off'}.intersection(n.buses.columns) n.buses = n.buses.drop(buses_c, axis=1) update_p_nom_max(n) n.export_to_netcdf(snakemake.output.network) busmap_s = reduce(lambda x, y: x.map(y), busmaps[1:], busmaps[0]) busmap_s.to_csv(snakemake.output.busmap) cluster_regions(busmaps, snakemake.input, snakemake.output)
[ "logging.getLogger", "numpy.sqrt", "scipy.sparse.csgraph.dijkstra", "pandas.Index", "add_electricity.load_costs", "pypsa.networkclustering.aggregateoneport", "pypsa.networkclustering._make_consense", "pypsa.io.import_components_from_dataframe", "cluster_network.cluster_regions", "pandas.DataFrame", "scipy.spatial.distance_matrix", "pypsa.networkclustering.aggregategenerators", "pandas.Series", "cluster_network.clustering_for_n_clusters", "scipy.sparse.csgraph.connected_components", "pypsa.Network", "_helpers.update_p_nom_max", "pypsa.networkclustering.busmap_by_stubs", "pypsa.io.import_series_from_dataframe", "_helpers.mock_snakemake", "_helpers.configure_logging" ]
[((3471, 3498), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (3488, 3498), False, 'import logging\n'), ((4208, 4279), 'pandas.Series', 'pd.Series', (['n.transformers.bus1.values'], {'index': 'n.transformers.bus0.values'}), '(n.transformers.bus1.values, index=n.transformers.bus0.values)\n', (4217, 4279), True, 'import pandas as pd\n'), ((5107, 5217), 'add_electricity.load_costs', 'load_costs', (['Nyears', 'snakemake.input.tech_costs', "snakemake.config['costs']", "snakemake.config['electricity']"], {}), "(Nyears, snakemake.input.tech_costs, snakemake.config['costs'],\n snakemake.config['electricity'])\n", (5117, 5217), False, 'from add_electricity import load_costs\n'), ((6083, 6108), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'buses'}), '(index=buses)\n', (6095, 6108), True, 'import pandas as pd\n'), ((7928, 7999), 'pypsa.networkclustering.aggregategenerators', 'aggregategenerators', (['n', 'busmap'], {'custom_strategies': "{'p_nom_min': np.sum}"}), "(n, busmap, custom_strategies={'p_nom_min': np.sum})\n", (7947, 7999), False, 'from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap, _make_consense\n'), ((8920, 8974), 'scipy.sparse.csgraph.connected_components', 'connected_components', (['adjacency_matrix'], {'directed': '(False)'}), '(adjacency_matrix, directed=False)\n', (8940, 8974), False, 'from scipy.sparse.csgraph import connected_components, dijkstra\n'), ((8988, 9020), 'pandas.Series', 'pd.Series', (['labels', 'n.buses.index'], {}), '(labels, n.buses.index)\n', (8997, 9020), True, 'import pandas as pd\n'), ((12405, 12423), 'pypsa.networkclustering.busmap_by_stubs', 'busmap_by_stubs', (['n'], {}), '(n)\n', (12420, 12423), False, 'from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap, _make_consense\n'), ((15300, 15489), 'cluster_network.clustering_for_n_clusters', 'clustering_for_n_clusters', (['n', 'n_clusters'], {'custom_busmap': '(False)', 'potential_mode': 'potential_mode', 'solver_name': "snakemake.config['solving']['solver']['name']", 'focus_weights': 'focus_weights'}), "(n, n_clusters, custom_busmap=False,\n potential_mode=potential_mode, solver_name=snakemake.config['solving'][\n 'solver']['name'], focus_weights=focus_weights)\n", (15325, 15489), False, 'from cluster_network import clustering_for_n_clusters, cluster_regions\n'), ((15812, 15840), '_helpers.configure_logging', 'configure_logging', (['snakemake'], {}), '(snakemake)\n', (15829, 15840), False, 'from _helpers import configure_logging, update_p_nom_max\n'), ((15850, 15888), 'pypsa.Network', 'pypsa.Network', (['snakemake.input.network'], {}), '(snakemake.input.network)\n', (15863, 15888), False, 'import pypsa\n'), ((16798, 16817), '_helpers.update_p_nom_max', 'update_p_nom_max', (['n'], {}), '(n)\n', (16814, 16817), False, 'from _helpers import configure_logging, update_p_nom_max\n'), ((16997, 17056), 'cluster_network.cluster_regions', 'cluster_regions', (['busmaps', 'snakemake.input', 'snakemake.output'], {}), '(busmaps, snakemake.input, snakemake.output)\n', (17012, 17056), False, 'from cluster_network import clustering_for_n_clusters, cluster_regions\n'), ((4583, 4626), 'pandas.Series', 'pd.Series', (['missing_buses_i', 'missing_buses_i'], {}), '(missing_buses_i, missing_buses_i)\n', (4592, 4626), True, 'import pandas as pd\n'), ((7646, 7688), 'pypsa.io.import_components_from_dataframe', 'import_components_from_dataframe', (['n', 'df', 'c'], {}), '(n, df, c)\n', (7678, 7688), False, 'from pypsa.io import import_components_from_dataframe, import_series_from_dataframe\n'), ((8127, 8174), 'pypsa.networkclustering.aggregateoneport', 'aggregateoneport', (['n', 'busmap'], {'component': 'one_port'}), '(n, busmap, component=one_port)\n', (8143, 8174), False, 'from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap, _make_consense\n'), ((13369, 13419), 'scipy.sparse.csgraph.dijkstra', 'dijkstra', (['adj'], {'directed': '(False)', 'indices': 'bus_indexer'}), '(adj, directed=False, indices=bus_indexer)\n', (13377, 13419), False, 'from scipy.sparse.csgraph import connected_components, dijkstra\n'), ((15747, 15807), '_helpers.mock_snakemake', 'mock_snakemake', (['"""simplify_network"""'], {'simpl': '""""""', 'network': '"""elec"""'}), "('simplify_network', simpl='', network='elec')\n", (15761, 15807), False, 'from _helpers import mock_snakemake\n'), ((7352, 7382), 'pandas.DataFrame', 'pd.DataFrame', (['connection_costs'], {}), '(connection_costs)\n', (7364, 7382), True, 'import pandas as pd\n'), ((10593, 10690), 'scipy.spatial.distance_matrix', 'sp.spatial.distance_matrix', (["n.buses.loc[b, ['x', 'y']]", "n.buses.loc[buses[1:-1], ['x', 'y']]"], {}), "(n.buses.loc[b, ['x', 'y']], n.buses.loc[buses[1:\n -1], ['x', 'y']])\n", (10619, 10690), True, 'import scipy as sp\n'), ((12121, 12138), 'pandas.Series', 'pd.Series', (['params'], {}), '(params)\n', (12130, 12138), True, 'import pandas as pd\n'), ((15069, 15165), 'pandas.Series', 'pd.Series', (["[snakemake.config['renewable'][tech]['potential'] for tech in\n renewable_carriers]"], {}), "([snakemake.config['renewable'][tech]['potential'] for tech in\n renewable_carriers])\n", (15078, 15165), True, 'import pandas as pd\n'), ((4031, 4041), 'numpy.sqrt', 'np.sqrt', (['(3)'], {}), '(3)\n', (4038, 4041), True, 'import numpy as np\n'), ((7771, 7815), 'pypsa.io.import_series_from_dataframe', 'import_series_from_dataframe', (['n', 'df', 'c', 'attr'], {}), '(n, df, c, attr)\n', (7799, 7815), False, 'from pypsa.io import import_components_from_dataframe, import_series_from_dataframe\n'), ((13886, 13918), 'pypsa.networkclustering._make_consense', '_make_consense', (['"""Bus"""', '"""country"""'], {}), "('Bus', 'country')\n", (13900, 13918), False, 'from pypsa.networkclustering import busmap_by_stubs, aggregategenerators, aggregateoneport, get_clustering_from_busmap, _make_consense\n'), ((6331, 6360), 'pandas.Series', 'pd.Series', (['(0.0)', 'n.lines.index'], {}), '(0.0, n.lines.index)\n', (6340, 6360), True, 'import pandas as pd\n'), ((9961, 9977), 'pandas.Index', 'pd.Index', (['(u, m)'], {}), '((u, m))\n', (9969, 9977), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from frappe import _ def get_data(): return [ { "module_name": "CSF TZ", "category": "Modules", "label": _("Country Specifics"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", "description": "Country specific customizations for compliance, taxation and statutory reports.", }, { "module_name": "Clearing and Forwarding", "category": "Modules", "label": _("Clearing and Forwarding"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", "description": "Clearing and forwarding", }, { "module_name": "After Sales Services", "category": "Modules", "label": _("After Sales Services"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", }, { "module_name": "Workshop", "category": "Modules", "label": _("Workshop"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", }, { "module_name": "Fleet Management", "category": "Modules", "label": _("Fleet Management"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", }, { "module_name": "Purchase and Stock Management", "category": "Modules", "label": _("Purchase and Stock Management"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", }, { "module_name": "Sales and Marketing", "category": "Modules", "label": _("Sales and Marketing"), "color": "green", "icon": "octicon octicon-bookmark", "type": "module", }, ]
[ "frappe._" ]
[((182, 204), 'frappe._', '_', (['"""Country Specifics"""'], {}), "('Country Specifics')\n", (183, 204), False, 'from frappe import _\n'), ((480, 508), 'frappe._', '_', (['"""Clearing and Forwarding"""'], {}), "('Clearing and Forwarding')\n", (481, 508), False, 'from frappe import _\n'), ((725, 750), 'frappe._', '_', (['"""After Sales Services"""'], {}), "('After Sales Services')\n", (726, 750), False, 'from frappe import _\n'), ((910, 923), 'frappe._', '_', (['"""Workshop"""'], {}), "('Workshop')\n", (911, 923), False, 'from frappe import _\n'), ((1091, 1112), 'frappe._', '_', (['"""Fleet Management"""'], {}), "('Fleet Management')\n", (1092, 1112), False, 'from frappe import _\n'), ((1293, 1327), 'frappe._', '_', (['"""Purchase and Stock Management"""'], {}), "('Purchase and Stock Management')\n", (1294, 1327), False, 'from frappe import _\n'), ((1498, 1522), 'frappe._', '_', (['"""Sales and Marketing"""'], {}), "('Sales and Marketing')\n", (1499, 1522), False, 'from frappe import _\n')]
from datetime import datetime from multiprocessing import Process from queue import Empty import click from fabric import Connection from clustrun.result import Result def log_date(): return datetime.now().strftime("[%Y-%m-%d %H:%M:%S]") def worker(q, rq, hostname, config, port=22): while True: t = q.get(block=False) if t is None: # None is the sentinel to indicate all queued items have been # processed break start_time = datetime.now() print(log_date(), "Running", t, "on", hostname) cmd = config.cmd_tplt.format(t) r = None try: c = Connection(hostname, port=port, config=config.connection) except Exception: err_msg = "{0} Connection failed to {1}".format(log_date(), hostname) click.secho(err_msg, fg="red") break try: if config.sudo: r = c.sudo(cmd, hide="both", warn=True) else: r = c.run(cmd, hide="both", warn=True) except Exception as e: click.secho("Exception running command: " + str(e), fg="red") break else: duration = datetime.now() - start_time if r.exited == 0: finish_msg = "{0} Finished {1} on {2} after {3}".format( log_date(), t, hostname, duration ) click.secho(finish_msg, fg="green") else: err_msg = "{0} Error during {1} on {2} after {3}".format( log_date(), t, hostname, duration ) click.secho(err_msg, fg="red") result = Result( hostname=hostname, task=t, stdout=r.stdout, stderr=r.stderr, exit_code=r.exited, duration=duration, ) rq.put(result) finally: q.task_done() c.close() click.echo("Worker on {0} is done".format(hostname)) def setup_workers(config): for h in config.hosts: print("Configuring ", h.hostname, "... ", end="", sep="", flush=True) c = Connection(h.hostname, config=config.connection) for l in config.setup_cmd.split("\n"): if config.sudo: c.sudo(l, hide="both") else: c.run(l, hide="both") print("done") def launch_workers(config, q, rq): workers = [] for h in config.hosts: for _ in range(h.n_jobs): p = Process( target=worker, args=(q, rq, h.hostname, config, h.port), name="clustrun.worker", ) p.start() workers.append(p) return workers def wait_for_workers(processes, results_queue): results = [] while processes: while True: try: results.append(results_queue.get(block=False)) except Empty: break for p in processes: p.join(0.1) processes = [p for p in processes if p.is_alive()] return results
[ "click.secho", "multiprocessing.Process", "clustrun.result.Result", "datetime.datetime.now", "fabric.Connection" ]
[((500, 514), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (512, 514), False, 'from datetime import datetime\n'), ((2214, 2262), 'fabric.Connection', 'Connection', (['h.hostname'], {'config': 'config.connection'}), '(h.hostname, config=config.connection)\n', (2224, 2262), False, 'from fabric import Connection\n'), ((199, 213), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (211, 213), False, 'from datetime import datetime\n'), ((657, 714), 'fabric.Connection', 'Connection', (['hostname'], {'port': 'port', 'config': 'config.connection'}), '(hostname, port=port, config=config.connection)\n', (667, 714), False, 'from fabric import Connection\n'), ((1701, 1811), 'clustrun.result.Result', 'Result', ([], {'hostname': 'hostname', 'task': 't', 'stdout': 'r.stdout', 'stderr': 'r.stderr', 'exit_code': 'r.exited', 'duration': 'duration'}), '(hostname=hostname, task=t, stdout=r.stdout, stderr=r.stderr,\n exit_code=r.exited, duration=duration)\n', (1707, 1811), False, 'from clustrun.result import Result\n'), ((2586, 2679), 'multiprocessing.Process', 'Process', ([], {'target': 'worker', 'args': '(q, rq, h.hostname, config, h.port)', 'name': '"""clustrun.worker"""'}), "(target=worker, args=(q, rq, h.hostname, config, h.port), name=\n 'clustrun.worker')\n", (2593, 2679), False, 'from multiprocessing import Process\n'), ((835, 865), 'click.secho', 'click.secho', (['err_msg'], {'fg': '"""red"""'}), "(err_msg, fg='red')\n", (846, 865), False, 'import click\n'), ((1214, 1228), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1226, 1228), False, 'from datetime import datetime\n'), ((1433, 1468), 'click.secho', 'click.secho', (['finish_msg'], {'fg': '"""green"""'}), "(finish_msg, fg='green')\n", (1444, 1468), False, 'import click\n'), ((1649, 1679), 'click.secho', 'click.secho', (['err_msg'], {'fg': '"""red"""'}), "(err_msg, fg='red')\n", (1660, 1679), False, 'import click\n')]
import warnings import napari import pyclesperanto_prototype as cle from napari_tools_menu import register_function @register_function(menu="Measurement > Statistics of labeled pixels (clEsperanto)") def statistics_of_labeled_pixels(image: napari.types.ImageData, labels: napari.types.LabelsData, measure_background=False, napari_viewer : napari.Viewer=None) -> "pandas.DataFrame": """ Adds a table widget to a given napari viewer with quantitative analysis results derived from an image-labelimage pair. """ if image is not None and labels is not None: # quantitative analysis using clEsperanto's statistics_of_labelled_pixels if measure_background: table = cle.statistics_of_background_and_labelled_pixels(image, labels) else: table = cle.statistics_of_labelled_pixels(image, labels) if napari_viewer is not None: # Store results in the properties dictionary: from napari_workflows._workflow import _get_layer_from_data labels_layer = _get_layer_from_data(napari_viewer, labels) labels_layer.properties = table # turn table into a widget from napari_skimage_regionprops import add_table add_table(labels_layer, napari_viewer) else: import pandas return pandas.DataFrame(table) else: warnings.warn("Image and labels must be set.")
[ "pyclesperanto_prototype.statistics_of_background_and_labelled_pixels", "pyclesperanto_prototype.statistics_of_labelled_pixels", "pandas.DataFrame", "napari_skimage_regionprops.add_table", "warnings.warn", "napari_tools_menu.register_function", "napari_workflows._workflow._get_layer_from_data" ]
[((120, 207), 'napari_tools_menu.register_function', 'register_function', ([], {'menu': '"""Measurement > Statistics of labeled pixels (clEsperanto)"""'}), "(menu=\n 'Measurement > Statistics of labeled pixels (clEsperanto)')\n", (137, 207), False, 'from napari_tools_menu import register_function\n'), ((1392, 1438), 'warnings.warn', 'warnings.warn', (['"""Image and labels must be set."""'], {}), "('Image and labels must be set.')\n", (1405, 1438), False, 'import warnings\n'), ((708, 771), 'pyclesperanto_prototype.statistics_of_background_and_labelled_pixels', 'cle.statistics_of_background_and_labelled_pixels', (['image', 'labels'], {}), '(image, labels)\n', (756, 771), True, 'import pyclesperanto_prototype as cle\n'), ((806, 854), 'pyclesperanto_prototype.statistics_of_labelled_pixels', 'cle.statistics_of_labelled_pixels', (['image', 'labels'], {}), '(image, labels)\n', (839, 854), True, 'import pyclesperanto_prototype as cle\n'), ((1051, 1094), 'napari_workflows._workflow._get_layer_from_data', '_get_layer_from_data', (['napari_viewer', 'labels'], {}), '(napari_viewer, labels)\n', (1071, 1094), False, 'from napari_workflows._workflow import _get_layer_from_data\n'), ((1252, 1290), 'napari_skimage_regionprops.add_table', 'add_table', (['labels_layer', 'napari_viewer'], {}), '(labels_layer, napari_viewer)\n', (1261, 1290), False, 'from napari_skimage_regionprops import add_table\n'), ((1350, 1373), 'pandas.DataFrame', 'pandas.DataFrame', (['table'], {}), '(table)\n', (1366, 1373), False, 'import pandas\n')]
# Copyright 2015-2017 Intel Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """VSwitch controller for Physical to Tunnel Endpoint to Physical deployment """ import logging from core.vswitch_controller import IVswitchController from vswitches.utils import add_ports_to_flow from conf import settings as S from tools import tasks _FLOW_TEMPLATE = { 'idle_timeout': '0' } class VswitchControllerOP2P(IVswitchController): """VSwitch controller for OP2P deployment scenario. Attributes: _vswitch_class: The vSwitch class to be used. _vswitch: The vSwitch object controlled by this controller _deployment_scenario: A string describing the scenario to set-up in the constructor. """ def __init__(self, vswitch_class, traffic, tunnel_operation=None): """Initializes up the prerequisites for the OP2P deployment scenario. :vswitch_class: the vSwitch class to be used. """ self._logger = logging.getLogger(__name__) self._vswitch_class = vswitch_class self._vswitch = vswitch_class() self._deployment_scenario = "OP2P" self._traffic = traffic.copy() self._tunnel_operation = tunnel_operation self._logger.debug('Creation using ' + str(self._vswitch_class)) def setup(self): """ Sets up the switch for overlay P2P (tunnel encap or decap) """ self._logger.debug('Setting up ' + str(self._tunnel_operation)) if self._tunnel_operation == "encapsulation": self._setup_encap() else: if str(S.getValue('VSWITCH')).endswith('Vanilla'): self._setup_decap_vanilla() else: self._setup_decap() def _setup_encap(self): """ Sets up the switch for overlay P2P encapsulation test Create 2 bridges br0 (integration bridge) and br-ext and a VXLAN port for encapsulation. """ self._logger.debug('Setup using ' + str(self._vswitch_class)) try: self._vswitch.start() bridge = S.getValue('TUNNEL_INTEGRATION_BRIDGE') bridge_ext = S.getValue('TUNNEL_EXTERNAL_BRIDGE') bridge_ext_ip = S.getValue('TUNNEL_EXTERNAL_BRIDGE_IP') tg_port2_mac = S.getValue('TRAFFICGEN_PORT2_MAC') vtep_ip2 = S.getValue('VTEP_IP2') self._vswitch.add_switch(bridge) tasks.run_task(['sudo', 'ip', 'addr', 'add', S.getValue('VTEP_IP1'), 'dev', bridge], self._logger, 'Assign ' + S.getValue('VTEP_IP1') + ' to ' + bridge, False) tasks.run_task(['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up'], self._logger, 'Bring up ' + bridge, False) tunnel_type = self._traffic['tunnel_type'] self._vswitch.add_switch(bridge_ext) (_, phy1_number) = self._vswitch.add_phy_port(bridge) (_, phy2_number) = self._vswitch.add_tunnel_port(bridge, vtep_ip2, tunnel_type) self._vswitch.add_phy_port(bridge_ext) tasks.run_task(['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev', bridge_ext], self._logger, 'Assign ' + bridge_ext_ip + ' to ' + bridge_ext) tasks.run_task(['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up'], self._logger, 'Set ' + bridge_ext + 'status to up') self._vswitch.add_route(bridge, S.getValue('VTEP_IP2_SUBNET'), bridge_ext) if str(S.getValue('VSWITCH')).endswith('Vanilla'): tasks.run_task(['sudo', 'arp', '-s', vtep_ip2, tg_port2_mac], self._logger, 'Set ' + bridge_ext + ' status to up') else: self._vswitch.set_tunnel_arp(vtep_ip2, tg_port2_mac, bridge_ext) # Test is unidirectional for now self._vswitch.del_flow(bridge) flow1 = add_ports_to_flow(_FLOW_TEMPLATE, phy1_number, phy2_number) self._vswitch.add_flow(bridge, flow1) except: self._vswitch.stop() raise def _setup_decap(self): """ Sets up the switch for overlay P2P decapsulation test """ self._logger.debug('Setup using ' + str(self._vswitch_class)) try: self._vswitch.start() bridge = S.getValue('TUNNEL_INTEGRATION_BRIDGE') bridge_ext = S.getValue('TUNNEL_EXTERNAL_BRIDGE') bridge_ext_ip = S.getValue('TUNNEL_EXTERNAL_BRIDGE_IP') tgen_ip1 = S.getValue('TRAFFICGEN_PORT1_IP') self._vswitch.add_switch(bridge) tasks.run_task(['sudo', 'ip', 'addr', 'add', S.getValue('VTEP_IP1'), 'dev', bridge], self._logger, 'Assign ' + S.getValue('VTEP_IP1') + ' to ' + bridge, False) tasks.run_task(['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up'], self._logger, 'Bring up ' + bridge, False) tunnel_type = self._traffic['tunnel_type'] self._vswitch.add_switch(bridge_ext) self._vswitch.add_phy_port(bridge) (_, phy2_number) = self._vswitch.add_phy_port(bridge_ext) if tunnel_type == "vxlan": vxlan_vni = 'options:key=' + S.getValue('VXLAN_VNI') (_, phy3_number) = self._vswitch.add_tunnel_port(bridge_ext, tgen_ip1, tunnel_type, params=[vxlan_vni]) else: (_, phy3_number) = self._vswitch.add_tunnel_port(bridge_ext, tgen_ip1, tunnel_type) tasks.run_task(['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev', bridge_ext], self._logger, 'Assign ' + bridge_ext_ip + ' to ' + bridge_ext) tasks.run_task(['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up'], self._logger, 'Set ' + bridge_ext + ' status to up') self._vswitch.set_tunnel_arp(tgen_ip1, S.getValue('TRAFFICGEN_PORT1_MAC'), bridge) # Test is unidirectional for now self._vswitch.del_flow(bridge_ext) flow1 = add_ports_to_flow(_FLOW_TEMPLATE, phy3_number, phy2_number) self._vswitch.add_flow(bridge_ext, flow1) except: self._vswitch.stop() raise def _setup_decap_vanilla(self): """ Sets up the switch for overlay P2P decapsulation test """ self._logger.debug('Setup decap vanilla ' + str(self._vswitch_class)) try: self._vswitch.start() bridge = S.getValue('TUNNEL_INTEGRATION_BRIDGE') bridge_ext = S.getValue('TUNNEL_EXTERNAL_BRIDGE') bridge_ext_ip = S.getValue('TUNNEL_EXTERNAL_BRIDGE_IP') tgen_ip1 = S.getValue('TRAFFICGEN_PORT1_IP') self._vswitch.add_switch(bridge) tasks.run_task(['sudo', 'ip', 'addr', 'add', S.getValue('TUNNEL_INT_BRIDGE_IP'), 'dev', bridge], self._logger, 'Assign ' + S.getValue('TUNNEL_INT_BRIDGE_IP') + ' to ' + bridge, False) tasks.run_task(['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up'], self._logger, 'Bring up ' + bridge, False) tunnel_type = self._traffic['tunnel_type'] self._vswitch.add_switch(bridge_ext) self._vswitch.add_phy_port(bridge_ext) (_, phy2_number) = self._vswitch.add_phy_port(bridge) if tunnel_type == "vxlan": vxlan_vni = 'options:key=' + S.getValue('VXLAN_VNI') self._vswitch.add_tunnel_port(bridge, tgen_ip1, tunnel_type, params=[vxlan_vni]) else: self._vswitch.add_tunnel_port(bridge, tgen_ip1, tunnel_type) tasks.run_task(['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev', bridge_ext], self._logger, 'Assign ' + bridge_ext_ip + ' to ' + bridge_ext) tasks.run_task(['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up'], self._logger, 'Set ' + bridge_ext + ' status to up') tg_port2_mac = S.getValue('TRAFFICGEN_PORT2_MAC') vtep_ip2 = S.getValue('TRAFFICGEN_PORT2_IP') self._vswitch.set_tunnel_arp(vtep_ip2, tg_port2_mac, bridge_ext) self._vswitch.add_route(bridge, S.getValue('VTEP_IP2_SUBNET'), bridge) tasks.run_task(['sudo', 'arp', '-s', vtep_ip2, tg_port2_mac], self._logger, 'Set ' + bridge_ext + ' status to up') # Test is unidirectional for now self._vswitch.del_flow(bridge_ext) flow1 = add_ports_to_flow(_FLOW_TEMPLATE, phy2_number, 'LOCAL') self._vswitch.add_flow(bridge_ext, flow1) except: self._vswitch.stop() raise def stop(self): """Tears down the switch created in setup(). """ self._logger.debug('Stop using ' + str(self._vswitch_class)) self._vswitch.stop() def __enter__(self): self.setup() def __exit__(self, type_, value, traceback): self.stop() def get_vswitch(self): """See IVswitchController for description """ return self._vswitch def get_ports_info(self): """See IVswitchController for description """ self._logger.debug('get_ports_info for bridges: %s, %s', S.getValue('TUNNEL_INTEGRATION_BRIDGE'), S.getValue('TUNNEL_EXTERNAL_BRIDGE')) return self._vswitch.get_ports( S.getValue('TUNNEL_INTEGRATION_BRIDGE')) +\ self._vswitch.get_ports( S.getValue('TUNNEL_EXTERNAL_BRIDGE')) def dump_vswitch_flows(self): """See IVswitchController for description """ self._vswitch.dump_flows(S.getValue('TUNNEL_INTEGRATION_BRIDGE')) self._vswitch.dump_flows(S.getValue('TUNNEL_EXTERNAL_BRIDGE'))
[ "logging.getLogger", "tools.tasks.run_task", "vswitches.utils.add_ports_to_flow", "conf.settings.getValue" ]
[((1482, 1509), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1499, 1509), False, 'import logging\n'), ((2589, 2628), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INTEGRATION_BRIDGE"""'], {}), "('TUNNEL_INTEGRATION_BRIDGE')\n", (2599, 2628), True, 'from conf import settings as S\n'), ((2654, 2690), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE')\n", (2664, 2690), True, 'from conf import settings as S\n'), ((2719, 2758), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE_IP"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE_IP')\n", (2729, 2758), True, 'from conf import settings as S\n'), ((2786, 2820), 'conf.settings.getValue', 'S.getValue', (['"""TRAFFICGEN_PORT2_MAC"""'], {}), "('TRAFFICGEN_PORT2_MAC')\n", (2796, 2820), True, 'from conf import settings as S\n'), ((2844, 2866), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP2"""'], {}), "('VTEP_IP2')\n", (2854, 2866), True, 'from conf import settings as S\n'), ((3206, 3320), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up']", 'self._logger', "('Bring up ' + bridge)", '(False)'], {}), "(['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up'], self.\n _logger, 'Bring up ' + bridge, False)\n", (3220, 3320), False, 'from tools import tasks\n'), ((3793, 3939), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev', bridge_ext]", 'self._logger', "('Assign ' + bridge_ext_ip + ' to ' + bridge_ext)"], {}), "(['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev',\n bridge_ext], self._logger, 'Assign ' + bridge_ext_ip + ' to ' + bridge_ext)\n", (3807, 3939), False, 'from tools import tasks\n'), ((4032, 4159), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up']", 'self._logger', "('Set ' + bridge_ext + 'status to up')"], {}), "(['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up'], self\n ._logger, 'Set ' + bridge_ext + 'status to up')\n", (4046, 4159), False, 'from tools import tasks\n'), ((4925, 4984), 'vswitches.utils.add_ports_to_flow', 'add_ports_to_flow', (['_FLOW_TEMPLATE', 'phy1_number', 'phy2_number'], {}), '(_FLOW_TEMPLATE, phy1_number, phy2_number)\n', (4942, 4984), False, 'from vswitches.utils import add_ports_to_flow\n'), ((5387, 5426), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INTEGRATION_BRIDGE"""'], {}), "('TUNNEL_INTEGRATION_BRIDGE')\n", (5397, 5426), True, 'from conf import settings as S\n'), ((5452, 5488), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE')\n", (5462, 5488), True, 'from conf import settings as S\n'), ((5517, 5556), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE_IP"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE_IP')\n", (5527, 5556), True, 'from conf import settings as S\n'), ((5580, 5613), 'conf.settings.getValue', 'S.getValue', (['"""TRAFFICGEN_PORT1_IP"""'], {}), "('TRAFFICGEN_PORT1_IP')\n", (5590, 5613), True, 'from conf import settings as S\n'), ((5926, 6040), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up']", 'self._logger', "('Bring up ' + bridge)", '(False)'], {}), "(['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up'], self.\n _logger, 'Bring up ' + bridge, False)\n", (5940, 6040), False, 'from tools import tasks\n'), ((6969, 7115), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev', bridge_ext]", 'self._logger', "('Assign ' + bridge_ext_ip + ' to ' + bridge_ext)"], {}), "(['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev',\n bridge_ext], self._logger, 'Assign ' + bridge_ext_ip + ' to ' + bridge_ext)\n", (6983, 7115), False, 'from tools import tasks\n'), ((7262, 7390), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up']", 'self._logger', "('Set ' + bridge_ext + ' status to up')"], {}), "(['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up'], self\n ._logger, 'Set ' + bridge_ext + ' status to up')\n", (7276, 7390), False, 'from tools import tasks\n'), ((7758, 7817), 'vswitches.utils.add_ports_to_flow', 'add_ports_to_flow', (['_FLOW_TEMPLATE', 'phy3_number', 'phy2_number'], {}), '(_FLOW_TEMPLATE, phy3_number, phy2_number)\n', (7775, 7817), False, 'from vswitches.utils import add_ports_to_flow\n'), ((8240, 8279), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INTEGRATION_BRIDGE"""'], {}), "('TUNNEL_INTEGRATION_BRIDGE')\n", (8250, 8279), True, 'from conf import settings as S\n'), ((8305, 8341), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE')\n", (8315, 8341), True, 'from conf import settings as S\n'), ((8370, 8409), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE_IP"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE_IP')\n", (8380, 8409), True, 'from conf import settings as S\n'), ((8433, 8466), 'conf.settings.getValue', 'S.getValue', (['"""TRAFFICGEN_PORT1_IP"""'], {}), "('TRAFFICGEN_PORT1_IP')\n", (8443, 8466), True, 'from conf import settings as S\n'), ((8803, 8917), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up']", 'self._logger', "('Bring up ' + bridge)", '(False)'], {}), "(['sudo', 'ip', 'link', 'set', 'dev', bridge, 'up'], self.\n _logger, 'Bring up ' + bridge, False)\n", (8817, 8917), False, 'from tools import tasks\n'), ((9523, 9669), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev', bridge_ext]", 'self._logger', "('Assign ' + bridge_ext_ip + ' to ' + bridge_ext)"], {}), "(['sudo', 'ip', 'addr', 'add', bridge_ext_ip, 'dev',\n bridge_ext], self._logger, 'Assign ' + bridge_ext_ip + ' to ' + bridge_ext)\n", (9537, 9669), False, 'from tools import tasks\n'), ((9816, 9944), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up']", 'self._logger', "('Set ' + bridge_ext + ' status to up')"], {}), "(['sudo', 'ip', 'link', 'set', 'dev', bridge_ext, 'up'], self\n ._logger, 'Set ' + bridge_ext + ' status to up')\n", (9830, 9944), False, 'from tools import tasks\n'), ((10050, 10084), 'conf.settings.getValue', 'S.getValue', (['"""TRAFFICGEN_PORT2_MAC"""'], {}), "('TRAFFICGEN_PORT2_MAC')\n", (10060, 10084), True, 'from conf import settings as S\n'), ((10108, 10141), 'conf.settings.getValue', 'S.getValue', (['"""TRAFFICGEN_PORT2_IP"""'], {}), "('TRAFFICGEN_PORT2_IP')\n", (10118, 10141), True, 'from conf import settings as S\n'), ((10472, 10590), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'arp', '-s', vtep_ip2, tg_port2_mac]", 'self._logger', "('Set ' + bridge_ext + ' status to up')"], {}), "(['sudo', 'arp', '-s', vtep_ip2, tg_port2_mac], self._logger,\n 'Set ' + bridge_ext + ' status to up')\n", (10486, 10590), False, 'from tools import tasks\n'), ((10756, 10811), 'vswitches.utils.add_ports_to_flow', 'add_ports_to_flow', (['_FLOW_TEMPLATE', 'phy2_number', '"""LOCAL"""'], {}), "(_FLOW_TEMPLATE, phy2_number, 'LOCAL')\n", (10773, 10811), False, 'from vswitches.utils import add_ports_to_flow\n'), ((11539, 11578), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INTEGRATION_BRIDGE"""'], {}), "('TUNNEL_INTEGRATION_BRIDGE')\n", (11549, 11578), True, 'from conf import settings as S\n'), ((11607, 11643), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE')\n", (11617, 11643), True, 'from conf import settings as S\n'), ((11970, 12009), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INTEGRATION_BRIDGE"""'], {}), "('TUNNEL_INTEGRATION_BRIDGE')\n", (11980, 12009), True, 'from conf import settings as S\n'), ((12044, 12080), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE')\n", (12054, 12080), True, 'from conf import settings as S\n'), ((4291, 4320), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP2_SUBNET"""'], {}), "('VTEP_IP2_SUBNET')\n", (4301, 4320), True, 'from conf import settings as S\n'), ((4450, 4568), 'tools.tasks.run_task', 'tasks.run_task', (["['sudo', 'arp', '-s', vtep_ip2, tg_port2_mac]", 'self._logger', "('Set ' + bridge_ext + ' status to up')"], {}), "(['sudo', 'arp', '-s', vtep_ip2, tg_port2_mac], self._logger,\n 'Set ' + bridge_ext + ' status to up')\n", (4464, 4568), False, 'from tools import tasks\n'), ((7561, 7595), 'conf.settings.getValue', 'S.getValue', (['"""TRAFFICGEN_PORT1_MAC"""'], {}), "('TRAFFICGEN_PORT1_MAC')\n", (7571, 7595), True, 'from conf import settings as S\n'), ((10383, 10412), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP2_SUBNET"""'], {}), "('VTEP_IP2_SUBNET')\n", (10393, 10412), True, 'from conf import settings as S\n'), ((11697, 11736), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INTEGRATION_BRIDGE"""'], {}), "('TUNNEL_INTEGRATION_BRIDGE')\n", (11707, 11736), True, 'from conf import settings as S\n'), ((11802, 11838), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_EXTERNAL_BRIDGE"""'], {}), "('TUNNEL_EXTERNAL_BRIDGE')\n", (11812, 11838), True, 'from conf import settings as S\n'), ((2998, 3020), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP1"""'], {}), "('VTEP_IP1')\n", (3008, 3020), True, 'from conf import settings as S\n'), ((5745, 5767), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP1"""'], {}), "('VTEP_IP1')\n", (5755, 5767), True, 'from conf import settings as S\n'), ((6370, 6393), 'conf.settings.getValue', 'S.getValue', (['"""VXLAN_VNI"""'], {}), "('VXLAN_VNI')\n", (6380, 6393), True, 'from conf import settings as S\n'), ((8598, 8632), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INT_BRIDGE_IP"""'], {}), "('TUNNEL_INT_BRIDGE_IP')\n", (8608, 8632), True, 'from conf import settings as S\n'), ((9248, 9271), 'conf.settings.getValue', 'S.getValue', (['"""VXLAN_VNI"""'], {}), "('VXLAN_VNI')\n", (9258, 9271), True, 'from conf import settings as S\n'), ((2095, 2116), 'conf.settings.getValue', 'S.getValue', (['"""VSWITCH"""'], {}), "('VSWITCH')\n", (2105, 2116), True, 'from conf import settings as S\n'), ((4390, 4411), 'conf.settings.getValue', 'S.getValue', (['"""VSWITCH"""'], {}), "('VSWITCH')\n", (4400, 4411), True, 'from conf import settings as S\n'), ((3118, 3140), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP1"""'], {}), "('VTEP_IP1')\n", (3128, 3140), True, 'from conf import settings as S\n'), ((5865, 5887), 'conf.settings.getValue', 'S.getValue', (['"""VTEP_IP1"""'], {}), "('VTEP_IP1')\n", (5875, 5887), True, 'from conf import settings as S\n'), ((8730, 8764), 'conf.settings.getValue', 'S.getValue', (['"""TUNNEL_INT_BRIDGE_IP"""'], {}), "('TUNNEL_INT_BRIDGE_IP')\n", (8740, 8764), True, 'from conf import settings as S\n')]
from rest_framework import generics, permissions from django.core.management import call_command from rest_framework.response import Response from rest_framework.views import APIView from ..serializers import JobCategorySerializer, JobPostSerializer, JobSeekerSerializer, ResumeListSerializer, \ ResumeUpdateSerializer, MatchedPostSerializer, ResumeSerializer, WorkHistorySerializer, EducationSerializer, \ ApplicationSerializer from ..models import JobPost, JobCategory, Resume, JobSeeker, WorkHistory, Education, MatchedPosts, Application from accounts.models import Recruiter class JobSeekerView(generics.RetrieveAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = JobSeekerSerializer def get_object(self): return JobSeeker.objects.get(user=self.request.user.id) class ResumeDetailView(APIView): permission_classes = [ permissions.IsAuthenticated ] def get_object(self): try: return Resume.objects.get(seeker=self.request.user.jobseeker) except Resume.DoesNotExist as e: return Response({"error": "Given question object not found."}, status=404) def get(self, request): instance = self.get_object() serializer = ResumeListSerializer(instance) return Response(serializer.data) class ResumeUpdateView(generics.RetrieveUpdateDestroyAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = ResumeUpdateSerializer queryset = Resume.objects.all() lookup_field = 'id' class EvaluateResumeListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = MatchedPostSerializer def get_queryset(self): call_command('matchedPosts', self.request.user.jobseeker.id) queryset = MatchedPosts.objects.filter(seeker=self.request.user.jobseeker) return queryset class MatchedPostsListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = MatchedPostSerializer def get_queryset(self): queryset = MatchedPosts.objects.filter(seeker=self.request.user.jobseeker) return queryset class MatchedPostsDetailView(generics.RetrieveUpdateDestroyAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = MatchedPostSerializer queryset = MatchedPosts.objects.all() lookup_field = 'id' class ResumeCreateView(APIView): permission_classes = [ permissions.IsAuthenticated ] def post(self, request): seeker = JobSeeker.objects.get(user=self.request.user.id) data = request.data data["seeker"] = seeker.id serializer = ResumeSerializer(data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=201) return Response(serializer.errors, status=400) class WorkHistoryCreateView(generics.CreateAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = WorkHistorySerializer def perform_create(self, serializer): serializer.save(resume=self.request.user.jobseeker.resume) class WorkHistoryDetailView(generics.RetrieveUpdateDestroyAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = WorkHistorySerializer queryset = WorkHistory.objects.all() lookup_field = 'id' class WorkHistoryListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = WorkHistorySerializer lookup_field = 'id' def get_queryset(self): queryset = WorkHistory.objects.filter(resume=self.request.user.jobseeker.resume) return queryset class EducationBackgroundCreateView(generics.CreateAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = EducationSerializer def perform_create(self, serializer): serializer.save(resume=self.request.user.jobseeker.resume) class EducationBackgroundDetailView(generics.RetrieveUpdateDestroyAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = EducationSerializer queryset = Education.objects.all() lookup_field = 'id' class EducationBackgroundListView(generics.ListAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = EducationSerializer lookup_field = 'id' def get_queryset(self): queryset = Education.objects.filter(resume=self.request.user.jobseeker.resume) return queryset class ApplicationCreateView(generics.CreateAPIView): permission_classes = [ permissions.IsAuthenticated ] serializer_class = ApplicationSerializer def perform_create(self, serializer): serializer.save(seeker=self.request.user.jobseeker) # class JobPostListView(generics.ListAPIView): # queryset = JobPost.objects.all() # # permission_classes = [permissions.IsAuthenticated, ] # serializer_class = JobPostSerializer # lookup_field = 'id' # # filter_backends = [SearchFilter, OrderingFilter, ] # search_fields = [ # 'job_title', # ]
[ "rest_framework.response.Response", "django.core.management.call_command" ]
[((1318, 1343), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (1326, 1343), False, 'from rest_framework.response import Response\n'), ((1790, 1850), 'django.core.management.call_command', 'call_command', (['"""matchedPosts"""', 'self.request.user.jobseeker.id'], {}), "('matchedPosts', self.request.user.jobseeker.id)\n", (1802, 1850), False, 'from django.core.management import call_command\n'), ((2959, 2998), 'rest_framework.response.Response', 'Response', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (2967, 2998), False, 'from rest_framework.response import Response\n'), ((2906, 2943), 'rest_framework.response.Response', 'Response', (['serializer.data'], {'status': '(201)'}), '(serializer.data, status=201)\n', (2914, 2943), False, 'from rest_framework.response import Response\n'), ((1117, 1184), 'rest_framework.response.Response', 'Response', (["{'error': 'Given question object not found.'}"], {'status': '(404)'}), "({'error': 'Given question object not found.'}, status=404)\n", (1125, 1184), False, 'from rest_framework.response import Response\n')]
# -*- coding: utf-8 -*- """Operators API router.""" from typing import Optional from fastapi import APIRouter, Depends, Header from sqlalchemy.orm import Session import projects.schemas.operator from projects import database from projects.controllers import ( ExperimentController, OperatorController, OperatorParameterController, ProjectController, ) router = APIRouter( prefix="/projects/{project_id}/experiments/{experiment_id}/operators/{operator_id}/parameters", ) @router.patch("/{name}") async def handle_patch_parameter( project_id: str, experiment_id: str, operator_id: str, name: str, parameter: projects.schemas.operator.ParameterUpdate, session: Session = Depends(database.session_scope), kubeflow_userid: Optional[str] = Header(database.DB_TENANT), ): """ Handles PATCH requests to /{name}. Parameters ---------- project_id : str experiment_id : str operator_id : str name : str parameter : projects.schemas.Operator.ParameterUpdate session : sqlalchemy.orm.session.Session kubeflow_userid : fastapi.Header Returns ------- returns the updated value. """ project_controller = ProjectController(session, kubeflow_userid=kubeflow_userid) project_controller.raise_if_project_does_not_exist(project_id) experiment_controller = ExperimentController(session) experiment_controller.raise_if_experiment_does_not_exist(experiment_id) operator_controller = OperatorController(session) operator_controller.raise_if_operator_does_not_exist(operator_id) parameter_controller = OperatorParameterController(session) operator = parameter_controller.update_parameter( name=name, operator_id=operator_id, parameter=parameter ) return operator
[ "fastapi.Header", "projects.controllers.OperatorParameterController", "projects.controllers.ProjectController", "projects.controllers.OperatorController", "fastapi.APIRouter", "projects.controllers.ExperimentController", "fastapi.Depends" ]
[((380, 495), 'fastapi.APIRouter', 'APIRouter', ([], {'prefix': '"""/projects/{project_id}/experiments/{experiment_id}/operators/{operator_id}/parameters"""'}), "(prefix=\n '/projects/{project_id}/experiments/{experiment_id}/operators/{operator_id}/parameters'\n )\n", (389, 495), False, 'from fastapi import APIRouter, Depends, Header\n'), ((717, 748), 'fastapi.Depends', 'Depends', (['database.session_scope'], {}), '(database.session_scope)\n', (724, 748), False, 'from fastapi import APIRouter, Depends, Header\n'), ((787, 813), 'fastapi.Header', 'Header', (['database.DB_TENANT'], {}), '(database.DB_TENANT)\n', (793, 813), False, 'from fastapi import APIRouter, Depends, Header\n'), ((1207, 1266), 'projects.controllers.ProjectController', 'ProjectController', (['session'], {'kubeflow_userid': 'kubeflow_userid'}), '(session, kubeflow_userid=kubeflow_userid)\n', (1224, 1266), False, 'from projects.controllers import ExperimentController, OperatorController, OperatorParameterController, ProjectController\n'), ((1363, 1392), 'projects.controllers.ExperimentController', 'ExperimentController', (['session'], {}), '(session)\n', (1383, 1392), False, 'from projects.controllers import ExperimentController, OperatorController, OperatorParameterController, ProjectController\n'), ((1496, 1523), 'projects.controllers.OperatorController', 'OperatorController', (['session'], {}), '(session)\n', (1514, 1523), False, 'from projects.controllers import ExperimentController, OperatorController, OperatorParameterController, ProjectController\n'), ((1622, 1658), 'projects.controllers.OperatorParameterController', 'OperatorParameterController', (['session'], {}), '(session)\n', (1649, 1658), False, 'from projects.controllers import ExperimentController, OperatorController, OperatorParameterController, ProjectController\n')]
# I2C LCD library for LoPy board # Ported from Adafruit_Python_SSD1306 library by Dmitrii (<EMAIL>) # v0.4 beta # Display types kDisplayI2C128x32 = 1 kDisplayI2C128x64 = 2 kDisplaySPI128x32 = 3 # not tested kDisplaySPI128x64 = 4 from machine import I2C from machine import SPI from machine import Pin import time import pins # for pin names, NOTE added to original file for this project # I2C OLED Wiring: standard i2c = None # NOTE this pin section modified from original for this project to use pin names # SPI OLED Wiring: # D0 - pins.DISPLAY_D0_PIN (CLK) # D1 - pins.DISPLAY_D1_PIN (MOSI) # DC - pins.DISPLAY_DC_PIN # RST - pins.DISPLAY_RES_PIN # CS - not used (for some displays needs to be connected with GND) spi = None DC_PIN = Pin(pins.DISPLAY_DC_PIN, mode=Pin.OUT) RST_PIN = Pin(pins.DISPLAY_RES_PIN, mode=Pin.OUT) # LCD Control constants SSD1306_I2C_ADDRESS = 0x3C SSD1306_SETCONTRAST = 0x81 SSD1306_DISPLAYALLON_RESUME = 0xA4 SSD1306_DISPLAYALLON = 0xA5 SSD1306_NORMALDISPLAY = 0xA6 SSD1306_INVERTDISPLAY = 0xA7 SSD1306_DISPLAYOFF = 0xAE SSD1306_DISPLAYON = 0xAF SSD1306_SETDISPLAYOFFSET = 0xD3 SSD1306_SETCOMPINS = 0xDA SSD1306_SETVCOMDETECT = 0xDB SSD1306_SETDISPLAYCLOCKDIV = 0xD5 SSD1306_SETPRECHARGE = 0xD9 SSD1306_SETMULTIPLEX = 0xA8 SSD1306_SETLOWCOLUMN = 0x00 SSD1306_SETHIGHCOLUMN = 0x10 SSD1306_SETSTARTLINE = 0x40 SSD1306_MEMORYMODE = 0x20 SSD1306_COLUMNADDR = 0x21 SSD1306_PAGEADDR = 0x22 SSD1306_COMSCANINC = 0xC0 SSD1306_COMSCANDEC = 0xC8 SSD1306_SEGREMAP = 0xA0 SSD1306_CHARGEPUMP = 0x8D SSD1306_EXTERNALVCC = 0x1 SSD1306_SWITCHCAPVCC = 0x2 # Scrolling constants SSD1306_ACTIVATE_SCROLL = 0x2F SSD1306_DEACTIVATE_SCROLL = 0x2E SSD1306_SET_VERTICAL_SCROLL_AREA = 0xA3 SSD1306_RIGHT_HORIZONTAL_SCROLL = 0x26 SSD1306_LEFT_HORIZONTAL_SCROLL = 0x27 SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL = 0x29 SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL = 0x2A # Font data. Taken from https://github.com/hsmptg/lcd/blob/master/font.py font = [ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x5F, 0x00, 0x00, 0x00, 0x07, 0x00, 0x07, 0x00, 0x14, 0x7F, 0x14, 0x7F, 0x14, 0x24, 0x2A, 0x7F, 0x2A, 0x12, 0x23, 0x13, 0x08, 0x64, 0x62, 0x36, 0x49, 0x56, 0x20, 0x50, 0x00, 0x08, 0x07, 0x03, 0x00, 0x00, 0x1C, 0x22, 0x41, 0x00, 0x00, 0x41, 0x22, 0x1C, 0x00, 0x2A, 0x1C, 0x7F, 0x1C, 0x2A, 0x08, 0x08, 0x3E, 0x08, 0x08, 0x00, 0x80, 0x70, 0x30, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x00, 0x60, 0x60, 0x00, 0x20, 0x10, 0x08, 0x04, 0x02, 0x3E, 0x51, 0x49, 0x45, 0x3E, 0x00, 0x42, 0x7F, 0x40, 0x00, 0x72, 0x49, 0x49, 0x49, 0x46, 0x21, 0x41, 0x49, 0x4D, 0x33, 0x18, 0x14, 0x12, 0x7F, 0x10, 0x27, 0x45, 0x45, 0x45, 0x39, 0x3C, 0x4A, 0x49, 0x49, 0x31, 0x41, 0x21, 0x11, 0x09, 0x07, 0x36, 0x49, 0x49, 0x49, 0x36, 0x46, 0x49, 0x49, 0x29, 0x1E, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x40, 0x34, 0x00, 0x00, 0x00, 0x08, 0x14, 0x22, 0x41, 0x14, 0x14, 0x14, 0x14, 0x14, 0x00, 0x41, 0x22, 0x14, 0x08, 0x02, 0x01, 0x59, 0x09, 0x06, 0x3E, 0x41, 0x5D, 0x59, 0x4E, 0x7C, 0x12, 0x11, 0x12, 0x7C, 0x7F, 0x49, 0x49, 0x49, 0x36, 0x3E, 0x41, 0x41, 0x41, 0x22, 0x7F, 0x41, 0x41, 0x41, 0x3E, 0x7F, 0x49, 0x49, 0x49, 0x41, 0x7F, 0x09, 0x09, 0x09, 0x01, 0x3E, 0x41, 0x41, 0x51, 0x73, 0x7F, 0x08, 0x08, 0x08, 0x7F, 0x00, 0x41, 0x7F, 0x41, 0x00, 0x20, 0x40, 0x41, 0x3F, 0x01, 0x7F, 0x08, 0x14, 0x22, 0x41, 0x7F, 0x40, 0x40, 0x40, 0x40, 0x7F, 0x02, 0x1C, 0x02, 0x7F, 0x7F, 0x04, 0x08, 0x10, 0x7F, 0x3E, 0x41, 0x41, 0x41, 0x3E, 0x7F, 0x09, 0x09, 0x09, 0x06, 0x3E, 0x41, 0x51, 0x21, 0x5E, 0x7F, 0x09, 0x19, 0x29, 0x46, 0x26, 0x49, 0x49, 0x49, 0x32, 0x03, 0x01, 0x7F, 0x01, 0x03, 0x3F, 0x40, 0x40, 0x40, 0x3F, 0x1F, 0x20, 0x40, 0x20, 0x1F, 0x3F, 0x40, 0x38, 0x40, 0x3F, 0x63, 0x14, 0x08, 0x14, 0x63, 0x03, 0x04, 0x78, 0x04, 0x03, 0x61, 0x59, 0x49, 0x4D, 0x43, 0x00, 0x7F, 0x41, 0x41, 0x41, 0x02, 0x04, 0x08, 0x10, 0x20, 0x00, 0x41, 0x41, 0x41, 0x7F, 0x04, 0x02, 0x01, 0x02, 0x04, 0x40, 0x40, 0x40, 0x40, 0x40, 0x00, 0x03, 0x07, 0x08, 0x00, 0x20, 0x54, 0x54, 0x78, 0x40, 0x7F, 0x28, 0x44, 0x44, 0x38, 0x38, 0x44, 0x44, 0x44, 0x28, 0x38, 0x44, 0x44, 0x28, 0x7F, 0x38, 0x54, 0x54, 0x54, 0x18, 0x00, 0x08, 0x7E, 0x09, 0x02, 0x18, 0xA4, 0xA4, 0x9C, 0x78, 0x7F, 0x08, 0x04, 0x04, 0x78, 0x00, 0x44, 0x7D, 0x40, 0x00, 0x20, 0x40, 0x40, 0x3D, 0x00, 0x7F, 0x10, 0x28, 0x44, 0x00, 0x00, 0x41, 0x7F, 0x40, 0x00, 0x7C, 0x04, 0x78, 0x04, 0x78, 0x7C, 0x08, 0x04, 0x04, 0x78, 0x38, 0x44, 0x44, 0x44, 0x38, 0xFC, 0x18, 0x24, 0x24, 0x18, 0x18, 0x24, 0x24, 0x18, 0xFC, 0x7C, 0x08, 0x04, 0x04, 0x08, 0x48, 0x54, 0x54, 0x54, 0x24, 0x04, 0x04, 0x3F, 0x44, 0x24, 0x3C, 0x40, 0x40, 0x20, 0x7C, 0x1C, 0x20, 0x40, 0x20, 0x1C, 0x3C, 0x40, 0x30, 0x40, 0x3C, 0x44, 0x28, 0x10, 0x28, 0x44, 0x4C, 0x90, 0x90, 0x90, 0x7C, 0x44, 0x64, 0x54, 0x4C, 0x44, 0x00, 0x08, 0x36, 0x41, 0x00, 0x00, 0x00, 0x77, 0x00, 0x00, 0x00, 0x41, 0x36, 0x08, 0x00, 0x02, 0x01, 0x02, 0x04, 0x02, 0x3C, 0x26, 0x23, 0x26, 0x3C] # Display data width = None height = None pages = None buffer = None def isConnected(): if i2c != None: # Check I2C devices devices = i2c.scan() # returns list of slave addresses for d in devices: if d == SSD1306_I2C_ADDRESS: return True return False else: # No check for SPI return True def command1(c): if i2c != None: i2c.writeto(SSD1306_I2C_ADDRESS, bytearray([0, c])) else: DC_PIN.value(0) spi.write(bytes([c])) def command2(c1, c2): if i2c != None: i2c.writeto(SSD1306_I2C_ADDRESS, bytearray([0, c1, c2])) else: DC_PIN.value(0) spi.write(bytes([c1, c2])) def command3(c1, c2, c3): if i2c != None: i2c.writeto(SSD1306_I2C_ADDRESS, bytearray([0, c1, c2, c3])) else: DC_PIN.value(0) spi.write(bytes([c1, c2, c3])) def writeSPIData(data): DC_PIN.value(1) spi.write(bytes(data)) def initialize(type): global width, height, pages, buffer, i2c, spi if type == kDisplayI2C128x32: #128x32 I2C OLED Display width = 128 height = 32 pages = 4 # height/8 buffer = [0]*512 # 128*32/8 i2c = I2C(0, I2C.MASTER, baudrate=100000) initialize_128x32() if type == kDisplayI2C128x64: #128x64 I2C OLED Display width = 128 height = 64 pages = 8 # height/8 buffer = [0]*1024 # 128*64/8 i2c = I2C(0, I2C.MASTER, baudrate=100000) initialize_128x64() if type == kDisplaySPI128x32: #128x32 SPI OLED Display width = 128 height = 32 pages = 4 # height/8 buffer = [0]*512 # 128*32/8 spi = SPI(0, mode=SPI.MASTER, baudrate=1000000, polarity=0, phase=0, firstbit=SPI.MSB) RST_PIN.value(0) time.sleep(0.01) RST_PIN.value(1) initialize_128x32() if type == kDisplaySPI128x64: #128x64 SPI OLED Display width = 128 height = 64 pages = 8 # height/8 buffer = [0]*1024 # 128*64/8 spi = SPI(0, mode=SPI.MASTER, baudrate=1000000, polarity=0, phase=0, firstbit=SPI.MSB) RST_PIN.value(0) time.sleep(0.01) RST_PIN.value(1) initialize_128x64() def initialize_128x32(): command1(SSD1306_DISPLAYOFF) # 0xAE command2(SSD1306_SETDISPLAYCLOCKDIV, 0x80) # 0xD5 command2(SSD1306_SETMULTIPLEX, 0x1F) # 0xA8 command2(SSD1306_SETDISPLAYOFFSET, 0x0) # 0xD3 command1(SSD1306_SETSTARTLINE | 0x0) # line #0 command2(SSD1306_CHARGEPUMP, 0x14) # 0x8D command2(SSD1306_MEMORYMODE, 0x00) # 0x20 command3(SSD1306_COLUMNADDR, 0, width-1) command3(SSD1306_PAGEADDR, 0, pages-1) command1(SSD1306_SEGREMAP | 0x1) command1(SSD1306_COMSCANDEC) command2(SSD1306_SETCOMPINS, 0x02) # 0xDA command2(SSD1306_SETCONTRAST, 0x8F) # 0x81 command2(SSD1306_SETPRECHARGE, 0xF1) # 0xd9 command2(SSD1306_SETVCOMDETECT, 0x40) # 0xDB command1(SSD1306_DISPLAYALLON_RESUME) # 0xA4 command1(SSD1306_NORMALDISPLAY) # 0xA6 def initialize_128x64(): command1(SSD1306_DISPLAYOFF) # 0xAE command1(SSD1306_DISPLAYALLON_RESUME) # 0xA4 command2(SSD1306_SETDISPLAYCLOCKDIV, 0x80) # 0xD5 command2(SSD1306_SETMULTIPLEX, 0x3F) # 0xA8 command2(SSD1306_SETDISPLAYOFFSET, 0x0) # 0xD3 command1(SSD1306_SETSTARTLINE | 0x0) # line #0 command2(SSD1306_CHARGEPUMP, 0x14) # 0x8D command2(SSD1306_MEMORYMODE, 0x00) # 0x20 command3(SSD1306_COLUMNADDR, 0, width-1) command3(SSD1306_PAGEADDR, 0, pages-1) command1(SSD1306_SEGREMAP | 0x1) command1(SSD1306_COMSCANDEC) command2(SSD1306_SETCOMPINS, 0x12) # 0xDA command2(SSD1306_SETCONTRAST, 0xCF) # 0x81 command2(SSD1306_SETPRECHARGE, 0xF1) # 0xd9 command2(SSD1306_SETVCOMDETECT, 0x40) # 0xDB command1(SSD1306_NORMALDISPLAY) # 0xA6 command1(SSD1306_DISPLAYON) def set_contrast(contrast): # Sets the contrast of the display. Contrast should be a value between 0 and 255. if contrast < 0 or contrast > 255: print('Contrast must be a value from 0 to 255 (inclusive).') command2(SSD1306_SETCONTRAST, contrast) def displayOff(): command1(SSD1306_DISPLAYOFF) def displayOn(): command1(SSD1306_DISPLAYON) def clearBuffer(): for i in range(0, len(buffer)): buffer[i] = 0 def addString(x, y, str): symPos = width*y + 6*x for i in range(0, len(str)): c = 5*(ord(str[i]) - 32) buffer[symPos] = font[c] buffer[symPos + 1] = font[c+1] buffer[symPos + 2] = font[c+2] buffer[symPos + 3] = font[c+3] buffer[symPos + 4] = font[c+4] symPos += 6 def drawBuffer(): command1(SSD1306_SETLOWCOLUMN) command1(SSD1306_SETHIGHCOLUMN) command1(SSD1306_SETSTARTLINE) #Write display buffer to physical display. if spi != None: writeSPIData(buffer) else: line = [0]*17 line[0] = 0x40 for i in range(0, len(buffer), 16): for p in range(0, 16): line[p+1] = buffer[i + p] i2c.writeto(SSD1306_I2C_ADDRESS, bytearray(line)) if __name__ == "__main__": import sys, machine, os print("Started") displayType = kDisplayI2C128x64 initialize(displayType) if isConnected(): set_contrast(128) # 1-255 displayOn() clearBuffer() addString(0, 0, sys.platform + " " + sys.version) addString(0, 1, "---") addString(0, 2, "CPU: {} MHz".format(machine.freq()[0]/1000000)) addString(0, 4, "Version: {}".format(os.uname().release)) addString(0, 5, "LoPy font test") addString(0, 6, "AaBbCcDdEeFfGgHhIi") addString(0, 7, "0123456789012345") drawBuffer() else: print("Error: LCD not found") print("Done")
[ "machine.SPI", "machine.freq", "time.sleep", "machine.Pin", "machine.I2C", "os.uname" ]
[((740, 778), 'machine.Pin', 'Pin', (['pins.DISPLAY_DC_PIN'], {'mode': 'Pin.OUT'}), '(pins.DISPLAY_DC_PIN, mode=Pin.OUT)\n', (743, 778), False, 'from machine import Pin\n'), ((789, 828), 'machine.Pin', 'Pin', (['pins.DISPLAY_RES_PIN'], {'mode': 'Pin.OUT'}), '(pins.DISPLAY_RES_PIN, mode=Pin.OUT)\n', (792, 828), False, 'from machine import Pin\n'), ((6463, 6498), 'machine.I2C', 'I2C', (['(0)', 'I2C.MASTER'], {'baudrate': '(100000)'}), '(0, I2C.MASTER, baudrate=100000)\n', (6466, 6498), False, 'from machine import I2C\n'), ((6715, 6750), 'machine.I2C', 'I2C', (['(0)', 'I2C.MASTER'], {'baudrate': '(100000)'}), '(0, I2C.MASTER, baudrate=100000)\n', (6718, 6750), False, 'from machine import I2C\n'), ((6966, 7051), 'machine.SPI', 'SPI', (['(0)'], {'mode': 'SPI.MASTER', 'baudrate': '(1000000)', 'polarity': '(0)', 'phase': '(0)', 'firstbit': 'SPI.MSB'}), '(0, mode=SPI.MASTER, baudrate=1000000, polarity=0, phase=0, firstbit=SPI.MSB\n )\n', (6969, 7051), False, 'from machine import SPI\n'), ((7080, 7096), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (7090, 7096), False, 'import time\n'), ((7338, 7423), 'machine.SPI', 'SPI', (['(0)'], {'mode': 'SPI.MASTER', 'baudrate': '(1000000)', 'polarity': '(0)', 'phase': '(0)', 'firstbit': 'SPI.MSB'}), '(0, mode=SPI.MASTER, baudrate=1000000, polarity=0, phase=0, firstbit=SPI.MSB\n )\n', (7341, 7423), False, 'from machine import SPI\n'), ((7452, 7468), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (7462, 7468), False, 'import time\n'), ((11289, 11299), 'os.uname', 'os.uname', ([], {}), '()\n', (11297, 11299), False, 'import sys, machine, os\n'), ((11215, 11229), 'machine.freq', 'machine.freq', ([], {}), '()\n', (11227, 11229), False, 'import sys, machine, os\n')]
import matplotlib.pyplot as plt from math import gcd y = [1, 1] for n in range(2, 10 ** 3): if gcd(n, y[n - 1]) == 1: y.append(y[n - 1] + n + 1) else: y.append(int(y[n - 1] / gcd(n, y[n-1]))) x = range(len(y)) plt.figure("A133058 - Fly straight, dammit") plt.scatter(x, y, s=8) plt.xlabel('n') plt.ylabel('A133058(n)') plt.title("A133058 - Fly straight, dammit") plt.show()
[ "matplotlib.pyplot.ylabel", "math.gcd", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.figure", "matplotlib.pyplot.scatter", "matplotlib.pyplot.title", "matplotlib.pyplot.show" ]
[((237, 281), 'matplotlib.pyplot.figure', 'plt.figure', (['"""A133058 - Fly straight, dammit"""'], {}), "('A133058 - Fly straight, dammit')\n", (247, 281), True, 'import matplotlib.pyplot as plt\n'), ((282, 304), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'s': '(8)'}), '(x, y, s=8)\n', (293, 304), True, 'import matplotlib.pyplot as plt\n'), ((305, 320), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""n"""'], {}), "('n')\n", (315, 320), True, 'import matplotlib.pyplot as plt\n'), ((321, 345), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""A133058(n)"""'], {}), "('A133058(n)')\n", (331, 345), True, 'import matplotlib.pyplot as plt\n'), ((346, 389), 'matplotlib.pyplot.title', 'plt.title', (['"""A133058 - Fly straight, dammit"""'], {}), "('A133058 - Fly straight, dammit')\n", (355, 389), True, 'import matplotlib.pyplot as plt\n'), ((390, 400), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (398, 400), True, 'import matplotlib.pyplot as plt\n'), ((101, 117), 'math.gcd', 'gcd', (['n', 'y[n - 1]'], {}), '(n, y[n - 1])\n', (104, 117), False, 'from math import gcd\n'), ((201, 217), 'math.gcd', 'gcd', (['n', 'y[n - 1]'], {}), '(n, y[n - 1])\n', (204, 217), False, 'from math import gcd\n')]
import functools from eth_abi import ( encode_abi as eth_abi_encode_abi ) from eth_utils import ( function_abi_to_4byte_selector, encode_hex, add_0x_prefix, ) from web3.utils.abi import ( filter_by_type, filter_by_name, filter_by_argument_count, filter_by_encodability, get_abi_input_types, map_abi_data, merge_args_and_kwargs, check_if_arguments_can_be_encoded, ) from web3.utils.datastructures import ( HexBytes, ) from web3.utils.normalizers import ( abi_address_to_hex, abi_bytes_to_hex, abi_ens_resolver, abi_string_to_hex, hexstrs_to_bytes, ) from web3.utils.encoding import ( to_hex, ) from eth_abi.exceptions import ( EncodingError, ) def find_matching_fn_abi(abi, fn_name=None, args=None, kwargs=None): filters = [] if fn_name: filters.append(functools.partial(filter_by_name, fn_name)) if args is not None or kwargs is not None: if args is None: args = tuple() if kwargs is None: kwargs = {} num_arguments = len(args) + len(kwargs) filters.extend([ functools.partial(filter_by_argument_count, num_arguments), functools.partial(filter_by_encodability, args, kwargs), ]) function_candidates = filter_by_type('function', abi) for filter_fn in filters: function_candidates = filter_fn(function_candidates) if len(function_candidates) == 1: return function_candidates[0] elif not function_candidates: break if not function_candidates: raise ValueError("No matching functions found") else: raise ValueError("Multiple functions found") def encode_abi(web3, abi, arguments, data=None): argument_types = get_abi_input_types(abi) if not check_if_arguments_can_be_encoded(abi, arguments, {}): raise TypeError( "One or more arguments could not be encoded to the necessary " "ABI type. Expected types are: {0}".format( ', '.join(argument_types), ) ) try: normalizers = [ abi_ens_resolver(web3), abi_address_to_hex, abi_bytes_to_hex, abi_string_to_hex, hexstrs_to_bytes, ] normalized_arguments = map_abi_data( normalizers, argument_types, arguments, ) encoded_arguments = eth_abi_encode_abi( argument_types, normalized_arguments, ) except EncodingError as e: raise TypeError( "One or more arguments could not be encoded to the necessary " "ABI type: {0}".format(str(e)) ) if data: return to_hex(HexBytes(data) + encoded_arguments) else: return encode_hex(encoded_arguments) def prepare_transaction(abi, address, web3, fn_name, fn_args=None, fn_kwargs=None, transaction=None): """ Returns a dictionary of the transaction that could be used to call this TODO: make this a public API TODO: add new prepare_deploy_transaction API """ if transaction is None: prepared_transaction = {} else: prepared_transaction = dict(**transaction) if 'data' in prepared_transaction: raise ValueError("Transaction parameter may not contain a 'data' key") if address: prepared_transaction.setdefault('to', address) prepared_transaction['data'] = encode_transaction_data( abi, web3, fn_name, fn_args, fn_kwargs, ) return prepared_transaction def encode_transaction_data(abi, web3, fn_name, args=None, kwargs=None): fn_abi, fn_selector, fn_arguments = get_function_info( abi, fn_name, args, kwargs, ) return add_0x_prefix(encode_abi(web3, fn_abi, fn_arguments, fn_selector)) def get_function_info(abi, fn_name, args=None, kwargs=None): if args is None: args = tuple() if kwargs is None: kwargs = {} fn_abi = find_matching_fn_abi(abi, fn_name, args, kwargs) fn_selector = encode_hex(function_abi_to_4byte_selector(fn_abi)) fn_arguments = merge_args_and_kwargs(fn_abi, args, kwargs) return fn_abi, fn_selector, fn_arguments
[ "web3.utils.abi.map_abi_data", "web3.utils.abi.filter_by_type", "eth_abi.encode_abi", "functools.partial", "eth_utils.encode_hex", "web3.utils.abi.check_if_arguments_can_be_encoded", "eth_utils.function_abi_to_4byte_selector", "web3.utils.datastructures.HexBytes", "web3.utils.normalizers.abi_ens_resolver", "web3.utils.abi.get_abi_input_types", "web3.utils.abi.merge_args_and_kwargs" ]
[((1299, 1330), 'web3.utils.abi.filter_by_type', 'filter_by_type', (['"""function"""', 'abi'], {}), "('function', abi)\n", (1313, 1330), False, 'from web3.utils.abi import filter_by_type, filter_by_name, filter_by_argument_count, filter_by_encodability, get_abi_input_types, map_abi_data, merge_args_and_kwargs, check_if_arguments_can_be_encoded\n'), ((1788, 1812), 'web3.utils.abi.get_abi_input_types', 'get_abi_input_types', (['abi'], {}), '(abi)\n', (1807, 1812), False, 'from web3.utils.abi import filter_by_type, filter_by_name, filter_by_argument_count, filter_by_encodability, get_abi_input_types, map_abi_data, merge_args_and_kwargs, check_if_arguments_can_be_encoded\n'), ((4340, 4383), 'web3.utils.abi.merge_args_and_kwargs', 'merge_args_and_kwargs', (['fn_abi', 'args', 'kwargs'], {}), '(fn_abi, args, kwargs)\n', (4361, 4383), False, 'from web3.utils.abi import filter_by_type, filter_by_name, filter_by_argument_count, filter_by_encodability, get_abi_input_types, map_abi_data, merge_args_and_kwargs, check_if_arguments_can_be_encoded\n'), ((1825, 1878), 'web3.utils.abi.check_if_arguments_can_be_encoded', 'check_if_arguments_can_be_encoded', (['abi', 'arguments', '{}'], {}), '(abi, arguments, {})\n', (1858, 1878), False, 'from web3.utils.abi import filter_by_type, filter_by_name, filter_by_argument_count, filter_by_encodability, get_abi_input_types, map_abi_data, merge_args_and_kwargs, check_if_arguments_can_be_encoded\n'), ((2338, 2390), 'web3.utils.abi.map_abi_data', 'map_abi_data', (['normalizers', 'argument_types', 'arguments'], {}), '(normalizers, argument_types, arguments)\n', (2350, 2390), False, 'from web3.utils.abi import filter_by_type, filter_by_name, filter_by_argument_count, filter_by_encodability, get_abi_input_types, map_abi_data, merge_args_and_kwargs, check_if_arguments_can_be_encoded\n'), ((2466, 2522), 'eth_abi.encode_abi', 'eth_abi_encode_abi', (['argument_types', 'normalized_arguments'], {}), '(argument_types, normalized_arguments)\n', (2484, 2522), True, 'from eth_abi import encode_abi as eth_abi_encode_abi\n'), ((2839, 2868), 'eth_utils.encode_hex', 'encode_hex', (['encoded_arguments'], {}), '(encoded_arguments)\n', (2849, 2868), False, 'from eth_utils import function_abi_to_4byte_selector, encode_hex, add_0x_prefix\n'), ((4280, 4318), 'eth_utils.function_abi_to_4byte_selector', 'function_abi_to_4byte_selector', (['fn_abi'], {}), '(fn_abi)\n', (4310, 4318), False, 'from eth_utils import function_abi_to_4byte_selector, encode_hex, add_0x_prefix\n'), ((851, 893), 'functools.partial', 'functools.partial', (['filter_by_name', 'fn_name'], {}), '(filter_by_name, fn_name)\n', (868, 893), False, 'import functools\n'), ((2150, 2172), 'web3.utils.normalizers.abi_ens_resolver', 'abi_ens_resolver', (['web3'], {}), '(web3)\n', (2166, 2172), False, 'from web3.utils.normalizers import abi_address_to_hex, abi_bytes_to_hex, abi_ens_resolver, abi_string_to_hex, hexstrs_to_bytes\n'), ((1132, 1190), 'functools.partial', 'functools.partial', (['filter_by_argument_count', 'num_arguments'], {}), '(filter_by_argument_count, num_arguments)\n', (1149, 1190), False, 'import functools\n'), ((1204, 1259), 'functools.partial', 'functools.partial', (['filter_by_encodability', 'args', 'kwargs'], {}), '(filter_by_encodability, args, kwargs)\n', (1221, 1259), False, 'import functools\n'), ((2778, 2792), 'web3.utils.datastructures.HexBytes', 'HexBytes', (['data'], {}), '(data)\n', (2786, 2792), False, 'from web3.utils.datastructures import HexBytes\n')]
# -*- coding: utf-8 -*- # ----------------------------------------------------------- # Copyright (C) 2009 StatPro Italia s.r.l. # # StatPro Italia # Via <NAME> 4 # I-20123 Milano # ITALY # # phone: +39 02 96875 1 # fax: +39 02 96875 605 # # email: <EMAIL> # # This program is distributed in the hope that it will be # useful, but WITHOUT ANY WARRANTY; without even the # warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR # PURPOSE. See the license for more details. # ----------------------------------------------------------- # # Author: <NAME> <<EMAIL>> """DRMAA C library function wrappers""" from __future__ import absolute_import from ctypes import * from ctypes.util import find_library from somadrmaa.errors import error_check, error_buffer from soma_workflow.utils import DetectFindLib import os _drmaa_lib_env_name = 'DRMAA_LIBRARY_PATH' (DRMMA_LIB_FOUND, _lib) = DetectFindLib(_drmaa_lib_env_name, 'drmaa') STRING = c_char_p size_t = c_ulong ptrdiff_t = c_int drmaa_init = _lib.drmaa_init drmaa_init.restype = error_check drmaa_init.argtypes = [STRING, STRING, size_t] drmaa_exit = _lib.drmaa_exit drmaa_exit.restype = error_check drmaa_exit.argtypes = [STRING, size_t] def init(contact=None): return _lib.drmaa_init(contact, error_buffer, sizeof(error_buffer)) _lib.drmaa_exit.argtypes = [c_char_p, c_size_t] _lib.drmaa_init.restype = error_check def exit(): return _lib.drmaa_exit(error_buffer, sizeof(error_buffer)) # structures class drmaa_job_template_s(Structure): pass drmaa_job_template_t = drmaa_job_template_s drmaa_job_template_s._fields_ = [ ] class drmaa_attr_names_s(Structure): pass drmaa_attr_names_t = drmaa_attr_names_s drmaa_attr_names_s._fields_ = [ ] class drmaa_attr_values_s(Structure): pass drmaa_attr_values_t = drmaa_attr_values_s drmaa_attr_values_s._fields_ = [ ] class drmaa_job_ids_s(Structure): pass drmaa_job_ids_t = drmaa_job_ids_s drmaa_job_ids_s._fields_ = [ ] drmaa_get_contact = _lib.drmaa_get_contact drmaa_get_contact.restype = error_check drmaa_get_contact.argtypes = [STRING, size_t, STRING, size_t] drmaa_version = _lib.drmaa_version drmaa_version.restype = error_check drmaa_version.argtypes = [POINTER(c_uint), POINTER(c_uint), STRING, size_t] drmaa_get_DRM_system = _lib.drmaa_get_DRM_system drmaa_get_DRM_system.restype = error_check drmaa_get_DRM_system.argtypes = [STRING, size_t, STRING, size_t] drmaa_get_DRMAA_implementation = _lib.drmaa_get_DRMAA_implementation drmaa_get_DRMAA_implementation.restype = error_check drmaa_get_DRMAA_implementation.argtypes = [STRING, size_t, STRING, size_t] drmaa_allocate_job_template = _lib.drmaa_allocate_job_template drmaa_allocate_job_template.restype = error_check drmaa_allocate_job_template.argtypes = [ POINTER(POINTER(drmaa_job_template_t)), STRING, size_t] drmaa_delete_job_template = _lib.drmaa_delete_job_template drmaa_delete_job_template.restype = error_check drmaa_delete_job_template.argtypes = [ POINTER(drmaa_job_template_t), STRING, size_t] drmaa_set_attribute = _lib.drmaa_set_attribute drmaa_set_attribute.restype = error_check drmaa_set_attribute.argtypes = [POINTER(drmaa_job_template_t), STRING, STRING, STRING, size_t] drmaa_get_attribute = _lib.drmaa_get_attribute drmaa_get_attribute.restype = error_check drmaa_get_attribute.argtypes = [POINTER(drmaa_job_template_t), STRING, STRING, size_t, STRING, size_t] drmaa_get_next_attr_name = _lib.drmaa_get_next_attr_name drmaa_get_next_attr_name.restype = c_int drmaa_get_next_attr_name.argtypes = [ POINTER(drmaa_attr_names_t), STRING, size_t] drmaa_get_next_attr_value = _lib.drmaa_get_next_attr_value drmaa_get_next_attr_value.restype = c_int drmaa_get_next_attr_value.argtypes = [ POINTER(drmaa_attr_values_t), STRING, size_t] drmaa_get_next_job_id = _lib.drmaa_get_next_job_id drmaa_get_next_job_id.restype = error_check drmaa_get_next_job_id.argtypes = [POINTER(drmaa_job_ids_t), STRING, size_t] drmaa_release_attr_names = _lib.drmaa_release_attr_names drmaa_release_attr_names.restype = None drmaa_release_attr_names.argtypes = [POINTER(drmaa_attr_names_t)] drmaa_release_attr_values = _lib.drmaa_release_attr_values drmaa_release_attr_values.restype = None drmaa_release_attr_values.argtypes = [POINTER(drmaa_attr_values_t)] drmaa_release_job_ids = _lib.drmaa_release_job_ids drmaa_release_job_ids.restype = None drmaa_release_job_ids.argtypes = [POINTER(drmaa_job_ids_t)] drmaa_set_vector_attribute = _lib.drmaa_set_vector_attribute drmaa_set_vector_attribute.restype = error_check drmaa_set_vector_attribute.argtypes = [POINTER(drmaa_job_template_t), STRING, POINTER(STRING), STRING, size_t] drmaa_get_vector_attribute = _lib.drmaa_get_vector_attribute drmaa_get_vector_attribute.restype = error_check drmaa_get_vector_attribute.argtypes = [POINTER(drmaa_job_template_t), STRING, POINTER(POINTER(drmaa_attr_values_t)), STRING, size_t] drmaa_get_attribute_names = _lib.drmaa_get_attribute_names drmaa_get_attribute_names.restype = error_check drmaa_get_attribute_names.argtypes = [ POINTER(POINTER(drmaa_attr_names_t)), STRING, size_t] drmaa_get_vector_attribute_names = _lib.drmaa_get_vector_attribute_names drmaa_get_vector_attribute_names.restype = error_check drmaa_get_vector_attribute_names.argtypes = [ POINTER(POINTER(drmaa_attr_names_t)), STRING, size_t] try: drmaa_get_num_attr_names = _lib.drmaa_get_num_attr_names drmaa_get_num_attr_names.restype = c_int drmaa_get_num_attr_names.argtypes = [ POINTER(drmaa_attr_names_t), POINTER(c_int)] drmaa_get_num_attr_values = _lib.drmaa_get_num_attr_values drmaa_get_num_attr_values.restype = c_int drmaa_get_num_attr_values.argtypes = [ POINTER(drmaa_attr_values_t), POINTER(c_int)] except AttributeError: # the above are present from 1.0 onward only pass drmaa_run_job = _lib.drmaa_run_job drmaa_run_job.restype = error_check drmaa_run_job.argtypes = [ STRING, size_t, POINTER(drmaa_job_template_t), STRING, size_t] drmaa_run_bulk_jobs = _lib.drmaa_run_bulk_jobs drmaa_run_bulk_jobs.restype = error_check drmaa_run_bulk_jobs.argtypes = [POINTER(POINTER(drmaa_job_ids_t)), POINTER(drmaa_job_template_t), c_int, c_int, c_int, STRING, size_t] drmaa_control = _lib.drmaa_control drmaa_control.restype = error_check drmaa_control.argtypes = [STRING, c_int, STRING, size_t] drmaa_synchronize = _lib.drmaa_synchronize drmaa_synchronize.restype = error_check drmaa_synchronize.argtypes = [POINTER(STRING), c_long, c_int, STRING, size_t] drmaa_wait = _lib.drmaa_wait drmaa_wait.restype = error_check drmaa_wait.argtypes = [STRING, STRING, size_t, POINTER(c_int), c_long, POINTER(POINTER(drmaa_attr_values_t)), STRING, size_t] drmaa_wifexited = _lib.drmaa_wifexited drmaa_wifexited.restype = error_check drmaa_wifexited.argtypes = [POINTER(c_int), c_int, STRING, size_t] drmaa_wexitstatus = _lib.drmaa_wexitstatus drmaa_wexitstatus.restype = error_check drmaa_wexitstatus.argtypes = [POINTER(c_int), c_int, STRING, size_t] drmaa_wifsignaled = _lib.drmaa_wifsignaled drmaa_wifsignaled.restype = error_check drmaa_wifsignaled.argtypes = [POINTER(c_int), c_int, STRING, size_t] drmaa_wtermsig = _lib.drmaa_wtermsig drmaa_wtermsig.restype = error_check drmaa_wtermsig.argtypes = [STRING, size_t, c_int, STRING, size_t] drmaa_wcoredump = _lib.drmaa_wcoredump drmaa_wcoredump.restype = error_check drmaa_wcoredump.argtypes = [POINTER(c_int), c_int, STRING, size_t] drmaa_wifaborted = _lib.drmaa_wifaborted drmaa_wifaborted.restype = error_check drmaa_wifaborted.argtypes = [POINTER(c_int), c_int, STRING, size_t] drmaa_job_ps = _lib.drmaa_job_ps drmaa_job_ps.restype = error_check drmaa_job_ps.argtypes = [STRING, POINTER(c_int), STRING, size_t] drmaa_strerror = _lib.drmaa_strerror drmaa_strerror.restype = STRING drmaa_strerror.argtypes = [c_int] ''' Missing api drmaa_get_num_job_ids drmaa_read_configuration_file drmaa_read_configuration '''
[ "soma_workflow.utils.DetectFindLib" ]
[((901, 944), 'soma_workflow.utils.DetectFindLib', 'DetectFindLib', (['_drmaa_lib_env_name', '"""drmaa"""'], {}), "(_drmaa_lib_env_name, 'drmaa')\n", (914, 944), False, 'from soma_workflow.utils import DetectFindLib\n')]
import myRecorder as rcd import matplotlib.pyplot as plt import numpy as np DURATION = 30 fig = plt.figure() ax = fig.add_subplot(211) ax.set_ylim(-5e4,5e4) ax2 = fig.add_subplot(212) fig.show() data_array = [] try: rec = rcd.Recorder(channels = 1, rate = 44100, chunk_size = 1024, num_chunk = 8, device_name = 'Line (U24XL with SPDIF I/O)') rec.stream_init(playback = False) except Exception as e: print(e) quit() #rec.current_device_info() line = ax.plot(range(len(rec.get_buffer())),rec.get_buffer())[0] data_array= np.append(data_array,rec.signal_data) line2 = ax2.plot(range(5),range(5))[0] samples = 1000 try: #while True: for _ in range(samples): data_array= np.append(data_array,rec.signal_data) #print(data_array) #ax2.cla() #ax2.plot(range(len(data_array)),data_array) line.set_ydata(rec.get_buffer()) fig.canvas.draw() fig.canvas.flush_events() except Exception as e: print('Some error happened!') print(e) finally: rec.stream_stop() rec.close() #plt.close(fig)
[ "numpy.append", "matplotlib.pyplot.figure", "myRecorder.Recorder" ]
[((98, 110), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (108, 110), True, 'import matplotlib.pyplot as plt\n'), ((633, 671), 'numpy.append', 'np.append', (['data_array', 'rec.signal_data'], {}), '(data_array, rec.signal_data)\n', (642, 671), True, 'import numpy as np\n'), ((230, 343), 'myRecorder.Recorder', 'rcd.Recorder', ([], {'channels': '(1)', 'rate': '(44100)', 'chunk_size': '(1024)', 'num_chunk': '(8)', 'device_name': '"""Line (U24XL with SPDIF I/O)"""'}), "(channels=1, rate=44100, chunk_size=1024, num_chunk=8,\n device_name='Line (U24XL with SPDIF I/O)')\n", (242, 343), True, 'import myRecorder as rcd\n'), ((822, 860), 'numpy.append', 'np.append', (['data_array', 'rec.signal_data'], {}), '(data_array, rec.signal_data)\n', (831, 860), True, 'import numpy as np\n')]
# Copyright (c) 2019. Partners HealthCare and other members of # Forome Association # # Developed by <NAME> based on contributions by <NAME>, # <NAME>, <NAME> and other members of Division of # Genetics, Brigham and Women's Hospital # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numbers from io import StringIO from xml.sax.saxutils import escape #=============================================== def htmlEscape(val): if val is None: return "null" if val == "": return "" return escape(str(val)) #=============================================== def jsonHtmlRepr(obj, level = 0): if obj is None: return "null" if isinstance(obj, str): return htmlEscape(obj) if isinstance(obj, numbers.Number): return str(obj) if isinstance(obj, dict): if level < 2: ret = [] for key in sorted(obj.keys()): if level == 0: ret.append("<b>%s</b>: " % htmlEscape(key)) ret.append("<br/>") else: ret.append("%s: " % htmlEscape(key)) rep_val = jsonHtmlRepr(obj[key], level + 1) if level == 0: rep_val = htmlEscape(rep_val) ret.append(rep_val) ret.append(", ") if level == 0: ret.append("<br/>") while len(ret) > 0 and ret[-1] in ("<br/>", ", "): del ret[-1] return ''.join(ret) return '{' + ', '.join(['%s:"%s"' % (key, jsonHtmlRepr(obj[key], level + 1)) for key in sorted(obj.keys())]) + '}' elif isinstance(obj, list): ret = '[' + ', '.join([jsonHtmlRepr(sub_obj, level + 1) for sub_obj in obj]) + ']' if level == 0: return htmlEscape(ret) return ret return '???' #=============================================== def vcfRepr(vcf_content): output = StringIO() collect_str = "" for fld in vcf_content.split('\t'): if len(fld) < 40: if len(collect_str) < 60: collect_str += "\t" + fld else: print(collect_str[1:], file = output) collect_str = "\t" + fld continue if collect_str: print(collect_str[1:], file = output) collect_str = "" for vv in fld.split(';'): var, q, val = vv.partition('=') if var == "CSQ": print("==v====SCQ======v========", file = output) for idx, dt in enumerate(val.split(',')): ddd = dt.split('|') print("%d:\t%s" % (idx, '|'.join(ddd[:12])), file = output) print("\t|%s" % ('|'.join(ddd[12:29])), file = output) print("\t|%s" % ('|'.join(ddd[28:33])), file = output) print("\t|%s" % ('|'.join(ddd[33:40])), file = output) print("\t|%s" % ('|'.join(ddd[40:50])), file = output) print("\t|%s" % ('|'.join(ddd[50:])), file = output) print("==^====SCQ======^========", file = output) else: print(vv, file = output) if collect_str: print(collect_str[1:], file = output) return output.getvalue()
[ "io.StringIO" ]
[((2499, 2509), 'io.StringIO', 'StringIO', ([], {}), '()\n', (2507, 2509), False, 'from io import StringIO\n')]
import glob from ftplib import FTP import numpy as np import pandas import requests def main(): OutDir = r'W:\Projets\EC_stations_download\\' if not glob.os.path.exists(OutDir): glob.os.makedirs(OutDir) # Connect and login ftp = FTP('ftp.tor.ec.gc.ca') ftp.login('client_climate') # Change working directory ftp.cwd('/Pub/Get_More_Data_Plus_de_donnees') # Download station inventory info filename = 'Station Inventory EN.csv' ftp.retrbinary("RETR " + filename, open(OutDir + filename, 'wb').write) # import station inventory as pandas dataframe stats = pandas.read_csv(OutDir + filename, header=3) download_daily(stats, OutDir) download_hourly(stats, OutDir) def download_hourly(stats, OutDir): # get daily station data time_step = 'HLY' timeframe = 'timeframe=1' # Corresponding code for hourly from readme info stats = stats[ stats[time_step + ' First Year'].notnull()] # stats[:][~np.isnan(stats[time_step +' First Year' ])] #get data stats = stats[stats[time_step + ' Last Year'].notnull()] # stats[:][~np.isnan(stats[time_step +' Last Year' ])] for index, row in stats.iterrows(): # Only get eastern provinces for now if 'QUEBEC' in row['Province']: # \ # or 'ONTARIO' in row['Province']\ # or 'NOVA SCOTIA' in row['Province']\ # or 'PRINCE EDWARD ISLAND' in row['Province']\ # or 'ONTARIO' in row['Province']\ # or 'NEWFOUNDLAND' in row['Province']\ # or 'NEW BRUNSWICK' in row['Province']\ # or 'MANITOBA' in row['Province']: # check that station has a first and last year value for HLY time step if not np.isnan(row[time_step + ' First Year']) and not np.isnan(row[time_step + ' Last Year']): # output directory name print(row['Name']) outrep1 = OutDir + time_step + '\\' + row['Province'].replace(' ', '_') + '\\' + row[ 'Climate ID'] + '_' + row['Name'].replace('\\', '_').replace('/', '_').replace(' ', '_') # create if necessary if not glob.os.path.exists(outrep1): glob.os.makedirs(outrep1) # loop through years and download for y in range(int(row[time_step + ' First Year']), int(row[time_step + ' Last Year'] + 1)): for m in range(1, 13): URL = 'http://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&stationID=' + str( row['Station ID']) + '&Year=' + str(y) + '&Month=' + str( m) + '&' + timeframe + '&submit= Download+Data' r = requests.get(URL) outfile = outrep1 + '\\' + row['Climate ID'] + '_' + row['Name'].replace('\\', '_').replace('/', '_').replace( ' ', '_') + '_' + str(y) + '_' + str(m).zfill(2) + '_' + time_step + '.csv' with open(outfile, 'wb') as f: f.write(r.content) def download_daily(stats, OutDir): # get daily station data time_step = 'DLY' timeframe = 'timeframe=2' # Corresponding code for daily from readme info for d in range(0, len(stats['Name'])): # check that station has a first and last year value for DLY time step if not np.isnan(stats[time_step + ' First Year'][d]) and not np.isnan(stats[time_step + ' Last Year'][d]): # output directory name outrep1 = OutDir + time_step + '\\' + stats['Province'][d].replace(' ', '_') + '\\' + stats['Climate ID'][ d] + '_' + stats['Name'][d].replace('\\', '_').replace('/', '_').replace(' ', '_') # create if necessary if not glob.os.path.exists(outrep1): glob.os.makedirs(outrep1) # loop through years and download for y in range(int(stats[time_step + ' First Year'][d]), int(stats[time_step + ' Last Year'][d] + 1)): URL = 'http://climate.weather.gc.ca/climate_data/bulk_data_e.html?format=csv&stationID=' + str( stats['Station ID'][d]) + '&Year=' + str(y) + '&' + timeframe + '&submit= Download+Data' r = requests.get(URL) outfile = outrep1 + '\\' + stats['Climate ID'][d] + '_' + stats['Name'][d].replace('\\', '_').replace( '/', '_').replace(' ', '_') + '_' + str(y) + '_' + time_step + '.csv' with open(outfile, 'wb') as f: f.write(r.content) if __name__ == '__main__': main()
[ "ftplib.FTP", "pandas.read_csv", "requests.get", "numpy.isnan", "glob.os.makedirs", "glob.os.path.exists" ]
[((257, 280), 'ftplib.FTP', 'FTP', (['"""ftp.tor.ec.gc.ca"""'], {}), "('ftp.tor.ec.gc.ca')\n", (260, 280), False, 'from ftplib import FTP\n'), ((615, 659), 'pandas.read_csv', 'pandas.read_csv', (['(OutDir + filename)'], {'header': '(3)'}), '(OutDir + filename, header=3)\n', (630, 659), False, 'import pandas\n'), ((160, 187), 'glob.os.path.exists', 'glob.os.path.exists', (['OutDir'], {}), '(OutDir)\n', (179, 187), False, 'import glob\n'), ((197, 221), 'glob.os.makedirs', 'glob.os.makedirs', (['OutDir'], {}), '(OutDir)\n', (213, 221), False, 'import glob\n'), ((3551, 3596), 'numpy.isnan', 'np.isnan', (["stats[time_step + ' First Year'][d]"], {}), "(stats[time_step + ' First Year'][d])\n", (3559, 3596), True, 'import numpy as np\n'), ((3605, 3649), 'numpy.isnan', 'np.isnan', (["stats[time_step + ' Last Year'][d]"], {}), "(stats[time_step + ' Last Year'][d])\n", (3613, 3649), True, 'import numpy as np\n'), ((3958, 3986), 'glob.os.path.exists', 'glob.os.path.exists', (['outrep1'], {}), '(outrep1)\n', (3977, 3986), False, 'import glob\n'), ((4004, 4029), 'glob.os.makedirs', 'glob.os.makedirs', (['outrep1'], {}), '(outrep1)\n', (4020, 4029), False, 'import glob\n'), ((4432, 4449), 'requests.get', 'requests.get', (['URL'], {}), '(URL)\n', (4444, 4449), False, 'import requests\n'), ((1745, 1785), 'numpy.isnan', 'np.isnan', (["row[time_step + ' First Year']"], {}), "(row[time_step + ' First Year'])\n", (1753, 1785), True, 'import numpy as np\n'), ((1794, 1833), 'numpy.isnan', 'np.isnan', (["row[time_step + ' Last Year']"], {}), "(row[time_step + ' Last Year'])\n", (1802, 1833), True, 'import numpy as np\n'), ((2182, 2210), 'glob.os.path.exists', 'glob.os.path.exists', (['outrep1'], {}), '(outrep1)\n', (2201, 2210), False, 'import glob\n'), ((2232, 2257), 'glob.os.makedirs', 'glob.os.makedirs', (['outrep1'], {}), '(outrep1)\n', (2248, 2257), False, 'import glob\n'), ((2770, 2787), 'requests.get', 'requests.get', (['URL'], {}), '(URL)\n', (2782, 2787), False, 'import requests\n')]
from datetime import datetime from django.utils import timezone from django import forms # from django.contrib.admin import widgets # from django.core.exceptions import ValidationError from django.shortcuts import get_object_or_404 from leaflet.forms.widgets import LeafletWidget from tags.widgets import TagAutoSuggestSelect2 from .models import Project, ProjectAsset, Interview, InterviewAsset, LayerGroup, HeritageGISLayer, HeritageAsset,\ Place, AlternatePlaceName, CommonPlaceName from assets.forms import SecureAssetForm from geoinfo.forms import GISLayerForm class ProjectForm(forms.ModelForm): # Not needed for Heritage app. # shapefile = forms.FileField(help_text="Upload a spatial data file for this project location.") class Meta: model = Project # fields = '__all__' fields = ['name', 'picture', 'phase_code', 'start_date', 'end_date', 'location', 'background'] # TODO Come up with a prettier format for materializecss help text. # Using this here to override ugly help text. help_texts = { 'phase_code': "" } class InterviewForm(forms.ModelForm): ''' Splits the datetime field into two fields managed by separate materialized widgets: time_picker, date_picker. ''' time_picker = forms.TimeField( label='Time', initial=timezone.localtime(timezone.now()).time().strftime('%I:%M%p'), input_formats=[ '%H:%M:%S', # '14:30:59' '%H:%M', # '14:30', '%I:%M%p', # '5:30 AM', ] ) date_picker = forms.DateField( label='Date', initial=timezone.now().date() ) def __init__(self, *args, **kwargs): project_pk = kwargs.pop('project_pk', None) super(InterviewForm, self).__init__(*args, **kwargs) # set date field to not required, we will set it's value in the clean via the time/date picker values. self.fields['date'].required = False if project_pk: self.fields['phase'].queryset = Project.objects.filter(pk=project_pk) # Raise 404 if the project doesn't exist. self.fields['phase'].initial = get_object_or_404(Project, pk=project_pk) self.project_instance = self.fields['phase'].initial def clean_phase(self): data = self.cleaned_data['phase'] if data != self.project_instance: raise forms.ValidationError("Project must be set to:", str(self.project_instance)) return data def clean_primary_interviewer(self): data = self.cleaned_data['primary_interviewer'] if data is None: raise forms.ValidationError("This field is required") return data def clean_date(self): date = self.cleaned_data.get("date_picker") time = self.cleaned_data.get("time_picker") try: date_and_time = datetime.combine(date, time) return date_and_time except TypeError as err: raise forms.ValidationError("Failed to validate datetime:", str(err)) class Meta: model = Interview # fields = '__all__' fields = ('phase', 'date_picker', 'time_picker', 'date', 'primary_interviewer', 'other_interviewers', 'participant_number', 'community', 'type', 'participants', 'attendees', ) class LayerGroupForm(forms.ModelForm): def __init__(self, *args, **kwargs): interview_pk = kwargs.pop('interview_pk', None) super(LayerGroupForm, self).__init__(*args, **kwargs) # self.fields['primary_interviewer'] if interview_pk: self.fields['interview'].queryset = Interview.objects.filter(pk=interview_pk) # Raise 404 if the project doesn't exist. self.fields['interview'].initial = get_object_or_404(Interview, pk=interview_pk) self.interview_instance = self.fields['interview'].initial def clean_interview(self): data = self.cleaned_data['interview'] if data != self.interview_instance: raise forms.ValidationError("Interview must be set to:", str(self.interview_instance)) return data class Meta: model = LayerGroup fields = '__all__' # Small note: this form requires that a devt project is given when the form # is instantiated, hides that input on the form, and validates against it. class HeritageGISLayerForm(GISLayerForm): group_instance = None # We don't care what the user inputs, we only are interested in the preset development_project_instance. def __init__(self, *args, **kwargs): # Restrict project field to the actual project this layer will belong to. This must # be popped off before the super is called: group_pk = kwargs.pop('group_pk', None) super(HeritageGISLayerForm, self).__init__(*args, **kwargs) if group_pk is not None: self.fields['group'].queryset = LayerGroup.objects.filter(pk=group_pk) self.fields['group'].initial = LayerGroup.objects.get(pk=group_pk) self.group_instance = self.fields['group'].initial # save for later clean_project method # Double check that the project is what it is supposed to be. def clean_group(self): data = self.cleaned_data['group'] if data != self.group_instance: raise forms.ValidationError("Dataset must be set to:", str(self.group_instance)) return data # This little ditty here overrides the form superclass fields # and adds in the project. class Meta(GISLayerForm.Meta): model = HeritageGISLayer fields = GISLayerForm.Meta.fields + ('group',) # Asset forms class HeritageAssetForm(SecureAssetForm): class Meta: model = HeritageAsset fields = SecureAssetForm.Meta.fields class ProjectAssetForm(SecureAssetForm): heritage_project_instance = None # We don't care what the user inputs, we only are interested in the preset heritage_project_instance. def __init__(self, *args, **kwgargs): # Restrict project field to the actual project this layer will belong to. This must # be popped off before the super is called: h_project_id = kwgargs.pop('h_project_id', None) if h_project_id is None: raise TypeError('h_project_id is a required kwarg of ProjectAssetForm') super(ProjectAssetForm, self).__init__(*args, **kwgargs) self.fields['project'].queryset = Project.objects.filter(id=h_project_id) self.fields['project'].initial = Project.objects.get(id=h_project_id) self.heritage_project_instance = self.fields['project'].initial # save for later clean_project method # Double check that the project is what it is supposed to be. def clean_project(self): data = self.cleaned_data['project'] if data != self.heritage_project_instance: raise forms.ValidationError("Heritage Project must be set to:", str(self.heritage_project_instance)) return data class Meta(SecureAssetForm.Meta): model = ProjectAsset fields = SecureAssetForm.Meta.fields + ('project',) class InterviewAssetForm(SecureAssetForm): heritage_interview_instance = None # We don't care what the user inputs, we only are interested in the preset heritage_interview_instance. def __init__(self, *args, **kwgargs): # Restrict interview field to the actual interview this layer will belong to. This must # be popped off before the super is called: h_interview_id = kwgargs.pop('h_interview_id', None) if h_interview_id is None: raise TypeError('h_interview_id is a required kwarg of InterviewAssetForm') super(InterviewAssetForm, self).__init__(*args, **kwgargs) self.fields['interview'].queryset = Interview.objects.filter(id=h_interview_id) self.fields['interview'].initial = Interview.objects.get(id=h_interview_id) self.heritage_interview_instance = self.fields['interview'].initial # save for later clean_interview method # Double check that the interview is what it is supposed to be. def clean_interview(self): data = self.cleaned_data['interview'] if data != self.heritage_interview_instance: raise forms.ValidationError("Heritage Interview must be set to:", str(self.heritage_interview_instance)) return data class Meta(SecureAssetForm.Meta): model = InterviewAsset fields = SecureAssetForm.Meta.fields + ('interview',) class PlaceForm(forms.ModelForm): class Meta: model = Place fields = ('name', 'add_to_community_map', 'notes', 'geometry', 'gazetteer_names', 'place_types') widgets = { 'geometry': LeafletWidget(), 'gazetteer_names': TagAutoSuggestSelect2(tagmodel='heritage.GazetteerNameTag', attrs={'startText': " "}) } class PlaceNameForm(forms.ModelForm): class Meta: model = None fields = '__all__' class AlternatePlaceNameForm(PlaceNameForm): class Meta(PlaceNameForm.Meta): model = AlternatePlaceName class CommonPlaceNameForm(PlaceNameForm): class Meta(PlaceNameForm.Meta): model = CommonPlaceName
[ "tags.widgets.TagAutoSuggestSelect2", "django.shortcuts.get_object_or_404", "django.forms.ValidationError", "django.utils.timezone.now", "leaflet.forms.widgets.LeafletWidget", "datetime.datetime.combine" ]
[((2194, 2235), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Project'], {'pk': 'project_pk'}), '(Project, pk=project_pk)\n', (2211, 2235), False, 'from django.shortcuts import get_object_or_404\n'), ((2670, 2717), 'django.forms.ValidationError', 'forms.ValidationError', (['"""This field is required"""'], {}), "('This field is required')\n", (2691, 2717), False, 'from django import forms\n'), ((2910, 2938), 'datetime.datetime.combine', 'datetime.combine', (['date', 'time'], {}), '(date, time)\n', (2926, 2938), False, 'from datetime import datetime\n'), ((3825, 3870), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Interview'], {'pk': 'interview_pk'}), '(Interview, pk=interview_pk)\n', (3842, 3870), False, 'from django.shortcuts import get_object_or_404\n'), ((8828, 8843), 'leaflet.forms.widgets.LeafletWidget', 'LeafletWidget', ([], {}), '()\n', (8841, 8843), False, 'from leaflet.forms.widgets import LeafletWidget\n'), ((8876, 8966), 'tags.widgets.TagAutoSuggestSelect2', 'TagAutoSuggestSelect2', ([], {'tagmodel': '"""heritage.GazetteerNameTag"""', 'attrs': "{'startText': ' '}"}), "(tagmodel='heritage.GazetteerNameTag', attrs={\n 'startText': ' '})\n", (8897, 8966), False, 'from tags.widgets import TagAutoSuggestSelect2\n'), ((1650, 1664), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1662, 1664), False, 'from django.utils import timezone\n'), ((1385, 1399), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1397, 1399), False, 'from django.utils import timezone\n')]
from hooks.aws.aws_base_hook import AWSBaseHook from botocore.exceptions import ClientError from logger.log import Logger import json class LambdaHook(AWSBaseHook): def __init__(self, aws_property): self.client = self.get("lambda", aws_property, AWSBaseHook.Client) def create_function(self, function_name, run_time, role, handler, code_bucket, code_key): try: return self.client.create_function( FunctionName=function_name, Runtime=run_time, Role=role, Handler=handler, Code={ "S3Bucket": code_bucket, "S3Key": code_key }, Publish=True ) except ClientError as e: Logger.logger.exception("Couldn't create Lambda function. Error: " + str(e)) def invoke(self, function_name, payload: str, data): try: payload_json = json.loads(payload) payload_json["data"] = data return self.client.invoke( FunctionName=function_name, Payload=json.dumps(payload_json).encode('utf-8'), Qualifier="$LATEST" ) except ClientError as e: Logger.logger.exception("Couldn't invoke Lambda function. Error: " + str(e))
[ "json.loads", "json.dumps" ]
[((962, 981), 'json.loads', 'json.loads', (['payload'], {}), '(payload)\n', (972, 981), False, 'import json\n'), ((1129, 1153), 'json.dumps', 'json.dumps', (['payload_json'], {}), '(payload_json)\n', (1139, 1153), False, 'import json\n')]
from sqlalchemy.orm import Session from sqlalchemy.orm.exc import NoResultFound from uxi_celery_scheduler.data_models import ScheduledTask from uxi_celery_scheduler.db.models import CrontabSchedule, PeriodicTask from uxi_celery_scheduler.exceptions import PeriodicTaskNotFound def schedule_task( session: Session, scheduled_task: ScheduledTask, ) -> PeriodicTask: """ Schedule a task by adding a periodic task entry. """ schedule = CrontabSchedule(**scheduled_task.schedule.dict()) task = PeriodicTask( crontab=schedule, name=scheduled_task.name, task=scheduled_task.task, ) session.add(task) return task def update_task_enabled_status( session: Session, enabled_status: bool, periodic_task_id: int, ) -> PeriodicTask: """ Update task enabled status (if task is enabled or disabled). """ try: task = session.query(PeriodicTask).get(periodic_task_id) task.enabled = enabled_status session.add(task) except NoResultFound as e: raise PeriodicTaskNotFound() from e return task def update_task( session: Session, scheduled_task: ScheduledTask, periodic_task_id: int, ) -> PeriodicTask: """ Update the details of a task including the crontab schedule """ try: task = session.query(PeriodicTask).get(periodic_task_id) schedule = CrontabSchedule(**scheduled_task.schedule.dict()) task.crontab = schedule task.name = scheduled_task.name task.task = scheduled_task.task session.add(task) except NoResultFound as e: raise PeriodicTaskNotFound() from e return task def delete_task(session: Session, periodic_task_id: int) -> PeriodicTask: try: task = session.query(PeriodicTask).get(periodic_task_id) session.delete(task) return task except NoResultFound as e: raise PeriodicTaskNotFound() from e
[ "uxi_celery_scheduler.db.models.PeriodicTask", "uxi_celery_scheduler.exceptions.PeriodicTaskNotFound" ]
[((520, 607), 'uxi_celery_scheduler.db.models.PeriodicTask', 'PeriodicTask', ([], {'crontab': 'schedule', 'name': 'scheduled_task.name', 'task': 'scheduled_task.task'}), '(crontab=schedule, name=scheduled_task.name, task=\n scheduled_task.task)\n', (532, 607), False, 'from uxi_celery_scheduler.db.models import CrontabSchedule, PeriodicTask\n'), ((1066, 1088), 'uxi_celery_scheduler.exceptions.PeriodicTaskNotFound', 'PeriodicTaskNotFound', ([], {}), '()\n', (1086, 1088), False, 'from uxi_celery_scheduler.exceptions import PeriodicTaskNotFound\n'), ((1643, 1665), 'uxi_celery_scheduler.exceptions.PeriodicTaskNotFound', 'PeriodicTaskNotFound', ([], {}), '()\n', (1663, 1665), False, 'from uxi_celery_scheduler.exceptions import PeriodicTaskNotFound\n'), ((1934, 1956), 'uxi_celery_scheduler.exceptions.PeriodicTaskNotFound', 'PeriodicTaskNotFound', ([], {}), '()\n', (1954, 1956), False, 'from uxi_celery_scheduler.exceptions import PeriodicTaskNotFound\n')]