code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
# Program to digest make depend files import os from typing import List, Set DirectoryName = str FileName = str class AmbiguousFinder: """ Find files that exist in more than one directory from a given set of directories""" def __init__(self, project_root_directory: DirectoryName): """ Initialize a DigestDepends object. """ self.project_root_directory = project_root_directory pass def find_ambiguities(self): """ Main routine.""" dir_files = [ "uniqued-projdirs-CPU_A.txt", "uniqued-sysdirs-CPU_A.txt" ] dirs = [] for dir_filename in dir_files: with open(dir_filename, 'r') as f: for line in f: line = line.strip("\n") dirs.append(line) pass pass pass containing_dirs = dict() for dir in dirs: pass pass if __name__ == u'__main__': print('Finding ambiguous files\n') finder = AmbiguousFinder(os.getcwd()) finder.find_ambiguities() print('\ndone.\n')
[ "os.getcwd" ]
[((1062, 1073), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1071, 1073), False, 'import os\n')]
''' Inverse depth prediction net. Code based on https://github.com/ClementPinard/dispNetPytorch/ ''' import torch import torch.nn as nn import math from . import net_blocks as nb def predict_disp(in_planes): return nn.Conv2d(in_planes,1,kernel_size=3,stride=1,padding=1,bias=False) class DispNet(nn.Module): expansion = 1 def __init__(self, batch_norm=True): super(DispNet, self).__init__() self.batch_norm = batch_norm self.conv1 = nb.conv2d(self.batch_norm, 3, 64, kernel_size=7, stride=2) self.conv2 = nb.conv2d(self.batch_norm, 64, 128, kernel_size=5, stride=2) self.conv3 = nb.conv2d(self.batch_norm, 128, 256, kernel_size=5, stride=2) self.conv3_1 = nb.conv2d(self.batch_norm, 256, 256) self.conv4 = nb.conv2d(self.batch_norm, 256, 512, stride=2) self.conv4_1 = nb.conv2d(self.batch_norm, 512, 512) self.conv5 = nb.conv2d(self.batch_norm, 512, 512, stride=2) self.conv5_1 = nb.conv2d(self.batch_norm, 512, 512) self.conv6 = nb.conv2d(self.batch_norm, 512, 1024, stride=2) self.conv6_1 = nb.conv2d(self.batch_norm,1024, 1024) self.deconv5 = nb.deconv2d(1024,512) self.deconv4 = nb.deconv2d(1025,256) self.deconv3 = nb.deconv2d(769,128) self.deconv2 = nb.deconv2d(385,64) self.deconv1 = nb.deconv2d(193,64) self.predict_disp6 = predict_disp(1024) self.predict_disp5 = predict_disp(1025) self.predict_disp4 = predict_disp(769) self.predict_disp3 = predict_disp(385) self.predict_disp2 = predict_disp(193) self.predict_disp1 = predict_disp(129) self.upsampled_disp6_to_5 = nn.ConvTranspose2d(1, 1, 4, 2, 1, bias=False) self.upsampled_disp5_to_4 = nn.ConvTranspose2d(1, 1, 4, 2, 1, bias=False) self.upsampled_disp4_to_3 = nn.ConvTranspose2d(1, 1, 4, 2, 1, bias=False) self.upsampled_disp3_to_2 = nn.ConvTranspose2d(1, 1, 4, 2, 1, bias=False) self.upsampled_disp2_to_1 = nn.ConvTranspose2d(1, 1, 4, 2, 1, bias=False) for m in self.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, 0.02 / n) #this modified initialization seems to work better, but it's very hacky if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): out_conv1 = self.conv1(x) out_conv2 = self.conv2(out_conv1) out_conv3 = self.conv3_1(self.conv3(out_conv2)) out_conv4 = self.conv4_1(self.conv4(out_conv3)) out_conv5 = self.conv5_1(self.conv5(out_conv4)) out_conv6 = self.conv6_1(self.conv6(out_conv5)) disp6 = self.predict_disp6(out_conv6) disp6_up = self.upsampled_disp6_to_5(disp6) out_deconv5 = self.deconv5(out_conv6) concat5 = torch.cat((out_conv5,out_deconv5,disp6_up),1) disp5 = self.predict_disp5(concat5) disp5_up = self.upsampled_disp5_to_4(disp5) out_deconv4 = self.deconv4(concat5) concat4 = torch.cat((out_conv4,out_deconv4,disp5_up),1) disp4 = self.predict_disp4(concat4) disp4_up = self.upsampled_disp4_to_3(disp4) out_deconv3 = self.deconv3(concat4) concat3 = torch.cat((out_conv3,out_deconv3,disp4_up),1) disp3 = self.predict_disp3(concat3) disp3_up = self.upsampled_disp3_to_2(disp3) out_deconv2 = self.deconv2(concat3) concat2 = torch.cat((out_conv2,out_deconv2,disp3_up),1) disp2 = self.predict_disp2(concat2) disp2_up = self.upsampled_disp2_to_1(disp2) out_deconv1 = self.deconv1(concat2) concat1 = torch.cat((out_conv1,out_deconv1,disp2_up),1) disp1 = self.predict_disp1(concat1) if self.training: #return disp1,disp2,disp3,disp4,disp5,disp6 return disp1 else: return disp1 def dispnet(path=None, batch_norm=True): """dispNet model architecture. Args: path : where to load pretrained network. will create a new one if not set """ model = DispNet(batch_norm=batch_norm) if path is not None: data = torch.load(path) if 'state_dict' in data.keys(): model.load_state_dict(data['state_dict']) else: model.load_state_dict(data) return model
[ "torch.load", "torch.nn.ConvTranspose2d", "torch.cat", "torch.nn.Conv2d" ]
[((220, 291), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_planes', '(1)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': '(False)'}), '(in_planes, 1, kernel_size=3, stride=1, padding=1, bias=False)\n', (229, 291), True, 'import torch.nn as nn\n'), ((1710, 1755), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(1)', '(1)', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(1, 1, 4, 2, 1, bias=False)\n', (1728, 1755), True, 'import torch.nn as nn\n'), ((1792, 1837), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(1)', '(1)', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(1, 1, 4, 2, 1, bias=False)\n', (1810, 1837), True, 'import torch.nn as nn\n'), ((1874, 1919), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(1)', '(1)', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(1, 1, 4, 2, 1, bias=False)\n', (1892, 1919), True, 'import torch.nn as nn\n'), ((1956, 2001), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(1)', '(1)', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(1, 1, 4, 2, 1, bias=False)\n', (1974, 2001), True, 'import torch.nn as nn\n'), ((2038, 2083), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(1)', '(1)', '(4)', '(2)', '(1)'], {'bias': '(False)'}), '(1, 1, 4, 2, 1, bias=False)\n', (2056, 2083), True, 'import torch.nn as nn\n'), ((3094, 3142), 'torch.cat', 'torch.cat', (['(out_conv5, out_deconv5, disp6_up)', '(1)'], {}), '((out_conv5, out_deconv5, disp6_up), 1)\n', (3103, 3142), False, 'import torch\n'), ((3308, 3356), 'torch.cat', 'torch.cat', (['(out_conv4, out_deconv4, disp5_up)', '(1)'], {}), '((out_conv4, out_deconv4, disp5_up), 1)\n', (3317, 3356), False, 'import torch\n'), ((3522, 3570), 'torch.cat', 'torch.cat', (['(out_conv3, out_deconv3, disp4_up)', '(1)'], {}), '((out_conv3, out_deconv3, disp4_up), 1)\n', (3531, 3570), False, 'import torch\n'), ((3736, 3784), 'torch.cat', 'torch.cat', (['(out_conv2, out_deconv2, disp3_up)', '(1)'], {}), '((out_conv2, out_deconv2, disp3_up), 1)\n', (3745, 3784), False, 'import torch\n'), ((3944, 3992), 'torch.cat', 'torch.cat', (['(out_conv1, out_deconv1, disp2_up)', '(1)'], {}), '((out_conv1, out_deconv1, disp2_up), 1)\n', (3953, 3992), False, 'import torch\n'), ((4449, 4465), 'torch.load', 'torch.load', (['path'], {}), '(path)\n', (4459, 4465), False, 'import torch\n')]
import abc import numpy as np from tnpy.operators import MPO class ModelBase(abc.ABC): def __init__(self, N: int): """ Args: N: System size. """ self.N = N @abc.abstractmethod def _elem(self, site: int) -> np.ndarray: return NotImplemented @property def mpo(self) -> MPO: """ Return matrix product operator (mpo) as a property of the model. Returns: mpo: """ return MPO(self.N, self._elem)
[ "tnpy.operators.MPO" ]
[((497, 520), 'tnpy.operators.MPO', 'MPO', (['self.N', 'self._elem'], {}), '(self.N, self._elem)\n', (500, 520), False, 'from tnpy.operators import MPO\n')]
########################################################################################## # Program Name : Discord Bot # Author : DMCTruong # Last Updated : August 31, 2017 # License : MIT # Description : A general purpose bot written for Discord ########################################################################################## import discord from discord.ext import commands import asyncio import configurations import pyrebase bot = commands.Bot(configurations.PREFIX) firebase = pyrebase.initialize_app(configurations.FIREBASE_INFO) db = firebase.database() storage = firebase.storage() class Database: def __init__(self, bot): self.bot = bot @bot.command(aliases=["db, DB, allDB, , showdb, showDB"]) async def alldb(self): """Give list of all databases saved""" getAlldb = db.child("Discord").shallow().get() allDatabases = "The databases that are available are:\n - {}".format("\n - ".join(getAlldb.val())) print(allDatabases) return await self.bot.say(allDatabases) @bot.command(aliases=["newdb, newDB, entry, insert"]) async def newEntry(self, dbname, name, entry): """Add a database entry or create new database""" db.child("Discord").child(dbname).update({name: "{}".format(entry)}) updateSuccess = "The database, {}, has been updated sucessfully with entry, {}: {}.".format(dbname, name, entry) print(updatesuccess) return await self.bot.say(updateSuccess)
[ "discord.ext.commands.Bot", "pyrebase.initialize_app" ]
[((495, 530), 'discord.ext.commands.Bot', 'commands.Bot', (['configurations.PREFIX'], {}), '(configurations.PREFIX)\n', (507, 530), False, 'from discord.ext import commands\n'), ((542, 595), 'pyrebase.initialize_app', 'pyrebase.initialize_app', (['configurations.FIREBASE_INFO'], {}), '(configurations.FIREBASE_INFO)\n', (565, 595), False, 'import pyrebase\n')]
import pandas as pd from sklearn.manifold import TSNE from numpy import array, dot, diag, nan_to_num from numpy.random import randn import sys features = 'CADD1,CADD2,RecA,EssA,CADD3,CADD4,RecB,EssB,Path'.split(',') df_data = pd.read_csv("dida_posey_to_predict.csv") combination = list(map(int, sys.argv[1])) n_comb = sum(combination) X = array(df_data[features]) X = dot(X, diag(combination)) for i in (0,1,4,5): if not combination[i]: continue X[:,i] += 1.701666 X[:,i] /= 15.746334 if n_comb > 2: X = TSNE(n_components=2, init="pca").fit_transform(X) X = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0)) X = nan_to_num(X) else: X = X[:, [i for i, j in enumerate(combination) if j] ] df_data_vs = df_data.copy(False) df_data_vs['x'] = X[:,0] df_data_vs['y'] = X[:,1] if n_comb > 1 else 0 df_data_vs = df_data_vs.drop('Pair', 1) with open("exports/p_file_" + ''.join(map(str, combination)) + ".csv", "w") as out: out.write('id,x,y\n') for line in array(df_data_vs): out.write(','.join(map(str, line[[0,-2,-1]])) + '\n')
[ "pandas.read_csv", "sklearn.manifold.TSNE", "numpy.diag", "numpy.array", "numpy.nan_to_num" ]
[((240, 280), 'pandas.read_csv', 'pd.read_csv', (['"""dida_posey_to_predict.csv"""'], {}), "('dida_posey_to_predict.csv')\n", (251, 280), True, 'import pandas as pd\n'), ((358, 382), 'numpy.array', 'array', (['df_data[features]'], {}), '(df_data[features])\n', (363, 382), False, 'from numpy import array, dot, diag, nan_to_num\n'), ((395, 412), 'numpy.diag', 'diag', (['combination'], {}), '(combination)\n', (399, 412), False, 'from numpy import array, dot, diag, nan_to_num\n'), ((681, 694), 'numpy.nan_to_num', 'nan_to_num', (['X'], {}), '(X)\n', (691, 694), False, 'from numpy import array, dot, diag, nan_to_num\n'), ((1043, 1060), 'numpy.array', 'array', (['df_data_vs'], {}), '(df_data_vs)\n', (1048, 1060), False, 'from numpy import array, dot, diag, nan_to_num\n'), ((559, 591), 'sklearn.manifold.TSNE', 'TSNE', ([], {'n_components': '(2)', 'init': '"""pca"""'}), "(n_components=2, init='pca')\n", (563, 591), False, 'from sklearn.manifold import TSNE\n')]
#http://kidscancode.org/blog/2016/08/pygame_1-1_getting-started/ import pygame # Initialize pygame and create window pygame.init() # For sound pygame.mixer.init() # Width of our game window WINDOW_WIDTH = 360 # Height of our game window WINDOW_HEIGHT = 480 WINDOW_TITLE = 'My Game' FRAMES_PER_SECOND = 30 SCREEN = pygame.display.set_mode((WINDOW_WIDTH, WINDOW_HEIGHT)) pygame.display.set_caption(WINDOW_TITLE) CLOCK = pygame.time.Clock() class Colors: '''Colors (R, G, B)''' BLACK = (0, 0, 0) BLUE = (0, 0, 255) GREEN = (0, 255, 0) RED = (255, 0, 0) WHITE = (255, 255, 255) # Game Loop IS_RUNNING = True while IS_RUNNING: # Process input (events) for event in pygame.event.get(): # Check for closing window if event.type == pygame.QUIT: IS_RUNNING = False # Update # Render (draw) SCREEN.fill(Colors.BLACK) # *After* drawing everything, flip the display pygame.display.flip() # Keep loop running at the right speed CLOCK.tick(FRAMES_PER_SECOND) pygame.quit()
[ "pygame.display.set_caption", "pygame.init", "pygame.quit", "pygame.event.get", "pygame.display.set_mode", "pygame.display.flip", "pygame.time.Clock", "pygame.mixer.init" ]
[((120, 133), 'pygame.init', 'pygame.init', ([], {}), '()\n', (131, 133), False, 'import pygame\n'), ((147, 166), 'pygame.mixer.init', 'pygame.mixer.init', ([], {}), '()\n', (164, 166), False, 'import pygame\n'), ((320, 374), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(WINDOW_WIDTH, WINDOW_HEIGHT)'], {}), '((WINDOW_WIDTH, WINDOW_HEIGHT))\n', (343, 374), False, 'import pygame\n'), ((375, 415), 'pygame.display.set_caption', 'pygame.display.set_caption', (['WINDOW_TITLE'], {}), '(WINDOW_TITLE)\n', (401, 415), False, 'import pygame\n'), ((424, 443), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (441, 443), False, 'import pygame\n'), ((1003, 1016), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (1014, 1016), False, 'import pygame\n'), ((685, 703), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (701, 703), False, 'import pygame\n'), ((906, 927), 'pygame.display.flip', 'pygame.display.flip', ([], {}), '()\n', (925, 927), False, 'import pygame\n')]
# encoding=utf-8 """ Created on 15:30 2019/07/29 @author: <NAME> It solve the MADA, including train, test. """ import torch import torch.nn as nn import numpy as np def test(model, data_loader): model.eval() total_loss = 0 corrects = 0 processed_num = 0 for inputs, labels in data_loader: # inputs = inputs.to(device) # labels = labels.to(device) class_outputs = model(inputs, test_mode=True) _, preds = torch.max(class_outputs, 1) # loss = nn.CrossEntropyLoss()(class_outputs, labels) # total_loss += loss.item() * labels.size()[0] corrects += (preds == labels.data).sum().item() processed_num += labels.size()[0] acc = corrects / processed_num average_loss = total_loss / processed_num print('Data size = {} , corrects = {}'.format(processed_num, corrects)) return average_loss, acc def train_one_epoch(model, data_loader, optimizer, n_classes, optimizer_type, num_epochs, epoch, iter_num, max_iter_num, lr, gamma, loss_weight): model.train() total_loss = 0 source_corrects = 0 processed_target_num = 0 total_source_num = 0 class_criterion = nn.CrossEntropyLoss() alpha = 0 for target_inputs, target_labels in data_loader['target']['train']: cur_lr = update_optimizer(optimizer, optimizer_type, num_epochs, epoch, iter_num, max_iter_num, lr, gamma) optimizer.zero_grad() alpha = get_alpha(num_epochs, epoch, iter_num, max_iter_num) # Target Train # target_inputs = target_inputs.to(device) target_domain_outputs, target_class_outputs = model(target_inputs, alpha=alpha) # target_domain_labels = torch.ones((target_labels.size()[0] * n_classes, 1), device=device) target_domain_labels = torch.ones((target_labels.size()[0] * n_classes, 1)) target_domain_loss = nn.BCELoss()(target_domain_outputs.view(-1), target_domain_labels.view(-1)) # Source Train source_iter = iter(data_loader['source']['train']) source_inputs, source_labels = next(source_iter) # source_inputs = source_inputs.to(device) source_domain_outputs, source_class_outputs = model(source_inputs, alpha=alpha) # source_labels = source_labels.to(device) source_class_loss = class_criterion(source_class_outputs, source_labels) # source_domain_labels = torch.zeros((source_labels.size()[0] * n_classes, 1), device=device) source_domain_labels = torch.zeros((source_labels.size()[0] * n_classes, 1)) source_domain_loss = nn.BCELoss()(source_domain_outputs.view(-1), source_domain_labels.view(-1)) # LOSS # loss = target_domain_loss + source_domain_loss + source_class_loss loss = loss_weight * 0.5 * n_classes * (target_domain_loss + source_domain_loss) + source_class_loss loss.backward() optimizer.step() # Other parameters total_loss += loss.item() * source_labels.size()[0] _, source_class_preds = torch.max(source_class_outputs, 1) source_corrects += (source_class_preds == source_labels.data).sum().item() total_source_num += source_labels.size()[0] processed_target_num += target_labels.size()[0] iter_num += 1 acc = source_corrects / total_source_num average_loss = total_loss / total_source_num print('Data size = {} , corrects = {}'.format(total_source_num, source_corrects)) print('Alpha = ', alpha) print() return average_loss, acc, iter_num, cur_lr def train(model, data_loader, optimizer, optimizer_type, test_interval, max_iter_num, num_epochs, n_classes, lr, gamma, loss_weight, log): iter_num = 0 # Iteration is the number of batches that an epoch needs. log_iter = 0 best_val_loss, best_val_acc = test(model, data_loader['source']['test']) print('Initial Train Loss: {:.4f} Acc: {:.4f}'.format(best_val_loss, best_val_acc)) best_test_loss, best_test_acc = test(model, data_loader['target']['test']) print('Initial Test Loss: {:.4f} Acc: {:.4f}'.format(best_val_loss, best_val_acc)) for epoch in range(num_epochs): print('\nEpoch {}/{}'.format(epoch, num_epochs - 1)) print('iteration : {}'.format(iter_num)) # train train_loss, train_acc, iter_num, cur_lr = train_one_epoch(model, data_loader, optimizer, n_classes, optimizer_type, num_epochs, epoch, iter_num, max_iter_num, lr, gamma, loss_weight) print('Train Loss: {:.4f} Acc: {:.4f}'.format(train_loss, train_acc)) if train_acc >= best_val_acc: best_val_acc = train_acc val_acc = val_loss = 0 # Test # if iter_num - log_iter >= test_interval: # log_iter = iter_num test_loss, test_acc = test(model, data_loader['target']['test']) print('Test Loss: {:.4f} Acc: {:.4f}'.format(test_loss, test_acc)) log.add_log(epoch, optimizer_type, train_acc, test_acc) if test_acc >= best_test_acc: best_test_acc = test_acc best_test_loss = test_loss print('Current Best Test Acc : {:4f} Current Best Test Loss : {:4f} Cur lr : {:4f}'.format(best_val_acc, best_test_loss, cur_lr)) if iter_num >= max_iter_num: break print('Best Val Acc : {:4f}, Test Acc : {:4f}'.format(best_val_acc, best_test_acc)) def update_optimizer(optimizer, optimizer_type, num_epochs, epoch, iter_num, max_iter_num, lr, gamma, power=0.75, weight_decay=0.0005): """ Decay learning rate by a factor of 0.1 every lr_decay_epoch epochs. """ if optimizer_type == 'SGD': if num_epochs != 999999: p = epoch / num_epochs else: p = iter_num / max_iter_num lr = lr * (1.0 + gamma * p) ** (-power) else: lr = lr cur_lr = lr for param_group in optimizer.param_groups: param_group['lr'] = lr * param_group['lr_mult'] param_group['weight_decay'] = weight_decay * param_group['decay_mult'] return cur_lr def get_alpha(num_epochs, epoch, iter_num, max_iter_num, delta=10.0): if num_epochs != 999999: p = epoch / num_epochs else: p = iter_num / max_iter_num return np.float(2.0 / (1.0 + np.exp(-delta * p)) - 1.0)
[ "numpy.exp", "torch.nn.BCELoss", "torch.max", "torch.nn.CrossEntropyLoss" ]
[((1212, 1233), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1231, 1233), True, 'import torch.nn as nn\n'), ((473, 500), 'torch.max', 'torch.max', (['class_outputs', '(1)'], {}), '(class_outputs, 1)\n', (482, 500), False, 'import torch\n'), ((3064, 3098), 'torch.max', 'torch.max', (['source_class_outputs', '(1)'], {}), '(source_class_outputs, 1)\n', (3073, 3098), False, 'import torch\n'), ((1914, 1926), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (1924, 1926), True, 'import torch.nn as nn\n'), ((2617, 2629), 'torch.nn.BCELoss', 'nn.BCELoss', ([], {}), '()\n', (2627, 2629), True, 'import torch.nn as nn\n'), ((6618, 6636), 'numpy.exp', 'np.exp', (['(-delta * p)'], {}), '(-delta * p)\n', (6624, 6636), True, 'import numpy as np\n')]
from engine.global_config import * import psycopg2 from config import config import json class Admin_Commands(): def __init__(self, name): self.name = name def fill_db(): insert_item = """INSERT INTO items(uuid_id, name, item_desc, base_type, size, weight, capacity, can_attributes, room_target, combines_with, is_open, location, location_body, owner) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, name, item_desc, base_type, size, weight, capacity, can_attributes, combines_with, room_target, is_open, location, location_body, owner;""" insert_room = """INSERT INTO rooms(uuid_id, room_type, name, description, exits, region, zone, effects, owner) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, room_type, name, description, exits, region, zone, effects, owner;""" insert_player = """INSERT INTO players(uuid_id, name, gender, hp, core_attributes, player_state, conditions, credit, stow_loc, current_room) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, name, gender, hp, core_attributes, player_state, conditions, credit, stow_loc, current_room;""" insert_npc = """INSERT INTO npcs(uuid_id, base_type, name, race, gender, npc_desc, core_attributes, npc_state, conditions, credit, supply, demand, home_loc, demeanor, current_room) VALUES(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) RETURNING uuid_id, base_type, name, race, gender npc_desc, core_attributes, npc_state, conditions, credit, supply, demand, home_loc, demeanor, current_room;""" insert_org = """INSERT INTO orgs(uuid_id, name, org_desc, supply, demand, home) VALUES(%s, %s, %s, %s, %s, %s) RETURNING uuid_id, name, org_desc, supply, demand, home;""" conn = None try: dbparams = config() conn = psycopg2.connect(**dbparams) cur = conn.cursor() # insert a new part # uuid, name, item_desc, base_type, size, weight, capacity, can_attributes, combines_with, is_open, location, location_body, owner cur.execute(insert_item, ("70306652-fbda-479a-a06d-48b411911ed7", "9mm magazine", "It's a 9mm magazine.", "ammo_9mm", 1, 1, 10, None, "", "pistol_9mm", False, "65d56cbe-f276-4055-899c-3244c0c92003", None, "da",)) cur.execute(insert_item, ("035d0c23-fbda-479a-a06d-48b411911ed7", "9mm pistol", "Mmm, shiny.", "pistol_9mm", 2, 2, 10, "is_gun", "", "ammo_9mm", False, "65d56cbe-f276-4055-899c-3244c0c92003", None, "da",)) cur.execute(insert_item, ("6123e586-93c7-4fff-8787-3ca5706ad2a8", "rabbit toy", "Huh, looks real.", "toy", 1, 1, 0, None, "", None, False, "70306652-08cf-4c99-ac7d-c8bd1082220c", None, "da",)) cur.execute(insert_item, ("70306652-08cf-4c99-ac7d-c8bd1082220c", "backpack", "It's a backpack.", "storage_backpack", 2, 2, 0, "is_container", "", None, False, "c93e5db1-fabe-496f-a6a6-6769a1bf1404", "r_hand", "da",)) cur.execute(insert_item, ("e87c6768-0e3d-4f52-92b8-56ad69f63bea", "shuttle", "This shuttle belongs to the S.S. Hope.", "ship", 0, 5000, 0, "is_door", "ba0d6g25-ae3r-43n8-b25c-1f4342chyfd0", None, True, "65d56cbe-f276-4055-899c-3244c0c92003", "", "da",)) cur.execute(insert_room, ("65d56cbe-f276-4055-899c-3244c0c92003", None, "ship_capital_dock", "Shuttle Bay", "The room is simple.", json.dumps({"north": "aa0dd325-ae9e-43b0-b25c-1f4803ceefd0"}), "S.S. Hope", "space", None, "da",)) cur.execute(insert_room, ("aa0dd325-ae9e-43b0-b25c-1f4803ceefd0", None, "ship_capital_dock", "Shuttle Bay", "The room is simple.", json.dumps({"south": "65d56cbe-f276-4055-899c-3244c0c92003"}), "<NAME>", "space", None, "aa",)) cur.execute(insert_room, ("ba0d6g25-ae3r-43n8-b25c-1f4342chyfd0", "e87c6768-0e3d-4f52-92b8-56ad69f63bea", "ship_private_main", "Shuttle", "You see the inside of the shuttle.", json.dumps({"out": "65d56cbe-f276-4055-899c-3244c0c92003"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0", None, "planet_forest", "Forest", "There are lots of trees.", json.dumps({"south": "aa0dd234-ab72-32b6-c93c-1f4803ceefd0"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("34d66jru-f276-2144-384v-3244c0c92003", None, "space", "Space", "Like a back-lit canopy, the stars and galaxies shine across the black.", json.dumps({}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("aa0dd234-ab72-32b6-c93c-1f4803ceefd0", None, "e87c6768-0e3d-4f52-92b8-56ad69f63bea", "planet_landing", "Open Field", "Tall, golden wheat grows wild here. You can see the edge of a dense forest to the north.", json.dumps({"north": "ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_room, ("pp2aa543-ab72-93n1-c93c-1f4803ceefd0", None, "e87c6768-0e3d-4f52-92b8-56ad69f63bea", "space_orbit", "Orbit around Oxine", "Green and blue hues decorate the planet of Oxine.", json.dumps({"entry": "aa0dd234-ab72-32b6-c93c-1f4803ceefd0"}), "shuttle", "shuttle", None, "da",)) cur.execute(insert_player, ("c93e5db1-fabe-496f-a6a6-6769a1bf1404", "da", "male", 100, json.dumps({"str": 12, "dex": 8, "con": 15, "ins": 6, "edu": 5, "soc": 6}), "standing", None, 100, None, "65d56cbe-f276-4055-899c-3244c0c92003",)) cur.execute(insert_player, ("3563874d-8646-487f-8beb-3c0278d2f292", "ry", "female", 100, json.dumps({"str": 8, "dex": 12, "con": 8, "ins": 12, "edu": 10, "soc": 10}), "standing", None, 100, None, "65d56cbe-f276-4055-899c-3244c0c92003",)) cur.execute(insert_player, ("06ce6e88-f666-4cac-9901-698f7464e1c5", "fa", "female", 100, json.dumps({"str": 8, "dex": 12, "con": 8, "ins": 12, "edu": 10, "soc": 10}), "standing", None, 100, None, "65d56cbe-f276-4055-899c-3244c0c92003",)) cur.execute(insert_npc, ("c93e5db1-08cf-4cac-a06d-c8bd1082220c", "npc_human", "Lt. Dan", "human", "male", "He looks like he's busy.", json.dumps({"str": 5, "dex": 5, "con": 5, "ins": 5, "edu": 5, "soc": 5}), "standing", None, 100, json.dumps({}), json.dumps({}), "S.S. Hope", "friendly", "65d56cbe-f276-4055-899c-3244c0c92003")) cur.execute(insert_npc, ("c93e5db1-08cf-4cac-a06d-c8bd1082220c", "npc_predator", "Predator", "onxine", "male", "He looks mean.", json.dumps({"str": 5, "dex": 5, "con": 5, "ins": 5, "edu": 5, "soc": 5}), "standing", None, 100, json.dumps({}), json.dumps({}), "Oxine", "Hostile", "ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0")) cur.execute(insert_org, ("6123e586-f276-4c99-a06d-48b411911ed7", "Heiss", "A humanoid race focused heavily on cybernetics and augments.", json.dumps({}), json.dumps({}), "Eroli")) # commit changes conn.commit() print("Done adding objects to DB.") except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() def create_instance(self, user, user_input, input_kwargs): print("ADMIN | Creating Instance:", user_input) Room_Procgen(user_input[1])
[ "config.config", "json.dumps", "psycopg2.connect" ]
[((2089, 2097), 'config.config', 'config', ([], {}), '()\n', (2095, 2097), False, 'from config import config\n'), ((2117, 2145), 'psycopg2.connect', 'psycopg2.connect', ([], {}), '(**dbparams)\n', (2133, 2145), False, 'import psycopg2\n'), ((3655, 3716), 'json.dumps', 'json.dumps', (["{'north': 'aa0dd325-ae9e-43b0-b25c-1f4803ceefd0'}"], {}), "({'north': 'aa0dd325-ae9e-43b0-b25c-1f4803ceefd0'})\n", (3665, 3716), False, 'import json\n'), ((3897, 3958), 'json.dumps', 'json.dumps', (["{'south': '65d56cbe-f276-4055-899c-3244c0c92003'}"], {}), "({'south': '65d56cbe-f276-4055-899c-3244c0c92003'})\n", (3907, 3958), False, 'import json\n'), ((4181, 4240), 'json.dumps', 'json.dumps', (["{'out': '65d56cbe-f276-4055-899c-3244c0c92003'}"], {}), "({'out': '65d56cbe-f276-4055-899c-3244c0c92003'})\n", (4191, 4240), False, 'import json\n'), ((4417, 4478), 'json.dumps', 'json.dumps', (["{'south': 'aa0dd234-ab72-32b6-c93c-1f4803ceefd0'}"], {}), "({'south': 'aa0dd234-ab72-32b6-c93c-1f4803ceefd0'})\n", (4427, 4478), False, 'import json\n'), ((4692, 4706), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (4702, 4706), False, 'import json\n'), ((4992, 5053), 'json.dumps', 'json.dumps', (["{'north': 'ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0'}"], {}), "({'north': 'ny0d6j56-ae3r-43n8-m28s-1f4342chyfd0'})\n", (5002, 5053), False, 'import json\n'), ((5305, 5366), 'json.dumps', 'json.dumps', (["{'entry': 'aa0dd234-ab72-32b6-c93c-1f4803ceefd0'}"], {}), "({'entry': 'aa0dd234-ab72-32b6-c93c-1f4803ceefd0'})\n", (5315, 5366), False, 'import json\n'), ((5516, 5590), 'json.dumps', 'json.dumps', (["{'str': 12, 'dex': 8, 'con': 15, 'ins': 6, 'edu': 5, 'soc': 6}"], {}), "({'str': 12, 'dex': 8, 'con': 15, 'ins': 6, 'edu': 5, 'soc': 6})\n", (5526, 5590), False, 'import json\n'), ((5764, 5840), 'json.dumps', 'json.dumps', (["{'str': 8, 'dex': 12, 'con': 8, 'ins': 12, 'edu': 10, 'soc': 10}"], {}), "({'str': 8, 'dex': 12, 'con': 8, 'ins': 12, 'edu': 10, 'soc': 10})\n", (5774, 5840), False, 'import json\n'), ((6014, 6090), 'json.dumps', 'json.dumps', (["{'str': 8, 'dex': 12, 'con': 8, 'ins': 12, 'edu': 10, 'soc': 10}"], {}), "({'str': 8, 'dex': 12, 'con': 8, 'ins': 12, 'edu': 10, 'soc': 10})\n", (6024, 6090), False, 'import json\n'), ((6310, 6382), 'json.dumps', 'json.dumps', (["{'str': 5, 'dex': 5, 'con': 5, 'ins': 5, 'edu': 5, 'soc': 5}"], {}), "({'str': 5, 'dex': 5, 'con': 5, 'ins': 5, 'edu': 5, 'soc': 5})\n", (6320, 6382), False, 'import json\n'), ((6407, 6421), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (6417, 6421), False, 'import json\n'), ((6423, 6437), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (6433, 6437), False, 'import json\n'), ((6646, 6718), 'json.dumps', 'json.dumps', (["{'str': 5, 'dex': 5, 'con': 5, 'ins': 5, 'edu': 5, 'soc': 5}"], {}), "({'str': 5, 'dex': 5, 'con': 5, 'ins': 5, 'edu': 5, 'soc': 5})\n", (6656, 6718), False, 'import json\n'), ((6743, 6757), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (6753, 6757), False, 'import json\n'), ((6759, 6773), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (6769, 6773), False, 'import json\n'), ((6999, 7013), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (7009, 7013), False, 'import json\n'), ((7015, 7029), 'json.dumps', 'json.dumps', (['{}'], {}), '({})\n', (7025, 7029), False, 'import json\n')]
# coding: utf-8 from __future__ import print_function, division, absolute_import from xbmcplugin import getSetting QUALITY = ["sd", "hd"] FORMATS = ["mp4", "webm"] def get_setting_int(plugin, name): val = getSetting(plugin.handle, name) if not val: val = '0' return int(val) def get_quality(plugin): return QUALITY[get_setting_int(plugin, 'quality')] def get_format(plugin): return FORMATS[get_setting_int(plugin, 'format')] def prefer_dash(plugin): val = getSetting(plugin.handle, 'dash') return val == 'true'
[ "xbmcplugin.getSetting" ]
[((214, 245), 'xbmcplugin.getSetting', 'getSetting', (['plugin.handle', 'name'], {}), '(plugin.handle, name)\n', (224, 245), False, 'from xbmcplugin import getSetting\n'), ((499, 532), 'xbmcplugin.getSetting', 'getSetting', (['plugin.handle', '"""dash"""'], {}), "(plugin.handle, 'dash')\n", (509, 532), False, 'from xbmcplugin import getSetting\n')]
from collections import namedtuple ''' # CC_STRINGS.PY # Holds the multiline columns used in create character # Placed here since keeping them in cc is messy ''' '''Constants used in main and other modules -- equivalent to globals''' FONT_PATH = "./spaceship/assets/fonts/" IMG_PATH = "./spaceship/assets/" MENU_SCREEN_WIDTH, MENU_SCREEN_HEIGHT = 80, 25 MENU_FONT_WIDTH, MENU_FONT_HEIGHT = 8, 16 GAME_SCREEN_WIDTH, GAME_SCREEN_HEIGHT = 80, 50 GAME_FONT_WIDTH, GAME_FONT_HEIGHT = 8, 8 FOV_RADIUS = 25 # CHARACTER MENU GLOBALS CM_TITLE = 1 CM_SUBTITLE = 2 CM_BORDER_WIDTH = 80 CM_BORDER_HEIGHT = () CM_COLUMN_WIDTH = 12 CM_COLUMN_START = 1, 15, 27 CM_FOOTER_HEIGHT = 22 # OPTION MENU GLOBALS OPT_TITLE = 1 OPT_BORDER_WIDTH = 80 OPT_BORDER_HEIGHT = (3, 24) # ITEM CONSTANTS ITEM_DROP_RATE=0 # drop rate from monsters in dungeons ITEM_FIND_RATE=0 # chances item spawns in dungeon ITEM_PREREVEAL=0 # basically pre identification rate # ROOM CONSTANTS ROOM_MIN_PLACE=0 ROOM_MAX_PLACE=0 ROOM_HALL_SIZE=2 ROOM_DOOR_RATE=0 GAME_TITLE_VERSION="v 0.0.4" GAME_TITLE_WIDTH=46 GAME_TITLE_HEIGHT=6 GAME_TITLE=''' \ ___ _ _ / _\_ __ __ _ ___ ___ ___| |__ (_)_ __ \ \| '_ \ / _` |/ __/ _ \/ __| '_ \| | '_ \ _\ \ |_) | (_| | (_| __/\__ \ | | | | |_) | \___/ .__/ \__,_|\___\___||___/_| |_|_| .__/ |_| |_| '''[1:] GAME_TITLE_SHORT =''' ██████╗ █████╗ ██████╗ █████╗ ██╗ ██╔════╝██╔══██╗██╔══██╗██╔══██╗██║ ██║ ███████║██████╔╝███████║██║ ██║ ██╔══██║██╔══██╗██╔══██║██║ ╚██████╗██║ ██║██████╔╝██║ ██║██████╗ ╚═════╝╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═════╝ Act I: Bones of the Ancestors '''[1:] #------------------------------------------------------------------------------ # SCENE :- MAKE #------------------------------------------------------------------------------ _col1 = """ Gender : {:>10}{delim} Race : {:>10}{delim} Capital : {:>10}{delim} Class : {:>10}{delim}\n Gold : {:>10}{delim} Level : {:>10}{delim} Adv Exp : {:>10}{delim}\n HP : [c=#00ffff]{:>10}[/c]{delim} MP : [c=#00ffff]{:>10}[/c]{delim} SP : [c=#00ffff]{:>10}[/c]{delim} """[1:] _col2 = """ SKILLS : {delim}\n{}{delim}\n{}{delim}{delim}\n TOT GB RB CB IB{delim} STR : [c=#00ffff]{:>2}[/c]{delim} CON : [c=#00ffff]{:>2}[/c]{delim} DEX : [c=#00ffff]{:>2}[/c]{delim} INT : [c=#00ffff]{:>2}[/c]{delim} WIS : [c=#00ffff]{:>2}[/c]{delim} CHA : [c=#00ffff]{:>2}[/c]{delim} """[1:] _bon = """ {:>2}{delim} {:>2}{delim} {:>2}{delim} {:>2}{delim} {:>2}{delim} {:>2}"""[1:] _col3 = """ Head : {:<5}{delim}\nNeck : {:<5}{delim}\nBody : {:<5}{delim} Arms : {:<5}{delim}\nHands : {:<5}{delim}\nLhand : {:<5} Rhand : {:<5}{delim}\nRing1 : {:<5}\nRing2 : {:<5}{delim} Waist : {:<5}{delim}\nLegs : {:<5}{delim}\nFeet : {:<5}\n """[1:] bonuses = { "STR": "+{} to Strength", "CON": "+{} to Constitution", "WIS": "+{} to Wisdom", "DEX": "+{} to Dexterity", "CHA": "+{} to Charisma", "WIL": "+{} to Willpower", "PER": "+{} to Perception", "LUC": "+{} to Luck" } # Some formulas to use when developing a character stats = namedtuple("stats", "str con dex int wis cha") MALE = stats(1, 0, 0, 0, 0, 0) FEMALE = stats(0, 0, 0, 0, 1, 0) HUMAN = stats(3, 3, 3, 3, 3, 3) HUMAN_BONUS = stats(0, 0, 0, 0, 0, 0) ELVEN = stats(2, 2, 4, 4, 4, 2) ELVEN_BONUS = stats(-1, -1, 1, 1, 1, -1) ORCEN = stats(5, 5, 2, 1, 3, 2) ORCEN_BONUS = stats(2, 2, -1, -2, 0, -1) DWARF = stats(4, 4, 2, 3, 2, 3) DWARF_BONUS = stats(1, 1, -1, 0, -1, 0) BEAST = stats(4, 3, 4, 3, 2, 2) BEAST_BONUS = stats(0, 1, -1, 0, 1, -1) SQUIRE = stats(2, 2, 1, 0, 0, 0) ARCHER = stats(0, 1, 3, 0, 0, 1) WIZARD = stats(0, 0, 0, 2, 3, 0) DRUIDS = stats(1, 0, 0, 2, 2, 0) CLERIC = stats(0, 1, 0, 2, 2, 0) EXTRA = 3 start=""" Welcome to the realm of Calabaston. Your spirit has drifited to this place filled with intelligent races, a multitude of creatures and monsters, and history colored with tragedy, betrayal, and conquest. If you are willing, come and choose the vessel in which you will enter this world. Take careful consideration as your starting point depends on the choices you make here. Good luck adventurer. """[1:] race_human=""" The youngest race on the continent of Calabaston, humans were the last to arrive from across the Endless Water, and yet, they have thrived and proved to be a dominant force throughout the land. Within less than a hundred years, they have built Renmar, the current capital city of the human empire of Rane. Humans can be skilled with a wide array of different weaponry and magic and are useful in any class. """[1:] race_dwarf=""" A hardy race, dwarves are most famous for their impenetrable fortresses and mass earthly wealth. Their vast fortune allows their people to pursue trades and crafts such as blacksmithing, jewelry, and weaponforging, which would not be possible otherwise. Dwarves seen outside of Yugahdah, the dwarven territory, are most often skilled traders, merchants, or mercenaries. Dwarves prefer melee weapons but can also use magic and ranged weapons. """[1:] race_beast=""" Beasts have physical differences that set them apart from other races as they are born with a combination of fur, scales, horns, and tails. After being driven out of the plains of Tempest, they settled near the north west of the wetlands and now call Tiphmore, a gigantic trade city, their new home. Beasts have unusually high health and mana pools and are suited for either magic or melee classes. """[1:] race_elven=""" The long-lived, mysterious race of elves reside deep within the forests of Aurendelim. Though they may look frail, their appearances betray them as they are more dextereous than other races. They live in accordance to the law of the forest and dissaprove of any attempt by other races that try to exploit the forest for its resources. Elven warriors are most often seen using magic or ranged weaponry but can be skilled in melee as well. """[1:] race_orcen=""" Brutish and violent, Orcs are feared by other races, including even beast-folk, due to their warring nature and needs to constantly engage in battle. They are split into many different tribal clans throughout the Burning Lands territory that struggle to take power among all other factions and claim the Blood-Bone crown, which signifies the strongest orc clan. The bone crown is currently located in Lok Gurrah, the largest city in the Burning Lands territory. """[1:] race_ishtahari=""" Among all the races that live across Calabaston, the Ishtahari are the oldest. Yet having lived on the continent hundreds of years before any of the other races, they are now as rare to meet as their magic is to learn. They are the only race to master two elements of the seven, LIGHT and VOID. """[1:] race_ork=""" """[1:] race_goblin=""" """[1:] race_troll=""" """[1:] knight=""" Warriors of noble heritage, knights make up the elite troops within a military. Their heavy armor and equipment allows them to take significant damage without injury and deal high damage in return. They are often seen on the front lines of armies, being used as vanguards for the army in they serve in. Knights have a high sense of duty and honor to their land and people """[1:] barbarian=""" Barbarians are fearless warriors on the battlefield. Their tendency to fight with rage and reckless abandon makes even experienced soldiers hesitant to fight them. """[1:] class_cleric=""" Clerics are holy men who use their magic abilities heal their wounded and injured allies. Their spells are particularly effective in eradicating the undead and ghoulish creatures of the night. They prefer using ranged magic but are no strangers to melee combat. """[1:] class_druid=""" Druids are sages worship the ancient forces of nature which gives them a mystical connection to earth and natural abilities. They have a deep relationship with creatures of land and water. Druids are proficient in both physical and magical combat as they can use magic to strengthen their phyiscal prowess. """[1:] fighter=""" Fighter is blah blah blah """[1:] paladin=""" Paladin is blah blah blah """[1:] ranger=""" Ranger is blah blah blah """[1:] sorcerer=""" Sorcerer is blah blah blah """[1:] rogue=""" Rogue is blah blah blah """[1:] class_archer=""" Archers are skilled in ranged combat, being able to use an assortment of different ranged weaponry that include bows, throwing daggers, and javalins. If needed they can use their weapons for melee combat as well. They carry very little, as their equipment is light and can use sneak and steal abilities on their enemies to stealthily replenish their supplies. """[1:] class_wizard=""" Wizards are students of elemental and arcane magic. Their educational background allows them to read ancient scrolls as well as use spellbooks. Throught study and memorization they can learn new spells through reading and learning. They have the largest number of upgradable classes available to them including elementalist, sorcerer, and summoner. """[1:] class_squire=""" Squires are the most basic melee class offered to newly created adventurers. They are the most proficient in melee weapons and combat but can be skilled in ranged combat as well. With enough experience and money, squires have to choice of upgrading their class statuses to the Knight and Paladin class. """[1:] """ Lancer, Archer, Squire, Mystic, Bard, Summoner, Chemist, Dragoon, Geomancer, Monk, Ninja, Samurai, Theif Scout, Berserker, Pathfinder, Runemaster, Sentinal, Lord, Dragonguard, Explorer, Thunderguard, Guardsman, Shieldmaster Marksman, sharpshooter, captain, champion, marshal, rider, shaman, enchantress, rider, duelist, fencer, mauler, pikeman, halberdier, spearman, assassin, trapper, warden, arbiter, enforcer, blademaster, """ subrace_descriptions=[ [ "Citizen servents residing in the Rodash Empire", "Travelers who wander the continent of Auriel", "Humans living outside of the borders of the Rodash Empire", "Sadukar are those who live in the Icy Gaze north of the Empire", ], [ "Family name for mining dwarves from the clan in the Iron Hills", "Family name for the royal dwarves from the Triple Shining Mountain", "Family name for the military dwarf clan from Stone Keep", ], [ "Family name for the elite elven family residing in the Emerald Forest", "Local elven family name for the elves residing in the woods of Arundelim", "Drow are banished elves residing in the forest hills of the Dark Forest", ], [ "Ishma are the titles for light-element users of magic", "Ishta are the titles for void-element users of magic", ], [ "Mountain orcs reside in the Shadows of Mount Huron", "Greenskins reside in swamplands East of Ravenflow", "Grayskins are found everywhere on the continent of Auriel", ], [ "Goblins live in the caves and hills along the Storm-wrought hills and caves", "Hobgoblins are a special type of goblin born among goblins but with more strength", ], [ "Cave trolls live among the many shelters provided by the Storm-wrought Ridge", "Forest trolls reside in the northern and colder area of the Dark Forest", "Ice trolls prefer to live in the coldest areas of the Icy Gaze", ] ] #------------------------------------------------------------------------------ # SCENE :- GAME #------------------------------------------------------------------------------ status = ''' {:13} {:1}{:1}{:1} {} LVL: {:>6} EXP: {:>6} HP : {:>6} MP : {:>6} DMG: {:>6} A/R: {:>17}/{:>14} STR: [c={}]{:>6}[/c] CON: [c={}]{:>6}[/c] DEX: [c={}]{:>6}[/c] INT: [c={}]{:>6}[/c] WIS: [c={}]{:>6}[/c] CHA: [c={}]{:>6}[/c] GOLD: {:>5} TURNS: {:>4} '''[1:] profile = [ ''' Name : {name:>6} Gender : {sex:>6} Race : {race:>6} Class : {job:>6} STR : {:>6} CON : {:>6} DEX : {:>6} WIS : {:>6} INT : {:>6} CHA : {:>6} '''[1:], ''' Damage : {dmg:>6} Accuracy : {acc:>5} '''[1:], ] dump_template=""" [Character Sheet -- Spaceship] ======== Player Stats ======== Name : {} Sex : {} Race : {} Class : {} Level : {} Exp : {} ======== Equipment ======== He : Neck : Torso : Peasant garb Ring(L) : Hand(L) : Sword Ring(R) : Hand(R) : Waist : Thin rope Legs : Common pants Feet : Sandals ======== Player Items ======== ======== Alignments ======== ======== Relations ======== """[1:] enter_map_city = "You enter the city of {}" enter_map_cave = "You enter the {}." enter_map_wild = "You enter the area." go_up_stairs = "You go up the stairs." go_up_error = "You cannot go upstairs without stairs." go_up_travel = "You begin travelling." cmd_invalid = "'{}' is not a valid command" cmd_switch_eq = "Press 'v' to switch to inventory." cmd_switch_iv = "Press 'q' to switch to equipment." cmd_unequip_confirm = "Are you sure you want to unequip the {}?" cmd_unequip = "You unequip the {}." cmd_equip_none = "No items to equip for that slot." cmd_equip_two_hand = "You cannot equip a weapon to your {}. \ You are already wielding the {} on your {}." # equip, drop, use, eat query = "Which item to {}?" item = "You {} the {}." invalid = "Invalid selection." error = "You cannot {} this item." cmds = { 'equip': { 'query': "Which item to equip?", # ? 'item': "You equip the {}.", # ok 'invalid': "Invalid selection", # no }, 'drop': { 'query': "Which item to drop?", 'item': "You drop the {}.", }, 'use': { 'query': "Which item to use?", 'item': "You use the {}.", 'none': "You have no items in your inventory that are useable.", 'invalid': "You cannot use this item.", }, 'eat': { 'query': "Which item to eat?", 'item': "You eat the {}", 'none': "You have no items in your inventory that are usable.", 'invalid': "You cannot eat this item.", }, } save = { 'query': "Save and exit game? (Y/N)", 'folder': "saved folder does not exists -creating folder: './saves'", } inventory = { 'funcs' : "What to do with the {}?", 'none': "You have nothing in your inventory.", } cmd_equip_query = "Which item to equip?" cmd_equip = "You equip the {}." cmd_equip_invalid = "Invalid selection." cmd_drop_query = "Which item to drop?" cmd_drop_item = "You drop the {}." cmd_use_none = "You have no items in your inventory that are usable." cmd_use_query = "Which item to use?" cmd_use_item = "You use the {}." cmd_cannot_use_item = "You cannot use this item." cmd_eat_query = "Which item to eat?" cmd_eat_none = "You do not have anything to eat." cmd_eat_item = "You eat the {}." cmd_cannot_eat_item = "You cannot eat this item." cmd_save = "Save and exit game? (Y/N)" cmd_save_folder = 'saved folder does not exist - creating folder: "./saves"' cmd_inv_funcs = "What to do with the {}?" cmd_inv_none = "You have nothing in your inventory." movement = { "wait": { "local": "You rest for a while.", "world": "You wait in the area.", }, "blocked": { "oob": "You reached the edge of the map.", "swim": "You cannot swim.", "wall": "You walk into {}.", }, "unit": { "displace": "{} switches places with {}." } } movement_wait_local = "You rest for a while." movement_wait_world = "You wait in the area." movement_move_error = "You cannot travel there." movement_move_oob = "You reached the edge of the map." movement_move_swim = "You cannot swim." movement_move_block = "You walk into {}." movement_unit_displace = "The {} switches places with the {}." movement_move_chars = { "=": "furniture", "+": "a door", "/": "a door", "o": "a lamp", "#": "a wall", "x": "a post", "~": "a river", "T": "a tree", "f": "a tree", "Y": "a tree", "%": "a wall", } door = { "c": { "char": "/", "act": "Closing door.", "none": "No open doors next to you.", "many": "There is more than one open door near you. Which door?", "invalid": "Invalid direction. Canceled closing door.", "error": "Direction has no door. Canceled closing door.", }, "o": { "char": "+", "act": "Opening door.", "none": "No closed doors next to you.", "many": "There is more than one closed door near you. Which door?", "invalid": "Invalid direction. Canceled opening door.", "error": "Direction has no door. Canceled closing door.", } } close_door_act = "Closing door." close_door_none = "No open doors next to you." close_door_many = "There is more than one open door near you. Which door?" close_door_invalid = "Invalid direction. Canceled closing door." close_door_error = "Direction has no door. Canceled closing door." open_door_act = "Opening door." open_door_none = "No closed doors next to you." open_door_many = "There is more than one closed door near you. Which door?" open_door_invalid = "Invalid direction. Canceled opening door." open_door_error = "Direction has no door. Canceled closing door." converse_none = "No one to talk to." converse_many = "Who do you want to talk to?" converse_invalid = "Invalid direction. Stopped looking for someone to talk to." converse_error = "There is no one there." pass_by_item = [ "You pass by an item.", "There is something here." "Your feet touches an object." ] if __name__ == "__main__": try: print(movement_move_chars[input()]) except KeyError: raise
[ "collections.namedtuple" ]
[((3157, 3203), 'collections.namedtuple', 'namedtuple', (['"""stats"""', '"""str con dex int wis cha"""'], {}), "('stats', 'str con dex int wis cha')\n", (3167, 3203), False, 'from collections import namedtuple\n')]
# coding: utf-8 """ Selling Partner API for Pricing The Selling Partner API for Pricing helps you programmatically retrieve product pricing and offer information for Amazon Marketplace products. # noqa: E501 OpenAPI spec version: v0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six class DetailedShippingTimeType(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'minimum_hours': 'int', 'maximum_hours': 'int', 'available_date': 'float', 'availability_type': 'str' } attribute_map = { 'minimum_hours': 'minimumHours', 'maximum_hours': 'maximumHours', 'available_date': 'availableDate', 'availability_type': 'availabilityType' } def __init__(self, minimum_hours=None, maximum_hours=None, available_date=None, availability_type=None): # noqa: E501 """DetailedShippingTimeType - a model defined in Swagger""" # noqa: E501 self._minimum_hours = None self._maximum_hours = None self._available_date = None self._availability_type = None self.discriminator = None if minimum_hours is not None: self.minimum_hours = minimum_hours if maximum_hours is not None: self.maximum_hours = maximum_hours if available_date is not None: self.available_date = available_date if availability_type is not None: self.availability_type = availability_type @property def minimum_hours(self): """Gets the minimum_hours of this DetailedShippingTimeType. # noqa: E501 The minimum time, in hours, that the item will likely be shipped after the order has been placed. # noqa: E501 :return: The minimum_hours of this DetailedShippingTimeType. # noqa: E501 :rtype: int """ return self._minimum_hours @minimum_hours.setter def minimum_hours(self, minimum_hours): """Sets the minimum_hours of this DetailedShippingTimeType. The minimum time, in hours, that the item will likely be shipped after the order has been placed. # noqa: E501 :param minimum_hours: The minimum_hours of this DetailedShippingTimeType. # noqa: E501 :type: int """ self._minimum_hours = minimum_hours @property def maximum_hours(self): """Gets the maximum_hours of this DetailedShippingTimeType. # noqa: E501 The maximum time, in hours, that the item will likely be shipped after the order has been placed. # noqa: E501 :return: The maximum_hours of this DetailedShippingTimeType. # noqa: E501 :rtype: int """ return self._maximum_hours @maximum_hours.setter def maximum_hours(self, maximum_hours): """Sets the maximum_hours of this DetailedShippingTimeType. The maximum time, in hours, that the item will likely be shipped after the order has been placed. # noqa: E501 :param maximum_hours: The maximum_hours of this DetailedShippingTimeType. # noqa: E501 :type: int """ self._maximum_hours = maximum_hours @property def available_date(self): """Gets the available_date of this DetailedShippingTimeType. # noqa: E501 The date when the item will be available for shipping. Only displayed for items that are not currently available for shipping. # noqa: E501 :return: The available_date of this DetailedShippingTimeType. # noqa: E501 :rtype: float """ return self._available_date @available_date.setter def available_date(self, available_date): """Sets the available_date of this DetailedShippingTimeType. The date when the item will be available for shipping. Only displayed for items that are not currently available for shipping. # noqa: E501 :param available_date: The available_date of this DetailedShippingTimeType. # noqa: E501 :type: float """ self._available_date = available_date @property def availability_type(self): """Gets the availability_type of this DetailedShippingTimeType. # noqa: E501 Indicates whether the item is available for shipping now, or on a known or an unknown date in the future. If known, the availableDate property indicates the date that the item will be available for shipping. Possible values: NOW, FUTURE_WITHOUT_DATE, FUTURE_WITH_DATE. # noqa: E501 :return: The availability_type of this DetailedShippingTimeType. # noqa: E501 :rtype: str """ return self._availability_type @availability_type.setter def availability_type(self, availability_type): """Sets the availability_type of this DetailedShippingTimeType. Indicates whether the item is available for shipping now, or on a known or an unknown date in the future. If known, the availableDate property indicates the date that the item will be available for shipping. Possible values: NOW, FUTURE_WITHOUT_DATE, FUTURE_WITH_DATE. # noqa: E501 :param availability_type: The availability_type of this DetailedShippingTimeType. # noqa: E501 :type: str """ allowed_values = ["NOW", "FUTURE_WITHOUT_DATE", "FUTURE_WITH_DATE"] # noqa: E501 if availability_type not in allowed_values: raise ValueError( "Invalid value for `availability_type` ({0}), must be one of {1}" # noqa: E501 .format(availability_type, allowed_values) ) self._availability_type = availability_type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(DetailedShippingTimeType, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, DetailedShippingTimeType): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
[ "six.iteritems" ]
[((6170, 6203), 'six.iteritems', 'six.iteritems', (['self.swagger_types'], {}), '(self.swagger_types)\n', (6183, 6203), False, 'import six\n')]
from sqlalchemy_teradata.compiler import TeradataTypeCompiler as tdtc from sqlalchemy_teradata.dialect import TeradataDialect as tdd from sqlalchemy.types import (Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR) from sqlalchemy_teradata.types import (CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME) from sqlalchemy.testing import fixtures from itertools import product import datetime as dt class TestCompileGeneric(fixtures.TestBase): def _comp(self, inst): return self.comp.process(inst) def setup(self): # Teradata Type Compiler using Teradata Dialect to compile types self.comp = tdtc(tdd) self.charset= ['latin, unicode, graphic, kanjisjis'] self.len_limits = [-1, 32000, 64000] self.multips = ['K', 'M', 'G'] def test_defaults(self): assert self._comp(Integer()) == 'INTEGER' assert self._comp(SmallInteger()) == 'SMALLINT' assert self._comp(BigInteger()) == 'BIGINT' assert self._comp(Numeric()) == 'NUMERIC' assert self._comp(Float()) == 'FLOAT' assert self._comp(DateTime()) == 'TIMESTAMP(6)' assert self._comp(Date()) == 'DATE' assert self._comp(Time()) == 'TIME(6)' assert self._comp(String()) == 'LONG VARCHAR' assert self._comp(Text()) == 'CLOB' assert self._comp(Unicode()) == 'LONG VARCHAR CHAR SET UNICODE' assert self._comp(UnicodeText()) == 'CLOB CHAR SET UNICODE' assert self._comp(Boolean()) == 'BYTEINT' #assert self._comp(LargeBinary()) == 'BLOB' class TestCompileSQLStandard(fixtures.TestBase): def _comp(self, inst): return self.comp.process(inst) def setup(self): self.comp = tdtc(tdd) def test_defaults(self): assert self._comp(DATE()) == 'DATE' assert self._comp(DATETIME()) == 'TIMESTAMP(6)' assert self._comp(TIMESTAMP()) == 'TIMESTAMP(6)' assert self._comp(TIME()) == 'TIME(6)' assert self._comp(CHAR()) == 'CHAR(1)' assert self._comp(VARCHAR()) == 'LONG VARCHAR' assert self._comp(NCHAR()) == 'CHAR CHAR SET UNICODE' assert self._comp(NVARCHAR()) == 'LONG VARCHAR CHAR SET UNICODE' assert self._comp(CLOB()) == 'CLOB' assert self._comp(TEXT()) == 'CLOB' assert self._comp(DECIMAL()) == 'DECIMAL(5, 0)' assert self._comp(NUMERIC()) == 'NUMERIC(5, 0)' assert self._comp(INTEGER()) == 'INTEGER' assert self._comp(FLOAT()) == 'FLOAT' assert self._comp(REAL()) == 'REAL' assert self._comp(SMALLINT()) == 'SMALLINT' assert self._comp(BIGINT()) == 'BIGINT' assert self._comp(BOOLEAN()) == 'BYTEINT' class TestCompileTypes(fixtures.TestBase): """ The tests are based of the info in SQL Data Types and Literals (Release 15.10, Dec '15) """ def setup(self): self.comp = tdtc(tdd) self.charset= ['latin, unicode, graphic, kanjisjis'] self.len_limits = [-1, 32000, 64000] self.multips = ['K', 'M', 'G'] def test_strings(self): for m in self.multips: c = CLOB(length = 1, multiplier = m) assert self.comp.process(c) == 'CLOB(1{})'.format(m) assert c.length == 1 for len_ in self.len_limits: assert 'VARCHAR({})'.format(len_) == self.comp.process(VARCHAR(len_)) assert 'CHAR({})'.format(len_) == self.comp.process(CHAR(len_)) assert 'CLOB({})'.format(len_) == self.comp.process(CLOB(len_)) for c in self.charset: assert 'VARCHAR({}) CHAR SET {}'.format(len_, c) == \ self.comp.process(VARCHAR(len_, c)) assert 'CHAR({}) CHAR SET {}'.format(len_, c) == \ self.comp.process(CHAR(len_, c)) assert 'CLOB({}) CHAR SET {}'.format(len_, c) == \ self.comp.process(CLOB(len_, c)) def test_timezones(self): assert self.comp.process(TIME(1, True)) == 'TIME(1) WITH TIME ZONE' assert self.comp.process(TIMESTAMP(0, True)) == 'TIMESTAMP(0) WITH TIME ZONE'
[ "sqlalchemy_teradata.types.DECIMAL", "sqlalchemy_teradata.types.CLOB", "sqlalchemy.types.INTEGER", "sqlalchemy_teradata.types.TIMESTAMP", "sqlalchemy.types.SMALLINT", "sqlalchemy.types.SmallInteger", "sqlalchemy.types.Unicode", "sqlalchemy.types.Integer", "sqlalchemy.types.DATETIME", "sqlalchemy.types.REAL", "sqlalchemy.types.TEXT", "sqlalchemy.types.BigInteger", "sqlalchemy.types.FLOAT", "sqlalchemy.types.BOOLEAN", "sqlalchemy.types.Text", "sqlalchemy_teradata.types.TIME", "sqlalchemy_teradata.compiler.TeradataTypeCompiler", "sqlalchemy.types.BIGINT", "sqlalchemy_teradata.types.VARCHAR", "sqlalchemy.types.NVARCHAR", "sqlalchemy.types.Time", "sqlalchemy.types.Date", "sqlalchemy.types.DATE", "sqlalchemy_teradata.types.CHAR", "sqlalchemy.types.Numeric", "sqlalchemy.types.Boolean", "sqlalchemy.types.UnicodeText", "sqlalchemy.types.String", "sqlalchemy.types.DateTime", "sqlalchemy_teradata.types.NUMERIC", "sqlalchemy.types.NCHAR", "sqlalchemy.types.Float" ]
[((915, 924), 'sqlalchemy_teradata.compiler.TeradataTypeCompiler', 'tdtc', (['tdd'], {}), '(tdd)\n', (919, 924), True, 'from sqlalchemy_teradata.compiler import TeradataTypeCompiler as tdtc\n'), ((1986, 1995), 'sqlalchemy_teradata.compiler.TeradataTypeCompiler', 'tdtc', (['tdd'], {}), '(tdd)\n', (1990, 1995), True, 'from sqlalchemy_teradata.compiler import TeradataTypeCompiler as tdtc\n'), ((3161, 3170), 'sqlalchemy_teradata.compiler.TeradataTypeCompiler', 'tdtc', (['tdd'], {}), '(tdd)\n', (3165, 3170), True, 'from sqlalchemy_teradata.compiler import TeradataTypeCompiler as tdtc\n'), ((3393, 3421), 'sqlalchemy_teradata.types.CLOB', 'CLOB', ([], {'length': '(1)', 'multiplier': 'm'}), '(length=1, multiplier=m)\n', (3397, 3421), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((1121, 1130), 'sqlalchemy.types.Integer', 'Integer', ([], {}), '()\n', (1128, 1130), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1170, 1184), 'sqlalchemy.types.SmallInteger', 'SmallInteger', ([], {}), '()\n', (1182, 1184), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1225, 1237), 'sqlalchemy.types.BigInteger', 'BigInteger', ([], {}), '()\n', (1235, 1237), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1276, 1285), 'sqlalchemy.types.Numeric', 'Numeric', ([], {}), '()\n', (1283, 1285), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1325, 1332), 'sqlalchemy.types.Float', 'Float', ([], {}), '()\n', (1330, 1332), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1371, 1381), 'sqlalchemy.types.DateTime', 'DateTime', ([], {}), '()\n', (1379, 1381), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1426, 1432), 'sqlalchemy.types.Date', 'Date', ([], {}), '()\n', (1430, 1432), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1469, 1475), 'sqlalchemy.types.Time', 'Time', ([], {}), '()\n', (1473, 1475), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1516, 1524), 'sqlalchemy.types.String', 'String', ([], {}), '()\n', (1522, 1524), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1569, 1575), 'sqlalchemy.types.Text', 'Text', ([], {}), '()\n', (1573, 1575), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1612, 1621), 'sqlalchemy.types.Unicode', 'Unicode', ([], {}), '()\n', (1619, 1621), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1683, 1696), 'sqlalchemy.types.UnicodeText', 'UnicodeText', ([], {}), '()\n', (1694, 1696), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((1751, 1760), 'sqlalchemy.types.Boolean', 'Boolean', ([], {}), '()\n', (1758, 1760), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2052, 2058), 'sqlalchemy.types.DATE', 'DATE', ([], {}), '()\n', (2056, 2058), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2096, 2106), 'sqlalchemy.types.DATETIME', 'DATETIME', ([], {}), '()\n', (2104, 2106), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2152, 2163), 'sqlalchemy_teradata.types.TIMESTAMP', 'TIMESTAMP', ([], {}), '()\n', (2161, 2163), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2209, 2215), 'sqlalchemy_teradata.types.TIME', 'TIME', ([], {}), '()\n', (2213, 2215), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2257, 2263), 'sqlalchemy_teradata.types.CHAR', 'CHAR', ([], {}), '()\n', (2261, 2263), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2304, 2313), 'sqlalchemy_teradata.types.VARCHAR', 'VARCHAR', ([], {}), '()\n', (2311, 2313), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2359, 2366), 'sqlalchemy.types.NCHAR', 'NCHAR', ([], {}), '()\n', (2364, 2366), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2421, 2431), 'sqlalchemy.types.NVARCHAR', 'NVARCHAR', ([], {}), '()\n', (2429, 2431), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2494, 2500), 'sqlalchemy_teradata.types.CLOB', 'CLOB', ([], {}), '()\n', (2498, 2500), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2538, 2544), 'sqlalchemy.types.TEXT', 'TEXT', ([], {}), '()\n', (2542, 2544), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2584, 2593), 'sqlalchemy_teradata.types.DECIMAL', 'DECIMAL', ([], {}), '()\n', (2591, 2593), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2640, 2649), 'sqlalchemy_teradata.types.NUMERIC', 'NUMERIC', ([], {}), '()\n', (2647, 2649), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((2696, 2705), 'sqlalchemy.types.INTEGER', 'INTEGER', ([], {}), '()\n', (2703, 2705), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2747, 2754), 'sqlalchemy.types.FLOAT', 'FLOAT', ([], {}), '()\n', (2752, 2754), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2794, 2800), 'sqlalchemy.types.REAL', 'REAL', ([], {}), '()\n', (2798, 2800), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2839, 2849), 'sqlalchemy.types.SMALLINT', 'SMALLINT', ([], {}), '()\n', (2847, 2849), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2892, 2900), 'sqlalchemy.types.BIGINT', 'BIGINT', ([], {}), '()\n', (2898, 2900), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((2942, 2951), 'sqlalchemy.types.BOOLEAN', 'BOOLEAN', ([], {}), '()\n', (2949, 2951), False, 'from sqlalchemy.types import Integer, SmallInteger, BigInteger, Numeric, Float, DateTime, Date, String, Text, Unicode, UnicodeText, Time, LargeBinary, Boolean, Interval, DATE, BOOLEAN, DATETIME, BIGINT, SMALLINT, INTEGER, FLOAT, REAL, TEXT, NVARCHAR, NCHAR\n'), ((4294, 4307), 'sqlalchemy_teradata.types.TIME', 'TIME', (['(1)', '(True)'], {}), '(1, True)\n', (4298, 4307), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((4370, 4388), 'sqlalchemy_teradata.types.TIMESTAMP', 'TIMESTAMP', (['(0)', '(True)'], {}), '(0, True)\n', (4379, 4388), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((3629, 3642), 'sqlalchemy_teradata.types.VARCHAR', 'VARCHAR', (['len_'], {}), '(len_)\n', (3636, 3642), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((3708, 3718), 'sqlalchemy_teradata.types.CHAR', 'CHAR', (['len_'], {}), '(len_)\n', (3712, 3718), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((3784, 3794), 'sqlalchemy_teradata.types.CLOB', 'CLOB', (['len_'], {}), '(len_)\n', (3788, 3794), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((3950, 3966), 'sqlalchemy_teradata.types.VARCHAR', 'VARCHAR', (['len_', 'c'], {}), '(len_, c)\n', (3957, 3966), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((4084, 4097), 'sqlalchemy_teradata.types.CHAR', 'CHAR', (['len_', 'c'], {}), '(len_, c)\n', (4088, 4097), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n'), ((4215, 4228), 'sqlalchemy_teradata.types.CLOB', 'CLOB', (['len_', 'c'], {}), '(len_, c)\n', (4219, 4228), False, 'from sqlalchemy_teradata.types import CHAR, VARCHAR, CLOB, DECIMAL, NUMERIC, VARCHAR, TIMESTAMP, TIME\n')]
import logging import logging.config import os import sys import yaml config_path = os.path.join(sys.path[0], 'logger/logging.yaml') with open(config_path, 'r') as f: config = yaml.safe_load(f.read()) logging.config.dictConfig(config) f.close()
[ "logging.config.dictConfig", "os.path.join" ]
[((86, 134), 'os.path.join', 'os.path.join', (['sys.path[0]', '"""logger/logging.yaml"""'], {}), "(sys.path[0], 'logger/logging.yaml')\n", (98, 134), False, 'import os\n'), ((212, 245), 'logging.config.dictConfig', 'logging.config.dictConfig', (['config'], {}), '(config)\n', (237, 245), False, 'import logging\n')]
#!/usr/bin/env python3 #-*-coding:utf-8-*- from bs4 import BeautifulSoup from urllib import request import re html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> <p class="title"><b>The Dormouse's story</b></p> <p class="story">Once upon a time there were three little sisters; and their names were <a href="http://example.com/elsie" class="sister" id="link1">Elsie</a>, <a href="http://example.com/lacie" class="sister" id="link2">Lacie</a> and <a href="http://example.com/tillie" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</p> <p class="story">...</p> """ #使用BeautifulSoup上面的代码,能够得到一个 BeautifulSoup 的对象,并能按照标准的缩进格式的结构输出 def test1(): #html.parser--python内置解析器,执行速度适中,文档容错能力强,但是python2.7.3或3.2.2之前的版本支持不太好,容错能力差。 soup = BeautifulSoup(html_doc,'html.parser') print(soup.prettify()) #lxml HTML解析器,执行速度快,容错能力强,但需要安装C语言库 soup = BeautifulSoup(html_doc,'lxml') print(soup.prettify()) #lxml XML解析器,速度快唯一支持xml的解析器,需要安装C语言库 soup = BeautifulSoup(html_doc,'lxml-xml') print(soup.prettify()) #最好的容错性,以浏览器的方式解析文档生成html5格式,速度慢,不依赖外部扩展 soup = BeautifulSoup(html_doc,'html5lib') print(soup.prettify()) #BeautifulSoup对象常用方法 def test2(): soup = BeautifulSoup(html_doc,'html.parser') print(soup.title)#获取title标签 print(soup.title.name)#title标签的name print(soup.title.string)#title标签里的内容 print(soup.title.parent.name)#title标签的父标签的内容 print(soup.p)#获取第一个p标签 print(soup.p['class'])#第一个p标签的class属性的值 print(soup.a)#第一个a标签 print(soup.find_all('a'))#所有a标签 print(soup.find('p',{'class':'story'}).get_text())#获取所有class为‘story’的p标签 print(soup.find_all('a',href=re.compile(r'^http://example.com/')))#正则表达式匹配a标签中href以匹配的字符串开头的内容 #访问豆瓣的日记页面 def test3(): req = request.urlopen("https://www.douban.com/note/665344082/").read().decode('utf-8') soup = BeautifulSoup(req,'html.parser') print(soup.title.string) print(soup.find_all('a')) pass #test1() #test2() test3()
[ "bs4.BeautifulSoup", "urllib.request.urlopen", "re.compile" ]
[((793, 831), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc', '"""html.parser"""'], {}), "(html_doc, 'html.parser')\n", (806, 831), False, 'from bs4 import BeautifulSoup\n'), ((910, 941), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc', '"""lxml"""'], {}), "(html_doc, 'lxml')\n", (923, 941), False, 'from bs4 import BeautifulSoup\n'), ((1025, 1060), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc', '"""lxml-xml"""'], {}), "(html_doc, 'lxml-xml')\n", (1038, 1060), False, 'from bs4 import BeautifulSoup\n'), ((1148, 1183), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc', '"""html5lib"""'], {}), "(html_doc, 'html5lib')\n", (1161, 1183), False, 'from bs4 import BeautifulSoup\n'), ((1258, 1296), 'bs4.BeautifulSoup', 'BeautifulSoup', (['html_doc', '"""html.parser"""'], {}), "(html_doc, 'html.parser')\n", (1271, 1296), False, 'from bs4 import BeautifulSoup\n'), ((1894, 1927), 'bs4.BeautifulSoup', 'BeautifulSoup', (['req', '"""html.parser"""'], {}), "(req, 'html.parser')\n", (1907, 1927), False, 'from bs4 import BeautifulSoup\n'), ((1700, 1734), 're.compile', 're.compile', (['"""^http://example.com/"""'], {}), "('^http://example.com/')\n", (1710, 1734), False, 'import re\n'), ((1802, 1859), 'urllib.request.urlopen', 'request.urlopen', (['"""https://www.douban.com/note/665344082/"""'], {}), "('https://www.douban.com/note/665344082/')\n", (1817, 1859), False, 'from urllib import request\n')]
# coding: utf-8 from django.test import TestCase from django.template import Context from django.contrib.auth.models import User from division_perm import models from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func from unittest.mock import Mock class BaseTemplatetagsTest(TestCase): fixtures = ['perm_func'] def setUp(self): self.user = User.objects.create_user(username='tester', email='<EMAIL>', password='<PASSWORD>') self.employee = models.Employee.objects.create(user=self.user, last_name=self.user.username) self.division = models.Division.objects.create(name='testing') self.division2 = models.Division.objects.create(name='testing2') self.func = models.Func.objects.all()[0] self.role = models.Role.objects.create(name='manager', code=self.func.code, level=2, division=self.division) class CanModifyFilterTest(BaseTemplatetagsTest): def test_can_modify_have_access(self): self.employee.divisions.add(self.division) self.employee.full_access.add(self.division) have_access = can_modify(self.employee, self.user) self.assertTrue(have_access) def test_can_modify_have_not_access(self): self.employee.divisions.clear() self.employee.full_access.clear() have_access = can_modify(self.employee, self.user) self.assertFalse(have_access) class CanFuncTagTest(BaseTemplatetagsTest): def test_can_func_with_obj_and_is_modify_and_can_modify_is_false(self): self.func.is_modify = 1 self.func.save() context = {'user': self.user} have_access = can_func(context, self.func.code, self.employee) self.assertFalse(can_modify(self.employee, self.user)) self.assertFalse(have_access) def test_can_func_with_obj_and_is_modify_and_can_modify_is_true_and_user_level_gt_func_level(self): self.func.is_modify = 1 self.func.save() context = {'user': self.user} self.employee.divisions.add(self.division) self.employee.full_access.add(self.division) self.employee.roles.add(self.role) self.assertFalse(self.func.level <= self.role.level) self.role.level = self.func.level + 2 self.role.save() self.assertTrue(self.func.level <= self.role.level) have_access = can_func(context, self.func.code, self.employee) self.assertTrue(can_modify(self.employee, self.user)) self.assertTrue(have_access) def test_can_func_with_obj_and_is_modify_is_false_and_user_level_lt_func_level(self): context = {'user': self.user} self.func.is_modify = 0 self.func.save() self.assertFalse(can_modify(self.employee, self.user)) self.employee.divisions.add(self.division) self.employee.read_access.add(self.division) self.employee.roles.add(self.role) self.assertFalse(self.func.level <= self.role.level) self.role.level = self.func.level - 2 self.role.save() self.assertFalse(self.func.level <= self.role.level) have_access = can_func(context, self.func.code, self.employee) self.assertFalse(have_access) def test_can_func_with_obj_is_none(self): context = {'user': self.user} self.employee.divisions.add(self.division) have_access = can_func(context, self.func.code, self.employee) self.assertFalse(have_access) class BlockSuperIfCanFuncTagTest(BaseTemplatetagsTest): def test_block_super_if_can_func(self): mock_block = Mock() mock_block.super = 'super' self.func.is_modify = 0 self.func.save() self.employee.divisions.add(self.division) self.employee.read_access.add(self.division) self.employee.roles.add(self.role) self.assertFalse(self.func.level <= self.role.level) self.role.level = self.func.level + 2 self.role.save() context = Context({'user': self.user, 'block': mock_block}) result = block_super_if_can_func(context, self.func.code, self.employee) self.assertEqual(result['content'], context['block'].super) self.assertEqual( result['user_can_func'], can_func(Context({'user': self.user}), self.func.code, self.employee) )
[ "division_perm.models.Division.objects.create", "division_perm.templatetags.perm.block_super_if_can_func", "unittest.mock.Mock", "division_perm.templatetags.perm.can_func", "division_perm.models.Employee.objects.create", "division_perm.templatetags.perm.can_modify", "django.template.Context", "division_perm.models.Func.objects.all", "division_perm.models.Role.objects.create", "django.contrib.auth.models.User.objects.create_user" ]
[((397, 485), 'django.contrib.auth.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""tester"""', 'email': '"""<EMAIL>"""', 'password': '"""<PASSWORD>"""'}), "(username='tester', email='<EMAIL>', password=\n '<PASSWORD>')\n", (421, 485), False, 'from django.contrib.auth.models import User\n'), ((505, 581), 'division_perm.models.Employee.objects.create', 'models.Employee.objects.create', ([], {'user': 'self.user', 'last_name': 'self.user.username'}), '(user=self.user, last_name=self.user.username)\n', (535, 581), False, 'from division_perm import models\n'), ((606, 652), 'division_perm.models.Division.objects.create', 'models.Division.objects.create', ([], {'name': '"""testing"""'}), "(name='testing')\n", (636, 652), False, 'from division_perm import models\n'), ((678, 725), 'division_perm.models.Division.objects.create', 'models.Division.objects.create', ([], {'name': '"""testing2"""'}), "(name='testing2')\n", (708, 725), False, 'from division_perm import models\n'), ((795, 895), 'division_perm.models.Role.objects.create', 'models.Role.objects.create', ([], {'name': '"""manager"""', 'code': 'self.func.code', 'level': '(2)', 'division': 'self.division'}), "(name='manager', code=self.func.code, level=2,\n division=self.division)\n", (821, 895), False, 'from division_perm import models\n'), ((1113, 1149), 'division_perm.templatetags.perm.can_modify', 'can_modify', (['self.employee', 'self.user'], {}), '(self.employee, self.user)\n', (1123, 1149), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((1339, 1375), 'division_perm.templatetags.perm.can_modify', 'can_modify', (['self.employee', 'self.user'], {}), '(self.employee, self.user)\n', (1349, 1375), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((1654, 1702), 'division_perm.templatetags.perm.can_func', 'can_func', (['context', 'self.func.code', 'self.employee'], {}), '(context, self.func.code, self.employee)\n', (1662, 1702), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((2365, 2413), 'division_perm.templatetags.perm.can_func', 'can_func', (['context', 'self.func.code', 'self.employee'], {}), '(context, self.func.code, self.employee)\n', (2373, 2413), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((3124, 3172), 'division_perm.templatetags.perm.can_func', 'can_func', (['context', 'self.func.code', 'self.employee'], {}), '(context, self.func.code, self.employee)\n', (3132, 3172), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((3369, 3417), 'division_perm.templatetags.perm.can_func', 'can_func', (['context', 'self.func.code', 'self.employee'], {}), '(context, self.func.code, self.employee)\n', (3377, 3417), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((3580, 3586), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (3584, 3586), False, 'from unittest.mock import Mock\n'), ((3977, 4026), 'django.template.Context', 'Context', (["{'user': self.user, 'block': mock_block}"], {}), "({'user': self.user, 'block': mock_block})\n", (3984, 4026), False, 'from django.template import Context\n'), ((4044, 4107), 'division_perm.templatetags.perm.block_super_if_can_func', 'block_super_if_can_func', (['context', 'self.func.code', 'self.employee'], {}), '(context, self.func.code, self.employee)\n', (4067, 4107), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((746, 771), 'division_perm.models.Func.objects.all', 'models.Func.objects.all', ([], {}), '()\n', (769, 771), False, 'from division_perm import models\n'), ((1728, 1764), 'division_perm.templatetags.perm.can_modify', 'can_modify', (['self.employee', 'self.user'], {}), '(self.employee, self.user)\n', (1738, 1764), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((2438, 2474), 'division_perm.templatetags.perm.can_modify', 'can_modify', (['self.employee', 'self.user'], {}), '(self.employee, self.user)\n', (2448, 2474), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((2724, 2760), 'division_perm.templatetags.perm.can_modify', 'can_modify', (['self.employee', 'self.user'], {}), '(self.employee, self.user)\n', (2734, 2760), False, 'from division_perm.templatetags.perm import can_modify, can_func, block_super_if_can_func\n'), ((4260, 4288), 'django.template.Context', 'Context', (["{'user': self.user}"], {}), "({'user': self.user})\n", (4267, 4288), False, 'from django.template import Context\n')]
# TODO: Copy all of your 04-Drawing.py program and put it below this comment. import pygame import sys pygame.init() screen = pygame.display.set_mode((640, 480)) nose_y = 240 eyes_y = 180 clock = pygame.time.Clock() while True: clock.tick(60) for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() screen.fill((0, 255, 255))#teel # face pygame.draw.circle(screen, (255, 200, 100), (320, 240), 150, 0) #eyes #eyes_y = eyes_y -1 if eyes_y < 10: eyes_y = 180 pygame.draw.circle(screen, (0, 0, 0), (245, eyes_y), 25, 0) pygame.draw.circle(screen, (0, 0, 0), (395, eyes_y), 25, 0) #nose nose_y = nose_y + 1 if nose_y > 480: nose_y = 240 pygame.draw.circle(screen, (255, 0, 0), (320, nose_y), 15, 0) # squair mouth rect(screen, collor, (start),(with lange) #pygame.draw.rect(screen, (255, 250, 250), ((245, 290), (150, 30)), 0) # tryangel mouth pygame.draw.polygon(screen,(255,100,20),((350,280),(250,280),(300,300))) pygame.display.update() # TODO: In this module we'll make the nose move down until a certain y then reset to the top again.
[ "pygame.draw.circle", "pygame.draw.polygon", "pygame.init", "sys.exit", "pygame.event.get", "pygame.display.set_mode", "pygame.time.Clock", "pygame.display.update" ]
[((108, 121), 'pygame.init', 'pygame.init', ([], {}), '()\n', (119, 121), False, 'import pygame\n'), ((132, 167), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(640, 480)'], {}), '((640, 480))\n', (155, 167), False, 'import pygame\n'), ((204, 223), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (221, 223), False, 'import pygame\n'), ((273, 291), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (289, 291), False, 'import pygame\n'), ((406, 469), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(255, 200, 100)', '(320, 240)', '(150)', '(0)'], {}), '(screen, (255, 200, 100), (320, 240), 150, 0)\n', (424, 469), False, 'import pygame\n'), ((549, 608), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 0, 0)', '(245, eyes_y)', '(25)', '(0)'], {}), '(screen, (0, 0, 0), (245, eyes_y), 25, 0)\n', (567, 608), False, 'import pygame\n'), ((613, 672), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(0, 0, 0)', '(395, eyes_y)', '(25)', '(0)'], {}), '(screen, (0, 0, 0), (395, eyes_y), 25, 0)\n', (631, 672), False, 'import pygame\n'), ((753, 814), 'pygame.draw.circle', 'pygame.draw.circle', (['screen', '(255, 0, 0)', '(320, nose_y)', '(15)', '(0)'], {}), '(screen, (255, 0, 0), (320, nose_y), 15, 0)\n', (771, 814), False, 'import pygame\n'), ((978, 1064), 'pygame.draw.polygon', 'pygame.draw.polygon', (['screen', '(255, 100, 20)', '((350, 280), (250, 280), (300, 300))'], {}), '(screen, (255, 100, 20), ((350, 280), (250, 280), (300, \n 300)))\n', (997, 1064), False, 'import pygame\n'), ((1056, 1079), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (1077, 1079), False, 'import pygame\n'), ((343, 353), 'sys.exit', 'sys.exit', ([], {}), '()\n', (351, 353), False, 'import sys\n')]
import os import re import tweepy import json import pandas as pandas import argparse import time import csv import datetime from collections import Counter from emoji import UNICODE_EMOJI with open('config.json') as f: config = json.load(f) auth = tweepy.OAuthHandler(config['consumer_key'], config['consumer_secret']) auth.set_access_token(config['access_token'], config['access_token_secret']) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) def get_tweets(user, n=100): return list(tweepy.Cursor(api.user_timeline, count=200, screen_name=user, tweet_mode="extended", include_rts=False).items(n)) def tweet_to_dict(tweet): return { 'name': tweet.author.name, 'login': tweet.author.screen_name, 'likes': tweet.favorite_count, 'retweets': tweet.retweet_count, 'text': tweet.full_text, 'date': tweet.created_at, 'in_reply': tweet.in_reply_to_screen_name, 'source': tweet.source, 'coordinates': tweet.coordinates, 'geo': tweet.geo, 'id': tweet.id, } def get_follower_ids(user, n=0): if isinstance(user, str): kwargs = {'screen_name': user} else: assert isinstance(user, int) kwargs = {'id': user} return list(tweepy.Cursor(api.followers_ids, count=5000, **kwargs).items(n)) def get_friend_ids(user, n=0): if isinstance(user, str): kwargs = {'screen_name': user} else: assert isinstance(user, int) kwargs = {'id': user} return list(tweepy.Cursor(api.friends_ids, count=5000, **kwargs).items(n)) def get_retweeter_ids(tweet_id): return list(tweepy.Cursor(api.retweeters, count=100, id=tweet_id).items()) def ids_to_users(userids): ''' Taken from https://stackoverflow.com/a/58234314/4110059 ''' users = [] u_count = len(userids) for i in range(int(u_count/100) + 1): end_loc = min((i + 1) * 100, u_count) users.extend(api.lookup_users(user_ids=userids[i * 100:end_loc])) return users def get_followers(user, n=0): ids = get_follower_ids(user, n=n) return ids_to_users(ids) def get_friends(user, n=0): ids = get_friend_ids(user, n=n) return ids_to_users(ids) def user_to_dict(user): return { 'name': user.name, 'screen_name': user.screen_name, 'date': user.created_at, 'description': user.description, 'followers_count': user.followers_count, 'following_count': user.friends_count, 'statuses_count': user.statuses_count, 'likes_count': user.favourites_count, 'default_background': user.default_profile, 'default_avatar': user.default_profile_image, 'verified': user.verified, 'listed_count': user.listed_count, 'protected': user.protected, 'id': user.id, 'location': user.location, } def build_dataframe(obj_list, dict_func): obj_list = [dict_func(obj) for obj in obj_list] return pandas.DataFrame(obj_list) def get_pattern(df, pattern): df = df.reset_index(drop=True) matches = df['text'].str.extractall(r'(?P<mention>%s)' % pattern, re.IGNORECASE) matches.index = matches.index.rename(['tweet', 'match']) df.index = df.index.rename('tweet') return matches.join(df) def get_mentions(df): return get_pattern(df, '@[a-zA-Z0-9_]+') def get_hashtags(df): return get_pattern(df, '#[a-zA-Z0-9_]+') def count_patterns(df, patterns): counts = [] for pat in patterns: tmp = get_pattern(df, pat).reset_index() tmp = tmp[['name', 'login', 'tweet']].drop_duplicates().groupby(['name', 'login']).count().reset_index() tmp['pattern'] = pat counts.append(tmp) return pandas.concat(counts).sort_values(by=['tweet', 'name'], ascending=False) def tweet_to_words(tweet, min_length=5): words = tweet.split() words = [w.lower() for w in words if len(w) >= min_length] dumb_words = {'dans', 'cette', 'leur', 'merci', 'très', 'nous', 'pour', 'grenoble', 'notre', 'avec'} words = [w for w in words if w not in dumb_words] words = [w for w in words if not w.startswith('#') and not w.startswith('@')] return words def tweet_to_words_nltk(tweet, language='french', min_length=5): import nltk is_noun = lambda pos: pos[:2] == 'NN' tokenized = nltk.word_tokenize(tweet, language=language) words = [w for w in tokenized if len(w) >= min_length] words = [w.lower() for w in words] #words = [word for (word, pos) in nltk.pos_tag(words) if is_noun(pos)] return words def is_emoji(s): ''' From https://stackoverflow.com/a/36217640/4110059 ''' return s in UNICODE_EMOJI def tweet_to_emojis(tweet, min_length=None): return [char for char in tweet if is_emoji(char)] def count_words(df, split_func=tweet_to_words_nltk, min_length=5): counters = {login: Counter() for login in df['login'].unique()} for _, row in df.iterrows(): login = row['login'] words = split_func(row['text'], min_length=min_length) for w in words: counters[login][w] += 1 rows = [] for login, c in counters.items(): rows.extend([{'login': login, 'word': word, 'count': count} for word, count in c.items()]) df = pandas.DataFrame(rows) return df def tweets_of_user(args): if args.full: os.makedirs(args.output) tweets = build_dataframe(get_tweets(args.obj, n=args.max_number), tweet_to_dict) filename = os.path.join(args.output, 'tweets.csv') if args.full else args.output write_csv(tweets, filename) if not args.full: return if len(tweets) == 0: return ids = list(tweets['id']) retweeters = [] for tweet_id in ids: for usr_id in get_retweeter_ids(tweet_id): retweeters.append({'tweet_id': tweet_id, 'user_id': usr_id}) retweeters = pandas.DataFrame(retweeters) filename = os.path.join(args.output, 'retweets.csv') write_csv(retweeters, filename) ids = list(retweeters['user_id'].unique()) users = build_dataframe(ids_to_users(ids), user_to_dict) filename = os.path.join(args.output, 'retweeters.csv') write_csv(users, filename) def followers_of_user(args): df = build_dataframe(get_followers(args.obj, n=args.max_number), user_to_dict) write_csv(df, args.output) def friends_of_user(args): df = build_dataframe(get_friends(args.obj, n=args.max_number), user_to_dict) write_csv(df, args.output) def write_csv(df, filename): df.to_csv(filename, index=False, quoting=csv.QUOTE_ALL) print(f'File {filename} created with a {len(df)}×{len(df.columns)} dataframe') def main(): functions = [tweets_of_user, followers_of_user, friends_of_user] choices = {func.__name__: func for func in functions} parser = argparse.ArgumentParser(description='Download twitter data and dump it in a CSV') parser.add_argument('--max_number', type=int, default=100, help='Maximal number of items to download') parser.add_argument('--output', type=str, default='/tmp/data.csv', help='Output CSV file') parser.add_argument('--full', action='store_true', help='Download more data (e.g. users that retweeted the tweets)') parser.add_argument('mode', choices=choices) parser.add_argument('obj', type=str, help='User login') args = parser.parse_args() t = time.time() choices[args.mode](args) t = time.time() - t print(f'Total time: {t:.2f} seconds') if __name__ == '__main__': main()
[ "nltk.word_tokenize", "pandas.DataFrame", "argparse.ArgumentParser", "os.makedirs", "tweepy.Cursor", "os.path.join", "collections.Counter", "tweepy.API", "pandas.concat", "json.load", "time.time", "tweepy.OAuthHandler" ]
[((257, 327), 'tweepy.OAuthHandler', 'tweepy.OAuthHandler', (["config['consumer_key']", "config['consumer_secret']"], {}), "(config['consumer_key'], config['consumer_secret'])\n", (276, 327), False, 'import tweepy\n'), ((411, 484), 'tweepy.API', 'tweepy.API', (['auth'], {'wait_on_rate_limit': '(True)', 'wait_on_rate_limit_notify': '(True)'}), '(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True)\n', (421, 484), False, 'import tweepy\n'), ((235, 247), 'json.load', 'json.load', (['f'], {}), '(f)\n', (244, 247), False, 'import json\n'), ((3019, 3045), 'pandas.DataFrame', 'pandas.DataFrame', (['obj_list'], {}), '(obj_list)\n', (3035, 3045), True, 'import pandas as pandas\n'), ((4387, 4431), 'nltk.word_tokenize', 'nltk.word_tokenize', (['tweet'], {'language': 'language'}), '(tweet, language=language)\n', (4405, 4431), False, 'import nltk\n'), ((5324, 5346), 'pandas.DataFrame', 'pandas.DataFrame', (['rows'], {}), '(rows)\n', (5340, 5346), True, 'import pandas as pandas\n'), ((5934, 5962), 'pandas.DataFrame', 'pandas.DataFrame', (['retweeters'], {}), '(retweeters)\n', (5950, 5962), True, 'import pandas as pandas\n'), ((5978, 6019), 'os.path.join', 'os.path.join', (['args.output', '"""retweets.csv"""'], {}), "(args.output, 'retweets.csv')\n", (5990, 6019), False, 'import os\n'), ((6179, 6222), 'os.path.join', 'os.path.join', (['args.output', '"""retweeters.csv"""'], {}), "(args.output, 'retweeters.csv')\n", (6191, 6222), False, 'import os\n'), ((6868, 6954), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Download twitter data and dump it in a CSV"""'}), "(description=\n 'Download twitter data and dump it in a CSV')\n", (6891, 6954), False, 'import argparse\n'), ((7517, 7528), 'time.time', 'time.time', ([], {}), '()\n', (7526, 7528), False, 'import time\n'), ((4934, 4943), 'collections.Counter', 'Counter', ([], {}), '()\n', (4941, 4943), False, 'from collections import Counter\n'), ((5415, 5439), 'os.makedirs', 'os.makedirs', (['args.output'], {}), '(args.output)\n', (5426, 5439), False, 'import os\n'), ((5540, 5579), 'os.path.join', 'os.path.join', (['args.output', '"""tweets.csv"""'], {}), "(args.output, 'tweets.csv')\n", (5552, 5579), False, 'import os\n'), ((7566, 7577), 'time.time', 'time.time', ([], {}), '()\n', (7575, 7577), False, 'import time\n'), ((3771, 3792), 'pandas.concat', 'pandas.concat', (['counts'], {}), '(counts)\n', (3784, 3792), True, 'import pandas as pandas\n'), ((532, 640), 'tweepy.Cursor', 'tweepy.Cursor', (['api.user_timeline'], {'count': '(200)', 'screen_name': 'user', 'tweet_mode': '"""extended"""', 'include_rts': '(False)'}), "(api.user_timeline, count=200, screen_name=user, tweet_mode=\n 'extended', include_rts=False)\n", (545, 640), False, 'import tweepy\n'), ((1298, 1352), 'tweepy.Cursor', 'tweepy.Cursor', (['api.followers_ids'], {'count': '(5000)'}), '(api.followers_ids, count=5000, **kwargs)\n', (1311, 1352), False, 'import tweepy\n'), ((1559, 1611), 'tweepy.Cursor', 'tweepy.Cursor', (['api.friends_ids'], {'count': '(5000)'}), '(api.friends_ids, count=5000, **kwargs)\n', (1572, 1611), False, 'import tweepy\n'), ((1673, 1726), 'tweepy.Cursor', 'tweepy.Cursor', (['api.retweeters'], {'count': '(100)', 'id': 'tweet_id'}), '(api.retweeters, count=100, id=tweet_id)\n', (1686, 1726), False, 'import tweepy\n')]
from bs4 import BeautifulSoup import urllib import json f = urllib.urlopen('https://petitions.whitehouse.gov/petition/legally-recognize-westboro-baptist-church-hate-group/DYf3pH2d') soup = BeautifulSoup(f) ss = str(soup.find(class_ = "petition-detail petition-detail-margin-right")) json.dump(ss, open('ptext.json', 'wb'))
[ "bs4.BeautifulSoup", "urllib.urlopen" ]
[((100, 231), 'urllib.urlopen', 'urllib.urlopen', (['"""https://petitions.whitehouse.gov/petition/legally-recognize-westboro-baptist-church-hate-group/DYf3pH2d"""'], {}), "(\n 'https://petitions.whitehouse.gov/petition/legally-recognize-westboro-baptist-church-hate-group/DYf3pH2d'\n )\n", (114, 231), False, 'import urllib\n'), ((229, 245), 'bs4.BeautifulSoup', 'BeautifulSoup', (['f'], {}), '(f)\n', (242, 245), False, 'from bs4 import BeautifulSoup\n')]
# Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. import os from . import option_list option_list['url_prefix'] = os.environ.get('DIGITS_URL_PREFIX', '')
[ "os.environ.get" ]
[((132, 171), 'os.environ.get', 'os.environ.get', (['"""DIGITS_URL_PREFIX"""', '""""""'], {}), "('DIGITS_URL_PREFIX', '')\n", (146, 171), False, 'import os\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ The Station characterization module is used to create an object based on user input information (settings). The basic settings from the user is in turn used to generate additional information/data and the final result is an object that has all the attributes necessary to run the station characterization function in stc_functions. Example usage: import stc_functions myStation=StationChar('HTM') # to generate a map with sensitivity binned in accordance with interval and degree user settings map_representation_polar_graph_upd(myStation, 'sensitivity') """ __author__ = ["<NAME>"] __credits__ = "ICOS Carbon Portal" __license__ = "GPL-3.0" __version__ = "0.1.2" __maintainer__ = "ICOS Carbon Portal, elaborated products team" __email__ = ['<EMAIL>', '<EMAIL>'] __status__ = "rc1" __date__ = "2021-06-22" import requests import datetime as dt import pandas as pd import stc_functions stcDataPath='/data/project/stc/' #need settings in an object. #second class? BinLabels.. object available within station class StationChar(): """ Create a station characterization object. This class intends to create an instance of a station characterization, providing information needed to run station characterization functions. The object will look different depending on what information is provided in settings (station, date range, binning specifications for the output maps etc) Attributes include latitude and longitude of the station. Given that the object myStationChar is created, this is an example of its use: myStationChar.lat -> returns latitude as float. all object attributes are listed in def __init__ """ def __init__(self, settings): """ Initialize your Station Characterization object """ self.settings = settings # dictionary from the GUI with self.stationId = None # string with the station id self.stationName = None # full name of station self.lat = None # float with latitude of station self.lon = None # float with longitude of station self.country = None # string with the station's country name self.stationClass = None # string with station class (1 or 2 or none) self.siteType = None # string with station type (mountain etc. or none) self.dateRange = None # date range for average footprint specified by users self.fp = None # numpy array 400 columns 480 rows (192000 cells) STILT footprint grid given daterange self.fpLat = None # numpy array with STILT grid lat-values (480) self.fpLon = None # # numpy array with STILT grid lon-values (400) self.distances = None # distances from station to all cells in the STILT grid self.degrees = None # degree angle between station and all cells in the STILT grid #own class? --> script. provide lat and lon + gridsize. general.get distances and angels. general. "version 2". self.intervalBins = None # numpy array with the bin intervals for the maps self.intervalLabels = None # list with the bin labels for the maps self.dirBins = None # numpy array with the direction bins for the maps self.dirLabels = None # list with the direction labels for the maps self.figures = {} # dictionary to store figures and captions # use figures['1'] = [fig, caption] to get figure 1.... # to add, see function add_figure() # fucntions to generate the object attributes self._setStationData() self._setDateRange() self._setFootprint() self._setDistancesAndDegrees() self._setBinsAndLabels() def _setStationData(self): self.stationId = self.settings['stationCode'] self.country = self.settings['stilt']['geoinfo']['name']['common'] if 'icos' in self.settings.keys(): # ICOS station self.stationName=self.settings['icos']['name'] self.lat=self.settings['icos']['lat'] self.lon=self.settings['icos']['lon'] #only going to be set for icos stations, not when only a STILT station self.stationClass=self.settings['icos']['icosclass'] self.siteType=self.settings['icos']['siteType'] else: # STILT station: self.stationName=self.settings['stilt']['name'] self.lat=self.settings['stilt']['lat'] self.lon=self.settings['stilt']['lon'] def _setDateRange(self): """ Pandas dataframe with the dates/times for all footprints (every three hours: 0, 3, 6, 9 etc.) from the start- and end date specified in settings by the user. """ start_date=dt.datetime(self.settings['startYear'],self.settings['startMonth'],self.settings['startDay'],0) end_date=dt.datetime(self.settings['endYear'],self.settings['endMonth'],self.settings['endDay'],0) self.dateRange = stc_functions.date_range_hour_filtered(start_date, end_date, self.settings['timeOfDay']) def _setFootprint(self): """ Generate an average footprint (fp) given the user date range. Only footprints that the users are interested in is used (timeselect). fpLat and fpLon corresponding to the average footprint are also set here. """ nfp, self.fp, self.fpLon, self.fpLat, title= stc_functions.read_aggreg_footprints(self.stationId, self.dateRange) #station_lat, station_lon, grid_lat, grid_lon def _setDistancesAndDegrees(self): """ Distances and degrees from the station to all cells in the STILT grid. The information is used to bin the footprints based on angle and distance to station. For the labelled atmoshperic stations (as of 2020-07-15) this is pre-calculated and accessed from csv-files. If it is any other station, these values are calculated and set as attributes. The calculated values are also appended to the csv-files. """ #saved distances and degrees for ICOS stations: df_w_distances=pd.read_csv(stcDataPath+ "approved_stations_distances.csv") df_w_degrees=pd.read_csv(stcDataPath + "approved_stations_degrees.csv") #if not saved distances to all 192000 cells, calculate it. if self.stationId in df_w_degrees.keys().tolist(): self.distances=df_w_distances[self.stationId] self.degrees=df_w_degrees[self.stationId] else: self.distances=stc_functions.distances_from_point_to_grid_cells(self.lat, self.lon, self.fpLat, self.fpLon) self.degrees=stc_functions.degrees_from_point_to_grid_cells(self.lat, self.lon, self.fpLat, self.fpLon) #or other class... but belongs to object station characterization as much as distances and degrees to footprint? #can now remove "define_bins_landcover_polar_graph" def _setBinsAndLabels(self): """ Given the user specified intervals and degree-binning for the output maps, bin arrays and labels are generated for both distance from station and degree angle in relation to station. The labels are only used within the function (heading for columns in pandas dataframe). """ km_intervals = self.settings['binInterval'] bin_size = self.settings['binSize'] self.intervalBins, self.intervalLabels, self.dirBins, self.dirLabels = stc_functions.define_bins_maprose(km_intervals, bin_size) def add_figure(self, key, figure, caption): """ add figures in the dictionary self.figures. To retrieve the figures you can use object.figure Parameters ---------- key : INT|STR : figure number (1 = sensitivity, 2 = pointsource 3 = population, 4 = landcover_rose, 5 = multiple_variables 6 = seasonal, 7 = landcover_bar figure : OBjECT : Matplotlib figure or smilar, needs to have a function Object.show() and object.savefig('filename') caption : STR : String to be used as a caption text for example when creating a pdf output Returns: None. """ # humean readable key to value assignment short = {'1': 'sensitivity', '2': 'pointsource', '3': 'population', '4': 'landcover_bar', '5': 'seasonal', '6': 'landcover_polar', '7': 'multivar'} self.figures[str(key)]=[figure, caption, short[str(key)]] if __name__ == "__main__": """ execute only if run as a script get a full list from the CarbonPortal SPARQL endpoint and create a list of station objects """ msg = """ You have chosen to run this as a standalone script. usually you would use it to create a station characterization class to be used in when running station characterization functions in stc_functions. It is also used when pusing the update button in the GUI at ICOS exploredata (exploredata.icos-cp.eu). """ print(msg)
[ "datetime.datetime", "stc_functions.read_aggreg_footprints", "stc_functions.date_range_hour_filtered", "pandas.read_csv", "stc_functions.degrees_from_point_to_grid_cells", "stc_functions.define_bins_maprose", "stc_functions.distances_from_point_to_grid_cells" ]
[((5329, 5432), 'datetime.datetime', 'dt.datetime', (["self.settings['startYear']", "self.settings['startMonth']", "self.settings['startDay']", '(0)'], {}), "(self.settings['startYear'], self.settings['startMonth'], self.\n settings['startDay'], 0)\n", (5340, 5432), True, 'import datetime as dt\n'), ((5442, 5539), 'datetime.datetime', 'dt.datetime', (["self.settings['endYear']", "self.settings['endMonth']", "self.settings['endDay']", '(0)'], {}), "(self.settings['endYear'], self.settings['endMonth'], self.\n settings['endDay'], 0)\n", (5453, 5539), True, 'import datetime as dt\n'), ((5558, 5651), 'stc_functions.date_range_hour_filtered', 'stc_functions.date_range_hour_filtered', (['start_date', 'end_date', "self.settings['timeOfDay']"], {}), "(start_date, end_date, self.settings[\n 'timeOfDay'])\n", (5596, 5651), False, 'import stc_functions\n'), ((5986, 6054), 'stc_functions.read_aggreg_footprints', 'stc_functions.read_aggreg_footprints', (['self.stationId', 'self.dateRange'], {}), '(self.stationId, self.dateRange)\n', (6022, 6054), False, 'import stc_functions\n'), ((6709, 6769), 'pandas.read_csv', 'pd.read_csv', (["(stcDataPath + 'approved_stations_distances.csv')"], {}), "(stcDataPath + 'approved_stations_distances.csv')\n", (6720, 6769), True, 'import pandas as pd\n'), ((6790, 6848), 'pandas.read_csv', 'pd.read_csv', (["(stcDataPath + 'approved_stations_degrees.csv')"], {}), "(stcDataPath + 'approved_stations_degrees.csv')\n", (6801, 6848), True, 'import pandas as pd\n'), ((8066, 8123), 'stc_functions.define_bins_maprose', 'stc_functions.define_bins_maprose', (['km_intervals', 'bin_size'], {}), '(km_intervals, bin_size)\n', (8099, 8123), False, 'import stc_functions\n'), ((7144, 7241), 'stc_functions.distances_from_point_to_grid_cells', 'stc_functions.distances_from_point_to_grid_cells', (['self.lat', 'self.lon', 'self.fpLat', 'self.fpLon'], {}), '(self.lat, self.lon, self.\n fpLat, self.fpLon)\n', (7192, 7241), False, 'import stc_functions\n'), ((7263, 7358), 'stc_functions.degrees_from_point_to_grid_cells', 'stc_functions.degrees_from_point_to_grid_cells', (['self.lat', 'self.lon', 'self.fpLat', 'self.fpLon'], {}), '(self.lat, self.lon, self.\n fpLat, self.fpLon)\n', (7309, 7358), False, 'import stc_functions\n')]
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test for the BigQuery side input example.""" import logging import unittest import google.cloud.dataflow as df from google.cloud.dataflow.examples.cookbook import bigquery_side_input class BigQuerySideInputTest(unittest.TestCase): def test_create_groups(self): p = df.Pipeline('DirectPipelineRunner') group_ids_pcoll = p | df.Create('create_group_ids', ['A', 'B', 'C']) corpus_pcoll = p | df.Create('create_corpus', [{'f': 'corpus1'}, {'f': 'corpus2'}, {'f': 'corpus3'}]) words_pcoll = p | df.Create('create_words', [{'f': 'word1'}, {'f': 'word2'}, {'f': 'word3'}]) ignore_corpus_pcoll = p | df.Create('create_ignore_corpus', ['corpus1']) ignore_word_pcoll = p | df.Create('create_ignore_word', ['word1']) groups = bigquery_side_input.create_groups(group_ids_pcoll, corpus_pcoll, words_pcoll, ignore_corpus_pcoll, ignore_word_pcoll) def group_matcher(actual): self.assertEqual(len(actual), 3) for group in actual: self.assertEqual(len(group), 3) self.assertTrue(group[1].startswith('corpus')) self.assertNotEqual(group[1], 'corpus1') self.assertTrue(group[2].startswith('word')) self.assertNotEqual(group[2], 'word1') df.assert_that(groups, group_matcher) p.run() if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
[ "google.cloud.dataflow.Create", "logging.getLogger", "google.cloud.dataflow.assert_that", "google.cloud.dataflow.examples.cookbook.bigquery_side_input.create_groups", "unittest.main", "google.cloud.dataflow.Pipeline" ]
[((2237, 2252), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2250, 2252), False, 'import unittest\n'), ((877, 912), 'google.cloud.dataflow.Pipeline', 'df.Pipeline', (['"""DirectPipelineRunner"""'], {}), "('DirectPipelineRunner')\n", (888, 912), True, 'import google.cloud.dataflow as df\n'), ((1552, 1673), 'google.cloud.dataflow.examples.cookbook.bigquery_side_input.create_groups', 'bigquery_side_input.create_groups', (['group_ids_pcoll', 'corpus_pcoll', 'words_pcoll', 'ignore_corpus_pcoll', 'ignore_word_pcoll'], {}), '(group_ids_pcoll, corpus_pcoll,\n words_pcoll, ignore_corpus_pcoll, ignore_word_pcoll)\n', (1585, 1673), False, 'from google.cloud.dataflow.examples.cookbook import bigquery_side_input\n'), ((2111, 2148), 'google.cloud.dataflow.assert_that', 'df.assert_that', (['groups', 'group_matcher'], {}), '(groups, group_matcher)\n', (2125, 2148), True, 'import google.cloud.dataflow as df\n'), ((940, 986), 'google.cloud.dataflow.Create', 'df.Create', (['"""create_group_ids"""', "['A', 'B', 'C']"], {}), "('create_group_ids', ['A', 'B', 'C'])\n", (949, 986), True, 'import google.cloud.dataflow as df\n'), ((1010, 1096), 'google.cloud.dataflow.Create', 'df.Create', (['"""create_corpus"""', "[{'f': 'corpus1'}, {'f': 'corpus2'}, {'f': 'corpus3'}]"], {}), "('create_corpus', [{'f': 'corpus1'}, {'f': 'corpus2'}, {'f':\n 'corpus3'}])\n", (1019, 1096), True, 'import google.cloud.dataflow as df\n'), ((1216, 1291), 'google.cloud.dataflow.Create', 'df.Create', (['"""create_words"""', "[{'f': 'word1'}, {'f': 'word2'}, {'f': 'word3'}]"], {}), "('create_words', [{'f': 'word1'}, {'f': 'word2'}, {'f': 'word3'}])\n", (1225, 1291), True, 'import google.cloud.dataflow as df\n'), ((1420, 1466), 'google.cloud.dataflow.Create', 'df.Create', (['"""create_ignore_corpus"""', "['corpus1']"], {}), "('create_ignore_corpus', ['corpus1'])\n", (1429, 1466), True, 'import google.cloud.dataflow as df\n'), ((1495, 1537), 'google.cloud.dataflow.Create', 'df.Create', (['"""create_ignore_word"""', "['word1']"], {}), "('create_ignore_word', ['word1'])\n", (1504, 1537), True, 'import google.cloud.dataflow as df\n'), ((2192, 2211), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (2209, 2211), False, 'import logging\n')]
from yolov5.detect import run import argparse from pathlib import Path import sys import os FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str,default='yolov5/runs/train/exp6/weights/best.pt', help='model path(s)') parser.add_argument('--source', type=str, default='scene_image_data/image', help='file/dir/URL/glob, 0 for webcam') parser.add_argument('--data', type=str, default='yolov5/data/mydata.yaml', help='(optional) dataset.yaml path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.75, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true',default=True, help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true',help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default='yolov5/runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand return opt def main(opt): run(**vars(opt)) if __name__ == "__main__": opt = parse_opt() main(opt)
[ "pathlib.Path.cwd", "argparse.ArgumentParser", "pathlib.Path" ]
[((344, 369), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (367, 369), False, 'import argparse\n'), ((100, 114), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (104, 114), False, 'from pathlib import Path\n'), ((288, 298), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (296, 298), False, 'from pathlib import Path\n')]
#!/usr/bin/env python3 # This file is a part of cmd-gen. # # Copyright (c) 2019 <NAME> # This file is licensed under The MIT License (MIT). # You can find the full license text in LICENSE.md in the root of this project. import argparse import os from hashlib import sha256 from pyctr.crypto import CryptoEngine, Keyslot from pyctr.types.tmd import TitleMetadataReader parser = argparse.ArgumentParser(description='Generate Nintendo 3DS CMD files.') parser.add_argument('-t', '--tmd', help='tmd file', required=True) parser.add_argument('-m', '--movable', help='movable.sed file', required=True) parser.add_argument('-o', '--otp', help='otp.bin file, for TWLNAND contents') parser.add_argument('-b', '--boot9', help='boot9 file') parser.add_argument('--output-id', help='CMD content ID, default 00000001', default='00000001') a = parser.parse_args() MISSING = b'\xff\xff\xff\xff' crypto = CryptoEngine() crypto.setup_sd_key_from_file(a.movable) try: crypto.setup_keys_from_otp_file(a.otp) except FileNotFoundError: pass tmd = TitleMetadataReader.from_file(a.tmd) dirname = os.path.dirname(a.tmd) if tmd.title_id.startswith('0004008c'): content_dir = os.path.join(dirname, '00000000') else: content_dir = dirname # TODO: check Download Play if tmd.title_id.startswith('00048'): keyslot = Keyslot.CMACNANDDB else: keyslot = Keyslot.CMACSDNAND highest_index = 0 content_ids = {} for chunk in tmd.chunk_records: try: with open(os.path.join(content_dir, chunk.id + '.app'), 'rb') as f: highest_index = chunk.cindex f.seek(0x100) header = f.read(0x100) id_bytes = bytes.fromhex(chunk.id)[::-1] data = header + chunk.cindex.to_bytes(4, 'little') + id_bytes data_hash = sha256(data) c = crypto.create_cmac_object(keyslot) c.update(data_hash.digest()) content_ids[chunk.cindex] = (id_bytes, c.digest()) except FileNotFoundError: # currently unknown if there's actually a process to generating the cmac for missing contents pass # add content IDs up to the last one ids_by_index = [MISSING] * (highest_index + 1) installed_ids = [] cmacs = [] for x in range(len(ids_by_index)): try: info = content_ids[x] except KeyError: # the 3DS actually puts either random data, or generates it using an unknown process. # probably doesn't matter though, since these contents aren't installed cmacs.append(b'\xdd' * 16) else: ids_by_index[x] = info[0] cmacs.append(info[1]) installed_ids.append(info[0]) installed_ids.sort(key=lambda x: int.from_bytes(x, 'little')) final = bytes.fromhex(a.output_id)[::-1] \ + len(ids_by_index).to_bytes(4, 'little') \ + len(installed_ids).to_bytes(4, 'little') \ + (1).to_bytes(4, 'little') c = crypto.create_cmac_object(keyslot) c.update(final) final += c.digest() final += b''.join(ids_by_index) final += b''.join(installed_ids) final += b''.join(cmacs) os.makedirs(os.path.join(dirname, 'cmd'), exist_ok=True) with open(os.path.join(dirname, 'cmd', a.output_id + '.cmd'), 'wb') as o: o.write(final)
[ "hashlib.sha256", "argparse.ArgumentParser", "os.path.join", "os.path.dirname", "pyctr.crypto.CryptoEngine", "pyctr.types.tmd.TitleMetadataReader.from_file" ]
[((381, 452), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Generate Nintendo 3DS CMD files."""'}), "(description='Generate Nintendo 3DS CMD files.')\n", (404, 452), False, 'import argparse\n'), ((895, 909), 'pyctr.crypto.CryptoEngine', 'CryptoEngine', ([], {}), '()\n', (907, 909), False, 'from pyctr.crypto import CryptoEngine, Keyslot\n'), ((1040, 1076), 'pyctr.types.tmd.TitleMetadataReader.from_file', 'TitleMetadataReader.from_file', (['a.tmd'], {}), '(a.tmd)\n', (1069, 1076), False, 'from pyctr.types.tmd import TitleMetadataReader\n'), ((1087, 1109), 'os.path.dirname', 'os.path.dirname', (['a.tmd'], {}), '(a.tmd)\n', (1102, 1109), False, 'import os\n'), ((1168, 1201), 'os.path.join', 'os.path.join', (['dirname', '"""00000000"""'], {}), "(dirname, '00000000')\n", (1180, 1201), False, 'import os\n'), ((3051, 3079), 'os.path.join', 'os.path.join', (['dirname', '"""cmd"""'], {}), "(dirname, 'cmd')\n", (3063, 3079), False, 'import os\n'), ((3106, 3156), 'os.path.join', 'os.path.join', (['dirname', '"""cmd"""', "(a.output_id + '.cmd')"], {}), "(dirname, 'cmd', a.output_id + '.cmd')\n", (3118, 3156), False, 'import os\n'), ((1780, 1792), 'hashlib.sha256', 'sha256', (['data'], {}), '(data)\n', (1786, 1792), False, 'from hashlib import sha256\n'), ((1468, 1512), 'os.path.join', 'os.path.join', (['content_dir', "(chunk.id + '.app')"], {}), "(content_dir, chunk.id + '.app')\n", (1480, 1512), False, 'import os\n')]
import re import requests import werkzeug from flask import Flask from flask_cors import CORS from flask_restful import abort, reqparse # import function สำหรับค้นหาหัวข้อข่าวที่เกี่ยวข้องและ similarity check from Preprocess.tf_idf_all_headline_news_similarity import cosine_similarity_T # import function สำหรับ OCR from EasyOCR.EasyOCR_model import OCR_with_user_image # import function สำหรับดึง user input ของ user จาก facebook from News_fetcher.facebook import facebook # import function สำหรับตรวจ link ที่ต้องมี domain เป็น www.facebook.com from urllib.parse import urlparse app = Flask(__name__) CORS(app) @app.route('/extension', methods=['GET', 'POST']) def extension(): input_add_args = reqparse.RequestParser() input_add_args.add_argument( "message", type=str, help="กรุณาระบุข้อความ input เป็นตัวอักษรความยาวไม่เกิน 1000 ตัวอักษร") input_add_args.add_argument( "image", type=werkzeug.datastructures.FileStorage, location='files') input_add_args.add_argument( "message_type", type=str, help="กรุณาระบุประเภท Input เป็นตัวอักษร") args = input_add_args.parse_args() message_type = ['link', 'content', 'image', 'image_url'] # กรณีไม่ได้ระบุประเภทของ input if args['message_type'] not in message_type: abort(400, message="กรุณาระบุประเภทของ input เป็น link, content, image หรือ image_url") else: if args['message'].isspace(): abort(422, message="กรุณาใส่ข้อความ , ลิงค์ หรือ URL ของรูปภาพ") # กรณีไม่มีข้อความ (message) แนบมาด้วย if args['message_type'] == 'link': # กรณีไม่มีลิงค์ (link) แนบมาด้วย if not args['message']: abort(422, message="กรุณาใส่ link ของ facebook") else: hostname = urlparse(args['message']).hostname # กรณีใส่ link ที่ domain ไม่ใช่ post ของ facebook if not re.search(hostname, 'facebook'): abort(400, message="กรุณาระบุลิงค์ของโพสต์ Facebook") else: try: facebook_fetch = facebook(args["message"]) post_facebook = facebook_fetch.fetch_page() all_result_with_url = cosine_similarity_T( 10, post_facebook["content"]) queryObject = { "message": post_facebook["content"], "message_type": args["message_type"], "result": all_result_with_url } except: abort(400, message="กรุณาระบุลิงค์ของโพสต์ให้ถูกต้อง") elif args['message_type'] == 'content': # กรณีไม่มีข้อความ (content) แนบมาด้วย if not args['message']: abort(422, message="กรุณาใส่ข้อความ") else: all_result_with_url = cosine_similarity_T(10, args["message"]) queryObject = { "message": args["message"], "message_type": args["message_type"], "result": all_result_with_url } elif args['message_type'] == 'image': # กรณีไม่มีรูปภาพ (image) แนบมาด้วย if not args['message']: abort(422, message="กรุณาอัพโหลดรูปภาพ") else: image_file = args['image'] image_file.save("EasyOCR/OCR_User_Pic/tmp.jpg") text_from_image = OCR_with_user_image( "EasyOCR/OCR_User_Pic/tmp.jpg") all_result_with_url = cosine_similarity_T(10, text_from_image) queryObject = { "message": text_from_image, "message_type": args["message_type"], "result": all_result_with_url } else: # กรณีไม่มีลิงค์รูปภาพ (image_url) แนบมาด้วย if not args['message']: abort(422, message="กรุณาใส่ URL ของรูปภาพ") else: response = requests.get(args["message"]) with open('EasyOCR/OCR_User_Pic/tmp.jpg', 'wb') as file: file.write(response.content) text_from_image = OCR_with_user_image( "EasyOCR/OCR_User_Pic/tmp.jpg") all_result_with_url = cosine_similarity_T(10, text_from_image) queryObject = { "message": text_from_image, "message_type": args["message_type"], "result": all_result_with_url } return queryObject if __name__ == '__main__': app.run()
[ "urllib.parse.urlparse", "flask_restful.reqparse.RequestParser", "flask_cors.CORS", "flask.Flask", "EasyOCR.EasyOCR_model.OCR_with_user_image", "requests.get", "Preprocess.tf_idf_all_headline_news_similarity.cosine_similarity_T", "News_fetcher.facebook.facebook", "flask_restful.abort", "re.search" ]
[((593, 608), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (598, 608), False, 'from flask import Flask\n'), ((609, 618), 'flask_cors.CORS', 'CORS', (['app'], {}), '(app)\n', (613, 618), False, 'from flask_cors import CORS\n'), ((709, 733), 'flask_restful.reqparse.RequestParser', 'reqparse.RequestParser', ([], {}), '()\n', (731, 733), False, 'from flask_restful import abort, reqparse\n'), ((1283, 1375), 'flask_restful.abort', 'abort', (['(400)'], {'message': '"""กรุณาระบุประเภทของ input เป็น link, content, image หรือ image_url"""'}), "(400, message=\n 'กรุณาระบุประเภทของ input เป็น link, content, image หรือ image_url')\n", (1288, 1375), False, 'from flask_restful import abort, reqparse\n'), ((1431, 1495), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""กรุณาใส่ข้อความ , ลิงค์ หรือ URL ของรูปภาพ"""'}), "(422, message='กรุณาใส่ข้อความ , ลิงค์ หรือ URL ของรูปภาพ')\n", (1436, 1495), False, 'from flask_restful import abort, reqparse\n'), ((1684, 1732), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""กรุณาใส่ link ของ facebook"""'}), "(422, message='กรุณาใส่ link ของ facebook')\n", (1689, 1732), False, 'from flask_restful import abort, reqparse\n'), ((1778, 1803), 'urllib.parse.urlparse', 'urlparse', (["args['message']"], {}), "(args['message'])\n", (1786, 1803), False, 'from urllib.parse import urlparse\n'), ((1903, 1934), 're.search', 're.search', (['hostname', '"""facebook"""'], {}), "(hostname, 'facebook')\n", (1912, 1934), False, 'import re\n'), ((1956, 2009), 'flask_restful.abort', 'abort', (['(400)'], {'message': '"""กรุณาระบุลิงค์ของโพสต์ Facebook"""'}), "(400, message='กรุณาระบุลิงค์ของโพสต์ Facebook')\n", (1961, 2009), False, 'from flask_restful import abort, reqparse\n'), ((2831, 2868), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""กรุณาใส่ข้อความ"""'}), "(422, message='กรุณาใส่ข้อความ')\n", (2836, 2868), False, 'from flask_restful import abort, reqparse\n'), ((2925, 2965), 'Preprocess.tf_idf_all_headline_news_similarity.cosine_similarity_T', 'cosine_similarity_T', (['(10)', "args['message']"], {}), "(10, args['message'])\n", (2944, 2965), False, 'from Preprocess.tf_idf_all_headline_news_similarity import cosine_similarity_T\n'), ((2098, 2123), 'News_fetcher.facebook.facebook', 'facebook', (["args['message']"], {}), "(args['message'])\n", (2106, 2123), False, 'from News_fetcher.facebook import facebook\n'), ((2238, 2287), 'Preprocess.tf_idf_all_headline_news_similarity.cosine_similarity_T', 'cosine_similarity_T', (['(10)', "post_facebook['content']"], {}), "(10, post_facebook['content'])\n", (2257, 2287), False, 'from Preprocess.tf_idf_all_headline_news_similarity import cosine_similarity_T\n'), ((3319, 3359), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""กรุณาอัพโหลดรูปภาพ"""'}), "(422, message='กรุณาอัพโหลดรูปภาพ')\n", (3324, 3359), False, 'from flask_restful import abort, reqparse\n'), ((3520, 3571), 'EasyOCR.EasyOCR_model.OCR_with_user_image', 'OCR_with_user_image', (['"""EasyOCR/OCR_User_Pic/tmp.jpg"""'], {}), "('EasyOCR/OCR_User_Pic/tmp.jpg')\n", (3539, 3571), False, 'from EasyOCR.EasyOCR_model import OCR_with_user_image\n'), ((3631, 3671), 'Preprocess.tf_idf_all_headline_news_similarity.cosine_similarity_T', 'cosine_similarity_T', (['(10)', 'text_from_image'], {}), '(10, text_from_image)\n', (3650, 3671), False, 'from Preprocess.tf_idf_all_headline_news_similarity import cosine_similarity_T\n'), ((4002, 4046), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""กรุณาใส่ URL ของรูปภาพ"""'}), "(422, message='กรุณาใส่ URL ของรูปภาพ')\n", (4007, 4046), False, 'from flask_restful import abort, reqparse\n'), ((4092, 4121), 'requests.get', 'requests.get', (["args['message']"], {}), "(args['message'])\n", (4104, 4121), False, 'import requests\n'), ((4279, 4330), 'EasyOCR.EasyOCR_model.OCR_with_user_image', 'OCR_with_user_image', (['"""EasyOCR/OCR_User_Pic/tmp.jpg"""'], {}), "('EasyOCR/OCR_User_Pic/tmp.jpg')\n", (4298, 4330), False, 'from EasyOCR.EasyOCR_model import OCR_with_user_image\n'), ((4390, 4430), 'Preprocess.tf_idf_all_headline_news_similarity.cosine_similarity_T', 'cosine_similarity_T', (['(10)', 'text_from_image'], {}), '(10, text_from_image)\n', (4409, 4430), False, 'from Preprocess.tf_idf_all_headline_news_similarity import cosine_similarity_T\n'), ((2625, 2679), 'flask_restful.abort', 'abort', (['(400)'], {'message': '"""กรุณาระบุลิงค์ของโพสต์ให้ถูกต้อง"""'}), "(400, message='กรุณาระบุลิงค์ของโพสต์ให้ถูกต้อง')\n", (2630, 2679), False, 'from flask_restful import abort, reqparse\n')]
from constraint_handler import * from rated_statistic_storage import * import rospy from arni_msgs.msg import RatedStatistics from arni_core.host_lookup import * from std_srvs.srv import Empty import helper import time class CountermeasureNode(object): """A ROS node. Evaluates incoming rated statistics with a list of constraints. If those constraints turn out to be true appropriate action is taken. """ def __init__(self): """Periodically (threading) evaluate the constraints and clean old statistics.""" super(CountermeasureNode, self).__init__() rospy.init_node("countermeasure", log_level=rospy.DEBUG) self.__enabled = False self.__init_params() #: The storage of all incoming rated statistic. self.__rated_statistic_storage = RatedStatisticStorage() #: The handler for all constraints. self.__constraint_handler = ConstraintHandler( self.__rated_statistic_storage) #: The time to wait between two evaluations. self.__evaluation_period = helper.get_param_duration( helper.ARNI_CTM_CFG_NS + "evaluation_period") self.__register_subscriber() self.__register_services() def __register_subscriber(self): """Register to the rated statistics.""" rospy.Subscriber( "/statistics_rated", RatedStatistics, self.__rated_statistic_storage.callback_rated_statistic) rospy.Subscriber( "/statistics_rated", RatedStatistics, HostLookup().callback_rated) def __register_services(self): """Register all services""" rospy.Service( "~reload_constraints", Empty, self.__handle_reload_constraints) def __handle_reload_constraints(self, req): """Reload all constraints from param server.""" self.__constraint_handler = ConstraintHandler( self.__rated_statistic_storage) return [] def __callback_evaluate_and_react(self, event): """ Evaluate every constraint and execute reactions if seemed necessary by the evaluation. """ try: if self.__enabled: self.__constraint_handler.evaluate_constraints() self.__constraint_handler.execute_reactions() except rospy.ROSInterruptException: pass def loop(self): # simulation? wait for begin while rospy.Time.now() == rospy.Time(0): time.sleep(0.01) #check periodically for enabled_statistic rospy.Timer( rospy.Duration( rospy.get_param("arni/check_enabled_interval", 10)), self.__callback_enable) # evaluate periodically rospy.Timer( self.__evaluation_period, self.__callback_evaluate_and_react) rospy.spin() def __callback_enable(self, event): """Simple callback to check if statistics are enabled.""" self.__enabled = rospy.get_param("/enable_statistics", False) def __init_params(self): """Initializes params on the parameter server, if they are not already set. """ default = { "reaction_autonomy_level": 100, "storage_timeout": 10, "evaluation_period": 1, "default/min_reaction_interval": 10, "default/reaction_timeout": 30 } for param in default: if not rospy.has_param(helper.ARNI_CTM_CFG_NS + param): rospy.set_param(helper.ARNI_CTM_CFG_NS + param, default[param]) def main(): try: cn = CountermeasureNode() # rospy.loginfo(rospy.get_caller_id() + ": im on ") cn.loop() except rospy.ROSInterruptException: pass if __name__ == '__main__': main()
[ "rospy.Timer", "rospy.init_node", "helper.get_param_duration", "rospy.Service", "rospy.get_param", "rospy.has_param", "time.sleep", "rospy.set_param", "rospy.Time.now", "rospy.Time", "rospy.spin", "rospy.Subscriber" ]
[((608, 664), 'rospy.init_node', 'rospy.init_node', (['"""countermeasure"""'], {'log_level': 'rospy.DEBUG'}), "('countermeasure', log_level=rospy.DEBUG)\n", (623, 664), False, 'import rospy\n'), ((1082, 1153), 'helper.get_param_duration', 'helper.get_param_duration', (["(helper.ARNI_CTM_CFG_NS + 'evaluation_period')"], {}), "(helper.ARNI_CTM_CFG_NS + 'evaluation_period')\n", (1107, 1153), False, 'import helper\n'), ((1334, 1450), 'rospy.Subscriber', 'rospy.Subscriber', (['"""/statistics_rated"""', 'RatedStatistics', 'self.__rated_statistic_storage.callback_rated_statistic'], {}), "('/statistics_rated', RatedStatistics, self.\n __rated_statistic_storage.callback_rated_statistic)\n", (1350, 1450), False, 'import rospy\n'), ((1668, 1745), 'rospy.Service', 'rospy.Service', (['"""~reload_constraints"""', 'Empty', 'self.__handle_reload_constraints'], {}), "('~reload_constraints', Empty, self.__handle_reload_constraints)\n", (1681, 1745), False, 'import rospy\n'), ((2767, 2840), 'rospy.Timer', 'rospy.Timer', (['self.__evaluation_period', 'self.__callback_evaluate_and_react'], {}), '(self.__evaluation_period, self.__callback_evaluate_and_react)\n', (2778, 2840), False, 'import rospy\n'), ((2874, 2886), 'rospy.spin', 'rospy.spin', ([], {}), '()\n', (2884, 2886), False, 'import rospy\n'), ((3019, 3063), 'rospy.get_param', 'rospy.get_param', (['"""/enable_statistics"""', '(False)'], {}), "('/enable_statistics', False)\n", (3034, 3063), False, 'import rospy\n'), ((2457, 2473), 'rospy.Time.now', 'rospy.Time.now', ([], {}), '()\n', (2471, 2473), False, 'import rospy\n'), ((2477, 2490), 'rospy.Time', 'rospy.Time', (['(0)'], {}), '(0)\n', (2487, 2490), False, 'import rospy\n'), ((2504, 2520), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (2514, 2520), False, 'import time\n'), ((2637, 2687), 'rospy.get_param', 'rospy.get_param', (['"""arni/check_enabled_interval"""', '(10)'], {}), "('arni/check_enabled_interval', 10)\n", (2652, 2687), False, 'import rospy\n'), ((3485, 3532), 'rospy.has_param', 'rospy.has_param', (['(helper.ARNI_CTM_CFG_NS + param)'], {}), '(helper.ARNI_CTM_CFG_NS + param)\n', (3500, 3532), False, 'import rospy\n'), ((3550, 3613), 'rospy.set_param', 'rospy.set_param', (['(helper.ARNI_CTM_CFG_NS + param)', 'default[param]'], {}), '(helper.ARNI_CTM_CFG_NS + param, default[param])\n', (3565, 3613), False, 'import rospy\n')]
import pendulum import pytest from uuid import uuid4 from unittest.mock import Mock from threading import Thread from atst.domain.csp.cloud import MockCloudProvider from atst.jobs import ( RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user, ) from atst.models.utils import claim_for_update from atst.domain.exceptions import ClaimFailedException from tests.factories import ( EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory, ) from atst.models import EnvironmentRole, ApplicationRoleStatus @pytest.fixture(autouse=True, scope="function") def csp(): return Mock(wraps=MockCloudProvider({}, with_delay=False, with_failure=False)) def test_environment_job_failure(celery_app, celery_worker): @celery_app.task(bind=True, base=RecordEnvironmentFailure) def _fail_hard(self, environment_id=None): raise ValueError("something bad happened") environment = EnvironmentFactory.create() celery_worker.reload() # Use apply instead of delay since we are testing the on_failure hook only task = _fail_hard.apply(kwargs={"environment_id": environment.id}) with pytest.raises(ValueError): task.get() assert environment.job_failures job_failure = environment.job_failures[0] assert job_failure.task == task def test_environment_role_job_failure(celery_app, celery_worker): @celery_app.task(bind=True, base=RecordEnvironmentRoleFailure) def _fail_hard(self, environment_role_id=None): raise ValueError("something bad happened") role = EnvironmentRoleFactory.create() celery_worker.reload() # Use apply instead of delay since we are testing the on_failure hook only task = _fail_hard.apply(kwargs={"environment_role_id": role.id}) with pytest.raises(ValueError): task.get() assert role.job_failures job_failure = role.job_failures[0] assert job_failure.task == task now = pendulum.now() yesterday = now.subtract(days=1) tomorrow = now.add(days=1) def test_create_environment_job(session, csp): environment = EnvironmentFactory.create() do_create_environment(csp, environment.id) session.refresh(environment) assert environment.cloud_id def test_create_environment_job_is_idempotent(csp, session): environment = EnvironmentFactory.create(cloud_id=uuid4().hex) do_create_environment(csp, environment.id) csp.create_environment.assert_not_called() def test_create_atat_admin_user(csp, session): environment = EnvironmentFactory.create(cloud_id="something") do_create_atat_admin_user(csp, environment.id) session.refresh(environment) assert environment.root_user_info def test_dispatch_create_environment(session, monkeypatch): # Given that I have a portfolio with an active CLIN and two environments, # one of which is deleted portfolio = PortfolioFactory.create( applications=[{"environments": [{}, {}]}], task_orders=[ { "create_clins": [ { "start_date": pendulum.now().subtract(days=1), "end_date": pendulum.now().add(days=1), } ] } ], ) [e1, e2] = portfolio.applications[0].environments e2.deleted = True session.add(e2) session.commit() mock = Mock() monkeypatch.setattr("atst.jobs.create_environment", mock) # When dispatch_create_environment is called dispatch_create_environment.run() # It should cause the create_environment task to be called once with the # non-deleted environment mock.delay.assert_called_once_with(environment_id=e1.id) def test_dispatch_create_atat_admin_user(session, monkeypatch): portfolio = PortfolioFactory.create( applications=[ {"environments": [{"cloud_id": uuid4().hex, "root_user_info": None}]} ], task_orders=[ { "create_clins": [ { "start_date": pendulum.now().subtract(days=1), "end_date": pendulum.now().add(days=1), } ] } ], ) mock = Mock() monkeypatch.setattr("atst.jobs.create_atat_admin_user", mock) environment = portfolio.applications[0].environments[0] dispatch_create_atat_admin_user.run() mock.delay.assert_called_once_with(environment_id=environment.id) def test_create_environment_no_dupes(session, celery_app, celery_worker): portfolio = PortfolioFactory.create( applications=[ {"environments": [{"cloud_id": uuid4().hex, "root_user_info": {}}]} ], task_orders=[ { "create_clins": [ { "start_date": pendulum.now().subtract(days=1), "end_date": pendulum.now().add(days=1), } ] } ], ) environment = portfolio.applications[0].environments[0] # create_environment is run twice on the same environment create_environment.run(environment_id=environment.id) session.refresh(environment) first_cloud_id = environment.cloud_id create_environment.run(environment_id=environment.id) session.refresh(environment) # The environment's cloud_id was not overwritten in the second run assert environment.cloud_id == first_cloud_id # The environment's claim was released assert environment.claimed_until == None def test_claim_for_update(session): portfolio = PortfolioFactory.create( applications=[ {"environments": [{"cloud_id": uuid4().hex, "root_user_info": {}}]} ], task_orders=[ { "create_clins": [ { "start_date": pendulum.now().subtract(days=1), "end_date": pendulum.now().add(days=1), } ] } ], ) environment = portfolio.applications[0].environments[0] satisfied_claims = [] exceptions = [] # Two threads race to do work on environment and check out the lock class FirstThread(Thread): def run(self): try: with claim_for_update(environment): satisfied_claims.append("FirstThread") except ClaimFailedException: exceptions.append("FirstThread") class SecondThread(Thread): def run(self): try: with claim_for_update(environment): satisfied_claims.append("SecondThread") except ClaimFailedException: exceptions.append("SecondThread") t1 = FirstThread() t2 = SecondThread() t1.start() t2.start() t1.join() t2.join() session.refresh(environment) assert len(satisfied_claims) == 1 assert len(exceptions) == 1 if satisfied_claims == ["FirstThread"]: assert exceptions == ["SecondThread"] else: assert satisfied_claims == ["SecondThread"] assert exceptions == ["FirstThread"] # The claim is released assert environment.claimed_until is None def test_dispatch_provision_user(csp, session, celery_app, celery_worker, monkeypatch): # Given that I have four environment roles: # (A) one of which has a completed status # (B) one of which has an environment that has not been provisioned # (C) one of which is pending, has a provisioned environment but an inactive application role # (D) one of which is pending, has a provisioned environment and has an active application role provisioned_environment = EnvironmentFactory.create( cloud_id="cloud_id", root_user_info={} ) unprovisioned_environment = EnvironmentFactory.create() _er_a = EnvironmentRoleFactory.create( environment=provisioned_environment, status=EnvironmentRole.Status.COMPLETED ) _er_b = EnvironmentRoleFactory.create( environment=unprovisioned_environment, status=EnvironmentRole.Status.PENDING ) _er_c = EnvironmentRoleFactory.create( environment=unprovisioned_environment, status=EnvironmentRole.Status.PENDING, application_role=ApplicationRoleFactory(status=ApplicationRoleStatus.PENDING), ) er_d = EnvironmentRoleFactory.create( environment=provisioned_environment, status=EnvironmentRole.Status.PENDING, application_role=ApplicationRoleFactory(status=ApplicationRoleStatus.ACTIVE), ) mock = Mock() monkeypatch.setattr("atst.jobs.provision_user", mock) # When I dispatch the user provisioning task dispatch_provision_user.run() # I expect it to dispatch only one call, to EnvironmentRole D mock.delay.assert_called_once_with(environment_role_id=er_d.id) def test_do_provision_user(csp, session): # Given that I have an EnvironmentRole with a provisioned environment credentials = MockCloudProvider(())._auth_credentials provisioned_environment = EnvironmentFactory.create( cloud_id="cloud_id", root_user_info={"credentials": credentials} ) environment_role = EnvironmentRoleFactory.create( environment=provisioned_environment, status=EnvironmentRole.Status.PENDING, role="my_role", ) # When I call the user provisoning task do_provision_user(csp=csp, environment_role_id=environment_role.id) session.refresh(environment_role) # I expect that the CSP create_or_update_user method will be called csp.create_or_update_user.assert_called_once_with( credentials, environment_role, "my_role" ) # I expect that the EnvironmentRole now has a csp_user_id assert environment_role.csp_user_id
[ "atst.jobs.do_create_atat_admin_user", "atst.domain.csp.cloud.MockCloudProvider", "unittest.mock.Mock", "atst.jobs.dispatch_create_atat_admin_user.run", "tests.factories.EnvironmentFactory.create", "atst.models.utils.claim_for_update", "uuid.uuid4", "atst.jobs.create_environment.run", "atst.jobs.dispatch_provision_user.run", "pytest.raises", "atst.jobs.do_provision_user", "atst.jobs.dispatch_create_environment.run", "pytest.fixture", "atst.jobs.do_create_environment", "pendulum.now", "tests.factories.ApplicationRoleFactory", "tests.factories.EnvironmentRoleFactory.create" ]
[((763, 809), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)', 'scope': '"""function"""'}), "(autouse=True, scope='function')\n", (777, 809), False, 'import pytest\n'), ((2153, 2167), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (2165, 2167), False, 'import pendulum\n'), ((1147, 1174), 'tests.factories.EnvironmentFactory.create', 'EnvironmentFactory.create', ([], {}), '()\n', (1172, 1174), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((1777, 1808), 'tests.factories.EnvironmentRoleFactory.create', 'EnvironmentRoleFactory.create', ([], {}), '()\n', (1806, 1808), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((2295, 2322), 'tests.factories.EnvironmentFactory.create', 'EnvironmentFactory.create', ([], {}), '()\n', (2320, 2322), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((2327, 2369), 'atst.jobs.do_create_environment', 'do_create_environment', (['csp', 'environment.id'], {}), '(csp, environment.id)\n', (2348, 2369), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((2569, 2611), 'atst.jobs.do_create_environment', 'do_create_environment', (['csp', 'environment.id'], {}), '(csp, environment.id)\n', (2590, 2611), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((2727, 2774), 'tests.factories.EnvironmentFactory.create', 'EnvironmentFactory.create', ([], {'cloud_id': '"""something"""'}), "(cloud_id='something')\n", (2752, 2774), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((2779, 2825), 'atst.jobs.do_create_atat_admin_user', 'do_create_atat_admin_user', (['csp', 'environment.id'], {}), '(csp, environment.id)\n', (2804, 2825), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((3587, 3593), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (3591, 3593), False, 'from unittest.mock import Mock\n'), ((3710, 3743), 'atst.jobs.dispatch_create_environment.run', 'dispatch_create_environment.run', ([], {}), '()\n', (3741, 3743), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((4445, 4451), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (4449, 4451), False, 'from unittest.mock import Mock\n'), ((4583, 4620), 'atst.jobs.dispatch_create_atat_admin_user.run', 'dispatch_create_atat_admin_user.run', ([], {}), '()\n', (4618, 4620), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((5348, 5401), 'atst.jobs.create_environment.run', 'create_environment.run', ([], {'environment_id': 'environment.id'}), '(environment_id=environment.id)\n', (5370, 5401), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((5483, 5536), 'atst.jobs.create_environment.run', 'create_environment.run', ([], {'environment_id': 'environment.id'}), '(environment_id=environment.id)\n', (5505, 5536), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((7975, 8040), 'tests.factories.EnvironmentFactory.create', 'EnvironmentFactory.create', ([], {'cloud_id': '"""cloud_id"""', 'root_user_info': '{}'}), "(cloud_id='cloud_id', root_user_info={})\n", (8000, 8040), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((8087, 8114), 'tests.factories.EnvironmentFactory.create', 'EnvironmentFactory.create', ([], {}), '()\n', (8112, 8114), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((8127, 8239), 'tests.factories.EnvironmentRoleFactory.create', 'EnvironmentRoleFactory.create', ([], {'environment': 'provisioned_environment', 'status': 'EnvironmentRole.Status.COMPLETED'}), '(environment=provisioned_environment, status=\n EnvironmentRole.Status.COMPLETED)\n', (8156, 8239), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((8261, 8373), 'tests.factories.EnvironmentRoleFactory.create', 'EnvironmentRoleFactory.create', ([], {'environment': 'unprovisioned_environment', 'status': 'EnvironmentRole.Status.PENDING'}), '(environment=unprovisioned_environment, status\n =EnvironmentRole.Status.PENDING)\n', (8290, 8373), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((8851, 8857), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (8855, 8857), False, 'from unittest.mock import Mock\n'), ((8970, 8999), 'atst.jobs.dispatch_provision_user.run', 'dispatch_provision_user.run', ([], {}), '()\n', (8997, 8999), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((9341, 9437), 'tests.factories.EnvironmentFactory.create', 'EnvironmentFactory.create', ([], {'cloud_id': '"""cloud_id"""', 'root_user_info': "{'credentials': credentials}"}), "(cloud_id='cloud_id', root_user_info={\n 'credentials': credentials})\n", (9366, 9437), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((9470, 9596), 'tests.factories.EnvironmentRoleFactory.create', 'EnvironmentRoleFactory.create', ([], {'environment': 'provisioned_environment', 'status': 'EnvironmentRole.Status.PENDING', 'role': '"""my_role"""'}), "(environment=provisioned_environment, status=\n EnvironmentRole.Status.PENDING, role='my_role')\n", (9499, 9596), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((9672, 9739), 'atst.jobs.do_provision_user', 'do_provision_user', ([], {'csp': 'csp', 'environment_role_id': 'environment_role.id'}), '(csp=csp, environment_role_id=environment_role.id)\n', (9689, 9739), False, 'from atst.jobs import RecordEnvironmentFailure, RecordEnvironmentRoleFailure, do_create_environment, do_create_atat_admin_user, dispatch_create_environment, dispatch_create_atat_admin_user, create_environment, dispatch_provision_user, do_provision_user\n'), ((1362, 1387), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1375, 1387), False, 'import pytest\n'), ((1994, 2019), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2007, 2019), False, 'import pytest\n'), ((9271, 9292), 'atst.domain.csp.cloud.MockCloudProvider', 'MockCloudProvider', (['()'], {}), '(())\n', (9288, 9292), False, 'from atst.domain.csp.cloud import MockCloudProvider\n'), ((843, 902), 'atst.domain.csp.cloud.MockCloudProvider', 'MockCloudProvider', (['{}'], {'with_delay': '(False)', 'with_failure': '(False)'}), '({}, with_delay=False, with_failure=False)\n', (860, 902), False, 'from atst.domain.csp.cloud import MockCloudProvider\n'), ((8545, 8605), 'tests.factories.ApplicationRoleFactory', 'ApplicationRoleFactory', ([], {'status': 'ApplicationRoleStatus.PENDING'}), '(status=ApplicationRoleStatus.PENDING)\n', (8567, 8605), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((8772, 8831), 'tests.factories.ApplicationRoleFactory', 'ApplicationRoleFactory', ([], {'status': 'ApplicationRoleStatus.ACTIVE'}), '(status=ApplicationRoleStatus.ACTIVE)\n', (8794, 8831), False, 'from tests.factories import EnvironmentFactory, EnvironmentRoleFactory, PortfolioFactory, ApplicationRoleFactory\n'), ((2552, 2559), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (2557, 2559), False, 'from uuid import uuid4\n'), ((6544, 6573), 'atst.models.utils.claim_for_update', 'claim_for_update', (['environment'], {}), '(environment)\n', (6560, 6573), False, 'from atst.models.utils import claim_for_update\n'), ((6818, 6847), 'atst.models.utils.claim_for_update', 'claim_for_update', (['environment'], {}), '(environment)\n', (6834, 6847), False, 'from atst.models.utils import claim_for_update\n'), ((4086, 4093), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (4091, 4093), False, 'from uuid import uuid4\n'), ((4875, 4882), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (4880, 4882), False, 'from uuid import uuid4\n'), ((5926, 5933), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (5931, 5933), False, 'from uuid import uuid4\n'), ((3290, 3304), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (3302, 3304), False, 'import pendulum\n'), ((3359, 3373), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (3371, 3373), False, 'import pendulum\n'), ((4266, 4280), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (4278, 4280), False, 'import pendulum\n'), ((4335, 4349), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (4347, 4349), False, 'import pendulum\n'), ((5053, 5067), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (5065, 5067), False, 'import pendulum\n'), ((5122, 5136), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (5134, 5136), False, 'import pendulum\n'), ((6104, 6118), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (6116, 6118), False, 'import pendulum\n'), ((6173, 6187), 'pendulum.now', 'pendulum.now', ([], {}), '()\n', (6185, 6187), False, 'import pendulum\n')]
from __future__ import absolute_import, unicode_literals from datetime import timedelta import environ ROOT_DIR = environ.Path(__file__) - 4 # (/root/cpdb/config/settings/myfile.py - 4 = /) APPS_DIR = ROOT_DIR.path('cpdb') env = environ.Env() environ.Env.read_env(f'{ROOT_DIR}/.env') # reading .env file # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.9/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env.str('DJANGO_SECRET_KEY', default='django') ALLOWED_HOSTS = ['*'] SITE_ID = 1 # APP CONFIGURATION # ------------------------------------------------------------------------------ DJANGO_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.gis', 'django.contrib.sitemaps', 'django.contrib.sites', ) THIRD_PARTY_APPS = ( 'rest_framework', 'rest_framework.authtoken', 'django_nose', 'taggit', 'taggit_serializer', 'anymail', 'corsheaders', 'adminsortable', 'bandit', 'sortedm2m' ) LOCAL_APPS = ( 'data', 'search', 'vftg', 'cms', 'es_index', 'analytics', 'officers', 'cr', 'units', 'alias', 'twitterbot', 'activity_grid', 'document_cloud', 'search_terms', 'heatmap', 'trr', 'popup', 'airtable_integration', 'data_importer', 'status', 'email_service', 'social_graph', 'xlsx', 'tracker', 'sitemap', 'activity_log', 'pinboard', 'toast', 'app_config', ) INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIDDLEWARE CONFIGURATION # ------------------------------------------------------------------------------ MIDDLEWARE = [ 'django.middleware.cache.UpdateCacheMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'twitterbot.middleware.LogTwitterbotLinkVisitMiddleware', 'config.cache.set_user_with_rest_framework_authenticator_middleware', 'config.cache.FetchFromCacheForAnonymousUserMiddleware', ] # CACHES CONFIGURATION # ------------------------------------------------------------------------------ CACHE_MIDDLEWARE_SECONDS = 300 CACHE_MIDDLEWARE_KEY_PREFIX = 'django' CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', } } # DEBUG # ------------------------------------------------------------------------------ DEBUG = env.bool('DJANGO_DEBUG', False) # MANAGER CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#admins ADMINS = ( ('CPDB', '<EMAIL>'), ) # See: https://docs.djangoproject.com/en/dev/ref/settings/#managers MANAGERS = ADMINS DATABASES = { 'default': { 'ATOMIC_REQUESTS': True, 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'HOST': env.str('DB_HOST', 'postgres'), 'NAME': env.str('DB_NAME', 'cpdb'), 'PASSWORD': env.str('DB_PASSWORD', 'password'), 'PORT': 5432, 'USER': env.str('DB_USER', 'cpdb') } } ROOT_URLCONF = 'config.urls' # TEMPLATE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#templates TEMPLATES = [ { # See: https://docs.djangoproject.com/en/dev/ref/settings/#std:setting-TEMPLATES-BACKEND 'BACKEND': 'django.template.backends.django.DjangoTemplates', # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-dirs 'DIRS': [ str(APPS_DIR.path('templates')) ], 'OPTIONS': { # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-debug 'debug': DEBUG, # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-loaders # https://docs.djangoproject.com/en/dev/ref/templates/api/#loader-types 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader' ], # See: https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', # Your stuff: custom template context processors go here ], }, }, ] # STATIC FILE CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-root STATIC_ROOT = str(APPS_DIR('staticfiles')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#static-url STATIC_URL = '/static/' # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#std:setting-STATICFILES_DIRS STATICFILES_DIRS = ( str(APPS_DIR.path('static')), ) # See: https://docs.djangoproject.com/en/dev/ref/contrib/staticfiles/#staticfiles-finders STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ) # MEDIA CONFIGURATION # ------------------------------------------------------------------------------ # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-root MEDIA_ROOT = str(APPS_DIR('media')) # See: https://docs.djangoproject.com/en/dev/ref/settings/#media-url MEDIA_URL = '/media/' # URL Configuration # ------------------------------------------------------------------------------ ROOT_URLCONF = 'config.urls' # See: https://docs.djangoproject.com/en/dev/ref/settings/#wsgi-application WSGI_APPLICATION = 'config.wsgi.application' # Password validation # https://docs.djangoproject.com/en/1.9/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # GENERAL CONFIGURATION # ------------------------------------------------------------------------------ # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # In a Windows environment this must be set to your system time zone. LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Chicago' USE_I18N = True USE_L10N = True USE_TZ = True # REST FRAMEWORK SETTINGS REST_FRAMEWORK = { 'DEFAULT_RENDERER_CLASSES': ( 'rest_framework.renderers.JSONRenderer', ), 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.TokenAuthentication', ), 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'PAGE_SIZE': 20, 'ORDERING_PARAM': 'sort' } MAILCHIMP_API_KEY = env.str('MAILCHIMP_API_KEY', default='') MAILCHIMP_USER = env.str('MAILCHIMP_USER', default='') VFTG_LIST_ID = 'e38095f8d7' AZURE_STORAGE_ACCOUNT_NAME = env.str('AZURE_STORAGE_ACCOUNT_NAME', default='') AZURE_STORAGE_ACCOUNT_KEY = env.str('AZURE_STORAGE_ACCOUNT_KEY', default='') TWITTERBOT_STORAGE_ACCOUNT_NAME = env.str('TWITTERBOT_STORAGE_ACCOUNT_NAME', default='') TWITTERBOT_STORAGE_ACCOUNT_KEY = env.str('TWITTERBOT_STORAGE_ACCOUNT_KEY', default='') AZURE_QUEUE_NAME = 'cpdpbot' DATA_PIPELINE_STORAGE_ACCOUNT_NAME = env.str('DATA_PIPELINE_STORAGE_ACCOUNT_NAME', default='') DATA_PIPELINE_STORAGE_ACCOUNT_KEY = env.str('DATA_PIPELINE_STORAGE_ACCOUNT_KEY', default='') TWITTER_CONSUMER_KEY = env.str('TWITTER_CONSUMER_KEY', default='') TWITTER_CONSUMER_SECRET = env.str('TWITTER_CONSUMER_SECRET', default='') TWITTER_APP_TOKEN_KEY = env.str('TWITTER_APP_TOKEN_KEY', default='') TWITTER_APP_TOKEN_SECRET = env.str('TWITTER_APP_TOKEN_SECRET', default='') V1_URL = 'https://data.cpdp.co' ELASTICSEARCH_HOSTS = ['elasticsearch:9200'] TEST = False RUNNING_PORT = '80' DOCUMENTCLOUD_USER = env.str('DOCUMENTCLOUD_USER', '') DOCUMENTCLOUD_PASSWORD = env.str('DOCUMENTCLOUD_PASSWORD', '') GOOGLE_GEOCODE_APIKEY = env.str('GOOGLE_GEOCODE_APIKEY', '') ALLEGATION_MIN = env.str('ALLEGATION_MIN', '1988-01-01') ALLEGATION_MAX = env.str('ALLEGATION_MAX', '2016-07-01') INTERNAL_CIVILIAN_ALLEGATION_MIN = env.str('INTERNAL_CIVILIAN_ALLEGATION_MIN', '2000-01-01') INTERNAL_CIVILIAN_ALLEGATION_MAX = env.str('INTERNAL_CIVILIAN_ALLEGATION_MIN', '2016-07-01') TRR_MIN = env.str('TRR_MIN', '2004-01-08') TRR_MAX = env.str('TRR_MAX', '2016-04-12') AZURE_STATICFILES_CONTAINER = 'static' AZURE_STATICFILES_SSL = False AIRTABLE_PROJECT_KEY = env.str('AIRTABLE_PROJECT_KEY', '') AIRTABLE_TABLE_NAME = env.str('AIRTABLE_TABLE_NAME', 'Request a FOIA') AIRTABLE_COPA_AGENCY_ID = '' AIRTABLE_CPD_AGENCY_ID = '' TEMPLATE_TIME_TO_LIVE = timedelta(minutes=5) AZURE_TEMPLATE_CONTAINER = 'templates' S3_BUCKET_XLSX_DIRECTORY = 'xlsx' S3_BUCKET_PDF_DIRECTORY = 'pdf' S3_BUCKET_ZIP_DIRECTORY = 'zip' GOOGLE_APPLICATION_CREDENTIALS = env.str('GOOGLE_APPLICATION_CREDENTIALS', default='') GOOGLE_ANALYTICS_VIEW_ID = '129538462' ENABLE_SITEMAP = False CORS_ALLOW_CREDENTIALS = True SESSION_COOKIE_SAMESITE = None CPDP_ALERTS_WEBHOOK = env.str('CPDP_ALERTS_WEBHOOK', '') ENABLE_MAKE_CLOUD_DOCUMENTS_PUBLIC = False IMPORT_NOT_PUBLIC_CLOUD_DOCUMENTS = False DOCUMENT_REQUEST_CC_EMAIL = '<EMAIL>' # If you want django-taggit to be CASE-INSENSITIVE when looking up existing tags, # you’ll have to set the TAGGIT_CASE_INSENSITIVE setting to True (False by default) # https://django-taggit.readthedocs.io/en/latest/getting_started.html TAGGIT_CASE_INSENSITIVE = True GA_TRACKING_ID = env.str('GA_TRACKING_ID', '') CLICKY_TRACKING_ID = env.str('CLICKY_TRACKING_ID', '') CLICKY_SITEKEY_ADMIN = env.str('CLICKY_SITEKEY_ADMIN', '')
[ "datetime.timedelta", "environ.Path", "environ.Env", "environ.Env.read_env" ]
[((235, 248), 'environ.Env', 'environ.Env', ([], {}), '()\n', (246, 248), False, 'import environ\n'), ((249, 289), 'environ.Env.read_env', 'environ.Env.read_env', (['f"""{ROOT_DIR}/.env"""'], {}), "(f'{ROOT_DIR}/.env')\n", (269, 289), False, 'import environ\n'), ((9993, 10013), 'datetime.timedelta', 'timedelta', ([], {'minutes': '(5)'}), '(minutes=5)\n', (10002, 10013), False, 'from datetime import timedelta\n'), ((118, 140), 'environ.Path', 'environ.Path', (['__file__'], {}), '(__file__)\n', (130, 140), False, 'import environ\n')]
from pick import pick from beem import Hive from beem.account import Account from beem.amount import Amount client = Hive() # capture username account = input('Username: ') account = Account(account) balance = account['balance'] symbol = balance.symbol # we need high precision because VESTS denom = 1e6 dgpo = client.get_dynamic_global_properties() total_vesting_fund_hive = Amount(dgpo['total_vesting_fund_hive']).amount total_vesting_shares_mvest = Amount(dgpo['total_vesting_shares']).amount / denom base_per_mvest = total_vesting_fund_hive / total_vesting_shares_mvest # capture list limit limit = input('Max number of vesting delegations to display: ') or '10' # list type title = 'Please choose the type of list: ' options = ['Active Vesting Delegations', 'Expiring Vesting Delegations'] # get index and selected list name option, index = pick(options, title) print('\n' + 'List of ' + option + ': ' + '\n') if option=='Active Vesting Delegations' : delegations = account.get_vesting_delegations(limit=limit) else: delegations = account.get_expiring_vesting_delegations("2018-01-01T00:00:00", limit=limit) if len(delegations) == 0: print('No ' + option) exit for delegation in delegations: delegated_vests = float(delegation['vesting_shares']['amount']) / denom delegated_base = (delegated_vests / denom) * base_per_mvest print('\t' + delegation['delegatee'] + ': ' + format(delegated_base, '.3f') + ' ' + symbol)
[ "beem.amount.Amount", "beem.account.Account", "beem.Hive", "pick.pick" ]
[((118, 124), 'beem.Hive', 'Hive', ([], {}), '()\n', (122, 124), False, 'from beem import Hive\n'), ((185, 201), 'beem.account.Account', 'Account', (['account'], {}), '(account)\n', (192, 201), False, 'from beem.account import Account\n'), ((853, 873), 'pick.pick', 'pick', (['options', 'title'], {}), '(options, title)\n', (857, 873), False, 'from pick import pick\n'), ((380, 419), 'beem.amount.Amount', 'Amount', (["dgpo['total_vesting_fund_hive']"], {}), "(dgpo['total_vesting_fund_hive'])\n", (386, 419), False, 'from beem.amount import Amount\n'), ((456, 492), 'beem.amount.Amount', 'Amount', (["dgpo['total_vesting_shares']"], {}), "(dgpo['total_vesting_shares'])\n", (462, 492), False, 'from beem.amount import Amount\n')]
#!/usr/bin/env python import unittest from functools import reduce import numpy from pyscf import gto from pyscf import scf from pyscf import fci mol = gto.M(atom='Be 0 0 0; H .23 -1.1 0; H .23 1.1 0', symmetry=1, verbose=0) m = scf.RHF(mol) m.kernel() norb = m.mo_energy.size nelec = mol.nelectron class KnowValues(unittest.TestCase): def test_symm_spin0(self): fs = fci.FCI(mol, m.mo_coeff) fs.wfnsym = 'B1' fs.nroots = 3 e, c = fs.kernel() self.assertAlmostEqual(e[0], -19.286003160337, 9) self.assertAlmostEqual(e[1], -18.812177419921, 9) self.assertAlmostEqual(e[2], -18.786684534678, 9) self.assertAlmostEqual(fci.spin_op.spin_square0(c[0], norb, nelec)[0], 0, 9) self.assertAlmostEqual(fci.spin_op.spin_square0(c[1], norb, nelec)[0], 6, 9) self.assertAlmostEqual(fci.spin_op.spin_square0(c[2], norb, nelec)[0], 0, 9) def test_symm_spin1(self): fs = fci.FCI(mol, m.mo_coeff, singlet=False) fs.wfnsym = 'B1' fs.nroots = 2 e, c = fs.kernel() self.assertAlmostEqual(e[0], -19.303845373762, 9) self.assertAlmostEqual(e[1], -19.286003160337, 9) self.assertAlmostEqual(fci.spin_op.spin_square0(c[0], norb, nelec)[0], 2, 9) self.assertAlmostEqual(fci.spin_op.spin_square0(c[1], norb, nelec)[0], 0, 9) if __name__ == "__main__": print("Full Tests for init_guess") unittest.main()
[ "pyscf.fci.spin_op.spin_square0", "pyscf.gto.M", "unittest.main", "pyscf.scf.RHF", "pyscf.fci.FCI" ]
[((154, 226), 'pyscf.gto.M', 'gto.M', ([], {'atom': '"""Be 0 0 0; H .23 -1.1 0; H .23 1.1 0"""', 'symmetry': '(1)', 'verbose': '(0)'}), "(atom='Be 0 0 0; H .23 -1.1 0; H .23 1.1 0', symmetry=1, verbose=0)\n", (159, 226), False, 'from pyscf import gto\n'), ((243, 255), 'pyscf.scf.RHF', 'scf.RHF', (['mol'], {}), '(mol)\n', (250, 255), False, 'from pyscf import scf\n'), ((1440, 1455), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1453, 1455), False, 'import unittest\n'), ((395, 419), 'pyscf.fci.FCI', 'fci.FCI', (['mol', 'm.mo_coeff'], {}), '(mol, m.mo_coeff)\n', (402, 419), False, 'from pyscf import fci\n'), ((968, 1007), 'pyscf.fci.FCI', 'fci.FCI', (['mol', 'm.mo_coeff'], {'singlet': '(False)'}), '(mol, m.mo_coeff, singlet=False)\n', (975, 1007), False, 'from pyscf import fci\n'), ((699, 742), 'pyscf.fci.spin_op.spin_square0', 'fci.spin_op.spin_square0', (['c[0]', 'norb', 'nelec'], {}), '(c[0], norb, nelec)\n', (723, 742), False, 'from pyscf import fci\n'), ((784, 827), 'pyscf.fci.spin_op.spin_square0', 'fci.spin_op.spin_square0', (['c[1]', 'norb', 'nelec'], {}), '(c[1], norb, nelec)\n', (808, 827), False, 'from pyscf import fci\n'), ((869, 912), 'pyscf.fci.spin_op.spin_square0', 'fci.spin_op.spin_square0', (['c[2]', 'norb', 'nelec'], {}), '(c[2], norb, nelec)\n', (893, 912), False, 'from pyscf import fci\n'), ((1229, 1272), 'pyscf.fci.spin_op.spin_square0', 'fci.spin_op.spin_square0', (['c[0]', 'norb', 'nelec'], {}), '(c[0], norb, nelec)\n', (1253, 1272), False, 'from pyscf import fci\n'), ((1314, 1357), 'pyscf.fci.spin_op.spin_square0', 'fci.spin_op.spin_square0', (['c[1]', 'norb', 'nelec'], {}), '(c[1], norb, nelec)\n', (1338, 1357), False, 'from pyscf import fci\n')]
""" This file is for setting up the models used for the feature vis process, the objects for the global model and layer values are set here """ import tensorflow as tf from tensorflow import keras from tf_slim import nets as slim_nets from luna.pretrained_models import googlenet def model_resnet50v2(): """ Instantiates ResNet50V2 architecture using keras Returns: keras.application: ResNet50V2 Architecture """ tf.compat.v1.keras.backend.set_image_data_format('channels_last') return keras.applications.ResNet50V2(weights="imagenet", include_top=False) def model_inceptionv3(): """ Instantiates InceptionV3 architecture using keras Returns: keras.application: InceptionV3 Architecture """ tf.compat.v1.keras.backend.set_image_data_format('channels_last') return keras.applications.InceptionV3( weights="imagenet", include_top=False) def model_inceptionv1(): """ Instantiates InceptionV1 architecture using googlnet Returns: googlenet: InceptionV1 Architecture """ tf.compat.v1.keras.backend.set_image_data_format('channels_first') return googlenet.create_googlenet() def model_inceptionv1_slim(): """ Instantiates InceptionV1 architecture using tensorflow slim Returns: slim_net: InceptionV1 Architecture """ inputs = tf.random.uniform((1, 224, 224, 3), dtype=tf.dtypes.float32) return slim_nets.inception.inception_v1(inputs) def model_vgg16(): """ Instantiates vgg16 architecture using keras Returns: keras.application: vgg16 Architecture """ tf.compat.v1.keras.backend.set_image_data_format('channels_last') return keras.applications.VGG16(weights="imagenet", include_top=False) def model_vgg19(): """ Instantiates vgg19 architecture using keras Returns: keras.applications: vgg19 Architecture """ tf.compat.v1.keras.backend.set_image_data_format('channels_last') return keras.applications.VGG19(weights="imagenet", include_top=False)
[ "tensorflow.random.uniform", "tensorflow.keras.applications.InceptionV3", "tensorflow.keras.applications.VGG16", "tensorflow.compat.v1.keras.backend.set_image_data_format", "tensorflow.keras.applications.ResNet50V2", "luna.pretrained_models.googlenet.create_googlenet", "tf_slim.nets.inception.inception_v1", "tensorflow.keras.applications.VGG19" ]
[((445, 510), 'tensorflow.compat.v1.keras.backend.set_image_data_format', 'tf.compat.v1.keras.backend.set_image_data_format', (['"""channels_last"""'], {}), "('channels_last')\n", (493, 510), True, 'import tensorflow as tf\n'), ((522, 590), 'tensorflow.keras.applications.ResNet50V2', 'keras.applications.ResNet50V2', ([], {'weights': '"""imagenet"""', 'include_top': '(False)'}), "(weights='imagenet', include_top=False)\n", (551, 590), False, 'from tensorflow import keras\n'), ((758, 823), 'tensorflow.compat.v1.keras.backend.set_image_data_format', 'tf.compat.v1.keras.backend.set_image_data_format', (['"""channels_last"""'], {}), "('channels_last')\n", (806, 823), True, 'import tensorflow as tf\n'), ((835, 904), 'tensorflow.keras.applications.InceptionV3', 'keras.applications.InceptionV3', ([], {'weights': '"""imagenet"""', 'include_top': '(False)'}), "(weights='imagenet', include_top=False)\n", (865, 904), False, 'from tensorflow import keras\n'), ((1076, 1142), 'tensorflow.compat.v1.keras.backend.set_image_data_format', 'tf.compat.v1.keras.backend.set_image_data_format', (['"""channels_first"""'], {}), "('channels_first')\n", (1124, 1142), True, 'import tensorflow as tf\n'), ((1154, 1182), 'luna.pretrained_models.googlenet.create_googlenet', 'googlenet.create_googlenet', ([], {}), '()\n', (1180, 1182), False, 'from luna.pretrained_models import googlenet\n'), ((1365, 1425), 'tensorflow.random.uniform', 'tf.random.uniform', (['(1, 224, 224, 3)'], {'dtype': 'tf.dtypes.float32'}), '((1, 224, 224, 3), dtype=tf.dtypes.float32)\n', (1382, 1425), True, 'import tensorflow as tf\n'), ((1437, 1477), 'tf_slim.nets.inception.inception_v1', 'slim_nets.inception.inception_v1', (['inputs'], {}), '(inputs)\n', (1469, 1477), True, 'from tf_slim import nets as slim_nets\n'), ((1627, 1692), 'tensorflow.compat.v1.keras.backend.set_image_data_format', 'tf.compat.v1.keras.backend.set_image_data_format', (['"""channels_last"""'], {}), "('channels_last')\n", (1675, 1692), True, 'import tensorflow as tf\n'), ((1704, 1767), 'tensorflow.keras.applications.VGG16', 'keras.applications.VGG16', ([], {'weights': '"""imagenet"""', 'include_top': '(False)'}), "(weights='imagenet', include_top=False)\n", (1728, 1767), False, 'from tensorflow import keras\n'), ((1918, 1983), 'tensorflow.compat.v1.keras.backend.set_image_data_format', 'tf.compat.v1.keras.backend.set_image_data_format', (['"""channels_last"""'], {}), "('channels_last')\n", (1966, 1983), True, 'import tensorflow as tf\n'), ((1995, 2058), 'tensorflow.keras.applications.VGG19', 'keras.applications.VGG19', ([], {'weights': '"""imagenet"""', 'include_top': '(False)'}), "(weights='imagenet', include_top=False)\n", (2019, 2058), False, 'from tensorflow import keras\n')]
import json import sys import threading import CIPC with open('config.json', "r") as jsonfile: configs = json.loads(jsonfile.read()) def viewhelp(): print(""" Usage: python3 CIPC_cli.py mode device_names Example: python3 CIPC_cli.py r S1 S2 R2 S8 S3 R4 Modes: r read configurations - reads configurations from devices and saves them to corresponding configuration txt files note that encrypted passwords will be read and saved in encrypted form u update configurations - reads configurations from txt files and applies them to devices without clearing previous configurations e erase configurations - erases configurations from devices w write configurations - reads configurations from files and applies them to devices erasing previous configurations с alternative usage, for one device with custom passwords (if there is no password type "n") Usage: python3 CIPC_cli.py c mode device_name user_EXEC_password priv_EXEC_password Example: python3 CIPC_cli.py c e S1 n cllass You can use "all" as a device name to order handle all devices in device list Example: python3 CIPC_cli.py r all """) if len(sys.argv) == 1: viewhelp() else: mode = sys.argv[1] with open('device_list_and_configs/device_list.json', "r") as jsonfile: devise_list = json.loads(jsonfile.read()) if mode == "c": mode = sys.argv[2] devise_list[sys.argv[3]]["user_password"] = sys.argv[4] devise_list[sys.argv[3]]["priv_password"] = sys.argv[5] devise_name_list = [sys.argv[3]] elif sys.argv[2] == "all": devise_name_list = devise_list.keys() # keys() вернет имена всех девайсов else: devise_name_list = sys.argv[2:] if mode == "r": for devise_name in devise_name_list: threading.Thread(name=devise_name + "[read_conf]", target=CIPC.read_configuration, args=(devise_name, configs["devise_address"], devise_list[devise_name]["devise_port"], devise_list[devise_name]["user_password"], devise_list[devise_name]["priv_password"])).start() elif mode == "u": for devise_name in devise_name_list: threading.Thread(name=devise_name + "[upd_conf]", target=CIPC.update_configuration, args=(devise_name, configs["devise_address"], devise_list[devise_name]["devise_port"], devise_list[devise_name]["user_password"], devise_list[devise_name]["priv_password"])).start() elif mode == "w": for devise_name in devise_name_list: threading.Thread(name=devise_name + "[write_conf]", target=CIPC.write_configuration, args=(devise_name, configs["devise_address"], devise_list[devise_name]["devise_port"], devise_list[devise_name]["user_password"], devise_list[devise_name]["priv_password"])).start() elif mode == "e": for devise_name in devise_name_list: threading.Thread(name=devise_name + "[erase_conf]", target=CIPC.erase_configuration, args=(devise_name, configs["devise_address"], devise_list[devise_name]["devise_port"], devise_list[devise_name]["user_password"], devise_list[devise_name]["priv_password"])).start() elif mode == "/?": viewhelp()
[ "threading.Thread" ]
[((2059, 2329), 'threading.Thread', 'threading.Thread', ([], {'name': "(devise_name + '[read_conf]')", 'target': 'CIPC.read_configuration', 'args': "(devise_name, configs['devise_address'], devise_list[devise_name][\n 'devise_port'], devise_list[devise_name]['user_password'], devise_list[\n devise_name]['priv_password'])"}), "(name=devise_name + '[read_conf]', target=CIPC.\n read_configuration, args=(devise_name, configs['devise_address'],\n devise_list[devise_name]['devise_port'], devise_list[devise_name][\n 'user_password'], devise_list[devise_name]['priv_password']))\n", (2075, 2329), False, 'import threading\n'), ((2612, 2883), 'threading.Thread', 'threading.Thread', ([], {'name': "(devise_name + '[upd_conf]')", 'target': 'CIPC.update_configuration', 'args': "(devise_name, configs['devise_address'], devise_list[devise_name][\n 'devise_port'], devise_list[devise_name]['user_password'], devise_list[\n devise_name]['priv_password'])"}), "(name=devise_name + '[upd_conf]', target=CIPC.\n update_configuration, args=(devise_name, configs['devise_address'],\n devise_list[devise_name]['devise_port'], devise_list[devise_name][\n 'user_password'], devise_list[devise_name]['priv_password']))\n", (2628, 2883), False, 'import threading\n'), ((3166, 3438), 'threading.Thread', 'threading.Thread', ([], {'name': "(devise_name + '[write_conf]')", 'target': 'CIPC.write_configuration', 'args': "(devise_name, configs['devise_address'], devise_list[devise_name][\n 'devise_port'], devise_list[devise_name]['user_password'], devise_list[\n devise_name]['priv_password'])"}), "(name=devise_name + '[write_conf]', target=CIPC.\n write_configuration, args=(devise_name, configs['devise_address'],\n devise_list[devise_name]['devise_port'], devise_list[devise_name][\n 'user_password'], devise_list[devise_name]['priv_password']))\n", (3182, 3438), False, 'import threading\n'), ((3721, 3993), 'threading.Thread', 'threading.Thread', ([], {'name': "(devise_name + '[erase_conf]')", 'target': 'CIPC.erase_configuration', 'args': "(devise_name, configs['devise_address'], devise_list[devise_name][\n 'devise_port'], devise_list[devise_name]['user_password'], devise_list[\n devise_name]['priv_password'])"}), "(name=devise_name + '[erase_conf]', target=CIPC.\n erase_configuration, args=(devise_name, configs['devise_address'],\n devise_list[devise_name]['devise_port'], devise_list[devise_name][\n 'user_password'], devise_list[devise_name]['priv_password']))\n", (3737, 3993), False, 'import threading\n')]
#-*- coding:utf-8 -*- # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=import-error, too-many-locals, too-many-statements # pylint: disable=pointless-string-statement, no-member """ average_ckpt.py: Tensorflow 2.1 averaging model weights. I referred to https://stackoverflow.com/questions/48212110/average-weights-in-keras-models """ __author__ = "<NAME>" __email__ = "<EMAIL>" import os import sys import shutil import numpy as np import tensorflow as tf from tfsr.helper.common_helper import ParseOption, Logger from tfsr.helper.misc_helper import Util import tfsr.helper.train_helper as th from tfsr.trainer_tf import ConvEncoder def main(): # pylint: disable=too-many-branches # Initializing Util.prepare_device() logger = Logger(name="speech_transformer", level=Logger.DEBUG).logger config = ParseOption(sys.argv, logger).args # Loading a vocabulary _, _, dec_in_dim, dec_out_dim = \ Util.load_vocab(Util.get_file_path(config.path_base, config.path_vocab), logger) dec_out_dim = dec_in_dim + 1 logger.info("The modified output Dimension %d", dec_out_dim) # Model selection # pylint: disable=invalid-name model = ConvEncoder(config.model_encoder_num, config.model_dimension, config.model_att_head_num, config.model_inner_dim, config.feat_dim, config.train_inp_dropout, config.train_inn_dropout, config.train_att_dropout, config.train_res_dropout, config.model_conv_filter_num, config.model_conv_layer_num, config.model_initializer, dec_out_dim) # Setting optimizer and checkpoint manager optimizer = th.get_optimizer(config) # Creating or loading a check point ckpt = tf.train.Checkpoint(optimizer=optimizer, model=model) ckpt_manager = \ tf.train.CheckpointManager(ckpt, config.path_ckpt, max_to_keep=None) ckpts = [] for ckpt in ckpt_manager.checkpoints: if config.train_max_epoch == 0 or \ int(ckpt.split("-")[-1]) <= config.train_max_epoch: ckpts.append(ckpt) optimizer = th.get_optimizer(config) models = [] for ckpt_path in ckpts[-config.model_average_num:]: logger.info(ckpt_path) model = ConvEncoder(config.model_encoder_num, config.model_dimension, config.model_att_head_num, config.model_inner_dim, config.feat_dim, config.train_inp_dropout, config.train_inn_dropout, config.train_att_dropout, config.train_res_dropout, config.model_conv_filter_num, config.model_conv_layer_num, config.model_initializer, dec_out_dim) # Creating or loading a check point ckpt = tf.train.Checkpoint(optimizer=optimizer, model=model) ckpt.restore(ckpt_path).expect_partial() dummy_feats = tf.random.uniform([1, 20, config.feat_dim]) dummy_in_len = tf.ones(1) * 20 model(dummy_feats, input_lengths=dummy_in_len, is_training=False, mask=None, attention_penalty_mask=None, in_len_div=config.model_conv_layer_num ** config.model_conv_stride) models.append(model) logger.info("Total %d models were loaded.", len(models)) # Computing averaged weights weights = list() for model in models: weights.append(model.get_weights()) new_weights = list() for weights_list_tuple in zip(*weights): new_weights.append( np.array([np.array(w).mean(axis=0) for w in zip(*weights_list_tuple)]) ) # Saving model = ConvEncoder(config.model_encoder_num, config.model_dimension, config.model_att_head_num, config.model_inner_dim, config.feat_dim, config.train_inp_dropout, config.train_inn_dropout, config.train_att_dropout, config.train_res_dropout, config.model_conv_filter_num, config.model_conv_layer_num, config.model_initializer, dec_out_dim) dummy_feats = tf.random.uniform([10, 20, config.feat_dim]) dummy_in_len = tf.ones(10) * 20 model(dummy_feats, input_lengths=dummy_in_len, is_training=False, mask=None, attention_penalty_mask=None, in_len_div=config.model_conv_layer_num ** config.model_conv_stride) model.set_weights(weights[0]) ckpt = tf.train.Checkpoint(optimizer=optimizer, model=model) if os.path.exists(config.path_ckpt + "/avg"): shutil.rmtree(config.path_ckpt + "/avg") ckpt_manager = \ tf.train.CheckpointManager(ckpt, config.path_ckpt + "/avg", max_to_keep=1) logger.info("Saved to %s", ckpt_manager.save()) if __name__ == "__main__": main()
[ "tensorflow.random.uniform", "tensorflow.train.Checkpoint", "os.path.exists", "tensorflow.ones", "tfsr.helper.train_helper.get_optimizer", "tfsr.helper.common_helper.Logger", "shutil.rmtree", "tfsr.helper.misc_helper.Util.get_file_path", "numpy.array", "tfsr.trainer_tf.ConvEncoder", "tfsr.helper.common_helper.ParseOption", "tensorflow.train.CheckpointManager", "tfsr.helper.misc_helper.Util.prepare_device" ]
[((1306, 1327), 'tfsr.helper.misc_helper.Util.prepare_device', 'Util.prepare_device', ([], {}), '()\n', (1325, 1327), False, 'from tfsr.helper.misc_helper import Util\n'), ((1771, 2121), 'tfsr.trainer_tf.ConvEncoder', 'ConvEncoder', (['config.model_encoder_num', 'config.model_dimension', 'config.model_att_head_num', 'config.model_inner_dim', 'config.feat_dim', 'config.train_inp_dropout', 'config.train_inn_dropout', 'config.train_att_dropout', 'config.train_res_dropout', 'config.model_conv_filter_num', 'config.model_conv_layer_num', 'config.model_initializer', 'dec_out_dim'], {}), '(config.model_encoder_num, config.model_dimension, config.\n model_att_head_num, config.model_inner_dim, config.feat_dim, config.\n train_inp_dropout, config.train_inn_dropout, config.train_att_dropout,\n config.train_res_dropout, config.model_conv_filter_num, config.\n model_conv_layer_num, config.model_initializer, dec_out_dim)\n', (1782, 2121), False, 'from tfsr.trainer_tf import ConvEncoder\n'), ((2317, 2341), 'tfsr.helper.train_helper.get_optimizer', 'th.get_optimizer', (['config'], {}), '(config)\n', (2333, 2341), True, 'import tfsr.helper.train_helper as th\n'), ((2390, 2443), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {'optimizer': 'optimizer', 'model': 'model'}), '(optimizer=optimizer, model=model)\n', (2409, 2443), True, 'import tensorflow as tf\n'), ((2467, 2535), 'tensorflow.train.CheckpointManager', 'tf.train.CheckpointManager', (['ckpt', 'config.path_ckpt'], {'max_to_keep': 'None'}), '(ckpt, config.path_ckpt, max_to_keep=None)\n', (2493, 2535), True, 'import tensorflow as tf\n'), ((2728, 2752), 'tfsr.helper.train_helper.get_optimizer', 'th.get_optimizer', (['config'], {}), '(config)\n', (2744, 2752), True, 'import tfsr.helper.train_helper as th\n'), ((4206, 4556), 'tfsr.trainer_tf.ConvEncoder', 'ConvEncoder', (['config.model_encoder_num', 'config.model_dimension', 'config.model_att_head_num', 'config.model_inner_dim', 'config.feat_dim', 'config.train_inp_dropout', 'config.train_inn_dropout', 'config.train_att_dropout', 'config.train_res_dropout', 'config.model_conv_filter_num', 'config.model_conv_layer_num', 'config.model_initializer', 'dec_out_dim'], {}), '(config.model_encoder_num, config.model_dimension, config.\n model_att_head_num, config.model_inner_dim, config.feat_dim, config.\n train_inp_dropout, config.train_inn_dropout, config.train_att_dropout,\n config.train_res_dropout, config.model_conv_filter_num, config.\n model_conv_layer_num, config.model_initializer, dec_out_dim)\n', (4217, 4556), False, 'from tfsr.trainer_tf import ConvEncoder\n'), ((4709, 4753), 'tensorflow.random.uniform', 'tf.random.uniform', (['[10, 20, config.feat_dim]'], {}), '([10, 20, config.feat_dim])\n', (4726, 4753), True, 'import tensorflow as tf\n'), ((5023, 5076), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {'optimizer': 'optimizer', 'model': 'model'}), '(optimizer=optimizer, model=model)\n', (5042, 5076), True, 'import tensorflow as tf\n'), ((5082, 5123), 'os.path.exists', 'os.path.exists', (["(config.path_ckpt + '/avg')"], {}), "(config.path_ckpt + '/avg')\n", (5096, 5123), False, 'import os\n'), ((5194, 5268), 'tensorflow.train.CheckpointManager', 'tf.train.CheckpointManager', (['ckpt', "(config.path_ckpt + '/avg')"], {'max_to_keep': '(1)'}), "(ckpt, config.path_ckpt + '/avg', max_to_keep=1)\n", (5220, 5268), True, 'import tensorflow as tf\n'), ((1339, 1392), 'tfsr.helper.common_helper.Logger', 'Logger', ([], {'name': '"""speech_transformer"""', 'level': 'Logger.DEBUG'}), "(name='speech_transformer', level=Logger.DEBUG)\n", (1345, 1392), False, 'from tfsr.helper.common_helper import ParseOption, Logger\n'), ((1411, 1440), 'tfsr.helper.common_helper.ParseOption', 'ParseOption', (['sys.argv', 'logger'], {}), '(sys.argv, logger)\n', (1422, 1440), False, 'from tfsr.helper.common_helper import ParseOption, Logger\n'), ((1528, 1583), 'tfsr.helper.misc_helper.Util.get_file_path', 'Util.get_file_path', (['config.path_base', 'config.path_vocab'], {}), '(config.path_base, config.path_vocab)\n', (1546, 1583), False, 'from tfsr.helper.misc_helper import Util\n'), ((2861, 3211), 'tfsr.trainer_tf.ConvEncoder', 'ConvEncoder', (['config.model_encoder_num', 'config.model_dimension', 'config.model_att_head_num', 'config.model_inner_dim', 'config.feat_dim', 'config.train_inp_dropout', 'config.train_inn_dropout', 'config.train_att_dropout', 'config.train_res_dropout', 'config.model_conv_filter_num', 'config.model_conv_layer_num', 'config.model_initializer', 'dec_out_dim'], {}), '(config.model_encoder_num, config.model_dimension, config.\n model_att_head_num, config.model_inner_dim, config.feat_dim, config.\n train_inp_dropout, config.train_inn_dropout, config.train_att_dropout,\n config.train_res_dropout, config.model_conv_filter_num, config.\n model_conv_layer_num, config.model_initializer, dec_out_dim)\n', (2872, 3211), False, 'from tfsr.trainer_tf import ConvEncoder\n'), ((3413, 3466), 'tensorflow.train.Checkpoint', 'tf.train.Checkpoint', ([], {'optimizer': 'optimizer', 'model': 'model'}), '(optimizer=optimizer, model=model)\n', (3432, 3466), True, 'import tensorflow as tf\n'), ((3531, 3574), 'tensorflow.random.uniform', 'tf.random.uniform', (['[1, 20, config.feat_dim]'], {}), '([1, 20, config.feat_dim])\n', (3548, 3574), True, 'import tensorflow as tf\n'), ((4771, 4782), 'tensorflow.ones', 'tf.ones', (['(10)'], {}), '(10)\n', (4778, 4782), True, 'import tensorflow as tf\n'), ((5129, 5169), 'shutil.rmtree', 'shutil.rmtree', (["(config.path_ckpt + '/avg')"], {}), "(config.path_ckpt + '/avg')\n", (5142, 5169), False, 'import shutil\n'), ((3594, 3604), 'tensorflow.ones', 'tf.ones', (['(1)'], {}), '(1)\n', (3601, 3604), True, 'import tensorflow as tf\n'), ((4117, 4128), 'numpy.array', 'np.array', (['w'], {}), '(w)\n', (4125, 4128), True, 'import numpy as np\n')]
# coding: UTF-8 import torch from torch import nn import math # import neural_renderer as nr from .utils import * from pytorch3d.structures import Pointclouds from pytorch3d.renderer import ( look_at_view_transform, OpenGLPerspectiveCameras, OpenGLOrthographicCameras, PointLights, PointsRasterizationSettings, PointsRenderer, PointsRasterizer, AlphaCompositor, NormWeightedCompositor ) """ @date: 2020.06.22 @author: daiheng.gao @target: replace neural_renderer with pytorch3d soft rasterizer. @date: 2020.06.23 @author: daiheng.gao @target: use point cloud renderer. @readme: revise get_face_idx() & get_textures_from_im() to the resolution of image itself to compatible with pytorch3d. """ EPS = 1e-7 class Renderer(nn.Module): def __init__(self, cfgs): super(Renderer, self).__init__() self.device = cfgs.get('device', 'cuda:0') self.image_size = cfgs.get('image_size', 64) self.min_depth = cfgs.get('min_depth', 0.9) self.max_depth = cfgs.get('max_depth', 1.1) self.rot_center_depth = cfgs.get('rot_center_depth', (self.min_depth+self.max_depth)/2) # todo: FoV (Field of View) was set to be an fixed value of 10 degree (according to the paper). self.fov = cfgs.get('fov', 10) self.tex_cube_size = cfgs.get('tex_cube_size', 2) self.renderer_min_depth = cfgs.get('renderer_min_depth', 0.1) self.renderer_max_depth = cfgs.get('renderer_max_depth', 10.) #### camera intrinsics # (u) (x) # d * K^-1 (v) = (y) # (1) (z) ## renderer for visualization R = [[[1.,0.,0.], [0.,1.,0.], [0.,0.,1.]]] R = torch.FloatTensor(R).to(self.device) t = torch.zeros(1,3, dtype=torch.float32).to(self.device) ## todo: K is the camera intrinsic matrix. fx = (self.image_size-1)/2/(math.tan(self.fov/2 *math.pi/180)) fy = (self.image_size-1)/2/(math.tan(self.fov/2 *math.pi/180)) cx = (self.image_size-1)/2 cy = (self.image_size-1)/2 K = [[fx, 0., cx], [0., fy, cy], [0., 0., 1.]] K = torch.FloatTensor(K).to(self.device) self.inv_K = torch.inverse(K).unsqueeze(0) self.K = K.unsqueeze(0) ## todo: define Renderer. ## use renderer from pytorch3d. # fixme: znear and zfar is equivalent to the neural renderer default settings. cameras = OpenGLOrthographicCameras(device=self.device, R=R, T=t, znear=0.01, zfar=100) # cameras = OpenGLPerspectiveCameras(device=self.device, R=R, T=t, # znear=self.renderer_min_depth, # zfar=self.renderer_max_depth, # fov=self.fov) raster_settings = PointsRasterizationSettings( image_size=self.image_size, radius=0.003, points_per_pixel=10, bin_size=None, max_points_per_bin=None ) self.renderer = PointsRenderer( rasterizer=PointsRasterizer( cameras=cameras, raster_settings=raster_settings ), compositor=AlphaCompositor( composite_params=None ) ) def set_transform_matrices(self, view): self.rot_mat, self.trans_xyz = get_transform_matrices(view) def rotate_pts(self, pts, rot_mat): centroid = torch.FloatTensor([0.,0.,self.rot_center_depth]).to(pts.device).view(1,1,3) pts = pts - centroid # move to centroid pts = pts.matmul(rot_mat.transpose(2,1)) # rotate pts = pts + centroid # move back return pts def translate_pts(self, pts, trans_xyz): return pts + trans_xyz def depth_to_3d_grid(self, depth): b, h, w = depth.shape grid_2d = get_grid(b, h, w, normalize=False).to(depth.device) # N x H x W x 2 depth = depth.unsqueeze(-1) grid_3d = torch.cat((grid_2d, torch.ones_like(depth)), dim=3) grid_3d = grid_3d.matmul(self.inv_K.to(depth.device).transpose(2,1)) * depth return grid_3d def grid_3d_to_2d(self, grid_3d): b, h, w, _ = grid_3d.shape grid_2d = grid_3d / grid_3d[...,2:] grid_2d = grid_2d.matmul(self.K.to(grid_3d.device).transpose(2,1))[:,:,:,:2] WH = torch.FloatTensor([w-1, h-1]).to(grid_3d.device).view(1,1,1,2) grid_2d = grid_2d / WH *2.-1. # normalize to -1~1 return grid_2d def get_warped_3d_grid(self, depth): """ unsup3d's warping method is to wrap the object itself rather than change the perspective camera like in pytorch3d. :param depth: :return: """ b, h, w = depth.shape grid_3d = self.depth_to_3d_grid(depth).reshape(b,-1,3) grid_3d = self.rotate_pts(grid_3d, self.rot_mat) grid_3d = self.translate_pts(grid_3d, self.trans_xyz) return grid_3d.reshape(b,h,w,3) # return 3d vertices def get_inv_warped_3d_grid(self, depth): b, h, w = depth.shape grid_3d = self.depth_to_3d_grid(depth).reshape(b,-1,3) grid_3d = self.translate_pts(grid_3d, -self.trans_xyz) grid_3d = self.rotate_pts(grid_3d, self.rot_mat.transpose(2,1)) return grid_3d.reshape(b,h,w,3) # return 3d vertices def get_warped_2d_grid(self, depth): grid_3d = self.get_warped_3d_grid(depth) grid_2d = self.grid_3d_to_2d(grid_3d) return grid_2d def get_inv_warped_2d_grid(self, depth): grid_3d = self.get_inv_warped_3d_grid(depth) grid_2d = self.grid_3d_to_2d(grid_3d) return grid_2d def warp_canon_depth(self, canon_depth): b, h, w = canon_depth.shape # grid_3d supposed to be the 3D mesh. grid_3d = self.get_warped_3d_grid(canon_depth).reshape(b,-1,3) faces = get_face_idx(b, h, w).to(canon_depth.device) # fixme: https://github.com/facebookresearch/pytorch3d/issues/202 grid_3d = Pointclouds(points=grid_3d, features=faces) warped_depth = self.renderer(grid_3d).squeeze() # allow some margin out of valid range margin = (self.max_depth - self.min_depth) / 2 warped_depth = warped_depth.clamp(min=self.min_depth-margin, max=self.max_depth+margin) return warped_depth def get_normal_from_depth(self, depth): b, h, w = depth.shape grid_3d = self.depth_to_3d_grid(depth) tu = grid_3d[:,1:-1,2:] - grid_3d[:,1:-1,:-2] tv = grid_3d[:,2:,1:-1] - grid_3d[:,:-2,1:-1] normal = tu.cross(tv, dim=3) zero = torch.FloatTensor([0,0,1]).to(depth.device) normal = torch.cat([zero.repeat(b,h-2,1,1), normal, zero.repeat(b,h-2,1,1)], 2) normal = torch.cat([zero.repeat(b,1,w,1), normal, zero.repeat(b,1,w,1)], 1) normal = normal / (((normal**2).sum(3, keepdim=True))**0.5 + EPS) return normal def render_yaw(self, im, depth, v_before=None, v_after=None, rotations=None, maxr=90, nsample=9, crop_mesh=None): b, c, h, w = im.shape grid_3d = self.depth_to_3d_grid(depth) if crop_mesh is not None: top, bottom, left, right = crop_mesh # pixels from border to be cropped if top > 0: grid_3d[:,:top,:,1] = grid_3d[:,top:top+1,:,1].repeat(1,top,1) grid_3d[:,:top,:,2] = grid_3d[:,top:top+1,:,2].repeat(1,top,1) if bottom > 0: grid_3d[:,-bottom:,:,1] = grid_3d[:,-bottom-1:-bottom,:,1].repeat(1,bottom,1) grid_3d[:,-bottom:,:,2] = grid_3d[:,-bottom-1:-bottom,:,2].repeat(1,bottom,1) if left > 0: grid_3d[:,:,:left,0] = grid_3d[:,:,left:left+1,0].repeat(1,1,left) grid_3d[:,:,:left,2] = grid_3d[:,:,left:left+1,2].repeat(1,1,left) if right > 0: grid_3d[:,:,-right:,0] = grid_3d[:,:,-right-1:-right,0].repeat(1,1,right) grid_3d[:,:,-right:,2] = grid_3d[:,:,-right-1:-right,2].repeat(1,1,right) grid_3d = grid_3d.reshape(b,-1,3) im_trans = [] # inverse warp if v_before is not None: rot_mat, trans_xyz = get_transform_matrices(v_before) grid_3d = self.translate_pts(grid_3d, -trans_xyz) grid_3d = self.rotate_pts(grid_3d, rot_mat.transpose(2,1)) if rotations is None: rotations = torch.linspace(-math.pi/180*maxr, math.pi/180*maxr, nsample) for i, ri in enumerate(rotations): ri = torch.FloatTensor([0, ri, 0]).to(im.device).view(1,3) rot_mat_i, _ = get_transform_matrices(ri) grid_3d_i = self.rotate_pts(grid_3d, rot_mat_i.repeat(b,1,1)) if v_after is not None: if len(v_after.shape) == 3: v_after_i = v_after[i] else: v_after_i = v_after rot_mat, trans_xyz = get_transform_matrices(v_after_i) grid_3d_i = self.rotate_pts(grid_3d_i, rot_mat) grid_3d_i = self.translate_pts(grid_3d_i, trans_xyz) textures = get_textures_from_im(im, tx_size=self.tex_cube_size) grid_3d_i = Pointclouds(points=grid_3d_i, features=textures) warped_images = self.renderer(grid_3d_i).clamp(min=-1., max=1.) # print("扭过来的图像大小", warped_images.shape) torch.Size([8, 64, 64, 3]) im_trans += [warped_images] return torch.stack(im_trans, 1) # b x t x c x h x w
[ "pytorch3d.renderer.PointsRasterizer", "torch.ones_like", "pytorch3d.structures.Pointclouds", "math.tan", "pytorch3d.renderer.AlphaCompositor", "torch.stack", "torch.FloatTensor", "pytorch3d.renderer.OpenGLOrthographicCameras", "torch.inverse", "torch.zeros", "pytorch3d.renderer.PointsRasterizationSettings", "torch.linspace" ]
[((2555, 2632), 'pytorch3d.renderer.OpenGLOrthographicCameras', 'OpenGLOrthographicCameras', ([], {'device': 'self.device', 'R': 'R', 'T': 't', 'znear': '(0.01)', 'zfar': '(100)'}), '(device=self.device, R=R, T=t, znear=0.01, zfar=100)\n', (2580, 2632), False, 'from pytorch3d.renderer import look_at_view_transform, OpenGLPerspectiveCameras, OpenGLOrthographicCameras, PointLights, PointsRasterizationSettings, PointsRenderer, PointsRasterizer, AlphaCompositor, NormWeightedCompositor\n'), ((2942, 3076), 'pytorch3d.renderer.PointsRasterizationSettings', 'PointsRasterizationSettings', ([], {'image_size': 'self.image_size', 'radius': '(0.003)', 'points_per_pixel': '(10)', 'bin_size': 'None', 'max_points_per_bin': 'None'}), '(image_size=self.image_size, radius=0.003,\n points_per_pixel=10, bin_size=None, max_points_per_bin=None)\n', (2969, 3076), False, 'from pytorch3d.renderer import look_at_view_transform, OpenGLPerspectiveCameras, OpenGLOrthographicCameras, PointLights, PointsRasterizationSettings, PointsRenderer, PointsRasterizer, AlphaCompositor, NormWeightedCompositor\n'), ((6170, 6213), 'pytorch3d.structures.Pointclouds', 'Pointclouds', ([], {'points': 'grid_3d', 'features': 'faces'}), '(points=grid_3d, features=faces)\n', (6181, 6213), False, 'from pytorch3d.structures import Pointclouds\n'), ((9633, 9657), 'torch.stack', 'torch.stack', (['im_trans', '(1)'], {}), '(im_trans, 1)\n', (9644, 9657), False, 'import torch\n'), ((1986, 2024), 'math.tan', 'math.tan', (['(self.fov / 2 * math.pi / 180)'], {}), '(self.fov / 2 * math.pi / 180)\n', (1994, 2024), False, 'import math\n'), ((2057, 2095), 'math.tan', 'math.tan', (['(self.fov / 2 * math.pi / 180)'], {}), '(self.fov / 2 * math.pi / 180)\n', (2065, 2095), False, 'import math\n'), ((8578, 8646), 'torch.linspace', 'torch.linspace', (['(-math.pi / 180 * maxr)', '(math.pi / 180 * maxr)', 'nsample'], {}), '(-math.pi / 180 * maxr, math.pi / 180 * maxr, nsample)\n', (8592, 8646), False, 'import torch\n'), ((9372, 9420), 'pytorch3d.structures.Pointclouds', 'Pointclouds', ([], {'points': 'grid_3d_i', 'features': 'textures'}), '(points=grid_3d_i, features=textures)\n', (9383, 9420), False, 'from pytorch3d.structures import Pointclouds\n'), ((1795, 1815), 'torch.FloatTensor', 'torch.FloatTensor', (['R'], {}), '(R)\n', (1812, 1815), False, 'import torch\n'), ((1844, 1882), 'torch.zeros', 'torch.zeros', (['(1)', '(3)'], {'dtype': 'torch.float32'}), '(1, 3, dtype=torch.float32)\n', (1855, 1882), False, 'import torch\n'), ((2255, 2275), 'torch.FloatTensor', 'torch.FloatTensor', (['K'], {}), '(K)\n', (2272, 2275), False, 'import torch\n'), ((2313, 2329), 'torch.inverse', 'torch.inverse', (['K'], {}), '(K)\n', (2326, 2329), False, 'import torch\n'), ((3207, 3273), 'pytorch3d.renderer.PointsRasterizer', 'PointsRasterizer', ([], {'cameras': 'cameras', 'raster_settings': 'raster_settings'}), '(cameras=cameras, raster_settings=raster_settings)\n', (3223, 3273), False, 'from pytorch3d.renderer import look_at_view_transform, OpenGLPerspectiveCameras, OpenGLOrthographicCameras, PointLights, PointsRasterizationSettings, PointsRenderer, PointsRasterizer, AlphaCompositor, NormWeightedCompositor\n'), ((3344, 3382), 'pytorch3d.renderer.AlphaCompositor', 'AlphaCompositor', ([], {'composite_params': 'None'}), '(composite_params=None)\n', (3359, 3382), False, 'from pytorch3d.renderer import look_at_view_transform, OpenGLPerspectiveCameras, OpenGLOrthographicCameras, PointLights, PointsRasterizationSettings, PointsRenderer, PointsRasterizer, AlphaCompositor, NormWeightedCompositor\n'), ((4149, 4171), 'torch.ones_like', 'torch.ones_like', (['depth'], {}), '(depth)\n', (4164, 4171), False, 'import torch\n'), ((6780, 6808), 'torch.FloatTensor', 'torch.FloatTensor', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (6797, 6808), False, 'import torch\n'), ((3596, 3648), 'torch.FloatTensor', 'torch.FloatTensor', (['[0.0, 0.0, self.rot_center_depth]'], {}), '([0.0, 0.0, self.rot_center_depth])\n', (3613, 3648), False, 'import torch\n'), ((4505, 4538), 'torch.FloatTensor', 'torch.FloatTensor', (['[w - 1, h - 1]'], {}), '([w - 1, h - 1])\n', (4522, 4538), False, 'import torch\n'), ((8699, 8728), 'torch.FloatTensor', 'torch.FloatTensor', (['[0, ri, 0]'], {}), '([0, ri, 0])\n', (8716, 8728), False, 'import torch\n')]
""" This file implements Numpy framework of the simulator. It's main use is in conjunction with the :py:mod:`optimizer` module, and example programs are listed in :py:mod:`simulator` module. """ import numpy as np import copy import qtree.operators as ops import qtree.optimizer as opt import qtree.utils as utils def get_np_buckets(buckets, data_dict): """ Takes buckets and returns their Numpy counterparts. Parameters ---------- buckets : list of list buckets as returned by :py:meth:`circ2buckets` and :py:meth:`reorder_buckets`. data_dict : dict dictionary containing values for the placeholder Tensors Returns ------- np_buckets : list of lists Buckets having Numpy tensors in place of gate labels """ # import pdb # pdb.set_trace() # Create numpy buckets np_buckets = [] for bucket in buckets: np_bucket = [] for tensor in bucket: # sort tensor dimensions transpose_order = np.argsort(list(map(int, tensor.indices))) data = data_dict[tensor.data_key] new_tensor = tensor.copy( indices=(tensor.indices[pp] for pp in transpose_order), data=np.transpose(data.copy(), transpose_order)) np_bucket.append(new_tensor) np_buckets.append(np_bucket) return np_buckets def slice_np_buckets(np_buckets, slice_dict): """ Takes slices of the tensors in Numpy buckets over the variables in idx_parallel. Parameters ---------- np_buckets : list of lists Buckets containing Numpy tensors slice_dict : dict Current subtensor along the sliced variables in the form {variable: slice} Returns ------- sliced_buckets : list of lists buckets with sliced tensors """ # import pdb # pdb.set_trace() # Create tf buckets from unordered buckets sliced_buckets = [] for bucket in np_buckets: sliced_bucket = [] for tensor in bucket: slice_bounds = [] for idx in tensor.indices: try: slice_bounds.append(slice_dict[idx]) except KeyError: slice_bounds.append(slice(None)) sliced_bucket.append( tensor.copy(data=tensor.data[tuple(slice_bounds)]) ) sliced_buckets.append(sliced_bucket) return sliced_buckets def get_sliced_np_buckets(buckets, data_dict, slice_dict): """ Takes placeholder buckets and populates them with actual sliced values. This function is a sum of :func:`get_np_buckets` and :func:`slice_np_buckets` Parameters ---------- buckets : list of list buckets as returned by :py:meth:`circ2buckets` and :py:meth:`reorder_buckets`. data_dict : dict dictionary containing values for the placeholder Tensors slice_dict : dict Current subtensor along the sliced variables in the form {variable: slice} Returns ------- sliced_buckets : list of lists buckets with sliced Numpy tensors """ # import pdb # pdb.set_trace() # Create np buckets from buckets sliced_buckets = [] for bucket in buckets: sliced_bucket = [] for tensor in bucket: # get data # sort tensor dimensions transpose_order = np.argsort(list(map(int, tensor.indices))) data = np.transpose(data_dict[tensor.data_key], transpose_order) # transpose indices indices_sorted = [tensor.indices[pp] for pp in transpose_order] # slice data slice_bounds = [] for idx in indices_sorted: try: slice_bounds.append(slice_dict[idx]) except KeyError: slice_bounds.append(slice(None)) data = data[tuple(slice_bounds)] # update indices indices_sliced = [idx.copy(size=size) for idx, size in zip(indices_sorted, data.shape)] sliced_bucket.append( tensor.copy(indices=indices_sliced, data=data)) sliced_buckets.append(sliced_bucket) return sliced_buckets def process_bucket_np(bucket, no_sum=False): """ Process bucket in the bucket elimination algorithm. We multiply all tensors in the bucket and sum over the variable which the bucket corresponds to. This way the variable of the bucket is removed from the expression. Parameters ---------- bucket : list List containing tuples of tensors (gates) with their indices. no_sum : bool If no summation should be done over the buckets's variable Returns ------- tensor : optimizer.Tensor wrapper tensor object holding the result """ result_indices = bucket[0].indices result_data = bucket[0].data for tensor in bucket[1:]: expr = utils.get_einsum_expr( list(map(int, result_indices)), list(map(int, tensor.indices)) ) result_data = np.einsum(expr, result_data, tensor.data) # Merge and sort indices and shapes result_indices = tuple(sorted( set(result_indices + tensor.indices), key=int) ) if len(result_indices) > 0: if not no_sum: # trim first index first_index, *result_indices = result_indices else: first_index, *_ = result_indices tag = first_index.identity else: tag = 'f' result_indices = [] # reduce if no_sum: result = opt.Tensor(f'E{tag}', result_indices, data=result_data) else: result = opt.Tensor(f'E{tag}', result_indices, data=np.sum(result_data, axis=0)) return result
[ "qtree.optimizer.Tensor", "numpy.transpose", "numpy.einsum", "numpy.sum" ]
[((5308, 5349), 'numpy.einsum', 'np.einsum', (['expr', 'result_data', 'tensor.data'], {}), '(expr, result_data, tensor.data)\n', (5317, 5349), True, 'import numpy as np\n'), ((5845, 5900), 'qtree.optimizer.Tensor', 'opt.Tensor', (['f"""E{tag}"""', 'result_indices'], {'data': 'result_data'}), "(f'E{tag}', result_indices, data=result_data)\n", (5855, 5900), True, 'import qtree.optimizer as opt\n'), ((3581, 3638), 'numpy.transpose', 'np.transpose', (['data_dict[tensor.data_key]', 'transpose_order'], {}), '(data_dict[tensor.data_key], transpose_order)\n', (3593, 3638), True, 'import numpy as np\n'), ((6027, 6054), 'numpy.sum', 'np.sum', (['result_data'], {'axis': '(0)'}), '(result_data, axis=0)\n', (6033, 6054), True, 'import numpy as np\n')]
from typing import Dict, List, Tuple from .reference_network import ReferenceNetwork from networkx.algorithms.dag import topological_sort import numpy as np import deep500 as d5 import networkx as nx class ReferenceGraphExecutor(d5.GraphExecutor): def __init__(self, model: d5.ops.OnnxModel, device: d5.DeviceType, events: List[d5.ExecutorEvent] = [], use_python_ops=False): """ Creates a reference operator graph executor. Can use Python reference implementations (very slow) or compiled C++ reference implementations. @param model The model to build the network from @param device The device to use @param events Event objects to invoke @param use_python_ops If True, uses Python reference implementations, otherwise compiles and runs C++ implementations """ super(ReferenceGraphExecutor, self).__init__(ReferenceNetwork(device), events) if isinstance(device, d5.GPUDevice): print('Warning: GPU reference operators are currently not implemented. Falling back to CPU') self.model = model self.use_python_ops = use_python_ops def inference(self, input_dict: Dict[str, np.ndarray]) -> Dict[str, np.ndarray]: self.network.train_mode = False for event in self.events: event.before_executor(input_dict) if not self.network.built_graph: # Choose visitor according to settings if self.use_python_ops: from .reference_build_graph_visitor_impl import ReferenceBuildGraphVisitor else: from .reference_build_graph_visitor_impl_cpp import ReferenceBuildGraphVisitor print('Compiling operators, this may take a while') # Build graph self.network.variables.update(input_dict) self.model.accept(ReferenceBuildGraphVisitor(), self.network) self.network.nodes_sorted_fwd = list(topological_sort(self.network.graph)) self.network.nodes_sorted_bwd = list(reversed(list(topological_sort(self.network.graph)))) self.network.built_graph = True out_dict = self.network.inference(input_dict) for event in self.events: event.after_inference(out_dict) self.network.output_dict.update(out_dict) return out_dict def inference_and_backprop(self, input_dict: Dict[str, np.ndarray], y: str= 'loss') -> Dict[str, np.ndarray]: self.network.train_mode = True for event in self.events: event.before_executor(input_dict) if not self.network.built_graph: # Choose visitor according to settings if self.use_python_ops: from .reference_build_graph_visitor_impl import ReferenceBuildGraphVisitor else: from .reference_build_graph_visitor_impl_cpp import ReferenceBuildGraphVisitor print('Compiling operators, this may take a while') # Build graph self.network.variables.update(input_dict) self.model.accept(ReferenceBuildGraphVisitor(), self.network) self.network.nodes_sorted_fwd = list(topological_sort(self.network.graph)) self.network.nodes_sorted_bwd = list(reversed(list(topological_sort(self.network.graph)))) self.network.built_graph = True out_dict = self.network.inference_and_backprop(input_dict, y) for event in self.events: event.after_backprop(out_dict) return out_dict
[ "networkx.algorithms.dag.topological_sort" ]
[((2024, 2060), 'networkx.algorithms.dag.topological_sort', 'topological_sort', (['self.network.graph'], {}), '(self.network.graph)\n', (2040, 2060), False, 'from networkx.algorithms.dag import topological_sort\n'), ((3299, 3335), 'networkx.algorithms.dag.topological_sort', 'topological_sort', (['self.network.graph'], {}), '(self.network.graph)\n', (3315, 3335), False, 'from networkx.algorithms.dag import topological_sort\n'), ((2125, 2161), 'networkx.algorithms.dag.topological_sort', 'topological_sort', (['self.network.graph'], {}), '(self.network.graph)\n', (2141, 2161), False, 'from networkx.algorithms.dag import topological_sort\n'), ((3400, 3436), 'networkx.algorithms.dag.topological_sort', 'topological_sort', (['self.network.graph'], {}), '(self.network.graph)\n', (3416, 3436), False, 'from networkx.algorithms.dag import topological_sort\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- # # GUI module generated by PAGE version 4.14 # In conjunction with Tcl version 8.6 # Aug 03, 2018 09:52:30 AM import sys try: from Tkinter import * except ImportError: from tkinter import * try: import ttk py3 = False except ImportError: import tkinter.ttk as ttk py3 = True import Main_support def vp_start_gui(): '''Starting point when module is the main routine.''' global val, w, root root = Tk() top = Main (root) Main_support.init(root, top) root.mainloop() w = None def create_Main(root, *args, **kwargs): '''Starting point when module is imported by another program.''' global w, w_win, rt rt = root w = Toplevel (root) top = Main (w) Main_support.init(w, top, *args, **kwargs) return (w, top) def destroy_Main(): global w w.destroy() w = None class Main: def __init__(self, top=None): '''This class configures and populates the toplevel window. top is the toplevel containing window.''' _bgcolor = '#d9d9d9' # X11 color: 'gray85' _fgcolor = '#000000' # X11 color: 'black' _compcolor = '#d9d9d9' # X11 color: 'gray85' _ana1color = '#d9d9d9' # X11 color: 'gray85' _ana2color = '#d9d9d9' # X11 color: 'gray85' self.style = ttk.Style() if sys.platform == "win32": self.style.theme_use('winnative') self.style.configure('.',background=_bgcolor) self.style.configure('.',foreground=_fgcolor) self.style.configure('.',font="TkDefaultFont") self.style.map('.',background= [('selected', _compcolor), ('active',_ana2color)]) top.geometry("1024x700+403+207") top.title("Main") top.configure(background="#d9d9d9") top.configure(highlightbackground="#d9d9d9") top.configure(highlightcolor="black") self.frmMenuBar = Frame(top) self.frmMenuBar.place(relx=0.0, rely=0.0, relheight=0.06, relwidth=1.0) self.frmMenuBar.configure(relief=GROOVE) self.frmMenuBar.configure(borderwidth="2") self.frmMenuBar.configure(relief=GROOVE) self.frmMenuBar.configure(background="#d9d9d9") self.frmMenuBar.configure(highlightbackground="#d9d9d9") self.frmMenuBar.configure(highlightcolor="black") self.frmMenuBar.configure(width=125) self.tbtnExit = ttk.Button(self.frmMenuBar) self.tbtnExit.place(relx=0.96, rely=0.1, height=32, width=32) self.tbtnExit.configure(command=Main_support.mbExit) self.tbtnExit.configure(takefocus="") self.tbtnExit.configure(text='''Tbutton''') self._img1 = PhotoImage(file="./graphics/application-exit.png") self.tbtnExit.configure(image=self._img1) self.tbtnFileOpen = ttk.Button(self.frmMenuBar) self.tbtnFileOpen.place(relx=0.04, rely=0.1, height=32, width=32) self.tbtnFileOpen.configure(command=Main_support.mbFileOpen) self.tbtnFileOpen.configure(takefocus="") self.tbtnFileOpen.configure(text='''Tbutton''') self._img2 = PhotoImage(file="./graphics/document-open.png") self.tbtnFileOpen.configure(image=self._img2) self.tbtnFileNew = ttk.Button(self.frmMenuBar) self.tbtnFileNew.place(relx=0.0, rely=0.1, height=32, width=32) self.tbtnFileNew.configure(command=Main_support.mbFileNew) self.tbtnFileNew.configure(takefocus="") self.tbtnFileNew.configure(text='''Tbutton''') self._img3 = PhotoImage(file="./graphics/document-new.png") self.tbtnFileNew.configure(image=self._img3) self.tbtnCopy = ttk.Button(self.frmMenuBar) self.tbtnCopy.place(relx=0.14, rely=0.1, height=32, width=32) self.tbtnCopy.configure(command=Main_support.mbCopy) self.tbtnCopy.configure(takefocus="") self.tbtnCopy.configure(text='''Tbutton''') self._img4 = PhotoImage(file="./graphics/edit-copy.png") self.tbtnCopy.configure(image=self._img4) self.tbtnPaste = ttk.Button(self.frmMenuBar) self.tbtnPaste.place(relx=0.2, rely=0.1, height=32, width=32) self.tbtnPaste.configure(command=Main_support.mbPaste) self.tbtnPaste.configure(takefocus="") self.tbtnPaste.configure(text='''Tbutton''') self._img5 = PhotoImage(file="./graphics/edit-paste.png") self.tbtnPaste.configure(image=self._img5) self.tbtnAbout = ttk.Button(self.frmMenuBar) self.tbtnAbout.place(relx=0.91, rely=0.1, height=32, width=32) self.tbtnAbout.configure(command=Main_support.mbAbout) self.tbtnAbout.configure(takefocus="") self.tbtnAbout.configure(text='''Tbutton''') self._img6 = PhotoImage(file="./graphics/help-about.png") self.tbtnAbout.configure(image=self._img6) self.tbtnCut = ttk.Button(self.frmMenuBar) self.tbtnCut.place(relx=0.17, rely=0.1, height=32, width=32) self.tbtnCut.configure(command=Main_support.mbCut) self.tbtnCut.configure(takefocus="") self.tbtnCut.configure(text='''Tbutton''') self._img7 = PhotoImage(file="./graphics/edit-cut.png") self.tbtnCut.configure(image=self._img7) self.Frame2 = Frame(top) self.Frame2.place(relx=0.01, rely=0.07, relheight=0.92, relwidth=0.37) self.Frame2.configure(relief=GROOVE) self.Frame2.configure(borderwidth="2") self.Frame2.configure(relief=GROOVE) self.Frame2.configure(background="#d9d9d9") self.Frame2.configure(highlightbackground="#d9d9d9") self.Frame2.configure(highlightcolor="black") self.Frame2.configure(width=375) self.Frame3 = Frame(top) self.Frame3.place(relx=0.38, rely=0.07, relheight=0.52, relwidth=0.61) self.Frame3.configure(relief=GROOVE) self.Frame3.configure(borderwidth="2") self.Frame3.configure(relief=GROOVE) self.Frame3.configure(background="#d9d9d9") self.Frame3.configure(highlightbackground="#d9d9d9") self.Frame3.configure(highlightcolor="black") self.Frame3.configure(width=625) self.Frame4 = Frame(top) self.Frame4.place(relx=0.38, rely=0.6, relheight=0.39, relwidth=0.61) self.Frame4.configure(relief=GROOVE) self.Frame4.configure(borderwidth="2") self.Frame4.configure(relief=GROOVE) self.Frame4.configure(background="#d9d9d9") self.Frame4.configure(highlightbackground="#d9d9d9") self.Frame4.configure(highlightcolor="black") self.Frame4.configure(width=625) if __name__ == '__main__': vp_start_gui()
[ "tkinter.ttk.Style", "tkinter.ttk.Button", "Main_support.init" ]
[((548, 576), 'Main_support.init', 'Main_support.init', (['root', 'top'], {}), '(root, top)\n', (565, 576), False, 'import Main_support\n'), ((811, 853), 'Main_support.init', 'Main_support.init', (['w', 'top', '*args'], {}), '(w, top, *args, **kwargs)\n', (828, 853), False, 'import Main_support\n'), ((1409, 1420), 'tkinter.ttk.Style', 'ttk.Style', ([], {}), '()\n', (1418, 1420), True, 'import tkinter.ttk as ttk\n'), ((2524, 2551), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (2534, 2551), True, 'import tkinter.ttk as ttk\n'), ((2940, 2967), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (2950, 2967), True, 'import tkinter.ttk as ttk\n'), ((3376, 3403), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (3386, 3403), True, 'import tkinter.ttk as ttk\n'), ((3801, 3828), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (3811, 3828), True, 'import tkinter.ttk as ttk\n'), ((4207, 4234), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (4217, 4234), True, 'import tkinter.ttk as ttk\n'), ((4619, 4646), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (4629, 4646), True, 'import tkinter.ttk as ttk\n'), ((5030, 5057), 'tkinter.ttk.Button', 'ttk.Button', (['self.frmMenuBar'], {}), '(self.frmMenuBar)\n', (5040, 5057), True, 'import tkinter.ttk as ttk\n')]
# MIT LICENSE # # Copyright 1997 - 2020 by IXIA Keysight # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. from ixnetwork_restpy.base import Base from ixnetwork_restpy.files import Files from typing import List, Any, Union class OpenFlow(Base): """OpenFlow is a Layer 2 communications protocol that gives access to the forwarding plane of a network switch or router over the network. The OpenFlow class encapsulates a required openFlow resource which will be retrieved from the server every time the property is accessed. """ __slots__ = () _SDM_NAME = 'openFlow' _SDM_ATT_MAP = { 'Enabled': 'enabled', 'PortRole': 'portRole', 'RunningState': 'runningState', } _SDM_ENUM_MAP = { 'portRole': ['control', 'traffic', 'controlAndTraffic'], 'runningState': ['unknown', 'stopped', 'stopping', 'starting', 'started'], } def __init__(self, parent, list_op=False): super(OpenFlow, self).__init__(parent, list_op) @property def Device(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.device_4586a4936a98f79a4eb811335e8b0199.Device): An instance of the Device class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.device_4586a4936a98f79a4eb811335e8b0199 import Device if self._properties.get('Device', None) is not None: return self._properties.get('Device') else: return Device(self) @property def EthernetTrafficEndPoint(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ethernettrafficendpoint_399c5a8996b8d783c5205ec4f1afc1a9.EthernetTrafficEndPoint): An instance of the EthernetTrafficEndPoint class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ethernettrafficendpoint_399c5a8996b8d783c5205ec4f1afc1a9 import EthernetTrafficEndPoint if self._properties.get('EthernetTrafficEndPoint', None) is not None: return self._properties.get('EthernetTrafficEndPoint') else: return EthernetTrafficEndPoint(self) @property def HostTopologyLearnedInformation(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.hosttopologylearnedinformation_4110abe6bc708b97f65a28c397fa159a.HostTopologyLearnedInformation): An instance of the HostTopologyLearnedInformation class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.hosttopologylearnedinformation_4110abe6bc708b97f65a28c397fa159a import HostTopologyLearnedInformation if self._properties.get('HostTopologyLearnedInformation', None) is not None: return self._properties.get('HostTopologyLearnedInformation') else: return HostTopologyLearnedInformation(self)._select() @property def Ipv4TrafficEndPoint(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d.Ipv4TrafficEndPoint): An instance of the Ipv4TrafficEndPoint class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d import Ipv4TrafficEndPoint if self._properties.get('Ipv4TrafficEndPoint', None) is not None: return self._properties.get('Ipv4TrafficEndPoint') else: return Ipv4TrafficEndPoint(self) @property def Ipv6TrafficEndPoint(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv6trafficendpoint_5ba047ad864d88c7c789f996fb9125d8.Ipv6TrafficEndPoint): An instance of the Ipv6TrafficEndPoint class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv6trafficendpoint_5ba047ad864d88c7c789f996fb9125d8 import Ipv6TrafficEndPoint if self._properties.get('Ipv6TrafficEndPoint', None) is not None: return self._properties.get('Ipv6TrafficEndPoint') else: return Ipv6TrafficEndPoint(self) @property def LearnedInformation(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.learnedinformation_5ae2c6e302466a4ce0ccf9b15b6452d6.LearnedInformation): An instance of the LearnedInformation class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.learnedinformation_5ae2c6e302466a4ce0ccf9b15b6452d6 import LearnedInformation if self._properties.get('LearnedInformation', None) is not None: return self._properties.get('LearnedInformation') else: return LearnedInformation(self)._select() @property def MplsTrafficEndPoint(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstrafficendpoint_9c9576354d6d254197b269b117417591.MplsTrafficEndPoint): An instance of the MplsTrafficEndPoint class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstrafficendpoint_9c9576354d6d254197b269b117417591 import MplsTrafficEndPoint if self._properties.get('MplsTrafficEndPoint', None) is not None: return self._properties.get('MplsTrafficEndPoint') else: return MplsTrafficEndPoint(self) @property def OfTopologyLearnedInformation(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.oftopologylearnedinformation_87be98fe03804b7931f394eeeb6ce91e.OfTopologyLearnedInformation): An instance of the OfTopologyLearnedInformation class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.oftopologylearnedinformation_87be98fe03804b7931f394eeeb6ce91e import OfTopologyLearnedInformation if self._properties.get('OfTopologyLearnedInformation', None) is not None: return self._properties.get('OfTopologyLearnedInformation') else: return OfTopologyLearnedInformation(self)._select() @property def SwitchLearnedInformation(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.switchlearnedinformation_229c33dcb7a8e23f875f8a6acf5d4f8a.SwitchLearnedInformation): An instance of the SwitchLearnedInformation class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.switchlearnedinformation_229c33dcb7a8e23f875f8a6acf5d4f8a import SwitchLearnedInformation if self._properties.get('SwitchLearnedInformation', None) is not None: return self._properties.get('SwitchLearnedInformation') else: return SwitchLearnedInformation(self)._select() @property def TrafficEndPoint(self): """ Returns ------- - obj(ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.trafficendpoint_3120038095a42c08bd61e91959198aa0.TrafficEndPoint): An instance of the TrafficEndPoint class Raises ------ - ServerError: The server has encountered an uncategorized error condition """ from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.trafficendpoint_3120038095a42c08bd61e91959198aa0 import TrafficEndPoint if self._properties.get('TrafficEndPoint', None) is not None: return self._properties.get('TrafficEndPoint') else: return TrafficEndPoint(self) @property def Enabled(self): # type: () -> bool """ Returns ------- - bool: If true, the openFlow object is enabled. """ return self._get_attribute(self._SDM_ATT_MAP['Enabled']) @Enabled.setter def Enabled(self, value): # type: (bool) -> None self._set_attribute(self._SDM_ATT_MAP['Enabled'], value) @property def PortRole(self): # type: () -> str """ Returns ------- - str(control | traffic | controlAndTraffic): Indicates the role of the port in the protocol configuration. """ return self._get_attribute(self._SDM_ATT_MAP['PortRole']) @PortRole.setter def PortRole(self, value): # type: (str) -> None self._set_attribute(self._SDM_ATT_MAP['PortRole'], value) @property def RunningState(self): # type: () -> str """ Returns ------- - str(unknown | stopped | stopping | starting | started): Indicates the state of the OpenFlow protocol on the port. """ return self._get_attribute(self._SDM_ATT_MAP['RunningState']) def update(self, Enabled=None, PortRole=None): # type: (bool, str) -> OpenFlow """Updates openFlow resource on the server. Args ---- - Enabled (bool): If true, the openFlow object is enabled. - PortRole (str(control | traffic | controlAndTraffic)): Indicates the role of the port in the protocol configuration. Raises ------ - ServerError: The server has encountered an uncategorized error condition """ return self._update(self._map_locals(self._SDM_ATT_MAP, locals())) def Start(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the start operation on the server. This describes the start value of the trigger settings. start(async_operation=bool) --------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('start', payload=payload, response_object=None) def Stop(self, *args, **kwargs): # type: (*Any, **Any) -> None """Executes the stop operation on the server. This describes the stop value of the trigger settings. stop(async_operation=bool) -------------------------- - async_operation (bool=False): True to execute the operation asynchronously. Any subsequent rest api calls made through the Connection class will block until the operation is complete. Raises ------ - NotFoundError: The requested resource does not exist on the server - ServerError: The server has encountered an uncategorized error condition """ payload = { "Arg1": self.href } for i in range(len(args)): payload['Arg%s' % (i + 2)] = args[i] for item in kwargs.items(): payload[item[0]] = item[1] return self._execute('stop', payload=payload, response_object=None)
[ "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.device_4586a4936a98f79a4eb811335e8b0199.Device", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.switchlearnedinformation_229c33dcb7a8e23f875f8a6acf5d4f8a.SwitchLearnedInformation", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstrafficendpoint_9c9576354d6d254197b269b117417591.MplsTrafficEndPoint", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ethernettrafficendpoint_399c5a8996b8d783c5205ec4f1afc1a9.EthernetTrafficEndPoint", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.trafficendpoint_3120038095a42c08bd61e91959198aa0.TrafficEndPoint", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.oftopologylearnedinformation_87be98fe03804b7931f394eeeb6ce91e.OfTopologyLearnedInformation", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.hosttopologylearnedinformation_4110abe6bc708b97f65a28c397fa159a.HostTopologyLearnedInformation", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.learnedinformation_5ae2c6e302466a4ce0ccf9b15b6452d6.LearnedInformation", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv6trafficendpoint_5ba047ad864d88c7c789f996fb9125d8.Ipv6TrafficEndPoint", "ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d.Ipv4TrafficEndPoint" ]
[((2647, 2659), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.device_4586a4936a98f79a4eb811335e8b0199.Device', 'Device', (['self'], {}), '(self)\n', (2653, 2659), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.device_4586a4936a98f79a4eb811335e8b0199 import Device\n'), ((3439, 3468), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ethernettrafficendpoint_399c5a8996b8d783c5205ec4f1afc1a9.EthernetTrafficEndPoint', 'EthernetTrafficEndPoint', (['self'], {}), '(self)\n', (3462, 3468), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ethernettrafficendpoint_399c5a8996b8d783c5205ec4f1afc1a9 import EthernetTrafficEndPoint\n'), ((5098, 5123), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d.Ipv4TrafficEndPoint', 'Ipv4TrafficEndPoint', (['self'], {}), '(self)\n', (5117, 5123), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv4trafficendpoint_ccf0ac687ab3e96bf323237e4242c33d import Ipv4TrafficEndPoint\n'), ((5871, 5896), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv6trafficendpoint_5ba047ad864d88c7c789f996fb9125d8.Ipv6TrafficEndPoint', 'Ipv6TrafficEndPoint', (['self'], {}), '(self)\n', (5890, 5896), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.ipv6trafficendpoint_5ba047ad864d88c7c789f996fb9125d8 import Ipv6TrafficEndPoint\n'), ((7418, 7443), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstrafficendpoint_9c9576354d6d254197b269b117417591.MplsTrafficEndPoint', 'MplsTrafficEndPoint', (['self'], {}), '(self)\n', (7437, 7443), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.mplstrafficendpoint_9c9576354d6d254197b269b117417591 import MplsTrafficEndPoint\n'), ((9851, 9872), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.trafficendpoint_3120038095a42c08bd61e91959198aa0.TrafficEndPoint', 'TrafficEndPoint', (['self'], {}), '(self)\n', (9866, 9872), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.trafficendpoint_3120038095a42c08bd61e91959198aa0 import TrafficEndPoint\n'), ((4304, 4340), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.hosttopologylearnedinformation_4110abe6bc708b97f65a28c397fa159a.HostTopologyLearnedInformation', 'HostTopologyLearnedInformation', (['self'], {}), '(self)\n', (4334, 4340), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.hosttopologylearnedinformation_4110abe6bc708b97f65a28c397fa159a import HostTopologyLearnedInformation\n'), ((6636, 6660), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.learnedinformation_5ae2c6e302466a4ce0ccf9b15b6452d6.LearnedInformation', 'LearnedInformation', (['self'], {}), '(self)\n', (6654, 6660), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.learnedinformation_5ae2c6e302466a4ce0ccf9b15b6452d6 import LearnedInformation\n'), ((8263, 8297), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.oftopologylearnedinformation_87be98fe03804b7931f394eeeb6ce91e.OfTopologyLearnedInformation', 'OfTopologyLearnedInformation', (['self'], {}), '(self)\n', (8291, 8297), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.oftopologylearnedinformation_87be98fe03804b7931f394eeeb6ce91e import OfTopologyLearnedInformation\n'), ((9095, 9125), 'ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.switchlearnedinformation_229c33dcb7a8e23f875f8a6acf5d4f8a.SwitchLearnedInformation', 'SwitchLearnedInformation', (['self'], {}), '(self)\n', (9119, 9125), False, 'from ixnetwork_restpy.testplatform.sessions.ixnetwork.vport.protocols.switchlearnedinformation_229c33dcb7a8e23f875f8a6acf5d4f8a import SwitchLearnedInformation\n')]
import torch import torch.nn as nn import numpy as np from Layers import layers from torch.nn import functional as F def fc(input_shape, num_classes, dense_classifier=False, pretrained=False, L=6, N=100, nonlinearity=nn.ReLU()): size = np.prod(input_shape) # Linear feature extractor modules = [nn.Flatten()] modules.append(layers.Linear(size, N)) modules.append(nonlinearity) for i in range(L-2): modules.append(layers.Linear(N,N)) modules.append(nonlinearity) # Linear classifier if dense_classifier: modules.append(nn.Linear(N, num_classes)) else: modules.append(layers.Linear(N, num_classes)) model = nn.Sequential(*modules) # Pretrained model if pretrained: print("WARNING: this model does not have pretrained weights.") return model def conv(input_shape, num_classes, dense_classifier=False, pretrained=False, L=3, N=32, nonlinearity=nn.ReLU()): channels, width, height = input_shape # Convolutional feature extractor modules = [] modules.append(layers.Conv2d(channels, N, kernel_size=3, padding=3//2)) modules.append(nonlinearity) for i in range(L-2): modules.append(layers.Conv2d(N, N, kernel_size=3, padding=3//2)) modules.append(nonlinearity) # Linear classifier modules.append(nn.Flatten()) if dense_classifier: modules.append(nn.Linear(N * width * height, num_classes)) else: modules.append(layers.Linear(N * width * height, num_classes)) model = nn.Sequential(*modules) # Pretrained model if pretrained: print("WARNING: this model does not have pretrained weights.") return model
[ "numpy.prod", "torch.nn.ReLU", "torch.nn.Sequential", "torch.nn.Flatten", "Layers.layers.Linear", "Layers.layers.Conv2d", "torch.nn.Linear" ]
[((219, 228), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (226, 228), True, 'import torch.nn as nn\n'), ((240, 260), 'numpy.prod', 'np.prod', (['input_shape'], {}), '(input_shape)\n', (247, 260), True, 'import numpy as np\n'), ((647, 670), 'torch.nn.Sequential', 'nn.Sequential', (['*modules'], {}), '(*modules)\n', (660, 670), True, 'import torch.nn as nn\n'), ((898, 907), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (905, 907), True, 'import torch.nn as nn\n'), ((1466, 1489), 'torch.nn.Sequential', 'nn.Sequential', (['*modules'], {}), '(*modules)\n', (1479, 1489), True, 'import torch.nn as nn\n'), ((306, 318), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (316, 318), True, 'import torch.nn as nn\n'), ((337, 359), 'Layers.layers.Linear', 'layers.Linear', (['size', 'N'], {}), '(size, N)\n', (350, 359), False, 'from Layers import layers\n'), ((1022, 1079), 'Layers.layers.Conv2d', 'layers.Conv2d', (['channels', 'N'], {'kernel_size': '(3)', 'padding': '(3 // 2)'}), '(channels, N, kernel_size=3, padding=3 // 2)\n', (1035, 1079), False, 'from Layers import layers\n'), ((1281, 1293), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (1291, 1293), True, 'import torch.nn as nn\n'), ((434, 453), 'Layers.layers.Linear', 'layers.Linear', (['N', 'N'], {}), '(N, N)\n', (447, 453), False, 'from Layers import layers\n'), ((552, 577), 'torch.nn.Linear', 'nn.Linear', (['N', 'num_classes'], {}), '(N, num_classes)\n', (561, 577), True, 'import torch.nn as nn\n'), ((606, 635), 'Layers.layers.Linear', 'layers.Linear', (['N', 'num_classes'], {}), '(N, num_classes)\n', (619, 635), False, 'from Layers import layers\n'), ((1152, 1202), 'Layers.layers.Conv2d', 'layers.Conv2d', (['N', 'N'], {'kernel_size': '(3)', 'padding': '(3 // 2)'}), '(N, N, kernel_size=3, padding=3 // 2)\n', (1165, 1202), False, 'from Layers import layers\n'), ((1337, 1379), 'torch.nn.Linear', 'nn.Linear', (['(N * width * height)', 'num_classes'], {}), '(N * width * height, num_classes)\n', (1346, 1379), True, 'import torch.nn as nn\n'), ((1408, 1454), 'Layers.layers.Linear', 'layers.Linear', (['(N * width * height)', 'num_classes'], {}), '(N * width * height, num_classes)\n', (1421, 1454), False, 'from Layers import layers\n')]
''' 07 - The digits recognition dataset Up until now, you have been performing binary classification, since the target variable had two possible outcomes. Hugo, however, got to perform multi-class classification in the videos, where the target variable could take on three possible outcomes. Why does he get to have all the fun?! In the following exercises, you'll be working with the MNIST digits recognition dataset, which has 10 classes, the digits 0 through 9! A reduced version of the MNIST dataset is one of scikit-learn's included datasets, and that is the one we will use in this exercise. Each sample in this scikit-learn dataset is an 8x8 image representing a handwritten digit. Each pixel is represented by an integer in the range 0 to 16, indicating varying levels of black. Recall that scikit-learn's built-in datasets are of type Bunch, which are dictionary-like objects. Helpfully for the MNIST dataset, scikit-learn provides an 'images' key in addition to the 'data' and 'target' keys that you have seen with the Iris data. Because it is a 2D array of the images corresponding to each sample, this 'images' key is useful for visualizing the images, as you'll see in this exercise (for more on plotting 2D arrays, see Chapter 2 of DataCamp's course on Data Visualization with Python). On the other hand, the 'data' key contains the feature array - that is, the images as a flattened array of 64 pixels. Notice that you can access the keys of these Bunch objects in two different ways: By using the . notation, as in digits.images, or the [] notation, as in digits['images']. For more on the MNIST data, check out this exercise in Part 1 of DataCamp's Importing Data in Python course. There, the full version of the MNIST dataset is used, in which the images are 28x28. It is a famous dataset in machine learning and computer vision, and frequently used as a benchmark to evaluate the performance of a new model. INSTRUCTIONS - Import datasets from sklearn and matplotlib.pyplot as plt. - Load the digits dataset using the .load_digits() method on datasets. - Print the keys and DESCR of digits. - Print the shape of images and data keys using the . notation. - Display the 1010th image using plt.imshow(). This has been done for you, so hit 'Submit Answer' to see which handwritten digit this happens to be! ''' # Import necessary modules from sklearn import datasets import matplotlib.pyplot as plt # Load the digits dataset: digits digits = datasets.load_digits() # Print the keys and DESCR of the dataset print(digits.keys()) print(digits.DESCR) # Print the shape of the images and data keys print(digits.images.shape) print(digits.data.shape) # Display digit 1010 plt.imshow(digits.images[1010], cmap=plt.cm.gray_r, interpolation='nearest') plt.show() ''' <script.py> output: dict_keys(['data', 'target', 'target_names', 'images', 'DESCR']) Optical Recognition of Handwritten Digits Data Set =================================================== Notes ----- Data Set Characteristics: :Number of Instances: 5620 :Number of Attributes: 64 :Attribute Information: 8x8 image of integer pixels in the range 0..16. :Missing Attribute Values: None :Creator: <NAME> (alpaydin '@' boun.edu.tr) :Date: July; 1998 This is a copy of the test set of the UCI ML hand-written digits datasets http://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits The data set contains images of hand-written digits: 10 classes where each class refers to a digit. Preprocessing programs made available by NIST were used to extract normalized bitmaps of handwritten digits from a preprinted form. From a total of 43 people, 30 contributed to the training set and different 13 to the test set. 32x32 bitmaps are divided into nonoverlapping blocks of 4x4 and the number of on pixels are counted in each block. This generates an input matrix of 8x8 where each element is an integer in the range 0..16. This reduces dimensionality and gives invariance to small distortions. For info on NIST preprocessing routines, see <NAME>, <NAME>, G. <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, NIST Form-Based Handprint Recognition System, NISTIR 5469, 1994. References ---------- - <NAME> (1995) Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition, MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University. - <NAME>, <NAME> (1998) Cascading Classifiers, Kybernetika. - <NAME> and <NAME> and <NAME> and <NAME>. Linear dimensionalityreduction using relevance weighted LDA. School of Electrical and Electronic Engineering Nanyang Technological University. 2005. - <NAME>. A New Approximate Maximal Margin Classification Algorithm. NIPS. 2000. (1797, 8, 8) (1797, 64) '''
[ "matplotlib.pyplot.imshow", "sklearn.datasets.load_digits", "matplotlib.pyplot.show" ]
[((2522, 2544), 'sklearn.datasets.load_digits', 'datasets.load_digits', ([], {}), '()\n', (2542, 2544), False, 'from sklearn import datasets\n'), ((2750, 2826), 'matplotlib.pyplot.imshow', 'plt.imshow', (['digits.images[1010]'], {'cmap': 'plt.cm.gray_r', 'interpolation': '"""nearest"""'}), "(digits.images[1010], cmap=plt.cm.gray_r, interpolation='nearest')\n", (2760, 2826), True, 'import matplotlib.pyplot as plt\n'), ((2827, 2837), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2835, 2837), True, 'import matplotlib.pyplot as plt\n')]
from flask import Blueprint, request import logging from flask_socketio import emit from .. import socketio api = Blueprint( 'api_blueprint', __name__, url_prefix='/api', ) logger = logging.getLogger(__name__) @api.route('/test') def test_route(): print('test') return 'test' @socketio.on('connect') def on_connect(): emit('my_response', {'data': 'Connected', 'count': 0}) logger.debug('Client connected {}'.format(request)) @socketio.on('disconnect') def on_disconnect(): logger.debug('Client disconnected {}'.format(request))
[ "logging.getLogger", "flask.Blueprint", "flask_socketio.emit" ]
[((116, 171), 'flask.Blueprint', 'Blueprint', (['"""api_blueprint"""', '__name__'], {'url_prefix': '"""/api"""'}), "('api_blueprint', __name__, url_prefix='/api')\n", (125, 171), False, 'from flask import Blueprint, request\n'), ((197, 224), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (214, 224), False, 'import logging\n'), ((349, 403), 'flask_socketio.emit', 'emit', (['"""my_response"""', "{'data': 'Connected', 'count': 0}"], {}), "('my_response', {'data': 'Connected', 'count': 0})\n", (353, 403), False, 'from flask_socketio import emit\n')]
def handle(controller): from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network from collections import defaultdict # relations for all sites ctrls_by_site = defaultdict(list) ctrl_sites = ControllerSite.objects.all() for ctrl_site in ctrl_sites: ctrls_by_site[ctrl_site.site].append(ctrl_site.controller) sites = Site.objects.all() for site in sites: if site not in ctrls_by_site or \ controller not in ctrls_by_site[site]: controller_site = ControllerSite(controller=controller, site=site) controller_site.save() # relations for all slices ctrls_by_slice = defaultdict(list) ctrl_slices = ControllerSlice.objects.all() for ctrl_slice in ctrl_slices: ctrls_by_slice[ctrl_slice.slice].append(ctrl_slice.controller) slices = Slice.objects.all() for slice in slices: if slice not in ctrls_by_slice or \ controller not in ctrls_by_slice[slice]: controller_slice = ControllerSlice(controller=controller, slice=slice) controller_slice.save() # relations for all users ctrls_by_user = defaultdict(list) ctrl_users = ControllerUser.objects.all() for ctrl_user in ctrl_users: ctrls_by_user[ctrl_user.user].append(ctrl_user.controller) users = User.objects.all() for user in users: if user not in ctrls_by_user or \ controller not in ctrls_by_user[user]: controller_user = ControllerUser(controller=controller, user=user) controller_user.save() # relations for all networks ctrls_by_network = defaultdict(list) ctrl_networks = ControllerNetwork.objects.all() for ctrl_network in ctrl_networks: ctrls_by_network[ctrl_network.network].append(ctrl_network.controller) networks = Network.objects.all() for network in networks: if network not in ctrls_by_network or \ controller not in ctrls_by_network[network]: controller_network = ControllerNetwork(controller=controller, network=network) if network.subnet and network.subnet.strip(): controller_network.subnet = network.subnet.strip() controller_network.save() # relations for all images ctrls_by_image = defaultdict(list) ctrl_images = ControllerImages.objects.all() for ctrl_image in ctrl_images: ctrls_by_image[ctrl_image.image].append(ctrl_image.controller) images = Image.objects.all() for image in images: if image not in ctrls_by_image or \ controller not in ctrls_by_image[image]: controller_image = ControllerImages(controller=controller, image=image) controller_image.save()
[ "core.models.ControllerNetwork.objects.all", "core.models.Image.objects.all", "core.models.ControllerSlice", "core.models.ControllerSite.objects.all", "core.models.Slice.objects.all", "core.models.User.objects.all", "core.models.ControllerSite", "core.models.ControllerUser", "core.models.ControllerImages", "core.models.ControllerUser.objects.all", "core.models.Network.objects.all", "collections.defaultdict", "core.models.ControllerNetwork", "core.models.Site.objects.all", "core.models.ControllerImages.objects.all", "core.models.ControllerSlice.objects.all" ]
[((276, 293), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (287, 293), False, 'from collections import defaultdict\n'), ((311, 339), 'core.models.ControllerSite.objects.all', 'ControllerSite.objects.all', ([], {}), '()\n', (337, 339), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((452, 470), 'core.models.Site.objects.all', 'Site.objects.all', ([], {}), '()\n', (468, 470), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((753, 770), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (764, 770), False, 'from collections import defaultdict\n'), ((789, 818), 'core.models.ControllerSlice.objects.all', 'ControllerSlice.objects.all', ([], {}), '()\n', (816, 818), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((938, 957), 'core.models.Slice.objects.all', 'Slice.objects.all', ([], {}), '()\n', (955, 957), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((1249, 1266), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1260, 1266), False, 'from collections import defaultdict\n'), ((1284, 1312), 'core.models.ControllerUser.objects.all', 'ControllerUser.objects.all', ([], {}), '()\n', (1310, 1312), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((1425, 1443), 'core.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (1441, 1443), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((1730, 1747), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1741, 1747), False, 'from collections import defaultdict\n'), ((1768, 1799), 'core.models.ControllerNetwork.objects.all', 'ControllerNetwork.objects.all', ([], {}), '()\n', (1797, 1799), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((1933, 1954), 'core.models.Network.objects.all', 'Network.objects.all', ([], {}), '()\n', (1952, 1954), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((2395, 2412), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2406, 2412), False, 'from collections import defaultdict\n'), ((2431, 2461), 'core.models.ControllerImages.objects.all', 'ControllerImages.objects.all', ([], {}), '()\n', (2459, 2461), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((2581, 2600), 'core.models.Image.objects.all', 'Image.objects.all', ([], {}), '()\n', (2598, 2600), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((617, 665), 'core.models.ControllerSite', 'ControllerSite', ([], {'controller': 'controller', 'site': 'site'}), '(controller=controller, site=site)\n', (631, 665), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((1111, 1162), 'core.models.ControllerSlice', 'ControllerSlice', ([], {'controller': 'controller', 'slice': 'slice'}), '(controller=controller, slice=slice)\n', (1126, 1162), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((1590, 1638), 'core.models.ControllerUser', 'ControllerUser', ([], {'controller': 'controller', 'user': 'user'}), '(controller=controller, user=user)\n', (1604, 1638), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((2122, 2179), 'core.models.ControllerNetwork', 'ControllerNetwork', ([], {'controller': 'controller', 'network': 'network'}), '(controller=controller, network=network)\n', (2139, 2179), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n'), ((2754, 2806), 'core.models.ControllerImages', 'ControllerImages', ([], {'controller': 'controller', 'image': 'image'}), '(controller=controller, image=image)\n', (2770, 2806), False, 'from core.models import Controller, Site, ControllerSite, Slice, ControllerSlice, User, ControllerUser, ControllerImages, ControllerNetwork, Image, Network\n')]
import argparse from multiprocessing import Pool from typing import List import gin import numpy as np import pipelines.cleaner as dc import pipelines.data_source as ds import pipelines.utils as sc from pipelines.parser import Parser def argument_parser(): parser = argparse.ArgumentParser(description='UN Data Krunch') parser.add_argument('-f', '--gin_config_path', type=str, help='Gin configuration file path', required=True) parser.add_argument('-a', '--addition', type=str, help='Additonal procedure', required=False) return parser @gin.configurable("base_pipeline") def base(files: List[str], encoder: "pipelines.encoder.BaseEncoder"=None): """ Base pipeline method to be used @pararell_processing :param files: file paths to be processed :param encoder: encoder class defined @config.gin """ try: if not encoder: raise ValueError("Encoder cannot be None. PLz Specificy a encoder @gin.config!") # Initialization generator = ds.build_advertise_generator(files) parser = Parser() enc_client = encoder() # Source generator, clean and encode advertise for line in generator: try: ad = dc.clean_raw_advertise(line, parser) if ad: enc_client.encode_advertise(ad) except Exception as err: sc.message(err) enc_client.save_maps() except Exception as erro: sc.message(erro) @gin.configurable("clean_pipeline") def clean(files: List[str], encoder: "pipelines.encoder.BaseEncoder"=None): """ Data pipeline method to be used @pararell_processing when data is already clean So, no parser is needed. :param files: file paths to be processed :param encoder: encoder class defined @config.gin """ try: if not encoder: raise ValueError("Encoder cannot be None. PLz Specificy a encoder @gin.config!") generator = ds.build_advertise_generator(files) enc_client = encoder() for ad in generator: try: enc_client.encode_advertise(ad) except Exception as err: sc.message(err) enc_client.save_maps() except Exception as erro: sc.message(erro) @gin.configurable def parallel_process(pipeline, dataset_path, workers: int, reducer=None): """ Main method that will spawn #workers processes to process data from @dataset_path through @pipeline method defined. :param pipeline: Pipeline method to be applied :param dataset_path: Dataset path :param workers: number of process to spawn (that will be limited to the number of cores do you have available) :param reducer: Reducer method to aggregate workers' processed data """ workers_files = [arr.tolist() for arr in np.array_split(ds.get_file_paths(folder_path=dataset_path), workers)] print(workers_files) with Pool(processes=workers) as pool: pool.map(pipeline, workers_files) # Apply reducer if available and if there was more than one worker processing data if reducer and workers > 1: red = reducer() red.reduce_process() if __name__ == '__main__': # Parsing command line args sys_vars = sc.pre_loading(argument_parser) # Chooses the configuration file to run execution_file: str = sys_vars['gin_config_path'] gin.parse_config_file(execution_file) # Start pararell processing based on configuration file setup parallel_process()
[ "pipelines.data_source.build_advertise_generator", "pipelines.utils.message", "pipelines.cleaner.clean_raw_advertise", "argparse.ArgumentParser", "pipelines.parser.Parser", "gin.configurable", "pipelines.data_source.get_file_paths", "multiprocessing.Pool", "gin.parse_config_file", "pipelines.utils.pre_loading" ]
[((559, 592), 'gin.configurable', 'gin.configurable', (['"""base_pipeline"""'], {}), "('base_pipeline')\n", (575, 592), False, 'import gin\n'), ((1502, 1536), 'gin.configurable', 'gin.configurable', (['"""clean_pipeline"""'], {}), "('clean_pipeline')\n", (1518, 1536), False, 'import gin\n'), ((274, 327), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""UN Data Krunch"""'}), "(description='UN Data Krunch')\n", (297, 327), False, 'import argparse\n'), ((3294, 3325), 'pipelines.utils.pre_loading', 'sc.pre_loading', (['argument_parser'], {}), '(argument_parser)\n', (3308, 3325), True, 'import pipelines.utils as sc\n'), ((3429, 3466), 'gin.parse_config_file', 'gin.parse_config_file', (['execution_file'], {}), '(execution_file)\n', (3450, 3466), False, 'import gin\n'), ((1012, 1047), 'pipelines.data_source.build_advertise_generator', 'ds.build_advertise_generator', (['files'], {}), '(files)\n', (1040, 1047), True, 'import pipelines.data_source as ds\n'), ((1065, 1073), 'pipelines.parser.Parser', 'Parser', ([], {}), '()\n', (1071, 1073), False, 'from pipelines.parser import Parser\n'), ((1988, 2023), 'pipelines.data_source.build_advertise_generator', 'ds.build_advertise_generator', (['files'], {}), '(files)\n', (2016, 2023), True, 'import pipelines.data_source as ds\n'), ((2969, 2992), 'multiprocessing.Pool', 'Pool', ([], {'processes': 'workers'}), '(processes=workers)\n', (2973, 2992), False, 'from multiprocessing import Pool\n'), ((1482, 1498), 'pipelines.utils.message', 'sc.message', (['erro'], {}), '(erro)\n', (1492, 1498), True, 'import pipelines.utils as sc\n'), ((2289, 2305), 'pipelines.utils.message', 'sc.message', (['erro'], {}), '(erro)\n', (2299, 2305), True, 'import pipelines.utils as sc\n'), ((1230, 1266), 'pipelines.cleaner.clean_raw_advertise', 'dc.clean_raw_advertise', (['line', 'parser'], {}), '(line, parser)\n', (1252, 1266), True, 'import pipelines.cleaner as dc\n'), ((2878, 2921), 'pipelines.data_source.get_file_paths', 'ds.get_file_paths', ([], {'folder_path': 'dataset_path'}), '(folder_path=dataset_path)\n', (2895, 2921), True, 'import pipelines.data_source as ds\n'), ((1395, 1410), 'pipelines.utils.message', 'sc.message', (['err'], {}), '(err)\n', (1405, 1410), True, 'import pipelines.utils as sc\n'), ((2203, 2218), 'pipelines.utils.message', 'sc.message', (['err'], {}), '(err)\n', (2213, 2218), True, 'import pipelines.utils as sc\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models import assets.asset_helpers import django.core.files.storage class Migration(migrations.Migration): dependencies = [ ('assets', '0015_auto_20161105_1800'), ] operations = [ migrations.AlterField( model_name='asset', name='name', field=models.CharField(max_length=250), ), migrations.AlterField( model_name='secureasset', name='file', field=models.FileField(upload_to=assets.asset_helpers.generate_asset_file_name, storage=django.core.files.storage.FileSystemStorage(base_url='/media-secure', location='/data/django/django-cedar/media-secure')), ), migrations.AlterField( model_name='secureasset', name='name', field=models.CharField(max_length=250), ), ]
[ "django.db.models.CharField" ]
[((409, 441), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(250)'}), '(max_length=250)\n', (425, 441), False, 'from django.db import migrations, models\n'), ((894, 926), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(250)'}), '(max_length=250)\n', (910, 926), False, 'from django.db import migrations, models\n')]
## this version of get_freq collects %AT-richness, gene expression data and SumFreq statistic on top of the data collated by get_freq.py import pandas as pd import numpy as np ## NOTE: All filenames are placeholders raw = pd.read_csv("REDItools_processed_dedup-filt.genann.txt", header = 0, sep = "\t") exp = pd.read_csv("Expression_Data/quant.sf", header=0, sep="\t") at_richness = pd.read_csv("at_richness.txt", header=0, sep="\t") gene_ann = pd.read_csv("Gene_Length_Data.txt", header = 0, sep = "\t") counting = raw[["GeneID", "Frequency"]] #print(test.head(5)) counting["NumLoci"] = 1 counting = counting.groupby("GeneID", as_index = False).sum() counting = counting[counting["GeneID"] != "-"] merged = pd.merge(counting, gene_ann, on = "GeneID") merged = merged[["GeneID", "Frequency", "NumLoci", "Length", "TranscriptID"]] merged["AvgFreq"] = merged["Frequency"]/merged["NumLoci"] exp_merged = pd.merge(merged, exp, left_on="TranscriptID", right_on="Name") exp_mergedClean = exp_merged[["GeneID", "Frequency", "NumLoci", "Length_x", "TranscriptID", "AvgFreq", "Name", "TPM", "NumReads"]] exp_mergedClean.rename(columns = {"Frequency" : "SumFreq"}, inplace=True) final_merged = pd.merge(exp_mergedClean, at_richness, on="TranscriptID") final_merged = final_merged[["GeneID", "SumFreq", "NumLoci", "Length_x", "TranscriptID", "AvgFreq", "TPM", "NumReads", "%AT_Richness"]] final_merged["SumFreq"] = final_merged["SumFreq"].round(decimals = 3) final_merged["AvgFreq"] = final_merged["AvgFreq"].round(decimals = 3) final_merged["%AT_Richness"] = final_merged["%AT_Richness"].round(decimals = 3) final_merged["TPM"] = final_merged["TPM"].round(decimals = 3) final_merged.rename(columns = {"Length_x" : "Length"}, inplace=True) #print(final_merged.head(5)) final_merged.to_csv("Sample_getFreq.txt", sep = "\t", header = True, index = False)
[ "pandas.merge", "pandas.read_csv" ]
[((223, 299), 'pandas.read_csv', 'pd.read_csv', (['"""REDItools_processed_dedup-filt.genann.txt"""'], {'header': '(0)', 'sep': '"""\t"""'}), "('REDItools_processed_dedup-filt.genann.txt', header=0, sep='\\t')\n", (234, 299), True, 'import pandas as pd\n'), ((310, 369), 'pandas.read_csv', 'pd.read_csv', (['"""Expression_Data/quant.sf"""'], {'header': '(0)', 'sep': '"""\t"""'}), "('Expression_Data/quant.sf', header=0, sep='\\t')\n", (321, 369), True, 'import pandas as pd\n'), ((385, 435), 'pandas.read_csv', 'pd.read_csv', (['"""at_richness.txt"""'], {'header': '(0)', 'sep': '"""\t"""'}), "('at_richness.txt', header=0, sep='\\t')\n", (396, 435), True, 'import pandas as pd\n'), ((447, 502), 'pandas.read_csv', 'pd.read_csv', (['"""Gene_Length_Data.txt"""'], {'header': '(0)', 'sep': '"""\t"""'}), "('Gene_Length_Data.txt', header=0, sep='\\t')\n", (458, 502), True, 'import pandas as pd\n'), ((712, 753), 'pandas.merge', 'pd.merge', (['counting', 'gene_ann'], {'on': '"""GeneID"""'}), "(counting, gene_ann, on='GeneID')\n", (720, 753), True, 'import pandas as pd\n'), ((906, 968), 'pandas.merge', 'pd.merge', (['merged', 'exp'], {'left_on': '"""TranscriptID"""', 'right_on': '"""Name"""'}), "(merged, exp, left_on='TranscriptID', right_on='Name')\n", (914, 968), True, 'import pandas as pd\n'), ((1191, 1248), 'pandas.merge', 'pd.merge', (['exp_mergedClean', 'at_richness'], {'on': '"""TranscriptID"""'}), "(exp_mergedClean, at_richness, on='TranscriptID')\n", (1199, 1248), True, 'import pandas as pd\n')]
import numpy as np import sys from os import path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) import mnist_parser as mnist from lib.neural_network import NeuralNetwork def test_high_acc(): output_layer = 10 training_images = mnist.train_images() training_labels = mnist.train_labels() testing_images = mnist.test_images() testing_labels = mnist.test_labels() training_inputs = training_images.reshape( training_images.shape[0], training_images.shape[1] * training_images.shape[2]).astype('float32') normalized_inputs = training_inputs/255 normalized_outputs = np.eye(output_layer)[training_labels] testing_inputs = testing_images.reshape( testing_images.shape[0], testing_images.shape[1]*testing_images.shape[2]).astype('float32') norm_test_inputs = testing_inputs/255 norm_test_outputs = testing_labels layers = [784, 30, 10] learning_rate = 0.001 batch_size = 1 epochs = 5 nn = NeuralNetwork(layers, batch_size, epochs, learning_rate) nn.fit(normalized_inputs, normalized_outputs, False) acc = nn.accuracy_test(norm_test_inputs, norm_test_outputs) assert(acc > 90) def test_low_acc(): output_layer = 10 training_images = mnist.train_images() training_labels = mnist.train_labels() testing_images = mnist.test_images() testing_labels = mnist.test_labels() training_inputs = training_images.reshape( training_images.shape[0], training_images.shape[1] * training_images.shape[2]).astype('float32') normalized_inputs = training_inputs/255 normalized_outputs = np.eye(output_layer)[training_labels] testing_inputs = testing_images.reshape( testing_images.shape[0], testing_images.shape[1]*testing_images.shape[2]).astype('float32') norm_test_inputs = testing_inputs/255 norm_test_outputs = testing_labels layers = [784, 30, 10] learning_rate = 0.01 batch_size = 1 epochs = 5 nn = NeuralNetwork(layers, batch_size, epochs, learning_rate) nn.fit(normalized_inputs, normalized_outputs, False) acc = nn.accuracy_test(norm_test_inputs, norm_test_outputs) assert(acc > 60)
[ "numpy.eye", "lib.neural_network.NeuralNetwork", "mnist_parser.test_images", "mnist_parser.test_labels", "mnist_parser.train_images", "os.path.abspath", "mnist_parser.train_labels" ]
[((260, 280), 'mnist_parser.train_images', 'mnist.train_images', ([], {}), '()\n', (278, 280), True, 'import mnist_parser as mnist\n'), ((303, 323), 'mnist_parser.train_labels', 'mnist.train_labels', ([], {}), '()\n', (321, 323), True, 'import mnist_parser as mnist\n'), ((345, 364), 'mnist_parser.test_images', 'mnist.test_images', ([], {}), '()\n', (362, 364), True, 'import mnist_parser as mnist\n'), ((386, 405), 'mnist_parser.test_labels', 'mnist.test_labels', ([], {}), '()\n', (403, 405), True, 'import mnist_parser as mnist\n'), ((992, 1048), 'lib.neural_network.NeuralNetwork', 'NeuralNetwork', (['layers', 'batch_size', 'epochs', 'learning_rate'], {}), '(layers, batch_size, epochs, learning_rate)\n', (1005, 1048), False, 'from lib.neural_network import NeuralNetwork\n'), ((1258, 1278), 'mnist_parser.train_images', 'mnist.train_images', ([], {}), '()\n', (1276, 1278), True, 'import mnist_parser as mnist\n'), ((1301, 1321), 'mnist_parser.train_labels', 'mnist.train_labels', ([], {}), '()\n', (1319, 1321), True, 'import mnist_parser as mnist\n'), ((1343, 1362), 'mnist_parser.test_images', 'mnist.test_images', ([], {}), '()\n', (1360, 1362), True, 'import mnist_parser as mnist\n'), ((1384, 1403), 'mnist_parser.test_labels', 'mnist.test_labels', ([], {}), '()\n', (1401, 1403), True, 'import mnist_parser as mnist\n'), ((1989, 2045), 'lib.neural_network.NeuralNetwork', 'NeuralNetwork', (['layers', 'batch_size', 'epochs', 'learning_rate'], {}), '(layers, batch_size, epochs, learning_rate)\n', (2002, 2045), False, 'from lib.neural_network import NeuralNetwork\n'), ((628, 648), 'numpy.eye', 'np.eye', (['output_layer'], {}), '(output_layer)\n', (634, 648), True, 'import numpy as np\n'), ((1626, 1646), 'numpy.eye', 'np.eye', (['output_layer'], {}), '(output_layer)\n', (1632, 1646), True, 'import numpy as np\n'), ((92, 114), 'os.path.abspath', 'path.abspath', (['__file__'], {}), '(__file__)\n', (104, 114), False, 'from os import path\n')]
from corc.providers.oci.config import generate_oci_config, valid_oci_config def prepare_config(provider, provider_kwargs, cluster={}, vcn={}): config = {"oci": {"cluster": cluster}} config["oci"].update(provider_kwargs) # Expects that the default corc config is present config = generate_oci_config(**config) if not valid_oci_config(config, verbose=True): return False return config
[ "corc.providers.oci.config.generate_oci_config", "corc.providers.oci.config.valid_oci_config" ]
[((298, 327), 'corc.providers.oci.config.generate_oci_config', 'generate_oci_config', ([], {}), '(**config)\n', (317, 327), False, 'from corc.providers.oci.config import generate_oci_config, valid_oci_config\n'), ((339, 377), 'corc.providers.oci.config.valid_oci_config', 'valid_oci_config', (['config'], {'verbose': '(True)'}), '(config, verbose=True)\n', (355, 377), False, 'from corc.providers.oci.config import generate_oci_config, valid_oci_config\n')]
# -*- coding: utf-8 -*- from nodular import Node, NodePublisher, TRAVERSE_STATUS from .test_db import db, TestDatabaseFixture from .test_nodetree import TestType # This test suite covers traversal. # Publisher tests are bundled with the view tests. class TestNodeTraversal(TestDatabaseFixture): """Dictionary access to node hierarchy.""" def setUp(self): super(TestNodeTraversal, self).setUp() # Make some nodes self.root = Node(name=u'root', title=u'Root Node') if not hasattr(self, 'nodetype'): self.nodetype = Node self.node1 = self.nodetype(name=u'node1', title=u'Node 1', parent=self.root) self.node2 = self.nodetype(name=u'node2', title=u'Node 2', parent=self.root) self.node3 = self.nodetype(name=u'node3', title=u'Node 3', parent=self.node2) self.node4 = self.nodetype(name=u'node4', title=u'Node 4', parent=self.node3) self.node5 = self.nodetype(name=u'node5', title=u'Node 5', parent=self.root) db.session.add_all([self.root, self.node1, self.node2, self.node3, self.node4, self.node5]) db.session.commit() self.rootpub = NodePublisher(self.root, None, u'/') self.nodepub = NodePublisher(self.root, None, u'/node2', u'/') def test_invalid_publisher(self): """Publisher paths must be absolute.""" self.assertRaises(ValueError, NodePublisher, self.root, None, u'node2') self.assertRaises(ValueError, NodePublisher, self.root, None, u'/node2', u'node2') def test_traverse_basepaths(self): """Publisher basepaths must be stored accurately.""" self.assertEqual(self.rootpub.basepath, u'/') self.assertEqual(self.nodepub.basepath, u'/node2') newpub = NodePublisher(self.root, None, u'/node2/') self.assertEqual(newpub.basepath, '/node2') def test_traverse_noroot_root(self): """If there's no root node, status is NOROOT (root publisher).""" db.session.delete(self.root) db.session.commit() status, node, path = self.rootpub.traverse(u'/node2') self.assertEqual(status, TRAVERSE_STATUS.NOROOT) def test_traverse_noroot_node(self): """If there's no root node, status is NOROOT (node publisher).""" db.session.delete(self.node2) db.session.commit() status, node, path = self.nodepub.traverse(u'/') self.assertEqual(status, TRAVERSE_STATUS.NOROOT) def test_traverse_match_root(self): """Traversal direct match for root publisher.""" status, node, path = self.rootpub.traverse(u'/node2') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node2) self.assertEqual(path, None) status, node, path = self.rootpub.traverse(u'/node2/node3') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node3) self.assertEqual(path, None) status, node, path = self.rootpub.traverse(u'/node2/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node4) self.assertEqual(path, None) def test_traverse_match_root_slashless(self): """Traversal direct match for root publisher (without leading slashes).""" status, node, path = self.rootpub.traverse(u'node2') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node2) self.assertEqual(path, None) status, node, path = self.rootpub.traverse(u'node2/node3') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node3) self.assertEqual(path, None) status, node, path = self.rootpub.traverse(u'node2/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node4) self.assertEqual(path, None) def test_traverse_match_node(self): """Traversal direct match for node publisher.""" status, node, path = self.nodepub.traverse(u'/') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node2) self.assertEqual(path, None) status, node, path = self.nodepub.traverse(u'/node3') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node3) self.assertEqual(path, None) status, node, path = self.nodepub.traverse(u'/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node4) self.assertEqual(path, None) def test_traverse_match_node_slashless(self): """Traversal direct match for node publisher (without leading slashes).""" status, node, path = self.nodepub.traverse(u'') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node2) self.assertEqual(path, None) status, node, path = self.nodepub.traverse(u'node3') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node3) self.assertEqual(path, None) status, node, path = self.nodepub.traverse(u'node3/node4') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node4) self.assertEqual(path, None) def test_traverse_partial_match(self): """Test for partial path matching.""" status, node, path = self.rootpub.traverse(u'/nodeX') self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.root) self.assertEqual(path, '/nodeX') status, node, path = self.rootpub.traverse(u'/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.root) self.assertEqual(path, '/node3/node4') status, node, path = self.rootpub.traverse(u'/node2/node4') self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.node2) self.assertEqual(path, '/node4') def test_traverse_redirect_root(self): """Renamed nodes result in REDIRECT status (root publisher).""" self.node2.name = u'nodeX' db.session.commit() status, node, path = self.rootpub.traverse(u'/nodeX') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node2) self.assertEqual(path, None) status, node, path = self.rootpub.traverse(u'/node2') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.root) self.assertEqual(path, '/nodeX') status, node, path = self.rootpub.traverse(u'/node2/node3') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.root) self.assertEqual(path, '/nodeX/node3') status, node, path = self.rootpub.traverse(u'/node2/node4') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.root) self.assertEqual(path, '/nodeX/node4') def test_traverse_redirect_node(self): """Renamed nodes result in REDIRECT status (node publisher).""" self.node3.name = u'nodeX' db.session.commit() status, node, path = self.nodepub.traverse(u'/nodeX') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node3) self.assertEqual(path, None) status, node, path = self.nodepub.traverse(u'/node3') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.node2) self.assertEqual(path, '/nodeX') status, node, path = self.nodepub.traverse(u'/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.node2) self.assertEqual(path, '/nodeX/node4') def test_traverse_redirect_subnode(self): """Renamed nodes result in REDIRECT status (node publisher).""" self.node4.name = u'nodeX' db.session.commit() status, node, path = self.nodepub.traverse(u'/node3/nodeX') self.assertEqual(status, TRAVERSE_STATUS.MATCH) self.assertEqual(node, self.node4) self.assertEqual(path, None) status, node, path = self.nodepub.traverse(u'/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.node3) self.assertEqual(path, '/node3/nodeX') self.nodepub.urlpath = self.nodepub.basepath status, node, path = self.nodepub.traverse(u'/node2/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.REDIRECT) self.assertEqual(node, self.node3) self.assertEqual(path, '/node2/node3/nodeX') def test_traverse_gone_root(self): """Deleted nodes cause a GONE response status (root publisher).""" db.session.delete(self.node3) db.session.commit() status, node, path = self.rootpub.traverse(u'/node2/node3') self.assertEqual(status, TRAVERSE_STATUS.GONE) self.assertEqual(node, self.node2) status, node, path = self.rootpub.traverse(u'/node2/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.GONE) self.assertEqual(node, self.node2) def test_traverse_gone_node(self): """Deleted nodes cause a GONE response status (node publisher).""" db.session.delete(self.node3) db.session.commit() status, node, path = self.nodepub.traverse(u'/node3') self.assertEqual(status, TRAVERSE_STATUS.GONE) self.assertEqual(node, self.node2) status, node, path = self.nodepub.traverse(u'/node3/node4') self.assertEqual(status, TRAVERSE_STATUS.GONE) self.assertEqual(node, self.node2) def test_traverse_gone_root_noredirect(self): """Deleted nodes return PARTIAL when redirects are disabled (root publisher).""" db.session.delete(self.node3) db.session.commit() status, node, path = self.rootpub.traverse(u'/node2/node3', redirect=False) self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.node2) self.assertEqual(path, u'/node3') status, node, path = self.rootpub.traverse(u'/node2/node3/node4', redirect=False) self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.node2) self.assertEqual(path, u'/node3/node4') def test_traverse_gone_node_noredirect(self): """Deleted nodes return PARTIAL when redirects are disabled (node publisher).""" db.session.delete(self.node3) db.session.commit() status, node, path = self.nodepub.traverse(u'/node3', redirect=False) self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.node2) self.assertEqual(path, u'/node3') status, node, path = self.nodepub.traverse(u'/node3/node4', redirect=False) self.assertEqual(status, TRAVERSE_STATUS.PARTIAL) self.assertEqual(node, self.node2) self.assertEqual(path, u'/node3/node4') class TestTypeTraversal(TestNodeTraversal): def setUp(self): self.nodetype = TestType super(TestTypeTraversal, self).setUp()
[ "nodular.NodePublisher", "nodular.Node" ]
[((460, 498), 'nodular.Node', 'Node', ([], {'name': 'u"""root"""', 'title': 'u"""Root Node"""'}), "(name=u'root', title=u'Root Node')\n", (464, 498), False, 'from nodular import Node, NodePublisher, TRAVERSE_STATUS\n'), ((1153, 1189), 'nodular.NodePublisher', 'NodePublisher', (['self.root', 'None', 'u"""/"""'], {}), "(self.root, None, u'/')\n", (1166, 1189), False, 'from nodular import Node, NodePublisher, TRAVERSE_STATUS\n'), ((1213, 1260), 'nodular.NodePublisher', 'NodePublisher', (['self.root', 'None', 'u"""/node2"""', 'u"""/"""'], {}), "(self.root, None, u'/node2', u'/')\n", (1226, 1260), False, 'from nodular import Node, NodePublisher, TRAVERSE_STATUS\n'), ((1751, 1793), 'nodular.NodePublisher', 'NodePublisher', (['self.root', 'None', 'u"""/node2/"""'], {}), "(self.root, None, u'/node2/')\n", (1764, 1793), False, 'from nodular import Node, NodePublisher, TRAVERSE_STATUS\n')]
# Generated by Django 3.1.4 on 2020-12-22 15:40 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('tweets', '0003_auto_20201222_1535'), ] operations = [ migrations.AlterField( model_name='tweet', name='profile_pic', field=models.URLField(default='pic'), ), ]
[ "django.db.models.URLField" ]
[((339, 369), 'django.db.models.URLField', 'models.URLField', ([], {'default': '"""pic"""'}), "(default='pic')\n", (354, 369), False, 'from django.db import migrations, models\n')]
# Generated by Django 2.2.14 on 2020-08-11 13:19 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('promoted', '0005_auto_20200803_1214'), ('discovery', '0006_auto_20200807_2051'), ] operations = [ migrations.CreateModel( name='PromotedAddon', fields=[ ], options={ 'proxy': True, 'indexes': [], 'constraints': [], }, bases=('promoted.promotedaddon',), ), ]
[ "django.db.migrations.CreateModel" ]
[((279, 433), 'django.db.migrations.CreateModel', 'migrations.CreateModel', ([], {'name': '"""PromotedAddon"""', 'fields': '[]', 'options': "{'proxy': True, 'indexes': [], 'constraints': []}", 'bases': "('promoted.promotedaddon',)"}), "(name='PromotedAddon', fields=[], options={'proxy': \n True, 'indexes': [], 'constraints': []}, bases=('promoted.promotedaddon',))\n", (301, 433), False, 'from django.db import migrations\n')]
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.4' # jupytext_version: 1.2.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # + # one we assume theta_0 and theta_1 params below predict function returns y_hat def predict(theta_0: float, theta_1: float, x_i: float) -> float: return theta_1 * x_i + theta_0 # since we know the actual y_i output we can compute the error for each pair def error(theta_0: float, theta_1: float, x_i: float, y_i: float) -> float: """ The error from predicting theta_1 * x_i + theta_0, when actual value is y_i """ return predict(theta_0, theta_1, x_i) - y_i # we woudl like to know the total error over the entire dataset # sum of squared errors covers both negative and positive errors, preventing error cancel out. from linear_algebra import Vector def sum_of_sqerrors(theta_0: float, theta_1: float, x: Vector, y: Vector) -> float: return sum(error(theta_0, theta_1, x_i, y_i) ** 2 for x_i, y_i in zip(x, y) ) # + from typing import Tuple from statistics import correlation, standard_deviation, mean # based on the OLS, the error-minimizing theta_0 and theta_1 def least_squares_fit (x: Vector, y: Vector) -> Tuple[float, float]: """ Given two vectors x and y, find the least-squares values of theta_0 and theta_1 """ theta_1 = correlation(x, y) * standard_deviation(y) / standard_deviation(x) theta_0 = mean(y) - theta_1 * mean(x) return theta_0, theta_1 # - # Some good intuition notes by the book: # # The choice of theta_0 simply states we are trying to predict the averga of the reponse variable via the average the input variable # The choice of theta_1 means when the input value increases by standard_deviation(x) the prediction then increases by correlation(x, y) * standard_deviation(y) x = [i for i in range(-100, 110, 10)] y = [3 * i - 5 for i in x] assert least_squares_fit(x, y) == (-5, 3) # + from statistics import num_friends_good, daily_minutes_good theta_0, theta_1 = least_squares_fit(num_friends_good, daily_minutes_good) assert 22.9 < theta_0 < 23.0 assert 0.9 < theta_1 < 0.905 # - # A common measure of model perfroamnce with OLS is the R-squared, which measures the fraction of the total variation of the output variable that is captured by the model from statistics import de_mean # + def total_sum_squares(y: Vector) -> float: """the total squared variation of y_i's from their mean""" return sum(v **2 for v in de_mean(y)) def r_squared(theta_0: float, theta_1: float, x: Vector, y: Vector) -> float: """ the fraction of variation in y captured by the model which equals 1 - the fraction of variation in y not captured by the model """ return 1.0 - (sum_of_sqerrors(theta_0, theta_1, x, y) / total_sum_squares(y)) rsq = r_squared(theta_0, theta_1, num_friends_good, daily_minutes_good) assert 0.328 < rsq < 0.330 # - # Using gradient descent import random from gradient_descent import gradient_step # + num_epochs = 10000 random.seed(0) theta_guess = [random.random(), random.random()] # choose random value to start learning_rate = 0.00001 for _ in range(num_epochs): theta_0, theta_1 = theta_guess # Partial derivatives wirh respect to theta_0 and theta_1 grad_theta_0 = sum(2 * error(theta_0, theta_1, x_i, y_i) for x_i, y_i in zip(num_friends_good, daily_minutes_good)) grad_theta_1 = sum(2 * error(theta_0, theta_1, x_i, y_i) * x_i for x_i, y_i in zip(num_friends_good, daily_minutes_good)) # compute loss loss = sum_of_sqerrors(theta_0, theta_1, num_friends_good, daily_minutes_good) print(f"loss: {loss:.3f}") # update the guess theta_guess = gradient_step(theta_guess, [grad_theta_0, grad_theta_1], -learning_rate) theta_guess = theta_0, theta_1 assert 22.9 < theta_0 < 23.0 assert 0.9 < theta_1 < 0.905 # -
[ "statistics.mean", "statistics.standard_deviation", "statistics.de_mean", "random.seed", "random.random", "gradient_descent.gradient_step", "statistics.correlation" ]
[((3187, 3201), 'random.seed', 'random.seed', (['(0)'], {}), '(0)\n', (3198, 3201), False, 'import random\n'), ((3218, 3233), 'random.random', 'random.random', ([], {}), '()\n', (3231, 3233), False, 'import random\n'), ((3235, 3250), 'random.random', 'random.random', ([], {}), '()\n', (3248, 3250), False, 'import random\n'), ((3920, 3992), 'gradient_descent.gradient_step', 'gradient_step', (['theta_guess', '[grad_theta_0, grad_theta_1]', '(-learning_rate)'], {}), '(theta_guess, [grad_theta_0, grad_theta_1], -learning_rate)\n', (3933, 3992), False, 'from gradient_descent import gradient_step\n'), ((1539, 1560), 'statistics.standard_deviation', 'standard_deviation', (['x'], {}), '(x)\n', (1557, 1560), False, 'from statistics import correlation, standard_deviation, mean\n'), ((1575, 1582), 'statistics.mean', 'mean', (['y'], {}), '(y)\n', (1579, 1582), False, 'from statistics import correlation, standard_deviation, mean\n'), ((1495, 1512), 'statistics.correlation', 'correlation', (['x', 'y'], {}), '(x, y)\n', (1506, 1512), False, 'from statistics import correlation, standard_deviation, mean\n'), ((1515, 1536), 'statistics.standard_deviation', 'standard_deviation', (['y'], {}), '(y)\n', (1533, 1536), False, 'from statistics import correlation, standard_deviation, mean\n'), ((1595, 1602), 'statistics.mean', 'mean', (['x'], {}), '(x)\n', (1599, 1602), False, 'from statistics import correlation, standard_deviation, mean\n'), ((2633, 2643), 'statistics.de_mean', 'de_mean', (['y'], {}), '(y)\n', (2640, 2643), False, 'from statistics import de_mean\n')]
import Rahimcalc as r def sample(): a=int(input("Enter the a:")) b=int(input("Enter the b:")) print(r.sum(a,b)) print(r.sub(a,b)) print(r.mul(a,b)) print(r.complex(a,b)) print(r.div(a,b)) if __name__=='__main__': sample()
[ "Rahimcalc.mul", "Rahimcalc.sub", "Rahimcalc.sum", "Rahimcalc.div", "Rahimcalc.complex" ]
[((116, 127), 'Rahimcalc.sum', 'r.sum', (['a', 'b'], {}), '(a, b)\n', (121, 127), True, 'import Rahimcalc as r\n'), ((139, 150), 'Rahimcalc.sub', 'r.sub', (['a', 'b'], {}), '(a, b)\n', (144, 150), True, 'import Rahimcalc as r\n'), ((162, 173), 'Rahimcalc.mul', 'r.mul', (['a', 'b'], {}), '(a, b)\n', (167, 173), True, 'import Rahimcalc as r\n'), ((185, 200), 'Rahimcalc.complex', 'r.complex', (['a', 'b'], {}), '(a, b)\n', (194, 200), True, 'import Rahimcalc as r\n'), ((212, 223), 'Rahimcalc.div', 'r.div', (['a', 'b'], {}), '(a, b)\n', (217, 223), True, 'import Rahimcalc as r\n')]
import os import zipfile def zipdir(path, ziph): for root, dirs, files in os.walk(path): for file in files: ziph.write(os.path.join(root, file), os.path.relpath(os.path.join(root, file), os.path.join(path, '..'))) def do_zip(directory, fname): zipf = zipfile.ZipFile(fname, 'w', zipfile.ZIP_DEFLATED) zipdir(directory, zipf) zipf.close()
[ "zipfile.ZipFile", "os.path.join", "os.walk" ]
[((79, 92), 'os.walk', 'os.walk', (['path'], {}), '(path)\n', (86, 92), False, 'import os\n'), ((344, 393), 'zipfile.ZipFile', 'zipfile.ZipFile', (['fname', '"""w"""', 'zipfile.ZIP_DEFLATED'], {}), "(fname, 'w', zipfile.ZIP_DEFLATED)\n", (359, 393), False, 'import zipfile\n'), ((144, 168), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (156, 168), False, 'import os\n'), ((209, 233), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (221, 233), False, 'import os\n'), ((274, 298), 'os.path.join', 'os.path.join', (['path', '""".."""'], {}), "(path, '..')\n", (286, 298), False, 'import os\n')]
''' 일원화된 라벨링 이미지 데이터셋에서 학습 및 테스트를 수행하는 프로그램. ''' __author__ = 'will' from keras.models import Sequential from keras.layers import Dense #from sklearn.model_selection import train_test_split import numpy as np import pandas as pd import tensorflow as tf from tensorflow.python.keras.backend import conv2d #import pickle outputs = 1 from get_image_self import * trX,trY = get_training_data() teX,teY = get_test_data() seed = 0 np.random.seed(seed) tf.random.set_seed(seed) model=Sequential() #model.add(Dense(512, input_dim=np.shape(trX)[1], activation='relu')) model.add(Dense(512, input_dim=256, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trX, trY, epochs=30, batch_size=1) Y_prediction = model.predict(teX).flatten() for i in range(1000): label = teY[i] pred = Y_prediction[i] print("label:{:.2f}, pred:{:.2f}".format(label, pred)) # def get_direction(img): # print(img.shape) # img = np.array([np.reshape(img, img.shape**2)]) # ret = model.predict(np.array([img])) # return ret # Predict direction with single image #dir=get_direction([teX[10]]) #print(dir[0][0]) model.save("mlt_model2")
[ "keras.layers.Dense", "tensorflow.random.set_seed", "numpy.random.seed", "keras.models.Sequential" ]
[((432, 452), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (446, 452), True, 'import numpy as np\n'), ((453, 477), 'tensorflow.random.set_seed', 'tf.random.set_seed', (['seed'], {}), '(seed)\n', (471, 477), True, 'import tensorflow as tf\n'), ((485, 497), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (495, 497), False, 'from keras.models import Sequential\n'), ((578, 622), 'keras.layers.Dense', 'Dense', (['(512)'], {'input_dim': '(256)', 'activation': '"""relu"""'}), "(512, input_dim=256, activation='relu')\n", (583, 622), False, 'from keras.layers import Dense\n'), ((634, 662), 'keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (639, 662), False, 'from keras.layers import Dense\n'), ((674, 682), 'keras.layers.Dense', 'Dense', (['(1)'], {}), '(1)\n', (679, 682), False, 'from keras.layers import Dense\n')]
#!/usr/bin/python3 from hypothesis import given from hypothesis.strategies._internal.deferred import DeferredStrategy from brownie.network.account import Account from brownie.test import strategy def test_strategy(): assert isinstance(strategy("address"), DeferredStrategy) @given(value=strategy("address")) def test_given(accounts, value): assert value in accounts assert isinstance(value, Account) @given(value=strategy("address", length=3)) def test_length(accounts, value): assert list(accounts).index(value) < 3 def test_repr(): assert repr(strategy("address")) == "sampled_from(accounts)"
[ "brownie.test.strategy" ]
[((243, 262), 'brownie.test.strategy', 'strategy', (['"""address"""'], {}), "('address')\n", (251, 262), False, 'from brownie.test import strategy\n'), ((297, 316), 'brownie.test.strategy', 'strategy', (['"""address"""'], {}), "('address')\n", (305, 316), False, 'from brownie.test import strategy\n'), ((433, 462), 'brownie.test.strategy', 'strategy', (['"""address"""'], {'length': '(3)'}), "('address', length=3)\n", (441, 462), False, 'from brownie.test import strategy\n'), ((576, 595), 'brownie.test.strategy', 'strategy', (['"""address"""'], {}), "('address')\n", (584, 595), False, 'from brownie.test import strategy\n')]
#!/usr/bin/python3 -u import os import time import RPi.GPIO as GPIO import lcd_i2c from encoder import Encoder GPIO.setmode(GPIO.BCM) switch_pin = 13 encoder_down_pin = 6 encoder_up_pin = 5 minutes = 0 dirty = True state = 'set' mylcd = lcd_i2c.lcd() timer_end = None def start_timer(): global timer_end, state timer_end = time.perf_counter() + (minutes * 60) state = 'timer' print("Starting timer") os.system('say Starting timer') def check_timer(): global timer_end remaining = int(timer_end - time.perf_counter()) return int(remaining) def switch_pressed(v): global dirty, state print("Pressed") if state == 'set': start_timer() elif state == 'done': state = 'set' dirty = True GPIO.setup(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.add_event_detect(switch_pin, GPIO.FALLING, callback=switch_pressed, bouncetime=500) def update(): global state if state == 'set': global minutes, dirty if not dirty: return mylcd.lcd_clear() mylcd.lcd_display_string(f"Timer: {minutes} min", 1) dirty = False elif state == 'timer': mylcd.lcd_clear() remaining = check_timer() minutes = int(remaining / 60) seconds = remaining % 60 mylcd.lcd_display_string(f"Timer: {minutes}:{seconds:02d}") elif state == 'done': mylcd.lcd_clear() mylcd.lcd_display_string("Timer done.") def valueChanged(value): global minutes global dirty dirty = True minutes = max(0, value) e1 = Encoder(encoder_down_pin, encoder_up_pin, callback=valueChanged) update() try: while True: if state == 'timer' and check_timer() <= 0: print("Timer done") os.system(f'say timer {minutes} minutes done') state = 'done' update() time.sleep(0.5) if state != 'set': time.sleep(.45) # 0.5 + 0.45 = approx 1 second refresh rate finally: print("Cleanup") GPIO.cleanup()
[ "encoder.Encoder", "RPi.GPIO.cleanup", "RPi.GPIO.add_event_detect", "RPi.GPIO.setup", "time.perf_counter", "time.sleep", "lcd_i2c.lcd", "os.system", "RPi.GPIO.setmode" ]
[((115, 137), 'RPi.GPIO.setmode', 'GPIO.setmode', (['GPIO.BCM'], {}), '(GPIO.BCM)\n', (127, 137), True, 'import RPi.GPIO as GPIO\n'), ((242, 255), 'lcd_i2c.lcd', 'lcd_i2c.lcd', ([], {}), '()\n', (253, 255), False, 'import lcd_i2c\n'), ((761, 818), 'RPi.GPIO.setup', 'GPIO.setup', (['switch_pin', 'GPIO.IN'], {'pull_up_down': 'GPIO.PUD_UP'}), '(switch_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)\n', (771, 818), True, 'import RPi.GPIO as GPIO\n'), ((819, 911), 'RPi.GPIO.add_event_detect', 'GPIO.add_event_detect', (['switch_pin', 'GPIO.FALLING'], {'callback': 'switch_pressed', 'bouncetime': '(500)'}), '(switch_pin, GPIO.FALLING, callback=switch_pressed,\n bouncetime=500)\n', (840, 911), True, 'import RPi.GPIO as GPIO\n'), ((1587, 1651), 'encoder.Encoder', 'Encoder', (['encoder_down_pin', 'encoder_up_pin'], {'callback': 'valueChanged'}), '(encoder_down_pin, encoder_up_pin, callback=valueChanged)\n', (1594, 1651), False, 'from encoder import Encoder\n'), ((427, 458), 'os.system', 'os.system', (['"""say Starting timer"""'], {}), "('say Starting timer')\n", (436, 458), False, 'import os\n'), ((2032, 2046), 'RPi.GPIO.cleanup', 'GPIO.cleanup', ([], {}), '()\n', (2044, 2046), True, 'import RPi.GPIO as GPIO\n'), ((338, 357), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (355, 357), False, 'import time\n'), ((1881, 1896), 'time.sleep', 'time.sleep', (['(0.5)'], {}), '(0.5)\n', (1891, 1896), False, 'import time\n'), ((533, 552), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (550, 552), False, 'import time\n'), ((1780, 1826), 'os.system', 'os.system', (['f"""say timer {minutes} minutes done"""'], {}), "(f'say timer {minutes} minutes done')\n", (1789, 1826), False, 'import os\n'), ((1936, 1952), 'time.sleep', 'time.sleep', (['(0.45)'], {}), '(0.45)\n', (1946, 1952), False, 'import time\n')]
from flask import Blueprint bp = Blueprint('payment', __name__) from app.payment import routes, forms
[ "flask.Blueprint" ]
[((34, 64), 'flask.Blueprint', 'Blueprint', (['"""payment"""', '__name__'], {}), "('payment', __name__)\n", (43, 64), False, 'from flask import Blueprint\n')]
#//---------------------------------------------------------------------- #// Copyright 2007-2010 Mentor Graphics Corporation #// Copyright 2007-2010 Cadence Design Systems, Inc. #// Copyright 2010-2011 Synopsys, Inc. #// Copyright 2019-2020 <NAME> (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #//---------------------------------------------------------------------- from uvm.base.uvm_object import UVMObject from uvm.macros import * from uvm import sv RANGE_32B = range(0, (1 << 32) - 1) class packet(UVMObject): # rand int addr # rand int data # Use the macro in a class to implement factory registration along with other # utilities (create, get_type_name). For only factory registration, use # the macro `uvm_object_registry(packet,"packet"). # Base constraints TODO # constraint c1 { addr inside { [ 0x0: 0x40], [ 0x100: 0x200], [ 0x1000: 0x1fff], [ 0x4000: 0x4fff] }; } # constraint c2 { (addr <= 0x40) -> (data inside { [10:20] } ); } # constraint c3 { (addr >= 0x100 and addr <= 0x200) -> (data inside { [100:200] } ); } # constraint c4 { (addr >= 0x1000 and addr <= 0x1fff) -> (data inside { [300:400] } ); } # constraint c5 { (addr >= 0x4000 and addr <= 0x4fff) -> (data inside { [600:800] } ); } # do printing, comparing, etc. These functions can also be automated inside # the `uvm_object_utils_begin/end macros if desired. Below show the manual # approach. def do_print(self, printer): printer.print_field("addr", self.addr, sv.bits(self.addr)) printer.print_field("data", self.data, sv.bits(self.data)) def do_compare(self, rhs, comparer): rhs_ = None if rhs is None: return 0 do_compare = 1 do_compare &= comparer.compare_field("addr", self.addr, rhs_.addr, sv.bits(self.addr)) do_compare &= comparer.compare_field("data", self.data, rhs_.data, sv.bits(self.data)) return do_compare def do_copy(self, rhs): rhs_ = rhs if rhs is None: return self.addr = rhs_.addr self.data = rhs_.data def __init__(self, name="packet"): super().__init__(name) self.addr = 0 self.rand('addr', RANGE_32B) self.data = 0 self.rand('data', RANGE_32B) uvm_object_utils(packet)
[ "uvm.sv.bits" ]
[((2164, 2182), 'uvm.sv.bits', 'sv.bits', (['self.addr'], {}), '(self.addr)\n', (2171, 2182), False, 'from uvm import sv\n'), ((2231, 2249), 'uvm.sv.bits', 'sv.bits', (['self.data'], {}), '(self.data)\n', (2238, 2249), False, 'from uvm import sv\n'), ((2468, 2486), 'uvm.sv.bits', 'sv.bits', (['self.addr'], {}), '(self.addr)\n', (2475, 2486), False, 'from uvm import sv\n'), ((2575, 2593), 'uvm.sv.bits', 'sv.bits', (['self.data'], {}), '(self.data)\n', (2582, 2593), False, 'from uvm import sv\n')]
import sys from tello.tello import Tello from tello.tello_command import Command, GenericCommand if __name__ == "__main__": tello = Tello() tello_commands = [Command()] + [GenericCommand(cmd) for cmd in sys.argv[1:]] for tello_command in tello_commands: tello.execute_command(tello_command) tello.join()
[ "tello.tello_command.GenericCommand", "tello.tello_command.Command", "tello.tello.Tello" ]
[((138, 145), 'tello.tello.Tello', 'Tello', ([], {}), '()\n', (143, 145), False, 'from tello.tello import Tello\n'), ((168, 177), 'tello.tello_command.Command', 'Command', ([], {}), '()\n', (175, 177), False, 'from tello.tello_command import Command, GenericCommand\n'), ((182, 201), 'tello.tello_command.GenericCommand', 'GenericCommand', (['cmd'], {}), '(cmd)\n', (196, 201), False, 'from tello.tello_command import Command, GenericCommand\n')]
__author__ = 'guorongxu' import subprocess def download(workspace, data_set): with open(workspace + "/" + data_set + "/gene_list.txt") as f: content = f.readlines() length = len(content) for i in range(0, 20): subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/pubmed.sh", "download", workspace + "/" + data_set, str(i * length/8), str((i + 1) * length/8 - 1)]) def print_json(workspace, data_set): subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/pubmed.sh", "print_json", workspace + "/" + data_set]) def print_label(workspace, data_set): subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/pubmed.sh", "print_label", workspace + "/" + data_set]) def print_edge(workspace, data_set): subprocess.call(["qsub", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/pubmed.sh", "print_edge", workspace + "/" + data_set]) def print_schema(workspace, data_set): subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/pubmed.sh", "print_schema", workspace, data_set]) ## To append id into json files def append_id(workspace, data_set): subprocess.call(["qsub", "-pe", "smp", "1", "-o", "search_engine.log", "-e", "search_engine.log", workspace + "/codes/" + data_set + "/pubmed.sh", "append_id", workspace, data_set])
[ "subprocess.call" ]
[((570, 748), 'subprocess.call', 'subprocess.call', (["['qsub', '-o', 'search_engine.log', '-e', 'search_engine.log', workspace +\n '/codes/' + data_set + '/pubmed.sh', 'print_json', workspace + '/' +\n data_set]"], {}), "(['qsub', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'print_json', workspace + '/' + data_set])\n", (585, 748), False, 'import subprocess\n'), ((805, 984), 'subprocess.call', 'subprocess.call', (["['qsub', '-o', 'search_engine.log', '-e', 'search_engine.log', workspace +\n '/codes/' + data_set + '/pubmed.sh', 'print_label', workspace + '/' +\n data_set]"], {}), "(['qsub', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'print_label', workspace + '/' + data_set])\n", (820, 984), False, 'import subprocess\n'), ((1040, 1218), 'subprocess.call', 'subprocess.call', (["['qsub', '-o', 'search_engine.log', '-e', 'search_engine.log', workspace +\n '/codes/' + data_set + '/pubmed.sh', 'print_edge', workspace + '/' +\n data_set]"], {}), "(['qsub', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'print_edge', workspace + '/' + data_set])\n", (1055, 1218), False, 'import subprocess\n'), ((1276, 1468), 'subprocess.call', 'subprocess.call', (["['qsub', '-pe', 'smp', '1', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'print_schema', workspace, data_set]"], {}), "(['qsub', '-pe', 'smp', '1', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'print_schema', workspace, data_set])\n", (1291, 1468), False, 'import subprocess\n'), ((1554, 1743), 'subprocess.call', 'subprocess.call', (["['qsub', '-pe', 'smp', '1', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'append_id', workspace, data_set]"], {}), "(['qsub', '-pe', 'smp', '1', '-o', 'search_engine.log', '-e',\n 'search_engine.log', workspace + '/codes/' + data_set + '/pubmed.sh',\n 'append_id', workspace, data_set])\n", (1569, 1743), False, 'import subprocess\n')]
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Aug 28 17:53:58 2017 @author: jiahuei """ from link_dirs import CURR_DIR, BASE_DIR, pjoin import argparse import os import logging import platform from copy import deepcopy from time import localtime, strftime from src import infer_fn_v2 as infer from src.compat_v2 import update_config from common import configuration_v1 as cfg from common.natural_sort import natural_keys as nat_key def parse_args(): parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument( '--infer_set', type=str, default='test', choices=['test', 'valid', 'coco_test', 'coco_valid'], help='The split to perform inference on.') parser.add_argument( '--infer_checkpoints_dir', type=str, default=pjoin('mscoco', 'radix_b256_add_LN_softmax_h8_tie_lstm_run_01'), help='The directory containing the checkpoint files.') parser.add_argument( '--infer_checkpoints', type=str, default='all', help='The checkpoint numbers to be evaluated. Comma-separated.') parser.add_argument( '--annotations_file', type=str, default='captions_val2014.json', help='The annotations / reference file for calculating scores.') parser.add_argument( '--dataset_dir', type=str, default='', help='Dataset directory.') parser.add_argument( '--ckpt_prefix', type=str, default='model_compact-', help='Prefix of checkpoint names.') parser.add_argument( '--run_inference', type=bool, default=True, help='Whether to perform inference.') parser.add_argument( '--get_metric_score', type=bool, default=True, help='Whether to perform metric score calculations.') parser.add_argument( '--save_attention_maps', type=bool, default=False, help='Whether to save attention maps to disk as pickle file.') parser.add_argument( '--gpu', type=str, default='0', help='The gpu number.') parser.add_argument( '--per_process_gpu_memory_fraction', type=float, default=0.75, help='The fraction of GPU memory allocated.') parser.add_argument( '--verbosity', type=int, default=10, choices=[10, 20]) parser.add_argument( '--infer_beam_size', type=int, default=3, help='The beam size.') parser.add_argument( '--infer_length_penalty_weight', type=float, default=0.0, help='The length penalty weight used in beam search.') parser.add_argument( '--infer_max_length', type=int, default=30, help='The maximum caption length allowed during inference.') parser.add_argument( '--batch_size_infer', type=int, default=25, help='The batch size.') args = parser.parse_args() return args def main(args): args = deepcopy(args) os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu default_exp_dir = pjoin(os.path.dirname(CURR_DIR), 'experiments') args.infer_checkpoints_dir = pjoin(default_exp_dir, args.infer_checkpoints_dir) args.annotations_file = pjoin(BASE_DIR, 'common', 'coco_caption', 'annotations', args.annotations_file) if args.dataset_dir == '': args.dataset_dir = pjoin(BASE_DIR, 'datasets', 'mscoco') ckpt_prefix = args.ckpt_prefix if args.infer_checkpoints == 'all': ckpt_files = sorted(os.listdir(args.infer_checkpoints_dir), key=nat_key) ckpt_files = [f for f in ckpt_files if ckpt_prefix in f] ckpt_files = [f.replace('.index', '') for f in ckpt_files if '.index' in f] ckpt_files = [f.replace(ckpt_prefix, '') for f in ckpt_files] # if len(ckpt_files) > 20: ckpt_files = ckpt_files[-12:] args.infer_checkpoints = ckpt_files else: args.infer_checkpoints = args.infer_checkpoints.split(',') if len(args.infer_checkpoints) < 1: raise ValueError('`infer_checkpoints` must be either `all` or ' 'a list of comma-separated checkpoint numbers.') ### c = cfg.load_config(pjoin(args.infer_checkpoints_dir, 'config.pkl')) c = update_config(c) c.__dict__.update(args.__dict__) save_name = 'b{}_lp{:2.1f}___{}'.format(c.infer_beam_size, c.infer_length_penalty_weight, strftime('%m-%d_%H-%M', localtime())) set_name = c.infer_set[0] + ''.join(x.title() for x in c.infer_set.split('_'))[1:] # camelCase c.infer_save_path = '_'.join([c.infer_checkpoints_dir, '__infer', set_name, save_name]) # c.infer_save_path = pjoin(c.infer_checkpoints_dir, '_'.join(['infer', set_name, save_name]) ### if not os.path.exists(c.infer_save_path): os.mkdir(c.infer_save_path) # Loop through the checkpoint files scores_combined = {} for ckpt_num in c.infer_checkpoints: curr_ckpt_path = pjoin(c.infer_checkpoints_dir, ckpt_prefix + ckpt_num) infer.evaluate_model(config=c, curr_ckpt_path=curr_ckpt_path, scores_combined=scores_combined) print('\n') if __name__ == '__main__': _args = parse_args() logging.basicConfig(level=_args.verbosity) logger = logging.getLogger(__name__) logger.debug('Python version: {}'.format(platform.python_version())) main(_args)
[ "logging.basicConfig", "logging.getLogger", "os.path.exists", "os.listdir", "argparse.ArgumentParser", "src.compat_v2.update_config", "src.infer_fn_v2.evaluate_model", "link_dirs.pjoin", "os.path.dirname", "os.mkdir", "copy.deepcopy", "time.localtime", "platform.python_version" ]
[((486, 563), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(formatter_class=argparse.RawDescriptionHelpFormatter)\n', (509, 563), False, 'import argparse\n'), ((2902, 2916), 'copy.deepcopy', 'deepcopy', (['args'], {}), '(args)\n', (2910, 2916), False, 'from copy import deepcopy\n'), ((3126, 3176), 'link_dirs.pjoin', 'pjoin', (['default_exp_dir', 'args.infer_checkpoints_dir'], {}), '(default_exp_dir, args.infer_checkpoints_dir)\n', (3131, 3176), False, 'from link_dirs import CURR_DIR, BASE_DIR, pjoin\n'), ((3205, 3284), 'link_dirs.pjoin', 'pjoin', (['BASE_DIR', '"""common"""', '"""coco_caption"""', '"""annotations"""', 'args.annotations_file'], {}), "(BASE_DIR, 'common', 'coco_caption', 'annotations', args.annotations_file)\n", (3210, 3284), False, 'from link_dirs import CURR_DIR, BASE_DIR, pjoin\n'), ((4248, 4264), 'src.compat_v2.update_config', 'update_config', (['c'], {}), '(c)\n', (4261, 4264), False, 'from src.compat_v2 import update_config\n'), ((5347, 5389), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': '_args.verbosity'}), '(level=_args.verbosity)\n', (5366, 5389), False, 'import logging\n'), ((5403, 5430), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (5420, 5430), False, 'import logging\n'), ((3051, 3076), 'os.path.dirname', 'os.path.dirname', (['CURR_DIR'], {}), '(CURR_DIR)\n', (3066, 3076), False, 'import os\n'), ((3343, 3380), 'link_dirs.pjoin', 'pjoin', (['BASE_DIR', '"""datasets"""', '"""mscoco"""'], {}), "(BASE_DIR, 'datasets', 'mscoco')\n", (3348, 3380), False, 'from link_dirs import CURR_DIR, BASE_DIR, pjoin\n'), ((4191, 4238), 'link_dirs.pjoin', 'pjoin', (['args.infer_checkpoints_dir', '"""config.pkl"""'], {}), "(args.infer_checkpoints_dir, 'config.pkl')\n", (4196, 4238), False, 'from link_dirs import CURR_DIR, BASE_DIR, pjoin\n'), ((4846, 4879), 'os.path.exists', 'os.path.exists', (['c.infer_save_path'], {}), '(c.infer_save_path)\n', (4860, 4879), False, 'import os\n'), ((4889, 4916), 'os.mkdir', 'os.mkdir', (['c.infer_save_path'], {}), '(c.infer_save_path)\n', (4897, 4916), False, 'import os\n'), ((5053, 5107), 'link_dirs.pjoin', 'pjoin', (['c.infer_checkpoints_dir', '(ckpt_prefix + ckpt_num)'], {}), '(c.infer_checkpoints_dir, ckpt_prefix + ckpt_num)\n', (5058, 5107), False, 'from link_dirs import CURR_DIR, BASE_DIR, pjoin\n'), ((5116, 5214), 'src.infer_fn_v2.evaluate_model', 'infer.evaluate_model', ([], {'config': 'c', 'curr_ckpt_path': 'curr_ckpt_path', 'scores_combined': 'scores_combined'}), '(config=c, curr_ckpt_path=curr_ckpt_path,\n scores_combined=scores_combined)\n', (5136, 5214), True, 'from src import infer_fn_v2 as infer\n'), ((851, 914), 'link_dirs.pjoin', 'pjoin', (['"""mscoco"""', '"""radix_b256_add_LN_softmax_h8_tie_lstm_run_01"""'], {}), "('mscoco', 'radix_b256_add_LN_softmax_h8_tie_lstm_run_01')\n", (856, 914), False, 'from link_dirs import CURR_DIR, BASE_DIR, pjoin\n'), ((3485, 3523), 'os.listdir', 'os.listdir', (['args.infer_checkpoints_dir'], {}), '(args.infer_checkpoints_dir)\n', (3495, 3523), False, 'import os\n'), ((4513, 4524), 'time.localtime', 'localtime', ([], {}), '()\n', (4522, 4524), False, 'from time import localtime, strftime\n'), ((5476, 5501), 'platform.python_version', 'platform.python_version', ([], {}), '()\n', (5499, 5501), False, 'import platform\n')]
import torch import torch.nn.functional as F import torch.nn as nn from torch.nn import ( Sequential as Seq, Dropout, Linear as Lin, LeakyReLU, ReLU, BatchNorm1d as BN, ) import torch_geometric.transforms as T from torch_geometric.data import DataLoader from torch_geometric.nn import ( DynamicEdgeConv, PointConv, XConv, fps, radius, global_max_pool, knn_interpolate, ) from pykeops.torch import LazyTensor from benchmark_layers import MyDynamicEdgeConv, MyXConv from geometry_processing import dMaSIFConv, mesh_normals_areas, tangent_vectors from helper import diagonal_ranges DEConv = {"torch": DynamicEdgeConv, "keops": MyDynamicEdgeConv} # Dynamic Graph CNNs =========================================================== # Adapted from the PyTorch_geometric gallery to get a close fit to # the original paper. def MLP(channels, batch_norm=True): """Multi-layer perceptron, with ReLU non-linearities and batch normalization.""" return Seq( *[ Seq( Lin(channels[i - 1], channels[i]), BN(channels[i]) if batch_norm else nn.Identity(), LeakyReLU(negative_slope=0.2), ) for i in range(1, len(channels)) ] ) class DGCNN_seg(torch.nn.Module): def __init__( self, in_channels, out_channels, n_layers, k=40, aggr="max", backend="keops" ): super(DGCNN_seg, self).__init__() self.name = "DGCNN_seg_" + backend self.I, self.O = ( in_channels + 3, out_channels, ) # Add coordinates to input channels self.n_layers = n_layers self.transform_1 = DEConv[backend](MLP([2 * 3, 64, 128]), k, aggr) self.transform_2 = MLP([128, 1024]) self.transform_3 = MLP([1024, 512, 256], batch_norm=False) self.transform_4 = Lin(256, 3 * 3) self.conv_layers = nn.ModuleList( [DEConv[backend](MLP([2 * self.I, self.O, self.O]), k, aggr)] + [ DEConv[backend](MLP([2 * self.O, self.O, self.O]), k, aggr) for i in range(n_layers - 1) ] ) self.linear_layers = nn.ModuleList( [ nn.Sequential( nn.Linear(self.O, self.O), nn.ReLU(), nn.Linear(self.O, self.O) ) for i in range(n_layers) ] ) self.linear_transform = nn.ModuleList( [nn.Linear(self.I, self.O)] + [nn.Linear(self.O, self.O) for i in range(n_layers - 1)] ) def forward(self, positions, features, batch_indices): # Lab: (B,), Pos: (N, 3), Batch: (N,) pos, feat, batch = positions, features, batch_indices # TransformNet: x = pos # Don't use the normals! x = self.transform_1(x, batch) # (N, 3) -> (N, 128) x = self.transform_2(x) # (N, 128) -> (N, 1024) x = global_max_pool(x, batch) # (B, 1024) x = self.transform_3(x) # (B, 256) x = self.transform_4(x) # (B, 3*3) x = x[batch] # (N, 3*3) x = x.view(-1, 3, 3) # (N, 3, 3) # Apply the transform: x0 = torch.einsum("ni,nij->nj", pos, x) # (N, 3) # Add features to coordinates x = torch.cat([x0, feat], dim=-1).contiguous() for i in range(self.n_layers): x_i = self.conv_layers[i](x, batch) x_i = self.linear_layers[i](x_i) x = self.linear_transform[i](x) x = x + x_i return x # Reference PointNet models, from the PyTorch_geometric gallery ========================= class SAModule(torch.nn.Module): """Set abstraction module.""" def __init__(self, ratio, r, nn, max_num_neighbors=64): super(SAModule, self).__init__() self.ratio = ratio self.r = r self.conv = PointConv(nn) self.max_num_neighbors = max_num_neighbors def forward(self, x, pos, batch): # Subsample with Farthest Point Sampling: # idx = fps(pos, batch, ratio=self.ratio) # Extract self.ratio indices TURN OFF FOR NOW idx = torch.arange(0, len(pos), device=pos.device) # For each "cluster", get the list of (up to 64) neighbors in a ball of radius r: row, col = radius( pos, pos[idx], self.r, batch, batch[idx], max_num_neighbors=self.max_num_neighbors, ) # Applies the PointNet++ Conv: edge_index = torch.stack([col, row], dim=0) x = self.conv(x, (pos, pos[idx]), edge_index) # Return the features and sub-sampled point clouds: pos, batch = pos[idx], batch[idx] return x, pos, batch class GlobalSAModule(torch.nn.Module): def __init__(self, nn): super(GlobalSAModule, self).__init__() self.nn = nn def forward(self, x, pos, batch): x = self.nn(torch.cat([x, pos], dim=1)) x = global_max_pool(x, batch) pos = pos.new_zeros((x.size(0), 3)) batch = torch.arange(x.size(0), device=batch.device) return x, pos, batch class FPModule(torch.nn.Module): def __init__(self, k, nn): super(FPModule, self).__init__() self.k = k self.nn = nn def forward(self, x, pos, batch, x_skip, pos_skip, batch_skip): x = knn_interpolate(x, pos, pos_skip, batch, batch_skip, k=self.k) if x_skip is not None: x = torch.cat([x, x_skip], dim=1) x = self.nn(x) return x, pos_skip, batch_skip class PointNet2_seg(torch.nn.Module): def __init__(self, args, in_channels, out_channels): super(PointNet2_seg, self).__init__() self.name = "PointNet2" self.I, self.O = in_channels, out_channels self.radius = args.radius self.k = 10000 # We don't restrict the number of points in a patch self.n_layers = args.n_layers # self.sa1_module = SAModule(1.0, self.radius, MLP([self.I+3, self.O, self.O]),self.k) self.layers = nn.ModuleList( [SAModule(1.0, self.radius, MLP([self.I + 3, self.O, self.O]), self.k)] + [ SAModule(1.0, self.radius, MLP([self.O + 3, self.O, self.O]), self.k) for i in range(self.n_layers - 1) ] ) self.linear_layers = nn.ModuleList( [ nn.Sequential( nn.Linear(self.O, self.O), nn.ReLU(), nn.Linear(self.O, self.O) ) for i in range(self.n_layers) ] ) self.linear_transform = nn.ModuleList( [nn.Linear(self.I, self.O)] + [nn.Linear(self.O, self.O) for i in range(self.n_layers - 1)] ) def forward(self, positions, features, batch_indices): x = (features, positions, batch_indices) for i, layer in enumerate(self.layers): x_i, pos, b_ind = layer(*x) x_i = self.linear_layers[i](x_i) x = self.linear_transform[i](x[0]) x = x + x_i x = (x, pos, b_ind) return x[0] ## TangentConv benchmark segmentation class dMaSIFConv_seg(torch.nn.Module): def __init__(self, args, in_channels, out_channels, n_layers, radius=9.0): super(dMaSIFConv_seg, self).__init__() self.name = "dMaSIFConv_seg_keops" self.radius = radius self.I, self.O = in_channels, out_channels self.layers = nn.ModuleList( [dMaSIFConv(self.I, self.O, radius, self.O)] + [dMaSIFConv(self.O, self.O, radius, self.O) for i in range(n_layers - 1)] ) self.linear_layers = nn.ModuleList( [ nn.Sequential( nn.Linear(self.O, self.O), nn.ReLU(), nn.Linear(self.O, self.O) ) for i in range(n_layers) ] ) self.linear_transform = nn.ModuleList( [nn.Linear(self.I, self.O)] + [nn.Linear(self.O, self.O) for i in range(n_layers - 1)] ) def forward(self, features): # Lab: (B,), Pos: (N, 3), Batch: (N,) points, nuv, ranges = self.points, self.nuv, self.ranges x = features for i, layer in enumerate(self.layers): x_i = layer(points, nuv, x, ranges) x_i = self.linear_layers[i](x_i) x = self.linear_transform[i](x) x = x + x_i return x def load_mesh(self, xyz, triangles=None, normals=None, weights=None, batch=None): """Loads the geometry of a triangle mesh. Input arguments: - xyz, a point cloud encoded as an (N, 3) Tensor. - triangles, a connectivity matrix encoded as an (N, 3) integer tensor. - weights, importance weights for the orientation estimation, encoded as an (N, 1) Tensor. - radius, the scale used to estimate the local normals. - a batch vector, following PyTorch_Geometric's conventions. The routine updates the model attributes: - points, i.e. the point cloud itself, - nuv, a local oriented basis in R^3 for every point, - ranges, custom KeOps syntax to implement batch processing. """ # 1. Save the vertices for later use in the convolutions --------------- self.points = xyz self.batch = batch self.ranges = diagonal_ranges( batch ) # KeOps support for heterogeneous batch processing self.triangles = triangles self.normals = normals self.weights = weights # 2. Estimate the normals and tangent frame ---------------------------- # Normalize the scale: points = xyz / self.radius # Normals and local areas: if normals is None: normals, areas = mesh_normals_areas(points, triangles, 0.5, batch) tangent_bases = tangent_vectors(normals) # Tangent basis (N, 2, 3) # 3. Steer the tangent bases according to the gradient of "weights" ---- # 3.a) Encoding as KeOps LazyTensors: # Orientation scores: weights_j = LazyTensor(weights.view(1, -1, 1)) # (1, N, 1) # Vertices: x_i = LazyTensor(points[:, None, :]) # (N, 1, 3) x_j = LazyTensor(points[None, :, :]) # (1, N, 3) # Normals: n_i = LazyTensor(normals[:, None, :]) # (N, 1, 3) n_j = LazyTensor(normals[None, :, :]) # (1, N, 3) # Tangent basis: uv_i = LazyTensor(tangent_bases.view(-1, 1, 6)) # (N, 1, 6) # 3.b) Pseudo-geodesic window: # Pseudo-geodesic squared distance: rho2_ij = ((x_j - x_i) ** 2).sum(-1) * ((2 - (n_i | n_j)) ** 2) # (N, N, 1) # Gaussian window: window_ij = (-rho2_ij).exp() # (N, N, 1) # 3.c) Coordinates in the (u, v) basis - not oriented yet: X_ij = uv_i.matvecmult(x_j - x_i) # (N, N, 2) # 3.d) Local average in the tangent plane: orientation_weight_ij = window_ij * weights_j # (N, N, 1) orientation_vector_ij = orientation_weight_ij * X_ij # (N, N, 2) # Support for heterogeneous batch processing: orientation_vector_ij.ranges = self.ranges # Block-diagonal sparsity mask orientation_vector_i = orientation_vector_ij.sum(dim=1) # (N, 2) orientation_vector_i = ( orientation_vector_i + 1e-5 ) # Just in case someone's alone... # 3.e) Normalize stuff: orientation_vector_i = F.normalize(orientation_vector_i, p=2, dim=-1) #  (N, 2) ex_i, ey_i = ( orientation_vector_i[:, 0][:, None], orientation_vector_i[:, 1][:, None], ) # (N,1) # 3.f) Re-orient the (u,v) basis: uv_i = tangent_bases # (N, 2, 3) u_i, v_i = uv_i[:, 0, :], uv_i[:, 1, :] # (N, 3) tangent_bases = torch.cat( (ex_i * u_i + ey_i * v_i, -ey_i * u_i + ex_i * v_i), dim=1 ).contiguous() # (N, 6) # 4. Store the local 3D frame as an attribute -------------------------- self.nuv = torch.cat( (normals.view(-1, 1, 3), tangent_bases.view(-1, 2, 3)), dim=1 )
[ "torch.nn.ReLU", "torch_geometric.nn.global_max_pool", "torch_geometric.nn.knn_interpolate", "torch.nn.LeakyReLU", "geometry_processing.tangent_vectors", "geometry_processing.dMaSIFConv", "torch_geometric.nn.PointConv", "torch.stack", "helper.diagonal_ranges", "torch.nn.functional.normalize", "torch.nn.BatchNorm1d", "torch.einsum", "geometry_processing.mesh_normals_areas", "torch.nn.Linear", "torch_geometric.nn.radius", "torch.nn.Identity", "pykeops.torch.LazyTensor", "torch.cat" ]
[((1882, 1897), 'torch.nn.Linear', 'Lin', (['(256)', '(3 * 3)'], {}), '(256, 3 * 3)\n', (1885, 1897), True, 'from torch.nn import Sequential as Seq, Dropout, Linear as Lin, LeakyReLU, ReLU, BatchNorm1d as BN\n'), ((2968, 2993), 'torch_geometric.nn.global_max_pool', 'global_max_pool', (['x', 'batch'], {}), '(x, batch)\n', (2983, 2993), False, 'from torch_geometric.nn import DynamicEdgeConv, PointConv, XConv, fps, radius, global_max_pool, knn_interpolate\n'), ((3216, 3250), 'torch.einsum', 'torch.einsum', (['"""ni,nij->nj"""', 'pos', 'x'], {}), "('ni,nij->nj', pos, x)\n", (3228, 3250), False, 'import torch\n'), ((3903, 3916), 'torch_geometric.nn.PointConv', 'PointConv', (['nn'], {}), '(nn)\n', (3912, 3916), False, 'from torch_geometric.nn import DynamicEdgeConv, PointConv, XConv, fps, radius, global_max_pool, knn_interpolate\n'), ((4323, 4418), 'torch_geometric.nn.radius', 'radius', (['pos', 'pos[idx]', 'self.r', 'batch', 'batch[idx]'], {'max_num_neighbors': 'self.max_num_neighbors'}), '(pos, pos[idx], self.r, batch, batch[idx], max_num_neighbors=self.\n max_num_neighbors)\n', (4329, 4418), False, 'from torch_geometric.nn import DynamicEdgeConv, PointConv, XConv, fps, radius, global_max_pool, knn_interpolate\n'), ((4558, 4588), 'torch.stack', 'torch.stack', (['[col, row]'], {'dim': '(0)'}), '([col, row], dim=0)\n', (4569, 4588), False, 'import torch\n'), ((5011, 5036), 'torch_geometric.nn.global_max_pool', 'global_max_pool', (['x', 'batch'], {}), '(x, batch)\n', (5026, 5036), False, 'from torch_geometric.nn import DynamicEdgeConv, PointConv, XConv, fps, radius, global_max_pool, knn_interpolate\n'), ((5399, 5461), 'torch_geometric.nn.knn_interpolate', 'knn_interpolate', (['x', 'pos', 'pos_skip', 'batch', 'batch_skip'], {'k': 'self.k'}), '(x, pos, pos_skip, batch, batch_skip, k=self.k)\n', (5414, 5461), False, 'from torch_geometric.nn import DynamicEdgeConv, PointConv, XConv, fps, radius, global_max_pool, knn_interpolate\n'), ((9445, 9467), 'helper.diagonal_ranges', 'diagonal_ranges', (['batch'], {}), '(batch)\n', (9460, 9467), False, 'from helper import diagonal_ranges\n'), ((9954, 9978), 'geometry_processing.tangent_vectors', 'tangent_vectors', (['normals'], {}), '(normals)\n', (9969, 9978), False, 'from geometry_processing import dMaSIFConv, mesh_normals_areas, tangent_vectors\n'), ((10267, 10297), 'pykeops.torch.LazyTensor', 'LazyTensor', (['points[:, None, :]'], {}), '(points[:, None, :])\n', (10277, 10297), False, 'from pykeops.torch import LazyTensor\n'), ((10325, 10355), 'pykeops.torch.LazyTensor', 'LazyTensor', (['points[None, :, :]'], {}), '(points[None, :, :])\n', (10335, 10355), False, 'from pykeops.torch import LazyTensor\n'), ((10402, 10433), 'pykeops.torch.LazyTensor', 'LazyTensor', (['normals[:, None, :]'], {}), '(normals[:, None, :])\n', (10412, 10433), False, 'from pykeops.torch import LazyTensor\n'), ((10461, 10492), 'pykeops.torch.LazyTensor', 'LazyTensor', (['normals[None, :, :]'], {}), '(normals[None, :, :])\n', (10471, 10492), False, 'from pykeops.torch import LazyTensor\n'), ((11557, 11603), 'torch.nn.functional.normalize', 'F.normalize', (['orientation_vector_i'], {'p': '(2)', 'dim': '(-1)'}), '(orientation_vector_i, p=2, dim=-1)\n', (11568, 11603), True, 'import torch.nn.functional as F\n'), ((4971, 4997), 'torch.cat', 'torch.cat', (['[x, pos]'], {'dim': '(1)'}), '([x, pos], dim=1)\n', (4980, 4997), False, 'import torch\n'), ((5509, 5538), 'torch.cat', 'torch.cat', (['[x, x_skip]'], {'dim': '(1)'}), '([x, x_skip], dim=1)\n', (5518, 5538), False, 'import torch\n'), ((9880, 9929), 'geometry_processing.mesh_normals_areas', 'mesh_normals_areas', (['points', 'triangles', '(0.5)', 'batch'], {}), '(points, triangles, 0.5, batch)\n', (9898, 9929), False, 'from geometry_processing import dMaSIFConv, mesh_normals_areas, tangent_vectors\n'), ((3312, 3341), 'torch.cat', 'torch.cat', (['[x0, feat]'], {'dim': '(-1)'}), '([x0, feat], dim=-1)\n', (3321, 3341), False, 'import torch\n'), ((11922, 11991), 'torch.cat', 'torch.cat', (['(ex_i * u_i + ey_i * v_i, -ey_i * u_i + ex_i * v_i)'], {'dim': '(1)'}), '((ex_i * u_i + ey_i * v_i, -ey_i * u_i + ex_i * v_i), dim=1)\n', (11931, 11991), False, 'import torch\n'), ((1051, 1084), 'torch.nn.Linear', 'Lin', (['channels[i - 1]', 'channels[i]'], {}), '(channels[i - 1], channels[i])\n', (1054, 1084), True, 'from torch.nn import Sequential as Seq, Dropout, Linear as Lin, LeakyReLU, ReLU, BatchNorm1d as BN\n'), ((1168, 1197), 'torch.nn.LeakyReLU', 'LeakyReLU', ([], {'negative_slope': '(0.2)'}), '(negative_slope=0.2)\n', (1177, 1197), False, 'from torch.nn import Sequential as Seq, Dropout, Linear as Lin, LeakyReLU, ReLU, BatchNorm1d as BN\n'), ((2286, 2311), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (2295, 2311), True, 'import torch.nn as nn\n'), ((2313, 2322), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (2320, 2322), True, 'import torch.nn as nn\n'), ((2324, 2349), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (2333, 2349), True, 'import torch.nn as nn\n'), ((2494, 2519), 'torch.nn.Linear', 'nn.Linear', (['self.I', 'self.O'], {}), '(self.I, self.O)\n', (2503, 2519), True, 'import torch.nn as nn\n'), ((2536, 2561), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (2545, 2561), True, 'import torch.nn as nn\n'), ((6479, 6504), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (6488, 6504), True, 'import torch.nn as nn\n'), ((6506, 6515), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (6513, 6515), True, 'import torch.nn as nn\n'), ((6517, 6542), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (6526, 6542), True, 'import torch.nn as nn\n'), ((6692, 6717), 'torch.nn.Linear', 'nn.Linear', (['self.I', 'self.O'], {}), '(self.I, self.O)\n', (6701, 6717), True, 'import torch.nn as nn\n'), ((6734, 6759), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (6743, 6759), True, 'import torch.nn as nn\n'), ((7553, 7595), 'geometry_processing.dMaSIFConv', 'dMaSIFConv', (['self.I', 'self.O', 'radius', 'self.O'], {}), '(self.I, self.O, radius, self.O)\n', (7563, 7595), False, 'from geometry_processing import dMaSIFConv, mesh_normals_areas, tangent_vectors\n'), ((7612, 7654), 'geometry_processing.dMaSIFConv', 'dMaSIFConv', (['self.O', 'self.O', 'radius', 'self.O'], {}), '(self.O, self.O, radius, self.O)\n', (7622, 7654), False, 'from geometry_processing import dMaSIFConv, mesh_normals_areas, tangent_vectors\n'), ((7805, 7830), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (7814, 7830), True, 'import torch.nn as nn\n'), ((7832, 7841), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (7839, 7841), True, 'import torch.nn as nn\n'), ((7843, 7868), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (7852, 7868), True, 'import torch.nn as nn\n'), ((8013, 8038), 'torch.nn.Linear', 'nn.Linear', (['self.I', 'self.O'], {}), '(self.I, self.O)\n', (8022, 8038), True, 'import torch.nn as nn\n'), ((8055, 8080), 'torch.nn.Linear', 'nn.Linear', (['self.O', 'self.O'], {}), '(self.O, self.O)\n', (8064, 8080), True, 'import torch.nn as nn\n'), ((1102, 1117), 'torch.nn.BatchNorm1d', 'BN', (['channels[i]'], {}), '(channels[i])\n', (1104, 1117), True, 'from torch.nn import Sequential as Seq, Dropout, Linear as Lin, LeakyReLU, ReLU, BatchNorm1d as BN\n'), ((1137, 1150), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (1148, 1150), True, 'import torch.nn as nn\n')]
import collections as cl import oyaml as yaml def read_init_file(init_file_name): """Reads in the model specification from yaml file.""" # Import yaml initialization file as dictionary init_dict with open(init_file_name) as y: init_dict = yaml.load(y, Loader=yaml.FullLoader) init_dict = expand_init_dict(init_dict) model_params = create_namedtuple(init_dict) return model_params def expand_init_dict(init_dict): """Enhances read in initialization dictionary by adding model parameters derived from the specified initialisation file""" # Calculate range of years of education in the (simulated) sample educ_min = init_dict["INITIAL_CONDITIONS"]["educ_min"] educ_max = init_dict["INITIAL_CONDITIONS"]["educ_max"] educ_range = educ_max - educ_min + 1 # Calculate covariances of the error terms given standard deviations shocks_cov = init_dict["PARAMETERS"]["optim_paras"][14:17] shocks_cov = [shocks_cov[0] ** 2, shocks_cov[1] ** 2, shocks_cov[2] ** 2] init_dict["DERIVED_ATTR"] = {"educ_range": educ_range, "shocks_cov": shocks_cov} # Return function output return init_dict def create_namedtuple(init_dict): """Transfers model specification from a dictionary to a named tuple class object.""" model_params = cl.namedtuple("model_parameters", "") model_params.num_periods = init_dict["GENERAL"]["num_periods"] model_params.num_choices = init_dict["GENERAL"]["num_choices"] model_params.delta = init_dict["CONSTANTS"]["delta"] model_params.mu = init_dict["CONSTANTS"]["mu"] model_params.benefits = init_dict["CONSTANTS"]["benefits"] model_params.educ_max = init_dict["INITIAL_CONDITIONS"]["educ_max"] model_params.educ_min = init_dict["INITIAL_CONDITIONS"]["educ_min"] model_params.seed_sim = init_dict["SIMULATION"]["seed_sim"] model_params.num_agents_sim = init_dict["SIMULATION"]["num_agents_sim"] model_params.seed_emax = init_dict["SOLUTION"]["seed_emax"] model_params.num_draws_emax = init_dict["SOLUTION"]["num_draws_emax"] model_params.optim_paras = init_dict["PARAMETERS"]["optim_paras"] model_params.educ_range = init_dict["DERIVED_ATTR"]["educ_range"] model_params.shocks_cov = init_dict["DERIVED_ATTR"]["shocks_cov"] return model_params
[ "oyaml.load", "collections.namedtuple" ]
[((1320, 1357), 'collections.namedtuple', 'cl.namedtuple', (['"""model_parameters"""', '""""""'], {}), "('model_parameters', '')\n", (1333, 1357), True, 'import collections as cl\n'), ((263, 299), 'oyaml.load', 'yaml.load', (['y'], {'Loader': 'yaml.FullLoader'}), '(y, Loader=yaml.FullLoader)\n', (272, 299), True, 'import oyaml as yaml\n')]
''' This example shows how to load the dataset using python and how to evaluate a method For each video in the test set it - randomly scores frames - computes the average precision and nMSD ''' __author__ = 'michaelgygli' import pandas as pd import numpy as np import sys # Import v2g_evaluation # Needs to be done from the root of the repository # or the package is installed via python setup.py install import v2g_evaluation # Read csv file using pandas #For more info on pandas check http://pandas.pydata.org/pandas-docs/stable/10min.html dataset=pd.read_csv('metadata.txt',sep=';\t',engine='python') # Read test IDs with open('testset.txt','r') as f: test_ids=[l.rstrip('\n') for l in f] def evaluate_random(): ''' This function shows how a method can be evaluated ''' all_ap=np.zeros(len(test_ids)) all_msd=np.zeros(len(test_ids)) for idx,youtube_id in enumerate(test_ids): y_gt=v2g_evaluation.get_gt_score(youtube_id, dataset) y_predicted=np.random.rand(len(y_gt[0])) all_ap[idx] = v2g_evaluation.get_ap(np.array(y_gt).max(axis=0), y_predicted) all_msd[idx] = v2g_evaluation.meaningful_summary_duration(y_gt, y_predicted) print('AP=%.2f%%; MSD=%.2f%%' % (100*np.mean(all_ap),100*np.mean(all_msd))) if __name__=='__main__': sys.stdout.write('Evaluate random performance\n') sys.stdout.flush() evaluate_random()
[ "numpy.mean", "pandas.read_csv", "v2g_evaluation.get_gt_score", "numpy.array", "sys.stdout.flush", "v2g_evaluation.meaningful_summary_duration", "sys.stdout.write" ]
[((560, 615), 'pandas.read_csv', 'pd.read_csv', (['"""metadata.txt"""'], {'sep': '""";\t"""', 'engine': '"""python"""'}), "('metadata.txt', sep=';\\t', engine='python')\n", (571, 615), True, 'import pandas as pd\n'), ((1314, 1363), 'sys.stdout.write', 'sys.stdout.write', (['"""Evaluate random performance\n"""'], {}), "('Evaluate random performance\\n')\n", (1330, 1363), False, 'import sys\n'), ((1368, 1386), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1384, 1386), False, 'import sys\n'), ((934, 982), 'v2g_evaluation.get_gt_score', 'v2g_evaluation.get_gt_score', (['youtube_id', 'dataset'], {}), '(youtube_id, dataset)\n', (961, 982), False, 'import v2g_evaluation\n'), ((1141, 1202), 'v2g_evaluation.meaningful_summary_duration', 'v2g_evaluation.meaningful_summary_duration', (['y_gt', 'y_predicted'], {}), '(y_gt, y_predicted)\n', (1183, 1202), False, 'import v2g_evaluation\n'), ((1077, 1091), 'numpy.array', 'np.array', (['y_gt'], {}), '(y_gt)\n', (1085, 1091), True, 'import numpy as np\n'), ((1244, 1259), 'numpy.mean', 'np.mean', (['all_ap'], {}), '(all_ap)\n', (1251, 1259), True, 'import numpy as np\n'), ((1264, 1280), 'numpy.mean', 'np.mean', (['all_msd'], {}), '(all_msd)\n', (1271, 1280), True, 'import numpy as np\n')]
import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from .decoder import DecoderBase def he_init(m): s = np.sqrt(2./ m.in_features) m.weight.data.normal_(0, s) class GatedMaskedConv2d(nn.Module): def __init__(self, in_dim, out_dim=None, kernel_size = 3, mask = 'B'): super(GatedMaskedConv2d, self).__init__() if out_dim is None: out_dim = in_dim self.dim = out_dim self.size = kernel_size self.mask = mask pad = self.size // 2 #vertical stack self.v_conv = nn.Conv2d(in_dim, 2*self.dim, kernel_size=(pad+1, self.size)) self.v_pad1 = nn.ConstantPad2d((pad, pad, pad, 0), 0) self.v_pad2 = nn.ConstantPad2d((0, 0, 1, 0), 0) self.vh_conv = nn.Conv2d(2*self.dim, 2*self.dim, kernel_size = 1) #horizontal stack self.h_conv = nn.Conv2d(in_dim, 2*self.dim, kernel_size=(1, pad+1)) self.h_pad1 = nn.ConstantPad2d((self.size // 2, 0, 0, 0), 0) self.h_pad2 = nn.ConstantPad2d((1, 0, 0, 0), 0) self.h_conv_res = nn.Conv2d(self.dim, self.dim, 1) def forward(self, v_map, h_map): v_out = self.v_pad2(self.v_conv(self.v_pad1(v_map)))[:, :, :-1, :] v_map_out = F.tanh(v_out[:, :self.dim])*F.sigmoid(v_out[:, self.dim:]) vh = self.vh_conv(v_out) h_out = self.h_conv(self.h_pad1(h_map)) if self.mask == 'A': h_out = self.h_pad2(h_out)[:, :, :, :-1] h_out = h_out + vh h_out = F.tanh(h_out[:, :self.dim])*F.sigmoid(h_out[:, self.dim:]) h_map_out = self.h_conv_res(h_out) if self.mask == 'B': h_map_out = h_map_out + h_map return v_map_out, h_map_out class StackedGatedMaskedConv2d(nn.Module): def __init__(self, img_size = [1, 28, 28], layers = [64,64,64], kernel_size = [7,7,7], latent_dim=64, latent_feature_map = 1): super(StackedGatedMaskedConv2d, self).__init__() input_dim = img_size[0] self.conv_layers = [] if latent_feature_map > 0: self.latent_feature_map = latent_feature_map self.z_linear = nn.Linear(latent_dim, latent_feature_map*28*28) for i in range(len(kernel_size)): if i == 0: self.conv_layers.append(GatedMaskedConv2d(input_dim+latent_feature_map, layers[i], kernel_size[i], 'A')) else: self.conv_layers.append(GatedMaskedConv2d(layers[i-1], layers[i], kernel_size[i])) self.modules = nn.ModuleList(self.conv_layers) def forward(self, img, q_z=None): """ Args: img: (batch, nc, H, W) q_z: (batch, nsamples, nz) """ batch_size, nsamples, _ = q_z.size() if q_z is not None: z_img = self.z_linear(q_z) z_img = z_img.view(img.size(0), nsamples, self.latent_feature_map, img.size(2), img.size(3)) # (batch, nsamples, nc, H, W) img = img.unsqueeze(1).expand(batch_size, nsamples, *img.size()[1:]) for i in range(len(self.conv_layers)): if i == 0: if q_z is not None: # (batch, nsamples, nc + fm, H, W) --> (batch * nsamples, nc + fm, H, W) v_map = torch.cat([img, z_img], 2) v_map = v_map.view(-1, *v_map.size()[2:]) else: v_map = img h_map = v_map v_map, h_map = self.conv_layers[i](v_map, h_map) return h_map class PixelCNNDecoder(DecoderBase): """docstring for PixelCNNDecoder""" def __init__(self, args): super(PixelCNNDecoder, self).__init__() self.dec_cnn = StackedGatedMaskedConv2d(img_size=args.img_size, layers = args.dec_layers, latent_dim= args.nz, kernel_size = args.dec_kernel_size, latent_feature_map = args.latent_feature_map) self.dec_linear = nn.Conv2d(args.dec_layers[-1], args.img_size[0], kernel_size = 1) self.reset_parameters() def reset_parameters(self): for m in self.modules(): if isinstance(m, nn.Linear): he_init(m) def decode(self, img, q_z): dec_cnn_output = self.dec_cnn(img, q_z) pred = F.sigmoid(self.dec_linear(dec_cnn_output)) return pred def reconstruct_error(self, x, z): """Cross Entropy in the language case Args: x: (batch_size, nc, H, W) z: (batch_size, n_sample, nz) Returns: loss: (batch_size, n_sample). Loss across different sentence and z """ batch_size, nsamples, _ = z.size() # (batch * nsamples, nc, H, W) pred = self.decode(x, z) prob = torch.clamp(pred.view(pred.size(0), -1), min=1e-5, max=1.-1e-5) # (batch, nsamples, nc, H, W) --> (batch * nsamples, nc, H, W) x = x.unsqueeze(1).expand(batch_size, nsamples, *x.size()[1:]).contiguous() tgt_vec = x.view(-1, *x.size()[2:]) # (batch * nsamples, *) tgt_vec = tgt_vec.view(tgt_vec.size(0), -1) log_bernoulli = tgt_vec * torch.log(prob) + (1. - tgt_vec)*torch.log(1. - prob) log_bernoulli = log_bernoulli.view(batch_size, nsamples, -1) return -torch.sum(log_bernoulli, 2) def log_probability(self, x, z): """Cross Entropy in the language case Args: x: (batch_size, nc, H, W) z: (batch_size, n_sample, nz) Returns: log_p: (batch_size, n_sample). log_p(x|z) across different x and z """ return -self.reconstruct_error(x, z)
[ "torch.nn.functional.tanh", "numpy.sqrt", "torch.log", "torch.nn.ModuleList", "torch.nn.functional.sigmoid", "torch.nn.Conv2d", "torch.sum", "torch.nn.Linear", "torch.nn.ConstantPad2d", "torch.cat" ]
[((145, 173), 'numpy.sqrt', 'np.sqrt', (['(2.0 / m.in_features)'], {}), '(2.0 / m.in_features)\n', (152, 173), True, 'import numpy as np\n'), ((583, 648), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_dim', '(2 * self.dim)'], {'kernel_size': '(pad + 1, self.size)'}), '(in_dim, 2 * self.dim, kernel_size=(pad + 1, self.size))\n', (592, 648), True, 'import torch.nn as nn\n'), ((667, 706), 'torch.nn.ConstantPad2d', 'nn.ConstantPad2d', (['(pad, pad, pad, 0)', '(0)'], {}), '((pad, pad, pad, 0), 0)\n', (683, 706), True, 'import torch.nn as nn\n'), ((729, 762), 'torch.nn.ConstantPad2d', 'nn.ConstantPad2d', (['(0, 0, 1, 0)', '(0)'], {}), '((0, 0, 1, 0), 0)\n', (745, 762), True, 'import torch.nn as nn\n'), ((786, 838), 'torch.nn.Conv2d', 'nn.Conv2d', (['(2 * self.dim)', '(2 * self.dim)'], {'kernel_size': '(1)'}), '(2 * self.dim, 2 * self.dim, kernel_size=1)\n', (795, 838), True, 'import torch.nn as nn\n'), ((886, 943), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_dim', '(2 * self.dim)'], {'kernel_size': '(1, pad + 1)'}), '(in_dim, 2 * self.dim, kernel_size=(1, pad + 1))\n', (895, 943), True, 'import torch.nn as nn\n'), ((962, 1008), 'torch.nn.ConstantPad2d', 'nn.ConstantPad2d', (['(self.size // 2, 0, 0, 0)', '(0)'], {}), '((self.size // 2, 0, 0, 0), 0)\n', (978, 1008), True, 'import torch.nn as nn\n'), ((1031, 1064), 'torch.nn.ConstantPad2d', 'nn.ConstantPad2d', (['(1, 0, 0, 0)', '(0)'], {}), '((1, 0, 0, 0), 0)\n', (1047, 1064), True, 'import torch.nn as nn\n'), ((1091, 1123), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.dim', 'self.dim', '(1)'], {}), '(self.dim, self.dim, 1)\n', (1100, 1123), True, 'import torch.nn as nn\n'), ((2611, 2642), 'torch.nn.ModuleList', 'nn.ModuleList', (['self.conv_layers'], {}), '(self.conv_layers)\n', (2624, 2642), True, 'import torch.nn as nn\n'), ((4098, 4161), 'torch.nn.Conv2d', 'nn.Conv2d', (['args.dec_layers[-1]', 'args.img_size[0]'], {'kernel_size': '(1)'}), '(args.dec_layers[-1], args.img_size[0], kernel_size=1)\n', (4107, 4161), True, 'import torch.nn as nn\n'), ((1257, 1284), 'torch.nn.functional.tanh', 'F.tanh', (['v_out[:, :self.dim]'], {}), '(v_out[:, :self.dim])\n', (1263, 1284), True, 'import torch.nn.functional as F\n'), ((1285, 1315), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['v_out[:, self.dim:]'], {}), '(v_out[:, self.dim:])\n', (1294, 1315), True, 'import torch.nn.functional as F\n'), ((1523, 1550), 'torch.nn.functional.tanh', 'F.tanh', (['h_out[:, :self.dim]'], {}), '(h_out[:, :self.dim])\n', (1529, 1550), True, 'import torch.nn.functional as F\n'), ((1551, 1581), 'torch.nn.functional.sigmoid', 'F.sigmoid', (['h_out[:, self.dim:]'], {}), '(h_out[:, self.dim:])\n', (1560, 1581), True, 'import torch.nn.functional as F\n'), ((2180, 2231), 'torch.nn.Linear', 'nn.Linear', (['latent_dim', '(latent_feature_map * 28 * 28)'], {}), '(latent_dim, latent_feature_map * 28 * 28)\n', (2189, 2231), True, 'import torch.nn as nn\n'), ((5446, 5473), 'torch.sum', 'torch.sum', (['log_bernoulli', '(2)'], {}), '(log_bernoulli, 2)\n', (5455, 5473), False, 'import torch\n'), ((5305, 5320), 'torch.log', 'torch.log', (['prob'], {}), '(prob)\n', (5314, 5320), False, 'import torch\n'), ((5338, 5359), 'torch.log', 'torch.log', (['(1.0 - prob)'], {}), '(1.0 - prob)\n', (5347, 5359), False, 'import torch\n'), ((3364, 3390), 'torch.cat', 'torch.cat', (['[img, z_img]', '(2)'], {}), '([img, z_img], 2)\n', (3373, 3390), False, 'import torch\n')]
from abc import ABC, abstractmethod import networkx as nx import cargonet.utils.geo as geo class TransportGraphBuilder(ABC): def __init__(self, result): self.result = result @classmethod @abstractmethod def from_nodes_edges( cls, station_id_node_mapping, transport_edges, undirected=False ): pass def build(self): return self.result class NXTGBuilder(TransportGraphBuilder): @classmethod def from_nodes_edges( cls, station_id_node_mapping, transport_edges, undirected=False ): """ Builds networkX transport graph """ tg = nx.Graph() if undirected else nx.DiGraph() for s_id, mapping in station_id_node_mapping.items(): index = mapping["index"] if index is None: continue node_attrs = mapping.copy() node_attrs["stationId"] = s_id tg.add_node(index, **node_attrs) tg.add_edges_from(transport_edges) for u, v in tg.edges: # Add distance edge feature p1, p2 = tg.nodes[u].get("pos"), tg.nodes[v].get("pos") if None not in [p1, p2]: tg.edges[u, v]["distance"] = geo.dist_m_v2(p1, p2) / 1000.0 # TODO: Add more delay metrics tg.edges[u, v]["delay"] = tg.nodes[v].get("delayRelPercent") # or delayRel # Add planned duration edge feature p_d, p_a = ( tg.nodes[u].get("plannedDepartureTime"), tg.nodes[v].get("plannedArrivalTime"), ) if None not in [p_a, p_d]: tg.edges[u, v]["plannedDuration"] = p_a - p_d # Add real duration edge feature r_d, r_a = ( tg.nodes[u].get("departureTime"), tg.nodes[v].get("arrivalTime"), ) if None not in [r_a, r_d]: tg.edges[u, v]["duration"] = r_a - r_d return cls(tg)
[ "cargonet.utils.geo.dist_m_v2", "networkx.DiGraph", "networkx.Graph" ]
[((638, 648), 'networkx.Graph', 'nx.Graph', ([], {}), '()\n', (646, 648), True, 'import networkx as nx\n'), ((668, 680), 'networkx.DiGraph', 'nx.DiGraph', ([], {}), '()\n', (678, 680), True, 'import networkx as nx\n'), ((1227, 1248), 'cargonet.utils.geo.dist_m_v2', 'geo.dist_m_v2', (['p1', 'p2'], {}), '(p1, p2)\n', (1240, 1248), True, 'import cargonet.utils.geo as geo\n')]
import signal from howdy import signal_handler signal.signal( signal.SIGINT, signal_handler ) import logging, os, re, time from itertools import chain from multiprocessing import Pool from argparse import ArgumentParser # from howdy.core import core_deluge, core, core_torrents def get_items_jackett( name, maxnum = 1000, verify = True ): assert( maxnum >= 5 ) logging.info( 'started getting book torrents with jackett %s.' % name ) items, status = core_torrents.get_book_torrent_jackett( name, maxnum = maxnum, verify = verify ) if status != 'SUCCESS': logging.info( 'ERROR, JACKETT COULD NOT FIND %s.' % name ) return None return items def get_book_torrent_items( items, filename = None, to_torrent_server = False ): if len( items ) != 1: sortdict = { idx + 1 : item for ( idx, item ) in enumerate( items ) } bs = 'Choose candidate book item:\n%s\n' % '\n'.join( map(lambda idx: '%d: %s (%d SE, %d LE)' % ( idx, sortdict[ idx ][ 'title'], sortdict[ idx ][ 'seeders' ], sortdict[ idx ][ 'leechers' ] ), sorted( sortdict ) ) ) iidx = input( bs ) try: iidx = int( iidx.strip( ) ) if iidx not in sortdict: print('Error, need to choose one of the candidate books. Exiting...') return magnet_link = sortdict[ iidx ][ 'link' ] actbook = sortdict[ iidx ][ 'title' ] except Exception as e: print( 'Error, did not give a valid integer value. Exiting...' ) return else: actbook = max( items )[ 'title' ] magnet_link = max( items )[ 'link' ] print( 'Chosen book: %s' % actbook ) if to_torrent_server: # upload to deluge server client, status = core_deluge.get_deluge_client( ) if status != 'SUCCESS': print( status ) return core_deluge.deluge_add_magnet_file( client, magnet_link ) elif filename is None: print( 'magnet link: %s' % magnet_link ) else: with open( filename, 'w' ) as openfile: openfile.write( '%s\n' % magnet_link ) def main( ): parser = ArgumentParser( ) parser.add_argument('-n', '--name', dest='name', type=str, action='store', required = True, help = 'Name of the book to get.') parser.add_argument('--maxnum', dest='maxnum', type=int, action='store', default = 10, help = 'Maximum number of torrents to look through. Default is 10.') parser.add_argument('-f', '--filename', dest='filename', action='store', type=str, help = 'If defined, put magnet link into filename.') parser.add_argument('--add', dest='do_add', action='store_true', default = False, help = 'If chosen, push the magnet link into the deluge server.' ) parser.add_argument('--info', dest='do_info', action='store_true', default = False, help = 'If chosen, run in info mode.' ) parser.add_argument('--noverify', dest='do_verify', action='store_false', default = True, help = 'If chosen, do not verify SSL connections.' ) args = parser.parse_args( ) logger = logging.getLogger( ) if args.do_info: logger.setLevel( logging.INFO ) # time0 = time.time( ) if core.get_jackett_credentials( ) is None: print( 'Error, Jackett server does not work. Exiting...' ) retur items = get_items_jackett( args.name, maxnum = args.maxnum, verify = args.do_verify ) logging.info( 'search for %s took %0.3f seconds.' % ( args.name, time.time( ) - time0 ) ) if items is None: return # ## sort from most seeders + leecher to least items_sorted = sorted( items, key = lambda tup: ( -tup['seeders'] - tup['leechers'], tup['title'] ) )[:args.maxnum] get_book_torrent_items( items_sorted, filename = args.filename, to_torrent_server = args.do_add )
[ "logging.getLogger", "signal.signal", "argparse.ArgumentParser", "howdy.core.core_torrents.get_book_torrent_jackett", "howdy.core.core.get_jackett_credentials", "howdy.core.core_deluge.get_deluge_client", "howdy.core.core_deluge.deluge_add_magnet_file", "time.time", "logging.info" ]
[((47, 91), 'signal.signal', 'signal.signal', (['signal.SIGINT', 'signal_handler'], {}), '(signal.SIGINT, signal_handler)\n', (60, 91), False, 'import signal\n'), ((370, 439), 'logging.info', 'logging.info', (["('started getting book torrents with jackett %s.' % name)"], {}), "('started getting book torrents with jackett %s.' % name)\n", (382, 439), False, 'import logging, os, re, time\n'), ((462, 536), 'howdy.core.core_torrents.get_book_torrent_jackett', 'core_torrents.get_book_torrent_jackett', (['name'], {'maxnum': 'maxnum', 'verify': 'verify'}), '(name, maxnum=maxnum, verify=verify)\n', (500, 536), False, 'from howdy.core import core_deluge, core, core_torrents\n'), ((2231, 2247), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (2245, 2247), False, 'from argparse import ArgumentParser\n'), ((3287, 3306), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (3304, 3306), False, 'import logging, os, re, time\n'), ((3379, 3390), 'time.time', 'time.time', ([], {}), '()\n', (3388, 3390), False, 'import logging, os, re, time\n'), ((587, 643), 'logging.info', 'logging.info', (["('ERROR, JACKETT COULD NOT FIND %s.' % name)"], {}), "('ERROR, JACKETT COULD NOT FIND %s.' % name)\n", (599, 643), False, 'import logging, os, re, time\n'), ((1829, 1860), 'howdy.core.core_deluge.get_deluge_client', 'core_deluge.get_deluge_client', ([], {}), '()\n', (1858, 1860), False, 'from howdy.core import core_deluge, core, core_torrents\n'), ((1949, 2004), 'howdy.core.core_deluge.deluge_add_magnet_file', 'core_deluge.deluge_add_magnet_file', (['client', 'magnet_link'], {}), '(client, magnet_link)\n', (1983, 2004), False, 'from howdy.core import core_deluge, core, core_torrents\n'), ((3399, 3429), 'howdy.core.core.get_jackett_credentials', 'core.get_jackett_credentials', ([], {}), '()\n', (3427, 3429), False, 'from howdy.core import core_deluge, core, core_torrents\n'), ((3680, 3691), 'time.time', 'time.time', ([], {}), '()\n', (3689, 3691), False, 'import logging, os, re, time\n')]
from django.conf import settings from django.db import models from posts.models import Post class Comment(models.Model): author = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, ) post = models.ForeignKey(Post, on_delete=models.CASCADE) parent = models.ForeignKey( 'self', null=True, blank=True, on_delete=models.CASCADE, ) content = models.TextField() created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return f'Comment on {self.post}'
[ "django.db.models.DateTimeField", "django.db.models.TextField", "django.db.models.ForeignKey" ]
[((138, 207), 'django.db.models.ForeignKey', 'models.ForeignKey', (['settings.AUTH_USER_MODEL'], {'on_delete': 'models.CASCADE'}), '(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)\n', (155, 207), False, 'from django.db import models\n'), ((243, 292), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Post'], {'on_delete': 'models.CASCADE'}), '(Post, on_delete=models.CASCADE)\n', (260, 292), False, 'from django.db import models\n'), ((307, 381), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""self"""'], {'null': '(True)', 'blank': '(True)', 'on_delete': 'models.CASCADE'}), "('self', null=True, blank=True, on_delete=models.CASCADE)\n", (324, 381), False, 'from django.db import models\n'), ((436, 454), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (452, 454), False, 'from django.db import models\n'), ((470, 509), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (490, 509), False, 'from django.db import models\n'), ((524, 559), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (544, 559), False, 'from django.db import models\n')]
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from django import template import logging from django.utils.translation import ugettext_lazy as _ from horizon import tables from openstack_dashboard.api import sahara as saharaclient LOG = logging.getLogger(__name__) class CreateNodegroupTemplate(tables.LinkAction): name = "create" verbose_name = _("Create Template") url = ("horizon:project:data_processing.nodegroup_templates:" "create-nodegroup-template") classes = ("ajax-modal", "btn-create", "create-nodegrouptemplate-btn") class ConfigureNodegroupTemplate(tables.LinkAction): name = "configure" verbose_name = _("Configure Template") url = ("horizon:project:data_processing.nodegroup_templates:" "configure-nodegroup-template") classes = ("ajax-modal", "btn-create", "configure-nodegrouptemplate-btn") attrs = {"style": "display: none"} class CopyTemplate(tables.LinkAction): name = "copy" verbose_name = _("Copy Template") url = "horizon:project:data_processing.nodegroup_templates:copy" classes = ("ajax-modal", ) class DeleteTemplate(tables.BatchAction): name = "delete_nodegroup_template" verbose_name = _("Delete") classes = ("btn-terminate", "btn-danger") action_present = _("Delete") action_past = _("Deleted") data_type_singular = _("Template") data_type_plural = _("Templates") def action(self, request, template_id): saharaclient.nodegroup_template_delete(request, template_id) def render_processes(nodegroup_template): template_name = ( 'project/data_processing.nodegroup_templates/_processes_list.html') context = {"processes": nodegroup_template.node_processes} return template.loader.render_to_string(template_name, context) class NodegroupTemplatesTable(tables.DataTable): name = tables.Column("name", verbose_name=_("Name"), link=("horizon:project:data_processing.nodegroup_templates:details")) plugin_name = tables.Column("plugin_name", verbose_name=_("Plugin")) hadoop_version = tables.Column("hadoop_version", verbose_name=_("Hadoop Version")) node_processes = tables.Column(render_processes, verbose_name=_("Node Processes")) class Meta: name = "nodegroup_templates" verbose_name = _("Node Group Templates") table_actions = (CreateNodegroupTemplate, ConfigureNodegroupTemplate, DeleteTemplate) row_actions = (CopyTemplate, DeleteTemplate,)
[ "logging.getLogger", "openstack_dashboard.api.sahara.nodegroup_template_delete", "django.utils.translation.ugettext_lazy", "django.template.loader.render_to_string" ]
[((740, 767), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (757, 767), False, 'import logging\n'), ((859, 879), 'django.utils.translation.ugettext_lazy', '_', (['"""Create Template"""'], {}), "('Create Template')\n", (860, 879), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1158, 1181), 'django.utils.translation.ugettext_lazy', '_', (['"""Configure Template"""'], {}), "('Configure Template')\n", (1159, 1181), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1486, 1504), 'django.utils.translation.ugettext_lazy', '_', (['"""Copy Template"""'], {}), "('Copy Template')\n", (1487, 1504), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1707, 1718), 'django.utils.translation.ugettext_lazy', '_', (['"""Delete"""'], {}), "('Delete')\n", (1708, 1718), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1787, 1798), 'django.utils.translation.ugettext_lazy', '_', (['"""Delete"""'], {}), "('Delete')\n", (1788, 1798), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1817, 1829), 'django.utils.translation.ugettext_lazy', '_', (['"""Deleted"""'], {}), "('Deleted')\n", (1818, 1829), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1855, 1868), 'django.utils.translation.ugettext_lazy', '_', (['"""Template"""'], {}), "('Template')\n", (1856, 1868), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1892, 1906), 'django.utils.translation.ugettext_lazy', '_', (['"""Templates"""'], {}), "('Templates')\n", (1893, 1906), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2237, 2293), 'django.template.loader.render_to_string', 'template.loader.render_to_string', (['template_name', 'context'], {}), '(template_name, context)\n', (2269, 2293), False, 'from django import template\n'), ((1960, 2020), 'openstack_dashboard.api.sahara.nodegroup_template_delete', 'saharaclient.nodegroup_template_delete', (['request', 'template_id'], {}), '(request, template_id)\n', (1998, 2020), True, 'from openstack_dashboard.api import sahara as saharaclient\n'), ((2914, 2939), 'django.utils.translation.ugettext_lazy', '_', (['"""Node Group Templates"""'], {}), "('Node Group Templates')\n", (2915, 2939), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2399, 2408), 'django.utils.translation.ugettext_lazy', '_', (['"""Name"""'], {}), "('Name')\n", (2400, 2408), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2580, 2591), 'django.utils.translation.ugettext_lazy', '_', (['"""Plugin"""'], {}), "('Plugin')\n", (2581, 2591), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2694, 2713), 'django.utils.translation.ugettext_lazy', '_', (['"""Hadoop Version"""'], {}), "('Hadoop Version')\n", (2695, 2713), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2816, 2835), 'django.utils.translation.ugettext_lazy', '_', (['"""Node Processes"""'], {}), "('Node Processes')\n", (2817, 2835), True, 'from django.utils.translation import ugettext_lazy as _\n')]
#!/usr/bin/python # Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # unittest requires method names starting in 'test' # pylint:disable=invalid-name """Unit tests for dhcp.py implementation.""" __author__ = '<EMAIL> (<NAME>)' import google3 from tr.wvtest import unittest import tr.cwmpdate import tr.handle import dhcp class DhcpTest(unittest.TestCase): """Tests for dhcp.py.""" def testClient(self): client = dhcp.Client(ipaddr='1.2.3.4', chaddr='00:01:02:03:04:05', expiry=1389022961, clientid='clientid_1', hostname='hostname_1', userclassid='userclassid_1', vendorclassid='vendorclassid_1') self.assertEqual(client.Chaddr, '00:01:02:03:04:05') self.assertEqual(client.IPv4AddressNumberOfEntries, 1) client.AddIP(ipaddr='1.2.3.5', expiry=1389022962) self.assertEqual(client.IPv4AddressNumberOfEntries, 2) self.assertEqual(client.IPv4AddressList['1'].IPAddress, '1.2.3.4') d = tr.cwmpdate.format(client.IPv4AddressList['1'].LeaseTimeRemaining) self.assertEqual(d, '2014-01-06T15:42:41Z') self.assertEqual(client.IPv4AddressList['2'].IPAddress, '1.2.3.5') d = tr.cwmpdate.format(client.IPv4AddressList['2'].LeaseTimeRemaining) self.assertEqual(d, '2014-01-06T15:42:42Z') self.assertEqual(client.OptionNumberOfEntries, 4) self.assertEqual(client.OptionList['1'].Tag, dhcp.CL) self.assertEqual(client.OptionList['1'].Value, 'clientid_1') self.assertEqual(client.OptionList['2'].Tag, dhcp.HN) self.assertEqual(client.OptionList['2'].Value, 'hostname_1') self.assertEqual(client.OptionList['3'].Tag, dhcp.UC) self.assertEqual(client.OptionList['3'].Value, 'userclassid_1') self.assertEqual(client.OptionList['4'].Tag, dhcp.VC) self.assertEqual(client.OptionList['4'].Value, 'vendorclassid_1') tr.handle.ValidateExports(client) if __name__ == '__main__': unittest.main()
[ "dhcp.Client", "tr.wvtest.unittest.main" ]
[((2469, 2484), 'tr.wvtest.unittest.main', 'unittest.main', ([], {}), '()\n', (2482, 2484), False, 'from tr.wvtest import unittest\n'), ((969, 1162), 'dhcp.Client', 'dhcp.Client', ([], {'ipaddr': '"""1.2.3.4"""', 'chaddr': '"""00:01:02:03:04:05"""', 'expiry': '(1389022961)', 'clientid': '"""clientid_1"""', 'hostname': '"""hostname_1"""', 'userclassid': '"""userclassid_1"""', 'vendorclassid': '"""vendorclassid_1"""'}), "(ipaddr='1.2.3.4', chaddr='00:01:02:03:04:05', expiry=1389022961,\n clientid='clientid_1', hostname='hostname_1', userclassid=\n 'userclassid_1', vendorclassid='vendorclassid_1')\n", (980, 1162), False, 'import dhcp\n')]
#!/usr/bin/env python from ferromtm.models.coupled2D import * # from ferromtm.models.electrostatics.per2D import femmodel from ferromtm.models.electrostatics.nonper2D import femmodel import importlib importlib.reload(femmodel) from ferromtm.tools.utils import * from ferromtm.models.theo import * from pytheas.homogenization import * from theo import * if __name__ == "__main__": fem = femmodel.FemModel() fem.rm_tmp_dir() # fem.gmsh_verbose=4 # fem.getdp_verbose=4 fem.parmesh = 11 fem.parmesh_des = 11 fem.parmesh_incl = 11 fem.E_static = 1 epsi0 = epsilonr_ferroelectric(0) epsiE = epsilonr_ferroelectric(fem.E_static) fem.eps_host = 1 fem.eps_incl = 2.4 fem.b_pml = 0 fem.h_pml = 1 fem.space2pml_L = 1 fem.space2pml_R = 1 fem.space2pml_B = 1 fem.space2pml_T = 1 fem.inclusion_flag = True r = 0.5 * 1.1 dholes = 0.3 + r * 2 dx, dy = 2 * r + dholes, 2 * r + dholes nb_inclx, nb_incly = 2, 3 fem.hx_des = 3.8 fem.hy_des = 4.4 nb_incl = nb_inclx * nb_incly fem.nb_incl = nb_incl lboxx = fem.hx_des + fem.space2pml_L + fem.space2pml_R + 2 * fem.h_pml lboxy = fem.hy_des + fem.space2pml_T + fem.space2pml_B + 2 * fem.h_pml # Rx = (0.1 + np.random.random(nb_incl) * 0.3) * dx # Ry = (0.1 + np.random.random(nb_incl) * 0.3) * dy # rot_ = np.random.random(nb_incl) * 2 * pi x00 = -dholes / 2 y00 = -dholes X0 = np.linspace(-x00, x00, nb_inclx) Y0 = np.linspace(-y00, y00, nb_incly) X0, Y0 = np.meshgrid(X0, Y0) X0 = X0.ravel() Y0 = Y0.ravel() # Y0 = np.ones(nb_incl) * 0 # Y0 = (-0.5 + np.random.random(nb_incl) * 1) * dy Rx = np.ones(nb_incl) * r * 0.5 Ry = np.ones(nb_incl) * r rot_ = np.linspace(-pi / 2, pi / 2, nb_incl) # rot_ = np.ones(nb_incl) * 0 fem.initialize() if fem.inclusion_flag: i = 0 for Rinclx, Rincly, rot_incl, x0, y0 in zip(Rx, Ry, rot_, X0, Y0): # x0 += (1 - 2 * np.random.rand()) * Rinclx / 3 # y0 += (1 - 2 * np.random.rand()) * Rincly / 3 points = ellipse(Rinclx, Rincly, rot_incl, x0, y0) fem.inclusion_filename_ = "ellipse{0}.geo".format(i) fem.make_inclusion(points, startpoint=1000 * (i + 1)) # fem.make_inclusion(points, startpoint=1000 ) i += 1 fem.make_mesh() # fem.open_gmsh_gui() nvar = len(fem.des[0]) # epsixx = np.ones(nvar)*epsiE # epsiyy = np.ones(nvar)*epsi0 # epsizz = np.ones(nvar)*epsi0 # epsi = epsixx, epsiyy, epsizz def couple(E): i = 0 while True: epsixx = epsilonr_ferroelectric(E[0].real) epsiyy = epsilonr_ferroelectric(E[1].real) epsizz = epsilonr_ferroelectric(E[2].real) epsi = epsixx, epsiyy, epsizz # e = np.ones_like(epsixx) * fem.eps_incl # epsi = e, e, e make_pos_tensor_eps(fem, epsi, interp=False) fem.compute_solution() Emean, Pmean = fem.postpro_mean_fields() eps_hom_xx = Pmean[0] / Emean[0] print("eps_hom_xx = ", eps_hom_xx) E = fem.postpro_electrostatic_field() if i == 0: eps_hom_xx_no_coupling = np.copy(eps_hom_xx) if i > 0: cv = np.abs(1 - eps_hom_xx / eps_hom_xx_) print(" cv = ", cv) if cv < 1e-2: break eps_hom_xx_ = np.copy(eps_hom_xx) i += 1 return eps_hom_xx, eps_hom_xx_no_coupling eps_hom_xx = [] eps_hom_xx_no_coupling = [] Ebias = np.linspace(2, 2, 1) # Ebias = np.linspace(2, 2, 1) S = fem.hx_des * fem.hy_des f = nb_incl * pi * r ** 2 / (S) eps_host = epsilonr_ferroelectric(Ebias) # eps_host = eps_Theo_0 epsmg = maxwell_garnett(f, fem.eps_incl, eps_Theo_0, dim=2) print("Maxwell-Garnett = ", epsmg) print("eps_Theo_h_0 = ", eps_Theo_h_0) run = True save = False if run: for fem.E_static in Ebias: E = np.ones(nvar) * fem.E_static, np.ones(nvar) * 0, np.ones(nvar) * 0 print("-------------------") eps = couple(E) eps_hom_xx.append(eps[0]) eps_hom_xx_no_coupling.append(eps[1]) if save: np.savez( "test_theo.npz", Ebias=Ebias, eps_hom_xx=eps_hom_xx, eps_hom_xx_no_coupling=eps_hom_xx_no_coupling, ) else: arch = np.load("test_theo.npz") Ebias = arch["Ebias"] eps_hom_xx = arch["eps_hom_xx"] eps_hom_xx_no_coupling = arch["eps_hom_xx_no_coupling"] # fem.postpro_fields(filetype="pos") # fem.open_gmsh_gui() from aotomat.tools.plottools import * plt.close("all") col1 = "#6078cf" col2 = "#c13f3f" plt.figure() plt.plot(E_Theo, eps_Theo, "s", color=col1, alpha=0.3, label="bulk meas") plt.plot(E_Theo_h, eps_Theo_h, "o", color=col2, alpha=0.3, label="mtm meas") plt.plot( Ebias, epsilonr_ferroelectric(Ebias) / epsilonr_ferroelectric(Ebias)[0], label="bulk", color=col1, ) plt.plot(Ebias, eps_hom_xx / eps_hom_xx[0], label="coupling", color=col2) plt.plot( Ebias, eps_hom_xx_no_coupling / eps_hom_xx_no_coupling[0], "--", label="no coupling", color=col2, ) plt.xlabel("$E$ (kV/mm)") plt.ylabel("normalized permittivity") plt.legend() plt.figure() # plt.plot(E_Theo, eps_Theo, "s", color=col1, alpha=0.3, label="bulk meas") plt.plot( E_Theo_h, eps_Theo_h * eps_Theo_h_0, "o", color=col2, alpha=0.3, label="mtm meas", ) # plt.plot(Ebias, epsilonr_ferroelectric(Ebias)/epsilonr_ferroelectric(Ebias)[0],label="bulk", color=col1) plt.plot(Ebias, eps_hom_xx, label="coupling", color=col2) plt.plot(Ebias, eps_hom_xx_no_coupling, "--", label="no coupling", color=col2) plt.xlabel("$E$ (kV/mm)") plt.ylabel("relative permittivity") plt.legend()
[ "ferromtm.models.electrostatics.nonper2D.femmodel.FemModel", "importlib.reload" ]
[((204, 230), 'importlib.reload', 'importlib.reload', (['femmodel'], {}), '(femmodel)\n', (220, 230), False, 'import importlib\n'), ((399, 418), 'ferromtm.models.electrostatics.nonper2D.femmodel.FemModel', 'femmodel.FemModel', ([], {}), '()\n', (416, 418), False, 'from ferromtm.models.electrostatics.nonper2D import femmodel\n')]
# Coded by @HS <NAME> # follow me on instagram :) - https://instagram.com/hs_devansh_raghav.75 import threading from concurrent.futures import ThreadPoolExecutor from grepX.core.args import PATTERN, FILE, CONCURRENCY from grepX.core.colors import RED, RESET from grepX.core.greper import greper ,xss_patterns, sqli_patterns, ssrf_patterns, ssti_patterns, lfi_patterns, rce_patterns, idor_patterns, redirect_patterns def grep(): if PATTERN == 'xss': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in xss_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'sqli': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in sqli_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'lfi': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in lfi_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'rce': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in rce_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'idor': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in idor_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'ssrf': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in ssrf_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'redirect': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in redirect_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() elif PATTERN == 'ssti': try: with ThreadPoolExecutor(max_workers=CONCURRENCY) as executor: for each_pattern in ssti_patterns: executor.submit(greper, each_pattern) except KeyboardInterrupt: quit() else: print(RED + '[-] ' + RESET + "No such pattern :(")
[ "concurrent.futures.ThreadPoolExecutor" ]
[((486, 529), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (504, 529), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((767, 810), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (785, 810), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((1048, 1091), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (1066, 1091), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((1328, 1371), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (1346, 1371), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((1605, 1648), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (1623, 1648), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((1883, 1926), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (1901, 1926), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((2165, 2208), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (2183, 2208), False, 'from concurrent.futures import ThreadPoolExecutor\n'), ((2447, 2490), 'concurrent.futures.ThreadPoolExecutor', 'ThreadPoolExecutor', ([], {'max_workers': 'CONCURRENCY'}), '(max_workers=CONCURRENCY)\n', (2465, 2490), False, 'from concurrent.futures import ThreadPoolExecutor\n')]
import os from setuptools import setup version_file_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), 'jettison', '_version.py') with open(version_file_path, 'r') as version_file: exec(compile(version_file.read(), version_file_path, 'exec')) setup( name='jettison', version=__version__, # noqa -- flake8 should ignore this line description=('Encode binary data in a way compatible with the jettison ' 'JavaScript library'), url='https://github.com/noonat/jettison-python', packages=['jettison'], install_requires=[ 'six', ], extras_require={ 'docs': [ 'sphinx', ], 'tests': [ 'coverage', 'flake8', 'mock', 'pytest', ], } )
[ "os.path.dirname", "setuptools.setup" ]
[((295, 634), 'setuptools.setup', 'setup', ([], {'name': '"""jettison"""', 'version': '__version__', 'description': '"""Encode binary data in a way compatible with the jettison JavaScript library"""', 'url': '"""https://github.com/noonat/jettison-python"""', 'packages': "['jettison']", 'install_requires': "['six']", 'extras_require': "{'docs': ['sphinx'], 'tests': ['coverage', 'flake8', 'mock', 'pytest']}"}), "(name='jettison', version=__version__, description=\n 'Encode binary data in a way compatible with the jettison JavaScript library'\n , url='https://github.com/noonat/jettison-python', packages=['jettison'\n ], install_requires=['six'], extras_require={'docs': ['sphinx'],\n 'tests': ['coverage', 'flake8', 'mock', 'pytest']})\n", (300, 634), False, 'from setuptools import setup\n'), ((90, 115), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (105, 115), False, 'import os\n')]
import numpy as np import math import cv2 from skimage import transform as stf def transform(data, center, output_size, scale, rotation): scale_ratio = float(output_size)/scale rot = float(rotation)*np.pi/180.0 #translation = (output_size/2-center[0]*scale_ratio, output_size/2-center[1]*scale_ratio) t1 = stf.SimilarityTransform(scale=scale_ratio) cx = center[0]*scale_ratio cy = center[1]*scale_ratio t2 = stf.SimilarityTransform(translation=(-1*cx, -1*cy)) t3 = stf.SimilarityTransform(rotation=rot) t4 = stf.SimilarityTransform(translation=(output_size/2, output_size/2)) t = t1+t2+t3+t4 trans = t.params[0:2] #print('M', scale, rotation, trans) cropped = cv2.warpAffine(data,trans,(output_size, output_size), borderValue = 0.0) return cropped, trans def transform2(data, label, output_size, bbox=None, dataset='ibug'): if bbox is None: record = np.zeros((4,), dtype=np.float32) for b in xrange(label.shape[0]): ind_gt = label[b] if b==0: record[0:2] = ind_gt record[2:4] = ind_gt else: record[0:2] = np.minimum(record[0:2], ind_gt) record[2:4] = np.maximum(record[2:4], ind_gt) if dataset=='ibug': record[1] = 0 if record[1]<36 else record[1]-36 # ibug elif dataset=='cofw_testset': record[1] = 0 if record[1]<45 else record[1]-45 # cofw_testset elif dataset=='300W': record[1] = 0 if record[1]<40 else record[1]-40 # 300W else: record[1] = 0 if record[1]<30 else record[1]-30 # AFLW2000-3D bbox = record trans = estimate_trans_bbox(bbox, output_size, s = 1.2) #print('M', scale, rotation, trans) cropped = cv2.warpAffine(data,trans,(output_size, output_size), borderValue = 0.0) # cv2.rectangle(data, (int(bbox[0]), int(bbox[1])), (int(bbox[2]), int(bbox[3])), (0, 255, 0), 2) # cv2.imshow("detection result", data) # cv2.waitKey(0) return cropped, trans def transform_pt(pt, trans): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(trans, new_pt) #print('new_pt', new_pt.shape, new_pt) return new_pt[:2] def gaussian(img, pt, sigma): # Draw a 2D gaussian assert(sigma>=0) if sigma==0: img[pt[1], pt[0]] = 1.0 return True #assert pt[0]<=img.shape[1] #assert pt[1]<=img.shape[0] # Check that any part of the gaussian is in-bounds ul = [int(pt[0] - 3 * sigma), int(pt[1] - 3 * sigma)] br = [int(pt[0] + 3 * sigma + 1), int(pt[1] + 3 * sigma + 1)] if (ul[0] > img.shape[1] or ul[1] >= img.shape[0] or br[0] < 0 or br[1] < 0): # If not, just return the image as is #print('gaussian error') return False #return img # Generate gaussian size = 6 * sigma + 1 x = np.arange(0, size, 1, float) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 20 g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) * 20 # multiply by 20 # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], img.shape[1]) - ul[0] g_y = max(0, -ul[1]), min(br[1], img.shape[0]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], img.shape[1]) img_y = max(0, ul[1]), min(br[1], img.shape[0]) img[img_y[0]:img_y[1], img_x[0]:img_x[1]] = g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return True #return img def estimate_trans_bbox(face, input_size, s = 2.0): w = face[2] - face[0] h = face[3] - face[1] wc = int( (face[2]+face[0])/2 ) hc = int( (face[3]+face[1])/2 ) im_size = max(w, h) #size = int(im_size*1.2) scale = input_size/(max(w,h)*s) M = [ [scale, 0, input_size/2-wc*scale], [0, scale, input_size/2-hc*scale], ] M = np.array(M) return M def preprocess(data, label, output_size): M = None image_size = [data.shape[1], data.shape[0]] if label.shape[0]==68: landmark = np.zeros((5,2), dtype=np.float32) landmark[0,:] = (label[36,:]+label[39,:])/2 #left eye landmark[1,:] = (label[42,:]+label[45,:])/2 #right eye landmark[2,:] = label[30,:] #nose landmark[3,:] = label[48,:] #left mouth landmark[4,:] = label[54,:] #right mouth elif label.shape[0]==5: landmark = np.zeros((5,2), dtype=np.float32) landmark[0,:] = label[0,:] #left eye landmark[1,:] = label[1,:] #right eye landmark[2,:] = label[2,:] #nose landmark[3,:] = label[3,:] #left mouth landmark[4,:] = label[4,:] #right mouth # for i in range(5): # cv2.circle(data, (landmark[i][0], landmark[i][1]), 1, (0, 0, 255), 2) # cv2.imshow("landmark", data) # cv2.waitKey(0) if landmark is not None: assert len(image_size)==2 src = np.array([ [38.2946, 41.6963], [73.5318, 41.5014], [56.0252, 61.7366], [41.5493, 82.3655], [70.7299, 82.2041] ], dtype=np.float32 ) if output_size==384: src = src * 2 + 80.0 dst = landmark.astype(np.float32) # for i in range(5): # cv2.circle(data, (src[i][0], src[i][1]), 1, (0, 0, 255), 2) # cv2.imshow("landmark", data) # cv2.waitKey(0) tform = stf.SimilarityTransform() tform.estimate(dst, src) trans = tform.params[0:2,:] warped = cv2.warpAffine(data, trans, (output_size,output_size), borderValue = 0.0) label_out = np.zeros(label.shape, dtype=np.float32) for i in xrange(label.shape[0]): label_out[i] = transform_pt(label[i], trans) # for i in range(label.shape[0]): # cv2.circle(warped, (label_out[i][0], label_out[i][1]), 1, (0, 0, 255), 2) # cv2.imshow("label", warped) # cv2.waitKey(0) return warped, label_out, trans
[ "cv2.warpAffine", "numpy.minimum", "skimage.transform.SimilarityTransform", "numpy.exp", "numpy.array", "numpy.dot", "numpy.zeros", "numpy.maximum", "numpy.arange" ]
[((332, 374), 'skimage.transform.SimilarityTransform', 'stf.SimilarityTransform', ([], {'scale': 'scale_ratio'}), '(scale=scale_ratio)\n', (355, 374), True, 'from skimage import transform as stf\n'), ((449, 504), 'skimage.transform.SimilarityTransform', 'stf.SimilarityTransform', ([], {'translation': '(-1 * cx, -1 * cy)'}), '(translation=(-1 * cx, -1 * cy))\n', (472, 504), True, 'from skimage import transform as stf\n'), ((511, 548), 'skimage.transform.SimilarityTransform', 'stf.SimilarityTransform', ([], {'rotation': 'rot'}), '(rotation=rot)\n', (534, 548), True, 'from skimage import transform as stf\n'), ((559, 630), 'skimage.transform.SimilarityTransform', 'stf.SimilarityTransform', ([], {'translation': '(output_size / 2, output_size / 2)'}), '(translation=(output_size / 2, output_size / 2))\n', (582, 630), True, 'from skimage import transform as stf\n'), ((731, 803), 'cv2.warpAffine', 'cv2.warpAffine', (['data', 'trans', '(output_size, output_size)'], {'borderValue': '(0.0)'}), '(data, trans, (output_size, output_size), borderValue=0.0)\n', (745, 803), False, 'import cv2\n'), ((1775, 1847), 'cv2.warpAffine', 'cv2.warpAffine', (['data', 'trans', '(output_size, output_size)'], {'borderValue': '(0.0)'}), '(data, trans, (output_size, output_size), borderValue=0.0)\n', (1789, 1847), False, 'import cv2\n'), ((2135, 2156), 'numpy.dot', 'np.dot', (['trans', 'new_pt'], {}), '(trans, new_pt)\n', (2141, 2156), True, 'import numpy as np\n'), ((2905, 2933), 'numpy.arange', 'np.arange', (['(0)', 'size', '(1)', 'float'], {}), '(0, size, 1, float)\n', (2914, 2933), True, 'import numpy as np\n'), ((3922, 3933), 'numpy.array', 'np.array', (['M'], {}), '(M)\n', (3930, 3933), True, 'import numpy as np\n'), ((941, 973), 'numpy.zeros', 'np.zeros', (['(4,)'], {'dtype': 'np.float32'}), '((4,), dtype=np.float32)\n', (949, 973), True, 'import numpy as np\n'), ((2090, 2119), 'numpy.array', 'np.array', (['[pt[0], pt[1], 1.0]'], {}), '([pt[0], pt[1], 1.0])\n', (2098, 2119), True, 'import numpy as np\n'), ((3070, 3129), 'numpy.exp', 'np.exp', (['(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))'], {}), '(-((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))\n', (3076, 3129), True, 'import numpy as np\n'), ((4096, 4130), 'numpy.zeros', 'np.zeros', (['(5, 2)'], {'dtype': 'np.float32'}), '((5, 2), dtype=np.float32)\n', (4104, 4130), True, 'import numpy as np\n'), ((5043, 5176), 'numpy.array', 'np.array', (['[[38.2946, 41.6963], [73.5318, 41.5014], [56.0252, 61.7366], [41.5493, \n 82.3655], [70.7299, 82.2041]]'], {'dtype': 'np.float32'}), '([[38.2946, 41.6963], [73.5318, 41.5014], [56.0252, 61.7366], [\n 41.5493, 82.3655], [70.7299, 82.2041]], dtype=np.float32)\n', (5051, 5176), True, 'import numpy as np\n'), ((5471, 5496), 'skimage.transform.SimilarityTransform', 'stf.SimilarityTransform', ([], {}), '()\n', (5494, 5496), True, 'from skimage import transform as stf\n'), ((5574, 5646), 'cv2.warpAffine', 'cv2.warpAffine', (['data', 'trans', '(output_size, output_size)'], {'borderValue': '(0.0)'}), '(data, trans, (output_size, output_size), borderValue=0.0)\n', (5588, 5646), False, 'import cv2\n'), ((5667, 5706), 'numpy.zeros', 'np.zeros', (['label.shape'], {'dtype': 'np.float32'}), '(label.shape, dtype=np.float32)\n', (5675, 5706), True, 'import numpy as np\n'), ((4480, 4514), 'numpy.zeros', 'np.zeros', (['(5, 2)'], {'dtype': 'np.float32'}), '((5, 2), dtype=np.float32)\n', (4488, 4514), True, 'import numpy as np\n'), ((1163, 1194), 'numpy.minimum', 'np.minimum', (['record[0:2]', 'ind_gt'], {}), '(record[0:2], ind_gt)\n', (1173, 1194), True, 'import numpy as np\n'), ((1220, 1251), 'numpy.maximum', 'np.maximum', (['record[2:4]', 'ind_gt'], {}), '(record[2:4], ind_gt)\n', (1230, 1251), True, 'import numpy as np\n')]
import pymysql from flask import g from config import config def dbcnn(): if not hasattr(g, 'cnn'): g.cnn = pymysql.connect(**config.db1)
[ "pymysql.connect" ]
[((122, 151), 'pymysql.connect', 'pymysql.connect', ([], {}), '(**config.db1)\n', (137, 151), False, 'import pymysql\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('assets', '0001_initial'), ('heritage', '0022_auto_20160209_1413'), ] operations = [ migrations.CreateModel( name='HeritageAsset', fields=[ ('secureasset_ptr', models.OneToOneField(parent_link=True, primary_key=True, to='assets.SecureAsset', auto_created=True, serialize=False)), ], options={ 'abstract': False, }, bases=('assets.secureasset',), ), migrations.RemoveField( model_name='projectasset', name='secureasset_ptr', ), migrations.AddField( model_name='projectasset', name='heritageasset_ptr', field=models.OneToOneField(parent_link=True, primary_key=True, default=1, to='heritage.HeritageAsset', auto_created=True, serialize=False), preserve_default=False, ), ]
[ "django.db.models.OneToOneField", "django.db.migrations.RemoveField" ]
[((688, 761), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""projectasset"""', 'name': '"""secureasset_ptr"""'}), "(model_name='projectasset', name='secureasset_ptr')\n", (710, 761), False, 'from django.db import migrations, models\n'), ((922, 1059), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'parent_link': '(True)', 'primary_key': '(True)', 'default': '(1)', 'to': '"""heritage.HeritageAsset"""', 'auto_created': '(True)', 'serialize': '(False)'}), "(parent_link=True, primary_key=True, default=1, to=\n 'heritage.HeritageAsset', auto_created=True, serialize=False)\n", (942, 1059), False, 'from django.db import migrations, models\n'), ((419, 541), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'parent_link': '(True)', 'primary_key': '(True)', 'to': '"""assets.SecureAsset"""', 'auto_created': '(True)', 'serialize': '(False)'}), "(parent_link=True, primary_key=True, to=\n 'assets.SecureAsset', auto_created=True, serialize=False)\n", (439, 541), False, 'from django.db import migrations, models\n')]
import mock import unittest from labs.lab01 import example as l1_example class TestObject(unittest.TestCase): def setUp(self): self.mocked_param = mock.Mock() self.tested_object = l1_example.Object(self.mocked_param) def test_str(self): self.assertEqual(str(self.tested_object), "Object: %s" % self.mocked_param) def test_repr(self): self.assertEqual(repr(self.tested_object), "<Object: __private_field=%s>" % self.mocked_param) def test_hash(self): self.assertEqual(hash(self.tested_object), hash(self.mocked_param)) def test_bool(self): self.assertEqual(bool(self.tested_object), bool(self.mocked_param)) class TestDynamicObject(unittest.TestCase): def setUp(self): self.tested_object = l1_example.DynamicObject() def test_attr(self): mocked_attr = mock.Mock() self.tested_object.attr = mocked_attr self.assertEqual(self.tested_object.attr, mocked_attr) del self.tested_object.attr self.assertRaises(ValueError, self.tested_object.attr) if __name__ == '__main__': unittest.main()
[ "unittest.main", "labs.lab01.example.Object", "labs.lab01.example.DynamicObject", "mock.Mock" ]
[((1233, 1248), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1246, 1248), False, 'import unittest\n'), ((163, 174), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (172, 174), False, 'import mock\n'), ((204, 240), 'labs.lab01.example.Object', 'l1_example.Object', (['self.mocked_param'], {}), '(self.mocked_param)\n', (221, 240), True, 'from labs.lab01 import example as l1_example\n'), ((905, 931), 'labs.lab01.example.DynamicObject', 'l1_example.DynamicObject', ([], {}), '()\n', (929, 931), True, 'from labs.lab01 import example as l1_example\n'), ((980, 991), 'mock.Mock', 'mock.Mock', ([], {}), '()\n', (989, 991), False, 'import mock\n')]
from memory_profiler import profile @profile def load(): import conllu data_file = open("cs-ud-train-l.conllu", "r", encoding="utf-8") # parse_incr is recommended for large files (more than 1 MB) # since it returns a generator, which is why a conversion to list tokenlist = list(conllu.parse_incr(data_file)) for sentence in tokenlist: for token in sentence: form_lemma = token['form'] + token['lemma'] for sentence in tokenlist: chain = [] for token in sentence: if token['head']: parent = sentence[token['head'] - 1] if token['deprel'] == "case" and parent['deprel'] == "nmod": chain.append(token) for sentence in tokenlist: for token in sentence: token['deprel'] = 'dep' with open('out.conllu', 'w', encoding='utf8') as f: f.writelines([sentence.serialize() + "\n" for sentence in tokenlist]) if __name__ == '__main__': load()
[ "conllu.parse_incr" ]
[((301, 329), 'conllu.parse_incr', 'conllu.parse_incr', (['data_file'], {}), '(data_file)\n', (318, 329), False, 'import conllu\n')]
from bson.objectid import ObjectId from app.database.mongodb import ( growjo_collection, # indeed_collection, # linkedin_collection ) from app.database.mongodb_helper import ( growjo_helper, # indeed_helper, # linkedin_helper, ) """ CRUD Operations """ # top 25 fastest growing companies in the US params filter = {'country': 'United States'} sort=list({ 'ranking': { '$exists': True }, 'ranking': 1 }.items()) limit=25 # retrieve top 25 fastest growing US companies in the database async def retrieve_companies(): companies = [] async for entity in growjo_collection.find( filter=filter, sort=sort, limit=limit, ): companies.append(growjo_helper(entity)) return companies # add a new company into the database async def add_company(company_data: dict) -> dict: entity = await growjo_collection.insert_one(company_data) new_company = await growjo_collection.find_one({"_id": entity.inserted_id}) return growjo_helper(new_company) # retrieve a company with a matching ID async def retrieve_company(id: str) -> dict: entity = await growjo_collection.find_one({"_id": ObjectId(id)}) if entity: return growjo_helper(entity) # update a company with a matching ID async def update_company(id: str, data: dict): # return false if any empty request body is sent if not data: return False entity = await growjo_collection.find_one({"_id": ObjectId(id)}) if entity: updated_company = await growjo_collection.update_one( {"_id": ObjectId(id)}, {"$set": data}) return bool(updated_company) # delete a company from the database async def delete_company(id: str): entity = await growjo_collection.find_one({"_id": ObjectId(id)}) if entity: await growjo_collection.delete_one({"_id": ObjectId(id)}) return True # add indeed jobs to the database #async def add_indeed_data(indeed_data: dict) -> dict: # entity = await indeed_collection.insertMany( # [{'i': i} for i in range(len(indeed_response))] # ) # indeed_data = await indeed_collection.find_one({"id": entity.inserted_id}) # return indeed_helper(indeed_data) # add linkedin jobs to the database # async def add_linkedin_data(linkedin_data: dict) -> dict: # entity = await linkedin_collection.insertMany( # [{'i': i} for i in range(len(linkedin_response))] # ) # linkedin_data = await linkedin_collection.find_one( # {"id": entity.inserted_id}) # return linkedin_helper(linkedin_data)
[ "app.database.mongodb_helper.growjo_helper", "app.database.mongodb.growjo_collection.insert_one", "bson.objectid.ObjectId", "app.database.mongodb.growjo_collection.find_one", "app.database.mongodb.growjo_collection.find" ]
[((607, 668), 'app.database.mongodb.growjo_collection.find', 'growjo_collection.find', ([], {'filter': 'filter', 'sort': 'sort', 'limit': 'limit'}), '(filter=filter, sort=sort, limit=limit)\n', (629, 668), False, 'from app.database.mongodb import growjo_collection\n'), ((1013, 1039), 'app.database.mongodb_helper.growjo_helper', 'growjo_helper', (['new_company'], {}), '(new_company)\n', (1026, 1039), False, 'from app.database.mongodb_helper import growjo_helper\n'), ((879, 921), 'app.database.mongodb.growjo_collection.insert_one', 'growjo_collection.insert_one', (['company_data'], {}), '(company_data)\n', (907, 921), False, 'from app.database.mongodb import growjo_collection\n'), ((946, 1001), 'app.database.mongodb.growjo_collection.find_one', 'growjo_collection.find_one', (["{'_id': entity.inserted_id}"], {}), "({'_id': entity.inserted_id})\n", (972, 1001), False, 'from app.database.mongodb import growjo_collection\n'), ((1225, 1246), 'app.database.mongodb_helper.growjo_helper', 'growjo_helper', (['entity'], {}), '(entity)\n', (1238, 1246), False, 'from app.database.mongodb_helper import growjo_helper\n'), ((726, 747), 'app.database.mongodb_helper.growjo_helper', 'growjo_helper', (['entity'], {}), '(entity)\n', (739, 747), False, 'from app.database.mongodb_helper import growjo_helper\n'), ((1180, 1192), 'bson.objectid.ObjectId', 'ObjectId', (['id'], {}), '(id)\n', (1188, 1192), False, 'from bson.objectid import ObjectId\n'), ((1478, 1490), 'bson.objectid.ObjectId', 'ObjectId', (['id'], {}), '(id)\n', (1486, 1490), False, 'from bson.objectid import ObjectId\n'), ((1802, 1814), 'bson.objectid.ObjectId', 'ObjectId', (['id'], {}), '(id)\n', (1810, 1814), False, 'from bson.objectid import ObjectId\n'), ((1607, 1619), 'bson.objectid.ObjectId', 'ObjectId', (['id'], {}), '(id)\n', (1615, 1619), False, 'from bson.objectid import ObjectId\n'), ((1884, 1896), 'bson.objectid.ObjectId', 'ObjectId', (['id'], {}), '(id)\n', (1892, 1896), False, 'from bson.objectid import ObjectId\n')]
import codecademylib3_seaborn import matplotlib.pyplot as plt from sklearn import datasets iris = datasets.load_iris() samples = iris.data x = samples[:,0] y = samples[:,1] plt.scatter(x, y, alpha=0.5) plt.xlabel('sepal length (cm)') plt.ylabel('petal length (cm)') plt.show()
[ "sklearn.datasets.load_iris", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.scatter", "matplotlib.pyplot.show" ]
[((99, 119), 'sklearn.datasets.load_iris', 'datasets.load_iris', ([], {}), '()\n', (117, 119), False, 'from sklearn import datasets\n'), ((177, 205), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y'], {'alpha': '(0.5)'}), '(x, y, alpha=0.5)\n', (188, 205), True, 'import matplotlib.pyplot as plt\n'), ((207, 238), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""sepal length (cm)"""'], {}), "('sepal length (cm)')\n", (217, 238), True, 'import matplotlib.pyplot as plt\n'), ((239, 270), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""petal length (cm)"""'], {}), "('petal length (cm)')\n", (249, 270), True, 'import matplotlib.pyplot as plt\n'), ((272, 282), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (280, 282), True, 'import matplotlib.pyplot as plt\n')]
from django import forms from django.contrib import admin from apprentice_learner.models import Agent from apprentice_learner.models import Project from apprentice_learner.models import Operator from codemirror2.widgets import CodeMirrorEditor class AgentAdmin(admin.ModelAdmin): pass # class OperatorAdminForm(forms.ModelForm): # model = Operator # class Meta: # fields = '__all__' # widgets = { # 'code': PythonEditor(attrs={'style':'width: 90%; height: 100%;'}), # } class OperatorAdmin(admin.ModelAdmin): def formfield_for_dbfield(self, db_field, **kwargs): if db_field.attname in ['head', 'conditions', 'effects']: kwargs['widget'] = CodeMirrorEditor(options={'mode':'python', 'lineNumbers':True}) return super(OperatorAdmin, self).formfield_for_dbfield(db_field, **kwargs) # Register your models here. admin.site.register(Agent, AgentAdmin) admin.site.register(Project) admin.site.register(Operator, OperatorAdmin)
[ "django.contrib.admin.site.register", "codemirror2.widgets.CodeMirrorEditor" ]
[((896, 934), 'django.contrib.admin.site.register', 'admin.site.register', (['Agent', 'AgentAdmin'], {}), '(Agent, AgentAdmin)\n', (915, 934), False, 'from django.contrib import admin\n'), ((935, 963), 'django.contrib.admin.site.register', 'admin.site.register', (['Project'], {}), '(Project)\n', (954, 963), False, 'from django.contrib import admin\n'), ((964, 1008), 'django.contrib.admin.site.register', 'admin.site.register', (['Operator', 'OperatorAdmin'], {}), '(Operator, OperatorAdmin)\n', (983, 1008), False, 'from django.contrib import admin\n'), ((716, 781), 'codemirror2.widgets.CodeMirrorEditor', 'CodeMirrorEditor', ([], {'options': "{'mode': 'python', 'lineNumbers': True}"}), "(options={'mode': 'python', 'lineNumbers': True})\n", (732, 781), False, 'from codemirror2.widgets import CodeMirrorEditor\n')]
# -*- coding: utf-8 -*- """ Created on Sun Feb 26 16:41:01 2017 @author: andi """ import sys sys.path.append( '/home/andi/dev/visr-build-debug/python' ) import visr import rcl import rrl # exec(open("./runAtomicComponent.py").read()) import numpy as np import matplotlib.pyplot as plt fs = 48000 blockSize = 128 numBlocks = 16 numSamples = numBlocks*blockSize t = np.arange(0,numSamples,dtype=np.float32)/fs inputSignal = np.zeros( [4,numSamples], dtype=np.float32 ) inputSignal[0,:] = np.sin( 2*np.pi*440 * t ) inputSignal[1,:] = 0.5*np.sin( 2*np.pi*880 * t ) inputSignal[2,:] = 0.15*np.sin( 2*np.pi*1340 * t ) referenceOutput = inputSignal[0:2,:] + inputSignal[2:,:] outputSignal = np.zeros( (2, numSamples), dtype = np.float32 ) c = visr.SignalFlowContext(blockSize, fs ) adder = rcl.Add( c, 'add', numInputs = 2, width=2) flow = rrl.AudioSignalFlow( adder ) for blockIdx in range(0,numBlocks): inputBlock = inputSignal[:, blockIdx*blockSize:(blockIdx+1)*blockSize] outputBlock = flow.process( inputBlock ) outputSignal[:, blockIdx*blockSize:(blockIdx+1)*blockSize] = outputBlock plt.figure(1) plt.plot( t, referenceOutput[0,:], 'bo-', t, outputSignal[0,:], 'rx-' ) plt.show()
[ "matplotlib.pyplot.plot", "visr.SignalFlowContext", "numpy.zeros", "rcl.Add", "matplotlib.pyplot.figure", "numpy.sin", "rrl.AudioSignalFlow", "sys.path.append", "numpy.arange", "matplotlib.pyplot.show" ]
[((95, 152), 'sys.path.append', 'sys.path.append', (['"""/home/andi/dev/visr-build-debug/python"""'], {}), "('/home/andi/dev/visr-build-debug/python')\n", (110, 152), False, 'import sys\n'), ((432, 475), 'numpy.zeros', 'np.zeros', (['[4, numSamples]'], {'dtype': 'np.float32'}), '([4, numSamples], dtype=np.float32)\n', (440, 475), True, 'import numpy as np\n'), ((496, 523), 'numpy.sin', 'np.sin', (['(2 * np.pi * 440 * t)'], {}), '(2 * np.pi * 440 * t)\n', (502, 523), True, 'import numpy as np\n'), ((697, 740), 'numpy.zeros', 'np.zeros', (['(2, numSamples)'], {'dtype': 'np.float32'}), '((2, numSamples), dtype=np.float32)\n', (705, 740), True, 'import numpy as np\n'), ((750, 787), 'visr.SignalFlowContext', 'visr.SignalFlowContext', (['blockSize', 'fs'], {}), '(blockSize, fs)\n', (772, 787), False, 'import visr\n'), ((799, 838), 'rcl.Add', 'rcl.Add', (['c', '"""add"""'], {'numInputs': '(2)', 'width': '(2)'}), "(c, 'add', numInputs=2, width=2)\n", (806, 838), False, 'import rcl\n'), ((851, 877), 'rrl.AudioSignalFlow', 'rrl.AudioSignalFlow', (['adder'], {}), '(adder)\n', (870, 877), False, 'import rrl\n'), ((1115, 1128), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (1125, 1128), True, 'import matplotlib.pyplot as plt\n'), ((1129, 1200), 'matplotlib.pyplot.plot', 'plt.plot', (['t', 'referenceOutput[0, :]', '"""bo-"""', 't', 'outputSignal[0, :]', '"""rx-"""'], {}), "(t, referenceOutput[0, :], 'bo-', t, outputSignal[0, :], 'rx-')\n", (1137, 1200), True, 'import matplotlib.pyplot as plt\n'), ((1201, 1211), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1209, 1211), True, 'import matplotlib.pyplot as plt\n'), ((373, 415), 'numpy.arange', 'np.arange', (['(0)', 'numSamples'], {'dtype': 'np.float32'}), '(0, numSamples, dtype=np.float32)\n', (382, 415), True, 'import numpy as np\n'), ((545, 572), 'numpy.sin', 'np.sin', (['(2 * np.pi * 880 * t)'], {}), '(2 * np.pi * 880 * t)\n', (551, 572), True, 'import numpy as np\n'), ((595, 623), 'numpy.sin', 'np.sin', (['(2 * np.pi * 1340 * t)'], {}), '(2 * np.pi * 1340 * t)\n', (601, 623), True, 'import numpy as np\n')]
import numpy as np import pandas as pd import datetime from scipy.stats import bernoulli, norm sigmoid = lambda x: 1/(1+np.exp(-x)) softplus = lambda x: np.log(1+np.exp(x)) def timestamp(): now = datetime.datetime.now() return now.strftime("%Y%m%d%H%M%S") def generate_data(N, D, T, beta0, beta, alpha): """ Genarate N samples of data from the true model with parameter [beta0, beta, alpha]. Returns: x: 3-d array of size [N, T, D] y: 2-d array of size [N, T] z: 1-d array of size [n_MC, N] """ z = np.random.randn(N) * softplus(alpha)**(1/2.) x = np.random.randn(N*T*D).reshape([N,T,D]) y = bernoulli(p=sigmoid(beta0+x@beta+z.reshape([N,1]))).rvs() return x,y,z
[ "numpy.exp", "datetime.datetime.now", "numpy.random.randn" ]
[((202, 225), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (223, 225), False, 'import datetime\n'), ((545, 563), 'numpy.random.randn', 'np.random.randn', (['N'], {}), '(N)\n', (560, 563), True, 'import numpy as np\n'), ((121, 131), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (127, 131), True, 'import numpy as np\n'), ((163, 172), 'numpy.exp', 'np.exp', (['x'], {}), '(x)\n', (169, 172), True, 'import numpy as np\n'), ((598, 624), 'numpy.random.randn', 'np.random.randn', (['(N * T * D)'], {}), '(N * T * D)\n', (613, 624), True, 'import numpy as np\n')]
import time, itertools from stdiomask import getpass, chrlist def cracker(password, chrlist, showprcs): guess = '' for i in range(1, 6): for g in itertools.product(chrlist, repeat=i): if showprcs: print('Guess: ' + ''.join(g), end='\r') if (guess := ''.join(g)) == password: return ''.join(guess) time.sleep(.000001) password = getpass() showprcs = True if input('Show cracking-process? (Y/N) ').upper() == 'Y' else False start = time.time() guess = cracker(password, chrlist, showprcs) end = time.time() print('------------------') print('Guess: ' + guess) print('Time: ' + str(round(end - start, 5)) + 's')
[ "stdiomask.getpass", "itertools.product", "time.time", "time.sleep" ]
[((388, 397), 'stdiomask.getpass', 'getpass', ([], {}), '()\n', (395, 397), False, 'from stdiomask import getpass, chrlist\n'), ((491, 502), 'time.time', 'time.time', ([], {}), '()\n', (500, 502), False, 'import time, itertools\n'), ((554, 565), 'time.time', 'time.time', ([], {}), '()\n', (563, 565), False, 'import time, itertools\n'), ((159, 195), 'itertools.product', 'itertools.product', (['chrlist'], {'repeat': 'i'}), '(chrlist, repeat=i)\n', (176, 195), False, 'import time, itertools\n'), ((356, 373), 'time.sleep', 'time.sleep', (['(1e-06)'], {}), '(1e-06)\n', (366, 373), False, 'import time, itertools\n')]
# Domain –Education import glob import csv import pandas as pd csvfiles = glob.glob('c:/temp/score/*.csv') wf = csv.writer(open('c:/temp/score/ScoreFinalTemp.csv','wb'),delimiter = ',') for files in csvfiles: rd = csv.reader(open(files,'r'), delimiter = ',') # rd.next() # To skip header for row in rd: # print row wf.writerow(row) data = pd.read_csv('c:/temp/score/ScoreFinalTemp.csv') data = data.drop(['Name','Ethinicity'],axis=1) data.to_csv('c:/temp/score/ScoreFinal.csv') rd = csv.reader(open('c:/temp/score/ScoreFinal.csv','r'), delimiter = ',') for row in rd: row.replace('M',1) row.replace('F',0)
[ "glob.glob", "pandas.read_csv" ]
[((74, 106), 'glob.glob', 'glob.glob', (['"""c:/temp/score/*.csv"""'], {}), "('c:/temp/score/*.csv')\n", (83, 106), False, 'import glob\n'), ((368, 415), 'pandas.read_csv', 'pd.read_csv', (['"""c:/temp/score/ScoreFinalTemp.csv"""'], {}), "('c:/temp/score/ScoreFinalTemp.csv')\n", (379, 415), True, 'import pandas as pd\n')]
# Copyright 2015 Novo Nordisk Foundation Center for Biosustainability, DTU. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import, print_function from cobra import Model from driven.data_sets.fluxes import FluxConstraints from driven.flux_analysis.results import FluxBasedFluxDistribution def fba(model, objective=None, distribution=None, relax=0.01, *args, **kwargs): """ Runs a Flux Balance Analysis using a set of measured fluxes. Arguments --------- model : cobra.Model A constraint-based model distribution : FluxConstraints A set of experimental or computational determined flux constraints objective : objective Optional objective for the model relax : float A relax value to make the computation feasible """ if not isinstance(model, Model): raise ValueError("Argument model must be instance of SolverBasedModel, not %s" % model.__class__) if not isinstance(distribution, FluxConstraints): raise ValueError("Argument distribution must be instance of FluxConstraints, not %s" % distribution.__class__) with model: for reaction_id in distribution: reaction = model.reactions.get_by_id(reaction_id) bounds = distribution[reaction_id] reaction.bounds = bounds[0] - bounds[0] * relax, bounds[1] + bounds[1] * relax if objective is not None: model.objective = objective solution = model.optimize() return FluxBasedFluxDistribution(solution.fluxes, distribution) # TODO bug here, missing arg
[ "driven.flux_analysis.results.FluxBasedFluxDistribution" ]
[((2012, 2068), 'driven.flux_analysis.results.FluxBasedFluxDistribution', 'FluxBasedFluxDistribution', (['solution.fluxes', 'distribution'], {}), '(solution.fluxes, distribution)\n', (2037, 2068), False, 'from driven.flux_analysis.results import FluxBasedFluxDistribution\n')]
import numpy as np import pandas as pd import matplotlib.pyplot as plt from PIL import Image import tifffile as tiff import cv2 import os from tqdm.notebook import tqdm import zipfile import rasterio from rasterio.windows import Window from torch.utils.data import Dataset import gc from pathlib import Path import warnings warnings.filterwarnings("ignore") import time start = time.time() sz = 256 #the size of tiles reduce = 4 #reduce the original images by 4 times BASE_PATH = '/N/slate/soodn/' dataset = "kidney" # dataset = "colon" MASKS = Path(BASE_PATH+'hubmap-'+dataset+'-segmentation/train.csv') df_masks = pd.read_csv(MASKS, index_col = 'id') DATA = Path(BASE_PATH+'hubmap-'+dataset+'-segmentation/train') INFO = Path(BASE_PATH+'hubmap-'+dataset+'-segmentation/HuBMAP-20-dataset_information.csv') df_info = pd.read_csv(INFO) OUT_TRAIN = Path(r'train.zip') OUT_MASKS = Path(r'masks.zip') def elapsed_time(start_time): return time.time() - start_time def enc2mask(encs, shape): img = np.zeros(shape[0]*shape[1], dtype=np.uint8) for m,enc in enumerate(encs): if isinstance(enc,np.float) and np.isnan(enc): continue s = enc.split() for i in range(len(s)//2): start = int(s[2*i]) - 1 length = int(s[2*i+1]) img[start:start+length] = 1 + m return img.reshape(shape).T def mask2enc(mask, n=1): pixels = mask.T.flatten() encs = [] for i in range(1,n+1): p = (pixels == i).astype(np.int8) if p.sum() == 0: encs.append(np.nan) else: p = np.concatenate([[0], p, [0]]) runs = np.where(p[1:] != p[:-1])[0] + 1 runs[1::2] -= runs[::2] encs.append(' '.join(str(x) for x in runs)) return encs s_th = 40 #saturation blancking threshold p_th = 1000*(sz//256)**2 #threshold for the minimum number of pixels class HuBMAPDataset(Dataset): def __init__(self, idx, sz=sz, reduce=reduce, encs=None): super().__init__() self.data = rasterio.open(os.path.join(DATA,idx+'.tiff')) if self.data.count != 3: subdatasets = self.data.subdatasets self.layers = [] if len(subdatasets) > 0: for i, subdataset in enumerate(subdatasets, 0): self.layers.append(rasterio.open(subdataset)) self.shape = self.data.shape self.reduce = reduce self.sz = reduce*sz self.pad0 = (self.sz - self.shape[0]%self.sz)%self.sz self.pad1 = (self.sz - self.shape[1]%self.sz)%self.sz self.n0max = (self.shape[0] + self.pad0)//self.sz self.n1max = (self.shape[1] + self.pad1)//self.sz self.mask = enc2mask(encs,(self.shape[1],self.shape[0])) if encs is not None else None def __len__(self): return self.n0max*self.n1max def __getitem__(self, idx): n0,n1 = idx//self.n1max, idx%self.n1max x0,y0 = -self.pad0//2 + n0*self.sz, -self.pad1//2 + n1*self.sz # make sure that the region to read is within the image p00,p01 = max(0,x0), min(x0+self.sz,self.shape[0]) p10,p11 = max(0,y0), min(y0+self.sz,self.shape[1]) img = np.zeros((self.sz,self.sz,3),np.uint8) mask = np.zeros((self.sz,self.sz),np.uint8) # mapping the loade region to the tile if self.data.count == 3: img[(p00-x0):(p01-x0),(p10-y0):(p11-y0)] = np.moveaxis(self.data.read([1,2,3], window=Window.from_slices((p00,p01),(p10,p11))), 0, -1) else: for i,layer in enumerate(self.layers): img[(p00-x0):(p01-x0),(p10-y0):(p11-y0),i] =\ layer.read(1,window=Window.from_slices((p00,p01),(p10,p11))) if self.mask is not None: mask[(p00-x0):(p01-x0),(p10-y0):(p11-y0)] = self.mask[p00:p01,p10:p11] if self.reduce != 1: img = cv2.resize(img,(self.sz//reduce,self.sz//reduce), interpolation = cv2.INTER_AREA) mask = cv2.resize(mask,(self.sz//reduce,self.sz//reduce), interpolation = cv2.INTER_NEAREST) #check for empty imges hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) h,s,v = cv2.split(hsv) #return -1 for empty images return img, mask, (-1 if (s>s_th).sum() <= p_th or img.sum() <= p_th else idx) x_tot,x2_tot = [],[] with zipfile.ZipFile(OUT_TRAIN, 'w') as img_out,\ zipfile.ZipFile(OUT_MASKS, 'w') as mask_out: for index, encs in tqdm(df_masks.iterrows(),total=len(df_masks)): #image+mask dataset ds = HuBMAPDataset(index,encs=encs) for i in range(len(ds)): im,m,idx = ds[i] if idx < 0: continue x_tot.append((im/255.0).reshape(-1,3).mean(0)) x2_tot.append(((im/255.0)**2).reshape(-1,3).mean(0)) #write data im = cv2.imencode('.png',cv2.cvtColor(im, cv2.COLOR_RGB2BGR))[1] img_out.writestr(f'{index}_{idx:04d}.png', im) m = cv2.imencode('.png',m)[1] mask_out.writestr(f'{index}_{idx:04d}.png', m) #image stats img_avr = np.array(x_tot).mean(0) img_std = np.sqrt(np.array(x2_tot).mean(0) - img_avr**2) print('mean:',img_avr, ', std:', img_std) print ("Run time = ", elapsed_time(start))
[ "cv2.imencode", "pandas.read_csv", "pathlib.Path", "zipfile.ZipFile", "numpy.where", "rasterio.open", "os.path.join", "numpy.array", "numpy.zeros", "numpy.isnan", "cv2.cvtColor", "cv2.split", "numpy.concatenate", "cv2.resize", "time.time", "warnings.filterwarnings", "rasterio.windows.Window.from_slices" ]
[((325, 358), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (348, 358), False, 'import warnings\n'), ((380, 391), 'time.time', 'time.time', ([], {}), '()\n', (389, 391), False, 'import time\n'), ((553, 618), 'pathlib.Path', 'Path', (["(BASE_PATH + 'hubmap-' + dataset + '-segmentation/train.csv')"], {}), "(BASE_PATH + 'hubmap-' + dataset + '-segmentation/train.csv')\n", (557, 618), False, 'from pathlib import Path\n'), ((624, 658), 'pandas.read_csv', 'pd.read_csv', (['MASKS'], {'index_col': '"""id"""'}), "(MASKS, index_col='id')\n", (635, 658), True, 'import pandas as pd\n'), ((668, 729), 'pathlib.Path', 'Path', (["(BASE_PATH + 'hubmap-' + dataset + '-segmentation/train')"], {}), "(BASE_PATH + 'hubmap-' + dataset + '-segmentation/train')\n", (672, 729), False, 'from pathlib import Path\n'), ((731, 824), 'pathlib.Path', 'Path', (["(BASE_PATH + 'hubmap-' + dataset +\n '-segmentation/HuBMAP-20-dataset_information.csv')"], {}), "(BASE_PATH + 'hubmap-' + dataset +\n '-segmentation/HuBMAP-20-dataset_information.csv')\n", (735, 824), False, 'from pathlib import Path\n'), ((825, 842), 'pandas.read_csv', 'pd.read_csv', (['INFO'], {}), '(INFO)\n', (836, 842), True, 'import pandas as pd\n'), ((856, 873), 'pathlib.Path', 'Path', (['"""train.zip"""'], {}), "('train.zip')\n", (860, 873), False, 'from pathlib import Path\n'), ((887, 904), 'pathlib.Path', 'Path', (['"""masks.zip"""'], {}), "('masks.zip')\n", (891, 904), False, 'from pathlib import Path\n'), ((1011, 1056), 'numpy.zeros', 'np.zeros', (['(shape[0] * shape[1])'], {'dtype': 'np.uint8'}), '(shape[0] * shape[1], dtype=np.uint8)\n', (1019, 1056), True, 'import numpy as np\n'), ((4399, 4430), 'zipfile.ZipFile', 'zipfile.ZipFile', (['OUT_TRAIN', '"""w"""'], {}), "(OUT_TRAIN, 'w')\n", (4414, 4430), False, 'import zipfile\n'), ((4445, 4476), 'zipfile.ZipFile', 'zipfile.ZipFile', (['OUT_MASKS', '"""w"""'], {}), "(OUT_MASKS, 'w')\n", (4460, 4476), False, 'import zipfile\n'), ((948, 959), 'time.time', 'time.time', ([], {}), '()\n', (957, 959), False, 'import time\n'), ((3190, 3231), 'numpy.zeros', 'np.zeros', (['(self.sz, self.sz, 3)', 'np.uint8'], {}), '((self.sz, self.sz, 3), np.uint8)\n', (3198, 3231), True, 'import numpy as np\n'), ((3244, 3282), 'numpy.zeros', 'np.zeros', (['(self.sz, self.sz)', 'np.uint8'], {}), '((self.sz, self.sz), np.uint8)\n', (3252, 3282), True, 'import numpy as np\n'), ((4181, 4217), 'cv2.cvtColor', 'cv2.cvtColor', (['img', 'cv2.COLOR_BGR2HSV'], {}), '(img, cv2.COLOR_BGR2HSV)\n', (4193, 4217), False, 'import cv2\n'), ((4234, 4248), 'cv2.split', 'cv2.split', (['hsv'], {}), '(hsv)\n', (4243, 4248), False, 'import cv2\n'), ((5191, 5206), 'numpy.array', 'np.array', (['x_tot'], {}), '(x_tot)\n', (5199, 5206), True, 'import numpy as np\n'), ((1129, 1142), 'numpy.isnan', 'np.isnan', (['enc'], {}), '(enc)\n', (1137, 1142), True, 'import numpy as np\n'), ((1573, 1602), 'numpy.concatenate', 'np.concatenate', (['[[0], p, [0]]'], {}), '([[0], p, [0]])\n', (1587, 1602), True, 'import numpy as np\n'), ((2030, 2063), 'os.path.join', 'os.path.join', (['DATA', "(idx + '.tiff')"], {}), "(DATA, idx + '.tiff')\n", (2042, 2063), False, 'import os\n'), ((3891, 3981), 'cv2.resize', 'cv2.resize', (['img', '(self.sz // reduce, self.sz // reduce)'], {'interpolation': 'cv2.INTER_AREA'}), '(img, (self.sz // reduce, self.sz // reduce), interpolation=cv2.\n INTER_AREA)\n', (3901, 3981), False, 'import cv2\n'), ((4021, 4115), 'cv2.resize', 'cv2.resize', (['mask', '(self.sz // reduce, self.sz // reduce)'], {'interpolation': 'cv2.INTER_NEAREST'}), '(mask, (self.sz // reduce, self.sz // reduce), interpolation=cv2.\n INTER_NEAREST)\n', (4031, 4115), False, 'import cv2\n'), ((5073, 5096), 'cv2.imencode', 'cv2.imencode', (['""".png"""', 'm'], {}), "('.png', m)\n", (5085, 5096), False, 'import cv2\n'), ((5234, 5250), 'numpy.array', 'np.array', (['x2_tot'], {}), '(x2_tot)\n', (5242, 5250), True, 'import numpy as np\n'), ((1622, 1647), 'numpy.where', 'np.where', (['(p[1:] != p[:-1])'], {}), '(p[1:] != p[:-1])\n', (1630, 1647), True, 'import numpy as np\n'), ((4945, 4980), 'cv2.cvtColor', 'cv2.cvtColor', (['im', 'cv2.COLOR_RGB2BGR'], {}), '(im, cv2.COLOR_RGB2BGR)\n', (4957, 4980), False, 'import cv2\n'), ((2312, 2337), 'rasterio.open', 'rasterio.open', (['subdataset'], {}), '(subdataset)\n', (2325, 2337), False, 'import rasterio\n'), ((3475, 3517), 'rasterio.windows.Window.from_slices', 'Window.from_slices', (['(p00, p01)', '(p10, p11)'], {}), '((p00, p01), (p10, p11))\n', (3493, 3517), False, 'from rasterio.windows import Window\n'), ((3689, 3731), 'rasterio.windows.Window.from_slices', 'Window.from_slices', (['(p00, p01)', '(p10, p11)'], {}), '((p00, p01), (p10, p11))\n', (3707, 3731), False, 'from rasterio.windows import Window\n')]
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class AllowedPhaseTwoParameters(object): """ Allowed phase two parameters. """ def __init__(self, **kwargs): """ Initializes a new AllowedPhaseTwoParameters object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param encryption_algorithms: The value to assign to the encryption_algorithms property of this AllowedPhaseTwoParameters. :type encryption_algorithms: list[str] :param authentication_algorithms: The value to assign to the authentication_algorithms property of this AllowedPhaseTwoParameters. :type authentication_algorithms: list[str] :param pfs_dh_groups: The value to assign to the pfs_dh_groups property of this AllowedPhaseTwoParameters. :type pfs_dh_groups: list[str] """ self.swagger_types = { 'encryption_algorithms': 'list[str]', 'authentication_algorithms': 'list[str]', 'pfs_dh_groups': 'list[str]' } self.attribute_map = { 'encryption_algorithms': 'encryptionAlgorithms', 'authentication_algorithms': 'authenticationAlgorithms', 'pfs_dh_groups': 'pfsDhGroups' } self._encryption_algorithms = None self._authentication_algorithms = None self._pfs_dh_groups = None @property def encryption_algorithms(self): """ Gets the encryption_algorithms of this AllowedPhaseTwoParameters. Allowed phase two encryption algorithms. :return: The encryption_algorithms of this AllowedPhaseTwoParameters. :rtype: list[str] """ return self._encryption_algorithms @encryption_algorithms.setter def encryption_algorithms(self, encryption_algorithms): """ Sets the encryption_algorithms of this AllowedPhaseTwoParameters. Allowed phase two encryption algorithms. :param encryption_algorithms: The encryption_algorithms of this AllowedPhaseTwoParameters. :type: list[str] """ self._encryption_algorithms = encryption_algorithms @property def authentication_algorithms(self): """ Gets the authentication_algorithms of this AllowedPhaseTwoParameters. Allowed phase two authentication algorithms. :return: The authentication_algorithms of this AllowedPhaseTwoParameters. :rtype: list[str] """ return self._authentication_algorithms @authentication_algorithms.setter def authentication_algorithms(self, authentication_algorithms): """ Sets the authentication_algorithms of this AllowedPhaseTwoParameters. Allowed phase two authentication algorithms. :param authentication_algorithms: The authentication_algorithms of this AllowedPhaseTwoParameters. :type: list[str] """ self._authentication_algorithms = authentication_algorithms @property def pfs_dh_groups(self): """ Gets the pfs_dh_groups of this AllowedPhaseTwoParameters. Allowed perfect forward secrecy Diffie-Hellman groups. :return: The pfs_dh_groups of this AllowedPhaseTwoParameters. :rtype: list[str] """ return self._pfs_dh_groups @pfs_dh_groups.setter def pfs_dh_groups(self, pfs_dh_groups): """ Sets the pfs_dh_groups of this AllowedPhaseTwoParameters. Allowed perfect forward secrecy Diffie-Hellman groups. :param pfs_dh_groups: The pfs_dh_groups of this AllowedPhaseTwoParameters. :type: list[str] """ self._pfs_dh_groups = pfs_dh_groups def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
[ "oci.util.formatted_flat_dict" ]
[((4337, 4362), 'oci.util.formatted_flat_dict', 'formatted_flat_dict', (['self'], {}), '(self)\n', (4356, 4362), False, 'from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel\n')]
import logging.config import tornado.httpserver import tornado.ioloop import tornado.options import tornado.autoreload from tornado.options import define, options import os from memory.application import application from memory.settings import LOGGING, NEED_CERTIFICATE, SERVER_PORT from memory.util import refresh_certification, safety_certification from memory.model.settings import MODEL_DIR define("port", default=SERVER_PORT, help="run on the given port", type=int) def main(): logging.config.dictConfig(LOGGING) tornado.options.parse_command_line() http_server = tornado.httpserver.HTTPServer(application) http_server.listen(options.port) print("Development server is running at http://127.0.0.1:%s" % options.port) print("Quit the server with Control-C") if NEED_CERTIFICATE: safety_certification() # refresh every hour tornado.ioloop.PeriodicCallback(refresh_certification, 1000 * 3600).start() # refresh every five days tornado.ioloop.PeriodicCallback(safety_certification, 1000 * 3600 * 24 * 5).start() tornado.ioloop.IOLoop.current().start() if __name__ == "__main__": main()
[ "memory.util.safety_certification", "tornado.options.define" ]
[((398, 473), 'tornado.options.define', 'define', (['"""port"""'], {'default': 'SERVER_PORT', 'help': '"""run on the given port"""', 'type': 'int'}), "('port', default=SERVER_PORT, help='run on the given port', type=int)\n", (404, 473), False, 'from tornado.options import define, options\n'), ((826, 848), 'memory.util.safety_certification', 'safety_certification', ([], {}), '()\n', (846, 848), False, 'from memory.util import refresh_certification, safety_certification\n')]
# Generated by Django 2.0.5 on 2018-06-06 07:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('it_purchase_app', '0016_purchase_support_user'), ] operations = [ migrations.RemoveField( model_name='purchase', name='support_user', ), ]
[ "django.db.migrations.RemoveField" ]
[((238, 304), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""purchase"""', 'name': '"""support_user"""'}), "(model_name='purchase', name='support_user')\n", (260, 304), False, 'from django.db import migrations\n')]
# View Modules from .common import * from .ajax import * from .admin import * from .other import * import smtplib def awards(request): data = {} today = date.fromtimestamp(time.time()) data["running_contest"] = False data["contest"] = Contest.objects.filter(startDate__lte=today, endDate__gte=today).order_by('-id') if data["contest"]: data["running_contest"] = True data["contest"] = data["contest"][0] data["time"] = str(data["contest"].endDate - today) if data["time"][0] == "-": data["time"] = "no time remaining" else: data["time"] = data["time"].split(",")[0] return render(request, "awards.html", data) def browse(request, page=1): page = int(page) data = {"title":" - Browse Items"} data["cookie"] = request.COOKIES # Get news data["news"] = News.objects.all().order_by("-id") data["show_news"] = False # Fetch the latest news post and see if it needs to be displayed if data["news"]: data["news"] = data["news"][0] if str(data["news"].timestamp)[:10] > request.COOKIES.get("latest_news", "1970-01-01"): data["show_news"] = True #Get items data["type"] = "browse" data["items"] = loadItems(page, data["type"]) data["itemCount"] = Submissions.objects.filter(Q(set="0") | Q(slot="set")).count() data["maxPage"] = int(math.ceil(data["itemCount"] / 10.0)) #Navigation data["pageCurrent"] = page data["pageList"] = range(max(1, page-3), min(page+4, data["maxPage"]+1)) return render(request, "browse.html", data) def browseUser(request, steamID="0", page=1): page = int(page) data = {"title":" - User Items"} #Get items data["type"] = "browse-"+steamID data["items"] = loadItems(page, data["type"]) data["itemCount"] = Submissions.objects.filter(Q(set="0") | Q(slot="set"), user__steamID=steamID).count() data["maxPage"] = int(math.ceil(data["itemCount"] / 10.0)) #Navigation data["pageCurrent"] = page data["pageList"] = range(max(1, page-3), min(page+4, data["maxPage"]+1)) return render(request, "browse.html", data) def contest(request, theme, page=1): page = int(page) data = {"title":" - Contest Entries"} #Get items data["type"] = "contest/" + theme data["items"] = loadItems(page, data["type"]) contest = Contest.objects.filter(theme=theme).order_by("-id")[0] data["itemCount"] = Submissions.objects.filter(Q(set="0") | Q(slot="set"), keywords__contains=theme, timestamp__gte=contest.startDate, timestamp__lte=contest.endDate).count() data["maxPage"] = int(math.ceil(data["itemCount"] / 10.0)) #Navigation data["pageCurrent"] = page data["pageList"] = range(max(1, page-3), min(page+4, data["maxPage"]+1)) return render(request, "browse.html", data) def create(request): data = {'tf':tf} data["user"] = getUser(request.COOKIES.get("session", None)) if data["user"]["steamID"] == "0": return redirect("/openid/login") if request.GET.get("debug"): data["debug"] = True # Check the user isn't banned if banned(data["user"]["steamID"], request): return redirect("/error/banned") # Check for Spycheck mode #if SPYCHECK and data["user"]["steamID"] == "0": # return redirect("/error/spycheck") # Check the user can still submit items today if data["user"]["submitted"] == data["user"]["max_submitted"]: return redirect("/error/max_submissions") return render(request, "create.html", data) def delete_comment(request): return HttpResponse("Delete", context_instance=RequestContext(request)) def error(request, type="unknown"): data = {"error":type} data["user"] = getUser(request.COOKIES.get("session", None)) if type == "banned": data["ban"] = Bans.objects.filter(Q(ip=request.META["REMOTE_ADDR"]) | Q(steamID=data["user"]["steamID"])).order_by('-id')[0] return render(request, "error.html", data) def generic(request, template, title=""): return render(request, template, {"title": title}) def images(request, item): data = {"title": " - Image Audit"} #data["item"] = tf.itemInfo(int(item))["item_name"] data["item"] = Item.objects.get(defindex=int(item)).item_name data["images"] = [] images = glob.glob(ROOT + "assets/items/"+str(item)+"/*.png") for image in images: data["images"].append(image[25:]) data["images"].sort() data["count"] = len(data["images"]) #data["next"] = return render(request, "images.html", data) def login(request): choices = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] shuffle(choices) nonce = (datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ") + "".join(choices[:6])) post_params = "openid.return_to="+URL+"openid/complete/?janrain_nonce="+nonce post_params += "&openid.realm="+URL+"&openid.ns=http://specs.openid.net/auth/2.0&openid.sreg.optional=email,fullname,nickname" post_params += "&openid.claimed_id=http://specs.openid.net/auth/2.0/identifier_select&openid.ns.sreg=http://openid.net/extensions/sreg/1.1" post_params += "&openid.identity=http://specs.openid.net/auth/2.0/identifier_select&openid.mode=checkid_setup" if not request.GET.get("janrain_nonce"): # Send request url = "https://steamcommunity.com/openid/login?"+(post_params) return redirect(url) else: # Check the response is valid new_params = request.GET.copy() new_params["openid.mode"] = "check_authentication" resp = urllib.request.urlopen("https://steamcommunity.com/openid/login"+"?"+new_params.urlencode()) body = resp.read().decode("utf-8") if "is_valid:true" not in body: return redirect("/error/login") # Valid login data = {} data["response"] = request.GET["openid.claimed_id"] data["id"] = request.GET["openid.claimed_id"][36:] # Set your Steam API key here data["url"] = "http://api.steampowered.com/ISteamUser/GetPlayerSummaries/v0002/?key=TODO&steamids="+data["id"] #Get public info try: data["info"] = json.loads(urllib.request.urlopen(data["url"]).read().decode("utf-8"))["response"]["players"][0] except: error_log = "==========\n" error_log += str(datetime.now()) + "\n" error_log += "ID: " + data["id"] + "\n" try: error_log += urllib.urlopen(data["url"]).read() + "\n" except: error_log + "Can't parse url " + data["url"] + "\n" output = open("/var/projects/tf2tags.com/assets/data/login_errors.log", "w") output.write(error_log) output.close() return redirect("/error/login") if not data["info"].get("profilestate"): return redirect("/error/login") #Get/Set User data user = Users.objects.filter(steamID=data["info"]["steamid"]) #Prepare response page response = redirect("/") if len(user) == 0: #New User s = SessionStore() s.save() data["key"] = s.session_key user = Users(steamID=data["info"]["steamid"], name=data["info"]["personaname"], profile=data["info"]["profileurl"], avatar=data["info"]["avatar"], session=data["key"]) else: s = SessionStore() s.save() user = user[0] data["key"] = user.session if data["key"] == "": data["key"] = s.session_key #Update user session in DB user = Users.objects.filter(steamID=data["info"]["steamid"])[0] user.session = data["key"] user.profile = data["info"]["profileurl"] user.avatar = data["info"]["avatar"] try: response.set_cookie('session', data["key"], max_age=(3600*24*30)) user.save() except: return redirect("/error/login") return response def logout(request): response = redirect("/") #Clear DB session user = Users.objects.filter(session=request.COOKIES.get("session", None)) if user: user[0].session = "" user[0].save() #Clear cookie response.delete_cookie('session') response.delete_cookie('sessionid') return response def newsArchive(request, id=None): data = {} if id == None: data["news"] = News.objects.all().order_by('-timestamp') return render(request, "newsArchive.html", data) elif id == "latest": data["news"] = News.objects.filter().order_by('-timestamp')[0] data["set_cookie"] = True return render(request, "newsPost.html", data) else: data["news"] = News.objects.get(pk=id) return render(request, "newsPost.html", data) def modifyItem(request, item): data = {} data["user"] = getUser(request.COOKIES.get("session", None)) # First confirm the item is the user's or the user is an admin itemID = item items = Submissions.objects.filter(pk=item) if items[0].set != "0": items = Submissions.objects.filter(set=items[0].set) if ((data["user"]["steamID"] != items[0].user.steamID) or (items[0].user.steamID == "0")): if not data["user"]["admin"]: return redirect("/") if request.POST.get("action"): if request.POST["action"] == "Confirm Deletion": set = request.POST["set_id"] if set == "0": tf2.deleteItem(request.POST["id"]) else: # Delete the set items = Submissions.objects.filter(set=set) for item in items: tf2.deleteItem(item.id) return redirect("/") else: item_ids = request.POST.getlist("item_id") items = Submissions.objects.filter(pk__in=item_ids) count = 0 names = request.POST.getlist("name") descs = request.POST.getlist("desc") keywords = request.POST.get("keywords") for item in items: # See if the name has been changed if (item.name != names[count] or item.desc != descs[count]): posted = datetime.strptime(str(item.timestamp)[:19], "%Y-%m-%d %H:%M:%S") now = datetime.now() days = (now - posted) # Change fields item.name = names[count] item.desc = descs[count] # If the item is a day old, delete votes/comments if days.days >= 1: item.upVotes = 0 item.downVotes = 0 item.score = 0 tf2.deleteVotes(itemID) item.keywords = keywords item.save() count += 1 return redirect(viewItem, item=itemID) posted = datetime.strptime(str(items[0].timestamp)[:19], "%Y-%m-%d %H:%M:%S") now = datetime.now() days = (now - posted) data["reset"] = (days.days >= 1) itemslist = [] for item in items: item.prepare() itemslist.append(item) # Remove set head from if len(itemslist) > 1: itemslist = itemslist[:-1] data['items'] = itemslist data["count"] = len(data["items"]) return render(request, "modifyItem.html", data) def profile(request, steamID="0"): data = {} data["user"] = getUser(request.COOKIES.get("session", None)) page = 1 comment_list = 10 # Comments to show per page comment_page = int(request.GET.get("cpage", 1)) data["next"] = comment_page + 1 data["prev"] = max(comment_page - 1, 1) if request.POST.get("name") and steamID != "0": if len(request.POST["name"].strip()) > 0: you = Users.objects.get(steamID=steamID) you.name = request.POST["name"] you.save() data["stats"] = getProfile(steamID) data["you"] = False if (data["user"]["steamID"] == data["stats"]["steamID"]) and data["user"]["steamID"] != "0": data["you"] = True # Latest Comments if data["you"]: comment_ids = {} commented_on = Submissions.objects.filter(Q(set="0") | Q(slot="set"), user__steamID=data["stats"]["steamID"], comments__gte=1).order_by("-id") for submission in commented_on: if not comment_ids.get(submission.id): comment_ids[submission.id] = submission.name comments = Comments.objects.filter(itemID__in=comment_ids).order_by("-timestamp")[(comment_list*(comment_page-1)):(comment_list*(comment_page-1))+comment_list] parsed_comments = [] parsed_ids = [] for comment in comments: if True or comment.itemID not in parsed_ids: comment.name = comment_ids[comment.itemID] parsed_comments.append(comment) parsed_ids.append(comment.itemID) data["comments"] = parsed_comments # Submissions - Only the latest 10 #data["submissions"] = Submissions.objects.filter(Q(set="0") | Q(slot="set"), user__steamID=data["stats"]["steamID"]).order_by("-id")[(10*(page-1)):(10*(page-1))+10] return render(request, "profile.html", data) def random(request): data = {"title":" - Random Items"} #Get items data["type"] = "random" data["items"] = loadItems(1, data["type"]) return render(request, "browse.html", data) def results(request, page=1): data = {} page = int(page) results = Submissions.objects.all() if request.GET.get("class") and not request.GET.get("base"): results = results.filter(role=request.GET["class"]) if request.GET.get("slot") and not request.GET.get("base"): results = results.filter(slot=request.GET["slot"]) if request.GET.get("base"): results = results.filter(base=request.GET["base"]) if request.GET.get("name"): results = results.filter(name__icontains=request.GET["name"]) if request.GET.get("desc"): results = results.filter(desc__icontains=request.GET["desc"]) if request.GET.get("start"): results = results.filter(timestamp__gte=request.GET["start"]) if request.GET.get("end"): results = results.filter(timestamp__lte=request.GET["end"]) if request.GET.get("keywords"): keywords = request.GET.get("keywords").lower().replace(", ", ",") results = results.filter(keywords__contains=keywords) if request.GET.get("rating"): results = results.filter(score__gte=request.GET["rating"]) # Order if request.GET.get("order"): if request.GET["order"] in ("timestamp", "score"): descend = "-" else: descend = "" results = results.order_by(descend + request.GET["order"], "-id") # Page data["itemCount"] = results.count() results = results[(page-1)*10:(page-1)*10+10] for item in results: item.prepare() #Get items data["type"] = "results" data["items"] = results data["maxPage"] = int(math.ceil(data["itemCount"] / 10.0)) #Navigation data["page"] = page data["pageCurrent"] = page data["pageList"] = range(max(1, page-2), min(page+7, data["maxPage"]+1)) data["qs"] = "?" + request.META["QUERY_STRING"] return render(request, "browse.html", data) def streak_search(request): """ This feature has been removed """ return redirect("/") """ start = datetime.now() data = {} data["post"] = request.POST if not request.POST.get("action"): data["results"] = [] return render_to_response('streak_search.html', data, context_instance=RequestContext(request)) market_data = json.loads(open("/var/projects/tf2tags.com/assets/data/streak_search.json").read()) # Process results results = [] data["meta"] = market_data["meta"] max_price = request.POST.get("max_price", 32767) if max_price == "": max_price = 32767 max_price = float(max_price) if market_data["meta"]["success"] != 1: return render_to_response('streak_search.html', data, context_instance=RequestContext(request)) for row in market_data["data"]: # General Filters if row["name"][:13] == "Strange Part:": continue if float(row["price"][1:]) > max_price: continue #else: # print float(row["price"][1:]), max_price # print float(row["price"][1:]) > float(max_price), " greater than max" # Item filters if not request.POST.get("show_specialized_fabricator") and "Specialized" == row["name"][:11] and " Kit Fabricator" in row["name"]: continue if not request.POST.get("show_professional_fabricator") and "Professional" == row["name"][:12] and " Kit Fabricator" in row["name"]: continue if not request.POST.get("show_killstreak_kit") and "Kit" == row["name"][-3:] and "Killstreak" == row["name"][:10]: continue if not request.POST.get("show_specialized_kit") and "Kit" == row["name"][-3:] and "Specialized Killstreak" == row["name"][:22]: continue if not request.POST.get("show_professional_kit") and "Kit" == row["name"][-3:] and "Professional Killstreak" == row["name"][:23]: continue if not request.POST.get("show_killstreak_item") and " Kit" not in row["name"] and " Fabricator" not in row["name"] and "Killstreak" in row["name"] and "Professional Killstreak" not in row["name"] and "Specialized Killstreak" not in row["name"]: continue if not request.POST.get("show_specialized_killstreak_item") and " Kit" not in row["name"] and " Fabricator" not in row["name"] and "Specialized Killstreak" in row["name"]: continue if not request.POST.get("show_professional_killstreak_item") and " Kit" not in row["name"] and " Fabricator" not in row["name"] and "Professional Killstreak" in row["name"]: continue # Rarity filters if not request.POST.get("show_unique") and "Vintage" not in row["name"] and "Genuine" not in row["name"] and "Strange" not in row["name"] and "Collector's" not in row["name"] and "Haunted" not in row["name"]: continue if not request.POST.get("show_vintage") and "Vintage" in row["name"]: continue if not request.POST.get("show_genuine") and "Genuine" in row["name"]: continue if not request.POST.get("show_strange") and "Strange" in row["name"]: continue if not request.POST.get("show_collectors") and "Collector's" in row["name"]: continue if not request.POST.get("show_haunted") and "Haunted" in row["name"]: continue results.append({"name":row["name"], "quantity":row["quantity"], "price":row["price"], "link":row["link"]}) data["results"] = sorted(results, key=lambda results: float(results["price"][1:])) data["displaying"] = len(results) return render_to_response('streak_search.html', data, context_instance=RequestContext(request)) """ def submitComment(request): user = getUser(request.COOKIES.get("session", None)) data = {} data["user"] = user if user["steamID"] == 0: return redirect("/") # Check the user isn't banned if banned(user["steamID"], request): return redirect("/error/banned") if request.POST["comment"] == "": return redirect("/") # Check the user still has comments left for today if data["user"]["posted_comments"] >= data["user"]["max_posted_comments"]: return redirect("/error/max_submissions") # Get user and update submission count user_account = Users.objects.get(pk=data["user"]["id"]) user_account.posted_comments += 1 user_account.save() data["user"]["posted_comments"] += 1 # This is "temporary" if "toggaf "[::-1] in request.POST["comment"].lower(): return redirect("/") # Save comment comment = Comments(itemID=int(request.POST["item"]), user_id=user["id"], ip=request.META["REMOTE_ADDR"], comment=request.POST["comment"][:500]) comment.save() # Update item's comments counter item = Submissions.objects.get(pk=int(request.POST["item"])) item.comments += 1 item.save() return redirect("/view-"+request.POST["item"]) def submitItem(request): data = {} data["user"] = getUser(request.COOKIES.get("session", None)) ip = request.META["REMOTE_ADDR"] # Check the user isn't banned if banned(data["user"]["steamID"], request): return redirect("/error/banned") # Check the user still has submissions left for today if data["user"]["steamID"] == "0": if SPYCHECK: return redirect("/") # Spy Checking mode today = date.fromtimestamp(time.time()) submitted = Submissions.objects.filter(ip=ip, timestamp__gte=today).count() if submitted >= 3: return redirect("/error/max_submissions") elif data["user"]["submitted"] >= data["user"]["max_submitted"]: return redirect("/error/max_submissions") # Get user user_account = Users.objects.get(pk=data["user"]["id"]) # Prepare Data items = [] post = json.loads(request.POST["submission"]) now = time.time() # Manage set info if len(post["items"]) > 1: item_set = True if post["meta"]["set_name"] == "": post["meta"]["set_name"] == "The Set With No Name" if post["meta"]["set_icon"] == "": post["meta"]["set_icon"] = "-10" set_id = str(now).replace(".","") + "-" + ip.replace(".", "") else: item_set = False set_id = "0" # Check for an item with the same name + desc + base if it's not a set. #print("POST IS ", post) if not item_set and duplicate_check(post["items"][0]["name"], post["items"][0]["desc"], post["items"][0]["base"]): return redirect("/error/duplicate") # Loop over each item in the submission for item in post["items"]: if item["style"] == "": item["style"] = 0 if item["color"] == "": item["color"] = "FFD700" if item["prefix"] == "Unique": item["prefix"] = "" # Confirm no-paint yes-style image exists if (int(item["style"]) > 0) and (item["paint"] == ""): if not os.path.isfile("/var/projects/tf2tags.com/assets/items/"+str(item["defindex"])+"-"+str(item["style"])+".png"): item["style"] = 0 item = Submissions(set=set_id, defindex=item["defindex"], role=item["role"], slot=item["slot"], base=item["base"], name=item["name"][:40], desc=item["desc"][:80], prefix=item["prefix"], filter=item["filter"], color=item["color"], paint=item["paint"], particles=item["particles"], style=item["style"], keywords=post["meta"]["keywords"].lower(), user=user_account, ip=ip) # Slur check words = item.name.split(" ") + item.desc.split(" ") for slur in SLURS: if slur.lower() in words: # Congrats, you're getting banned if data["user"]["steamID"] == "0": # Ban anon ban = Bans(ip=ip, steamID="-", notes="Automatic ban for slurs.", begins=date.fromtimestamp(time.time()), ends=date.fromtimestamp(time.time() + 86400)) else: ban = Bans(ip=ip, steamID=data["user"]["steamID"], notes="Automatic ban for slurs.", begins=date.fromtimestamp(time.time()), ends=date.fromtimestamp(time.time() + 43200)) ban.save() return redirect("/error/banned") # Validate or Break valid = tf.validate(item) if valid == "SUCCESS": items.append(item) else: data["failure"] = json.dumps(item) data["errors"] = valid return render_to_response('submissionError.html', data, context_instance=RequestContext(request)) # Save items for item in items: item.save() outgoing_id = items[-1].id # Save set head if item_set: item = Submissions(set=set_id, defindex=post["meta"]["set_icon"], slot="set", base="Set Head", name=post["meta"]["set_name"][:40], desc="Contains "+str(len(post["items"]))+" Items", keywords=post["meta"]["keywords"].lower(), user=user_account, ip=ip) item.save() outgoing_id = item.id if (len(items) > 0): # Update submission count user_account.submitted += 1 user_account.save() data["user"]["submitted"] += 1 return redirect(viewItem, item=outgoing_id) return redirect("/") def submitReport(request): user = getUser(request.COOKIES.get("session", None)) # Save report report = Flagged(itemID=int(request.POST["item"]), type=request.POST["reason"], explanation=request.POST["explanation"], ip=request.META["REMOTE_ADDR"], steamID=user["steamID"]) report.save() # Get item item = Submissions.objects.filter(pk=int(request.POST["item"])) if len(item) != 1: return redirect("/view-"+request.POST["item"]) item = item[0] start_date = datetime.now() end_date = start_date # Email me about it! REPORT_MAIL = "An item has been reported on tf2tags.\n\nThe item in question can be found here: http://tf2tags.com/view-{}\n\nSUBMISSION INFORMATION:\nBase: {}\nName: {}\nDesc: {}\n\nIP: {}\nSteamID: {}\nAuthor: {}\n\n\nREPORT INFORMATION:\nItem #: {}\nReason: {}\nExplanation: {}\nIP: {}\nSteamID: {}\nSteam Name: {}\n\nBAN QUERY:\n\nINSERT INTO tf2tags_bans (ip, steamID, notes, begins, ends) VALUES ('{}', '{}', 'NOTES', '{}', '{}');" #SERVER = "tf2tags.com" SERVER = "localhost" FROM = "TODO" TO = ["TODO"] SUBJ = "Item #"+request.POST["item"]+" - Reported for " + request.POST["reason"] TEXT = REPORT_MAIL.format(item.id, item.base, item.name, item.desc, item.ip, item.user.steamID, "---", item.id, request.POST["reason"], request.POST["explanation"], request.META["REMOTE_ADDR"], user["steamID"], user["name"], item.ip, item.user.steamID, start_date, end_date) message = """\ From: %s To: %s Subject: %s %s """ % (FROM, ", ".join(TO), SUBJ, TEXT) #print message try: server = smtplib.SMTP(SERVER) server.sendmail(FROM, TO, message) server.quit() except: print("Could not send email") print(message) None return redirect("/view-"+request.POST["item"]) def summary(request): steam_id = request.GET.get("steam_id") profile = getProfile(steam_id) return HttpResponse(json.dumps(profile)) def topItems(request, days=0, page=1): page = int(page) data = {} #Get items data["type"] = "top/"+str(days) data["items"] = loadItems(page, data["type"]) if days == 0: data["itemCount"] = Submissions.objects.filter(Q(set="0") | Q(slot="set")).count() data["type"] = "top" else: days = int(days) now = datetime.utcnow().replace(tzinfo=utc) timediff = now - timedelta(days=days) data["itemCount"] = Submissions.objects.filter(Q(set="0") | Q(slot="set"), timestamp__gte=(timediff)).count() data["maxPage"] = int(math.ceil(data["itemCount"] / 10.0)) #Navigation data["pageCurrent"] = page data["pageList"] = range(max(1, page-2), min(page+7, data["maxPage"]+1)) return render(request, "browse.html", data) def viewItem(request, item=1): data = {"viewing":True} items = Submissions.objects.filter(pk=item) if len(items) < 1: return redirect("/browse") if items[0].set != "0": items = Submissions.objects.filter(set=items[0].set) itemslist = [] for item in items: item.prepare() if item.paint != "": for x in range(0,len(tf.hex)): if item.paint == tf.hex[x]: item.paint_name = tf.paints[x] break if item.style != 0: data["style_name"] = Style.objects.filter(defindex_id=item.defindex, style_num=item.style)[0].name itemslist.append(item) data["identifier"] = "Item #"+str(items[len(items)-1].id) data["upVotes"] = items[len(items)-1].upVotes data["downVotes"] = items[len(items)-1].downVotes data["ktd"] = items[len(items)-1].ktd data["ktdColor"] = items[len(items)-1].ktdColor if items[0].set != "0": data["identifier"] = items[len(items)-1].name # Get comments if (itemslist[-1].comments > 0): data["comments"] = Comments.objects.filter(itemID=itemslist[-1].id).order_by("-id") else: data["comments"] = [] data['items'] = itemslist data["count"] = len(data["items"]) return render(request, "viewItem.html", data) def votes_item(request, item): data = {} offset = int(request.GET.get("offset", 0)) data["next"] = offset + 25 data["prev"] = max(offset - 25, 0) votes = Votes.objects.filter(itemID=item).order_by("-timestamp")[offset:offset+25] data["votes"] = votes return render(request, "votes_item.html", data) def votes_user(request, vote_id): data = {} offset = int(request.GET.get("offset", 0)) data["next"] = offset + 25 data["prev"] = max(offset - 25, 0) source = Votes.objects.get(id=vote_id) votes = Votes.objects.filter(ip=source.ip).order_by("-timestamp")[offset:offset+25] # Find the submission authors item_ids = [] for vote in votes: item_ids.append(vote.itemID) items = Submissions.objects.filter(id__in=item_ids) for vote in votes: for item in items: if vote.itemID == item.id: vote.author = item.user.name break data["votes"] = votes data["voter_key"] = source.public() data["item"] = source.itemID return render(request, "votes_user.html", data) def winners(request, year=2013): data = {} #contests = Contest.objects.filter(endDate__gte=str(year)+"-01-01", endDate__lte=str(year)+"-12-31") contests = Contest.objects.all().order_by("-id") winners = [] themes = [] for winner in contests: if winner.winner != 0: winners.append(winner.winner) themes.append(winner.theme) # Get winning items items = Submissions.objects.filter(pk__in=winners).order_by('-id') prevDate = "1970-01-01" count = 0 for item in items: prevDate = item.prepare(prevDate) item.theme = themes[count] count += 1 data["items"] = items return render(request, "winners.html", data) def test(request, page=1): from django import VERSION return HttpResponse("V"+str(VERSION))
[ "smtplib.SMTP" ]
[((27139, 27159), 'smtplib.SMTP', 'smtplib.SMTP', (['SERVER'], {}), '(SERVER)\n', (27151, 27159), False, 'import smtplib\n')]
import matplotlib.pyplot as plt import numpy as np a = np.loadtxt('/home/doublepoints/Documents/selfdriving-T3/CarND-Semantic-Segmentation/loss/20180919222812.log') print(a) x = np.arange(0,50,1,dtype=int) y =a plt.plot(x,y) plt.xlabel('epoch') plt.ylabel('loss') plt.show()
[ "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.loadtxt", "numpy.arange", "matplotlib.pyplot.show" ]
[((56, 175), 'numpy.loadtxt', 'np.loadtxt', (['"""/home/doublepoints/Documents/selfdriving-T3/CarND-Semantic-Segmentation/loss/20180919222812.log"""'], {}), "(\n '/home/doublepoints/Documents/selfdriving-T3/CarND-Semantic-Segmentation/loss/20180919222812.log'\n )\n", (66, 175), True, 'import numpy as np\n'), ((181, 211), 'numpy.arange', 'np.arange', (['(0)', '(50)', '(1)'], {'dtype': 'int'}), '(0, 50, 1, dtype=int)\n', (190, 211), True, 'import numpy as np\n'), ((215, 229), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (223, 229), True, 'import matplotlib.pyplot as plt\n'), ((229, 248), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""epoch"""'], {}), "('epoch')\n", (239, 248), True, 'import matplotlib.pyplot as plt\n'), ((249, 267), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""loss"""'], {}), "('loss')\n", (259, 267), True, 'import matplotlib.pyplot as plt\n'), ((269, 279), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (277, 279), True, 'import matplotlib.pyplot as plt\n')]
from client import Client import numpy as np import configparser from utilities import * # Handle configuration file config = configparser.ConfigParser() config.read('config.ini') binance_config = config['Binance Futures'] order_layout_mode = binance_config['OrderLayoutMode'] if order_layout_mode not in ('constant', 'incrementalRising', 'incrementalFalling'): print('Wrong layout mode value in config.ini') exit(-1) api_key = binance_config['ApiKey'] api_secret = binance_config['ApiSecret'] is_testnet = str2bool(binance_config['Testnet']) margin_type = binance_config['MarginType'].upper() is_post_only = str2bool(binance_config['PostOnly']) print('Connecting to Binance...') client = Client(api_key=api_key, api_secret=api_secret, testnet=is_testnet) exchange_info = client.futures_exchange_info() futures_account_positions = client.futures_account()['positions'] available_balance_usdt = float(client.futures_account()['availableBalance']) symbol = input('Trading pair [BTCUSDT]: ').upper() or 'BTCUSDT' # Show ticker info tickers = client.get_symbol_ticker() user_ticker = find_object(tickers, symbol, 'symbol') try: print("%s price: %s" % (symbol, user_ticker['price'])) except NameError: print('Wrong symbol, use the same format as \'BTCUSDT\'') exit(-1) print('Current balance: %g USDT' % available_balance_usdt) leverage = int(input('Leverage to use [1]: ') or '1') if order_layout_mode == 'constant': single_amount_crypto = float(input('Constant amount to layer in %s: ' % symbol)) delta_amount_crypto = 0 else: single_amount_crypto = float(input('Initial amount to layer in %s: ' % symbol)) delta_amount_crypto = float(input('Increment for each order: ')) from_price = float(input('First price: ')) to_price = float(input('Last price: ')) side = input('Long or Short? [short] ').lower() futures_side = 'BUY' if side == 'long' else 'SELL' # start layering from prices closer to market price if (futures_side == 'BUY' and from_price < to_price) or (futures_side == 'SELL' and from_price > to_price): from_price, to_price = to_price, from_price available_margin = available_balance_usdt * leverage max_n = max_orders_per_interval(from_price, to_price, available_margin, single_amount_crypto, order_layout_mode, delta_amount_crypto) max_n = max_n if max_n < 101 else '100+' orders_input = 'How many orders [Max = {0}]? '.format(str(max_n)) order_num = int(input(orders_input)) cur_leverage = find_object(futures_account_positions, symbol, 'symbol')['leverage'] cur_isolated = find_object(futures_account_positions, symbol, 'symbol')['isolated'] exchange_symbols = exchange_info['symbols'] asset_precision = find_object(exchange_symbols, symbol, 'symbol')['quantityPrecision'] usdt_precision = find_object(exchange_symbols, symbol, 'symbol')['pricePrecision'] # Truncate inputs if order_layout_mode == 'constant': single_amount_crypto = float(truncate(single_amount_crypto, asset_precision)) else: single_amount_crypto = float(truncate(single_amount_crypto, asset_precision)) delta_amount_crypto = float(truncate(delta_amount_crypto, asset_precision)) if int(cur_leverage) != leverage: client.futures_change_leverage(symbol=symbol, leverage=leverage) print('Changed leverage to ' + str(leverage)) cur_margin = 'CROSS' if cur_isolated == False else 'ISOLATED' if cur_margin != margin_type: client.futures_change_margin_type(symbol=symbol, marginType=margin_type) print('Changed margin type to ' + margin_type) order_prices = np.linspace(from_price, to_price, num=order_num).round(usdt_precision) if order_layout_mode == 'incrementalFalling': order_prices = np.flipud(order_prices) time_in_force = 'GTC' if is_post_only == False else 'GTX' if order_layout_mode == 'constant': for order_price in order_prices: print('Setting order: %s %g of %s @%g USDT' % (futures_side, single_amount_crypto, symbol, order_price)) client.futures_create_order(symbol=symbol, side=futures_side, type='LIMIT', quantity=single_amount_crypto, price=order_price, timeInForce=time_in_force) else: order_quantity = float(truncate(single_amount_crypto, asset_precision)) # python randomly adds decimals for x in range(order_num): print('Setting order: %s %g of %s @%g USDT' % (futures_side, order_quantity, symbol, order_prices[x])) client.futures_create_order(symbol=symbol, side=futures_side, type='LIMIT', quantity=order_quantity, price=order_prices[x], timeInForce=time_in_force) order_quantity = float(truncate(order_quantity + delta_amount_crypto, asset_precision)) print('Done')
[ "numpy.linspace", "configparser.ConfigParser", "client.Client", "numpy.flipud" ]
[((127, 154), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (152, 154), False, 'import configparser\n'), ((699, 765), 'client.Client', 'Client', ([], {'api_key': 'api_key', 'api_secret': 'api_secret', 'testnet': 'is_testnet'}), '(api_key=api_key, api_secret=api_secret, testnet=is_testnet)\n', (705, 765), False, 'from client import Client\n'), ((3646, 3669), 'numpy.flipud', 'np.flipud', (['order_prices'], {}), '(order_prices)\n', (3655, 3669), True, 'import numpy as np\n'), ((3510, 3558), 'numpy.linspace', 'np.linspace', (['from_price', 'to_price'], {'num': 'order_num'}), '(from_price, to_price, num=order_num)\n', (3521, 3558), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Usage: $./find_uuids_by_addr.py address path_to_jsons import os import json import sys def get_files_in_directory(dirpath): files = [f for f in os.listdir(dirpath) if os.path.isfile(f)] return files def json_files_loader(jsons_list): # jsons_list - list of files to read dicts_list = [] for json_file in jsons_list: if ".json" in json_file: with open(json_file, 'r') as f: fstring = (f.read()).encode('utf-8').strip() jsf = json.loads(fstring) dicts_list.append(jsf) return dicts_list def find_uuids_by_addr(dirpath, address): """Returns list with all swaps(uuids) made to/from address""" jflist = get_files_in_directory(dirpath) dicts = json_files_loader(jflist) swaps_list = [] for d in dicts: swap_uuid = d.get('uuid') print('.. checking ' + swap_uuid) events = d.get('events') for event in events: try: from_field = event.get('event').get('data').get('from') if address in from_field: swaps_list.append(swap_uuid) break to_field = event.get('event').get('data').get('to') if address in to_field: swaps_list.append(swap_uuid) break except Exception as e: pass return swaps_list def main(): """Prints all swaps(uuids) made to/from address if any""" try: address = sys.argv[1] try: path = sys.argv[2] swaps = find_uuids_by_addr(path, address) if swaps: print("\nfound in swaps : " + str(swaps)) else: print("\n" + address + " not found") except Exception as e: print("Error: " + str(e)) except Exception as e: print(e) print("Usage: ./find_uuids_by_addr.py address path_to_jsons") if __name__ == '__main__': main()
[ "os.path.isfile", "json.loads", "os.listdir" ]
[((185, 204), 'os.listdir', 'os.listdir', (['dirpath'], {}), '(dirpath)\n', (195, 204), False, 'import os\n'), ((208, 225), 'os.path.isfile', 'os.path.isfile', (['f'], {}), '(f)\n', (222, 225), False, 'import os\n'), ((542, 561), 'json.loads', 'json.loads', (['fstring'], {}), '(fstring)\n', (552, 561), False, 'import json\n')]
import re __all__ = ['strip_newlines'] def strip_newlines(contents, max_consecutive_newlines): """Removes consecutive newlines in excess of max_consecutive_newlines. If max_consecutive_newlines < 0, the contents is returned unchanged. If max_consecutive_newlines == 0, all strings of consecutive newlines are replaced by a single space. If max_consecutive_newlines > 0, all strings of consecutive newlines in excess of max_consecutive_newlines are replaced by max_consecutive_newlines newlines. """ if max_consecutive_newlines < 0: return contents elif max_consecutive_newlines == 0: return re.sub(r'\n+', ' ', contents) else: newlines = r'\n' * max_consecutive_newlines return re.sub(newlines + '+', newlines, contents)
[ "re.sub" ]
[((656, 685), 're.sub', 're.sub', (['"""\\\\n+"""', '""" """', 'contents'], {}), "('\\\\n+', ' ', contents)\n", (662, 685), False, 'import re\n'), ((763, 805), 're.sub', 're.sub', (["(newlines + '+')", 'newlines', 'contents'], {}), "(newlines + '+', newlines, contents)\n", (769, 805), False, 'import re\n')]
from flask import Flask from flask_restful import Resource, Api, reqparse import glob import pandas as pd import json import os import sys app = Flask(__name__) api = Api(app) DATA_PATH = sys.argv[1] IMG_PATHS = os.path.join(DATA_PATH, 'img', '*.jpg') TAG_STORE_FILE = os.path.join(DATA_PATH, 'is_car_tag.dict') ipaths = glob.iglob(IMG_PATHS) car_models = pd.DataFrame( data = [p for p in ipaths], columns = ['img_path'] ) car_models['car_model'] = car_models.img_path.map(lambda s: '-'.join(s.split('/')[-1].split('__')[0].split('-')[1:-2])) car_models['img_name'] = car_models.img_path.str.split('/').map(lambda x: x[-1]) with open(TAG_STORE_FILE) as fl: is_car = json.load(fl) def generate_dataset(): dataset = car_models.sample(frac=1).to_dict(orient='records') for data in dataset: if data['img_path'] in is_car: continue yield data dataset_generator = generate_dataset() parser = reqparse.RequestParser() parser.add_argument('img_path') parser.add_argument('label') class ImageLabeler(Resource): def get(self): payload = dataset_generator.next() N = len(is_car) car_count = sum(is_car.values()) not_car_count = N - car_count payload['car_count'] = car_count payload['not_car_count'] = not_car_count return payload def post(self): args = parser.parse_args() is_car[args['img_path']] = int(args['label']) data = {'img_path': args['img_path'], 'label': int(args['label'])} if len(is_car) % 10 == 0: print('Saving {} labeled data...'.format(len(is_car))) with open(TAG_STORE_FILE, 'w') as fl: json.dump(is_car, fl) print(data) return data, 201 api.add_resource(ImageLabeler, '/') if __name__ == '__main__': # Start a SimpleHttpServer in the image directory # python -m SimpleHTTPServer 8800 # <ip>:8800/<image name> app.run(host='0.0.0.0', debug=True)
[ "flask_restful.reqparse.RequestParser", "glob.iglob", "flask_restful.Api", "flask.Flask", "os.path.join", "json.load", "pandas.DataFrame", "json.dump" ]
[((148, 163), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (153, 163), False, 'from flask import Flask\n'), ((170, 178), 'flask_restful.Api', 'Api', (['app'], {}), '(app)\n', (173, 178), False, 'from flask_restful import Resource, Api, reqparse\n'), ((216, 255), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""img"""', '"""*.jpg"""'], {}), "(DATA_PATH, 'img', '*.jpg')\n", (228, 255), False, 'import os\n'), ((273, 315), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""is_car_tag.dict"""'], {}), "(DATA_PATH, 'is_car_tag.dict')\n", (285, 315), False, 'import os\n'), ((326, 347), 'glob.iglob', 'glob.iglob', (['IMG_PATHS'], {}), '(IMG_PATHS)\n', (336, 347), False, 'import glob\n'), ((361, 421), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': '[p for p in ipaths]', 'columns': "['img_path']"}), "(data=[p for p in ipaths], columns=['img_path'])\n", (373, 421), True, 'import pandas as pd\n'), ((949, 973), 'flask_restful.reqparse.RequestParser', 'reqparse.RequestParser', ([], {}), '()\n', (971, 973), False, 'from flask_restful import Resource, Api, reqparse\n'), ((685, 698), 'json.load', 'json.load', (['fl'], {}), '(fl)\n', (694, 698), False, 'import json\n'), ((1701, 1722), 'json.dump', 'json.dump', (['is_car', 'fl'], {}), '(is_car, fl)\n', (1710, 1722), False, 'import json\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Ice core AR(n) fits Created on Wed May 12 14:00:10 2021 @author: lizz """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import statsmodels.api as sm from statsmodels.tsa.ar_model import AutoReg, ar_select_order ## Read in Greenland time series core_accum_fpath = '/Users/lizz/Documents/GitHub/Data_unsynced/Ice_core_accum/Andersen_etal_2006_Annual_Accumulation_22Mar2011-trimmed.csv' core_tseries = pd.read_csv(core_accum_fpath, index_col=0, parse_dates=[0]) core_names = core_tseries.columns series_to_test = core_tseries ## Pre-process data anomaly_series = series_to_test - series_to_test.mean() def adf_test(timeseries): print('A timeseries ready for AR(n) fitting should have ADF test statistic more negative than critical value (reject the null hypothesis).') print ('Results of Dickey-Fuller Test:') dftest = sm.tsa.stattools.adfuller(timeseries, autolag='AIC') dfoutput = pd.Series(dftest[0:4], index=['Test Statistic','p-value','#Lags Used','Number of Observations Used']) for key,value in dftest[4].items(): dfoutput['Critical Value (%s)'%key] = value print (dfoutput) def kpss_test(timeseries): print('A timeseries ready for AR(n) fitting should have KPSS statistic lower than the critical value (fail to reject the null hypothesis).') print ('Results of KPSS Test:') kpsstest = sm.tsa.stattools.kpss(timeseries, regression='c', nlags="auto") kpss_output = pd.Series(kpsstest[0:3], index=['Test Statistic','p-value','Lags Used']) for key,value in kpsstest[3].items(): kpss_output['Critical Value (%s)'%key] = value print (kpss_output) stationarity_test_case = anomaly_series[core_names[0]][~np.isnan(anomaly_series[core_names[0]])] adf_test(stationarity_test_case) kpss_test(stationarity_test_case) # ## Fit an AR[n] model # n = 1 # for m in model_names: # mod = AutoReg(anomaly_series[m], n, seasonal=True) # results = mod.fit() # print('Bayesian Information Criterion for model {}, AR({}): {}'.format( # m, n, results.bic)) ## Compile BIC for different AR[n] models test_period = anomaly_series.iloc[150:180] comparison_n = range(1,6) bic_per_n = pd.DataFrame(index=comparison_n, columns=core_names) for c in core_names: for n in comparison_n: mod = AutoReg(test_period[c], n, seasonal=False) results = mod.fit() bic_per_n[c][n] = results.bic b = bic_per_n.astype(float) ## Is there a best fit AR[n], as judged by BIC? bic_difference = b.transform(lambda x: x-x.min()) print('Among AR(n) fits with n in {}: \r'.format(comparison_n)) print('Best fit n per model is as follows: \n', b.idxmin()) for c in core_names: bic_difference[c] = pd.to_numeric(bic_difference[c]) if any(bic_difference[c] > 2): print('Difference is statistically significant for core {}.'.format(c)) else: print('No significant difference among fits to {} output'.format(c))
[ "pandas.Series", "pandas.read_csv", "statsmodels.api.tsa.stattools.adfuller", "statsmodels.api.tsa.stattools.kpss", "pandas.to_numeric", "numpy.isnan", "statsmodels.tsa.ar_model.AutoReg", "pandas.DataFrame" ]
[((480, 539), 'pandas.read_csv', 'pd.read_csv', (['core_accum_fpath'], {'index_col': '(0)', 'parse_dates': '[0]'}), '(core_accum_fpath, index_col=0, parse_dates=[0])\n', (491, 539), True, 'import pandas as pd\n'), ((2235, 2287), 'pandas.DataFrame', 'pd.DataFrame', ([], {'index': 'comparison_n', 'columns': 'core_names'}), '(index=comparison_n, columns=core_names)\n', (2247, 2287), True, 'import pandas as pd\n'), ((912, 964), 'statsmodels.api.tsa.stattools.adfuller', 'sm.tsa.stattools.adfuller', (['timeseries'], {'autolag': '"""AIC"""'}), "(timeseries, autolag='AIC')\n", (937, 964), True, 'import statsmodels.api as sm\n'), ((980, 1088), 'pandas.Series', 'pd.Series', (['dftest[0:4]'], {'index': "['Test Statistic', 'p-value', '#Lags Used', 'Number of Observations Used']"}), "(dftest[0:4], index=['Test Statistic', 'p-value', '#Lags Used',\n 'Number of Observations Used'])\n", (989, 1088), True, 'import pandas as pd\n'), ((1420, 1483), 'statsmodels.api.tsa.stattools.kpss', 'sm.tsa.stattools.kpss', (['timeseries'], {'regression': '"""c"""', 'nlags': '"""auto"""'}), "(timeseries, regression='c', nlags='auto')\n", (1441, 1483), True, 'import statsmodels.api as sm\n'), ((1502, 1576), 'pandas.Series', 'pd.Series', (['kpsstest[0:3]'], {'index': "['Test Statistic', 'p-value', 'Lags Used']"}), "(kpsstest[0:3], index=['Test Statistic', 'p-value', 'Lags Used'])\n", (1511, 1576), True, 'import pandas as pd\n'), ((2757, 2789), 'pandas.to_numeric', 'pd.to_numeric', (['bic_difference[c]'], {}), '(bic_difference[c])\n', (2770, 2789), True, 'import pandas as pd\n'), ((1753, 1792), 'numpy.isnan', 'np.isnan', (['anomaly_series[core_names[0]]'], {}), '(anomaly_series[core_names[0]])\n', (1761, 1792), True, 'import numpy as np\n'), ((2350, 2392), 'statsmodels.tsa.ar_model.AutoReg', 'AutoReg', (['test_period[c]', 'n'], {'seasonal': '(False)'}), '(test_period[c], n, seasonal=False)\n', (2357, 2392), False, 'from statsmodels.tsa.ar_model import AutoReg, ar_select_order\n')]
# Copyright 2011-2018 Rumma & Ko Ltd # License: BSD, see LICENSE for more details. """ Some utility functions. """ from builtins import str # from builtins import object from future.types import newstr import six import datetime from functools import partial from etgen import etree from django.utils.functional import Promise from django.utils.encoding import force_text def join_elems(elems, sep=' '): """ Examples: >>> join_elems([1, 2, 3]) [1, ' ', 2, ' ', 3] >>> join_elems([1, 2, 3],' / ') [1, ' / ', 2, ' / ', 3] >>> join_elems([]) [] """ if not callable(sep): sep_value = sep def sep(): return sep_value l = [] s = None for e in elems: if s is not None: l.append(s) s = sep() l.append(e) return l def forcetext(iter): """ Resolve any lazy translatable strings. Utility function for lxml element trees. """ for i in iter: if isinstance(i, Promise): yield str(i) else: yield i def pretty_print(elem): """ Return a pretty-printed XML string for the Element. """ return prettify(etree.tostring(elem, 'utf-8')) # the following also indented: # from http://renesd.blogspot.com/2007/05/pretty-print-xml-with-python.html # via http://broadcast.oreilly.com/2010/03/pymotw-creating-xml-documents.html #~ from xml.dom import minidom #~ rough_string = etree.tostring(elem, 'utf-8') #~ reparsed = minidom.parseString(rough_string) #~ return reparsed.toprettyxml(indent=" ") def prettify(s): return s.replace('><', '>\n<') def compatstr(s): """ The `python-future <http://python-future.org/>`__ package introduces a special helper class `newstr` which simulates, under Python 2, the behaviour of Python 3 strings. But `xml.etree.ElementTree <https://docs.python.org/2/library/xml.etree.elementtree.html>`__ in Python 2 doesn't know about `python-future` and produces invalid XML when you feed it with such a string. So this function converts any `newstr` back to a real newstr. TODO: Not yet tested under Python 3. At the best it is just unefficient. """ # assert_pure(s) if six.PY2 and isinstance(s, newstr): return six.text_type(s) return s RESERVED_WORDS = frozenset(""" and del from not while as elif global or with assert else if pass yield break except import print class exec in raise continue finally is return def for lambda try """.split()) TYPEMAP = { #~ datetime.datetime: py2str, #~ IncompleteDate : lambda e,v : str(v), datetime.datetime: lambda e, v: v.strftime("%Y%m%dT%H%M%S"), datetime.date: lambda e, v: v.strftime("%Y-%m-%d"), int: lambda e, v: str(v), } class Namespace(object): """ An XML namespace. Base class for :class:`etgen.html.HtmlNamespace` and the namespaces defined in :mod:`etgen.intervat`. """ prefix = None targetNamespace = None names = None def __init__(self, targetNamespace=None, names=None, prefix=None): #~ if prefix is not None: #~ self.prefix = prefix #~ kw.setdefault('typemap',TYPEMAP) #~ kw.setdefault('makeelement',self.makeelement) #~ nsmap = kw.setdefault('nsmap',{}) if prefix is not None: self.prefix = prefix if names is not None: self.names = names if targetNamespace is not None: self.targetNamespace = targetNamespace if self.targetNamespace is not None: #~ kw.update(namespace=self.targetNamespace) self._ns = '{' + self.targetNamespace + '}' if self.prefix is not None: etree.register_namespace(self.prefix, self.targetNamespace) #~ if prefix: #~ nsmap[prefix] = self.targetNamespace #~ if used_namespaces is not None: #~ self.used_namespaces = used_namespaces #~ if self.used_namespaces is not None: #~ for ns in self.used_namespaces: #~ nsmap[ns.prefix] = ns.targetNamespace #~ self._element_maker = ElementMaker(**kw) #~ self._source_elements = {} if self.names is not None: self.define_names(self.names) self.setup_namespace() def iselement(self, *args, **kw): return etree.iselement(*args, **kw) def setup_namespace(self): pass def tostring(self, element, *args, **kw): class dummy(object): pass data = [] file = dummy() file.write = data.append if self.targetNamespace is not None: kw.setdefault('default_namespace', self.targetNamespace) etree.ElementTree(element).write(file, *args, **kw) return b"".join(data).decode("utf-8") def tostring_pretty(self, *args, **kw): #~ kw.setdefault('xml_declaration',False) #~ kw.setdefault('encoding','utf-8') #~ kw.update(xml_declaration=False) #~ kw.update(encoding='utf-8') s = self.tostring(*args, **kw) #~ return s #~ return minidom.parseString(s).toprettyxml(indent=" ") return prettify(s) def addns(self, tag): if self.targetNamespace is None or tag[0] == "{": return tag return self._ns + tag def makeattribs(self, **kw): #~ ns = self._element_maker._namespace #~ if ns is None: return kw xkw = dict() for k, v in list(kw.items()): k = getattr(self, k).args[0] # convert iname to tagname xkw[self.addns(compatstr(k))] = compatstr(v) return xkw def create_element(self, tag, *children, **attrib): nsattrib = self.makeattribs(**attrib) tag = self.addns(tag) elem = etree.Element(tag, nsattrib) for item in children: if isinstance(item, Promise): item = force_text(item) # assert_pure(item) if isinstance(item, dict): elem.attrib.update(self.makeattribs(**item)) elif isinstance(item, six.string_types): # assert_pure(item) #~ if len(elem) and len(elem[-1]) == 0: if len(elem): last = elem[-1] last.tail = (last.tail or "") + item else: elem.text = (elem.text or "") + item elif etree.iselement(item): elem.append(item) else: raise TypeError("bad argument: %r" % item) #~ print "20130805 added %s --> %s" % (item,self.tostring(elem)) return elem def define_names(self, names): if isinstance(names, six.string_types): raise Exception("{} must now call itself split().".format( self)) for tag in names: iname = tag.replace("-", "_") iname = iname.replace(".", "_") #~ if iname in ('class','for','in','def'): if iname in RESERVED_WORDS: iname += "_" #~ setattr(self,iname,getattr(self._element_maker,name)) p = partial(self.create_element, tag) setattr(self, iname, p) def getnsattr(self, elem, name): #~ if self.targetNamespace is None or name.startswith('{'): #~ return elem.get(name) return elem.get(self._element_maker._namespace + name) #~ def update_attribs(self,root,**kw): def update(self, root, **kw): root.attrib.update(self.makeattribs(**kw)) def add_child(self, parent, _name, *args, **kw): ecl = getattr(self, _name) #~ kw = self.makeattribs(**kw) #~ print 20120420, kw e = ecl(*args, **kw) parent.append(e) return e def fromstring(self, s, **kwargs): """Build an element tree from the given XML source string. This just forwards to the :meth:`xml.etree.ElementTree.fromstring` library function. See the `Parsing XML <https://docs.python.org/2.7/library/xml.etree.elementtree.html#parsing-xml>`__ section of the Python docs. """ return etree.etree.fromstringlist([s], **kwargs) def raw(self, *args): """Parses the given string into an XML Element.""" return RAW(*args) RAW = etree.XML def _test(): import doctest doctest.testmod() if __name__ == "__main__": _test()
[ "etgen.etree.iselement", "etgen.etree.register_namespace", "builtins.str", "etgen.etree.ElementTree", "django.utils.encoding.force_text", "etgen.etree.Element", "etgen.etree.etree.fromstringlist", "doctest.testmod", "etgen.etree.tostring", "functools.partial", "six.text_type" ]
[((8559, 8576), 'doctest.testmod', 'doctest.testmod', ([], {}), '()\n', (8574, 8576), False, 'import doctest\n'), ((1187, 1216), 'etgen.etree.tostring', 'etree.tostring', (['elem', '"""utf-8"""'], {}), "(elem, 'utf-8')\n", (1201, 1216), False, 'from etgen import etree\n'), ((2319, 2335), 'six.text_type', 'six.text_type', (['s'], {}), '(s)\n', (2332, 2335), False, 'import six\n'), ((2909, 2915), 'builtins.str', 'str', (['v'], {}), '(v)\n', (2912, 2915), False, 'from builtins import str\n'), ((4512, 4540), 'etgen.etree.iselement', 'etree.iselement', (['*args'], {}), '(*args, **kw)\n', (4527, 4540), False, 'from etgen import etree\n'), ((5955, 5983), 'etgen.etree.Element', 'etree.Element', (['tag', 'nsattrib'], {}), '(tag, nsattrib)\n', (5968, 5983), False, 'from etgen import etree\n'), ((8350, 8391), 'etgen.etree.etree.fromstringlist', 'etree.etree.fromstringlist', (['[s]'], {}), '([s], **kwargs)\n', (8376, 8391), False, 'from etgen import etree\n'), ((7326, 7359), 'functools.partial', 'partial', (['self.create_element', 'tag'], {}), '(self.create_element, tag)\n', (7333, 7359), False, 'from functools import partial\n'), ((1029, 1035), 'builtins.str', 'str', (['i'], {}), '(i)\n', (1032, 1035), False, 'from builtins import str\n'), ((3873, 3932), 'etgen.etree.register_namespace', 'etree.register_namespace', (['self.prefix', 'self.targetNamespace'], {}), '(self.prefix, self.targetNamespace)\n', (3897, 3932), False, 'from etgen import etree\n'), ((4875, 4901), 'etgen.etree.ElementTree', 'etree.ElementTree', (['element'], {}), '(element)\n', (4892, 4901), False, 'from etgen import etree\n'), ((6079, 6095), 'django.utils.encoding.force_text', 'force_text', (['item'], {}), '(item)\n', (6089, 6095), False, 'from django.utils.encoding import force_text\n'), ((6596, 6617), 'etgen.etree.iselement', 'etree.iselement', (['item'], {}), '(item)\n', (6611, 6617), False, 'from etgen import etree\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Class for working with point in frame Author <NAME>, 2019 """ import numpy as np from typing import List, Union class Point(object): """ This class describes 3D point. """ def __init__(self, coord_xyz: Union[List[float], np.ndarray], intensity: float = None): """ :param coord_xyz: iterable with 3 values :param intensity: float value """ if type(coord_xyz) is not np.ndarray: coord_xyz = np.array(coord_xyz, dtype=np.float64) assert coord_xyz.size == 3 self.coord_xyz = coord_xyz # 3x, self.coord_xyz_homogenous = np.append(self.coord_xyz, 1.0) self.intensity = intensity # scalar def print_info(self) -> None: pass def get_xyz(self) -> np.ndarray: """ :return: 3x, """ return self.coord_xyz class FramePoint(Point): """ Describes point in a keyframe that has UV coordinates, inv depth and other properties """ def __init__(self, coord_u: float, coord_v: float, inv_depth: float, inv_depth_hessian: float, max_rel_baseline: float, num_good_res: float, status: float, neighb_intensity_info: Union[List[float], np.ndarray]): """ :param coord_u: :param coord_v: :param inv_depth: :param inv_depth_hessian: :param max_rel_baseline: :param num_good_res: :param status: :param neighb_intensity_info: """ assert coord_u >= 0 # in pixels starting from 0, hence no negative assert coord_v >= 0 # in pixels starting from 0, hence no negative assert len(neighb_intensity_info) >= 5 # assert inv_depth > 0, 'Depth cannot be negative, because otherwise 3D coordinates cannot be computed.' # TODO double check if we allow inv_depth=0? self.coord_u = coord_u self.coord_v = coord_v self.inv_depth = inv_depth self.inv_depth_hessian = inv_depth_hessian self.max_rel_baseline = max_rel_baseline self.num_good_res = num_good_res self.status = status self.neighb_intensity_info = neighb_intensity_info self.intensity = neighb_intensity_info[4] # intensity information of current point being point 5 of 8 super(FramePoint, self).__init__([0, 0, 0], self.intensity) def get_array_of_fields(self) -> List[float]: array_fields = [self.coord_u, self.coord_v, self.inv_depth, self.inv_depth_hessian, self.max_rel_baseline, self.num_good_res, self.status] array_fields.extend(self.neighb_intensity_info) array_fields.append(self.intensity) assert len(array_fields) == 16 return array_fields @staticmethod def get_field_order() -> List[str]: """ :return: list of strings containing the order of fields for this structure """ fields = ['coord_u', 'coord_v', 'inv_depth', 'inv_depth_hessian', 'max_rel_baseline', 'num_good_res', 'status', 'neighb_intensity_info_0', 'neighb_intensity_info_1', 'neighb_intensity_info_2', 'neighb_intensity_info_3', 'neighb_intensity_info_4', 'neighb_intensity_info_5', 'neighb_intensity_info_6', 'neighb_intensity_info_7', 'intensity'] return fields def coord_xyz_hom(self, calib_matrix: np.ndarray) -> np.ndarray: """ Get homogenous coordinates of the point given calibration matrix :param calib_matrix: calibration matrix 3x3 :return: homogenous coordinates 4x1 """ assert(calib_matrix.shape == (3, 3)) coord_xyz = np.dot(np.linalg.inv(calib_matrix), np.array([self.coord_u, self.coord_v, 1.0]) / self.inv_depth) # compute 3D position coord_xyz_homogenous = np.append(coord_xyz, 1.0) return coord_xyz_homogenous @classmethod def init_from_lines(cls, lines: List[str]) -> 'FramePoint': """ :param lines: list of strings :return: frame point """ assert(len(lines) == 2) point_info = list(map(float, lines[0].strip().split(','))) assert len(point_info) > 6 coord_u = point_info[0] coord_v = point_info[1] inv_depth = point_info[2] inv_depth_hessian = point_info[3] max_rel_baseline = point_info[4] num_good_res = point_info[5] status = point_info[6] intensity_strs = lines[1].strip().split(',') neighb_intensity_info = list(map(int, intensity_strs[:-1])) assert(len(neighb_intensity_info) == 8) return cls(coord_u, coord_v, inv_depth, inv_depth_hessian, max_rel_baseline, num_good_res, status, neighb_intensity_info)
[ "numpy.append", "numpy.array", "numpy.linalg.inv" ]
[((669, 699), 'numpy.append', 'np.append', (['self.coord_xyz', '(1.0)'], {}), '(self.coord_xyz, 1.0)\n', (678, 699), True, 'import numpy as np\n'), ((4202, 4227), 'numpy.append', 'np.append', (['coord_xyz', '(1.0)'], {}), '(coord_xyz, 1.0)\n', (4211, 4227), True, 'import numpy as np\n'), ((517, 554), 'numpy.array', 'np.array', (['coord_xyz'], {'dtype': 'np.float64'}), '(coord_xyz, dtype=np.float64)\n', (525, 554), True, 'import numpy as np\n'), ((4049, 4076), 'numpy.linalg.inv', 'np.linalg.inv', (['calib_matrix'], {}), '(calib_matrix)\n', (4062, 4076), True, 'import numpy as np\n'), ((4078, 4121), 'numpy.array', 'np.array', (['[self.coord_u, self.coord_v, 1.0]'], {}), '([self.coord_u, self.coord_v, 1.0])\n', (4086, 4121), True, 'import numpy as np\n')]
from django.conf import settings from django.conf.urls import include, url from django.conf.urls.static import static from django.contrib import admin from django.contrib.flatpages import views as flatpageviews from . import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^pages/', include('django.contrib.flatpages.urls')), url(r'^admin/', include(admin.site.urls)), url(r'^i18n/', include('django.conf.urls.i18n')), # 3rd party # Own Apps url(r'^news/', include('news.urls', namespace='news')), url(r'^kataloge/', include('downloads.urls', namespace='downloads')), url(r'^produkte/', include('products.urls', namespace='products')), url(r'^messen/', include('fairs.urls', namespace='fairs')), ] + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT) \ + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT) # Named Staticpages urlpatterns += [ url(r'^unternehmen/$', views.company, name='company'), url(r'^impressum/$', flatpageviews.flatpage, {'url': '/impressum/'}, name='impressum'), url(r'^datenschutz/$', flatpageviews.flatpage, {'url': '/datenschutz/'}, name='datenschutz'), url(r'^(?P<url>.*/)$', flatpageviews.flatpage, name='page'), ]
[ "django.conf.urls.include", "django.conf.urls.static.static", "django.conf.urls.url" ]
[((1000, 1061), 'django.conf.urls.static.static', 'static', (['settings.MEDIA_URL'], {'document_root': 'settings.MEDIA_ROOT'}), '(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)\n', (1006, 1061), False, 'from django.conf.urls.static import static\n'), ((1104, 1156), 'django.conf.urls.url', 'url', (['"""^unternehmen/$"""', 'views.company'], {'name': '"""company"""'}), "('^unternehmen/$', views.company, name='company')\n", (1107, 1156), False, 'from django.conf.urls import include, url\n'), ((1163, 1253), 'django.conf.urls.url', 'url', (['"""^impressum/$"""', 'flatpageviews.flatpage', "{'url': '/impressum/'}"], {'name': '"""impressum"""'}), "('^impressum/$', flatpageviews.flatpage, {'url': '/impressum/'}, name=\n 'impressum')\n", (1166, 1253), False, 'from django.conf.urls import include, url\n'), ((1255, 1350), 'django.conf.urls.url', 'url', (['"""^datenschutz/$"""', 'flatpageviews.flatpage', "{'url': '/datenschutz/'}"], {'name': '"""datenschutz"""'}), "('^datenschutz/$', flatpageviews.flatpage, {'url': '/datenschutz/'},\n name='datenschutz')\n", (1258, 1350), False, 'from django.conf.urls import include, url\n'), ((1354, 1412), 'django.conf.urls.url', 'url', (['"""^(?P<url>.*/)$"""', 'flatpageviews.flatpage'], {'name': '"""page"""'}), "('^(?P<url>.*/)$', flatpageviews.flatpage, name='page')\n", (1357, 1412), False, 'from django.conf.urls import include, url\n'), ((918, 981), 'django.conf.urls.static.static', 'static', (['settings.STATIC_URL'], {'document_root': 'settings.STATIC_ROOT'}), '(settings.STATIC_URL, document_root=settings.STATIC_ROOT)\n', (924, 981), False, 'from django.conf.urls.static import static\n'), ((267, 303), 'django.conf.urls.url', 'url', (['"""^$"""', 'views.index'], {'name': '"""index"""'}), "('^$', views.index, name='index')\n", (270, 303), False, 'from django.conf.urls import include, url\n'), ((340, 380), 'django.conf.urls.include', 'include', (['"""django.contrib.flatpages.urls"""'], {}), "('django.contrib.flatpages.urls')\n", (347, 380), False, 'from django.conf.urls import include, url\n'), ((417, 441), 'django.conf.urls.include', 'include', (['admin.site.urls'], {}), '(admin.site.urls)\n', (424, 441), False, 'from django.conf.urls import include, url\n'), ((477, 509), 'django.conf.urls.include', 'include', (['"""django.conf.urls.i18n"""'], {}), "('django.conf.urls.i18n')\n", (484, 509), False, 'from django.conf.urls import include, url\n'), ((606, 644), 'django.conf.urls.include', 'include', (['"""news.urls"""'], {'namespace': '"""news"""'}), "('news.urls', namespace='news')\n", (613, 644), False, 'from django.conf.urls import include, url\n'), ((684, 732), 'django.conf.urls.include', 'include', (['"""downloads.urls"""'], {'namespace': '"""downloads"""'}), "('downloads.urls', namespace='downloads')\n", (691, 732), False, 'from django.conf.urls import include, url\n'), ((772, 818), 'django.conf.urls.include', 'include', (['"""products.urls"""'], {'namespace': '"""products"""'}), "('products.urls', namespace='products')\n", (779, 818), False, 'from django.conf.urls import include, url\n'), ((856, 896), 'django.conf.urls.include', 'include', (['"""fairs.urls"""'], {'namespace': '"""fairs"""'}), "('fairs.urls', namespace='fairs')\n", (863, 896), False, 'from django.conf.urls import include, url\n')]
from utilities import * from main_person_course_data import main as generate_person_course_data try: from custom_utilities import get_course_metadata except ImportError: from custom_utilities_example import get_course_metadata def main(): print("---") print("Starting generation of course metadata file ...") # Ensure that the results directory exists create_results_dir() course_ids = get_course_ids() # 1. Generate the course metadata file all_course_metadata = get_course_metadata() courses_without_metadata = [course_id for course_id in course_ids if course_id not in all_course_metadata] if len(courses_without_metadata) > 0: print(""" Error: Some courses have no metadata entries. Consider: - Addressing the cases for courses that should be included in the analysis in your get_course_metadata function. - Adding courses that shouldn't be included in the analysis to the \"excluded_course_ids\" setting in settings.py List of courses with no metadata: {}""".format(courses_without_metadata)) return output_file_path = SETTINGS["results_path"] + "course_metadata.csv" f = open(output_file_path, "w") csvw = csv.writer(f, delimiter=",") header = ["semester", "course_launch", "course_id", "4-way"] rows = [header] for course_id in course_ids: metadata = all_course_metadata[course_id] rows.append([metadata[k] for k in header]) csvw.writerows(rows) print("Generated successfully. Please find it in the results directory specified in your settings.py") print("---") # 2. Run the course-person data file generator generate_person_course_data() if __name__ == "__main__": main()
[ "custom_utilities_example.get_course_metadata", "main_person_course_data.main" ]
[((505, 526), 'custom_utilities_example.get_course_metadata', 'get_course_metadata', ([], {}), '()\n', (524, 526), False, 'from custom_utilities_example import get_course_metadata\n'), ((1652, 1681), 'main_person_course_data.main', 'generate_person_course_data', ([], {}), '()\n', (1679, 1681), True, 'from main_person_course_data import main as generate_person_course_data\n')]