code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
""" Author: <NAME> Selenium script that logs into banking website and retrieves banking information """ #__Start_script__# from selenium import webdriver import time #Load and open chrome with cookies/data url = "https://secure07a.chase.com/" #chase bank info username = ''#Username password = ''#password class Account(object): def __init__(self,url,username,password,): self.url = url self.username = username self.password = password self.balance = None def results(self): print("Account_Holder: {}".format(self.username)) print("Balance: {}".format(self.balance)) class Scraper(): def __init__(self): self.driver = None def driver_setup(self): options = webdriver.ChromeOptions() #Note: Change the next line of code if another user other than Author #How to: If using chrome, copy and paste "chrome://version/" into browser #and find the appdata path of your machine options.add_argument("user-data-dir=C:/Users/Chris/AppData/Local/Google/Chrome/User Data'") self.driver = webdriver.Chrome(chrome_options=options) self.driver.get("https://secure07a.chase.com/web/auth/dashboard#/dashboard/accounts/summary/dda;params=dda,379901328") def login(self): self.driver.switch_to.frame("logonbox") self.driver.find_element_by_name('userId').send_keys(username) self.driver.find_element_by_name('password').send_keys(password) self.driver.find_element_by_id('signin-button').click() def fetch_balance(self): #Fetch balance account_balance = self.driver.find_element_by_class_name("balance").text return(account_balance) def main(): chase_account = Account(url,username,password) chase_scraper = Scraper() chase_scraper.driver_setup() time.sleep(5) chase_scraper.login() time.sleep(5) chase_account.balance = chase_scraper.fetch_balance() chase_account.results() #__End_script__# if __name__ == "__main__": main()
[ "selenium.webdriver.Chrome", "selenium.webdriver.ChromeOptions", "time.sleep" ]
[((1921, 1934), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1931, 1934), False, 'import time\n'), ((1967, 1980), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1977, 1980), False, 'import time\n'), ((788, 813), 'selenium.webdriver.ChromeOptions', 'webdriver.ChromeOptions', ([], {}), '()\n', (811, 813), False, 'from selenium import webdriver\n'), ((1152, 1192), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'chrome_options': 'options'}), '(chrome_options=options)\n', (1168, 1192), False, 'from selenium import webdriver\n')]
"""This module contains tests for pandas benchmarks. """ import time import pytest import numpy as np import pandas as pd from pywrangler.benchmark import allocate_memory from pywrangler.pandas.base import PandasSingleNoFit from pywrangler.pandas.benchmark import ( PandasMemoryProfiler, PandasTimeProfiler ) from pywrangler.util.testing.util import concretize_abstract_wrangler pytestmark = pytest.mark.pandas MIB = 2 ** 20 @pytest.fixture def test_wrangler(): """Helper fixture to generate PandasWrangler instances with parametrization of transform output and sleep. """ def create_wrangler(size=None, result=None, sleep=0): """Return instance of PandasWrangler. Parameters ---------- size: float Memory size in MiB to allocate during transform step. result: pd.DataFrame Define extact return value of transform step. sleep: float Define sleep interval. """ class DummyWrangler(PandasSingleNoFit): def transform(self, df): if size is not None: df_out = pd.DataFrame(allocate_memory(size)) else: df_out = pd.DataFrame(result) time.sleep(sleep) return df_out return concretize_abstract_wrangler(DummyWrangler)() return create_wrangler def test_pandas_memory_profiler_memory_usage_dfs(): df1 = pd.DataFrame(np.random.rand(10)) df2 = pd.DataFrame(np.random.rand(10)) test_input = [df1, df2] test_output = int(df1.memory_usage(index=True, deep=True).sum() + df2.memory_usage(index=True, deep=True).sum()) assert PandasMemoryProfiler._memory_usage_dfs(*test_input) == test_output def test_pandas_memory_profiler_return_self(test_wrangler): memory_profiler = PandasMemoryProfiler(test_wrangler()) assert memory_profiler is memory_profiler.profile(pd.DataFrame()) @pytest.mark.xfail(reason="Succeeds locally but sometimes fails remotely due " "to non deterministic memory management.") def test_pandas_memory_profiler_usage_median(test_wrangler): wrangler = test_wrangler(size=30, sleep=0.01) memory_profiler = PandasMemoryProfiler(wrangler) assert memory_profiler.profile(pd.DataFrame()).median > 29 * MIB def test_pandas_memory_profiler_usage_input_output(test_wrangler): df_input = pd.DataFrame(np.random.rand(1000)) df_output = pd.DataFrame(np.random.rand(10000)) test_df_input = df_input.memory_usage(index=True, deep=True).sum() test_df_output = df_output.memory_usage(index=True, deep=True).sum() wrangler = test_wrangler(result=df_output) memory_profiler = PandasMemoryProfiler(wrangler).profile(df_input) assert memory_profiler.input == test_df_input assert memory_profiler.output == test_df_output @pytest.mark.xfail(reason="Succeeds locally but sometimes fails remotely due " "to non deterministic memory management.") def test_pandas_memory_profiler_ratio(test_wrangler): usage_mib = 30 df_input = pd.DataFrame(np.random.rand(1000000)) usage_input = df_input.memory_usage(index=True, deep=True).sum() test_output = ((usage_mib - 1) * MIB) / usage_input wrangler = test_wrangler(size=usage_mib, sleep=0.01) memory_profiler = PandasMemoryProfiler(wrangler) assert memory_profiler.profile(df_input).ratio > test_output def test_pandas_time_profiler_best(test_wrangler): """Basic test for pandas time profiler ensuring fastest timing is slower than forced sleep. """ sleep = 0.0001 wrangler = test_wrangler(sleep=sleep) time_profiler = PandasTimeProfiler(wrangler, 1).profile(pd.DataFrame()) assert time_profiler.best >= sleep
[ "numpy.random.rand", "pytest.mark.xfail", "pywrangler.util.testing.util.concretize_abstract_wrangler", "pywrangler.benchmark.allocate_memory", "pywrangler.pandas.benchmark.PandasMemoryProfiler", "time.sleep", "pywrangler.pandas.benchmark.PandasTimeProfiler", "pandas.DataFrame", "pywrangler.pandas.benchmark.PandasMemoryProfiler._memory_usage_dfs" ]
[((1987, 2114), 'pytest.mark.xfail', 'pytest.mark.xfail', ([], {'reason': '"""Succeeds locally but sometimes fails remotely due to non deterministic memory management."""'}), "(reason=\n 'Succeeds locally but sometimes fails remotely due to non deterministic memory management.'\n )\n", (2004, 2114), False, 'import pytest\n'), ((2909, 3036), 'pytest.mark.xfail', 'pytest.mark.xfail', ([], {'reason': '"""Succeeds locally but sometimes fails remotely due to non deterministic memory management."""'}), "(reason=\n 'Succeeds locally but sometimes fails remotely due to non deterministic memory management.'\n )\n", (2926, 3036), False, 'import pytest\n'), ((2267, 2297), 'pywrangler.pandas.benchmark.PandasMemoryProfiler', 'PandasMemoryProfiler', (['wrangler'], {}), '(wrangler)\n', (2287, 2297), False, 'from pywrangler.pandas.benchmark import PandasMemoryProfiler, PandasTimeProfiler\n'), ((3388, 3418), 'pywrangler.pandas.benchmark.PandasMemoryProfiler', 'PandasMemoryProfiler', (['wrangler'], {}), '(wrangler)\n', (3408, 3418), False, 'from pywrangler.pandas.benchmark import PandasMemoryProfiler, PandasTimeProfiler\n'), ((1481, 1499), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (1495, 1499), True, 'import numpy as np\n'), ((1524, 1542), 'numpy.random.rand', 'np.random.rand', (['(10)'], {}), '(10)\n', (1538, 1542), True, 'import numpy as np\n'), ((1724, 1775), 'pywrangler.pandas.benchmark.PandasMemoryProfiler._memory_usage_dfs', 'PandasMemoryProfiler._memory_usage_dfs', (['*test_input'], {}), '(*test_input)\n', (1762, 1775), False, 'from pywrangler.pandas.benchmark import PandasMemoryProfiler, PandasTimeProfiler\n'), ((2465, 2485), 'numpy.random.rand', 'np.random.rand', (['(1000)'], {}), '(1000)\n', (2479, 2485), True, 'import numpy as np\n'), ((2516, 2537), 'numpy.random.rand', 'np.random.rand', (['(10000)'], {}), '(10000)\n', (2530, 2537), True, 'import numpy as np\n'), ((3157, 3180), 'numpy.random.rand', 'np.random.rand', (['(1000000)'], {}), '(1000000)\n', (3171, 3180), True, 'import numpy as np\n'), ((3769, 3783), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (3781, 3783), True, 'import pandas as pd\n'), ((1330, 1373), 'pywrangler.util.testing.util.concretize_abstract_wrangler', 'concretize_abstract_wrangler', (['DummyWrangler'], {}), '(DummyWrangler)\n', (1358, 1373), False, 'from pywrangler.util.testing.util import concretize_abstract_wrangler\n'), ((1968, 1982), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1980, 1982), True, 'import pandas as pd\n'), ((2754, 2784), 'pywrangler.pandas.benchmark.PandasMemoryProfiler', 'PandasMemoryProfiler', (['wrangler'], {}), '(wrangler)\n', (2774, 2784), False, 'from pywrangler.pandas.benchmark import PandasMemoryProfiler, PandasTimeProfiler\n'), ((3729, 3760), 'pywrangler.pandas.benchmark.PandasTimeProfiler', 'PandasTimeProfiler', (['wrangler', '(1)'], {}), '(wrangler, 1)\n', (3747, 3760), False, 'from pywrangler.pandas.benchmark import PandasMemoryProfiler, PandasTimeProfiler\n'), ((1266, 1283), 'time.sleep', 'time.sleep', (['sleep'], {}), '(sleep)\n', (1276, 1283), False, 'import time\n'), ((2334, 2348), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (2346, 2348), True, 'import pandas as pd\n'), ((1228, 1248), 'pandas.DataFrame', 'pd.DataFrame', (['result'], {}), '(result)\n', (1240, 1248), True, 'import pandas as pd\n'), ((1154, 1175), 'pywrangler.benchmark.allocate_memory', 'allocate_memory', (['size'], {}), '(size)\n', (1169, 1175), False, 'from pywrangler.benchmark import allocate_memory\n')]
from fenics import * from fenics_adjoint import * import numpy as np from pyadjoint import Block from pyadjoint.overloaded_function import overload_function import scipy.interpolate def read_rosco_curves(): filename = "Cp_Ct_Cq.DTU10MW.txt" with open(filename, "r") as f: datafile = f.readlines() for idx in range(len(datafile)): if "Pitch angle" in datafile[idx]: pitch_array = np.loadtxt(filename, skiprows=idx + 1, max_rows=1) if "TSR vector" in datafile[idx]: tsr_array = np.loadtxt(filename, skiprows=idx + 1, max_rows=1) if "Wind speed" in datafile[idx]: wind_speed = np.loadtxt(filename, skiprows=idx + 1, max_rows=1) if "Power coefficient" in datafile[idx]: cp_array = np.loadtxt(filename, skiprows=idx + 2, max_rows=len(tsr_array)) if "Thrust coefficient" in datafile[idx]: ct_array = np.loadtxt(filename, skiprows=idx + 2, max_rows=len(tsr_array)) if "Torque coefficent" in datafile[idx]: cq_array = np.loadtxt(filename, skiprows=idx + 2, max_rows=len(tsr_array)) pitch_grid, tsr_grid = np.meshgrid(pitch_array, tsr_array) return pitch_grid, tsr_grid, ct_array, cp_array def lookup_field(pitch_grid, tsr_grid, ct_array, cp_array): # construct function space sw_corner = Point(np.min(pitch_grid), np.min(tsr_grid)) ne_corner = Point(np.max(pitch_grid), np.max(tsr_grid)) (n_tsr, n_pitch) = pitch_grid.shape # set function in function space m = RectangleMesh(sw_corner, ne_corner, n_pitch + 1, n_tsr + 1) fe = FiniteElement("Lagrange", m.ufl_cell(), 1) fs = FunctionSpace(m, fe) # assign values to function dof_coords = fs.tabulate_dof_coordinates() ct = Function(fs) ct_interp = scipy.interpolate.interp2d(pitch_grid[0, :], tsr_grid[:, 0], ct_array, kind='linear') ct_values = ct.vector().get_local() cp = Function(fs) cp_interp = scipy.interpolate.interp2d(pitch_grid[0, :], tsr_grid[:, 0], cp_array, kind='linear') cp_values = cp.vector().get_local() # logger.warning("Limiting 0<=ct<=1 for axial induction calculations") for idx in range(len(dof_coords)): pitch, tsr = dof_coords[idx] ct_values[idx] = np.min((np.max((ct_interp(pitch, tsr), 0.)), 1.)) cp_values[idx] = np.min((np.max((cp_interp(pitch, tsr), 0.)), 1.)) a = 0.5 - 0.5 * (np.sqrt(1 - ct_values[idx])) # convert to local ct_values[idx] = ct_values[idx] / (1 - a) cp_values[idx] = cp_values[idx] / (1 - a) ** 2 ct.vector().set_local(ct_values) cp.vector().set_local(cp_values) # write ct and cp field to output file for visual inspection # ct_file = File("ct.pvd") # cp_file = File("cp.pvd") # ct_file.write(ct) # cp_file.write(cp) return ct, cp def get_coefficient(func, pitch, torque, rotor_speed, power_aero, disc_velocity): dt = 1. inertia = 10. wn = (dt / inertia) * (power_aero / rotor_speed - torque) + rotor_speed radius = 90. tsr = (wn * radius) / disc_velocity # tsr = float(torque * rotor_speed) # tsr = torque*rotor_speed return func(pitch, tsr) def get_coefficient_derivative(func_grad, pitch, torque, rotor_speed, power_aero, disc_velocity, idx=0): dt = 1. inertia = 10. radius = 90. wn = (dt / inertia) * (power_aero / rotor_speed - torque) + rotor_speed tsr = (wn * radius) / disc_velocity # tsr = torque*rotor_speed p1 = func_grad[int(np.min((idx, 1)))] if idx == 0: p2 = float(1.) # pitch elif idx == 1: # torque derivative # p2 = float(rotor_speed) p2 = AdjFloat((radius / disc_velocity) * (-1 * dt / inertia)) elif idx == 2: # rotor speed # p2 = float(torque) p2 = AdjFloat((radius / disc_velocity) * (- (dt * power_aero) / (inertia * rotor_speed ** 2) + 1.)) elif idx == 3: p2 = AdjFloat((radius / disc_velocity) * (dt / (inertia * rotor_speed))) elif idx == 4: p2 = AdjFloat(-1 * (wn * radius) / disc_velocity ** 2) else: raise ValueError("Derivative index out of bounds.") return p1(pitch, tsr) * p2 backend_get_coefficient = get_coefficient class CoefficientBlock(Block): def __init__(self, func, pitch, torque, rotor_speed, power_aero, disc_velocity, **kwargs): super(CoefficientBlock, self).__init__() self.kwargs = kwargs self.func = func self.add_dependency(pitch) self.add_dependency(torque) self.add_dependency(rotor_speed) self.add_dependency(power_aero) self.add_dependency(disc_velocity) # self.rotor_speed = rotor_speed # self.power_aero = power_aero # self.disc_velocity = disc_velocity degree = func.function_space().ufl_element().degree() family = func.function_space().ufl_element().family() mesh = func.function_space().mesh() if np.isin(family, ["CG", "Lagrange"]): self.V = FunctionSpace(mesh, "DG", degree - 1) else: raise NotImplementedError( "Not implemented for other elements than Lagrange") self.func_grad = [project(func.dx(x), self.V) for x in range(2)] def __str__(self): return "CoefficientBlock" def evaluate_adj_component(self, inputs, adj_inputs, block_variable, idx, prepared=None): # output = get_derivative(inputs[0], inputs[1], idx) * adj_inputs[0] # idx2 = int(np.min((idx, 1))) # print(idx2) # grad_idx = project(self.func.dx(idx2), self.V) # output = grad_idx(inputs[0], inputs[1]) * adj_inputs[0]\ # * rotor_speed_derivative(func=self.func_grad, # pitch=inputs[0], # torque=inputs[1], # rotor_speed=inputs[2], # power_aero=self.power_aero, #inputs[3], # disc_velocity=self.disc_velocity, #inputs[4], # idx=idx) \ output = get_coefficient_derivative(func_grad=self.func_grad, pitch=inputs[0], torque=inputs[1], rotor_speed=inputs[2], power_aero=inputs[3], disc_velocity=inputs[4], idx=idx) * adj_inputs[0] print(output) print([float(ix) for ix in inputs]) return output def recompute_component(self, inputs, block_variable, idx, prepared): return backend_get_coefficient(func=self.func, pitch=inputs[0], torque=inputs[1], rotor_speed=inputs[2], power_aero=inputs[3], disc_velocity=inputs[4]) # return backend_get_coefficient(self.func, inputs[0], inputs[1], inputs[2], self.power_aero, self.disc_velocity) get_coefficient = overload_function(get_coefficient, CoefficientBlock) pitch_grid, tsr_grid, ct_array, cp_array = read_rosco_curves() ct, cp = lookup_field(pitch_grid, tsr_grid, ct_array, cp_array) # float((1 / inertia) * (power_aero / rotor_speed - torque) + rotor_speed) w = Constant(5.) q = Constant(10.) pa = Constant(10.) # iner = Constant(5.) b = Constant(0.) ud = Constant(10.) # tsr = w # wn = (1 / iner) * (pa / q - q) + w w.assign(0.8) q.assign(1.) pa.assign(5.) b.assign(2.) ctp = get_coefficient(ct, b, q, w, pa, ud) J = ctp ** 2 controls = [b, q, w, pa, ud] m = [Control(c) for c in controls] Jh = ReducedFunctional(J, m) Jh.derivative() # print([float(g) for g in Jh.derivative()]) h = [Constant(0.01 * np.random.rand()) for c in controls] taylor_test(Jh, controls, h)
[ "pyadjoint.overloaded_function.overload_function", "numpy.sqrt", "numpy.random.rand", "numpy.isin", "numpy.max", "numpy.min", "numpy.meshgrid", "numpy.loadtxt" ]
[((7342, 7394), 'pyadjoint.overloaded_function.overload_function', 'overload_function', (['get_coefficient', 'CoefficientBlock'], {}), '(get_coefficient, CoefficientBlock)\n', (7359, 7394), False, 'from pyadjoint.overloaded_function import overload_function\n'), ((1145, 1180), 'numpy.meshgrid', 'np.meshgrid', (['pitch_array', 'tsr_array'], {}), '(pitch_array, tsr_array)\n', (1156, 1180), True, 'import numpy as np\n'), ((1348, 1366), 'numpy.min', 'np.min', (['pitch_grid'], {}), '(pitch_grid)\n', (1354, 1366), True, 'import numpy as np\n'), ((1368, 1384), 'numpy.min', 'np.min', (['tsr_grid'], {}), '(tsr_grid)\n', (1374, 1384), True, 'import numpy as np\n'), ((1408, 1426), 'numpy.max', 'np.max', (['pitch_grid'], {}), '(pitch_grid)\n', (1414, 1426), True, 'import numpy as np\n'), ((1428, 1444), 'numpy.max', 'np.max', (['tsr_grid'], {}), '(tsr_grid)\n', (1434, 1444), True, 'import numpy as np\n'), ((4951, 4986), 'numpy.isin', 'np.isin', (['family', "['CG', 'Lagrange']"], {}), "(family, ['CG', 'Lagrange'])\n", (4958, 4986), True, 'import numpy as np\n'), ((421, 471), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'skiprows': '(idx + 1)', 'max_rows': '(1)'}), '(filename, skiprows=idx + 1, max_rows=1)\n', (431, 471), True, 'import numpy as np\n'), ((538, 588), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'skiprows': '(idx + 1)', 'max_rows': '(1)'}), '(filename, skiprows=idx + 1, max_rows=1)\n', (548, 588), True, 'import numpy as np\n'), ((656, 706), 'numpy.loadtxt', 'np.loadtxt', (['filename'], {'skiprows': '(idx + 1)', 'max_rows': '(1)'}), '(filename, skiprows=idx + 1, max_rows=1)\n', (666, 706), True, 'import numpy as np\n'), ((3509, 3525), 'numpy.min', 'np.min', (['(idx, 1)'], {}), '((idx, 1))\n', (3515, 3525), True, 'import numpy as np\n'), ((8047, 8063), 'numpy.random.rand', 'np.random.rand', ([], {}), '()\n', (8061, 8063), True, 'import numpy as np\n'), ((2409, 2436), 'numpy.sqrt', 'np.sqrt', (['(1 - ct_values[idx])'], {}), '(1 - ct_values[idx])\n', (2416, 2436), True, 'import numpy as np\n')]
from pyspark import SparkContext def func(x,y): result = x-y return result if __name__ == '__main__': #创建spark context sc = SparkContext('local[2]','topncount') rdd1 = sc.textFile('./access.log') # 按照空格切分 取出列表长度大于10的 rdd0 = rdd1.map(lambda x: x.split()).filter(lambda x: len(x) > 10) rdd2 = rdd0.map(lambda x:(x[10],1)) rdd3 = rdd2.reduceByKey(lambda a,b:a+b) # (x:2) rdd4 = rdd3.sortBy(lambda x:x[1],ascending=False).filter(lambda x:len(x[0])>6) result = rdd4.take(1) print(rdd0.collect()) print(rdd2.collect()) print(rdd3.collect()) print(rdd4.collect()) print(result) # rdd1 = sc.parallelize([1,2,3,4,5,6]) # result = rdd1.reduce(func) # print(result)
[ "pyspark.SparkContext" ]
[((140, 177), 'pyspark.SparkContext', 'SparkContext', (['"""local[2]"""', '"""topncount"""'], {}), "('local[2]', 'topncount')\n", (152, 177), False, 'from pyspark import SparkContext\n')]
# Bokeh library from bokeh.plotting import show from bokeh.io import output_file from bokeh.layouts import column # Output to file output_file( "east-west-top-2-standings-race.html", title="Conference Top 2 Teams Wins Race", ) # Plot the two visualizations in a vertical configuration show(column(west_fig, east_fig)) # noqa
[ "bokeh.io.output_file", "bokeh.layouts.column" ]
[((132, 229), 'bokeh.io.output_file', 'output_file', (['"""east-west-top-2-standings-race.html"""'], {'title': '"""Conference Top 2 Teams Wins Race"""'}), "('east-west-top-2-standings-race.html', title=\n 'Conference Top 2 Teams Wins Race')\n", (143, 229), False, 'from bokeh.io import output_file\n'), ((300, 326), 'bokeh.layouts.column', 'column', (['west_fig', 'east_fig'], {}), '(west_fig, east_fig)\n', (306, 326), False, 'from bokeh.layouts import column\n')]
import os from flask import Flask, jsonify from flask_restful import Api from flask_sqlalchemy import SQLAlchemy from flask_jwt_extended import JWTManager app = Flask(__name__) if 'APP_CONFIG_FILE' in os.environ: app.config.from_envvar('APP_CONFIG_FILE') else: app.config.from_pyfile('config/production.py') db = SQLAlchemy(app) @app.before_first_request def create_tables(): db.create_all() jwt = JWTManager(app) import views, models @jwt.token_in_blacklist_loader def check_if_token_in_blacklist(decrypted_token): jti = decrypted_token['jti'] return models.RevokedTokenModel.is_jti_blacklisted(jti) api = Api(app) api.add_resource(views.ImageProcessor, '/send/image') api.add_resource(views.UserRegistration, '/registration') api.add_resource(views.UserLogin, '/login') api.add_resource(views.UserLogoutAccess, '/logout/access') api.add_resource(views.UserLogoutRefresh, '/logout/refresh') api.add_resource(views.TokenRefresh, '/token/refresh') api.add_resource(views.AllUsers, '/users')
[ "flask_jwt_extended.JWTManager", "flask_restful.Api", "flask.Flask", "flask_sqlalchemy.SQLAlchemy", "models.RevokedTokenModel.is_jti_blacklisted" ]
[((164, 179), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (169, 179), False, 'from flask import Flask, jsonify\n'), ((320, 335), 'flask_sqlalchemy.SQLAlchemy', 'SQLAlchemy', (['app'], {}), '(app)\n', (330, 335), False, 'from flask_sqlalchemy import SQLAlchemy\n'), ((410, 425), 'flask_jwt_extended.JWTManager', 'JWTManager', (['app'], {}), '(app)\n', (420, 425), False, 'from flask_jwt_extended import JWTManager\n'), ((630, 638), 'flask_restful.Api', 'Api', (['app'], {}), '(app)\n', (633, 638), False, 'from flask_restful import Api\n'), ((574, 622), 'models.RevokedTokenModel.is_jti_blacklisted', 'models.RevokedTokenModel.is_jti_blacklisted', (['jti'], {}), '(jti)\n', (617, 622), False, 'import views, models\n')]
# Copyright 2015-2016 Rackspace US, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import logging import re LOG = logging.getLogger(__name__) def copy_tree(src, dest, ignore=None, include_parent=False): ignore = ignore or [] if os.path.isfile(src): raise Exception('Cannot use copy_tree with a file as the src') LOG.info('Copying source files') if include_parent: # if src is foo, make dest/foo and copy files there nested_dest = os.path.normpath( os.path.join(dest, os.path.basename(src))) if not os.path.isdir(nested_dest): os.makedirs(nested_dest) else: nested_dest = dest # Re-create directory structure for root, _, files in os.walk(src): for filename in files: path = os.path.join(root, filename) path_relative_to_the_source_dir = os.path.relpath(path, src) if _ignore_file(path_relative_to_the_source_dir, ignore): continue sub_dirs = os.path.dirname(os.path.relpath(path, start=src)) pkg_path = os.path.join(nested_dest, sub_dirs) if not os.path.isdir(pkg_path): os.makedirs(pkg_path) LOG.debug("Copying %s to %s" % (path, pkg_path)) if os.path.islink(path): linkto = os.readlink(path) os.symlink(linkto.replace(src, dest, 1), os.path.join(pkg_path, filename)) else: shutil.copy(path, pkg_path) # Iterate through every item in ignore # and check for matches in the path def _ignore_file(path, ignore=None): ignore = ignore or [] if not ignore: return False for ign in ignore: if re.search(ign, path): return True return False
[ "logging.getLogger", "os.readlink", "os.makedirs", "os.path.join", "os.path.isfile", "os.path.isdir", "os.path.basename", "shutil.copy", "os.path.relpath", "os.path.islink", "os.walk", "re.search" ]
[((644, 671), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (661, 671), False, 'import logging\n'), ((768, 787), 'os.path.isfile', 'os.path.isfile', (['src'], {}), '(src)\n', (782, 787), False, 'import os\n'), ((1260, 1272), 'os.walk', 'os.walk', (['src'], {}), '(src)\n', (1267, 1272), False, 'import os\n'), ((2327, 2347), 're.search', 're.search', (['ign', 'path'], {}), '(ign, path)\n', (2336, 2347), False, 'import re\n'), ((1095, 1121), 'os.path.isdir', 'os.path.isdir', (['nested_dest'], {}), '(nested_dest)\n', (1108, 1121), False, 'import os\n'), ((1135, 1159), 'os.makedirs', 'os.makedirs', (['nested_dest'], {}), '(nested_dest)\n', (1146, 1159), False, 'import os\n'), ((1324, 1352), 'os.path.join', 'os.path.join', (['root', 'filename'], {}), '(root, filename)\n', (1336, 1352), False, 'import os\n'), ((1399, 1425), 'os.path.relpath', 'os.path.relpath', (['path', 'src'], {}), '(path, src)\n', (1414, 1425), False, 'import os\n'), ((1673, 1708), 'os.path.join', 'os.path.join', (['nested_dest', 'sub_dirs'], {}), '(nested_dest, sub_dirs)\n', (1685, 1708), False, 'import os\n'), ((1868, 1888), 'os.path.islink', 'os.path.islink', (['path'], {}), '(path)\n', (1882, 1888), False, 'import os\n'), ((1056, 1077), 'os.path.basename', 'os.path.basename', (['src'], {}), '(src)\n', (1072, 1077), False, 'import os\n'), ((1561, 1593), 'os.path.relpath', 'os.path.relpath', (['path'], {'start': 'src'}), '(path, start=src)\n', (1576, 1593), False, 'import os\n'), ((1728, 1751), 'os.path.isdir', 'os.path.isdir', (['pkg_path'], {}), '(pkg_path)\n', (1741, 1751), False, 'import os\n'), ((1769, 1790), 'os.makedirs', 'os.makedirs', (['pkg_path'], {}), '(pkg_path)\n', (1780, 1790), False, 'import os\n'), ((1915, 1932), 'os.readlink', 'os.readlink', (['path'], {}), '(path)\n', (1926, 1932), False, 'import os\n'), ((2085, 2112), 'shutil.copy', 'shutil.copy', (['path', 'pkg_path'], {}), '(path, pkg_path)\n', (2096, 2112), False, 'import shutil\n'), ((2017, 2049), 'os.path.join', 'os.path.join', (['pkg_path', 'filename'], {}), '(pkg_path, filename)\n', (2029, 2049), False, 'import os\n')]
# This program outputs todays date in the format Monday, January 10th 2019 at 1:15pm # <NAME> 2019-03-12 # Revisited to add the suffix after the date in the final output import datetime as dt # I have imported the datetime module and given it the shortened name dt today= dt. datetime.today() # today() is used to return the local date and time and it is set equal to the variable today # I need to have a variable to assign a suffix to the date in order to have my output in the required format daynumber= int(today.strftime("%d")) # I introduce the variable daynumber here and set equal to the integer equivalent of the day of the month # From my additional reading on strftime formatting I learnt %d returns an integer equivalent of the day of the month # I had to add int to have the integer value %d be recognized and work properly in the below if, elif, else statements # First I had just - daynumber= today.strftime(%d) and this didnt work correctly if daynumber in (1, 21, 31): # I first had == and this didnt work so I have used in keyword instead daynumber = 'st' # if statement used to assign the value 'st' to the 1st, 21st and 31st day of the month elif daynumber in (2, 22): daynumber = 'nd' # elif used to assign the value 'nd' to the 2nd and 22nd day of the month elif daynumber in (3, 23): daynumber = 'rd' # Another elif used to assign the value of 'rd' to the 3rd and 23rd day of the month else: daynumber = 'th' # else statement used to assign the value 'th' to all other days of the month print(f"The current date and time is: {today.strftime('%A, %B %d')}{daynumber} {today.strftime('%Y at %H:%M%p')}") # I have used f strings to print the full sentence to the screen as output # I have asked for today to be printed using strftime to return the required results # I read about format tokens to format the date output in strftime here: https://stackabuse.com/how-to-format-dates-in-python/ and http://strftime.org/ # I used these format tokens to print the current date and time to the screen in the format requested in the problem # %A - Weekday full, %B - month name in full, %d - day of the week, %Y- year in full, %H - hour, %M - minute and %p - AM/PM # I introduced a variable called daynumber which was used to assign a value for the suffix to the date and printed in output # I returned to the solution and added if, elif, else to assign value to the variable daynumber and also to add fstring for printing output
[ "datetime.datetime.today" ]
[((275, 294), 'datetime.datetime.today', 'dt.datetime.today', ([], {}), '()\n', (292, 294), True, 'import datetime as dt\n')]
from Modules_Ex import Ex112 from Modules import my_inputs from termcolor2 import colored preco = my_inputs.inputfloat('Escreve o preço de um produto, em euros: ', colored('ERRO: Escreva só o preço!\n', 'red')) aumento = my_inputs.inputfloat('Escreve o aumento do preço do produto, em percentagem: ', colored('ERRO: Escreva só o número!\n', 'red')) desconto = my_inputs.inputfloat('Escreve o aumento do preço do produto, em percentagem: ', colored('ERRO: Escreva só o número!\n', 'red')) print('') print(Ex112.price_manipulation(preco, aumento, desconto))
[ "termcolor2.colored", "Modules_Ex.Ex112.price_manipulation" ]
[((166, 211), 'termcolor2.colored', 'colored', (['"""ERRO: Escreva só o preço!\n"""', '"""red"""'], {}), "('ERRO: Escreva só o preço!\\n', 'red')\n", (173, 211), False, 'from termcolor2 import colored\n'), ((303, 349), 'termcolor2.colored', 'colored', (['"""ERRO: Escreva só o número!\n"""', '"""red"""'], {}), "('ERRO: Escreva só o número!\\n', 'red')\n", (310, 349), False, 'from termcolor2 import colored\n'), ((442, 488), 'termcolor2.colored', 'colored', (['"""ERRO: Escreva só o número!\n"""', '"""red"""'], {}), "('ERRO: Escreva só o número!\\n', 'red')\n", (449, 488), False, 'from termcolor2 import colored\n'), ((505, 555), 'Modules_Ex.Ex112.price_manipulation', 'Ex112.price_manipulation', (['preco', 'aumento', 'desconto'], {}), '(preco, aumento, desconto)\n', (529, 555), False, 'from Modules_Ex import Ex112\n')]
import pygame from pygame.sprite import Sprite class Bullet(Sprite): """manage the bullet fired by ship""" def __init__(self, ai_settings, screen, ship): """create a bullet object at the position of ship""" super().__init__() self.screen = screen # create a bullet rectangle at (0, 0), then set the right location self.rect = pygame.Rect(0, 0, ai_settings.bullet_width, ai_settings.bullet_height) self.rect.centerx = ship.rect.centerx self.rect.top = ship.rect.top # store bullet position in float self.y = float(self.rect.y) self.color = ai_settings.bullet_color self.speed_factor = ai_settings.bullet_speed_factor def update(self): """move up""" # update the bullet y coordinate self.y -= self.speed_factor # update the bullet rect self.rect.y = self.y def draw_bullet(self): """draw bullet on screen""" pygame.draw.rect(self.screen, self.color, self.rect)
[ "pygame.draw.rect", "pygame.Rect" ]
[((391, 461), 'pygame.Rect', 'pygame.Rect', (['(0)', '(0)', 'ai_settings.bullet_width', 'ai_settings.bullet_height'], {}), '(0, 0, ai_settings.bullet_width, ai_settings.bullet_height)\n', (402, 461), False, 'import pygame\n'), ((1039, 1091), 'pygame.draw.rect', 'pygame.draw.rect', (['self.screen', 'self.color', 'self.rect'], {}), '(self.screen, self.color, self.rect)\n', (1055, 1091), False, 'import pygame\n')]
import re import numpy as np from itertools import combinations class Treell: def __init__(self, tnt_file): self.list = [] self.lengths = {} self.node_count = 0 self.labels = {} self.taxa = {} self.adj_table = None with open(tnt_file , "r") as fh: for line in fh: line = line.strip() if line.startswith("("): line = re.sub(r"\s+\)", ")", line) node_pointer = -1 label = "" in_br_len = False br_len = "" for char in line: if in_br_len: if char == " " or char == ")": self.lengths[node_pointer] = float(br_len) br_len = "" in_br_len = False elif char == "[" or char == "]": continue else: br_len += char if not in_br_len: if char == '(': pa = node_pointer node_pointer = self.node_count self.node_count += 1 self.list.append([pa, node_pointer]) #print(f"(: {papa_pointer} to {node_pointer}") elif char == ')': if len(label) > 0: self.labels[node_pointer] = label label = "" node_pointer = self.get_parent(node_pointer) #print(f"): back to {node_pointer}") elif char == " ": if len(label) > 0: self.labels[node_pointer] = label label = "" pa = self.get_parent(node_pointer) node_pointer = self.node_count self.node_count += 1 self.list.append([pa, node_pointer]) #print(f"Space: {pa} to {node_pointer}") elif char == "=": if len(label) > 0: self.labels[node_pointer] = label label = "" in_br_len = True elif char == ';': break else: label += char for node in self.labels: self.taxa[node] = self.labels[node].split('#')[0] def get_parent(self, node): for no, des in self.list: if des == node: return no def unroot(self): root_edges_idx = [] root_descendants = [] for idx, edge in enumerate(self.list): if edge[0] == -1: root_descendants.append(edge[1]) root_edges_idx.append(idx) for i,d in combinations(root_descendants, 2): self.list.append([i, d]) self.list = [x for i,x in enumerate(self.list) if not i in root_edges_idx] self.adj_table = np.zeros((self.node_count, self.node_count)) for i,d in self.list: self.adj_table[i,d] = 1 self.adj_table[d,i] = 1 return None def orthology_test(self, target_node, excluded_node): pass_test = True r = self.adj_table[target_node] icr = np.where(r == 1)[0] icr = icr[icr != excluded_node] print(icr) names = [] name_origin = {} for child in icr: if child in self.taxa: names.append(self.taxa[child]) name_origin[self.taxa[child]] = 1 else: thnames = self.orthology_test(child, target_node) if len(thnames) == 0: pass_test = False name_origin = {} break else: names += thnames for tn in thnames: if tn in name_origin: name_origin[tn] += 1 else: name_origin[tn] = 1 print(names) print(name_origin) if len(name_origin) == 1: pass_test = True elif len(name_origin) > 1: for tn in name_origin: if name_origin[tn] > 1: pass_test = False break else: pass_test = False if pass_test: names = list(set(names)) return names else: return [] """ for descendants that are leaves: get names for descendants that are not leaves: call function on descendants, target_node as excluded_node get their name lists if there is at least two taxon names in descendants AND one of them is repeated in different descendant lists: fail, return an empty list else: pass, return list of unique names """ def ortholog_finder(self): pass """ for all internal edges: for each node in the edge: if node pass orthology property: append node to ortholog list """ # Ortholog identification iin the tree conducted using the maximum inclusion, # but not inclusion and multiples leaves for the same taxa only if they are # monophyletic. # Evaluation different techniques may be done by measuring phylogenetic noise # in the final tree if __name__ == "__main__": tntfile = "toy.tree" al = Treell(tntfile) al.unroot() for pair in al.list: print(pair) for la in al.labels: print(la, al.labels[la]) for a in al.taxa: print(a, al.taxa[a]) for le in al.lengths: print(le, al.lengths[le]) print(al.adj_table) print(al.orthology_test(1, 3))
[ "itertools.combinations", "re.sub", "numpy.zeros", "numpy.where" ]
[((2149, 2182), 'itertools.combinations', 'combinations', (['root_descendants', '(2)'], {}), '(root_descendants, 2)\n', (2161, 2182), False, 'from itertools import combinations\n'), ((2309, 2353), 'numpy.zeros', 'np.zeros', (['(self.node_count, self.node_count)'], {}), '((self.node_count, self.node_count))\n', (2317, 2353), True, 'import numpy as np\n'), ((2566, 2582), 'numpy.where', 'np.where', (['(r == 1)'], {}), '(r == 1)\n', (2574, 2582), True, 'import numpy as np\n'), ((351, 379), 're.sub', 're.sub', (['"""\\\\s+\\\\)"""', '""")"""', 'line'], {}), "('\\\\s+\\\\)', ')', line)\n", (357, 379), False, 'import re\n')]
import sys import os.path sys.path.append(os.path.abspath(os.path.join(os.pardir,os.pardir))) import disaggregator as da import disaggregator.PecanStreetDatasetAdapter as psda import pickle db_url = "postgresql://USERNAME:<EMAIL>@db.<EMAIL>:5432/postgres" psda.set_url(db_url) schema = 'shared' table = 'validated_01_2014' dataid = '3893' sample_rate = '15T' appliance_set = psda.generate_set_by_table_and_dataid( schema, table, dataid, sample_rate) appliance_set = appliance_set.generate_non_zero_set() with open(os.path.join(os.pardir,os.pardir,'data','home_3893_set_01_2014.pkl'),'w') as f: pickle.dump(appliance_set,f)
[ "pickle.dump", "disaggregator.PecanStreetDatasetAdapter.set_url", "disaggregator.PecanStreetDatasetAdapter.generate_set_by_table_and_dataid" ]
[((257, 277), 'disaggregator.PecanStreetDatasetAdapter.set_url', 'psda.set_url', (['db_url'], {}), '(db_url)\n', (269, 277), True, 'import disaggregator.PecanStreetDatasetAdapter as psda\n'), ((377, 450), 'disaggregator.PecanStreetDatasetAdapter.generate_set_by_table_and_dataid', 'psda.generate_set_by_table_and_dataid', (['schema', 'table', 'dataid', 'sample_rate'], {}), '(schema, table, dataid, sample_rate)\n', (414, 450), True, 'import disaggregator.PecanStreetDatasetAdapter as psda\n'), ((601, 630), 'pickle.dump', 'pickle.dump', (['appliance_set', 'f'], {}), '(appliance_set, f)\n', (612, 630), False, 'import pickle\n')]
# coding=utf-8 from os import path import saml2 import saml2.saml BASEDIR = path.dirname(path.abspath(__file__)) CONFIG = { # full path to the xmlsec1 binary programm 'xmlsec_binary': '/usr/bin/xmlsec1', # your entity id, usually your subdomain plus the url to the metadata view 'entityid': 'https://portulanclarin.net/saml2/metadata/', # directory with attribute mapping 'attribute_map_dir': path.join(BASEDIR, 'attributemaps'), # this block states what services we provide 'service': { 'sp': { 'name': 'PORTULAN / CLARIN', 'endpoints': { # url and binding to the assertion consumer service view # do not change the binding or service name 'assertion_consumer_service': [ ('https://portulanclarin.net/saml2/acs/', saml2.BINDING_HTTP_POST), ], # url and binding to the single logout service view # do not change the binding or service name 'single_logout_service': [ ('https://portulanclarin.net/saml2/ls/', saml2.BINDING_HTTP_REDIRECT), ('https://portulanclarin.net/saml2/ls/post', saml2.BINDING_HTTP_POST), ], }, 'idp': { # This is the address of a SimpleSAMLphp proxy, which acts as the sole IdP # known to this repository and as SP to the CLARIN federation 'https://sso.portulanclarin.net/saml2/idp/metadata.php': { 'single_sign_on_service': { saml2.BINDING_HTTP_REDIRECT: 'https://sso.portulanclarin.net/saml2/idp/SSOService.php', }, 'single_logout_service': { saml2.BINDING_HTTP_REDIRECT: 'https://sso.portulanclarin.net/saml2/idp/SingleLogoutService.php', }, }, }, # attributes that this project need to identify a user 'required_attributes': ['uid', 'displayName', 'cn', 'sn'], # attributes that may be useful to have but not required # 'optional_attributes': ['eduPersonAffiliation'], }, }, # where the remote metadata is stored 'metadata': { 'local': [ # this file is not included in the repository # you should create your own SAML metadata file ;-) path.join(BASEDIR, 'saml-portulan-idp.xml'), ], }, # set to 1 to output debugging information 'debug': 1, # Signing # these files are not included in the repository; you should create your own ;-) 'key_file': path.join(BASEDIR, 'saml-sp-priv.pem'), 'cert_file': path.join(BASEDIR, 'saml-sp-pub.pem'), 'contact_person': [ { 'given_name': u'Luís', 'sur_name': 'Gomes', 'company': 'University of Lisbon', 'email_address': '<EMAIL>', 'contact_type': 'technical' }, { 'given_name': u'António', 'sur_name': 'Branco', 'company': 'University of Lisbon', 'email_address': '<EMAIL>', 'contact_type': 'administrative' }, ], 'organization': { 'name': [('PORTULAN / CLARIN -- Infrastructure for Science and Technology of the Portuguese Language', 'en')], 'display_name': [('PORTULAN / CLARIN', 'en')], 'url': [('http://portulanclarin.net/', 'en')], }, 'valid_for': 24, # how long is our metadata valid }
[ "os.path.abspath", "os.path.join" ]
[((89, 111), 'os.path.abspath', 'path.abspath', (['__file__'], {}), '(__file__)\n', (101, 111), False, 'from os import path\n'), ((419, 454), 'os.path.join', 'path.join', (['BASEDIR', '"""attributemaps"""'], {}), "(BASEDIR, 'attributemaps')\n", (428, 454), False, 'from os import path\n'), ((2769, 2807), 'os.path.join', 'path.join', (['BASEDIR', '"""saml-sp-priv.pem"""'], {}), "(BASEDIR, 'saml-sp-priv.pem')\n", (2778, 2807), False, 'from os import path\n'), ((2826, 2863), 'os.path.join', 'path.join', (['BASEDIR', '"""saml-sp-pub.pem"""'], {}), "(BASEDIR, 'saml-sp-pub.pem')\n", (2835, 2863), False, 'from os import path\n'), ((2526, 2569), 'os.path.join', 'path.join', (['BASEDIR', '"""saml-portulan-idp.xml"""'], {}), "(BASEDIR, 'saml-portulan-idp.xml')\n", (2535, 2569), False, 'from os import path\n')]
from fastapi import APIRouter, HTTPException import pandas as pd import sqlite3 # import plotly.express as px router = APIRouter() @router.get('/viz/') # check the documentation, assistance with router async def viz(): def salt_rank(): """ Querying the database for commenter, text, and sentiment for the text. Parameters: ----------- mode: string. query mode. returning the sentiment based on negative or positive Output: ----------- results: json format string with format {"sentiment": str, "author_comment_count": str, "comment_text": string, } """ conn = sqlite3.connect('hn_db.db') # if conn.closed != 0: # return app.response_class(response=json.dump({}), # status=400, # mimetype='application/json') curs = conn.cursor() # sql_mode = dict({"average": "AVG", "total": "SUM"}) query = f''' SELECT comment_author, comment_text, sentiment FROM hn_comments LIMIT 100; ''' curs.execute(query) data = curs.fetchall() # return data
[ "fastapi.APIRouter", "sqlite3.connect" ]
[((120, 131), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (129, 131), False, 'from fastapi import APIRouter, HTTPException\n'), ((718, 745), 'sqlite3.connect', 'sqlite3.connect', (['"""hn_db.db"""'], {}), "('hn_db.db')\n", (733, 745), False, 'import sqlite3\n')]
import json import uuid from django.http import HttpRequest from django.test import TestCase from mock import patch from casexml.apps.case.mock import CaseBlock from casexml.apps.case.models import CommCareCase from casexml.apps.case.signals import case_post_save from casexml.apps.case.tests.util import delete_all_cases from casexml.apps.case.util import post_case_blocks from corehq import toggles from corehq.apps.domain.models import Domain from corehq.apps.userreports import tasks from corehq.apps.userreports.dbaccessors import delete_all_report_configs from corehq.apps.userreports.models import ( DataSourceConfiguration, ReportConfiguration, ) from corehq.apps.userreports.reports.view import ConfigurableReportView from corehq.apps.userreports.util import get_indicator_adapter from corehq.apps.users.models import Permissions, UserRole, WebUser from corehq.sql_db.connections import Session from corehq.util.context_managers import drop_connected_signals class ConfigurableReportTestMixin(object): domain = "TEST_DOMAIN" case_type = "CASE_TYPE" @classmethod def _new_case(cls, properties): id = uuid.uuid4().hex case_block = CaseBlock.deprecated_init( create=True, case_id=id, case_type=cls.case_type, update=properties, ).as_xml() with drop_connected_signals(case_post_save): post_case_blocks([case_block], {'domain': cls.domain}) return CommCareCase.get(id) @classmethod def _delete_everything(cls): delete_all_cases() for config in DataSourceConfiguration.all(): config.delete() delete_all_report_configs() class ConfigurableReportViewTest(ConfigurableReportTestMixin, TestCase): def _build_report_and_view(self, request=HttpRequest()): # Create report data_source_config = DataSourceConfiguration( domain=self.domain, display_name='foo', referenced_doc_type='CommCareCase', table_id="woop_woop", configured_filter={ "type": "boolean_expression", "operator": "eq", "expression": { "type": "property_name", "property_name": "type" }, "property_value": self.case_type, }, configured_indicators=[ { "type": "expression", "expression": { "type": "property_name", "property_name": 'fruit' }, "column_id": 'indicator_col_id_fruit', "display_name": 'indicator_display_name_fruit', "datatype": "string" }, { "type": "expression", "expression": { "type": "property_name", "property_name": 'num1' }, "column_id": 'indicator_col_id_num1', "datatype": "integer" }, { "type": "expression", "expression": { "type": "property_name", "property_name": 'num2' }, "column_id": 'indicator_col_id_num2', "datatype": "integer" }, ], ) data_source_config.validate() data_source_config.save() self.addCleanup(data_source_config.delete) tasks.rebuild_indicators(data_source_config._id) report_config = ReportConfiguration( domain=self.domain, config_id=data_source_config._id, title='foo', aggregation_columns=['doc_id'], columns=[ { "type": "field", "display": "report_column_display_fruit", "field": 'indicator_col_id_fruit', 'column_id': 'report_column_col_id_fruit', 'aggregation': 'simple' }, { "type": "percent", "display": "report_column_display_percent", 'column_id': 'report_column_col_id_percent', 'format': 'percent', "denominator": { "type": "field", "aggregation": "sum", "field": "indicator_col_id_num1", "column_id": "report_column_col_id_percent_num1" }, "numerator": { "type": "field", "aggregation": "sum", "field": "indicator_col_id_num2", "column_id": "report_column_col_id_percent_num2" } }, ], ) report_config.save() self.addCleanup(report_config.delete) view = ConfigurableReportView(request=request) view._domain = self.domain view._lang = "en" view._report_config_id = report_config._id return report_config, view @classmethod def tearDownClass(cls): cls.case.delete() # todo: understand why this is necessary. the view call uses the session and the # signal doesn't fire to kill it. Session.remove() super(ConfigurableReportViewTest, cls).tearDownClass() @classmethod def setUpClass(cls): super(ConfigurableReportViewTest, cls).setUpClass() cls.case = cls._new_case({'fruit': 'apple', 'num1': 4, 'num2': 6}) cls.case.save() def test_export_table(self): """ Test the output of ConfigurableReportView.export_table() """ report, view = self._build_report_and_view() expected = [ [ 'foo', [ ['report_column_display_fruit', 'report_column_display_percent'], ['apple', '150%'] ] ] ] self.assertEqual(view.export_table, expected) def test_paginated_build_table(self): """ Simulate building a report where chunking occurs """ with patch('corehq.apps.userreports.tasks.ID_CHUNK_SIZE', 1): report, view = self._build_report_and_view() expected = [ [ 'foo', [ ['report_column_display_fruit', 'report_column_display_percent'], ['apple', '150%'] ] ] ] self.assertEqual(view.export_table, expected) def test_redirect_custom_report(self): report, view = self._build_report_and_view() request = HttpRequest() self.assertFalse(view.should_redirect_to_paywall(request)) def test_redirect_report_builder(self): report, view = self._build_report_and_view() report.report_meta.created_by_builder = True report.save() request = HttpRequest() self.assertTrue(view.should_redirect_to_paywall(request)) def test_can_edit_report(self): """ Test whether ConfigurableReportView.page_context allows report editing """ domain = Domain(name='test_domain', is_active=True) domain.save() self.addCleanup(domain.delete) def create_view(can_edit_reports): rolename = 'edit_role' if can_edit_reports else 'view_role' username = 'editor' if can_edit_reports else 'viewer' toggles.USER_CONFIGURABLE_REPORTS.set(username, True, toggles.NAMESPACE_USER) user_role = UserRole( domain=domain.name, name=rolename, permissions=Permissions(edit_commcare_users=True, view_commcare_users=True, edit_groups=True, view_groups=True, edit_locations=True, view_locations=True, access_all_locations=False, edit_data=True, edit_reports=can_edit_reports, view_reports=True ) ) user_role.save() # user_role should be deleted along with the domain. web_user = WebUser.create(domain.name, username, '***', None, None) web_user.set_role(domain.name, user_role.get_qualified_id()) web_user.current_domain = domain.name web_user.save() self.addCleanup(web_user.delete, deleted_by=None) request = HttpRequest() request.can_access_all_locations = True request.user = web_user.get_django_user() request.couch_user = web_user request.session = {} _, view = self._build_report_and_view(request=request) return view cannot_edit_view = create_view(False) self.assertEqual(cannot_edit_view.page_context['can_edit_report'], False) can_edit_view = create_view(True) self.assertEqual(can_edit_view.page_context['can_edit_report'], True)
[ "casexml.apps.case.models.CommCareCase.get", "corehq.apps.userreports.dbaccessors.delete_all_report_configs", "corehq.apps.userreports.tasks.rebuild_indicators", "corehq.toggles.USER_CONFIGURABLE_REPORTS.set", "corehq.sql_db.connections.Session.remove", "casexml.apps.case.util.post_case_blocks", "mock.patch", "corehq.apps.userreports.models.DataSourceConfiguration", "corehq.apps.userreports.models.DataSourceConfiguration.all", "corehq.util.context_managers.drop_connected_signals", "casexml.apps.case.mock.CaseBlock.deprecated_init", "corehq.apps.userreports.models.ReportConfiguration", "uuid.uuid4", "corehq.apps.domain.models.Domain", "corehq.apps.users.models.WebUser.create", "django.http.HttpRequest", "corehq.apps.userreports.reports.view.ConfigurableReportView", "corehq.apps.users.models.Permissions", "casexml.apps.case.tests.util.delete_all_cases" ]
[((1484, 1504), 'casexml.apps.case.models.CommCareCase.get', 'CommCareCase.get', (['id'], {}), '(id)\n', (1500, 1504), False, 'from casexml.apps.case.models import CommCareCase\n'), ((1564, 1582), 'casexml.apps.case.tests.util.delete_all_cases', 'delete_all_cases', ([], {}), '()\n', (1580, 1582), False, 'from casexml.apps.case.tests.util import delete_all_cases\n'), ((1605, 1634), 'corehq.apps.userreports.models.DataSourceConfiguration.all', 'DataSourceConfiguration.all', ([], {}), '()\n', (1632, 1634), False, 'from corehq.apps.userreports.models import DataSourceConfiguration, ReportConfiguration\n'), ((1672, 1699), 'corehq.apps.userreports.dbaccessors.delete_all_report_configs', 'delete_all_report_configs', ([], {}), '()\n', (1697, 1699), False, 'from corehq.apps.userreports.dbaccessors import delete_all_report_configs\n'), ((1821, 1834), 'django.http.HttpRequest', 'HttpRequest', ([], {}), '()\n', (1832, 1834), False, 'from django.http import HttpRequest\n'), ((1890, 2753), 'corehq.apps.userreports.models.DataSourceConfiguration', 'DataSourceConfiguration', ([], {'domain': 'self.domain', 'display_name': '"""foo"""', 'referenced_doc_type': '"""CommCareCase"""', 'table_id': '"""woop_woop"""', 'configured_filter': "{'type': 'boolean_expression', 'operator': 'eq', 'expression': {'type':\n 'property_name', 'property_name': 'type'}, 'property_value': self.case_type\n }", 'configured_indicators': "[{'type': 'expression', 'expression': {'type': 'property_name',\n 'property_name': 'fruit'}, 'column_id': 'indicator_col_id_fruit',\n 'display_name': 'indicator_display_name_fruit', 'datatype': 'string'},\n {'type': 'expression', 'expression': {'type': 'property_name',\n 'property_name': 'num1'}, 'column_id': 'indicator_col_id_num1',\n 'datatype': 'integer'}, {'type': 'expression', 'expression': {'type':\n 'property_name', 'property_name': 'num2'}, 'column_id':\n 'indicator_col_id_num2', 'datatype': 'integer'}]"}), "(domain=self.domain, display_name='foo',\n referenced_doc_type='CommCareCase', table_id='woop_woop',\n configured_filter={'type': 'boolean_expression', 'operator': 'eq',\n 'expression': {'type': 'property_name', 'property_name': 'type'},\n 'property_value': self.case_type}, configured_indicators=[{'type':\n 'expression', 'expression': {'type': 'property_name', 'property_name':\n 'fruit'}, 'column_id': 'indicator_col_id_fruit', 'display_name':\n 'indicator_display_name_fruit', 'datatype': 'string'}, {'type':\n 'expression', 'expression': {'type': 'property_name', 'property_name':\n 'num1'}, 'column_id': 'indicator_col_id_num1', 'datatype': 'integer'},\n {'type': 'expression', 'expression': {'type': 'property_name',\n 'property_name': 'num2'}, 'column_id': 'indicator_col_id_num2',\n 'datatype': 'integer'}])\n", (1913, 2753), False, 'from corehq.apps.userreports.models import DataSourceConfiguration, ReportConfiguration\n'), ((3644, 3692), 'corehq.apps.userreports.tasks.rebuild_indicators', 'tasks.rebuild_indicators', (['data_source_config._id'], {}), '(data_source_config._id)\n', (3668, 3692), False, 'from corehq.apps.userreports import tasks\n'), ((3718, 4460), 'corehq.apps.userreports.models.ReportConfiguration', 'ReportConfiguration', ([], {'domain': 'self.domain', 'config_id': 'data_source_config._id', 'title': '"""foo"""', 'aggregation_columns': "['doc_id']", 'columns': "[{'type': 'field', 'display': 'report_column_display_fruit', 'field':\n 'indicator_col_id_fruit', 'column_id': 'report_column_col_id_fruit',\n 'aggregation': 'simple'}, {'type': 'percent', 'display':\n 'report_column_display_percent', 'column_id':\n 'report_column_col_id_percent', 'format': 'percent', 'denominator': {\n 'type': 'field', 'aggregation': 'sum', 'field': 'indicator_col_id_num1',\n 'column_id': 'report_column_col_id_percent_num1'}, 'numerator': {'type':\n 'field', 'aggregation': 'sum', 'field': 'indicator_col_id_num2',\n 'column_id': 'report_column_col_id_percent_num2'}}]"}), "(domain=self.domain, config_id=data_source_config._id,\n title='foo', aggregation_columns=['doc_id'], columns=[{'type': 'field',\n 'display': 'report_column_display_fruit', 'field':\n 'indicator_col_id_fruit', 'column_id': 'report_column_col_id_fruit',\n 'aggregation': 'simple'}, {'type': 'percent', 'display':\n 'report_column_display_percent', 'column_id':\n 'report_column_col_id_percent', 'format': 'percent', 'denominator': {\n 'type': 'field', 'aggregation': 'sum', 'field': 'indicator_col_id_num1',\n 'column_id': 'report_column_col_id_percent_num1'}, 'numerator': {'type':\n 'field', 'aggregation': 'sum', 'field': 'indicator_col_id_num2',\n 'column_id': 'report_column_col_id_percent_num2'}}])\n", (3737, 4460), False, 'from corehq.apps.userreports.models import DataSourceConfiguration, ReportConfiguration\n'), ((5121, 5160), 'corehq.apps.userreports.reports.view.ConfigurableReportView', 'ConfigurableReportView', ([], {'request': 'request'}), '(request=request)\n', (5143, 5160), False, 'from corehq.apps.userreports.reports.view import ConfigurableReportView\n'), ((5520, 5536), 'corehq.sql_db.connections.Session.remove', 'Session.remove', ([], {}), '()\n', (5534, 5536), False, 'from corehq.sql_db.connections import Session\n'), ((6939, 6952), 'django.http.HttpRequest', 'HttpRequest', ([], {}), '()\n', (6950, 6952), False, 'from django.http import HttpRequest\n'), ((7211, 7224), 'django.http.HttpRequest', 'HttpRequest', ([], {}), '()\n', (7222, 7224), False, 'from django.http import HttpRequest\n'), ((7448, 7490), 'corehq.apps.domain.models.Domain', 'Domain', ([], {'name': '"""test_domain"""', 'is_active': '(True)'}), "(name='test_domain', is_active=True)\n", (7454, 7490), False, 'from corehq.apps.domain.models import Domain\n'), ((1148, 1160), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1158, 1160), False, 'import uuid\n'), ((1362, 1400), 'corehq.util.context_managers.drop_connected_signals', 'drop_connected_signals', (['case_post_save'], {}), '(case_post_save)\n', (1384, 1400), False, 'from corehq.util.context_managers import drop_connected_signals\n'), ((1414, 1468), 'casexml.apps.case.util.post_case_blocks', 'post_case_blocks', (['[case_block]', "{'domain': cls.domain}"], {}), "([case_block], {'domain': cls.domain})\n", (1430, 1468), False, 'from casexml.apps.case.util import post_case_blocks\n'), ((6413, 6468), 'mock.patch', 'patch', (['"""corehq.apps.userreports.tasks.ID_CHUNK_SIZE"""', '(1)'], {}), "('corehq.apps.userreports.tasks.ID_CHUNK_SIZE', 1)\n", (6418, 6468), False, 'from mock import patch\n'), ((7746, 7823), 'corehq.toggles.USER_CONFIGURABLE_REPORTS.set', 'toggles.USER_CONFIGURABLE_REPORTS.set', (['username', '(True)', 'toggles.NAMESPACE_USER'], {}), '(username, True, toggles.NAMESPACE_USER)\n', (7783, 7823), False, 'from corehq import toggles\n'), ((8723, 8779), 'corehq.apps.users.models.WebUser.create', 'WebUser.create', (['domain.name', 'username', '"""***"""', 'None', 'None'], {}), "(domain.name, username, '***', None, None)\n", (8737, 8779), False, 'from corehq.apps.users.models import Permissions, UserRole, WebUser\n'), ((9016, 9029), 'django.http.HttpRequest', 'HttpRequest', ([], {}), '()\n', (9027, 9029), False, 'from django.http import HttpRequest\n'), ((1186, 1284), 'casexml.apps.case.mock.CaseBlock.deprecated_init', 'CaseBlock.deprecated_init', ([], {'create': '(True)', 'case_id': 'id', 'case_type': 'cls.case_type', 'update': 'properties'}), '(create=True, case_id=id, case_type=cls.case_type,\n update=properties)\n', (1211, 1284), False, 'from casexml.apps.case.mock import CaseBlock\n'), ((7954, 8203), 'corehq.apps.users.models.Permissions', 'Permissions', ([], {'edit_commcare_users': '(True)', 'view_commcare_users': '(True)', 'edit_groups': '(True)', 'view_groups': '(True)', 'edit_locations': '(True)', 'view_locations': '(True)', 'access_all_locations': '(False)', 'edit_data': '(True)', 'edit_reports': 'can_edit_reports', 'view_reports': '(True)'}), '(edit_commcare_users=True, view_commcare_users=True, edit_groups\n =True, view_groups=True, edit_locations=True, view_locations=True,\n access_all_locations=False, edit_data=True, edit_reports=\n can_edit_reports, view_reports=True)\n', (7965, 8203), False, 'from corehq.apps.users.models import Permissions, UserRole, WebUser\n')]
""" Copyright 2021 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this work except in compliance with the License. You may obtain a copy of the License at: http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import tkinter as tk from tkinter import * from tkinter import filedialog from datetime import datetime from tkinter.messagebox import showinfo from tkinter.messagebox import showwarning from tkinter.font import Font from os import path import sys if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'): print('running in a PyInstaller bundle') else: print('running in a normal Python process') # ----------------------------------------------- GLOBAL VARIABLES REF_FILE_NAME = "" TEST_FILE_NAME = "" MAIN_FILE_ONE_NAME = "" MAIN_FILE_TWO_NAME = "" SEQ_ONE_GAPS = [] SEQ_TWO_GAPS = [] SEQ_THREE_GAPS = [] SEQ_FOUR_GAPS = [] FOUR_SEQ_ALIGN = False ALIGNMENT_WARNING = False THRESHOLD = 1 LVL_SEL = "L1&L2" PEP_COLUMNS = ["peptide", "Peptide", "Peptide sequence"] START_COLUMNS = ["start", "Start", "Peptide start"] REF_PEPTIDE_MAX_LENGTH = 50 TEST_PEPTIDE_MAX_LENGTH = 50 MAIN_PEPTIDE_MAX_LENGTH = 50 # ----------------------------------------------- CLASSES class MainApplication: def __init__(self, master): self.master = master self.canvas = tk.Canvas(master, width=550, height=690) # width=550, height=690 # to make a frame self.frame = tk.Frame(master, bg='white') ############################################################################################ # Frame Input # this frame is placed in the original frame title_font = Font(family="Calibri", size=12, weight="bold") self.frame_input = tk.Frame(self.frame, bd='10', padx=3, pady=3) self.label_input_files = tk.Label(self.frame_input, text='Input File Paths', bd='3', fg='blue', font=title_font) self.label_epitope_predictions = tk.Label(self.frame_input, text='Epitope Predictions', bd='3', fg='blue') self.label_ref = tk.Label(self.frame_input, text='Sequence A', bd='3') self.label_test = tk.Label(self.frame_input, text='Sequence B', bd='3') self.label_database_searches = tk.Label(self.frame_input, text='Database Searches', bd='3', fg='blue') self.label_main_one = tk.Label(self.frame_input, text='Sequence A', bd='3') self.label_main_two = tk.Label(self.frame_input, text='Sequence B', bd='3') self.entry_ref = tk.Entry(self.frame_input, bd='3', justify="center") self.entry_test = tk.Entry(self.frame_input, bd='3', justify="center") self.entry_main_one = tk.Entry(self.frame_input, bd='3', justify="center") self.entry_main_two = tk.Entry(self.frame_input, bd='3', justify="center") self.button_ref = tk.Button(self.frame_input, text='Browse', command=self.browse_ref) self.button_test = tk.Button(self.frame_input, text='Browse', command=self.browse_test) self.button_main_one = tk.Button(self.frame_input, text='Browse', command=self.browse_main_one) self.button_main_two = tk.Button(self.frame_input, text='Browse', command=self.browse_main_two) self.label_indels_title = tk.Label(self.frame_input, text='CAVES Indel Search', bd='3', fg='blue') self.label_indels_alignment = tk.Label(self.frame_input, text='Alignment', bd='3') self.entry_indels_alignment = tk.Entry(self.frame_input, bd='3', justify="center") self.button_indels_alignment = tk.Button(self.frame_input, text='Browse', command=self.browse_alignment) self.label_threshold_title = tk.Label(self.frame_input, text='Minimum Peptide Length', bd='3', fg='blue', font=title_font) self.entry_threshold = tk.Entry(self.frame_input, bd='3', justify="center") self.label_threshold_helper = tk.Label(self.frame_input, text='Default minimum is 1 amino acid', bd='3', fg='red') self.label_radio_title = tk.Label(self.frame_input, text='Level Selection', bd='3', fg='blue', font=title_font) self.frame_radio_buttons = tk.Frame(self.frame_input, bd='0', padx=3, pady=3) self.level_selection = IntVar() self.level_selection.set(1) self.radio_both_lvls = Radiobutton(self.frame_radio_buttons, text="Level 1 and 2", command=self.config_L1L2_entries, variable=self.level_selection, value=1).grid(row=0, column=1, padx=50) self.radio_lvl_one_only = Radiobutton(self.frame_radio_buttons, text="Level 1 only", command=self.config_L1_only_entries, variable=self.level_selection, value=2).grid(row=0, column=2) self.radio_lvl_two_only = Radiobutton(self.frame_radio_buttons, text="Level 2 only", command=self.config_L2_only_entries, variable=self.level_selection, value=3).grid(row=0, column=3, padx=50) self.label_result_file_title = tk.Label(self.frame_input, text='Results File', bd='3', fg='blue', font=title_font) self.entry_result_file = tk.Entry(self.frame_input, bd='3', justify="center") self.button_result_path = tk.Button(self.frame_input, text='Browse', command=self.browse_result_path) # place used to place the widgets in the frame self.label_input_files.place(relx=-0.005, rely=-0.01, relheight=0.05) self.label_epitope_predictions.place(relx=0.025, rely=0.06, relheight=0.035) self.label_ref.place(relx=0.05, rely=0.12, relheight=0.035) self.entry_ref.place(relx=0.20, rely=0.12, relwidth=0.55, relheight=0.035) self.button_ref.place(relx=0.80, rely=0.12, relheight=0.030) self.label_test.place(relx=0.05, rely=0.18, relheight=0.035) self.entry_test.place(relx=0.20, rely=0.18, relwidth=0.55, relheight=0.035) self.button_test.place(relx=0.80, rely=0.18, relheight=0.030) self.label_database_searches.place(relx=0.025, rely=0.26, relheight=0.035) self.label_main_one.place(relx=0.05, rely=0.32, relheight=0.035) self.entry_main_one.place(relx=0.20, rely=0.32, relwidth=0.55, relheight=0.035) self.button_main_one.place(relx=0.80, rely=0.32, relheight=0.030) self.label_main_two.place(relx=0.05, rely=0.38, relheight=0.035) self.entry_main_two.place(relx=0.20, rely=0.38, relwidth=0.55, relheight=0.035) self.button_main_two.place(relx=0.80, rely=0.38, relheight=0.030) self.label_indels_title.place(relx=0.025, rely=0.46, relheight=0.035) self.label_indels_alignment.place(relx=0.06, rely=0.52, relheight=0.035) self.entry_indels_alignment.place(relx=0.20, rely=0.52, relwidth=0.55, relheight=0.035) self.button_indels_alignment.place(relx=0.80, rely=0.52, relheight=0.030) self.label_threshold_title.place(relx=-0.005, rely=0.60, relheight=0.05) self.entry_threshold.place(relx=0.10, rely=0.69, relwidth=0.05, relheight=0.030) self.label_threshold_helper.place(relx=0.175, rely=0.69, relheight=0.030) self.label_radio_title.place(relx=-0.005, rely=0.76, relheight=0.05) # Radio buttons are placed in their own frame (self.frame_radio_buttons) self.label_result_file_title.place(relx=-0.005, rely=0.90, relheight=0.035) self.entry_result_file.place(relx=0.20, rely=0.955, relwidth=0.55, relheight=0.035) self.button_result_path.place(relx=0.80, rely=0.955, relheight=0.030) ############################################################################################ # placing the buttons below submit_font = Font(family="Calibri", size=12) self.frame_button = tk.Frame(self.frame, bd='3', padx=3, pady=3) self.button_start = tk.Button(self.frame_button, text='Compare', font=submit_font, command=self.start_clicked) self.button_cancel = tk.Button(self.frame_button, text='Cancel', font=submit_font, command=master.destroy) self.button_cancel.place(relx=0.6, rely=0.22, relheight=0.6, relwidth=0.18) self.button_start.place(relx=0.8, rely=0.22, relheight=0.6, relwidth=0.18) ############################################################################################### # all the frames are placed in their respective positions self.frame_input.place(relx=0.005, rely=0.005, relwidth=0.99, relheight=0.906) self.frame_radio_buttons.place(relx=0.005, rely=0.8275, relwidth=1, relheight=1) self.frame_button.place(relx=0.005, rely=0.915, relwidth=0.99, relheight=0.08) self.frame.place(relx=0.02, rely=0.02, relwidth=0.96, relheight=0.96) self.canvas.pack() ############################################################################################## def start_clicked(self): print("Compare Start") init_objects(self.level_selection.get()) global LVL_SEL print("Reading epitope predictions: Sequence A file") ref_raw = init_ref_raw(self.entry_ref.get().strip()) if ref_raw is None: return if LVL_SEL != "L2Only": print("Reading epitope predictions: Sequence B file") test_raw = init_test_raw(self.entry_test.get().strip()) if test_raw is None: return if LVL_SEL != "L1Only": print("Reading database searches: Sequence A file") main_raw_one = init_main_raw(self.entry_main_one.get().strip()) if main_raw_one is None: print("Unable to read database searches: Sequence A file") return global MAIN_FILE_ONE_NAME MAIN_FILE_ONE_NAME = self.entry_main_one.get().split("/").pop() if LVL_SEL == "L1&L2": print("Reading database searches: Sequence B file") main_raw_two = init_main_raw(self.entry_main_two.get().strip()) if main_raw_two is None: print("Unable to read database searches: Sequence B file") return global MAIN_FILE_TWO_NAME MAIN_FILE_TWO_NAME = self.entry_main_two.get().split("/").pop() if self.entry_indels_alignment.get().strip() != "": print("Reading alignment file") if not init_alignment(self.entry_indels_alignment.get().strip()): print("Unable to create gap character lists") return else: print("Empty alignment file path") return if not init_threshold(self.entry_threshold.get().strip()): print("Minimum peptide length input error: minimum length set to 1") result_file = generate_result_file(self.entry_result_file.get()) ref_dictionary = create_test_comparison_dict(ref_raw.to_dict('split'), REF_FILE_NAME) if LVL_SEL == "L1&L2": test_dictionary = create_test_comparison_dict(test_raw.to_dict('split'), TEST_FILE_NAME) main_dict_one = create_main_comparison_dict(main_raw_one.to_dict('split'), MAIN_FILE_ONE_NAME) main_dict_two = create_main_comparison_dict(main_raw_two.to_dict('split'), MAIN_FILE_TWO_NAME) generate_test_comparison_results(ref_dictionary, test_dictionary) generate_main_comparison_results(L1_matched_dict, "L1m", main_dict_one, main_dict_two) generate_main_comparison_results(L1_partial_dict, "L1p", main_dict_one, main_dict_two) generate_main_comparison_results(L1_novel_dict, "L1n", main_dict_one, main_dict_two) finalize_L1L2_results(result_file) if LVL_SEL == "L1Only": test_dictionary = create_test_comparison_dict(test_raw.to_dict('split'), TEST_FILE_NAME) generate_test_comparison_results(ref_dictionary, test_dictionary) finalize_L1Only_results(result_file) if LVL_SEL == "L2Only": main_dict_one = create_main_comparison_dict(main_raw_one.to_dict('split'), MAIN_FILE_ONE_NAME) generate_main_comparison_results(ref_dictionary, "L2", main_dict_one) finalize_L2Only_results(result_file) print("Compared") showinfo("CAVES", "Comparison Complete!") def browse_ref(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_ref.delete(0, tk.END) self.entry_ref.insert(0, filename) def browse_test(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_test.delete(0, tk.END) self.entry_test.insert(0, filename) def browse_main_one(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_main_one.delete(0, tk.END) self.entry_main_one.insert(0, filename) def browse_main_two(self): filename = filedialog.askopenfilename(title="Select a File", filetypes=[("CSV files", "*.csv")]) self.entry_main_two.delete(0, tk.END) self.entry_main_two.insert(0, filename) def browse_alignment(self): fasta_exts = [("FASTA files", "*.fasta"), ("FASTA files", "*.fna"), ("FASTA files", "*.ffn"), ("FASTA files", "*.faa"), ("FASTA files", "*.frn"), ("FASTA files", "*.fa"), ("FASTA files", "*.fsa")] filename = filedialog.askopenfilename(title="Select a File", filetypes=fasta_exts) self.entry_indels_alignment.delete(0, tk.END) self.entry_indels_alignment.insert(0, filename) def browse_result_path(self): time = datetime.now().strftime("%Y-%m-%d_%H%M%S") filename = filedialog.asksaveasfilename(initialfile="results_"+time, title="Results File", filetypes=[("Excel files", "*.xlsx")]) self.entry_result_file.delete(0, tk.END) self.entry_result_file.insert(0, filename) def config_L1L2_entries(self): self.entry_ref.config(state='normal') self.entry_test.config(state='normal') self.entry_main_one.config(state='normal') self.entry_main_two.config(state='normal') def config_L1_only_entries(self): self.entry_main_one.delete(0, tk.END) self.entry_main_two.delete(0, tk.END) self.entry_ref.config(state='normal') self.entry_test.config(state='normal') self.entry_main_one.config(state='disabled') self.entry_main_two.config(state='disabled') def config_L2_only_entries(self): self.entry_test.delete(0, tk.END) self.entry_main_two.delete(0, tk.END) self.entry_ref.config(state='normal') self.entry_test.config(state='disabled') self.entry_main_one.config(state='normal') self.entry_main_two.config(state='disabled') class ResultSheetObject: def __init__(self): self.origin_file_one = [] self.peptide_one = [] self.start_one = [] self.end_one = [] self.length_one = [] self.letters_matched = [] self.letters_matched_length = [] self.origin_file_two = [] self.peptide_two = [] self.start_two = [] self.end_two = [] self.length_two = [] self.mutated_pos = [] class PeptideObject: def __init__(self, new_file, new_pep, new_start, new_end, new_length, new_suffix): self.origin_file = new_file self.peptide = new_pep self.start = new_start self.end = new_end self.length = new_length self.suffix = new_suffix # ----------------------------------------------- RESULT OBJECTS L1_novel = ResultSheetObject() L1_partial = ResultSheetObject() L1_matched = ResultSheetObject() L2_novel = ResultSheetObject() L2_partial = ResultSheetObject() L2_matched = ResultSheetObject() L1_novel_L2_novel = ResultSheetObject() L1_novel_L2_partial = ResultSheetObject() L1_novel_L2_matched = ResultSheetObject() L1_partial_L2_novel = ResultSheetObject() L1_partial_L2_partial = ResultSheetObject() L1_partial_L2_matched = ResultSheetObject() L1_matched_L2_novel = ResultSheetObject() L1_matched_L2_partial = ResultSheetObject() L1_matched_L2_matched = ResultSheetObject() # ----------------------------------------------- LEVEL 1 DICTIONARIES L1_novel_dict = {} L1_partial_dict = {} L1_matched_dict = {} # ----------------------------------------------- FUNCTIONS def init_objects(lvl_sel): global REF_FILE_NAME REF_FILE_NAME = "" global TEST_FILE_NAME TEST_FILE_NAME = "" global MAIN_FILE_ONE_NAME MAIN_FILE_ONE_NAME = "" global MAIN_FILE_TWO_NAME MAIN_FILE_TWO_NAME = "" global SEQ_ONE_GAPS SEQ_ONE_GAPS = [] global SEQ_TWO_GAPS SEQ_TWO_GAPS = [] global SEQ_THREE_GAPS SEQ_THREE_GAPS = [] global SEQ_FOUR_GAPS SEQ_FOUR_GAPS = [] global FOUR_SEQ_ALIGN FOUR_SEQ_ALIGN = False global LVL_SEL if lvl_sel == 1: LVL_SEL = "L1&L2" elif lvl_sel == 2: LVL_SEL = "L1Only" else: LVL_SEL = "L2Only" global L1_novel L1_novel = ResultSheetObject() global L1_partial L1_partial = ResultSheetObject() global L1_matched L1_matched = ResultSheetObject() global L2_novel L2_novel = ResultSheetObject() global L2_partial L2_partial = ResultSheetObject() global L2_matched L2_matched = ResultSheetObject() global L1_novel_L2_novel L1_novel_L2_novel = ResultSheetObject() global L1_novel_L2_partial L1_novel_L2_partial = ResultSheetObject() global L1_novel_L2_matched L1_novel_L2_matched = ResultSheetObject() global L1_partial_L2_novel L1_partial_L2_novel = ResultSheetObject() global L1_partial_L2_partial L1_partial_L2_partial = ResultSheetObject() global L1_partial_L2_matched L1_partial_L2_matched = ResultSheetObject() global L1_matched_L2_novel L1_matched_L2_novel = ResultSheetObject() global L1_matched_L2_partial L1_matched_L2_partial = ResultSheetObject() global L1_matched_L2_matched L1_matched_L2_matched = ResultSheetObject() global L1_novel_dict L1_novel_dict = {} global L1_partial_dict L1_partial_dict = {} global L1_matched_dict L1_matched_dict = {} def init_ref_raw(file_path): if not path.exists(file_path): print("Unable to find predictions file: " + file_path) return None global REF_FILE_NAME REF_FILE_NAME = file_path.strip().split("/").pop() # gives last item in list which is file ref_raw = None for pep_col in PEP_COLUMNS: for start_col in START_COLUMNS: try: ref_raw = pd.read_csv(file_path, index_col=False, usecols={start_col, pep_col}) break except ValueError: ref_raw = None else: continue break if ref_raw is None: print("Unable to read epitope predictions: Sequence A file") print("Value Error: Check to make sure the column names are among the following:") print("Start Columns:", START_COLUMNS) print("Peptide Columns:", PEP_COLUMNS) return ref_raw def init_test_raw(file_path): if not path.exists(file_path): print("Unable to find predictions file: " + file_path) return None global TEST_FILE_NAME TEST_FILE_NAME = file_path.strip().split("/").pop() # gives last item in list which is file test_raw = None for pep_col in PEP_COLUMNS: for start_col in START_COLUMNS: try: test_raw = pd.read_csv(file_path, index_col=False, usecols={start_col, pep_col}) break except ValueError: test_raw = None else: continue break if test_raw is None: print("Unable to read epitope predictions: Sequence B file") print("Value Error: Check to make sure the column names are among the following:") print("Start Columns:", START_COLUMNS) print("Peptide Columns:", PEP_COLUMNS) return test_raw def init_main_raw(file_path): if not path.exists(file_path): print("Unable to find database search file: " + file_path) return None try: main_raw = pd.read_csv(file_path, index_col=False, skiprows=1, usecols={"Description", "Starting Position"}) return main_raw except ValueError: print("Value Error: Check to make sure the column names are: 'Description' and 'Starting Position'") return None def init_alignment(file_path): if not path.exists(file_path): print("Unable to find alignment file from path: " + file_path) return False result = init_gap_chars(file_path) return result def init_gap_chars(file_path): try: with open(file_path) as my_file: sequences = build_sequences(my_file) global ALIGNMENT_WARNING ALIGNMENT_WARNING = False global SEQ_ONE_GAPS SEQ_ONE_GAPS = find_gap_chars(sequences[0]) if LVL_SEL != "L2Only": global SEQ_TWO_GAPS SEQ_TWO_GAPS = find_gap_chars(sequences[1]) if LVL_SEL != "L1Only": global SEQ_THREE_GAPS SEQ_THREE_GAPS = find_gap_chars(sequences[2]) if sequences[3] and LVL_SEL == "L1&L2": global SEQ_FOUR_GAPS SEQ_FOUR_GAPS = find_gap_chars(sequences[3]) global FOUR_SEQ_ALIGN FOUR_SEQ_ALIGN = True if ALIGNMENT_WARNING: showwarning("WARNING", "CAVES has detected a large amount of successive gap characters in your alignment " "file. Epitopes predicted from highly dissimilar sequences are unlikely to produce " "biologically relevant matches when compared due to inherent differences in the " "amino acid composition. \n\nCAVES will still run but we caution against using " "these results.") except: print("Alignment file processing error") return False return True def build_sequences(file): sequences = ["", "", "", ""] curr_seq = -1 for line in file: if line[0] == ">": curr_seq += 1 else: line = line.rstrip("\n") sequences[curr_seq] += line return sequences def find_gap_chars(seq): gaps = [] amino_acid_count = 1 row = 0 for char in seq: if char == '-': row += 1 if row >= 10: global ALIGNMENT_WARNING ALIGNMENT_WARNING = True gaps.append(amino_acid_count) else: row = 0 amino_acid_count += 1 return gaps def init_threshold(threshold_entry): global THRESHOLD if not threshold_entry: THRESHOLD = 1 return True try: if not str.isdigit(threshold_entry): raise THRESHOLD = int(threshold_entry) except: THRESHOLD = 1 return False return True def generate_result_file(file_path): try: filename, file_extension = path.splitext(file_path) if file_extension and file_extension == ".xlsx": result_file = pd.ExcelWriter(file_path) else: result_file = pd.ExcelWriter(filename + ".xlsx") except: time = datetime.now().strftime("%Y-%m-%d_%H%M%S") print("Results file input error: Default file name used " "(" + "results_" + time + ".xlsx). File placed in directory with CAVES executable.") result_file = pd.ExcelWriter("results_" + time + ".xlsx") return result_file def create_main_comparison_dict(main_dict_raw, main_file_name): main_list = list(main_dict_raw['data']) result_dict = {} for item in main_list: if isinstance(item[0], int): result_dict = main_comparison_dict_insert(item[0], item[1], main_file_name, result_dict) else: result_dict = main_comparison_dict_insert(item[1], item[0], main_file_name, result_dict) return result_dict def main_comparison_dict_insert(start, pep, main_file_name, res_dict): split = pep.split(" ") suffix = "" length = len(split[0]) if len(split) > 1: suffix = " " + split[1] + " " + split[2] new_peptide = PeptideObject(main_file_name, split[0], start, start + length - 1, length, suffix) if start not in res_dict: res_dict[start] = [new_peptide] else: res_dict[start].append(new_peptide) global MAIN_PEPTIDE_MAX_LENGTH MAIN_PEPTIDE_MAX_LENGTH = max(length, MAIN_PEPTIDE_MAX_LENGTH) return res_dict def create_test_comparison_dict(sample_dict_raw, test_file_name): sample_list = list(sample_dict_raw['data']) result_dict = {} for item in sample_list: if isinstance(item[0], int): result_dict = test_comparison_dict_insert(item[0], item[1], test_file_name, result_dict) else: result_dict = test_comparison_dict_insert(item[1], item[0], test_file_name, result_dict) return result_dict def test_comparison_dict_insert(start, pep, test_file_name, res_dict): global THRESHOLD if len(pep) >= THRESHOLD: res_dict[start] = PeptideObject(test_file_name, pep, start, start + len(pep) - 1, len(pep), "") if test_file_name == REF_FILE_NAME: global REF_PEPTIDE_MAX_LENGTH REF_PEPTIDE_MAX_LENGTH = max(len(pep), REF_PEPTIDE_MAX_LENGTH) else: global TEST_PEPTIDE_MAX_LENGTH TEST_PEPTIDE_MAX_LENGTH = max(len(pep), TEST_PEPTIDE_MAX_LENGTH) return res_dict def align_pos_gaps(ref_position, seq_one, seq_two): test_position = ref_position for gap_one in seq_one: if ref_position > gap_one: test_position += 1 for gap_two in seq_two: if ref_position > gap_two: test_position -= 1 return test_position def rel_diff_between_pos(ref_pos, seq_one_gaps, test_pos, seq_two_gaps): total_ref_gaps = 0 total_test_gaps = 0 for gap_one in seq_one_gaps: if ref_pos > gap_one: total_ref_gaps += 1 for gap_two in seq_two_gaps: if test_pos > gap_two: total_test_gaps += 1 rel_dist = abs((test_pos+total_test_gaps) - (ref_pos+total_ref_gaps)) final_dist = rel_dist for gap_one in seq_one_gaps: if ref_pos <= gap_one <= ref_pos + rel_dist: final_dist -= 1 for gap_two in seq_two_gaps: if ref_pos <= gap_two <= ref_pos + rel_dist: final_dist += 1 return final_dist def get_result_object(result_type, input_file, level): if result_type == "matched" and level == 1: return L1_matched if result_type == "partial" and level == 1: return L1_partial if result_type == "novel" and level == 1: return L1_novel if result_type == "matched" and level == 2 and input_file == "L1m": return L1_matched_L2_matched if result_type == "partial" and level == 2 and input_file == "L1m": return L1_matched_L2_partial if result_type == "novel" and level == 2 and input_file == "L1m": return L1_matched_L2_novel if result_type == "matched" and level == 2 and input_file == "L1p": return L1_partial_L2_matched if result_type == "partial" and level == 2 and input_file == "L1p": return L1_partial_L2_partial if result_type == "novel" and level == 2 and input_file == "L1p": return L1_partial_L2_novel if result_type == "matched" and level == 2 and input_file == "L1n": return L1_novel_L2_matched if result_type == "partial" and level == 2 and input_file == "L1n": return L1_novel_L2_partial if result_type == "novel" and level == 2 and input_file == "L1n": return L1_novel_L2_novel if result_type == "matched" and level == 2 and input_file == "L2": return L2_matched if result_type == "partial" and level == 2 and input_file == "L2": return L2_partial if result_type == "novel" and level == 2 and input_file == "L2": return L2_novel def create_match_df(obj): return pd.DataFrame({'Origin 1': obj.origin_file_one, 'Peptide 1': obj.peptide_one, 'Start 1': obj.start_one, 'End 1': obj.end_one, 'Length 1': obj.length_one, 'Origin 2': obj.origin_file_two, 'Peptide 2': obj.peptide_two, 'Start 2': obj.start_two, 'End 2': obj.end_two, 'Length 2': obj.length_two}) def create_partial_df(obj): return pd.DataFrame({'Origin 1': obj.origin_file_one, 'Peptide 1': obj.peptide_one, 'Start 1': obj.start_one, 'End 1': obj.end_one, 'Length 1': obj.length_one, 'Letters Matched': obj.letters_matched, 'Matched Length': obj.letters_matched_length, 'Origin 2': obj.origin_file_two, 'Peptide 2': obj.peptide_two, 'Start 2': obj.start_two, 'End 2': obj.end_two, 'Length 2': obj.length_two}) def create_novel_df(obj, level): if level == "L1": return pd.DataFrame({'Origin': obj.origin_file_one, 'Peptide': obj.peptide_one, 'Start': obj.start_one, 'End': obj.end_one, 'Length': obj.length_one, 'Mutated Positions': obj.mutated_pos}) else: return pd.DataFrame({'Origin': obj.origin_file_one, 'Peptide': obj.peptide_one, 'Start': obj.start_one, 'End': obj.end_one, 'Length': obj.length_one}) def insert_level_one_obj(lvl_one_dict, curr_pep): if curr_pep.start in lvl_one_dict: matched = False for item in lvl_one_dict[curr_pep.start]: if curr_pep.peptide == item.peptide and curr_pep.origin_file == item.origin_file\ and curr_pep.length == item.length: matched = True if not matched: lvl_one_dict[curr_pep.start].append(curr_pep) return True else: lvl_one_dict[curr_pep.start] = [curr_pep] return True return False def insert_matched(result_obj, pep_one, pep_two): result_obj.origin_file_one.append(pep_one.origin_file + pep_one.suffix) result_obj.peptide_one.append(pep_one.peptide) result_obj.start_one.append(pep_one.start) result_obj.end_one.append(pep_one.end) result_obj.length_one.append(pep_one.length) result_obj.origin_file_two.append(pep_two.origin_file + pep_two.suffix) result_obj.peptide_two.append(pep_two.peptide) result_obj.start_two.append(pep_two.start) result_obj.end_two.append(pep_two.end) result_obj.length_two.append(pep_two.length) def insert_partial(result_obj, pep_one, partial): result_obj.origin_file_one.append(pep_one.origin_file + pep_one.suffix) result_obj.peptide_one.append(pep_one.peptide) result_obj.start_one.append(pep_one.start) result_obj.end_one.append(pep_one.end) result_obj.length_one.append(pep_one.length) matched_letters = "" for pos, letter in sorted(partial[1].items()): matched_letters += letter result_obj.letters_matched.append(matched_letters) result_obj.letters_matched_length.append(len(matched_letters)) result_obj.origin_file_two.append(partial[0].origin_file + partial[0].suffix) result_obj.peptide_two.append(partial[0].peptide) result_obj.start_two.append(partial[0].start) result_obj.end_two.append(partial[0].end) result_obj.length_two.append(partial[0].length) def insert_novel(result_obj, pep_one, mutated_pos): result_obj.origin_file_one.append(pep_one.origin_file + pep_one.suffix) result_obj.peptide_one.append(pep_one.peptide) result_obj.start_one.append(pep_one.start) result_obj.end_one.append(pep_one.end) result_obj.length_one.append(pep_one.length) result_obj.mutated_pos.append(mutated_pos) def all_novel_positions_covered(partial_matches, novel_positions): for partial_match in partial_matches: for key in partial_match[1].keys(): if key in novel_positions: del novel_positions[key] return len(novel_positions) == 0 def find_most_mutations(novel_peps): if not novel_peps: return "" longest_mutation_list = [] longest = 0 for pep in novel_peps: if len(pep[1]) > longest: longest = len(pep[1]) longest_mutation_list = pep[1] longest_mutation_list_pos = "" for pos in longest_mutation_list: longest_mutation_list_pos += str(pos) + ", " return longest_mutation_list_pos.rstrip(", ") def input_main_comparison_result(curr_pep, results, input_file): if "matched" in results: res_obj = get_result_object("matched", input_file, 2) for match in results["matched"]: insert_matched(res_obj, curr_pep, match) elif "partial" in results: res_obj = get_result_object("partial", input_file, 2) for partial in results["partial"]: insert_partial(res_obj, curr_pep, partial) else: res_obj = get_result_object("novel", input_file, 2) insert_novel(res_obj, curr_pep, "") def input_test_comparison_result(curr_pep, results): if "novel" in results: insert_level_one_obj(L1_novel_dict, curr_pep) most_mutations = find_most_mutations(results["novel"]) res_obj = get_result_object("novel", "", 1) insert_novel(res_obj, curr_pep, most_mutations) for novel in results["novel"]: if insert_level_one_obj(L1_novel_dict, novel[0]): mutated_list = "" for pos in novel[2]: mutated_list += str(pos) + ", " insert_novel(res_obj, novel[0], mutated_list.rstrip(", ")) else: if "matched" in results: insert_level_one_obj(L1_matched_dict, curr_pep) result_obj = get_result_object("matched", "", 1) for match in results["matched"]: insert_level_one_obj(L1_matched_dict, match) insert_matched(result_obj, curr_pep, match) if "partial" in results: insert_level_one_obj(L1_partial_dict, curr_pep) result_obj = get_result_object("partial", "", 1) for partial in results["partial"]: insert_level_one_obj(L1_partial_dict, partial[0]) insert_partial(result_obj, curr_pep, partial) def calculate_main_comparison_parameters(test_peptide, main_peptide): result = {} if test_peptide.origin_file == TEST_FILE_NAME: if FOUR_SEQ_ALIGN: if align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_FOUR_GAPS) > main_peptide.start: result["test_start"] = test_peptide.start result["main_start"] = align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_FOUR_GAPS) elif align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_FOUR_GAPS) < main_peptide.start: result["test_start"] = test_peptide.start + \ rel_diff_between_pos(test_peptide.start, SEQ_TWO_GAPS, main_peptide.start, SEQ_FOUR_GAPS) result["main_start"] = main_peptide.start else: result["test_start"] = test_peptide.start result["main_start"] = main_peptide.start else: if align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_THREE_GAPS) > main_peptide.start: result["test_start"] = test_peptide.start result["main_start"] = align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_THREE_GAPS) elif align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_THREE_GAPS) < main_peptide.start: result["test_start"] = test_peptide.start + rel_diff_between_pos(test_peptide.start, SEQ_TWO_GAPS, main_peptide.start, SEQ_THREE_GAPS) result["main_start"] = main_peptide.start else: result["test_start"] = test_peptide.start result["main_start"] = main_peptide.start else: if align_pos_gaps(test_peptide.start, SEQ_ONE_GAPS, SEQ_THREE_GAPS) > main_peptide.start: result["test_start"] = test_peptide.start result["main_start"] = align_pos_gaps(test_peptide.start, SEQ_ONE_GAPS, SEQ_THREE_GAPS) elif align_pos_gaps(test_peptide.start, SEQ_ONE_GAPS, SEQ_THREE_GAPS) < main_peptide.start: result["test_start"] = test_peptide.start + rel_diff_between_pos(test_peptide.start, SEQ_ONE_GAPS, main_peptide.start, SEQ_THREE_GAPS) result["main_start"] = main_peptide.start else: result["test_start"] = test_peptide.start result["main_start"] = main_peptide.start if main_peptide.end - result["main_start"] <= test_peptide.end - result["test_start"]: result["num_comp"] = main_peptide.end - result["main_start"] + 1 else: result["num_comp"] = test_peptide.end - result["test_start"] + 1 return result def calculate_test_comparison_parameters(ref_peptide, test_peptide): result = {} if align_pos_gaps(ref_peptide.start, SEQ_ONE_GAPS, SEQ_TWO_GAPS) > test_peptide.start: result["ref_start"] = ref_peptide.start result["test_start"] = align_pos_gaps(ref_peptide.start, SEQ_ONE_GAPS, SEQ_TWO_GAPS) elif align_pos_gaps(ref_peptide.start, SEQ_ONE_GAPS, SEQ_TWO_GAPS) < test_peptide.start: result["ref_start"] = ref_peptide.start + \ rel_diff_between_pos(ref_peptide.start, SEQ_ONE_GAPS, test_peptide.start, SEQ_TWO_GAPS) result["test_start"] = test_peptide.start else: result["ref_start"] = ref_peptide.start result["test_start"] = test_peptide.start if ref_peptide.end - result["ref_start"] <= test_peptide.end - result["test_start"]: result["num_comp"] = ref_peptide.end - result["ref_start"] + 1 else: result["num_comp"] = test_peptide.end - result["test_start"] + 1 return result def compare_to_test_string(ref_peptide, test_peptide): results = [] novel_ref_positions = {} novel_test_positions = {} matched_positions = {} smallest_max_length = ref_peptide.length if ref_peptide.length < test_peptide.length else test_peptide.length comp_params = calculate_test_comparison_parameters(ref_peptide, test_peptide) global SEQ_ONE_GAPS global SEQ_TWO_GAPS ref_curr = comp_params["ref_start"] - ref_peptide.start test_curr = comp_params["test_start"] - test_peptide.start for i in range(0, comp_params["num_comp"]): overall_ref_pos = comp_params["ref_start"] + i overall_test_pos = comp_params["test_start"] + i if overall_ref_pos in SEQ_TWO_GAPS and overall_test_pos not in SEQ_ONE_GAPS: novel_ref_positions[comp_params["ref_start"] + i] = ref_peptide.peptide[ref_curr] novel_test_positions[comp_params["test_start"] + i] = '-' ref_curr += 1 elif overall_ref_pos not in SEQ_TWO_GAPS and overall_test_pos in SEQ_ONE_GAPS: novel_ref_positions[comp_params["ref_start"] + i] = '-' novel_test_positions[comp_params["test_start"] + i] = test_peptide.peptide[test_curr] test_curr += 1 elif ref_peptide.peptide[ref_curr] == test_peptide.peptide[test_curr]: matched_positions[comp_params["ref_start"]+i] = ref_peptide.peptide[ref_curr] ref_curr += 1 test_curr += 1 else: novel_ref_positions[comp_params["ref_start"]+i] = ref_peptide.peptide[ref_curr] novel_test_positions[comp_params["test_start"]+i] = test_peptide.peptide[test_curr] ref_curr += 1 test_curr += 1 if len(matched_positions) == smallest_max_length: results.append("matched") elif len(novel_ref_positions) > 0: results.append("novel") results.append(novel_ref_positions) results.append(novel_test_positions) else: results.append("partial") results.append(matched_positions) return results def compare_to_main_string(test_peptide, main_peptide): results = [] novel_positions = {} matched_positions = {} comp_params = calculate_main_comparison_parameters(test_peptide, main_peptide) test_curr = comp_params["test_start"] - test_peptide.start main_curr = comp_params["main_start"] - main_peptide.start for i in range(0, comp_params["num_comp"]): if test_peptide.peptide[test_curr] == main_peptide.peptide[main_curr]: matched_positions[comp_params["test_start"]+i] = test_peptide.peptide[test_curr] test_curr += 1 main_curr += 1 else: novel_positions[comp_params["test_start"]+i] = test_peptide.peptide[test_curr] test_curr += 1 main_curr += 1 if len(matched_positions) == test_peptide.length: results.append("matched") elif len(novel_positions) > 0: results.append("novel") results.append(novel_positions) else: results.append("partial") results.append(matched_positions) return results def generate_test_comparisons(dictionary, ref_peptide): result = {} comp_results = {"matched": [], "partial": [], "novel_test_peps": []} aligned_test_start = align_pos_gaps(ref_peptide.start, SEQ_ONE_GAPS, SEQ_TWO_GAPS) aligned_test_end = align_pos_gaps(ref_peptide.end, SEQ_ONE_GAPS, SEQ_TWO_GAPS) curr_pos = max(1, aligned_test_start-TEST_PEPTIDE_MAX_LENGTH) # gather all possible comparisons for testing string while curr_pos <= aligned_test_end: if curr_pos in dictionary: test_peptide = dictionary[curr_pos] if ((test_peptide.start <= aligned_test_start <= test_peptide.end) or (test_peptide.start <= aligned_test_end <= test_peptide.end)) or \ ((aligned_test_start <= test_peptide.start <= aligned_test_end) or (aligned_test_start <= test_peptide.end <= aligned_test_end)): comparison = compare_to_test_string(ref_peptide, test_peptide) if comparison[0] == "matched": comp_results["matched"].append(test_peptide) elif comparison[0] == "partial": comp_results["partial"].append([test_peptide, comparison[1]]) elif comparison[0] == "novel": comp_results["novel_test_peps"].append([test_peptide, comparison[1], comparison[2]]) curr_pos += 1 if len(comp_results["novel_test_peps"]) > 0: result["novel"] = [] for novel_test_pep in comp_results["novel_test_peps"]: result["novel"].append(novel_test_pep) elif len(comp_results["matched"]) == 0 and len(comp_results["partial"]) == 0: result["novel"] = [] else: if len(comp_results["matched"]) > 0: result["matched"] = comp_results["matched"] if len(comp_results["partial"]) > 0: result["partial"] = comp_results["partial"] return result def generate_main_comparisons(dictionary, test_peptide): result = {} comp_results = {"matched": [], "partial": [], "novel_pos_dict": {}} if LVL_SEL == "L2Only": aligned_test_start = align_pos_gaps(test_peptide.start, SEQ_ONE_GAPS, SEQ_TWO_GAPS) aligned_test_end = align_pos_gaps(test_peptide.end, SEQ_ONE_GAPS, SEQ_TWO_GAPS) else: if test_peptide.origin_file != TEST_FILE_NAME: aligned_test_start = align_pos_gaps(test_peptide.start, SEQ_ONE_GAPS, SEQ_THREE_GAPS) aligned_test_end = align_pos_gaps(test_peptide.end, SEQ_ONE_GAPS, SEQ_THREE_GAPS) else: if FOUR_SEQ_ALIGN: aligned_test_start = align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_FOUR_GAPS) aligned_test_end = align_pos_gaps(test_peptide.end, SEQ_TWO_GAPS, SEQ_FOUR_GAPS) else: aligned_test_start = align_pos_gaps(test_peptide.start, SEQ_TWO_GAPS, SEQ_THREE_GAPS) aligned_test_end = align_pos_gaps(test_peptide.end, SEQ_TWO_GAPS, SEQ_THREE_GAPS) curr_pos = max(1, aligned_test_start-MAIN_PEPTIDE_MAX_LENGTH) # gather all possible comparisons for testing string while curr_pos <= aligned_test_end: if curr_pos in dictionary: for main_peptide in dictionary[curr_pos]: if ((main_peptide.start <= aligned_test_start <= main_peptide.end) or (main_peptide.start <= aligned_test_end <= main_peptide.end)) or \ ((aligned_test_start <= main_peptide.start <= aligned_test_end) or (aligned_test_start <= main_peptide.end <= aligned_test_end)): comparison = \ compare_to_main_string(test_peptide, main_peptide) if comparison[0] == "matched": comp_results["matched"].append(main_peptide) elif comparison[0] == "partial": comp_results["partial"].append([main_peptide, comparison[1]]) elif comparison[0] == "novel": for pos, letter in comparison[1].items(): comp_results["novel_pos_dict"][pos] = letter curr_pos += 1 if len(comp_results["matched"]) > 0: result["matched"] = comp_results["matched"] elif len(comp_results["matched"]) == 0 and len(comp_results["partial"]) == 0: result["novel"] = test_peptide elif len(comp_results["novel_pos_dict"]) > 0: if len(comp_results["partial"]) == 0: result["novel"] = test_peptide else: if all_novel_positions_covered(comp_results["partial"], comp_results["novel_pos_dict"]): result["partial"] = comp_results["partial"] else: result["novel"] = test_peptide elif len(comp_results["partial"]) > 0 and len(comp_results["matched"]) == 0 \ and len(comp_results["novel_pos_dict"]) == 0: result["partial"] = comp_results["partial"] return result def calculate_input_novel_test_peps(test_dict): for key, value in sorted(test_dict.items()): matched = False if key in L1_matched_dict: for potential in L1_matched_dict[key]: if potential.peptide == value.peptide and potential.origin_file == value.origin_file \ and potential.length == value.length: matched = True if key in L1_partial_dict: for potential in L1_partial_dict[key]: if potential.peptide == value.peptide and potential.origin_file == value.origin_file \ and potential.length == value.length: matched = True if key in L1_novel_dict: for potential in L1_novel_dict[key]: if potential.peptide == value.peptide and potential.origin_file == value.origin_file \ and potential.length == value.length: matched = True if not matched: insert_level_one_obj(L1_novel_dict, value) res_obj = get_result_object("novel", "", 1) insert_novel(res_obj, value, "") def generate_main_comparison_results(test_dict, input_name, main_dict_one, main_dict_two=None): for key, value in sorted(test_dict.items()): if isinstance(value, list): for pep in value: if pep.origin_file == REF_FILE_NAME: results = generate_main_comparisons(main_dict_one, pep) else: # pep.origin_file == TEST_FILE_NAME results = generate_main_comparisons(main_dict_two, pep) input_main_comparison_result(pep, results, input_name) else: if value.origin_file == REF_FILE_NAME: results = generate_main_comparisons(main_dict_one, value) else: # pep.origin_file == TEST_FILE_NAME results = generate_main_comparisons(main_dict_two, value) input_main_comparison_result(value, results, input_name) def generate_test_comparison_results(ref_dict, test_dict): for key, value in sorted(ref_dict.items()): results = generate_test_comparisons(test_dict, value) input_test_comparison_result(value, results) calculate_input_novel_test_peps(test_dict) def finalize_L1L2_results(result_file): L1m_df = create_match_df(L1_matched) L1p_df = create_partial_df(L1_partial) L1n_df = create_novel_df(L1_novel, "L1") L1m_L2m_df = create_match_df(L1_matched_L2_matched) L1m_L2p_df = create_partial_df(L1_matched_L2_partial) L1m_L2n_df = create_novel_df(L1_matched_L2_novel, "L2") L1p_L2m_df = create_match_df(L1_partial_L2_matched) L1p_L2p_df = create_partial_df(L1_partial_L2_partial) L1p_L2n_df = create_novel_df(L1_partial_L2_novel, "L2") L1n_L2m_df = create_match_df(L1_novel_L2_matched) L1n_L2p_df = create_partial_df(L1_novel_L2_partial) L1n_L2n_df = create_novel_df(L1_novel_L2_novel, "L2") L1m_df.to_excel(result_file, sheet_name="L1E", index=False) L1p_df.to_excel(result_file, sheet_name="L1P", index=False) L1n_df.to_excel(result_file, sheet_name="L1N", index=False) L1m_L2m_df.to_excel(result_file, sheet_name="L1E_L2E", index=False) L1m_L2p_df.to_excel(result_file, sheet_name="L1E_L2P", index=False) L1m_L2n_df.to_excel(result_file, sheet_name="L1E_L2N", index=False) L1p_L2m_df.to_excel(result_file, sheet_name="L1P_L2E", index=False) L1p_L2p_df.to_excel(result_file, sheet_name="L1P_L2P", index=False) L1p_L2n_df.to_excel(result_file, sheet_name="L1P_L2N", index=False) L1n_L2m_df.to_excel(result_file, sheet_name="L1N_L2E", index=False) L1n_L2p_df.to_excel(result_file, sheet_name="L1N_L2P", index=False) L1n_L2n_df.to_excel(result_file, sheet_name="L1N_L2N", index=False) result_file.save() def finalize_L1Only_results(result_file): L1m_df = create_match_df(L1_matched) L1p_df = create_partial_df(L1_partial) L1n_df = create_novel_df(L1_novel, "L1") L1m_df.to_excel(result_file, sheet_name="L1E", index=False) L1p_df.to_excel(result_file, sheet_name="L1P", index=False) L1n_df.to_excel(result_file, sheet_name="L1N", index=False) result_file.save() def finalize_L2Only_results(result_file): L2m_df = create_match_df(L2_matched) L2p_df = create_partial_df(L2_partial) L2n_df = create_novel_df(L2_novel, "L2") L2m_df.to_excel(result_file, sheet_name="L2E", index=False) L2p_df.to_excel(result_file, sheet_name="L2P", index=False) L2n_df.to_excel(result_file, sheet_name="L2N", index=False) result_file.save() # ----------------------------------------------- MAIN if __name__ == '__main__': window = tk.Tk() font = Font(family="Calibri", size=10) window.option_add("*Font", font) window.title("CAVES 1.0") app = MainApplication(window) window.mainloop()
[ "tkinter.messagebox.showwarning", "os.path.exists", "pandas.ExcelWriter", "tkinter.Entry", "pandas.read_csv", "tkinter.filedialog.asksaveasfilename", "os.path.splitext", "tkinter.Button", "tkinter.font.Font", "tkinter.Canvas", "tkinter.Tk", "datetime.datetime.now", "tkinter.Label", "pandas.DataFrame", "tkinter.messagebox.showinfo", "tkinter.Frame", "tkinter.filedialog.askopenfilename" ]
[((29060, 29370), 'pandas.DataFrame', 'pd.DataFrame', (["{'Origin 1': obj.origin_file_one, 'Peptide 1': obj.peptide_one, 'Start 1':\n obj.start_one, 'End 1': obj.end_one, 'Length 1': obj.length_one,\n 'Origin 2': obj.origin_file_two, 'Peptide 2': obj.peptide_two,\n 'Start 2': obj.start_two, 'End 2': obj.end_two, 'Length 2': obj.length_two}"], {}), "({'Origin 1': obj.origin_file_one, 'Peptide 1': obj.peptide_one,\n 'Start 1': obj.start_one, 'End 1': obj.end_one, 'Length 1': obj.\n length_one, 'Origin 2': obj.origin_file_two, 'Peptide 2': obj.\n peptide_two, 'Start 2': obj.start_two, 'End 2': obj.end_two, 'Length 2':\n obj.length_two})\n", (29072, 29370), True, 'import pandas as pd\n'), ((29469, 29869), 'pandas.DataFrame', 'pd.DataFrame', (["{'Origin 1': obj.origin_file_one, 'Peptide 1': obj.peptide_one, 'Start 1':\n obj.start_one, 'End 1': obj.end_one, 'Length 1': obj.length_one,\n 'Letters Matched': obj.letters_matched, 'Matched Length': obj.\n letters_matched_length, 'Origin 2': obj.origin_file_two, 'Peptide 2':\n obj.peptide_two, 'Start 2': obj.start_two, 'End 2': obj.end_two,\n 'Length 2': obj.length_two}"], {}), "({'Origin 1': obj.origin_file_one, 'Peptide 1': obj.peptide_one,\n 'Start 1': obj.start_one, 'End 1': obj.end_one, 'Length 1': obj.\n length_one, 'Letters Matched': obj.letters_matched, 'Matched Length':\n obj.letters_matched_length, 'Origin 2': obj.origin_file_two,\n 'Peptide 2': obj.peptide_two, 'Start 2': obj.start_two, 'End 2': obj.\n end_two, 'Length 2': obj.length_two})\n", (29481, 29869), True, 'import pandas as pd\n'), ((52022, 52029), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (52027, 52029), True, 'import tkinter as tk\n'), ((52041, 52072), 'tkinter.font.Font', 'Font', ([], {'family': '"""Calibri"""', 'size': '(10)'}), "(family='Calibri', size=10)\n", (52045, 52072), False, 'from tkinter.font import Font\n'), ((1670, 1710), 'tkinter.Canvas', 'tk.Canvas', (['master'], {'width': '(550)', 'height': '(690)'}), '(master, width=550, height=690)\n', (1679, 1710), True, 'import tkinter as tk\n'), ((1783, 1811), 'tkinter.Frame', 'tk.Frame', (['master'], {'bg': '"""white"""'}), "(master, bg='white')\n", (1791, 1811), True, 'import tkinter as tk\n'), ((2011, 2057), 'tkinter.font.Font', 'Font', ([], {'family': '"""Calibri"""', 'size': '(12)', 'weight': '"""bold"""'}), "(family='Calibri', size=12, weight='bold')\n", (2015, 2057), False, 'from tkinter.font import Font\n'), ((2086, 2131), 'tkinter.Frame', 'tk.Frame', (['self.frame'], {'bd': '"""10"""', 'padx': '(3)', 'pady': '(3)'}), "(self.frame, bd='10', padx=3, pady=3)\n", (2094, 2131), True, 'import tkinter as tk\n'), ((2165, 2257), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Input File Paths"""', 'bd': '"""3"""', 'fg': '"""blue"""', 'font': 'title_font'}), "(self.frame_input, text='Input File Paths', bd='3', fg='blue', font\n =title_font)\n", (2173, 2257), True, 'import tkinter as tk\n'), ((2295, 2368), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Epitope Predictions"""', 'bd': '"""3"""', 'fg': '"""blue"""'}), "(self.frame_input, text='Epitope Predictions', bd='3', fg='blue')\n", (2303, 2368), True, 'import tkinter as tk\n'), ((2394, 2447), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Sequence A"""', 'bd': '"""3"""'}), "(self.frame_input, text='Sequence A', bd='3')\n", (2402, 2447), True, 'import tkinter as tk\n'), ((2474, 2527), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Sequence B"""', 'bd': '"""3"""'}), "(self.frame_input, text='Sequence B', bd='3')\n", (2482, 2527), True, 'import tkinter as tk\n'), ((2568, 2639), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Database Searches"""', 'bd': '"""3"""', 'fg': '"""blue"""'}), "(self.frame_input, text='Database Searches', bd='3', fg='blue')\n", (2576, 2639), True, 'import tkinter as tk\n'), ((2670, 2723), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Sequence A"""', 'bd': '"""3"""'}), "(self.frame_input, text='Sequence A', bd='3')\n", (2678, 2723), True, 'import tkinter as tk\n'), ((2754, 2807), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Sequence B"""', 'bd': '"""3"""'}), "(self.frame_input, text='Sequence B', bd='3')\n", (2762, 2807), True, 'import tkinter as tk\n'), ((2834, 2886), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (2842, 2886), True, 'import tkinter as tk\n'), ((2913, 2965), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (2921, 2965), True, 'import tkinter as tk\n'), ((2996, 3048), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (3004, 3048), True, 'import tkinter as tk\n'), ((3079, 3131), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (3087, 3131), True, 'import tkinter as tk\n'), ((3159, 3226), 'tkinter.Button', 'tk.Button', (['self.frame_input'], {'text': '"""Browse"""', 'command': 'self.browse_ref'}), "(self.frame_input, text='Browse', command=self.browse_ref)\n", (3168, 3226), True, 'import tkinter as tk\n'), ((3254, 3322), 'tkinter.Button', 'tk.Button', (['self.frame_input'], {'text': '"""Browse"""', 'command': 'self.browse_test'}), "(self.frame_input, text='Browse', command=self.browse_test)\n", (3263, 3322), True, 'import tkinter as tk\n'), ((3354, 3426), 'tkinter.Button', 'tk.Button', (['self.frame_input'], {'text': '"""Browse"""', 'command': 'self.browse_main_one'}), "(self.frame_input, text='Browse', command=self.browse_main_one)\n", (3363, 3426), True, 'import tkinter as tk\n'), ((3458, 3530), 'tkinter.Button', 'tk.Button', (['self.frame_input'], {'text': '"""Browse"""', 'command': 'self.browse_main_two'}), "(self.frame_input, text='Browse', command=self.browse_main_two)\n", (3467, 3530), True, 'import tkinter as tk\n'), ((3566, 3638), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""CAVES Indel Search"""', 'bd': '"""3"""', 'fg': '"""blue"""'}), "(self.frame_input, text='CAVES Indel Search', bd='3', fg='blue')\n", (3574, 3638), True, 'import tkinter as tk\n'), ((3678, 3730), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Alignment"""', 'bd': '"""3"""'}), "(self.frame_input, text='Alignment', bd='3')\n", (3686, 3730), True, 'import tkinter as tk\n'), ((3769, 3821), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (3777, 3821), True, 'import tkinter as tk\n'), ((3861, 3934), 'tkinter.Button', 'tk.Button', (['self.frame_input'], {'text': '"""Browse"""', 'command': 'self.browse_alignment'}), "(self.frame_input, text='Browse', command=self.browse_alignment)\n", (3870, 3934), True, 'import tkinter as tk\n'), ((3973, 4070), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Minimum Peptide Length"""', 'bd': '"""3"""', 'fg': '"""blue"""', 'font': 'title_font'}), "(self.frame_input, text='Minimum Peptide Length', bd='3', fg='blue',\n font=title_font)\n", (3981, 4070), True, 'import tkinter as tk\n'), ((4144, 4196), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (4152, 4196), True, 'import tkinter as tk\n'), ((4235, 4323), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Default minimum is 1 amino acid"""', 'bd': '"""3"""', 'fg': '"""red"""'}), "(self.frame_input, text='Default minimum is 1 amino acid', bd='3',\n fg='red')\n", (4243, 4323), True, 'import tkinter as tk\n'), ((4448, 4539), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Level Selection"""', 'bd': '"""3"""', 'fg': '"""blue"""', 'font': 'title_font'}), "(self.frame_input, text='Level Selection', bd='3', fg='blue', font=\n title_font)\n", (4456, 4539), True, 'import tkinter as tk\n'), ((4613, 4663), 'tkinter.Frame', 'tk.Frame', (['self.frame_input'], {'bd': '"""0"""', 'padx': '(3)', 'pady': '(3)'}), "(self.frame_input, bd='0', padx=3, pady=3)\n", (4621, 4663), True, 'import tkinter as tk\n'), ((5639, 5727), 'tkinter.Label', 'tk.Label', (['self.frame_input'], {'text': '"""Results File"""', 'bd': '"""3"""', 'fg': '"""blue"""', 'font': 'title_font'}), "(self.frame_input, text='Results File', bd='3', fg='blue', font=\n title_font)\n", (5647, 5727), True, 'import tkinter as tk\n'), ((5804, 5856), 'tkinter.Entry', 'tk.Entry', (['self.frame_input'], {'bd': '"""3"""', 'justify': '"""center"""'}), "(self.frame_input, bd='3', justify='center')\n", (5812, 5856), True, 'import tkinter as tk\n'), ((5891, 5966), 'tkinter.Button', 'tk.Button', (['self.frame_input'], {'text': '"""Browse"""', 'command': 'self.browse_result_path'}), "(self.frame_input, text='Browse', command=self.browse_result_path)\n", (5900, 5966), True, 'import tkinter as tk\n'), ((8352, 8383), 'tkinter.font.Font', 'Font', ([], {'family': '"""Calibri"""', 'size': '(12)'}), "(family='Calibri', size=12)\n", (8356, 8383), False, 'from tkinter.font import Font\n'), ((8413, 8457), 'tkinter.Frame', 'tk.Frame', (['self.frame'], {'bd': '"""3"""', 'padx': '(3)', 'pady': '(3)'}), "(self.frame, bd='3', padx=3, pady=3)\n", (8421, 8457), True, 'import tkinter as tk\n'), ((8486, 8581), 'tkinter.Button', 'tk.Button', (['self.frame_button'], {'text': '"""Compare"""', 'font': 'submit_font', 'command': 'self.start_clicked'}), "(self.frame_button, text='Compare', font=submit_font, command=self\n .start_clicked)\n", (8495, 8581), True, 'import tkinter as tk\n'), ((8606, 8696), 'tkinter.Button', 'tk.Button', (['self.frame_button'], {'text': '"""Cancel"""', 'font': 'submit_font', 'command': 'master.destroy'}), "(self.frame_button, text='Cancel', font=submit_font, command=\n master.destroy)\n", (8615, 8696), True, 'import tkinter as tk\n'), ((12880, 12921), 'tkinter.messagebox.showinfo', 'showinfo', (['"""CAVES"""', '"""Comparison Complete!"""'], {}), "('CAVES', 'Comparison Complete!')\n", (12888, 12921), False, 'from tkinter.messagebox import showinfo\n'), ((12968, 13057), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Select a File"""', 'filetypes': "[('CSV files', '*.csv')]"}), "(title='Select a File', filetypes=[('CSV files',\n '*.csv')])\n", (12994, 13057), False, 'from tkinter import filedialog\n'), ((13185, 13274), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Select a File"""', 'filetypes': "[('CSV files', '*.csv')]"}), "(title='Select a File', filetypes=[('CSV files',\n '*.csv')])\n", (13211, 13274), False, 'from tkinter import filedialog\n'), ((13408, 13497), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Select a File"""', 'filetypes': "[('CSV files', '*.csv')]"}), "(title='Select a File', filetypes=[('CSV files',\n '*.csv')])\n", (13434, 13497), False, 'from tkinter import filedialog\n'), ((13639, 13728), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Select a File"""', 'filetypes': "[('CSV files', '*.csv')]"}), "(title='Select a File', filetypes=[('CSV files',\n '*.csv')])\n", (13665, 13728), False, 'from tkinter import filedialog\n'), ((14120, 14191), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'title': '"""Select a File"""', 'filetypes': 'fasta_exts'}), "(title='Select a File', filetypes=fasta_exts)\n", (14146, 14191), False, 'from tkinter import filedialog\n'), ((14414, 14539), 'tkinter.filedialog.asksaveasfilename', 'filedialog.asksaveasfilename', ([], {'initialfile': "('results_' + time)", 'title': '"""Results File"""', 'filetypes': "[('Excel files', '*.xlsx')]"}), "(initialfile='results_' + time, title=\n 'Results File', filetypes=[('Excel files', '*.xlsx')])\n", (14442, 14539), False, 'from tkinter import filedialog\n'), ((19064, 19086), 'os.path.exists', 'path.exists', (['file_path'], {}), '(file_path)\n', (19075, 19086), False, 'from os import path\n'), ((19973, 19995), 'os.path.exists', 'path.exists', (['file_path'], {}), '(file_path)\n', (19984, 19995), False, 'from os import path\n'), ((20889, 20911), 'os.path.exists', 'path.exists', (['file_path'], {}), '(file_path)\n', (20900, 20911), False, 'from os import path\n'), ((21029, 21130), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'index_col': '(False)', 'skiprows': '(1)', 'usecols': "{'Description', 'Starting Position'}"}), "(file_path, index_col=False, skiprows=1, usecols={'Description',\n 'Starting Position'})\n", (21040, 21130), True, 'import pandas as pd\n'), ((21347, 21369), 'os.path.exists', 'path.exists', (['file_path'], {}), '(file_path)\n', (21358, 21369), False, 'from os import path\n'), ((24009, 24033), 'os.path.splitext', 'path.splitext', (['file_path'], {}), '(file_path)\n', (24022, 24033), False, 'from os import path\n'), ((30020, 30209), 'pandas.DataFrame', 'pd.DataFrame', (["{'Origin': obj.origin_file_one, 'Peptide': obj.peptide_one, 'Start': obj.\n start_one, 'End': obj.end_one, 'Length': obj.length_one,\n 'Mutated Positions': obj.mutated_pos}"], {}), "({'Origin': obj.origin_file_one, 'Peptide': obj.peptide_one,\n 'Start': obj.start_one, 'End': obj.end_one, 'Length': obj.length_one,\n 'Mutated Positions': obj.mutated_pos})\n", (30032, 30209), True, 'import pandas as pd\n'), ((30256, 30403), 'pandas.DataFrame', 'pd.DataFrame', (["{'Origin': obj.origin_file_one, 'Peptide': obj.peptide_one, 'Start': obj.\n start_one, 'End': obj.end_one, 'Length': obj.length_one}"], {}), "({'Origin': obj.origin_file_one, 'Peptide': obj.peptide_one,\n 'Start': obj.start_one, 'End': obj.end_one, 'Length': obj.length_one})\n", (30268, 30403), True, 'import pandas as pd\n'), ((22356, 22727), 'tkinter.messagebox.showwarning', 'showwarning', (['"""WARNING"""', '"""CAVES has detected a large amount of successive gap characters in your alignment file. Epitopes predicted from highly dissimilar sequences are unlikely to produce biologically relevant matches when compared due to inherent differences in the amino acid composition. \n\nCAVES will still run but we caution against using these results."""'], {}), '(\'WARNING\',\n """CAVES has detected a large amount of successive gap characters in your alignment file. Epitopes predicted from highly dissimilar sequences are unlikely to produce biologically relevant matches when compared due to inherent differences in the amino acid composition. \n\nCAVES will still run but we caution against using these results."""\n )\n', (22367, 22727), False, 'from tkinter.messagebox import showwarning\n'), ((24117, 24142), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['file_path'], {}), '(file_path)\n', (24131, 24142), True, 'import pandas as pd\n'), ((24183, 24217), 'pandas.ExcelWriter', 'pd.ExcelWriter', (["(filename + '.xlsx')"], {}), "(filename + '.xlsx')\n", (24197, 24217), True, 'import pandas as pd\n'), ((24475, 24518), 'pandas.ExcelWriter', 'pd.ExcelWriter', (["('results_' + time + '.xlsx')"], {}), "('results_' + time + '.xlsx')\n", (24489, 24518), True, 'import pandas as pd\n'), ((14352, 14366), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (14364, 14366), False, 'from datetime import datetime\n'), ((19428, 19497), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'index_col': '(False)', 'usecols': '{start_col, pep_col}'}), '(file_path, index_col=False, usecols={start_col, pep_col})\n', (19439, 19497), True, 'import pandas as pd\n'), ((20341, 20410), 'pandas.read_csv', 'pd.read_csv', (['file_path'], {'index_col': '(False)', 'usecols': '{start_col, pep_col}'}), '(file_path, index_col=False, usecols={start_col, pep_col})\n', (20352, 20410), True, 'import pandas as pd\n'), ((24245, 24259), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (24257, 24259), False, 'from datetime import datetime\n')]
from django import forms from django.db import models from django.utils.translation import gettext as _ from django_filters import FilterSet,DateFilter from django_filters import BooleanFilter from irekua_database.models import Annotation class Filter(FilterSet): is_own = BooleanFilter( method='user_owns_object', label=_('Mine'), widget=forms.CheckboxInput()) class Meta: model = Annotation fields = { 'item': ['exact'], 'annotation_type': ['exact'], 'event_type': ['exact'], 'created_by__username': ['icontains'], 'created_by__first_name': ['icontains'], 'created_by__last_name': ['icontains'], 'certainty' : ['gt', 'lt'], 'created_on': ['gt', 'lt'], } filter_overrides = { models.DateTimeField: { 'filter_class': DateFilter, 'extra': lambda f: { 'widget': forms.DateInput(attrs={'class': 'datepicker'}) } } } def user_owns_object(self, queryset, name, value): if value: user = self.request.user return queryset.filter(created_by=user) return queryset search_fields = ( 'annotation_type', 'event_type', 'created_by__username', 'created_on' ) ordering_fields = ( ('created_on', _('added on')), ('annotation_type', _('annotation type')), ('event_type', _('event type')), )
[ "django.forms.DateInput", "django.forms.CheckboxInput", "django.utils.translation.gettext" ]
[((1415, 1428), 'django.utils.translation.gettext', '_', (['"""added on"""'], {}), "('added on')\n", (1416, 1428), True, 'from django.utils.translation import gettext as _\n'), ((1455, 1475), 'django.utils.translation.gettext', '_', (['"""annotation type"""'], {}), "('annotation type')\n", (1456, 1475), True, 'from django.utils.translation import gettext as _\n'), ((1497, 1512), 'django.utils.translation.gettext', '_', (['"""event type"""'], {}), "('event type')\n", (1498, 1512), True, 'from django.utils.translation import gettext as _\n'), ((344, 353), 'django.utils.translation.gettext', '_', (['"""Mine"""'], {}), "('Mine')\n", (345, 353), True, 'from django.utils.translation import gettext as _\n'), ((370, 391), 'django.forms.CheckboxInput', 'forms.CheckboxInput', ([], {}), '()\n', (389, 391), False, 'from django import forms\n'), ((992, 1038), 'django.forms.DateInput', 'forms.DateInput', ([], {'attrs': "{'class': 'datepicker'}"}), "(attrs={'class': 'datepicker'})\n", (1007, 1038), False, 'from django import forms\n')]
from .message import Message from aioimaplib import aioimaplib import asyncio from asyncio import CancelledError, TimeoutError import logging import signal # import ssl import threading import traceback from typing import Any, Callable HANDLED_SIGNALS = ( signal.SIGINT, # Unix signal 2. Sent by Ctrl+C. signal.SIGTERM, # Unix signal 15. Sent by `kill <pid>`. ) RECEIVER_STOPPED = "RECEIVER_STOPPED" class Receiver(object): def __init__(self): self.imap_client_lock = asyncio.Lock() self.should_exit = asyncio.Event() self.exit_event = asyncio.Event() async def run( self, host: str, user: str, password: str, callback: Callable[[Message], Any], mailbox: str = "INBOX", install_signal_handlers: bool = True, ): """ Start running the main receiver loop. """ # create the imap client self.imap_client = aioimaplib.IMAP4_SSL(host=host) # callback for when connection is lost def conn_lost_cb(exc): loop = self.imap_client.protocol.loop loop.create_task(self.reconnect()) self.imap_client.protocol.conn_lost_cb = conn_lost_cb # signal handlers if install_signal_handlers: logging.debug("Receiver:run: Installing signal handlers") self.install_signal_handlers() logging.debug("Receiver:run: Clear exit and should_exit events") self.exit_event.clear() self.should_exit.clear() self._task_wfnm = None while not self.should_exit.is_set(): if await self.login(user, password): # start waiting for new messages try: self._task_wfnm = asyncio.create_task( self.wait_for_new_message(callback, mailbox)) await self._task_wfnm except Exception as e: if isinstance(e, CancelledError): logging.debug("Receiver:run: wait_for_new_message task cancelled") else: logging.error(traceback.format_exc()) logging.debug("Receiver:run: Set should_exit event") self.should_exit.set() # send a receiver stopped # message to the callback logging.info("Receiver:run: Called callback with RECEIVER_STOPPED message") try: callback(RECEIVER_STOPPED) except: logging.error(traceback.format_exc()) # logout try: await self.logout() except: logging.error(traceback.format_exc()) logging.debug("Receiver:run: Set should_exit event") self.should_exit.set() if self.should_exit.is_set(): logging.info("Receiver:run: Graceful shutdown") else: logging.info("Receiver:run: Retrying") logging.debug("Receiver:run: Set exit event") self.exit_event.set() async def login(self, user: str, password: str): """ Login to the IMAP server. """ try: logging.debug("Receiver:login: Waiting for imap client lock") async with self.imap_client_lock: logging.debug("Receiver:login: Obtained imap client lock") await self.imap_client.wait_hello_from_server() response = await self.imap_client.login(user, password) if response.result != "OK": raise RuntimeError("Login failed.") logging.info("Receiver:login: Logged in as {}".format(user)) except: logging.error(traceback.format_exc()) return False return True async def change_mailbox(self, mailbox: str): """ Switch to another mailbox. """ if not ( isinstance(mailbox, str) and len(mailbox) > 0 ): raise ValueError( "Invalid input. `mailbox` must" " be a non-empty string.") # add double-quotes around mailbox name if it contains # spaces mailbox = f'"{mailbox}"' if " " in mailbox else mailbox logging.debug("Receiver:change_mailbox: Waiting for imap client lock") async with self.imap_client_lock: logging.debug("Receiver:change_mailbox: Obtained imap client lock") response = await self.imap_client.select(mailbox=mailbox) if response.result != "OK": raise RuntimeError( f"Selecting mailbox '{mailbox}' failed with status '{response.result}'.") logging.info(f"Receiver:change_mailbox: Selected mailbox '{mailbox}'") self.current_mailbox = mailbox return response async def search_unseen(self): """ Get IDs of unseen messages in the current mailbox. URL: https://tools.ietf.org/html/rfc3501#section-6.4.4 """ unseen_ids = [] status, response = await self.imap_client.search("(UNSEEN)", charset=None) if status == "OK": unseen_ids.extend(response[0].split()) logging.info(f"Receiver:search_unseen: Number of unseen messages: {len(unseen_ids)}") else: logging.error(f"Receiver:search_unseen: Search for unseen messages completed with status '{status}'") return unseen_ids async def wait_for_new_message( self, callback: Callable[[Message], Any], mailbox: str = "INBOX", ): """ Receiver infinite loop waiting for new messages. """ # select the mailbox await self.change_mailbox(mailbox) # if new messages are available, fetch # them and let the callback handle it for id in await self.search_unseen(): response = await self.imap_client.fetch( str(id), "(RFC822)") if len(response.lines) > 1: try: callback(Message(response.lines[1])) except: logging.error(traceback.format_exc()) while True: logging.debug("Receiver:wait_for_new_message: Waiting for imap client lock") async with self.imap_client_lock: logging.debug("Receiver:wait_for_new_message: Obtained imap client lock") # start IDLE waiting # idle queue must be empty, otherwise we get race # conditions between idle command status update # and unsolicited server messages if ( (not self.imap_client.has_pending_idle()) and self.imap_client.protocol.idle_queue.empty() ): logging.debug("Receiver:wait_for_new_message: Start IDLE waiting") self._idle = await self.imap_client.idle_start() # wait for status update msg = await self.imap_client.wait_server_push() logging.debug(f"Receiver:wait_for_new_message: Received IDLE message: {msg}") # send IDLE done to server; this has to happen # before search or fetch or any other command # for some reason. # https://tools.ietf.org/html/rfc2177 if self.imap_client.has_pending_idle(): logging.debug("Receiver:wait_for_new_message: Send IDLE done") self.imap_client.idle_done() await asyncio.wait_for(self._idle, 10) # https://tools.ietf.org/html/rfc3501#section-7.3.1 # EXISTS response occurs when size of the mailbox changes if isinstance(msg, list) and any("EXISTS" in m for m in msg): logging.debug("Receiver:wait_for_new_message: Mailbox size changed") # if new messages are available, fetch # them and let the callback handle it for id in await self.search_unseen(): response = await self.imap_client.fetch( str(id), "(RFC822)") if len(response.lines) > 1: try: callback(Message(response.lines[1])) except: logging.error(traceback.format_exc()) logging.debug("Receiver:wait_for_new_message: Loop complete") async def logout(self): """ Logout from the IMAP server. """ valid_states = aioimaplib.Commands.get('LOGOUT').valid_states logging.debug("Receiver:logout: Waiting for lock") async with self.imap_client_lock: logging.debug("Receiver:logout: Obtained lock") if self.imap_client.protocol.state in valid_states: if self.imap_client.has_pending_idle(): # send IDLE done message to server logging.debug("Receiver:logout: Send IDLE done") self.imap_client.idle_done() try: if hasattr(self, '_idle') and self._idle is not None: await asyncio.wait_for(self._idle, 10) except TimeoutError: logging.error(traceback.format_exc()) try: await self.imap_client.logout() logging.info("Receiver:logout: Logged out") except TimeoutError: logging.error(traceback.format_exc()) else: logging.debug(f"Receiver:logout: Invalid state '{self.imap_client.protocol.state}'") def install_signal_handlers(self): """ Install signal handlers to shut down the receiver main loop when SIGINT / SIGTERM signals are received. """ if threading.current_thread() is not threading.main_thread(): # Signals can only be listened to from the main thread. return loop = asyncio.get_running_loop() try: for sig in HANDLED_SIGNALS: loop.add_signal_handler(sig, self.handle_exit, sig, None) except NotImplementedError: # Windows for sig in HANDLED_SIGNALS: signal.signal(sig, self.handle_exit) def handle_exit(self, sig, frame): """ Handle exiting the receiver main loop. """ if not self.should_exit.is_set(): logging.debug("Receiver:handle_exit: Set should_exit event") self.should_exit.set() # cancel the wait_for_new_message task if hasattr(self, '_task_wfnm') and self._task_wfnm is not None: self._task_wfnm.cancel() self._task_wfnm = None async def reconnect(self): # cancel the wait_for_new_message task if hasattr(self, '_task_wfnm') and self._task_wfnm is not None: logging.debug("Receiver:reconnect: Cancel wait_for_new_message task") self._task_wfnm.cancel() self._task_wfnm = None # give some time for the consequential actions # of cancelling the task to run logging.debug("Receiver:reconnect: Sleep") await asyncio.sleep(1) if not self.should_exit.is_set(): # try reconnecting to the server every 5 seconds logging.debug("Receiver:reconnect: Waiting for lock") async with self.imap_client_lock: logging.debug("Receiver:reconnect: Obtained lock") while True: try: conn_lost_cb = self.imap_client.protocol.conn_lost_cb self.imap_client = aioimaplib.IMAP4_SSL( host=self.imap_client.host, port=self.imap_client.port, timeout=self.imap_client.timeout) self.imap_client.protocol.conn_lost_cb = conn_lost_cb logging.info("Receiver:reconnect: Connection recreated") break except OSError: logging.error(traceback.format_exc()) await asyncio.sleep(5) except: logging.error(traceback.format_exc()) self.should_exit.set() break
[ "traceback.format_exc", "signal.signal", "logging.debug", "threading.current_thread", "asyncio.sleep", "aioimaplib.aioimaplib.Commands.get", "asyncio.Lock", "aioimaplib.aioimaplib.IMAP4_SSL", "asyncio.Event", "threading.main_thread", "asyncio.wait_for", "logging.error", "logging.info", "asyncio.get_running_loop" ]
[((495, 509), 'asyncio.Lock', 'asyncio.Lock', ([], {}), '()\n', (507, 509), False, 'import asyncio\n'), ((537, 552), 'asyncio.Event', 'asyncio.Event', ([], {}), '()\n', (550, 552), False, 'import asyncio\n'), ((579, 594), 'asyncio.Event', 'asyncio.Event', ([], {}), '()\n', (592, 594), False, 'import asyncio\n'), ((949, 980), 'aioimaplib.aioimaplib.IMAP4_SSL', 'aioimaplib.IMAP4_SSL', ([], {'host': 'host'}), '(host=host)\n', (969, 980), False, 'from aioimaplib import aioimaplib\n'), ((1404, 1468), 'logging.debug', 'logging.debug', (['"""Receiver:run: Clear exit and should_exit events"""'], {}), "('Receiver:run: Clear exit and should_exit events')\n", (1417, 1468), False, 'import logging\n'), ((3100, 3145), 'logging.debug', 'logging.debug', (['"""Receiver:run: Set exit event"""'], {}), "('Receiver:run: Set exit event')\n", (3113, 3145), False, 'import logging\n'), ((4395, 4465), 'logging.debug', 'logging.debug', (['"""Receiver:change_mailbox: Waiting for imap client lock"""'], {}), "('Receiver:change_mailbox: Waiting for imap client lock')\n", (4408, 4465), False, 'import logging\n'), ((4827, 4897), 'logging.info', 'logging.info', (['f"""Receiver:change_mailbox: Selected mailbox \'{mailbox}\'"""'], {}), '(f"Receiver:change_mailbox: Selected mailbox \'{mailbox}\'")\n', (4839, 4897), False, 'import logging\n'), ((8840, 8890), 'logging.debug', 'logging.debug', (['"""Receiver:logout: Waiting for lock"""'], {}), "('Receiver:logout: Waiting for lock')\n", (8853, 8890), False, 'import logging\n'), ((10279, 10305), 'asyncio.get_running_loop', 'asyncio.get_running_loop', ([], {}), '()\n', (10303, 10305), False, 'import asyncio\n'), ((1294, 1351), 'logging.debug', 'logging.debug', (['"""Receiver:run: Installing signal handlers"""'], {}), "('Receiver:run: Installing signal handlers')\n", (1307, 1351), False, 'import logging\n'), ((3313, 3374), 'logging.debug', 'logging.debug', (['"""Receiver:login: Waiting for imap client lock"""'], {}), "('Receiver:login: Waiting for imap client lock')\n", (3326, 3374), False, 'import logging\n'), ((4520, 4587), 'logging.debug', 'logging.debug', (['"""Receiver:change_mailbox: Obtained imap client lock"""'], {}), "('Receiver:change_mailbox: Obtained imap client lock')\n", (4533, 4587), False, 'import logging\n'), ((5453, 5564), 'logging.error', 'logging.error', (['f"""Receiver:search_unseen: Search for unseen messages completed with status \'{status}\'"""'], {}), '(\n f"Receiver:search_unseen: Search for unseen messages completed with status \'{status}\'"\n )\n', (5466, 5564), False, 'import logging\n'), ((6315, 6391), 'logging.debug', 'logging.debug', (['"""Receiver:wait_for_new_message: Waiting for imap client lock"""'], {}), "('Receiver:wait_for_new_message: Waiting for imap client lock')\n", (6328, 6391), False, 'import logging\n'), ((8609, 8670), 'logging.debug', 'logging.debug', (['"""Receiver:wait_for_new_message: Loop complete"""'], {}), "('Receiver:wait_for_new_message: Loop complete')\n", (8622, 8670), False, 'import logging\n'), ((8784, 8817), 'aioimaplib.aioimaplib.Commands.get', 'aioimaplib.Commands.get', (['"""LOGOUT"""'], {}), "('LOGOUT')\n", (8807, 8817), False, 'from aioimaplib import aioimaplib\n'), ((8945, 8992), 'logging.debug', 'logging.debug', (['"""Receiver:logout: Obtained lock"""'], {}), "('Receiver:logout: Obtained lock')\n", (8958, 8992), False, 'import logging\n'), ((10117, 10143), 'threading.current_thread', 'threading.current_thread', ([], {}), '()\n', (10141, 10143), False, 'import threading\n'), ((10151, 10174), 'threading.main_thread', 'threading.main_thread', ([], {}), '()\n', (10172, 10174), False, 'import threading\n'), ((10750, 10810), 'logging.debug', 'logging.debug', (['"""Receiver:handle_exit: Set should_exit event"""'], {}), "('Receiver:handle_exit: Set should_exit event')\n", (10763, 10810), False, 'import logging\n'), ((11217, 11286), 'logging.debug', 'logging.debug', (['"""Receiver:reconnect: Cancel wait_for_new_message task"""'], {}), "('Receiver:reconnect: Cancel wait_for_new_message task')\n", (11230, 11286), False, 'import logging\n'), ((11475, 11517), 'logging.debug', 'logging.debug', (['"""Receiver:reconnect: Sleep"""'], {}), "('Receiver:reconnect: Sleep')\n", (11488, 11517), False, 'import logging\n'), ((11669, 11722), 'logging.debug', 'logging.debug', (['"""Receiver:reconnect: Waiting for lock"""'], {}), "('Receiver:reconnect: Waiting for lock')\n", (11682, 11722), False, 'import logging\n'), ((2400, 2475), 'logging.info', 'logging.info', (['"""Receiver:run: Called callback with RECEIVER_STOPPED message"""'], {}), "('Receiver:run: Called callback with RECEIVER_STOPPED message')\n", (2412, 2475), False, 'import logging\n'), ((2970, 3017), 'logging.info', 'logging.info', (['"""Receiver:run: Graceful shutdown"""'], {}), "('Receiver:run: Graceful shutdown')\n", (2982, 3017), False, 'import logging\n'), ((3052, 3090), 'logging.info', 'logging.info', (['"""Receiver:run: Retrying"""'], {}), "('Receiver:run: Retrying')\n", (3064, 3090), False, 'import logging\n'), ((3437, 3495), 'logging.debug', 'logging.debug', (['"""Receiver:login: Obtained imap client lock"""'], {}), "('Receiver:login: Obtained imap client lock')\n", (3450, 3495), False, 'import logging\n'), ((6455, 6528), 'logging.debug', 'logging.debug', (['"""Receiver:wait_for_new_message: Obtained imap client lock"""'], {}), "('Receiver:wait_for_new_message: Obtained imap client lock')\n", (6468, 6528), False, 'import logging\n'), ((7196, 7273), 'logging.debug', 'logging.debug', (['f"""Receiver:wait_for_new_message: Received IDLE message: {msg}"""'], {}), "(f'Receiver:wait_for_new_message: Received IDLE message: {msg}')\n", (7209, 7273), False, 'import logging\n'), ((9829, 9918), 'logging.debug', 'logging.debug', (['f"""Receiver:logout: Invalid state \'{self.imap_client.protocol.state}\'"""'], {}), '(\n f"Receiver:logout: Invalid state \'{self.imap_client.protocol.state}\'")\n', (9842, 9918), False, 'import logging\n'), ((11536, 11552), 'asyncio.sleep', 'asyncio.sleep', (['(1)'], {}), '(1)\n', (11549, 11552), False, 'import asyncio\n'), ((11785, 11835), 'logging.debug', 'logging.debug', (['"""Receiver:reconnect: Obtained lock"""'], {}), "('Receiver:reconnect: Obtained lock')\n", (11798, 11835), False, 'import logging\n'), ((3842, 3864), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (3862, 3864), False, 'import traceback\n'), ((6938, 7004), 'logging.debug', 'logging.debug', (['"""Receiver:wait_for_new_message: Start IDLE waiting"""'], {}), "('Receiver:wait_for_new_message: Start IDLE waiting')\n", (6951, 7004), False, 'import logging\n'), ((7565, 7627), 'logging.debug', 'logging.debug', (['"""Receiver:wait_for_new_message: Send IDLE done"""'], {}), "('Receiver:wait_for_new_message: Send IDLE done')\n", (7578, 7627), False, 'import logging\n'), ((7977, 8045), 'logging.debug', 'logging.debug', (['"""Receiver:wait_for_new_message: Mailbox size changed"""'], {}), "('Receiver:wait_for_new_message: Mailbox size changed')\n", (7990, 8045), False, 'import logging\n'), ((9189, 9237), 'logging.debug', 'logging.debug', (['"""Receiver:logout: Send IDLE done"""'], {}), "('Receiver:logout: Send IDLE done')\n", (9202, 9237), False, 'import logging\n'), ((9655, 9698), 'logging.info', 'logging.info', (['"""Receiver:logout: Logged out"""'], {}), "('Receiver:logout: Logged out')\n", (9667, 9698), False, 'import logging\n'), ((10548, 10584), 'signal.signal', 'signal.signal', (['sig', 'self.handle_exit'], {}), '(sig, self.handle_exit)\n', (10561, 10584), False, 'import signal\n'), ((2815, 2867), 'logging.debug', 'logging.debug', (['"""Receiver:run: Set should_exit event"""'], {}), "('Receiver:run: Set should_exit event')\n", (2828, 2867), False, 'import logging\n'), ((7703, 7735), 'asyncio.wait_for', 'asyncio.wait_for', (['self._idle', '(10)'], {}), '(self._idle, 10)\n', (7719, 7735), False, 'import asyncio\n'), ((12011, 12125), 'aioimaplib.aioimaplib.IMAP4_SSL', 'aioimaplib.IMAP4_SSL', ([], {'host': 'self.imap_client.host', 'port': 'self.imap_client.port', 'timeout': 'self.imap_client.timeout'}), '(host=self.imap_client.host, port=self.imap_client.port,\n timeout=self.imap_client.timeout)\n', (12031, 12125), False, 'from aioimaplib import aioimaplib\n'), ((12310, 12366), 'logging.info', 'logging.info', (['"""Receiver:reconnect: Connection recreated"""'], {}), "('Receiver:reconnect: Connection recreated')\n", (12322, 12366), False, 'import logging\n'), ((2020, 2086), 'logging.debug', 'logging.debug', (['"""Receiver:run: wait_for_new_message task cancelled"""'], {}), "('Receiver:run: wait_for_new_message task cancelled')\n", (2033, 2086), False, 'import logging\n'), ((2199, 2251), 'logging.debug', 'logging.debug', (['"""Receiver:run: Set should_exit event"""'], {}), "('Receiver:run: Set should_exit event')\n", (2212, 2251), False, 'import logging\n'), ((2602, 2624), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (2622, 2624), False, 'import traceback\n'), ((2771, 2793), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (2791, 2793), False, 'import traceback\n'), ((6258, 6280), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (6278, 6280), False, 'import traceback\n'), ((9770, 9792), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (9790, 9792), False, 'import traceback\n'), ((2151, 2173), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (2171, 2173), False, 'import traceback\n'), ((9425, 9457), 'asyncio.wait_for', 'asyncio.wait_for', (['self._idle', '(10)'], {}), '(self._idle, 10)\n', (9441, 9457), False, 'import asyncio\n'), ((9537, 9559), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (9557, 9559), False, 'import traceback\n'), ((12472, 12494), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (12492, 12494), False, 'import traceback\n'), ((12526, 12542), 'asyncio.sleep', 'asyncio.sleep', (['(5)'], {}), '(5)\n', (12539, 12542), False, 'import asyncio\n'), ((12610, 12632), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (12630, 12632), False, 'import traceback\n'), ((8572, 8594), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (8592, 8594), False, 'import traceback\n')]
""" Module classes: SignupHandler - Handler for the signup page. """ from base import BaseHandler from models.user import UserAccount import validation ############################################################################## class SignupHandler(BaseHandler): """Handler for the signup page.""" def get(self): if self.logged_in(): self.render("error.html", account=self.account) else: self.render("signup.html") def post(self): form_ok = True # Retrieve user data and strip white space from front and back: self.username = self.request.get("username").strip() self.password = self.request.get("password").strip() self.verify = self.request.get("verify").strip() self.email = self.request.get("email").strip() display_data = dict(username = self.username, email = self.email) # Check username: if not validation.valid_username(self.username): display_data["username_error"] = "That's not a valid username." form_ok = False # Check password: if not validation.valid_password(self.password): display_data["password_error"] = "That's not a valid password." form_ok = False elif self.password != self.verify: display_data["verify_error"] = "Your passwords didn't match." form_ok = False # Only check email if there is an email: if self.email != "": if not validation.valid_email(self.email): display_data["email_error"] = "That's not a valid email." form_ok = False if form_ok: self.done(display_data) else: # Re-render, keeping the username and email: self.render("signup.html", **display_data) def done(self, display_data): user = UserAccount.by_username(self.username) if user: display_data["username_error"] = "That user already exists." self.render("signup.html", **display_data) else: # Create new datastore entity, set secure Cookie for this # user, and redirect to the user's home page. user = UserAccount.create(self.username, self.password, self.email) self.set_secure_userid_cookie(user) self.redirect("/home/%s" % user.username)
[ "models.user.UserAccount.by_username", "validation.valid_email", "validation.valid_username", "validation.valid_password", "models.user.UserAccount.create" ]
[((1920, 1958), 'models.user.UserAccount.by_username', 'UserAccount.by_username', (['self.username'], {}), '(self.username)\n', (1943, 1958), False, 'from models.user import UserAccount\n'), ((968, 1008), 'validation.valid_username', 'validation.valid_username', (['self.username'], {}), '(self.username)\n', (993, 1008), False, 'import validation\n'), ((1156, 1196), 'validation.valid_password', 'validation.valid_password', (['self.password'], {}), '(self.password)\n', (1181, 1196), False, 'import validation\n'), ((2266, 2326), 'models.user.UserAccount.create', 'UserAccount.create', (['self.username', 'self.password', 'self.email'], {}), '(self.username, self.password, self.email)\n', (2284, 2326), False, 'from models.user import UserAccount\n'), ((1545, 1579), 'validation.valid_email', 'validation.valid_email', (['self.email'], {}), '(self.email)\n', (1567, 1579), False, 'import validation\n')]
# ---------------------------------------------------------------------------- # cocos2d # Copyright (c) 2008-2012 <NAME>, <NAME>, <NAME>, # <NAME> # Copyright (c) 2009-2019 <NAME>, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # * Neither the name of cocos2d nor the names of its # contributors may be used to endorse or promote products # derived from this software without specific prior written # permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # ---------------------------------------------------------------------------- # # Python Interpreter # 95% of the code from 'Bruce: the presentation tool' by <NAME> # http://code.google.com/p/bruce-tpt/ # # from __future__ import division, print_function, unicode_literals __docformat__ = 'restructuredtext' import sys import os import code import pyglet from pyglet import graphics from pyglet import text from pyglet.text import caret, document, layout import cocos from cocos.director import director from .base_layers import Layer from .util_layers import ColorLayer __all__ = ['PythonInterpreterLayer'] class Output: def __init__(self, display, realstdout): self.out = display self.realstdout = realstdout self.data = '' def write(self, data): self.out(data) class MyInterpreter(code.InteractiveInterpreter): def __init__(self, locals, display): self.write = display code.InteractiveInterpreter.__init__(self, locals=locals) def execute(self, input): old_stdout = sys.stdout sys.stdout = Output(self.write, old_stdout) more = self.runsource(input) sys.stdout = old_stdout return more class PythonInterpreterLayer(ColorLayer): """Runs an interactive Python interpreter as a child `Layer` of the current `Scene`. """ cfg = {'code.font_name': 'Arial', 'code.font_size': 12, 'code.color': (255, 255, 255, 255), 'caret.color': (255, 255, 255), } name = 'py' prompt = ">>> " #: python prompt prompt_more = "... " #: python 'more' prompt doing_more = False is_event_handler = True #: enable pyglet's events def __init__(self): super(PythonInterpreterLayer, self).__init__(32, 32, 32, 192) self.content = self.prompt local_vars = director.interpreter_locals local_vars["self"] = self self.interpreter = MyInterpreter( local_vars, self._write) self.current_input = [] self.history = [''] self.history_pos = 0 def on_enter(self): super(PythonInterpreterLayer, self).on_enter() vw, vh = cocos.director.director.get_window_size() # format the code self.document = document.FormattedDocument(self.content) self.document.set_style(0, len(self.document.text), { 'font_name': self.cfg['code.font_name'], 'font_size': self.cfg['code.font_size'], 'color': self.cfg['code.color'], }) self.batch = graphics.Batch() # generate the document self.layout = layout.IncrementalTextLayout(self.document, vw, vh, multiline=True, batch=self.batch) self.layout.anchor_y = 'top' self.caret = caret.Caret(self.layout, color=self.cfg['caret.color']) self.caret.on_activate() self.on_resize(vw, vh) self.start_of_line = len(self.document.text) def on_resize(self, x, y): vw, vh = director.get_window_size() self.layout.begin_update() self.layout.height = vh self.layout.x = 2 self.layout.width = vw - 4 self.layout.y = vh self.layout.end_update() # XXX: hack x, y = director.window.width, director.window.height self.layout.top_group._scissor_width = x - 4 self.caret.position = len(self.document.text) def on_exit(self): super(PythonInterpreterLayer, self).on_exit() self.content = self.document.text self.document = None self.layout = None self.batch = None self.caret = None def on_key_press(self, symbol, modifiers): if symbol == pyglet.window.key.TAB: return self.caret.on_text('\t') elif symbol in (pyglet.window.key.ENTER, pyglet.window.key.NUM_ENTER): # write the newline self._write('\n') line = self.document.text[self.start_of_line:] if line.strip() == 'help()': line = 'print "help() not supported, sorry!"' self.current_input.append(line) self.history_pos = len(self.history) if line.strip(): self.history[self.history_pos-1] = line.strip() self.history.append('') more = False if not self.doing_more: more = self.interpreter.execute('\n'.join(self.current_input)) if self.doing_more and not line.strip(): self.doing_more = False self.interpreter.execute('\n'.join(self.current_input)) more = more or self.doing_more if not more: self.current_input = [] self._write(self.prompt) else: self.doing_more = True self._write(self.prompt_more) self.start_of_line = len(self.document.text) self.caret.position = len(self.document.text) elif symbol == pyglet.window.key.SPACE: pass else: return pyglet.event.EVENT_UNHANDLED return pyglet.event.EVENT_HANDLED def on_text(self, symbol): # squash carriage return - we already handle them above if symbol == '\r': return pyglet.event.EVENT_HANDLED self._scroll_to_bottom() return self.caret.on_text(symbol) def on_text_motion(self, motion): at_sol = self.caret.position == self.start_of_line if motion == pyglet.window.key.MOTION_UP: # move backward in history, storing the current line of input # if we're at the very end of time line = self.document.text[self.start_of_line:] if self.history_pos == len(self.history)-1: self.history[self.history_pos] = line self.history_pos = max(0, self.history_pos-1) self.document.delete_text(self.start_of_line, len(self.document.text)) self._write(self.history[self.history_pos]) self.caret.position = len(self.document.text) elif motion == pyglet.window.key.MOTION_DOWN: # move forward in the history self.history_pos = min(len(self.history)-1, self.history_pos+1) self.document.delete_text(self.start_of_line, len(self.document.text)) self._write(self.history[self.history_pos]) self.caret.position = len(self.document.text) elif motion == pyglet.window.key.MOTION_BACKSPACE: # can't delete the prompt if not at_sol: return self.caret.on_text_motion(motion) elif motion == pyglet.window.key.MOTION_LEFT: # can't move back beyond start of line if not at_sol: return self.caret.on_text_motion(motion) elif motion == pyglet.window.key.MOTION_PREVIOUS_WORD: # can't move back word beyond start of line if not at_sol: return self.caret.on_text_motion(motion) else: return self.caret.on_text_motion(motion) return pyglet.event.EVENT_HANDLED def _write(self, s): self.document.insert_text(len(self.document.text), s, { 'font_name': self.cfg['code.font_name'], 'font_size': self.cfg['code.font_size'], 'color': self.cfg['code.color'], }) self._scroll_to_bottom() def _scroll_to_bottom(self): # on key press always move the view to the bottom of the screen if self.layout.height < self.layout.content_height: self.layout.anchor_y = 'bottom' self.layout.y = 0 self.layout.view_y = 0 if self.caret.position < self.start_of_line: self.caret.position = len(self.document.text) def draw(self): super(PythonInterpreterLayer, self).draw() self.batch.draw()
[ "code.InteractiveInterpreter.__init__", "pyglet.graphics.Batch", "pyglet.text.document.FormattedDocument", "pyglet.text.layout.IncrementalTextLayout", "pyglet.text.caret.Caret", "cocos.director.director.get_window_size" ]
[((2652, 2709), 'code.InteractiveInterpreter.__init__', 'code.InteractiveInterpreter.__init__', (['self'], {'locals': 'locals'}), '(self, locals=locals)\n', (2688, 2709), False, 'import code\n'), ((3906, 3947), 'cocos.director.director.get_window_size', 'cocos.director.director.get_window_size', ([], {}), '()\n', (3945, 3947), False, 'import cocos\n'), ((3999, 4039), 'pyglet.text.document.FormattedDocument', 'document.FormattedDocument', (['self.content'], {}), '(self.content)\n', (4025, 4039), False, 'from pyglet.text import caret, document, layout\n'), ((4286, 4302), 'pyglet.graphics.Batch', 'graphics.Batch', ([], {}), '()\n', (4300, 4302), False, 'from pyglet import graphics\n'), ((4358, 4448), 'pyglet.text.layout.IncrementalTextLayout', 'layout.IncrementalTextLayout', (['self.document', 'vw', 'vh'], {'multiline': '(True)', 'batch': 'self.batch'}), '(self.document, vw, vh, multiline=True, batch=\n self.batch)\n', (4386, 4448), False, 'from pyglet.text import caret, document, layout\n'), ((4605, 4660), 'pyglet.text.caret.Caret', 'caret.Caret', (['self.layout'], {'color': "self.cfg['caret.color']"}), "(self.layout, color=self.cfg['caret.color'])\n", (4616, 4660), False, 'from pyglet.text import caret, document, layout\n'), ((4829, 4855), 'cocos.director.director.get_window_size', 'director.get_window_size', ([], {}), '()\n', (4853, 4855), False, 'from cocos.director import director\n')]
from hlwtadmin.models import Artist, GigFinderUrl, GigFinder, ConcertAnnouncement, Venue, Location, Organisation, Country, Concert, RelationConcertOrganisation, Location from django.core.management.base import BaseCommand, CommandError from pandas import read_excel from json import load, dump from codecs import open class Command(BaseCommand): def add_arguments(self, parser): pass def handle(self, *args, **options): i = 1 for organisation in Organisation.objects.filter(name__icontains="unknown"): for rel in RelationConcertOrganisation.objects.filter(organisation=organisation): concert = rel.concert for ca in concert.concertannouncements(): if "songkick" in ca.gigfinder.name and ca.is_festival: raw_venue = ca.raw_venue venue_organisation = raw_venue.organisation if venue_organisation and "unknown" not in venue_organisation.name.lower(): line = [str(i), "concert", str(concert), str(concert.pk), "with organisation", str(organisation), str(organisation.pk), "has ca", str(ca), str(ca.pk), "with raw venue", str(raw_venue), str(raw_venue.pk), "which has organisation", str(venue_organisation), str(venue_organisation.pk) if venue_organisation else str(None)] print("\t".join(line)) i += 1 rel.organisation = venue_organisation rel.save()
[ "hlwtadmin.models.RelationConcertOrganisation.objects.filter", "hlwtadmin.models.Organisation.objects.filter" ]
[((482, 536), 'hlwtadmin.models.Organisation.objects.filter', 'Organisation.objects.filter', ([], {'name__icontains': '"""unknown"""'}), "(name__icontains='unknown')\n", (509, 536), False, 'from hlwtadmin.models import Artist, GigFinderUrl, GigFinder, ConcertAnnouncement, Venue, Location, Organisation, Country, Concert, RelationConcertOrganisation, Location\n'), ((561, 630), 'hlwtadmin.models.RelationConcertOrganisation.objects.filter', 'RelationConcertOrganisation.objects.filter', ([], {'organisation': 'organisation'}), '(organisation=organisation)\n', (603, 630), False, 'from hlwtadmin.models import Artist, GigFinderUrl, GigFinder, ConcertAnnouncement, Venue, Location, Organisation, Country, Concert, RelationConcertOrganisation, Location\n')]
import networkx as nx from typing import List def get_channel_with_minimal_fee_base(subgraph: nx.MultiGraph, source, target): """ Get a sub-graph containing exactly two nodes - one is the source and the other is the destination. The function calculate the channel with the minimal base-fee and returns it. :param subgraph: The MultiGraph containing the nodes src and dest. :param source: The source node. :param target: The target node. :return: The channel with the minimal base-fee. """ assert set(subgraph.nodes) == {source, target}, \ "BAD USAGE - you should give a graph containing only the two given nodes" min_fee: float = float('inf') min_fee_channel_id = None for node1, node2, channel_data in subgraph.edges(data=True): if source == channel_data['node1_pub']: source_i, target_i = 1, 2 elif source == channel_data['node2_pub']: source_i, target_i = 2, 1 else: assert False, "WTF? Neither 'source' nor 'target' are in the channel." # When money is transferred from the source node to the target node, the fee is paid for the target node # (i.e. that target node keeps some of the money to himself, and passes the rest forwards). channel_fee: float = channel_data[f'node{target_i}_policy']['fee_base_msat'] if channel_fee < min_fee: min_fee = channel_fee min_fee_channel_id = (channel_data[f'node{source_i}_pub'], channel_data[f'node{target_i}_pub'], channel_data['channel_id']) assert (min_fee_channel_id is not None) and (min_fee != float('inf')), "ERROR: no channel was chosen." return min_fee_channel_id def nodes_list_to_edges(graph: nx.MultiGraph, nodes_list: List) -> List: """ Get a graph and a list of nodes - the first node in the list is the source node, and the last is the target node. The function calculates for every two adjacent nodes the edge with the minimal base-fee (since there might be multiple edges between two nodes - it's a MultiGraph). :param graph: The MultiGraph to process. :param nodes_list: The list of nodes describing a path. :return: A list of edges in the graph, each one is the edge in the path. """ edges_list = list() for i in range(len(nodes_list) - 1): node1 = nodes_list[i] node2 = nodes_list[i + 1] subgraph = graph.subgraph(nodes=(node1, node2)) min_fee_channel = get_channel_with_minimal_fee_base(subgraph, source=node1, target=node2) edges_list.append(min_fee_channel) return edges_list def get_route(graph: nx.MultiGraph, source, target): """ A naive approach for getting the route between the source node and the destination node. It first gets the path of minimal length, and then for each one of the possibilities for channels between the two nodes, get the channel with the minimal base-fee. :param graph: The Graph. :param source: The source node. :param target: The target node. :return: The route chosen from the source to the target. """ try: nodes_list = nx.shortest_path(graph, source, target) except nx.exception.NetworkXNoPath: print("Warning: | get_route | no path found between nodes") return None edges_list = nodes_list_to_edges(graph, nodes_list) return edges_list
[ "networkx.shortest_path" ]
[((3183, 3222), 'networkx.shortest_path', 'nx.shortest_path', (['graph', 'source', 'target'], {}), '(graph, source, target)\n', (3199, 3222), True, 'import networkx as nx\n')]
from natto import MeCab from gensim import corpora, matutils import pandas as pd import csv import os import sys import time from sklearn.ensemble import RandomForestClassifier from sklearn.externals import joblib class Dict2dense: def __init__(self, datapath=None, dictionary_save_path=None, no_below=None, no_above=None, keep_n=None, data_number=None, dict_filter=False): self.datapath = datapath self.dictionary_save_path=dictionary_save_path self.no_below=no_below self.no_above=no_above self.keep_n=keep_n self.data_number=data_number self.dict_filter=dict_filter def create_dict(self): nm = MeCab('-Owakati') train_raw_data =[] train_label =[] for k in range(self.data_number): csvdata = pd.read_csv(os.path.join(self.datapath,'data{}.csv'.format(k)), header=None) for i in csvdata[0]: train_raw_data.append(i) for i in csvdata[1]: train_label.append(i) raw_word_list =[] with open(os.path.join(self.datapath,'sentences.csv'), 'r') as f: reader = csv.reader(f) header = next(reader) for row in reader: raw_word_list.append(row) wakati_by_sentnces_list = [] for i in range(len(raw_word_list)): wakati_by_sentnces_list.append([n.surface for n in nm.parse(raw_word_list[i][0], as_nodes=True) if n.is_nor()]) full_wakati_words = [] for i in range(len(raw_word_list)): for j in [n.surface for n in nm.parse(raw_word_list[i][0], as_nodes=True) if n.is_nor()]: full_wakati_words.append(j) print("number of scentences is ",len(raw_word_list)) print("number of wakati_gaki",len(full_wakati_words)) dictionary = corpora.Dictionary(wakati_by_sentnces_list) print(dictionary) print() if self.dict_filter: print("filter is on. dictionaly will be fillter") dictionary.filter_extremes(no_below=self.no_below, no_above=self.no_above, keep_n=self.keep_n) print(dictionary) else: print("filter is off. dictionaly will not fillter") print() key_index=[] for i in dictionary.token2id.keys(): key_index.append(i) print() print("part of new dict contents") print("===========") print("word:ID") try: for i in range(5): print(key_index[i],":",dictionary.token2id[key_index[i]]) except: print("number of words is very small") print("===========") print() dictionary.save_as_text(os.path.join(self.dictionary_save_path,'dictionary.txt')) print("new dict saved at {}".format(os.path.join(self.dictionary_save_path,'dictionary.txt'))) print() dense =[] for j in train_raw_data: tmp = dictionary.doc2bow(list(j)) dense.append(list(matutils.corpus2dense([tmp], num_terms=len(dictionary)).T[0])) print() print("length of dense:",len(dense)) print("length of train_label:",len(train_label)) print("all procedure is successfully finished") return dense, train_label, dictionary def load_dict(self): return corpora.Dictionary.load_from_text(os.path.join(self.dictionary_save_path,'dictionary.txt')) class Predictor: def __init__(self, dense=None, train_label=None, dictionary=None, estimator=None): self.dense = dense self.train_label = train_label self.dictionary = dictionary self.estimator = estimator def randomforestmodel_initial_train(self): self.estimator = RandomForestClassifier() print("Random forest model initialized...") self.estimator.fit(self.dense, self.train_label) print("First-training of Random forest model is completed.") def load_dict(self,dictionary_save_path=None): return corpora.Dictionary.load_from_text(os.path.join(dictionary_save_path,'dictionary.txt')) def randomforestmodel_save(self, estimator=None, path=None): save_path = os.path.join(path,'estimator.pkl') if os.path.isdir(path): pass else: os.makedirs(path) print("save-path is not exist. save-path is created successfully.") joblib.dump(self.estimator, save_path) print("existing model is saved successfully.") def randomforestmodel_load(self, path=None): load_path = os.path.join(path,'estimator.pkl') self.estimator = joblib.load(load_path) print("existing model is loaded successfully.") def randomforestmodel_retrain(self,dense=None, train_label=None, dictionary=None, estimator=None): self.estimator.fit(dense, train_label) print("Re-training of Random forest model is completed.") def onebyonepredict(self,analisys_words=None): test_dense = [] test_tmp = self.dictionary.doc2bow(list(analisys_words)) test_dense.append(list(matutils.corpus2dense([test_tmp], num_terms=len(self.dictionary)).T[0])) #vector by doc<NAME> label_predict = self.estimator.predict(test_dense[0]) print("Label prediction is complete. answer is :",label_predict[0]) return label_predict
[ "gensim.corpora.Dictionary", "os.makedirs", "sklearn.externals.joblib.load", "os.path.join", "sklearn.ensemble.RandomForestClassifier", "natto.MeCab", "os.path.isdir", "sklearn.externals.joblib.dump", "csv.reader" ]
[((636, 653), 'natto.MeCab', 'MeCab', (['"""-Owakati"""'], {}), "('-Owakati')\n", (641, 653), False, 'from natto import MeCab\n'), ((1680, 1723), 'gensim.corpora.Dictionary', 'corpora.Dictionary', (['wakati_by_sentnces_list'], {}), '(wakati_by_sentnces_list)\n', (1698, 1723), False, 'from gensim import corpora, matutils\n'), ((3338, 3362), 'sklearn.ensemble.RandomForestClassifier', 'RandomForestClassifier', ([], {}), '()\n', (3360, 3362), False, 'from sklearn.ensemble import RandomForestClassifier\n'), ((3745, 3780), 'os.path.join', 'os.path.join', (['path', '"""estimator.pkl"""'], {}), "(path, 'estimator.pkl')\n", (3757, 3780), False, 'import os\n'), ((3785, 3804), 'os.path.isdir', 'os.path.isdir', (['path'], {}), '(path)\n', (3798, 3804), False, 'import os\n'), ((3916, 3954), 'sklearn.externals.joblib.dump', 'joblib.dump', (['self.estimator', 'save_path'], {}), '(self.estimator, save_path)\n', (3927, 3954), False, 'from sklearn.externals import joblib\n'), ((4066, 4101), 'os.path.join', 'os.path.join', (['path', '"""estimator.pkl"""'], {}), "(path, 'estimator.pkl')\n", (4078, 4101), False, 'import os\n'), ((4120, 4142), 'sklearn.externals.joblib.load', 'joblib.load', (['load_path'], {}), '(load_path)\n', (4131, 4142), False, 'from sklearn.externals import joblib\n'), ((1050, 1063), 'csv.reader', 'csv.reader', (['f'], {}), '(f)\n', (1060, 1063), False, 'import csv\n'), ((2405, 2462), 'os.path.join', 'os.path.join', (['self.dictionary_save_path', '"""dictionary.txt"""'], {}), "(self.dictionary_save_path, 'dictionary.txt')\n", (2417, 2462), False, 'import os\n'), ((2991, 3048), 'os.path.join', 'os.path.join', (['self.dictionary_save_path', '"""dictionary.txt"""'], {}), "(self.dictionary_save_path, 'dictionary.txt')\n", (3003, 3048), False, 'import os\n'), ((3615, 3667), 'os.path.join', 'os.path.join', (['dictionary_save_path', '"""dictionary.txt"""'], {}), "(dictionary_save_path, 'dictionary.txt')\n", (3627, 3667), False, 'import os\n'), ((3825, 3842), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (3836, 3842), False, 'import os\n'), ((979, 1023), 'os.path.join', 'os.path.join', (['self.datapath', '"""sentences.csv"""'], {}), "(self.datapath, 'sentences.csv')\n", (991, 1023), False, 'import os\n'), ((2501, 2558), 'os.path.join', 'os.path.join', (['self.dictionary_save_path', '"""dictionary.txt"""'], {}), "(self.dictionary_save_path, 'dictionary.txt')\n", (2513, 2558), False, 'import os\n')]
from typing import Any from apps.accounts.models import PendingAction from apps.accounts.response_codes import INVALID_TOKEN from apps.contrib.api.exceptions import SimpleValidationError class PendingActionSelector(object): @classmethod def get_by_token(cls, token: str, category: str) -> Any: try: return PendingAction.objects.get(token=token, category=category) except PendingAction.DoesNotExist: raise SimpleValidationError(**INVALID_TOKEN)
[ "apps.accounts.models.PendingAction.objects.get", "apps.contrib.api.exceptions.SimpleValidationError" ]
[((338, 395), 'apps.accounts.models.PendingAction.objects.get', 'PendingAction.objects.get', ([], {'token': 'token', 'category': 'category'}), '(token=token, category=category)\n', (363, 395), False, 'from apps.accounts.models import PendingAction\n'), ((458, 496), 'apps.contrib.api.exceptions.SimpleValidationError', 'SimpleValidationError', ([], {}), '(**INVALID_TOKEN)\n', (479, 496), False, 'from apps.contrib.api.exceptions import SimpleValidationError\n')]
#!/usr/bin/python ## 6/16/2017 - remove PyQuery dependency ## 5/19/2016 - update to allow for authentication based on api-key, rather than username/pw ## See https://documentation.uts.nlm.nih.gov/rest/authentication.html for full explanation import requests # from pyquery import PyQuery as pq from lxml.html import fromstring from SmartAnno.utils.ConfigReader import ConfigReader uri = "https://utslogin.nlm.nih.gov" # option 1 - username/pw authentication at /cas/v1/tickets # auth_endpoint = "/cas/v1/tickets/" # option 2 - api key authentication at /cas/v1/api-key auth_endpoint = "/cas/v1/api-key" class Authentication: # def __init__(self, username,password): def __init__(self, apikey=None): # self.username=username # self.password=password if apikey is not None: self.apikey = apikey else: self.apikey = ConfigReader.getValue('api_key') self.service = "http://umlsks.nlm.nih.gov" def gettgt(self): # params = {'username': self.username,'password': self.password} params = {'apikey': self.apikey} h = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain", "User-Agent": "python"} r = requests.post(uri + auth_endpoint, data=params, headers=h) response = fromstring(r.text) ## extract the entire URL needed from the HTML form (action attribute) returned - looks similar to https://utslogin.nlm.nih.gov/cas/v1/tickets/TGT-36471-aYqNLN2rFIJPXKzxwdTNC5ZT7z3B3cTAKfSc5ndHQcUxeaDOLN-cas ## we make a POST call to this URL in the getst method tgt = response.xpath('//form/@action')[0] return tgt def getst(self, tgt): params = {'service': self.service} h = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain", "User-Agent": "python"} r = requests.post(tgt, data=params, headers=h) st = r.text return st
[ "SmartAnno.utils.ConfigReader.ConfigReader.getValue", "requests.post", "lxml.html.fromstring" ]
[((1230, 1288), 'requests.post', 'requests.post', (['(uri + auth_endpoint)'], {'data': 'params', 'headers': 'h'}), '(uri + auth_endpoint, data=params, headers=h)\n', (1243, 1288), False, 'import requests\n'), ((1308, 1326), 'lxml.html.fromstring', 'fromstring', (['r.text'], {}), '(r.text)\n', (1318, 1326), False, 'from lxml.html import fromstring\n'), ((1871, 1913), 'requests.post', 'requests.post', (['tgt'], {'data': 'params', 'headers': 'h'}), '(tgt, data=params, headers=h)\n', (1884, 1913), False, 'import requests\n'), ((883, 915), 'SmartAnno.utils.ConfigReader.ConfigReader.getValue', 'ConfigReader.getValue', (['"""api_key"""'], {}), "('api_key')\n", (904, 915), False, 'from SmartAnno.utils.ConfigReader import ConfigReader\n')]
from functools import partial import pickle import numpy as np from ...utils import common_utils from . import augmentor_utils, database_sampler, best_match_querier, multi_best_match_querier, sup_gt_sampling SPECIAL_NAMES = ["bm_points", "miss_points", "self_points", "other_points", "miss_occ_points", "self_occ_points", "other_occ_points", "self_limit_occ_mask", "miss_full_occ_points", "other_full_occ_points"] class DataAugmentor(object): def __init__(self, root_path, augmentor_configs, class_names, logger=None): self.root_path = root_path self.class_names = class_names self.logger = logger self.data_augmentor_queue = [] aug_config_list = augmentor_configs if isinstance(augmentor_configs, list) \ else augmentor_configs.AUG_CONFIG_LIST self.db_infos = {} for cur_cfg in aug_config_list: if not isinstance(augmentor_configs, list): if cur_cfg.NAME in augmentor_configs.DISABLE_AUG_LIST: continue if (cur_cfg.NAME in ["waymo_gt_sampling", "gt_sampling", "add_best_match", "sup_gt_sampling"]) and len(self.db_infos.keys()) == 0: for class_name in class_names: self.db_infos[class_name] = [] for db_info_path in cur_cfg.DB_INFO_PATH: db_info_path = self.root_path.resolve() / db_info_path with open(str(db_info_path), 'rb') as f: infos = pickle.load(f) [self.db_infos[cur_class].extend(infos[cur_class]) for cur_class in class_names] print("self.db_infos", self.db_infos.keys()) cur_augmentor = getattr(self, cur_cfg.NAME)(config=cur_cfg) self.data_augmentor_queue.append(cur_augmentor) def sup_gt_sampling(self, config=None): db_sampler = sup_gt_sampling.SupGTSampling( root_path=self.root_path, sampler_cfg=config, db_infos=self.db_infos, class_names=self.class_names, logger=self.logger ) return db_sampler def gt_sampling(self, config=None): db_sampler = database_sampler.DataBaseSampler( root_path=self.root_path, sampler_cfg=config, db_infos=self.db_infos, class_names=self.class_names, logger=self.logger ) return db_sampler def waymo_gt_sampling(self, config=None): db_sampler = waymo_database_sampler.DataBaseSampler( root_path=self.root_path, sampler_cfg=config, db_infos=self.db_infos, class_names=self.class_names, logger=self.logger ) return db_sampler def waymo_obj_gt_sampling(self, config=None): db_sampler = waymo_obj_database_sampler.DataBaseSampler( root_path=self.root_path, sampler_cfg=config, class_names=self.class_names, logger=self.logger ) return db_sampler def add_best_match(self, config=None): bm_querier = best_match_querier.BestMatchQuerier( root_path=self.root_path, querier_cfg=config, class_names=self.class_names, db_infos=self.db_infos, logger=self.logger ) return bm_querier def add_multi_best_match(self, config=None): bm_querier = multi_best_match_querier.MltBestMatchQuerier( root_path=self.root_path, querier_cfg=config, class_names=self.class_names, db_infos=self.db_infos, logger=self.logger ) return bm_querier def add_waymo_multi_best_match(self, config=None): bm_querier = waymo_multi_best_match_querier.MltBestMatchQuerier( root_path=self.root_path, querier_cfg=config, class_names=self.class_names, db_infos=self.db_infos, logger=self.logger ) return bm_querier def __getstate__(self): d = dict(self.__dict__) del d['logger'] return d def __setstate__(self, d): self.__dict__.update(d) def random_world_flip(self, data_dict=None, config=None, enable=None): if data_dict is None: return partial(self.random_world_flip, config=config, enable=enable) gt_boxes, points, bm_points, miss_points, self_points, other_points = data_dict['gt_boxes'], data_dict['points'], data_dict['bm_points'] if "bm_points" in data_dict else None, data_dict['miss_points'] if "miss_points" in data_dict else None, data_dict['self_points'] if "self_points" in data_dict else None, data_dict['other_points'] if "other_points" in data_dict else None special_points_lst = [data_dict[pt_key] for pt_key in SPECIAL_NAMES if pt_key in data_dict] special_name_lst = [pt_key for pt_key in SPECIAL_NAMES if pt_key in data_dict] for cur_axis in config['ALONG_AXIS_LIST']: assert cur_axis in ['x', 'y'] gt_boxes, points, special_points_lst = getattr(augmentor_utils, 'random_flip_along_%s' % cur_axis)( gt_boxes, points, special_points_lst=special_points_lst, enable=enable ) for name,val in zip(special_name_lst, special_points_lst): data_dict[name] = val data_dict['gt_boxes'] = gt_boxes data_dict['points'] = points return data_dict def abs_world_flip(self, data_dict=None, config=None): return self.random_world_flip(data_dict=data_dict, config=config, enable=True) def random_world_rotation(self, data_dict=None, config=None): if data_dict is None: return partial(self.random_world_rotation, config=config) rot_range = config['WORLD_ROT_ANGLE'] if not isinstance(rot_range, list): rot_range = [-rot_range, rot_range] pre_rot_points = data_dict['points'] special_points_lst = [data_dict[pt_key] for pt_key in SPECIAL_NAMES if pt_key in data_dict] special_name_lst = [pt_key for pt_key in SPECIAL_NAMES if pt_key in data_dict] gt_boxes, points, noise_rotation, special_points_lst = augmentor_utils.global_rotation(data_dict['gt_boxes'], pre_rot_points, rot_range=rot_range, special_points_lst=special_points_lst) for name, val in zip(special_name_lst, special_points_lst): data_dict[name] = val data_dict['gt_boxes'] = gt_boxes data_dict['points'] = points if config.get("SAVE_PRE_ROT", False): data_dict['pre_rot_points'] = pre_rot_points data_dict['rot_z'] = noise_rotation * 180 / np.pi return data_dict def random_world_scaling(self, data_dict=None, config=None): if data_dict is None: return partial(self.random_world_scaling, config=config) special_points_lst = [data_dict[pt_key] for pt_key in SPECIAL_NAMES if pt_key in data_dict] special_name_lst = [pt_key for pt_key in SPECIAL_NAMES if pt_key in data_dict] gt_boxes, points, special_points_lst = augmentor_utils.global_scaling( data_dict['gt_boxes'], data_dict['points'], config['WORLD_SCALE_RANGE'], special_points_lst=special_points_lst) for name, val in zip(special_name_lst, special_points_lst): data_dict[name] = val data_dict['gt_boxes'] = gt_boxes data_dict['points'] = points return data_dict def forward(self, data_dict, validation=False): """ Args: data_dict: points: (N, 3 + C_in) gt_boxes: optional, (N, 7) [x, y, z, dx, dy, dz, heading] gt_names: optional, (N), string ... Returns: """ data_dict["gt_boxes_inds"] = np.arange(list(data_dict["gt_boxes_mask"].shape)[0]) for cur_augmentor in self.data_augmentor_queue: if not validation or type(cur_augmentor).__name__ in ["BestMatchQuerier", "MltBestMatchQuerier"]: data_dict = cur_augmentor(data_dict=data_dict) data_dict['gt_boxes'][:, 6] = common_utils.limit_period( data_dict['gt_boxes'][:, 6], offset=0.5, period=2 * np.pi ) # if 'calib' in data_dict: # data_dict.pop('calib') if 'road_plane' in data_dict: data_dict.pop('road_plane') if 'gt_boxes_mask' in data_dict: gt_boxes_mask = data_dict['gt_boxes_mask'] data_dict['gt_boxes'] = data_dict['gt_boxes'][gt_boxes_mask] data_dict['gt_names'] = data_dict['gt_names'][gt_boxes_mask] if "obj_ids" in data_dict: data_dict['obj_ids'] = data_dict['obj_ids'][gt_boxes_mask] data_dict.pop('gt_boxes_mask') data_dict.pop('gt_boxes_inds', None) return data_dict
[ "pickle.load", "functools.partial" ]
[((4346, 4407), 'functools.partial', 'partial', (['self.random_world_flip'], {'config': 'config', 'enable': 'enable'}), '(self.random_world_flip, config=config, enable=enable)\n', (4353, 4407), False, 'from functools import partial\n'), ((5752, 5802), 'functools.partial', 'partial', (['self.random_world_rotation'], {'config': 'config'}), '(self.random_world_rotation, config=config)\n', (5759, 5802), False, 'from functools import partial\n'), ((6855, 6904), 'functools.partial', 'partial', (['self.random_world_scaling'], {'config': 'config'}), '(self.random_world_scaling, config=config)\n', (6862, 6904), False, 'from functools import partial\n'), ((1495, 1509), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1506, 1509), False, 'import pickle\n')]
#! /usr/bin/python3 import sys import os import time HOME = os.path.expanduser('~') FILENAME = "%s/.timertime" % HOME def starttimer(): if (checkifexists()): response = input("Timer is already going! Overwrite previous timer? [y/n] ") if (not (response == "y" or response == "Y" or response == "yes")): print("Aborting") return f = open(FILENAME, "w") f.write(str(int(time.time())) + "\n") f.close() def pausetimer(command): if (not checkifexists()): print("No timer going! Use 'timer start' to initialize timer!") return if (filelen() % 2 == 0 and command == "pause"): print("Timer already paused! Use 'timer resume' to resume") return if (filelen() % 2 == 1 and command == "resume"): print("Cannot resume, timer not paused!") return f = open(FILENAME, "a") f.write(str(int(time.time())) + "\n") f.close() if (command == "pause"): print("Timer paused at %s" % display()) def checkifexists(): return os.path.isfile(FILENAME) def filelen(): f = open(FILENAME) for i, l in enumerate(f): pass f.close() return i + 1 def stoptimer(): if (not checkifexists()): print("Timer not started!") return print(display()) os.remove(FILENAME) def display(): lines = [] f = open(FILENAME, "r") for line in f: lines.append(int(line.rstrip())) if (len(lines) % 2 == 1): lines.append(int(time.time())) stoptimes = [lines[i] for i in range(1, len(lines), 2)] starttimes = [lines[i] for i in range(0, len(lines), 2)] secnum = sum(stoptimes) - sum(starttimes) m, s = divmod(secnum, 60) h, m = divmod(m, 60) if h > 23: d, h = divmod(h, 24) return "%d d, %d:%02d:%02d" % (d, h, m, s) else: return "%d:%02d:%02d" % (h, m, s) def showtimer(): if (not checkifexists()): print("Timer not started!") return print(display()) def statustimer(): if (not checkifexists()): print("Timer inactive") else: if filelen() % 2 == 0: print("Timer paused") else: print("Timer running at %s" % display()) def main(): try: command = sys.argv[1] if (command == "start"): starttimer() elif (command == "stop"): stoptimer() elif (command == "pause" or command == "resume"): pausetimer(command) elif (command == "show"): showtimer() elif (command == "status"): statustimer() else: print("Timer: Unknown command '%s'" % command) except IndexError: print("No command given. Proper use:") print("\n > timer [cmd]\n") print("Where [cmd] is either start, stop, pause, resume, status or show.") if __name__ == "__main__": main()
[ "os.path.isfile", "time.time", "os.path.expanduser", "os.remove" ]
[((62, 85), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (80, 85), False, 'import os\n'), ((1083, 1107), 'os.path.isfile', 'os.path.isfile', (['FILENAME'], {}), '(FILENAME)\n', (1097, 1107), False, 'import os\n'), ((1362, 1381), 'os.remove', 'os.remove', (['FILENAME'], {}), '(FILENAME)\n', (1371, 1381), False, 'import os\n'), ((1567, 1578), 'time.time', 'time.time', ([], {}), '()\n', (1576, 1578), False, 'import time\n'), ((439, 450), 'time.time', 'time.time', ([], {}), '()\n', (448, 450), False, 'import time\n'), ((935, 946), 'time.time', 'time.time', ([], {}), '()\n', (944, 946), False, 'import time\n')]
from django.contrib import admin from .models import Event from chat.models import Chat # A TabularInline allows for an object reference (with a Foreign Key to the main object) to be displayed # within the admin backend under the main object # Django TabularInline: https://docs.djangoproject.com/en/3.0/ref/contrib/admin/#django.contrib.admin.TabularInline class ChatInline(admin.TabularInline): model = Chat # extra: This flag allows for no additional chats to be displayed other than those connected to the event # (Default is 3 additional objects not necessarily connected to the particular event. However, we want 0) extra = 0 # A ModelAdmin allows you to configure the display of a model in the admin backend # Django ModelAdmin: https://docs.djangoproject.com/en/3.0/ref/contrib/admin/ class EventAdmin(admin.ModelAdmin): model = Event # list_display: Configures which event fields to display on the event manager list in the admin backend list_display = ['name', 'start_time', 'end_time', 'description'] # fields: Configures which event fields to display on an event in the admin backend fields = ['name', 'start_time', 'end_time', 'description', 'users'] # inlines: Configures the TabularInlines to display with the fields inlines = [ ChatInline, ] # Configures which models to display in the admin backend # Must register each model in events/models.py here: admin.site.register(Event, EventAdmin)
[ "django.contrib.admin.site.register" ]
[((1430, 1468), 'django.contrib.admin.site.register', 'admin.site.register', (['Event', 'EventAdmin'], {}), '(Event, EventAdmin)\n', (1449, 1468), False, 'from django.contrib import admin\n')]
from Algorithms.Search.BinarySearch.binary_search_recursive import ( binary_search_recursive, ) class TestBinarySearchRecursive: def test_element_found(self): array = [1, 2, 3, 4, 6, 7] expected = 3 index = binary_search_recursive(array, 4) assert index == expected def test_element_not_found(self): array = [1, 2, 3, 4, 6, 7] expected = None index = binary_search_recursive(array, 10) assert index == expected
[ "Algorithms.Search.BinarySearch.binary_search_recursive.binary_search_recursive" ]
[((242, 275), 'Algorithms.Search.BinarySearch.binary_search_recursive.binary_search_recursive', 'binary_search_recursive', (['array', '(4)'], {}), '(array, 4)\n', (265, 275), False, 'from Algorithms.Search.BinarySearch.binary_search_recursive import binary_search_recursive\n'), ((425, 459), 'Algorithms.Search.BinarySearch.binary_search_recursive.binary_search_recursive', 'binary_search_recursive', (['array', '(10)'], {}), '(array, 10)\n', (448, 459), False, 'from Algorithms.Search.BinarySearch.binary_search_recursive import binary_search_recursive\n')]
import sqlite3, os from ..args import args from ..log import getLogger from ..const import TABLE_FITS, TABLE_OBSV, HDR_KEYS from .. import calc # Create module's logger logger = getLogger(__name__) # IMPORTANT: put KEYWORDS in double-quotes, some have special characters (e.g. 'DATE-OBS'). # Note: Use ..fits.printFitsHdr() for inspectation of fits files ### OBSERVATION # Inserts row to observation table # see obsCreateTable for datatypes # class ObservatoryDB: '''class for handling sqlite3 database file ''' conn = None cursor = None obsvTable = None fitsTable = None def __init__(self, dbfile, obsvTable, fitsTable): ''':param dbfile: path for .db file :param obsvTable: tablename for Obsv objects :param fitsTable: tablename for FitsFile objects ''' self.conn = sqlite3.connect(dbfile) self.cursor = self.conn.cursor() self.obsvTable = obsvTable self.fitsTable = fitsTable # def __query(self, string): # '''This method is for internal use only. Lets any command to be executed # in sqlite3 database. # :param string: SQL command to be issued. # :returns: result of the query (list, print for details) # ''' # self.cursor.execute(string) # return self.cursor.fetchall() def queryHashRange(self, column, lowerHash, upperHash): '''Returns column(s) which are in range of specified hashes :param lowerHash: lowest hash allowed :param upperHash: upper limit of hashes, is forbidden :returns: result of the query (list, print for details) ''' self.cursor.execute( f'SELECT {column} FROM obsv WHERE ({lowerHash}<=HASH and HASH<{upperHash})' ) return self.cursor.fetchall() # def queryObsv(self, hash, column): ''':param hash: hash for Obsv to be queried :param column: column(s) to be fetched :returns: True if successful ''' self.cursor.execute( f'SELECT {column} FROM {self.obsvTable} WHERE HASH = {hash};' ) return self.cursor.fetchall() # def queryFits(self, hash, column): ''':param hash: hash for FitsFile to be queried :param column: column(s) to be fetched :returns: True if successful ''' self.cursor.execute( f'SELECT {column} FROM {self.fitsTable} WHERE HASH = {hash};' ) return self.cursor.fetchall() # def insertObsv(self, obsv): ''':param obsv: Obsv object to be inserted into database :returns: True if successful ''' try: self.cursor.execute( f'INSERT INTO {self.obsvTable} VALUES (' f'"{obsv.hash}",' f'"{obsv.date}",' f'"{obsv.tlscp}",' f'"{obsv.objct}",' f'"{obsv.path}"' f');' ) self.conn.commit() return True except Exception as e: logger.warning(f'Could not insert: {e}') return False # Not for stand-alone use, to be used when an Obsv is being inserted def insertFits(self, fitsFile): ''':param fitsFile: FitsFile object to be inserted into database :returns: True if successful ''' try: hdrItems = '' for j in range(1, len(HDR_KEYS)): # 'SIMPLE' boundary cases hdrItems += (f',"{fitsFile.hdr[HDR_KEYS[j]]}"' if HDR_KEYS[j] in fitsFile.hdr else f',"NULL"') self.cursor.execute( f'INSERT INTO {self.fitsTable} VALUES (' f'"{fitsFile.hash}"' f',"{fitsFile.obsvHash}"' f',"{fitsFile.path}"' # absolute path of file # HEADER KEYWORDS BELOW # Insert integer inplace of boolean (SQLite3 specific) f',"{(1 if fitsFile.hdr["SIMPLE"] else 0)}"' # Insert from second element of HDR_KEYS f'{hdrItems}' f');' ) self.conn.commit() return True except Exception as e: logger.warning(f'Could not insert: {fitsFile.path}') logger.warning(e) return False def deleteObsv(self, obsv): '''Deletes entries for Obsv and corresponding FitsFiles from their respective tables :param obsv: Obsv object to be deleted :returns: True if successful ''' try: self.cursor.execute( f'DELETE FROM {self.obsvTable} WHERE "HASH" = {obsv.hash}' ) self.cursor.execute( f'DELETE FROM {self.fitsTable} WHERE "OBSV-HASH" = {obsv.hash}' ) self.conn.commit() return True except Exception as e: logger.warning(f'{e}') return False def deleteObsvByRef(self, ref): '''Deletes entries for Obsv and corresponding FitsFiles from their respective tables :param ref: ref of Obsv to be deleted :returns: True if successful ''' try: self.cursor.execute( f'DELETE FROM {self.obsvTable} WHERE "HASH" = {calc.hash(ref)}' ) self.cursor.execute( f'DELETE FROM {self.fitsTable} WHERE "OBSV-HASH" = {calc.hash(ref)}' ) self.conn.commit() return True except Exception as err: #logger.warning(f'{e}') exception_type = type(err).__name__ print(exception_type) return False # Creates single-table for observations, with four essential columns. # Shall be used for creation/migration only. def createObsvTable(self): #returns boolean '''Creates table for storing Obsv object information (named as self.obsvTable value) :returns: True if successful ''' try: self.cursor.execute( f'CREATE TABLE IF NOT EXISTS {self.obsvTable} (\n' f'"HASH" INTEGER PRIMARY KEY\n' f',"DATE" TEXT NOT NULL\n' # YYYY-MM-DD, also foldername in f',"TELESCOP" TEXT NOT NULL\n' f',"OBJECT" TEXT NOT NULL\n' f',"PATH" TEXT NOT NULL\n' f');' ) self.conn.commit() return True except Exception as e: logger.warning(f'{e}') return False # Creates single-table for FITS-Headers # Shall be used at creation/migration only def createFitsTable(self): #returns boolean '''Creates table for storing FitsFile object information (named as self.fitsTable value) :returns: True if successful ''' try: self.cursor.execute( #print( # for debugging when table not created, print the string f'CREATE TABLE IF NOT EXISTS {self.fitsTable} (\n' f'"HASH" INTEGER PRIMARY KEY,\n' # file's hash f'"OBSV-HASH" INTEGER NOT NULL,\n' # hash for parent Obsv f'"PATH" TEXT NOT NULL,\n' # absolute path of file # HEADER KEYWORDS BELOW (AUKR-REF in header for archived files) f'"{HDR_KEYS[0]}" INTEGER,\n' #for bool f'"{HDR_KEYS[1]}" INTEGER,\n' f'"{HDR_KEYS[2]}" INTEGER,\n' f'"{HDR_KEYS[3]}" INTEGER,\n' f'"{HDR_KEYS[4]}" INTEGER,\n' f'"{HDR_KEYS[5]}" REAL,\n' #float f'"{HDR_KEYS[6]}" REAL,\n' #float f'"{HDR_KEYS[7]}" TEXT NOT NULL,\n' #str "DATE-OBS" f'"{HDR_KEYS[8]}" REAL,\n' #float f'"{HDR_KEYS[9]}" REAL,\n' #float f'"{HDR_KEYS[10]}" REAL,\n' #float f'"{HDR_KEYS[11]}" REAL,\n' #float f'"{HDR_KEYS[12]}" REAL,\n' #float f'"{HDR_KEYS[13]}" REAL,\n' #float f'"{HDR_KEYS[14]}" INTEGER,\n' f'"{HDR_KEYS[15]}" INTEGER,\n' f'"{HDR_KEYS[16]}" INTEGER,\n' f'"{HDR_KEYS[17]}" INTEGER,\n' f'"{HDR_KEYS[18]}" TEXT,\n' #str f'"{HDR_KEYS[19]}" TEXT,\n' #str f'"{HDR_KEYS[20]}" TEXT,\n' #str f'"{HDR_KEYS[21]}" INTEGER,\n' f'"{HDR_KEYS[22]}" REAL,\n' #float f'"{HDR_KEYS[23]}" TEXT,\n' #str f'"{HDR_KEYS[24]}" TEXT,\n' #str f'"{HDR_KEYS[25]}" TEXT,\n' #str f'"{HDR_KEYS[26]}" TEXT,\n' #str f'"{HDR_KEYS[27]}" TEXT,\n' #str f'"{HDR_KEYS[28]}" TEXT,\n' #str f'"{HDR_KEYS[29]}" TEXT,\n' #str f'"{HDR_KEYS[30]}" REAL,\n' #float f'"{HDR_KEYS[31]}" REAL,\n' #float f'"{HDR_KEYS[32]}" REAL,\n' #float f'"{HDR_KEYS[33]}" REAL,\n' #float f'"{HDR_KEYS[34]}" REAL,\n' #float f'"{HDR_KEYS[35]}" REAL,\n' #float f'"{HDR_KEYS[36]}" TEXT,\n' #str # the image #astropy.io.fits.header._HeaderCommentaryCards f'"{HDR_KEYS[37]}" TEXT,\n' #str f'"{HDR_KEYS[38]}" TEXT NOT NULL,\n' #str "OBJECT" f'"{HDR_KEYS[39]}" TEXT NOT NULL,\n' #str "TELESCOP" f'"{HDR_KEYS[40]}" TEXT,\n' #str f'"{HDR_KEYS[41]}" TEXT,\n' #str f'"{HDR_KEYS[42]}" TEXT,\n' #str f'"{HDR_KEYS[43]}" TEXT,\n' #str f'"{HDR_KEYS[44]}" TEXT,\n' #str f'"{HDR_KEYS[45]}" TEXT,\n' #float f'"{HDR_KEYS[46]}" TEXT,\n' #str f'"{HDR_KEYS[47]}" TEXT,\n' #str f'"{HDR_KEYS[48]}" TEXT,\n' #str #was null in sample f'"{HDR_KEYS[49]}" TEXT,\n' #str #was null in sample f'"{HDR_KEYS[50]}" TEXT,\n' #float f'"{HDR_KEYS[51]}" TEXT,\n' #float f'"{HDR_KEYS[52]}" TEXT,\n' #float f'"{HDR_KEYS[53]}" TEXT,\n' #float f'"{HDR_KEYS[54]}" TEXT NOT NULL\n' #str "AUKR-REF" # END of HEADER KEYWORDS f');' ) self.conn.commit() return True except Exception as e: logger.warning(f'{e}') return False # Create database object to connect provided sqlite3.db file archiveDB = ObservatoryDB(args.dbfile, TABLE_OBSV, TABLE_FITS) if not archiveDB.createFitsTable(): logger.info(f'Table "{TABLE_FITS}" could not be created') if not archiveDB.createObsvTable(): logger.info(f'Table "{TABLE_OBSV}" could not be created')
[ "sqlite3.connect" ]
[((865, 888), 'sqlite3.connect', 'sqlite3.connect', (['dbfile'], {}), '(dbfile)\n', (880, 888), False, 'import sqlite3, os\n')]
import os import json import pickle import numpy as np import pandas as pd from nltk import word_tokenize from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import ijson from sentiments import ( parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS, ) imdb_dir = './data/sentiment-data/imdb' imdb_train = f'{imdb_dir}/train' imdb_test = f'{imdb_dir}/train' yelp_dir = './data/sentiment-data/yelp' yelp_train = f'{yelp_dir}/yelp_academic_dataset_review_train.json' yelp_test = f'{yelp_dir}/yelp_academic_dataset_review_test.json' semeval_dir = './data/sentiment-data/SemEval-2017-Task4A' semeval_train = f'{semeval_dir}/SemEval2017-task4-dev.subtask-A.english.INPUT_train.txt' semeval_test = f'{semeval_dir}/SemEval2017-task4-dev.subtask-A.english.INPUT_test.txt' multidom_dir = './data/sentiment-data/multi-domain-sentiment' multidom_train = f'{multidom_dir}/multi-domain-sentiment_indomain_train.txt' multidom_test = f'{multidom_dir}/multi-domain-sentiment_indomain_test.txt' peerread_acl_dir = './data/sentiment-data/PeerRead/acl_2017' peerread_acl_train = f'{peerread_acl_dir}/train' peerread_acl_test = f'{peerread_acl_dir}/test' peerread_iclr_dir = './data/sentiment-data/PeerRead/iclr_2017' peerread_iclr_train = f'{peerread_iclr_dir}/train' peerread_iclr_test = f'{peerread_iclr_dir}/test' SPLIT_SEED = 11235 SPLIT = False SAVE = True def save_object(obj, fpath): """ Pickle an object and save it to file """ with open(fpath, 'wb') as o: pickle.dump(obj, o) def load_object(fpath): """ Load a pickled object from file """ with open(fpath, 'rb') as i: return pickle.load(i) def split_file(dir, in_fname, split_prop, seed=None): """ Split train and test data """ np.random.seed(seed) fname, ext = os.path.splitext(in_fname) with open(f'{dir}/{in_fname}', 'r', encoding='utf-8') as f,\ open(f'{dir}/{fname}_train{ext}', 'w', encoding='utf-8') as train,\ open(f'{dir}/{fname}_test{ext}', 'w', encoding='utf-8') as test: for i, line in enumerate(f): print(i, end='\r') train_split = np.random.uniform() < split_prop if train_split: train.write(line) else: test.write(line) def split_files(dir, split_prop, seed=None): """ Split train and test data """ np.random.seed(seed) datadir = os.listdir(dir) for fold in datadir: if not fold in ["books", "dvd", "electronics", "kitchen"]: continue split2label = {"negative.review": "0", "positive.review": "1"} for datasplit in ["negative.review", "positive.review"]: in_fname = os.path.join(dir, fold, datasplit) fname = os.path.join(dir, "multi-domain-sentiment_indomain") ext = ".txt" with open(f'{in_fname}', 'r', encoding='utf-8') as f,\ open(f'{fname}_train{ext}', 'a', encoding='utf-8') as train,\ open(f'{fname}_test{ext}', 'a', encoding='utf-8') as test: for i, line in enumerate(f): print(i, end='\r') line = line.strip("\n") toks = line.split(" ") toks_final = [] for tok in toks: if "_" in tok or tok.startswith("#label"): continue toks_final.append(tok.split(":")[0]) text = " ".join(toks_final) train_split = np.random.uniform() < split_prop if train_split: train.write(text + "\t" + split2label[datasplit] + "\n") else: test.write(text + "\t" + split2label[datasplit] + "\n") if SPLIT: split_file(yelp_dir, 'yelp_academic_dataset_review.json', split_prop=0.8, seed=SPLIT_SEED) split_file(semeval_dir, 'SemEval2017-task4-dev.subtask-A.english.INPUT.txt', split_prop=0.8, seed=SPLIT_SEED) split_files(multidom_dir, split_prop=0.8, seed=SPLIT_SEED) def gen_imdb_data(dir, sent_data, score_fn, limit_to=None): """ Create imdb dataset from sentiment lexicon """ pos_data = [('pos', fname) for fname in os.listdir(os.path.join(dir, 'pos'))][:limit_to] neg_data = [('neg', fname) for fname in os.listdir(os.path.join(dir, 'neg'))][:limit_to] n = len(pos_data) + len(neg_data) y = np.concatenate([np.ones(len(pos_data)), np.zeros(len(neg_data))]) x = np.zeros((n, len(score_fn('good bad', sent_data)))) for i, (sent, fname) in enumerate(pos_data + neg_data): with open(os.path.join(dir, sent, fname), 'r', encoding='latin1') as textfile: text = textfile.read() sent_score = score_fn(text, sent_data) x[i] = sent_score print(f'{i/n*100:0.2f}%', end='\r') return x, y def gen_yelp_data(fpath, sent_data, score_fn, limit_to, balance=False): """ Create yelp dataset from sentiment lexicon All written under the assumption that we're never going to read in all data """ n = limit_to y = np.zeros(n) x = np.zeros((n, len(score_fn('good bad', sent_data)))) i = 0 with open(fpath, 'r', encoding='utf-8') as f: for line in f: data = json.loads(line) sent_score = score_fn(data['text'], sent_data) if balance and (np.sum(y == data['stars']) >= (limit_to // 5)): continue x[i] = sent_score y[i] = data['stars'] i += 1 print(f'{i/n*100:0.2f}%', end='\r') if i >= n: break return x, y def gen_multidom_data(fpath, sent_data, score_fn, limit_to=None): """ Create multi-domain sentiment analysis dataset from sentiment lexicon """ n = limit_to y = np.zeros(n) x = np.zeros((n, len(score_fn('good bad', sent_data)))) i = 0 with open(fpath, 'r', encoding='utf-8') as f: for line in f: text, label = line.strip("\n").split("\t") sent_score = score_fn(text, sent_data) x[i] = sent_score y[i] = int(label) i += 1 print(f'{i/n*100:0.2f}%', end='\r') if i >= n: break return x, y def gen_semeval_data(fpath, sent_data, score_fn, limit_to=None, balance=False): """ Create yelp dataset from sentiment lexicon """ data = pd.read_csv(fpath, sep='\t', names=['id', 'sent', 'text', '_'], encoding='utf-8') data['sent'] = data.sent.replace({'negative': 0, 'neutral': 1, 'positive': 2}) n = limit_to or len(data) if balance: class_counts = data.groupby('sent')['id'].count() n = class_counts.min() * len(class_counts) y = np.zeros(n) x = np.zeros((n, len(score_fn('good bad', sent_data)))) i = 0 for _, row in data.iterrows(): sent_score = score_fn(row.text, sent_data) if balance and (np.sum(y == row.sent) >= class_counts.min()): continue x[i] = sent_score y[i] = row.sent i += 1 print(f'{i/n*100:0.2f}%', end='\r') if i >= n: break return x, y def gen_acl_data(dir, sent_data, score_fn, limit_to=None, merge=True): """ Create PeerReview ACL dataset from sentiment lexicon """ acl_data = [fname for fname in os.listdir(os.path.join(dir, 'reviews'))][:limit_to] n = limit_to or len(acl_data) y = np.zeros(n) x = np.zeros((n, len(score_fn('good bad', sent_data)))) if merge: score2norm = {"1": 0, "2": 0, "3": 1, "4": 2, "5": 2, "6": 2} else: score2norm = {"1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5} largecnt = 0 for i, fname in enumerate(acl_data): currpath = os.path.join(dir, 'reviews', fname) f = open(currpath, encoding="utf-8") objects = ijson.items(f, 'reviews') for ii, obj in enumerate(objects): for j, objj in enumerate(obj): text = objj["comments"] sent_score = score_fn(text, sent_data) x[i] = sent_score y[i] = score2norm[objj["RECOMMENDATION"]] largecnt += 1 print(f'{i/n*100:0.2f}%', end='\r') print(largecnt) return x, y def gen_iclr_data(dir, sent_data, score_fn, limit_to=None, merge=True): """ Create PeerReview ICLR dataset from sentiment lexicon """ iclr_data = [fname for fname in os.listdir(os.path.join(dir, 'reviews'))][:limit_to] n = limit_to or len(iclr_data) y = np.zeros(n) x = np.zeros((n, len(score_fn('good bad', sent_data)))) if merge: score2norm = {"1": 0, "2": 0, "3": 0, "4": 0, "5": 1, "6": 2, "7": 2, "8": 2, "9": 2, "10": 2} else: score2norm = {"1": 0, "2": 1, "3": 2, "4": 3, "5": 4, "6": 5, "7": 6, "8": 7, "9": 8, "10": 9} largecnt = 0 for i, fname in enumerate(iclr_data): currpath = os.path.join(dir, 'reviews', fname) f = open(currpath, encoding="utf-8") objects = ijson.items(f, 'reviews') for ii, obj in enumerate(objects): for j, objj in enumerate(obj): # some are meta-reviews without scores if not "RECOMMENDATION" in objj.keys(): continue text = objj["comments"] sent_score = score_fn(text, sent_data) x[i] = sent_score y[i] = score2norm[str(objj["RECOMMENDATION"])] largecnt += 1 print(f'{i/n*100:0.2f}%', end='\r') print(largecnt) return x, y def score_sent(text, sent_data, normalize=False): """ Evaluate the data """ test_sent = next(iter(sent_data.values())) sents = np.zeros_like(test_sent).astype(np.float).reshape(-1) tokens = word_tokenize(text.lower()) for token in tokens: try: sent = np.array(sent_data[token]) except KeyError: continue if normalize: sent = sent / sent.sum() sents += sent score = sents / len(tokens) return score def read_lexica(): sent_to_dict = lambda x: x.set_index("word")["sent"].to_dict() sentiments = { 'vae_3': sent_to_dict(parse_vae( './models/vae/sent_dict.csv', sent_cols=[f'alpha_{i}' for i in range(1, 4)], from_vae_only=True, )), 'sentiwordnet': sent_to_dict(parse_sentiwordnet(FPATHS['sentiwordnet'], group=True)), 'mpqa': sent_to_dict(parse_mpqa(FPATHS['mpqa'])), 'senticnet': sent_to_dict(parse_senticnet(FPATHS['senticnet'])), 'huliu': sent_to_dict(parse_huliu(*FPATHS['huliu'])), 'gi': sent_to_dict(parse_general_inquirer(FPATHS['general_inquirer'])), 'vader_mean': sent_to_dict(parse_vader(FPATHS['vader'], group_mean=True)), 'vader_multi': sent_to_dict(parse_vader(FPATHS['vader'], group_multinomial=True)), } # binned vader dataset sentiments['vader_binned'] = { k: np.array([v[:4].sum(), v[4].sum(), v[5:].sum()]) for k, v in sentiments['vader_multi'].items() } print("VADER") print(len(sentiments['vader_multi'])) return sentiments def score_sentences(sentiments): if SAVE: imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, \ imdb_testd, yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd \ = {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {} for lexicon in sentiments: print(f'On lexicon {lexicon}') if 'vae' in lexicon: scorer = lambda text, sent_data, : score_sent(text, sent_data, normalize=False) else: scorer = lambda text, sent_data, : score_sent(text, sent_data, normalize=False) print('IMDB') imdb[lexicon], imdb['y'] = gen_imdb_data( imdb_train, sentiments[lexicon], scorer, limit_to=None ) print('Yelp') yelp[lexicon], yelp['y'] = gen_yelp_data( yelp_train, sentiments[lexicon], scorer, limit_to=int(1e5), balance=True ) print('SemEval') semeval[lexicon], semeval['y'] = gen_semeval_data( semeval_train, sentiments[lexicon], scorer, limit_to=None, balance=True ) print('MultiDom') multidom[lexicon], multidom['y'] = gen_multidom_data( multidom_train, sentiments[lexicon], scorer, limit_to=6500 ) print('ACL3c') acl3c[lexicon], acl3c['y'] = gen_acl_data( peerread_acl_train, sentiments[lexicon], scorer, limit_to=248, merge=True, ) print('ACL') acl[lexicon], acl['y'] = gen_acl_data( peerread_acl_train, sentiments[lexicon], scorer, limit_to=248, merge=False, ) print('ICLR3c') iclr3c[lexicon], iclr3c['y'] = gen_iclr_data( peerread_iclr_train, sentiments[lexicon], scorer, limit_to=2166, merge=True, ) print('ICLR') iclr[lexicon], iclr['y'] = gen_iclr_data( peerread_iclr_train, sentiments[lexicon], scorer, limit_to=2166, merge=False, ) print('ICLR test') iclr_testd[lexicon], iclr_testd['y'] = gen_iclr_data( peerread_iclr_test, sentiments[lexicon], scorer, limit_to=230, merge=False, ) print('ICLR3C test') iclr3c_testd[lexicon], iclr3c_testd['y'] = gen_iclr_data( peerread_iclr_test, sentiments[lexicon], scorer, limit_to=230, merge=True, ) print('ACL test') acl_testd[lexicon], acl_testd['y'] = gen_acl_data( peerread_acl_test, sentiments[lexicon], scorer, limit_to=15, merge=False, ) print('ACL3C test') acl3c_testd[lexicon], acl3c_testd['y'] = gen_acl_data( peerread_acl_test, sentiments[lexicon], scorer, limit_to=15, merge=True, ) print('Multidom test') multidom_testd[lexicon], multidom_testd['y'] = gen_multidom_data( multidom_test, sentiments[lexicon], scorer, limit_to=1575 ) print('SemEval test') semeval_testd[lexicon], semeval_testd['y'] = gen_semeval_data( semeval_test, sentiments[lexicon], scorer, limit_to=None ) print('IMDB test') imdb_testd[lexicon], imdb_testd['y'] = gen_imdb_data( imdb_test, sentiments[lexicon], scorer, limit_to=None ) print('Yelp test') yelp_testd[lexicon], yelp_testd['y'] = gen_yelp_data( yelp_test, sentiments[lexicon], scorer, limit_to=int(1e5)#int(1199429) ) save_object(imdb, './models/evaluations/imdb.pkl') save_object(yelp, './models/evaluations/yelp.pkl') save_object(semeval, './models/evaluations/semeval.pkl') save_object(multidom, './models/evaluations/multidom.pkl') save_object(acl3c, './models/evaluations/acl_3class.pkl') save_object(acl, './models/evaluations/acl.pkl') save_object(iclr3c, './models/evaluations/iclr_3class.pkl') save_object(iclr, './models/evaluations/iclr.pkl') save_object(iclr_testd, './models/evaluations/iclr_test.pkl') save_object(iclr3c_testd, './models/evaluations/iclr3c_test.pkl') save_object(acl_testd, './models/evaluations/acl_test.pkl') save_object(acl3c_testd, './models/evaluations/acl3c_test.pkl') save_object(multidom_testd, './models/evaluations/multidom_test.pkl') save_object(semeval_testd, './models/evaluations/semeval_test.pkl') save_object(yelp_testd, './models/evaluations/yelp_test.pkl') save_object(imdb_testd, './models/evaluations/imdb_test.pkl') else: imdb = load_object('./models/evaluations/imdb.pkl') yelp = load_object('./models/evaluations/yelp.pkl') semeval = load_object('./models/evaluations/semeval.pkl') multidom = load_object('./models/evaluations/multidom.pkl') acl3c = load_object('./models/evaluations/acl_3class.pkl') acl = load_object('./models/evaluations/acl.pkl') iclr3c = load_object('./models/evaluations/iclr_3class.pkl') iclr = load_object('./models/evaluations/iclr.pkl') imdb_testd = load_object('./models/evaluations/imdb_test.pkl') yelp_testd = load_object('./models/evaluations/yelp_test.pkl') semeval_testd = load_object('./models/evaluations/semeval_test.pkl') multidom_testd = load_object('./models/evaluations/multidom_test.pkl') acl3c_testd = load_object('./models/evaluations/acl3c_test.pkl') acl_testd = load_object('./models/evaluations/acl_test.pkl') iclr3c_testd = load_object('./models/evaluations/iclr3c_test.pkl') iclr_testd = load_object('./models/evaluations/iclr_test.pkl') return imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, \ imdb_testd, yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd def make_combined_score(sentiments, imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, imdb_testd, yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd): # which datasets do we *not* want in the combined version? exclude = ['vae_3', 'vae_5', 'vae_9', 'vader_mean', 'vader_binned', 'combined', 'combined_binned'] imdb['combined'] = np.hstack([imdb[lexicon] for lexicon in sentiments if lexicon not in exclude]) yelp['combined'] = np.hstack([yelp[lexicon] for lexicon in sentiments if lexicon not in exclude]) semeval['combined'] = np.hstack([semeval[lexicon] for lexicon in sentiments if lexicon not in exclude]) multidom['combined'] = np.hstack([multidom[lexicon] for lexicon in sentiments if lexicon not in exclude]) acl3c['combined'] = np.hstack([acl3c[lexicon] for lexicon in sentiments if lexicon not in exclude]) acl['combined'] = np.hstack([acl[lexicon] for lexicon in sentiments if lexicon not in exclude]) iclr3c['combined'] = np.hstack([iclr3c[lexicon] for lexicon in sentiments if lexicon not in exclude]) iclr['combined'] = np.hstack([iclr[lexicon] for lexicon in sentiments if lexicon not in exclude]) imdb_testd['combined'] = np.hstack([imdb_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) yelp_testd['combined'] = np.hstack([yelp_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) semeval_testd['combined'] = np.hstack([semeval_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) multidom_testd['combined'] = np.hstack([multidom_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) acl3c_testd['combined'] = np.hstack([acl3c_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) acl_testd['combined'] = np.hstack([acl_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) iclr3c_testd['combined'] = np.hstack([iclr3c_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) iclr_testd['combined'] = np.hstack([iclr_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]) sentiments['combined'] = None # dummy such that it's included in iterations return sentiments, imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, \ imdb_testd, yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd def make_binned_yelp(sentiments, yelp): yelp_binned = {} neutral = np.where(yelp['y'] == 3)[0] n = neutral.shape[0] neg = np.where(np.isin(yelp['y'], [1, 2]))[0][:n] pos = np.where(np.isin(yelp['y'], [4, 5]))[0][:n] yelp_binned_idx = np.concatenate([neutral, pos, neg]) y = yelp['y'][yelp_binned_idx] yelp_binned['y'] = (y == 3) * 1 + (np.isin(y, [4, 5])) * 2 #print(sentiments.keys()) for lexicon in sentiments: #print(lexicon) yelp_binned[lexicon] = yelp[lexicon][yelp_binned_idx] return yelp_binned def eval_all(sentiments, imdb, yelp, yelp_binned, semeval, multidom, acl3c, acl, iclr3c, iclr, imdb_testd, yelp_testd, yelp3c_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd): evaluation_data = ( ('imdb', imdb, imdb_testd), ('yelp', yelp, yelp_testd), ('yelp_binned', yelp_binned, yelp3c_testd), ('semeval', semeval, semeval_testd), ('multidom', multidom, multidom_testd), ('acl3c', acl3c, acl3c_testd), ('acl', acl, acl_testd), ('iclr3c', iclr3c, iclr3c_testd), ('iclr', iclr, iclr_testd), ) for eval_name, train_data, eval_data in evaluation_data: print(f'{eval_name} accuracy - {len(np.unique(train_data["y"]))} classes') for lexicon in list(sentiments.keys()): # making splits here #x_train, x_dev, y_train, y_dev = train_test_split( # eval_data[lexicon], # eval_data['y'], # random_state=SPLIT_SEED, # test_size=0.1, #) # separate test x_train = train_data[lexicon] y_train = train_data['y'] x_dev = eval_data[lexicon] y_dev = eval_data['y'] # print(len(y_train)) logit = LogisticRegression() logit.fit(x_train, y_train) pred = logit.predict(x_dev) metric = np.mean(pred == y_dev) print(f'{lexicon:15}{metric:0.3f}') print('\n') if __name__ == '__main__': sentiments = read_lexica() imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, imdb_testd, \ yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd \ = score_sentences(sentiments) sentiments, imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, \ imdb_testd, yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd \ = make_combined_score(sentiments, imdb, yelp, semeval, multidom, acl3c, acl, iclr3c, iclr, imdb_testd, yelp_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd) yelp_binned = make_binned_yelp(sentiments, yelp) yelp3c_testd = make_binned_yelp(sentiments, yelp_testd) eval_all(sentiments, imdb, yelp, yelp_binned, semeval, multidom, acl3c, acl, iclr3c, iclr, imdb_testd, yelp_testd, yelp3c_testd, semeval_testd, multidom_testd, acl3c_testd, acl_testd, iclr3c_testd, iclr_testd)
[ "pandas.read_csv", "numpy.hstack", "numpy.isin", "numpy.array", "numpy.mean", "os.listdir", "numpy.where", "sentiments.parse_senticnet", "numpy.random.seed", "numpy.concatenate", "sentiments.parse_vader", "sentiments.parse_huliu", "json.loads", "os.path.splitext", "pickle.load", "sentiments.parse_sentiwordnet", "ijson.items", "sentiments.parse_mpqa", "pickle.dump", "numpy.unique", "os.path.join", "sklearn.linear_model.LogisticRegression", "numpy.sum", "numpy.zeros", "numpy.random.uniform", "sentiments.parse_general_inquirer", "numpy.zeros_like" ]
[((1874, 1894), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (1888, 1894), True, 'import numpy as np\n'), ((1910, 1936), 'os.path.splitext', 'os.path.splitext', (['in_fname'], {}), '(in_fname)\n', (1926, 1936), False, 'import os\n'), ((2432, 2452), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (2446, 2452), True, 'import numpy as np\n'), ((2466, 2481), 'os.listdir', 'os.listdir', (['dir'], {}), '(dir)\n', (2476, 2481), False, 'import os\n'), ((5103, 5114), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (5111, 5114), True, 'import numpy as np\n'), ((5835, 5846), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (5843, 5846), True, 'import numpy as np\n'), ((6447, 6533), 'pandas.read_csv', 'pd.read_csv', (['fpath'], {'sep': '"""\t"""', 'names': "['id', 'sent', 'text', '_']", 'encoding': '"""utf-8"""'}), "(fpath, sep='\\t', names=['id', 'sent', 'text', '_'], encoding=\n 'utf-8')\n", (6458, 6533), True, 'import pandas as pd\n'), ((6777, 6788), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (6785, 6788), True, 'import numpy as np\n'), ((7482, 7493), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (7490, 7493), True, 'import numpy as np\n'), ((8594, 8605), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (8602, 8605), True, 'import numpy as np\n'), ((17718, 17796), 'numpy.hstack', 'np.hstack', (['[imdb[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([imdb[lexicon] for lexicon in sentiments if lexicon not in exclude])\n', (17727, 17796), True, 'import numpy as np\n'), ((17820, 17898), 'numpy.hstack', 'np.hstack', (['[yelp[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([yelp[lexicon] for lexicon in sentiments if lexicon not in exclude])\n', (17829, 17898), True, 'import numpy as np\n'), ((17925, 18010), 'numpy.hstack', 'np.hstack', (['[semeval[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([semeval[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (17934, 18010), True, 'import numpy as np\n'), ((18034, 18120), 'numpy.hstack', 'np.hstack', (['[multidom[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([multidom[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (18043, 18120), True, 'import numpy as np\n'), ((18141, 18220), 'numpy.hstack', 'np.hstack', (['[acl3c[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([acl3c[lexicon] for lexicon in sentiments if lexicon not in exclude])\n', (18150, 18220), True, 'import numpy as np\n'), ((18243, 18320), 'numpy.hstack', 'np.hstack', (['[acl[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([acl[lexicon] for lexicon in sentiments if lexicon not in exclude])\n', (18252, 18320), True, 'import numpy as np\n'), ((18346, 18431), 'numpy.hstack', 'np.hstack', (['[iclr3c[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([iclr3c[lexicon] for lexicon in sentiments if lexicon not in exclude]\n )\n', (18355, 18431), True, 'import numpy as np\n'), ((18450, 18528), 'numpy.hstack', 'np.hstack', (['[iclr[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([iclr[lexicon] for lexicon in sentiments if lexicon not in exclude])\n', (18459, 18528), True, 'import numpy as np\n'), ((18558, 18646), 'numpy.hstack', 'np.hstack', (['[imdb_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([imdb_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (18567, 18646), True, 'import numpy as np\n'), ((18672, 18760), 'numpy.hstack', 'np.hstack', (['[yelp_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([yelp_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (18681, 18760), True, 'import numpy as np\n'), ((18789, 18880), 'numpy.hstack', 'np.hstack', (['[semeval_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([semeval_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (18798, 18880), True, 'import numpy as np\n'), ((18910, 19002), 'numpy.hstack', 'np.hstack', (['[multidom_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([multidom_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (18919, 19002), True, 'import numpy as np\n'), ((19029, 19118), 'numpy.hstack', 'np.hstack', (['[acl3c_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([acl3c_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (19038, 19118), True, 'import numpy as np\n'), ((19143, 19230), 'numpy.hstack', 'np.hstack', (['[acl_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([acl_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (19152, 19230), True, 'import numpy as np\n'), ((19258, 19348), 'numpy.hstack', 'np.hstack', (['[iclr3c_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([iclr3c_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (19267, 19348), True, 'import numpy as np\n'), ((19374, 19462), 'numpy.hstack', 'np.hstack', (['[iclr_testd[lexicon] for lexicon in sentiments if lexicon not in exclude]'], {}), '([iclr_testd[lexicon] for lexicon in sentiments if lexicon not in\n exclude])\n', (19383, 19462), True, 'import numpy as np\n'), ((20001, 20036), 'numpy.concatenate', 'np.concatenate', (['[neutral, pos, neg]'], {}), '([neutral, pos, neg])\n', (20015, 20036), True, 'import numpy as np\n'), ((1616, 1635), 'pickle.dump', 'pickle.dump', (['obj', 'o'], {}), '(obj, o)\n', (1627, 1635), False, 'import pickle\n'), ((1761, 1775), 'pickle.load', 'pickle.load', (['i'], {}), '(i)\n', (1772, 1775), False, 'import pickle\n'), ((7802, 7837), 'os.path.join', 'os.path.join', (['dir', '"""reviews"""', 'fname'], {}), "(dir, 'reviews', fname)\n", (7814, 7837), False, 'import os\n'), ((7901, 7926), 'ijson.items', 'ijson.items', (['f', '"""reviews"""'], {}), "(f, 'reviews')\n", (7912, 7926), False, 'import ijson\n'), ((8977, 9012), 'os.path.join', 'os.path.join', (['dir', '"""reviews"""', 'fname'], {}), "(dir, 'reviews', fname)\n", (8989, 9012), False, 'import os\n'), ((9076, 9101), 'ijson.items', 'ijson.items', (['f', '"""reviews"""'], {}), "(f, 'reviews')\n", (9087, 9101), False, 'import ijson\n'), ((19817, 19841), 'numpy.where', 'np.where', (["(yelp['y'] == 3)"], {}), "(yelp['y'] == 3)\n", (19825, 19841), True, 'import numpy as np\n'), ((2742, 2776), 'os.path.join', 'os.path.join', (['dir', 'fold', 'datasplit'], {}), '(dir, fold, datasplit)\n', (2754, 2776), False, 'import os\n'), ((2795, 2847), 'os.path.join', 'os.path.join', (['dir', '"""multi-domain-sentiment_indomain"""'], {}), "(dir, 'multi-domain-sentiment_indomain')\n", (2807, 2847), False, 'import os\n'), ((5278, 5294), 'json.loads', 'json.loads', (['line'], {}), '(line)\n', (5288, 5294), False, 'import json\n'), ((9933, 9959), 'numpy.array', 'np.array', (['sent_data[token]'], {}), '(sent_data[token])\n', (9941, 9959), True, 'import numpy as np\n'), ((10469, 10523), 'sentiments.parse_sentiwordnet', 'parse_sentiwordnet', (["FPATHS['sentiwordnet']"], {'group': '(True)'}), "(FPATHS['sentiwordnet'], group=True)\n", (10487, 10523), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((10555, 10581), 'sentiments.parse_mpqa', 'parse_mpqa', (["FPATHS['mpqa']"], {}), "(FPATHS['mpqa'])\n", (10565, 10581), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((10618, 10654), 'sentiments.parse_senticnet', 'parse_senticnet', (["FPATHS['senticnet']"], {}), "(FPATHS['senticnet'])\n", (10633, 10654), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((10687, 10716), 'sentiments.parse_huliu', 'parse_huliu', (["*FPATHS['huliu']"], {}), "(*FPATHS['huliu'])\n", (10698, 10716), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((10746, 10796), 'sentiments.parse_general_inquirer', 'parse_general_inquirer', (["FPATHS['general_inquirer']"], {}), "(FPATHS['general_inquirer'])\n", (10768, 10796), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((10835, 10880), 'sentiments.parse_vader', 'parse_vader', (["FPATHS['vader']"], {'group_mean': '(True)'}), "(FPATHS['vader'], group_mean=True)\n", (10846, 10880), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((10919, 10971), 'sentiments.parse_vader', 'parse_vader', (["FPATHS['vader']"], {'group_multinomial': '(True)'}), "(FPATHS['vader'], group_multinomial=True)\n", (10930, 10971), False, 'from sentiments import parse_sentiwordnet, parse_mpqa, parse_senticnet, parse_vader, parse_huliu, parse_general_inquirer, parse_vae, FPATHS\n'), ((20112, 20130), 'numpy.isin', 'np.isin', (['y', '[4, 5]'], {}), '(y, [4, 5])\n', (20119, 20130), True, 'import numpy as np\n'), ((21604, 21624), 'sklearn.linear_model.LogisticRegression', 'LogisticRegression', ([], {}), '()\n', (21622, 21624), False, 'from sklearn.linear_model import LogisticRegression\n'), ((21726, 21748), 'numpy.mean', 'np.mean', (['(pred == y_dev)'], {}), '(pred == y_dev)\n', (21733, 21748), True, 'import numpy as np\n'), ((2225, 2244), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (2242, 2244), True, 'import numpy as np\n'), ((4618, 4648), 'os.path.join', 'os.path.join', (['dir', 'sent', 'fname'], {}), '(dir, sent, fname)\n', (4630, 4648), False, 'import os\n'), ((6971, 6992), 'numpy.sum', 'np.sum', (['(y == row.sent)'], {}), '(y == row.sent)\n', (6977, 6992), True, 'import numpy as np\n'), ((19889, 19915), 'numpy.isin', 'np.isin', (["yelp['y']", '[1, 2]'], {}), "(yelp['y'], [1, 2])\n", (19896, 19915), True, 'import numpy as np\n'), ((19943, 19969), 'numpy.isin', 'np.isin', (["yelp['y']", '[4, 5]'], {}), "(yelp['y'], [4, 5])\n", (19950, 19969), True, 'import numpy as np\n'), ((4234, 4258), 'os.path.join', 'os.path.join', (['dir', '"""pos"""'], {}), "(dir, 'pos')\n", (4246, 4258), False, 'import os\n'), ((4327, 4351), 'os.path.join', 'os.path.join', (['dir', '"""neg"""'], {}), "(dir, 'neg')\n", (4339, 4351), False, 'import os\n'), ((5383, 5409), 'numpy.sum', 'np.sum', (["(y == data['stars'])"], {}), "(y == data['stars'])\n", (5389, 5409), True, 'import numpy as np\n'), ((7396, 7424), 'os.path.join', 'os.path.join', (['dir', '"""reviews"""'], {}), "(dir, 'reviews')\n", (7408, 7424), False, 'import os\n'), ((8507, 8535), 'os.path.join', 'os.path.join', (['dir', '"""reviews"""'], {}), "(dir, 'reviews')\n", (8519, 8535), False, 'import os\n'), ((9780, 9804), 'numpy.zeros_like', 'np.zeros_like', (['test_sent'], {}), '(test_sent)\n', (9793, 9804), True, 'import numpy as np\n'), ((3535, 3554), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (3552, 3554), True, 'import numpy as np\n'), ((21024, 21050), 'numpy.unique', 'np.unique', (["train_data['y']"], {}), "(train_data['y'])\n", (21033, 21050), True, 'import numpy as np\n')]
from ctypes import c_long from threading import Thread from comtypes.automation import BSTR from comtypes.client import CreateObject from numpy import array from corems.encapsulation.factory.parameters import default_parameters from corems.encapsulation.constant import Labels from corems.mass_spectra.factory.LC_Class import LCMSBase from corems.mass_spectrum.factory.MassSpectrumClasses import MassSpecProfile __author__ = "<NAME>" __date__ = "July 10, 2019" class ImportLCMSBrukerCompassXtract(Thread): '''class docs''' def __init__(self, file_location, auto_process=True): Thread.__init__(self) self.lcms = LCMSBase(file_location) """Set up the COM object interface""" self.Bruker_Library = CreateObject("EDAL.MSAnalysis") self.res = self.Bruker_Library.Open(file_location) self.check_load_sucess() self._initial_scan_number = 1 self._final_scan_number = self.get_scans_numbers() self.file_location = file_location self.auto_process = auto_process @property def initial_scan_number(self): return self._initial_scan_number @property def final_scan_number(self): return self._final_scan_number def check_scan(self, scan): scan_numbers = self.get_scans_numbers() return scan <= scan_numbers @initial_scan_number.setter def initial_scan_number(self, initial_scan_number): if self.check_scan(initial_scan_number): self._initial_scan_number = initial_scan_number else: raise Exception( "startscan and finalscan should be less than %s" % self.get_scans_numbers() ) @final_scan_number.setter def final_scan_number(self, final_scan_number): if self.check_scan(final_scan_number): self._final_scan_number = final_scan_number else: raise Exception( "startscan and finalscan should be less than %s" % self.get_scans_numbers() ) def get_scans_numbers(self): scan_numbers = self.Bruker_Library.MSSpectrumCollection.Count return scan_numbers def get_polarity_mode(self, spectrum): polarity_symbol = spectrum.Polarity if polarity_symbol == 0: return 1 # return "POSITIVE_ION_MODE" elif polarity_symbol == 1: return -1 # return "NEGATIVE_ION_MODE" else: raise IOError("Could not read mass spectrum polarity mode") def check_load_sucess(self): """ 0 if successful; otherwise, see Error Codes """ if self.res == 0: self.break_it = False else: raise ImportError(str(self.res)) def get_bruker_tics(self): strAnalysisData = BSTR("SumIntensity") if self.Bruker_Library.HasAnalysisData(strAnalysisData): tics_array = self.Bruker_Library.GetAnalysisData(strAnalysisData) tics_array = array(tics_array) return tics_array def get_bruker_retention_time(self): strAnalysisData = BSTR("RetentionTime") if self.Bruker_Library.HasAnalysisData(strAnalysisData): tics_array = self.Bruker_Library.GetAnalysisData(strAnalysisData) tics_array = array(tics_array) else: tics_array = [0] return tics_array @staticmethod def get_data(spectra, scan): """init_variable_from_get_spectrums # massList set up later #retention_time = spectrum.RetentionTime """ spectrum = spectra[scan] is_profile = c_long(1) masslist = spectrum.GetMassIntensityValues(is_profile) # index_to_cut = self.find_index_of_mass(1200, masslist[0]) data_dict = { Labels.mz: array(masslist[0]), Labels.abundance: array(masslist[1]), Labels.rp: None, Labels.s2n: None, } return data_dict def run(self): '''creates the lcms obj''' d_parameters = default_parameters(self.file_location) self._import_mass_spectra(d_parameters) def _import_mass_spectra(self, d_params): spectra = self.Bruker_Library.MSSpectrumCollection list_rt = self.get_bruker_retention_time() list_Tics = self.get_bruker_tics() list_scans = list() for scan_number in range(self.initial_scan_number, self.final_scan_number + 1): if spectra[scan_number].MSMSStage == 1: # this label needs to go inside a encapsulation class for consistence d_params["label"] = Labels.bruker_profile d_params["polarity"] = self.get_polarity_mode(spectra[scan_number]) d_params["rt"] = list_rt[scan_number - 1] d_params["scan_number"] = scan_number list_scans.append(scan_number) data_dict = self.get_data(spectra, scan_number) mass_spec = MassSpecProfile(data_dict, d_params, auto_process=self.auto_process) mass_spec.process_mass_spec() self.lcms.add_mass_spectrum(mass_spec) self.lcms.retention_time = list_rt self.lcms.tic = list_Tics self.lcms.scans_number = list_scans # return each_mass_spectrum def get_lcms_obj(self): """get_lc_ms_class method should only be used when using this class as a Thread, otherwise use the run() method to return the lcms class""" if self.lcms.get(self._initial_scan_number): return self.lcms else: raise Exception("returning a empty lcms class")
[ "threading.Thread.__init__", "comtypes.client.CreateObject", "ctypes.c_long", "corems.encapsulation.factory.parameters.default_parameters", "corems.mass_spectrum.factory.MassSpectrumClasses.MassSpecProfile", "numpy.array", "comtypes.automation.BSTR", "corems.mass_spectra.factory.LC_Class.LCMSBase" ]
[((604, 625), 'threading.Thread.__init__', 'Thread.__init__', (['self'], {}), '(self)\n', (619, 625), False, 'from threading import Thread\n'), ((647, 670), 'corems.mass_spectra.factory.LC_Class.LCMSBase', 'LCMSBase', (['file_location'], {}), '(file_location)\n', (655, 670), False, 'from corems.mass_spectra.factory.LC_Class import LCMSBase\n'), ((748, 779), 'comtypes.client.CreateObject', 'CreateObject', (['"""EDAL.MSAnalysis"""'], {}), "('EDAL.MSAnalysis')\n", (760, 779), False, 'from comtypes.client import CreateObject\n'), ((2854, 2874), 'comtypes.automation.BSTR', 'BSTR', (['"""SumIntensity"""'], {}), "('SumIntensity')\n", (2858, 2874), False, 'from comtypes.automation import BSTR\n'), ((3160, 3181), 'comtypes.automation.BSTR', 'BSTR', (['"""RetentionTime"""'], {}), "('RetentionTime')\n", (3164, 3181), False, 'from comtypes.automation import BSTR\n'), ((3686, 3695), 'ctypes.c_long', 'c_long', (['(1)'], {}), '(1)\n', (3692, 3695), False, 'from ctypes import c_long\n'), ((4118, 4156), 'corems.encapsulation.factory.parameters.default_parameters', 'default_parameters', (['self.file_location'], {}), '(self.file_location)\n', (4136, 4156), False, 'from corems.encapsulation.factory.parameters import default_parameters\n'), ((3046, 3063), 'numpy.array', 'array', (['tics_array'], {}), '(tics_array)\n', (3051, 3063), False, 'from numpy import array\n'), ((3353, 3370), 'numpy.array', 'array', (['tics_array'], {}), '(tics_array)\n', (3358, 3370), False, 'from numpy import array\n'), ((3875, 3893), 'numpy.array', 'array', (['masslist[0]'], {}), '(masslist[0])\n', (3880, 3893), False, 'from numpy import array\n'), ((3925, 3943), 'numpy.array', 'array', (['masslist[1]'], {}), '(masslist[1])\n', (3930, 3943), False, 'from numpy import array\n'), ((5064, 5132), 'corems.mass_spectrum.factory.MassSpectrumClasses.MassSpecProfile', 'MassSpecProfile', (['data_dict', 'd_params'], {'auto_process': 'self.auto_process'}), '(data_dict, d_params, auto_process=self.auto_process)\n', (5079, 5132), False, 'from corems.mass_spectrum.factory.MassSpectrumClasses import MassSpecProfile\n')]
from app import db from base import Base class Unit(db.Model, Base): """A model representing a unit (or segment) of text. This can be either a section or chapter of a document, an act in a play, or anything that is made of sentences. Units are hierarchical; one unit can contain many children units. Attributes: type (str): the unit type (document, section, etc.). number (int): a sequencing number (e.g. 2 for chapter 2). parent (Unit): The ``Unit`` that owns this ``Unit``. children (list of Units): ``Unit``s that this ``Unit`` owns. sentences (list of Sentences): ``Sentences`` found in this ``Unit``. properties (list of Properties): Metadata for this ``Unit``. name (str): A name for this ``Unit``. Relationships: has one: parent has many: children (Unit), sentences, properties """ # Attributes # We need to redefine ID here for the children relationship id = db.Column(db.Integer, primary_key=True) type = db.Column(db.String(64)) number = db.Column(db.Integer) parent_id = db.Column(db.Integer, db.ForeignKey("unit.id", ondelete='CASCADE')) name = db.Column(db.String) project_id = db.Column(db.Integer, db.ForeignKey("project.id", ondelete='CASCADE')) # Relationships children = db.relationship( "Unit", backref=db.backref("parent", remote_side=[id])) sentences = db.relationship( "Sentence", backref="unit", cascade="all, delete-orphan", passive_deletes=True) properties = db.relationship( "Property", backref="unit", lazy="dynamic") __mapper_args__ = { "polymorphic_identity": "unit", "polymorphic_on": type } def property(self, name): """Look up a property by its name. :param str name: The name of the property """ return self.properties.filter_by(name=name).first() def __repr__(self): """Return a string representation of a unit, which is its type followed by its ordering number. """ return "<Unit: " + " ".join([str(self.type), str(self.number)]) + ">"
[ "app.db.String", "app.db.backref", "app.db.Column", "app.db.ForeignKey", "app.db.relationship" ]
[((985, 1024), 'app.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (994, 1024), False, 'from app import db\n'), ((1074, 1095), 'app.db.Column', 'db.Column', (['db.Integer'], {}), '(db.Integer)\n', (1083, 1095), False, 'from app import db\n'), ((1191, 1211), 'app.db.Column', 'db.Column', (['db.String'], {}), '(db.String)\n', (1200, 1211), False, 'from app import db\n'), ((1442, 1541), 'app.db.relationship', 'db.relationship', (['"""Sentence"""'], {'backref': '"""unit"""', 'cascade': '"""all, delete-orphan"""', 'passive_deletes': '(True)'}), "('Sentence', backref='unit', cascade='all, delete-orphan',\n passive_deletes=True)\n", (1457, 1541), False, 'from app import db\n'), ((1591, 1650), 'app.db.relationship', 'db.relationship', (['"""Property"""'], {'backref': '"""unit"""', 'lazy': '"""dynamic"""'}), "('Property', backref='unit', lazy='dynamic')\n", (1606, 1650), False, 'from app import db\n'), ((1046, 1059), 'app.db.String', 'db.String', (['(64)'], {}), '(64)\n', (1055, 1059), False, 'from app import db\n'), ((1134, 1178), 'app.db.ForeignKey', 'db.ForeignKey', (['"""unit.id"""'], {'ondelete': '"""CASCADE"""'}), "('unit.id', ondelete='CASCADE')\n", (1147, 1178), False, 'from app import db\n'), ((1251, 1298), 'app.db.ForeignKey', 'db.ForeignKey', (['"""project.id"""'], {'ondelete': '"""CASCADE"""'}), "('project.id', ondelete='CASCADE')\n", (1264, 1298), False, 'from app import db\n'), ((1386, 1424), 'app.db.backref', 'db.backref', (['"""parent"""'], {'remote_side': '[id]'}), "('parent', remote_side=[id])\n", (1396, 1424), False, 'from app import db\n')]
import numpy as np import imageio import os from shapely.geometry import Polygon from scipy import ndimage from skimage.transform import resize from tensorflow.keras.utils import Sequence from hds_module.utils import get_file_paths, path_leaf # Normalize image by pixel depth by making it white on black instead of black on white def normalize_image(image_file, pixel_depth): try: array = imageio.imread(image_file) except ValueError: raise return 1.0 - (array.astype(float))/pixel_depth # (1 - x) will make it white on black # Restore original image from normalized image def unnormalize_image(image, pixel_depth): return (pixel_depth*image).astype(np.uint8) def is_correct_shape_to_process(shapeDir, correct_shape): shape = os.path.basename(shapeDir) if shape == correct_shape: return True return False def replace_last(source_string, replace_what, replace_with): head, _sep, tail = source_string.rpartition(replace_what) return head + replace_with + tail def find_lefmost_index_in_subrect(vertices, x_from, y_from, x_to_excluded, y_to_excluded, vertice_count): count = 0 min_x = 1 leftmost_index = 0 very_close_range = 0.03 for index, vertice in enumerate(vertices): if vertice[0] >= x_from and vertice[0] < x_to_excluded and \ vertice[1] >= y_from and vertice[1] < y_to_excluded and \ index < vertice_count: count += 1 if vertice[0] < min_x: min_x = vertice[0] leftmost_index = index # If another vertices is very close to the leftmost one, pick the lowest one in the image (higher y) for index, vertice in enumerate(vertices): if index != leftmost_index and abs(vertice[0] - min_x) <= very_close_range and vertice[1] > y_of_min_x: min_x = vertice[0] y_of_min_x = vertice[1] leftmost_index = index return (count, leftmost_index) def find_nearest_index(vertices, x_from, y_from, vertice_count): """ Find the index of the vertex that is the closest to specified coordinate (x_from, y_from). """ min_distance_squared = 1000000 nearest_index = 0 x_from *= 1000 y_from *= 1000 for index, vertice in enumerate(vertices): dx = (vertice[0] * 1000) - x_from dy = (vertice[1] * 1000) - y_from square_dist = dx*dx + dy*dy if square_dist < min_distance_squared and index < vertice_count: nearest_index = index min_distance_squared = square_dist return nearest_index def select_first_vertice_index(vertices, vertice_count, x_pos, y_pos): """ The first vertex will be the vertex that is closest to the anchor point specified as (x_pos, y_pos) """ nearest_index = find_nearest_index(vertices, x_pos, y_pos, vertice_count) return nearest_index def sort_vertices_clockwize(vertices, first_vertice_index, vertice_count): """ Sort the vertices by navigating clockwise starting with the first vertex """ vertices_sorted = np.zeros(vertices.shape) first_vertice_angle = 0 smaller_vertices = [] # contains an aray of tuple (index, angle) where the angle is smaller to the 1st vertice bigger_vertices = [] # contains an aray of tuple (index, angle) where the angle is bigger to the 1st vertice for index, vertice in enumerate(vertices): if index < vertice_count: vertice_angle = np.arctan2(0.5 - vertice[1], vertice[0] - 0.5) * 180 / np.pi if vertice_angle < 0: vertice_angle = 360 + vertice_angle if index == first_vertice_index: first_vertice_angle = vertice_angle break for index, vertice in enumerate(vertices): if index < vertice_count: vertice_angle = np.arctan2(0.5 - vertice[1], vertice[0] - 0.5) * 180 / np.pi if vertice_angle < 0: vertice_angle = 360 + vertice_angle if index != first_vertice_index: if vertice_angle < first_vertice_angle: smaller_vertices.append((index, vertice_angle)) else: bigger_vertices.append((index, vertice_angle)) # Ordered (clockwise) vertices that we need will be composed of: # 1. The first vertice # 2. The smaller vertice from the biggest angle to the smallest angle (0) # 2. The bigger vertice from the biggest angle to the smallest angle (first_vertice_angle) vertices_ordered = [vertices[first_vertice_index]] smaller_vertices.sort(key=lambda x: x[1], reverse=True) bigger_vertices.sort( key=lambda x: x[1], reverse=True) for index, vertice_angle in smaller_vertices: vertices_ordered.append(vertices[index]) for index, vertice_angle in bigger_vertices: vertices_ordered.append(vertices[index]) for i in range(0, vertice_count): vertices_sorted[i] = vertices_ordered[i] return vertices_sorted def load_images_for_shape(root, pixel_depth, user_images, user_images_labels, user_images_paths, min_nimages=1, vertice_count=4, x_pos=0.2, y_pos=1.0, verbose=False): """ Load images and vertices for a specific user and shape. """ if verbose: print("root for load_images_for_shape: ", root) image_files = get_file_paths(root) image_index = 0 for image_file in image_files: try: if path_leaf(image_file).startswith('.'): # skip files like .DSStore continue # Make sure that the corresponding vertice file exists vertice_file = replace_last(image_file, "/images/", "/vertices/") vertice_file = replace_last(vertice_file, ".png", ".csv") if os.path.exists(vertice_file) == False: raise FileNotFoundError(vertice_file) # Load Vertices file as points vertices = np.loadtxt(vertice_file, delimiter=",") #, max_rows=3) # Re-order the vertices first_vertice_index = select_first_vertice_index(vertices, vertice_count=vertice_count, x_pos=x_pos, y_pos=y_pos) vertices_sorted = sort_vertices_clockwize(vertices, first_vertice_index=first_vertice_index, vertice_count=vertice_count) vertices = vertices_sorted.ravel() vertices = vertices.reshape(-1) vertices = vertices[:vertice_count*2] # *2 because x and y are separate image_data_all_channels = normalize_image(image_file, pixel_depth) image_data = image_data_all_channels[:, :, 0] user_images.append(image_data) user_images_labels.append(vertices) image_index += 1 except Exception as error: print(error) print('Skipping because of not being able to read: ', image_file) if image_index < min_nimages: raise Exception('Fewer images than expected: %d < %d' % (image_index, min_nimages)) # Coordinates translations def cartesian_to_polar(x, y): rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return(rho, phi) def polar_to_cartesian(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return(x, y) # Calculate Accuracy def calculate_IOU(label, pred, nb_vertices=4): y_polygon = Polygon(label.reshape(nb_vertices, 2)) pred_polygon= Polygon(pred.reshape(nb_vertices, 2)) I = y_polygon.intersection(pred_polygon).area U = y_polygon.union(pred_polygon).area IOU = I / U return IOU def calculate_Dice(label, pred, nb_vertices=4): y_polygon = Polygon(label.reshape(nb_vertices, 2)) pred_polygon= Polygon(pred.reshape(nb_vertices, 2)) I = y_polygon.intersection(pred_polygon).area U = y_polygon.union(pred_polygon).area dice = 2 * I / (y_polygon.area + pred_polygon.area) return dice def calculate_Dice_for_set(Y, Y_pred, nb_vertices): nb_samples = Y.shape[0] dice_sum = 0.0 valid_shapes_count = 0 for i in range(nb_samples): try: dice = calculate_Dice(Y[i], Y_pred[i], nb_vertices=nb_vertices) dice_sum += dice valid_shapes_count += 1 except Exception as e: print(f"Cannot compute Dice for shape: {i}.") return dice_sum / valid_shapes_count class HdsDataGenerator(Sequence): """ Generates data for Keras while modifying the labels as the images are flipped or rotated. """ def __init__(self, list_IDs, x_set, y_set, batch_size=32, dim=(70, 70), n_channels=1, n_vertices=4, x_pos=0.0, y_pos=0.65, shuffle=True): """ Initialization """ self.dim = dim self.im_size = dim[0] self.batch_size = batch_size self.x_set = x_set self.y_set = y_set self.list_IDs = list_IDs self.n_channels = n_channels self.n_vertices = n_vertices self.x_pos = x_pos self.y_pos = y_pos self.shuffle = shuffle self.on_epoch_end() def __len__(self): """ Denotes the number of batches per epoch. """ return int(np.floor(len(self.list_IDs) / self.batch_size)) def __getitem__(self, index): """ Generate one batch of data """ # Generate indexes of the batch indexes = self.indexes[index * self.batch_size:(index + 1) * self.batch_size] # Find list of IDs list_IDs_temp = [self.list_IDs[k] for k in indexes] # Generate data X, y = self.__data_generation(list_IDs_temp) return X, y def on_epoch_end(self): """ Updates indexes after each epoch """ self.indexes = np.arange(len(self.list_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def rotate_vertices(self, label, angle, padding_is_used, padding): """ Rotate vertices counter-clockwize in degres """ nb_label = len(label) label_new = np.array(label, copy=True) # rotate each point by angle vertices = label_new.reshape((-1, 2)) for index, vertice in enumerate(vertices): x = vertice[0] y = vertice[1] dx = x - 0.5 dy = y - 0.5 current_angle = np.arctan2(-dy, dx) * 180 / np.pi # Note Y is reversed current_length = np.sqrt(dx*dx + dy*dy) new_angle = current_angle + angle new_rad_angle = new_angle * np.pi / 180 new_length = current_length if padding_is_used: new_length *= (1 - 2*padding/self.im_size) new_dx, new_dy = polar_to_cartesian(new_length, new_rad_angle) new_x = 0.5 + new_dx new_y = 0.5 - new_dy # Note Y is de-reversed label_new[2*index + 0] = new_x label_new[2*index + 1] = new_y return label_new def shift_vertices(self, label, offset_h_px, offset_v_px): label_new = np.array(label, copy=True) vertices = label_new.reshape((-1, 2)) for index, vertice in enumerate(vertices): x = vertice[0] y = vertice[1] new_x = x + offset_h_px/self.im_size new_y = y + offset_v_px/self.im_size label_new[2*index + 0] = new_x label_new[2*index + 1] = new_y return label_new def get_margin_values(self, image_data): image_size = self.im_size # TODO Perform an analysis on the number of padding pixel. # All black on the left, top, right or bottom. # For each image Determine the smallest black margin im = image_data.reshape((image_size, image_size)) mat_rows = np.all(im == 0, axis=1) mat_cols = np.all(im == 0, axis=0) rows = np.argwhere(mat_rows == False) cols = np.argwhere(mat_cols == False) top_margin = 0 bottom_margin = 0 left_margin = 0 right_margin = 0 if len(rows) > 0 and len(cols) > 0: top_margin = rows[0] bottom_margin = image_size - 1 - rows[-1] left_margin = cols[0] right_margin = image_size - 1 - cols[-1] return top_margin, right_margin, bottom_margin, left_margin def get_margin(self, image_data): top_margin, right_margin, bottom_margin, left_margin = self.get_margin_values(image_data) margin = [0] if top_margin != 0 or right_margin != 0 or bottom_margin != 0 or left_margin != 0: margin = min(top_margin + bottom_margin, left_margin + right_margin) return margin[0] def rotate_image(self, image, angle): rotated_image = ndimage.rotate(image, angle, reshape=False) cleaned_image = self.cleanup_image(rotated_image) return cleaned_image def center_image(self, image): top_margin, right_margin, bottom_margin, left_margin = self.get_margin_values(image) target_h_margin = (left_margin + right_margin) // 2 target_v_margin = (top_margin + bottom_margin) // 2 offset_h = target_h_margin - left_margin offset_v = target_v_margin - top_margin cleaned_image = image if offset_h != 0 or offset_v != 0: centered_image = ndimage.shift(image, (offset_v,offset_h)) cleaned_image = self.cleanup_image(centered_image) return cleaned_image, offset_h, offset_v def cleanup_image(self, image): img = image.reshape(self.dim) img[img > 1] = 1 img[img < 0.1] = 0 return img def __data_generation(self, list_IDs_temp): 'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels) # Initialization X = np.empty((self.batch_size, *self.dim, self.n_channels)) y = np.empty((self.batch_size, self.n_vertices * 2)) indices_lr = np.random.choice(1000, self.batch_size, replace=False) indices_ud = np.random.choice(1000, self.batch_size, replace=False) indices_ro = np.random.choice(380, self.batch_size, replace=False) # Generate data for i, ID in enumerate(list_IDs_temp): image = np.array(self.x_set[ID], copy=True) label = np.array(self.y_set[ID], copy=True) is_modified = False # Perform modification on both X (the image) and y (the vertices) if (indices_lr[i] < 450): # Flip Left - Right with probability 450/1000 image = np.fliplr(image) for m in range(len(label)): if m % 2 == 0: label[m] = 1 - label[m] is_modified = True if (indices_ud[i] < 450): # Flip Up - Down with probability 450/1000 image = np.flipud(image) nb_label = len(label) for m in range(nb_label): if m % 2 == 1: label[m] = 1 - label[m] is_modified = True # Rotate counter-clockwize if indices_ro[i] < 360: # Rotate with probability 360/380 angle = indices_ro[i] margin_before = self.get_margin(image) image = self.rotate_image(image, angle) margin_rotated = self.get_margin(image) padding = int((margin_before - margin_rotated) / 2) padding_is_used = False image = image.reshape(self.dim) if margin_rotated < 10 and padding > 0: image = np.pad(image, ((padding, padding), (padding, padding)), mode='constant') image = resize(image, self.dim, anti_aliasing=True) padding_is_used = True margin_padded = self.get_margin(image) label = self.rotate_vertices(label, angle, padding_is_used, padding) image, offset_h_px, offset_v_px = self.center_image(image) if offset_h_px != 0 or offset_v_px != 0: label = self.shift_vertices(label, offset_h_px, offset_v_px) image = image.reshape((self.im_size, self.im_size, 1)) is_modified = True if is_modified: # re-order the vertices in the labels vertices = label.reshape((self.n_vertices, 2)) first_vertice_index = select_first_vertice_index(vertices, vertice_count=self.n_vertices, x_pos=self.x_pos, y_pos=self.y_pos) vertices_sorted = sort_vertices_clockwize(vertices, first_vertice_index=first_vertice_index, vertice_count=self.n_vertices) label = vertices_sorted.reshape((self.n_vertices * 2,)) X[i,] = image y[i] = label return X, y
[ "numpy.sqrt", "numpy.array", "numpy.loadtxt", "numpy.arctan2", "numpy.sin", "scipy.ndimage.rotate", "os.path.exists", "numpy.empty", "hds_module.utils.path_leaf", "numpy.flipud", "numpy.random.choice", "numpy.fliplr", "numpy.cos", "imageio.imread", "skimage.transform.resize", "hds_module.utils.get_file_paths", "scipy.ndimage.shift", "numpy.zeros", "numpy.argwhere", "numpy.pad", "os.path.basename", "numpy.all", "numpy.random.shuffle" ]
[((769, 795), 'os.path.basename', 'os.path.basename', (['shapeDir'], {}), '(shapeDir)\n', (785, 795), False, 'import os\n'), ((3090, 3114), 'numpy.zeros', 'np.zeros', (['vertices.shape'], {}), '(vertices.shape)\n', (3098, 3114), True, 'import numpy as np\n'), ((5495, 5515), 'hds_module.utils.get_file_paths', 'get_file_paths', (['root'], {}), '(root)\n', (5509, 5515), False, 'from hds_module.utils import get_file_paths, path_leaf\n'), ((7209, 7233), 'numpy.sqrt', 'np.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (7216, 7233), True, 'import numpy as np\n'), ((7240, 7256), 'numpy.arctan2', 'np.arctan2', (['y', 'x'], {}), '(y, x)\n', (7250, 7256), True, 'import numpy as np\n'), ((404, 430), 'imageio.imread', 'imageio.imread', (['image_file'], {}), '(image_file)\n', (418, 430), False, 'import imageio\n'), ((7327, 7338), 'numpy.cos', 'np.cos', (['phi'], {}), '(phi)\n', (7333, 7338), True, 'import numpy as np\n'), ((7353, 7364), 'numpy.sin', 'np.sin', (['phi'], {}), '(phi)\n', (7359, 7364), True, 'import numpy as np\n'), ((10178, 10204), 'numpy.array', 'np.array', (['label'], {'copy': '(True)'}), '(label, copy=True)\n', (10186, 10204), True, 'import numpy as np\n'), ((11178, 11204), 'numpy.array', 'np.array', (['label'], {'copy': '(True)'}), '(label, copy=True)\n', (11186, 11204), True, 'import numpy as np\n'), ((11912, 11935), 'numpy.all', 'np.all', (['(im == 0)'], {'axis': '(1)'}), '(im == 0, axis=1)\n', (11918, 11935), True, 'import numpy as np\n'), ((11955, 11978), 'numpy.all', 'np.all', (['(im == 0)'], {'axis': '(0)'}), '(im == 0, axis=0)\n', (11961, 11978), True, 'import numpy as np\n'), ((11995, 12025), 'numpy.argwhere', 'np.argwhere', (['(mat_rows == False)'], {}), '(mat_rows == False)\n', (12006, 12025), True, 'import numpy as np\n'), ((12041, 12071), 'numpy.argwhere', 'np.argwhere', (['(mat_cols == False)'], {}), '(mat_cols == False)\n', (12052, 12071), True, 'import numpy as np\n'), ((12884, 12927), 'scipy.ndimage.rotate', 'ndimage.rotate', (['image', 'angle'], {'reshape': '(False)'}), '(image, angle, reshape=False)\n', (12898, 12927), False, 'from scipy import ndimage\n'), ((13964, 14019), 'numpy.empty', 'np.empty', (['(self.batch_size, *self.dim, self.n_channels)'], {}), '((self.batch_size, *self.dim, self.n_channels))\n', (13972, 14019), True, 'import numpy as np\n'), ((14032, 14080), 'numpy.empty', 'np.empty', (['(self.batch_size, self.n_vertices * 2)'], {}), '((self.batch_size, self.n_vertices * 2))\n', (14040, 14080), True, 'import numpy as np\n'), ((14102, 14156), 'numpy.random.choice', 'np.random.choice', (['(1000)', 'self.batch_size'], {'replace': '(False)'}), '(1000, self.batch_size, replace=False)\n', (14118, 14156), True, 'import numpy as np\n'), ((14178, 14232), 'numpy.random.choice', 'np.random.choice', (['(1000)', 'self.batch_size'], {'replace': '(False)'}), '(1000, self.batch_size, replace=False)\n', (14194, 14232), True, 'import numpy as np\n'), ((14254, 14307), 'numpy.random.choice', 'np.random.choice', (['(380)', 'self.batch_size'], {'replace': '(False)'}), '(380, self.batch_size, replace=False)\n', (14270, 14307), True, 'import numpy as np\n'), ((6084, 6123), 'numpy.loadtxt', 'np.loadtxt', (['vertice_file'], {'delimiter': '""","""'}), "(vertice_file, delimiter=',')\n", (6094, 6123), True, 'import numpy as np\n'), ((9946, 9977), 'numpy.random.shuffle', 'np.random.shuffle', (['self.indexes'], {}), '(self.indexes)\n', (9963, 9977), True, 'import numpy as np\n'), ((10559, 10585), 'numpy.sqrt', 'np.sqrt', (['(dx * dx + dy * dy)'], {}), '(dx * dx + dy * dy)\n', (10566, 10585), True, 'import numpy as np\n'), ((13482, 13524), 'scipy.ndimage.shift', 'ndimage.shift', (['image', '(offset_v, offset_h)'], {}), '(image, (offset_v, offset_h))\n', (13495, 13524), False, 'from scipy import ndimage\n'), ((14400, 14435), 'numpy.array', 'np.array', (['self.x_set[ID]'], {'copy': '(True)'}), '(self.x_set[ID], copy=True)\n', (14408, 14435), True, 'import numpy as np\n'), ((14456, 14491), 'numpy.array', 'np.array', (['self.y_set[ID]'], {'copy': '(True)'}), '(self.y_set[ID], copy=True)\n', (14464, 14491), True, 'import numpy as np\n'), ((5924, 5952), 'os.path.exists', 'os.path.exists', (['vertice_file'], {}), '(vertice_file)\n', (5938, 5952), False, 'import os\n'), ((14714, 14730), 'numpy.fliplr', 'np.fliplr', (['image'], {}), '(image)\n', (14723, 14730), True, 'import numpy as np\n'), ((15013, 15029), 'numpy.flipud', 'np.flipud', (['image'], {}), '(image)\n', (15022, 15029), True, 'import numpy as np\n'), ((3487, 3533), 'numpy.arctan2', 'np.arctan2', (['(0.5 - vertice[1])', '(vertice[0] - 0.5)'], {}), '(0.5 - vertice[1], vertice[0] - 0.5)\n', (3497, 3533), True, 'import numpy as np\n'), ((3863, 3909), 'numpy.arctan2', 'np.arctan2', (['(0.5 - vertice[1])', '(vertice[0] - 0.5)'], {}), '(0.5 - vertice[1], vertice[0] - 0.5)\n', (3873, 3909), True, 'import numpy as np\n'), ((5600, 5621), 'hds_module.utils.path_leaf', 'path_leaf', (['image_file'], {}), '(image_file)\n', (5609, 5621), False, 'from hds_module.utils import get_file_paths, path_leaf\n'), ((10475, 10494), 'numpy.arctan2', 'np.arctan2', (['(-dy)', 'dx'], {}), '(-dy, dx)\n', (10485, 10494), True, 'import numpy as np\n'), ((15792, 15864), 'numpy.pad', 'np.pad', (['image', '((padding, padding), (padding, padding))'], {'mode': '"""constant"""'}), "(image, ((padding, padding), (padding, padding)), mode='constant')\n", (15798, 15864), True, 'import numpy as np\n'), ((15894, 15937), 'skimage.transform.resize', 'resize', (['image', 'self.dim'], {'anti_aliasing': '(True)'}), '(image, self.dim, anti_aliasing=True)\n', (15900, 15937), False, 'from skimage.transform import resize\n')]
import streamlit as st from tweet_analyzer import twitter_actions as ta from tweet_analyzer import display_elements as display import login st.set_page_config(page_title="Tweet Analyzer", page_icon=None, layout="wide") if 'login' not in st.session_state: st.session_state['login']= False def ta_main(): if "submit" not in st.session_state: st.session_state['submit'] = False # Input Section st.header("Tweet Analyzer") username = st.text_input("Enter a Twitter handle name") submit_button = st.button('Submit') if submit_button or st.session_state['submit']: st.session_state['submit'] = True if not username: st.warning("Please give an input") st.stop() with st.spinner('Reading Tweets.'): try: user_id = ta.get_user_id(username) except: st.error("User Not Found") st.stop() #fetch data user = ta.user_details(username) tweets = ta.get_original_tweets(user_id) list_owned = ta.get_lists_owned(user_id) list_followed = ta.get_lists_followed(user_id) list_membership = ta.get_lists_membership(user_id) display.draw_divider() #user profile and Engagment Chart c1, c2 = st.columns((1, 3)) display.display_user_profile(user, c1) st.session_state['days'] = display.display_days_selector(c2) display.draw_engagement_chart(tweets, c2) display.draw_divider() #Lists col1, col2, col3 = st.columns((3, 3, 3)) display.display_user_lists(list_followed, list_owned, list_membership, col1, col2, col3) display.draw_divider() if not tweets.empty: #hashtags and piechart c9, c10 = st.columns((2, 2)) with c9: st.header("Top Hashtags") top_hashtags = ta.find_hashtags(user_id) st.table(top_hashtags) # All Tweets with c10: st.header("Tweets") tweet_container = st.container() st.dataframe(tweets.loc[:, tweets.columns != 'Engagement']) else: st.warning("No Tweets to display") #OAuth part if st.session_state['login' ] == True: ta_main() # main app else: if st.button("Sign in"): logged_in = login.authrize() if logged_in: print("hi") st.session_state['login'] = True #ta_main()
[ "streamlit.table", "tweet_analyzer.twitter_actions.user_details", "streamlit.button", "tweet_analyzer.display_elements.draw_divider", "tweet_analyzer.twitter_actions.get_lists_owned", "login.authrize", "streamlit.text_input", "streamlit.header", "streamlit.warning", "streamlit.stop", "streamlit.set_page_config", "streamlit.columns", "tweet_analyzer.display_elements.display_days_selector", "tweet_analyzer.display_elements.display_user_lists", "tweet_analyzer.twitter_actions.get_original_tweets", "tweet_analyzer.twitter_actions.get_lists_followed", "streamlit.dataframe", "streamlit.container", "tweet_analyzer.display_elements.draw_engagement_chart", "tweet_analyzer.twitter_actions.get_user_id", "streamlit.spinner", "tweet_analyzer.display_elements.display_user_profile", "streamlit.error", "tweet_analyzer.twitter_actions.find_hashtags", "tweet_analyzer.twitter_actions.get_lists_membership" ]
[((140, 218), 'streamlit.set_page_config', 'st.set_page_config', ([], {'page_title': '"""Tweet Analyzer"""', 'page_icon': 'None', 'layout': '"""wide"""'}), "(page_title='Tweet Analyzer', page_icon=None, layout='wide')\n", (158, 218), True, 'import streamlit as st\n'), ((420, 447), 'streamlit.header', 'st.header', (['"""Tweet Analyzer"""'], {}), "('Tweet Analyzer')\n", (429, 447), True, 'import streamlit as st\n'), ((463, 507), 'streamlit.text_input', 'st.text_input', (['"""Enter a Twitter handle name"""'], {}), "('Enter a Twitter handle name')\n", (476, 507), True, 'import streamlit as st\n'), ((528, 547), 'streamlit.button', 'st.button', (['"""Submit"""'], {}), "('Submit')\n", (537, 547), True, 'import streamlit as st\n'), ((2574, 2594), 'streamlit.button', 'st.button', (['"""Sign in"""'], {}), "('Sign in')\n", (2583, 2594), True, 'import streamlit as st\n'), ((2616, 2632), 'login.authrize', 'login.authrize', ([], {}), '()\n', (2630, 2632), False, 'import login\n'), ((680, 714), 'streamlit.warning', 'st.warning', (['"""Please give an input"""'], {}), "('Please give an input')\n", (690, 714), True, 'import streamlit as st\n'), ((727, 736), 'streamlit.stop', 'st.stop', ([], {}), '()\n', (734, 736), True, 'import streamlit as st\n'), ((750, 779), 'streamlit.spinner', 'st.spinner', (['"""Reading Tweets."""'], {}), "('Reading Tweets.')\n", (760, 779), True, 'import streamlit as st\n'), ((998, 1023), 'tweet_analyzer.twitter_actions.user_details', 'ta.user_details', (['username'], {}), '(username)\n', (1013, 1023), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((1045, 1076), 'tweet_analyzer.twitter_actions.get_original_tweets', 'ta.get_original_tweets', (['user_id'], {}), '(user_id)\n', (1067, 1076), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((1102, 1129), 'tweet_analyzer.twitter_actions.get_lists_owned', 'ta.get_lists_owned', (['user_id'], {}), '(user_id)\n', (1120, 1129), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((1158, 1188), 'tweet_analyzer.twitter_actions.get_lists_followed', 'ta.get_lists_followed', (['user_id'], {}), '(user_id)\n', (1179, 1188), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((1220, 1252), 'tweet_analyzer.twitter_actions.get_lists_membership', 'ta.get_lists_membership', (['user_id'], {}), '(user_id)\n', (1243, 1252), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((1267, 1289), 'tweet_analyzer.display_elements.draw_divider', 'display.draw_divider', ([], {}), '()\n', (1287, 1289), True, 'from tweet_analyzer import display_elements as display\n'), ((1358, 1376), 'streamlit.columns', 'st.columns', (['(1, 3)'], {}), '((1, 3))\n', (1368, 1376), True, 'import streamlit as st\n'), ((1389, 1427), 'tweet_analyzer.display_elements.display_user_profile', 'display.display_user_profile', (['user', 'c1'], {}), '(user, c1)\n', (1417, 1427), True, 'from tweet_analyzer import display_elements as display\n'), ((1467, 1500), 'tweet_analyzer.display_elements.display_days_selector', 'display.display_days_selector', (['c2'], {}), '(c2)\n', (1496, 1500), True, 'from tweet_analyzer import display_elements as display\n'), ((1513, 1554), 'tweet_analyzer.display_elements.draw_engagement_chart', 'display.draw_engagement_chart', (['tweets', 'c2'], {}), '(tweets, c2)\n', (1542, 1554), True, 'from tweet_analyzer import display_elements as display\n'), ((1581, 1603), 'tweet_analyzer.display_elements.draw_divider', 'display.draw_divider', ([], {}), '()\n', (1601, 1603), True, 'from tweet_analyzer import display_elements as display\n'), ((1655, 1676), 'streamlit.columns', 'st.columns', (['(3, 3, 3)'], {}), '((3, 3, 3))\n', (1665, 1676), True, 'import streamlit as st\n'), ((1689, 1781), 'tweet_analyzer.display_elements.display_user_lists', 'display.display_user_lists', (['list_followed', 'list_owned', 'list_membership', 'col1', 'col2', 'col3'], {}), '(list_followed, list_owned, list_membership, col1,\n col2, col3)\n', (1715, 1781), True, 'from tweet_analyzer import display_elements as display\n'), ((1792, 1814), 'tweet_analyzer.display_elements.draw_divider', 'display.draw_divider', ([], {}), '()\n', (1812, 1814), True, 'from tweet_analyzer import display_elements as display\n'), ((824, 848), 'tweet_analyzer.twitter_actions.get_user_id', 'ta.get_user_id', (['username'], {}), '(username)\n', (838, 848), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((1923, 1941), 'streamlit.columns', 'st.columns', (['(2, 2)'], {}), '((2, 2))\n', (1933, 1941), True, 'import streamlit as st\n'), ((2446, 2480), 'streamlit.warning', 'st.warning', (['"""No Tweets to display"""'], {}), "('No Tweets to display')\n", (2456, 2480), True, 'import streamlit as st\n'), ((885, 911), 'streamlit.error', 'st.error', (['"""User Not Found"""'], {}), "('User Not Found')\n", (893, 911), True, 'import streamlit as st\n'), ((928, 937), 'streamlit.stop', 'st.stop', ([], {}), '()\n', (935, 937), True, 'import streamlit as st\n'), ((1987, 2012), 'streamlit.header', 'st.header', (['"""Top Hashtags"""'], {}), "('Top Hashtags')\n", (1996, 2012), True, 'import streamlit as st\n'), ((2048, 2073), 'tweet_analyzer.twitter_actions.find_hashtags', 'ta.find_hashtags', (['user_id'], {}), '(user_id)\n', (2064, 2073), True, 'from tweet_analyzer import twitter_actions as ta\n'), ((2094, 2116), 'streamlit.table', 'st.table', (['top_hashtags'], {}), '(top_hashtags)\n', (2102, 2116), True, 'import streamlit as st\n'), ((2222, 2241), 'streamlit.header', 'st.header', (['"""Tweets"""'], {}), "('Tweets')\n", (2231, 2241), True, 'import streamlit as st\n'), ((2280, 2294), 'streamlit.container', 'st.container', ([], {}), '()\n', (2292, 2294), True, 'import streamlit as st\n'), ((2315, 2374), 'streamlit.dataframe', 'st.dataframe', (["tweets.loc[:, tweets.columns != 'Engagement']"], {}), "(tweets.loc[:, tweets.columns != 'Engagement'])\n", (2327, 2374), True, 'import streamlit as st\n')]
# Generated by Django 3.2.4 on 2021-06-13 15:21 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('publications', '0005_rename_published_publication_is_published'), ] operations = [ migrations.AlterField( model_name='publication', name='category', field=models.CharField(choices=[('GL', 'General'), ('CS', 'Closures'), ('VS', 'Vacancies'), ('CN', 'Consultations'), ('JS', 'Judicial Sales'), ('NR', 'Newsletters'), ('TR', 'Tenders')], default='CS', max_length=50), ), migrations.CreateModel( name='Department', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to=settings.AUTH_USER_MODEL)), ('updated_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ['name'], 'abstract': False, }, ), ]
[ "django.db.models.ForeignKey", "django.db.models.BigAutoField", "django.db.models.DateTimeField", "django.db.migrations.swappable_dependency", "django.db.models.CharField" ]
[((227, 284), 'django.db.migrations.swappable_dependency', 'migrations.swappable_dependency', (['settings.AUTH_USER_MODEL'], {}), '(settings.AUTH_USER_MODEL)\n', (258, 284), False, 'from django.db import migrations, models\n'), ((504, 720), 'django.db.models.CharField', 'models.CharField', ([], {'choices': "[('GL', 'General'), ('CS', 'Closures'), ('VS', 'Vacancies'), ('CN',\n 'Consultations'), ('JS', 'Judicial Sales'), ('NR', 'Newsletters'), (\n 'TR', 'Tenders')]", 'default': '"""CS"""', 'max_length': '(50)'}), "(choices=[('GL', 'General'), ('CS', 'Closures'), ('VS',\n 'Vacancies'), ('CN', 'Consultations'), ('JS', 'Judicial Sales'), ('NR',\n 'Newsletters'), ('TR', 'Tenders')], default='CS', max_length=50)\n", (520, 720), False, 'from django.db import migrations, models\n'), ((832, 928), 'django.db.models.BigAutoField', 'models.BigAutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (851, 928), False, 'from django.db import migrations, models\n'), ((952, 997), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'unique': '(True)'}), '(max_length=255, unique=True)\n', (968, 997), False, 'from django.db import migrations, models\n'), ((1031, 1070), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1051, 1070), False, 'from django.db import migrations, models\n'), ((1104, 1139), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (1124, 1139), False, 'from django.db import migrations, models\n'), ((1173, 1287), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""+"""', 'to': 'settings.AUTH_USER_MODEL'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='+', to=settings.AUTH_USER_MODEL)\n", (1190, 1287), False, 'from django.db import migrations, models\n'), ((1316, 1412), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': 'settings.AUTH_USER_MODEL'}), '(on_delete=django.db.models.deletion.CASCADE, to=settings.\n AUTH_USER_MODEL)\n', (1333, 1412), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python3 """Perform a full roundtrip of messages from thin-edge to Azure IoT. We publish with thin-edge to Azure IoT; then route the messages to a Service Bus Queue; from there we retrieve the messages via a REST Interface and compare them with what we have sent in the beginning. Alternatively, we can use the Azure SDK to access the IoT Hub directly. When this script is called you need to be already connected to Azure. Call example: $ ./roundtrip_local_to_az.py -a 10 -p sas_policy -b thinedgebus -q testqueue Set Env: - SASKEYQUEUE : Shared Access Key to the service bus queue Alternatively: ./ci/roundtrip_local_to_az.py eventhub Set Env: - AZUREENDPOINT : Endpoint descritpion string copied from the Azure UI - AZUREEVENTHUB : Name of the IoT Hub """ import argparse import base64 import json import json.decoder import hashlib import hmac import os import sys import subprocess import time import urllib import requests import logging from azure.eventhub import EventHubConsumerClient import datetime debug = False if debug: logging.basicConfig(level=logging.INFO) else: logging.basicConfig() logger = logging.getLogger("roundtrip") logger.setLevel(level=logging.INFO) def publish_az(amount, topic, key): """Publish to Azure topic""" logger.info(f"Publishing messages to topic {topic}") for i in range(amount): message = f'{{"{key}": {i} }}' cmd = ["/usr/bin/tedge", "mqtt", "pub", topic, message] try: ret = subprocess.run(cmd, check=True) except subprocess.CalledProcessError as e: logger.error("Failed to publish %s", e) sys.exit(1) ret.check_returncode() logger.info("Published message: %s" % message) time.sleep(0.05) def get_auth_token(sb_name, eh_name, sas_name, sas_value): """Create authentication token Analog to: https://docs.microsoft.com/en-us/rest/api/eventhub/generate-sas-token """ newuri = urllib.parse.quote_plus( f"https://{sb_name}.servicebus.windows.net/{eh_name}" ) sas_enc = sas_value.encode("utf-8") expiry = str(int(time.time()) + 10000) str_sign = newuri + "\n" + expiry signed_hmac = hmac.HMAC(sas_enc, str_sign.encode("utf-8"), hashlib.sha256) signature = urllib.parse.quote(base64.b64encode(signed_hmac.digest())) ret = { "sb_name": sb_name, "eh_name": eh_name, "token": f"<PASSWORD> sr={newuri}&sig={signature}&se={expiry}&skn={sas_name}", } return ret def retrieve_queue_az( sas_policy_name, service_bus_name, queue_name, amount, verbose, key ): """Get the published messages back from a service bus queue Probably soon obsolete. """ try: sas_policy_primary_key = os.environ["SASKEYQUEUE"] except KeyError: print("Error environment variable SASKEYQUEUE not set") sys.exit(1) tokendict = get_auth_token( service_bus_name, queue_name, sas_policy_name, sas_policy_primary_key ) token = tokendict["token"] if verbose: print("Token", token) # See also: # https://docs.microsoft.com/en-us/rest/api/servicebus/receive-and-delete-message-destructive-read url = ( f"https://{service_bus_name}.servicebus.windows.net/{queue_name}/messages/head" ) print(f"Downloading mesages from {url}") headers = { "Accept": "application/json", "Content-Type": "application/json;charset=utf-8", "Authorization": token, } messages = [] while True: try: req = requests.delete(url, headers=headers) except requests.exceptions.ConnectionError as e: print("Exception: ", e) print("Connection error: We wait for some seconds and then continue ...") time.sleep(10) continue if req.status_code == 200: text = req.text props = json.loads(req.headers["BrokerProperties"]) number = props["SequenceNumber"] queuetime = props["EnqueuedTimeUtc"] try: data = json.loads(text) value = data[key] except json.decoder.JSONDecodeError: print("Json Parsing Error: ", text) value = None except KeyError: print("Parsing Error: ", text) value = None print( f'Got message {number} from {queuetime} message is "{text}" value: "{value}"' ) messages.append(value) elif req.status_code == 204: print("Queue Empty: HTTP status: ", req.status_code) break elif req.status_code == 401: print("Token Expired: HTTP status: ", req.status_code) raise SystemError("Token Expired") else: print(req) print("Error HTTP status: ", req.status_code) raise SystemError("HTTP Error") if messages == list(range(amount)): print("Validation PASSED") return True else: print("Validation FAILED") return False class EventHub: """Class to host all properties and access functions for an IoT Hub/ Eventhub Needs https://pypi.org/project/azure-eventhub Docs: https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-messages-read-builtin https://azuresdkdocs.blob.core.windows.net/$web/python/azure-eventhub/latest/azure.eventhub.html https://azuresdkdocs.blob.core.windows.net/$web/python/azure-eventhub/latest/azure.eventhub.html#azure.eventhub.EventData """ def __init__(self, message_key, amount): try: connection_str = os.environ["AZUREENDPOINT"] except KeyError: logger.error("Error environment variable AZUREENDPOINT not set") sys.exit(1) try: eventhub_name = os.environ["AZUREEVENTHUB"] except KeyError: logger.error("Error environment variable AZUREEVENTHUB not set") sys.exit(1) self.message_key = message_key self.amount = amount consumer_group = "$Default" timeout = 10 # 10s : minimum timeout self.client = EventHubConsumerClient.from_connection_string( connection_str, consumer_group, eventhub_name=eventhub_name, idle_timeout=timeout, ) self.received_messages = [] def on_error(self, partition_context, event): logger.error( "Received Error from partition {}".format(partition_context.partition_id) ) logger.error(f"Event: {event}") def on_event(self, partition_context, event): logger.debug( "Received event from partition {}".format(partition_context.partition_id) ) logger.debug(f"Event: {event}") if event == None: logger.debug("Timeout: Exiting event loop ... ") self.client.close() return partition_context.update_checkpoint(event) jevent = event.body_as_json() message = jevent.get(self.message_key) if message != None: logger.info("Matched key: %s" % message) self.received_messages.append(message) else: logger.info("Not matched key: %s" % jevent) def read_from_hub(self, start): """Read data from the event hub Possible values for start: start = "-1" : Read all messages start = "@latest" : Read only the latest messages start = datetime.datetime.now(tz=datetime.timezone.utc) : use current sdate When no messages are received the client.receive will return. """ with self.client: self.client.receive( on_event=self.on_event, on_error=self.on_error, starting_position=start, max_wait_time=10, ) logger.info("Exiting event loop") def validate(self): """Validate the messages that we have received against""" if self.received_messages == list(range(self.amount)): print("Validation PASSED") return True else: print("Validation FAILED") return False def main(): """Main entry point""" parser = argparse.ArgumentParser() parser.add_argument("method", choices=["eventhub", "servicebus"]) parser.add_argument("-b", "--bus", help="Service Bus Name") parser.add_argument("-p", "--policy", help="SAS Policy Name") parser.add_argument("-q", "--queue", help="Queue Name") parser.add_argument( "-a", "--amount", help="Amount of messages to send", type=int, default=20 ) parser.add_argument("-v", "--verbose", help="Verbosity", action="count", default=0) args = parser.parse_args() amount = args.amount sas_policy_name = args.policy service_bus_name = args.bus queue_name = args.queue verbose = args.verbose method = args.method if method == "servicebus": try: os.environ["SASKEYQUEUE"] except KeyError: print("Error environment variable SASKEYQUEUE not set") sys.exit(1) try: device = os.environ["C8YDEVICE"] except KeyError: print("Error environment variable C8YDEVICE not set") sys.exit(1) # Send roundtrip via the tedge mapper mqtt_topic = "tedge/measurements" # In case that we want to avoid the azure mapper # mqtt_topic = "az/messages/events/" message_key = "thin-edge-azure-roundtrip-" + device if method == "eventhub": eh = EventHub(message_key=message_key, amount=amount) start = datetime.datetime.now(tz=datetime.timezone.utc) publish_az(amount, mqtt_topic, message_key) eh.read_from_hub(start) if not eh.validate(): sys.exit(1) elif method == "servicebus": publish_az(amount, mqtt_topic, message_key) result = retrieve_queue_az( sas_policy_name, service_bus_name, queue_name, amount, verbose, message_key ) if not result: sys.exit(1) if __name__ == "__main__": main()
[ "logging.getLogger", "logging.basicConfig", "json.loads", "argparse.ArgumentParser", "subprocess.run", "time.sleep", "requests.delete", "datetime.datetime.now", "sys.exit", "azure.eventhub.EventHubConsumerClient.from_connection_string", "time.time", "urllib.parse.quote_plus" ]
[((1164, 1194), 'logging.getLogger', 'logging.getLogger', (['"""roundtrip"""'], {}), "('roundtrip')\n", (1181, 1194), False, 'import logging\n'), ((1082, 1121), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO'}), '(level=logging.INFO)\n', (1101, 1121), False, 'import logging\n'), ((1132, 1153), 'logging.basicConfig', 'logging.basicConfig', ([], {}), '()\n', (1151, 1153), False, 'import logging\n'), ((2006, 2084), 'urllib.parse.quote_plus', 'urllib.parse.quote_plus', (['f"""https://{sb_name}.servicebus.windows.net/{eh_name}"""'], {}), "(f'https://{sb_name}.servicebus.windows.net/{eh_name}')\n", (2029, 2084), False, 'import urllib\n'), ((8400, 8425), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (8423, 8425), False, 'import argparse\n'), ((1779, 1795), 'time.sleep', 'time.sleep', (['(0.05)'], {}), '(0.05)\n', (1789, 1795), False, 'import time\n'), ((6273, 6405), 'azure.eventhub.EventHubConsumerClient.from_connection_string', 'EventHubConsumerClient.from_connection_string', (['connection_str', 'consumer_group'], {'eventhub_name': 'eventhub_name', 'idle_timeout': 'timeout'}), '(connection_str,\n consumer_group, eventhub_name=eventhub_name, idle_timeout=timeout)\n', (6318, 6405), False, 'from azure.eventhub import EventHubConsumerClient\n'), ((9786, 9833), 'datetime.datetime.now', 'datetime.datetime.now', ([], {'tz': 'datetime.timezone.utc'}), '(tz=datetime.timezone.utc)\n', (9807, 9833), False, 'import datetime\n'), ((1525, 1556), 'subprocess.run', 'subprocess.run', (['cmd'], {'check': '(True)'}), '(cmd, check=True)\n', (1539, 1556), False, 'import subprocess\n'), ((2912, 2923), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2920, 2923), False, 'import sys\n'), ((3610, 3647), 'requests.delete', 'requests.delete', (['url'], {'headers': 'headers'}), '(url, headers=headers)\n', (3625, 3647), False, 'import requests\n'), ((3959, 4002), 'json.loads', 'json.loads', (["req.headers['BrokerProperties']"], {}), "(req.headers['BrokerProperties'])\n", (3969, 4002), False, 'import json\n'), ((9432, 9443), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9440, 9443), False, 'import sys\n'), ((9962, 9973), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9970, 9973), False, 'import sys\n'), ((1672, 1683), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1680, 1683), False, 'import sys\n'), ((2160, 2171), 'time.time', 'time.time', ([], {}), '()\n', (2169, 2171), False, 'import time\n'), ((3839, 3853), 'time.sleep', 'time.sleep', (['(10)'], {}), '(10)\n', (3849, 3853), False, 'import time\n'), ((4138, 4154), 'json.loads', 'json.loads', (['text'], {}), '(text)\n', (4148, 4154), False, 'import json\n'), ((5891, 5902), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5899, 5902), False, 'import sys\n'), ((6087, 6098), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6095, 6098), False, 'import sys\n'), ((9278, 9289), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9286, 9289), False, 'import sys\n'), ((10232, 10243), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (10240, 10243), False, 'import sys\n')]
from pprint import pprint from api import ERMS if __name__ == '__main__': import json with open('../../config/settings/secret_settings.json', 'r') as infile: settings = json.load(infile) erms = ERMS(settings['ERMS_API_URL']) pprint(erms.fetch_objects(object_id=(574, 575, 603))) # for idt in erms.fetch_endpoint(erms.EP_IDENTITY): # pprint(idt) # ref_keys = Counter() # for per in erms.fetch_objects(erms.CLS_PERSON): # for key in per['refs'].keys(): # ref_keys[key] += 1 # pprint(per) # print(ref_keys) # for org in erms.fetch_objects(erms.CLS_ORGANIZATION): # for key, val in org.get('vals', {}).items(): # if len(val) > 1: # print(key, val) # pprint(erms.fetch_objects(cls=erms.CLS_PLATFORM)) # pprint(erms.fetch_endpoint(erms.EP_CONSORTIUM)) # pprint(erms.fetch_endpoint(erms.EP_CONSORTIUM_MEMBER)) # pprint(erms.fetch_endpoint(erms.EP_ACQUISITION)) # pprint(erms.fetch_objects(object_id=(670, 665))) if False: offers = Counter() for rec in erms.fetch_endpoint(erms.EP_PROCUREMENT): offer_id = rec['offer'] offers[offer_id] += 1 if offer_id: offer = erms.fetch_endpoint(erms.EP_OFFER, object_id=offer_id)[0] splits = erms.fetch_endpoint(erms.EP_OFFER_SPLIT, offer=offer_id) for ppy in offer['price_per_year']: year_splits = [split for split in splits if split['year'] == ppy['year']] print("Year: {}, Price offer: {} {}; Price splits: {}+{} ({})+({})".format( ppy['year'], ppy['amount'], ppy['currency'], sum(ys['participation']['amount'] for ys in year_splits if ys['participation']['amount']), sum(ys['subsidy']['amount'] for ys in year_splits if 'subsidy' in ys and ys['subsidy'] and ys['subsidy']['amount']), ', '.join(str(ys['participation']['amount']) for ys in year_splits), ', '.join(str(ys['subsidy']['amount']) for ys in year_splits if 'subsidy' in ys and ys['subsidy']), )) print(offers)
[ "json.load", "api.ERMS" ]
[((217, 247), 'api.ERMS', 'ERMS', (["settings['ERMS_API_URL']"], {}), "(settings['ERMS_API_URL'])\n", (221, 247), False, 'from api import ERMS\n'), ((188, 205), 'json.load', 'json.load', (['infile'], {}), '(infile)\n', (197, 205), False, 'import json\n')]
import socket import errno import struct try: import thread except ImportError: # for python3 import _thread as thread import select from raft.bijectivemap import create_map def start(port, uuid): tcp = TCP(port, uuid) tcp.start() return tcp class TCP(object): greeting = 'howdy!' def __init__(self, port, uuid): self.port = port self.connections = {} self.c2u, self.u2c = create_map() self.data = {} self.unknowns = set() self.a2c, self.c2a = create_map() self.uuid = uuid def __contains__(self, uuid): return uuid in self.u2c def start(self): self.running = True self.srv = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.srv.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.srv.bind(("", self.port)) thread.start_new_thread(self.accept, ()) def connect(self, addr): if addr in self.a2c: return conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM) try: conn.connect(addr) except socket.error as e: if e.errno == errno.ECONNREFUSED: return None raise conn.setblocking(0) self.a2c[addr] = conn self.add_unknown(conn) return True def accept(self): self.srv.listen(5) while self.running: try: conn, addr = self.srv.accept() self.a2c[addr] = conn conn.setblocking(0) self.add_unknown(conn) except socket.error as e: if e.errno == errno.ECONNABORTED: continue def recv(self, timeout=0): try: recv, _, _ = select.select(list(self.c2u.keys()), [], [], timeout) except select.error as e: if e.args[0] == errno.EINTR: return raise rcvd = [] for conn in recv: msgs = self.read_conn_msg(conn) if msgs is not None: uuid = self.c2u[conn] rcvd.append((uuid, msgs)) self.read_unknowns() return rcvd def add_unknown(self, conn): self.unknowns.add(conn) msgsize = struct.pack("!I", len(self.greeting) + len(self.uuid) + struct.calcsize("!I")) try: sent = 0 msg = msgsize + self.greeting + self.uuid while sent < len(msg): sent += conn.send(msg[sent:], socket.MSG_DONTWAIT) except socket.error: self.unknowns.remove(conn) return self.read_unknowns() def read_unknowns(self): recv, _, _ = select.select(list(self.unknowns), [], [], 0) for conn in recv: uuid = self.read_conn_msg(conn, 1) if uuid: uuid = uuid[0] assert uuid.startswith(self.greeting) uuid = uuid[len(self.greeting):] self.u2c[uuid] = conn self.unknowns.remove(conn) def read_conn_msg(self, conn, msgnum=0): try: data = conn.recv(4092) except socket.error: self.remconn(conn) return if data == '': self.remconn(conn) if conn in self.c2u: del self.c2u[conn] if conn in self.data: del self.data[conn] return buff = self.data.get(conn, '') buff += data self.data[conn] = buff msgs = [] for count, msg in enumerate(self.extract_msg(conn)): msgs.append(msg) if msgnum and count >= msgnum: return msgs return msgs def extract_msg(self, conn): buff = self.data[conn] isize = struct.calcsize("!I") if len(buff) < isize: # can't even get the length of the next message return while len(buff) > isize: size = struct.unpack("!I", buff[0:isize])[0] if len(buff) < size: return msg = buff[isize:size] buff = buff[size:] self.data[conn] = buff yield msg def send(self, msg, uuid): msgsize = struct.pack("!I", len(msg) + struct.calcsize("!I")) try: conn = self.u2c[uuid] except KeyError: return try: sent = 0 msg = msgsize + msg while sent < len(msg): sent += conn.send(msg[sent:], socket.MSG_DONTWAIT) except socket.error as e: if e.errno == errno.EPIPE: addr = conn.getsockname() self.connect(addr) def remconn(self, conn): if conn in self.c2u: del self.c2u[conn] if conn in self.c2a: del self.c2a[conn] if conn in self.data: del self.data[conn] def shutdown(self): try: self.running = False self.srv.shutdown(socket.SHUT_RDWR) self.sock.close() except: pass
[ "struct.calcsize", "socket.socket", "struct.unpack", "raft.bijectivemap.create_map", "_thread.start_new_thread" ]
[((431, 443), 'raft.bijectivemap.create_map', 'create_map', ([], {}), '()\n', (441, 443), False, 'from raft.bijectivemap import create_map\n'), ((526, 538), 'raft.bijectivemap.create_map', 'create_map', ([], {}), '()\n', (536, 538), False, 'from raft.bijectivemap import create_map\n'), ((700, 749), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (713, 749), False, 'import socket\n'), ((868, 908), '_thread.start_new_thread', 'thread.start_new_thread', (['self.accept', '()'], {}), '(self.accept, ())\n', (891, 908), True, 'import _thread as thread\n'), ((1002, 1051), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (1015, 1051), False, 'import socket\n'), ((3853, 3874), 'struct.calcsize', 'struct.calcsize', (['"""!I"""'], {}), "('!I')\n", (3868, 3874), False, 'import struct\n'), ((2363, 2384), 'struct.calcsize', 'struct.calcsize', (['"""!I"""'], {}), "('!I')\n", (2378, 2384), False, 'import struct\n'), ((4036, 4070), 'struct.unpack', 'struct.unpack', (['"""!I"""', 'buff[0:isize]'], {}), "('!I', buff[0:isize])\n", (4049, 4070), False, 'import struct\n'), ((4332, 4353), 'struct.calcsize', 'struct.calcsize', (['"""!I"""'], {}), "('!I')\n", (4347, 4353), False, 'import struct\n')]
import math, random def generatePolygon( ctrX, ctrY, aveRadius, irregularity, spikeyness, numVerts ): irregularity = clip( irregularity, 0,1 ) * 2*math.pi / numVerts spikeyness = clip( spikeyness, 0,1 ) * aveRadius # generate n angle steps angleSteps = [] lower = (2*math.pi / numVerts) - irregularity upper = (2*math.pi / numVerts) + irregularity sum = 0 for i in range(numVerts): tmp = random.uniform(lower, upper) angleSteps.append( tmp ) sum = sum + tmp # normalize the steps so that point 0 and point n+1 are the same k = sum / (2*math.pi) for i in range(numVerts): angleSteps[i] = angleSteps[i] / k # now generate the points points = [] angle = random.uniform(0, 2*math.pi) for i in range(numVerts): r_i = clip( random.gauss(aveRadius, spikeyness), 0, 2*aveRadius ) x = ctrX + r_i*math.cos(angle) y = ctrY + r_i*math.sin(angle) points.append( (int(x),int(y)) ) angle = angle + angleSteps[i] return points def clip(x, min, max): if( min > max ): return x elif( x < min ): return min elif( x > max ): return max else: return x
[ "math.cos", "random.uniform", "math.sin", "random.gauss" ]
[((743, 773), 'random.uniform', 'random.uniform', (['(0)', '(2 * math.pi)'], {}), '(0, 2 * math.pi)\n', (757, 773), False, 'import math, random\n'), ((430, 458), 'random.uniform', 'random.uniform', (['lower', 'upper'], {}), '(lower, upper)\n', (444, 458), False, 'import math, random\n'), ((822, 857), 'random.gauss', 'random.gauss', (['aveRadius', 'spikeyness'], {}), '(aveRadius, spikeyness)\n', (834, 857), False, 'import math, random\n'), ((899, 914), 'math.cos', 'math.cos', (['angle'], {}), '(angle)\n', (907, 914), False, 'import math, random\n'), ((938, 953), 'math.sin', 'math.sin', (['angle'], {}), '(angle)\n', (946, 953), False, 'import math, random\n')]
from django.db import models from .base import CommonBase, ContactDetailBase, LinkBase, IdentifierBase, OtherNameBase from .jurisdiction import Jurisdiction class Organization(CommonBase): id = models.CharField(max_length=100, primary_key=True) name = models.CharField(max_length=300) image = models.URLField(blank=True) parent = models.ForeignKey('self', related_name='children', null=True) jurisdiction = models.ForeignKey(Jurisdiction, related_name='organizations') classification = models.CharField(max_length=100, blank=True) # enum chamber = models.CharField(max_length=10, blank=True) founding_date = models.CharField(max_length=10, blank=True) # YYYY[-MM[-DD]] dissolution_date = models.CharField(max_length=10, blank=True) # YYYY[-MM[-DD]] class OrganizationIdentifier(IdentifierBase): organization = models.ForeignKey(Organization, related_name='identifiers') class OrganizationName(OtherNameBase): organization = models.ForeignKey(Organization, related_name='other_names') class OrganizationContactDetail(ContactDetailBase): organization = models.ForeignKey(Organization, related_name='contact_details') class OrganizationLink(LinkBase): organization = models.ForeignKey(Organization, related_name='links') class OrganizationSource(LinkBase): organization = models.ForeignKey(Organization, related_name='sources') class Post(CommonBase): id = models.CharField(max_length=100, primary_key=True) label = models.CharField(max_length=300, blank=True) role = models.CharField(max_length=300, blank=True) organization = models.ForeignKey(Organization, related_name='posts') start_date = models.CharField(max_length=10) # YYYY[-MM[-DD]] end_date = models.CharField(max_length=10) # YYYY[-MM[-DD]] class PostContactDetail(ContactDetailBase): post = models.ForeignKey(Post, related_name='contact_details') class PostLinks(LinkBase): post = models.ForeignKey(Post, related_name='links') class Person(CommonBase): id = models.CharField(max_length=100, primary_key=True) name = models.CharField(max_length=300) image = models.URLField(blank=True) gender = models.CharField(max_length=100) summary = models.CharField(max_length=500) national_identity = models.CharField(max_length=300) biography = models.TextField() birth_date = models.CharField(max_length=10, blank=True) # YYYY[-MM[-DD]] death_date = models.CharField(max_length=10, blank=True) # YYYY[-MM[-DD]] class PersonIdentifier(IdentifierBase): person = models.ForeignKey(Person, related_name='identifiers') class PersonName(OtherNameBase): person = models.ForeignKey(Person, related_name='other_names') class PersonContactDetail(ContactDetailBase): person = models.ForeignKey(Person, related_name='contact_details') class PersonLink(LinkBase): person = models.ForeignKey(Person, related_name='links') class PersonSource(LinkBase): person = models.ForeignKey(Person, related_name='sources') class Membership(CommonBase): id = models.CharField(max_length=100, primary_key=True) organization = models.ForeignKey(Organization, related_name='memberships') person = models.ForeignKey(Person, related_name='memberships') post = models.ForeignKey(Post, related_name='posts', null=True) on_behalf_of = models.ForeignKey(Organization, related_name='memberships_on_behalf_of', null=True) label = models.CharField(max_length=300, blank=True) role = models.CharField(max_length=300, blank=True) start_date = models.CharField(max_length=10, blank=True) # YYYY[-MM[-DD]] end_date = models.CharField(max_length=10, blank=True) # YYYY[-MM[-DD]] class MembershipContactDetail(ContactDetailBase): membership = models.ForeignKey(Membership, related_name='contact_details') class MembershipLink(LinkBase): membership = models.ForeignKey(Membership, related_name='links')
[ "django.db.models.URLField", "django.db.models.TextField", "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((200, 250), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'primary_key': '(True)'}), '(max_length=100, primary_key=True)\n', (216, 250), False, 'from django.db import models\n'), ((262, 294), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)'}), '(max_length=300)\n', (278, 294), False, 'from django.db import models\n'), ((307, 334), 'django.db.models.URLField', 'models.URLField', ([], {'blank': '(True)'}), '(blank=True)\n', (322, 334), False, 'from django.db import models\n'), ((348, 409), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""self"""'], {'related_name': '"""children"""', 'null': '(True)'}), "('self', related_name='children', null=True)\n", (365, 409), False, 'from django.db import models\n'), ((429, 490), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Jurisdiction'], {'related_name': '"""organizations"""'}), "(Jurisdiction, related_name='organizations')\n", (446, 490), False, 'from django.db import models\n'), ((512, 556), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'blank': '(True)'}), '(max_length=100, blank=True)\n', (528, 556), False, 'from django.db import models\n'), ((580, 623), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (596, 623), False, 'from django.db import models\n'), ((644, 687), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (660, 687), False, 'from django.db import models\n'), ((732, 775), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (748, 775), False, 'from django.db import models\n'), ((861, 920), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""identifiers"""'}), "(Organization, related_name='identifiers')\n", (878, 920), False, 'from django.db import models\n'), ((981, 1040), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""other_names"""'}), "(Organization, related_name='other_names')\n", (998, 1040), False, 'from django.db import models\n'), ((1114, 1177), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""contact_details"""'}), "(Organization, related_name='contact_details')\n", (1131, 1177), False, 'from django.db import models\n'), ((1233, 1286), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""links"""'}), "(Organization, related_name='links')\n", (1250, 1286), False, 'from django.db import models\n'), ((1344, 1399), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""sources"""'}), "(Organization, related_name='sources')\n", (1361, 1399), False, 'from django.db import models\n'), ((1435, 1485), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'primary_key': '(True)'}), '(max_length=100, primary_key=True)\n', (1451, 1485), False, 'from django.db import models\n'), ((1498, 1542), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)', 'blank': '(True)'}), '(max_length=300, blank=True)\n', (1514, 1542), False, 'from django.db import models\n'), ((1554, 1598), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)', 'blank': '(True)'}), '(max_length=300, blank=True)\n', (1570, 1598), False, 'from django.db import models\n'), ((1618, 1671), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""posts"""'}), "(Organization, related_name='posts')\n", (1635, 1671), False, 'from django.db import models\n'), ((1689, 1720), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (1705, 1720), False, 'from django.db import models\n'), ((1756, 1787), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (1772, 1787), False, 'from django.db import models\n'), ((1865, 1920), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Post'], {'related_name': '"""contact_details"""'}), "(Post, related_name='contact_details')\n", (1882, 1920), False, 'from django.db import models\n'), ((1961, 2006), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Post'], {'related_name': '"""links"""'}), "(Post, related_name='links')\n", (1978, 2006), False, 'from django.db import models\n'), ((2044, 2094), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'primary_key': '(True)'}), '(max_length=100, primary_key=True)\n', (2060, 2094), False, 'from django.db import models\n'), ((2106, 2138), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)'}), '(max_length=300)\n', (2122, 2138), False, 'from django.db import models\n'), ((2151, 2178), 'django.db.models.URLField', 'models.URLField', ([], {'blank': '(True)'}), '(blank=True)\n', (2166, 2178), False, 'from django.db import models\n'), ((2192, 2224), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)'}), '(max_length=100)\n', (2208, 2224), False, 'from django.db import models\n'), ((2239, 2271), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(500)'}), '(max_length=500)\n', (2255, 2271), False, 'from django.db import models\n'), ((2296, 2328), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)'}), '(max_length=300)\n', (2312, 2328), False, 'from django.db import models\n'), ((2345, 2363), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (2361, 2363), False, 'from django.db import models\n'), ((2381, 2424), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (2397, 2424), False, 'from django.db import models\n'), ((2462, 2505), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (2478, 2505), False, 'from django.db import models\n'), ((2581, 2634), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Person'], {'related_name': '"""identifiers"""'}), "(Person, related_name='identifiers')\n", (2598, 2634), False, 'from django.db import models\n'), ((2683, 2736), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Person'], {'related_name': '"""other_names"""'}), "(Person, related_name='other_names')\n", (2700, 2736), False, 'from django.db import models\n'), ((2798, 2855), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Person'], {'related_name': '"""contact_details"""'}), "(Person, related_name='contact_details')\n", (2815, 2855), False, 'from django.db import models\n'), ((2899, 2946), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Person'], {'related_name': '"""links"""'}), "(Person, related_name='links')\n", (2916, 2946), False, 'from django.db import models\n'), ((2992, 3041), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Person'], {'related_name': '"""sources"""'}), "(Person, related_name='sources')\n", (3009, 3041), False, 'from django.db import models\n'), ((3083, 3133), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(100)', 'primary_key': '(True)'}), '(max_length=100, primary_key=True)\n', (3099, 3133), False, 'from django.db import models\n'), ((3153, 3212), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""memberships"""'}), "(Organization, related_name='memberships')\n", (3170, 3212), False, 'from django.db import models\n'), ((3226, 3279), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Person'], {'related_name': '"""memberships"""'}), "(Person, related_name='memberships')\n", (3243, 3279), False, 'from django.db import models\n'), ((3291, 3347), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Post'], {'related_name': '"""posts"""', 'null': '(True)'}), "(Post, related_name='posts', null=True)\n", (3308, 3347), False, 'from django.db import models\n'), ((3367, 3454), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Organization'], {'related_name': '"""memberships_on_behalf_of"""', 'null': '(True)'}), "(Organization, related_name='memberships_on_behalf_of',\n null=True)\n", (3384, 3454), False, 'from django.db import models\n'), ((3500, 3544), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)', 'blank': '(True)'}), '(max_length=300, blank=True)\n', (3516, 3544), False, 'from django.db import models\n'), ((3556, 3600), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(300)', 'blank': '(True)'}), '(max_length=300, blank=True)\n', (3572, 3600), False, 'from django.db import models\n'), ((3618, 3661), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (3634, 3661), False, 'from django.db import models\n'), ((3697, 3740), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)', 'blank': '(True)'}), '(max_length=10, blank=True)\n', (3713, 3740), False, 'from django.db import models\n'), ((3832, 3893), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Membership'], {'related_name': '"""contact_details"""'}), "(Membership, related_name='contact_details')\n", (3849, 3893), False, 'from django.db import models\n'), ((3945, 3996), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Membership'], {'related_name': '"""links"""'}), "(Membership, related_name='links')\n", (3962, 3996), False, 'from django.db import models\n')]
# Copyright 2019 Nokia # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import mock import json from cmframework.server.cmprocessor import CMProcessor from cmframework.apis.cmerror import CMError from cmframework.server.cmcsn import CMCSN from cmframework.server import cmchangemonitor class CMProcessorAutomaticActivationTest(unittest.TestCase): @staticmethod def backend_get_property(key): if key == 'cloud.cmframework': return '{"csn": {"global": 101, "nodes": {"node-a": 99, "node-b": 100, "node-c": 101}}}' elif key == 'foo': return '{"foo": "bar"}' @mock.patch('cmframework.utils.cmflagfile.os') @mock.patch('cmframework.server.cmprocessor.logging') def test_set_property_automatic_activation_disabled(self, mock_logging, mock_flagfile_os): mock_backend = mock.MagicMock() mock_backend.get_property = CMProcessorAutomaticActivationTest.backend_get_property mock_validator = mock.MagicMock() mock_activator = mock.MagicMock() mock_changemonitor = mock.MagicMock() mock_activationstate_handler = mock.MagicMock() mock_snapshot_handler = mock.MagicMock() mock_flagfile_os.path = mock.MagicMock() mock_flagfile_os.path.exists = mock.MagicMock() mock_flagfile_os.path.exists.return_value = True processor = CMProcessor(mock_backend, mock_validator, mock_activator, mock_changemonitor, mock_activationstate_handler, mock_snapshot_handler) processor.set_property('foo', 'barbar') mock_validator.validate_set.assert_called_once_with({'foo': 'barbar'}) mock_backend.set_properties.called_once_with({'foo': 'barbar'}) mock_activator.add_work.assert_not_called() @mock.patch('cmframework.utils.cmflagfile.os') @mock.patch('cmframework.server.cmprocessor.logging') def test_delete_property_automatic_activation_disabled(self, mock_logging, mock_flagfile_os): mock_backend = mock.MagicMock() mock_backend.get_property = CMProcessorAutomaticActivationTest.backend_get_property mock_validator = mock.MagicMock() mock_activator = mock.MagicMock() mock_changemonitor = mock.MagicMock() mock_activationstate_handler = mock.MagicMock() mock_snapshot_handler = mock.MagicMock() mock_flagfile_os.path = mock.MagicMock() mock_flagfile_os.path.exists = mock.MagicMock() mock_flagfile_os.path.exists.return_value = True processor = CMProcessor(mock_backend, mock_validator, mock_activator, mock_changemonitor, mock_activationstate_handler, mock_snapshot_handler) processor.delete_property('foo') mock_validator.validate_delete.assert_called_once_with(['foo']) mock_backend.delete_property.assert_called_once_with('foo') mock_activator.add_work.assert_not_called() @mock.patch('cmframework.utils.cmflagfile.os') @mock.patch('cmframework.server.cmprocessor.logging') @mock.patch('cmframework.server.cmprocessor.cmactivationwork.CMActivationWork') @mock.patch.object(CMProcessor, '_clear_reboot_requests') @mock.patch.object(CMCSN, 'sync_node_csn') def test_activate_node_automatic_activation_disabled(self, mock_sync_node_csn, mock_clear_reboot_requests, mock_work, mock_logging, mock_flagfile_os): mock_backend = mock.MagicMock() mock_backend.get_property = CMProcessorAutomaticActivationTest.backend_get_property mock_validator = mock.MagicMock() mock_activator = mock.MagicMock() mock_changemonitor = mock.MagicMock() mock_activationstate_handler = mock.MagicMock() mock_snapshot_handler = mock.MagicMock() mock_work.return_value.get_result = mock.MagicMock() mock_work.return_value.get_result.return_value = None mock_flagfile_os.path = mock.MagicMock() mock_flagfile_os.path.exists = mock.MagicMock() mock_flagfile_os.path.exists.return_value = True mock_work.OPER_NODE = mock.MagicMock() processor = CMProcessor(mock_backend, mock_validator, mock_activator, mock_changemonitor, mock_activationstate_handler, mock_snapshot_handler) self.assertEqual(processor.activate_node('node-b'), False) mock_clear_reboot_requests.assert_not_called() mock_work.assert_not_called() mock_activator.add_work.assert_not_called() mock_sync_node_csn.assert_not_called() if __name__ == '__main__': unittest.main()
[ "mock.patch", "mock.patch.object", "cmframework.server.cmprocessor.CMProcessor", "unittest.main", "mock.MagicMock" ]
[((1125, 1170), 'mock.patch', 'mock.patch', (['"""cmframework.utils.cmflagfile.os"""'], {}), "('cmframework.utils.cmflagfile.os')\n", (1135, 1170), False, 'import mock\n'), ((1176, 1228), 'mock.patch', 'mock.patch', (['"""cmframework.server.cmprocessor.logging"""'], {}), "('cmframework.server.cmprocessor.logging')\n", (1186, 1228), False, 'import mock\n'), ((2330, 2375), 'mock.patch', 'mock.patch', (['"""cmframework.utils.cmflagfile.os"""'], {}), "('cmframework.utils.cmflagfile.os')\n", (2340, 2375), False, 'import mock\n'), ((2381, 2433), 'mock.patch', 'mock.patch', (['"""cmframework.server.cmprocessor.logging"""'], {}), "('cmframework.server.cmprocessor.logging')\n", (2391, 2433), False, 'import mock\n'), ((3520, 3565), 'mock.patch', 'mock.patch', (['"""cmframework.utils.cmflagfile.os"""'], {}), "('cmframework.utils.cmflagfile.os')\n", (3530, 3565), False, 'import mock\n'), ((3571, 3623), 'mock.patch', 'mock.patch', (['"""cmframework.server.cmprocessor.logging"""'], {}), "('cmframework.server.cmprocessor.logging')\n", (3581, 3623), False, 'import mock\n'), ((3629, 3707), 'mock.patch', 'mock.patch', (['"""cmframework.server.cmprocessor.cmactivationwork.CMActivationWork"""'], {}), "('cmframework.server.cmprocessor.cmactivationwork.CMActivationWork')\n", (3639, 3707), False, 'import mock\n'), ((3713, 3769), 'mock.patch.object', 'mock.patch.object', (['CMProcessor', '"""_clear_reboot_requests"""'], {}), "(CMProcessor, '_clear_reboot_requests')\n", (3730, 3769), False, 'import mock\n'), ((3775, 3816), 'mock.patch.object', 'mock.patch.object', (['CMCSN', '"""sync_node_csn"""'], {}), "(CMCSN, 'sync_node_csn')\n", (3792, 3816), False, 'import mock\n'), ((5469, 5484), 'unittest.main', 'unittest.main', ([], {}), '()\n', (5482, 5484), False, 'import unittest\n'), ((1347, 1363), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1361, 1363), False, 'import mock\n'), ((1482, 1498), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1496, 1498), False, 'import mock\n'), ((1524, 1540), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1538, 1540), False, 'import mock\n'), ((1570, 1586), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1584, 1586), False, 'import mock\n'), ((1626, 1642), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1640, 1642), False, 'import mock\n'), ((1675, 1691), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1689, 1691), False, 'import mock\n'), ((1725, 1741), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1739, 1741), False, 'import mock\n'), ((1781, 1797), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (1795, 1797), False, 'import mock\n'), ((1876, 2010), 'cmframework.server.cmprocessor.CMProcessor', 'CMProcessor', (['mock_backend', 'mock_validator', 'mock_activator', 'mock_changemonitor', 'mock_activationstate_handler', 'mock_snapshot_handler'], {}), '(mock_backend, mock_validator, mock_activator,\n mock_changemonitor, mock_activationstate_handler, mock_snapshot_handler)\n', (1887, 2010), False, 'from cmframework.server.cmprocessor import CMProcessor\n'), ((2555, 2571), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2569, 2571), False, 'import mock\n'), ((2690, 2706), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2704, 2706), False, 'import mock\n'), ((2732, 2748), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2746, 2748), False, 'import mock\n'), ((2778, 2794), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2792, 2794), False, 'import mock\n'), ((2834, 2850), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2848, 2850), False, 'import mock\n'), ((2883, 2899), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2897, 2899), False, 'import mock\n'), ((2933, 2949), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (2947, 2949), False, 'import mock\n'), ((2989, 3005), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (3003, 3005), False, 'import mock\n'), ((3084, 3218), 'cmframework.server.cmprocessor.CMProcessor', 'CMProcessor', (['mock_backend', 'mock_validator', 'mock_activator', 'mock_changemonitor', 'mock_activationstate_handler', 'mock_snapshot_handler'], {}), '(mock_backend, mock_validator, mock_activator,\n mock_changemonitor, mock_activationstate_handler, mock_snapshot_handler)\n', (3095, 3218), False, 'from cmframework.server.cmprocessor import CMProcessor\n'), ((4280, 4296), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4294, 4296), False, 'import mock\n'), ((4415, 4431), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4429, 4431), False, 'import mock\n'), ((4457, 4473), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4471, 4473), False, 'import mock\n'), ((4503, 4519), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4517, 4519), False, 'import mock\n'), ((4559, 4575), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4573, 4575), False, 'import mock\n'), ((4608, 4624), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4622, 4624), False, 'import mock\n'), ((4670, 4686), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4684, 4686), False, 'import mock\n'), ((4782, 4798), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4796, 4798), False, 'import mock\n'), ((4838, 4854), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4852, 4854), False, 'import mock\n'), ((4943, 4959), 'mock.MagicMock', 'mock.MagicMock', ([], {}), '()\n', (4957, 4959), False, 'import mock\n'), ((4981, 5115), 'cmframework.server.cmprocessor.CMProcessor', 'CMProcessor', (['mock_backend', 'mock_validator', 'mock_activator', 'mock_changemonitor', 'mock_activationstate_handler', 'mock_snapshot_handler'], {}), '(mock_backend, mock_validator, mock_activator,\n mock_changemonitor, mock_activationstate_handler, mock_snapshot_handler)\n', (4992, 5115), False, 'from cmframework.server.cmprocessor import CMProcessor\n')]
# GIL全局终端锁 global interpreter Lock(cpython) # python中的一个线程对应c语言中的一个线程 # GIL是的python同一时间只能有一个线程运行的cpu上执行字节码 # gil会根据执行的字节码行数以及时间片切换线程(时间片的时间),无法将多个线程映射到多个CPU上,gil遇到IO操作的情况下主动释放 # 对io操作来说,多线程和多进程效率差不多 # 共享变量和Queue # pipy去GIL化的库 # Gil会根据执行的字节码行数以及时间片释放GIL,遇到IO操作的时候回释放GIL # GIL在python2,Python3中的区别 # Python和Cpython的区别 # +=============dis查看字节码=================== # import dis # # # def add(a): # a = a + 1 # return a # # # print(dis.dis(add)) # +=============dis查看字节码=================== total = 0 def add(): global total for i in range(1000000): total += 1 def des(): global total for i in range(1000000): total -= 1 import threading thread1 = threading.Thread(target=add) thread2 = threading.Thread(target=des) thread1.start() thread2.start() thread1.join() thread2.join() print(total)
[ "threading.Thread" ]
[((690, 718), 'threading.Thread', 'threading.Thread', ([], {'target': 'add'}), '(target=add)\n', (706, 718), False, 'import threading\n'), ((729, 757), 'threading.Thread', 'threading.Thread', ([], {'target': 'des'}), '(target=des)\n', (745, 757), False, 'import threading\n')]
import argparse import json import random import cargan ############################################################################### # Partition ############################################################################### def dataset(name): """Partition datasets and save partitions to disk""" # Handle vctk if name == 'vctk': return vctk() # Get the data indices length = len(cargan.data.Dataset(name)) indices = list(range(length)) # Deterministically shuffle indices random.seed(cargan.RANDOM_SEED) if name != 'musdb': random.shuffle(indices) # Daps is eval-only if name == 'daps': return {'train': [], 'valid': [], 'test': indices} # Get split locations left = int(cargan.SPLIT_SIZE_TRAIN * length) right = left + int(cargan.SPLIT_SIZE_VALID * length) # Shuffle musdb test set test = indices[right:] # Split into partitions return { 'train': indices[:left], 'valid': indices[left:right], 'test': test} def vctk(): """Partition the vctk dataset""" # Get list of speakers dataset = cargan.data.Dataset('vctk') speakers = dataset.speakers() # Shuffle speakers random.seed(cargan.RANDOM_SEED) random.shuffle(speakers) # Select test speakers test_speakers = speakers[:8] # Get test partition indices test_indices = [ i for i in range(len(dataset)) if dataset.speaker(i) in test_speakers] # Shuffle so adjacent indices aren't always same speaker random.shuffle(test_indices) # Get residual indices indices = list(range(len(dataset))) indices = [i for i in indices if i not in test_indices] random.shuffle(indices) # Split into train/valid split = int(.95 * len(indices)) train_indices = indices[:split] valid_indices = indices[split:] return { 'train': train_indices, 'valid': valid_indices, 'test': test_indices} ############################################################################### # Entry point ############################################################################### def main(datasets, overwrite): """Partition datasets and save to disk""" for name in datasets: # Check if partition already exists file = cargan.PARTITION_DIR / f'{name}.json' if file.exists(): if not overwrite: print(f'Not overwriting existing partition {file}') continue # Save to disk with open(file, 'w') as file: json.dump(dataset(name), file, ensure_ascii=False, indent=4) def parse_args(): """Parse command-line arguments""" parser = argparse.ArgumentParser(description='Partition datasets') parser.add_argument( '--datasets', nargs='+', help='The datasets to partition') parser.add_argument( '--overwrite', action='store_true', help='Whether to overwrite existing partitions') return parser.parse_args() if __name__ == '__main__': main(**vars(parse_args()))
[ "argparse.ArgumentParser", "random.shuffle", "cargan.data.Dataset", "random.seed" ]
[((527, 558), 'random.seed', 'random.seed', (['cargan.RANDOM_SEED'], {}), '(cargan.RANDOM_SEED)\n', (538, 558), False, 'import random\n'), ((1143, 1170), 'cargan.data.Dataset', 'cargan.data.Dataset', (['"""vctk"""'], {}), "('vctk')\n", (1162, 1170), False, 'import cargan\n'), ((1233, 1264), 'random.seed', 'random.seed', (['cargan.RANDOM_SEED'], {}), '(cargan.RANDOM_SEED)\n', (1244, 1264), False, 'import random\n'), ((1269, 1293), 'random.shuffle', 'random.shuffle', (['speakers'], {}), '(speakers)\n', (1283, 1293), False, 'import random\n'), ((1575, 1603), 'random.shuffle', 'random.shuffle', (['test_indices'], {}), '(test_indices)\n', (1589, 1603), False, 'import random\n'), ((1740, 1763), 'random.shuffle', 'random.shuffle', (['indices'], {}), '(indices)\n', (1754, 1763), False, 'import random\n'), ((2749, 2806), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Partition datasets"""'}), "(description='Partition datasets')\n", (2772, 2806), False, 'import argparse\n'), ((421, 446), 'cargan.data.Dataset', 'cargan.data.Dataset', (['name'], {}), '(name)\n', (440, 446), False, 'import cargan\n'), ((591, 614), 'random.shuffle', 'random.shuffle', (['indices'], {}), '(indices)\n', (605, 614), False, 'import random\n')]
import unittest from wtforms import Form from goslinks.forms import SlugField class SlugFieldTestCase(unittest.TestCase): class F(Form): slug = SlugField() def test_slug_field(self): form = self.F(slug="foo") self.assertTrue(form.validate()) def test_slug_field_cleans_special_characters(self): form = self.F(slug="foo!bar") self.assertTrue(form.validate()) self.assertEqual(form.data["slug"], "foobar")
[ "goslinks.forms.SlugField" ]
[((160, 171), 'goslinks.forms.SlugField', 'SlugField', ([], {}), '()\n', (169, 171), False, 'from goslinks.forms import SlugField\n')]
## module getCCDphoto ''' CCD_save(getphoto(),'name'). Take a photo with charge-coupled device. You should change the screen magnification first. The photo will save as 'name.png' in folder like "2021-07-22 19'05'57". laplacian(imgPath) and tenengrad(imgPath) will return the clarity of photo ''' import win32gui, win32ui, win32con import os import cv2 from datetime import datetime from ctypes import windll from PIL import Image def getphoto(): global im hwnd = win32gui.FindWindow(None, 'Blackfly S BFS-U3-51S5C 19370957') # Prevent windows from being minimized win32gui.SendMessage(hwnd, win32con.WM_SYSCOMMAND, win32con.SC_RESTORE, 0) # Change the line below depending on whether you want the whole window # or just the client area. left, top, right, bot = win32gui.GetClientRect(hwnd) #left, top, right, bot = win32gui.GetWindowRect(hwnd) # Change screen magnification mag = 1 w = int((right - left)*mag) h = int((bot - top)*mag) hwndDC = win32gui.GetWindowDC(hwnd) mfcDC = win32ui.CreateDCFromHandle(hwndDC) saveDC = mfcDC.CreateCompatibleDC() saveBitMap = win32ui.CreateBitmap() saveBitMap.CreateCompatibleBitmap(mfcDC, w, h) saveDC.SelectObject(saveBitMap) # Change the line below depending on whether you want the whole window # or just the client area. result = windll.user32.PrintWindow(hwnd, saveDC.GetSafeHdc(), 1) #result = windll.user32.PrintWindow(hwnd, saveDC.GetSafeHdc(), 0) #if result == 1: print('screenshot succeeded') bmpinfo = saveBitMap.GetInfo() bmpstr = saveBitMap.GetBitmapBits(True) im = Image.frombuffer( 'RGB', (bmpinfo['bmWidth'], bmpinfo['bmHeight']), bmpstr, 'raw', 'BGRX', 0, 1) win32gui.DeleteObject(saveBitMap.GetHandle()) saveDC.DeleteDC() mfcDC.DeleteDC() win32gui.ReleaseDC(hwnd, hwndDC) return result def CCD_dir_save(result, name): global im if result == 1: im.save(str(name) + ".png") def CCD_save(result, imgPath): global im if result == 1: im.save(imgPath) def laplacian(imgPath): image_ori = cv2.imread(imgPath) #image = image_ori[83:1042,17:1163] img2gray = cv2.cvtColor(image_ori, cv2.COLOR_BGR2GRAY) imageVar = cv2.Laplacian(img2gray, cv2.CV_64F).var() return imageVar def tenengrad(imgPath): image = cv2.imread(imgPath) x = cv2.Sobel(image,cv2.CV_16S,1,0,ksize=3) y = cv2.Sobel(image,cv2.CV_16S,0,1,ksize=3) absX = cv2.convertScaleAbs(x) absY = cv2.convertScaleAbs(y) dst = cv2.addWeighted(absX,0.5,absY,0.5,0).var() print(f'tenengrad:{dst:.1f}') return dst if __name__ == '__main__': def main(): folder_name = str(datetime.now())[:19].replace(':', "'") photo_name = 'test' os.mkdir(folder_name) imgPath = './'+ folder_name +'/'+ photo_name + '.png' CCD_save(getphoto(), imgPath) print('laplacian:', laplacian(imgPath), '\ntenengrad:', tenengrad(imgPath)) main()
[ "cv2.Laplacian", "win32gui.SendMessage", "cv2.convertScaleAbs", "win32gui.GetWindowDC", "win32gui.FindWindow", "win32gui.GetClientRect", "win32ui.CreateDCFromHandle", "cv2.addWeighted", "datetime.datetime.now", "os.mkdir", "win32gui.ReleaseDC", "cv2.cvtColor", "PIL.Image.frombuffer", "win32ui.CreateBitmap", "cv2.imread", "cv2.Sobel" ]
[((495, 556), 'win32gui.FindWindow', 'win32gui.FindWindow', (['None', '"""Blackfly S BFS-U3-51S5C 19370957"""'], {}), "(None, 'Blackfly S BFS-U3-51S5C 19370957')\n", (514, 556), False, 'import win32gui, win32ui, win32con\n'), ((604, 678), 'win32gui.SendMessage', 'win32gui.SendMessage', (['hwnd', 'win32con.WM_SYSCOMMAND', 'win32con.SC_RESTORE', '(0)'], {}), '(hwnd, win32con.WM_SYSCOMMAND, win32con.SC_RESTORE, 0)\n', (624, 678), False, 'import win32gui, win32ui, win32con\n'), ((819, 847), 'win32gui.GetClientRect', 'win32gui.GetClientRect', (['hwnd'], {}), '(hwnd)\n', (841, 847), False, 'import win32gui, win32ui, win32con\n'), ((1028, 1054), 'win32gui.GetWindowDC', 'win32gui.GetWindowDC', (['hwnd'], {}), '(hwnd)\n', (1048, 1054), False, 'import win32gui, win32ui, win32con\n'), ((1068, 1102), 'win32ui.CreateDCFromHandle', 'win32ui.CreateDCFromHandle', (['hwndDC'], {}), '(hwndDC)\n', (1094, 1102), False, 'import win32gui, win32ui, win32con\n'), ((1165, 1187), 'win32ui.CreateBitmap', 'win32ui.CreateBitmap', ([], {}), '()\n', (1185, 1187), False, 'import win32gui, win32ui, win32con\n'), ((1680, 1779), 'PIL.Image.frombuffer', 'Image.frombuffer', (['"""RGB"""', "(bmpinfo['bmWidth'], bmpinfo['bmHeight'])", 'bmpstr', '"""raw"""', '"""BGRX"""', '(0)', '(1)'], {}), "('RGB', (bmpinfo['bmWidth'], bmpinfo['bmHeight']), bmpstr,\n 'raw', 'BGRX', 0, 1)\n", (1696, 1779), False, 'from PIL import Image\n'), ((1903, 1935), 'win32gui.ReleaseDC', 'win32gui.ReleaseDC', (['hwnd', 'hwndDC'], {}), '(hwnd, hwndDC)\n', (1921, 1935), False, 'import win32gui, win32ui, win32con\n'), ((2202, 2221), 'cv2.imread', 'cv2.imread', (['imgPath'], {}), '(imgPath)\n', (2212, 2221), False, 'import cv2\n'), ((2277, 2320), 'cv2.cvtColor', 'cv2.cvtColor', (['image_ori', 'cv2.COLOR_BGR2GRAY'], {}), '(image_ori, cv2.COLOR_BGR2GRAY)\n', (2289, 2320), False, 'import cv2\n'), ((2435, 2454), 'cv2.imread', 'cv2.imread', (['imgPath'], {}), '(imgPath)\n', (2445, 2454), False, 'import cv2\n'), ((2463, 2506), 'cv2.Sobel', 'cv2.Sobel', (['image', 'cv2.CV_16S', '(1)', '(0)'], {'ksize': '(3)'}), '(image, cv2.CV_16S, 1, 0, ksize=3)\n', (2472, 2506), False, 'import cv2\n'), ((2512, 2555), 'cv2.Sobel', 'cv2.Sobel', (['image', 'cv2.CV_16S', '(0)', '(1)'], {'ksize': '(3)'}), '(image, cv2.CV_16S, 0, 1, ksize=3)\n', (2521, 2555), False, 'import cv2\n'), ((2563, 2585), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['x'], {}), '(x)\n', (2582, 2585), False, 'import cv2\n'), ((2597, 2619), 'cv2.convertScaleAbs', 'cv2.convertScaleAbs', (['y'], {}), '(y)\n', (2616, 2619), False, 'import cv2\n'), ((2876, 2897), 'os.mkdir', 'os.mkdir', (['folder_name'], {}), '(folder_name)\n', (2884, 2897), False, 'import os\n'), ((2336, 2371), 'cv2.Laplacian', 'cv2.Laplacian', (['img2gray', 'cv2.CV_64F'], {}), '(img2gray, cv2.CV_64F)\n', (2349, 2371), False, 'import cv2\n'), ((2630, 2670), 'cv2.addWeighted', 'cv2.addWeighted', (['absX', '(0.5)', 'absY', '(0.5)', '(0)'], {}), '(absX, 0.5, absY, 0.5, 0)\n', (2645, 2670), False, 'import cv2\n'), ((2801, 2815), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2813, 2815), False, 'from datetime import datetime\n')]
import ntpath import numpy as np from numpy.lib.stride_tricks import as_strided class Loader: """ This class handles .npz data that has an embedded matrix-like object. Its methods deal with loading/unpacking Numpy .npz data objects, and can also create a tiled data which is averaging values in a window of the matrix (i.e. averaging values in a sub-matrix). """ def __init__(self, path): self.path = path self.data = None self.tiled_data = None def __repr__(self): return f'{type(self).__name__}(path="{self.path}")' def load_file(self): """ Loads the contents of a compressed .npz file The expected input file only has the contents of a single file (i.e. data.files[] has only 1 element) That single element is an array with a single embedded array-of-arrays: [[[0,1][2,3]]] :return: None """ archive = np.load(self.path) self.data = archive[archive.files[0]][0] def get_data(self): """ Get the data :return: Numpy array of arrays """ return self.data def get_identifier(self): """ Sets the identifier attribute The input file name is expected to be in the format of [identifier]_[*]+.npz For example: identifier_example.npz :return: None """ return ntpath.basename(self.path).split('_')[0] def get_range(self): """ Gets the minimum and maximum values from the data array-of-arrays :return: Tuple, min and max values in the data """ return np.amin(self.data), np.amax(self.data) def create_tiled_data(self): """ This method takes an input n x n numpy array-of-arrays (i.e. matrix) and creates a new matrix that has the average or an i x i size slice matrix in a new matrix For example: input = [[0,1],[2,3]] output with a window of 2x2 = [[1.5]] :return: Numpy array of arrays """ data = self.data tiled_data = [data] while len(data) > 300: dimension = data.shape[0] if dimension % 2 != 0: trimmed_data = data[0:len(data)-1, 0:len(data)-1] data = trimmed_data data = self.sum_sub_matrices(data, 2) tiled_data.append(data) self.tiled_data = tiled_data return tiled_data @staticmethod def as_sub_matrices(x, rows, cols=None, writeable=False): """ Create sub-matrices from an input Numpy array-of-arrays (i.e. matrix) It uses "rows" and "cols" to set the window size for getting the sub-matrices :param x: Numpy array (matrix) :param rows: Number; the size of the window in terms of rows :param cols: Number; the size of the window in terms of columns :param writeable: Boolean :return: Numpy array of sub-matrices """ if cols is None: cols = rows x = np.asarray(x) x_rows, x_cols = x.shape s1, s2 = x.strides if x_rows % rows != 0 or x_cols % cols != 0: print(x_rows, rows, x_cols, cols) raise ValueError('Invalid dimensions.') out_shape = (x_rows // rows, x_cols // cols, rows, cols) out_strides = (s1 * rows, s2 * cols, s1, s2) return as_strided(x, out_shape, out_strides, writeable=writeable) def sum_sub_matrices(self, x, rows, cols=None): """ Calculate the sum over a window in a matrix :param x: Numpy array (matrix) :param rows: Number; the size of the window in terms of rows :param cols: Number; the size of the window in terms of columns :return: Numpy array (matrix); same size as x """ if cols is None: cols = rows x = np.asarray(x) x_sub = self.as_sub_matrices(x, rows, cols) x_sum = np.mean(x_sub, axis=(2, 3)) return x_sum
[ "numpy.mean", "ntpath.basename", "numpy.amin", "numpy.asarray", "numpy.lib.stride_tricks.as_strided", "numpy.load", "numpy.amax" ]
[((946, 964), 'numpy.load', 'np.load', (['self.path'], {}), '(self.path)\n', (953, 964), True, 'import numpy as np\n'), ((3054, 3067), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (3064, 3067), True, 'import numpy as np\n'), ((3412, 3470), 'numpy.lib.stride_tricks.as_strided', 'as_strided', (['x', 'out_shape', 'out_strides'], {'writeable': 'writeable'}), '(x, out_shape, out_strides, writeable=writeable)\n', (3422, 3470), False, 'from numpy.lib.stride_tricks import as_strided\n'), ((3896, 3909), 'numpy.asarray', 'np.asarray', (['x'], {}), '(x)\n', (3906, 3909), True, 'import numpy as np\n'), ((3978, 4005), 'numpy.mean', 'np.mean', (['x_sub'], {'axis': '(2, 3)'}), '(x_sub, axis=(2, 3))\n', (3985, 4005), True, 'import numpy as np\n'), ((1645, 1663), 'numpy.amin', 'np.amin', (['self.data'], {}), '(self.data)\n', (1652, 1663), True, 'import numpy as np\n'), ((1665, 1683), 'numpy.amax', 'np.amax', (['self.data'], {}), '(self.data)\n', (1672, 1683), True, 'import numpy as np\n'), ((1409, 1435), 'ntpath.basename', 'ntpath.basename', (['self.path'], {}), '(self.path)\n', (1424, 1435), False, 'import ntpath\n')]
from app import app from app.framework.controller import * from flask_login import login_required, current_user from app.model.todolist import * from app.framework.requests.request import request from flask import jsonify, Response import json from sqlalchemy.ext.declarative import DeclarativeMeta class AlchemyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj.__class__, DeclarativeMeta): # an SQLAlchemy class fields = {} for field in [x for x in dir(obj) if not x.startswith('_') and x != 'metadata']: data = obj.__getattribute__(field) try: json.dumps(data) # this will fail on non-encodable values, like other classes fields[field] = data except TypeError: fields[field] = None # a json-encodable dict return fields return json.JSONEncoder.default(self, obj) class ToDoListController(Controller): route_prefix = '/api' def construct(cls): ToDoListController.register(app) @route('/create', methods=['POST']) @login_required def create(self): todolist = ToDoList() data = request.get_json() todolist.title = data['title'] todolist.description = data['description'] todolist.progress = data['progress'] todolist.author = current_user.user_id try: todolist.save() except: return jsonify(message="Failure") data = json.dumps(todolist, cls=AlchemyEncoder) data = json.loads(data) data.update({'message': 'Success'}) return Response(json.dumps(data), mimetype="application/json") @route('/todolist/<user_id>') def fetch(self, user_id): todolist = ToDoList.query.filter_by(_creator=user_id).all() data = json.dumps(todolist, cls=AlchemyEncoder) return Response(data, mimetype='application/json') @route('/done/<item_id>', methods=['POST']) def done(self, item_id): todolist = ToDoList.query.filter_by(id=item_id).first() todolist.done = True todolist.progress = False todolist.save() return jsonify(message="Success") @route('/undone/<item_id>', methods=['POST']) def undone(self, item_id): todolist = ToDoList.query.filter_by(id=item_id).first() todolist.done = False todolist.progress = True try: todolist.save() except: return jsonify(message="Failure") return jsonify(message="Success") @route("/delete/<item_id>", methods=['POST']) def delete(self, item_id): todolist = ToDoList.query.filter_by(id=item_id).first() try: todolist.delete() except: return jsonify(message="Failure") return jsonify(message="Success") @route('item/<item_id>', methods=['GET']) def item(self,item_id): todolist = ToDoList.query.filter_by(id=item_).first() @route('<item_id>', methods=['POST']) def edit(self, item_id): data = request.get_json() todolist = ToDoList.query.filter_by(id=item_id).first() todolist.title = data['title'] todolist.description = data['description'] try: todolist.save() except: return jsonify(message="Failure") return jsonify(message="Success")
[ "json.loads", "json.JSONEncoder.default", "json.dumps", "app.framework.requests.request.request.get_json", "flask.Response", "flask.jsonify" ]
[((939, 974), 'json.JSONEncoder.default', 'json.JSONEncoder.default', (['self', 'obj'], {}), '(self, obj)\n', (963, 974), False, 'import json\n'), ((1239, 1257), 'app.framework.requests.request.request.get_json', 'request.get_json', ([], {}), '()\n', (1255, 1257), False, 'from app.framework.requests.request import request\n'), ((1558, 1598), 'json.dumps', 'json.dumps', (['todolist'], {'cls': 'AlchemyEncoder'}), '(todolist, cls=AlchemyEncoder)\n', (1568, 1598), False, 'import json\n'), ((1614, 1630), 'json.loads', 'json.loads', (['data'], {}), '(data)\n', (1624, 1630), False, 'import json\n'), ((1899, 1939), 'json.dumps', 'json.dumps', (['todolist'], {'cls': 'AlchemyEncoder'}), '(todolist, cls=AlchemyEncoder)\n', (1909, 1939), False, 'import json\n'), ((1955, 1998), 'flask.Response', 'Response', (['data'], {'mimetype': '"""application/json"""'}), "(data, mimetype='application/json')\n", (1963, 1998), False, 'from flask import jsonify, Response\n'), ((2244, 2270), 'flask.jsonify', 'jsonify', ([], {'message': '"""Success"""'}), "(message='Success')\n", (2251, 2270), False, 'from flask import jsonify, Response\n'), ((2602, 2628), 'flask.jsonify', 'jsonify', ([], {'message': '"""Success"""'}), "(message='Success')\n", (2609, 2628), False, 'from flask import jsonify, Response\n'), ((2908, 2934), 'flask.jsonify', 'jsonify', ([], {'message': '"""Success"""'}), "(message='Success')\n", (2915, 2934), False, 'from flask import jsonify, Response\n'), ((3160, 3178), 'app.framework.requests.request.request.get_json', 'request.get_json', ([], {}), '()\n', (3176, 3178), False, 'from app.framework.requests.request import request\n'), ((3451, 3477), 'flask.jsonify', 'jsonify', ([], {'message': '"""Success"""'}), "(message='Success')\n", (3458, 3477), False, 'from flask import jsonify, Response\n'), ((1699, 1715), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (1709, 1715), False, 'import json\n'), ((1516, 1542), 'flask.jsonify', 'jsonify', ([], {'message': '"""Failure"""'}), "(message='Failure')\n", (1523, 1542), False, 'from flask import jsonify, Response\n'), ((2560, 2586), 'flask.jsonify', 'jsonify', ([], {'message': '"""Failure"""'}), "(message='Failure')\n", (2567, 2586), False, 'from flask import jsonify, Response\n'), ((2866, 2892), 'flask.jsonify', 'jsonify', ([], {'message': '"""Failure"""'}), "(message='Failure')\n", (2873, 2892), False, 'from flask import jsonify, Response\n'), ((3409, 3435), 'flask.jsonify', 'jsonify', ([], {'message': '"""Failure"""'}), "(message='Failure')\n", (3416, 3435), False, 'from flask import jsonify, Response\n'), ((667, 683), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (677, 683), False, 'import json\n')]
import os import shutil root = input("Enter the full path of directory you want to sort: \n") # add more extension if needed dic = {"doc": "Word File", "py": "Python File", "docx": "Word File", "exe": "EXE file", "zip": "Zip File", "txt": "Text File", "html": "HTML File", "png": "Images", "jpg": "Images", "mp4": "Videos", "pptx": "PPT file", "ppt": "PPT file", "cpp": "C++ File", "xlsx": "Excel File", "xlx": "Excel File", "mp3": "Audio File", "c": "C File", "pdf": "PDF File"} flag = False list_ = os.listdir(root) for file_ in list_: name, ext = os.path.splitext(file_) ext = ext[1:] # store Extension if ext == '': # if it is a directory then skip continue else: if ext in dic.keys(): if os.path.exists(root + '/Sorted/' + dic[ext]): # if the extension name file already exists shutil.move(root + '/' + file_, root + '/Sorted/' + dic[ext] + '/' + file_) # then move the current file else: os.makedirs(root + '/Sorted/' + dic[ext]) # otherwise create the directory shutil.move(root + '/' + file_, root + '/Sorted/' + dic[ext] + '/' + file_) # then move the file else: if not os.path.exists(root + '/Sorted/Extra File'): os.makedirs(root + '/Sorted/Extra File') # otherwise create the directory named "Extra File" shutil.move(root + '/' + file_, root + '/Sorted/Extra File/' + file_) else: if os.path.isfile(root + '/Sorted/Extra File/' + file_): continue shutil.move(root + '/' + file_, root + '/Sorted/Extra File/' + file_)
[ "os.path.exists", "os.listdir", "os.makedirs", "shutil.move", "os.path.splitext", "os.path.isfile" ]
[((543, 559), 'os.listdir', 'os.listdir', (['root'], {}), '(root)\n', (553, 559), False, 'import os\n'), ((598, 621), 'os.path.splitext', 'os.path.splitext', (['file_'], {}), '(file_)\n', (614, 621), False, 'import os\n'), ((791, 835), 'os.path.exists', 'os.path.exists', (["(root + '/Sorted/' + dic[ext])"], {}), "(root + '/Sorted/' + dic[ext])\n", (805, 835), False, 'import os\n'), ((899, 974), 'shutil.move', 'shutil.move', (["(root + '/' + file_)", "(root + '/Sorted/' + dic[ext] + '/' + file_)"], {}), "(root + '/' + file_, root + '/Sorted/' + dic[ext] + '/' + file_)\n", (910, 974), False, 'import shutil\n'), ((1070, 1111), 'os.makedirs', 'os.makedirs', (["(root + '/Sorted/' + dic[ext])"], {}), "(root + '/Sorted/' + dic[ext])\n", (1081, 1111), False, 'import os\n'), ((1163, 1238), 'shutil.move', 'shutil.move', (["(root + '/' + file_)", "(root + '/Sorted/' + dic[ext] + '/' + file_)"], {}), "(root + '/' + file_, root + '/Sorted/' + dic[ext] + '/' + file_)\n", (1174, 1238), False, 'import shutil\n'), ((1296, 1339), 'os.path.exists', 'os.path.exists', (["(root + '/Sorted/Extra File')"], {}), "(root + '/Sorted/Extra File')\n", (1310, 1339), False, 'import os\n'), ((1358, 1398), 'os.makedirs', 'os.makedirs', (["(root + '/Sorted/Extra File')"], {}), "(root + '/Sorted/Extra File')\n", (1369, 1398), False, 'import os\n'), ((1469, 1538), 'shutil.move', 'shutil.move', (["(root + '/' + file_)", "(root + '/Sorted/Extra File/' + file_)"], {}), "(root + '/' + file_, root + '/Sorted/Extra File/' + file_)\n", (1480, 1538), False, 'import shutil\n'), ((1596, 1648), 'os.path.isfile', 'os.path.isfile', (["(root + '/Sorted/Extra File/' + file_)"], {}), "(root + '/Sorted/Extra File/' + file_)\n", (1610, 1648), False, 'import os\n'), ((1697, 1766), 'shutil.move', 'shutil.move', (["(root + '/' + file_)", "(root + '/Sorted/Extra File/' + file_)"], {}), "(root + '/' + file_, root + '/Sorted/Extra File/' + file_)\n", (1708, 1766), False, 'import shutil\n')]
# Generated by Django 2.0 on 2019-12-26 10:53 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('gram', '0001_initial'), ] operations = [ migrations.AddField( model_name='profile', name='username', field=models.CharField(default='UserName', max_length=50), ), ]
[ "django.db.models.CharField" ]
[((321, 372), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""UserName"""', 'max_length': '(50)'}), "(default='UserName', max_length=50)\n", (337, 372), False, 'from django.db import migrations, models\n')]
import fsspec from pydantic import BaseModel from .compression import COMPRESSORS from .encryption import ENCRYPTORS from .models import CommitRef, Tag, User from .refs import Refs from .remotes import Remote from .serializers import SERIALIZERS from .storage import (ContentAddressableStorage, FunctionStorage, ObjectStorage, PydanticModelStorage, SubfolderByKeyStorage, SubfolderStorage) class Config(BaseModel): user: User = None main_branch: str = "master" HEAD: str = main_branch root_path: str = "file://./" igit_path: str = ".igit" tree_path: str = None serialization: str = "msgpack-dill" hash_func: str = "sha1" compression: str = "noop" encryption: str = "noop" encryption_kwargs: dict = None @classmethod def from_path(cls, path): with fsspec.open(path, "rb") as f: cfg = cls.parse_raw(f.read()) return cfg def get_compressor(self): return COMPRESSORS[self.compression] def get_encryptor(self): kwargs = {} if self.encryption_kwargs is not None: kwargs.update(self.encryption_kwargs) return ENCRYPTORS[self.encryption](**kwargs) def get_serializer(self): return SERIALIZERS[self.serialization] def get_objects(self, store): if isinstance(store, str): store = fsspec.get_mapper(store) store = SubfolderStorage(store, name='objects') encryptor = self.get_encryptor() store = FunctionStorage( store, encryptor.encrypt, encryptor.decrypt, ) compressor = self.get_compressor() if compressor is not None: store = FunctionStorage(store, compressor.compress, compressor.decompress) serializer = self.get_serializer() if serializer is not None: store = ObjectStorage(store, serializer=serializer) store = SubfolderByKeyStorage(store) store = ContentAddressableStorage(store) return store def get_index(self, store): store = SubfolderStorage(store, name='index') serializer = self.get_serializer() return ObjectStorage(store, serializer=serializer) def get_refs(self, store): commits_store = PydanticModelStorage(store, CommitRef) heads = SubfolderStorage(commits_store, "heads") tags_store = PydanticModelStorage(store, Tag) tags = SubfolderStorage(tags_store, "tags") remotes_store = PydanticModelStorage(store, Remote) remotes = SubfolderStorage(remotes_store, "remotes") return Refs(heads, tags, remotes)
[ "fsspec.get_mapper", "fsspec.open" ]
[((856, 879), 'fsspec.open', 'fsspec.open', (['path', '"""rb"""'], {}), "(path, 'rb')\n", (867, 879), False, 'import fsspec\n'), ((1391, 1415), 'fsspec.get_mapper', 'fsspec.get_mapper', (['store'], {}), '(store)\n', (1408, 1415), False, 'import fsspec\n')]
import json import os import firebase_admin from dotenv import load_dotenv from firebase_admin import credentials, firestore load_dotenv() if not firebase_admin._apps: CREDENTIALS = credentials.Certificate({ 'type': 'service_account', 'token_uri': 'https://oauth2.googleapis.com/token', 'project_id': os.environ['FIREBASE_PROJECT_ID'], 'client_email': os.environ['FIREBASE_CLIENT_EMAIL'], 'private_key': os.environ['FIREBASE_PRIVATE_KEY'].replace('\\n', '\n') }) firebase_admin.initialize_app(CREDENTIALS,{'databaseURL': 'https://'+os.environ['FIREBASE_PROJECT_ID']+'.firebaseio.com'}) db = firestore.client() def main(): itemNameList = json.load(open('json/ship.json', 'r', encoding="utf-8_sig"))["pagePosition"] for channel in itemNameList: docs = db.collection('shipPost').where('channel', '==', channel).get() count = len(docs) print(channel, count) db.collection('count').document(channel).update({'count': count, 'update': firestore.SERVER_TIMESTAMP}) if __name__ == "__main__": main()
[ "firebase_admin.firestore.client", "firebase_admin.initialize_app", "dotenv.load_dotenv" ]
[((127, 140), 'dotenv.load_dotenv', 'load_dotenv', ([], {}), '()\n', (138, 140), False, 'from dotenv import load_dotenv\n'), ((626, 644), 'firebase_admin.firestore.client', 'firestore.client', ([], {}), '()\n', (642, 644), False, 'from firebase_admin import credentials, firestore\n'), ((498, 630), 'firebase_admin.initialize_app', 'firebase_admin.initialize_app', (['CREDENTIALS', "{'databaseURL': 'https://' + os.environ['FIREBASE_PROJECT_ID'] +\n '.firebaseio.com'}"], {}), "(CREDENTIALS, {'databaseURL': 'https://' + os.\n environ['FIREBASE_PROJECT_ID'] + '.firebaseio.com'})\n", (527, 630), False, 'import firebase_admin\n')]
#!/usr/bin/env python3.7 import numpy as np import os import time import dask import dask.array as da from distributed import Client from dask_jobqueue import SLURMCluster from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid from config_parser import validate_args as va import logging import bookkeeping logger = logging.getLogger(__name__) logging.basicConfig(format="%(asctime)-15s %(levelname)s: %(message)s", level=logging.INFO) def map_field_name_id(fieldname, msfile): """Convert field name to field ID. Parameters ---------- fieldname : string Returns ------- fieldid : int """ lo = listobs_daskms.ListObs(msfile, 'DATA') field_info = lo.get_fields() fnames = {ifield['Name']:ifield['ID'] for ifield in field_info} try: fid = fnames[fieldname] except: raise ValueError(f"The field name value of {fieldname} is not a valid field in this dataset.") return fid def run_gridflag(visname, fields): stokes = 'Q' n_workers = 1 username = os.environ["USER"] logger.info('GridFlag: Setting up Dask Cluster with {0} workers.'.format(n_workers)) # Cluster configuration should be moved to ~/.config/dask/jobqueue.yaml cluster = SLURMCluster( queue="Main", cores=16, processes=1, n_workers=n_workers, memory="114GB", interface="ens3", shebang='#!/usr/bin/env bash', walltime="02:00:00", local_directory="temp/", death_timeout="1m", log_directory="logs/", project="b09-mightee-ag", python="singularity exec /idia/software/containers/gridflag_tools.simg /usr/bin/python3" ) cluster.scale(jobs=n_workers) time.sleep(30) client = Client(cluster) start = time.time() fieldname = fields.targetfield fieldid = map_field_name_id(fieldname, visname) logger.info('Reading measurement set in dask-ms: {0}.'.format(visname)) ds_ind, uvbins = compute_uv_bins.load_ms_file(visname, fieldid=fieldid, bin_count_factor=1.0, chunksize=2*10**7) logger.info('Flagging field {0} ({1}).'.format(fieldid, fieldname, visname)) # Check existing flags in MS # check_exising_flags(ds_ind, stokes=stokes, client=client) flag_list, median_grid, median_grid_flg = gridflag.compute_ipflag_grid(ds_ind, uvbins, stokes = stokes, sigma=3.0, partition_level=3, stokes=stokes, client=client) flag_vis_percentage = 100*len(flag_list)/len(ds_ind.DATA) print("Percentage of rows flagged: {:.1f}% - {}/{} visibilities".format(flag_vis_percentage, len(flag_list), len(ds_ind.DATA))) logger.info("Percentage of rows flagged {0:.2f} % conprising {1}/{2} visibilities.".format(flag_vis_percentage, len(flag_list), len(ds_ind.DATA))) # Save UV-grid median plot annulus_width = annulus_stats.compute_annulus_bins(median_grid, uvbins, 10) plotgrid.plot_uv_grid(median_grid, uvbins, annulus_width, filename="uv_grid_unflagged.png") plotgrid.plot_uv_grid(median_grid_flg, uvbins, annulus_width, filename="uv_grid_flagged.png") compute_uv_bins.write_ms_file(visname, ds_ind, flag_list, fieldid, stokes=stokes, overwrite=True) end = time.time() print("GridFlag runtime: {} seconds.".format(end-start)) logger.info("Flagging completed. Runtime: {0} seconds.".format((end-start))) client.close() cluster.close() def main(args, taskvals): visname = va(taskvals, 'data', 'vis', str) fields = bookkeeping.get_field_ids(taskvals['fields']) run_gridflag(visname, fields) if __name__ == '__main__': bookkeeping.run_script(main)
[ "logging.getLogger", "logging.basicConfig", "ipflag.compute_uv_bins.write_ms_file", "ipflag.compute_uv_bins.load_ms_file", "ipflag.gridflag.compute_ipflag_grid", "config_parser.validate_args", "bookkeeping.run_script", "bookkeeping.get_field_ids", "time.sleep", "ipflag.listobs_daskms.ListObs", "ipflag.annulus_stats.compute_annulus_bins", "ipflag.plotgrid.plot_uv_grid", "distributed.Client", "time.time", "dask_jobqueue.SLURMCluster" ]
[((354, 381), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (371, 381), False, 'import logging\n'), ((382, 477), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)-15s %(levelname)s: %(message)s"""', 'level': 'logging.INFO'}), "(format='%(asctime)-15s %(levelname)s: %(message)s',\n level=logging.INFO)\n", (401, 477), False, 'import logging\n'), ((684, 722), 'ipflag.listobs_daskms.ListObs', 'listobs_daskms.ListObs', (['msfile', '"""DATA"""'], {}), "(msfile, 'DATA')\n", (706, 722), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((1293, 1655), 'dask_jobqueue.SLURMCluster', 'SLURMCluster', ([], {'queue': '"""Main"""', 'cores': '(16)', 'processes': '(1)', 'n_workers': 'n_workers', 'memory': '"""114GB"""', 'interface': '"""ens3"""', 'shebang': '"""#!/usr/bin/env bash"""', 'walltime': '"""02:00:00"""', 'local_directory': '"""temp/"""', 'death_timeout': '"""1m"""', 'log_directory': '"""logs/"""', 'project': '"""b09-mightee-ag"""', 'python': '"""singularity exec /idia/software/containers/gridflag_tools.simg /usr/bin/python3"""'}), "(queue='Main', cores=16, processes=1, n_workers=n_workers,\n memory='114GB', interface='ens3', shebang='#!/usr/bin/env bash',\n walltime='02:00:00', local_directory='temp/', death_timeout='1m',\n log_directory='logs/', project='b09-mightee-ag', python=\n 'singularity exec /idia/software/containers/gridflag_tools.simg /usr/bin/python3'\n )\n", (1305, 1655), False, 'from dask_jobqueue import SLURMCluster\n'), ((1784, 1798), 'time.sleep', 'time.sleep', (['(30)'], {}), '(30)\n', (1794, 1798), False, 'import time\n'), ((1813, 1828), 'distributed.Client', 'Client', (['cluster'], {}), '(cluster)\n', (1819, 1828), False, 'from distributed import Client\n'), ((1842, 1853), 'time.time', 'time.time', ([], {}), '()\n', (1851, 1853), False, 'import time\n'), ((2041, 2144), 'ipflag.compute_uv_bins.load_ms_file', 'compute_uv_bins.load_ms_file', (['visname'], {'fieldid': 'fieldid', 'bin_count_factor': '(1.0)', 'chunksize': '(2 * 10 ** 7)'}), '(visname, fieldid=fieldid, bin_count_factor=1.0,\n chunksize=2 * 10 ** 7)\n', (2069, 2144), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((2516, 2639), 'ipflag.gridflag.compute_ipflag_grid', 'gridflag.compute_ipflag_grid', (['ds_ind', 'uvbins'], {'stokes': 'stokes', 'sigma': '(3.0)', 'partition_level': '(3)', 'client': 'client'}), '(ds_ind, uvbins, stokes=stokes, sigma=3.0,\n partition_level=3, stokes=stokes, client=client)\n', (2544, 2639), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((3492, 3551), 'ipflag.annulus_stats.compute_annulus_bins', 'annulus_stats.compute_annulus_bins', (['median_grid', 'uvbins', '(10)'], {}), '(median_grid, uvbins, 10)\n', (3526, 3551), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((3556, 3652), 'ipflag.plotgrid.plot_uv_grid', 'plotgrid.plot_uv_grid', (['median_grid', 'uvbins', 'annulus_width'], {'filename': '"""uv_grid_unflagged.png"""'}), "(median_grid, uvbins, annulus_width, filename=\n 'uv_grid_unflagged.png')\n", (3577, 3652), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((3652, 3750), 'ipflag.plotgrid.plot_uv_grid', 'plotgrid.plot_uv_grid', (['median_grid_flg', 'uvbins', 'annulus_width'], {'filename': '"""uv_grid_flagged.png"""'}), "(median_grid_flg, uvbins, annulus_width, filename=\n 'uv_grid_flagged.png')\n", (3673, 3750), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((3751, 3853), 'ipflag.compute_uv_bins.write_ms_file', 'compute_uv_bins.write_ms_file', (['visname', 'ds_ind', 'flag_list', 'fieldid'], {'stokes': 'stokes', 'overwrite': '(True)'}), '(visname, ds_ind, flag_list, fieldid, stokes=\n stokes, overwrite=True)\n', (3780, 3853), False, 'from ipflag import compute_uv_bins, gridflag, listobs_daskms, annulus_stats, plotgrid\n'), ((3860, 3871), 'time.time', 'time.time', ([], {}), '()\n', (3869, 3871), False, 'import time\n'), ((4098, 4130), 'config_parser.validate_args', 'va', (['taskvals', '"""data"""', '"""vis"""', 'str'], {}), "(taskvals, 'data', 'vis', str)\n", (4100, 4130), True, 'from config_parser import validate_args as va\n'), ((4149, 4194), 'bookkeeping.get_field_ids', 'bookkeeping.get_field_ids', (["taskvals['fields']"], {}), "(taskvals['fields'])\n", (4174, 4194), False, 'import bookkeeping\n'), ((4265, 4293), 'bookkeeping.run_script', 'bookkeeping.run_script', (['main'], {}), '(main)\n', (4287, 4293), False, 'import bookkeeping\n')]
#!/usr/bin/python3 import sys import os import argparse import numpy as np def main(): parser = argparse.ArgumentParser(description='') parser.add_argument('inputFile', type=str, nargs=1, help='name of the input file') parser.add_argument('outputFile',type=str, nargs=1, help='name of the output file') # option parser.add_argument('--opt_name',type=str,dest="destination",default="default name",help='') args = parser.parse_args() inputFilename=args.inputFile[0] if __name__== "__main__": main()
[ "argparse.ArgumentParser" ]
[((101, 140), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (124, 140), False, 'import argparse\n')]
# -*- coding: utf-8 -*- from django.db import models from django.utils.html import strip_tags from django.core.urlresolvers import reverse from django.utils.translation import ugettext, ugettext_lazy as _ from filebrowser.fields import FileBrowseField from django.core.mail import send_mail # Create your models here. class MetaData(models.Model): """ Abstract model that provides meta data for content. """ _meta_title = models.CharField(_(u"Tytuł sekcji meta"), null=True, blank=True, max_length=500, help_text=_(u"Opcjonalny HTML title tag.")) meta_description = models.TextField(_(u"Opis sekcji meta"), blank=True) keywords = models.CharField(max_length=500, blank=True, null=True) class Meta: abstract = True def save(self, *args, **kwargs): """ Set the description field on save. """ self.meta_description = strip_tags(self.meta_description) super(MetaData, self).save(*args, **kwargs) def meta_title(self): """ Accessor for the optional ``_meta_title`` field, which returns the string version of the instance if not provided. """ return self._meta_title or str(self) class Segment(models.Model): title = models.CharField(max_length=254) def __unicode__(self): return self.title #class Page(models.Model): class Category(MetaData): slug = models.SlugField(max_length=50) title = models.CharField(_(u'Tytuł'), default='', max_length=254, blank=False, null=False) items_title = models.CharField(_(u'Tytuł Katalogu'), default='', max_length=254, blank=True, null=True) timestamp = models.DateTimeField(auto_now_add=True) active = models.BooleanField(default=True) slogan = models.CharField(max_length=255, default='', blank=True) description = models.TextField(_(u'Opis'), blank=True, null=True) picture = models.ImageField(_(u'Kategoria'), default='pics/default.png', upload_to='pics/', blank=False, null=False) header = models.CharField(_(u'Klasa obrazka'), max_length=50, default='sec1', blank=True, null=True) order = models.IntegerField(default=0, blank=False, null=False) parent_category = models.ForeignKey('self', blank=True, null=True, related_name="subcategories") segment = models.ForeignKey(Segment, default='1', blank=False, null=False) #products = models.ManyToManyField(Product, blank=True, null=True) def __unicode__(self): return self.title def get_absolute_url(self): return reverse("adoffice:detail", kwargs={"slug": self.slug}) class PageClass(models.Model): name = models.CharField(max_length=255, default='homepage', blank=False, null=False) def __unicode__(self): return self.name class Page(MetaData): section1 = models.TextField(u'Sekcja-1', blank=True, null=True) section2 = models.TextField(u'Sekcja-2', blank=True, null=True) title = models.CharField(max_length=254, default='') pageclass = models.ForeignKey(PageClass, default='1', blank=False, null=False) def __unicode__(self): return self.title #subcategories = Category.objects.filter(parent_category__id=target_category.id) class GroupCategory(models.Model): title = models.CharField(max_length=254) def __unicode__(self): return self.title class Finishing(models.Model): title = models.CharField(max_length=254) def __unicode__(self): return self.title class Accessories(models.Model): title = models.CharField(max_length=254) def __unicode__(self): return self.title class Product(MetaData): _category = '' title = models.CharField(max_length=254) slug = models.SlugField(max_length=150, unique=True) description = models.TextField(_(u'Opis'), blank=True, null=True) timestamp = models.DateTimeField(auto_now_add=True) active = models.BooleanField(default=True) format_size = models.CharField(max_length=25, blank=True) category = models.ManyToManyField(Category, blank=True, null=True, name='categories') group_category = models.ManyToManyField(GroupCategory, blank=True, null=True) finishing = models.ManyToManyField(Finishing, blank=True, null=True) accessories = models.ManyToManyField(Accessories, blank=True, null=True) picture = models.ImageField(_(u'Obrazek'), default='pics/default.png', upload_to='pics/', blank=False, null=False) document = FileBrowseField("PDF", max_length=200, directory="documents/", extensions=[".pdf"], blank=True, null=True) def __unicode__(self): return self.title class Meta: unique_together = ('title', 'slug') def get_absolute_url(self): return reverse("adoffice:product", kwargs={"slug": self.slug, "category": self.categories.all()[0].slug}) def get_next(self): self._category = self.categories.all()[0] next = Product.objects.filter(id__gt=self.id, categories__in=[self._category], active=True).order_by('id') if next: return next[0] return False def get_prev(self): self._category = self.categories.all()[0] prev = Product.objects.filter(id__lt=self.id, categories__in=[self._category], active=True).order_by('-id') if prev: return prev[0] return False def get_category(self): self._category = self.categories.all()[0] return self._category class ProductImage(models.Model): product = models.ForeignKey(Product) picture = models.ImageField(_(u'Obrazek'), default='pics/default.png', upload_to='pics/', blank=False, null=False) featured = models.BooleanField(default=False) thumbnail = models.BooleanField(default=False) updated = models.DateTimeField(auto_now_add=False, auto_now=True) def __unicode__(self): return self.product.title class Quota(models.Model): email = models.EmailField() ref = models.CharField(max_length=254, default='') full_name = models.CharField(_(u'Imię i Nazwisko'), max_length=254, default='', blank=False, null=False) company = models.CharField(_(u'Firma'), max_length=254, default='', blank=True, null=True) phone = models.CharField(_(u'Telefon'), max_length=254, default='') note = models.TextField(_(u'Wiadomość'), default='', blank=True, null=True) newsletter = models.BooleanField(_(u'Newsletter'), default=True, help_text=_(u'Chcę być informowany o nowościach i ofertach firmy Achilles.')) timestamp = models.DateTimeField(auto_now_add=True, auto_now=False) def __unicode__(self): return self.email def save(self): if self.email: message = _("Zapytanie strona www ").format(self) subject = _(u"Dziękujemy za kontakt") #send_mail(subject, message, "<EMAIL>", [self.email, ]) #print('Stored: {}'.format(self)) super(Quota, self).save()
[ "django.db.models.EmailField", "django.utils.translation.ugettext_lazy", "django.utils.html.strip_tags", "django.db.models.TextField", "django.db.models.IntegerField", "django.db.models.ForeignKey", "filebrowser.fields.FileBrowseField", "django.db.models.ManyToManyField", "django.core.urlresolvers.reverse", "django.db.models.BooleanField", "django.db.models.SlugField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((692, 747), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(500)', 'blank': '(True)', 'null': '(True)'}), '(max_length=500, blank=True, null=True)\n', (708, 747), False, 'from django.db import models\n'), ((1282, 1314), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)'}), '(max_length=254)\n', (1298, 1314), False, 'from django.db import models\n'), ((1437, 1468), 'django.db.models.SlugField', 'models.SlugField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (1453, 1468), False, 'from django.db import models\n'), ((1688, 1727), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1708, 1727), False, 'from django.db import models\n'), ((1741, 1774), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (1760, 1774), False, 'from django.db import models\n'), ((1788, 1844), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '""""""', 'blank': '(True)'}), "(max_length=255, default='', blank=True)\n", (1804, 1844), False, 'from django.db import models\n'), ((2185, 2240), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)', 'blank': '(False)', 'null': '(False)'}), '(default=0, blank=False, null=False)\n', (2204, 2240), False, 'from django.db import models\n'), ((2263, 2341), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""self"""'], {'blank': '(True)', 'null': '(True)', 'related_name': '"""subcategories"""'}), "('self', blank=True, null=True, related_name='subcategories')\n", (2280, 2341), False, 'from django.db import models\n'), ((2356, 2420), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Segment'], {'default': '"""1"""', 'blank': '(False)', 'null': '(False)'}), "(Segment, default='1', blank=False, null=False)\n", (2373, 2420), False, 'from django.db import models\n'), ((2694, 2771), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'default': '"""homepage"""', 'blank': '(False)', 'null': '(False)'}), "(max_length=255, default='homepage', blank=False, null=False)\n", (2710, 2771), False, 'from django.db import models\n'), ((2864, 2916), 'django.db.models.TextField', 'models.TextField', (['u"""Sekcja-1"""'], {'blank': '(True)', 'null': '(True)'}), "(u'Sekcja-1', blank=True, null=True)\n", (2880, 2916), False, 'from django.db import models\n'), ((2932, 2984), 'django.db.models.TextField', 'models.TextField', (['u"""Sekcja-2"""'], {'blank': '(True)', 'null': '(True)'}), "(u'Sekcja-2', blank=True, null=True)\n", (2948, 2984), False, 'from django.db import models\n'), ((2997, 3041), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)', 'default': '""""""'}), "(max_length=254, default='')\n", (3013, 3041), False, 'from django.db import models\n'), ((3058, 3124), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PageClass'], {'default': '"""1"""', 'blank': '(False)', 'null': '(False)'}), "(PageClass, default='1', blank=False, null=False)\n", (3075, 3124), False, 'from django.db import models\n'), ((3311, 3343), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)'}), '(max_length=254)\n', (3327, 3343), False, 'from django.db import models\n'), ((3443, 3475), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)'}), '(max_length=254)\n', (3459, 3475), False, 'from django.db import models\n'), ((3577, 3609), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)'}), '(max_length=254)\n', (3593, 3609), False, 'from django.db import models\n'), ((3722, 3754), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)'}), '(max_length=254)\n', (3738, 3754), False, 'from django.db import models\n'), ((3766, 3811), 'django.db.models.SlugField', 'models.SlugField', ([], {'max_length': '(150)', 'unique': '(True)'}), '(max_length=150, unique=True)\n', (3782, 3811), False, 'from django.db import models\n'), ((3898, 3937), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3918, 3937), False, 'from django.db import models\n'), ((3951, 3984), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)'}), '(default=True)\n', (3970, 3984), False, 'from django.db import models\n'), ((4003, 4046), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(25)', 'blank': '(True)'}), '(max_length=25, blank=True)\n', (4019, 4046), False, 'from django.db import models\n'), ((4062, 4136), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['Category'], {'blank': '(True)', 'null': '(True)', 'name': '"""categories"""'}), "(Category, blank=True, null=True, name='categories')\n", (4084, 4136), False, 'from django.db import models\n'), ((4158, 4218), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['GroupCategory'], {'blank': '(True)', 'null': '(True)'}), '(GroupCategory, blank=True, null=True)\n', (4180, 4218), False, 'from django.db import models\n'), ((4235, 4291), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['Finishing'], {'blank': '(True)', 'null': '(True)'}), '(Finishing, blank=True, null=True)\n', (4257, 4291), False, 'from django.db import models\n'), ((4310, 4368), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['Accessories'], {'blank': '(True)', 'null': '(True)'}), '(Accessories, blank=True, null=True)\n', (4332, 4368), False, 'from django.db import models\n'), ((4535, 4646), 'filebrowser.fields.FileBrowseField', 'FileBrowseField', (['"""PDF"""'], {'max_length': '(200)', 'directory': '"""documents/"""', 'extensions': "['.pdf']", 'blank': '(True)', 'null': '(True)'}), "('PDF', max_length=200, directory='documents/', extensions=[\n '.pdf'], blank=True, null=True)\n", (4550, 4646), False, 'from filebrowser.fields import FileBrowseField\n'), ((5594, 5620), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Product'], {}), '(Product)\n', (5611, 5620), False, 'from django.db import models\n'), ((5787, 5821), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (5806, 5821), False, 'from django.db import models\n'), ((5838, 5872), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (5857, 5872), False, 'from django.db import models\n'), ((5887, 5942), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(False)', 'auto_now': '(True)'}), '(auto_now_add=False, auto_now=True)\n', (5907, 5942), False, 'from django.db import models\n'), ((6046, 6065), 'django.db.models.EmailField', 'models.EmailField', ([], {}), '()\n', (6063, 6065), False, 'from django.db import models\n'), ((6076, 6120), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(254)', 'default': '""""""'}), "(max_length=254, default='')\n", (6092, 6120), False, 'from django.db import models\n'), ((6640, 6695), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'auto_now': '(False)'}), '(auto_now_add=True, auto_now=False)\n', (6660, 6695), False, 'from django.db import models\n'), ((458, 481), 'django.utils.translation.ugettext_lazy', '_', (['u"""Tytuł sekcji meta"""'], {}), "(u'Tytuł sekcji meta')\n", (459, 481), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((641, 663), 'django.utils.translation.ugettext_lazy', '_', (['u"""Opis sekcji meta"""'], {}), "(u'Opis sekcji meta')\n", (642, 663), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((926, 959), 'django.utils.html.strip_tags', 'strip_tags', (['self.meta_description'], {}), '(self.meta_description)\n', (936, 959), False, 'from django.utils.html import strip_tags\n'), ((1498, 1509), 'django.utils.translation.ugettext_lazy', '_', (['u"""Tytuł"""'], {}), "(u'Tytuł')\n", (1499, 1509), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((1599, 1619), 'django.utils.translation.ugettext_lazy', '_', (['u"""Tytuł Katalogu"""'], {}), "(u'Tytuł Katalogu')\n", (1600, 1619), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((1880, 1890), 'django.utils.translation.ugettext_lazy', '_', (['u"""Opis"""'], {}), "(u'Opis')\n", (1881, 1890), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((1947, 1962), 'django.utils.translation.ugettext_lazy', '_', (['u"""Kategoria"""'], {}), "(u'Kategoria')\n", (1948, 1962), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((2098, 2117), 'django.utils.translation.ugettext_lazy', '_', (['u"""Klasa obrazka"""'], {}), "(u'Klasa obrazka')\n", (2099, 2117), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((2595, 2649), 'django.core.urlresolvers.reverse', 'reverse', (['"""adoffice:detail"""'], {'kwargs': "{'slug': self.slug}"}), "('adoffice:detail', kwargs={'slug': self.slug})\n", (2602, 2649), False, 'from django.core.urlresolvers import reverse\n'), ((3847, 3857), 'django.utils.translation.ugettext_lazy', '_', (['u"""Opis"""'], {}), "(u'Opis')\n", (3848, 3857), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((4401, 4414), 'django.utils.translation.ugettext_lazy', '_', (['u"""Obrazek"""'], {}), "(u'Obrazek')\n", (4402, 4414), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((5653, 5666), 'django.utils.translation.ugettext_lazy', '_', (['u"""Obrazek"""'], {}), "(u'Obrazek')\n", (5654, 5666), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6154, 6175), 'django.utils.translation.ugettext_lazy', '_', (['u"""Imię i Nazwisko"""'], {}), "(u'Imię i Nazwisko')\n", (6155, 6175), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6261, 6272), 'django.utils.translation.ugettext_lazy', '_', (['u"""Firma"""'], {}), "(u'Firma')\n", (6262, 6272), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6354, 6367), 'django.utils.translation.ugettext_lazy', '_', (['u"""Telefon"""'], {}), "(u'Telefon')\n", (6355, 6367), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6425, 6440), 'django.utils.translation.ugettext_lazy', '_', (['u"""Wiadomość"""'], {}), "(u'Wiadomość')\n", (6426, 6440), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6514, 6530), 'django.utils.translation.ugettext_lazy', '_', (['u"""Newsletter"""'], {}), "(u'Newsletter')\n", (6515, 6530), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((567, 599), 'django.utils.translation.ugettext_lazy', '_', (['u"""Opcjonalny HTML title tag."""'], {}), "(u'Opcjonalny HTML title tag.')\n", (568, 599), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6556, 6622), 'django.utils.translation.ugettext_lazy', '_', (['u"""Chcę być informowany o nowościach i ofertach firmy Achilles."""'], {}), "(u'Chcę być informowany o nowościach i ofertach firmy Achilles.')\n", (6557, 6622), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6878, 6905), 'django.utils.translation.ugettext_lazy', '_', (['u"""Dziękujemy za kontakt"""'], {}), "(u'Dziękujemy za kontakt')\n", (6879, 6905), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n'), ((6816, 6842), 'django.utils.translation.ugettext_lazy', '_', (['"""Zapytanie strona www """'], {}), "('Zapytanie strona www ')\n", (6817, 6842), True, 'from django.utils.translation import ugettext, ugettext_lazy as _\n')]
from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake from src.model.makeDatabaseConnection import makeDatabaseConnection def test_(): db = makeDatabaseConnection() senderID = 12345 msgID = 34567 money = 10000 quantity = 5 luckMoneyInfo: tuple = getLuckyMoney(db, msgID) if luckMoneyInfo is not None: deleteLuckyMoney(db, luckMoneyInfo[0]) uuid = newLuckyMoney(db, senderID, msgID, quantity, money) assert uuid != '' assert takeLuckyMoney(db, msgID, 200) is True assert editWhoTake(db, msgID, '12345') luckMoneyInfo: tuple = getLuckyMoney(db, msgID) assert luckMoneyInfo[2] == money - 200 assert luckMoneyInfo[3] == quantity - 1 assert luckMoneyInfo[5] == '12345' assert deleteLuckyMoney(db, uuid) is True db.close()
[ "src.model.luckyMoneyManagement.getLuckyMoney", "src.model.luckyMoneyManagement.deleteLuckyMoney", "src.model.makeDatabaseConnection.makeDatabaseConnection", "src.model.luckyMoneyManagement.newLuckyMoney", "src.model.luckyMoneyManagement.editWhoTake", "src.model.luckyMoneyManagement.takeLuckyMoney" ]
[((210, 234), 'src.model.makeDatabaseConnection.makeDatabaseConnection', 'makeDatabaseConnection', ([], {}), '()\n', (232, 234), False, 'from src.model.makeDatabaseConnection import makeDatabaseConnection\n'), ((336, 360), 'src.model.luckyMoneyManagement.getLuckyMoney', 'getLuckyMoney', (['db', 'msgID'], {}), '(db, msgID)\n', (349, 360), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n'), ((453, 504), 'src.model.luckyMoneyManagement.newLuckyMoney', 'newLuckyMoney', (['db', 'senderID', 'msgID', 'quantity', 'money'], {}), '(db, senderID, msgID, quantity, money)\n', (466, 504), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n'), ((588, 619), 'src.model.luckyMoneyManagement.editWhoTake', 'editWhoTake', (['db', 'msgID', '"""12345"""'], {}), "(db, msgID, '12345')\n", (599, 619), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n'), ((648, 672), 'src.model.luckyMoneyManagement.getLuckyMoney', 'getLuckyMoney', (['db', 'msgID'], {}), '(db, msgID)\n', (661, 672), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n'), ((403, 441), 'src.model.luckyMoneyManagement.deleteLuckyMoney', 'deleteLuckyMoney', (['db', 'luckMoneyInfo[0]'], {}), '(db, luckMoneyInfo[0])\n', (419, 441), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n'), ((538, 568), 'src.model.luckyMoneyManagement.takeLuckyMoney', 'takeLuckyMoney', (['db', 'msgID', '(200)'], {}), '(db, msgID, 200)\n', (552, 568), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n'), ((811, 837), 'src.model.luckyMoneyManagement.deleteLuckyMoney', 'deleteLuckyMoney', (['db', 'uuid'], {}), '(db, uuid)\n', (827, 837), False, 'from src.model.luckyMoneyManagement import newLuckyMoney, deleteLuckyMoney, takeLuckyMoney, getLuckyMoney, editWhoTake\n')]
import time from stem import Signal from stem.control import Controller from pytz import timezone from datetime import datetime from slack_webhook import Slack from termcolor import cprint from requests import get from bs4 import BeautifulSoup as bs from selenium.webdriver.firefox.firefox_profile import FirefoxProfile TIMEZONE = timezone("Asia/Kolkata") URL = "https://instagram.com/{}/" SOCKSPort = 9050 ## Tor SOCKS listner port ControlPort = 9051 ## Tor control listner port OUTPUT_FOLDER = "./output/" ## Output Folder path slack = Slack(url = "<<ADD_YOUR_SLACK_WEBHOOK_URL_HERE") ## Proxies for request over Tor proxies = { "http" : f"socks5h://localhost:{SOCKSPort}", "https": f"socks5h://localhost:{ControlPort}" } ## dict of temporary instagram ids ids = { "temp/fake_id1" : "<PASSWORD>", "temp/fake_id2" : "<PASSWORD>" } ## list of instagram usernames to scrape/monitor. usernames = ["<<ADD_INSTAGRAM_USERNAMES_IN_THIS_LIST>>"] ## Creating a firefox profile and adding some privacy and security prefrences. profile = FirefoxProfile() profile.set_preference("places.history.enabled", False) profile.set_preference("privacy.clearOnShutdown.offlineApps", True) profile.set_preference("privacy.clearOnShutdown.passwords", True) profile.set_preference("privacy.clearOnShutdown.siteSettings", True) profile.set_preference("privacy.sanitize.sanitizeOnShutdown", True) profile.set_preference("signon.rememberSignons", False) profile.set_preference("network.cookie.lifetimePolicy", 2) profile.set_preference("network.dns.disablePrefetch", True) profile.set_preference("network.http.sendRefererHeader", 0) profile.set_preference("network.proxy.type", 1) profile.set_preference("network.proxy.socks_version", 5) profile.set_preference("network.proxy.socks", '127.0.0.1') profile.set_preference("network.proxy.socks_port", SOCKSPort) ## Replace local PORT value if your Tor service is running on another port. profile.set_preference("network.proxy.socks_remote_dns", True) profile.set_preference("permissions.default.image", 2) ## I Disabled image loading, because it will speed up our scraping. def date(): return datetime.now(TIMEZONE).strftime("%d/%m/%Y") def timee(): return datetime.now(TIMEZONE).strftime("%H:%M:%S") def weekday(): return datetime.now(TIMEZONE).strftime("%A") def lps(prefix, string, color): cprint(f"{prefix}[{timee()}][{date()}] {string}", color) slack.post(text = string) def lprint(prefix, string, color): cprint(f"{prefix}[{timee()}][{date()}] {string}", color) def get_tor_ip(): return get("http://httpbin.org/ip", proxies = proxies).text.split('"')[3] def renew_tor_ip(): ip_before_renewel = get_tor_ip() with Controller.from_port(port = 9056) as controller: controller.authenticate() controller.signal(Signal.NEWNYM) lprint("[*]", "Sleeping for 5 secends...", "green") time.sleep(5) ip_after_renewel = get_tor_ip() if (ip_before_renewel != ip_after_renewel): lprint("[+]", f"Tor IP renewel confirmed, new ip appears to be {ip_after_renewel}", "green") else: lprint("[!]", "Tor IP renewel faild!, trying again...", "red") renew_tor_ip() ## to verify Tor connectivity def check_tor_conn(): title = str(bs(get("https://check.torproject.org", proxies = proxies).text, "html.parser").title).split("\n")[2] if "Congratulations." in title: lps("[+]", "Tor Connectivity Verified", "blue") elif "not using Tor" in title: lps("[-]", "Tor is not configured correctly, Try 'sudo service tor restart'. Aborting...", "red") exit()
[ "pytz.timezone", "selenium.webdriver.firefox.firefox_profile.FirefoxProfile", "time.sleep", "requests.get", "datetime.datetime.now", "slack_webhook.Slack", "stem.control.Controller.from_port" ]
[((333, 357), 'pytz.timezone', 'timezone', (['"""Asia/Kolkata"""'], {}), "('Asia/Kolkata')\n", (341, 357), False, 'from pytz import timezone\n'), ((540, 586), 'slack_webhook.Slack', 'Slack', ([], {'url': '"""<<ADD_YOUR_SLACK_WEBHOOK_URL_HERE"""'}), "(url='<<ADD_YOUR_SLACK_WEBHOOK_URL_HERE')\n", (545, 586), False, 'from slack_webhook import Slack\n'), ((1047, 1063), 'selenium.webdriver.firefox.firefox_profile.FirefoxProfile', 'FirefoxProfile', ([], {}), '()\n', (1061, 1063), False, 'from selenium.webdriver.firefox.firefox_profile import FirefoxProfile\n'), ((2699, 2730), 'stem.control.Controller.from_port', 'Controller.from_port', ([], {'port': '(9056)'}), '(port=9056)\n', (2719, 2730), False, 'from stem.control import Controller\n'), ((2891, 2904), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (2901, 2904), False, 'import time\n'), ((2139, 2161), 'datetime.datetime.now', 'datetime.now', (['TIMEZONE'], {}), '(TIMEZONE)\n', (2151, 2161), False, 'from datetime import datetime\n'), ((2207, 2229), 'datetime.datetime.now', 'datetime.now', (['TIMEZONE'], {}), '(TIMEZONE)\n', (2219, 2229), False, 'from datetime import datetime\n'), ((2277, 2299), 'datetime.datetime.now', 'datetime.now', (['TIMEZONE'], {}), '(TIMEZONE)\n', (2289, 2299), False, 'from datetime import datetime\n'), ((2566, 2611), 'requests.get', 'get', (['"""http://httpbin.org/ip"""'], {'proxies': 'proxies'}), "('http://httpbin.org/ip', proxies=proxies)\n", (2569, 2611), False, 'from requests import get\n'), ((3265, 3317), 'requests.get', 'get', (['"""https://check.torproject.org"""'], {'proxies': 'proxies'}), "('https://check.torproject.org', proxies=proxies)\n", (3268, 3317), False, 'from requests import get\n')]
# coding=utf-8 # Copyright 2015 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import unittest from pants.backend.jvm.targets.exclude import Exclude from pants.backend.jvm.targets.jar_dependency import JarDependency class JarDependencyTest(unittest.TestCase): def test_jar_dependency_excludes_change_hash(self): exclude = Exclude(org='example.com', name='foo-lib') with_excludes = JarDependency(org='foo', name='foo', excludes=[exclude]) without_excludes = JarDependency(org='foo', name='foo') self.assertNotEqual(with_excludes.cache_key(), without_excludes.cache_key())
[ "pants.backend.jvm.targets.jar_dependency.JarDependency", "pants.backend.jvm.targets.exclude.Exclude" ]
[((553, 595), 'pants.backend.jvm.targets.exclude.Exclude', 'Exclude', ([], {'org': '"""example.com"""', 'name': '"""foo-lib"""'}), "(org='example.com', name='foo-lib')\n", (560, 595), False, 'from pants.backend.jvm.targets.exclude import Exclude\n'), ((616, 672), 'pants.backend.jvm.targets.jar_dependency.JarDependency', 'JarDependency', ([], {'org': '"""foo"""', 'name': '"""foo"""', 'excludes': '[exclude]'}), "(org='foo', name='foo', excludes=[exclude])\n", (629, 672), False, 'from pants.backend.jvm.targets.jar_dependency import JarDependency\n'), ((764, 800), 'pants.backend.jvm.targets.jar_dependency.JarDependency', 'JarDependency', ([], {'org': '"""foo"""', 'name': '"""foo"""'}), "(org='foo', name='foo')\n", (777, 800), False, 'from pants.backend.jvm.targets.jar_dependency import JarDependency\n')]
import unittest import pcre2 class MatchTestCase(unittest.TestCase): def setUp(self): pass def test_abc(self): p = pcre2.PCRE2(r'hello.+'.encode()) match = p.search('this is hello world.'.encode()) self.assertIsNotNone(match) match = p.search('this should be not found.'.encode()) self.assertIsNone(match) def test_group(self): content = 'this is hello world.'.encode() p = pcre2.PCRE2('hello.+'.encode()) match = p.search(content) self.assertEqual(match.group(0), b'hello world.') p = pcre2.PCRE2(r'(hello)(.+)'.encode()) match = p.search(content) self.assertEqual(match.group(0), b'hello world.') self.assertEqual(match.group(1), b'hello') self.assertEqual(match.group(2), b' world.') self.assertListEqual(match.groups(), [b'hello', b' world.']) def test_chinese(self): content = '我来到北京敏感词广场,请遵守中华人民共和国法律.'.encode() p = pcre2.PCRE2(r'共和国.+'.encode()) match = p.search(content) self.assertEqual(match.group(0), '共和国法律.'.encode()) p = pcre2.PCRE2(r'(北京)(\w+)广场'.encode()) match = p.search(content) self.assertIsNone(match) p = pcre2.PCRE2(r'(北京)(\w+)广场'.encode(), pcre2.UTF | pcre2.UCP) match = p.search(content) self.assertEqual(match.group(0), '北京敏感词广场'.encode()) self.assertEqual(match.group(1), '北京'.encode()) self.assertEqual(match.group(2), '敏感词'.encode()) self.assertListEqual( match.groups(), ['北京'.encode(), '敏感词'.encode()]) if __name__ == '__main__': unittest.main()
[ "unittest.main" ]
[((1636, 1651), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1649, 1651), False, 'import unittest\n')]
import numpy as np import matplotlib.pyplot as plt def manual_label(array): th = 0.1 for i in range(array.shape[0]): img = (array[i,3,:,:]-array[i,4,:,:])/(array[i,3,:,:]+array[i,4,:,:]) plt.subplot(121) plt.imshow(img>th) plt.subplot(122) plt.imshow(array[i, 5, :, :]) plt.show() return array if __name__=='__main__': th = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] window_size = 3 array = np.load('../data/proj3_test_img.npy') print(array.shape) array = manual_label(array)
[ "matplotlib.pyplot.imshow", "numpy.load", "matplotlib.pyplot.subplot", "matplotlib.pyplot.show" ]
[((473, 510), 'numpy.load', 'np.load', (['"""../data/proj3_test_img.npy"""'], {}), "('../data/proj3_test_img.npy')\n", (480, 510), True, 'import numpy as np\n'), ((211, 227), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(121)'], {}), '(121)\n', (222, 227), True, 'import matplotlib.pyplot as plt\n'), ((236, 256), 'matplotlib.pyplot.imshow', 'plt.imshow', (['(img > th)'], {}), '(img > th)\n', (246, 256), True, 'import matplotlib.pyplot as plt\n'), ((263, 279), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(122)'], {}), '(122)\n', (274, 279), True, 'import matplotlib.pyplot as plt\n'), ((288, 317), 'matplotlib.pyplot.imshow', 'plt.imshow', (['array[i, 5, :, :]'], {}), '(array[i, 5, :, :])\n', (298, 317), True, 'import matplotlib.pyplot as plt\n'), ((326, 336), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (334, 336), True, 'import matplotlib.pyplot as plt\n')]
import numpy as np from lagom.core.multiprocessing import BaseIterativeMaster class BaseExperimentMaster(BaseIterativeMaster): """ Base class of the master for parallelized experiment. For details about master in general, please refer to the documentation of the class, BaseIterativeMaster. All inherited subclasses should implement the following function: 1. process_algo_result(self, config, result) 2. make_configs(self) """ def __init__(self, worker_class, num_worker, daemonic_worker=None): """ Args: worker_class (BaseWorker): a callable worker class. Note that it is not recommended to send instantiated object of the worker class, but send class instead. num_worker (int): number of workers. Recommended to be the same as number of CPU cores. daemonic_worker (bool): If True, then set all workers to be daemonic. Because if main process crashes, we should not cause things to hang. """ self.configs = self.make_configs() num_iteration = int(np.ceil(len(self.configs)/num_worker)) assert len(self.configs) <= num_iteration*num_worker, 'More configurations than capacity. ' assert len(self.configs) > (num_iteration - 1)*num_worker, 'Too many unused iterations. ' super().__init__(num_iteration=num_iteration, worker_class=worker_class, num_worker=num_worker, init_seed=0, # Don't use this internal seeder, but set it in configuration daemonic_worker=daemonic_worker) self.splitted_configs = np.array_split(self.configs, num_iteration) for config in self.splitted_configs: assert len(config.tolist()) <= num_worker def make_tasks(self, iteration): tasks = self.splitted_configs.pop(0).tolist() return tasks def _process_workers_result(self, tasks, workers_result): for config, (task_id, result) in zip(tasks, workers_result): self.process_algo_result(config, result) def process_algo_result(self, config, result): """ User-defined function to process the result of the execution of the algorithm given the configuration. Args: config (dict): dictionary of configurations. result (object): result of algorithm execution returned from Algorithm.__call__(). """ raise NotImplementedError def make_configs(self): """ User-defined function to define all configurations. e.g. hyperparameters and algorithm settings. It is recommeded to use Config class, define different configurations and call make_configs() to return a list of automatically generated all combination of configurations. Returns: configs (list): output from config.make_configs Examples: config = Config() config.add_item(name='algo', val='RL') config.add_item(name='iter', val=30) config.add_item(name='hidden_sizes', val=[64, 32, 16]) config.add_random_eps(name='lr', base=10, low=-6, high=0, num_sample=10) config.add_random_continuous(name='values', low=-5, high=5, num_sample=5) config.add_random_discrete(name='select', list_val=[43223, 5434, 21314], num_sample=10, replace=True) configs = config.make_configs() return configs """ raise NotImplementedError
[ "numpy.array_split" ]
[((1776, 1819), 'numpy.array_split', 'np.array_split', (['self.configs', 'num_iteration'], {}), '(self.configs, num_iteration)\n', (1790, 1819), True, 'import numpy as np\n')]
from typing import List from fastapi import Depends, FastAPI, HTTPException from sqlalchemy.orm import Session import time from fastapi.middleware.cors import CORSMiddleware from starlette.responses import RedirectResponse from typing import TypeVar, Generic, Type, Any from xml.etree.ElementTree import fromstring import xml.etree.cElementTree as ET from starlette.requests import Request import sys from pydantic import BaseModel import os import json from model import get_bsimg_pred # 启动App app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=['*'], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) class Message(BaseModel): bsimg: str @app.get("/") async def main(): return RedirectResponse('/docs') @app.post("/message/") async def m(msg: Message): content = get_bsimg_pred(bsimg=msg.bsimg) return { 'content' : content } # 启动服务 if __name__ == '__main__': import uvicorn uvicorn.run(app, host="127.0.0.1", port=8000)
[ "starlette.responses.RedirectResponse", "model.get_bsimg_pred", "fastapi.FastAPI", "uvicorn.run" ]
[((503, 512), 'fastapi.FastAPI', 'FastAPI', ([], {}), '()\n', (510, 512), False, 'from fastapi import Depends, FastAPI, HTTPException\n'), ((746, 771), 'starlette.responses.RedirectResponse', 'RedirectResponse', (['"""/docs"""'], {}), "('/docs')\n", (762, 771), False, 'from starlette.responses import RedirectResponse\n'), ((837, 868), 'model.get_bsimg_pred', 'get_bsimg_pred', ([], {'bsimg': 'msg.bsimg'}), '(bsimg=msg.bsimg)\n', (851, 868), False, 'from model import get_bsimg_pred\n'), ((974, 1019), 'uvicorn.run', 'uvicorn.run', (['app'], {'host': '"""127.0.0.1"""', 'port': '(8000)'}), "(app, host='127.0.0.1', port=8000)\n", (985, 1019), False, 'import uvicorn\n')]
import tkinter from PIL import ImageTk from PIL import Image import os root = tkinter.Tk() img = ImageTk.PhotoImage(Image.open( "C:\\Users\\mem_d\\Downloads\\external-content.duckduckgo.com.png")) panel = tkinter.Label(root, image=img) panel.pack(side="bottom", fill="both", expand="yes") label1 = Label(root, text="some text") label2 = Label(root, text="syou ugly ") label1.grid(row=0, column=0) label2.grid(row=1, column=1) input = Entry(root) input.pack() def butt_click(): lab = Label(root, text="Moan and groan") lab.pack() butt = Button(root, text="moo", command=butt_click) butt.pack() root.mainloop()
[ "tkinter.Tk", "tkinter.Label", "PIL.Image.open" ]
[((79, 91), 'tkinter.Tk', 'tkinter.Tk', ([], {}), '()\n', (89, 91), False, 'import tkinter\n'), ((211, 241), 'tkinter.Label', 'tkinter.Label', (['root'], {'image': 'img'}), '(root, image=img)\n', (224, 241), False, 'import tkinter\n'), ((117, 195), 'PIL.Image.open', 'Image.open', (['"""C:\\\\Users\\\\mem_d\\\\Downloads\\\\external-content.duckduckgo.com.png"""'], {}), "('C:\\\\Users\\\\mem_d\\\\Downloads\\\\external-content.duckduckgo.com.png')\n", (127, 195), False, 'from PIL import Image\n')]
from django.contrib import admin from models import UserProfile class UserProfileAdmin(admin.ModelAdmin): pass admin.site.register(UserProfile, UserProfileAdmin)
[ "django.contrib.admin.site.register" ]
[((120, 170), 'django.contrib.admin.site.register', 'admin.site.register', (['UserProfile', 'UserProfileAdmin'], {}), '(UserProfile, UserProfileAdmin)\n', (139, 170), False, 'from django.contrib import admin\n')]
import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt plt.switch_backend('agg') import _pickle as cPickle from scipy.io import savemat from scipy.io import loadmat from alexnet_face_classifier import * from utils import * class transfer_learning_graph: def __init__(self, num_classes, nhid, cnn): self.num_classes = num_classes self.f_maps = tf.placeholder(tf.float32, shape = [None, 43264]) self.keep_prob = tf.placeholder(tf.float32) self.labels_1hot = tf.placeholder(tf.float32, shape=[None, self.num_classes]) self.cnn = cnn(None, self.f_maps, self.num_classes, self.keep_prob) self.cnn.fc_layers(transfer_learning=True, nhid=nhid) def train_graph(self, rate, decay_lam=0): # cost function cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = self.labels_1hot, logits=self.cnn.fc2)) decay_penalty = decay_lam*(tf.reduce_sum(tf.square(self.cnn.fc1W))+tf.reduce_sum(tf.square(self.cnn.fc2W))) self.cost = cross_entropy + decay_penalty self.train_step = tf.train.AdamOptimizer(rate).minimize(self.cost) def predict_graph(self): correct_prediction = tf.equal(tf.argmax(self.cnn.fc2,1), tf.argmax(self.labels_1hot,1)) self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) def train(graph, batch_size, training_set, training_labels, validation_set, validation_labels, decay_lambda, rate, keep_prob, iter, weight_file1, weight_file2, sess): # create learning graph graph.train_graph(rate, decay_lambda) sess.run(tf.global_variables_initializer()) # keep track of best performance best_validation_cost = 1E10 best_validation_accuracy = 0 # keep track of learning curves train_accuracies = [] train_costs = [] validation_accuracies = [] validation_costs = [] weight_names = ['fc1W', 'fc1b', 'fc2W', 'fc2b'] for j in range(iter): batch_xs, batch_ys = get_batch(training_set, training_labels, batch_size, graph.num_classes) graph.train_step.run(feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:keep_prob}) # if j%2 == 0: # batch_xs, batch_ys = get_batch(training_set, training_labels, batch_size, graph.num_classes) # graph.train_step.run(feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:keep_prob}) # # else: # batch_xs, batch_ys = get_random_batch(training_set, training_labels, batch_size) # graph.train_step.run(feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:keep_prob}) # evaluate every 5 steps if (j+1)%5 == 0: print('iteration'+str(j+1)) train_accuracy = sess.run(graph.accuracy, feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:1.0}) train_cost = sess.run(graph.cost, feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:1.0})/batch_size/batch_xs.shape[0] validation_accuracy = sess.run(graph.accuracy, feed_dict={graph.f_maps:validation_set, graph.labels_1hot:validation_labels, graph.keep_prob:1.0}) validation_cost = sess.run(graph.cost, feed_dict={graph.f_maps:validation_set, graph.labels_1hot:validation_labels, graph.keep_prob:1.0})/validation_set.shape[0] print('est training accuracy is {}'.format(train_accuracy)) print('est training cost is {}'.format(train_cost)) print('validation accuracy is {}'.format(validation_accuracy)) print('validation cost is {}'.format(validation_cost)) train_accuracies.append(train_accuracy) validation_accuracies.append(validation_accuracy) train_costs.append(train_cost) validation_costs.append(validation_cost) # keep track of weight data for best performance if validation_accuracy >= best_validation_accuracy: best_validation_accuracy = validation_accuracy best_validation_cost = validation_cost best_weights = {} for i in range(len(graph.cnn.fc_parameters)): best_weights[weight_names[i]] = sess.run(graph.cnn.fc_parameters[i]) # plot learning curves cPickle.dump(best_weights, open('transfer_learning_fc_weights_17.pkl', 'wb')) f1 = plt.figure(1) plt.plot(range(5, iter+1, 5), train_accuracies, color='blue', linestyle='solid') plt.plot(range(5, iter+1, 5), validation_accuracies, color='red', linestyle='solid') f1.savefig("tl_accuracies_17faces.pdf", bbox_inches='tight') f2 = plt.figure(2) plt.plot(range(5, iter+1, 5), train_costs, color='blue', linestyle='solid') plt.plot(range(5, iter+1, 5), validation_costs, color='red', linestyle='solid') f2.savefig('tl_costs_17faces.pdf', bbox_inches='tight') print('best validation accuracy is {}'.format(best_validation_accuracy)) print('best validation cost is {}'.format(best_validation_cost)) print('corresponding training accuracy is {}'.format(sess.run(graph.accuracy, feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:1.0}))) print('corresponding training cost is {}'.format(sess.run(graph.cost, feed_dict={graph.f_maps:batch_xs, graph.labels_1hot:batch_ys, graph.keep_prob:1.0}))) def test(graph, test_set, test_labels, weight_file, sess): graph.cnn.load_weights(weight_file, sess, fc_only=True) test_accuracy = sess.run(graph.accuracy, feed_dict={graph.f_maps:test_set, graph.labels_1hot:test_labels, graph.keep_prob:1.0}) print('test accuracy is {}'.format(test_accuracy)) ### full_sets, label_sets = get_data_and_labels('training_set_17_conv5.pkl', 'validation_set_17_conv5.pkl', 'test_set_17_conv5.pkl') training_set, validation_set, test_set = full_sets training_labels, validation_labels, test_labels = label_sets tl_graph = transfer_learning_graph(17, 100, alexnet_face_classifier) tl_graph.predict_graph() with tf.Session() as sess: train(tl_graph, 30, training_set, training_labels, validation_set, validation_labels, 1E-2, 5E-4, 0.5, 1000,'alexnet_weights.pkl', None, sess) with tf.Session() as sess: test(tl_graph, test_set, test_labels, 'transfer_learning_fc_weights_17.pkl', sess)
[ "tensorflow.placeholder", "tensorflow.Session", "tensorflow.global_variables_initializer", "matplotlib.pyplot.figure", "tensorflow.argmax", "tensorflow.nn.softmax_cross_entropy_with_logits", "matplotlib.pyplot.switch_backend", "tensorflow.train.AdamOptimizer", "tensorflow.cast", "tensorflow.square" ]
[((85, 110), 'matplotlib.pyplot.switch_backend', 'plt.switch_backend', (['"""agg"""'], {}), "('agg')\n", (103, 110), True, 'import matplotlib.pyplot as plt\n'), ((4638, 4651), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (4648, 4651), True, 'import matplotlib.pyplot as plt\n'), ((4913, 4926), 'matplotlib.pyplot.figure', 'plt.figure', (['(2)'], {}), '(2)\n', (4923, 4926), True, 'import matplotlib.pyplot as plt\n'), ((6330, 6342), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (6340, 6342), True, 'import tensorflow as tf\n'), ((6509, 6521), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (6519, 6521), True, 'import tensorflow as tf\n'), ((398, 445), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, 43264]'}), '(tf.float32, shape=[None, 43264])\n', (412, 445), True, 'import tensorflow as tf\n'), ((473, 499), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (487, 499), True, 'import tensorflow as tf\n'), ((527, 585), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, self.num_classes]'}), '(tf.float32, shape=[None, self.num_classes])\n', (541, 585), True, 'import tensorflow as tf\n'), ((1666, 1699), 'tensorflow.global_variables_initializer', 'tf.global_variables_initializer', ([], {}), '()\n', (1697, 1699), True, 'import tensorflow as tf\n'), ((847, 937), 'tensorflow.nn.softmax_cross_entropy_with_logits', 'tf.nn.softmax_cross_entropy_with_logits', ([], {'labels': 'self.labels_1hot', 'logits': 'self.cnn.fc2'}), '(labels=self.labels_1hot, logits=\n self.cnn.fc2)\n', (886, 937), True, 'import tensorflow as tf\n'), ((1262, 1288), 'tensorflow.argmax', 'tf.argmax', (['self.cnn.fc2', '(1)'], {}), '(self.cnn.fc2, 1)\n', (1271, 1288), True, 'import tensorflow as tf\n'), ((1289, 1319), 'tensorflow.argmax', 'tf.argmax', (['self.labels_1hot', '(1)'], {}), '(self.labels_1hot, 1)\n', (1298, 1319), True, 'import tensorflow as tf\n'), ((1359, 1398), 'tensorflow.cast', 'tf.cast', (['correct_prediction', 'tf.float32'], {}), '(correct_prediction, tf.float32)\n', (1366, 1398), True, 'import tensorflow as tf\n'), ((1137, 1165), 'tensorflow.train.AdamOptimizer', 'tf.train.AdamOptimizer', (['rate'], {}), '(rate)\n', (1159, 1165), True, 'import tensorflow as tf\n'), ((985, 1009), 'tensorflow.square', 'tf.square', (['self.cnn.fc1W'], {}), '(self.cnn.fc1W)\n', (994, 1009), True, 'import tensorflow as tf\n'), ((1025, 1049), 'tensorflow.square', 'tf.square', (['self.cnn.fc2W'], {}), '(self.cnn.fc2W)\n', (1034, 1049), True, 'import tensorflow as tf\n')]
import heapq class Solution: def maxPerformance(self, n, speed, efficient, k): sq = [] ans = sSum = 0 teams = sorted([(e, s) for e, s in zip(efficient, speed)], reverse=True) for i, (e, s) in enumerate(teams): sSum += s if i >= k: sSum -= heapq.heappushpop(sq, s) else: heapq.heappush(sq, s) ans = max(ans, sSum * e) return ans % (10 ** 9 + 7)
[ "heapq.heappush", "heapq.heappushpop" ]
[((317, 341), 'heapq.heappushpop', 'heapq.heappushpop', (['sq', 's'], {}), '(sq, s)\n', (334, 341), False, 'import heapq\n'), ((376, 397), 'heapq.heappush', 'heapq.heappush', (['sq', 's'], {}), '(sq, s)\n', (390, 397), False, 'import heapq\n')]
import requests from pyowm.owm import OWM from pyowm.utils import timestamps import geocoder import json import os from pathlib import Path #os.chdir('pac') cwd=Path(__file__).parent try: from pac import voice_io except ModuleNotFoundError: import voice_io g = geocoder.ip('me') ct=(g.city) with open(f"{cwd}\creds.json", "r") as f: data = json.load(f) api=data['apis'][1]['owm'] #weather def weather_curr(): base_url = "http://api.openweathermap.org/data/2.5/weather?" url = base_url + "&q=" + ct + "&appid=" + api response = requests.get(url) x = response.json() if x["cod"] == "404": voice_io.show("Oops! it looks like i ran into a problem fetching your request, maybe try again later?") else: y = x["main"] curr_temperature = y["temp"] curr_pressure = y["pressure"] curr_humidity = y["humidity"] z = x["weather"] weather_desc = z[0]["description"] voice_io.show(f"The current temperatre in {ct} is {str(round(curr_temperature-273))}°C" + ". It's a " +str(weather_desc)) #weather forecaster def weather_forec(): voice_io.show("Sorry i am currently restricted to show weather forecast for tomorrow only. \nLook out for future updates and see if my handcuffs are set free. Here's tomorrow's weather forecast anyway.") owm = OWM(api) mgr=owm.weather_manager() loc = mgr.weather_at_place(ct) weather = loc.weather temp = weather.temperature(unit='celsius') for key,val in temp.items(): if key=="temp": voice_io.show(f'\nThe temperature tommorow will be around {val}°C.') else: continue loa = mgr.forecast_at_place(ct,'3h') tomorrow=timestamps.tomorrow() forecasttt=loa.get_weather_at(tomorrow) status=(forecasttt.status) voice_io.show(f'And the sky would remain {status}')
[ "geocoder.ip", "pyowm.owm.OWM", "pathlib.Path", "pyowm.utils.timestamps.tomorrow", "requests.get", "voice_io.show", "json.load" ]
[((272, 289), 'geocoder.ip', 'geocoder.ip', (['"""me"""'], {}), "('me')\n", (283, 289), False, 'import geocoder\n'), ((162, 176), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (166, 176), False, 'from pathlib import Path\n'), ((357, 369), 'json.load', 'json.load', (['f'], {}), '(f)\n', (366, 369), False, 'import json\n'), ((563, 580), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (575, 580), False, 'import requests\n'), ((1152, 1368), 'voice_io.show', 'voice_io.show', (['"""Sorry i am currently restricted to show weather forecast for tomorrow only. \nLook out for future updates and see if my handcuffs are set free. Here\'s tomorrow\'s weather forecast anyway."""'], {}), '(\n """Sorry i am currently restricted to show weather forecast for tomorrow only. \nLook out for future updates and see if my handcuffs are set free. Here\'s tomorrow\'s weather forecast anyway."""\n )\n', (1165, 1368), False, 'import voice_io\n'), ((1366, 1374), 'pyowm.owm.OWM', 'OWM', (['api'], {}), '(api)\n', (1369, 1374), False, 'from pyowm.owm import OWM\n'), ((1740, 1761), 'pyowm.utils.timestamps.tomorrow', 'timestamps.tomorrow', ([], {}), '()\n', (1759, 1761), False, 'from pyowm.utils import timestamps\n'), ((1841, 1892), 'voice_io.show', 'voice_io.show', (['f"""And the sky would remain {status}"""'], {}), "(f'And the sky would remain {status}')\n", (1854, 1892), False, 'import voice_io\n'), ((645, 758), 'voice_io.show', 'voice_io.show', (['"""Oops! it looks like i ran into a problem fetching your request, maybe try again later?"""'], {}), "(\n 'Oops! it looks like i ran into a problem fetching your request, maybe try again later?'\n )\n", (658, 758), False, 'import voice_io\n'), ((1582, 1653), 'voice_io.show', 'voice_io.show', (['f"""\nThe temperature tommorow will be around {val}°C."""'], {}), '(f"""\nThe temperature tommorow will be around {val}°C.""")\n', (1595, 1653), False, 'import voice_io\n')]
""" Module for face detection using face_recognition library. """ import os import time import cv2 import face_recognition rect_line_color = (0, 255, 0) rect_line_width = 2 def detect_face_face_recognition(model, image, save_false_finding=True, location="face_recognition"): """ Detects faces on the received image using face_recognition library. :param model: model to be used to detect faces :param image: image on which the face should be detected :param save_false_finding: flag if incorrectly classified images should be saved to the disc :param location: folder name where false findings shall be saved """ image_copy = image.copy() face_locations = face_recognition.face_locations(image_copy, model=model) if save_false_finding: save_false_findings_face_recognition( face_locations, image_copy, location) return len(face_locations) def save_false_findings_face_recognition(face_locations, image, location): """ Saves images that contain exactly one face, but the algorithm either did not find any face on them, or found more than one. In latter case - rectangles are drawn around every place where the face was found. :param face_locations: detections of faces faces found by algorithm :param image: image under evaluation :param location: folder name where false findings shall be saved """ if len(face_locations) == 1: return if not len(face_locations): path_none = os.path.join("./false_findings", location, "none/") if not os.path.exists(path_none): os.makedirs(path_none) cv2.imwrite( path_none + str(time.time()) + ".jpg", cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) if len(face_locations) > 1: face_landmarks_list = face_recognition.face_landmarks(image) for landmark in face_landmarks_list: for face_element in landmark: for point in landmark[face_element]: cv2.circle( image, point, 1, rect_line_color, rect_line_width) path_too_many = os.path.join( "./false_findings", location, "too_many/") if not os.path.exists(path_too_many): os.makedirs(path_too_many) cv2.imwrite( path_too_many + str(time.time()) + ".jpg", cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
[ "face_recognition.face_locations", "os.path.exists", "os.makedirs", "face_recognition.face_landmarks", "os.path.join", "cv2.circle", "cv2.cvtColor", "time.time" ]
[((741, 797), 'face_recognition.face_locations', 'face_recognition.face_locations', (['image_copy'], {'model': 'model'}), '(image_copy, model=model)\n', (772, 797), False, 'import face_recognition\n'), ((1547, 1598), 'os.path.join', 'os.path.join', (['"""./false_findings"""', 'location', '"""none/"""'], {}), "('./false_findings', location, 'none/')\n", (1559, 1598), False, 'import os\n'), ((1862, 1900), 'face_recognition.face_landmarks', 'face_recognition.face_landmarks', (['image'], {}), '(image)\n', (1893, 1900), False, 'import face_recognition\n'), ((2173, 2228), 'os.path.join', 'os.path.join', (['"""./false_findings"""', 'location', '"""too_many/"""'], {}), "('./false_findings', location, 'too_many/')\n", (2185, 2228), False, 'import os\n'), ((1614, 1639), 'os.path.exists', 'os.path.exists', (['path_none'], {}), '(path_none)\n', (1628, 1639), False, 'import os\n'), ((1653, 1675), 'os.makedirs', 'os.makedirs', (['path_none'], {}), '(path_none)\n', (1664, 1675), False, 'import os\n'), ((1760, 1798), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (1772, 1798), False, 'import cv2\n'), ((2257, 2286), 'os.path.exists', 'os.path.exists', (['path_too_many'], {}), '(path_too_many)\n', (2271, 2286), False, 'import os\n'), ((2300, 2326), 'os.makedirs', 'os.makedirs', (['path_too_many'], {}), '(path_too_many)\n', (2311, 2326), False, 'import os\n'), ((2415, 2453), 'cv2.cvtColor', 'cv2.cvtColor', (['image', 'cv2.COLOR_BGR2RGB'], {}), '(image, cv2.COLOR_BGR2RGB)\n', (2427, 2453), False, 'import cv2\n'), ((2062, 2123), 'cv2.circle', 'cv2.circle', (['image', 'point', '(1)', 'rect_line_color', 'rect_line_width'], {}), '(image, point, 1, rect_line_color, rect_line_width)\n', (2072, 2123), False, 'import cv2\n'), ((1725, 1736), 'time.time', 'time.time', ([], {}), '()\n', (1734, 1736), False, 'import time\n'), ((2380, 2391), 'time.time', 'time.time', ([], {}), '()\n', (2389, 2391), False, 'import time\n')]
# -*- coding: utf-8 -*- # # This file is part of django-email-change. # # django-email-change adds support for email address change and confirmation. # # Development Web Site: # - http://www.codetrax.org/projects/django-email-change # Public Source Code Repository: # - https://source.codetrax.org/hgroot/django-email-change # # Copyright 2010 <NAME> <gnot [at] g-loaded.eu> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from django.apps import apps from django.conf import settings from django.contrib.auth.decorators import login_required from django.shortcuts import render, redirect from django.template.loader import render_to_string from django.core.mail import send_mail from email_change.forms import EmailChangeForm from email_change.utils import generate_key @login_required def email_change_view(request, extra_context={}, success_url='email_verification_sent', template_name='email_change/email_change_form.html', email_message_template_name='email_change/emails/verification_email_message.html', email_subject_template_name='email_change/emails/verification_email_subject.html', form_class=EmailChangeForm): """Allow a user to change the email address associated with the user account. """ if request.method == 'POST': form = form_class(username=request.user.username, data=request.POST, files=request.FILES) if form.is_valid(): EmailChangeRequest = apps.get_model('email_change', 'EmailChangeRequest') email = form.cleaned_data.get('email') verification_key = generate_key(request.user, email) site_name = getattr(settings, 'SITE_NAME', 'Please define settings.SITE_NAME') domain = getattr(settings, 'SITE_URL', None) if domain is None: Site = apps.get_model('sites', 'Site') current_site = Site.objects.get_current() site_name = current_site.name domain = current_site.domain protocol = 'http' if request.is_secure(): protocol = 'https' # First clean all email change requests made by this user qs = EmailChangeRequest.objects.filter(user=request.user) qs.delete() # Create an email change request EmailChangeRequest.objects.create( user=request.user, verification_key=verification_key, email=email ) # Prepare context c = { 'email': email, 'site_domain': domain, 'site_name': site_name, 'support_email': settings.SUPPORT_EMAIL, 'user': request.user, 'verification_key': verification_key, 'protocol': protocol, } c.update(extra_context) # Send success email subject = render_to_string(email_subject_template_name, c).strip() message = render_to_string(email_message_template_name, c) send_mail(subject, message, None, [email]) # Redirect return redirect(success_url) else: form = form_class(username=request.user.username) extra_context['form'] = form return render(request, template_name, extra_context) @login_required def email_verify_view(request, verification_key, extra_context={}, success_url='email_change_complete', template_name='email_change/email_verify.html'): """ """ EmailChangeRequest = apps.get_model('email_change', 'EmailChangeRequest') try: ecr = EmailChangeRequest.objects.get( user=request.user, verification_key=verification_key) except EmailChangeRequest.DoesNotExist: # Return failure response return render(request, template_name, extra_context) else: # Check if the email change request has expired if ecr.has_expired(): ecr.delete() # Return failure response return render_to_response(request, template_name, extra_context) # Success. Replace the user's email with the new email request.user.email = ecr.email request.user.save() # Delete the email change request ecr.delete() # Redirect to success URL return redirect(success_url)
[ "django.shortcuts.render", "django.apps.apps.get_model", "django.core.mail.send_mail", "django.shortcuts.redirect", "email_change.utils.generate_key", "django.template.loader.render_to_string" ]
[((4037, 4082), 'django.shortcuts.render', 'render', (['request', 'template_name', 'extra_context'], {}), '(request, template_name, extra_context)\n', (4043, 4082), False, 'from django.shortcuts import render, redirect\n'), ((4339, 4391), 'django.apps.apps.get_model', 'apps.get_model', (['"""email_change"""', '"""EmailChangeRequest"""'], {}), "('email_change', 'EmailChangeRequest')\n", (4353, 4391), False, 'from django.apps import apps\n'), ((5133, 5154), 'django.shortcuts.redirect', 'redirect', (['success_url'], {}), '(success_url)\n', (5141, 5154), False, 'from django.shortcuts import render, redirect\n'), ((2096, 2148), 'django.apps.apps.get_model', 'apps.get_model', (['"""email_change"""', '"""EmailChangeRequest"""'], {}), "('email_change', 'EmailChangeRequest')\n", (2110, 2148), False, 'from django.apps import apps\n'), ((2281, 2314), 'email_change.utils.generate_key', 'generate_key', (['request.user', 'email'], {}), '(request.user, email)\n', (2293, 2314), False, 'from email_change.utils import generate_key\n'), ((3752, 3800), 'django.template.loader.render_to_string', 'render_to_string', (['email_message_template_name', 'c'], {}), '(email_message_template_name, c)\n', (3768, 3800), False, 'from django.template.loader import render_to_string\n'), ((3814, 3856), 'django.core.mail.send_mail', 'send_mail', (['subject', 'message', 'None', '[email]'], {}), '(subject, message, None, [email])\n', (3823, 3856), False, 'from django.core.mail import send_mail\n'), ((3900, 3921), 'django.shortcuts.redirect', 'redirect', (['success_url'], {}), '(success_url)\n', (3908, 3921), False, 'from django.shortcuts import render, redirect\n'), ((4606, 4651), 'django.shortcuts.render', 'render', (['request', 'template_name', 'extra_context'], {}), '(request, template_name, extra_context)\n', (4612, 4651), False, 'from django.shortcuts import render, redirect\n'), ((2551, 2582), 'django.apps.apps.get_model', 'apps.get_model', (['"""sites"""', '"""Site"""'], {}), "('sites', 'Site')\n", (2565, 2582), False, 'from django.apps import apps\n'), ((3673, 3721), 'django.template.loader.render_to_string', 'render_to_string', (['email_subject_template_name', 'c'], {}), '(email_subject_template_name, c)\n', (3689, 3721), False, 'from django.template.loader import render_to_string\n')]
import sqlite3 from typing import Any, Iterable from paper_trader.utils.dataclasses import DataclassDesc from .converter import _convert_val_from_db, _convert_val_to_db class _ClassDesc(DataclassDesc): @property def create_table_str(self): cols = ", ".join(self.fields.keys()) pks = "PRIMARY KEY ({})".format( ", ".join(k for k in self.primary_keys_names) ) return f"CREATE TABLE IF NOT EXISTS {self.name} ({cols}, {pks})" @property def upsert_str(self): return f'INSERT OR REPLACE INTO {self.name} VALUES ({", ".join("?" for _ in range(len(self.fields)))})' @property def delete_str(self): return f"DELETE FROM {self.name} WHERE " + " AND ".join( f"{pk}=?" for pk in self.primary_keys_names ) @property def get_all_str(self): return f"SELECT * FROM {self.name}" def get_fields(self, inst): return [_convert_val_to_db(getattr(inst, f)) for f in self.fields] class SqliteDb: def __init__(self, filename: str): self._db = sqlite3.connect(filename) def __enter__(self): self._db.__enter__() return self # NOTE: This just commits or rolls back doesn't close the connection, bit misleading def __exit__(self, exc_type, exc_value, traceback): self._db.__exit__(exc_type, exc_value, traceback) def close(self): self._db.close() self._db = None def init_table(self, clazz): desc = _ClassDesc(clazz=clazz) cursor = self._db.cursor() cursor.execute(desc.create_table_str) def upsert(self, obj: Any): desc = _ClassDesc(inst=obj) cursor = self._db.cursor() cursor.execute(desc.upsert_str, desc.get_fields(obj)) def upsert_all(self, objs: Iterable): desc = None cursor = self._db.cursor() for obj in objs: if desc is None: desc = _ClassDesc(inst=obj) cursor.execute(desc.upsert_str, desc.get_fields(obj)) def delete(self, obj): desc = _ClassDesc(inst=obj) cursor = self._db.cursor() cursor.execute(desc.delete_str, desc.get_primary_keys(obj)) def get_all(self, clazz): desc = _ClassDesc(clazz=clazz) for vals in self._db.cursor().execute(desc.get_all_str).fetchall(): yield clazz( *( _convert_val_from_db(t, v) for t, v in zip(desc.field_types, vals) ) ) def commit(self): self._db.commit() def rollback(self): self._db.rollback()
[ "sqlite3.connect" ]
[((1111, 1136), 'sqlite3.connect', 'sqlite3.connect', (['filename'], {}), '(filename)\n', (1126, 1136), False, 'import sqlite3\n')]
from django.conf.urls import url # from .views import hello_word_view from apps.models_tensorflow2.DIN_CTR.views import hello_word_view import os app_name = os.path.dirname(__file__).split('/')[-1].split('\\')[-1] urlpatterns = [ url(r'^hello_word/$', hello_word_view.as_view(), name='hello_word') ]
[ "os.path.dirname", "apps.models_tensorflow2.DIN_CTR.views.hello_word_view.as_view" ]
[((256, 281), 'apps.models_tensorflow2.DIN_CTR.views.hello_word_view.as_view', 'hello_word_view.as_view', ([], {}), '()\n', (279, 281), False, 'from apps.models_tensorflow2.DIN_CTR.views import hello_word_view\n'), ((157, 182), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (172, 182), False, 'import os\n')]
import sys from Ziggeo import Ziggeo if(len(sys.argv) < 4): print ("Error\n") print ("Usage: $>python video_get_stats_bulk.py YOUR_API_TOKEN YOUR_PRIVATE_KEY VIDEO_TOKEN1,VIDEO_TOKEN2 \n") sys.exit() api_token = sys.argv[1] private_key = sys.argv[2] video_token = sys.argv[3] ziggeo = Ziggeo(api_token, private_key) bulk_arguments = {} bulk_arguments["tokens_or_keys"] = video_token print (ziggeo.videos().stats_bulk(bulk_arguments))
[ "Ziggeo.Ziggeo", "sys.exit" ]
[((292, 322), 'Ziggeo.Ziggeo', 'Ziggeo', (['api_token', 'private_key'], {}), '(api_token, private_key)\n', (298, 322), False, 'from Ziggeo import Ziggeo\n'), ((194, 204), 'sys.exit', 'sys.exit', ([], {}), '()\n', (202, 204), False, 'import sys\n')]
from intelhex import IntelHex ih = IntelHex() # create empty object ih.loadhex('rc_calib_tiny85.hex') # load from hex for i in range(32): if ih[i]==255: ih[i]=255 ih.dump() from cStringIO import StringIO sio = StringIO() ih.write_hex_file(sio) hexstr = sio.getvalue() sio.close() print("\n\n\n\n") print(hexstr)
[ "cStringIO.StringIO", "intelhex.IntelHex" ]
[((35, 45), 'intelhex.IntelHex', 'IntelHex', ([], {}), '()\n', (43, 45), False, 'from intelhex import IntelHex\n'), ((258, 268), 'cStringIO.StringIO', 'StringIO', ([], {}), '()\n', (266, 268), False, 'from cStringIO import StringIO\n')]
# # Copyright (c) 2018-2020 by <NAME> <<EMAIL>>. # # This software is available under the terms of the MIT license. Parts are licensed under # different terms if stated. The legal terms are attached to the LICENSE file and are # made available on: # # https://opensource.org/licenses/MIT # # SPDX-License-Identifier: MIT # # Contributors: # <NAME> - initial implementation # import hashlib import logging import os import sys import tracemalloc from tempfile import TemporaryDirectory from unittest import TestCase from angelos.archive7.streams import SingleStreamManager, VirtualFileObject class BaseArchiveTestCase(TestCase): @classmethod def setUpClass(cls) -> None: """Setup test class with a facade and ten contacts.""" tracemalloc.start() logging.basicConfig(stream=sys.stderr, level=logging.INFO) cls.secret = os.urandom(32) @classmethod def tearDownClass(cls) -> None: """Clean up after test suite.""" def setUp(self) -> None: """Set up a case with a fresh copy of portfolios and facade""" self.dir = TemporaryDirectory() self.home = self.dir.name def tearDown(self) -> None: """Tear down after the test.""" self.dir.cleanup() class TestStreamBlock(TestCase): def test_position(self): self.fail() def test_load_meta(self): self.fail() class TestBaseStream(TestCase): def test_identity(self): self.fail() def test_manager(self): self.fail() def test_data(self): self.fail() def test_load_meta(self): self.fail() def test_meta_unpack(self): self.fail() def test_length(self): self.fail() def test_changed(self): self.fail() def test_save(self): self.fail() def test_next(self): self.fail() def test_previous(self): self.fail() def test_extend(self): self.fail() def test_push(self): self.fail() def test_pop(self): self.fail() def test_truncate(self): self.fail() def test_wind(self): self.fail() def test_close(self): self.fail() class TestInternalStream(TestCase): def test_close(self): self.fail() class TestDataStream(TestCase): def test_close(self): self.fail() class TestVirtualFileObject(TestCase): def test__close(self): self.fail() def test__flush(self): self.fail() def test__readinto(self): self.fail() def test__seek(self): self.fail() def test__truncate(self): self.fail() def test__write(self): self.fail() class TestRegistry(TestCase): def test_tree(self): self.fail() def test_close(self): self.fail() def test__init_tree(self): self.fail() def test__checkpoint(self): self.fail() class TestStreamRegistry(TestCase): def test__init_tree(self): self.fail() def test_register(self): self.fail() def test_unregister(self): self.fail() def test_update(self): self.fail() def test_search(self): self.fail() class TestStreamManager(TestCase): def test_closed(self): self.fail() def test_created(self): self.fail() def test_close(self): self.fail() def test_save_meta(self): self.fail() def test_meta(self): self.fail() def test_special_block(self): self.fail() def test_new_block(self): self.fail() def test_load_block(self): self.fail() def test_save_block(self): self.fail() def test_special_stream(self): self.fail() def test__setup(self): self.fail() def test__open(self): self.fail() def test__close(self): self.fail() def test_recycle(self): self.fail() def test_reuse(self): self.fail() class TestSingleStreamManager(BaseArchiveTestCase): def test_recycle(self): self.fail() def test_reuse(self): self.fail() def test_run(self): data = bytes(os.urandom(2**20)) mgr = SingleStreamManager(os.path.join(self.home, "test.ar7"), self.secret) stream = mgr.special_stream(SingleStreamManager.STREAM_DATA) fileobj = VirtualFileObject(stream, "test", "wb+") fileobj.write(data) fileobj.close() mgr.close() del mgr mgr = SingleStreamManager(os.path.join(self.home, "test.ar7"), self.secret) fileobj = VirtualFileObject(mgr.special_stream(SingleStreamManager.STREAM_DATA), "test") data2 = fileobj.read() self.assertEqual( hashlib.sha1(data).digest(), hashlib.sha1(data2).digest() ) fileobj.close() mgr.close() class TestFixedMultiStreamManager(TestCase): def test_recycle(self): self.fail() def test_reuse(self): self.fail() class TestDynamicMultiStreamManager(TestCase): def test__close(self): self.fail() def test_new_stream(self): self.fail() def test_open_stream(self): self.fail() def test_close_stream(self): self.fail() def test_del_stream(self): self.fail()
[ "logging.basicConfig", "tempfile.TemporaryDirectory", "tracemalloc.start", "os.urandom", "os.path.join", "angelos.archive7.streams.VirtualFileObject", "hashlib.sha1" ]
[((760, 779), 'tracemalloc.start', 'tracemalloc.start', ([], {}), '()\n', (777, 779), False, 'import tracemalloc\n'), ((788, 846), 'logging.basicConfig', 'logging.basicConfig', ([], {'stream': 'sys.stderr', 'level': 'logging.INFO'}), '(stream=sys.stderr, level=logging.INFO)\n', (807, 846), False, 'import logging\n'), ((869, 883), 'os.urandom', 'os.urandom', (['(32)'], {}), '(32)\n', (879, 883), False, 'import os\n'), ((1100, 1120), 'tempfile.TemporaryDirectory', 'TemporaryDirectory', ([], {}), '()\n', (1118, 1120), False, 'from tempfile import TemporaryDirectory\n'), ((4373, 4413), 'angelos.archive7.streams.VirtualFileObject', 'VirtualFileObject', (['stream', '"""test"""', '"""wb+"""'], {}), "(stream, 'test', 'wb+')\n", (4390, 4413), False, 'from angelos.archive7.streams import SingleStreamManager, VirtualFileObject\n'), ((4183, 4202), 'os.urandom', 'os.urandom', (['(2 ** 20)'], {}), '(2 ** 20)\n', (4193, 4202), False, 'import os\n'), ((4236, 4271), 'os.path.join', 'os.path.join', (['self.home', '"""test.ar7"""'], {}), "(self.home, 'test.ar7')\n", (4248, 4271), False, 'import os\n'), ((4537, 4572), 'os.path.join', 'os.path.join', (['self.home', '"""test.ar7"""'], {}), "(self.home, 'test.ar7')\n", (4549, 4572), False, 'import os\n'), ((4755, 4773), 'hashlib.sha1', 'hashlib.sha1', (['data'], {}), '(data)\n', (4767, 4773), False, 'import hashlib\n'), ((4797, 4816), 'hashlib.sha1', 'hashlib.sha1', (['data2'], {}), '(data2)\n', (4809, 4816), False, 'import hashlib\n')]
from django.contrib import admin from . import models class PostAdmin(admin.ModelAdmin): date_hierarchy = 'pub_date' list_filter = ('pub_status', ) readonly_fields = ('wppost', ) admin.site.register(models.Post, PostAdmin) admin.site.register(models.RemoteImage)
[ "django.contrib.admin.site.register" ]
[((195, 238), 'django.contrib.admin.site.register', 'admin.site.register', (['models.Post', 'PostAdmin'], {}), '(models.Post, PostAdmin)\n', (214, 238), False, 'from django.contrib import admin\n'), ((241, 280), 'django.contrib.admin.site.register', 'admin.site.register', (['models.RemoteImage'], {}), '(models.RemoteImage)\n', (260, 280), False, 'from django.contrib import admin\n')]
from django.urls import path from .views import ping, ferry, sailing, route, terminal urlpatterns = [ path('ping', ping, name="ping"), path('ferries', ferry.get_all, name="get_all_ferries"), path('sailings', sailing.get_all, name="get_all_sailings"), path('all-sailings', sailing.get_really_all, name="get_really_all_sailings"), path('sailings/route/<int:route_id>', sailing.get_sailing_by_route_id, name="get_sailing_by_route_id"), path('sailings/<int:sailing>', sailing.get_sailing, name="get_sailing"), path('sailings/<str:source>', sailing.get_sailing_by_route, name="get_sailing_from"), path('sailings/<str:source>/<str:destination>', sailing.get_sailing_by_route, name="get_sailing_from_and_to"), path('routes', route.get_all, name="get_all_routes"), path('terminals', terminal.get_all, name="get_all_terminals"), ]
[ "django.urls.path" ]
[((107, 138), 'django.urls.path', 'path', (['"""ping"""', 'ping'], {'name': '"""ping"""'}), "('ping', ping, name='ping')\n", (111, 138), False, 'from django.urls import path\n'), ((144, 198), 'django.urls.path', 'path', (['"""ferries"""', 'ferry.get_all'], {'name': '"""get_all_ferries"""'}), "('ferries', ferry.get_all, name='get_all_ferries')\n", (148, 198), False, 'from django.urls import path\n'), ((204, 262), 'django.urls.path', 'path', (['"""sailings"""', 'sailing.get_all'], {'name': '"""get_all_sailings"""'}), "('sailings', sailing.get_all, name='get_all_sailings')\n", (208, 262), False, 'from django.urls import path\n'), ((268, 344), 'django.urls.path', 'path', (['"""all-sailings"""', 'sailing.get_really_all'], {'name': '"""get_really_all_sailings"""'}), "('all-sailings', sailing.get_really_all, name='get_really_all_sailings')\n", (272, 344), False, 'from django.urls import path\n'), ((350, 457), 'django.urls.path', 'path', (['"""sailings/route/<int:route_id>"""', 'sailing.get_sailing_by_route_id'], {'name': '"""get_sailing_by_route_id"""'}), "('sailings/route/<int:route_id>', sailing.get_sailing_by_route_id, name\n ='get_sailing_by_route_id')\n", (354, 457), False, 'from django.urls import path\n'), ((458, 529), 'django.urls.path', 'path', (['"""sailings/<int:sailing>"""', 'sailing.get_sailing'], {'name': '"""get_sailing"""'}), "('sailings/<int:sailing>', sailing.get_sailing, name='get_sailing')\n", (462, 529), False, 'from django.urls import path\n'), ((535, 624), 'django.urls.path', 'path', (['"""sailings/<str:source>"""', 'sailing.get_sailing_by_route'], {'name': '"""get_sailing_from"""'}), "('sailings/<str:source>', sailing.get_sailing_by_route, name=\n 'get_sailing_from')\n", (539, 624), False, 'from django.urls import path\n'), ((625, 739), 'django.urls.path', 'path', (['"""sailings/<str:source>/<str:destination>"""', 'sailing.get_sailing_by_route'], {'name': '"""get_sailing_from_and_to"""'}), "('sailings/<str:source>/<str:destination>', sailing.\n get_sailing_by_route, name='get_sailing_from_and_to')\n", (629, 739), False, 'from django.urls import path\n'), ((740, 792), 'django.urls.path', 'path', (['"""routes"""', 'route.get_all'], {'name': '"""get_all_routes"""'}), "('routes', route.get_all, name='get_all_routes')\n", (744, 792), False, 'from django.urls import path\n'), ((798, 859), 'django.urls.path', 'path', (['"""terminals"""', 'terminal.get_all'], {'name': '"""get_all_terminals"""'}), "('terminals', terminal.get_all, name='get_all_terminals')\n", (802, 859), False, 'from django.urls import path\n')]
############################################################################## # # Copyright (c) 2001-2012 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## from BTrees import OOBTree from .common import BTreeTests from ._test_builder import update_module class OOBTreeTest(BTreeTests): def test_byValue(self): ITEMS = [(y, x) for x, y in enumerate('abcdefghijklmnopqrstuvwxyz')] tree = self._makeOne(ITEMS) self.assertEqual(list(tree.byValue(22)), [(y, x) for x, y in reversed(ITEMS[22:])]) def testRejectDefaultComparisonOnSet(self): # Check that passing int keys w default comparison fails. # Only applies to new-style class instances. Old-style # instances are too hard to introspect. # This is white box because we know that the check is being # used in a function that's used in lots of places. # Otherwise, there are many permutations that would have to be # checked. from .._compat import PY2 t = self._makeOne() class C(object): pass with self.assertRaises(TypeError) as raising: t[C()] = 1 self.assertEqual(raising.exception.args[0], "Object has default comparison") if PY2: # we only check for __cmp__ on Python2 class With___cmp__(object): def __cmp__(*args): return 1 c = With___cmp__() t[c] = 1 t.clear() class With___lt__(object): def __lt__(*args): return 1 c = With___lt__() t[c] = 1 t.clear() def testAcceptDefaultComparisonOnGet(self): # Issue #42 t = self._makeOne() class C(object): pass self.assertEqual(t.get(C(), 42), 42) self.assertRaises(KeyError, t.__getitem__, C()) self.assertFalse(C() in t) def test_None_is_smallest(self): t = self._makeOne() for i in range(999): # Make sure we multiple buckets t[i] = i*i t[None] = -1 for i in range(-99, 0): # Make sure we multiple buckets t[i] = i*i self.assertEqual(list(t), [None] + list(range(-99, 999))) self.assertEqual(list(t.values()), [-1] + [i*i for i in range(-99, 999)]) self.assertEqual(t[2], 4) self.assertEqual(t[-2], 4) self.assertEqual(t[None], -1) t[None] = -2 self.assertEqual(t[None], -2) t2 = t.__class__(t) del t[None] self.assertEqual(list(t), list(range(-99, 999))) if 'Py' in self.__class__.__name__: return from BTrees.OOBTree import difference, union, intersection self.assertEqual(list(difference(t2, t).items()), [(None, -2)]) self.assertEqual(list(union(t, t2)), list(t2)) self.assertEqual(list(intersection(t, t2)), list(t)) def testDeleteNoneKey(self): # Check that a None key can be deleted in Python 2. # This doesn't work on Python 3 because None is unorderable, # so the tree can't be searched. But None also can't be inserted, # and we don't support migrating Python 2 databases to Python 3. t = self._makeOne() bucket_state = ((None, 42),) tree_state = ((bucket_state,),) t.__setstate__(tree_state) self.assertEqual(t[None], 42) del t[None] def testUnpickleNoneKey(self): # All versions (py2 and py3, C and Python) can unpickle # data that looks like this: {None: 42}, even though None # is unorderable.. # This pickle was captured in BTree/ZODB3 3.10.7 data = b'ccopy_reg\n__newobj__\np0\n(cBTrees.OOBTree\nOOBTree\np1\ntp2\nRp3\n((((NI42\ntp4\ntp5\ntp6\ntp7\nb.' import pickle t = pickle.loads(data) keys = list(t) self.assertEqual([None], keys) def testIdentityTrumpsBrokenComparison(self): # Identical keys always match, even if their comparison is # broken. See https://github.com/zopefoundation/BTrees/issues/50 from functools import total_ordering @total_ordering class Bad(object): def __eq__(self, other): return False __lt__ = __cmp__ = __eq__ t = self._makeOne() bad_key = Bad() t[bad_key] = 42 self.assertIn(bad_key, t) self.assertEqual(list(t), [bad_key]) del t[bad_key] self.assertNotIn(bad_key, t) self.assertEqual(list(t), []) update_module(globals(), OOBTree, btree_tests_base=OOBTreeTest)
[ "pickle.loads", "BTrees.OOBTree.difference", "BTrees.OOBTree.intersection", "BTrees.OOBTree.union" ]
[((4347, 4365), 'pickle.loads', 'pickle.loads', (['data'], {}), '(data)\n', (4359, 4365), False, 'import pickle\n'), ((3348, 3360), 'BTrees.OOBTree.union', 'union', (['t', 't2'], {}), '(t, t2)\n', (3353, 3360), False, 'from BTrees.OOBTree import difference, union, intersection\n'), ((3403, 3422), 'BTrees.OOBTree.intersection', 'intersection', (['t', 't2'], {}), '(t, t2)\n', (3415, 3422), False, 'from BTrees.OOBTree import difference, union, intersection\n'), ((3276, 3293), 'BTrees.OOBTree.difference', 'difference', (['t2', 't'], {}), '(t2, t)\n', (3286, 3293), False, 'from BTrees.OOBTree import difference, union, intersection\n')]
import os import math import tqdm import torch import torch.nn as nn import torch.nn.functional as F import itertools import traceback from .model import Alice, Bob, Eve from .validation import validate def train(args, trainloader, valloader, writer, logger, hp, hp_str): alice = Alice(hp).cuda() bob = Bob(hp).cuda() eve = Eve(hp).cuda() optim_e = torch.optim.Adam( eve.parameters(), lr=hp.train.adam.lr) optim_ab = torch.optim.Adam( list(alice.parameters()) + list(bob.parameters()), lr=hp.train.adam.lr) step = 0 criterion = nn.L1Loss() try: alice.train(); bob.train(); eve.train() for epoch in itertools.count(0): if epoch % hp.log.validation == 0: with torch.no_grad(): validate(hp, args, alice, bob, eve, valloader, writer, step) loader = tqdm.tqdm(trainloader) for plainE, keyE, plainAB, keyAB in loader: plainE = plainE.cuda() keyE = keyE.cuda() plainAB = plainAB.cuda() keyAB = keyAB.cuda() # Eve optim_e.zero_grad() cipher = alice(plainE, keyE).detach() out_e = eve(cipher) loss_e = criterion(plainE, out_e) loss_e.backward() optim_e.step() loss_e_temp = loss_e.item() # Alice & Bob optim_ab.zero_grad() cipher = alice(plainAB, keyAB) out_e = eve(cipher) out_b = bob(cipher, keyAB) loss_e = criterion(plainAB, out_e) loss_b = criterion(plainAB, out_b) loss_ab = loss_b + (1. - loss_e).pow(2) loss_ab.backward() optim_ab.step() loss_b = loss_b.item() loss_ab = loss_ab.item() # logging step += 1 tmp = max(loss_ab, loss_b, loss_e_temp) if tmp > 1e8 or math.isnan(tmp): logger.error("loss exploded AB %f B %f E %f" % (loss_ab, loss_b, loss_e_temp)) raise Exception("Loss exploded") writer.log_train(loss_ab, loss_b, loss_e_temp, step) loader.set_description("AB %.04f B %.04f E %.04f step %d" % (loss_ab, loss_b, loss_e_temp, step)) except Exception as e: logger.info("Exiting due to exception: %s" % e) traceback.print_exc()
[ "torch.nn.L1Loss", "tqdm.tqdm", "itertools.count", "torch.no_grad", "traceback.print_exc", "math.isnan" ]
[((593, 604), 'torch.nn.L1Loss', 'nn.L1Loss', ([], {}), '()\n', (602, 604), True, 'import torch.nn as nn\n'), ((683, 701), 'itertools.count', 'itertools.count', (['(0)'], {}), '(0)\n', (698, 701), False, 'import itertools\n'), ((891, 913), 'tqdm.tqdm', 'tqdm.tqdm', (['trainloader'], {}), '(trainloader)\n', (900, 913), False, 'import tqdm\n'), ((2515, 2536), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (2534, 2536), False, 'import traceback\n'), ((771, 786), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (784, 786), False, 'import torch\n'), ((2070, 2085), 'math.isnan', 'math.isnan', (['tmp'], {}), '(tmp)\n', (2080, 2085), False, 'import math\n')]
import spacy from spacy.matcher import PhraseMatcher from app.utils import pdf2text nlp = spacy.load('en_core_web_sm') def model_rank(filename, requirements): requirements = ['management', 'business'] # print('WOI PANTEK "{}" == "uploads/c8106a5d9eb786b8048d6c9ade0368fff6612d67.pdf"'.format(filename)) # print("uploads/c8106a5d9eb786b8048d6c9ade0368fff6612d67.pdf" == filename) text = pdf2text(filename).strip().lower() words = [nlp(i) for i in requirements] matcher = PhraseMatcher(nlp.vocab) matcher.add('requirements', None, *words) score = len(matcher(nlp(text))) return score
[ "spacy.load", "app.utils.pdf2text", "spacy.matcher.PhraseMatcher" ]
[((91, 119), 'spacy.load', 'spacy.load', (['"""en_core_web_sm"""'], {}), "('en_core_web_sm')\n", (101, 119), False, 'import spacy\n'), ((497, 521), 'spacy.matcher.PhraseMatcher', 'PhraseMatcher', (['nlp.vocab'], {}), '(nlp.vocab)\n', (510, 521), False, 'from spacy.matcher import PhraseMatcher\n'), ((404, 422), 'app.utils.pdf2text', 'pdf2text', (['filename'], {}), '(filename)\n', (412, 422), False, 'from app.utils import pdf2text\n')]
# -*- coding: utf-8 -*- """ Created on Sat Mar 26 08:53:26 2016 @author: tomas """ import sys import json import numpy as np from util import MAP, MAP_qbs if __name__ == '__main__': fold = int(sys.argv[1]) tmp_file = str(sys.argv[2]) ub = int(sys.argv[3]) with open('data/washington/washington_preprocessed.json', 'r') as f: json_data = json.load(f) data = json_data['data'] labels, texts, splits = [], [], [] for datum in data: labels.append(datum['label']) texts.append(datum['text']) splits.append(datum['split']) X = np.load('tmp/%s_descriptors.npy' % tmp_file) if tmp_file.find('dct3') > 0: we = np.load('embeddings/washington_dct3_embeddings.npy') elif tmp_file.find('phoc') > 0: we = np.load('embeddings/washington_phoc_embeddings.npy') we = (we > 0).astype(np.float32) elif tmp_file.find('ngram') > 0: we = np.load('embeddings/washington_ngram_embeddings.npy') elif tmp_file.find('semantic') > 0: we = np.load('embeddings/washington_semantic_embeddings.npy') else: we = None #only keep train & val splits db = [] itargets = [] targets = [] qtargets = [] queries = [] used = [] if we != None: for i, (x, w, label, text, split) in enumerate(zip(X, we, labels, texts, splits)): if split == 'val' or split == 'train': db.append(x) itargets.append(label) targets.append(text) if label not in used: queries.append(w) qtargets.append(label) used.append(label) else: for i, (x, label, text, split) in enumerate(zip(X, labels, texts, splits)): if split == 'val' or split == 'train': db.append(x) itargets.append(label) targets.append(text) db = np.array(db) itargets = np.array(itargets) targets = np.array(targets) if ub < 1: ub = db.shape[0] + 1 #use entire db as query if we != None: mAP_qbs = MAP_qbs(queries[:ub], qtargets, db, itargets) else: mAP_qbs = -1 mAP_qbe = MAP(db[:ub], itargets, db, itargets) jdata = {} jdata['MaP_qbe'] = mAP_qbe jdata['MaP_qbs'] = mAP_qbs #store results in a json file with open('tmp/' + tmp_file + '_ws_results.json', 'w') as f: json.dump(jdata, f)
[ "util.MAP_qbs", "json.load", "numpy.array", "util.MAP", "numpy.load", "json.dump" ]
[((604, 648), 'numpy.load', 'np.load', (["('tmp/%s_descriptors.npy' % tmp_file)"], {}), "('tmp/%s_descriptors.npy' % tmp_file)\n", (611, 648), True, 'import numpy as np\n'), ((1966, 1978), 'numpy.array', 'np.array', (['db'], {}), '(db)\n', (1974, 1978), True, 'import numpy as np\n'), ((1994, 2012), 'numpy.array', 'np.array', (['itargets'], {}), '(itargets)\n', (2002, 2012), True, 'import numpy as np\n'), ((2027, 2044), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (2035, 2044), True, 'import numpy as np\n'), ((2255, 2291), 'util.MAP', 'MAP', (['db[:ub]', 'itargets', 'db', 'itargets'], {}), '(db[:ub], itargets, db, itargets)\n', (2258, 2291), False, 'from util import MAP, MAP_qbs\n'), ((370, 382), 'json.load', 'json.load', (['f'], {}), '(f)\n', (379, 382), False, 'import json\n'), ((701, 753), 'numpy.load', 'np.load', (['"""embeddings/washington_dct3_embeddings.npy"""'], {}), "('embeddings/washington_dct3_embeddings.npy')\n", (708, 753), True, 'import numpy as np\n'), ((2164, 2209), 'util.MAP_qbs', 'MAP_qbs', (['queries[:ub]', 'qtargets', 'db', 'itargets'], {}), '(queries[:ub], qtargets, db, itargets)\n', (2171, 2209), False, 'from util import MAP, MAP_qbs\n'), ((2481, 2500), 'json.dump', 'json.dump', (['jdata', 'f'], {}), '(jdata, f)\n', (2490, 2500), False, 'import json\n'), ((803, 855), 'numpy.load', 'np.load', (['"""embeddings/washington_phoc_embeddings.npy"""'], {}), "('embeddings/washington_phoc_embeddings.npy')\n", (810, 855), True, 'import numpy as np\n'), ((947, 1000), 'numpy.load', 'np.load', (['"""embeddings/washington_ngram_embeddings.npy"""'], {}), "('embeddings/washington_ngram_embeddings.npy')\n", (954, 1000), True, 'import numpy as np\n'), ((1054, 1110), 'numpy.load', 'np.load', (['"""embeddings/washington_semantic_embeddings.npy"""'], {}), "('embeddings/washington_semantic_embeddings.npy')\n", (1061, 1110), True, 'import numpy as np\n')]
#!/usr/bin/env python3 """ extract reads from a bam file and a list write a fasta file useful benchmark: https://timoast.github.io/blog/2015-10-12-extractreads/ """ import pysam def extract_reads(options): with open(options.names, "r") as f: n = f.readlines() bamfile = pysam.AlignmentFile(options.bam, 'rb') name_indexed = pysam.IndexedReads(bamfile) name_indexed.build() f_out = open(options.out, "w") for name in n: name = name.rstrip() try: name_indexed.find(name) except KeyError: pass else: iterator = name_indexed.find(name) for x in iterator: f_out.write(f">{x.query_name}_{x.reference_name}_{x.reference_start+1}_{x.cigarstring}\n") f_out.write(x.query_alignment_sequence + "\n") f_out.close() if __name__ == "__main__": from argparse import ArgumentParser parser = ArgumentParser(description = "Extract reads by read name from the bam (all hits) and write to fasta") parser.add_argument("-b", "--bam", help = "bam file", required = True) parser.add_argument("-n", "--names", help = "list of read names to extract", required = True) parser.add_argument("-o", "--out", help = "output.fasta", required = True) options = parser.parse_args() extract_reads(options)
[ "argparse.ArgumentParser", "pysam.AlignmentFile", "pysam.IndexedReads" ]
[((295, 333), 'pysam.AlignmentFile', 'pysam.AlignmentFile', (['options.bam', '"""rb"""'], {}), "(options.bam, 'rb')\n", (314, 333), False, 'import pysam\n'), ((353, 380), 'pysam.IndexedReads', 'pysam.IndexedReads', (['bamfile'], {}), '(bamfile)\n', (371, 380), False, 'import pysam\n'), ((967, 1071), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Extract reads by read name from the bam (all hits) and write to fasta"""'}), "(description=\n 'Extract reads by read name from the bam (all hits) and write to fasta')\n", (981, 1071), False, 'from argparse import ArgumentParser\n')]
from base_config import get_baseconfig_by_epoch from gsm.gsm_prune_pipeline import gsm_prune_pipeline def gsm_rc56(): network_type = 'rc56' dataset_name = 'cifar10' batch_size = 64 base_log_dir = 'gsm_exps/{}_base_train'.format(network_type) gsm_log_dir = 'gsm_exps/{}_gsm'.format(network_type) base_train_config = get_baseconfig_by_epoch(network_type=network_type, dataset_name=dataset_name, dataset_subset='train', global_batch_size=batch_size, num_node=1, weight_decay=1e-4, optimizer_type='sgd', momentum=0.9, max_epochs=500, base_lr=0.1, lr_epoch_boundaries=[100, 200, 300, 400], lr_decay_factor=0.1, linear_final_lr=None, warmup_epochs=5, warmup_method='linear', warmup_factor=0, ckpt_iter_period=40000, tb_iter_period=100, output_dir=base_log_dir, tb_dir=base_log_dir, save_weights=None, val_epoch_period=2) gsm_config = get_baseconfig_by_epoch(network_type=network_type, dataset_name=dataset_name, dataset_subset='train', global_batch_size=batch_size, num_node=1, weight_decay=1e-4, optimizer_type='sgd', momentum=0.98, max_epochs=600, base_lr=5e-3, lr_epoch_boundaries=[400, 500], # Note this line lr_decay_factor=0.1, linear_final_lr=None, warmup_epochs=5, warmup_method='linear', warmup_factor=0, ckpt_iter_period=40000, tb_iter_period=100, output_dir=gsm_log_dir, tb_dir=gsm_log_dir, save_weights=None, val_epoch_period=2) gsm_prune_pipeline(init_hdf5=None, base_train_config=base_train_config, gsm_config=gsm_config, nonzero_ratio=0.10) if __name__ == '__main__': gsm_rc56()
[ "base_config.get_baseconfig_by_epoch", "gsm.gsm_prune_pipeline.gsm_prune_pipeline" ]
[((340, 870), 'base_config.get_baseconfig_by_epoch', 'get_baseconfig_by_epoch', ([], {'network_type': 'network_type', 'dataset_name': 'dataset_name', 'dataset_subset': '"""train"""', 'global_batch_size': 'batch_size', 'num_node': '(1)', 'weight_decay': '(0.0001)', 'optimizer_type': '"""sgd"""', 'momentum': '(0.9)', 'max_epochs': '(500)', 'base_lr': '(0.1)', 'lr_epoch_boundaries': '[100, 200, 300, 400]', 'lr_decay_factor': '(0.1)', 'linear_final_lr': 'None', 'warmup_epochs': '(5)', 'warmup_method': '"""linear"""', 'warmup_factor': '(0)', 'ckpt_iter_period': '(40000)', 'tb_iter_period': '(100)', 'output_dir': 'base_log_dir', 'tb_dir': 'base_log_dir', 'save_weights': 'None', 'val_epoch_period': '(2)'}), "(network_type=network_type, dataset_name=\n dataset_name, dataset_subset='train', global_batch_size=batch_size,\n num_node=1, weight_decay=0.0001, optimizer_type='sgd', momentum=0.9,\n max_epochs=500, base_lr=0.1, lr_epoch_boundaries=[100, 200, 300, 400],\n lr_decay_factor=0.1, linear_final_lr=None, warmup_epochs=5,\n warmup_method='linear', warmup_factor=0, ckpt_iter_period=40000,\n tb_iter_period=100, output_dir=base_log_dir, tb_dir=base_log_dir,\n save_weights=None, val_epoch_period=2)\n", (363, 870), False, 'from base_config import get_baseconfig_by_epoch\n'), ((1146, 1667), 'base_config.get_baseconfig_by_epoch', 'get_baseconfig_by_epoch', ([], {'network_type': 'network_type', 'dataset_name': 'dataset_name', 'dataset_subset': '"""train"""', 'global_batch_size': 'batch_size', 'num_node': '(1)', 'weight_decay': '(0.0001)', 'optimizer_type': '"""sgd"""', 'momentum': '(0.98)', 'max_epochs': '(600)', 'base_lr': '(0.005)', 'lr_epoch_boundaries': '[400, 500]', 'lr_decay_factor': '(0.1)', 'linear_final_lr': 'None', 'warmup_epochs': '(5)', 'warmup_method': '"""linear"""', 'warmup_factor': '(0)', 'ckpt_iter_period': '(40000)', 'tb_iter_period': '(100)', 'output_dir': 'gsm_log_dir', 'tb_dir': 'gsm_log_dir', 'save_weights': 'None', 'val_epoch_period': '(2)'}), "(network_type=network_type, dataset_name=\n dataset_name, dataset_subset='train', global_batch_size=batch_size,\n num_node=1, weight_decay=0.0001, optimizer_type='sgd', momentum=0.98,\n max_epochs=600, base_lr=0.005, lr_epoch_boundaries=[400, 500],\n lr_decay_factor=0.1, linear_final_lr=None, warmup_epochs=5,\n warmup_method='linear', warmup_factor=0, ckpt_iter_period=40000,\n tb_iter_period=100, output_dir=gsm_log_dir, tb_dir=gsm_log_dir,\n save_weights=None, val_epoch_period=2)\n", (1169, 1667), False, 'from base_config import get_baseconfig_by_epoch\n'), ((1949, 2066), 'gsm.gsm_prune_pipeline.gsm_prune_pipeline', 'gsm_prune_pipeline', ([], {'init_hdf5': 'None', 'base_train_config': 'base_train_config', 'gsm_config': 'gsm_config', 'nonzero_ratio': '(0.1)'}), '(init_hdf5=None, base_train_config=base_train_config,\n gsm_config=gsm_config, nonzero_ratio=0.1)\n', (1967, 2066), False, 'from gsm.gsm_prune_pipeline import gsm_prune_pipeline\n')]
# -*- coding: utf-8 -*- from django import forms from django.conf import settings from django.contrib.auth.models import User from django.contrib.auth.forms import SetPasswordForm, PasswordChangeForm, \ AdminPasswordChangeForm as DjagnoAdminPasswordChangeForm, UserCreationForm, \ AuthenticationForm as DjangoAuthenticationForm from localflavor.pl.forms import PLPESELField from django.utils.translation import ugettext_lazy as _ from passwords.fields import PasswordField from localflavor.pl.forms import PLPESELField from sew_django.profiles.models import Profile class ValidatingSetPasswordForm(SetPasswordForm): new_password1 = PasswordField(label=_("New password")) new_password2 = PasswordField(label=_("New password confirm")) class ValidatingPasswordChangeForm(PasswordChangeForm): new_password1 = PasswordField(label=_("New password")) new_password2 = PasswordField(label=_("New password confirmation")) class AdminPasswordChangeForm(DjagnoAdminPasswordChangeForm): password1 = PasswordField(label=_("New password")) password2 = PasswordField(label=_("New password confirm")) class AuthenticationForm(DjangoAuthenticationForm): def __init__(self, *args, **kwargs): super(AuthenticationForm, self).__init__(*args, **kwargs) self.fields['username'].label = _(u"Numer PESEL lub adres email") self.error_messages['invalid_login'] = _(u"Wprowadź poprawny numer PESEL lub adres email.") class PeselForm(forms.ModelForm): class Meta: model = Profile fields = ['pesel',] class RegisterUserFullForm(forms.ModelForm): password = PasswordField(label=_("Password")) password_confirm = PasswordField(label=_("Password confirmation")) def __init__(self, *args, **kwargs): super(RegisterUserFullForm, self).__init__(*args, **kwargs) self.fields['consent_processing_of_personal_data'].is_checkbox = True self.fields['consent_processing_of_personal_data'].required = True self.fields['consent_processing_of_personal_data'].initial = False self.fields['accept_of_sending_data_to_WOSP'].is_checkbox = True self.fields['accept_of_sending_data_to_WOSP'].required = True self.fields['accept_of_sending_data_to_WOSP'].initial = False def clean_password_confirm(self): password = self.cleaned_data.get('password') password_confirm = self.cleaned_data.get('password_confirm') if password != password_confirm: raise forms.ValidationError(_("Passwords doesn't match.")) return password_confirm def save(self, commit=True): profile = super(RegisterUserFullForm, self).save(commit=False) profile.set_password(self.cleaned_data["password"]) if commit: profile.save() return profile class Meta: model = Profile fields = ['pesel','email', 'photo', 'first_name', 'last_name', 'street', 'house', 'flat', 'zip', 'city', 'phone', 'workplace_name', 'workplace_address', 'workplace_zip', 'workplace_city', 'password','<PASSWORD>', "consent_processing_of_personal_data", "accept_of_sending_data_to_WOSP"] class AdminRegisterUserFullForm(RegisterUserFullForm): #small hack to show those fields consent_processing_of_personal_data = forms.BooleanField(required=False, initial=True) accept_of_sending_data_to_WOSP = forms.BooleanField(required=False, initial=True) def __init__(self, *args, **kwargs): super(AdminRegisterUserFullForm, self).__init__(*args, **kwargs) self.fields['consent_processing_of_personal_data'].required = False self.fields['accept_of_sending_data_to_WOSP'].required = False def clean(self): cleaned_data = self.cleaned_data cleaned_data['consent_processing_of_personal_data'] = True cleaned_data['accept_of_sending_data_to_WOSP'] = True return cleaned_data
[ "django.forms.BooleanField", "django.utils.translation.ugettext_lazy" ]
[((3316, 3364), 'django.forms.BooleanField', 'forms.BooleanField', ([], {'required': '(False)', 'initial': '(True)'}), '(required=False, initial=True)\n', (3334, 3364), False, 'from django import forms\n'), ((3402, 3450), 'django.forms.BooleanField', 'forms.BooleanField', ([], {'required': '(False)', 'initial': '(True)'}), '(required=False, initial=True)\n', (3420, 3450), False, 'from django import forms\n'), ((1324, 1357), 'django.utils.translation.ugettext_lazy', '_', (['u"""Numer PESEL lub adres email"""'], {}), "(u'Numer PESEL lub adres email')\n", (1325, 1357), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1405, 1457), 'django.utils.translation.ugettext_lazy', '_', (['u"""Wprowadź poprawny numer PESEL lub adres email."""'], {}), "(u'Wprowadź poprawny numer PESEL lub adres email.')\n", (1406, 1457), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((668, 685), 'django.utils.translation.ugettext_lazy', '_', (['"""New password"""'], {}), "('New password')\n", (669, 685), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((727, 752), 'django.utils.translation.ugettext_lazy', '_', (['"""New password confirm"""'], {}), "('New password confirm')\n", (728, 752), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((852, 869), 'django.utils.translation.ugettext_lazy', '_', (['"""New password"""'], {}), "('New password')\n", (853, 869), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((911, 941), 'django.utils.translation.ugettext_lazy', '_', (['"""New password confirmation"""'], {}), "('New password confirmation')\n", (912, 941), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1042, 1059), 'django.utils.translation.ugettext_lazy', '_', (['"""New password"""'], {}), "('New password')\n", (1043, 1059), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1097, 1122), 'django.utils.translation.ugettext_lazy', '_', (['"""New password confirm"""'], {}), "('New password confirm')\n", (1098, 1122), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1642, 1655), 'django.utils.translation.ugettext_lazy', '_', (['"""Password"""'], {}), "('Password')\n", (1643, 1655), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((1700, 1726), 'django.utils.translation.ugettext_lazy', '_', (['"""Password confirmation"""'], {}), "('Password confirmation')\n", (1701, 1726), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((2521, 2550), 'django.utils.translation.ugettext_lazy', '_', (['"""Passwords doesn\'t match."""'], {}), '("Passwords doesn\'t match.")\n', (2522, 2550), True, 'from django.utils.translation import ugettext_lazy as _\n')]
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import sys import os def welcome(): """ Perform a bunch of sanity tests to make sure the Add-on SDK environment is sane, and then display a welcome message. """ try: if sys.version_info[0] > 2: print ("Error: You appear to be using Python %d, but " "the Add-on SDK only supports the Python 2.x line." % (sys.version_info[0])) return import mozrunner if 'CUDDLEFISH_ROOT' not in os.environ: print ("Error: CUDDLEFISH_ROOT environment variable does " "not exist! It should point to the root of the " "Add-on SDK repository.") return env_root = os.environ['CUDDLEFISH_ROOT'] bin_dir = os.path.join(env_root, 'bin') python_lib_dir = os.path.join(env_root, 'python-lib') path = os.environ['PATH'].split(os.path.pathsep) if bin_dir not in path: print ("Warning: the Add-on SDK binary directory %s " "does not appear to be in your PATH. You may " "not be able to run 'cfx' or other SDK tools." % bin_dir) if python_lib_dir not in sys.path: print ("Warning: the Add-on SDK python-lib directory %s " "does not appear to be in your sys.path, which " "is odd because I'm running from it." % python_lib_dir) if not mozrunner.__path__[0].startswith(env_root): print ("Warning: your mozrunner package is installed at %s, " "which does not seem to be located inside the Jetpack " "SDK. This may cause problems, and you may want to " "uninstall the other version. See bug 556562 for " "more information." % mozrunner.__path__[0]) except Exception: # Apparently we can't get the actual exception object in the # 'except' clause in a way that's syntax-compatible for both # Python 2.x and 3.x, so we'll have to use the traceback module. import traceback _, e, _ = sys.exc_info() print ("Verification of Add-on SDK environment failed (%s)." % e) print ("Your SDK may not work properly.") return print ("Welcome to the Add-on SDK. Run 'cfx docs' for assistance.") if __name__ == '__main__': welcome()
[ "sys.exc_info", "os.path.join" ]
[((972, 1001), 'os.path.join', 'os.path.join', (['env_root', '"""bin"""'], {}), "(env_root, 'bin')\n", (984, 1001), False, 'import os\n'), ((1027, 1063), 'os.path.join', 'os.path.join', (['env_root', '"""python-lib"""'], {}), "(env_root, 'python-lib')\n", (1039, 1063), False, 'import os\n'), ((2331, 2345), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (2343, 2345), False, 'import sys\n')]
# -*- coding: utf-8 -*- """ .. _training-example: Train Your Own Neural Network Potential ======================================= This example shows how to use TorchANI train your own neural network potential. """ ############################################################################### # To begin with, let's first import the modules we will use: import torch import ignite import torchani import timeit import tensorboardX import os import ignite.contrib.handlers ############################################################################### # Now let's setup training hyperparameters. Note that here for our demo purpose # , we set both training set and validation set the ``ani_gdb_s01.h5`` in # TorchANI's repository. This allows this program to finish very quick, because # that dataset is very small. But this is wrong and should be avoided for any # serious training. These paths assumes the user run this script under the # ``examples`` directory of TorchANI's repository. If you download this script, # you should manually set the path of these files in your system before this # script can run successfully. # training and validation set try: path = os.path.dirname(os.path.realpath(__file__)) except NameError: path = os.getcwd() training_path = os.path.join(path, '../dataset/ani_gdb_s01.h5') validation_path = os.path.join(path, '../dataset/ani_gdb_s01.h5') # checkpoint file to save model when validation RMSE improves model_checkpoint = 'model.pt' # max epochs to run the training max_epochs = 20 # Compute training RMSE every this steps. Since the training set is usually # huge and the loss funcition does not directly gives us RMSE, we need to # check the training RMSE to see overfitting. training_rmse_every = 5 # device to run the training device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # batch size batch_size = 1024 # log directory for tensorboardX log = 'runs' ############################################################################### # Now let's read our constants and self energies from constant files and # construct AEV computer. const_file = os.path.join(path, '../torchani/resources/ani-1x_dft_x8ens/rHCNO-5.2R_16-3.5A_a4-8.params') # noqa: E501 sae_file = os.path.join(path, '../torchani/resources/ani-1x_dft_x8ens/sae_linfit.dat') # noqa: E501 consts = torchani.neurochem.Constants(const_file) aev_computer = torchani.AEVComputer(**consts) energy_shifter = torchani.neurochem.load_sae(sae_file) ############################################################################### # Now let's define atomic neural networks. Here in this demo, we use the same # size of neural network for all atom types, but this is not necessary. def atomic(): model = torch.nn.Sequential( torch.nn.Linear(384, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 128), torch.nn.CELU(0.1), torch.nn.Linear(128, 64), torch.nn.CELU(0.1), torch.nn.Linear(64, 1) ) return model nn = torchani.ANIModel([atomic() for _ in range(4)]) print(nn) ############################################################################### # If checkpoint from previous training exists, then load it. if os.path.isfile(model_checkpoint): nn.load_state_dict(torch.load(model_checkpoint)) else: torch.save(nn.state_dict(), model_checkpoint) model = torch.nn.Sequential(aev_computer, nn).to(device) ############################################################################### # Now setup tensorboardX. writer = tensorboardX.SummaryWriter(log_dir=log) ############################################################################### # Now load training and validation datasets into memory. Note that we need to # subtracting energies by the self energies of all atoms for each molecule. # This makes the range of energies in a reasonable range. The second argument # defines how to convert species as a list of string to tensor, that is, for # all supported chemical symbols, which is correspond to ``0``, which # correspond to ``1``, etc. training = torchani.data.BatchedANIDataset( training_path, consts.species_to_tensor, batch_size, device=device, transform=[energy_shifter.subtract_from_dataset]) validation = torchani.data.BatchedANIDataset( validation_path, consts.species_to_tensor, batch_size, device=device, transform=[energy_shifter.subtract_from_dataset]) ############################################################################### # When iterating the dataset, we will get pairs of input and output # ``(species_coordinates, properties)``, where ``species_coordinates`` is the # input and ``properties`` is the output. # # ``species_coordinates`` is a list of species-coordinate pairs, with shape # ``(N, Na)`` and ``(N, Na, 3)``. The reason for getting this type is, when # loading the dataset and generating minibatches, the whole dataset are # shuffled and each minibatch contains structures of molecules with a wide # range of number of atoms. Molecules of different number of atoms are batched # into single by padding. The way padding works is: adding ghost atoms, with # species 'X', and do computations as if they were normal atoms. But when # computing AEVs, atoms with species `X` would be ignored. To avoid computation # wasting on padding atoms, minibatches are further splitted into chunks. Each # chunk contains structures of molecules of similar size, which minimize the # total number of padding atoms required to add. The input list # ``species_coordinates`` contains chunks of that minibatch we are getting. The # batching and chunking happens automatically, so the user does not need to # worry how to construct chunks, but the user need to compute the energies for # each chunk and concat them into single tensor. # # The output, i.e. ``properties`` is a dictionary holding each property. This # allows us to extend TorchANI in the future to training forces and properties. # # We have tools to deal with these data types at :attr:`torchani.ignite` that # allow us to easily combine the dataset with pytorch ignite. These tools can # be used as follows: container = torchani.ignite.Container({'energies': model}) optimizer = torch.optim.Adam(model.parameters()) trainer = ignite.engine.create_supervised_trainer( container, optimizer, torchani.ignite.MSELoss('energies')) evaluator = ignite.engine.create_supervised_evaluator(container, metrics={ 'RMSE': torchani.ignite.RMSEMetric('energies') }) ############################################################################### # Let's add a progress bar for the trainer pbar = ignite.contrib.handlers.ProgressBar() pbar.attach(trainer) ############################################################################### # And some event handlers to compute validation and training metrics: def hartree2kcal(x): return 627.509 * x @trainer.on(ignite.engine.Events.EPOCH_STARTED) def validation_and_checkpoint(trainer): def evaluate(dataset, name): evaluator = ignite.engine.create_supervised_evaluator( container, metrics={ 'RMSE': torchani.ignite.RMSEMetric('energies') } ) evaluator.run(dataset) metrics = evaluator.state.metrics rmse = hartree2kcal(metrics['RMSE']) writer.add_scalar(name, rmse, trainer.state.epoch) # compute validation RMSE evaluate(validation, 'validation_rmse_vs_epoch') # compute training RMSE if trainer.state.epoch % training_rmse_every == 1: evaluate(training, 'training_rmse_vs_epoch') # checkpoint model torch.save(nn.state_dict(), model_checkpoint) ############################################################################### # Also some to log elapsed time: start = timeit.default_timer() @trainer.on(ignite.engine.Events.EPOCH_STARTED) def log_time(trainer): elapsed = round(timeit.default_timer() - start, 2) writer.add_scalar('time_vs_epoch', elapsed, trainer.state.epoch) ############################################################################### # Also log the loss per iteration: @trainer.on(ignite.engine.Events.ITERATION_COMPLETED) def log_loss(trainer): iteration = trainer.state.iteration writer.add_scalar('loss_vs_iteration', trainer.state.output, iteration) ############################################################################### # And finally, we are ready to run: trainer.run(training, max_epochs)
[ "torch.nn.Sequential", "torchani.AEVComputer", "torch.cuda.is_available", "torchani.neurochem.Constants", "tensorboardX.SummaryWriter", "torch.nn.CELU", "ignite.contrib.handlers.ProgressBar", "torchani.ignite.Container", "os.path.isfile", "torchani.ignite.MSELoss", "torchani.ignite.RMSEMetric", "torchani.data.BatchedANIDataset", "timeit.default_timer", "torchani.neurochem.load_sae", "torch.load", "os.path.join", "os.getcwd", "os.path.realpath", "torch.nn.Linear" ]
[((1281, 1328), 'os.path.join', 'os.path.join', (['path', '"""../dataset/ani_gdb_s01.h5"""'], {}), "(path, '../dataset/ani_gdb_s01.h5')\n", (1293, 1328), False, 'import os\n'), ((1347, 1394), 'os.path.join', 'os.path.join', (['path', '"""../dataset/ani_gdb_s01.h5"""'], {}), "(path, '../dataset/ani_gdb_s01.h5')\n", (1359, 1394), False, 'import os\n'), ((2132, 2227), 'os.path.join', 'os.path.join', (['path', '"""../torchani/resources/ani-1x_dft_x8ens/rHCNO-5.2R_16-3.5A_a4-8.params"""'], {}), "(path,\n '../torchani/resources/ani-1x_dft_x8ens/rHCNO-5.2R_16-3.5A_a4-8.params')\n", (2144, 2227), False, 'import os\n'), ((2249, 2324), 'os.path.join', 'os.path.join', (['path', '"""../torchani/resources/ani-1x_dft_x8ens/sae_linfit.dat"""'], {}), "(path, '../torchani/resources/ani-1x_dft_x8ens/sae_linfit.dat')\n", (2261, 2324), False, 'import os\n'), ((2348, 2388), 'torchani.neurochem.Constants', 'torchani.neurochem.Constants', (['const_file'], {}), '(const_file)\n', (2376, 2388), False, 'import torchani\n'), ((2404, 2434), 'torchani.AEVComputer', 'torchani.AEVComputer', ([], {}), '(**consts)\n', (2424, 2434), False, 'import torchani\n'), ((2452, 2489), 'torchani.neurochem.load_sae', 'torchani.neurochem.load_sae', (['sae_file'], {}), '(sae_file)\n', (2479, 2489), False, 'import torchani\n'), ((3221, 3253), 'os.path.isfile', 'os.path.isfile', (['model_checkpoint'], {}), '(model_checkpoint)\n', (3235, 3253), False, 'import os\n'), ((3538, 3577), 'tensorboardX.SummaryWriter', 'tensorboardX.SummaryWriter', ([], {'log_dir': 'log'}), '(log_dir=log)\n', (3564, 3577), False, 'import tensorboardX\n'), ((4077, 4235), 'torchani.data.BatchedANIDataset', 'torchani.data.BatchedANIDataset', (['training_path', 'consts.species_to_tensor', 'batch_size'], {'device': 'device', 'transform': '[energy_shifter.subtract_from_dataset]'}), '(training_path, consts.species_to_tensor,\n batch_size, device=device, transform=[energy_shifter.subtract_from_dataset]\n )\n', (4108, 4235), False, 'import torchani\n'), ((4250, 4410), 'torchani.data.BatchedANIDataset', 'torchani.data.BatchedANIDataset', (['validation_path', 'consts.species_to_tensor', 'batch_size'], {'device': 'device', 'transform': '[energy_shifter.subtract_from_dataset]'}), '(validation_path, consts.species_to_tensor,\n batch_size, device=device, transform=[energy_shifter.subtract_from_dataset]\n )\n', (4281, 4410), False, 'import torchani\n'), ((6147, 6193), 'torchani.ignite.Container', 'torchani.ignite.Container', (["{'energies': model}"], {}), "({'energies': model})\n", (6172, 6193), False, 'import torchani\n'), ((6626, 6663), 'ignite.contrib.handlers.ProgressBar', 'ignite.contrib.handlers.ProgressBar', ([], {}), '()\n', (6661, 6663), False, 'import ignite\n'), ((7794, 7816), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (7814, 7816), False, 'import timeit\n'), ((6320, 6355), 'torchani.ignite.MSELoss', 'torchani.ignite.MSELoss', (['"""energies"""'], {}), "('energies')\n", (6343, 6355), False, 'import torchani\n'), ((1196, 1222), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1212, 1222), False, 'import os\n'), ((1253, 1264), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1262, 1264), False, 'import os\n'), ((1821, 1846), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1844, 1846), False, 'import torch\n'), ((2777, 2802), 'torch.nn.Linear', 'torch.nn.Linear', (['(384)', '(128)'], {}), '(384, 128)\n', (2792, 2802), False, 'import torch\n'), ((2812, 2830), 'torch.nn.CELU', 'torch.nn.CELU', (['(0.1)'], {}), '(0.1)\n', (2825, 2830), False, 'import torch\n'), ((2840, 2865), 'torch.nn.Linear', 'torch.nn.Linear', (['(128)', '(128)'], {}), '(128, 128)\n', (2855, 2865), False, 'import torch\n'), ((2875, 2893), 'torch.nn.CELU', 'torch.nn.CELU', (['(0.1)'], {}), '(0.1)\n', (2888, 2893), False, 'import torch\n'), ((2903, 2927), 'torch.nn.Linear', 'torch.nn.Linear', (['(128)', '(64)'], {}), '(128, 64)\n', (2918, 2927), False, 'import torch\n'), ((2937, 2955), 'torch.nn.CELU', 'torch.nn.CELU', (['(0.1)'], {}), '(0.1)\n', (2950, 2955), False, 'import torch\n'), ((2965, 2987), 'torch.nn.Linear', 'torch.nn.Linear', (['(64)', '(1)'], {}), '(64, 1)\n', (2980, 2987), False, 'import torch\n'), ((3278, 3306), 'torch.load', 'torch.load', (['model_checkpoint'], {}), '(model_checkpoint)\n', (3288, 3306), False, 'import torch\n'), ((3373, 3410), 'torch.nn.Sequential', 'torch.nn.Sequential', (['aev_computer', 'nn'], {}), '(aev_computer, nn)\n', (3392, 3410), False, 'import torch\n'), ((6448, 6486), 'torchani.ignite.RMSEMetric', 'torchani.ignite.RMSEMetric', (['"""energies"""'], {}), "('energies')\n", (6474, 6486), False, 'import torchani\n'), ((7910, 7932), 'timeit.default_timer', 'timeit.default_timer', ([], {}), '()\n', (7930, 7932), False, 'import timeit\n'), ((7136, 7174), 'torchani.ignite.RMSEMetric', 'torchani.ignite.RMSEMetric', (['"""energies"""'], {}), "('energies')\n", (7162, 7174), False, 'import torchani\n')]
import scrapy from selenium import webdriver import re import json import requests import os from kototo.items import KototoItem import pymysql class KototoSpider(scrapy.Spider): name = 'kototo' start_urls = [] # 指定的需要爬取的up主的b站投稿页面 space_url = 'https://space.bilibili.com/17485141/video' def __init__(self): """ 构造器,主要初始化了selenium对象并实现无头浏览器,以及 初始化需要爬取的url地址,因为b站的翻页是js实现的,所以要手动处理一下 """ super().__init__() # 构造无头浏览器 from selenium.webdriver.chrome.options import Options chrome_options = Options() chrome_options.add_argument('--headless') chrome_options.add_argument('--disable-gpu') self.bro = webdriver.Chrome(chrome_options=chrome_options) # 初始化需要爬取的列表页 self.init_start_urls(self.start_urls, self.space_url) # 创建桌面文件夹 self.desktop_path = os.path.join(os.path.expanduser('~'), 'Desktop\\' + self.name + '\\') if not os.path.exists(self.desktop_path): os.mkdir(self.desktop_path) def parse(self, response): """ 解析方法,解析列表页的视频li,拿到标题和详情页,然后主动请求详情页 :param response: :return: """ li_list = response.xpath('//*[@id="submit-video-list"]/ul[2]/li') for li in li_list: print(li.xpath('./a[2]/@title').extract_first()) print(detail_url := 'https://' + li.xpath('./a[2]/@href').extract_first()[2:]) yield scrapy.Request(url=detail_url, callback=self.parse_detail) def parse_detail(self, response): """ 增量爬取: 解析详情页的音视频地址并交给管道处理 使用mysql实现 :param response: :return: """ title = response.xpath('//*[@id="viewbox_report"]/h1/@title').extract_first() # 替换掉视频名称中无法用在文件名中或会导致cmd命令出错的字符 title = title.replace('-', '').replace(' ', '').replace('/', '').replace('|', '') play_info_list = self.get_play_info(response) # 这里使用mysql的唯一索引实现增量爬取,如果是服务器上跑也可以用redis if self.insert_info(title, play_info_list[1]): video_temp_path = (self.desktop_path + title + '_temp.mp4').replace('-', '') video_path = self.desktop_path + title + '.mp4' audio_path = self.desktop_path + title + '.mp3' item = KototoItem() item['video_url'] = play_info_list[0] item['audio_url'] = play_info_list[1] item['video_path'] = video_path item['audio_path'] = audio_path item['video_temp_path'] = video_temp_path yield item else: print(title + ': 已经下载过了!') def insert_info(self, vtitle, vurl): """ mysql持久化存储爬取过的视频内容信息 :param vtitle: 标题 :param vurl: 视频链接 :return: """ with Mysql() as conn: cursor = conn.cursor(pymysql.cursors.DictCursor) try: sql = 'insert into tb_kototo(title,url) values("%s","%s")' % (vtitle, vurl) res = cursor.execute(sql) conn.commit() if res == 1: return True else: return False except: return False def get_play_info(self, resp): """ 解析详情页的源代码,提取其中的视频和文件真实地址 :param resp: :return: """ json_data = json.loads(re.findall('<script>window\.__playinfo__=(.*?)</script>', resp.text)[0]) # 拿到视频和音频的真实链接地址 video_url = json_data['data']['dash']['video'][0]['baseUrl'] audio_url = json_data['data']['dash']['audio'][0]['backupUrl'][0] return video_url, audio_url def init_start_urls(self, url_list, person_page): """ 初始化需要爬取的列表页,由于b站使用js翻页,无法在源码中找到翻页地址, 需要自己手动实现解析翻页url的操作 :param url_list: :param person_page: :return: """ mid = re.findall('https://space.bilibili.com/(.*?)/video\w*', person_page)[0] url = 'https://api.bilibili.com/x/space/arc/search?mid=' + mid + '&ps=30&tid=0&pn=1&keyword=&order=pubdate&jsonp=jsonp' headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36', 'Referer': 'https://www.bilibili.com' } json_data = requests.get(url=url, headers=headers).json() total_count = json_data['data']['page']['count'] page_size = json_data['data']['page']['ps'] if total_count <= page_size: page_count = 1 elif total_count % page_size == 0: page_count = total_count // page_size else: page_count = total_count // page_size + 1 url_template = 'https://space.bilibili.com/' + mid + '/video?tid=0&page=' + '%d' + '&keyword=&order=pubdate' for i in range(page_count): page_no = i + 1 url_list.append(url_template % page_no) def closed(self, spider): """ 爬虫结束关闭selenium窗口 :param spider: :return: """ self.bro.quit() class Mysql(object): def __enter__(self): self.connection = pymysql.connect(host='127.0.0.1', port=3306, user='root', password='<PASSWORD>', database='python') return self.connection def __exit__(self, exc_type, exc_val, exc_tb): self.connection.close()
[ "selenium.webdriver.chrome.options.Options", "os.path.exists", "selenium.webdriver.Chrome", "pymysql.connect", "requests.get", "scrapy.Request", "kototo.items.KototoItem", "os.mkdir", "re.findall", "os.path.expanduser" ]
[((573, 582), 'selenium.webdriver.chrome.options.Options', 'Options', ([], {}), '()\n', (580, 582), False, 'from selenium.webdriver.chrome.options import Options\n'), ((705, 752), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'chrome_options': 'chrome_options'}), '(chrome_options=chrome_options)\n', (721, 752), False, 'from selenium import webdriver\n'), ((5155, 5259), 'pymysql.connect', 'pymysql.connect', ([], {'host': '"""127.0.0.1"""', 'port': '(3306)', 'user': '"""root"""', 'password': '"""<PASSWORD>"""', 'database': '"""python"""'}), "(host='127.0.0.1', port=3306, user='root', password=\n '<PASSWORD>', database='python')\n", (5170, 5259), False, 'import pymysql\n'), ((896, 919), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (914, 919), False, 'import os\n'), ((968, 1001), 'os.path.exists', 'os.path.exists', (['self.desktop_path'], {}), '(self.desktop_path)\n', (982, 1001), False, 'import os\n'), ((1015, 1042), 'os.mkdir', 'os.mkdir', (['self.desktop_path'], {}), '(self.desktop_path)\n', (1023, 1042), False, 'import os\n'), ((2273, 2285), 'kototo.items.KototoItem', 'KototoItem', ([], {}), '()\n', (2283, 2285), False, 'from kototo.items import KototoItem\n'), ((3879, 3948), 're.findall', 're.findall', (['"""https://space.bilibili.com/(.*?)/video\\\\w*"""', 'person_page'], {}), "('https://space.bilibili.com/(.*?)/video\\\\w*', person_page)\n", (3889, 3948), False, 'import re\n'), ((1455, 1513), 'scrapy.Request', 'scrapy.Request', ([], {'url': 'detail_url', 'callback': 'self.parse_detail'}), '(url=detail_url, callback=self.parse_detail)\n', (1469, 1513), False, 'import scrapy\n'), ((3367, 3436), 're.findall', 're.findall', (['"""<script>window\\\\.__playinfo__=(.*?)</script>"""', 'resp.text'], {}), "('<script>window\\\\.__playinfo__=(.*?)</script>', resp.text)\n", (3377, 3436), False, 'import re\n'), ((4323, 4361), 'requests.get', 'requests.get', ([], {'url': 'url', 'headers': 'headers'}), '(url=url, headers=headers)\n', (4335, 4361), False, 'import requests\n')]
#!/usr/bin/env python # coding: utf-8 # Copyright (c) Qotto, 2019 from typing import Dict, Any from asyncio import Event, Future, get_event_loop, AbstractEventLoop __all__ = [ 'DictIsFull', 'DictIsEmpty', 'AsyncCoordinator' ] class DictIsFull(Exception): pass class DictIsEmpty(Exception): pass class AsyncCoordinator: _loop: AbstractEventLoop _maxsize: int _getters: Dict[str, Future] _putters: Dict[str, Future] _unfinished_tasks: int _finished: Event _dict: Dict[str, Any] def __init__(self, maxsize=0, *, loop=None): if loop is None: self._loop = get_event_loop() else: self._loop = loop self._maxsize = maxsize self._getters: Dict[str, Future] = dict() self._putters: Dict[str, Future] = dict() self._unfinished_tasks = 0 self._finished = Event(loop=self._loop) self._finished.set() self._dict = dict() def get_dict_copy(self) -> Dict[str, Any]: return self._dict.copy() def _get(self, key: str) -> Any: value = self._dict[key] del self._dict[key] return value def _put(self, key: str, value: Any) -> None: self._dict[key] = value def _wake_up_getter(self, key: str) -> None: if key in self._getters: waiter = self._getters[key] if not waiter.done(): waiter.set_result(None) def _wake_up_putter(self, key: str) -> None: if key in self._putters: waiter = self._putters[key] if not waiter.done(): waiter.set_result(None) def __repr__(self) -> str: return f'<{type(self).__name__} at {id(self):#x} {self._format()}>' def __str__(self) -> str: return f'<{type(self).__name__} {self._format()}>' def _format(self) -> str: result = f'maxsize={self._maxsize!r}' if getattr(self, '_dict', None): result += f' _dict={dict(self._dict)!r}' if self._getters: result += f' _getters[{len(self._getters)}]' if self._putters: result += f' _putters[{len(self._putters)}]' if self._unfinished_tasks: result += f' tasks={self._unfinished_tasks}' return result def qsize(self) -> int: return len(self._dict) @property def maxsize(self) -> int: return self._maxsize def empty(self) -> bool: return not self._dict def full(self) -> bool: if self._maxsize <= 0: return False else: return self.qsize() >= self._maxsize async def put(self, key: str, value: Any) -> None: while self.full(): putter = self._loop.create_future() self._putters[key] = putter try: await putter except Exception as err: print('Put err = ', err) # Just in case putter is not done yet. putter.cancel() try: # Clean self._putters from canceled putters. del self._putters[key] except ValueError: # The putter could be removed from self._putters by a # previous get_nowait call. pass if not self.full() and not putter.cancelled(): # We were woken up by get_nowait(), but can't take # the call. Wake up the next in line. self._wake_up_putter(key) raise return self.put_nowait(key, value) def put_nowait(self, key: str, value: Any) -> None: print(f'put no wait {key}, {value}') if self.full(): raise DictIsFull self._put(key, value) self._unfinished_tasks += 1 self._finished.clear() self._wake_up_getter(key) async def get(self, key: str) -> Any: print('dict = ', self._dict) print('loop = ', self._loop) while self._dict[key]: print('self._dict[key] = ', self._dict[key]) getter = self._loop.create_future() self._getters[key] = getter try: print('Before await') await getter print('After await') except Exception as err: print('Err = ', err) # Just in case getter is not done yet. getter.cancel() try: # Clean self._getters from canceled getters. del self._getters[key] except ValueError: # The getter could be removed from self._getters by a # previous put_nowait call. pass if not self.empty() and not getter.cancelled(): # We were woken up by put_nowait(), but can't take # the call. Wake up the next in line. self._wake_up_getter(key) raise return self.get_nowait(key) def get_nowait(self, key: str) -> Any: if self.empty(): raise DictIsEmpty item = self._get(key) self._wake_up_putter(key) return item def task_done(self) -> None: if self._unfinished_tasks <= 0: raise ValueError('task_done() called too many times') self._unfinished_tasks -= 1 if self._unfinished_tasks == 0: self._finished.set() async def join(self) -> None: if self._unfinished_tasks > 0: await self._finished.wait()
[ "asyncio.get_event_loop", "asyncio.Event" ]
[((889, 911), 'asyncio.Event', 'Event', ([], {'loop': 'self._loop'}), '(loop=self._loop)\n', (894, 911), False, 'from asyncio import Event, Future, get_event_loop, AbstractEventLoop\n'), ((634, 650), 'asyncio.get_event_loop', 'get_event_loop', ([], {}), '()\n', (648, 650), False, 'from asyncio import Event, Future, get_event_loop, AbstractEventLoop\n')]
from aiohttp import web, WSMsgType from aiohttp_security import authorized_userid from players import AlreadyRegistered from protocol import handle_command, handle_error, send_command from commands import ErrorCommand import json import logging from global_defs import global_playground, registry async def websocket_handler(request): ws = web.WebSocketResponse() try: await ws.prepare(request) except web.HTTPException as e: logging.info('Failed to open WebSocket') else: user_id = await authorized_userid(request) logging.info("websocket connection opened with user_id {}".format(user_id)) # if already connected, not permit connection try: global_playground.register(user_id) except AlreadyRegistered: logging.info("Deliberately closed connection with already connected user_id {}!".format(user_id)) await send_command(ErrorCommand(user_id, msg=f'User id {user_id} already in use')) await ws.close() else: registry.add_socket(user_id, ws) async for msg in ws: if msg.type == WSMsgType.TEXT: await handle_command(json.loads(msg.data), user_id) elif msg.type == WSMsgType.ERROR: logging.info('connection closed with exception {} with user_id {}'.format(ws.exception(), user_id)) await handle_error(user_id) elif msg.type == WSMsgType.BINARY: logging.info('Received BINARY type message') elif msg.type == WSMsgType.CLOSE: logging.info('Received CLOSE type message') elif msg.type == WSMsgType.CLOSED: logging.info('Received CLOSED type message') elif msg.type == WSMsgType.CLOSING: logging.info('Received CLOSING type message') elif msg.type == WSMsgType.CONTINUATION: logging.info('Received CONTINUATION type message') elif msg.type == WSMsgType.PING: logging.info('Received PING type message') elif msg.type == WSMsgType.PONG: logging.info('Received PONG type message') logging.info('websocket connection closed with user_id {}'.format(user_id)) await handle_error(user_id) return ws
[ "json.loads", "global_defs.global_playground.register", "aiohttp_security.authorized_userid", "protocol.handle_error", "global_defs.registry.add_socket", "commands.ErrorCommand", "logging.info", "aiohttp.web.WebSocketResponse" ]
[((346, 369), 'aiohttp.web.WebSocketResponse', 'web.WebSocketResponse', ([], {}), '()\n', (367, 369), False, 'from aiohttp import web, WSMsgType\n'), ((456, 496), 'logging.info', 'logging.info', (['"""Failed to open WebSocket"""'], {}), "('Failed to open WebSocket')\n", (468, 496), False, 'import logging\n'), ((531, 557), 'aiohttp_security.authorized_userid', 'authorized_userid', (['request'], {}), '(request)\n', (548, 557), False, 'from aiohttp_security import authorized_userid\n'), ((721, 756), 'global_defs.global_playground.register', 'global_playground.register', (['user_id'], {}), '(user_id)\n', (747, 756), False, 'from global_defs import global_playground, registry\n'), ((1051, 1083), 'global_defs.registry.add_socket', 'registry.add_socket', (['user_id', 'ws'], {}), '(user_id, ws)\n', (1070, 1083), False, 'from global_defs import global_playground, registry\n'), ((2377, 2398), 'protocol.handle_error', 'handle_error', (['user_id'], {}), '(user_id)\n', (2389, 2398), False, 'from protocol import handle_command, handle_error, send_command\n'), ((932, 994), 'commands.ErrorCommand', 'ErrorCommand', (['user_id'], {'msg': 'f"""User id {user_id} already in use"""'}), "(user_id, msg=f'User id {user_id} already in use')\n", (944, 994), False, 'from commands import ErrorCommand\n'), ((1205, 1225), 'json.loads', 'json.loads', (['msg.data'], {}), '(msg.data)\n', (1215, 1225), False, 'import json\n'), ((1432, 1453), 'protocol.handle_error', 'handle_error', (['user_id'], {}), '(user_id)\n', (1444, 1453), False, 'from protocol import handle_command, handle_error, send_command\n'), ((1525, 1569), 'logging.info', 'logging.info', (['"""Received BINARY type message"""'], {}), "('Received BINARY type message')\n", (1537, 1569), False, 'import logging\n'), ((1640, 1683), 'logging.info', 'logging.info', (['"""Received CLOSE type message"""'], {}), "('Received CLOSE type message')\n", (1652, 1683), False, 'import logging\n'), ((1755, 1799), 'logging.info', 'logging.info', (['"""Received CLOSED type message"""'], {}), "('Received CLOSED type message')\n", (1767, 1799), False, 'import logging\n'), ((1872, 1917), 'logging.info', 'logging.info', (['"""Received CLOSING type message"""'], {}), "('Received CLOSING type message')\n", (1884, 1917), False, 'import logging\n'), ((1995, 2045), 'logging.info', 'logging.info', (['"""Received CONTINUATION type message"""'], {}), "('Received CONTINUATION type message')\n", (2007, 2045), False, 'import logging\n'), ((2115, 2157), 'logging.info', 'logging.info', (['"""Received PING type message"""'], {}), "('Received PING type message')\n", (2127, 2157), False, 'import logging\n'), ((2227, 2269), 'logging.info', 'logging.info', (['"""Received PONG type message"""'], {}), "('Received PONG type message')\n", (2239, 2269), False, 'import logging\n')]
import time from datetime import timedelta from http.cookies import SimpleCookie from unittest.mock import Mock, AsyncMock import pytest from fastapi import HTTPException from fastapi.security import SecurityScopes from starlette.responses import Response from fastapi_login import LoginManager from fastapi_login.exceptions import InvalidCredentialsException @pytest.mark.asyncio async def test_token_expiry(clean_manager, default_data): token = clean_manager.create_access_token( data=default_data, expires=timedelta(microseconds=1) # should be invalid instantly ) time.sleep(1) with pytest.raises(HTTPException) as exc_info: await clean_manager.get_current_user(token) assert exc_info @pytest.mark.asyncio @pytest.mark.parametrize("loader", [Mock(), AsyncMock()]) async def test_user_loader(loader, clean_manager, default_data, db): token = clean_manager.create_access_token(data=default_data) loader = Mock() clean_manager.user_loader(loader) _ = await clean_manager.get_current_user(token) loader.assert_called() loader.assert_called_with(default_data['sub']) @pytest.mark.asyncio async def test_user_loader_not_set(clean_manager, default_data): token = clean_manager.create_access_token(data=default_data) with pytest.raises(Exception) as exc_info: await clean_manager.get_current_user(token) assert "Missing user_loader callback" == str(exc_info.value) @pytest.mark.asyncio async def test_user_loader_returns_none(clean_manager, invalid_data, load_user_fn): clean_manager.user_loader(load_user_fn) token = clean_manager.create_access_token(data={"sub": invalid_data["username"]}) with pytest.raises(HTTPException) as exc_info: await clean_manager.get_current_user(token) assert exc_info.value == InvalidCredentialsException def test_token_from_cookie(clean_manager): request = Mock(cookies={clean_manager.cookie_name: "test-value"}) token = clean_manager._token_from_cookie(request) assert token == "<PASSWORD>" def test_token_from_cookie_raises(clean_manager): request = Mock(cookies={clean_manager.cookie_name: ""}) with pytest.raises(HTTPException) as exc_info: clean_manager._token_from_cookie(request) assert exc_info.value == InvalidCredentialsException def test_token_from_cookie_returns_none_auto_error_off(clean_manager): clean_manager.auto_error = False request = Mock(cookies={clean_manager.cookie_name: ""}) token = clean_manager._token_from_cookie(request) assert token is None def test_set_cookie(clean_manager, default_data): token = clean_manager.create_access_token(data=default_data) response = Response() clean_manager.set_cookie(response, token) cookie = SimpleCookie(response.headers['set-cookie']) cookie_value = cookie.get(clean_manager.cookie_name) assert cookie_value is not None assert cookie_value["httponly"] is True assert cookie_value["samesite"] == "lax" assert cookie_value.value == token assert cookie_value.key == clean_manager.cookie_name def test_config_no_cookie_no_header_raises(secret, token_url): with pytest.raises(Exception) as exc_info: LoginManager(secret, token_url, use_cookie=False, use_header=False) assert "use_cookie and use_header are both False one of them needs to be True" == str(exc_info.value) def test_has_scopes_true(clean_manager, default_data): scopes = ["read"] token = clean_manager.create_access_token(data=default_data, scopes=scopes) required_scopes = SecurityScopes(scopes=scopes) assert clean_manager.has_scopes(token, required_scopes) def test_has_scopes_no_scopes(clean_manager, default_data): scopes = ["read"] token = clean_manager.create_access_token(data=default_data) assert clean_manager.has_scopes(token, SecurityScopes(scopes=scopes)) is False def test_has_scopes_missing_scopes(clean_manager, default_data): scopes = ["read"] token = clean_manager.create_access_token(data=default_data) required_scopes = scopes + ["write"] assert clean_manager.has_scopes(token, SecurityScopes(scopes=required_scopes)) is False
[ "fastapi.security.SecurityScopes", "unittest.mock.Mock", "starlette.responses.Response", "unittest.mock.AsyncMock", "time.sleep", "http.cookies.SimpleCookie", "pytest.raises", "fastapi_login.LoginManager", "datetime.timedelta" ]
[((600, 613), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (610, 613), False, 'import time\n'), ((966, 972), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (970, 972), False, 'from unittest.mock import Mock, AsyncMock\n'), ((1917, 1972), 'unittest.mock.Mock', 'Mock', ([], {'cookies': "{clean_manager.cookie_name: 'test-value'}"}), "(cookies={clean_manager.cookie_name: 'test-value'})\n", (1921, 1972), False, 'from unittest.mock import Mock, AsyncMock\n'), ((2126, 2171), 'unittest.mock.Mock', 'Mock', ([], {'cookies': "{clean_manager.cookie_name: ''}"}), "(cookies={clean_manager.cookie_name: ''})\n", (2130, 2171), False, 'from unittest.mock import Mock, AsyncMock\n'), ((2463, 2508), 'unittest.mock.Mock', 'Mock', ([], {'cookies': "{clean_manager.cookie_name: ''}"}), "(cookies={clean_manager.cookie_name: ''})\n", (2467, 2508), False, 'from unittest.mock import Mock, AsyncMock\n'), ((2720, 2730), 'starlette.responses.Response', 'Response', ([], {}), '()\n', (2728, 2730), False, 'from starlette.responses import Response\n'), ((2790, 2834), 'http.cookies.SimpleCookie', 'SimpleCookie', (["response.headers['set-cookie']"], {}), "(response.headers['set-cookie'])\n", (2802, 2834), False, 'from http.cookies import SimpleCookie\n'), ((3589, 3618), 'fastapi.security.SecurityScopes', 'SecurityScopes', ([], {'scopes': 'scopes'}), '(scopes=scopes)\n', (3603, 3618), False, 'from fastapi.security import SecurityScopes\n'), ((623, 651), 'pytest.raises', 'pytest.raises', (['HTTPException'], {}), '(HTTPException)\n', (636, 651), False, 'import pytest\n'), ((797, 803), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (801, 803), False, 'from unittest.mock import Mock, AsyncMock\n'), ((805, 816), 'unittest.mock.AsyncMock', 'AsyncMock', ([], {}), '()\n', (814, 816), False, 'from unittest.mock import Mock, AsyncMock\n'), ((1304, 1328), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (1317, 1328), False, 'import pytest\n'), ((1706, 1734), 'pytest.raises', 'pytest.raises', (['HTTPException'], {}), '(HTTPException)\n', (1719, 1734), False, 'import pytest\n'), ((2181, 2209), 'pytest.raises', 'pytest.raises', (['HTTPException'], {}), '(HTTPException)\n', (2194, 2209), False, 'import pytest\n'), ((3187, 3211), 'pytest.raises', 'pytest.raises', (['Exception'], {}), '(Exception)\n', (3200, 3211), False, 'import pytest\n'), ((3233, 3300), 'fastapi_login.LoginManager', 'LoginManager', (['secret', 'token_url'], {'use_cookie': '(False)', 'use_header': '(False)'}), '(secret, token_url, use_cookie=False, use_header=False)\n', (3245, 3300), False, 'from fastapi_login import LoginManager\n'), ((533, 558), 'datetime.timedelta', 'timedelta', ([], {'microseconds': '(1)'}), '(microseconds=1)\n', (542, 558), False, 'from datetime import timedelta\n'), ((3871, 3900), 'fastapi.security.SecurityScopes', 'SecurityScopes', ([], {'scopes': 'scopes'}), '(scopes=scopes)\n', (3885, 3900), False, 'from fastapi.security import SecurityScopes\n'), ((4149, 4187), 'fastapi.security.SecurityScopes', 'SecurityScopes', ([], {'scopes': 'required_scopes'}), '(scopes=required_scopes)\n', (4163, 4187), False, 'from fastapi.security import SecurityScopes\n')]
# Copyright 2022 The Blqs Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cirq import pymore import pytest import blqs_cirq as bc def test_moment(): def fn(): with bc.Moment(): bc.H(0) bc.CX(1, 2) q0, q1, q2 = cirq.LineQubit.range(3) assert bc.build(fn)() == cirq.Circuit(cirq.Moment([cirq.H(q0), cirq.CX(q1, q2)])) def test_multiple_moments(): def fn(): with bc.Moment(): bc.CX(1, 2) with bc.Moment(): bc.X(0) q0, q1, q2 = cirq.LineQubit.range(3) assert bc.build(fn)() == cirq.Circuit( [ cirq.Moment([cirq.CX(q1, q2)]), cirq.Moment([cirq.X(q0)]), ] ) def test_empty_moment(): def fn(): with bc.Moment(): pass assert bc.build(fn)() == cirq.Circuit(cirq.Moment([])) def test_moment_target_overlap(): def fn(): with bc.Moment(): bc.H(0) bc.CX(0, 1) with pytest.raises(ValueError, match="Overlapping operations"): bc.build(fn)() def fn_repeat(): with bc.Moment(): bc.H(0) with bc.Repeat(repetitions=10): bc.CX(0, 1) with pytest.raises(ValueError, match="Overlapping operations"): bc.build(fn_repeat)() def test_moment_repeat(): def fn(): with bc.Moment(): with bc.Repeat(repetitions=10): bc.H(0) h = cirq.Circuit([cirq.H(cirq.LineQubit(0))]) assert bc.build(fn)() == cirq.Circuit([cirq.CircuitOperation(h.freeze(), repetitions=10)]) def test_moment_append_extend(): m = bc.Moment() m.append(bc.H(0)) m.extend([bc.X(1), bc.X(2)]) assert m.statements() == (bc.H(0), bc.X(1), bc.X(2)) def test_moment_context_manager(): with bc.Moment() as m: bc.H(0) bc.X(1) assert m.statements() == (bc.H(0), bc.X(1)) def test_moment_str(): with bc.Moment() as m: pass assert str(m) == "with Moment():\n" with bc.Moment() as m: bc.H(0) bc.H(1) assert str(m) == "with Moment():\n H 0\n H 1" def test_moment_equality(): m0 = bc.Moment() with bc.Moment() as m1: bc.H(0) with bc.Moment() as m2: bc.H(1) with bc.Moment() as m3: bc.H(0) bc.H(1) equals_tester = pymore.EqualsTester() equals_tester.make_equality_group(lambda: m0) equals_tester.make_equality_group(lambda: m1) equals_tester.add_equality_group(m2) equals_tester.add_equality_group(m3)
[ "blqs_cirq.build", "blqs_cirq.Repeat", "blqs_cirq.CX", "cirq.H", "cirq.Moment", "cirq.LineQubit.range", "cirq.LineQubit", "blqs_cirq.X", "blqs_cirq.Moment", "pytest.raises", "cirq.X", "pymore.EqualsTester", "blqs_cirq.H", "cirq.CX" ]
[((772, 795), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(3)'], {}), '(3)\n', (792, 795), False, 'import cirq\n'), ((1041, 1064), 'cirq.LineQubit.range', 'cirq.LineQubit.range', (['(3)'], {}), '(3)\n', (1061, 1064), False, 'import cirq\n'), ((2138, 2149), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2147, 2149), True, 'import blqs_cirq as bc\n'), ((2662, 2673), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2671, 2673), True, 'import blqs_cirq as bc\n'), ((2843, 2864), 'pymore.EqualsTester', 'pymore.EqualsTester', ([], {}), '()\n', (2862, 2864), False, 'import pymore\n'), ((1491, 1548), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Overlapping operations"""'}), "(ValueError, match='Overlapping operations')\n", (1504, 1548), False, 'import pytest\n'), ((1723, 1780), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""Overlapping operations"""'}), "(ValueError, match='Overlapping operations')\n", (1736, 1780), False, 'import pytest\n'), ((2163, 2170), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2167, 2170), True, 'import blqs_cirq as bc\n'), ((2308, 2319), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2317, 2319), True, 'import blqs_cirq as bc\n'), ((2334, 2341), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2338, 2341), True, 'import blqs_cirq as bc\n'), ((2350, 2357), 'blqs_cirq.X', 'bc.X', (['(1)'], {}), '(1)\n', (2354, 2357), True, 'import blqs_cirq as bc\n'), ((2440, 2451), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2449, 2451), True, 'import blqs_cirq as bc\n'), ((2521, 2532), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2530, 2532), True, 'import blqs_cirq as bc\n'), ((2547, 2554), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2551, 2554), True, 'import blqs_cirq as bc\n'), ((2563, 2570), 'blqs_cirq.H', 'bc.H', (['(1)'], {}), '(1)\n', (2567, 2570), True, 'import blqs_cirq as bc\n'), ((2683, 2694), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2692, 2694), True, 'import blqs_cirq as bc\n'), ((2710, 2717), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2714, 2717), True, 'import blqs_cirq as bc\n'), ((2727, 2738), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2736, 2738), True, 'import blqs_cirq as bc\n'), ((2754, 2761), 'blqs_cirq.H', 'bc.H', (['(1)'], {}), '(1)\n', (2758, 2761), True, 'import blqs_cirq as bc\n'), ((2771, 2782), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (2780, 2782), True, 'import blqs_cirq as bc\n'), ((2798, 2805), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2802, 2805), True, 'import blqs_cirq as bc\n'), ((2814, 2821), 'blqs_cirq.H', 'bc.H', (['(1)'], {}), '(1)\n', (2818, 2821), True, 'import blqs_cirq as bc\n'), ((697, 708), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (706, 708), True, 'import blqs_cirq as bc\n'), ((722, 729), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (726, 729), True, 'import blqs_cirq as bc\n'), ((742, 753), 'blqs_cirq.CX', 'bc.CX', (['(1)', '(2)'], {}), '(1, 2)\n', (747, 753), True, 'import blqs_cirq as bc\n'), ((807, 819), 'blqs_cirq.build', 'bc.build', (['fn'], {}), '(fn)\n', (815, 819), True, 'import blqs_cirq as bc\n'), ((940, 951), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (949, 951), True, 'import blqs_cirq as bc\n'), ((965, 976), 'blqs_cirq.CX', 'bc.CX', (['(1)', '(2)'], {}), '(1, 2)\n', (970, 976), True, 'import blqs_cirq as bc\n'), ((990, 1001), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (999, 1001), True, 'import blqs_cirq as bc\n'), ((1015, 1022), 'blqs_cirq.X', 'bc.X', (['(0)'], {}), '(0)\n', (1019, 1022), True, 'import blqs_cirq as bc\n'), ((1076, 1088), 'blqs_cirq.build', 'bc.build', (['fn'], {}), '(fn)\n', (1084, 1088), True, 'import blqs_cirq as bc\n'), ((1271, 1282), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (1280, 1282), True, 'import blqs_cirq as bc\n'), ((1313, 1325), 'blqs_cirq.build', 'bc.build', (['fn'], {}), '(fn)\n', (1321, 1325), True, 'import blqs_cirq as bc\n'), ((1344, 1359), 'cirq.Moment', 'cirq.Moment', (['[]'], {}), '([])\n', (1355, 1359), False, 'import cirq\n'), ((1424, 1435), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (1433, 1435), True, 'import blqs_cirq as bc\n'), ((1449, 1456), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (1453, 1456), True, 'import blqs_cirq as bc\n'), ((1469, 1480), 'blqs_cirq.CX', 'bc.CX', (['(0)', '(1)'], {}), '(0, 1)\n', (1474, 1480), True, 'import blqs_cirq as bc\n'), ((1558, 1570), 'blqs_cirq.build', 'bc.build', (['fn'], {}), '(fn)\n', (1566, 1570), True, 'import blqs_cirq as bc\n'), ((1608, 1619), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (1617, 1619), True, 'import blqs_cirq as bc\n'), ((1633, 1640), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (1637, 1640), True, 'import blqs_cirq as bc\n'), ((1790, 1809), 'blqs_cirq.build', 'bc.build', (['fn_repeat'], {}), '(fn_repeat)\n', (1798, 1809), True, 'import blqs_cirq as bc\n'), ((1867, 1878), 'blqs_cirq.Moment', 'bc.Moment', ([], {}), '()\n', (1876, 1878), True, 'import blqs_cirq as bc\n'), ((2011, 2023), 'blqs_cirq.build', 'bc.build', (['fn'], {}), '(fn)\n', (2019, 2023), True, 'import blqs_cirq as bc\n'), ((2186, 2193), 'blqs_cirq.X', 'bc.X', (['(1)'], {}), '(1)\n', (2190, 2193), True, 'import blqs_cirq as bc\n'), ((2195, 2202), 'blqs_cirq.X', 'bc.X', (['(2)'], {}), '(2)\n', (2199, 2202), True, 'import blqs_cirq as bc\n'), ((2235, 2242), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2239, 2242), True, 'import blqs_cirq as bc\n'), ((2244, 2251), 'blqs_cirq.X', 'bc.X', (['(1)'], {}), '(1)\n', (2248, 2251), True, 'import blqs_cirq as bc\n'), ((2253, 2260), 'blqs_cirq.X', 'bc.X', (['(2)'], {}), '(2)\n', (2257, 2260), True, 'import blqs_cirq as bc\n'), ((2388, 2395), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (2392, 2395), True, 'import blqs_cirq as bc\n'), ((2397, 2404), 'blqs_cirq.X', 'bc.X', (['(1)'], {}), '(1)\n', (2401, 2404), True, 'import blqs_cirq as bc\n'), ((1658, 1683), 'blqs_cirq.Repeat', 'bc.Repeat', ([], {'repetitions': '(10)'}), '(repetitions=10)\n', (1667, 1683), True, 'import blqs_cirq as bc\n'), ((1701, 1712), 'blqs_cirq.CX', 'bc.CX', (['(0)', '(1)'], {}), '(0, 1)\n', (1706, 1712), True, 'import blqs_cirq as bc\n'), ((1897, 1922), 'blqs_cirq.Repeat', 'bc.Repeat', ([], {'repetitions': '(10)'}), '(repetitions=10)\n', (1906, 1922), True, 'import blqs_cirq as bc\n'), ((1940, 1947), 'blqs_cirq.H', 'bc.H', (['(0)'], {}), '(0)\n', (1944, 1947), True, 'import blqs_cirq as bc\n'), ((1978, 1995), 'cirq.LineQubit', 'cirq.LineQubit', (['(0)'], {}), '(0)\n', (1992, 1995), False, 'import cirq\n'), ((851, 861), 'cirq.H', 'cirq.H', (['q0'], {}), '(q0)\n', (857, 861), False, 'import cirq\n'), ((863, 878), 'cirq.CX', 'cirq.CX', (['q1', 'q2'], {}), '(q1, q2)\n', (870, 878), False, 'import cirq\n'), ((1143, 1158), 'cirq.CX', 'cirq.CX', (['q1', 'q2'], {}), '(q1, q2)\n', (1150, 1158), False, 'import cirq\n'), ((1187, 1197), 'cirq.X', 'cirq.X', (['q0'], {}), '(q0)\n', (1193, 1197), False, 'import cirq\n')]
#!/usr/bin/env python3 from flask import render_template, request, make_response, jsonify from app import app from app.mongo import mongodb from . import admin @admin.route('/setting', methods=['GET']) def basicset_index(): collection = app.config.get('BASICSET_COLLECTION') setting = mongodb[collection].find_one({"usageTag":"blog_setting"}) if setting: blog_title = setting.get('blog_title') blog_keywords = setting.get('blog_keywords') blog_description = setting.get('blog_description') blog_tag = setting.get('blog_tag') return render_template('setting/index.html')
[ "flask.render_template", "app.app.config.get" ]
[((245, 282), 'app.app.config.get', 'app.config.get', (['"""BASICSET_COLLECTION"""'], {}), "('BASICSET_COLLECTION')\n", (259, 282), False, 'from app import app\n'), ((618, 655), 'flask.render_template', 'render_template', (['"""setting/index.html"""'], {}), "('setting/index.html')\n", (633, 655), False, 'from flask import render_template, request, make_response, jsonify\n')]
from delphin_6_automation.database_interactions import mongo_setup from delphin_6_automation.database_interactions.auth import auth_dict from delphin_6_automation.database_interactions.db_templates import sample_entry, delphin_entry __author__ = "<NAME>" __license__ = 'MIT' # -------------------------------------------------------------------------------------------------------------------- # # IMPORTS # Modules # RiBuild Modules from delphin_6_automation.logging.ribuild_logger import ribuild_logger # Logger logger = ribuild_logger(__name__) # -------------------------------------------------------------------------------------------------------------------- # # RIBuild def get_bare(): ids = delphin_entry.Delphin.objects(sample_data__design_option__name__in=['1d_bare']) print('IDS', ids.count()) return ids def check_ids(project): for project in project: sample = sample_entry.Sample.objects(delphin_docs=project).first() print(f"Project: {project.id} with sequence {project.sample_data.get('sequence')} is in sample iteration: {sample.iteration}. Data: {project.sample_data.get('exterior_climate')}") if __name__ == '__main__': server = mongo_setup.global_init(auth_dict) ids = get_bare() check_ids(ids) mongo_setup.global_end_ssh(server)
[ "delphin_6_automation.database_interactions.mongo_setup.global_end_ssh", "delphin_6_automation.database_interactions.mongo_setup.global_init", "delphin_6_automation.database_interactions.db_templates.delphin_entry.Delphin.objects", "delphin_6_automation.logging.ribuild_logger.ribuild_logger", "delphin_6_automation.database_interactions.db_templates.sample_entry.Sample.objects" ]
[((528, 552), 'delphin_6_automation.logging.ribuild_logger.ribuild_logger', 'ribuild_logger', (['__name__'], {}), '(__name__)\n', (542, 552), False, 'from delphin_6_automation.logging.ribuild_logger import ribuild_logger\n'), ((713, 792), 'delphin_6_automation.database_interactions.db_templates.delphin_entry.Delphin.objects', 'delphin_entry.Delphin.objects', ([], {'sample_data__design_option__name__in': "['1d_bare']"}), "(sample_data__design_option__name__in=['1d_bare'])\n", (742, 792), False, 'from delphin_6_automation.database_interactions.db_templates import sample_entry, delphin_entry\n'), ((1199, 1233), 'delphin_6_automation.database_interactions.mongo_setup.global_init', 'mongo_setup.global_init', (['auth_dict'], {}), '(auth_dict)\n', (1222, 1233), False, 'from delphin_6_automation.database_interactions import mongo_setup\n'), ((1280, 1314), 'delphin_6_automation.database_interactions.mongo_setup.global_end_ssh', 'mongo_setup.global_end_ssh', (['server'], {}), '(server)\n', (1306, 1314), False, 'from delphin_6_automation.database_interactions import mongo_setup\n'), ((911, 960), 'delphin_6_automation.database_interactions.db_templates.sample_entry.Sample.objects', 'sample_entry.Sample.objects', ([], {'delphin_docs': 'project'}), '(delphin_docs=project)\n', (938, 960), False, 'from delphin_6_automation.database_interactions.db_templates import sample_entry, delphin_entry\n')]
from setuptools import setup setup( name="mywhopackage", install_requires=["django==1.0",], extras_require={"test": ["pytest==2.0",], "docs": ["Sphinx==1.0",],}, )
[ "setuptools.setup" ]
[((30, 162), 'setuptools.setup', 'setup', ([], {'name': '"""mywhopackage"""', 'install_requires': "['django==1.0']", 'extras_require': "{'test': ['pytest==2.0'], 'docs': ['Sphinx==1.0']}"}), "(name='mywhopackage', install_requires=['django==1.0'], extras_require\n ={'test': ['pytest==2.0'], 'docs': ['Sphinx==1.0']})\n", (35, 162), False, 'from setuptools import setup\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- #**************************************************************************************************************************************************** # Copyright 2017 NXP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the NXP. nor the names of # its contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # #**************************************************************************************************************************************************** from typing import Optional from FslBuildGen import IOUtil from FslBuildGen.Log import Log from FslBuildGen.Exceptions import UsageErrorException from FslBuildGen.BuildExternal.PackageExperimentalRecipe import PackageExperimentalRecipe from FslBuildGen.BuildExternal.RecipeBuilderSetup import RecipeBuilderSetup from FslBuildGen.Vars.VariableProcessor import VariableProcessor from FslBuildGen.Xml.XmlExperimentalRecipe import XmlExperimentalRecipe class RecipePathBuilder(object): def __init__(self, log: Log, variableProcessor: VariableProcessor, recipeBuilderSetup: Optional[RecipeBuilderSetup], platformName: str, compilerGeneratorName: str) -> None: super(RecipePathBuilder, self).__init__() self.__Log = log # type: Log self.__VariableProcessor = variableProcessor # type: VariableProcessor self.IsEnabled = recipeBuilderSetup is not None # type: bool self.TargetPath = None # Optional[str] self.DownloadCacheRootPath = None # Optional[str] self.__TempRootPath = None # Optional[str] self.__TempPipelineRootPath = None # Optional[str] self.InstallRootPath = None # Optional[str] self.ReadonlyCache_DownloadCacheRootPath = None # Optional[str] if self.IsEnabled and recipeBuilderSetup is not None: targetPath = recipeBuilderSetup.TargetPath readonlyCachePath = recipeBuilderSetup.ReadonlyCachePath if not IOUtil.IsAbsolutePath(targetPath): raise Exception("Install area path is not absolute: '{0}'".format(targetPath)) if not readonlyCachePath is None and not IOUtil.IsAbsolutePath(readonlyCachePath): raise Exception("Install area readonly cache path is not absolute: '{0}'".format(readonlyCachePath)) self.TargetPath = targetPath self.DownloadCacheRootPath = IOUtil.Join(targetPath, ".DownloadCache") self.__TempRootPath = IOUtil.Join(targetPath, ".Temp") baseTempDirectory = IOUtil.Join(self.__TempRootPath, "pipeline") baseTempDirectory = IOUtil.Join(baseTempDirectory, platformName) self.__TempPipelineRootPath = IOUtil.Join(baseTempDirectory, compilerGeneratorName) baseInstallDirectory = IOUtil.Join(targetPath, platformName) self.InstallRootPath = IOUtil.Join(baseInstallDirectory, compilerGeneratorName) self.ReadonlyCache_DownloadCacheRootPath = None if readonlyCachePath is None else IOUtil.Join(readonlyCachePath, ".DownloadCache") def GetBuildPath(self, sourceRecipe: PackageExperimentalRecipe) -> str: if not self.IsEnabled or self.__TempPipelineRootPath is None: raise Exception("Can not GetBuildPath since the builder functionality has been disabled") return IOUtil.Join(self.__TempPipelineRootPath, sourceRecipe.Name) def TryGetInstallPath(self, xmlSourceRecipe: XmlExperimentalRecipe) -> Optional[str]: if xmlSourceRecipe is None: return None elif not xmlSourceRecipe.ExternalInstallDirectory is None: if not xmlSourceRecipe.Pipeline is None: self.__Log.DoPrintWarning("SourceRecipe ExternalInstallDirectory overrides Pipeline '{0}'".format(xmlSourceRecipe.Name)) return self.__VariableProcessor.ResolveAbsolutePathWithLeadingEnvironmentVariablePathAsDir(xmlSourceRecipe.ExternalInstallDirectory) if not self.IsEnabled or self.InstallRootPath is None: raise Exception("Can not TryGetInstallPath since the builder functionality has been disabled, please enable the builder functionality for this project") return None if xmlSourceRecipe.Pipeline is None else IOUtil.Join(self.InstallRootPath, xmlSourceRecipe.Name)
[ "FslBuildGen.IOUtil.IsAbsolutePath", "FslBuildGen.IOUtil.Join" ]
[((4702, 4761), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['self.__TempPipelineRootPath', 'sourceRecipe.Name'], {}), '(self.__TempPipelineRootPath, sourceRecipe.Name)\n', (4713, 4761), False, 'from FslBuildGen import IOUtil\n'), ((3766, 3807), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['targetPath', '""".DownloadCache"""'], {}), "(targetPath, '.DownloadCache')\n", (3777, 3807), False, 'from FslBuildGen import IOUtil\n'), ((3843, 3875), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['targetPath', '""".Temp"""'], {}), "(targetPath, '.Temp')\n", (3854, 3875), False, 'from FslBuildGen import IOUtil\n'), ((3909, 3953), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['self.__TempRootPath', '"""pipeline"""'], {}), "(self.__TempRootPath, 'pipeline')\n", (3920, 3953), False, 'from FslBuildGen import IOUtil\n'), ((3986, 4030), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['baseTempDirectory', 'platformName'], {}), '(baseTempDirectory, platformName)\n', (3997, 4030), False, 'from FslBuildGen import IOUtil\n'), ((4073, 4126), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['baseTempDirectory', 'compilerGeneratorName'], {}), '(baseTempDirectory, compilerGeneratorName)\n', (4084, 4126), False, 'from FslBuildGen import IOUtil\n'), ((4163, 4200), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['targetPath', 'platformName'], {}), '(targetPath, platformName)\n', (4174, 4200), False, 'from FslBuildGen import IOUtil\n'), ((4236, 4292), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['baseInstallDirectory', 'compilerGeneratorName'], {}), '(baseInstallDirectory, compilerGeneratorName)\n', (4247, 4292), False, 'from FslBuildGen import IOUtil\n'), ((5607, 5662), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['self.InstallRootPath', 'xmlSourceRecipe.Name'], {}), '(self.InstallRootPath, xmlSourceRecipe.Name)\n', (5618, 5662), False, 'from FslBuildGen import IOUtil\n'), ((3341, 3374), 'FslBuildGen.IOUtil.IsAbsolutePath', 'IOUtil.IsAbsolutePath', (['targetPath'], {}), '(targetPath)\n', (3362, 3374), False, 'from FslBuildGen import IOUtil\n'), ((4388, 4436), 'FslBuildGen.IOUtil.Join', 'IOUtil.Join', (['readonlyCachePath', '""".DownloadCache"""'], {}), "(readonlyCachePath, '.DownloadCache')\n", (4399, 4436), False, 'from FslBuildGen import IOUtil\n'), ((3524, 3564), 'FslBuildGen.IOUtil.IsAbsolutePath', 'IOUtil.IsAbsolutePath', (['readonlyCachePath'], {}), '(readonlyCachePath)\n', (3545, 3564), False, 'from FslBuildGen import IOUtil\n')]
from selenium import webdriver from selenium.webdriver.chrome.options import Options from webdriver_manager.chrome import ChromeDriverManager import time from data import accepting_cookies, conduit_login, create_new_article, conduit_registration def test_modify_article(): browser_options = Options() browser_options.headless = True browser = webdriver.Chrome(ChromeDriverManager().install(), options=browser_options) URL = "http://conduitapp.progmasters.hu:1667/#/" browser.get(URL) browser.implicitly_wait(10) # Előfeltételek: accepting_cookies(browser) conduit_login(browser) time.sleep(2) create_new_article(browser) # ~ ~ ~ ~ ~ TC-06: MEGLÉVŐ BLOGPOSZT MÓDOSÍTÁSA ~ ~ ~ ~ ~ # edit_article_link = browser.find_element_by_css_selector("a[href='#/editor/new-title") edit_article_link.click() article_body_edited = browser.find_element_by_xpath('//textarea[@placeholder="Write your article (in markdown)"]') article_body_edited.clear() article_body_edited.send_keys("New body comes here.") publish_article_button = browser.find_element_by_css_selector("button[type='submit']") publish_article_button.click() time.sleep(5) # Assert: a blogbejegyzés body-ja megváltozott article_body_refilled = browser.find_element_by_css_selector('div[class="col-xs-12"] div p') assert article_body_refilled.text == "New body comes here." # print("The article's body has been changed.") browser.quit()
[ "data.create_new_article", "selenium.webdriver.chrome.options.Options", "data.conduit_login", "data.accepting_cookies", "time.sleep", "webdriver_manager.chrome.ChromeDriverManager" ]
[((297, 306), 'selenium.webdriver.chrome.options.Options', 'Options', ([], {}), '()\n', (304, 306), False, 'from selenium.webdriver.chrome.options import Options\n'), ((564, 590), 'data.accepting_cookies', 'accepting_cookies', (['browser'], {}), '(browser)\n', (581, 590), False, 'from data import accepting_cookies, conduit_login, create_new_article, conduit_registration\n'), ((595, 617), 'data.conduit_login', 'conduit_login', (['browser'], {}), '(browser)\n', (608, 617), False, 'from data import accepting_cookies, conduit_login, create_new_article, conduit_registration\n'), ((622, 635), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (632, 635), False, 'import time\n'), ((640, 667), 'data.create_new_article', 'create_new_article', (['browser'], {}), '(browser)\n', (658, 667), False, 'from data import accepting_cookies, conduit_login, create_new_article, conduit_registration\n'), ((1195, 1208), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (1205, 1208), False, 'import time\n'), ((374, 395), 'webdriver_manager.chrome.ChromeDriverManager', 'ChromeDriverManager', ([], {}), '()\n', (393, 395), False, 'from webdriver_manager.chrome import ChromeDriverManager\n')]
# -*- coding: utf-8 -*- import os import re from setuptools import setup def get_readme(readme): """Get long description.""" # try: # from pypandoc import convert_file, convert_text # return convert_file(readme, 'rst') # except ImportError as e: # with open(readme) as f: # return f.read() with open(readme) as f: return f.read() def get_version(package): """Return package version as listed in `__version__` in `init.py`.""" f = open(os.path.join(package, '__init__.py')).read() return re.search("__version__ = ['\"]([^'\"]+)['\"]", f).group(1) setup( name='ipython-agnoster', version=get_version('ipster'), description='A hipster theme for the IPython REPL', long_description=get_readme('README.rst'), author='<NAME>', url='https://github.com/i5ar/ipster', license='MIT', keywords="ipython agnoster", packages=['ipster'], # Convert Markdown to reStructuredtext entry_points={ 'console_scripts': ['convert-rst=ipster.command_line:main'], }, # Use Environment Markers to install IPython for Python 2 install_requires=[ 'ipython>=5.0,<6.0;python_version<="2.7"', 'ipython>=6.0;python_version>="3.3"', ], classifiers=[ 'Development Status :: 1 - Planning', 'Environment :: Console', 'Framework :: IPython', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: MIT License', 'Operating System :: MacOS', 'Operating System :: POSIX', 'Programming Language :: Python', 'Topic :: Text Editors', ], zip_safe=False, test_suite='tests', )
[ "os.path.join", "re.search" ]
[((563, 612), 're.search', 're.search', (['"""__version__ = [\'"]([^\'"]+)[\'"]"""', 'f'], {}), '(\'__version__ = [\\\'"]([^\\\'"]+)[\\\'"]\', f)\n', (572, 612), False, 'import re\n'), ((507, 543), 'os.path.join', 'os.path.join', (['package', '"""__init__.py"""'], {}), "(package, '__init__.py')\n", (519, 543), False, 'import os\n')]
from google.cloud import firestore # Add a new document db = firestore.Client.from_service_account_json("onetrustkey.json") col_ref = db.collection(u'onetrust')
[ "google.cloud.firestore.Client.from_service_account_json" ]
[((62, 124), 'google.cloud.firestore.Client.from_service_account_json', 'firestore.Client.from_service_account_json', (['"""onetrustkey.json"""'], {}), "('onetrustkey.json')\n", (104, 124), False, 'from google.cloud import firestore\n')]
import argparse import os import os.path import sys from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets from PyQt5.QtCore import Qt class SerialPlotter(QtWidgets.QMainWindow): def __init__(self, port, baud=115200, samples=255, min_value=0, max_value=1023, **kwargs): super(SerialPlotter, self).__init__(**kwargs) self._serial_port = port self._serial_port_baud = baud self.samples = samples self.series = [] self.data = [] # set up chart self.setWindowTitle('Serial Plotter') self.setContentsMargins(0, 0, 0, 0) self.chart = QtChart.QChart() self.chart.setTheme(QtChart.QChart.ChartThemeDark) # remove the annoying white border self.chart.layout().setContentsMargins(0, 0, 0, 0) self.chart.setBackgroundRoundness(0) # set up chart view self.chart_view = QtChart.QChartView(self.chart) self.chart_view.setRenderHint(QtGui.QPainter.Antialiasing) self.chart_view.setMinimumSize(800, 600) # set up axis self.x_axis = QtChart.QValueAxis() self.x_axis.setRange(0, self.samples) self.x_axis.setTitleText('Samples') self.x_axis.setLabelFormat('%i') self.y_axis = QtChart.QValueAxis() self.y_axis.setRange(min_value, max_value) self.y_axis.setTitleText('Values') self.chart.addAxis(self.x_axis, Qt.AlignBottom) self.chart.addAxis(self.y_axis, Qt.AlignLeft) self.setCentralWidget(self.chart_view) # Setup the serial port self.serial = QtSerialPort.QSerialPort( self._serial_port, baudRate=self._serial_port_baud, readyRead=self.on_serial_ready_read, ) if not self.serial.open(QtCore.QIODevice.ReadWrite): print('can\'t open serial port') sys.exit(1) self.show() def add_series(self, name=None): # add a series series = QtChart.QLineSeries() self.chart.addSeries(series) series.attachAxis(self.x_axis) series.attachAxis(self.y_axis) series.setUseOpenGL(True) if name: series.setName(name) self.series.append(series) def append_data(self, new_data, auto_update=True): num_elements = len(new_data) if len(self.data) < num_elements: if len(self.data) >= 1: # we need to pad the newly added lines padded = [0] * len(self.data[0]) for i in range(num_elements - len(self.data)): self.data.append(padded.copy()) else: for i in range(num_elements): self.data.append([]) samples_current = len(self.data[0]) for i in range(num_elements): if samples_current >= self.samples: self.data[i] = self.data[i][1:] + [new_data[i]] else: self.data[i].append(new_data[i]) if auto_update: self.update_plot() @QtCore.pyqtSlot() def on_serial_ready_read(self): while self.serial.canReadLine(): line = self.serial.readLine().data().decode().strip() data = line.split() if '.' in line: data = list([float(i) for i in data]) else: data = list([int(i) for i in data]) if data: self.append_data(data) @QtCore.pyqtSlot() def update_plot(self): if not self.data: return # add all series not yet present for i in range(len(self.series), len(self.data)): self.add_series(name='Ch %d' % i) # update the series data for i in range(len(self.series)): self.series[i].replace([QtCore.QPoint(j, self.data[i][j]) for j in range(len(self.data[i]))]) def check_serial_port(port): port = os.path.abspath(port) if not os.path.exists(port): raise argparse.ArgumentTypeError('%s does not exist' % port) if not os.access(port, os.R_OK + os.W_OK): raise argparse.ArgumentTypeError('%s is not read/write able' % port) return port if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('port', type=check_serial_port, help='The serial port to listen to for data to plot') parser.add_argument('-b', '--baud', type=int, default=115200, help='The baud rate for the serial port, defaults to 115200') parser.add_argument('-s', '--samples', type=int, default=256, help='The number of samples to buffer and display, defaults to 256') parser.add_argument('--min', type=int, default=0, help='The minium value to display, defaults to 0') parser.add_argument('--max', type=int, default=1023, help='The maximum value to display, defaults to 1023') args = parser.parse_args() app = QtWidgets.QApplication(sys.argv) w = SerialPlotter(args.port, baud=args.baud, samples=args.samples, min_value=args.min, max_value=args.max) sys.exit(app.exec_())
[ "os.path.exists", "sys.exit", "argparse.ArgumentParser", "PyQt5.QtCore.QPoint", "os.access", "PyQt5.QtCore.pyqtSlot", "PyQt5.QtSerialPort.QSerialPort", "argparse.ArgumentTypeError", "PyQt5.QtChart.QValueAxis", "PyQt5.QtChart.QChartView", "PyQt5.QtWidgets.QApplication", "PyQt5.QtChart.QChart", "os.path.abspath", "PyQt5.QtChart.QLineSeries" ]
[((3067, 3084), 'PyQt5.QtCore.pyqtSlot', 'QtCore.pyqtSlot', ([], {}), '()\n', (3082, 3084), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((3479, 3496), 'PyQt5.QtCore.pyqtSlot', 'QtCore.pyqtSlot', ([], {}), '()\n', (3494, 3496), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((3938, 3959), 'os.path.abspath', 'os.path.abspath', (['port'], {}), '(port)\n', (3953, 3959), False, 'import os\n'), ((4244, 4269), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4267, 4269), False, 'import argparse\n'), ((4950, 4982), 'PyQt5.QtWidgets.QApplication', 'QtWidgets.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (4972, 4982), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((629, 645), 'PyQt5.QtChart.QChart', 'QtChart.QChart', ([], {}), '()\n', (643, 645), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((907, 937), 'PyQt5.QtChart.QChartView', 'QtChart.QChartView', (['self.chart'], {}), '(self.chart)\n', (925, 937), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((1099, 1119), 'PyQt5.QtChart.QValueAxis', 'QtChart.QValueAxis', ([], {}), '()\n', (1117, 1119), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((1273, 1293), 'PyQt5.QtChart.QValueAxis', 'QtChart.QValueAxis', ([], {}), '()\n', (1291, 1293), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((1601, 1718), 'PyQt5.QtSerialPort.QSerialPort', 'QtSerialPort.QSerialPort', (['self._serial_port'], {'baudRate': 'self._serial_port_baud', 'readyRead': 'self.on_serial_ready_read'}), '(self._serial_port, baudRate=self._serial_port_baud,\n readyRead=self.on_serial_ready_read)\n', (1625, 1718), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((1991, 2012), 'PyQt5.QtChart.QLineSeries', 'QtChart.QLineSeries', ([], {}), '()\n', (2010, 2012), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n'), ((3971, 3991), 'os.path.exists', 'os.path.exists', (['port'], {}), '(port)\n', (3985, 3991), False, 'import os\n'), ((4007, 4061), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (["('%s does not exist' % port)"], {}), "('%s does not exist' % port)\n", (4033, 4061), False, 'import argparse\n'), ((4073, 4107), 'os.access', 'os.access', (['port', '(os.R_OK + os.W_OK)'], {}), '(port, os.R_OK + os.W_OK)\n', (4082, 4107), False, 'import os\n'), ((4123, 4185), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (["('%s is not read/write able' % port)"], {}), "('%s is not read/write able' % port)\n", (4149, 4185), False, 'import argparse\n'), ((1880, 1891), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1888, 1891), False, 'import sys\n'), ((3826, 3859), 'PyQt5.QtCore.QPoint', 'QtCore.QPoint', (['j', 'self.data[i][j]'], {}), '(j, self.data[i][j])\n', (3839, 3859), False, 'from PyQt5 import QtChart, QtCore, QtGui, QtSerialPort, QtWidgets\n')]
# Copyright (c) 2011 <NAME> # Licensed under the MIT license: # http://www.opensource.org/licenses/mit-license.php from screenplain.richstring import parse_emphasis class Screenplay(object): def __init__(self, title_page=None, paragraphs=None): """ Create a Screenplay object. `title_page` is a dictionary mapping string keys to strings. `paragraphs` is a sequence of paragraph objects. """ # Key/value pairs for title page if title_page is None: self.title_page = {} else: self.title_page = title_page # The paragraphs of the actual script if paragraphs is None: self.paragraphs = [] else: self.paragraphs = paragraphs def get_rich_attribute(self, name, default=[]): """Get an attribute from the title page parsed into a RichString. Returns a list of RichString objects. E.g. `screenplay.get_rich_attribute('Title')` """ if name in self.title_page: return [parse_emphasis(line) for line in self.title_page[name]] else: return default def append(self, paragraph): """Append a paragraph to this screenplay.""" self.paragraphs.append(paragraph) def __iter__(self): """Get an iterator over the paragraphs of this screenplay.""" return iter(self.paragraphs) class Slug(object): def __init__(self, line, scene_number=None): """Creates a scene heading (slug). The line parameter is a RichString with the slugline. The scene_number parameter is an optional RichString. """ self.line = line self.scene_number = scene_number self.synopsis = None @property def lines(self): return [self.line] def set_synopsis(self, text): self.synopsis = text class Section(object): """A section heading.""" def __init__(self, text, level, synopsis=None): self.text = text self.level = level self.synopsis = synopsis def set_synopsis(self, text): self.synopsis = text def __repr__(self): return 'Section(%r, %r, %r)' % (self.text, self.level, self.synopsis) def __eq__(self, other): return ( self.text == other.text and self.level == other.level and self.synopsis == other.synopsis ) class Dialog(object): def __init__(self, character, lines=None): self.character = character self.blocks = [] # list of tuples of (is_parenthetical, text) if lines: self._parse(lines) def _parse(self, lines): inside_parenthesis = False for line in lines: if line.startswith('('): inside_parenthesis = True self.blocks.append((inside_parenthesis, line)) if line.endswith(')'): inside_parenthesis = False def add_line(self, line): parenthetical = line.startswith('(') self.blocks.append((parenthetical, line)) class DualDialog(object): def __init__(self, left_dialog, right_dialog): self.left = left_dialog self.right = right_dialog class Action(object): def __init__(self, lines, centered=False): self.lines = lines self.centered = centered class Transition(object): def __init__(self, line): self.line = line @property def lines(self): return [self.line] class PageBreak(object): pass
[ "screenplain.richstring.parse_emphasis" ]
[((1063, 1083), 'screenplain.richstring.parse_emphasis', 'parse_emphasis', (['line'], {}), '(line)\n', (1077, 1083), False, 'from screenplain.richstring import parse_emphasis\n')]
#!/usr/bin/env python # <NAME> # Functions for shuffling and merging sequence samples (DataFrames) into a long sequence # Used for fake genome generation from positive and negative BGC samples import pandas as pd import numpy as np from sklearn.model_selection import KFold def merge_samples(samples_series, idx, shuffle=True): """ Merge a Series of DataFrames into a single DataFrame, filtered by a Series index. DataFrames can be shuffled before merging. Used to generate an artificial genome (long DataFrame) from a series of samples (short DataFrames) :param samples_series: Series of DataFrames :param idx: Array of indexes used to select DataFrames for merging :param shuffle: Whether to shuffle the DataFrames :return: Subset of given series selected by idx, shuffled if specified and merged to a single DataFrame """ if shuffle: np.random.shuffle(idx) return pd.concat(list(samples_series[idx])) def merged_split(samples_list, splitter, shuffle_train=True, shuffle_test=True, split_params=None): """ Create generator of random train and test splits, where each train and test split is a single DataFrame created from shuffled and merged samples using merge_samples function. Will generate given number of (train, test) splits based on splitter argument. :param samples_list: list of DataFrames to repeatedly split and merge :param splitter: Number of KFold splits or Splitter with split(samples) function that will be used :param shuffle_train: Whether to shuffle the samples in the train split before merging :param shuffle_test: Whether to shuffle the samples in the test split before merging :param split_params: Additional arguments to pass to the splitter split function :return: Generator of (train, test) splits for given list of samples, where each train and test split is a single DataFrame created from shuffled and merged samples using merge_samples function. """ if split_params is None: split_params = {} if isinstance(splitter, int): splitter = KFold(n_splits=splitter, shuffle=True) indexable_X = pd.Series(samples_list) for trainidx, testidx in splitter.split(indexable_X, **split_params): train_X = merge_samples(indexable_X, trainidx, shuffle=shuffle_train) test_X = merge_samples(indexable_X, testidx, shuffle=shuffle_test) yield train_X, test_X
[ "pandas.Series", "sklearn.model_selection.KFold", "numpy.random.shuffle" ]
[((2150, 2173), 'pandas.Series', 'pd.Series', (['samples_list'], {}), '(samples_list)\n', (2159, 2173), True, 'import pandas as pd\n'), ((884, 906), 'numpy.random.shuffle', 'np.random.shuffle', (['idx'], {}), '(idx)\n', (901, 906), True, 'import numpy as np\n'), ((2093, 2131), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': 'splitter', 'shuffle': '(True)'}), '(n_splits=splitter, shuffle=True)\n', (2098, 2131), False, 'from sklearn.model_selection import KFold\n')]