code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
from aiogram.types import CallbackQuery from keyboards.inline.lang_choose import lang_choose_kb from loader import dp @dp.callback_query_handler(text="Меню вибора мови") async def ukr(call: CallbackQuery): await call.message.edit_text("Оберіть будь ласка мову для спілкування👇") await call.message.edit_reply_markup(reply_markup=lang_choose_kb)
[ "loader.dp.callback_query_handler" ]
[((121, 171), 'loader.dp.callback_query_handler', 'dp.callback_query_handler', ([], {'text': '"""Меню вибора мови"""'}), "(text='Меню вибора мови')\n", (146, 171), False, 'from loader import dp\n')]
""" Use various estimation formula of Jasper to determine energy transfer parameters: sigma, epsilon, and alpha """ import itertools import numpy from phydat import phycon import automol.geom import automol.inchi import automol.graph from automol.graph import FunctionalGroup from automol.etrans._par import LJ_DCT from automol.etrans._par import LJ_EST_DCT from automol.etrans._par import Z_ALPHA_EST_DCT from automol.etrans._par import D0_GRP_LST from automol.etrans._par import ZROT_DCT from automol.etrans._fxn import troe_lj_collision_frequency # CALCULATE THE EFFECTIVE ALPHA VALUE def alpha(n_eff, eps, sig, mass1, mass2, collider_set, empirical_factor=2.0): """ Calculate the alpha param using the method Jasper, et al. :param n_eff: number of effective rotors :type n_eff: int :param zlj_dct: lennard-jones collision frequencies (cm-1?) :type zlj_dct: dict[float: float] :param empirical_factor: correction for using 1DME versus 2DM2 :type empirical_factor: float """ # Calculate the Lennard-Jones frequencies red_mass = ((mass1 * mass2) / (mass1 + mass2)) # Calculate Zalpha(Neff) at T = 300, 1000, 2000 K z_alphas_n_eff = _calculate_z_alpha_terms(n_eff, collider_set) # Calculate alpha = Zalpha(Neff) / Z(N) at T = 300, 1000, 2000 K # Empirical correction factor of (1/2) used for 1D Master Equations alpha_dct = {} for temp, z_alpha_n_eff in z_alphas_n_eff.items(): zlj = troe_lj_collision_frequency(eps, sig, red_mass, temp) zlj *= 100**3 # conv. m^3/s to cm^3/ for below alpha_dct[temp] = (z_alpha_n_eff / zlj) / empirical_factor # Determine alpha and n for the e-down model edown_alpha, edown_n = _calculate_energy_down_exponent(alpha_dct) return edown_alpha, edown_n def _calculate_z_alpha_terms(n_eff, collider_set): """ Calculate the [Z*alpha](N_eff) """ def _z_alpha(n_eff, coeffs): """ calculate an effective Z*alpha parameter """ return ((coeffs[0] * n_eff**(3) + coeffs[1] * n_eff**(2) + coeffs[2] * n_eff**(1) + coeffs[3]) / 1.0e9) # Read the proper coefficients from the moldriver dct coeff_dct = Z_ALPHA_EST_DCT.get(collider_set, None) if coeff_dct is not None: # Calculate the three alpha terms z_alpha_dct = {} for temp, coeffs in coeff_dct.items(): z_alpha_dct[temp] = _z_alpha(n_eff, coeffs) return z_alpha_dct def _calculate_energy_down_exponent(alpha_dct): """ Calculate power n, for model: E_down = E_down_300 * (T/300)**n Does a least-squares for n to solve the linear equation ln(E_down/E_down_300) = [ln(T/300)] * n :param alpha_dct: temperature-dependent alpha parameters :type alpha_dct: dict[float: float] """ assert 300 in alpha_dct, ( 'Must have 300 K in alphas' ) # Set the edown alpha to the value at 300 K edown_alpha = alpha_dct[300] # Build vectors and matrices used for the fitting temps = numpy.array(list(alpha_dct.keys()), dtype=numpy.float64) alphas = numpy.array(list(alpha_dct.values()), dtype=numpy.float64) n_vec = numpy.log(temps / 300.0) coeff_mat = numpy.array([n_vec], dtype=numpy.float64) coeff_mat = coeff_mat.transpose() edown_vec = numpy.log(alphas / edown_alpha) # Perform the least-squares fit theta = numpy.linalg.lstsq(coeff_mat, edown_vec, rcond=None)[0] # Set the the edown n value to the fitting parameter edown_n = theta[0] return edown_alpha, edown_n # CALCULATE THE EFFECTIVE LENNARD-JONES SIGMA AND EPSILON def lennard_jones_params(n_heavy, collider_set): """ Returns in angstrom and cm-1. :param n_heavy: Number of heavy atoms for a species :type n_heavy: int """ def _lj(n_heavy, coeff1, coeff2): """ calculate Lennard-Jones parameter using estimation coefficents """ return coeff1 * n_heavy**(coeff2) # See if collider set is in dict with exact numbers # If not read the estimation coefficents from EST dct and calc. params params = LJ_DCT.get(collider_set) if params is not None: sig, eps = params else: coeffs = LJ_EST_DCT.get(collider_set, None) if coeffs is not None: # Calculate the effective sigma and epsilon values sig = _lj(n_heavy, coeffs[0], coeffs[1]) eps = _lj(n_heavy, coeffs[2], coeffs[3]) else: sig, eps = None, None # Convert the units to what they should be internally if sig is not None: sig *= phycon.ANG2BOHR if eps is not None: eps *= phycon.WAVEN2EH return sig, eps # DETERMINE N_EFF USED FOR ALPHA AND LJ PARAM CALCULATIONS def effective_rotor_count(geo): """ Calculate an effective N parameter using the given parametrization. :param geo: geometry (Bohr) :type geo: automol geometry data structure :rtype: float """ # Conver the geo to a graph gra = automol.geom.graph(geo) symbs = automol.geom.symbols(geo) # Count the rotors (n_pp, n_ps, n_pt, n_pq, n_ss, n_st, n_sq, n_tt, n_tq, n_qq, n_co, n_oo, n_ss_ring, n_rings) = _rotor_counts(gra, symbs) # print(' - Rotor Counts for N_eff:') # print(' N_pp:{}, N_ps:{}, N_pt:{}, N_pq:{}'.format( # n_pp, n_ps, n_pt, n_pq)) # print(' N_ss:{}, N_st:{}, N_sq:{}'.format(n_ss, n_st, n_sq)) # print(' N_tt:{}, N_tq:{}'.format(n_tt, n_tq)) # print(' N_qq:{}'.format(n_qq)) # print(' N_co:{}, N_oo:{}'.format(n_co, n_oo)) # print(' N_ss_ring:{}, N_rings:{}'.format(n_ss_ring, n_rings)) # Use the rotor counts and the coefficients to calculate Neff c_pp_ps_ss, c_pt_st, c_pq_sq = 1.0, 2.0/3.0, 1.0/3.0 c_tt_tq_qq, c_co_oo, c_ss_ring = 0.0, 1.0/3.0, 1.0/2.0 n_eff = 1.0 + ( c_pp_ps_ss * (n_pp + n_ps + n_ss) + c_pt_st * (n_pt + n_st) + c_pq_sq * (n_pq + n_sq) + c_tt_tq_qq * (n_tt + n_tq + n_qq) + c_co_oo * (n_co + n_oo) + c_ss_ring * n_ss_ring - n_rings ) return n_eff def _rotor_counts(gra, symbs): """ Count up various types of bonds for a structure. :param gra: molecular graph of species :type gra: automol graph data structure :param symbs: atomic symbols of species :type symbs: tuple(str) :rtype: tuple(float) """ # Initialize the rotor counts n_pp, n_ps, n_pt, n_pq = 0, 0, 0, 0 n_ss, n_st, n_sq = 0, 0, 0 n_tt, n_tq = 0, 0 n_qq = 0 n_co, n_oo = 0, 0 n_ss_ring, n_rings = 0, 0 # Get the rings and the number rings = automol.graph.rings(gra) ring_keys = set(itertools.chain(*automol.graph.rings_atom_keys(gra))) n_rings = len(rings) # Loop over the bonds and count the number of atoms neighbors = automol.graph.atoms_neighbor_atom_keys(gra) for bnd in automol.graph.bond_keys(gra): key1, key2 = bnd spair = (symbs[key1], symbs[key2]) if spair == ('C', 'C'): # Figure out which neighbors are not hydrogen and count the number atom1_neighbors = neighbors[key1] numc1 = 0 for neighbor1 in atom1_neighbors: if symbs[neighbor1] != 'H': numc1 += 1 atom2_neighbors = neighbors[key2] numc2 = 0 for neighbor2 in atom2_neighbors: if symbs[neighbor2] != 'H': numc2 += 1 # Determine appropriate term to increment npair = (numc1, numc2) if npair == (1, 1): n_pp += 1 elif npair in ((1, 2), (2, 1)): n_ps += 1 elif npair in ((1, 3), (3, 1)): n_pt += 1 elif npair in ((1, 4), (4, 1)): n_pq += 1 elif npair == (2, 2): if {key1, key2} <= ring_keys: n_ss_ring += 1 else: n_ss += 1 elif npair in ((2, 3), (3, 2)): n_st += 1 elif npair in ((2, 4), (4, 2)): n_sq += 1 elif npair == (3, 3): n_tt += 1 elif npair in ((3, 4), (4, 3)): n_tq += 1 elif npair == (4, 4): n_qq += 1 elif spair in (('C', 'O'), ('O', 'C')): n_co += 1 elif spair == ('O', 'O'): n_oo += 1 # Compile counts into a tuple return (n_pp, n_ps, n_pt, n_pq, n_ss, n_st, n_sq, n_tt, n_tq, n_qq, n_co, n_oo, n_ss_ring, n_rings) # Rotational relaxation number def rotational_relaxation_number(tgt_ich): """ Get the rotational relaxation number at 298 K for a given species. Currently, this is read from internal library or set to 1. :param tgt_ich: InChI string of species :type tgt_ich: str :rtype: float """ return ZROT_DCT.get(tgt_ich, 1.0) # Determine which effective model series to use def determine_collision_model_series(tgt_ich, bath_ich, collid_param): """ For the collision between a given tgt and bath species, determine which effective series would be the most suitable model for determining the energy transfer parameters :param collid_param: select 'lj' or 'alpha' for parameter to assign """ def _identify_effective_model(tgt_ich, bath_ich): """ When values cannot be assigned for a collision, try and identify the best representative series to use for estimation """ # Build the graph tgt_gra = automol.geom.graph(automol.inchi.geometry(tgt_ich)) # Identify the the target model if automol.graph.radical_species(tgt_gra): # Determine if peroxy,hydroperoxy groups present to use RO2 series # otherwise just use alkyl radical series fgrp_cnt_dct = automol.graph.functional_group_count_dct(tgt_gra) fgrps = set(fgrp for fgrp, count in fgrp_cnt_dct.items() if count > 0) print('fgrps test', fgrps) _ro2_fgrps = {FunctionalGroup.PEROXY, FunctionalGroup.HYDROPEROXY} if _ro2_fgrps & fgrps: tgt_model = 'peroxy' else: tgt_model = '1-alkyl' elif automol.graph.hydrocarbon_species(tgt_gra): tgt_model = 'n-alkane' else: # Set priority based on bond-dissociation energies # Loop through D0 dct (ordered by ene) and try to find func. grp tgt_model = None fgrp_cnt_dct = automol.graph.functional_group_count_dct(tgt_gra) fgrps = set(fgrp for fgrp, count in fgrp_cnt_dct.items() if count > 0) print('fgrps test', fgrps) for (fgrp, model) in D0_GRP_LST: if fgrp in fgrps: tgt_model = model break # Set target model to alkanes if nothing found if tgt_model is None: tgt_model = 'n-alkane' return frozenset({tgt_model, bath_ich}) # First check if one should use standard numbers instead of estimating collider_set = frozenset({tgt_ich, bath_ich}) # Go through a procedure to determine which model to use if collid_param == 'lj': if collider_set not in LJ_DCT: # try to identify a model where possible collider_set = _identify_effective_model(tgt_ich, bath_ich) elif collid_param == 'alpha': if {'InChI=1S/H2/h1H', 'InChI=1S/H'} & collider_set: # Model cannot be set for these common situations # of H and H2 colliding with non Ar,N2 bath-gases collider_set = None else: # Last try to identify a model where possible collider_set = _identify_effective_model(tgt_ich, bath_ich) return collider_set
[ "automol.etrans._par.LJ_DCT.get", "numpy.log", "automol.etrans._par.LJ_EST_DCT.get", "automol.etrans._par.ZROT_DCT.get", "numpy.array", "automol.etrans._fxn.troe_lj_collision_frequency", "numpy.linalg.lstsq", "automol.etrans._par.Z_ALPHA_EST_DCT.get" ]
[((2268, 2307), 'automol.etrans._par.Z_ALPHA_EST_DCT.get', 'Z_ALPHA_EST_DCT.get', (['collider_set', 'None'], {}), '(collider_set, None)\n', (2287, 2307), False, 'from automol.etrans._par import Z_ALPHA_EST_DCT\n'), ((3249, 3273), 'numpy.log', 'numpy.log', (['(temps / 300.0)'], {}), '(temps / 300.0)\n', (3258, 3273), False, 'import numpy\n'), ((3290, 3331), 'numpy.array', 'numpy.array', (['[n_vec]'], {'dtype': 'numpy.float64'}), '([n_vec], dtype=numpy.float64)\n', (3301, 3331), False, 'import numpy\n'), ((3387, 3418), 'numpy.log', 'numpy.log', (['(alphas / edown_alpha)'], {}), '(alphas / edown_alpha)\n', (3396, 3418), False, 'import numpy\n'), ((4206, 4230), 'automol.etrans._par.LJ_DCT.get', 'LJ_DCT.get', (['collider_set'], {}), '(collider_set)\n', (4216, 4230), False, 'from automol.etrans._par import LJ_DCT\n'), ((9160, 9186), 'automol.etrans._par.ZROT_DCT.get', 'ZROT_DCT.get', (['tgt_ich', '(1.0)'], {}), '(tgt_ich, 1.0)\n', (9172, 9186), False, 'from automol.etrans._par import ZROT_DCT\n'), ((1501, 1554), 'automol.etrans._fxn.troe_lj_collision_frequency', 'troe_lj_collision_frequency', (['eps', 'sig', 'red_mass', 'temp'], {}), '(eps, sig, red_mass, temp)\n', (1528, 1554), False, 'from automol.etrans._fxn import troe_lj_collision_frequency\n'), ((3468, 3520), 'numpy.linalg.lstsq', 'numpy.linalg.lstsq', (['coeff_mat', 'edown_vec'], {'rcond': 'None'}), '(coeff_mat, edown_vec, rcond=None)\n', (3486, 3520), False, 'import numpy\n'), ((4311, 4345), 'automol.etrans._par.LJ_EST_DCT.get', 'LJ_EST_DCT.get', (['collider_set', 'None'], {}), '(collider_set, None)\n', (4325, 4345), False, 'from automol.etrans._par import LJ_EST_DCT\n')]
#!/usr/bin/python3 # coding=utf8 import sys import cv2 import math import time import import_path import Camera import threading import kinematics import numpy as np from LABConfig import * import HiwonderSDK.Misc as Misc import HiwonderSDK.Board as Board ik = kinematics.IK() debug = False HWSONAR = None if sys.version_info.major == 2: print('Please run this program with python3!') sys.exit(0) range_rgb = { 'red': (0, 0, 255), 'blue': (255, 0, 0), 'green': (0, 255, 0), 'black': (0, 0, 0), 'white': (255, 255, 255), } # Find the contour with the largest area # The parameter is list of contours to be compared def getAreaMaxContour(contours): contour_area_temp = 0 contour_area_max = 0 area_max_contour = None max_area = 0 for c in contours: # Traverse all contours contour_area_temp = math.fabs(cv2.contourArea(c)) # Calculate the contour area if contour_area_temp > contour_area_max: contour_area_max = contour_area_temp if contour_area_temp >= 100: # Only when the area is larger than the setting, the contour of the largest area is effective to filter interference area_max_contour = c max_area = contour_area_temp return area_max_contour, max_area # Returns the largest contour area # Initial position def initMove(): HWSONAR.setRGBMode(0) HWSONAR.setRGB(1, (0, 0, 0)) HWSONAR.setRGB(2, (0, 0, 0)) Board.setPWMServoPulse(1, 1500, 500) Board.setPWMServoPulse(2, servo2, 500) color_list = [] detect_color = 'None' action_finish = True draw_color = range_rgb["black"] # Variable reset def reset(): global draw_color global color_list global detect_color global action_finish color_list = [] detect_color = 'None' action_finish = True draw_color = range_rgb["black"] # app initialize call def init(): print("ColorDetect Init") initMove() __isRunning = False # app start the games call def start(): global __isRunning reset() __isRunning = True print("ColorDetect Start") # app stop the games call def stop(): global __isRunning __isRunning = False print("ColorDetect Stop") # app exit games call def exit(): global __isRunning __isRunning = False ik.stand(ik.initial_pos) print("ColorDetect Exit") def move(): global draw_color global detect_color global action_finish while True: if debug: return if __isRunning: if detect_color != 'None': action_finish = False if detect_color == 'red': Board.setPWMServoPulse(1, 1800, 200) time.sleep(0.2) Board.setPWMServoPulse(1, 1200, 200) time.sleep(0.2) Board.setPWMServoPulse(1, 1800, 200) time.sleep(0.2) Board.setPWMServoPulse(1, 1200, 200) time.sleep(0.2) Board.setPWMServoPulse(1, 1500, 100) time.sleep(0.1) detect_color = 'None' draw_color = range_rgb["black"] time.sleep(1) elif detect_color == 'green' or detect_color == 'blue': Board.setPWMServoPulse(2, 1800, 200) time.sleep(0.2) Board.setPWMServoPulse(2, 1200, 200) time.sleep(0.2) Board.setPWMServoPulse(2, 1800, 200) time.sleep(0.2) Board.setPWMServoPulse(2, 1200, 200) time.sleep(0.2) Board.setPWMServoPulse(2, 1500, 100) time.sleep(0.1) detect_color = 'None' draw_color = range_rgb["black"] time.sleep(1) else: time.sleep(0.01) action_finish = True detect_color = 'None' else: time.sleep(0.01) else: time.sleep(0.01) # Run Thread th = threading.Thread(target=move) th.setDaemon(True) th.start() size = (320, 240) def run(img): global draw_color global color_list global detect_color global action_finish img_copy = img.copy() img_h, img_w = img.shape[:2] if not __isRunning: return img frame_resize = cv2.resize(img_copy, size, interpolation=cv2.INTER_NEAREST) frame_gb = cv2.GaussianBlur(frame_resize, (3, 3), 3) frame_lab = cv2.cvtColor(frame_gb, cv2.COLOR_BGR2LAB) # Conver the image to LAB space max_area = 0 color_area_max = None areaMaxContour_max = 0 if action_finish: for i in color_range: if i != 'black' and i != 'white': frame_mask = cv2.inRange(frame_lab, color_range[i][0], color_range[i][1]) # The original image and mask are bitwise operated eroded = cv2.erode(frame_mask, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))) # Corrosion dilated = cv2.dilate(eroded, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))) # Inflation if debug: cv2.imshow(i, dilated) contours = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[-2] # Find out the outline areaMaxContour, area_max = getAreaMaxContour(contours) # Find the maximum contour if areaMaxContour is not None: if area_max > max_area:# Find maximum area max_area = area_max color_area_max = i areaMaxContour_max = areaMaxContour if max_area > 100: # Have found the maximum area ((centerX, centerY), radius) = cv2.minEnclosingCircle(areaMaxContour_max) # Gets the minimum circumferential circle centerX = int(Misc.map(centerX, 0, size[0], 0, img_w)) centerY = int(Misc.map(centerY, 0, size[1], 0, img_h)) radius = int(Misc.map(radius, 0, size[0], 0, img_w)) cv2.circle(img, (centerX, centerY), radius, range_rgb[color_area_max], 2)# Draw circle if color_area_max == 'red': # Red biggest color = 1 elif color_area_max == 'green': # Green biggest color = 2 elif color_area_max == 'blue': # Blue largest color = 3 else: color = 0 color_list.append(color) if len(color_list) == 3: # Multiple judgment # Average color = int(round(np.mean(np.array(color_list)))) color_list = [] if color == 1: detect_color = 'red' draw_color = range_rgb["red"] elif color == 2: detect_color = 'green' draw_color = range_rgb["green"] elif color == 3: detect_color = 'blue' draw_color = range_rgb["blue"] else: detect_color = 'None' draw_color = range_rgb["black"] else: detect_color = 'None' draw_color = range_rgb["black"] cv2.putText(img, "Color: " + detect_color, (10, img.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.65, draw_color, 2) return img if __name__ == '__main__': import HiwonderSDK.Sonar as Sonar from CameraCalibration.CalibrationConfig import * # Loading parameter param_data = np.load(calibration_param_path + '.npz') # Get parameter mtx = param_data['mtx_array'] dist = param_data['dist_array'] newcameramtx, _ = cv2.getOptimalNewCameraMatrix(mtx, dist, (640, 480), 0, (640, 480)) mapx, mapy = cv2.initUndistortRectifyMap(mtx, dist, None, newcameramtx, (640, 480), 5) debug = False if debug: print('Debug Mode') HWSONAR = Sonar.Sonar() init() start() my_camera = Camera.Camera() my_camera.camera_open() while True: img = my_camera.frame if img is not None: frame = img.copy() frame = cv2.remap(frame, mapx, mapy, cv2.INTER_LINEAR) # Distortion correction Frame = run(frame) cv2.imshow('Frame', Frame) key = cv2.waitKey(1) if key == 27: break else: time.sleep(0.01) my_camera.camera_close() cv2.destroyAllWindows()
[ "cv2.initUndistortRectifyMap", "HiwonderSDK.Board.setPWMServoPulse", "cv2.remap", "time.sleep", "cv2.imshow", "numpy.array", "HiwonderSDK.Sonar.Sonar", "cv2.destroyAllWindows", "sys.exit", "Camera.Camera", "cv2.contourArea", "HiwonderSDK.Misc.map", "cv2.waitKey", "cv2.minEnclosingCircle", "cv2.putText", "cv2.getOptimalNewCameraMatrix", "cv2.circle", "cv2.cvtColor", "cv2.resize", "cv2.GaussianBlur", "kinematics.IK", "cv2.inRange", "cv2.findContours", "threading.Thread", "numpy.load", "cv2.getStructuringElement" ]
[((262, 277), 'kinematics.IK', 'kinematics.IK', ([], {}), '()\n', (275, 277), False, 'import kinematics\n'), ((4215, 4244), 'threading.Thread', 'threading.Thread', ([], {'target': 'move'}), '(target=move)\n', (4231, 4244), False, 'import threading\n'), ((396, 407), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (404, 407), False, 'import sys\n'), ((1460, 1496), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(1)', '(1500)', '(500)'], {}), '(1, 1500, 500)\n', (1482, 1496), True, 'import HiwonderSDK.Board as Board\n'), ((1501, 1539), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(2)', 'servo2', '(500)'], {}), '(2, servo2, 500)\n', (1523, 1539), True, 'import HiwonderSDK.Board as Board\n'), ((4529, 4588), 'cv2.resize', 'cv2.resize', (['img_copy', 'size'], {'interpolation': 'cv2.INTER_NEAREST'}), '(img_copy, size, interpolation=cv2.INTER_NEAREST)\n', (4539, 4588), False, 'import cv2\n'), ((4604, 4645), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['frame_resize', '(3, 3)', '(3)'], {}), '(frame_resize, (3, 3), 3)\n', (4620, 4645), False, 'import cv2\n'), ((4668, 4709), 'cv2.cvtColor', 'cv2.cvtColor', (['frame_gb', 'cv2.COLOR_BGR2LAB'], {}), '(frame_gb, cv2.COLOR_BGR2LAB)\n', (4680, 4709), False, 'import cv2\n'), ((7462, 7581), 'cv2.putText', 'cv2.putText', (['img', "('Color: ' + detect_color)", '(10, img.shape[0] - 10)', 'cv2.FONT_HERSHEY_SIMPLEX', '(0.65)', 'draw_color', '(2)'], {}), "(img, 'Color: ' + detect_color, (10, img.shape[0] - 10), cv2.\n FONT_HERSHEY_SIMPLEX, 0.65, draw_color, 2)\n", (7473, 7581), False, 'import cv2\n'), ((7763, 7803), 'numpy.load', 'np.load', (["(calibration_param_path + '.npz')"], {}), "(calibration_param_path + '.npz')\n", (7770, 7803), True, 'import numpy as np\n'), ((7917, 7984), 'cv2.getOptimalNewCameraMatrix', 'cv2.getOptimalNewCameraMatrix', (['mtx', 'dist', '(640, 480)', '(0)', '(640, 480)'], {}), '(mtx, dist, (640, 480), 0, (640, 480))\n', (7946, 7984), False, 'import cv2\n'), ((8002, 8075), 'cv2.initUndistortRectifyMap', 'cv2.initUndistortRectifyMap', (['mtx', 'dist', 'None', 'newcameramtx', '(640, 480)', '(5)'], {}), '(mtx, dist, None, newcameramtx, (640, 480), 5)\n', (8029, 8075), False, 'import cv2\n'), ((8156, 8169), 'HiwonderSDK.Sonar.Sonar', 'Sonar.Sonar', ([], {}), '()\n', (8167, 8169), True, 'import HiwonderSDK.Sonar as Sonar\n'), ((8209, 8224), 'Camera.Camera', 'Camera.Camera', ([], {}), '()\n', (8222, 8224), False, 'import Camera\n'), ((8677, 8700), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8698, 8700), False, 'import cv2\n'), ((864, 882), 'cv2.contourArea', 'cv2.contourArea', (['c'], {}), '(c)\n', (879, 882), False, 'import cv2\n'), ((4179, 4195), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (4189, 4195), False, 'import time\n'), ((5932, 5974), 'cv2.minEnclosingCircle', 'cv2.minEnclosingCircle', (['areaMaxContour_max'], {}), '(areaMaxContour_max)\n', (5954, 5974), False, 'import cv2\n'), ((6241, 6314), 'cv2.circle', 'cv2.circle', (['img', '(centerX, centerY)', 'radius', 'range_rgb[color_area_max]', '(2)'], {}), '(img, (centerX, centerY), radius, range_rgb[color_area_max], 2)\n', (6251, 6314), False, 'import cv2\n'), ((8378, 8424), 'cv2.remap', 'cv2.remap', (['frame', 'mapx', 'mapy', 'cv2.INTER_LINEAR'], {}), '(frame, mapx, mapy, cv2.INTER_LINEAR)\n', (8387, 8424), False, 'import cv2\n'), ((8493, 8519), 'cv2.imshow', 'cv2.imshow', (['"""Frame"""', 'Frame'], {}), "('Frame', Frame)\n", (8503, 8519), False, 'import cv2\n'), ((8538, 8552), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (8549, 8552), False, 'import cv2\n'), ((8627, 8643), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (8637, 8643), False, 'import time\n'), ((4136, 4152), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (4146, 4152), False, 'import time\n'), ((4950, 5010), 'cv2.inRange', 'cv2.inRange', (['frame_lab', 'color_range[i][0]', 'color_range[i][1]'], {}), '(frame_lab, color_range[i][0], color_range[i][1])\n', (4961, 5010), False, 'import cv2\n'), ((6044, 6083), 'HiwonderSDK.Misc.map', 'Misc.map', (['centerX', '(0)', 'size[0]', '(0)', 'img_w'], {}), '(centerX, 0, size[0], 0, img_w)\n', (6052, 6083), True, 'import HiwonderSDK.Misc as Misc\n'), ((6111, 6150), 'HiwonderSDK.Misc.map', 'Misc.map', (['centerY', '(0)', 'size[1]', '(0)', 'img_h'], {}), '(centerY, 0, size[1], 0, img_h)\n', (6119, 6150), True, 'import HiwonderSDK.Misc as Misc\n'), ((6177, 6215), 'HiwonderSDK.Misc.map', 'Misc.map', (['radius', '(0)', 'size[0]', '(0)', 'img_w'], {}), '(radius, 0, size[0], 0, img_w)\n', (6185, 6215), True, 'import HiwonderSDK.Misc as Misc\n'), ((2659, 2695), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(1)', '(1800)', '(200)'], {}), '(1, 1800, 200)\n', (2681, 2695), True, 'import HiwonderSDK.Board as Board\n'), ((2716, 2731), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (2726, 2731), False, 'import time\n'), ((2752, 2788), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(1)', '(1200)', '(200)'], {}), '(1, 1200, 200)\n', (2774, 2788), True, 'import HiwonderSDK.Board as Board\n'), ((2809, 2824), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (2819, 2824), False, 'import time\n'), ((2845, 2881), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(1)', '(1800)', '(200)'], {}), '(1, 1800, 200)\n', (2867, 2881), True, 'import HiwonderSDK.Board as Board\n'), ((2902, 2917), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (2912, 2917), False, 'import time\n'), ((2938, 2974), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(1)', '(1200)', '(200)'], {}), '(1, 1200, 200)\n', (2960, 2974), True, 'import HiwonderSDK.Board as Board\n'), ((2995, 3010), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (3005, 3010), False, 'import time\n'), ((3031, 3067), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(1)', '(1500)', '(100)'], {}), '(1, 1500, 100)\n', (3053, 3067), True, 'import HiwonderSDK.Board as Board\n'), ((3088, 3103), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3098, 3103), False, 'import time\n'), ((3238, 3251), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (3248, 3251), False, 'import time\n'), ((5110, 5159), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(3, 3)'], {}), '(cv2.MORPH_RECT, (3, 3))\n', (5135, 5159), False, 'import cv2\n'), ((5219, 5268), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_RECT', '(3, 3)'], {}), '(cv2.MORPH_RECT, (3, 3))\n', (5244, 5268), False, 'import cv2\n'), ((5328, 5350), 'cv2.imshow', 'cv2.imshow', (['i', 'dilated'], {}), '(i, dilated)\n', (5338, 5350), False, 'import cv2\n'), ((5378, 5445), 'cv2.findContours', 'cv2.findContours', (['dilated', 'cv2.RETR_EXTERNAL', 'cv2.CHAIN_APPROX_NONE'], {}), '(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)\n', (5394, 5445), False, 'import cv2\n'), ((3344, 3380), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(2)', '(1800)', '(200)'], {}), '(2, 1800, 200)\n', (3366, 3380), True, 'import HiwonderSDK.Board as Board\n'), ((3401, 3416), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (3411, 3416), False, 'import time\n'), ((3437, 3473), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(2)', '(1200)', '(200)'], {}), '(2, 1200, 200)\n', (3459, 3473), True, 'import HiwonderSDK.Board as Board\n'), ((3494, 3509), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (3504, 3509), False, 'import time\n'), ((3530, 3566), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(2)', '(1800)', '(200)'], {}), '(2, 1800, 200)\n', (3552, 3566), True, 'import HiwonderSDK.Board as Board\n'), ((3587, 3602), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (3597, 3602), False, 'import time\n'), ((3623, 3659), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(2)', '(1200)', '(200)'], {}), '(2, 1200, 200)\n', (3645, 3659), True, 'import HiwonderSDK.Board as Board\n'), ((3680, 3695), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (3690, 3695), False, 'import time\n'), ((3716, 3752), 'HiwonderSDK.Board.setPWMServoPulse', 'Board.setPWMServoPulse', (['(2)', '(1500)', '(100)'], {}), '(2, 1500, 100)\n', (3738, 3752), True, 'import HiwonderSDK.Board as Board\n'), ((3773, 3788), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3783, 3788), False, 'import time\n'), ((3923, 3936), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (3933, 3936), False, 'import time\n'), ((3979, 3995), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (3989, 3995), False, 'import time\n'), ((6790, 6810), 'numpy.array', 'np.array', (['color_list'], {}), '(color_list)\n', (6798, 6810), True, 'import numpy as np\n')]
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import ast import multiprocessing import numpy as np import os from functools import partial import contextlib import time import paddle.fluid.profiler as profiler import paddle import paddle.fluid as fluid import forward_model import reader import sys from config import * from forward_model import wrap_encoder as encoder from forward_model import wrap_decoder as decoder from forward_model import forward_fast_decode from dense_model import dense_fast_decode from relative_model import relative_fast_decode from forward_model import forward_position_encoding_init from reader import * def parse_args(): """ parse_args """ parser = argparse.ArgumentParser("Training for Transformer.") parser.add_argument( "--val_file_pattern", type=str, required=True, help="The pattern to match test data files.") parser.add_argument( "--batch_size", type=int, default=50, help="The number of examples in one run for sequence generation.") parser.add_argument( "--pool_size", type=int, default=10000, help="The buffer size to pool data.") parser.add_argument( "--special_token", type=str, default=["<s>", "<e>", "<unk>"], nargs=3, help="The <bos>, <eos> and <unk> tokens in the dictionary.") parser.add_argument( "--token_delimiter", type=lambda x: str(x.encode().decode("unicode-escape")), default=" ", help="The delimiter used to split tokens in source or target sentences. " "For EN-DE BPE data we provided, use spaces as token delimiter. ") parser.add_argument( "--use_mem_opt", type=ast.literal_eval, default=True, help="The flag indicating whether to use memory optimization.") parser.add_argument( "--use_py_reader", type=ast.literal_eval, default=False, help="The flag indicating whether to use py_reader.") parser.add_argument( "--use_parallel_exe", type=ast.literal_eval, default=False, help="The flag indicating whether to use ParallelExecutor.") parser.add_argument( "--use_candidate", type=ast.literal_eval, default=False, help="The flag indicating whether to use candidates.") parser.add_argument( "--common_ids", type=str, default="", help="The file path of common ids.") parser.add_argument( 'opts', help='See config.py for all options', default=None, nargs=argparse.REMAINDER) parser.add_argument( "--use_delay_load", type=ast.literal_eval, default=True, help= "The flag indicating whether to load all data into memories at once.") parser.add_argument( "--vocab_size", type=str, required=True, help="Size of Vocab.") parser.add_argument( "--infer_batch_size", type=int, help="Infer batch_size") parser.add_argument( "--decode_alpha", type=float, help="decode_alpha") args = parser.parse_args() # Append args related to dict #src_dict = reader.DataReader.load_dict(args.src_vocab_fpath) #trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath) #dict_args = [ # "src_vocab_size", str(len(src_dict)), "trg_vocab_size", # str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]), # "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx", # str(src_dict[args.special_token[2]]) #] voc_size = args.vocab_size dict_args = [ "src_vocab_size", voc_size, "trg_vocab_size", voc_size, "bos_idx", str(0), "eos_idx", str(1), "unk_idx", str(int(voc_size) - 1) ] merge_cfg_from_list(args.opts + dict_args, [InferTaskConfig, ModelHyperParams]) return args def post_process_seq(seq, bos_idx=ModelHyperParams.bos_idx, eos_idx=ModelHyperParams.eos_idx, output_bos=InferTaskConfig.output_bos, output_eos=InferTaskConfig.output_eos): """ Post-process the beam-search decoded sequence. Truncate from the first <eos> and remove the <bos> and <eos> tokens currently. """ eos_pos = len(seq) - 1 for i, idx in enumerate(seq): if idx == eos_idx: eos_pos = i break seq = [ idx for idx in seq[:eos_pos + 1] if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx) ] return seq def prepare_batch_input(insts, data_input_names, src_pad_idx, bos_idx, n_head, d_model): """ Put all padded data needed by beam search decoder into a dict. """ src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data( [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False) source_length = np.asarray([src_max_len], dtype="int64") src_word = src_word.reshape(-1, src_max_len, 1) src_pos = src_pos.reshape(-1, src_max_len, 1) data_input_dict = dict( zip(data_input_names, [ src_word, src_pos, src_slf_attn_bias, source_length ])) return data_input_dict def prepare_feed_dict_list(data_generator, count): """ Prepare the list of feed dict for multi-devices. """ feed_dict_list = [] if data_generator is not None: # use_py_reader == False data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields data = next(data_generator) for idx, data_buffer in enumerate(data): data_input_dict = prepare_batch_input( data_buffer, data_input_names, ModelHyperParams.bos_idx, ModelHyperParams.bos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) feed_dict_list.append(data_input_dict) return feed_dict_list if len(feed_dict_list) == count else None def prepare_dense_feed_dict_list(data_generator, count): """ Prepare the list of feed dict for multi-devices. """ feed_dict_list = [] if data_generator is not None: # use_py_reader == False data_input_names = dense_encoder_data_input_fields + fast_decoder_data_input_fields data = next(data_generator) for idx, data_buffer in enumerate(data): data_input_dict = prepare_batch_input( data_buffer, data_input_names, DenseModelHyperParams.bos_idx, DenseModelHyperParams.bos_idx, DenseModelHyperParams.n_head, DenseModelHyperParams.d_model) feed_dict_list.append(data_input_dict) return feed_dict_list if len(feed_dict_list) == count else None def prepare_infer_feed_dict_list(data_generator, count): feed_dict_list = [] if data_generator is not None: # use_py_reader == False data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields dense_data_input_names = dense_encoder_data_input_fields + fast_decoder_data_input_fields data = next(data_generator) for idx, data_buffer in enumerate(data): dense_data_input_dict = prepare_batch_input( data_buffer, dense_data_input_names, DenseModelHyperParams.bos_idx, DenseModelHyperParams.bos_idx, DenseModelHyperParams.n_head, DenseModelHyperParams.d_model) data_input_dict = prepare_batch_input(data_buffer, data_input_names, ModelHyperParams.bos_idx, ModelHyperParams.bos_idx, ModelHyperParams.n_head, ModelHyperParams.d_model) for key in dense_data_input_dict: if key not in data_input_dict: data_input_dict[key] = dense_data_input_dict[key] feed_dict_list.append(data_input_dict) return feed_dict_list if len(feed_dict_list) == count else None def get_trans_res(batch_size, out_list, final_list): """ Get trans """ for index in xrange(batch_size): seq = out_list[index][0] #top1 seq if 1 not in seq: res = seq[1:-1] else: res = seq[1:seq.index(1)] res = map(str, res) final_list.append(" ".join(res)) def fast_infer(args): """ Inference by beam search decoder based solely on Fluid operators. """ test_prog = fluid.Program() startup_prog = fluid.Program() #with fluid.program_guard(test_prog, startup_prog): with fluid.unique_name.guard("new_forward"): out_ids1, out_scores1 = forward_fast_decode( ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 50, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.prepostprocess_dropout, ModelHyperParams.attention_dropout, ModelHyperParams.relu_dropout, ModelHyperParams.preprocess_cmd, ModelHyperParams.postprocess_cmd, ModelHyperParams.weight_sharing, ModelHyperParams.embedding_sharing, InferTaskConfig.beam_size, args.infer_batch_size, InferTaskConfig.max_out_len, args.decode_alpha, ModelHyperParams.eos_idx, params_type="new" ) with fluid.unique_name.guard("new_relative_position"): out_ids2, out_scores2 = relative_fast_decode( ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size, ModelHyperParams.max_length + 50, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.prepostprocess_dropout, ModelHyperParams.attention_dropout, ModelHyperParams.relu_dropout, ModelHyperParams.preprocess_cmd, ModelHyperParams.postprocess_cmd, ModelHyperParams.weight_sharing, ModelHyperParams.embedding_sharing, InferTaskConfig.beam_size, args.infer_batch_size, InferTaskConfig.max_out_len, args.decode_alpha, ModelHyperParams.eos_idx, params_type="new" ) DenseModelHyperParams.src_vocab_size = ModelHyperParams.src_vocab_size DenseModelHyperParams.trg_vocab_size = ModelHyperParams.trg_vocab_size DenseModelHyperParams.weight_sharing = ModelHyperParams.weight_sharing DenseModelHyperParams.embedding_sharing = ModelHyperParams.embedding_sharing with fluid.unique_name.guard("new_dense"): out_ids3, out_scores3 = dense_fast_decode( DenseModelHyperParams.src_vocab_size, DenseModelHyperParams.trg_vocab_size, DenseModelHyperParams.max_length + 50, DenseModelHyperParams.n_layer, DenseModelHyperParams.enc_n_layer, DenseModelHyperParams.n_head, DenseModelHyperParams.d_key, DenseModelHyperParams.d_value, DenseModelHyperParams.d_model, DenseModelHyperParams.d_inner_hid, DenseModelHyperParams.prepostprocess_dropout, DenseModelHyperParams.attention_dropout, DenseModelHyperParams.relu_dropout, DenseModelHyperParams.preprocess_cmd, DenseModelHyperParams.postprocess_cmd, DenseModelHyperParams.weight_sharing, DenseModelHyperParams.embedding_sharing, InferTaskConfig.beam_size, args.infer_batch_size, InferTaskConfig.max_out_len, args.decode_alpha, ModelHyperParams.eos_idx, params_type="new" ) test_prog = fluid.default_main_program().clone(for_test=True) # This is used here to set dropout to the test mode. if InferTaskConfig.use_gpu: place = fluid.CUDAPlace(0) dev_count = fluid.core.get_cuda_device_count() else: place = fluid.CPUPlace() dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count())) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) fluid.io.load_params( exe, InferTaskConfig.model_path, main_program=test_prog) if args.use_mem_opt: fluid.memory_optimize(test_prog) exec_strategy = fluid.ExecutionStrategy() # For faster executor exec_strategy.use_experimental_executor = True exec_strategy.num_threads = 1 build_strategy = fluid.BuildStrategy() # data reader settings for inference args.use_token_batch = False #args.sort_type = reader.SortType.NONE args.shuffle = False args.shuffle_batch = False dev_count = 1 lines_cnt = len(open(args.val_file_pattern, 'r').readlines()) data_reader = line_reader(args.val_file_pattern, args.infer_batch_size, dev_count, token_delimiter=args.token_delimiter, max_len=ModelHyperParams.max_length, parse_line=parse_src_line) test_data = prepare_data_generator( args, is_test=True, count=dev_count, pyreader=None, batch_size=args.infer_batch_size, data_reader=data_reader) data_generator = test_data() iter_num = 0 if not os.path.exists("trans"): os.mkdir("trans") model_name = InferTaskConfig.model_path.split("/")[-1] forward_res = open(os.path.join("trans", "forward_%s" % model_name), 'w') relative_res = open(os.path.join("trans", "relative_%s" % model_name), 'w') dense_res = open(os.path.join("trans", "dense_%s" % model_name), 'w') forward_list = [] relative_list = [] dense_list = [] with profile_context(False): while True: try: feed_dict_list = prepare_infer_feed_dict_list(data_generator, dev_count) forward_seq_ids, relative_seq_ids, dense_seq_ids = exe.run( program=test_prog, fetch_list=[out_ids1.name, out_ids2.name, out_ids3.name], feed=feed_dict_list[0] if feed_dict_list is not None else None, return_numpy=False, use_program_cache=False) fseq_ids = np.asarray(forward_seq_ids).tolist() rseq_ids = np.asarray(relative_seq_ids).tolist() dseq_ids = np.asarray(dense_seq_ids).tolist() get_trans_res(args.infer_batch_size, fseq_ids, forward_list) get_trans_res(args.infer_batch_size, rseq_ids, relative_list) get_trans_res(args.infer_batch_size, dseq_ids, dense_list) except (StopIteration, fluid.core.EOFException): break forward_list = forward_list[:lines_cnt] relative_list = relative_list[:lines_cnt] dense_list = dense_list[:lines_cnt] forward_res.writelines("\n".join(forward_list)) forward_res.flush() forward_res.close() relative_res.writelines("\n".join(relative_list)) relative_res.flush() relative_res.close() dense_res.writelines("\n".join(dense_list)) dense_res.flush() dense_res.close() @contextlib.contextmanager def profile_context(profile=True): """ profile_context """ if profile: with profiler.profiler('All', 'total', './profile_dir/profile_file_tmp'): yield else: yield if __name__ == "__main__": args = parse_args() fast_infer(args)
[ "multiprocessing.cpu_count", "paddle.fluid.Executor", "paddle.fluid.ExecutionStrategy", "os.path.exists", "forward_model.forward_fast_decode", "argparse.ArgumentParser", "paddle.fluid.default_startup_program", "numpy.asarray", "paddle.fluid.default_main_program", "os.mkdir", "paddle.fluid.Program", "paddle.fluid.BuildStrategy", "paddle.fluid.CPUPlace", "paddle.fluid.core.get_cuda_device_count", "paddle.fluid.memory_optimize", "paddle.fluid.io.load_params", "relative_model.relative_fast_decode", "dense_model.dense_fast_decode", "os.path.join", "paddle.fluid.unique_name.guard", "paddle.fluid.CUDAPlace", "paddle.fluid.profiler.profiler" ]
[((1288, 1340), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Training for Transformer."""'], {}), "('Training for Transformer.')\n", (1311, 1340), False, 'import argparse\n'), ((5661, 5701), 'numpy.asarray', 'np.asarray', (['[src_max_len]'], {'dtype': '"""int64"""'}), "([src_max_len], dtype='int64')\n", (5671, 5701), True, 'import numpy as np\n'), ((9138, 9153), 'paddle.fluid.Program', 'fluid.Program', ([], {}), '()\n', (9151, 9153), True, 'import paddle.fluid as fluid\n'), ((9173, 9188), 'paddle.fluid.Program', 'fluid.Program', ([], {}), '()\n', (9186, 9188), True, 'import paddle.fluid as fluid\n'), ((13142, 13163), 'paddle.fluid.Executor', 'fluid.Executor', (['place'], {}), '(place)\n', (13156, 13163), True, 'import paddle.fluid as fluid\n'), ((13214, 13291), 'paddle.fluid.io.load_params', 'fluid.io.load_params', (['exe', 'InferTaskConfig.model_path'], {'main_program': 'test_prog'}), '(exe, InferTaskConfig.model_path, main_program=test_prog)\n', (13234, 13291), True, 'import paddle.fluid as fluid\n'), ((13406, 13431), 'paddle.fluid.ExecutionStrategy', 'fluid.ExecutionStrategy', ([], {}), '()\n', (13429, 13431), True, 'import paddle.fluid as fluid\n'), ((13564, 13585), 'paddle.fluid.BuildStrategy', 'fluid.BuildStrategy', ([], {}), '()\n', (13583, 13585), True, 'import paddle.fluid as fluid\n'), ((9255, 9293), 'paddle.fluid.unique_name.guard', 'fluid.unique_name.guard', (['"""new_forward"""'], {}), "('new_forward')\n", (9278, 9293), True, 'import paddle.fluid as fluid\n'), ((9327, 10034), 'forward_model.forward_fast_decode', 'forward_fast_decode', (['ModelHyperParams.src_vocab_size', 'ModelHyperParams.trg_vocab_size', '(ModelHyperParams.max_length + 50)', 'ModelHyperParams.n_layer', 'ModelHyperParams.n_head', 'ModelHyperParams.d_key', 'ModelHyperParams.d_value', 'ModelHyperParams.d_model', 'ModelHyperParams.d_inner_hid', 'ModelHyperParams.prepostprocess_dropout', 'ModelHyperParams.attention_dropout', 'ModelHyperParams.relu_dropout', 'ModelHyperParams.preprocess_cmd', 'ModelHyperParams.postprocess_cmd', 'ModelHyperParams.weight_sharing', 'ModelHyperParams.embedding_sharing', 'InferTaskConfig.beam_size', 'args.infer_batch_size', 'InferTaskConfig.max_out_len', 'args.decode_alpha', 'ModelHyperParams.eos_idx'], {'params_type': '"""new"""'}), "(ModelHyperParams.src_vocab_size, ModelHyperParams.\n trg_vocab_size, ModelHyperParams.max_length + 50, ModelHyperParams.\n n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key,\n ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.\n d_inner_hid, ModelHyperParams.prepostprocess_dropout, ModelHyperParams.\n attention_dropout, ModelHyperParams.relu_dropout, ModelHyperParams.\n preprocess_cmd, ModelHyperParams.postprocess_cmd, ModelHyperParams.\n weight_sharing, ModelHyperParams.embedding_sharing, InferTaskConfig.\n beam_size, args.infer_batch_size, InferTaskConfig.max_out_len, args.\n decode_alpha, ModelHyperParams.eos_idx, params_type='new')\n", (9346, 10034), False, 'from forward_model import forward_fast_decode\n'), ((10283, 10331), 'paddle.fluid.unique_name.guard', 'fluid.unique_name.guard', (['"""new_relative_position"""'], {}), "('new_relative_position')\n", (10306, 10331), True, 'import paddle.fluid as fluid\n'), ((10365, 11073), 'relative_model.relative_fast_decode', 'relative_fast_decode', (['ModelHyperParams.src_vocab_size', 'ModelHyperParams.trg_vocab_size', '(ModelHyperParams.max_length + 50)', 'ModelHyperParams.n_layer', 'ModelHyperParams.n_head', 'ModelHyperParams.d_key', 'ModelHyperParams.d_value', 'ModelHyperParams.d_model', 'ModelHyperParams.d_inner_hid', 'ModelHyperParams.prepostprocess_dropout', 'ModelHyperParams.attention_dropout', 'ModelHyperParams.relu_dropout', 'ModelHyperParams.preprocess_cmd', 'ModelHyperParams.postprocess_cmd', 'ModelHyperParams.weight_sharing', 'ModelHyperParams.embedding_sharing', 'InferTaskConfig.beam_size', 'args.infer_batch_size', 'InferTaskConfig.max_out_len', 'args.decode_alpha', 'ModelHyperParams.eos_idx'], {'params_type': '"""new"""'}), "(ModelHyperParams.src_vocab_size, ModelHyperParams.\n trg_vocab_size, ModelHyperParams.max_length + 50, ModelHyperParams.\n n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key,\n ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.\n d_inner_hid, ModelHyperParams.prepostprocess_dropout, ModelHyperParams.\n attention_dropout, ModelHyperParams.relu_dropout, ModelHyperParams.\n preprocess_cmd, ModelHyperParams.postprocess_cmd, ModelHyperParams.\n weight_sharing, ModelHyperParams.embedding_sharing, InferTaskConfig.\n beam_size, args.infer_batch_size, InferTaskConfig.max_out_len, args.\n decode_alpha, ModelHyperParams.eos_idx, params_type='new')\n", (10385, 11073), False, 'from relative_model import relative_fast_decode\n'), ((11625, 11661), 'paddle.fluid.unique_name.guard', 'fluid.unique_name.guard', (['"""new_dense"""'], {}), "('new_dense')\n", (11648, 11661), True, 'import paddle.fluid as fluid\n'), ((11695, 12523), 'dense_model.dense_fast_decode', 'dense_fast_decode', (['DenseModelHyperParams.src_vocab_size', 'DenseModelHyperParams.trg_vocab_size', '(DenseModelHyperParams.max_length + 50)', 'DenseModelHyperParams.n_layer', 'DenseModelHyperParams.enc_n_layer', 'DenseModelHyperParams.n_head', 'DenseModelHyperParams.d_key', 'DenseModelHyperParams.d_value', 'DenseModelHyperParams.d_model', 'DenseModelHyperParams.d_inner_hid', 'DenseModelHyperParams.prepostprocess_dropout', 'DenseModelHyperParams.attention_dropout', 'DenseModelHyperParams.relu_dropout', 'DenseModelHyperParams.preprocess_cmd', 'DenseModelHyperParams.postprocess_cmd', 'DenseModelHyperParams.weight_sharing', 'DenseModelHyperParams.embedding_sharing', 'InferTaskConfig.beam_size', 'args.infer_batch_size', 'InferTaskConfig.max_out_len', 'args.decode_alpha', 'ModelHyperParams.eos_idx'], {'params_type': '"""new"""'}), "(DenseModelHyperParams.src_vocab_size,\n DenseModelHyperParams.trg_vocab_size, DenseModelHyperParams.max_length +\n 50, DenseModelHyperParams.n_layer, DenseModelHyperParams.enc_n_layer,\n DenseModelHyperParams.n_head, DenseModelHyperParams.d_key,\n DenseModelHyperParams.d_value, DenseModelHyperParams.d_model,\n DenseModelHyperParams.d_inner_hid, DenseModelHyperParams.\n prepostprocess_dropout, DenseModelHyperParams.attention_dropout,\n DenseModelHyperParams.relu_dropout, DenseModelHyperParams.\n preprocess_cmd, DenseModelHyperParams.postprocess_cmd,\n DenseModelHyperParams.weight_sharing, DenseModelHyperParams.\n embedding_sharing, InferTaskConfig.beam_size, args.infer_batch_size,\n InferTaskConfig.max_out_len, args.decode_alpha, ModelHyperParams.\n eos_idx, params_type='new')\n", (11712, 12523), False, 'from dense_model import dense_fast_decode\n'), ((12935, 12953), 'paddle.fluid.CUDAPlace', 'fluid.CUDAPlace', (['(0)'], {}), '(0)\n', (12950, 12953), True, 'import paddle.fluid as fluid\n'), ((12974, 13008), 'paddle.fluid.core.get_cuda_device_count', 'fluid.core.get_cuda_device_count', ([], {}), '()\n', (13006, 13008), True, 'import paddle.fluid as fluid\n'), ((13035, 13051), 'paddle.fluid.CPUPlace', 'fluid.CPUPlace', ([], {}), '()\n', (13049, 13051), True, 'import paddle.fluid as fluid\n'), ((13176, 13207), 'paddle.fluid.default_startup_program', 'fluid.default_startup_program', ([], {}), '()\n', (13205, 13207), True, 'import paddle.fluid as fluid\n'), ((13352, 13384), 'paddle.fluid.memory_optimize', 'fluid.memory_optimize', (['test_prog'], {}), '(test_prog)\n', (13373, 13384), True, 'import paddle.fluid as fluid\n'), ((14361, 14384), 'os.path.exists', 'os.path.exists', (['"""trans"""'], {}), "('trans')\n", (14375, 14384), False, 'import os\n'), ((14394, 14411), 'os.mkdir', 'os.mkdir', (['"""trans"""'], {}), "('trans')\n", (14402, 14411), False, 'import os\n'), ((14499, 14547), 'os.path.join', 'os.path.join', (['"""trans"""', "('forward_%s' % model_name)"], {}), "('trans', 'forward_%s' % model_name)\n", (14511, 14547), False, 'import os\n'), ((14578, 14627), 'os.path.join', 'os.path.join', (['"""trans"""', "('relative_%s' % model_name)"], {}), "('trans', 'relative_%s' % model_name)\n", (14590, 14627), False, 'import os\n'), ((14655, 14701), 'os.path.join', 'os.path.join', (['"""trans"""', "('dense_%s' % model_name)"], {}), "('trans', 'dense_%s' % model_name)\n", (14667, 14701), False, 'import os\n'), ((12779, 12807), 'paddle.fluid.default_main_program', 'fluid.default_main_program', ([], {}), '()\n', (12805, 12807), True, 'import paddle.fluid as fluid\n'), ((16466, 16533), 'paddle.fluid.profiler.profiler', 'profiler.profiler', (['"""All"""', '"""total"""', '"""./profile_dir/profile_file_tmp"""'], {}), "('All', 'total', './profile_dir/profile_file_tmp')\n", (16483, 16533), True, 'import paddle.fluid.profiler as profiler\n'), ((13102, 13129), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (13127, 13129), False, 'import multiprocessing\n'), ((15344, 15371), 'numpy.asarray', 'np.asarray', (['forward_seq_ids'], {}), '(forward_seq_ids)\n', (15354, 15371), True, 'import numpy as np\n'), ((15408, 15436), 'numpy.asarray', 'np.asarray', (['relative_seq_ids'], {}), '(relative_seq_ids)\n', (15418, 15436), True, 'import numpy as np\n'), ((15473, 15498), 'numpy.asarray', 'np.asarray', (['dense_seq_ids'], {}), '(dense_seq_ids)\n', (15483, 15498), True, 'import numpy as np\n')]
from yats.sorted_set import SortedSet from yats.tweet import Tweet class TweetSet(SortedSet): def __init__(self, data=[]): if not data or isinstance(data, list): super().__init__(data) else: super().__init__([]) tweets_raw = data["tweets"] users_raw = data["users"] for id, content in tweets_raw.items(): tweet = Tweet(content, users_raw) self.add(tweet) def __repr__(self): return f"<yats.TweetSet:{super().__len__()}_tweets>"
[ "yats.tweet.Tweet" ]
[((413, 438), 'yats.tweet.Tweet', 'Tweet', (['content', 'users_raw'], {}), '(content, users_raw)\n', (418, 438), False, 'from yats.tweet import Tweet\n')]
import logging from functools import lru_cache from typing import Union from magnus import defaults, exceptions, utils logger = logging.getLogger(defaults.NAME) class BaseSecrets: """ A base class for Secrets Handler. All implementations should extend this class. Note: As a general guideline, do not extract anything from the config to set class level attributes. Integration patterns modify the config after init to change behaviors. Access config properties using getters/property of the class. Raises: NotImplementedError: Base class and not implemented """ service_name = '' def __init__(self, config: dict, **kwargs): # pylint: disable=unused-argument self.config = config or {} def get(self, name: str = None, **kwargs) -> Union[str, dict]: """ Return the secret by name. If no name is give, return all the secrets. Args: name (str): The name of the secret to return. Raises: NotImplementedError: Base class and hence not implemented. """ raise NotImplementedError class DoNothingSecretManager(BaseSecrets): """ Does nothing secret manager """ service_name = 'do-nothing' def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.secrets = {} def get(self, name: str = None, **kwargs) -> Union[str, dict]: """ If a name is provided, return None else return empty dict. Args: name (str): The name of the secret to retrieve Raises: Exception: If the secret by the name is not found. Returns: [type]: [description] """ if name: return '' return {} class DotEnvSecrets(BaseSecrets): """ A secret manager which uses .env files for secrets. We recommend this secrets manager only for local development and should not be used for anything close to production. """ service_name = 'dotenv' def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.secrets = {} def get_secrets_location(self): """ Return the location of the .env file. If the user has not over-ridden it, it defaults to .env file in the project root. Returns: str: The location of the secrets file """ secrets_location = defaults.DOTENV_FILE_LOCATION if self.config and 'location' in self.config: secrets_location = self.config['location'] or secrets_location return secrets_location def _load_secrets(self): """ We assume that a dotenv file is of format, key=value -> secrets[key]='value' key1=value1# comment -> secrets[key1]='value1' key2=value2 # comment. -> secrets[key2]='value2' We strip the secret value of any empty spaces at the start and end. Raises: Exception: If the file at secrets_location is not found. Exception: If the secrets are not formatted correctly. """ secrets_location = self.get_secrets_location() if not utils.does_file_exist(secrets_location): raise Exception(f'Did not find the secrets file in {secrets_location}') with open(secrets_location, 'r') as fr: for secret_line in fr: secret_line = secret_line.split('#')[0] #  To remove any comments the user might have put data = secret_line.split('=') if len(data) != 2: raise Exception('A secret should be of format, secret_name=secret_value[# any comment]') key, value = data self.secrets[key] = value.strip('\n') def get(self, name: str = None, **kwargs) -> Union[str, dict]: """ Get a secret of name from the secrets file. If no name is provided, we return all Args: name (str): The name of the secret to retrieve Raises: Exception: If the secret by the name is not found. Returns: [type]: [description] """ self._load_secrets() if not name: return self.secrets if name in self.secrets: return self.secrets[name] secrets_location = self.get_secrets_location() raise exceptions.SecretNotFoundError(secret_name=name, secret_setting=secrets_location)
[ "logging.getLogger", "magnus.utils.does_file_exist", "magnus.exceptions.SecretNotFoundError" ]
[((130, 162), 'logging.getLogger', 'logging.getLogger', (['defaults.NAME'], {}), '(defaults.NAME)\n', (147, 162), False, 'import logging\n'), ((4443, 4529), 'magnus.exceptions.SecretNotFoundError', 'exceptions.SecretNotFoundError', ([], {'secret_name': 'name', 'secret_setting': 'secrets_location'}), '(secret_name=name, secret_setting=\n secrets_location)\n', (4473, 4529), False, 'from magnus import defaults, exceptions, utils\n'), ((3228, 3267), 'magnus.utils.does_file_exist', 'utils.does_file_exist', (['secrets_location'], {}), '(secrets_location)\n', (3249, 3267), False, 'from magnus import defaults, exceptions, utils\n')]
from dyndns import log from dyndns.log import UpdatesDB, DateTime import _helper import datetime import unittest def clean_log_file(log_file_path): log_file = open(log_file_path, 'w') log_file.write('') log_file.close() class TestMethodMsg(unittest.TestCase): def setUp(self): self.log_file = log.log_file clean_log_file(self.log_file) def test_msg(self): self.assertEqual(log.msg('lol', 'UNCHANGED'), 'UNCHANGED: lol\n') def test_log_file(self): log.msg('lol', 'UNCHANGED') log_file = open(log.log_file, 'r') result = log_file.read() self.assertIn('UNCHANGED', result) self.assertIn('lol', result) class TestClassDateTime(unittest.TestCase): def setUp(self): self.dt = DateTime('2018-06-23 07:49:58.694510') def test_init(self): self.assertEqual(str(self.dt.datetime), '2018-06-23 07:49:58.694510') def test_iso8601(self): self.assertEqual(self.dt.iso8601(), '2018-06-23 07:49:58.694510') def test_iso8601_short(self): self.assertEqual(self.dt.iso8601_short(), '2018-06-23 07:49:58') class TestClassUpdateDB(unittest.TestCase): def setUp(self): _helper.remove_updates_db() def test_init(self): db = UpdatesDB() self.assertTrue(db.db_file) def test_method_log_update(self): db = UpdatesDB() db.log_update(True, 'www.example.com', 'a', '172.16.58.3') db.cursor.execute('SELECT * FROM updates;') rows = db.cursor.fetchall() row = rows[0] dt = DateTime(row[0]) self.assertEqual(dt.datetime.year, datetime.datetime.now().year) self.assertEqual(row[1], 1) self.assertEqual(row[2], 'www.example.com') self.assertEqual(row[3], 'a') self.assertEqual(row[4], '172.16.58.3') db.cursor.execute('SELECT fqdn FROM fqdns;') row = db.cursor.fetchone() self.assertEqual(row[0], 'www.example.com') # Add second entry db.log_update(True, 'www.example.com', 'a', '172.16.58.3') # fqdn gets entered only one time db.cursor.execute('SELECT fqdn FROM fqdns;') rows = db.cursor.fetchall() self.assertEqual(len(rows), 1) db.cursor.execute('SELECT * FROM updates;') rows = db.cursor.fetchall() self.assertEqual(len(rows), 2) def test_method_get_fqdns(self): db = _helper.get_updates_db() self.assertEqual(db.get_fqdns(), ['a.example.com', 'b.example.com', 'c.example.com']) def test_method_is_fqdn_stored(self): db = UpdatesDB() self.assertFalse(db._is_fqdn_stored('example.com')) db.log_update(True, 'example.com', 'a', '172.16.58.3') self.assertTrue(db._is_fqdn_stored('example.com')) def test_method_get_updates_by_fqdn(self): db = _helper.get_updates_db() result = db.get_updates_by_fqdn('a.example.com') self.assertTrue(result[0]['update_time']) self.assertEqual(result[0]['fqdn'], 'a.example.com') self.assertEqual(result[0]['record_type'], 'a') self.assertEqual(result[0]['ip'], '1.2.3.4') if __name__ == '__main__': unittest.main()
[ "_helper.get_updates_db", "dyndns.log.UpdatesDB", "dyndns.log.msg", "_helper.remove_updates_db", "datetime.datetime.now", "unittest.main", "dyndns.log.DateTime" ]
[((3220, 3235), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3233, 3235), False, 'import unittest\n'), ((510, 537), 'dyndns.log.msg', 'log.msg', (['"""lol"""', '"""UNCHANGED"""'], {}), "('lol', 'UNCHANGED')\n", (517, 537), False, 'from dyndns import log\n'), ((780, 818), 'dyndns.log.DateTime', 'DateTime', (['"""2018-06-23 07:49:58.694510"""'], {}), "('2018-06-23 07:49:58.694510')\n", (788, 818), False, 'from dyndns.log import UpdatesDB, DateTime\n'), ((1210, 1237), '_helper.remove_updates_db', '_helper.remove_updates_db', ([], {}), '()\n', (1235, 1237), False, 'import _helper\n'), ((1277, 1288), 'dyndns.log.UpdatesDB', 'UpdatesDB', ([], {}), '()\n', (1286, 1288), False, 'from dyndns.log import UpdatesDB, DateTime\n'), ((1377, 1388), 'dyndns.log.UpdatesDB', 'UpdatesDB', ([], {}), '()\n', (1386, 1388), False, 'from dyndns.log import UpdatesDB, DateTime\n'), ((1580, 1596), 'dyndns.log.DateTime', 'DateTime', (['row[0]'], {}), '(row[0])\n', (1588, 1596), False, 'from dyndns.log import UpdatesDB, DateTime\n'), ((2430, 2454), '_helper.get_updates_db', '_helper.get_updates_db', ([], {}), '()\n', (2452, 2454), False, 'import _helper\n'), ((2630, 2641), 'dyndns.log.UpdatesDB', 'UpdatesDB', ([], {}), '()\n', (2639, 2641), False, 'from dyndns.log import UpdatesDB, DateTime\n'), ((2885, 2909), '_helper.get_updates_db', '_helper.get_updates_db', ([], {}), '()\n', (2907, 2909), False, 'import _helper\n'), ((423, 450), 'dyndns.log.msg', 'log.msg', (['"""lol"""', '"""UNCHANGED"""'], {}), "('lol', 'UNCHANGED')\n", (430, 450), False, 'from dyndns import log\n'), ((1640, 1663), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (1661, 1663), False, 'import datetime\n')]
#!/usr/bin/env python """Test suite for Stream XML Writer module""" # Copyright (c) 2009-2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import unittest from io import BytesIO from streamxmlwriter import XMLWriter, XMLSyntaxError, tostring class XMLWriterTestCase(unittest.TestCase): def assertOutput(self, writer, output): self.assertEqual(writer.file.getvalue(), output) class TestXMLWriter(XMLWriterTestCase): def test_single_element(self): w = XMLWriter(BytesIO()) w.start("foo") w.end() self.assertOutput(w, b"<foo />") def test_text_data(self): w = XMLWriter(BytesIO()) w.start("foo") w.data("bar") w.end() self.assertOutput(w, b"<foo>bar</foo>") def test_single_attribute(self): w = XMLWriter(BytesIO()) w.start("foo", {"bar": "baz"}) w.end() self.assertOutput(w, b'<foo bar="baz" />') def test_sorted_attributes(self): w = XMLWriter(BytesIO()) w.start("foo", {"bar": "bar", "baz": "baz"}) w.end() self.assertOutput(w, b'<foo bar="bar" baz="baz" />') def test_escape_attributes(self): w = XMLWriter(BytesIO()) w.start("foo", {"bar": '<>&"'}) w.end() self.assertOutput(w, b'<foo bar="&lt;>&amp;&quot;" />') def test_escape_character_data(self): w = XMLWriter(BytesIO()) w.start("foo") w.data("<>&") w.end() self.assertOutput(w, b"<foo>&lt;&gt;&amp;</foo>") def test_file_encoding(self): ts = [ ({}, b"<foo>\xc3\xa5\xc3\xa4\xc3\xb6\xe2\x98\x83\xe2\x9d\xa4</foo>"), ({"encoding": "us-ascii"}, b"<foo>&#229;&#228;&#246;&#9731;&#10084;</foo>"), ( {"encoding": "iso-8859-1"}, b"<?xml version='1.0' encoding='iso-8859-1'?>" b"<foo>\xe5\xe4\xf6&#9731;&#10084;</foo>", ), ( {"encoding": "utf-8"}, b"<foo>\xc3\xa5\xc3\xa4\xc3\xb6\xe2\x98\x83\xe2\x9d\xa4</foo>", ), ] for (kwargs, output) in ts: w = XMLWriter(BytesIO(), **kwargs) w.start("foo") w.data(u"\xe5\xe4\xf6\u2603\u2764") w.end() self.assertEqual(w.file.getvalue(), output) def test_close(self): w = XMLWriter(BytesIO()) w.start("a") w.start("b") w.close() self.assertOutput(w, b"<a><b /></a>") def test_declaration_late_raises_syntaxerror(self): w = XMLWriter(BytesIO()) w.start("a") self.assertRaises(XMLSyntaxError, w.declaration) def test_ignore_double_declaration(self): w = XMLWriter(BytesIO()) w.declaration() w.declaration() w.close() self.assertOutput(w, b"<?xml version='1.0' encoding='utf-8'?>") def test_abbrev_empty(self): w = XMLWriter(BytesIO(), abbrev_empty=False) w.start("a") w.close() self.assertOutput(w, b"<a></a>") def test_named_end(self): w = XMLWriter(BytesIO()) w.start("a") w.end("a") w.close() self.assertTrue(True) class TestPrettyPrinting(XMLWriterTestCase): def test_simple(self): w = XMLWriter(BytesIO(), pretty_print=True) w.start("a") w.start("b") w.data("foo") w.end() w.start("b") w.data("bar") w.end() w.start("b") w.start("c") w.close() self.assertOutput( w, b"""\ <a> <b>foo</b> <b>bar</b> <b> <c /> </b> </a>""", ) def test_comment(self): w = XMLWriter(BytesIO(), pretty_print=True) w.start("a") w.comment("comment") w.start("b") w.close() self.assertOutput(w, b"<a>\n <!--comment-->\n <b />\n</a>") def test_comment_before_root(self): w = XMLWriter(BytesIO(), pretty_print=True) w.comment("comment") w.start("a") w.close() self.assertOutput(w, b"<!--comment-->\n<a />") def test_comment_after_root(self): w = XMLWriter(BytesIO(), pretty_print=True) w.start("a") w.end() w.comment("comment") w.close() self.assertOutput(w, b"<a />\n<!--comment-->") def test_pi(self): w = XMLWriter(BytesIO(), pretty_print=True) w.start("a") w.pi("foo", "bar") w.start("b") w.close() self.assertOutput(w, b"<a>\n <?foo bar?>\n <b />\n</a>") def test_pi_before_root(self): w = XMLWriter(BytesIO(), pretty_print=True) w.pi("foo", "bar") w.start("a") w.close() self.assertOutput(w, b"<?foo bar?>\n<a />") def test_pi_after_root(self): w = XMLWriter(BytesIO(), pretty_print=True) w.start("a") w.end() w.pi("foo", "bar") w.close() self.assertOutput(w, b"<a />\n<?foo bar?>") class TestNamespaces(XMLWriterTestCase): def test_simple(self): w = XMLWriter(BytesIO()) w.start_ns("", "http://example.org/ns") w.start("{http://example.org/ns}foo") w.close() self.assertOutput(w, b'<foo xmlns="http://example.org/ns" />') def test_attribute(self): w = XMLWriter(BytesIO()) w.start_ns("a", "http://example.org/ns") w.start("foo", {"{http://example.org/ns}bar": "baz"}) w.close() self.assertOutput(w, b'<foo xmlns:a="http://example.org/ns" a:bar="baz" />') def test_prefixed_element(self): w = XMLWriter(BytesIO()) w.start_ns("a", "http://example.org/ns") w.start("{http://example.org/ns}foo") w.close() self.assertOutput(w, b'<a:foo xmlns:a="http://example.org/ns" />') def test_default_unbinding(self): w = XMLWriter(BytesIO()) w.start_ns("", "http://example.org/ns") w.start("{http://example.org/ns}foo") w.start_ns("", "") w.start("foo") w.close() self.assertOutput( w, b'<foo xmlns="http://example.org/ns">' b'<foo xmlns="" /></foo>' ) def test_prefix_rebinding(self): w = XMLWriter(BytesIO()) w.start_ns("a", "http://example.org/ns") w.start("{http://example.org/ns}foo") w.start_ns("a", "http://example.org/ns2") w.start("{http://example.org/ns2}foo") w.close() self.assertOutput( w, b'<a:foo xmlns:a="http://example.org/ns">' b'<a:foo xmlns:a="http://example.org/ns2" />' b"</a:foo>", ) def test_attributes_same_local_name(self): w = XMLWriter(BytesIO()) w.start_ns("a", "http://example.org/ns1") w.start_ns("b", "http://example.org/ns2") w.start("foo") w.start( "bar", {"{http://example.org/ns1}attr": "1", "{http://example.org/ns2}attr": "2"}, ) w.close() self.assertOutput( w, b'<foo xmlns:a="http://example.org/ns1"' b' xmlns:b="http://example.org/ns2">' b'<bar a:attr="1" b:attr="2" />' b"</foo>", ) def test_attributes_same_local_one_prefixed(self): w = XMLWriter(BytesIO()) w.start_ns("a", "http://example.org/ns") w.start("foo") w.start("bar", {"{http://example.org/ns}attr": "1", "attr": "2"}) w.close() self.assertOutput( w, b'<foo xmlns:a="http://example.org/ns">' b'<bar attr="2" a:attr="1" />' b"</foo>", ) def test_attributes_same_local_one_prefixed_one_default(self): w = XMLWriter(BytesIO()) w.start_ns("", "http://example.org/ns1") w.start_ns("a", "http://example.org/ns2") w.start("{http://example.org/ns1}foo") w.start( "{http://example.org/ns1}bar", {"{http://example.org/ns1}attr": "1", "{http://example.org/ns2}attr": "2"}, ) w.close() self.assertOutput( w, b'<foo xmlns="http://example.org/ns1"' b' xmlns:a="http://example.org/ns2">' b'<bar attr="1" a:attr="2" />' b"</foo>", ) class TestIterwrite(XMLWriterTestCase): def test_basic(self): from lxml import etree from io import BytesIO w = XMLWriter(BytesIO()) xml = b"""\ <!--comment before--><?pi before?><foo xmlns="http://example.org/ns1"> <?a pi?> <bar xmlns:b="http://example.org/ns2"> <?pi inside?>some text <baz attr="1" b:attr="2" /> oh dear<!--comment inside -->text here too </bar> </foo><?pi after?><!--comment after-->""" events = ("start", "end", "start-ns", "end-ns", "pi", "comment") w.iterwrite(etree.iterparse(BytesIO(xml), events)) w.close() self.assertOutput(w, xml) def test_chunked_text(self): from lxml import etree from io import BytesIO for padding in (16382, 32755): padding = b" " * padding w = XMLWriter(BytesIO()) xml = b"%s<doc><foo>hello</foo></doc>" % padding events = ("start", "end") w.iterwrite(etree.iterparse(BytesIO(xml), events)) w.close() self.assertOutput(w, xml.strip()) class TestToString(XMLWriterTestCase): def test_basic(self): from lxml import etree elem = etree.Element("foo", bar="baz") elem.text = "something" elem.tail = "whatnot" xml = tostring(elem) self.assertEqual(xml, b'<foo bar="baz">something</foo>whatnot') if __name__ == "__main__": unittest.main()
[ "unittest.main", "lxml.etree.Element", "io.BytesIO", "streamxmlwriter.tostring" ]
[((10739, 10754), 'unittest.main', 'unittest.main', ([], {}), '()\n', (10752, 10754), False, 'import unittest\n'), ((10511, 10542), 'lxml.etree.Element', 'etree.Element', (['"""foo"""'], {'bar': '"""baz"""'}), "('foo', bar='baz')\n", (10524, 10542), False, 'from lxml import etree\n'), ((10619, 10633), 'streamxmlwriter.tostring', 'tostring', (['elem'], {}), '(elem)\n', (10627, 10633), False, 'from streamxmlwriter import XMLWriter, XMLSyntaxError, tostring\n'), ((1509, 1518), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1516, 1518), False, 'from io import BytesIO\n'), ((1653, 1662), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1660, 1662), False, 'from io import BytesIO\n'), ((1833, 1842), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (1840, 1842), False, 'from io import BytesIO\n'), ((2011, 2020), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (2018, 2020), False, 'from io import BytesIO\n'), ((2213, 2222), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (2220, 2222), False, 'from io import BytesIO\n'), ((2409, 2418), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (2416, 2418), False, 'from io import BytesIO\n'), ((3396, 3405), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3403, 3405), False, 'from io import BytesIO\n'), ((3592, 3601), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3599, 3601), False, 'from io import BytesIO\n'), ((3750, 3759), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3757, 3759), False, 'from io import BytesIO\n'), ((3955, 3964), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3962, 3964), False, 'from io import BytesIO\n'), ((4119, 4128), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (4126, 4128), False, 'from io import BytesIO\n'), ((4314, 4323), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (4321, 4323), False, 'from io import BytesIO\n'), ((4726, 4735), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (4733, 4735), False, 'from io import BytesIO\n'), ((4978, 4987), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (4985, 4987), False, 'from io import BytesIO\n'), ((5193, 5202), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (5200, 5202), False, 'from io import BytesIO\n'), ((5408, 5417), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (5415, 5417), False, 'from io import BytesIO\n'), ((5650, 5659), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (5657, 5659), False, 'from io import BytesIO\n'), ((5855, 5864), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (5862, 5864), False, 'from io import BytesIO\n'), ((6111, 6120), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (6118, 6120), False, 'from io import BytesIO\n'), ((6358, 6367), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (6365, 6367), False, 'from io import BytesIO\n'), ((6643, 6652), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (6650, 6652), False, 'from io import BytesIO\n'), ((6903, 6912), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (6910, 6912), False, 'from io import BytesIO\n'), ((7253, 7262), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (7260, 7262), False, 'from io import BytesIO\n'), ((7734, 7743), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (7741, 7743), False, 'from io import BytesIO\n'), ((8321, 8330), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (8328, 8330), False, 'from io import BytesIO\n'), ((8757, 8766), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (8764, 8766), False, 'from io import BytesIO\n'), ((9462, 9471), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (9469, 9471), False, 'from io import BytesIO\n'), ((3175, 3184), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (3182, 3184), False, 'from io import BytesIO\n'), ((9882, 9894), 'io.BytesIO', 'BytesIO', (['xml'], {}), '(xml)\n', (9889, 9894), False, 'from io import BytesIO\n'), ((10156, 10165), 'io.BytesIO', 'BytesIO', ([], {}), '()\n', (10163, 10165), False, 'from io import BytesIO\n'), ((10306, 10318), 'io.BytesIO', 'BytesIO', (['xml'], {}), '(xml)\n', (10313, 10318), False, 'from io import BytesIO\n')]
# -*- encoding: utf-8 -*- import json import django.utils.timezone from django.contrib import messages from django.contrib.auth.decorators import login_required from django.core.exceptions import PermissionDenied from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect, render from guardian.decorators import permission_required from apps.authentication.models import OnlineUser as User from apps.dashboard.tools import get_base_context, has_access from apps.marks.dashboard.forms import MarkForm from apps.marks.models import Mark, MarkUser @login_required @permission_required('marks.view_mark', return_403=True) def index(request): """ Marks overview """ # Check access if not has_access(request): raise PermissionDenied # Get context context = get_base_context(request) # Find all marks and do additional fixes marks_collection = [] marks = Mark.objects.all().order_by('-added_date') for mark in marks: marks_temp = mark marks_temp.users_num = len(mark.given_to.all()) marks_temp.category_clean = mark.get_category_display() marks_collection.append(marks_temp) # Add collection to context context['marks'] = marks_collection # Render view return render(request, 'marks/dashboard/index.html', context) @login_required @permission_required('marks.change_mark', return_403=True) def marks_details(request, pk): """ Display details for a given Mark """ # Check permission if not has_access(request): raise PermissionDenied # Get context context = get_base_context(request) # Get object mark = get_object_or_404(Mark, pk=pk) mark.category_clean = mark.get_category_display() context['mark'] = mark # Get users connected to the mark context['mark_users'] = mark.given_to.all() # AJAX if request.method == 'POST': if request.is_ajax and 'action' in request.POST: resp = {'status': 200} context, resp = _handle_mark_detail(request, context, resp) # Set mark resp['mark'] = {'last_changed_date': context['mark'].last_changed_date.strftime("%Y-%m-%d"), 'last_changed_by': context['mark'].last_changed_by.get_full_name()} # Return ajax return HttpResponse(json.dumps(resp), status=resp['status']) # Render view return render(request, 'marks/dashboard/marks_details.html', context) @login_required @permission_required('marks.add_mark', return_403=True) def marks_new(request): if not has_access(request): raise PermissionDenied context = get_base_context(request) if request.method == 'POST': mark_form = MarkForm(request.POST) if not mark_form.is_valid(): messages.error(request, 'Noen av de påkrevde feltene inneholder feil.') else: # Save the form data new_mark = mark_form.save() # Save the additional mark data new_mark.given_by = request.user new_mark.last_changed_by = request.user new_mark.save() # Add news messages.success(request, 'Prikken ble lagret.') return redirect(marks_details, pk=new_mark.id) else: context['form'] = MarkForm() return render(request, 'marks/dashboard/marks_new.html', context) @login_required @permission_required('marks.change_mark', return_403=True) def marks_edit(request, pk): if not has_access(request): raise PermissionDenied context = get_base_context(request) if request.method == 'POST': mark = get_object_or_404(Mark, pk=pk) mark_form = MarkForm(request.POST, instance=mark) if not mark_form.is_valid(): messages.error(request, 'Noen av de påkrevde feltene inneholder feil.') else: # Save the form data new_mark = mark_form.save() # Save the additional mark data new_mark.last_changed_by = request.user new_mark.last_changed_date = django.utils.timezone.now() new_mark.save() # Add news messages.success(request, 'Prikken ble endret.') return redirect(marks_details, pk=new_mark.id) else: mark = get_object_or_404(Mark, pk=pk) context['form'] = MarkForm(instance=mark) return render(request, 'marks/dashboard/marks_edit.html', context) @login_required @permission_required('marks.delete_mark', return_403=True) def marks_delete(request, pk): """ Display details for a given Mark """ # Check permission if not has_access(request): raise PermissionDenied # Get object mark = get_object_or_404(Mark, pk=pk) # Save message messages.success(request, '%s er ble slettet.' % mark.title) # Delete the mark mark.delete() # Redirect user return redirect(index) def _handle_mark_detail(request, context, resp): if request.POST['action'] == 'remove_user': # Get the correct user user = get_object_or_404(User, pk=int(request.POST['user_id'])) # Remove from the set mark_users_filtered = [] for mark_user in context['mark_users']: if mark_user.user == user: # Delete the object in the database mark_user.delete() else: mark_users_filtered.append(mark_user) # Update mark context['mark'].last_changed_date = django.utils.timezone.now() context['mark'].last_changed_by = request.user context['mark'].save() # Set information to resp resp['message'] = '%s ble fjernet fra %s' % (user.get_full_name(), context['mark'].title) resp['mark_users'] = [{'user': mu.user.get_full_name(), 'id': mu.user.id} for mu in mark_users_filtered] elif request.POST['action'] == 'add_user': user = get_object_or_404(User, pk=int(request.POST['user_id'])) # Check if user already is the lucky owner of this prikk for context_mark_user in context['mark_users']: if context_mark_user.user == user: resp = { 'status': 500, 'message': '%s har allerede prikken %s.' % (user.get_full_name(), context['mark'].title) } # Return ajax return HttpResponse(json.dumps(resp), status=500) # Update mark context['mark'].last_changed_date = django.utils.timezone.now() context['mark'].last_changed_by = request.user context['mark'].save() # New MarkUser mark_user = MarkUser() mark_user.mark = context['mark'] mark_user.user = user mark_user.save() # Build new list of users mark_users_list = [] for context_mark_user in context['mark_users']: mark_users_list.append(context_mark_user) mark_users_list.append(mark_user) # Sort the list of mark users resp['mark_users'] = [{'user': mu.user.get_full_name(), 'id': mu.user.id} for mu in mark_users_list] resp['mark_users'].sort(key=lambda x: x['user']) # Set information to resp resp['message'] = '%s ble tildelt prikken %s.' % (user.get_full_name(), context['mark'].title) return context, resp
[ "django.shortcuts.render", "apps.marks.models.MarkUser", "guardian.decorators.permission_required", "django.contrib.messages.error", "django.shortcuts.get_object_or_404", "json.dumps", "apps.dashboard.tools.has_access", "apps.dashboard.tools.get_base_context", "django.shortcuts.redirect", "apps.marks.models.Mark.objects.all", "django.contrib.messages.success", "apps.marks.dashboard.forms.MarkForm" ]
[((602, 657), 'guardian.decorators.permission_required', 'permission_required', (['"""marks.view_mark"""'], {'return_403': '(True)'}), "('marks.view_mark', return_403=True)\n", (621, 657), False, 'from guardian.decorators import permission_required\n'), ((1373, 1430), 'guardian.decorators.permission_required', 'permission_required', (['"""marks.change_mark"""'], {'return_403': '(True)'}), "('marks.change_mark', return_403=True)\n", (1392, 1430), False, 'from guardian.decorators import permission_required\n'), ((2537, 2591), 'guardian.decorators.permission_required', 'permission_required', (['"""marks.add_mark"""'], {'return_403': '(True)'}), "('marks.add_mark', return_403=True)\n", (2556, 2591), False, 'from guardian.decorators import permission_required\n'), ((3457, 3514), 'guardian.decorators.permission_required', 'permission_required', (['"""marks.change_mark"""'], {'return_403': '(True)'}), "('marks.change_mark', return_403=True)\n", (3476, 3514), False, 'from guardian.decorators import permission_required\n'), ((4530, 4587), 'guardian.decorators.permission_required', 'permission_required', (['"""marks.delete_mark"""'], {'return_403': '(True)'}), "('marks.delete_mark', return_403=True)\n", (4549, 4587), False, 'from guardian.decorators import permission_required\n'), ((829, 854), 'apps.dashboard.tools.get_base_context', 'get_base_context', (['request'], {}), '(request)\n', (845, 854), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((1299, 1353), 'django.shortcuts.render', 'render', (['request', '"""marks/dashboard/index.html"""', 'context'], {}), "(request, 'marks/dashboard/index.html', context)\n", (1305, 1353), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((1636, 1661), 'apps.dashboard.tools.get_base_context', 'get_base_context', (['request'], {}), '(request)\n', (1652, 1661), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((1691, 1721), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Mark'], {'pk': 'pk'}), '(Mark, pk=pk)\n', (1708, 1721), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((2455, 2517), 'django.shortcuts.render', 'render', (['request', '"""marks/dashboard/marks_details.html"""', 'context'], {}), "(request, 'marks/dashboard/marks_details.html', context)\n", (2461, 2517), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((2694, 2719), 'apps.dashboard.tools.get_base_context', 'get_base_context', (['request'], {}), '(request)\n', (2710, 2719), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((3379, 3437), 'django.shortcuts.render', 'render', (['request', '"""marks/dashboard/marks_new.html"""', 'context'], {}), "(request, 'marks/dashboard/marks_new.html', context)\n", (3385, 3437), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((3622, 3647), 'apps.dashboard.tools.get_base_context', 'get_base_context', (['request'], {}), '(request)\n', (3638, 3647), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((4451, 4510), 'django.shortcuts.render', 'render', (['request', '"""marks/dashboard/marks_edit.html"""', 'context'], {}), "(request, 'marks/dashboard/marks_edit.html', context)\n", (4457, 4510), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((4788, 4818), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Mark'], {'pk': 'pk'}), '(Mark, pk=pk)\n', (4805, 4818), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((4843, 4903), 'django.contrib.messages.success', 'messages.success', (['request', "('%s er ble slettet.' % mark.title)"], {}), "(request, '%s er ble slettet.' % mark.title)\n", (4859, 4903), False, 'from django.contrib import messages\n'), ((4977, 4992), 'django.shortcuts.redirect', 'redirect', (['index'], {}), '(index)\n', (4985, 4992), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((744, 763), 'apps.dashboard.tools.has_access', 'has_access', (['request'], {}), '(request)\n', (754, 763), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((1551, 1570), 'apps.dashboard.tools.has_access', 'has_access', (['request'], {}), '(request)\n', (1561, 1570), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((2627, 2646), 'apps.dashboard.tools.has_access', 'has_access', (['request'], {}), '(request)\n', (2637, 2646), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((2774, 2796), 'apps.marks.dashboard.forms.MarkForm', 'MarkForm', (['request.POST'], {}), '(request.POST)\n', (2782, 2796), False, 'from apps.marks.dashboard.forms import MarkForm\n'), ((3356, 3366), 'apps.marks.dashboard.forms.MarkForm', 'MarkForm', ([], {}), '()\n', (3364, 3366), False, 'from apps.marks.dashboard.forms import MarkForm\n'), ((3555, 3574), 'apps.dashboard.tools.has_access', 'has_access', (['request'], {}), '(request)\n', (3565, 3574), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((3697, 3727), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Mark'], {'pk': 'pk'}), '(Mark, pk=pk)\n', (3714, 3727), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((3748, 3785), 'apps.marks.dashboard.forms.MarkForm', 'MarkForm', (['request.POST'], {'instance': 'mark'}), '(request.POST, instance=mark)\n', (3756, 3785), False, 'from apps.marks.dashboard.forms import MarkForm\n'), ((4358, 4388), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['Mark'], {'pk': 'pk'}), '(Mark, pk=pk)\n', (4375, 4388), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((4415, 4438), 'apps.marks.dashboard.forms.MarkForm', 'MarkForm', ([], {'instance': 'mark'}), '(instance=mark)\n', (4423, 4438), False, 'from apps.marks.dashboard.forms import MarkForm\n'), ((4707, 4726), 'apps.dashboard.tools.has_access', 'has_access', (['request'], {}), '(request)\n', (4717, 4726), False, 'from apps.dashboard.tools import get_base_context, has_access\n'), ((939, 957), 'apps.marks.models.Mark.objects.all', 'Mark.objects.all', ([], {}), '()\n', (955, 957), False, 'from apps.marks.models import Mark, MarkUser\n'), ((2846, 2917), 'django.contrib.messages.error', 'messages.error', (['request', '"""Noen av de påkrevde feltene inneholder feil."""'], {}), "(request, 'Noen av de påkrevde feltene inneholder feil.')\n", (2860, 2917), False, 'from django.contrib import messages\n'), ((3211, 3259), 'django.contrib.messages.success', 'messages.success', (['request', '"""Prikken ble lagret."""'], {}), "(request, 'Prikken ble lagret.')\n", (3227, 3259), False, 'from django.contrib import messages\n'), ((3280, 3319), 'django.shortcuts.redirect', 'redirect', (['marks_details'], {'pk': 'new_mark.id'}), '(marks_details, pk=new_mark.id)\n', (3288, 3319), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((3835, 3906), 'django.contrib.messages.error', 'messages.error', (['request', '"""Noen av de påkrevde feltene inneholder feil."""'], {}), "(request, 'Noen av de påkrevde feltene inneholder feil.')\n", (3849, 3906), False, 'from django.contrib import messages\n'), ((4224, 4272), 'django.contrib.messages.success', 'messages.success', (['request', '"""Prikken ble endret."""'], {}), "(request, 'Prikken ble endret.')\n", (4240, 4272), False, 'from django.contrib import messages\n'), ((4293, 4332), 'django.shortcuts.redirect', 'redirect', (['marks_details'], {'pk': 'new_mark.id'}), '(marks_details, pk=new_mark.id)\n', (4301, 4332), False, 'from django.shortcuts import get_object_or_404, redirect, render\n'), ((6730, 6740), 'apps.marks.models.MarkUser', 'MarkUser', ([], {}), '()\n', (6738, 6740), False, 'from apps.marks.models import Mark, MarkUser\n'), ((2384, 2400), 'json.dumps', 'json.dumps', (['resp'], {}), '(resp)\n', (2394, 2400), False, 'import json\n'), ((6475, 6491), 'json.dumps', 'json.dumps', (['resp'], {}), '(resp)\n', (6485, 6491), False, 'import json\n')]
#!/usr/bin/python3.4 # vim:ts=4:sw=4:softtabstop=4:smarttab:expandtab # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Utility functions for file objects and file descriptors. """ import os import fcntl class MergedIO(object): """MergedIO(outfile, infile) Combines a write stream and a read stream into one read/write object.""" def __init__(self, outf, inf): self._outf = outf self._inf = inf self.mode = "rw" self.closed = 0 self.softspace = 0 # reading methods self.read = inf.read self.readline = inf.readline self.readlines = inf.readlines # writing methods self.write = outf.write self.flush = outf.flush self.writelines = outf.writelines def close(self): self._outf.close() self._inf.close() self._outf = None self._inf = None self.closed = 1 def fileno(self): # ??? punt, since reads are most common, return reader fd return self._inf.fileno() def filenos(self): return self._inf.fileno(), self._outf.fileno() def isatty(self): return self._inf.isatty() and self._outf.isatty() def mode2flags(mode): """mode2flags(modestring) Converts a file mode in string form (e.g. "w+") to an integer flag value suitable for os.open(). """ flags = getattr("O_LARGEFILE", os, 0) if mode == "a": flags = flags | os.O_APPEND | os.O_WRONLY elif mode == "a+": flags = flags | os.O_APPEND | os.O_RDWR | os.O_CREAT elif mode == "w": flags = flags | os.O_WRONLY | os.O_CREAT elif mode == "w+": flags = flags | os.O_RDWR | os.O_CREAT elif mode == "r": pass # O_RDONLY is zero already elif mode == "r+": flags = flags | os.O_RDWR return flags # cache of O_ flags _OLIST = [n for n in dir(os) if n.startswith("O_")] def flag_string(fd): """flag_string(fd) where fd is an integer file descriptor of an open file. Returns the files open flags as a vertical bar (|) delimited string. """ flags = fcntl.fcntl(fd, fcntl.F_GETFL) strlist = [_f for _f in [(flags & getattr(os, n)) and n for n in _OLIST] if _f] # hack to accomodate the fact that O_RDONLY is not really a flag... if not (flags & os.ACCMODE): strlist.insert(0, "O_RDONLY") return "|".join(strlist) # TODO still need to verify this or add more. _MODEMAP = { os.O_RDONLY: "r", os.O_RDWR: "r+", os.O_WRONLY | os.O_TRUNC: "w", os.O_RDWR | os.O_CREAT: "w+", os.O_APPEND | os.O_WRONLY: "a", os.O_APPEND | os.O_RDWR | os.O_CREAT: "a+", } def mode_string(fd): """Get a suitalbe mode string for an fd.""" flags = fcntl.fcntl(fd, fcntl.F_GETFL) mode = _MODEMAP.get(flags) if mode is None: return flag_string(fd) else: return mode def close_on_exec(fd): flags = fcntl.fcntl(fd, fcntl.F_GETFD) flags |= fcntl.FD_CLOEXEC fcntl.fcntl(fd, fcntl.F_SETFD, flags) def set_nonblocking(fd, flag=1): flags = fcntl.fcntl(fd, fcntl.F_GETFL) if flag: flags |= os.O_NONBLOCK # set non-blocking else: flags &= ~os.O_NONBLOCK # set blocking fcntl.fcntl(fd, fcntl.F_SETFL, flags)
[ "fcntl.fcntl" ]
[((2602, 2632), 'fcntl.fcntl', 'fcntl.fcntl', (['fd', 'fcntl.F_GETFL'], {}), '(fd, fcntl.F_GETFL)\n', (2613, 2632), False, 'import fcntl\n'), ((3246, 3276), 'fcntl.fcntl', 'fcntl.fcntl', (['fd', 'fcntl.F_GETFL'], {}), '(fd, fcntl.F_GETFL)\n', (3257, 3276), False, 'import fcntl\n'), ((3427, 3457), 'fcntl.fcntl', 'fcntl.fcntl', (['fd', 'fcntl.F_GETFD'], {}), '(fd, fcntl.F_GETFD)\n', (3438, 3457), False, 'import fcntl\n'), ((3492, 3529), 'fcntl.fcntl', 'fcntl.fcntl', (['fd', 'fcntl.F_SETFD', 'flags'], {}), '(fd, fcntl.F_SETFD, flags)\n', (3503, 3529), False, 'import fcntl\n'), ((3577, 3607), 'fcntl.fcntl', 'fcntl.fcntl', (['fd', 'fcntl.F_GETFL'], {}), '(fd, fcntl.F_GETFL)\n', (3588, 3607), False, 'import fcntl\n'), ((3734, 3771), 'fcntl.fcntl', 'fcntl.fcntl', (['fd', 'fcntl.F_SETFL', 'flags'], {}), '(fd, fcntl.F_SETFL, flags)\n', (3745, 3771), False, 'import fcntl\n')]
import os import sys import math import random import multiprocessing def fib(n): if n in {0, 1}: return n return fib(n - 1) + fib(n - 2) def bingonacci(fib_range, addends_size: int): fibs = {} fib_range = range(fib_range) for i in fib_range: fibs[i] = fib(i) sum_total = 0 for _ in range(addends_size): sum_total += fibs[random.choice(fib_range)] return sum_total def main(): argv = sys.argv[1:] if len(argv) > 1: sys.exit("ArgvError: bingonacci [-t]") if argv and argv[0] != "-t": sys.exit("ArgvError: bingonacci only accepts -t flag as single argument") fib_range = 20 addends_size = 1000000 if not argv: print(bingonacci(fib_range, addends_size)) else: # Python threading does not take more than 1 CPU, use multiprocessing instead. proc_num = max((os.cpu_count() or 0) - 1, 1) split_size = math.ceil(addends_size / proc_num) pool = multiprocessing.Pool(proc_num) print(sum(pool.starmap(bingonacci, [(fib_range, split_size) for _ in range(proc_num)]))) pool.close() sys.exit() if __name__ == '__main__': main()
[ "random.choice", "math.ceil", "multiprocessing.Pool", "os.cpu_count", "sys.exit" ]
[((1135, 1145), 'sys.exit', 'sys.exit', ([], {}), '()\n', (1143, 1145), False, 'import sys\n'), ((493, 531), 'sys.exit', 'sys.exit', (['"""ArgvError: bingonacci [-t]"""'], {}), "('ArgvError: bingonacci [-t]')\n", (501, 531), False, 'import sys\n'), ((573, 646), 'sys.exit', 'sys.exit', (['"""ArgvError: bingonacci only accepts -t flag as single argument"""'], {}), "('ArgvError: bingonacci only accepts -t flag as single argument')\n", (581, 646), False, 'import sys\n'), ((932, 966), 'math.ceil', 'math.ceil', (['(addends_size / proc_num)'], {}), '(addends_size / proc_num)\n', (941, 966), False, 'import math\n'), ((982, 1012), 'multiprocessing.Pool', 'multiprocessing.Pool', (['proc_num'], {}), '(proc_num)\n', (1002, 1012), False, 'import multiprocessing\n'), ((378, 402), 'random.choice', 'random.choice', (['fib_range'], {}), '(fib_range)\n', (391, 402), False, 'import random\n'), ((882, 896), 'os.cpu_count', 'os.cpu_count', ([], {}), '()\n', (894, 896), False, 'import os\n')]
#!/usr/bin/env python # This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. """ Upload a file attachment to MDC Usage: python MDC-attach.py <file> <parent page name> <MIME type> <description> Please set MDC_USER and MDC_PASSWORD in the environment """ import os, sys, deki wikiuser = os.environ['MDC_USER'] wikipw = os.environ['MDC_PASSWORD'] file, pageid, mimetype, description = sys.argv[1:] wiki = deki.Deki("http://developer.mozilla.org/@api/deki/", wikiuser, wikipw) wiki.create_file(pageid, os.path.basename(file), open(file).read(), mimetype, description)
[ "os.path.basename", "deki.Deki" ]
[((553, 623), 'deki.Deki', 'deki.Deki', (['"""http://developer.mozilla.org/@api/deki/"""', 'wikiuser', 'wikipw'], {}), "('http://developer.mozilla.org/@api/deki/', wikiuser, wikipw)\n", (562, 623), False, 'import os, sys, deki\n'), ((649, 671), 'os.path.basename', 'os.path.basename', (['file'], {}), '(file)\n', (665, 671), False, 'import os, sys, deki\n')]
# -*- coding: utf-8 -*- # @Author: jpch89 # 打包命令: """ pyinstaller --add-data="img\电影.png;img" --add-data="ffprobe.exe;." -i="img\电影.ico" -Fw movielen.py """ # man ffprobe 查看ffprobe的帮助文档 import subprocess import re import os import sys from PyQt5 import sip from PyQt5.QtWidgets import QApplication, QWidget, QLabel from PyQt5.QtGui import QIcon, QFont exts = ['.avi', '.mp4', '.mkv', '.flv'] exts += [i.upper() for i in exts] version = 'v0.0.4' # def resource_path(relative_path): # try: # base_path = sys._MEIPASS # except Exception: # base_path = os.path.abspath('.') # print(base_path) # print(relative_path) # abs_path = os.path.join(base_path, relative_path) # print(abs_path) # return abs_path # 另外一种写法 def resource_path(relative_path): '''定义一个返回绝对路径的函数''' if hasattr(sys, '_MEIPASS'): base_path = sys._MEIPASS else: base_path = os.path.abspath('.') return os.path.join(base_path, relative_path) def get_length(filepath): # pyinstaller找不到资源的修改 ffprobe_path = resource_path('ffprobe') cmd = '%s "%s"' % (ffprobe_path, filepath) # 不进行资源重定向 # cmd = 'ffprobe "%s"' % filepath # pyinstaller使用Popen时的修改 # si = subprocess.STARTUPINFO() # si.dwFlags |= subprocess.STARTF_USESHOWWINDOW # 推测: # 在REPL的输出是stderr标准错误输出 # 如果把标准错误输出归并到标准输出的话 # 调用命令就不会在REPL有输出了 # 因为标准输出需要显式的读取出来 # sp = subprocess.Popen(cmd, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, shell = True, startupinfo = si) sp = subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, shell=True) # print(sp.stdout.read().decode('gbk')) results = sp.stdout.readlines() for result in results: # print(result.decode('utf-8')) if b"Duration" in result: result = result.decode('utf-8') break pattern = r'Duration: (\d*:\d*:\d*\.\d*), start' durations = re.search(pattern, result).group(1) durations = durations.split(':') durations = list(map(float, durations)) return durations # 注意int(a)不是四舍五入,是简单截断 def get_hms(total_len): quotient, remainder = divmod(total_len[2], 60) total_len[1] += quotient total_len[2] = remainder quotient, remainder = divmod(total_len[1], 60) total_len[0] += quotient total_len[1] = remainder return total_len def is_movie(file): filename, ext = os.path.splitext(file) if ext in exts: return True else: return False def get_total_len(): total_len = [0.0, 0.0, 0.0] count = 0 for root, dirs, files in os.walk('.'): for file in files: if is_movie(file): count += 1 filepath = os.path.join(root, file) durations = get_length(filepath) for i in range(3): total_len[i] += durations[i] # 测试代码:通过! # file = 'test.mp4' # total_len = get_length(file) # total_len = get_hms(total_len) # return(total_len) # 测试代码结束 total_len = get_hms(total_len) total_len[0] = int(total_len[0]) total_len[1] = int(total_len[1]) total_len[2] = round(total_len[2], 2) return count, total_len class MovieLen(QWidget): def __init__(self): super().__init__() self.initGUI() def initGUI(self): self.setWindowTitle(' '.join(['MovieLen', version])) self.setWindowIcon(QIcon(resource_path(r'img\电影.png'))) self.resize(400, 160) self.label = QLabel(self) self.label.setText(msg) self.label.setFont(QFont('Microsoft YaHei', 16, QFont.Bold)) self.label.move(20, 50) self.show() if __name__ == '__main__': count, total_len = get_total_len() msg1 = '共有%d个视频文件' % count print(msg1) msg1 += '\n' msg2 = '总时长:%s小时%s分%s秒' % (total_len[0], total_len[1], total_len[2]) print(msg2) msg = msg1 + msg2 # GUI app = QApplication(sys.argv) # 注意 # 写成movielen = MovieLen()而不是直接MovieLen() # 否则的话窗口创建之后没有引用 # 导致一闪而过 movielen = MovieLen() sys.exit(app.exec_()) # 更新日志 # v0.0.1 # 20180722016 # 加入 resource_path 函数之后单文件不再报错! # v0.0.2 # 201807222221 # 修复使用 pyinstaller 的 -w 参数报错! # v0.0.3 # 201810302214 # 添加对 .flv 文件的支持 # v0.0.4 # 201812080947 # 添加对大写扩展名的支持
[ "PyQt5.QtGui.QFont", "subprocess.Popen", "os.path.splitext", "os.path.join", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QApplication", "os.path.abspath", "os.walk", "re.search" ]
[((946, 984), 'os.path.join', 'os.path.join', (['base_path', 'relative_path'], {}), '(base_path, relative_path)\n', (958, 984), False, 'import os\n'), ((1564, 1675), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'stdin': 'subprocess.PIPE', 'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.STDOUT', 'shell': '(True)'}), '(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr\n =subprocess.STDOUT, shell=True)\n', (1580, 1675), False, 'import subprocess\n'), ((2453, 2475), 'os.path.splitext', 'os.path.splitext', (['file'], {}), '(file)\n', (2469, 2475), False, 'import os\n'), ((2645, 2657), 'os.walk', 'os.walk', (['"""."""'], {}), "('.')\n", (2652, 2657), False, 'import os\n'), ((3992, 4014), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (4004, 4014), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QLabel\n'), ((914, 934), 'os.path.abspath', 'os.path.abspath', (['"""."""'], {}), "('.')\n", (929, 934), False, 'import os\n'), ((3559, 3571), 'PyQt5.QtWidgets.QLabel', 'QLabel', (['self'], {}), '(self)\n', (3565, 3571), False, 'from PyQt5.QtWidgets import QApplication, QWidget, QLabel\n'), ((1984, 2010), 're.search', 're.search', (['pattern', 'result'], {}), '(pattern, result)\n', (1993, 2010), False, 'import re\n'), ((3631, 3671), 'PyQt5.QtGui.QFont', 'QFont', (['"""Microsoft YaHei"""', '(16)', 'QFont.Bold'], {}), "('Microsoft YaHei', 16, QFont.Bold)\n", (3636, 3671), False, 'from PyQt5.QtGui import QIcon, QFont\n'), ((2771, 2795), 'os.path.join', 'os.path.join', (['root', 'file'], {}), '(root, file)\n', (2783, 2795), False, 'import os\n')]
import os import discord import re client = discord.Client() @client.event async def on_ready(): # show status of client & send initial message to bot-echo channel print('Logged in as') print(client.user.name) print(client.user.id) print('------') a_message = "ゴーヤちゃん準備完了でち" channel = discord.utils.get( client.get_all_channels(), name='bot-echo') await client.send_message(channel, a_message) @client.event async def on_message(message): # send a response when goya-oji appears regex_oji = u"(ゴーヤ|ごーや|ゴーヤ)ちゃんいるかな(\?|?)?(\^|^){2}" is_oji = re.search(regex_oji, message.content) if is_oji: # except client sender if client.user != message.author: react = "はいでち" await client.send_message(message.channel, react) def get_key(): # get a discord's api key from .env key = os.getenv("APIKEY") return key def main(): key = get_key() client.run(key) main()
[ "discord.Client", "os.getenv", "re.search" ]
[((45, 61), 'discord.Client', 'discord.Client', ([], {}), '()\n', (59, 61), False, 'import discord\n'), ((598, 635), 're.search', 're.search', (['regex_oji', 'message.content'], {}), '(regex_oji, message.content)\n', (607, 635), False, 'import re\n'), ((880, 899), 'os.getenv', 'os.getenv', (['"""APIKEY"""'], {}), "('APIKEY')\n", (889, 899), False, 'import os\n')]
import os import sys BASE_DIR = os.path.dirname(os.path.dirname(__file__)) sys.path.insert(0, os.path.dirname(BASE_DIR)) SECRET_KEY = '<KEY>' DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] INSTALLED_APPS = ( 'testapp', ) MIDDLEWARE = ( 'qinspect.middleware.QueryInspectMiddleware', ) ROOT_URLCONF = 'testproject.urls' WSGI_APPLICATION = 'testproject.wsgi.application' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/' QUERY_INSPECT_CONFIG = { 'enabled': True, 'absolute_limit': -1, 'header_stats': True, 'log_duplicates': True, 'log_stats': True, 'log_tracebacks': True, 'standard_deviation_limit': 1, 'traceback_roots': [BASE_DIR], } LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'memory': { 'level': 'DEBUG', 'class': 'testapp.memorylog.MemoryHandler', }, }, 'loggers': { 'qinspect': { 'handlers': ['memory'], 'level': 'DEBUG', 'propagate': True, }, }, }
[ "os.path.dirname" ]
[((50, 75), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (65, 75), False, 'import os\n'), ((96, 121), 'os.path.dirname', 'os.path.dirname', (['BASE_DIR'], {}), '(BASE_DIR)\n', (111, 121), False, 'import os\n')]
import time import logging import os import fnmatch class StringFileUtils: """ helper class for file and string handling """ logger = None filepath = None filext = None #initialze with filepath and filextension def __init__(self,log,filep,filee): self.logger = log self.logger.info("initializing StringFileUtils instance") self.filepath = filep self.filext = filee #returns a timestamped filename def gettimestampedfilename(self): self.logger.info('creating filename getTimeStampedFileName() in StringUtils') return time.strftime("report%Y%m%d-%H%M%S") # count the number files in filepath + fileext def countfiles(self): return len(fnmatch.filter(os.listdir(self.filepath), "*" + self.filext)) # remove oldest file def removeoldestfiles(self, max_files): if (self.countfiles() + 1) > max_files: files = fnmatch.filter(os.listdir(self.filepath), "*" + self.filext) for mp4file in files: self.logger.debug('removing: ' + mp4file + ' removeoldestfiles()') os.remove(self.filepath+"/"+mp4file)
[ "os.listdir", "time.strftime", "os.remove" ]
[((625, 661), 'time.strftime', 'time.strftime', (['"""report%Y%m%d-%H%M%S"""'], {}), "('report%Y%m%d-%H%M%S')\n", (638, 661), False, 'import time\n'), ((778, 803), 'os.listdir', 'os.listdir', (['self.filepath'], {}), '(self.filepath)\n', (788, 803), False, 'import os\n'), ((982, 1007), 'os.listdir', 'os.listdir', (['self.filepath'], {}), '(self.filepath)\n', (992, 1007), False, 'import os\n'), ((1161, 1201), 'os.remove', 'os.remove', (["(self.filepath + '/' + mp4file)"], {}), "(self.filepath + '/' + mp4file)\n", (1170, 1201), False, 'import os\n')]
import itertools as it def solve24(cs): os = set(["".join(i) for i in it.product("+-*/",repeat=3)]) ns = set(["".join(i) for i in it.permutations(cs)]) bs = ["( ) ", \ "( ) ", \ " ( ) ", \ " ( ) ", \ "( )( ) ", \ " ( ) ", \ " "] for oo in os: for nn in ns: s = "".join(it.chain(*zip(nn,"....",oo+" "))) for b in bs: sb = "".join(it.chain(*zip(b,s))).replace(" ","").replace("X","10").replace("J","11").replace("Q","12").replace("K","13") try: if abs(eval(sb)-24.) < 0.001: print(sb.replace(".","").replace("10","X").replace("11","J").replace("12","Q").replace("13","K")) except: pass solve24("44XX") solve24("3388") solve24("3377") solve24("4477") solve24("17KK")
[ "itertools.permutations", "itertools.product" ]
[((75, 103), 'itertools.product', 'it.product', (['"""+-*/"""'], {'repeat': '(3)'}), "('+-*/', repeat=3)\n", (85, 103), True, 'import itertools as it\n'), ((139, 158), 'itertools.permutations', 'it.permutations', (['cs'], {}), '(cs)\n', (154, 158), True, 'import itertools as it\n')]
# Generated by Django 2.1.8 on 2019-05-27 10:20 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Algorithm', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=200)), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Record', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('m_size', models.BigIntegerField()), ('n_size', models.BigIntegerField()), ('l_size', models.BigIntegerField()), ('time', models.DecimalField(blank=True, decimal_places=2, max_digits=6, null=True)), ('average_time', models.DecimalField(blank=True, decimal_places=2, max_digits=6, null=True)), ('algorithm', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='algorithms.Algorithm')), ], options={ 'abstract': False, }, ), ]
[ "django.db.models.ForeignKey", "django.db.models.AutoField", "django.db.models.BigIntegerField", "django.db.models.DateTimeField", "django.db.models.DecimalField", "django.db.models.CharField" ]
[((338, 431), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (354, 431), False, 'from django.db import migrations, models\n'), ((461, 500), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (481, 500), False, 'from django.db import migrations, models\n'), ((534, 569), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (554, 569), False, 'from django.db import migrations, models\n'), ((597, 629), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(200)'}), '(max_length=200)\n', (613, 629), False, 'from django.db import migrations, models\n'), ((833, 926), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (849, 926), False, 'from django.db import migrations, models\n'), ((956, 995), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (976, 995), False, 'from django.db import migrations, models\n'), ((1029, 1064), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (1049, 1064), False, 'from django.db import migrations, models\n'), ((1094, 1118), 'django.db.models.BigIntegerField', 'models.BigIntegerField', ([], {}), '()\n', (1116, 1118), False, 'from django.db import migrations, models\n'), ((1148, 1172), 'django.db.models.BigIntegerField', 'models.BigIntegerField', ([], {}), '()\n', (1170, 1172), False, 'from django.db import migrations, models\n'), ((1202, 1226), 'django.db.models.BigIntegerField', 'models.BigIntegerField', ([], {}), '()\n', (1224, 1226), False, 'from django.db import migrations, models\n'), ((1254, 1328), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'blank': '(True)', 'decimal_places': '(2)', 'max_digits': '(6)', 'null': '(True)'}), '(blank=True, decimal_places=2, max_digits=6, null=True)\n', (1273, 1328), False, 'from django.db import migrations, models\n'), ((1364, 1438), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'blank': '(True)', 'decimal_places': '(2)', 'max_digits': '(6)', 'null': '(True)'}), '(blank=True, decimal_places=2, max_digits=6, null=True)\n', (1383, 1438), False, 'from django.db import migrations, models\n'), ((1471, 1565), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""algorithms.Algorithm"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'algorithms.Algorithm')\n", (1488, 1565), False, 'from django.db import migrations, models\n')]
''' Created on Aug 21, 2015 @author: <NAME> <<EMAIL>> ''' from __future__ import division import math import random import unittest from .. import spherical_harmonics as sh class TestSphericalHarmonics(unittest.TestCase): """ unit tests for the spherical harmonics """ _multiprocess_can_split_ = True # let nose know that tests can run parallel def test_spherical_index(self): """ test the conversion of the spherical index """ # check conversion for k in range(20): l, m = sh.spherical_index_lm(k) self.assertEqual(sh.spherical_index_k(l, m), k) # check order k = 0 for l in range(4): for m in range(-l, l+1): self.assertEqual(sh.spherical_index_k(l, m), k) k += 1 def test_spherical_harmonics_real(self): """ test spherical harmonics """ for l in range(sh.MAX_ORDER_SYM + 1): for _ in range(5): theta = math.pi * random.random() phi = 2 * math.pi * random.random() y1 = sh.spherical_harmonic_symmetric_scipy(l, theta) y2 = sh.spherical_harmonic_real_scipy(l, 0, theta, phi) y3 = sh.spherical_harmonic_symmetric(l, theta) self.assertAlmostEqual(y1, y2) self.assertAlmostEqual(y1, y3) def test_spherical_harmonics_lm(self): """ test spherical harmonics """ for l in range(sh.MAX_ORDER + 1): for m in range(-l, l + 1): for _ in range(5): k = sh.spherical_index_k(l, m) msg = 'l=%d, m=%d, k=%d' % (l, m, k) theta = math.pi * random.random() phi = 2 * math.pi * random.random() y1 = sh.spherical_harmonic_real_scipy(l, m, theta, phi) y2 = sh.spherical_harmonic_real_scipy_k(k, theta, phi) y3 = sh.spherical_harmonic_real(l, m, theta, phi) y4 = sh.spherical_harmonic_real_k(k, theta, phi) self.assertAlmostEqual(y1, y2, msg=msg) self.assertAlmostEqual(y1, y3, msg=msg) self.assertAlmostEqual(y1, y4, msg=msg) if __name__ == '__main__': unittest.main()
[ "unittest.main", "random.random" ]
[((2370, 2385), 'unittest.main', 'unittest.main', ([], {}), '()\n', (2383, 2385), False, 'import unittest\n'), ((1076, 1091), 'random.random', 'random.random', ([], {}), '()\n', (1089, 1091), False, 'import random\n'), ((1128, 1143), 'random.random', 'random.random', ([], {}), '()\n', (1141, 1143), False, 'import random\n'), ((1790, 1805), 'random.random', 'random.random', ([], {}), '()\n', (1803, 1805), False, 'import random\n'), ((1846, 1861), 'random.random', 'random.random', ([], {}), '()\n', (1859, 1861), False, 'import random\n')]
import json import logging import os import re from typing import Optional, List import pandas as pd import requests from lxml import html from . import Scraper from ..converters.zotero import ZoteroData, parse_row class WallaceCollectionInformation(object): def __init__(self, object_id: str, object_name: str, title: str, reference: str, reference_data: str, place_artist: str, dates_all: str, material: str, dimensions: str, marks: str, museum_number: str, commentary: str, image_url: Optional[str] = None): self.__object_id = object_id self.__object_name = object_name self.__title = title self.__reference = reference self.__reference_data = reference_data self.__place_artist = place_artist self.__dates_all = dates_all self.__material = material self.__dimensions = dimensions self.__marks = marks self.__museum_number = museum_number self.__commentary = commentary self.__image_url = image_url self.__tag = None @property def object_id(self): return self.__object_id @property def object_name(self): return self.__object_name @property def title(self): return self.__title @property def reference(self): return self.__reference @property def reference_data(self): return self.__reference_data @property def place_artist(self): return self.__place_artist @property def dates_all(self): return self.__dates_all @property def material(self): return self.__material @property def dimensions(self): return self.__dimensions @property def marks(self): return self.__marks @property def museum_number(self): return self.__museum_number @property def commentary(self): return self.__commentary @property def image_url(self): return self.__image_url @image_url.setter def image_url(self, image_url): self.__image_url = image_url @property def image_name(self): return f"{self.object_id}.jpg" @property def tag(self): return self.__tag @tag.setter def tag(self, tag): self.__tag = tag def to_dict(self): return { 'object_id': self.object_id, 'object_name': self.object_name, 'title': self.title, 'reference': self.reference, 'reference_data': self.__reference_data, 'place_artist': self.place_artist, 'dates_all': self.dates_all, 'material': self.material, 'dimensions': self.dimensions, 'marks': self.marks, 'museum_number': self.museum_number, 'commentary': self.commentary, 'image_url': self.image_url, 'image_name': self.image_name, 'tag': self.tag } class WallaceCollection(Scraper): """ A scraper for the Wallace Collection at http://wallacelive.wallacecollection.org/ """ __URL_PREFIX = "http://wallacelive.wallacecollection.org" __URL_TEMPLATE = "/eMuseumPlus?service=ExternalInterface&module=collection&viewType=detailView&objectId=" __URL_OBJECT_ID = r"objectId=(?P<objectId>[0-9]+)" __XPATH = { 'object_name': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[1]/span[1]/text()', 'title': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[2]/span[1]/text()', 'reference': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[3]/span/span/a/span/text()', 'reference_data': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[4]/span[1]/text()', 'place_artist': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[5]/span[1]/text()', 'dates_all': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[6]/span[1]/text()', 'material': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[7]/span[1]/text()', 'dimensions': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[8]/span[1]/text()', 'marks': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[9]/span[1]/text()', 'museum_number': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dd[1]/ul[1]/li[10]/span[1]/text()', 'commentary': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[2]/dd/div/ul/li/span[1]/text()', 'image_url': '/html/body/div[1]/div[4]/div[2]/div[2]/dl[1]/dt[1]/a/@href' } def __init__(self): self.__logger = logging.getLogger(__name__) @property def _log(self): return self.__logger def scrape(self, **kwargs): self._log.debug("Called scrape with options: %s", kwargs) objects: List[ZoteroData] = [ parse_row(row, self.__URL_OBJECT_ID) for _, row in pd.read_csv(kwargs['input_file']).iterrows() ] download_progress_file = os.path.join(kwargs['output'], "downloaded.txt") if os.path.isfile(download_progress_file): with open(download_progress_file, 'r') as fi: download_progress = list(set([l.strip() for l in fi])) else: download_progress = [] annotations = [] for obj in [o for o in objects if o.object_id not in download_progress]: annotation: Optional[WallaceCollectionInformation] = self.__extract_page(obj, kwargs['output']) if annotation is None: self._log.error(f"Object '{obj.object_id}' could not be downloaded") continue annotations.append(annotation) download_progress.append(obj.object_id) with open(download_progress_file, 'w') as fo: fo.write("\n".join(download_progress)) df = pd.DataFrame( [a.to_dict() for a in annotations], index=[o.object_id for o in objects], columns=['object_id', 'tag', 'image_name']) df.to_csv(os.path.join(kwargs['output'], "wallace_annotation.csv")) def __extract_page(self, obj: ZoteroData, output) -> Optional[WallaceCollectionInformation]: self._log.debug("Will scrape object_id '%s'", obj.object_id) page = requests.get( f"{self.__URL_PREFIX}{self.__URL_TEMPLATE}{obj.object_id}", cookies={} ) if page.ok: html_page = html.fromstring(page.text) values = {} for xpath_key, xpath_string in self.__XPATH.items(): xpath = html_page.xpath(xpath_string) values[xpath_key] = xpath[0] if len(xpath) > 0 else "" info = WallaceCollectionInformation(object_id=obj.object_id, **values) info.tag = obj.tag image_popup = requests.get(self.__URL_PREFIX + re.findall(r"(/eMuseumPlus.*=F)", values['image_url'])[0], cookies=page.cookies) if image_popup.ok: info.image_url = self.__URL_PREFIX + html.fromstring(image_popup.text) \ .xpath("/html/body/div/table/tr/td/img/@src")[0] with open(os.path.join(output, f"{info.object_id}.json"), 'w') as fo: json.dump(info.to_dict(), fo, indent=2) target_image = os.path.join(output, f"{info.object_id}.jpg") if not os.path.isfile(target_image): WallaceCollection._download_image(image_url=info.image_url, target_file=target_image, cookies=image_popup.cookies) return info @staticmethod def _extract_object_ids(input_file): with open(input_file, 'r') as fi: text = fi.read() object_id_pattern = r'objectId=([0-9]+)' return sorted(list(set(re.findall(object_id_pattern, text))))
[ "logging.getLogger", "pandas.read_csv", "lxml.html.fromstring", "os.path.join", "requests.get", "os.path.isfile", "re.findall" ]
[((4656, 4683), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (4673, 4683), False, 'import logging\n'), ((5050, 5098), 'os.path.join', 'os.path.join', (["kwargs['output']", '"""downloaded.txt"""'], {}), "(kwargs['output'], 'downloaded.txt')\n", (5062, 5098), False, 'import os\n'), ((5111, 5149), 'os.path.isfile', 'os.path.isfile', (['download_progress_file'], {}), '(download_progress_file)\n', (5125, 5149), False, 'import os\n'), ((6339, 6427), 'requests.get', 'requests.get', (['f"""{self.__URL_PREFIX}{self.__URL_TEMPLATE}{obj.object_id}"""'], {'cookies': '{}'}), "(f'{self.__URL_PREFIX}{self.__URL_TEMPLATE}{obj.object_id}',\n cookies={})\n", (6351, 6427), False, 'import requests\n'), ((6099, 6155), 'os.path.join', 'os.path.join', (["kwargs['output']", '"""wallace_annotation.csv"""'], {}), "(kwargs['output'], 'wallace_annotation.csv')\n", (6111, 6155), False, 'import os\n'), ((6503, 6529), 'lxml.html.fromstring', 'html.fromstring', (['page.text'], {}), '(page.text)\n', (6518, 6529), False, 'from lxml import html\n'), ((7408, 7453), 'os.path.join', 'os.path.join', (['output', 'f"""{info.object_id}.jpg"""'], {}), "(output, f'{info.object_id}.jpg')\n", (7420, 7453), False, 'import os\n'), ((7477, 7505), 'os.path.isfile', 'os.path.isfile', (['target_image'], {}), '(target_image)\n', (7491, 7505), False, 'import os\n'), ((7991, 8026), 're.findall', 're.findall', (['object_id_pattern', 'text'], {}), '(object_id_pattern, text)\n', (8001, 8026), False, 'import re\n'), ((4961, 4994), 'pandas.read_csv', 'pd.read_csv', (["kwargs['input_file']"], {}), "(kwargs['input_file'])\n", (4972, 4994), True, 'import pandas as pd\n'), ((6920, 6973), 're.findall', 're.findall', (['"""(/eMuseumPlus.*=F)"""', "values['image_url']"], {}), "('(/eMuseumPlus.*=F)', values['image_url'])\n", (6930, 6973), False, 'import re\n'), ((7256, 7302), 'os.path.join', 'os.path.join', (['output', 'f"""{info.object_id}.json"""'], {}), "(output, f'{info.object_id}.json')\n", (7268, 7302), False, 'import os\n'), ((7124, 7157), 'lxml.html.fromstring', 'html.fromstring', (['image_popup.text'], {}), '(image_popup.text)\n', (7139, 7157), False, 'from lxml import html\n')]
import os import socket class NoAvailablePortError(Exception): pass def get_available_from_port_range(from_port, to_port): """Returns available local port number. """ r = range(from_port, to_port) sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) for port in r: try: if sock.connect_ex(('localhost', port)) != 0: return port finally: sock.close() raise NoAvailablePortError('No available port between {} and {}'.format( from_port, to_port)) def is_ci(): """Returns if current execution is running on CI Returns: bool: `True` if current executions is on CI """ return os.getenv('CI', 'false') == 'true'
[ "socket.socket", "os.getenv" ]
[((229, 278), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (242, 278), False, 'import socket\n'), ((700, 724), 'os.getenv', 'os.getenv', (['"""CI"""', '"""false"""'], {}), "('CI', 'false')\n", (709, 724), False, 'import os\n')]
from impacket import ImpactDecoder class IcmpFilter(): attributes = None myIpAddresses = None logger = None def __init__(self, attributes, logger, myIpAddresses): self.attributes = attributes self.logger = logger self.myIpAddresses = myIpAddresses def rule(self): rule = "icmp[icmptype] == icmp-echo" #rule = "icmp-echo" #rule = "icmp" return rule def run(self, header, payload): rip = ImpactDecoder.EthDecoder().decode(payload) #print rip proto = -1 try: proto = rip.child().get_ip_p() except AttributeError: pass # NOT ICMP if proto != 1: self.logger.warn('got packet that was not ICMP?!') return None icmpType = rip.child().child().get_icmp_type() if(icmpType == rip.child().child().ICMP_ECHOREPLY): self.logger.warn('got icmp ECHOREPLY?!') return None #if(icmpType == rip.child().child().ICMP_ECHO): # status = 'echo' dstAddr = rip.child().get_ip_dst() srcAddr = rip.child().get_ip_src() message = 'icmp echo request from '+srcAddr+' to '+dstAddr self.logger.debug("msg rcvd: "+str(message)) return message
[ "impacket.ImpactDecoder.EthDecoder" ]
[((415, 441), 'impacket.ImpactDecoder.EthDecoder', 'ImpactDecoder.EthDecoder', ([], {}), '()\n', (439, 441), False, 'from impacket import ImpactDecoder\n')]
from PyQt5.QtCore import Qt from PyQt5.QtGui import QKeySequence class QtHelper: @staticmethod def key_event_sequence(event): val = event.key() mod = event.modifiers() if mod & Qt.ShiftModifier: val += Qt.SHIFT if mod & Qt.ControlModifier: val += Qt.CTRL if mod & Qt.AltModifier: val += Qt.ALT if mod & Qt.MetaModifier: val += Qt.META return QKeySequence(val)
[ "PyQt5.QtGui.QKeySequence" ]
[((456, 473), 'PyQt5.QtGui.QKeySequence', 'QKeySequence', (['val'], {}), '(val)\n', (468, 473), False, 'from PyQt5.QtGui import QKeySequence\n')]
import logging import json import hypernova import unittest import unittest.mock as mock from hypernova.plugins.dev_mode import DevModePlugin import utils.mocks as mocks import utils.plugins as plugins class TestRenderer(unittest.TestCase): @mock.patch("requests.post", side_effect=mocks.make_server_timeout) def test_request_fail(self, mock_post): renderer = hypernova.Renderer("http://localhost") html = renderer.render({"component": {"foo": "bar"}}) self.assertIsInstance(html, str) class TestPlugins(unittest.TestCase): @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_no_plugins(self, mock_post): renderer = hypernova.Renderer("http://localhost") html = renderer.render({"component": {"foo": "bar"}}) self.assertEqual(html, "<p>{}</p>".format(json.dumps({"foo": "bar"}))) @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_plugin_get_view_data(self, mock_post): expected_data = {"foo": "bar"} renderer = hypernova.Renderer( "http://localhost", [plugins.PluginGetViewData("component", expected_data)] ) html = renderer.render({"component": {}}) data = mock_post.call_args[1]["json"]["component"]["data"] self.assertEqual(data, expected_data) self.assertEqual(html, "<p>{}</p>".format(json.dumps(expected_data))) @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_plugin_get_view_data_no_return(self, mock_post): renderer = hypernova.Renderer( "http://localhost", [plugins.PluginGetViewDataDoNothing()] ) html = renderer.render({"component": {"foo": "bar"}}) self.assertEqual(html, "<p>{}</p>".format(json.dumps({"foo": "bar"}))) @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_plugin_prepare_request(self, mock_post): to_append = {"extra": 1} renderer = hypernova.Renderer( "http://localhost", [plugins.PluginPrepareRequest("component", to_append)] ) renderer.render({"component": {}}) component_data = mock_post.call_args[1]["json"]["component"] self.assertEqual(component_data.get("extra"), to_append.get("extra")) @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_plugin_should_send_request_true(self, mock_post): renderer = hypernova.Renderer( "http://localhost", [plugins.PluginShouldSendRequestTrue()] ) renderer.render({"component": {}}) self.assertTrue(mock_post.called) @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_plugin_should_send_request_false(self, mock_post): renderer = hypernova.Renderer( "http://localhost", [plugins.PluginShouldSendRequestFalse()] ) renderer.render({"component": {}}) self.assertFalse(mock_post.called) @mock.patch("requests.post", side_effect=mocks.make_response_ok) def test_plugin_should_send_request_any_false(self, mock_post): renderer = hypernova.Renderer( "http://localhost", [ plugins.PluginShouldSendRequestTrue(), plugins.PluginShouldSendRequestFalse(), ], ) renderer.render({"component": {}}) self.assertFalse(mock_post.called) @mock.patch("requests.post", side_effect=mocks.make_response_ok) @mock.patch.object( plugins.PluginWillSendRequest, "will_send_request", autospec=True ) def test_plugin_will_send_request(self, mock_plugin, mock_post): renderer = hypernova.Renderer( "http://localhost", [plugins.PluginShouldSendRequestTrue(), plugins.PluginWillSendRequest()], ) renderer.render({"component": {}}) self.assertTrue(mock_plugin.called) @mock.patch("requests.post", side_effect=mocks.make_response_ok) @mock.patch.object( plugins.PluginWillSendRequest, "will_send_request", autospec=True ) def test_plugin_will_send_request_false(self, mock_plugin, mock_post): renderer = hypernova.Renderer( "http://localhost", [plugins.PluginShouldSendRequestFalse(), plugins.PluginWillSendRequest()], ) renderer.render({"component": {}}) self.assertFalse(mock_plugin.called) @mock.patch("requests.post", side_effect=mocks.make_response_ok) @mock.patch.object(plugins.PluginOnSuccess, "on_success", autospec=True) def test_plugin_on_success(self, mock_plugin, mock_post): renderer = hypernova.Renderer("http://localhost", [plugins.PluginOnSuccess()]) renderer.render({"component": {}}) self.assertEqual(1, mock_plugin.call_count) @mock.patch("requests.post", side_effect=mocks.make_response_component_error) @mock.patch.object(plugins.PluginOnError, "on_error", autospec=True) def test_plugin_on_error_component(self, mock_plugin, mock_post): renderer = hypernova.Renderer("http://localhost", [plugins.PluginOnError()]) renderer.render({"component": {}}) self.assertEqual(1, mock_plugin.call_count) @mock.patch("requests.post", side_effect=mocks.make_response_server_error) @mock.patch.object(plugins.PluginOnError, "on_error", autospec=True) def test_plugin_on_error_response(self, mock_plugin, mock_post): renderer = hypernova.Renderer("http://localhost", [plugins.PluginOnError()]) renderer.render({"component": {}}) self.assertEqual(1, mock_plugin.call_count) class TestDevModePlugin(unittest.TestCase): def test_after_response_should_iterate_dict_on_error(self): logger = logging.getLogger(__name__) current = {'App': {'name': 'App'}} resp = DevModePlugin(logger).after_response(current, {}) self.assertTrue('App' in resp)
[ "logging.getLogger", "utils.plugins.PluginGetViewData", "utils.plugins.PluginShouldSendRequestFalse", "utils.plugins.PluginPrepareRequest", "json.dumps", "utils.plugins.PluginGetViewDataDoNothing", "utils.plugins.PluginOnError", "utils.plugins.PluginOnSuccess", "utils.plugins.PluginShouldSendRequestTrue", "utils.plugins.PluginWillSendRequest", "hypernova.plugins.dev_mode.DevModePlugin", "hypernova.Renderer", "unittest.mock.patch.object", "unittest.mock.patch" ]
[((249, 315), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_server_timeout'}), "('requests.post', side_effect=mocks.make_server_timeout)\n", (259, 315), True, 'import unittest.mock as mock\n'), ((566, 629), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (576, 629), True, 'import unittest.mock as mock\n'), ((877, 940), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (887, 940), True, 'import unittest.mock as mock\n'), ((1416, 1479), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (1426, 1479), True, 'import unittest.mock as mock\n'), ((1809, 1872), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (1819, 1872), True, 'import unittest.mock as mock\n'), ((2292, 2355), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (2302, 2355), True, 'import unittest.mock as mock\n'), ((2631, 2694), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (2641, 2694), True, 'import unittest.mock as mock\n'), ((2973, 3036), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (2983, 3036), True, 'import unittest.mock as mock\n'), ((3418, 3481), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (3428, 3481), True, 'import unittest.mock as mock\n'), ((3487, 3575), 'unittest.mock.patch.object', 'mock.patch.object', (['plugins.PluginWillSendRequest', '"""will_send_request"""'], {'autospec': '(True)'}), "(plugins.PluginWillSendRequest, 'will_send_request',\n autospec=True)\n", (3504, 3575), True, 'import unittest.mock as mock\n'), ((3915, 3978), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (3925, 3978), True, 'import unittest.mock as mock\n'), ((3984, 4072), 'unittest.mock.patch.object', 'mock.patch.object', (['plugins.PluginWillSendRequest', '"""will_send_request"""'], {'autospec': '(True)'}), "(plugins.PluginWillSendRequest, 'will_send_request',\n autospec=True)\n", (4001, 4072), True, 'import unittest.mock as mock\n'), ((4420, 4483), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_ok'}), "('requests.post', side_effect=mocks.make_response_ok)\n", (4430, 4483), True, 'import unittest.mock as mock\n'), ((4489, 4560), 'unittest.mock.patch.object', 'mock.patch.object', (['plugins.PluginOnSuccess', '"""on_success"""'], {'autospec': '(True)'}), "(plugins.PluginOnSuccess, 'on_success', autospec=True)\n", (4506, 4560), True, 'import unittest.mock as mock\n'), ((4811, 4887), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_component_error'}), "('requests.post', side_effect=mocks.make_response_component_error)\n", (4821, 4887), True, 'import unittest.mock as mock\n'), ((4893, 4960), 'unittest.mock.patch.object', 'mock.patch.object', (['plugins.PluginOnError', '"""on_error"""'], {'autospec': '(True)'}), "(plugins.PluginOnError, 'on_error', autospec=True)\n", (4910, 4960), True, 'import unittest.mock as mock\n'), ((5217, 5290), 'unittest.mock.patch', 'mock.patch', (['"""requests.post"""'], {'side_effect': 'mocks.make_response_server_error'}), "('requests.post', side_effect=mocks.make_response_server_error)\n", (5227, 5290), True, 'import unittest.mock as mock\n'), ((5296, 5363), 'unittest.mock.patch.object', 'mock.patch.object', (['plugins.PluginOnError', '"""on_error"""'], {'autospec': '(True)'}), "(plugins.PluginOnError, 'on_error', autospec=True)\n", (5313, 5363), True, 'import unittest.mock as mock\n'), ((379, 417), 'hypernova.Renderer', 'hypernova.Renderer', (['"""http://localhost"""'], {}), "('http://localhost')\n", (397, 417), False, 'import hypernova\n'), ((691, 729), 'hypernova.Renderer', 'hypernova.Renderer', (['"""http://localhost"""'], {}), "('http://localhost')\n", (709, 729), False, 'import hypernova\n'), ((5740, 5767), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (5757, 5767), False, 'import logging\n'), ((842, 868), 'json.dumps', 'json.dumps', (["{'foo': 'bar'}"], {}), "({'foo': 'bar'})\n", (852, 868), False, 'import json\n'), ((1104, 1157), 'utils.plugins.PluginGetViewData', 'plugins.PluginGetViewData', (['"""component"""', 'expected_data'], {}), "('component', expected_data)\n", (1129, 1157), True, 'import utils.plugins as plugins\n'), ((1382, 1407), 'json.dumps', 'json.dumps', (['expected_data'], {}), '(expected_data)\n', (1392, 1407), False, 'import json\n'), ((1614, 1650), 'utils.plugins.PluginGetViewDataDoNothing', 'plugins.PluginGetViewDataDoNothing', ([], {}), '()\n', (1648, 1650), True, 'import utils.plugins as plugins\n'), ((1774, 1800), 'json.dumps', 'json.dumps', (["{'foo': 'bar'}"], {}), "({'foo': 'bar'})\n", (1784, 1800), False, 'import json\n'), ((2032, 2084), 'utils.plugins.PluginPrepareRequest', 'plugins.PluginPrepareRequest', (['"""component"""', 'to_append'], {}), "('component', to_append)\n", (2060, 2084), True, 'import utils.plugins as plugins\n'), ((2491, 2528), 'utils.plugins.PluginShouldSendRequestTrue', 'plugins.PluginShouldSendRequestTrue', ([], {}), '()\n', (2526, 2528), True, 'import utils.plugins as plugins\n'), ((2831, 2869), 'utils.plugins.PluginShouldSendRequestFalse', 'plugins.PluginShouldSendRequestFalse', ([], {}), '()\n', (2867, 2869), True, 'import utils.plugins as plugins\n'), ((3206, 3243), 'utils.plugins.PluginShouldSendRequestTrue', 'plugins.PluginShouldSendRequestTrue', ([], {}), '()\n', (3241, 3243), True, 'import utils.plugins as plugins\n'), ((3261, 3299), 'utils.plugins.PluginShouldSendRequestFalse', 'plugins.PluginShouldSendRequestFalse', ([], {}), '()\n', (3297, 3299), True, 'import utils.plugins as plugins\n'), ((3739, 3776), 'utils.plugins.PluginShouldSendRequestTrue', 'plugins.PluginShouldSendRequestTrue', ([], {}), '()\n', (3774, 3776), True, 'import utils.plugins as plugins\n'), ((3778, 3809), 'utils.plugins.PluginWillSendRequest', 'plugins.PluginWillSendRequest', ([], {}), '()\n', (3807, 3809), True, 'import utils.plugins as plugins\n'), ((4242, 4280), 'utils.plugins.PluginShouldSendRequestFalse', 'plugins.PluginShouldSendRequestFalse', ([], {}), '()\n', (4278, 4280), True, 'import utils.plugins as plugins\n'), ((4282, 4313), 'utils.plugins.PluginWillSendRequest', 'plugins.PluginWillSendRequest', ([], {}), '()\n', (4311, 4313), True, 'import utils.plugins as plugins\n'), ((4682, 4707), 'utils.plugins.PluginOnSuccess', 'plugins.PluginOnSuccess', ([], {}), '()\n', (4705, 4707), True, 'import utils.plugins as plugins\n'), ((5090, 5113), 'utils.plugins.PluginOnError', 'plugins.PluginOnError', ([], {}), '()\n', (5111, 5113), True, 'import utils.plugins as plugins\n'), ((5492, 5515), 'utils.plugins.PluginOnError', 'plugins.PluginOnError', ([], {}), '()\n', (5513, 5515), True, 'import utils.plugins as plugins\n'), ((5827, 5848), 'hypernova.plugins.dev_mode.DevModePlugin', 'DevModePlugin', (['logger'], {}), '(logger)\n', (5840, 5848), False, 'from hypernova.plugins.dev_mode import DevModePlugin\n')]
from torch.utils.data import Dataset import torch import cv2 import numpy as np class Dataset(Dataset): ''' LR = low resolution image HR = high resolution image dir = dump of image directories for dataset ''' def __init__(self, ids, lr,hr): 'Initialization' self.dir = ids self.lr = lr self.hr = hr def __len__(self): return len(self.dir) def __getitem__(self, index): filename = self.dir[index] lower = cv2.imread(self.lr + filename,1) higher = cv2.imread(self.hr + filename,1) #transpose so pytorch plays nice lower= lower.transpose((2, 0, 1)) higher = higher.transpose((2, 0, 1)) #pass numpy arrays to torch and make float tensors. lower = torch.from_numpy(lower).float() higher = torch.from_numpy(higher).float() return lower, higher
[ "cv2.imread", "torch.from_numpy" ]
[((433, 466), 'cv2.imread', 'cv2.imread', (['(self.lr + filename)', '(1)'], {}), '(self.lr + filename, 1)\n', (443, 466), False, 'import cv2\n'), ((477, 510), 'cv2.imread', 'cv2.imread', (['(self.hr + filename)', '(1)'], {}), '(self.hr + filename, 1)\n', (487, 510), False, 'import cv2\n'), ((689, 712), 'torch.from_numpy', 'torch.from_numpy', (['lower'], {}), '(lower)\n', (705, 712), False, 'import torch\n'), ((733, 757), 'torch.from_numpy', 'torch.from_numpy', (['higher'], {}), '(higher)\n', (749, 757), False, 'import torch\n')]
#! /usr/bin/env python3 # Suggest name to z3 binary based on it its sha import sys import argparse from . import common class WordsCmd(object): def __init__(self): self._name = 'words' self._help = 'Returns random words' def mk_arg_parser(self, ap): ap.add_argument('--noun', '-n', help='Noun', action='store_true') ap.add_argument('--length', '-l', type=int, metavar='LENGTH', default=None) ap.add_argument('--adj', '-a', help='Adjective', action='store_true') ap.add_argument('--seed', '-s', type=str, metavar='SEED', default=None) return ap def run(self, args=None): # pick a noun if adjective is not selected if not args.adj: get_a_word_fn = common.get_a_noun else: get_a_word_fn = common.get_an_adjective word = get_a_word_fn(length=args.length, seed=args.seed, bound='atmost') print(word) return 0 def main(self, argv): ap = argparse.ArgumentParser(prog=self._name, description=self._help) ap = self.mk_arg_parser(ap) args = ap.parse_args(argv) return self.run(args) def main(): cmd = WordsCmd() return cmd.main(sys.argv[1:]) if __name__ == '__main__': sys.exit(main())
[ "argparse.ArgumentParser" ]
[((1090, 1154), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'prog': 'self._name', 'description': 'self._help'}), '(prog=self._name, description=self._help)\n', (1113, 1154), False, 'import argparse\n')]
# Imports here import matplotlib.pyplot as plt import seaborn as sns from PIL import Image import json import numpy as np import os, random import time import torch from torch import nn from torch import optim import torch.nn.functional as F from torchvision import datasets, transforms, models import argparse import functions parser = argparse.ArgumentParser(description='Use Neural Network') parser.add_argument("image_dir", action="store", default="./flowers/test/6/image_07181.jpg", help="image dir") parser.add_argument("checkpoint", action="store", default="./checkpoint.pth", help="checkpoint dir") parser.add_argument("--top_k", action="store", dest="top_k", type=int, default=5, help="top k classes") parser.add_argument("--category_names", action="store", dest="category_names", default="cat_to_name.json", help="category names") parser.add_argument("--gpu", action="store_true", dest="gpu", default=False, help="processor") args = parser.parse_args() image_dir = args.image_dir checkpoint = args.checkpoint top_k = args.top_k category_names = args.category_names gpu = args.gpu print(f"\nimage_dir = {image_dir}" f"\ncheckpoint = {checkpoint}" f"\ntop_k = {top_k}" f"\ncategory_names = {category_names}" f"\ngpu = {gpu}") with open(category_names, 'r') as f: cat_to_name = json.load(f) model, optimizer = functions.load_checkpoint(checkpoint) print(model) functions.sanity_check(model, image_dir, top_k, cat_to_name, gpu)
[ "json.load", "functions.load_checkpoint", "argparse.ArgumentParser", "functions.sanity_check" ]
[((340, 397), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Use Neural Network"""'}), "(description='Use Neural Network')\n", (363, 397), False, 'import argparse\n'), ((1355, 1392), 'functions.load_checkpoint', 'functions.load_checkpoint', (['checkpoint'], {}), '(checkpoint)\n', (1380, 1392), False, 'import functions\n'), ((1407, 1472), 'functions.sanity_check', 'functions.sanity_check', (['model', 'image_dir', 'top_k', 'cat_to_name', 'gpu'], {}), '(model, image_dir, top_k, cat_to_name, gpu)\n', (1429, 1472), False, 'import functions\n'), ((1322, 1334), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1331, 1334), False, 'import json\n')]
""" ================== Errorbar Subsample ================== Demo for the errorevery keyword to show data full accuracy data plots with few errorbars. """ import numpy as np import matplotlib.pyplot as plt # example data x = np.arange(0.1, 4, 0.1) y1 = np.exp(-1.0 * x) y2 = np.exp(-0.5 * x) # example variable error bar values y1err = 0.1 + 0.1 * np.sqrt(x) y2err = 0.1 + 0.1 * np.sqrt(x/2) # Now switch to a more OO interface to exercise more features. fig, (ax_l, ax_c, ax_r) = plt.subplots(nrows=1, ncols=3, sharex=True, figsize=(12, 6)) ax_l.set_title('all errorbars') ax_l.errorbar(x, y1, yerr=y1err) ax_l.errorbar(x, y2, yerr=y2err) ax_c.set_title('only every 6th errorbar') ax_c.errorbar(x, y1, yerr=y1err, errorevery=6) ax_c.errorbar(x, y2, yerr=y2err, errorevery=6) ax_r.set_title('second series shifted by 3') ax_r.errorbar(x, y1, yerr=y1err, errorevery=(0, 6)) ax_r.errorbar(x, y2, yerr=y2err, errorevery=(3, 6)) fig.suptitle('Errorbar subsampling for better appearance') plt.show()
[ "numpy.sqrt", "numpy.exp", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((228, 250), 'numpy.arange', 'np.arange', (['(0.1)', '(4)', '(0.1)'], {}), '(0.1, 4, 0.1)\n', (237, 250), True, 'import numpy as np\n'), ((256, 272), 'numpy.exp', 'np.exp', (['(-1.0 * x)'], {}), '(-1.0 * x)\n', (262, 272), True, 'import numpy as np\n'), ((278, 294), 'numpy.exp', 'np.exp', (['(-0.5 * x)'], {}), '(-0.5 * x)\n', (284, 294), True, 'import numpy as np\n'), ((487, 547), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(1)', 'ncols': '(3)', 'sharex': '(True)', 'figsize': '(12, 6)'}), '(nrows=1, ncols=3, sharex=True, figsize=(12, 6))\n', (499, 547), True, 'import matplotlib.pyplot as plt\n'), ((1033, 1043), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1041, 1043), True, 'import matplotlib.pyplot as plt\n'), ((352, 362), 'numpy.sqrt', 'np.sqrt', (['x'], {}), '(x)\n', (359, 362), True, 'import numpy as np\n'), ((383, 397), 'numpy.sqrt', 'np.sqrt', (['(x / 2)'], {}), '(x / 2)\n', (390, 397), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals import logging from PIL import Image logger = logging.getLogger(__name__) class Canvas: """ Represents the final composite image. Think of this as a kind of std::vector for images. """ def __init__(self, profile, upper): """ Initialise a new canvas. :param profile: The profile of the device that generated the images we'll receive. :param upper: The header and body will be used to start the canvas. """ logger.debug('Initialising new canvas using profile %s with upper %s', profile, upper) self._profile = profile self.image = Image.new(self._profile.mode, (upper.width, upper.height - self._profile.footer_height)) self.image.paste(upper.crop( (0, 0, upper.width, upper.height - self._profile.footer_height)), (0, 0)) def append(self, join): """ Add a join to this canvas. :param join: The lower image will be added. The upper image in the join should be either the one passed in the constructor if this is the first join, or the lower in the last append() call. """ new_height = (self.image.height - join.lower_crop) + join.spacing + ( join.lower.height - join.upper_crop) extended = Image.new(self._profile.mode, (self.image.width, new_height)) # add the old content (including the join's upper image), cut short if # necessary extended.paste(self.image, (0, 0, self.image.width, self.image.height - join.lower_crop)) # add the lower image from the join extended.paste(join.lower.crop((0, join.upper_crop, join.lower.width, join.lower.height)), (0, self.image.height - join.lower_crop + join.spacing)) self.image = extended def finalise(self, lower): """ End this canvas. :param lower: The image containing the footer to borrow. """ footer = self._profile.footer(lower) extended = Image.new(self._profile.mode, (self.image.width, self.image.height + footer.height)) extended.paste(self.image, (0, 0)) extended.paste(footer, (0, self.image.height)) self.image = extended
[ "logging.getLogger", "PIL.Image.new" ]
[((112, 139), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (129, 139), False, 'import logging\n'), ((728, 821), 'PIL.Image.new', 'Image.new', (['self._profile.mode', '(upper.width, upper.height - self._profile.footer_height)'], {}), '(self._profile.mode, (upper.width, upper.height - self._profile.\n footer_height))\n', (737, 821), False, 'from PIL import Image\n'), ((1491, 1552), 'PIL.Image.new', 'Image.new', (['self._profile.mode', '(self.image.width, new_height)'], {}), '(self._profile.mode, (self.image.width, new_height))\n', (1500, 1552), False, 'from PIL import Image\n'), ((2322, 2411), 'PIL.Image.new', 'Image.new', (['self._profile.mode', '(self.image.width, self.image.height + footer.height)'], {}), '(self._profile.mode, (self.image.width, self.image.height + footer\n .height))\n', (2331, 2411), False, 'from PIL import Image\n')]
"""[summary] Main module. [description] The main module starts the web service """ from app import app if __name__ == "__main__": """[summary] [description] The main module defines exception handler and runs the web service """ app.run(host= '0.0.0.0',port=5001)
[ "app.app.run" ]
[((236, 270), 'app.app.run', 'app.run', ([], {'host': '"""0.0.0.0"""', 'port': '(5001)'}), "(host='0.0.0.0', port=5001)\n", (243, 270), False, 'from app import app\n')]
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from math import floor from maro.backends.frame import node, NodeBase, NodeAttribute def gen_vessel_definition(stop_nums: tuple): @node("vessels") class Vessel(NodeBase): # The capacity of vessel for transfering containers. capacity = NodeAttribute("i") # Empty container volume on the vessel. empty = NodeAttribute("i") # Laden container volume on the vessel. full = NodeAttribute("i") # Remaining space of the vessel. remaining_space = NodeAttribute("i") # Discharged empty container number for loading laden containers. early_discharge = NodeAttribute("i") # Which route current vessel belongs to. route_idx = NodeAttribute("i") # Stop port index in route, it is used to identify where is current vessel. # last_loc_idx == next_loc_idx means vessel parking at a port. last_loc_idx = NodeAttribute("i") next_loc_idx = NodeAttribute("i") past_stop_list = NodeAttribute("i", stop_nums[0]) past_stop_tick_list = NodeAttribute("i", stop_nums[0]) future_stop_list = NodeAttribute("i", stop_nums[1]) future_stop_tick_list = NodeAttribute("i", stop_nums[1]) def __init__(self): self._name = None self._capacity = None self._total_space = None self._container_volume = None self._route_idx = None self._empty = None @property def name(self) -> str: """ Name of vessel (from config) """ return self._name @property def idx(self) -> int: """ Index of vessel """ return self.index def set_init_state(self, name: str, container_volume: float, capacity: int, route_idx: int, empty: int): """Initialize vessel info""" self._name = name self._container_volume = container_volume self._total_space = floor(capacity/container_volume) self._capacity = capacity self._route_idx = route_idx self._empty = empty self.reset() def reset(self): """Reset states of vessel""" self.capacity = self._capacity self.route_idx = self._route_idx self.empty = self._empty def set_stop_list(self, past_stop_list:list, future_stop_list:list): """ Set the future stops (configured in config) when the vessel arrive at a port Args: stop_list (tuple): list of past and future stop list tuple """ # update past and future stop info features = [(past_stop_list, self.past_stop_list, self.past_stop_tick_list), (future_stop_list, self.future_stop_list, self.future_stop_tick_list)] for feature in features: for i, stop in enumerate(feature[0]): tick = stop.arrive_tick if stop is not None else -1 port_idx = stop.port_idx if stop is not None else -1 feature[1][i] = port_idx feature[2][i] = tick def _on_empty_changed(self, value): self._update_remaining_space() def _on_full_changed(self, value): self._update_remaining_space() def _update_remaining_space(self): self.remaining_space = self._total_space - self.full - self.empty def __str__(self): return f"<Vessel Index={self.index}, capacity={self.capacity}, empty={self.empty}, full={self.full}>" return Vessel
[ "maro.backends.frame.node", "maro.backends.frame.NodeAttribute", "math.floor" ]
[((209, 224), 'maro.backends.frame.node', 'node', (['"""vessels"""'], {}), "('vessels')\n", (213, 224), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((333, 351), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (346, 351), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((417, 435), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (430, 435), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((500, 518), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (513, 518), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((587, 605), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (600, 605), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((707, 725), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (720, 725), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((796, 814), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (809, 814), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((994, 1012), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (1007, 1012), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((1036, 1054), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""'], {}), "('i')\n", (1049, 1054), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((1081, 1113), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""', 'stop_nums[0]'], {}), "('i', stop_nums[0])\n", (1094, 1113), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((1144, 1176), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""', 'stop_nums[0]'], {}), "('i', stop_nums[0])\n", (1157, 1176), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((1204, 1236), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""', 'stop_nums[1]'], {}), "('i', stop_nums[1])\n", (1217, 1236), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((1269, 1301), 'maro.backends.frame.NodeAttribute', 'NodeAttribute', (['"""i"""', 'stop_nums[1]'], {}), "('i', stop_nums[1])\n", (1282, 1301), False, 'from maro.backends.frame import node, NodeBase, NodeAttribute\n'), ((2103, 2137), 'math.floor', 'floor', (['(capacity / container_volume)'], {}), '(capacity / container_volume)\n', (2108, 2137), False, 'from math import floor\n')]
from itertools import product import numpy as np import pytest import sympy as sym import symopt.config as config from symopt.problem import OptimizationProblem tol = 1.0e-8 wrap_using_values = ['lambdify', 'autowrap'] def needs_ipopt(test_func): def new_test_func(solver, wrap_using): if solver == 'ipopt' and not config.HAS_IPOPT: pytest.skip( "Test requires optional dependency ipopt, which is not " "installed.") else: return test_func(solver, wrap_using) return new_test_func @pytest.mark.parametrize("solver,wrap_using", product(["ipopt", "slsqp"], wrap_using_values)) @needs_ipopt def test_prob18(solver, wrap_using): """ problem 18 from the Hock-Schittkowski test suite """ if solver == "ipopt" and not config.HAS_IPOPT: pytest.skip( "Test requires optional dependency ipopt, which is not installed.") x = sym.MatrixSymbol('x', 2, 1) p = sym.Symbol('p') prob = OptimizationProblem(mode='min', wrap_using=wrap_using) prob.add_parameter(p) prob.add_variable(x, lb=[2, 0], ub=[p, p]) prob.add_constraints_from([x[0] * x[1] >= 25, x[0] ** 2 + x[1] ** 2 >= 25]) prob.obj = x[0] ** 2 / 100 + x[1] ** 2 x0 = [2, 2] res_50 = prob.solve(x0, 50, solver=solver, tol=tol) assert res_50['success'] assert np.allclose(res_50['x'], np.array([15.8114, 1.58114])) res_20 = prob.solve(x0, 20, solver=solver, tol=tol) assert res_20['success'] assert np.allclose(res_20['x'], np.array([15.8114, 1.58114])) @pytest.mark.parametrize("solver,wrap_using", product(["ipopt", "slsqp"], wrap_using_values)) @needs_ipopt def test_prob71(solver, wrap_using): """ problem 71 from the Hock-Schittkowski test suite """ if solver == "ipopt" and not config.HAS_IPOPT: pytest.skip( "Test requires optional dependency ipopt, which is not installed.") x = sym.MatrixSymbol('x', 4, 1) obj = x[0] * x[3] * (x[0] + x[1] + x[2]) + x[2] cons = [x[0] * x[1] * x[2] * x[3] >= 25, sym.Eq(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3] ** 2, 40)] lb = np.ones(4) ub = 5 * np.ones(4) prob_min = OptimizationProblem(mode='min', wrap_using=wrap_using) prob_max = OptimizationProblem(mode='max', wrap_using=wrap_using) prob_min.add_variable(x, lb=lb, ub=ub) prob_min.add_constraints_from(cons) prob_min.obj = obj prob_max.add_variable(x, lb=lb, ub=ub) prob_max.add_constraints_from(cons) # test maximization by negating objective prob_max.obj = -obj x0 = np.array([1, 5, 5, 1]) res_min = prob_min.solve(x0, solver=solver, tol=tol) res_max = prob_max.solve(x0, solver=solver, tol=tol) assert res_min['success'] assert np.allclose(res_min['x'], np.array([1.0, 4.74299964, 3.82114998, 1.37940831])) assert res_max['success'] assert np.allclose(res_max['x'], res_min['x']) assert np.allclose(np.abs(res_max['fun']), np.abs(res_min['fun'])) @pytest.mark.parametrize("solver,wrap_using", product(["ipopt", "slsqp"], wrap_using_values)) @needs_ipopt def test_prob64(solver, wrap_using): """ problem 64 from the Hock-Schittkowski test suite """ x1, x2, x3 = sym.symarray('x', 3) p = sym.MatrixSymbol('p', 6, 1) prob = OptimizationProblem(wrap_using=wrap_using) prob.add_variables_from([x1, x2, x3], lb=1.0e-5) prob.add_parameter(p) prob.obj = p[0] * x1 + p[1] / x1 + p[2] * x2 + p[3] / x2 + p[4] * x3 +\ p[5]/x3 prob.add_constraint(4 / x1 + 32 / x2 + 120 / x3 <= 1) x0 = np.ones(3) p0 = np.array([5, 50000, 20, 72000, 10, 144000]) res = prob.solve(x0, p0, solver=solver, tol=tol) assert res['success'] assert np.allclose(res['x'], np.array([108.7347175, 85.12613942, 204.3247078])) @pytest.mark.parametrize("solver,wrap_using", product(["ipopt", "cobyla", "slsqp"], wrap_using_values)) @needs_ipopt def test_prob77(solver, wrap_using): """ problem 77 from the Hock-Schittkowski test suite """ if solver == "ipopt" and not config.HAS_IPOPT: pytest.skip( "Test requires optional dependency ipopt, which is not installed.") x1, x2, x3, x4, x5 = sym.symarray('x', 5) prob = OptimizationProblem() prob.add_variables_from([x1, x2, x3, x4, x5]) prob.obj = (x1 - 1) ** 2 + (x1 - x2) ** 2 + (x3 - 1) ** 2 + \ (x4 - 1) ** 4 + (x5 - 1) ** 6 # write equality constraints as two inequalities to try cobyla cons = [x1 ** 2 * x4 + sym.sin(x4 - x5) - 2 * np.sqrt(2) <= 0, x1 ** 2 * x4 + sym.sin(x4 - x5) - 2 * np.sqrt(2) >= 0, x2 + x3 ** 4 * x4 ** 2 - 8 - np.sqrt(2) <= 0, x2 + x3 ** 4 * x4 ** 2 - 8 - np.sqrt(2) >= 0] prob.add_constraints_from(cons) x0 = 2 * np.ones(5) res = prob.solve(x0, solver=solver, tol=tol) assert res['success'] assert np.allclose(res['x'], np.array([1.166172, 1.182111, 1.380257, 1.506036, 0.6109203]))
[ "numpy.abs", "sympy.Symbol", "numpy.allclose", "sympy.Eq", "numpy.ones", "numpy.sqrt", "sympy.sin", "itertools.product", "sympy.symarray", "sympy.MatrixSymbol", "numpy.array", "pytest.skip", "symopt.problem.OptimizationProblem" ]
[((961, 988), 'sympy.MatrixSymbol', 'sym.MatrixSymbol', (['"""x"""', '(2)', '(1)'], {}), "('x', 2, 1)\n", (977, 988), True, 'import sympy as sym\n'), ((997, 1012), 'sympy.Symbol', 'sym.Symbol', (['"""p"""'], {}), "('p')\n", (1007, 1012), True, 'import sympy as sym\n'), ((1025, 1079), 'symopt.problem.OptimizationProblem', 'OptimizationProblem', ([], {'mode': '"""min"""', 'wrap_using': 'wrap_using'}), "(mode='min', wrap_using=wrap_using)\n", (1044, 1079), False, 'from symopt.problem import OptimizationProblem\n'), ((641, 687), 'itertools.product', 'product', (["['ipopt', 'slsqp']", 'wrap_using_values'], {}), "(['ipopt', 'slsqp'], wrap_using_values)\n", (648, 687), False, 'from itertools import product\n'), ((2021, 2048), 'sympy.MatrixSymbol', 'sym.MatrixSymbol', (['"""x"""', '(4)', '(1)'], {}), "('x', 4, 1)\n", (2037, 2048), True, 'import sympy as sym\n'), ((2226, 2236), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2233, 2236), True, 'import numpy as np\n'), ((2277, 2331), 'symopt.problem.OptimizationProblem', 'OptimizationProblem', ([], {'mode': '"""min"""', 'wrap_using': 'wrap_using'}), "(mode='min', wrap_using=wrap_using)\n", (2296, 2331), False, 'from symopt.problem import OptimizationProblem\n'), ((2347, 2401), 'symopt.problem.OptimizationProblem', 'OptimizationProblem', ([], {'mode': '"""max"""', 'wrap_using': 'wrap_using'}), "(mode='max', wrap_using=wrap_using)\n", (2366, 2401), False, 'from symopt.problem import OptimizationProblem\n'), ((2673, 2695), 'numpy.array', 'np.array', (['[1, 5, 5, 1]'], {}), '([1, 5, 5, 1])\n', (2681, 2695), True, 'import numpy as np\n'), ((2996, 3035), 'numpy.allclose', 'np.allclose', (["res_max['x']", "res_min['x']"], {}), "(res_max['x'], res_min['x'])\n", (3007, 3035), True, 'import numpy as np\n'), ((1701, 1747), 'itertools.product', 'product', (["['ipopt', 'slsqp']", 'wrap_using_values'], {}), "(['ipopt', 'slsqp'], wrap_using_values)\n", (1708, 1747), False, 'from itertools import product\n'), ((3356, 3376), 'sympy.symarray', 'sym.symarray', (['"""x"""', '(3)'], {}), "('x', 3)\n", (3368, 3376), True, 'import sympy as sym\n'), ((3385, 3412), 'sympy.MatrixSymbol', 'sym.MatrixSymbol', (['"""p"""', '(6)', '(1)'], {}), "('p', 6, 1)\n", (3401, 3412), True, 'import sympy as sym\n'), ((3425, 3467), 'symopt.problem.OptimizationProblem', 'OptimizationProblem', ([], {'wrap_using': 'wrap_using'}), '(wrap_using=wrap_using)\n', (3444, 3467), False, 'from symopt.problem import OptimizationProblem\n'), ((3707, 3717), 'numpy.ones', 'np.ones', (['(3)'], {}), '(3)\n', (3714, 3717), True, 'import numpy as np\n'), ((3727, 3770), 'numpy.array', 'np.array', (['[5, 50000, 20, 72000, 10, 144000]'], {}), '([5, 50000, 20, 72000, 10, 144000])\n', (3735, 3770), True, 'import numpy as np\n'), ((3180, 3226), 'itertools.product', 'product', (["['ipopt', 'slsqp']", 'wrap_using_values'], {}), "(['ipopt', 'slsqp'], wrap_using_values)\n", (3187, 3226), False, 'from itertools import product\n'), ((4410, 4430), 'sympy.symarray', 'sym.symarray', (['"""x"""', '(5)'], {}), "('x', 5)\n", (4422, 4430), True, 'import sympy as sym\n'), ((4442, 4463), 'symopt.problem.OptimizationProblem', 'OptimizationProblem', ([], {}), '()\n', (4461, 4463), False, 'from symopt.problem import OptimizationProblem\n'), ((4031, 4087), 'itertools.product', 'product', (["['ipopt', 'cobyla', 'slsqp']", 'wrap_using_values'], {}), "(['ipopt', 'cobyla', 'slsqp'], wrap_using_values)\n", (4038, 4087), False, 'from itertools import product\n'), ((859, 938), 'pytest.skip', 'pytest.skip', (['"""Test requires optional dependency ipopt, which is not installed."""'], {}), "('Test requires optional dependency ipopt, which is not installed.')\n", (870, 938), False, 'import pytest\n'), ((1446, 1474), 'numpy.array', 'np.array', (['[15.8114, 1.58114]'], {}), '([15.8114, 1.58114])\n', (1454, 1474), True, 'import numpy as np\n'), ((1598, 1626), 'numpy.array', 'np.array', (['[15.8114, 1.58114]'], {}), '([15.8114, 1.58114])\n', (1606, 1626), True, 'import numpy as np\n'), ((1919, 1998), 'pytest.skip', 'pytest.skip', (['"""Test requires optional dependency ipopt, which is not installed."""'], {}), "('Test requires optional dependency ipopt, which is not installed.')\n", (1930, 1998), False, 'import pytest\n'), ((2158, 2215), 'sympy.Eq', 'sym.Eq', (['(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3] ** 2)', '(40)'], {}), '(x[0] ** 2 + x[1] ** 2 + x[2] ** 2 + x[3] ** 2, 40)\n', (2164, 2215), True, 'import sympy as sym\n'), ((2250, 2260), 'numpy.ones', 'np.ones', (['(4)'], {}), '(4)\n', (2257, 2260), True, 'import numpy as np\n'), ((2901, 2952), 'numpy.array', 'np.array', (['[1.0, 4.74299964, 3.82114998, 1.37940831]'], {}), '([1.0, 4.74299964, 3.82114998, 1.37940831])\n', (2909, 2952), True, 'import numpy as np\n'), ((3059, 3081), 'numpy.abs', 'np.abs', (["res_max['fun']"], {}), "(res_max['fun'])\n", (3065, 3081), True, 'import numpy as np\n'), ((3083, 3105), 'numpy.abs', 'np.abs', (["res_min['fun']"], {}), "(res_min['fun'])\n", (3089, 3105), True, 'import numpy as np\n'), ((3907, 3956), 'numpy.array', 'np.array', (['[108.7347175, 85.12613942, 204.3247078]'], {}), '([108.7347175, 85.12613942, 204.3247078])\n', (3915, 3956), True, 'import numpy as np\n'), ((4292, 4371), 'pytest.skip', 'pytest.skip', (['"""Test requires optional dependency ipopt, which is not installed."""'], {}), "('Test requires optional dependency ipopt, which is not installed.')\n", (4303, 4371), False, 'import pytest\n'), ((4994, 5004), 'numpy.ones', 'np.ones', (['(5)'], {}), '(5)\n', (5001, 5004), True, 'import numpy as np\n'), ((5137, 5198), 'numpy.array', 'np.array', (['[1.166172, 1.182111, 1.380257, 1.506036, 0.6109203]'], {}), '([1.166172, 1.182111, 1.380257, 1.506036, 0.6109203])\n', (5145, 5198), True, 'import numpy as np\n'), ((363, 442), 'pytest.skip', 'pytest.skip', (['"""Test requires optional dependency ipopt, which is not installed."""'], {}), "('Test requires optional dependency ipopt, which is not installed.')\n", (374, 442), False, 'import pytest\n'), ((4869, 4879), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4876, 4879), True, 'import numpy as np\n'), ((4927, 4937), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4934, 4937), True, 'import numpy as np\n'), ((4721, 4737), 'sympy.sin', 'sym.sin', (['(x4 - x5)'], {}), '(x4 - x5)\n', (4728, 4737), True, 'import sympy as sym\n'), ((4744, 4754), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4751, 4754), True, 'import numpy as np\n'), ((4788, 4804), 'sympy.sin', 'sym.sin', (['(x4 - x5)'], {}), '(x4 - x5)\n', (4795, 4804), True, 'import sympy as sym\n'), ((4811, 4821), 'numpy.sqrt', 'np.sqrt', (['(2)'], {}), '(2)\n', (4818, 4821), True, 'import numpy as np\n')]
""" Tests for the binaries helper module """ import os import pytest from unittest.mock import call, patch import kustomize @patch('builtins.print') @patch('shutil.which', return_value=None) @patch('kustomize.helpers.binaries.GithubReleases') def test_binarypath_download_missing(mock_downloader, mock_which, mock_print): """ Does function trigger download of a non-existing binary? """ with pytest.raises(FileNotFoundError): kustomize.helpers.binaries.binarypath('foo', download_if_missing=True) assert mock_print.mock_calls == [ call('Binary for foo not found. Attempting download ...'), ] assert mock_downloader.mock_calls == [ call('foo'), call().download(), ] @patch('kustomize.helpers.binaries.run') def test_run_piped_commands(mock_run): """ Is list of commands properly executed as a pipe? """ command_list = ['foo abc', 'bar -v', 'baz'] kustomize.helpers.binaries.run_piped_commands(command_list) assert len(mock_run.mock_calls) == 3, \ f"run() not called for each command in '{' | '.join(command_list)}'" @patch('builtins.print') @patch('kustomize.helpers.binaries.run_piped_commands') def test_shell_command(mock_run_piped_commands, mock_print): """ Is command printed and then executed? """ executable = kustomize.helpers.download.DOWNLOAD_PATH / 'foo' exec_location = str(executable.parent) + os.path.sep shell_command = f"{executable} --bar | {executable} baz" kustomize.helpers.binaries.shell(shell_command) assert mock_print.called, \ "print() is never called" assert exec_location not in str(mock_print.mock_calls[0]), \ "Output doesn't seem to be beautified" assert mock_run_piped_commands.called, \ "run_piped_commands() is not called" def test_shell_failing_returncode(): """ Does an invalid command return a failing status code? """ result = kustomize.helpers.binaries.shell('/non/existing/command') assert result.returncode, \ "Non-zero status code expected, zero received"
[ "kustomize.helpers.binaries.binarypath", "kustomize.helpers.binaries.run_piped_commands", "unittest.mock.call", "kustomize.helpers.binaries.shell", "pytest.raises", "unittest.mock.patch" ]
[((129, 152), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {}), "('builtins.print')\n", (134, 152), False, 'from unittest.mock import call, patch\n'), ((154, 194), 'unittest.mock.patch', 'patch', (['"""shutil.which"""'], {'return_value': 'None'}), "('shutil.which', return_value=None)\n", (159, 194), False, 'from unittest.mock import call, patch\n'), ((196, 246), 'unittest.mock.patch', 'patch', (['"""kustomize.helpers.binaries.GithubReleases"""'], {}), "('kustomize.helpers.binaries.GithubReleases')\n", (201, 246), False, 'from unittest.mock import call, patch\n'), ((737, 776), 'unittest.mock.patch', 'patch', (['"""kustomize.helpers.binaries.run"""'], {}), "('kustomize.helpers.binaries.run')\n", (742, 776), False, 'from unittest.mock import call, patch\n'), ((1122, 1145), 'unittest.mock.patch', 'patch', (['"""builtins.print"""'], {}), "('builtins.print')\n", (1127, 1145), False, 'from unittest.mock import call, patch\n'), ((1147, 1201), 'unittest.mock.patch', 'patch', (['"""kustomize.helpers.binaries.run_piped_commands"""'], {}), "('kustomize.helpers.binaries.run_piped_commands')\n", (1152, 1201), False, 'from unittest.mock import call, patch\n'), ((937, 996), 'kustomize.helpers.binaries.run_piped_commands', 'kustomize.helpers.binaries.run_piped_commands', (['command_list'], {}), '(command_list)\n', (982, 996), False, 'import kustomize\n'), ((1509, 1556), 'kustomize.helpers.binaries.shell', 'kustomize.helpers.binaries.shell', (['shell_command'], {}), '(shell_command)\n', (1541, 1556), False, 'import kustomize\n'), ((1952, 2009), 'kustomize.helpers.binaries.shell', 'kustomize.helpers.binaries.shell', (['"""/non/existing/command"""'], {}), "('/non/existing/command')\n", (1984, 2009), False, 'import kustomize\n'), ((412, 444), 'pytest.raises', 'pytest.raises', (['FileNotFoundError'], {}), '(FileNotFoundError)\n', (425, 444), False, 'import pytest\n'), ((454, 524), 'kustomize.helpers.binaries.binarypath', 'kustomize.helpers.binaries.binarypath', (['"""foo"""'], {'download_if_missing': '(True)'}), "('foo', download_if_missing=True)\n", (491, 524), False, 'import kustomize\n'), ((572, 629), 'unittest.mock.call', 'call', (['"""Binary for foo not found. Attempting download ..."""'], {}), "('Binary for foo not found. Attempting download ...')\n", (576, 629), False, 'from unittest.mock import call, patch\n'), ((688, 699), 'unittest.mock.call', 'call', (['"""foo"""'], {}), "('foo')\n", (692, 699), False, 'from unittest.mock import call, patch\n'), ((709, 715), 'unittest.mock.call', 'call', ([], {}), '()\n', (713, 715), False, 'from unittest.mock import call, patch\n')]
import pathlib template_cmake_file = pathlib.Path('TestCompileErrors.cmake.t') output_cmake_file = pathlib.Path('TestCompileErrors.cmake') test_script = pathlib.Path('TestCompileErrors.py') script_text = test_script.read_text() cmake_text = template_cmake_file.read_text().replace("{{TEST_SCRIPT_TEXT}}",script_text) output_cmake_file.write_text(cmake_text)
[ "pathlib.Path" ]
[((38, 79), 'pathlib.Path', 'pathlib.Path', (['"""TestCompileErrors.cmake.t"""'], {}), "('TestCompileErrors.cmake.t')\n", (50, 79), False, 'import pathlib\n'), ((100, 139), 'pathlib.Path', 'pathlib.Path', (['"""TestCompileErrors.cmake"""'], {}), "('TestCompileErrors.cmake')\n", (112, 139), False, 'import pathlib\n'), ((154, 190), 'pathlib.Path', 'pathlib.Path', (['"""TestCompileErrors.py"""'], {}), "('TestCompileErrors.py')\n", (166, 190), False, 'import pathlib\n')]
"""Test cron job functionalities.""" import pytest import geniepy @pytest.mark.slow_integration_test def test_run_predictions(): """Test calculating predictions.""" geniepy.run_predictions() @pytest.mark.slow_integration_test def test_run_job(): """Test end-to-end run cron job function.""" geniepy.run_job()
[ "geniepy.run_job", "geniepy.run_predictions" ]
[((175, 200), 'geniepy.run_predictions', 'geniepy.run_predictions', ([], {}), '()\n', (198, 200), False, 'import geniepy\n'), ((311, 328), 'geniepy.run_job', 'geniepy.run_job', ([], {}), '()\n', (326, 328), False, 'import geniepy\n')]
import logging from pathlib import Path from typing import List, Optional from preql import settings from preql.context import context from preql.utils import SafeDict, dataclass, listgen, method, safezip from . import exceptions as exc from . import pql_ast as ast from . import pql_objects as objects from . import sql from .compiler import cast_to_instance from .exceptions import InsufficientAccessLevel, ReturnSignal, Signal from .interp_common import ( assert_type, call_builtin_func, cast_to_python, cast_to_python_int, cast_to_python_string, dsp, exclude_fields, is_global_scope, pyvalue_inst, ) from .parser import Str from .pql_types import Id, Object, T, Type, dp_inst from .state import ( AccessLevels, catch_access, get_access_level, get_db, get_var, has_var, reduce_access, set_var, unique_name, use_scope, ) from .types_impl import ( flatten_type, kernel_type, pql_repr, table_flat_for_insert, table_params, ) MODULES_PATH = Path(__file__).parent.parent / 'modules' @dsp def resolve(struct_def: ast.StructDef): members = {str(k): resolve(v) for k, v in struct_def.members} struct = T.struct(members) set_var(struct_def.name, struct) return struct def _resolve_name_and_scope(name, ast_node): if is_global_scope(context.state): temporary = False else: temporary = True if len(name.parts) > 1: raise Signal( T.NameError, ast_node, "Local tables cannot include a schema (namespace)", ) (name,) = name.parts name = Id('__local_' + unique_name(name)) name = get_db().qualified_name(name) return name, temporary @dsp def resolve(table_def: ast.TableDef): name, temporary = _resolve_name_and_scope(table_def.name, table_def) t = T.table({}, name=name, temporary=temporary) with use_scope({table_def.name.name: t}): # For self-reference elems = {c.name: resolve(c) for c in table_def.columns} t = t(elems) if table_def.methods: methods = evaluate(table_def.methods) t.proto_attrs.update({m.userfunc.name: m.userfunc for m in methods}) return t @dsp def resolve(col_def: ast.ColumnDef): coltype = resolve(col_def.type) query = col_def.query assert not query if isinstance(coltype, objects.SelectedColumnInstance): table = coltype.parent.type if 'name' not in table.options: # XXX better test for persistence raise Signal.make( T.TypeError, col_def.type, "Tables provided as relations must be persistent.", ) x = T.t_relation[coltype.type]( rel={'table': table, 'column': coltype.name, 'key': False} ) return x.replace( _nullable=coltype.type._nullable ) # inherit is_nullable (TODO: use sumtypes?) elif coltype <= T.table: if 'name' not in coltype.options: # XXX better test for persistence raise Signal.make( T.TypeError, col_def.type, "Tables provided as relations must be persistent.", ) x = T.t_relation[T.t_id.as_nullable()]( rel={'table': coltype, 'column': 'id', 'key': True} ) return x.replace( _nullable=coltype._nullable ) # inherit is_nullable (TODO: use sumtypes?) return coltype(default=col_def.default) @dsp def resolve(type_: ast.Type): t = evaluate(type_.type_obj) if isinstance(t, objects.TableInstance): t = t.type if not isinstance(t, (Type, objects.SelectedColumnInstance)): raise Signal.make( T.TypeError, type_, f"Expected type in column definition. Instead got '{t}'" ) if type_.nullable: t = t.as_nullable() return t def db_query(sql_code, subqueries=None): try: return get_db().query(sql_code, subqueries) except exc.DatabaseQueryError as e: raise Signal.make(T.DbQueryError, None, e.args[0]) from e def drop_table(table_type): name = table_type.options['name'] code = sql.compile_drop_table(name) return db_query(code, {}) @dsp def _set_value(name: ast.Name, value): set_var(name.name, value) @dsp def _set_value(attr: ast.Attr, value): raise Signal.make( T.NotImplementedError, attr, f"Cannot set attribute for {attr.expr.repr()}" ) def _copy_rows(target_name: ast.Name, source: objects.TableInstance): if source is objects.EmptyList: # Nothing to add return objects.null target = evaluate(target_name) params = dict(table_params(target.type)) for p in params: if p not in source.type.elems: raise Signal.make( T.TypeError, source, f"Missing column '{p}' in {source.type}" ) read_only, columns = table_flat_for_insert(target.type) if get_db().target == sql.bigquery and 'id' in read_only: # XXX very hacky! to_exclude = ['id'] if 'id' in source.type.elems else [] proj = ast.Projection( source, [ ast.NamedField( 'id', objects.Instance.make( sql.RawSql(T.string, 'GENERATE_UUID()'), T.string, [] ), ), ast.NamedField(None, ast.Ellipsis(None, to_exclude)), ], ) source = cast_to_instance(proj) read_only.remove('id') columns.insert(0, 'id') source = exclude_fields(source, set(read_only) & set(source.type.elems)) table = target.type try: table_name = table.options['name'] except KeyError: raise Signal.make( T.ValueError, target_name, "Cannot add a new row to an unnamed table" ) code = sql.Insert(table_name, columns, source.code) db_query(code, source.subqueries) return objects.null @method def _execute(struct_def: ast.StructDef): resolve(struct_def) @method def _execute(table_def: ast.TableDefFromExpr): expr = cast_to_instance(table_def.expr) name, temporary = _resolve_name_and_scope(table_def.name, table_def) # name = get_db().qualified_name(name) t = new_table_from_expr(name, expr, table_def.const, temporary) set_var(table_def.name, t) @method def _execute(var_def: ast.SetValue): res = evaluate(var_def.value) if res.type <= T.primitive and not res.type <= (T.union[T.aggregated, T.projected]): res = objects.pyvalue_inst(res.localize(), res.type) _set_value(var_def.name, res) return res def ensure_namespace(name: Id): path = name.parts[:-1] if not path: return if len(path) > 1: raise Signal( T.NotImplementedError, name, "Nested namespaces not supported yet!" ) (name,) = path if not has_var(name): module = objects.Module(name, {}) set_var(name, module) @method def _execute(table_def: ast.TableDef): if table_def.columns and isinstance(table_def.columns[-1], ast.Ellipsis): ellipsis = table_def.columns.pop() else: ellipsis = None if any(isinstance(c, ast.Ellipsis) for c in table_def.columns): # XXX why must it? just ensure it appears once raise Signal.make(T.SyntaxError, table_def, "Ellipsis must appear at the end") # Create type and a corresponding table in the database t = resolve(table_def) db_name = t.options['name'] assert isinstance(db_name, Id), (db_name, t) if t.options['temporary']: # register name for later removal get_var('__unwind__').append(lambda: drop_table(t)) exists = get_db().table_exists(db_name) if exists: assert not t.options['temporary'] cur_type = get_db().import_table_type( db_name, None if ellipsis else set(t.elems) | {'id'} ) if ellipsis: elems_to_add = { Str(n, ellipsis.text_ref): v for n, v in cur_type.elems.items() if n not in t.elems } # TODO what is primary key isn't included? t = t({**t.elems, **elems_to_add}, **cur_type.options) # Auto-add id only if it exists already and not defined by user if 'id' in cur_type.elems: # and 'id' not in t.elems: # t = t(dict(id=T.t_id, **t.elems), pk=[['id']]) assert cur_type.elems['id'] <= T.primitive, cur_type.elems['id'] t.elems['id'] = T.t_id for e_name, e1_type in t.elems.items(): if e_name not in cur_type.elems: raise Signal.make( T.TypeError, table_def, f"Column '{e_name}' defined, but doesn't exist in database.", ) # e2_type = cur_type.elems[e_name] # XXX use can_cast() instead of hardcoding it # if not (e1_type <= e2_type or (e1_type <= T.t_id and e2_type <= T.int)): # raise Signal.make(T.TypeError, table_def, f"Cannot cast column '{e_name}' from type '{e2_type}' to '{e1_type}'") inst = objects.new_table(t, db_name, select_fields=True) else: # Auto-add id by default elems = dict(t.elems) if 'id' not in elems: elems = {'id': T.t_id, **elems} t = t(elems, pk=[['id']]) inst = objects.new_table(t, db_name) ensure_namespace(table_def.name) set_var(table_def.name, inst) if not exists: sql_code = sql.compile_type_def(db_name, t) db_query(sql_code) @method def _execute(insert_rows: ast.InsertRows): if not isinstance(insert_rows.name, ast.Name): # TODO support Attr raise Signal.make(T.SyntaxError, insert_rows, "L-value must be table name") rval = evaluate(insert_rows.value) assert_type(rval.type, T.table, insert_rows, '+=') return _copy_rows(insert_rows.name, rval) @method def _execute(func_def: ast.FuncDef): func = func_def.userfunc assert isinstance(func, objects.UserFunction) new_params = [] for p in func.params: if p.type: t = evaluate(p.type) p = p.replace(type=t) new_params.append(p) set_var(func.name, func.replace(params=new_params)) @method def _execute(p: ast.Print): display = context.state.display # TODO Can be done better. Maybe cast to ReprText? insts = evaluate(p.value) assert isinstance(insts, list) for inst in insts: if inst.type <= T.string: repr_ = cast_to_python_string(inst) else: repr_ = inst.repr() display.print(repr_, end=" ") display.print("") @method def _execute(p: ast.Assert): res = cast_to_python(p.cond) if not res: # TODO pretty print values if isinstance(p.cond, ast.Compare): s = (' %s ' % p.cond.op).join(str(evaluate(a).repr()) for a in p.cond.args) else: s = p.cond.repr() raise Signal.make(T.AssertError, p.cond, f"Assertion failed: {s}") @method def _execute(cb: ast.CodeBlock): for stmt in cb.statements: execute(stmt) return objects.null @method def _execute(i: ast.If): cond = cast_to_python(i.cond) if cond: execute(i.then) elif i.else_: execute(i.else_) @method def _execute(w: ast.While): while cast_to_python(w.cond): execute(w.do) @method def _execute(f: ast.For): expr = cast_to_python(f.iterable) for i in expr: with use_scope({f.var: objects.from_python(i)}): execute(f.do) @method def _execute(t: ast.Try): try: execute(t.try_) except Signal as e: catch_type = evaluate(t.catch_expr).localize() if not isinstance(catch_type, Type): raise Signal.make( T.TypeError, t.catch_expr, f"Catch expected type, got {t.catch_expr.type}", ) if e.type <= catch_type: scope = {t.catch_name: e} if t.catch_name else {} with use_scope(scope): execute(t.catch_block) else: raise def find_module(module_name): paths = [MODULES_PATH, Path.cwd()] for path in paths: module_path = (path / module_name).with_suffix(".pql") if module_path.exists(): return module_path raise Signal.make(T.ImportError, r, "Cannot find module") def import_module(state, r): module_path = find_module(r.module_path) # assert state is state.interp.state # Fix for threaded i = state.interp.clone(use_core=r.use_core) state.stacktrace.append(r.text_ref) try: i.include(module_path) finally: assert state.stacktrace[-1] is r.text_ref state.stacktrace.pop() # Inherit module db (in case it called global connect()) # assert state.db is i.state.db # state.state.db = i.state.db ns = i.state.ns assert len(ns) == 1 return objects.Module(r.module_path, ns._ns[0]) @method def _execute(r: ast.Import): module = import_module(context.state, r) set_var(r.as_name or r.module_path, module) return module @method def _execute(r: ast.Return): value = evaluate(r.value) raise ReturnSignal(value) @method def _execute(t: ast.Throw): e = evaluate(t.value) if isinstance(e, ast.Ast): raise exc.InsufficientAccessLevel() assert isinstance(e, Exception), e raise e def execute(stmt): if isinstance(stmt, ast.Statement): return stmt._execute() or objects.null return evaluate(stmt) # Simplify performs local operations before any db-specific compilation occurs # Technically not super useful at the moment, but makes conceptual sense. @method def simplify(cb: ast.CodeBlock): # if len(cb.statements) == 1: # s ,= cb.statements # return simplify(s) try: return cb._execute() except ReturnSignal as r: # XXX is this correct? return r.value except Signal as e: # Failed to run it, so try to cast as instance # XXX order should be other way around! if e.type <= T.CastError: return cb.compile_to_inst() raise except InsufficientAccessLevel: return cb @method def simplify(n: ast.Name): # XXX what happens to caching if this is a global variable? return get_var(n.name) @method def simplify(x: Object): return x # @dsp # def simplify(ls: list): # return [simplify(i) for i in ls] # @dsp # def simplify(d: objects.ParamDict): # return d.replace(params={name: evaluate( v) for name, v in d.params.items()}) # @dsp # def simplify(node: ast.Ast): # # return _simplify_ast(state, node) # return node # def _simplify_ast(state, node): # resolved = {k:simplify(v) for k, v in node # if isinstance(v, types.PqlObject) or isinstance(v, list) and all(isinstance(i, types.PqlObject) for i in v)} # return node.replace(**resolved) # TODO isn't this needed somewhere?? # @dsp # def simplify(if_: ast.If): # if_ = _simplify_ast(state, if_) # if isinstance(if_.cond, objects.ValueInstance): # XXX a more general test? # if if_.cond.local_value: # return if_.then # else: # return if_.else_ # return if_ # TODO Optimize these, right now failure to evaluate will lose all work @method def simplify(obj: ast.Or): a, b = evaluate(obj.args) ta = kernel_type(a.type) tb = kernel_type(b.type) if ta != tb: raise Signal.make( T.TypeError, obj, f"'or' operator requires both arguments to be of the same type, but got '{ta}' and '{tb}'.", ) try: if a.test_nonzero(): return a except InsufficientAccessLevel: return obj return b @method def simplify(obj: ast.And): a, b = evaluate(obj.args) ta = kernel_type(a.type) tb = kernel_type(b.type) if ta != tb: raise Signal.make( T.TypeError, obj, f"'and' operator requires both arguments to be of the same type, but got '{ta}' and '{tb}'.", ) try: if not a.test_nonzero(): return a except InsufficientAccessLevel: return obj return b @method def simplify(obj: ast.Not): inst = evaluate(obj.expr) try: nz = inst.test_nonzero() except InsufficientAccessLevel: return obj return objects.pyvalue_inst(not nz) @method def simplify(funccall: ast.FuncCall): state = context.state func = evaluate(funccall.func) if isinstance(func, objects.UnknownInstance): # evaluate( [a.value for a in funccall.args]) raise Signal.make( T.TypeError, funccall.func, f"Error: Object of type '{func.type}' is not callable", ) args = funccall.args if isinstance(func, Type): # Cast to type args = args + [func] func = get_var('cast') if not isinstance(func, objects.Function): raise Signal.make( T.TypeError, funccall.func, f"Error: Object of type '{func.type}' is not callable", ) state.stacktrace.append(funccall.text_ref) try: res = eval_func_call(func, args) finally: assert state.stacktrace[-1] is funccall.text_ref state.stacktrace.pop() assert isinstance(res, Object), (type(res), res) return res def eval_func_call(func, args): state = context.state assert isinstance(func, objects.Function) matched_args = func.match_params(args) if isinstance(func, objects.MethodInstance): ordered_args = {'this': func.parent} func = func.func # args.update(func.parent.all_attrs()) else: ordered_args = {} # XXX simplify destroys text_ref, so it harms error messages. # TODO Can I get rid of it, or make it preserve the text_ref somehow? # Don't I need an instance to ensure I have type? for i, (p, a) in enumerate(matched_args): if not p.name.startswith( '$' ): # $param means don't evaluate expression, leave it to the function a = evaluate(a) # TODO cast? if p.type and not a.type <= p.type: raise Signal.make( T.TypeError, func, f"Argument #{i} of '{func.name}' is of type '{a.type}', expected '{p.type}'", ) ordered_args[p.name] = a if isinstance(func, objects.InternalFunction): # TODO ensure pure function? # TODO Ensure correct types ordered_args = list(ordered_args.values()) return func.func(*ordered_args) # TODO make tests to ensure caching was successful expr = func.expr if settings.cache: params = { name: ast.Parameter(name, value.type) for name, value in ordered_args.items() } sig = (func.name,) + tuple(a.type for a in ordered_args.values()) try: with use_scope(params): if sig in state._cache: compiled_expr = state._cache[sig] else: logging.info(f"Compiling.. {func}") with context(state=reduce_access(AccessLevels.COMPILE)): compiled_expr = _call_expr(func.expr) logging.info("Compiled successfully") if isinstance(compiled_expr, objects.Instance): # XXX a little ugly qb = sql.QueryBuilder(True) x = compiled_expr.code.compile(qb) x = x.optimize() compiled_expr = compiled_expr.replace(code=x) state._cache[sig] = compiled_expr expr = ast.ResolveParameters(compiled_expr, ordered_args) except exc.InsufficientAccessLevel: # Don't cache pass with use_scope({**ordered_args, '__unwind__': []}): res = _call_expr(expr) # for to_unwind in get_var('__unwind__'): # to_unwind() if isinstance(res, ast.ResolveParameters): # XXX A bit of a hack raise exc.InsufficientAccessLevel() return res def _call_expr(expr): try: return evaluate(expr) except ReturnSignal as r: return r.value # TODO fix these once we have proper types @method def test_nonzero(table: objects.TableInstance): count = call_builtin_func("count", [table]) return bool(cast_to_python_int(count)) @method def test_nonzero(inst: objects.Instance): return bool(cast_to_python(inst)) @method def test_nonzero(inst: Type): return True @method def apply_database_rw(o: ast.One): # TODO move these to the core/base module obj = evaluate(o.expr) if obj.type <= T.struct: if len(obj.attrs) != 1: raise Signal.make( T.ValueError, o, f"'one' expected a struct with a single attribute, got {len(obj.attrs)}", ) (x,) = obj.attrs.values() return x slice_ast = ast.Slice(obj, ast.Range(None, ast.Const(T.int, 2))).set_text_ref( o.text_ref ) table = evaluate(slice_ast) assert table.type <= T.table, table rows = table.localize() # Must be 1 row if len(rows) == 0: if not o.nullable: raise Signal.make( T.ValueError, o, "'one' expected a single result, got an empty expression", ) return objects.null elif len(rows) > 1: raise Signal.make(T.ValueError, o, "'one' expected a single result, got more") (row,) = rows rowtype = T.row[table.type] if table.type <= T.list: return pyvalue_inst(row) assert table.type <= T.table assert_type(table.type, T.table, o, 'one') d = {k: pyvalue_inst(v, table.type.elems[k], True) for k, v in row.items()} return objects.RowInstance(rowtype, d) @method def apply_database_rw(d: ast.Delete): catch_access(AccessLevels.WRITE_DB) # TODO Optimize: Delete on condition, not id, when possible cond_table = ast.Selection(d.table, d.conds).set_text_ref(d.text_ref) table = evaluate(cond_table) if not table.type <= T.table: raise Signal.make(T.TypeError, d.table, f"Expected a table. Got: {table.type}") if not 'name' in table.type.options: raise Signal.make( T.ValueError, d.table, "Cannot delete. Table is not persistent" ) rows = list(table.localize()) if rows: if 'id' not in rows[0]: raise Signal.make(T.TypeError, d, "Delete error: Table does not contain id") ids = [row['id'] for row in rows] for code in sql.deletes_by_ids(table, ids): db_query(code, table.subqueries) return evaluate(d.table) @method def apply_database_rw(u: ast.Update): catch_access(AccessLevels.WRITE_DB) # TODO Optimize: Update on condition, not id, when possible table = evaluate(u.table) if not table.type <= T.table: raise Signal.make(T.TypeError, u.table, f"Expected a table. Got: {table.type}") if not 'name' in table.type.options: raise Signal.make( T.ValueError, u.table, "Cannot update: Table is not persistent" ) for f in u.fields: if not f.name: raise Signal.make( T.SyntaxError, f, f"Update requires that all fields have a name" ) # TODO verify table is concrete (i.e. lvalue, not a transitory expression) update_scope = {n: c for n, c in table.all_attrs().items()} with use_scope(update_scope): proj = {f.name: evaluate(f.value) for f in u.fields} rows = list(table.localize()) if rows: if 'id' not in rows[0]: raise Signal.make(T.TypeError, u, "Update error: Table does not contain id") if not set(proj) < set(rows[0]): raise Signal.make( T.TypeError, u, "Update error: Not all keys exist in table" ) ids = [row['id'] for row in rows] for code in sql.updates_by_ids(table, proj, ids): db_query(code, table.subqueries) # TODO return by ids to maintain consistency, and skip a possibly long query return table @method def apply_database_rw(new: ast.NewRows): catch_access(AccessLevels.WRITE_DB) obj = get_var(new.type) if len(new.args) > 1: raise Signal.make( T.NotImplementedError, new, "Not yet implemented" ) # . Requires column-wise table concat (use join and enum)") if isinstance(obj, objects.UnknownInstance): (arg,) = new.args table = evaluate(arg.value) fakerows = [objects.RowInstance(T.row[table], {'id': T.t_id})] return ast.List_(T.list[T.int], fakerows).set_text_ref(new.text_ref) if isinstance(obj, objects.TableInstance): # XXX Is it always TableInstance? Just sometimes? What's the transition here? obj = obj.type assert_type( obj, T.table, new, "'new' expected an object of type '%s', instead got '%s'" ) (arg,) = new.args # TODO postgres can do it better! table = evaluate(arg.value) rows = table.localize() # TODO ensure rows are the right type cons = TableConstructor.make(obj) # TODO very inefficient, vectorize this ids = [] for row in rows: matched = cons.match_params([objects.from_python(v) for v in row.values()]) ids += [ _new_row(new, obj, matched).primary_key() ] # XXX return everything, not just pk? # XXX find a nicer way - requires a better typesystem, where id(t) < int return ast.List_(T.list[T.int], ids).set_text_ref(new.text_ref) @listgen def _destructure_param_match(ast_node, param_match): # TODO use cast rather than a ad-hoc hardwired destructure for k, v in param_match: if isinstance(v, objects.RowInstance): v = v.primary_key() v = v.localize() if k.type <= T.struct: names = [name for name, t in flatten_type(k.orig, [k.name])] if not isinstance(v, list): msg = f"Parameter {k.name} received a bad value: {v} (expecting a struct or a list)" raise Signal.make(T.TypeError, ast_node, msg) if len(v) != len(names): msg = f"Parameter {k.name} received a bad value (size of {len(names)})" raise Signal.make(T.TypeError, ast_node, msg) yield from safezip(names, v) else: yield k.name, v def _new_value(v, type_): if isinstance(v, list): return evaluate(objects.PythonList(v)) return objects.pyvalue_inst(v, type_=type_) @dsp def freeze(i: objects.Instance): return _new_value(cast_to_python(i), type_=i.type) @dsp def freeze(i: objects.RowInstance): return i.replace(attrs={k: freeze(v) for k, v in i.attrs.items()}) def _new_row(new_ast, table, matched): matched = [(k, freeze(evaluate(v))) for k, v in matched] destructured_pairs = _destructure_param_match(new_ast, matched) keys = [name for (name, _) in destructured_pairs] values = [sql.make_value(v) for (_, v) in destructured_pairs] # XXX use regular insert? if 'name' not in table.options: raise Signal.make( T.TypeError, new_ast, f"'new' expects a persistent table. Instead got a table expression.", ) if get_db().target == sql.bigquery: rowid = db_query(sql.FuncCall(T.string, 'GENERATE_UUID', [])) keys += ['id'] values += [sql.make_value(rowid)] try: table_name = table.options['name'] except KeyError: raise Signal.make( T.ValueError, new_ast, "Cannot add a new row to an unnamed table" ) q = sql.InsertConsts(table_name, keys, [values]) db_query(q) if get_db().target != sql.bigquery: rowid = db_query(sql.LastRowId()) d = SafeDict({'id': objects.pyvalue_inst(rowid)}) d.update({p.name: v for p, v in matched}) return objects.RowInstance(T.row[table], d) @method def apply_database_rw(new: ast.New): catch_access(AccessLevels.WRITE_DB) obj = get_var(new.type) # XXX Assimilate this special case if isinstance(obj, Type) and obj <= T.Exception: def create_exception(msg): state = context.state msg = cast_to_python(msg) assert new.text_ref is state.stacktrace[-1] return Signal( obj, list(state.stacktrace), msg ) # TODO move this to `throw`? f = objects.InternalFunction( obj.typename, [objects.Param('message')], create_exception ) res = evaluate(ast.FuncCall(f, new.args).set_text_ref(new.text_ref)) return res if not isinstance(obj, objects.TableInstance): raise Signal.make( T.TypeError, new, f"'new' expects a table or exception, instead got {obj.repr()}", ) table = obj # TODO assert tabletype is a real table and not a query (not transient), otherwise new is meaningless assert_type( table.type, T.table, new, "'new' expected an object of type '%s', instead got '%s'", ) cons = TableConstructor.make(table.type) matched = cons.match_params(new.args) return _new_row(new, table.type, matched) @method def apply_database_rw(x: Object): return x @dataclass class TableConstructor(objects.Function): "Serves as an ad-hoc constructor function for given table, to allow matching params" params: List[objects.Param] param_collector: Optional[objects.Param] = None name = 'new' @classmethod def make(cls, table): return cls( [ objects.Param(name, p, p.options.get('default'), orig=p).set_text_ref( getattr(name, 'text_ref', None) ) for name, p in table_params(table) ] ) def add_as_subquery(inst: objects.Instance): code_cls = sql.TableName if (inst.type <= T.table) else sql.Name name = unique_name(inst) return inst.replace( code=code_cls(inst.code.type, name), subqueries=inst.subqueries.update({name: inst.code}), ) @dsp def evaluate(obj: list): return [evaluate(item) for item in obj] @dsp def evaluate(obj_): access_level = get_access_level() # - Generic, non-db related operations obj = obj_.simplify() assert obj, obj_ if access_level < AccessLevels.COMPILE: return obj # - Compile to instances with db-specific code (sql) # . Compilation may fail (e.g. due to lack of DB access) # . Resulting code generic within the same database, and can be cached # obj = compile_to_inst(state.reduce_access(state.AccessLevels.COMPILE), obj) obj = obj.compile_to_inst() if access_level < AccessLevels.EVALUATE: return obj # - Resolve parameters to "instantiate" the cached code # TODO necessary? if isinstance(obj, ast.Parameter): obj = get_var(obj.name) if access_level < AccessLevels.READ_DB: return obj # - Apply operations that read or write the database (delete, insert, update, one, etc.) obj = obj.apply_database_rw() assert not isinstance(obj, (ast.ResolveParameters, ast.ParameterizedSqlCode)), obj return obj # # localize() # ------------- # # Return the local value of the expression. Only requires computation if the value is an instance. # @method def localize(inst: objects.AbsInstance): raise NotImplementedError(inst) @method def localize(inst: objects.AbsStructInstance): return {k: evaluate(v).localize() for k, v in inst.attrs.items()} @method def localize(inst: objects.Instance): # TODO This protection doesn't work for unoptimized code # Cancel unoptimized mode? Or leave this unprotected? # state.require_access(state.AccessLevels.WRITE_DB) if inst.code is sql.null: return None return db_query(inst.code, inst.subqueries) @method def localize(inst: objects.ValueInstance): return inst.local_value @method def localize(inst: objects.SelectedColumnInstance): # XXX is this right? p = evaluate(inst.parent) return p.get_attr(inst.name) @method def localize(x: Object): return x def new_table_from_rows(name, columns, rows, temporary): # TODO check table doesn't exist name = Id(name) tuples = [[sql.make_value(i) for i in row] for row in rows] # TODO refactor into function? elems = {c: v.type.as_nullable() for c, v in zip(columns, tuples[0])} elems = {'id': T.t_id, **elems} table = T.table(elems, temporary=temporary, pk=[['id']], name=name) db_query(sql.compile_type_def(name, table)) db_query(sql.InsertConsts(name, columns, tuples)) return objects.new_table(table) def new_table_from_expr(name, expr, const, temporary): assert isinstance(name, Id) elems = expr.type.elems if any(t <= T.unknown for t in elems.values()): return objects.TableInstance.make(sql.null, expr.type, []) if 'id' in elems and not const: msg = "Field 'id' already exists. Rename it, or use 'const table' to copy it as-is." raise Signal.make(T.NameError, None, msg) table = T.table( dict(elems), name=name, pk=[] if const else [['id']], temporary=temporary ) if not const: table.elems['id'] = T.t_id db_query(sql.compile_type_def(name, table)) if temporary: get_var('__unwind__').append(lambda: drop_table(table)) read_only, flat_columns = table_flat_for_insert(table) if get_db().target == sql.bigquery and 'id' in read_only: # XXX very hacky! to_exclude = ['id'] if 'id' in expr.type.elems else [] proj = ast.Projection( expr, [ ast.NamedField( 'id', objects.Instance.make( sql.RawSql(T.string, 'GENERATE_UUID()'), T.string, [] ), ), ast.NamedField(None, ast.Ellipsis(None, to_exclude)), ], ) expr = cast_to_instance(proj) read_only.remove('id') flat_columns.insert(0, 'id') expr = exclude_fields(expr, set(read_only) & set(elems)) db_query(sql.Insert(name, flat_columns, expr.code), expr.subqueries) return objects.new_table(table) # cast_to_python - make sure the value is a native python object, not a preql instance @dsp def cast_to_python(obj): raise Signal.make(T.TypeError, None, f"Unexpected value: {pql_repr(obj.type, obj)}") @dsp def cast_to_python(obj: ast.Ast): inst = cast_to_instance(obj) return cast_to_python(inst) @dsp def cast_to_python(obj: objects.AbsInstance): # if state.access_level <= state.AccessLevels.QUERY: if obj.type <= T.projected | T.aggregated: raise exc.InsufficientAccessLevel(get_access_level()) # raise Signal.make(T.CastError, None, f"Internal error. Cannot cast projected obj: {obj}") res = obj.localize() if obj.type == T.float: res = float(res) elif obj.type == T.int: res = int(res) elif obj.type == T.bool: assert res in (0, 1), res res = bool(res) return res ### Added functions def function_localize_keys(self, struct): return cast_to_python(struct) objects.Function._localize_keys = function_localize_keys def instance_repr(self): return pql_repr(self.type, self.localize()) objects.Instance.repr = instance_repr @dp_inst def post_instance_getattr(inst, p: T.property): return eval_func_call(objects.MethodInstance(inst, p.func), [])
[ "pathlib.Path.cwd", "preql.utils.safezip", "logging.info", "pathlib.Path" ]
[((12396, 12406), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (12404, 12406), False, 'from pathlib import Path\n'), ((1039, 1053), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1043, 1053), False, 'from pathlib import Path\n'), ((26856, 26873), 'preql.utils.safezip', 'safezip', (['names', 'v'], {}), '(names, v)\n', (26863, 26873), False, 'from preql.utils import SafeDict, dataclass, listgen, method, safezip\n'), ((19437, 19472), 'logging.info', 'logging.info', (['f"""Compiling.. {func}"""'], {}), "(f'Compiling.. {func}')\n", (19449, 19472), False, 'import logging\n'), ((19632, 19669), 'logging.info', 'logging.info', (['"""Compiled successfully"""'], {}), "('Compiled successfully')\n", (19644, 19669), False, 'import logging\n')]
#!/usr/bin/env python3 import pytest import pathlib import json TESTVECTORS_PATH = pathlib.Path(__file__).parent.joinpath("testvectors.json") # from typing import Dict, Iterable, List, Optional, Sequence, Set, Tuple, TypeVar, Union from typing import List, Tuple from bip39 import ( encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError, ) ######################################################################################################################## ### Testcases encoding and decoding of BIP39 mnemonic phrases ########################################################## ######################################################################################################################## def load_test_vectors() -> List[Tuple[bytes, str, str]]: """Load the BIP39 test vectors from local storage. Original source for test vectors: https://github.com/trezor/python-mnemonic/blob/master/vectors.json """ with open(TESTVECTORS_PATH) as f: vectors = json.load(f) return [(bytes.fromhex(entropy), phrase, seed) for entropy, phrase, seed, _ in vectors["english"]] TEST_VECTORS = load_test_vectors() @pytest.mark.parametrize("entropy, phrase, seed", TEST_VECTORS) def test_encode_bytes__official_vectors(entropy: bytes, phrase: str, seed: str): assert encode_bytes(entropy) == phrase @pytest.mark.parametrize("entropy, phrase, seed", TEST_VECTORS) def test_decode_phrase__official_vectors(entropy: bytes, phrase: str, seed: str): assert decode_phrase(phrase) == entropy @pytest.mark.parametrize("entropy, phrase, seed", TEST_VECTORS) def test_seed_phrase__official_vectors(entropy: bytes, phrase: str, seed: str): assert phrase_to_seed(phrase, passphrase="<PASSWORD>").hex() == seed ### Additional tests ### PHRASES = [ "any pitch edit post web arm gun cradle goose card aim absorb", "key water you run rent pen hub key learn tank sunset air echo letter adapt", "pupil year card short mean weird inch shy fun bid joy slot only use cry gap fox aisle", "jar kite sand indoor crowd spot label aim clay mix job gas kite can bomb wink ten emerge fly car also", "eight era guard oak fox rent day fee pool kid noble one pact bag slab april ugly job law razor blur try dose quiz", ] PHRASES_INVALID_LENGTH = [" ".join(["any"] * i) for i in range(1, 65) if i not in {12, 15, 18, 21, 24}] PHRASES_INVALID_CHECKSUM = [ "any pitch edit post web arm gun cradle goose card aim abuse", "key water you run rent pen hub key learn tank sunset air echo letter add", "pupil year card short mean weird inch shy fun bid joy slot only use cry gap fox alarm", "jar kite sand indoor crowd spot label aim clay mix job gas kite can bomb wink ten emerge fly car alter", "eight era guard oak fox rent day fee pool kid noble one pact bag slab april ugly job law razor blur try dose quit", ] PHRASES_INVALID_LENGTH_VALID_CHECKSUM = [ "", "easy swamp table", "master auction transfer old lesson chief", "fuel absurd regular mandate kingdom valley miss start away", "achieve potato wine chase erupt machine quality ozone brick state attract equal " "canvas city weather infant acid stable grocery interest cruel diagram bid guide " "nut minimum broccoli", "truth rely once wild toast oxygen birth ugly spawn journey finger steak " "liberty tank fashion garbage swift bike safe rate since always attract chef " "final film clutch talk isolate tide", "chef recall shield table almost athlete barely absorb control oval vehicle proud " "debate rally vapor barely pioneer lion state chest fine volume comic romance " "cigar answer thing struggle mad abandon prefer bronze minor", "tail obey flash palace furnace blast faculty narrow number imitate slab state " "copper sister media ski dose achieve glad dirt want nasty giggle arrive " "grit fame parent oil mix mean repeat wealth summer daughter strategy corn", "honey walk trouble embark curious nation twin make dress smoke novel tank " "manage improve math tone sea purpose ozone junk rate language play milk " "term tray breeze skate couple barrel find void retire rapid armor brisk " "guess pistol desk", "accident purpose arm private excuse mesh useless depth party check drill inhale " "pink caught clerk minor uphold crush snack glory enforce hedgehog jealous prevent " "object ethics stage faith wage require turtle truth picture stove disease struggle " "strike gadget stereo beauty bachelor promote", "wisdom multiply crazy embrace connect wave toast shallow marine exchange frequent grief " "mouse genius where play twin romance lecture lunch rather pattern deer dinner " "romance jealous mutual food faint bamboo dignity carpet rice wisdom minimum offer " "drastic ready arm estate bulk squirrel goose square creek", "walnut cattle virtual admit fiction kitchen alpha fiction pudding mirror egg target " "grace snake casino pigeon hazard afford bulk estate maze rival prosper vibrant " "wrong begin wheel wear accident anger hip length chimney royal primary library " "frequent member gym phone result noodle unique design slice already display match", ] PHRASES_INVALID_WORDS = [ "any pitch edit post web arm gun cradle goose card aim abrasivo", "key water you run rent pen hub key learn tank sunset air echo letter activo", "pupil year card short mean weird inch shy fun bid joy slot only use cry gap fox adopter", "jar kite sand indoor crowd spot label aim clay mix job gas kite can bomb wink ten emerge fly car allagato", "eight era guard oak fox rent day fee pool kid noble one pact bag slab april ugly job law razor blur try dose peón", ] @pytest.mark.parametrize("phrase", PHRASES) def test_encode_decode(phrase: str): entropy = decode_phrase(phrase) assert encode_bytes(entropy) == phrase @pytest.mark.parametrize( "num_bytes, num_words", ((bits // 8, num_words) for bits, num_words in [(128, 12), (160, 15), (192, 18), (224, 21), (256, 24)]), ) def test_encode_bytes__valid_length(num_bytes: int, num_words: int): phrase = encode_bytes(b"\x00" * num_bytes) assert len(phrase.split()) == num_words @pytest.mark.parametrize( "num_bytes", (num_bytes for num_bytes in range(64) if num_bytes * 8 not in {128, 160, 192, 224, 256}) ) def test_encode_bytes__invalid_length(num_bytes: int): with pytest.raises(EncodingError): encode_bytes(b"\x00" * num_bytes) @pytest.mark.parametrize("phrase", PHRASES_INVALID_LENGTH) def test_decode_phrase__invalid_length(phrase: str): with pytest.raises(DecodingError): decode_phrase(phrase) @pytest.mark.parametrize("phrase", PHRASES_INVALID_CHECKSUM) def test_decode_phrase__invalid_checksum(phrase: str): with pytest.raises(DecodingError): decode_phrase(phrase) @pytest.mark.parametrize("phrase", PHRASES_INVALID_WORDS) def test_decode_phrase__invalid_words(phrase: str): with pytest.raises(DecodingError): decode_phrase(phrase)
[ "pathlib.Path", "bip39.decode_phrase", "bip39.encode_bytes", "pytest.mark.parametrize", "pytest.raises", "bip39.phrase_to_seed", "json.load" ]
[((1188, 1250), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""entropy, phrase, seed"""', 'TEST_VECTORS'], {}), "('entropy, phrase, seed', TEST_VECTORS)\n", (1211, 1250), False, 'import pytest\n'), ((1378, 1440), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""entropy, phrase, seed"""', 'TEST_VECTORS'], {}), "('entropy, phrase, seed', TEST_VECTORS)\n", (1401, 1440), False, 'import pytest\n'), ((1570, 1632), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""entropy, phrase, seed"""', 'TEST_VECTORS'], {}), "('entropy, phrase, seed', TEST_VECTORS)\n", (1593, 1632), False, 'import pytest\n'), ((5774, 5816), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""phrase"""', 'PHRASES'], {}), "('phrase', PHRASES)\n", (5797, 5816), False, 'import pytest\n'), ((5936, 6097), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""num_bytes, num_words"""', '((bits // 8, num_words) for bits, num_words in [(128, 12), (160, 15), (192,\n 18), (224, 21), (256, 24)])'], {}), "('num_bytes, num_words', ((bits // 8, num_words) for\n bits, num_words in [(128, 12), (160, 15), (192, 18), (224, 21), (256, 24)])\n )\n", (5959, 6097), False, 'import pytest\n'), ((6535, 6592), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""phrase"""', 'PHRASES_INVALID_LENGTH'], {}), "('phrase', PHRASES_INVALID_LENGTH)\n", (6558, 6592), False, 'import pytest\n'), ((6718, 6777), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""phrase"""', 'PHRASES_INVALID_CHECKSUM'], {}), "('phrase', PHRASES_INVALID_CHECKSUM)\n", (6741, 6777), False, 'import pytest\n'), ((6905, 6961), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""phrase"""', 'PHRASES_INVALID_WORDS'], {}), "('phrase', PHRASES_INVALID_WORDS)\n", (6928, 6961), False, 'import pytest\n'), ((5868, 5889), 'bip39.decode_phrase', 'decode_phrase', (['phrase'], {}), '(phrase)\n', (5881, 5889), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((6182, 6215), 'bip39.encode_bytes', 'encode_bytes', (["(b'\\x00' * num_bytes)"], {}), "(b'\\x00' * num_bytes)\n", (6194, 6215), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((1032, 1044), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1041, 1044), False, 'import json\n'), ((1343, 1364), 'bip39.encode_bytes', 'encode_bytes', (['entropy'], {}), '(entropy)\n', (1355, 1364), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((1534, 1555), 'bip39.decode_phrase', 'decode_phrase', (['phrase'], {}), '(phrase)\n', (1547, 1555), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((5901, 5922), 'bip39.encode_bytes', 'encode_bytes', (['entropy'], {}), '(entropy)\n', (5913, 5922), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((6460, 6488), 'pytest.raises', 'pytest.raises', (['EncodingError'], {}), '(EncodingError)\n', (6473, 6488), False, 'import pytest\n'), ((6498, 6531), 'bip39.encode_bytes', 'encode_bytes', (["(b'\\x00' * num_bytes)"], {}), "(b'\\x00' * num_bytes)\n", (6510, 6531), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((6655, 6683), 'pytest.raises', 'pytest.raises', (['DecodingError'], {}), '(DecodingError)\n', (6668, 6683), False, 'import pytest\n'), ((6693, 6714), 'bip39.decode_phrase', 'decode_phrase', (['phrase'], {}), '(phrase)\n', (6706, 6714), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((6842, 6870), 'pytest.raises', 'pytest.raises', (['DecodingError'], {}), '(DecodingError)\n', (6855, 6870), False, 'import pytest\n'), ((6880, 6901), 'bip39.decode_phrase', 'decode_phrase', (['phrase'], {}), '(phrase)\n', (6893, 6901), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((7023, 7051), 'pytest.raises', 'pytest.raises', (['DecodingError'], {}), '(DecodingError)\n', (7036, 7051), False, 'import pytest\n'), ((7061, 7082), 'bip39.decode_phrase', 'decode_phrase', (['phrase'], {}), '(phrase)\n', (7074, 7082), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n'), ((86, 108), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (98, 108), False, 'import pathlib\n'), ((1724, 1771), 'bip39.phrase_to_seed', 'phrase_to_seed', (['phrase'], {'passphrase': '"""<PASSWORD>"""'}), "(phrase, passphrase='<PASSWORD>')\n", (1738, 1771), False, 'from bip39 import encode_bytes, decode_phrase, phrase_to_seed, EncodingError, DecodingError\n')]
import os BASE_PATH = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Thymios paths #EMOBASE_PATH = '/home/george/extracted_features/linear/SAVEE_linear_emobase2010' #NL_FEATURE_PATH = '/home/george/extracted_features/utterance' #PYUNICORN_PATH = '/home/thymios/Desktop/Research/pyunicorn/' #SAVEE_PATH = '/home/thymios/Research/datasets/SAVEE/' #BERLIN_PATH = '/home/thymios/Desktop/Research/datasets/emodb/' #IEMOCAP_PATH = '/home/thymios/Desktop/Research/datasets/IEMOCAP/' #EXTRACTED_FEATURES_PATH = '/home/thymios/Desktop/Research/data/' #OPENSMILE_CONFIG_PATH = '/home/thymios/Desktop/Research/opensmile-2.3' \ # '.0/config/emobase2010.conf' # Paths I will need EXTRACTED_FEATURES_PATH = '/home/teo/Documents/Thesis/Features/' IEMOCAP_PATH = '/home/teo/Documents/Thesis/IEMOCAP/' OPENSMILE_CONFIG_PATH = '/home/teo/Documents/Thesis/opensmile-2.3.0/config/emobase2010.conf'
[ "os.path.abspath" ]
[((55, 80), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (70, 80), False, 'import os\n')]
import argparse import logging import os from typing import ( Callable, Dict, Final, Iterable, List, NamedTuple, Optional, Sequence, Tuple, Union, ) import matplotlib.patches as patches # type: ignore import numpy as np from pytorch_lightning.callbacks import ProgressBar from rich.console import Console from rich.progress import ( BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn, ) logger = logging.getLogger(__name__) # DISTRIBUTIONS COPIED FROM Hewitt and Manning's Structural Probes project PTB_TRAIN_EMPIRICAL_POS_DISTRIBUTION: Final = [ 0.00003789361998, 0.00006105083219, 0.0001021022538, 0.0001494692788, 0.0001768368932, 0.0002463085299, 0.0003894622053, 0.0004747228503, 0.0009083942789, 0.001437852358, 0.001448378364, 0.001860997781, 0.00204941328, 0.002255722989, 0.002487295111, 0.002802022677, 0.002813601283, 0.003408320597, 0.004519866783, 0.005023009848, 0.00728294324, 0.007465043136, 0.007759771291, 0.008849212865, 0.009158677428, 0.01031864324, 0.01314803353, 0.01562690784, 0.01835314328, 0.02107727351, 0.02281195923, 0.02353299061, 0.02520662549, 0.02782865347, 0.03146117799, 0.03259903919, 0.03849149709, 0.04155456471, 0.05129006724, 0.06300445882, 0.06443704817, 0.08614693462, 0.09627716236, 0.1037379951, 0.1399274548, ] PTB_DEV_EMPIRICAL_DEPTH_DICT: Final = { 14: 0.00009970835307, 13: 0.000373906324, 12: 0.0007228855597, 11: 0.001395916943, 10: 0.003938479946, 9: 0.007702470274, 8: 0.01570406561, 7: 0.02921454745, 0: 0.04237605005, 6: 0.05309469801, 5: 0.08729466311, 4: 0.1302440362, 3: 0.183563078, 1: 0.2192088142, 2: 0.22506668, } PTB_DEV_EMPIRICAL_DEPTH_keys: Final = list(sorted(PTB_DEV_EMPIRICAL_DEPTH_DICT.keys())) PTB_DEV_EMPIRICAL_DEPTH_DISTRIBUTION: Final = [ PTB_DEV_EMPIRICAL_DEPTH_DICT[x] for x in PTB_DEV_EMPIRICAL_DEPTH_keys ] PTB_TRAIN_EMPIRICAL_DEP_SEQ_LEN_dict: Final = { -44: 7.690651244347372e-06, -3: 0.047819370772888475, -2: 0.1088534777124927, -1: 0.277384211752194, 4: 0.035580248649741374, 1: 0.17205854563192982, 3: 0.06036172428795556, 2: 0.09961151224571411, -4: 0.02238199244997781, 15: 0.003433326448369362, 6: 0.01574166443271559, 7: 0.011697480542652352, 8: 0.009206808203947281, 11: 0.00579765237377444, -13: 0.0016556873464616411, -11: 0.002414864490725075, 5: 0.022290803299509117, -8: 0.004191404928169318, 19: 0.0021665663219790025, -7: 0.005423007791728375, -5: 0.012027079881695811, 9: 0.00793565341970301, 22: 0.0015447222356503435, -10: 0.0029543087422928688, -19: 0.0007163292301877837, -6: 0.00748410232521347, 12: 0.004976950019556227, 35: 0.0003317966679704152, 13: 0.004389164531595393, 18: 0.002396187194845945, -9: 0.0034783716913719684, 28: 0.0008723395840016876, 43: 0.00011865576205564516, -17: 0.0009151874980773372, -12: 0.0020545025467042263, 26: 0.0009964886683747236, 25: 0.0011404137130903674, -23: 0.0003471779704591099, -26: 0.00023731152411129032, 20: 0.001866630923449455, 34: 0.00038343389775389035, 10: 0.006666695964385693, 36: 0.0002955407406756347, -22: 0.00042518314736606183, -15: 0.0012920294090503583, -21: 0.0005306549358599686, 16: 0.0030652738531041666, 17: 0.0026005387850528898, -16: 0.001105256450259065, 14: 0.003947501417277158, 23: 0.001423869144667742, -20: 0.0005767988433260529, 21: 0.0017677511217364173, 32: 0.00048780702178431896, 38: 0.0002647781356982452, 37: 0.0002450021753556377, 50: 4.834123639304062e-05, 46: 6.042654549130078e-05, 31: 0.0005910814813512694, -14: 0.0015601035381390383, 27: 0.0009470487675182048, 45: 0.00010107713063999403, 24: 0.0012953254024407929, 42: 0.00013623439347129629, 29: 0.000745993170701695, 40: 0.00020654891913390083, 41: 0.00013953038686173087, 47: 5.49332231739098e-05, 30: 0.0006273374086460499, -18: 0.0008174063608277777, 56: 1.7578631415651135e-05, -35: 4.1749249612171444e-05, -27: 0.0001658983339852076, 39: 0.00019885826788955345, 33: 0.0004647350680512769, -31: 8.789315707825567e-05, 57: 2.1973289269563917e-05, 61: 1.867729587912933e-05, -30: 0.00011975442651912336, 44: 8.239983476086469e-05, -24: 0.00028455409604085275, -29: 0.000106570452957385, -25: 0.0002614821423078106, 65: 8.789315707825568e-06, 49: 4.834123639304062e-05, 51: 3.186126944086768e-05, 62: 1.0986644634781959e-05, 90: 1.098664463478196e-06, -36: 3.405859836782407e-05, -28: 0.00013953038686173087, -38: 2.1973289269563917e-05, -33: 6.921586119912634e-05, 52: 2.3071953733042113e-05, 55: 1.867729587912933e-05, 72: 4.394657853912784e-06, 73: 3.295993390434588e-06, 77: 2.197328926956392e-06, 85: 1.098664463478196e-06, 48: 5.603188763738799e-05, 68: 5.493322317390979e-06, -32: 6.482120334521356e-05, -40: 1.4282638025216547e-05, 53: 2.417061819652031e-05, 54: 2.5269282659998507e-05, 100: 1.098664463478196e-06, -34: 6.372253888173536e-05, -39: 2.3071953733042113e-05, -48: 3.295993390434588e-06, -37: 2.3071953733042113e-05, -67: 1.098664463478196e-06, -64: 2.197328926956392e-06, -63: 1.098664463478196e-06, -59: 1.098664463478196e-06, -41: 9.887980171303763e-06, 58: 1.2085309098260154e-05, -47: 3.295993390434588e-06, 59: 9.887980171303763e-06, 60: 9.887980171303763e-06, 63: 1.0986644634781959e-05, 67: 3.295993390434588e-06, 79: 3.295993390434588e-06, 64: 6.591986780869176e-06, 69: 2.197328926956392e-06, -43: 5.493322317390979e-06, 80: 1.098664463478196e-06, 81: 1.098664463478196e-06, -58: 1.098664463478196e-06, -56: 1.098664463478196e-06, -42: 5.493322317390979e-06, -49: 1.098664463478196e-06, 74: 4.394657853912784e-06, 75: 3.295993390434588e-06, 117: 1.098664463478196e-06, -62: 1.098664463478196e-06, 76: 1.098664463478196e-06, 78: 2.197328926956392e-06, -53: 2.197328926956392e-06, -65: 1.098664463478196e-06, -61: 1.098664463478196e-06, 127: 1.098664463478196e-06, -45: 4.394657853912784e-06, -46: 1.098664463478196e-06, -50: 1.098664463478196e-06, -77: 1.098664463478196e-06, -74: 1.098664463478196e-06, 70: 2.197328926956392e-06, 66: 1.098664463478196e-06, -55: 1.098664463478196e-06, -54: 2.197328926956392e-06, -66: 1.098664463478196e-06, 71: 2.197328926956392e-06, 83: 1.098664463478196e-06, 87: 1.098664463478196e-06, 86: 1.098664463478196e-06, } PTB_TRAIN_EMPIRICAL_DEP_SEQ_LEN_dists: Final = list( sorted(PTB_TRAIN_EMPIRICAL_DEP_SEQ_LEN_dict.keys()) ) PTB_TRAIN_EMPIRICAL_DEP_SEQ_LEN_probs: Final = [ PTB_TRAIN_EMPIRICAL_DEP_SEQ_LEN_dict[x] for x in PTB_TRAIN_EMPIRICAL_DEP_SEQ_LEN_dists ] class Observation(NamedTuple): """Observation of a single sentence, with all info from the conllx File""" index: Tuple[str] # type: ignore sentence: Tuple[str] lemma_sentence: Tuple[str] upos_sentence: Tuple[str] xpos_sentence: Tuple[str] morph: Tuple[str] head_indices: Tuple[str] governance_relations: Tuple[str] secondary_relations: Tuple[str] extra_info: Tuple[str] pp_entity_id: Tuple[str] = ("",) pp_gold_governance: Tuple[str] = ("",) def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") class UnionFind: """ Naive UnionFind implementation for (slow) Prim's MST algorithm Used to compute minimum spanning trees for distance matrices """ def __init__(self, n: int): """ initialize the list, with for each item in the sequence its parent. Args: n: The number of parents, equal to the length of the sequence """ self.parents = list(range(n)) def union(self, i: int, j: int) -> None: """ Update the parent of i, to be j Args: i: the index of the item to update j: the index of the new parent for item i """ if self.find(i) != self.find( j ): # make sure both indices don't have the same parent i_parent = self.find(i) self.parents[i_parent] = j def find(self, i: int): """ find the direct parent connected to i Args: i: the index of the item for which to find the parent Returns: the id of the parent of item i """ # initialize the parent of i as itself i_parent = i while True: # loop over the stored parent ids sequence, # until we find one that is actually set correct. if i_parent != self.parents[i_parent]: i_parent = self.parents[i_parent] else: break return i_parent def dist_matrix_to_edges(matrix, poses=None): """ Constructs a minimum spanning tree from the pairwise weights in matrix; returns the edges. Never lets punctuation-tagged words be part of the tree. """ # map each tuple of indices to a distance pairs_to_distances = {} uf = UnionFind(len(matrix)) for i_index, line in enumerate(matrix): for j_index, dist in enumerate(line): # Skip all the punctuations, not part of dependency tree if poses is not None and poses[i_index] in [ "''", ",", ".", ":", "``", "-LRB-", "-RRB-", ]: continue if poses is not None and poses[j_index] in [ "''", ",", ".", ":", "``", "-LRB-", "-RRB-", ]: continue pairs_to_distances[(i_index, j_index)] = dist edges = [] # loop over the sorted distances, so we start at the root for (i_index, j_index), distance in sorted( pairs_to_distances.items(), key=lambda x: x[1] ): if uf.find(i_index) != uf.find(j_index): uf.union(i_index, j_index) edges.append((i_index, j_index)) return edges def find_child_edges(test_edge, edges): check_edges = edges.copy() child_edges = [] test_id = [test_edge[1]] added_idxs = True while added_idxs: added_idxs = [] new_test_ids = [] for idx, e in enumerate(check_edges): if e[0] in test_id: child_edges.append(e) added_idxs.append(idx) new_test_ids.append(e[1]) if added_idxs: check_edges = np.delete(check_edges, added_idxs, axis=0) test_id = new_test_ids def sentence_to_graph( words: List[str], words_phraseids: Optional[List[str]] = None, tikz: bool = False, gold_edges: Optional[List[Tuple[int, int]]] = None, prediction_edges: Optional[List[Tuple[int, int]]] = None, entid2color: Dict[str, str] = None, depths=None, ax=None, ): """Turns edge sets on word (nodes) into tikz dependency LaTeX.""" if entid2color is None: entid2color = {} # generate tikz string if tikz: assert ( gold_edges is not None or prediction_edges is not None ), "atleast one of the list of edges must be filled" tikz_string = """\\begin{dependency}[hide label, edge unit distance=.5ex]\\begin{deptext}[column sep=0.05cm]""" tikz_string += ( "\\& ".join([x.replace("$", "\$").replace("&", "+") for x in words]) + " \\\\" + "\n" ) tikz_string += "\\end{deptext}" + "\n" if gold_edges is not None: for i_index, j_index in gold_edges: tikz_string += "\\depedge{{{}}}{{{}}}{{{}}}\n".format( i_index + 1, j_index + 1, "." ) if prediction_edges is not None: for i_index, j_index in prediction_edges: tikz_string += "\\depedge[edge style={{red!60!}}, edge below]{{{}}}{{{}}}{{{}}}\n".format( i_index + 1, j_index + 1, "." ) tikz_string += "\\end{dependency}\n" return tikz_string else: assert ( words_phraseids is not None ), "when not doing tikz, the 'words_phraseids' should be set" assert ( gold_edges is not None and ax is not None ), "the networkx method is only implemented for gold standard edges" assert ( depths is not None ), "expecting to receive the depths, when not creating the tikz figure" ax.axis("off") stepsize = 4 points = np.array([[i, 0] for i in range(0, len(words) * stepsize, stepsize)]) # edges = np.array(gold_edges) edges = gold_edges.copy() x = points[:, 0].flatten() y = points[:, 1].flatten() ax.scatter(x, y, marker="o") ax.set_ylim([-15, 9]) phrid2id_: Dict[str, int] = { phr: i for i, phr in enumerate(set(words_phraseids)) } phrid2id_["_"] = -100 entid2color["_"] = "black" # FIX ALL THE AVAILABLE TEXT PRINTING for i, point in enumerate(points): if words_phraseids[i] in entid2color: col = entid2color[words_phraseids[i]] else: col = "black" offset = 1.5 ax.text( point[0], point[1] - offset, int(depths[i]), color="black", fontweight="bold", rotation=0, verticalalignment="top", horizontalalignment="center", ) offset = 6 ax.text( point[0], point[1] - offset, phrid2id_[words_phraseids[i]], color=col, rotation=0, verticalalignment="top", horizontalalignment="center", ) offset = 8 ax.text( point[0], point[1] - offset, words[i], color=col, rotation=45, verticalalignment="top", horizontalalignment="right", ) def add_edges_arcs( edges: List[Tuple[int, int]], color="black", linewidth=1, linestyle=None, ) -> None: for edge in edges: max_e = points[np.max(edge), 0] min_e = points[np.min(edge), 0] diff = max_e - min_e arc = patches.Arc( (min_e + diff / 2, 0), width=diff, height=(diff) / 2, color=color, linestyle=linestyle, linewidth=linewidth, theta2=180.0, ) ax.add_patch(arc) # DRAW ALL THE EDGES add_edges_arcs(edges) visual_edges, phrase2depth, phrase_head_idx = _text_edges2visual_edges( edges, depths, words_phraseids ) add_edges_arcs(visual_edges, color="red", linewidth=2, linestyle=(0, (1, 2))) for phrase_id, idx in phrase_head_idx.items(): offset = 3.5 ax.text( points[idx][0], points[idx][1] - offset, int(phrase2depth[phrase_id]), color="red", fontweight="bold", rotation=0, verticalalignment="top", horizontalalignment="center", ) return ax def print_tikz(self, prediction_edges, gold_edges, words, split_name): """Turns edge sets on word (nodes) into tikz dependency LaTeX.""" with open(os.path.join(self.reporting_root, split_name + ".tikz"), "a") as fout: string = """\\begin{dependency}[hide label, edge unit distance=.5ex]\\begin{deptext}[column sep=0.05cm]""" string += ( "\\& ".join([x.replace("$", "\$").replace("&", "+") for x in words]) + " \\\\" + "\n" ) string += "\\end{deptext}" + "\n" for i_index, j_index in gold_edges: string += "\\depedge{{{}}}{{{}}}{{{}}}\n".format( i_index + 1, j_index + 1, "." ) for i_index, j_index in prediction_edges: string += "\\depedge[edge style={{red!60!}}, edge below]{{{}}}{{{}}}{{{}}}\n".format( i_index + 1, j_index + 1, "." ) string += "\\end{dependency}\n" fout.write("\n\n") fout.write(string) def get_nopunct_argmin(prediction, words, poses): """ Gets the argmin of predictions, but filters out all punctuation-POS-tagged words """ puncts = ["''", ",", ".", ":", "``", "-LRB-", "-RRB-"] original_argmin = np.argmin(prediction) for i in range(len(words)): argmin = np.argmin(prediction) if poses[argmin] not in puncts: return argmin else: prediction[argmin] = 9000 return original_argmin class MyProgress(ProgressBar): def __init__(self, disable_val_bar: bool = False, *args, **kwargs): super().__init__(*args, **kwargs) self.disable_val_bar = disable_val_bar def init_validation_tqdm(self): bar = super().init_validation_tqdm() if self.disable_val_bar: bar.disable = True return bar def get_all_subclasses(cls): all_subclasses = [] for subclass in cls.__subclasses__(): all_subclasses.append(subclass) all_subclasses.extend(get_all_subclasses(subclass)) return all_subclasses def check_volta_layer(config, task: str, layer_idx: int, mm_bert_layer: int): mm_vision_layer = "Visual" in task if layer_idx in ["text_baseline", "vision_baseline", "vision_mapped_baseline"]: pass elif config is not None: if mm_bert_layer: if mm_vision_layer: layer_idx = config.bert_layer2ff_sublayer[str(layer_idx)] if layer_idx not in config.v_ff_sublayers: logger.warning( "given mapped layer_idx {} not a vision-feedforward sublayers, " "skipping this setting".format(layer_idx) ) raise ValueError( "given mapped layer_idx {} not a vision-feedforward sublayers, " "skipping this setting".format(layer_idx) ) else: if mm_vision_layer: if layer_idx not in config.v_ff_sublayers: logger.warning( "given layer_idx {} not a vision-feedforward sublayers, " "skipping this setting".format(layer_idx) ) raise ValueError( "given layer_idx {} not a vision-feedforward sublayers, " "skipping this setting".format(layer_idx) ) else: if layer_idx not in config.t_ff_sublayers: logger.warning( "given layer_idx {} not a text-feedforward sublayers, " "skipping this setting".format(layer_idx) ) raise ValueError( "given layer_idx {} not a text-feedforward sublayers, " "skipping this setting".format(layer_idx) ) progress_columns: List["ProgressColumn"] = [ TextColumn("[progress.description]{task.description}"), BarColumn(), TextColumn( "[progress.percentage]{task.percentage:>3.0f}% " "[{task.completed}/{task.total}]" ), TimeElapsedColumn(), TextColumn("<"), TimeRemainingColumn(), ] # AN EXACT COPy FROM THE RICH TRACK, BUT EXTENDED SO MORE PROGRESS INFORMATION IS PRINTED def track( sequence: Union[Sequence[ProgressType], Iterable[ProgressType]], description: str = "Working...", total: Optional[float] = None, auto_refresh: bool = True, console: Optional[Console] = None, transient: bool = False, get_time: Optional[Callable[[], float]] = None, refresh_per_second: float = 10, style: StyleType = "bar.back", complete_style: StyleType = "bar.complete", finished_style: StyleType = "bar.finished", pulse_style: StyleType = "bar.pulse", update_period: float = 0.1, disable: bool = False, ) -> Iterable[ProgressType]: """Track progress by iterating over a sequence. Args: sequence (Iterable[ProgressType]): A sequence (must support "len") you wish to iterate over. description (str, optional): Description of task show next to progress bar. Defaults to "Working". total: (float, optional): Total number of steps. Default is len(sequence). auto_refresh (bool, optional): Automatic refresh, disable to force a refresh after each iteration. Default is True. transient: (bool, optional): Clear the progress on exit. Defaults to False. console (Console, optional): Console to write to. Default creates internal Console instance. refresh_per_second (float): Number of times per second to refresh the progress information. Defaults to 10. style (StyleType, optional): Style for the bar background. Defaults to "bar.back". complete_style (StyleType, optional): Style for the completed bar. Defaults to "bar.complete". finished_style (StyleType, optional): Style for a finished bar. Defaults to "bar.done". pulse_style (StyleType, optional): Style for pulsing bars. Defaults to "bar.pulse". update_period (float, optional): Minimum time (in seconds) between calls to update(). Defaults to 0.1. disable (bool, optional): Disable display of progress. Returns: Iterable[ProgressType]: An iterable of the values in the sequence. """ columns: List["ProgressColumn"] = ( [TextColumn("{task.description}")] if description else [] ) columns.extend( ( BarColumn( style=style, complete_style=complete_style, finished_style=finished_style, pulse_style=pulse_style, ), TextColumn("{task.percentage:>3.0f}% [{task.completed}/{task.total}]"), TimeElapsedColumn(), TextColumn("<"), TimeRemainingColumn(), ) ) progress = Progress( *columns, auto_refresh=auto_refresh, console=console, transient=transient, get_time=get_time, refresh_per_second=refresh_per_second or 10, disable=disable, ) with progress: yield from progress.track( sequence, total=total, description=description, update_period=update_period ) def _text_edges2visual_edges( text_edges: List[Tuple[int, int]], text_depths: Union[List[int], np.ndarray], words_phraseids: List[str], ) -> Tuple[List[Tuple[int, int]], Dict[str, int], Dict[str, int]]: """ Args: text_edges: the edges of the dependency tree for the sentence in a np matrix. Each item is an edge with [source, target] text_depths: The depths for each text token in the sentence words_phraseids: for each word in the sentence, the id of the phrase it belongs to. '_' if none. Returns: the edges of the dependency tree projected on visual regions """ visual_edges = [] # For each phrase, check what the text idx is of each phrase phrase2txt_index: Dict[str, int] = {} # Also, based on the text idx we can map the phrase to an initial depth phrase2depth: Dict[str, int] = {} # loop over unique phrase ids in the sentence for phr_id in set(words_phraseids): if phr_id == "_": # word does not belong to a phrase continue # Collections with for current phrase id all its head_idx and all its depths phrase_idxs: List[int] = [] phrase_depths: List[int] = [] # Find all words that belong to the same phrase for idx, id_ in enumerate(words_phraseids): if phr_id == id_: phrase_idxs.append(idx) phrase_depths.append(text_depths[idx]) # if all depths are equal, we use the final token from the phrase as head index if all(phrase_depths[0] == x for x in phrase_depths): phr_min_d_idx = len(phrase_depths) - 1 # not all depths are equal, we use the one with lowest depth else: phr_min_d_idx = int(np.argmin(phrase_depths)) phrase2txt_index[phr_id] = phrase_idxs[phr_min_d_idx] phrase2depth[phr_id] = phrase_depths[phr_min_d_idx] # Find the root node for the text text_root_idx = np.where(text_depths == 0)[0][0] phrase2depth["0"] = 0 # the full image is always the root for visual tree if text_root_idx in phrase2txt_index.values(): # There is a phrase that is the root, thus to have not two elements # map to same text index, we map the visual root to prepended token # in front of the sentence phrase2txt_index["0"] = -1 else: # this is as expected. The text root is not a phrase # and we map the visual root to the text root phrase2txt_index["0"] = text_root_idx # reverse mapping from index to phrase_id idx2phr = {v: k for k, v in phrase2txt_index.items()} # loop over all the phrases based on there depth, lowest to highest for sort_phr_id in sorted(phrase2depth, key=phrase2depth.get): # type: ignore sort_txt_idx = phrase2txt_index[sort_phr_id] # this is our own manual assigned root node. since it is the root, # it has no parent, so continue if sort_phr_id == "0": continue # the current node is the root node in the text tree elif sort_txt_idx == text_root_idx: # there is no parent for a root node. A phrase shouldn't be the root? # In the visual tree it should be the child of the full image root node new_edge = (phrase2txt_index["0"], sort_txt_idx) visual_edges.append(new_edge) phrase2depth[sort_phr_id] = phrase2depth["0"] + 1 else: # loop over all textual edges to find and construct the correct # visual edge given the current phrase_id for edge in text_edges: # if the current phrase_idx is not the child node of the # current text edge, we don't need this edge. if sort_txt_idx != edge[1]: continue # the current node is the child of the root node, or its # text parent node, is also a visual node elif edge[0] == text_root_idx or edge[0] in phrase2txt_index.values(): # we append the textual edge as a valid visual edge visual_edges.append(edge) # we update the depth to be equal to # "the depth of the parent node plus 1" phrase2depth[idx2phr[edge[1]]] = phrase2depth[idx2phr[edge[0]]] + 1 # we found an edge where this node is the child, but the parent # is not a visual node we need to move up through the textual edges # from the current one, to find the visual parent. else: # start chain by finding the direct parent edge from current edge parent_edge_chain = [_find_parent_edge(edge, text_edges)] if parent_edge_chain[0] is None: # No head could be find, so we leave this phrase dangling logger.debug( "no head found. Left phrase dangling " "MAYBE IF IT IS NOT A TREE, WE CAN FURTHER CHECK THIS?" ) continue while True: dangling_skip = False # the highest node in the current parent edge chain is # a visual node, or it is the visual root if ( parent_edge_chain[-1][0] == text_root_idx or parent_edge_chain[-1][0] in phrase2txt_index.values() ): break # no visual parent found, keep moving up pe = _find_parent_edge(parent_edge_chain[-1], text_edges) if pe is None: # No head could be found higher, leave this phrase dangling logger.debug( "no head found higher. Left phrase dangling! " "MAYBE IF IT IS NOT A TREE, WE CAN FURTHER CHECK THIS?" ) dangling_skip = True break parent_edge_chain.append(pe) if dangling_skip: continue # update the new depth, based on steps shifted up in the tree # (length of parent edge chain) parent_id = parent_edge_chain[-1][0] # update depth as parent_depth + 1 phrase2depth[sort_phr_id] = phrase2depth[idx2phr[parent_id]] + 1 # add the edge from the parent to current node new_edge = (parent_id, edge[1]) visual_edges.append(new_edge) assert ( sum(value == 0 for value in phrase2depth.values()) == 1 ), "ERROR: multiple roots in visual tree." return visual_edges, phrase2depth, phrase2txt_index def _find_parent_edge(test_edge, edges): for e in edges: if e[1] == test_edge[0]: return e return None
[ "logging.getLogger", "rich.progress.BarColumn", "matplotlib.patches.Arc", "numpy.where", "numpy.delete", "os.path.join", "numpy.min", "argparse.ArgumentTypeError", "numpy.max", "rich.progress.TimeRemainingColumn", "rich.progress.Progress", "rich.progress.TimeElapsedColumn", "rich.progress.TextColumn", "numpy.argmin" ]
[((533, 560), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (550, 560), False, 'import logging\n'), ((17682, 17703), 'numpy.argmin', 'np.argmin', (['prediction'], {}), '(prediction)\n', (17691, 17703), True, 'import numpy as np\n'), ((20423, 20477), 'rich.progress.TextColumn', 'TextColumn', (['"""[progress.description]{task.description}"""'], {}), "('[progress.description]{task.description}')\n", (20433, 20477), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((20483, 20494), 'rich.progress.BarColumn', 'BarColumn', ([], {}), '()\n', (20492, 20494), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((20500, 20601), 'rich.progress.TextColumn', 'TextColumn', (['"""[progress.percentage]{task.percentage:>3.0f}% [{task.completed}/{task.total}]"""'], {}), "(\n '[progress.percentage]{task.percentage:>3.0f}% [{task.completed}/{task.total}]'\n )\n", (20510, 20601), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((20622, 20641), 'rich.progress.TimeElapsedColumn', 'TimeElapsedColumn', ([], {}), '()\n', (20639, 20641), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((20647, 20662), 'rich.progress.TextColumn', 'TextColumn', (['"""<"""'], {}), "('<')\n", (20657, 20662), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((20668, 20689), 'rich.progress.TimeRemainingColumn', 'TimeRemainingColumn', ([], {}), '()\n', (20687, 20689), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((23777, 23951), 'rich.progress.Progress', 'Progress', (['*columns'], {'auto_refresh': 'auto_refresh', 'console': 'console', 'transient': 'transient', 'get_time': 'get_time', 'refresh_per_second': '(refresh_per_second or 10)', 'disable': 'disable'}), '(*columns, auto_refresh=auto_refresh, console=console, transient=\n transient, get_time=get_time, refresh_per_second=refresh_per_second or \n 10, disable=disable)\n', (23785, 23951), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((17753, 17774), 'numpy.argmin', 'np.argmin', (['prediction'], {}), '(prediction)\n', (17762, 17774), True, 'import numpy as np\n'), ((8010, 8063), 'argparse.ArgumentTypeError', 'argparse.ArgumentTypeError', (['"""Boolean value expected."""'], {}), "('Boolean value expected.')\n", (8036, 8063), False, 'import argparse\n'), ((11360, 11402), 'numpy.delete', 'np.delete', (['check_edges', 'added_idxs'], {'axis': '(0)'}), '(check_edges, added_idxs, axis=0)\n', (11369, 11402), True, 'import numpy as np\n'), ((16600, 16655), 'os.path.join', 'os.path.join', (['self.reporting_root', "(split_name + '.tikz')"], {}), "(self.reporting_root, split_name + '.tikz')\n", (16612, 16655), False, 'import os\n'), ((23270, 23302), 'rich.progress.TextColumn', 'TextColumn', (['"""{task.description}"""'], {}), "('{task.description}')\n", (23280, 23302), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((23375, 23489), 'rich.progress.BarColumn', 'BarColumn', ([], {'style': 'style', 'complete_style': 'complete_style', 'finished_style': 'finished_style', 'pulse_style': 'pulse_style'}), '(style=style, complete_style=complete_style, finished_style=\n finished_style, pulse_style=pulse_style)\n', (23384, 23489), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((23577, 23647), 'rich.progress.TextColumn', 'TextColumn', (['"""{task.percentage:>3.0f}% [{task.completed}/{task.total}]"""'], {}), "('{task.percentage:>3.0f}% [{task.completed}/{task.total}]')\n", (23587, 23647), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((23661, 23680), 'rich.progress.TimeElapsedColumn', 'TimeElapsedColumn', ([], {}), '()\n', (23678, 23680), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((23694, 23709), 'rich.progress.TextColumn', 'TextColumn', (['"""<"""'], {}), "('<')\n", (23704, 23709), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((23723, 23744), 'rich.progress.TimeRemainingColumn', 'TimeRemainingColumn', ([], {}), '()\n', (23742, 23744), False, 'from rich.progress import BarColumn, Progress, ProgressColumn, ProgressType, StyleType, TextColumn, TimeElapsedColumn, TimeRemainingColumn\n'), ((26154, 26180), 'numpy.where', 'np.where', (['(text_depths == 0)'], {}), '(text_depths == 0)\n', (26162, 26180), True, 'import numpy as np\n'), ((15404, 15540), 'matplotlib.patches.Arc', 'patches.Arc', (['(min_e + diff / 2, 0)'], {'width': 'diff', 'height': '(diff / 2)', 'color': 'color', 'linestyle': 'linestyle', 'linewidth': 'linewidth', 'theta2': '(180.0)'}), '((min_e + diff / 2, 0), width=diff, height=diff / 2, color=color,\n linestyle=linestyle, linewidth=linewidth, theta2=180.0)\n', (15415, 15540), True, 'import matplotlib.patches as patches\n'), ((25948, 25972), 'numpy.argmin', 'np.argmin', (['phrase_depths'], {}), '(phrase_depths)\n', (25957, 25972), True, 'import numpy as np\n'), ((15280, 15292), 'numpy.max', 'np.max', (['edge'], {}), '(edge)\n', (15286, 15292), True, 'import numpy as np\n'), ((15328, 15340), 'numpy.min', 'np.min', (['edge'], {}), '(edge)\n', (15334, 15340), True, 'import numpy as np\n')]
from __future__ import (absolute_import, division, print_function, unicode_literals) import numpy as np import tensorflow as tf import tensorflow.contrib.slim as slim from src.models.model import Model from src.utils.loss_aug_AP import LossAugmentedInferenceAP class MeanAveragePrecisionModel(Model): """ Our model for optimizing Mean Average Precision. """ def __init__(self, config, reuse=False): super(MeanAveragePrecisionModel, self).__init__(config, reuse) def compute_loss(self): if self.config.optimization_framework == "SSVM": loss = self.mAP_score_aug * self.config.alpha - self.mAP_score_GT elif self.config.optimization_framework == "DLM": # Direct Loss minimization loss = (1 / self.config.epsilon) * ( self.mAP_score_aug * self.config.alpha - self.mAP_score_std) if not self.config.positive_update: loss *= -1 else: raise ValueError("Unknown optimization framework {}".format( self.config.optimization_framework)) return loss def perform_loss_augmented_inference(self, sess, batch): batch_size = len(batch["labels"]) num_pos, num_neg, pos_inds, neg_inds = self.get_positive_negative_splits( batch) _feed_dict = { self.x: batch["imgs"], self.n_queries_to_parse: self.config.batch_size, self.num_pos: num_pos, self.num_neg: num_neg, self.pos_inds: pos_inds, self.neg_inds: neg_inds } phi_pos, phi_neg, skipped_queries = sess.run( [self.phi_pos, self.phi_neg, self.skipped_queries], feed_dict=_feed_dict) Y_aug = np.zeros((batch_size, np.max(num_pos), np.max(num_neg))) for qq in range(batch_size): if skipped_queries[qq] == 1: print("Skipped {}".format(qq)) continue q_phi_pos = phi_pos[qq][:num_pos[qq]] q_phi_neg = phi_neg[qq][:num_neg[qq]] loss_aug_AP_algo = LossAugmentedInferenceAP(q_phi_pos, q_phi_neg, self.config.epsilon, self.config.positive_update) q_Y_aug = -1 * loss_aug_AP_algo.direction[1:, 1:] Y_aug[qq, :num_pos[qq], :num_neg[qq]] = q_Y_aug return Y_aug @property def config(self): return self._config
[ "numpy.max", "src.utils.loss_aug_AP.LossAugmentedInferenceAP" ]
[((1930, 2031), 'src.utils.loss_aug_AP.LossAugmentedInferenceAP', 'LossAugmentedInferenceAP', (['q_phi_pos', 'q_phi_neg', 'self.config.epsilon', 'self.config.positive_update'], {}), '(q_phi_pos, q_phi_neg, self.config.epsilon, self.\n config.positive_update)\n', (1954, 2031), False, 'from src.utils.loss_aug_AP import LossAugmentedInferenceAP\n'), ((1657, 1672), 'numpy.max', 'np.max', (['num_pos'], {}), '(num_pos)\n', (1663, 1672), True, 'import numpy as np\n'), ((1674, 1689), 'numpy.max', 'np.max', (['num_neg'], {}), '(num_neg)\n', (1680, 1689), True, 'import numpy as np\n')]
"""04: Jump to Recent File Use Recent Files to quickly jump to last-visited file. - Ctrl-E/Cmd-E - Very useful toggle - Cursor keys - Or speed search - Variations such as recently *changed* file Repo: https://github.com/pauleveritt/42-workshop Playlist: https://www.jetbrains.com/pycharm/guide/playlists/42/ """ from fortytwo import App, Greeter def main(): site = App() with site as container: greeter = container.get(Greeter) greeting = greeter('Larry') return greeting if __name__ == '__main__': print(main())
[ "fortytwo.App" ]
[((379, 384), 'fortytwo.App', 'App', ([], {}), '()\n', (382, 384), False, 'from fortytwo import App, Greeter\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'GUI.ui' # # Created by: PyQt5 UI code generator 5.12.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.setWindowModality(QtCore.Qt.WindowModal) MainWindow.resize(1313, 869) MainWindow.setMinimumSize(QtCore.QSize(1313, 869)) MainWindow.setMaximumSize(QtCore.QSize(1920, 1080)) MainWindow.setFocusPolicy(QtCore.Qt.StrongFocus) MainWindow.setToolButtonStyle(QtCore.Qt.ToolButtonIconOnly) MainWindow.setDocumentMode(False) MainWindow.setTabShape(QtWidgets.QTabWidget.Rounded) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.gridLayout = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout.setObjectName("gridLayout") self.ComboBoxCameras = QtWidgets.QComboBox(self.centralwidget) self.ComboBoxCameras.setMinimumSize(QtCore.QSize(200, 30)) self.ComboBoxCameras.setMaximumSize(QtCore.QSize(200, 50)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(9) font.setBold(False) font.setWeight(50) self.ComboBoxCameras.setFont(font) self.ComboBoxCameras.setLayoutDirection(QtCore.Qt.LeftToRight) self.ComboBoxCameras.setMaxVisibleItems(100) self.ComboBoxCameras.setFrame(True) self.ComboBoxCameras.setObjectName("ComboBoxCameras") self.gridLayout.addWidget(self.ComboBoxCameras, 0, 1, 1, 1) self.scrollArea_2 = QtWidgets.QScrollArea(self.centralwidget) self.scrollArea_2.setMinimumSize(QtCore.QSize(640, 279)) self.scrollArea_2.setMaximumSize(QtCore.QSize(640, 9999)) font = QtGui.QFont() font.setFamily("Calibri") font.setBold(False) font.setWeight(50) self.scrollArea_2.setFont(font) self.scrollArea_2.setFrameShape(QtWidgets.QFrame.NoFrame) self.scrollArea_2.setWidgetResizable(True) self.scrollArea_2.setObjectName("scrollArea_2") self.scrollAreaWidgetContents_3 = QtWidgets.QWidget() self.scrollAreaWidgetContents_3.setGeometry(QtCore.QRect(0, 0, 640, 282)) self.scrollAreaWidgetContents_3.setObjectName("scrollAreaWidgetContents_3") self.gridLayout_4 = QtWidgets.QGridLayout(self.scrollAreaWidgetContents_3) self.gridLayout_4.setObjectName("gridLayout_4") self.tableWidget_2 = QtWidgets.QTableWidget(self.scrollAreaWidgetContents_3) self.tableWidget_2.setMinimumSize(QtCore.QSize(0, 0)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.tableWidget_2.setFont(font) self.tableWidget_2.setFrameShape(QtWidgets.QFrame.WinPanel) self.tableWidget_2.setObjectName("tableWidget_2") self.tableWidget_2.setColumnCount(3) self.tableWidget_2.setRowCount(0) item = QtWidgets.QTableWidgetItem() item.setTextAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignVCenter) font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget_2.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget_2.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget_2.setHorizontalHeaderItem(2, item) self.gridLayout_4.addWidget(self.tableWidget_2, 0, 0, 1, 1) self.scrollArea_2.setWidget(self.scrollAreaWidgetContents_3) self.gridLayout.addWidget(self.scrollArea_2, 3, 0, 1, 1) self.imgLabel = QtWidgets.QLabel(self.centralwidget) self.imgLabel.setMinimumSize(QtCore.QSize(640, 480)) self.imgLabel.setMaximumSize(QtCore.QSize(640, 480)) font = QtGui.QFont() font.setFamily("Calibri") font.setBold(False) font.setWeight(50) self.imgLabel.setFont(font) self.imgLabel.setCursor(QtGui.QCursor(QtCore.Qt.ArrowCursor)) self.imgLabel.setAutoFillBackground(False) self.imgLabel.setStyleSheet("background-color: rgb(50,50,50)\n" "") self.imgLabel.setFrameShape(QtWidgets.QFrame.WinPanel) self.imgLabel.setFrameShadow(QtWidgets.QFrame.Plain) self.imgLabel.setLineWidth(1) self.imgLabel.setText("") self.imgLabel.setObjectName("imgLabel") self.gridLayout.addWidget(self.imgLabel, 2, 0, 1, 1) self.scrollArea = QtWidgets.QScrollArea(self.centralwidget) self.scrollArea.setMinimumSize(QtCore.QSize(640, 771)) self.scrollArea.setMaximumSize(QtCore.QSize(9999, 9999)) font = QtGui.QFont() font.setFamily("Calibri") font.setBold(False) font.setWeight(50) self.scrollArea.setFont(font) self.scrollArea.setFrameShape(QtWidgets.QFrame.NoFrame) self.scrollArea.setWidgetResizable(True) self.scrollArea.setObjectName("scrollArea") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 645, 774)) self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.gridLayout_3 = QtWidgets.QGridLayout(self.scrollAreaWidgetContents) self.gridLayout_3.setObjectName("gridLayout_3") self.tableWidget = QtWidgets.QTableWidget(self.scrollAreaWidgetContents) self.tableWidget.setMinimumSize(QtCore.QSize(0, 0)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(10) font.setBold(False) font.setWeight(50) self.tableWidget.setFont(font) self.tableWidget.viewport().setProperty("cursor", QtGui.QCursor(QtCore.Qt.ArrowCursor)) self.tableWidget.setFrameShape(QtWidgets.QFrame.WinPanel) self.tableWidget.setObjectName("tableWidget") self.tableWidget.setColumnCount(4) self.tableWidget.setRowCount(0) item = QtWidgets.QTableWidgetItem() item.setTextAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignVCenter) font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget.setHorizontalHeaderItem(0, item) item = QtWidgets.QTableWidgetItem() font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget.setHorizontalHeaderItem(1, item) item = QtWidgets.QTableWidgetItem() font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget.setHorizontalHeaderItem(2, item) item = QtWidgets.QTableWidgetItem() font = QtGui.QFont() font.setBold(True) font.setWeight(75) item.setFont(font) self.tableWidget.setHorizontalHeaderItem(3, item) self.gridLayout_3.addWidget(self.tableWidget, 0, 0, 1, 1) self.scrollArea.setWidget(self.scrollAreaWidgetContents) self.gridLayout.addWidget(self.scrollArea, 1, 1, 3, 1) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setObjectName("horizontalLayout_2") self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setSpacing(10) self.horizontalLayout.setObjectName("horizontalLayout") self.startButton = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.startButton.sizePolicy().hasHeightForWidth()) self.startButton.setSizePolicy(sizePolicy) self.startButton.setMinimumSize(QtCore.QSize(160, 30)) self.startButton.setMaximumSize(QtCore.QSize(200, 30)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.startButton.setFont(font) self.startButton.setStyleSheet("background-color:rgb(197, 208, 255)") self.startButton.setObjectName("startButton") self.horizontalLayout.addWidget(self.startButton) self.stopButton = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.stopButton.sizePolicy().hasHeightForWidth()) self.stopButton.setSizePolicy(sizePolicy) self.stopButton.setMinimumSize(QtCore.QSize(150, 30)) self.stopButton.setMaximumSize(QtCore.QSize(200, 30)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.stopButton.setFont(font) self.stopButton.setStyleSheet("background-color:rgb(197, 208, 255)") self.stopButton.setObjectName("stopButton") self.horizontalLayout.addWidget(self.stopButton) self.detectButton = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.detectButton.sizePolicy().hasHeightForWidth()) self.detectButton.setSizePolicy(sizePolicy) self.detectButton.setMinimumSize(QtCore.QSize(150, 30)) self.detectButton.setMaximumSize(QtCore.QSize(200, 30)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.detectButton.setFont(font) self.detectButton.setStyleSheet("background-color:rgb(197, 208, 255)") self.detectButton.setObjectName("detectButton") self.horizontalLayout.addWidget(self.detectButton) self.trainButton = QtWidgets.QPushButton(self.centralwidget) self.trainButton.setMinimumSize(QtCore.QSize(150, 30)) font = QtGui.QFont() font.setFamily("Calibri") font.setPointSize(11) font.setBold(True) font.setWeight(75) self.trainButton.setFont(font) self.trainButton.setStyleSheet("background-color:rgb(197, 208, 255)") self.trainButton.setObjectName("trainButton") self.horizontalLayout.addWidget(self.trainButton) self.horizontalLayout_2.addLayout(self.horizontalLayout) self.gridLayout.addLayout(self.horizontalLayout_2, 0, 0, 2, 1) MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 1313, 21)) self.menubar.setObjectName("menubar") self.menuKameralar = QtWidgets.QMenu(self.menubar) self.menuKameralar.setObjectName("menuKameralar") self.menuFontlar = QtWidgets.QMenu(self.menubar) self.menuFontlar.setObjectName("menuFontlar") MainWindow.setMenuBar(self.menubar) self.actionDiskten_Ekle = QtWidgets.QAction(MainWindow) self.actionDiskten_Ekle.setObjectName("actionDiskten_Ekle") self.actionProgramHakkinda = QtWidgets.QAction(MainWindow) self.actionProgramHakkinda.setObjectName("actionProgramHakkinda") self.actionGelistiriciHakkinda = QtWidgets.QAction(MainWindow) self.actionGelistiriciHakkinda.setObjectName("actionGelistiriciHakkinda") self.actionPersonelEkle = QtWidgets.QAction(MainWindow) self.actionPersonelEkle.setObjectName("actionPersonelEkle") self.actionPersoneller = QtWidgets.QAction(MainWindow) self.actionPersoneller.setObjectName("actionPersoneller") self.actionLoglar = QtWidgets.QAction(MainWindow) self.actionLoglar.setObjectName("actionLoglar") self.actionKamera1 = QtWidgets.QAction(MainWindow) self.actionKamera1.setCheckable(True) self.actionKamera1.setObjectName("actionKamera1") self.actionKamera2 = QtWidgets.QAction(MainWindow) self.actionKamera2.setCheckable(True) self.actionKamera2.setObjectName("actionKamera2") self.actionKamera3 = QtWidgets.QAction(MainWindow) self.actionKamera3.setCheckable(True) self.actionKamera3.setObjectName("actionKamera3") self.actionKamera4 = QtWidgets.QAction(MainWindow) self.actionKamera4.setCheckable(True) self.actionKamera4.setObjectName("actionKamera4") self.actionKamera5 = QtWidgets.QAction(MainWindow) self.actionKamera5.setCheckable(True) self.actionKamera5.setObjectName("actionKamera5") self.actionCikis = QtWidgets.QAction(MainWindow) self.actionCikis.setObjectName("actionCikis") self.actionYazdir = QtWidgets.QAction(MainWindow) self.actionYazdir.setObjectName("actionYazdir") self.actionPersonelGirisCikisBilgileri = QtWidgets.QAction(MainWindow) self.actionPersonelGirisCikisBilgileri.setObjectName("actionPersonelGirisCikisBilgileri") self.actionFotograf_Ekle = QtWidgets.QAction(MainWindow) self.actionFotograf_Ekle.setObjectName("actionFotograf_Ekle") self.actionPersonelleriExcelDosyasinaAktar = QtWidgets.QAction(MainWindow) self.actionPersonelleriExcelDosyasinaAktar.setObjectName("actionPersonelleriExcelDosyasinaAktar") self.actionGiris_Cikis_KayitlariniExcelDosyasinaAktar = QtWidgets.QAction(MainWindow) self.actionGiris_Cikis_KayitlariniExcelDosyasinaAktar.setObjectName("actionGiris_Cikis_KayitlariniExcelDosyasinaAktar") self.actionAddCamera = QtWidgets.QAction(MainWindow) self.actionAddCamera.setObjectName("actionAddCamera") self.actionCameras = QtWidgets.QAction(MainWindow) self.actionCameras.setObjectName("actionCameras") self.actionAddFont = QtWidgets.QAction(MainWindow) self.actionAddFont.setObjectName("actionAddFont") self.actionFonts = QtWidgets.QAction(MainWindow) self.actionFonts.setObjectName("actionFonts") self.actionPlate = QtWidgets.QAction(MainWindow) self.actionPlate.setObjectName("actionPlate") self.menuKameralar.addAction(self.actionAddCamera) self.menuKameralar.addAction(self.actionCameras) self.menuKameralar.addSeparator() self.menuKameralar.addAction(self.actionPlate) self.menuFontlar.addAction(self.actionAddFont) self.menuFontlar.addAction(self.actionFonts) self.menubar.addAction(self.menuKameralar.menuAction()) self.menubar.addAction(self.menuFontlar.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Vagon Plaka Takip")) item = self.tableWidget_2.horizontalHeaderItem(0) item.setText(_translate("MainWindow", "Okunan Plaka")) item = self.tableWidget_2.horizontalHeaderItem(1) item.setText(_translate("MainWindow", "Tarih")) item = self.tableWidget_2.horizontalHeaderItem(2) item.setText(_translate("MainWindow", "Saat")) item = self.tableWidget.horizontalHeaderItem(0) item.setText(_translate("MainWindow", "Gorunen Plaka")) item = self.tableWidget.horizontalHeaderItem(1) item.setText(_translate("MainWindow", "Tarih")) item = self.tableWidget.horizontalHeaderItem(2) item.setText(_translate("MainWindow", "Saat")) item = self.tableWidget.horizontalHeaderItem(3) item.setText(_translate("MainWindow", "Kamera")) self.startButton.setText(_translate("MainWindow", "Kamerayi Baslat")) self.stopButton.setText(_translate("MainWindow", "Kamerayi Durdur")) self.detectButton.setText(_translate("MainWindow", "Plaka Tanımayı Baslat")) self.trainButton.setText(_translate("MainWindow", "KNN Çalıstır")) self.menuKameralar.setTitle(_translate("MainWindow", "Kameralar")) self.menuFontlar.setTitle(_translate("MainWindow", "Fontlar")) self.actionDiskten_Ekle.setText(_translate("MainWindow", "Diskten Ekle")) self.actionProgramHakkinda.setText(_translate("MainWindow", "Program Hakkinda")) self.actionGelistiriciHakkinda.setText(_translate("MainWindow", "Gelistirici Hakkinda")) self.actionPersonelEkle.setText(_translate("MainWindow", "Personel Ekle")) self.actionPersoneller.setText(_translate("MainWindow", "Personeller")) self.actionLoglar.setText(_translate("MainWindow", "Genel Loglar")) self.actionKamera1.setText(_translate("MainWindow", "Kamera-1")) self.actionKamera2.setText(_translate("MainWindow", "Kamera-2")) self.actionKamera3.setText(_translate("MainWindow", "Kamera-3")) self.actionKamera4.setText(_translate("MainWindow", "Kamera-4")) self.actionKamera5.setText(_translate("MainWindow", "Kamera-5")) self.actionCikis.setText(_translate("MainWindow", "Cikis")) self.actionYazdir.setText(_translate("MainWindow", "Excel\'e Yazdir")) self.actionPersonelGirisCikisBilgileri.setText(_translate("MainWindow", "Personel Giris/Cikis Bilgileri")) self.actionFotograf_Ekle.setText(_translate("MainWindow", "Fotograf Ekle")) self.actionPersonelleriExcelDosyasinaAktar.setText(_translate("MainWindow", "Personelleri Excel Dosyasina Aktar")) self.actionGiris_Cikis_KayitlariniExcelDosyasinaAktar.setText(_translate("MainWindow", "Giris-Cikis Kayitlarini Excel Dosyasina Aktar")) self.actionAddCamera.setText(_translate("MainWindow", "Kamera Ekle")) self.actionCameras.setText(_translate("MainWindow", "Kameralar")) self.actionAddFont.setText(_translate("MainWindow", "Font Ekle")) self.actionFonts.setText(_translate("MainWindow", "Fontlar")) self.actionPlate.setText(_translate("MainWindow", "Plaka"))
[ "PyQt5.QtWidgets.QSizePolicy", "PyQt5.QtWidgets.QTableWidget", "PyQt5.QtWidgets.QComboBox", "PyQt5.QtWidgets.QStatusBar", "PyQt5.QtWidgets.QLabel", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QMenu", "PyQt5.QtGui.QFont", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "PyQt5.QtWidgets.QHBoxLayout", "PyQt5.QtWidgets.QGridLayout", "PyQt5.QtWidgets.QScrollArea", "PyQt5.QtWidgets.QMenuBar", "PyQt5.QtWidgets.QAction", "PyQt5.QtCore.QRect", "PyQt5.QtGui.QCursor", "PyQt5.QtWidgets.QTableWidgetItem", "PyQt5.QtCore.QSize" ]
[((821, 850), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (838, 850), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((935, 976), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', (['self.centralwidget'], {}), '(self.centralwidget)\n', (956, 976), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1060, 1099), 'PyQt5.QtWidgets.QComboBox', 'QtWidgets.QComboBox', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1079, 1099), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1249, 1262), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (1260, 1262), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1750, 1791), 'PyQt5.QtWidgets.QScrollArea', 'QtWidgets.QScrollArea', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1771, 1791), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1938, 1951), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (1949, 1951), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2296, 2315), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', ([], {}), '()\n', (2313, 2315), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2510, 2564), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', (['self.scrollAreaWidgetContents_3'], {}), '(self.scrollAreaWidgetContents_3)\n', (2531, 2564), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2650, 2705), 'PyQt5.QtWidgets.QTableWidget', 'QtWidgets.QTableWidget', (['self.scrollAreaWidgetContents_3'], {}), '(self.scrollAreaWidgetContents_3)\n', (2672, 2705), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2783, 2796), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (2794, 2796), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3185, 3213), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (3211, 3213), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3306, 3319), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (3317, 3319), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3476, 3504), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (3502, 3504), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3520, 3533), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (3531, 3533), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3690, 3718), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (3716, 3718), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3734, 3747), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (3745, 3747), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4115, 4151), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4131, 4151), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4289, 4302), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (4300, 4302), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4956, 4997), 'PyQt5.QtWidgets.QScrollArea', 'QtWidgets.QScrollArea', (['self.centralwidget'], {}), '(self.centralwidget)\n', (4977, 4997), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5141, 5154), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (5152, 5154), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5487, 5506), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', ([], {}), '()\n', (5504, 5506), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5695, 5747), 'PyQt5.QtWidgets.QGridLayout', 'QtWidgets.QGridLayout', (['self.scrollAreaWidgetContents'], {}), '(self.scrollAreaWidgetContents)\n', (5716, 5747), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5831, 5884), 'PyQt5.QtWidgets.QTableWidget', 'QtWidgets.QTableWidget', (['self.scrollAreaWidgetContents'], {}), '(self.scrollAreaWidgetContents)\n', (5853, 5884), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5960, 5973), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (5971, 5973), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6446, 6474), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (6472, 6474), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6567, 6580), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (6578, 6580), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6735, 6763), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (6761, 6763), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6779, 6792), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (6790, 6792), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6947, 6975), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (6973, 6975), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6991, 7004), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (7002, 7004), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7159, 7187), 'PyQt5.QtWidgets.QTableWidgetItem', 'QtWidgets.QTableWidgetItem', ([], {}), '()\n', (7185, 7187), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7203, 7216), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (7214, 7216), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7584, 7607), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (7605, 7607), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7708, 7731), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (7729, 7731), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7868, 7909), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (7889, 7909), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7931, 8021), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Minimum', 'QtWidgets.QSizePolicy.Preferred'], {}), '(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.\n Preferred)\n', (7952, 8021), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8381, 8394), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (8392, 8394), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8768, 8809), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (8789, 8809), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8831, 8923), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Preferred', 'QtWidgets.QSizePolicy.Preferred'], {}), '(QtWidgets.QSizePolicy.Preferred, QtWidgets.\n QSizePolicy.Preferred)\n', (8852, 8923), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9279, 9292), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (9290, 9292), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9663, 9704), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (9684, 9704), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9726, 9816), 'PyQt5.QtWidgets.QSizePolicy', 'QtWidgets.QSizePolicy', (['QtWidgets.QSizePolicy.Minimum', 'QtWidgets.QSizePolicy.Preferred'], {}), '(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.\n Preferred)\n', (9747, 9816), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10180, 10193), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (10191, 10193), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10573, 10614), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.centralwidget'], {}), '(self.centralwidget)\n', (10594, 10614), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10693, 10706), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (10704, 10706), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11271, 11303), 'PyQt5.QtWidgets.QStatusBar', 'QtWidgets.QStatusBar', (['MainWindow'], {}), '(MainWindow)\n', (11291, 11303), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11425, 11455), 'PyQt5.QtWidgets.QMenuBar', 'QtWidgets.QMenuBar', (['MainWindow'], {}), '(MainWindow)\n', (11443, 11455), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11594, 11623), 'PyQt5.QtWidgets.QMenu', 'QtWidgets.QMenu', (['self.menubar'], {}), '(self.menubar)\n', (11609, 11623), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11709, 11738), 'PyQt5.QtWidgets.QMenu', 'QtWidgets.QMenu', (['self.menubar'], {}), '(self.menubar)\n', (11724, 11738), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11871, 11900), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (11888, 11900), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12006, 12035), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12023, 12035), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12151, 12180), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12168, 12180), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12297, 12326), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12314, 12326), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12428, 12457), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12445, 12457), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12552, 12581), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12569, 12581), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12667, 12696), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12684, 12696), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12830, 12859), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (12847, 12859), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((12993, 13022), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13010, 13022), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((13156, 13185), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13173, 13185), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((13319, 13348), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13336, 13348), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((13480, 13509), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13497, 13509), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((13592, 13621), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13609, 13621), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((13727, 13756), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13744, 13756), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((13890, 13919), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (13907, 13919), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14043, 14072), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14060, 14072), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14243, 14272), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14260, 14272), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14432, 14461), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14449, 14461), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14553, 14582), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14570, 14582), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14670, 14699), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14687, 14699), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14785, 14814), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14802, 14814), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((14896, 14925), 'PyQt5.QtWidgets.QAction', 'QtWidgets.QAction', (['MainWindow'], {}), '(MainWindow)\n', (14913, 14925), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((15475, 15524), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (15512, 15524), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((479, 502), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(1313)', '(869)'], {}), '(1313, 869)\n', (491, 502), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((538, 562), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(1920)', '(1080)'], {}), '(1920, 1080)\n', (550, 562), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1144, 1165), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(200)', '(30)'], {}), '(200, 30)\n', (1156, 1165), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1211, 1232), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(200)', '(50)'], {}), '(200, 50)\n', (1223, 1232), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1833, 1855), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(640)', '(279)'], {}), '(640, 279)\n', (1845, 1855), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1898, 1921), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(640)', '(9999)'], {}), '(640, 9999)\n', (1910, 1921), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2368, 2396), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(640)', '(282)'], {}), '(0, 0, 640, 282)\n', (2380, 2396), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2748, 2766), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(0)', '(0)'], {}), '(0, 0)\n', (2760, 2766), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4189, 4211), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(640)', '(480)'], {}), '(640, 480)\n', (4201, 4211), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4250, 4272), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(640)', '(480)'], {}), '(640, 480)\n', (4262, 4272), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4460, 4496), 'PyQt5.QtGui.QCursor', 'QtGui.QCursor', (['QtCore.Qt.ArrowCursor'], {}), '(QtCore.Qt.ArrowCursor)\n', (4473, 4496), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5037, 5059), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(640)', '(771)'], {}), '(640, 771)\n', (5049, 5059), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5100, 5124), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(9999)', '(9999)'], {}), '(9999, 9999)\n', (5112, 5124), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5557, 5585), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(645)', '(774)'], {}), '(0, 0, 645, 774)\n', (5569, 5585), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5925, 5943), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(0)', '(0)'], {}), '(0, 0)\n', (5937, 5943), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((6190, 6226), 'PyQt5.QtGui.QCursor', 'QtGui.QCursor', (['QtCore.Qt.ArrowCursor'], {}), '(QtCore.Qt.ArrowCursor)\n', (6203, 6226), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8280, 8301), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(160)', '(30)'], {}), '(160, 30)\n', (8292, 8301), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((8343, 8364), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(200)', '(30)'], {}), '(200, 30)\n', (8355, 8364), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9179, 9200), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(150)', '(30)'], {}), '(150, 30)\n', (9191, 9200), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((9241, 9262), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(200)', '(30)'], {}), '(200, 30)\n', (9253, 9262), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10078, 10099), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(150)', '(30)'], {}), '(150, 30)\n', (10090, 10099), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10142, 10163), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(200)', '(30)'], {}), '(200, 30)\n', (10154, 10163), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((10655, 10676), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['(150)', '(30)'], {}), '(150, 30)\n', (10667, 10676), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((11489, 11517), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(1313)', '(21)'], {}), '(0, 0, 1313, 21)\n', (11501, 11517), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
# -*- coding: utf-8 -*- """ Created on Thu Mar 24 12:17:33 2016 @author: mcgibbon """ import xarray from six import string_types from datetime import timedelta from .time import TimeRange, get_netcdf_time, datetime from . import export from .util import zlcl_from_T_RH from .magic import leg_times import numpy as np import re import atmos try: from numba import jit except ImportError: def jit(function): return function def align(*objects, **kwargs): """Given any number of Dataset objects, returns new objects with aligned indexes. Array from the aligned objects are suitable as input to mathematical operators, because along each dimension they have the same indexes. Missing values (if ``join != 'inner'``) are filled with NaN. Parameters ---------- *objects : Dataset Objects to align. join : {'outer', 'inner', 'left', 'right'}, optional Method for joining the indexes of the passed objects along each dimension: - 'outer': use the union of object indexes - 'inner': use the intersection of object indexes - 'left': use indexes from the first object with each dimension - 'right': use indexes from the last object with each dimension copy : bool, optional If ``copy=True``, the returned objects contain all new variables. If ``copy=False`` and no reindexing is required then the aligned objects will include original variables. Returns ------- aligned : same as *objects Tuple of objects with aligned coordinates. """ xarray_datasets = [obj.xarray for obj in objects] aligned_datasets = xarray.align(xarray_datasets, **kwargs) return [Dataset(ds) for ds in aligned_datasets] class EmptyDataset(object): pass @export class Dataset(object): def __init__(self, xarray_dataset, variable_aliases=None): """ variable_aliases should be a dictionary whose keys are aliases, and values are the variable names they refer to. """ # if 'time_offset' in xarray_dataset: # xarray_dataset['time'] = xarray_dataset['time_offset'] self._dataset = xarray_dataset self._time = get_netcdf_time(self._dataset) if not hasattr(self, 'variable_aliases'): # subclass might initialize this self.variable_aliases = {} if variable_aliases is not None: for alias, variable_name in variable_aliases.items(): self.define_alias(alias, variable_name) def __repr__(self): return self._dataset.__repr__() def __str__(self): return self._dataset.__str__() def __unicode__(self): return self._dataset.__unicode__() def resample(self, window='3H', label='center'): if label == 'center': xarray_dataset = self._dataset.resample(window, 'time', how='mean', label='left') time_offset_to_middle = 0.5*(xarray_dataset['time'][1] - xarray_dataset['time'][0]) xarray_dataset['time'] += time_offset_to_middle else: xarray_dataset = self._dataset.resample(window, 'time', how='mean', label=label) return Dataset(xarray_dataset) def __getitem__(self, key): if key in self.variable_aliases: return self[self.variable_aliases[key]] elif key in self._dataset: return self._dataset[key] else: raise KeyError() def __setitem__(self, key, item): self._dataset[key] = item def define_alias(self, alias, variable_name): if not self._dataset_has_variable(variable_name): raise ValueError( 'Cannot create alias for non-existent variable {}'.format(variable_name)) else: self.variable_aliases[alias] = variable_name def _dataset_has_variable(self, variable_name): return variable_name in self._dataset.data_vars.keys() @property def time(self): return self._time.values @property def time_range(self): return TimeRange(self.time[0], self.time[-1]) @property def xarray(self): return self._dataset
[ "xarray.align" ]
[((1669, 1708), 'xarray.align', 'xarray.align', (['xarray_datasets'], {}), '(xarray_datasets, **kwargs)\n', (1681, 1708), False, 'import xarray\n')]
import requests, csv, sys from bs4 import BeautifulSoup as bs # argument handling if len(sys.argv) is not 2: sys.exit('Please enter a school name to scrape! (Options: Penn, Brown, or Harvard)') school = sys.argv[1].lower() if school != 'penn' and school != 'harvard' and school != 'brown': sys.exit('Not a valid school. Try Penn, Brown, or Harvard!') # assign url based on input url = 'https://secure.www.upenn.edu/secretary/hondegchron.html' if school == 'harvard': url = 'https://www.harvard.edu/on-campus/commencement/honorary-degrees' if school == 'brown': url = 'https://www.brown.edu/about/administration/corporation/2000s' r = requests.get(url) data = r.text soup = bs(data, 'html.parser') honorees_by_year = {} # gets data from Penn's website def penn(): years = {} names = [] for year in soup.findAll('h2'): honorees = year.next_sibling.next_sibling.get_text().splitlines() names = [] name = '' for s in honorees: if not s.startswith('(') and not s.startswith('January'): name += s.replace(u'\xa0', u' ').strip().encode('utf8') degrees = 'D.' in name or 'M.' in name or 'B.' in name mistakes = 'Award' in name or '.D' in name or 'L.' in name if degrees or mistakes: names.append(name) name = '' years[int(year.text)] = names fixed_years = {} for year in years: fixed_names = [] for name in years[year]: n = name.split(',') name = '' for i in range(1, len(n) - 1): name += n[i].strip() + ' ' name += n[0].title().strip() fixed_names.append(name) fixed_years[year] = fixed_names return fixed_years # gets data from Harvard's website def harvard(): years = {} header = True for row in soup.findAll('tr'): if header: header = False continue # map all names in this list to their year cells = row.findAll('td') if len(cells) < 1: continue names = cells[1].text.split(',') year = int(cells[0].text) if year in years: years[year] += names else: years[year] = names # strip names and fix Jr. cases for year in years: fixed_names = [] names = years[year] for i, name in enumerate(names): if name.strip() == 'Jr.': fixed_names[len(fixed_names) - 1] += ' Jr.' else: fixed_names.append(name.strip().encode('utf8')) years[year] = fixed_names return years # gets data from Brown's website def brown(): years = {} c20 = 'https://www.brown.edu/about/administration/corporation/2000s' c19 = 'https://www.brown.edu/about/administration/corporation/1900s' c18 = 'https://www.brown.edu/about/administration/corporation/1800s' c17 = 'https://www.brown.edu/about/administration/corporation/1700s' years20 = brown_get_century(c20, years) years19 = brown_get_century(c19, years20) years18 = brown_get_century(c18, years19) years17 = brown_get_century(c17, years18) # strip names and fix Jr. cases years = years17 for year in years: fixed_names = [] names = years[year] for name in names: name = name.strip().encode('utf8') end = name.find('(') if end is not -1: name = name[0:end] comma = name.find(', ') jr = name.find('Jr.') if comma is not -1 and jr is -1: names = name.split(', ') name = names[1].strip() + ' ' + names[0].strip() elif comma is not -1 and jr is not -1: names = name.split(', ') name = names[1].strip() + ' ' + names[0].strip() + ' Jr.' fixed_names.append(name) years[year] = fixed_names return years # gets data from each individual Brown page def brown_get_century(url, years): r = requests.get(url) data = r.text soup = bs(data, 'html.parser') header = True for row in soup.findAll('tr'): if header: header = False continue # map all the name to its year cells = row.findAll('td') if len(cells) < 1: continue name = cells[2].text year = int(cells[0].text) if year in years: years[year].append(name) else: years[year] = [name] return years if school == 'penn': honorees_by_year = penn() elif school == 'harvard': honorees_by_year = harvard() elif school == 'brown': honorees_by_year = brown() # write out all data to a csv with open('data/honorees_' + school + '.csv', 'wb') as output: honorees = csv.writer(output) for year in sorted(honorees_by_year): for name in honorees_by_year[year]: honorees.writerow([name, year])
[ "bs4.BeautifulSoup", "csv.writer", "requests.get", "sys.exit" ]
[((655, 672), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (667, 672), False, 'import requests, csv, sys\n'), ((694, 717), 'bs4.BeautifulSoup', 'bs', (['data', '"""html.parser"""'], {}), "(data, 'html.parser')\n", (696, 717), True, 'from bs4 import BeautifulSoup as bs\n'), ((114, 203), 'sys.exit', 'sys.exit', (['"""Please enter a school name to scrape! (Options: Penn, Brown, or Harvard)"""'], {}), "(\n 'Please enter a school name to scrape! (Options: Penn, Brown, or Harvard)')\n", (122, 203), False, 'import requests, csv, sys\n'), ((301, 361), 'sys.exit', 'sys.exit', (['"""Not a valid school. Try Penn, Brown, or Harvard!"""'], {}), "('Not a valid school. Try Penn, Brown, or Harvard!')\n", (309, 361), False, 'import requests, csv, sys\n'), ((4080, 4097), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (4092, 4097), False, 'import requests, csv, sys\n'), ((4127, 4150), 'bs4.BeautifulSoup', 'bs', (['data', '"""html.parser"""'], {}), "(data, 'html.parser')\n", (4129, 4150), True, 'from bs4 import BeautifulSoup as bs\n'), ((4860, 4878), 'csv.writer', 'csv.writer', (['output'], {}), '(output)\n', (4870, 4878), False, 'import requests, csv, sys\n')]
# -*- coding: utf-8 -*- # Description: Document # Documentation: data_structures.txt import os.path import string import six from Remark.FileSystem import unixDirectoryName, unixRelativePath, fileExtension from Remark.DocumentType_Registry import documentType class Document(object): def __init__(self, relativeName): ''' Constructs a document-object for the given file. relativeName: The path to the file, relative to the document-tree's root-directory. ''' # The relative-path to the document, with respect to # the document-tree's root-directory. It is important # that the relative-name is in the unix-form. This is # being relied upon elsewhere (e.g. Gallery_Macro # creates an md5-digest from the relative-name; # this must be portable across operating systems). self.relativeName = unixDirectoryName(relativeName) # The relative-directory and the filename of the document. self.relativeDirectory, self.fileName = os.path.split(relativeName) # The file-name extension of this document, in lower-case # to enable case-insensitivity. self.extension = fileExtension(self.fileName).lower() # The document-type of this document. self.documentType = documentType(self.extension) # The parent-document of this document. self.parent = None # A map from document's relative-name (string) to a # document-object (Document). self.childSet = {} # A map from a tag-name (string) to a text # (list of strings). self.tagSet = {} # The predefined document-tags. self.setTag('description') self.setTag('detail') self.setTag('author') self.setTag('file_name', [self.fileName]) self.setTag('relative_name', [self.relativeName]) self.setTag('relative_directory', [self.relativeDirectory]) self.setTag('extension', [self.extension]) self.setTag('html_head') self.setTag('document_type', [self.documentType.name()]) # This will be filled in later, after the # description-tags have been parsed. self.setTag('link_description') # Whether the document should be generated. # By default the document is not generated; # the regeneration rules change this later. self.regenerate_ = False def setRegenerate(self, regenerate): self.regenerate_ = regenerate def regenerate(self): return self.regenerate_ def insertChild(self, child): ''' Inserts a new child-document for this document. A document can be only be linked to at most one parent-document. ''' assert child.parent == None self.childSet[child.relativeName] = child child.parent = self def setTag(self, tagName, text = ['']): ''' Associates text with a given tag-name. tagName (string): The name of the tag. It will be stripped of surrounding whitespace. text (list of strings): The text to associate to the tag-name. ''' assert isinstance(text, list) assert isinstance(tagName, six.string_types) self.tagSet[tagName.strip()] = text def tag(self, tagName, defaultText = ['']): ''' Returns the text associated with the given tag-name. If the tag-name is not found, returns the given default-value instead. tagName (string): The tag-name to find. It will be stripped of surrounding whitespace. ''' assert isinstance(tagName, six.string_types) return self.tagSet.get(tagName.strip(), defaultText) def tagString(self, tagName, default = ''): ''' Returns the tag-text associated with the given tag-name, such that the lines of the tag-text are joined together into a single string. ''' return ''.join(self.tag(tagName, [default])) def tagInteger(self, tagName, default = 0): ''' Returns the integer associated with the given tag-name. The tag-text is first interpreted as a single string, which is then converted to an integer. ''' if not tagName in self.tagSet: return default return int(self.tagString(tagName)) def linkDescription(self): ''' Returns the link-description of the document. returns: The link-description given by the document-type, if the document has a document-type. Otherwise the empty string. ''' type = self.documentType if type == None: return '' return self.documentType.linkDescription(self)
[ "Remark.DocumentType_Registry.documentType", "Remark.FileSystem.fileExtension", "Remark.FileSystem.unixDirectoryName" ]
[((931, 962), 'Remark.FileSystem.unixDirectoryName', 'unixDirectoryName', (['relativeName'], {}), '(relativeName)\n', (948, 962), False, 'from Remark.FileSystem import unixDirectoryName, unixRelativePath, fileExtension\n'), ((1361, 1389), 'Remark.DocumentType_Registry.documentType', 'documentType', (['self.extension'], {}), '(self.extension)\n', (1373, 1389), False, 'from Remark.DocumentType_Registry import documentType\n'), ((1246, 1274), 'Remark.FileSystem.fileExtension', 'fileExtension', (['self.fileName'], {}), '(self.fileName)\n', (1259, 1274), False, 'from Remark.FileSystem import unixDirectoryName, unixRelativePath, fileExtension\n')]
# Generated by Django 2.0 on 2018-08-16 11:50 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='ChatRecord', fields=[ ('msg_id', models.AutoField(primary_key=True, serialize=False)), ('content', models.CharField(max_length=256)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '聊天记录', 'verbose_name_plural': '聊天记录', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='Collection', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '收藏记录', 'verbose_name_plural': '收藏记录', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='Follow', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '关注者', 'verbose_name_plural': '关注者', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='Goods', fields=[ ('goods_id', models.AutoField(primary_key=True, serialize=False)), ('title', models.CharField(max_length=30)), ('description', models.CharField(max_length=3000)), ('picture', models.TextField()), ('sale_way', models.PositiveSmallIntegerField(choices=[(0, '一口价'), (1, '拍卖')])), ('is_new', models.BooleanField(choices=[(0, '非全新'), (1, '全新')])), ('fixed_price', models.DecimalField(decimal_places=2, max_digits=8)), ('purchase_price', models.DecimalField(blank=True, decimal_places=2, max_digits=8, null=True)), ('status', models.PositiveSmallIntegerField(choices=[(0, '未出售'), (1, '交易中'), (2, '已出售')])), ('visits', models.PositiveIntegerField(default=0)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '商品标题', 'verbose_name_plural': '商品标题', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='GoodsMessage', fields=[ ('msg_id', models.AutoField(primary_key=True, serialize=False)), ('content', models.CharField(max_length=256)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ('goods_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app_db.Goods')), ], options={ 'verbose_name': '商品留言', 'verbose_name_plural': '商品留言', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='GoodsType', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('name', models.CharField(max_length=20, unique=True)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '物品分类', 'verbose_name_plural': '物品分类', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='Permission', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('permission_no', models.CharField(max_length=255, unique=True)), ('permission_name', models.CharField(blank=True, max_length=255)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': '权限', 'verbose_name_plural': '权限', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='Role', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('role_name', models.CharField(max_length=255)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ('role_permission', models.TextField(choices=[('normal_user', '普通用户')], default='普通用户')), ], options={ 'verbose_name': '角色', 'verbose_name_plural': '角色', 'ordering': ['-create_at'], }, ), migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(primary_key=True, serialize=False)), ('avatar', models.CharField(max_length=2083)), ('real_name', models.CharField(max_length=20)), ('student_id', models.CharField(max_length=11)), ('card_id', models.CharField(max_length=18)), ('sex', models.PositiveSmallIntegerField(choices=[(0, '男'), (1, '女')])), ('email', models.EmailField(max_length=254, unique=True)), ('name', models.CharField(max_length=20, unique=True)), ('password', models.CharField(max_length=256)), ('create_at', models.DateTimeField(auto_now_add=True)), ('update_at', models.DateTimeField(auto_now=True)), ('role_id', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app_db.Role')), ], options={ 'verbose_name': '用户', 'verbose_name_plural': '用户', 'ordering': ['-create_at'], }, ), migrations.AddField( model_name='goodsmessage', name='recv_user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='it_recv_this_message', to='app_db.User'), ), migrations.AddField( model_name='goodsmessage', name='send_user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='it_send_this_message', to='app_db.User'), ), migrations.AddField( model_name='goods', name='customer_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app_db.User'), ), migrations.AddField( model_name='goods', name='goods_type_id', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='app_db.GoodsType'), ), migrations.AddField( model_name='follow', name='fans_user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='its_fans', to='app_db.User'), ), migrations.AddField( model_name='follow', name='user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='it_love', to='app_db.User'), ), migrations.AddField( model_name='collection', name='goods_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app_db.Goods'), ), migrations.AddField( model_name='collection', name='user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app_db.User'), ), migrations.AddField( model_name='chatrecord', name='goods_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='app_db.Goods'), ), migrations.AddField( model_name='chatrecord', name='recv_user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='it_recv_this_record', to='app_db.User'), ), migrations.AddField( model_name='chatrecord', name='send_user_id', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='it_send_this_record', to='app_db.User'), ), ]
[ "django.db.models.EmailField", "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.BooleanField", "django.db.models.AutoField", "django.db.models.PositiveIntegerField", "django.db.models.DateTimeField", "django.db.models.DecimalField", "django.db.models.PositiveSmallIntegerField", "django.db.models.CharField" ]
[((6826, 6948), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""it_recv_this_message"""', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='it_recv_this_message', to='app_db.User')\n", (6843, 6948), False, 'from django.db import migrations, models\n'), ((7075, 7197), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""it_send_this_message"""', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='it_send_this_message', to='app_db.User')\n", (7092, 7197), False, 'from django.db import migrations, models\n'), ((7316, 7401), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, to='app_db.User'\n )\n", (7333, 7401), False, 'from django.db import migrations, models\n'), ((7522, 7635), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.GoodsType"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, to='app_db.GoodsType')\n", (7539, 7635), False, 'from django.db import migrations, models\n'), ((7756, 7866), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""its_fans"""', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='its_fans', to='app_db.User')\n", (7773, 7866), False, 'from django.db import migrations, models\n'), ((7982, 8091), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""it_love"""', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='it_love', to='app_db.User')\n", (7999, 8091), False, 'from django.db import migrations, models\n'), ((8212, 8298), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.Goods"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'app_db.Goods')\n", (8229, 8298), False, 'from django.db import migrations, models\n'), ((8418, 8503), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, to='app_db.User'\n )\n", (8435, 8503), False, 'from django.db import migrations, models\n'), ((8624, 8710), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.Goods"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'app_db.Goods')\n", (8641, 8710), False, 'from django.db import migrations, models\n'), ((8835, 8956), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""it_recv_this_record"""', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='it_recv_this_record', to='app_db.User')\n", (8852, 8956), False, 'from django.db import migrations, models\n'), ((9081, 9202), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""it_send_this_record"""', 'to': '"""app_db.User"""'}), "(on_delete=django.db.models.deletion.CASCADE, related_name\n ='it_send_this_record', to='app_db.User')\n", (9098, 9202), False, 'from django.db import migrations, models\n'), ((341, 392), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (357, 392), False, 'from django.db import migrations, models\n'), ((423, 455), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (439, 455), False, 'from django.db import migrations, models\n'), ((488, 527), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (508, 527), False, 'from django.db import migrations, models\n'), ((560, 595), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (580, 595), False, 'from django.db import migrations, models\n'), ((899, 950), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (915, 950), False, 'from django.db import migrations, models\n'), ((983, 1022), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1003, 1022), False, 'from django.db import migrations, models\n'), ((1055, 1090), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (1075, 1090), False, 'from django.db import migrations, models\n'), ((1390, 1441), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (1406, 1441), False, 'from django.db import migrations, models\n'), ((1474, 1513), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (1494, 1513), False, 'from django.db import migrations, models\n'), ((1546, 1581), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (1566, 1581), False, 'from django.db import migrations, models\n'), ((1884, 1935), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (1900, 1935), False, 'from django.db import migrations, models\n'), ((1964, 1995), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (1980, 1995), False, 'from django.db import migrations, models\n'), ((2030, 2063), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(3000)'}), '(max_length=3000)\n', (2046, 2063), False, 'from django.db import migrations, models\n'), ((2094, 2112), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (2110, 2112), False, 'from django.db import migrations, models\n'), ((2144, 2209), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'choices': "[(0, '一口价'), (1, '拍卖')]"}), "(choices=[(0, '一口价'), (1, '拍卖')])\n", (2176, 2209), False, 'from django.db import migrations, models\n'), ((2239, 2291), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'choices': "[(0, '非全新'), (1, '全新')]"}), "(choices=[(0, '非全新'), (1, '全新')])\n", (2258, 2291), False, 'from django.db import migrations, models\n'), ((2326, 2377), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'decimal_places': '(2)', 'max_digits': '(8)'}), '(decimal_places=2, max_digits=8)\n', (2345, 2377), False, 'from django.db import migrations, models\n'), ((2415, 2489), 'django.db.models.DecimalField', 'models.DecimalField', ([], {'blank': '(True)', 'decimal_places': '(2)', 'max_digits': '(8)', 'null': '(True)'}), '(blank=True, decimal_places=2, max_digits=8, null=True)\n', (2434, 2489), False, 'from django.db import migrations, models\n'), ((2519, 2597), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'choices': "[(0, '未出售'), (1, '交易中'), (2, '已出售')]"}), "(choices=[(0, '未出售'), (1, '交易中'), (2, '已出售')])\n", (2551, 2597), False, 'from django.db import migrations, models\n'), ((2627, 2665), 'django.db.models.PositiveIntegerField', 'models.PositiveIntegerField', ([], {'default': '(0)'}), '(default=0)\n', (2654, 2665), False, 'from django.db import migrations, models\n'), ((2698, 2737), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (2718, 2737), False, 'from django.db import migrations, models\n'), ((2770, 2805), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (2790, 2805), False, 'from django.db import migrations, models\n'), ((3115, 3166), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (3131, 3166), False, 'from django.db import migrations, models\n'), ((3197, 3229), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (3213, 3229), False, 'from django.db import migrations, models\n'), ((3262, 3301), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3282, 3301), False, 'from django.db import migrations, models\n'), ((3334, 3369), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (3354, 3369), False, 'from django.db import migrations, models\n'), ((3401, 3487), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.Goods"""'}), "(on_delete=django.db.models.deletion.CASCADE, to=\n 'app_db.Goods')\n", (3418, 3487), False, 'from django.db import migrations, models\n'), ((3785, 3836), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (3801, 3836), False, 'from django.db import migrations, models\n'), ((3864, 3908), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'unique': '(True)'}), '(max_length=20, unique=True)\n', (3880, 3908), False, 'from django.db import migrations, models\n'), ((3941, 3980), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (3961, 3980), False, 'from django.db import migrations, models\n'), ((4013, 4048), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (4033, 4048), False, 'from django.db import migrations, models\n'), ((4352, 4403), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (4368, 4403), False, 'from django.db import migrations, models\n'), ((4440, 4485), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)', 'unique': '(True)'}), '(max_length=255, unique=True)\n', (4456, 4485), False, 'from django.db import migrations, models\n'), ((4524, 4568), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(255)'}), '(blank=True, max_length=255)\n', (4540, 4568), False, 'from django.db import migrations, models\n'), ((4601, 4640), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (4621, 4640), False, 'from django.db import migrations, models\n'), ((4673, 4708), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (4693, 4708), False, 'from django.db import migrations, models\n'), ((5002, 5053), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (5018, 5053), False, 'from django.db import migrations, models\n'), ((5086, 5118), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (5102, 5118), False, 'from django.db import migrations, models\n'), ((5151, 5190), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (5171, 5190), False, 'from django.db import migrations, models\n'), ((5223, 5258), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (5243, 5258), False, 'from django.db import migrations, models\n'), ((5297, 5364), 'django.db.models.TextField', 'models.TextField', ([], {'choices': "[('normal_user', '普通用户')]", 'default': '"""普通用户"""'}), "(choices=[('normal_user', '普通用户')], default='普通用户')\n", (5313, 5364), False, 'from django.db import migrations, models\n'), ((5658, 5709), 'django.db.models.AutoField', 'models.AutoField', ([], {'primary_key': '(True)', 'serialize': '(False)'}), '(primary_key=True, serialize=False)\n', (5674, 5709), False, 'from django.db import migrations, models\n'), ((5739, 5772), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(2083)'}), '(max_length=2083)\n', (5755, 5772), False, 'from django.db import migrations, models\n'), ((5805, 5836), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (5821, 5836), False, 'from django.db import migrations, models\n'), ((5870, 5901), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(11)'}), '(max_length=11)\n', (5886, 5901), False, 'from django.db import migrations, models\n'), ((5932, 5963), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(18)'}), '(max_length=18)\n', (5948, 5963), False, 'from django.db import migrations, models\n'), ((5990, 6052), 'django.db.models.PositiveSmallIntegerField', 'models.PositiveSmallIntegerField', ([], {'choices': "[(0, '男'), (1, '女')]"}), "(choices=[(0, '男'), (1, '女')])\n", (6022, 6052), False, 'from django.db import migrations, models\n'), ((6081, 6127), 'django.db.models.EmailField', 'models.EmailField', ([], {'max_length': '(254)', 'unique': '(True)'}), '(max_length=254, unique=True)\n', (6098, 6127), False, 'from django.db import migrations, models\n'), ((6155, 6199), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'unique': '(True)'}), '(max_length=20, unique=True)\n', (6171, 6199), False, 'from django.db import migrations, models\n'), ((6231, 6263), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(256)'}), '(max_length=256)\n', (6247, 6263), False, 'from django.db import migrations, models\n'), ((6296, 6335), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (6316, 6335), False, 'from django.db import migrations, models\n'), ((6368, 6403), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (6388, 6403), False, 'from django.db import migrations, models\n'), ((6434, 6519), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'on_delete': 'django.db.models.deletion.CASCADE', 'to': '"""app_db.Role"""'}), "(on_delete=django.db.models.deletion.CASCADE, to='app_db.Role'\n )\n", (6451, 6519), False, 'from django.db import migrations, models\n')]
# Módulos usados from random import randint from time import sleep # índices: 0 1 2 opcao=['Pedra', 'Papel', 'Tesoura'] menu=''' <NAME> [ 1 ] Pedra [ 2 ] Papel [ 3 ] Tesoura [ 4 ] Sair ''' jogador = 0 while jogador != 4: print(menu) # Jogador Escolhe jogador = int(input('Escolha: ')) # Escolhe um número aleatório de 1 à 3 computador = randint(1,3) # Sai do jogo if jogador == 4: break # Break finaliza o loop (while) # Mostra a opção do Jogador print('\n','Você escolheu: ', opcao[jogador-1]) # -1 pois índice começa no 0 e o jogador escolhe de 1 à 3 # sendo que a lista 'opcao' vai de 0 à 2 print('\t'*4+'Jo') # '\t'*4 = tab 4 vezes sleep(1) # Pausa por 1 s o programa print('\t'*4+'Ken') sleep(1) print('\t'*4+'Po') sleep(1) # Mostra a opção do Computador print('Computador Escolheu: ', opcao[computador-1],'\n'*2) #'\n'*2 = enter 2 vezes # -1 pois índice começa no 0 if jogador == computador: # Jogador e Computador escolhem mesmo número print('Empate!') elif jogador == 1 and computador == 2: # Jogador: Pedra / PC: Papel print('Computador Ganhou!') elif jogador == 1 and computador == 3: # Jogador: Pedra / PC: Tesoura print('Jogador Ganhou!') elif jogador == 2 and computador == 1: # Jogador: Papel / PC: Pedra print('Jogador Ganhou') elif jogador == 2 and computador == 3: # Jogador: Papel / PC: Tesoura print('Computador Ganhou!') elif jogador == 3 and computador == 1: # Jogador: Tesoura / PC: Pedra print('Computador Ganhou') elif jogador == 3 and computador == 2: # Jogador: Tesoura / PC: Papel print('Jogador Ganhou!') print('Até a próxima..')
[ "random.randint", "time.sleep" ]
[((398, 411), 'random.randint', 'randint', (['(1)', '(3)'], {}), '(1, 3)\n', (405, 411), False, 'from random import randint\n'), ((771, 779), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (776, 779), False, 'from time import sleep\n'), ((835, 843), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (840, 843), False, 'from time import sleep\n'), ((871, 879), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (876, 879), False, 'from time import sleep\n')]
from testopencv2 import OpticalSense if __name__ == '__main__': oc = OpticalSense() oc.main()
[ "testopencv2.OpticalSense" ]
[((74, 88), 'testopencv2.OpticalSense', 'OpticalSense', ([], {}), '()\n', (86, 88), False, 'from testopencv2 import OpticalSense\n')]
# Python-wrapped REST API utilities for AppResponse 11 import os import sys import requests import time import argparse import json import getpass from requests.packages.urllib3.exceptions import InsecureRequestWarning # Avoid warnings for insecure certificates requests.packages.urllib3.disable_warnings(InsecureRequestWarning) AR11_UTILITIES_ACTIONS = ["data_layout", \ "interface_summary", \ "packet_download", \ "pull_backup", \ "report_job_durations", \ "roles_delete", \ "roles_export", \ "roles_import", \ "saml_export", \ "saml_import", \ "saml_spmetadata_download", \ "users_delete", \ "users_export", \ "users_import", \ "web_server_settings_export", \ "web_server_settings_import"] ##### HELPER FUNCTIONS ### jkraenzle: Update to be used by each call # Run REST APIs to appliance and return result # Assume 'payload' is JSON formatted def ar11_rest_api (action, path, appliance, access_token, version, payload = None): url = "https://" + appliance + path bearer = "Bearer " + access_token headers = {"Authorization":bearer} if (action == "GET"): r = requests.get (url, headers=headers, verify=False) elif (action == "POST"): r = requests.post (url, headers=headers, data=json.dumps (payload), verify=False) elif (action == "PUT"): r = requests.put (url, headers=headers, data=json.dumps (payload), verify=False) elif (action == "DELETE"): r = requests.delete (url, headers=headers, verify=False) if (r.status_code not in [200, 201, 204]): print ("Status code was %s" % r.status_code) print ("Error: %s" % r.content) result = None else: if (("Content-Type" in r.headers.keys ()) and ("application/json" in r.headers ["Content-Type"])): result = json.loads (r.content) elif (("Content-Type" in r.headers.keys ()) and ("application/x-gzip" in r.headers ["Content-Type"])): result = r.content else: result = r.text return result ##### ACTION - report_job_durations # Helper function to report duration of Capture Jobs from start and end time def ar11_capture_job_durations(jobs): output = [] output.append(['Job Name', 'State', 'Duration']) for j in jobs: job_name = j['config']['name'] job_id = j['id'] status = j['state']['status'] state = status['state'] start_time = status['packet_start_time'] end_time = status['packet_end_time'] duration = int(float(end_time) - float(start_time)) days = round(duration / (60 * 60 * 24)) hours = round((duration % (60 * 60 * 24)) / (60 * 60)) minutes = round(((duration % (60 * 60 * 24)) % (60 * 60)) / 60) duration_str = str (days) + " days, " + str(hours) + " hours, " + str(minutes) + " minutes" output.append([job_name, state, duration_str]) return output # REST API Python wrapper to request storage layout information # URL https://<appliance>/api/npm.data_manager/2.1/layout # Header: Authorization: Bearer <access_token> def ar11_data_layout_get (appliance, access_token, version): url = "https://" + appliance + "/api/npm.data_manager/2.1/layout" bearer = "Bearer " + access_token headers = {"Authorization":bearer} r = requests.get (url, headers=headers, verify=False) if (r.status_code != 200): print ("Status code was %s" % r.status_code) print ("Error: %s" % r.content) result = [] else: result = json.loads (r.content) return result def ar11_interface_summary_get (appliance, access_token, version): result = ar11_rest_api ("GET", "/api/npm.packet_capture/3.0/interfaces", appliance, access_token, version) return result # REST API Python wrapper to create backup on appliance def ar11_backup_create (appliance, access_token, version): # Kick off backup and give time to process payload = {"description": "Automated Backup"} backup_in_process = ar11_rest_api ("POST", "/api/npm.backup/1.0/backups", appliance, access_token, version, payload) # If backup creation failed, return upstream showing the failure if (backup_in_process == None): return None # Get backup id and sleep so there's time for backup to initially create backup_id = backup_in_process ["id"] time.sleep (5) # Keep checking if backup has completed backup_complete = False while (backup_complete == False): backup_list = ar11_rest_api ("GET", "/api/npm.backup/1.0/backups", appliance, access_token, version) backups = backup_list ["items"] found = False for backup in backups: if (backup ["id"] == backup_id): found = True if (backup ["status"] == "completed"): backup_complete = True # If backup "id" is not found on appliance if (found == False): print ("Error starting backup on %s" % appliance) return None elif (backup_complete == False): time.sleep (2) return backup_id # REST API Python wrapper to download and delete automated backup def ar11_backup_download_and_delete (appliance, access_token, version, backup_id): backup_file = ar11_rest_api ("GET", "/api/npm.backup/1.0/backups/items/" + backup_id + "/file", appliance, access_token, version) if (backup_file != None): with open (appliance + ".backup.tgz", "wb") as backup_f: backup_f.write (backup_file) ar11_rest_api ("DELETE", "/api/npm.backup/1.0/backups/items/" + backup_id, appliance, access_token, version) return # REST API Python wrapper to create and pull backup from appliance def ar11_backup_get (appliance, access_token, version): backup_id = ar11_backup_create (appliance, access_token, version) if (backup_id != None): ar11_backup_download_and_delete (appliance, access_token, version, backup_id) return True else: return False # REST API Python wrapper to request Capture Job information # URL https://<appliance>/api/npm.packet_capture/1.0/jobs # Header: Authorization: Bearer <access_token> def ar11_capture_jobs_get (appliance, access_token, version): if (version <= 11.4): url = "https://" + appliance + "/api/npm.packet_capture/1.0/jobs" else: url = "https://" + appliance + "/api/npm.packet_capture/2.0/jobs" bearer = "Bearer " + access_token headers = {"Authorization":bearer} r = requests.get(url, headers=headers, verify=False) if (r.status_code != 200): print ("Status code was %s" % r.status_code) print ("Error: %s" % r.content) result = [] else: result = json.loads(r.content) return result def ar11_packet_download (appliance, access_token, version, settings_f): ### jkraenzle: Yet to implement # Read settings and verify that they are valid for this appliance # Validate source (job by job name, etc.) # Confirm time range within Capture Job, etc. # Call to packet download with settings # Loop until packets have been downloaded return ##### ACTIONS - roles_export, roles_import, roles_delete def ar11_remote_auth_get (appliance, access_token, version): result = None if (version > 11.5): result = ar11_rest_api ("GET", "/api/mgmt.aaa/2.0/remote_authentication", appliance, access_token, version) return result # URL: https://<appliance>/api/mgmt.aaa/2.0/roles/<id> # PUT def ar11_role_set (appliance, access_token, version, role): if (version > 11.5): role_id = role ["id"] url = "https://" + appliance + "/api/mgmt.aaa/2.0/roles/" + str(role_id) bearer = "Bearer " + access_token headers = {"Content-Type":"application/json", "Authorization":bearer} r = requests.put (url, data=json.dumps(role), headers=headers, verify=False) return # URL: https://<appliance>/api/mgmt.aaa/2.0/roles # POST def ar11_role_create (appliance, access_token, version, role): # Check if role name exists, and if so, delete? if (version > 11.5): url = "https://" + appliance + "/api/mgmt.aaa/2.0/roles" bearer = "Bearer " + access_token headers = {"Content-Type":"application/json", "Authorization":bearer} r = requests.post (url, data=json.dumps(role), headers=headers, verify=False) return # REST API Python wrapper to get current roles # URL: https://<appliance>/api/mgmt.aaa/2.0/roles def ar11_roles_get (appliance, access_token, version): if (version > 11.5): url = "https://" + appliance + "/api/mgmt.aaa/2.0/roles" bearer = "Bearer " + access_token headers = {"Authorization":bearer} r = requests.get (url, headers=headers, verify=False) result = json.loads(r.content) return result["items"] # Counterpart to from_file function def ar11_roles_to_file (roles, export_f): for role in roles: export_f.write (str("%s, %s, " % (role["pretty_name"], role["description"])).rstrip('\n')) permissions = role["permissions"] i = 0 for pg in permissions: if (pg["permission_group"] == "ALL_OBJECTS_ACCESS"): permission = "All objects" elif (pg["permission_group"] == "APP_CONFIG_ACCESS"): permission = "Application configuration" elif (pg["permission_group"] == "JOB_CONFIG_ACCESS"): permission = "Job configuration" elif (pg["permission_group"] == "PACKET_ACCESS"): permission = "Network packets" elif (pg["permission_group"] == "RBAC_CONFIG_ACCESS"): permission = "RBAC configuration" elif (pg["permission_group"] == "SYSTEM_MGMT_CONFIG_ACCESS"): permission = "System configuration" else: permission = "!!UNKNOWN PERMISSIONS!!" if (pg["operation"] == "read_only"): operation = "RO" elif (pg["operation"] == "read_write"): operation = "RW" else: operation = "NR" if (i != len (permissions) - 1): export_f.write (str("%s:%s," % (permission, operation)).rstrip('\n')) else: export_f.write ("%s:%s\n" % (permission, operation)) i+=1 # Export current roles from AR11 appliance # For now, assume file has been opened and this function uses the file at its current marker def ar11_roles_export (appliance, access_token, version, export_f): # Make comment on current appliance from which these roles came export_f.write ("# Roles on appliance %s\n" % appliance) roles = ar11_roles_get (appliance, access_token, version) ar11_roles_to_file (roles, export_f) # Write a newline so there's space between each appliance export export_f.write ("\n") return def ar11_roles_from_file (import_f): roles = [] for line in import_f: comment_test = line if (len(comment_test.lstrip()) == 0): continue if (comment_test.lstrip()[0] == "#"): continue line_split = line.strip("\n").split (",") pretty_name = line_split[0].strip() description = line_split[1].strip() i = 2 permissions = [] while (i <= len(line_split) - 1): key_value = line_split [i].split(":") permission_key = key_value[0].strip () if (len(key_value) == 2): if (permission_key == "All objects"): permission = "ALL_OBJECTS_ACCESS" elif (permission_key == "Application configuration"): permission = "APP_CONFIG_ACCESS" elif (permission_key == "Job configuration"): permission = "JOB_CONFIG_ACCESS" elif (permission_key == "Network packets"): permission = "PACKET_ACCESS" elif (permission_key == "RBAC configuration"): permission = "RBAC_CONFIG_ACCESS" elif (permission_key == "System configuration"): permission = "SYSTEM_MGMT_CONFIG_ACCESS" else: permission = "!!UNKNOWN!!" if (key_value[1] == "RO"): operation = "read_only" elif (key_value[1] == "RW"): operation = "read_write" elif (key_value[1] == "NR"): operation = "no_read" else: operation = "!!UNKNOWN!!" if not(permission == "!!UNKNOWN!!" or operation == "!!UNKNOWN!!"): permissions.append({"permission_group":permission, "operation":operation}) else: print ("Error reading permission %s: operation %s" % (permission_key, key_value[1])) i += 1 role = {"description":description, "pretty_name":pretty_name, "permissions":permissions} roles.append (role) return roles def ar11_roles_import (appliance, access_token, version, import_f): # Get list of roles from import file imported_roles = ar11_roles_from_file (import_f) # Get list of roles from appliance existing_roles = ar11_roles_get (appliance, access_token, version) set_list = [] create_list = [] i = 0 for role in imported_roles: found = False id = 0 for existing_role in existing_roles: if (role ["pretty_name"] == existing_role ["pretty_name"]): found = True role.update ({"id":existing_role["id"]}) if (found): set_list.append(i) else: create_list.append(i) i += 1 for item in set_list: role = imported_roles [item] ar11_role_set (appliance, access_token, version, role) for item in create_list: role = imported_roles [item] ar11_role_create (appliance, access_token, version, role) return def ar11_role_names_from_file (import_f): roles = [] for line in import_f: comment_test = line if (len(comment_test.lstrip()) == 0): continue if (comment_test.lstrip()[0] == "#"): continue role = line.strip("\n") roles.append(role) return roles # URL: https://<appliance>/api/mgmt.aaa/2.0/roles/<id> def ar11_role_delete (appliance, access_token, version, role_id): bearer = "Bearer " + access_token headers = {"Authorization":bearer} url = "https://" + appliance + "/api/mgmt.aaa/2.0/roles/" + str(role_id) r = requests.delete (url, headers=headers, verify=False) return def ar11_roles_delete (appliance, access_token, version, delete_f): if (version > 11.5): # Get list of roles to delete roles_to_delete = ar11_role_names_from_file (delete_f) # Get list of roles from appliance existing_roles = ar11_roles_get (appliance, access_token, version) delete_list = [] for role in roles_to_delete: found = False for existing_role in existing_roles: if (role == existing_role ["pretty_name"]): delete_list.append(existing_role ["id"]) found = True break if found == False: print ("WARNING: Role %s did not exist on %s" % (role, appliance)) # Loop through roles, deleting one at a time from appliance j = 0 while (j < len(delete_list)): ar11_role_delete (appliance, access_token, version, delete_list[j]) j += 1 return ##### ACTIONS - saml_export, saml_import, saml_spmetadata_download # For consistency, return configuration in JSON format def ar11_saml_configuration_get (appliance, access_token, version): bearer = "Bearer " + access_token headers = {"Authorization":bearer} url = "https://" + appliance + "/api/npm.saml/1.0/settings" r = requests.get (url, headers=headers, verify=False) result = json.loads(r.content) return result def ar11_saml_configuration_set (appliance, access_token, version, saml_config): bearer = "Bearer " + access_token headers = {"Content-Type":"application/json", "Authorization":bearer} url = "https://" + appliance + "/api/npm.saml/1.0/settings" r = requests.put (url, headers=headers, json=saml_config, verify=False) if (r.status_code != 200): print ("SAML configuration returned with status code %d." % (r.status_code,)) print (r.text) return def ar11_saml_export (appliance, access_token, version, export_f): saml_config = ar11_saml_configuration_get (appliance, access_token, version) # Write file in text format export_f.write (json.dumps(saml_config)) return def ar11_saml_import (appliance, access_token, version, import_f): imported_txt = import_f.read () #stripped_txt = imported_txt.strip("\n") #saml_config = stripped_txt.replace ("\\r\\n", "") #saml_config = replaced_txt.replace (" false", "\"False\"") saml_config = json.loads (imported_txt) ar11_saml_configuration_set (appliance, access_token, version, saml_config) return def ar11_saml_spmetadata_download (appliance, access_token, version): spmetadata_file = ar11_rest_api ("GET", "/saml/metadata", appliance, access_token, version) if (spmetadata_file != None): with open (appliance + "_spmetadata.xml", "a+") as spmetadata_f: spmetadata_f.write (json.dumps (spmetadata_file)) return True else: print ("Did not return a file") return False ##### ACTIONS - users_delete, users_export, users_import # URL: http://<appliance>/api/mgmt.aaa/2.0/users def ar11_users_get (appliance, access_token, version): bearer = "Bearer " + access_token headers = {"Authorization":bearer} url = "https://" + appliance + "/api/mgmt.aaa/2.0/users" r = requests.get (url, headers=headers, verify=False) result = json.loads(r.content) return result def ar11_users_from_file (users_f): users = [] for line in users_f: comment_test = line if (len(comment_test.lstrip()) == 0): continue if (comment_test.lstrip()[0] == "#"): continue user = line.strip("\n") users.append(user) return users # URL: https://<appliance>/api/mgmt.aaa/2.0/users/<name> def ar11_user_delete (appliance, access_token, version, username): bearer = "Bearer " + access_token headers = {"Authorization":bearer} url = "https://" + appliance + "/api/mgmt.aaa/2.0/users/" + username r = requests.delete (url, headers=headers, verify=False) if (r.status_code != 204): print ("Failed to delete username %s" % (username)) print ("Status code is %s" % (r.status_code)) print ("Error: %s" % (r.content)) return def ar11_users_delete (appliance, access_token, version, users_f): # Get current list of users; returns an array of dicts users_dict = ar11_users_get (appliance, access_token, version) users_list = users_dict ["items"] # Get list of users to delete users_to_delete_list = ar11_users_from_file (users_f) # Confirm users exist before attempting to delete found_users_list = [] for user in users_to_delete_list: found = False i = 0 while (i < len (users_list)): existing_user = users_list [i] if (user == existing_user ["name"]): found = True break i += 1 if (found == True): found_users_list.append (user) else: print ("User %s was not found on appliance %s" % (user, appliance)) for user in found_users_list: ar11_user_delete (appliance, access_token, version, user) def ar11_users_export (appliance, access_token, version, users_f): # Get current list of users; returns an array of dicts users_dict = ar11_users_get (appliance, access_token, version) # Write file in text format users_f.write (json.dumps (users_dict)) def ar11_user_set (appliance, access_token, version, imported_user): bearer = "Bearer " + access_token headers = {"Authorization":bearer} url = "https://" + appliance + "/api/mgmt.aaa/2.0/users/" + str(imported_user["name"]) r = requests.put (url, headers=headers, json=imported_user, verify=False) if (r.status_code != 200): print ("Status code was %s" % r.status_code) print ("Error: %s" % r.content) return def ar11_user_create (appliance, access_token, version, imported_user): bearer = "Bearer " + access_token headers = {"Authorization":bearer} url = "https://" + appliance + "/api/mgmt.aaa/2.0/users" r = requests.post (url, headers=headers, json=imported_user, verify=False) if (r.status_code != 201): print ("Status code was %s" % r.status_code) print ("Error: %s" % r.content) return def ar11_users_import (appliance, access_token, version, users_f): # Get list of users to update or create imported_txt = users_f.read () imported_users_dict = json.loads (imported_txt) imported_users_list = imported_users_dict["items"] # Get list of existing users existing_users_dict = ar11_users_get (appliance, access_token, version) existing_users_list = existing_users_dict["items"] # Iterate over each imported user to see if that user already exists on this appliance for imported_user in imported_users_list: found = False for existing_user in existing_users_list: if (existing_user ["name"] == imported_user ["name"]): found = True if (found): ar11_user_set (appliance, access_token, version, imported_user) else: ar11_user_create (appliance, access_token, version, imported_user) def ar11_web_server_settings_export (appliance, access_token, version, settings_f): settings_dict = ar11_rest_api ("GET", "/api/npm.https/1.0/https", appliance, access_token, version) if (settings_dict == None): return False else: # Write file in text format settings_f.write (json.dumps (settings_dict)) return True def ar11_web_server_settings_import (appliance, access_token, version, settings_f): imported_txt = settings_f.read () imported_settings_dict = json.loads (imported_txt) result = ar11_rest_api ("PUT", "/api/npm.https/1.0/https", appliance, access_token, version, imported_settings_dict) return True ##### GENERAL FUNCTIONS # REST API Python wrapper to authenticate to the server (Login) # URL: https://<appliance>/api/mgmt.aaa/1.0/token ; pre-version 11.6 # URL: https://<appliance>/api/mgmt.aaa/2.0/token ; version 11.6 or later # Header: Content-Type:application/json # Body: {"user_credentials":{"username":<username>, "password":<password>},"generate_refresh_token":"true"} def ar11_authenticate (appliance, username, password, version): if (version <= 11.5): url = "https://" + appliance + "/api/mgmt.aaa/1.0/token" else: url = "https://" + appliance + "/api/mgmt.aaa/2.0/token" credentials = {"username":username, "password":password} payload = {"user_credentials":credentials, "generate_refresh_token":True} headers = {"Content-Type":"application/json"} r = requests.post(url, data=json.dumps(payload), headers=headers, verify=False) if (r.status_code != 201): print ("Status code was %s" % r.status_code) print ("Error %s" % r.content) return None, None else: result = json.loads(r.content) return result["access_token"], result["refresh_token"] # REST API Python wrapper to revoke refresh token (Logout) # URL: https://<appliance>/api/mgmt.aaa/1.0/refresh_tokens/revoke # Header: Authorization: Bearer <access_token> def ar11_refresh_token_revoke (appliance, access_token, refresh_token): url = "https://" + appliance + "/api/mgmt.aaa/1.0/refresh_tokens/revoke" bearer = "Bearer " + access_token headers = {"Content-Type":"application/json", "Authorization":bearer} payload = {"refresh_token":refresh_token} r = requests.post(url, data=json.dumps(payload), headers=headers, verify=False) return # Helper function to get list of hostnames from input def hostnamelist_get (hostnamelist): hostnamelist_f = open (hostnamelist, "r") output = [] for row in hostnamelist_f: hostname = row.rstrip() output.append (hostname) hostnamelist_f.close () return output # REST API Python wrapper to request version information # URL: https://<appliance>/api/common/1.0/info # Header: AUthorization: Bearer <access_token> def ar11_version_get (appliance, access_token, version): url = "https://" + appliance + "/api/common/1.0/info" r = requests.get (url, verify=False) result = json.loads(r.content) version_str = result["sw_version"] if "11.4" in version_str: return 11.4 elif "11.5" in version_str: return 11.5 elif "11.6" in version_str: return 11.6 elif "11.7" in version_str: return 11.7 elif "11.8" in version_str: return 11.8 elif "11.9" in version_str: return 11.9 return 11.9 def main(): # set up arguments in appropriate variables parser = argparse.ArgumentParser (description="Python utilities to automate information collection or \ configuration tasks within AppResponse 11 environments") parser.add_argument('--hostname', help="Hostname or IP address of the AppResponse 11 appliance") parser.add_argument('--hostnamelist', help="File containing hostnames or IP addresses, one per line") parser.add_argument('--username', help="Username for the appliance") parser.add_argument('--password', help="<PASSWORD> the <PASSWORD>") parser.add_argument('--action', help="Action to perform: %s" % AR11_UTILITIES_ACTIONS) parser.add_argument('--actionfile', help="Settings file associated with action") args = parser.parse_args() # Check inputs for required data and prep variables if (args.hostname == None or args.hostname == "") and (args.hostnamelist == None or args.hostnamelist == ""): print ("Please specify a hostname using --hostname or a list of hostnames in a file using --hostnamelist") return if (args.username == None or args.username == ""): print ("Please specify a username using --username") return if (args.action == None or args.action == ""): print ("Please specify an action using --action") return # Use either hostname or hostname list; if both are accidentally specified, use hostname list if not(args.hostname == None or args.hostname == ""): hostnamelist = [args.hostname] elif not(args.hostnamelist == None or args.hostnamelist == ""): hostnamelist = hostnamelist_get (args.hostnamelist) # Check that action exist in set of known actions if not (args.action in AR11_UTILITIES_ACTIONS): print ("Action %s is unknown" % args.action) if (args.password == None or args.password == ""): print ("Please provide password for account %s" % args.username) password = getpass.getpass () else: password = args.password # Loop through hosts, applying 'action' for hostname in hostnamelist: version = ar11_version_get (hostname, args.username, password) access_token, refresh_token = ar11_authenticate (hostname, args.username, password, version) if (access_token == None or access_token == ""): print ("Failed to login to %s" % hostname) continue # ACTION - data_layout if (args.action == "data_layout"): layout = ar11_data_layout_get (hostname, access_token, version) data_sections = layout ["configuration"]["data_sections"] print ("%s:" % (hostname)) if (len (data_sections) == 0): print ("No RAID configuration storage") for data_section in data_sections: if (data_section ["mode"] != ""): print ("%s\t%s\t%s" % (data_section ["id"], data_section ["model"], data_section ["mode"])) print ("") ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - interface_summary if (args.action == "interface_summary"): interface_summary = ar11_interface_summary_get (hostname, access_token, version) interfaces = interface_summary ["items"] print ("\t%s\t\t%s\t\t%s\t\t%s" % ("Name", "Status".ljust (8), "Packets - 1 hr".rjust (16), "Drops - 1 hr".rjust (16))) for interface in interfaces: print ("\t%s\t\t%s\t\t%s\t\t%s" % (interface ["name"], str (interface ["state"]["status"]).ljust (8), str (interface ["state"]["stats"]["packets_total"]["last_hour"]).rjust (16), str (interface ["state"]["stats"]["packets_dropped"]["last_hour"]).rjust (16))) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - pull_backup elif (args.action == "pull_backup"): backup = ar11_backup_get (hostname, access_token, version) if (backup == True): print ("Backup for %s was successful!" % (hostname)) else: print ("Backup for %s was unsuccessful!" % (hostname)) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - report_job_durations elif (args.action == "report_job_durations"): # Get capture jobs from appliance capture_jobs = ar11_capture_jobs_get (hostname, access_token, version) if (len(capture_jobs) > 0): output = ar11_capture_job_durations (capture_jobs["items"]) else: output = ["No Capture Jobs found on appliance"] print ("Appliance %s" % hostname) for row in output: print (row) print ("") # Okay to logout since only one action processed at a time ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - roles_export elif (args.action == "roles_export"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename for role export in --actionfile parameter") return else: with open(args.actionfile, "a+") as roles_f: ar11_roles_export (hostname, access_token, version, roles_f) # Okay to logout since only one action processed at a time ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - roles_import elif (args.action == "roles_import"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename for role import in --actionfile parameter") return else: with open(args.actionfile, "r") as roles_f: ar11_roles_import (hostname, access_token, version, roles_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - roles_delete elif (args.action == "roles_delete"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename for roles to delete in --actionfile parameter, one role name per line") return else: with open(args.actionfile, "r") as roles_f: ar11_roles_delete (hostname, access_token, version, roles_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - saml_export elif (args.action == "saml_export"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename for SAML configuration to be exported") return else: with open(args.actionfile, "a+") as export_f: ar11_saml_export (hostname, access_token, version, export_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - saml_import elif (args.action == "saml_import"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename containing SAML configuration in JSON format") return else: with open(args.actionfile, "r") as import_f: ar11_saml_import (hostname, access_token, version, import_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) elif (args.action == "saml_spmetadata_download"): download = ar11_saml_spmetadata_download (hostname, access_token, version) if (download == True): print ("Download for %s was successful!" % (hostname)) else: print ("Download for %s was unsuccessful!" % (hostname)) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - users_delete elif (args.action == "users_delete"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename containing the users to delete, one per line") return else: with open(args.actionfile, "r") as users_f: ar11_users_delete (hostname, access_token, version, users_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - users export elif (args.action == "users_export"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename to be used for export of user information") return else: with open(args.actionfile, "a+") as users_f: ar11_users_export (hostname, access_token, version, users_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - users import elif (args.action == "users_import"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify the filename containing the users to import in JSON format") return else: with open(args.actionfile, "r") as users_f: ar11_users_import (hostname, access_token, version, users_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - web server settings export elif (args.action == "web_server_settings_export"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify a filename to be used for export of web server settings") else: with open (args.actionfile, "a+") as settings_f: ar11_web_server_settings_export (hostname, access_token, version, settings_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) # ACTION - web server settings import elif (args.action == "web_server_settings_import"): if (args.actionfile == None or args.actionfile == ""): print ("Please specify the filename containing the web server settings to import") else: with open (args.actionfile, "r") as settings_f: ar11_web_server_settings_import (hostname, access_token, version, settings_f) ar11_refresh_token_revoke (hostname, access_token, refresh_token) if __name__ == "__main__": main()
[ "json.loads", "requests.post", "requests.packages.urllib3.disable_warnings", "argparse.ArgumentParser", "json.dumps", "time.sleep", "requests.get", "requests.delete", "getpass.getpass", "requests.put" ]
[((264, 330), 'requests.packages.urllib3.disable_warnings', 'requests.packages.urllib3.disable_warnings', (['InsecureRequestWarning'], {}), '(InsecureRequestWarning)\n', (306, 330), False, 'import requests\n'), ((3145, 3193), 'requests.get', 'requests.get', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (3157, 3193), False, 'import requests\n'), ((4140, 4153), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (4150, 4153), False, 'import time\n'), ((6100, 6148), 'requests.get', 'requests.get', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (6112, 6148), False, 'import requests\n'), ((13149, 13200), 'requests.delete', 'requests.delete', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (13164, 13200), False, 'import requests\n'), ((14350, 14398), 'requests.get', 'requests.get', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (14362, 14398), False, 'import requests\n'), ((14411, 14432), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (14421, 14432), False, 'import json\n'), ((14704, 14770), 'requests.put', 'requests.put', (['url'], {'headers': 'headers', 'json': 'saml_config', 'verify': '(False)'}), '(url, headers=headers, json=saml_config, verify=False)\n', (14716, 14770), False, 'import requests\n'), ((15409, 15433), 'json.loads', 'json.loads', (['imported_txt'], {}), '(imported_txt)\n', (15419, 15433), False, 'import json\n'), ((16211, 16259), 'requests.get', 'requests.get', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (16223, 16259), False, 'import requests\n'), ((16272, 16293), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (16282, 16293), False, 'import json\n'), ((16843, 16894), 'requests.delete', 'requests.delete', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (16858, 16894), False, 'import requests\n'), ((18391, 18459), 'requests.put', 'requests.put', (['url'], {'headers': 'headers', 'json': 'imported_user', 'verify': '(False)'}), '(url, headers=headers, json=imported_user, verify=False)\n', (18403, 18459), False, 'import requests\n'), ((18791, 18860), 'requests.post', 'requests.post', (['url'], {'headers': 'headers', 'json': 'imported_user', 'verify': '(False)'}), '(url, headers=headers, json=imported_user, verify=False)\n', (18804, 18860), False, 'import requests\n'), ((19148, 19172), 'json.loads', 'json.loads', (['imported_txt'], {}), '(imported_txt)\n', (19158, 19172), False, 'import json\n'), ((20287, 20311), 'json.loads', 'json.loads', (['imported_txt'], {}), '(imported_txt)\n', (20297, 20311), False, 'import json\n'), ((22630, 22661), 'requests.get', 'requests.get', (['url'], {'verify': '(False)'}), '(url, verify=False)\n', (22642, 22661), False, 'import requests\n'), ((22674, 22695), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (22684, 22695), False, 'import json\n'), ((23073, 23236), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Python utilities to automate information collection or \t\t configuration tasks within AppResponse 11 environments"""'}), "(description=\n 'Python utilities to automate information collection or \\t\\t configuration tasks within AppResponse 11 environments'\n )\n", (23096, 23236), False, 'import argparse\n'), ((1150, 1198), 'requests.get', 'requests.get', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (1162, 1198), False, 'import requests\n'), ((3337, 3358), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (3347, 3358), False, 'import json\n'), ((6291, 6312), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (6301, 6312), False, 'import json\n'), ((8197, 8245), 'requests.get', 'requests.get', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (8209, 8245), False, 'import requests\n'), ((8259, 8280), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (8269, 8280), False, 'import json\n'), ((15101, 15124), 'json.dumps', 'json.dumps', (['saml_config'], {}), '(saml_config)\n', (15111, 15124), False, 'import json\n'), ((18129, 18151), 'json.dumps', 'json.dumps', (['users_dict'], {}), '(users_dict)\n', (18139, 18151), False, 'import json\n'), ((21449, 21470), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (21459, 21470), False, 'import json\n'), ((24858, 24875), 'getpass.getpass', 'getpass.getpass', ([], {}), '()\n', (24873, 24875), False, 'import getpass\n'), ((1767, 1788), 'json.loads', 'json.loads', (['r.content'], {}), '(r.content)\n', (1777, 1788), False, 'import json\n'), ((20098, 20123), 'json.dumps', 'json.dumps', (['settings_dict'], {}), '(settings_dict)\n', (20108, 20123), False, 'import json\n'), ((21250, 21269), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (21260, 21269), False, 'import json\n'), ((22026, 22045), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (22036, 22045), False, 'import json\n'), ((4735, 4748), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (4745, 4748), False, 'import time\n'), ((7364, 7380), 'json.dumps', 'json.dumps', (['role'], {}), '(role)\n', (7374, 7380), False, 'import json\n'), ((7821, 7837), 'json.dumps', 'json.dumps', (['role'], {}), '(role)\n', (7831, 7837), False, 'import json\n'), ((15810, 15837), 'json.dumps', 'json.dumps', (['spmetadata_file'], {}), '(spmetadata_file)\n', (15820, 15837), False, 'import json\n'), ((1274, 1293), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (1284, 1293), False, 'import json\n'), ((1452, 1503), 'requests.delete', 'requests.delete', (['url'], {'headers': 'headers', 'verify': '(False)'}), '(url, headers=headers, verify=False)\n', (1467, 1503), False, 'import requests\n'), ((1382, 1401), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (1392, 1401), False, 'import json\n')]
import functools class Solution: def largestNumber(self, nums): """ :type nums: List[int] :rtype: str """ res = "" num_dic = {} for item in nums: str_item = str(item) number = int(str_item[0]) if number in num_dic: num_dic[number].append(str_item) else: num_dic[number] = [] num_dic[number].append(str_item) for index in num_dic: num_dic[index] = sorted(num_dic[index], reverse = True, key=functools.cmp_to_key(self.compare)) for i in reversed(range(10)): if i in num_dic: for j in num_dic[i]: res += str(j) return str(int(res)) def compare(self, str_num1, str_num2): num1 = int(str_num1 + str_num2) num2 = int(str_num2 + str_num1) if num1 > num2: return 1 elif num1 < num2: return -1 else: return 0
[ "functools.cmp_to_key" ]
[((567, 601), 'functools.cmp_to_key', 'functools.cmp_to_key', (['self.compare'], {}), '(self.compare)\n', (587, 601), False, 'import functools\n')]
# -*- coding: utf-8 -*- """ test queen """ __author__ = "<NAME> <<EMAIL>>" __copyright__ = "3-clause BSD License" __version__ = '1.0' __date__ = "15 January 2015" from nose.tools import assert_equal from progressmonitor.callback import (store_till_end_callback_factory, multi_callback_factory) def test_ste(): msgs = ["aaa", "bbb", "ccc"] def dest(l): for x, y in zip(l, msgs): assert_equal(x, y) stecb = store_till_end_callback_factory(dest) for msg in msgs[:-1]: stecb(msg) stecb(msgs[-1], True) def test_mcf(): msgs = ["aaa", "bbb", "ccc"] l1 = [] l2 = [] def l1_cb_fac(): def l1_cb(string, last_com=False): l1.append(string) return l1_cb def l2_cb_fac(): def l2_cb(string, last_com=False): l2.append(string) return l2_cb cb = multi_callback_factory([l1_cb_fac, l2_cb_fac]) for msg in msgs: cb(msg) for i in xrange(len(msgs)): assert_equal(msgs[i], l1[i]) assert_equal(msgs[i], l2[i])
[ "progressmonitor.callback.store_till_end_callback_factory", "nose.tools.assert_equal", "progressmonitor.callback.multi_callback_factory" ]
[((481, 518), 'progressmonitor.callback.store_till_end_callback_factory', 'store_till_end_callback_factory', (['dest'], {}), '(dest)\n', (512, 518), False, 'from progressmonitor.callback import store_till_end_callback_factory, multi_callback_factory\n'), ((911, 957), 'progressmonitor.callback.multi_callback_factory', 'multi_callback_factory', (['[l1_cb_fac, l2_cb_fac]'], {}), '([l1_cb_fac, l2_cb_fac])\n', (933, 957), False, 'from progressmonitor.callback import store_till_end_callback_factory, multi_callback_factory\n'), ((1036, 1064), 'nose.tools.assert_equal', 'assert_equal', (['msgs[i]', 'l1[i]'], {}), '(msgs[i], l1[i])\n', (1048, 1064), False, 'from nose.tools import assert_equal\n'), ((1073, 1101), 'nose.tools.assert_equal', 'assert_equal', (['msgs[i]', 'l2[i]'], {}), '(msgs[i], l2[i])\n', (1085, 1101), False, 'from nose.tools import assert_equal\n'), ((449, 467), 'nose.tools.assert_equal', 'assert_equal', (['x', 'y'], {}), '(x, y)\n', (461, 467), False, 'from nose.tools import assert_equal\n')]
#About print the ID card import random # 编程实现对一个元素全为数字的列表,求最大值、最小值 # 随机生成一个 8个元素 -100,100 # 定义一个空的列表 my_list = [] for value in range(8): my_list.append(random.randint(-100, 0)) print(my_list) # 最大值 # 定义一个变量保存最大值 # my_max = my_list[0] # # 遍历 # for value in my_list: # # 使用if 判断value 还是my_max大 # if value > my_max: # my_max = value # # print("最大值:%d" % my_max) # 比如:"hello world" 字符串统计的结果为: h:1 e:1 l:3 o:2 d:1 r:1 w:1 a = "hello world" # count = a.count("l") # print(count) # 方案01 # 定义一个列表 # my_list = [] # # 遍历字符串 # for c in a: # # 通过遍历的每个字符串计算每个字符串在字符串中个数 # # 如果不是空格 在计算 # if c != " " and c not in my_list: # count = a.count(c) # print("%s:%d" % (c, count)) # my_list.append(c) # 方案02 # 定义一个集合 my_set = set(a) # print(my_set) # 遍历集合 for value in my_set: # 如果不是空格 if value != " ": count = a.count(value) print("%s:%d" % (value, count)) # 保存学生数据 # 小明 20 # 小红 22 # [{"name": "小明", "age": 20},{"name": "小红", "age": 22}] # for dict in list: # if "小明" in dict: # 删除 # else: # print("输入的姓名有误") # all_dict = {"小明": {"name": "小明", "age": 20}, "小红": {"name": "小红", "age": 22}} # # if "小明" in all_dict: # 删除 # else: # 有误 # 定义一个字符串 str_info = """请选择: 1.添加名片 2.删除名片 3.修改名片 4.查询名片 5.退出系统 """ # 定义一个字典保存所有人的数据 all_dict = {} # 死循环 while True: index = input(str_info) # 进行判断 if index.isdigit() and (0 < int(index) < 6): # 1.添加名片 if index == "1": my_name = input("请输入您的名字:") my_age = input("请输入您的年龄:") # 定义一个字典保存个人数据 my_dict = {"name": my_name, "age": my_age} # 保存到大字典中 all_dict[my_name] = my_dict print("保存数据成功...") # 2.删除名片 elif index == "2": my_name = input("请输入删除的名字:") # 判断 if my_name in all_dict: # 删除 del all_dict[my_name] print("删除数据成功...") else: print("您输入的名字有误!!!") # 3.修改名片 elif index == "3": my_name = input("请输入删除的名字:") # 判断 if my_name in all_dict: my_age = input("请输入修改的年龄:") all_dict[my_name]["age"] = my_age print("修改数据完成...") else: print("您输入的名字有误!!!") # 4.查询名片 elif index == "4": my_name = input("请输入删除的名字:") # 判断 if my_name in all_dict: print(all_dict[my_name]) else: print("您输入的名字有误!!!") # 5.退出系统 elif index == "5": print("欢迎下次使用!") break else: print("输入有误") # 保存学生数据 # 小明 20 # 小红 22 # [{"name": "小明", "age": 20},{"name": "小红", "age": 22}] # for dict in list: # if "小明" in dict: # 删除 # else: # print("输入的姓名有误") # all_dict = {"小明": {"name": "小明", "age": 20}, "小红": {"name": "小红", "age": 22}} # # if "小明" in all_dict: # 删除 # else: # 有误 # 定义一个字符串 str_info = """请选择: 1.添加名片 2.删除名片 3.修改名片 4.查询名片 5.退出系统 """ # 定义一个字典保存所有人的数据 all_dict = {} # 死循环 while True: index = input(str_info) # 进行判断 if index.isdigit() and (0 < int(index) < 6): # 1.添加名片 if index == "1": my_name = input("请输入您的名字:") my_age = input("请输入您的年龄:") # 定义一个字典保存个人数据 my_dict = {"name": my_name, "age": my_age} # 保存到大字典中 all_dict[my_name] = my_dict print("保存数据成功...") # 2.删除名片 elif index == "2": my_name = input("请输入删除的名字:") # 判断 if my_name in all_dict: # 删除 del all_dict[my_name] print("删除数据成功...") else: print("您输入的名字有误!!!") # 3.修改名片 elif index == "3": my_name = input("请输入删除的名字:") # 判断 if my_name in all_dict: my_age = input("请输入修改的年龄:") all_dict[my_name]["age"] = my_age print("修改数据完成...") else: print("您输入的名字有误!!!") # 4.查询名片 elif index == "4": my_name = input("请输入删除的名字:") # 判断 if my_name in all_dict: print(all_dict[my_name]) else: print("您输入的名字有误!!!") # 5.退出系统 elif index == "5": print("欢迎下次使用!") break else: print("输入有误")
[ "random.randint" ]
[((158, 181), 'random.randint', 'random.randint', (['(-100)', '(0)'], {}), '(-100, 0)\n', (172, 181), False, 'import random\n')]
""" Find stuff around NGC 5897 """ from __future__ import division, print_function __author__ = "adrn <<EMAIL>>" # Standard library import os import sys # Third-party from astropy import log as logger import numpy as np import filelock import h5py # Project from globber.core import likelihood_worker # HACK: # from globber.ngc5897 import mixing_matrix as W W = None def initialize_dataset(dset_name, group_path, XCov_filename, lock_filename): # only one process should modify the file to add the dataset if it doesn't exist with h5py.File(XCov_filename, mode='r') as f: make_group = False make_dataset = True try: group = f[group_path] logger.debug("Group already exists") except KeyError: make_group = True logger.debug("Group doesn't exist...") if not make_group and dset_name in group: make_dataset = False if make_group or make_dataset: lock = filelock.FileLock(lock_filename) try: with lock.acquire(timeout=90): logger.debug("File lock acquired: creating dataset for log-likelihoods") with h5py.File(XCov_filename, mode='r+') as f: if make_group and group_path not in f: group = f.create_group(group_path) else: group = f[group_path] if dset_name not in group: # double checking! ll_shape = (f['search']['X'].shape[0],) ll_dset = group.create_dataset(dset_name, ll_shape, dtype='f') ll_dset[:] = np.nan except filelock.Timeout: logger.error("Timed out trying to acquire file lock to create dataset.") sys.exit(1) def main(XCov_filename, chunk_index, n_per_chunk, ll_name, overwrite=False, n_compare=None, smooth=None, dm=None): if not os.path.exists(XCov_filename): raise IOError("XCov file '{}' does not exist! Run photometry-to-xcov.py first." .format(XCov_filename)) lock_filename = "{}.lock".format(os.path.splitext(XCov_filename)[0]) # define a slice object for this chunk to process slc = slice(chunk_index*n_per_chunk, (chunk_index+1)*n_per_chunk) # name of the log-likelihood dataset if ll_name == 'isochrone': if dm is None: raise ValueError("If isochrone, must specify distance modulus (--dm=...)") dset_name = "{:.2f}".format(dm) group_path = 'log_likelihood/isochrone' else: dset_name = ll_name group_path = 'log_likelihood' dset_path = os.path.join(group_path, dset_name) initialize_dataset(dset_name, group_path, XCov_filename, lock_filename) with h5py.File(XCov_filename, mode='r') as f: ll = f[dset_path][slc] if np.isfinite(ll).all() and not overwrite: logger.debug("All log-likelihoods already computed for Chunk {} ({}:{})" .format(chunk_index,slc.start,slc.stop)) return if not np.isfinite(ll).all() and not overwrite: some_unfinished = True unfinished_idx = np.isnan(ll) logger.debug("{} log-likelihoods already computed -- will fill unfinished values." .format(len(ll) - unfinished_idx.sum())) else: some_unfinished = False # slice out this chunk X = f['search']['X'][slc] Cov = f['search']['Cov'][slc] if some_unfinished: X = X[unfinished_idx] Cov = Cov[unfinished_idx] X_compare = f[ll_name]['X'] if 'Cov' not in f[ll_name]: Cov_compare = None else: Cov_compare = f[ll_name]['Cov'] if n_compare is not None and n_compare < X_compare.shape[0]: # Note: can't use randint here because non-unique lists cause an OSError, # using np.random.choice on an int array uses a bit of memory idx = [] iterations = 0 while len(idx) < n_compare and iterations < 1E8: s = np.random.randint(X_compare.shape[0]) if s not in idx: idx.append(s) iterations += 1 idx = sorted(idx) X_compare = X_compare[idx] if Cov_compare is not None: Cov_compare = Cov_compare[idx] else: X_compare = X_compare[:] if Cov_compare is not None: Cov_compare = Cov_compare[:] if ll_name == 'isochrone': X_compare[:,0] += dm # add distance modulus logger.debug("{} total stars, {} comparison stars, {} chunk stars" .format(f['search']['X'].shape[0], X_compare.shape[0], X.shape[0])) logger.debug("Computing likelihood for Chunk {} ({}:{})..." .format(chunk_index,slc.start,slc.stop)) ll = likelihood_worker(X, Cov, X_compare, Cov_compare, smooth=smooth, W=W) logger.debug("...finished computing log-likelihoods (nan/inf: {})" .format(np.logical_not(np.isfinite(ll)).sum())) lock = filelock.FileLock(lock_filename) try: with lock.acquire(timeout=300): logger.debug("File lock acquired - writing to results") with h5py.File(XCov_filename, mode='r+') as f: f[dset_path][slc] = ll except filelock.Timeout: logger.error("Timed out trying to acquire file lock to write results.") sys.exit(1) def status(XCov_filename, ll_name, dm=None): if ll_name == 'isochrone': if dm is None: raise ValueError("If isochrone, must specify distance modulus (--dm=...)") dset_name = "{:.2f}".format(dm) group_path = 'log_likelihood/isochrone' else: dset_name = ll_name group_path = 'log_likelihood' dset_path = os.path.join(group_path, dset_name) with h5py.File(XCov_filename, mode='r') as f: if dset_path not in f: logger.info("0 done for '{}'".format(ll_name)) return ll = f[dset_path] ndone = np.isfinite(ll).sum() nnot = np.isnan(ll).sum() logger.info("{} done, {} not done".format(ndone, nnot)) # check what blocks are unfinished if nnot != 0: idx, = np.where(np.isnan(ll)) diff = idx[1:]-idx[:-1] derp, = np.where(diff > 1) if 0 not in derp: derp = np.concatenate(([0], derp, [len(idx)-1])) logger.debug("Unfinished blocks:") blocks = [] for d1,d2 in zip(derp[:-1],derp[1:]): if d1 == 0: blocks.append("{}-{}".format(idx[d1], idx[d2])) else: blocks.append("{}-{}".format(idx[d1+1], idx[d2])) logger.debug(", ".join(blocks)) if __name__ == "__main__": from argparse import ArgumentParser import logging # Define parser object parser = ArgumentParser(description="") parser.add_argument("-v", "--verbose", action="store_true", dest="verbose", default=False, help="Be chatty! (default = False)") parser.add_argument("-q", "--quiet", action="store_true", dest="quiet", default=False, help="Be quiet! (default = False)") parser.add_argument("-o", "--overwrite", action="store_true", dest="overwrite", default=False, help="DESTROY OLD VALUES.") parser.add_argument("--status", dest="status", action="store_true", default=False, help="Check status of results file.") parser.add_argument("-f", "--xcov-filename", dest="XCov_filename", required=True, type=str, help="Full path to XCov file") parser.add_argument("--name", dest="name", required=True, type=str, help="name for log-likelihood calc. (cluster, control, isochrone)") parser.add_argument("-n", "--nperchunk", dest="n_per_chunk", default=1000, type=int, help="Number of stars per chunk.") parser.add_argument("-i", "--chunk-index", dest="index", default=None, type=int, help="Index of the chunk to process.") parser.add_argument("--ncompare", dest="n_compare", default=None, type=int, help="Number of points (stars for cluster or noncluster) " "to compare to.") parser.add_argument("--smooth", dest="smooth", default=None, type=float, help="Smooth comparison by this amount (units: mag)") parser.add_argument("--dm", dest="distance_modulus", default=None, type=float, help="Distance modulus for isochrone.") args = parser.parse_args() # Set logger level based on verbose flags if args.verbose: logger.setLevel(logging.DEBUG) elif args.quiet: logger.setLevel(logging.ERROR) else: logger.setLevel(logging.INFO) if args.status: status(args.XCov_filename, args.name, dm=args.distance_modulus) sys.exit(0) if args.index is None: raise ValueError("You must supply a chunk index to process! (-i or --chunk-index)") main(args.XCov_filename, chunk_index=args.index, n_per_chunk=args.n_per_chunk, overwrite=args.overwrite, ll_name=args.name, n_compare=args.n_compare, smooth=args.smooth, dm=args.distance_modulus)
[ "os.path.exists", "astropy.log.setLevel", "globber.core.likelihood_worker", "argparse.ArgumentParser", "numpy.where", "filelock.FileLock", "os.path.join", "os.path.splitext", "astropy.log.error", "h5py.File", "numpy.random.randint", "numpy.isnan", "numpy.isfinite", "sys.exit", "astropy.log.debug" ]
[((2680, 2715), 'os.path.join', 'os.path.join', (['group_path', 'dset_name'], {}), '(group_path, dset_name)\n', (2692, 2715), False, 'import os\n'), ((5226, 5258), 'filelock.FileLock', 'filelock.FileLock', (['lock_filename'], {}), '(lock_filename)\n', (5243, 5258), False, 'import filelock\n'), ((5972, 6007), 'os.path.join', 'os.path.join', (['group_path', 'dset_name'], {}), '(group_path, dset_name)\n', (5984, 6007), False, 'import os\n'), ((7091, 7121), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '""""""'}), "(description='')\n", (7105, 7121), False, 'from argparse import ArgumentParser\n'), ((545, 579), 'h5py.File', 'h5py.File', (['XCov_filename'], {'mode': '"""r"""'}), "(XCov_filename, mode='r')\n", (554, 579), False, 'import h5py\n'), ((979, 1011), 'filelock.FileLock', 'filelock.FileLock', (['lock_filename'], {}), '(lock_filename)\n', (996, 1011), False, 'import filelock\n'), ((1952, 1981), 'os.path.exists', 'os.path.exists', (['XCov_filename'], {}), '(XCov_filename)\n', (1966, 1981), False, 'import os\n'), ((2802, 2836), 'h5py.File', 'h5py.File', (['XCov_filename'], {'mode': '"""r"""'}), "(XCov_filename, mode='r')\n", (2811, 2836), False, 'import h5py\n'), ((5000, 5069), 'globber.core.likelihood_worker', 'likelihood_worker', (['X', 'Cov', 'X_compare', 'Cov_compare'], {'smooth': 'smooth', 'W': 'W'}), '(X, Cov, X_compare, Cov_compare, smooth=smooth, W=W)\n', (5017, 5069), False, 'from globber.core import likelihood_worker\n'), ((6018, 6052), 'h5py.File', 'h5py.File', (['XCov_filename'], {'mode': '"""r"""'}), "(XCov_filename, mode='r')\n", (6027, 6052), False, 'import h5py\n'), ((8972, 9002), 'astropy.log.setLevel', 'logger.setLevel', (['logging.DEBUG'], {}), '(logging.DEBUG)\n', (8987, 9002), True, 'from astropy import log as logger\n'), ((9212, 9223), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (9220, 9223), False, 'import sys\n'), ((701, 737), 'astropy.log.debug', 'logger.debug', (['"""Group already exists"""'], {}), "('Group already exists')\n", (713, 737), True, 'from astropy import log as logger\n'), ((2154, 2185), 'os.path.splitext', 'os.path.splitext', (['XCov_filename'], {}), '(XCov_filename)\n', (2170, 2185), False, 'import os\n'), ((3218, 3230), 'numpy.isnan', 'np.isnan', (['ll'], {}), '(ll)\n', (3226, 3230), True, 'import numpy as np\n'), ((5320, 5375), 'astropy.log.debug', 'logger.debug', (['"""File lock acquired - writing to results"""'], {}), "('File lock acquired - writing to results')\n", (5332, 5375), True, 'from astropy import log as logger\n'), ((5512, 5583), 'astropy.log.error', 'logger.error', (['"""Timed out trying to acquire file lock to write results."""'], {}), "('Timed out trying to acquire file lock to write results.')\n", (5524, 5583), True, 'from astropy import log as logger\n'), ((5592, 5603), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (5600, 5603), False, 'import sys\n'), ((6495, 6513), 'numpy.where', 'np.where', (['(diff > 1)'], {}), '(diff > 1)\n', (6503, 6513), True, 'import numpy as np\n'), ((6622, 6656), 'astropy.log.debug', 'logger.debug', (['"""Unfinished blocks:"""'], {}), "('Unfinished blocks:')\n", (6634, 6656), True, 'from astropy import log as logger\n'), ((9032, 9062), 'astropy.log.setLevel', 'logger.setLevel', (['logging.ERROR'], {}), '(logging.ERROR)\n', (9047, 9062), True, 'from astropy import log as logger\n'), ((9081, 9110), 'astropy.log.setLevel', 'logger.setLevel', (['logging.INFO'], {}), '(logging.INFO)\n', (9096, 9110), True, 'from astropy import log as logger\n'), ((805, 843), 'astropy.log.debug', 'logger.debug', (['"""Group doesn\'t exist..."""'], {}), '("Group doesn\'t exist...")\n', (817, 843), True, 'from astropy import log as logger\n'), ((1084, 1156), 'astropy.log.debug', 'logger.debug', (['"""File lock acquired: creating dataset for log-likelihoods"""'], {}), "('File lock acquired: creating dataset for log-likelihoods')\n", (1096, 1156), True, 'from astropy import log as logger\n'), ((1718, 1790), 'astropy.log.error', 'logger.error', (['"""Timed out trying to acquire file lock to create dataset."""'], {}), "('Timed out trying to acquire file lock to create dataset.')\n", (1730, 1790), True, 'from astropy import log as logger\n'), ((1803, 1814), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1811, 1814), False, 'import sys\n'), ((4169, 4206), 'numpy.random.randint', 'np.random.randint', (['X_compare.shape[0]'], {}), '(X_compare.shape[0])\n', (4186, 4206), True, 'import numpy as np\n'), ((5393, 5428), 'h5py.File', 'h5py.File', (['XCov_filename'], {'mode': '"""r+"""'}), "(XCov_filename, mode='r+')\n", (5402, 5428), False, 'import h5py\n'), ((6211, 6226), 'numpy.isfinite', 'np.isfinite', (['ll'], {}), '(ll)\n', (6222, 6226), True, 'import numpy as np\n'), ((6248, 6260), 'numpy.isnan', 'np.isnan', (['ll'], {}), '(ll)\n', (6256, 6260), True, 'import numpy as np\n'), ((6425, 6437), 'numpy.isnan', 'np.isnan', (['ll'], {}), '(ll)\n', (6433, 6437), True, 'import numpy as np\n'), ((1178, 1213), 'h5py.File', 'h5py.File', (['XCov_filename'], {'mode': '"""r+"""'}), "(XCov_filename, mode='r+')\n", (1187, 1213), False, 'import h5py\n'), ((2886, 2901), 'numpy.isfinite', 'np.isfinite', (['ll'], {}), '(ll)\n', (2897, 2901), True, 'import numpy as np\n'), ((3113, 3128), 'numpy.isfinite', 'np.isfinite', (['ll'], {}), '(ll)\n', (3124, 3128), True, 'import numpy as np\n'), ((5189, 5204), 'numpy.isfinite', 'np.isfinite', (['ll'], {}), '(ll)\n', (5200, 5204), True, 'import numpy as np\n')]
""" Copyright (c) 2021, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. All rights reserved. This source code is licensed under the BSD-style license found in the LICENSE file in the root directory of this source tree. """ from Chatbot.training.training import Training from Chatbot.testing.testing import Testing import torch.nn as nn from Chatbot.training.trainingOptimizer import experiment from utils import directoryFinder as df class Main: """ Main class. Running this file allows you to: 1) train the network 2) train multiple networks (via trainOptimizer) 3) test via chat 4) quick test via test_questions.txt 5) quick test multiple nn models """ def __init__(self): """ -- TrainingOptimizer parameters -- network_params: dependent variable values independent_variable: independent variable name -- File parameters -- data_location: Path to the data folder train_data_file: training data file path save_file: save file path save_model: save the trained model (True/False) -- Training parameters -- hidden_size: hidden size of network n_epochs: n training iterations learning_rate: train learning rate batch_size: train batches size criterion: optimization function train_size: train set size (1.00 >= train_size > 0.00) val_size: test set size (1.00 > val_size >= 0.00) use_val: use validation set (True/False) use_acc: use accuracy test (True/False) show_plots: show plots of model training progressions(True/False) -- NLP parameters -- spellcheck_distance: maximum min-edit distance for words to be corrected n_gram_size: size of the ngram tuples check_synonyms: check for synonyms (True/False) -- Output parameters -- model_file: path to trained nn model filtered_tags: tags to not be considered in the guess response respond_threshold: bot answers if < probability guess_threshold: bot gives estimated guesses if < probability guess_gap_perc_threshold: determines how quickly it groups multiple tags together for the guess response, multiple guesses if (prob[i] - prob[i+1])/prob[i+1] < guess_gap_perc_threshold max_guesses: max amount of guesses grouped together """ # trainingOptimizer parameters self.network_params = [10, 12, 14, 16] self.independent_variable = "n_epochs" # file parameters self.data_location = df.get_par_dir(__file__, folder="back-end") + "\\Chatbot\\data\\" self.train_data_file = self.data_location + "trainingdata.csv" self.save_file = self.data_location + "data.pth" self.save_model = True # training parameters self.hidden_size = 65 self.n_epochs = 10 self.learning_rate = 0.01 self.batch_size = 40 self.criterion = nn.CrossEntropyLoss() self.train_size = 1.00 self.val_size = 0.00 self.use_val = False self.use_acc = False self.show_plots = False # nlp parameters self.spellcheck_distance = 2 self.check_synonyms = True self.n_gram_size = 1 # output parameters self.model_file = "Data\\data.pth" self.filtered_tags = ['Greeting', 'Ending'] self.respond_threshold = 0.70 self.guess_threshold = 0.35 self.guess_gap_perc_threshold = 0.60 self.max_guesses = 3 def run(self): """ Runs the main console. Allows you to run one or more sections of the program 1) train the network 2) train multiple networks (via trainOptimizer) 3) test via chat 4) quick test via test_questions.txt 5) quick test multiple models It is possible to 'chain' multiple commands. For example: "143" will train, quick_test and then chat. :return: None """ print("What do you want to do?") print("1) \033[34mtrain\033[0m") print("2) \033[34mtrainOptimizer\033[0m") print("3) \033[34mtest chat\033[0m") print("4) \033[34mquick test\033[0m") print("5) \033[34mquick test multiple models\033[0m") order = input("enter number(s): ") print() nlp_settings = [self.spellcheck_distance, self.check_synonyms, self.n_gram_size] output_settings = [self.respond_threshold, self.guess_threshold, self.guess_gap_perc_threshold, self.max_guesses, self.filtered_tags] for n in order: if n == "1": t = Training(output_settings, nlp_settings, self.criterion, self.hidden_size, self.n_epochs, self.learning_rate, self.batch_size, self.train_size, self.val_size, self.save_file, self.use_val, self.use_acc, self.show_plots, self.save_model, self.train_data_file) t.train() if n == "2": experiment(self.network_params, self.independent_variable, output_settings, nlp_settings, self.criterion, self.hidden_size, self.n_epochs, self.learning_rate, self.batch_size, self.train_size, self.val_size, self.use_val, self.use_acc, self.show_plots, self.save_model, self.train_data_file) if n == "3": t = Testing(self.model_file) t.chat() if n == "4": t = Testing(self.model_file) t.quick_test() if n == "5": test_networks = ["Data\\test_networks\\network" + str(i) + ".pth" for i in range(len(self.network_params))] for model in test_networks: t = Testing(model) t.quick_test() main = Main() main.run()
[ "utils.directoryFinder.get_par_dir", "torch.nn.CrossEntropyLoss", "Chatbot.training.training.Training", "Chatbot.testing.testing.Testing", "Chatbot.training.trainingOptimizer.experiment" ]
[((3168, 3189), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (3187, 3189), True, 'import torch.nn as nn\n'), ((2767, 2810), 'utils.directoryFinder.get_par_dir', 'df.get_par_dir', (['__file__'], {'folder': '"""back-end"""'}), "(__file__, folder='back-end')\n", (2781, 2810), True, 'from utils import directoryFinder as df\n'), ((4906, 5176), 'Chatbot.training.training.Training', 'Training', (['output_settings', 'nlp_settings', 'self.criterion', 'self.hidden_size', 'self.n_epochs', 'self.learning_rate', 'self.batch_size', 'self.train_size', 'self.val_size', 'self.save_file', 'self.use_val', 'self.use_acc', 'self.show_plots', 'self.save_model', 'self.train_data_file'], {}), '(output_settings, nlp_settings, self.criterion, self.hidden_size,\n self.n_epochs, self.learning_rate, self.batch_size, self.train_size,\n self.val_size, self.save_file, self.use_val, self.use_acc, self.\n show_plots, self.save_model, self.train_data_file)\n', (4914, 5176), False, 'from Chatbot.training.training import Training\n'), ((5290, 5600), 'Chatbot.training.trainingOptimizer.experiment', 'experiment', (['self.network_params', 'self.independent_variable', 'output_settings', 'nlp_settings', 'self.criterion', 'self.hidden_size', 'self.n_epochs', 'self.learning_rate', 'self.batch_size', 'self.train_size', 'self.val_size', 'self.use_val', 'self.use_acc', 'self.show_plots', 'self.save_model', 'self.train_data_file'], {}), '(self.network_params, self.independent_variable, output_settings,\n nlp_settings, self.criterion, self.hidden_size, self.n_epochs, self.\n learning_rate, self.batch_size, self.train_size, self.val_size, self.\n use_val, self.use_acc, self.show_plots, self.save_model, self.\n train_data_file)\n', (5300, 5600), False, 'from Chatbot.training.trainingOptimizer import experiment\n'), ((5682, 5706), 'Chatbot.testing.testing.Testing', 'Testing', (['self.model_file'], {}), '(self.model_file)\n', (5689, 5706), False, 'from Chatbot.testing.testing import Testing\n'), ((5778, 5802), 'Chatbot.testing.testing.Testing', 'Testing', (['self.model_file'], {}), '(self.model_file)\n', (5785, 5802), False, 'from Chatbot.testing.testing import Testing\n'), ((6052, 6066), 'Chatbot.testing.testing.Testing', 'Testing', (['model'], {}), '(model)\n', (6059, 6066), False, 'from Chatbot.testing.testing import Testing\n')]
import pandas as pd import time from bs4 import BeautifulSoup from IPython.display import display_html from selenium import webdriver from mysql_service import insert_day def selenium_scraper(): url = 'http://ido.xm.com.co/ido/SitePages/ido.aspx' sleep_time = 3 options = webdriver.ChromeOptions() options.add_argument('--incognito') driver = webdriver.Chrome(executable_path = '/Users/juliansantos/Documents/electrical_power_system_CO/electrical_power_system_CO/chromedriver', options = options) driver.get(url) time.sleep(sleep_time) #Selenium Date Inputbox selection in browser try: date_box = driver.find_elements_by_id('report-date') date_box[0].clear() except Exception as e: print('Error: ') print(e) print('-*-'*50) #Startdate initialization date = pd.to_datetime('02/10/2020', format='%d/%m/%Y') finish_date = pd.to_datetime('03/10/2020', format='%d/%m/%Y') + pd.DateOffset(days=1) #adds 1 day to the date while date != finish_date: try: date_box[0].send_keys(date.strftime('%d/%m/%Y')) date_button = driver.find_elements_by_xpath('//div[@id="filter-button"]/button') date_button[0].click() time.sleep(sleep_time) #Tables titles scraping scraped_table_titles = driver.find_elements_by_xpath('//div[@class="text-blue textL"]/b') scraped_table_titles.pop(0) table_titles_string = '' for table_title in scraped_table_titles: table_titles_string = table_titles_string + table_title.text + '|' tables = driver.find_elements_by_xpath('//table[@class="report-table"]') aportes_x = driver.find_elements_by_xpath('//table[@id="table-aportes-x"]/tbody') reservas_x = driver.find_elements_by_xpath('//table[@id="table-reservas-x"]/tbody') html_tables_no_open = '' for scraped_table in tables: if scraped_table.get_attribute('id') == 'table-aportes-x': if (aportes_x[0].get_attribute('innerHTML') != ''): html_tables_no_open = html_tables_no_open + scraped_table.get_attribute('outerHTML') + '^_^' else: continue elif scraped_table.get_attribute('id') == 'table-reservas-x': if (reservas_x[0].get_attribute('innerHTML') != ''): html_tables_no_open = html_tables_no_open + scraped_table.get_attribute('outerHTML') + '^_^' else: continue else: aportes_vacio = False reservas_vacio = False soup = BeautifulSoup(scraped_table.get_attribute('innerHTML'), 'lxml') td = soup.find('td') tbody = soup.find('tbody') #print(td) if str(td)== '<td>Rio</td>': if str(tbody) == '<tbody class="report-table-body"></tbody>': aportes_vacio = True print('Entra aportes_vacio') if str(td)== '<td> Embalse </td>': if str(tbody) == '<tbody class="report-table-body"></tbody>': reservas_vacio = True print('entra reservas vacio') if aportes_vacio: continue elif reservas_vacio: continue else: html_tables_no_open = html_tables_no_open + scraped_table.get_attribute('outerHTML') + '^_^' print('--'*30) print('Scrapiado: ' + str(date)) print('--'*30) print('\n') insert_day(date, table_titles_string, html_tables_no_open) date = date + pd.DateOffset(days=1) #adds 1 day to the date except Exception as e: print('Error: ') print(e) print('date: '+str(date)) print('-*-'*30) continue if __name__ == "__main__": selenium_scraper()
[ "selenium.webdriver.ChromeOptions", "selenium.webdriver.Chrome", "mysql_service.insert_day", "time.sleep", "pandas.DateOffset", "pandas.to_datetime" ]
[((288, 313), 'selenium.webdriver.ChromeOptions', 'webdriver.ChromeOptions', ([], {}), '()\n', (311, 313), False, 'from selenium import webdriver\n'), ((368, 527), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'executable_path': '"""/Users/juliansantos/Documents/electrical_power_system_CO/electrical_power_system_CO/chromedriver"""', 'options': 'options'}), "(executable_path=\n '/Users/juliansantos/Documents/electrical_power_system_CO/electrical_power_system_CO/chromedriver'\n , options=options)\n", (384, 527), False, 'from selenium import webdriver\n'), ((575, 597), 'time.sleep', 'time.sleep', (['sleep_time'], {}), '(sleep_time)\n', (585, 597), False, 'import time\n'), ((900, 947), 'pandas.to_datetime', 'pd.to_datetime', (['"""02/10/2020"""'], {'format': '"""%d/%m/%Y"""'}), "('02/10/2020', format='%d/%m/%Y')\n", (914, 947), True, 'import pandas as pd\n'), ((966, 1013), 'pandas.to_datetime', 'pd.to_datetime', (['"""03/10/2020"""'], {'format': '"""%d/%m/%Y"""'}), "('03/10/2020', format='%d/%m/%Y')\n", (980, 1013), True, 'import pandas as pd\n'), ((1016, 1037), 'pandas.DateOffset', 'pd.DateOffset', ([], {'days': '(1)'}), '(days=1)\n', (1029, 1037), True, 'import pandas as pd\n'), ((1309, 1331), 'time.sleep', 'time.sleep', (['sleep_time'], {}), '(sleep_time)\n', (1319, 1331), False, 'import time\n'), ((3954, 4012), 'mysql_service.insert_day', 'insert_day', (['date', 'table_titles_string', 'html_tables_no_open'], {}), '(date, table_titles_string, html_tables_no_open)\n', (3964, 4012), False, 'from mysql_service import insert_day\n'), ((4039, 4060), 'pandas.DateOffset', 'pd.DateOffset', ([], {'days': '(1)'}), '(days=1)\n', (4052, 4060), True, 'import pandas as pd\n')]
# This file is automatically loaded and run by pytest during its setup process, # meaning it happens before any of the tests in this directory are run. # See the pytest documentation on conftest files for more information: # https://docs.pytest.org/en/2.7.3/plugins.html#conftest-py-plugins import os import subprocess import threading import time from tests.cook import util def _sudo_check(username): """ Check if the current user can sudo as a test user. This is necessary to obtain Kerberos auth headers for multi-user tests. """ sudo_ok = (0 == subprocess.call(f'sudo -nu {username} echo CACHED SUDO', shell=True)) assert sudo_ok, "You need to pre-cache your sudo credentials. (Run a simple sudo command as a test user.)" def _sudo_checker_task(username): """Periodically check sudo ability to ensure the credentials stay cached.""" while True: _sudo_check(username) time.sleep(60) if util.kerberos_enabled() and os.getenv('COOK_MAX_TEST_USERS'): username = next(util._test_user_names()) _sudo_check(username) threading.Thread(target=_sudo_checker_task, args=[username], daemon=True).start()
[ "tests.cook.util.kerberos_enabled", "os.getenv", "time.sleep", "subprocess.call", "threading.Thread", "tests.cook.util._test_user_names" ]
[((943, 966), 'tests.cook.util.kerberos_enabled', 'util.kerberos_enabled', ([], {}), '()\n', (964, 966), False, 'from tests.cook import util\n'), ((971, 1003), 'os.getenv', 'os.getenv', (['"""COOK_MAX_TEST_USERS"""'], {}), "('COOK_MAX_TEST_USERS')\n", (980, 1003), False, 'import os\n'), ((573, 641), 'subprocess.call', 'subprocess.call', (['f"""sudo -nu {username} echo CACHED SUDO"""'], {'shell': '(True)'}), "(f'sudo -nu {username} echo CACHED SUDO', shell=True)\n", (588, 641), False, 'import subprocess\n'), ((924, 938), 'time.sleep', 'time.sleep', (['(60)'], {}), '(60)\n', (934, 938), False, 'import time\n'), ((1025, 1048), 'tests.cook.util._test_user_names', 'util._test_user_names', ([], {}), '()\n', (1046, 1048), False, 'from tests.cook import util\n'), ((1080, 1153), 'threading.Thread', 'threading.Thread', ([], {'target': '_sudo_checker_task', 'args': '[username]', 'daemon': '(True)'}), '(target=_sudo_checker_task, args=[username], daemon=True)\n', (1096, 1153), False, 'import threading\n')]
# Library dependencies from pyresume import load_data from pyresume import template_data # Project dependencies from data import all_data def run() -> None: loaded_data = load_data(all_data) templated_data = template_data(loaded_data) for templated_datum in templated_data: templated_datum.write() if __name__ == '__main__': run()
[ "pyresume.template_data", "pyresume.load_data" ]
[((178, 197), 'pyresume.load_data', 'load_data', (['all_data'], {}), '(all_data)\n', (187, 197), False, 'from pyresume import load_data\n'), ((219, 245), 'pyresume.template_data', 'template_data', (['loaded_data'], {}), '(loaded_data)\n', (232, 245), False, 'from pyresume import template_data\n')]
# Copyright (C) 2017-2019 New York University, # University at Buffalo, # Illinois Institute of Technology. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from vizier.api.routes.container import ContainerApiUrlFactory from vizier.api.webservice.container.project import SingleProjectCache from vizier.api.webservice.container.task import VizierContainerTaskApi from vizier.api.webservice.datastore import VizierDatastoreApi from vizier.api.webservice.filestore import VizierFilestoreApi from vizier.api.webservice.view import VizierDatasetViewApi from vizier.core import VERSION_INFO from vizier.core.io.base import DefaultObjectStore from vizier.core.timestamp import get_current_time from vizier.core.util import get_short_identifier, get_unique_identifier from vizier.datastore.fs.factory import FileSystemDatastoreFactory from vizier.datastore.mimir.factory import MimirDatastoreFactory from vizier.engine.backend.multiprocess import MultiProcessBackend from vizier.engine.backend.remote.celery.base import CeleryBackend from vizier.engine.base import VizierEngine from vizier.engine.packages.load import load_packages from vizier.engine.project.base import ProjectHandle from vizier.engine.task.processor import load_processors from vizier.filestore.fs.factory import FileSystemFilestoreFactory from vizier.viztrail.base import ViztrailHandle import vizier.api.serialize.base as serialize import vizier.api.serialize.labels as labels import vizier.config.app as app import vizier.config.base as base class VizierContainerApi(object): """ """ def __init__(self, config, init=False): """Initialize the API components. Parameters ---------- config: vizier.config.app.ContainerAppConfig Container application configuration object init: bool, optional Defer initialization if False """ self.config = config # Set the API components to None for now. It is assumed that the .init() # method is called before any of the components are accessed for the # first time self.engine = None self.datasets = None self.files = None self.tasks = None self.urls = None self.service_descriptor = None if init: self.init() def init(self): """Initialize the API before the first request.""" # Initialize the API compinents self.urls = ContainerApiUrlFactory( base_url=self.config.app_base_url, api_doc_url=self.config.webservice.doc_url ) self.engine = get_engine(self.config) self.projects =self.engine.projects self.datasets = VizierDatastoreApi( projects=self.projects, urls=self.urls, defaults=self.config.webservice.defaults ) self.views = VizierDatasetViewApi( projects=self.projects, urls=self.urls ) self.files = VizierFilestoreApi( projects=self.projects, urls=self.urls ) self.tasks = VizierContainerTaskApi( engine=self.engine, controller_url=self.config.controller_url ) # Initialize the service descriptor self.service_descriptor = { 'name': self.config.webservice.name, 'startedAt': get_current_time().isoformat(), 'defaults': { 'maxFileSize': self.config.webservice.defaults.max_file_size }, 'environment': { 'name': self.engine.name, 'version': VERSION_INFO, 'backend': self.config.engine.backend.identifier, 'packages': list(self.engine.packages.keys()) }, labels.LINKS: serialize.HATEOAS({ 'self': self.urls.service_descriptor(), 'doc': self.urls.api_doc() }) } # ------------------------------------------------------------------------------ # Helper Methods # ------------------------------------------------------------------------------ def get_engine(config): """Create instance of vizier engine using the default datastore, filestore and viztrails factories. The default engine may use a multi-process backend or a celery backend. Parameters ---------- config: vizier.config.app.AppConfig Application configuration object Returns ------- vizier.engine.base.VizierEngine """ # Get backend identifier. Raise ValueError if value does not identify # a valid backend. backend_id = config.engine.backend.identifier if not backend_id in base.BACKENDS: raise ValueError('unknown backend \'' + str(backend_id) + '\'') # Get the identifier factory for the viztrails repository and create # the object store. At this point we use the default object store only. # We could add another environment variable to use different object # stores (once implemented). if config.engine.use_short_ids: id_factory = get_short_identifier else: id_factory = get_unique_identifier object_store = DefaultObjectStore( identifier_factory=id_factory ) # By default the vizier engine uses the objectstore implementation for # the viztrails repository. The datastore and filestore factories depend # on the values of engine identifier (DEV or MIMIR). base_dir = config.engine.data_dir viztrails_dir = os.path.join(base_dir, app.DEFAULT_VIZTRAILS_DIR) if config.engine.identifier in [base.DEV_ENGINE, base.MIMIR_ENGINE]: filestores_dir = os.path.join(base_dir, app.DEFAULT_FILESTORES_DIR) filestore_factory=FileSystemFilestoreFactory(filestores_dir) datastores_dir = os.path.join(base_dir, app.DEFAULT_DATASTORES_DIR) if config.engine.identifier == base.DEV_ENGINE: datastore_factory = FileSystemDatastoreFactory(datastores_dir) else: datastore_factory = MimirDatastoreFactory(datastores_dir) else: raise ValueError('unknown vizier engine \'' + str(config.engine.identifier) + '\'') # The default engine uses a common project cache. projects = SingleProjectCache( ProjectHandle( viztrail=ViztrailHandle(identifier=config.project_id), datastore=datastore_factory.get_datastore(config.project_id), filestore=filestore_factory.get_filestore(config.project_id) ) ) # Create workflow execution backend and processor for synchronous task packages = load_packages(config.engine.package_path) processors = load_processors(config.engine.processor_path) # Create the backend if backend_id == base.BACKEND_MULTIPROCESS: backend = MultiProcessBackend( processors=processors, projects=projects, synchronous=None ) elif backend_id == base.BACKEND_CELERY: # Create and configure routing information (if given) backend = CeleryBackend( routes=config_routes(config), synchronous=None ) else: # For completeness. Validity of the backend id is be checked before. raise ValueError('unknown backend \'' + str(backend_id) + '\'') return VizierEngine( name=config.engine.identifier + ' (' + backend_id + ')', projects=projects, backend=backend, packages=packages )
[ "vizier.engine.packages.load.load_packages", "vizier.api.routes.container.ContainerApiUrlFactory", "vizier.api.webservice.container.task.VizierContainerTaskApi", "vizier.engine.backend.multiprocess.MultiProcessBackend", "vizier.core.timestamp.get_current_time", "os.path.join", "vizier.api.webservice.filestore.VizierFilestoreApi", "vizier.core.io.base.DefaultObjectStore", "vizier.engine.task.processor.load_processors", "vizier.engine.base.VizierEngine", "vizier.filestore.fs.factory.FileSystemFilestoreFactory", "vizier.datastore.mimir.factory.MimirDatastoreFactory", "vizier.viztrail.base.ViztrailHandle", "vizier.api.webservice.view.VizierDatasetViewApi", "vizier.api.webservice.datastore.VizierDatastoreApi", "vizier.datastore.fs.factory.FileSystemDatastoreFactory" ]
[((5725, 5774), 'vizier.core.io.base.DefaultObjectStore', 'DefaultObjectStore', ([], {'identifier_factory': 'id_factory'}), '(identifier_factory=id_factory)\n', (5743, 5774), False, 'from vizier.core.io.base import DefaultObjectStore\n'), ((6056, 6105), 'os.path.join', 'os.path.join', (['base_dir', 'app.DEFAULT_VIZTRAILS_DIR'], {}), '(base_dir, app.DEFAULT_VIZTRAILS_DIR)\n', (6068, 6105), False, 'import os\n'), ((7149, 7190), 'vizier.engine.packages.load.load_packages', 'load_packages', (['config.engine.package_path'], {}), '(config.engine.package_path)\n', (7162, 7190), False, 'from vizier.engine.packages.load import load_packages\n'), ((7208, 7253), 'vizier.engine.task.processor.load_processors', 'load_processors', (['config.engine.processor_path'], {}), '(config.engine.processor_path)\n', (7223, 7253), False, 'from vizier.engine.task.processor import load_processors\n'), ((7861, 7989), 'vizier.engine.base.VizierEngine', 'VizierEngine', ([], {'name': "(config.engine.identifier + ' (' + backend_id + ')')", 'projects': 'projects', 'backend': 'backend', 'packages': 'packages'}), "(name=config.engine.identifier + ' (' + backend_id + ')',\n projects=projects, backend=backend, packages=packages)\n", (7873, 7989), False, 'from vizier.engine.base import VizierEngine\n'), ((2994, 3100), 'vizier.api.routes.container.ContainerApiUrlFactory', 'ContainerApiUrlFactory', ([], {'base_url': 'self.config.app_base_url', 'api_doc_url': 'self.config.webservice.doc_url'}), '(base_url=self.config.app_base_url, api_doc_url=self.\n config.webservice.doc_url)\n', (3016, 3100), False, 'from vizier.api.routes.container import ContainerApiUrlFactory\n'), ((3244, 3349), 'vizier.api.webservice.datastore.VizierDatastoreApi', 'VizierDatastoreApi', ([], {'projects': 'self.projects', 'urls': 'self.urls', 'defaults': 'self.config.webservice.defaults'}), '(projects=self.projects, urls=self.urls, defaults=self.\n config.webservice.defaults)\n', (3262, 3349), False, 'from vizier.api.webservice.datastore import VizierDatastoreApi\n'), ((3412, 3472), 'vizier.api.webservice.view.VizierDatasetViewApi', 'VizierDatasetViewApi', ([], {'projects': 'self.projects', 'urls': 'self.urls'}), '(projects=self.projects, urls=self.urls)\n', (3432, 3472), False, 'from vizier.api.webservice.view import VizierDatasetViewApi\n'), ((3528, 3586), 'vizier.api.webservice.filestore.VizierFilestoreApi', 'VizierFilestoreApi', ([], {'projects': 'self.projects', 'urls': 'self.urls'}), '(projects=self.projects, urls=self.urls)\n', (3546, 3586), False, 'from vizier.api.webservice.filestore import VizierFilestoreApi\n'), ((3642, 3732), 'vizier.api.webservice.container.task.VizierContainerTaskApi', 'VizierContainerTaskApi', ([], {'engine': 'self.engine', 'controller_url': 'self.config.controller_url'}), '(engine=self.engine, controller_url=self.config.\n controller_url)\n', (3664, 3732), False, 'from vizier.api.webservice.container.task import VizierContainerTaskApi\n'), ((6204, 6254), 'os.path.join', 'os.path.join', (['base_dir', 'app.DEFAULT_FILESTORES_DIR'], {}), '(base_dir, app.DEFAULT_FILESTORES_DIR)\n', (6216, 6254), False, 'import os\n'), ((6281, 6323), 'vizier.filestore.fs.factory.FileSystemFilestoreFactory', 'FileSystemFilestoreFactory', (['filestores_dir'], {}), '(filestores_dir)\n', (6307, 6323), False, 'from vizier.filestore.fs.factory import FileSystemFilestoreFactory\n'), ((6349, 6399), 'os.path.join', 'os.path.join', (['base_dir', 'app.DEFAULT_DATASTORES_DIR'], {}), '(base_dir, app.DEFAULT_DATASTORES_DIR)\n', (6361, 6399), False, 'import os\n'), ((7345, 7424), 'vizier.engine.backend.multiprocess.MultiProcessBackend', 'MultiProcessBackend', ([], {'processors': 'processors', 'projects': 'projects', 'synchronous': 'None'}), '(processors=processors, projects=projects, synchronous=None)\n', (7364, 7424), False, 'from vizier.engine.backend.multiprocess import MultiProcessBackend\n'), ((6488, 6530), 'vizier.datastore.fs.factory.FileSystemDatastoreFactory', 'FileSystemDatastoreFactory', (['datastores_dir'], {}), '(datastores_dir)\n', (6514, 6530), False, 'from vizier.datastore.fs.factory import FileSystemDatastoreFactory\n'), ((6577, 6614), 'vizier.datastore.mimir.factory.MimirDatastoreFactory', 'MimirDatastoreFactory', (['datastores_dir'], {}), '(datastores_dir)\n', (6598, 6614), False, 'from vizier.datastore.mimir.factory import MimirDatastoreFactory\n'), ((6850, 6894), 'vizier.viztrail.base.ViztrailHandle', 'ViztrailHandle', ([], {'identifier': 'config.project_id'}), '(identifier=config.project_id)\n', (6864, 6894), False, 'from vizier.viztrail.base import ViztrailHandle\n'), ((3916, 3934), 'vizier.core.timestamp.get_current_time', 'get_current_time', ([], {}), '()\n', (3932, 3934), False, 'from vizier.core.timestamp import get_current_time\n')]
######################################################################################### # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # SPDX-License-Identifier: MIT-0 # # # # Permission is hereby granted, free of charge, to any person obtaining a copy of this # # software and associated documentation files (the "Software"), to deal in the Software # # without restriction, including without limitation the rights to use, copy, modify, # # merge, publish, distribute, sublicense, and/or sell copies of the Software, and to # # permit persons to whom the Software is furnished to do so. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ######################################################################################### # Version: 13APR2021.01 from __future__ import print_function import sys import argparse import json import boto3 import botocore.exceptions import csv import mfcommon serverendpoint = mfcommon.serverendpoint appendpoint = mfcommon.appendpoint with open('FactoryEndpoints.json') as json_file: endpoints = json.load(json_file) def assume_role(account_id, region): sts_client = boto3.client('sts') role_arn = 'arn:aws:iam::' + account_id + ':role/Factory-Automation' # Call the assume_role method of the STSConnection object and pass the role # ARN and a role session name. try: user = sts_client.get_caller_identity()['Arn'] sessionname = user.split('/')[1] response = sts_client.assume_role(RoleArn=role_arn, RoleSessionName=sessionname) credentials = response['Credentials'] session = boto3.Session( region_name = region, aws_access_key_id=credentials['AccessKeyId'], aws_secret_access_key=credentials['SecretAccessKey'], aws_session_token=credentials['SessionToken'] ) return session except botocore.exceptions.ClientError as e: print(str(e)) def GetInstanceId(serverlist): for account in serverlist: target_account_session = assume_role(str(account['aws_accountid']), account['aws_region']) print("") print("Account: " + account['aws_accountid'] + ", Region: " + account['aws_region']) mgn_client = target_account_session.client("mgn", account['aws_region']) mgn_sourceservers = mgn_client.describe_source_servers(filters={}) for factoryserver in account['servers']: if 'server_fqdn' not in factoryserver: print("ERROR: server_fqdn does not exist for server: " + factoryserver['server_name']) sys.exit() else: sourceserver = mfcommon.get_MGN_Source_Server(factoryserver, mgn_sourceservers['items']) if sourceserver is not None: # Get target instance Id for the source server in Application Migration Service if sourceserver['isArchived'] == False: if 'launchedInstance' in sourceserver: if 'ec2InstanceID' in sourceserver['launchedInstance']: factoryserver['target_ec2InstanceID'] = sourceserver['launchedInstance']['ec2InstanceID'] print(factoryserver['server_name'] + " : " + factoryserver['target_ec2InstanceID']) else: factoryserver['target_ec2InstanceID'] = '' print("ERROR: target instance Id does not exist for server: " + factoryserver['server_name'] + ", please wait for a few minutes") else: factoryserver['target_ec2InstanceID'] = '' print("ERROR: target instance does not exist for server: " + factoryserver['server_name'] + ", please wait for a few minutes") else: print("ERROR: Server: " + factoryserver['server_name'] + " is archived in Application Migration Service (Account: " + account['aws_accountid'] + ", Region: " + account['aws_region'] + "), Please install the agent") sys.exit() return serverlist def get_instance_ips(InstanceList, waveid): all_instance_ips = [] for account in InstanceList: target_account_session = assume_role(str(account['aws_accountid']), account['aws_region']) print("") print("######################################################") print("#### In Account: " + account['aws_accountid'], ", region: " + account['aws_region'] + " ####") print("######################################################") #### Change this line, and not hardcoded endpoint_url ec2_client = target_account_session.client("ec2", region_name=account['aws_region']) instanceIds = [] for server in account['servers']: if 'target_ec2InstanceID' in server: if server['target_ec2InstanceID'] != '': instanceIds.append(server['target_ec2InstanceID']) if len(instanceIds) != 0: #resp = ec2_client.describe_instances(InstanceIds=instanceIds, Filters=[{'Name': 'instance-state-name', 'Values': ['available', 'terminated']}]) resp = ec2_client.describe_instances(InstanceIds=instanceIds) else: print("") print("*** No target instances available for this wave ***") return for r in resp['Reservations']: for instance in r['Instances']: instance_ips = {} instance_name = "" ips = "" name_exist = False for tag in instance['Tags']: if tag['Key'] == "Name": if tag['Value'] != "": instance_name = tag['Value'] name_exist = True if name_exist == False: print("ERROR: Name Tag does not exist for instance " + instance['InstanceId']) sys.exit() for nic in instance['NetworkInterfaces']: for ip in nic['PrivateIpAddresses']: ips = ips + ip['PrivateIpAddress'] + "," instance_ips['instance_name'] = instance_name instance_ips['instance_ips'] = ips[:-1] print(instance_name + " , " + ips[:-1]) all_instance_ips.append(instance_ips) filename = "Wave" + waveid + "-IPs.csv" if len(all_instance_ips) != 0: with open(filename, "w", newline='') as csvfile: writer = csv.DictWriter(csvfile, all_instance_ips[0].keys()) writer.writeheader() writer.writerows(all_instance_ips) print("") print("*** Exported Instance IPs to " + filename + " ***") else: print("") print("*** No target instances available for this wave ***") def main(arguments): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--Waveid', required=True) args = parser.parse_args(arguments) UserHOST = "" # Get MF endpoints from FactoryEndpoints.json file if 'UserApiUrl' in endpoints: UserHOST = endpoints['UserApiUrl'] else: print("ERROR: Invalid FactoryEndpoints.json file, please update UserApiUrl") sys.exit() print("") print("****************************") print("*Login to Migration factory*") print("****************************") token = mfcommon.Factorylogin() print("****************************") print("*** Getting Server List ****") print("****************************") get_servers = mfcommon.get_factory_servers(args.Waveid, token, UserHOST, False) print("******************************") print("* Getting Target Instance Id *") print("******************************") InstanceList = GetInstanceId(get_servers) print("") print("*****************************") print("* Get target Instance IPs *") print("*****************************") get_instance_ips(InstanceList, args.Waveid) if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
[ "boto3.client", "argparse.ArgumentParser", "mfcommon.get_MGN_Source_Server", "boto3.Session", "mfcommon.Factorylogin", "mfcommon.get_factory_servers", "sys.exit", "json.load" ]
[((1843, 1863), 'json.load', 'json.load', (['json_file'], {}), '(json_file)\n', (1852, 1863), False, 'import json\n'), ((1920, 1939), 'boto3.client', 'boto3.client', (['"""sts"""'], {}), "('sts')\n", (1932, 1939), False, 'import boto3\n'), ((8114, 8217), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawDescriptionHelpFormatter)\n', (8137, 8217), False, 'import argparse\n'), ((8739, 8762), 'mfcommon.Factorylogin', 'mfcommon.Factorylogin', ([], {}), '()\n', (8760, 8762), False, 'import mfcommon\n'), ((8908, 8973), 'mfcommon.get_factory_servers', 'mfcommon.get_factory_servers', (['args.Waveid', 'token', 'UserHOST', '(False)'], {}), '(args.Waveid, token, UserHOST, False)\n', (8936, 8973), False, 'import mfcommon\n'), ((2386, 2575), 'boto3.Session', 'boto3.Session', ([], {'region_name': 'region', 'aws_access_key_id': "credentials['AccessKeyId']", 'aws_secret_access_key': "credentials['SecretAccessKey']", 'aws_session_token': "credentials['SessionToken']"}), "(region_name=region, aws_access_key_id=credentials[\n 'AccessKeyId'], aws_secret_access_key=credentials['SecretAccessKey'],\n aws_session_token=credentials['SessionToken'])\n", (2399, 2575), False, 'import boto3\n'), ((8575, 8585), 'sys.exit', 'sys.exit', ([], {}), '()\n', (8583, 8585), False, 'import sys\n'), ((3409, 3419), 'sys.exit', 'sys.exit', ([], {}), '()\n', (3417, 3419), False, 'import sys\n'), ((3477, 3550), 'mfcommon.get_MGN_Source_Server', 'mfcommon.get_MGN_Source_Server', (['factoryserver', "mgn_sourceservers['items']"], {}), "(factoryserver, mgn_sourceservers['items'])\n", (3507, 3550), False, 'import mfcommon\n'), ((7117, 7127), 'sys.exit', 'sys.exit', ([], {}), '()\n', (7125, 7127), False, 'import sys\n'), ((5061, 5071), 'sys.exit', 'sys.exit', ([], {}), '()\n', (5069, 5071), False, 'import sys\n')]
from conftest import QL_URL, do_clean_crate import pytest import requests import time import urllib from .utils import send_notifications entity_type = 'TestDevice' attr1 = 'AtTr1' attr2 = 'aTtr_2' attr1_value = '1' attr2_value = 2 entity1_id = 'd1' entity2_id = 'd2' def mk_entity(eid): return { 'id': eid, 'type': entity_type, attr1: { 'type': 'Text', 'value': attr1_value }, attr2: { 'type': 'Number', 'value': attr2_value } } def mk_entities(): return [ mk_entity(entity1_id), mk_entity(entity1_id), mk_entity(entity2_id), mk_entity(entity2_id) ] def insert_entities(): notification_data = [{'data': mk_entities()}] send_notifications(notification_data) @pytest.fixture(scope='module') def manage_db_entities(): insert_entities() time.sleep(2) yield do_clean_crate() def query_1t1e1a(entity_id, attr_name): escaped_attr_name = urllib.parse.quote(attr_name) url = "{}/entities/{}/attrs/{}".format(QL_URL, entity_id, escaped_attr_name) response = requests.get(url) assert response.status_code == 200 return response.json() def query_1tne1a(attr_name): escaped_attr_name = urllib.parse.quote(attr_name) url = "{}/types/{}/attrs/{}".format(QL_URL, entity_type, escaped_attr_name) response = requests.get(url) assert response.status_code == 200 return response.json() def query_1t1ena(entity_id, attr1_name, attr2_name): url = "{}/entities/{}".format(QL_URL, entity_id) query_params = { 'attrs': attr1_name + ',' + attr2_name, } response = requests.get(url, query_params) assert response.status_code == 200 return response.json() @pytest.mark.parametrize('attr_name', [ attr1, 'attr1', 'atTr1' ]) def test_1t1e1a(attr_name, manage_db_entities): query_result = query_1t1e1a(entity1_id, attr_name) query_result.pop('index', None) assert query_result == { 'attrName': attr_name, 'entityId': entity1_id, 'values': [attr1_value, attr1_value] } @pytest.mark.parametrize('attr_name', [ attr1, 'attr1', 'atTr1' ]) def test_1tne1a(attr_name, manage_db_entities): query_result = query_1tne1a(attr_name) for e in query_result['entities']: e.pop('index', None) assert query_result == { 'entityType': entity_type, 'attrName': attr_name, 'entities': [ { 'entityId': entity1_id, 'values': [attr1_value, attr1_value] }, { 'entityId': entity2_id, 'values': [attr1_value, attr1_value] } ] } @pytest.mark.parametrize('attr1_name, attr2_name', [ (attr1, attr2), ('attr1', 'attr_2'), ('atTr1', 'ATtr_2') ]) def test_1t1ena(attr1_name, attr2_name, manage_db_entities): query_result = query_1t1ena(entity2_id, attr1_name, attr2_name) query_result.pop('index', None) assert query_result == { 'entityId': entity2_id, 'attributes': [ { 'attrName': attr1, 'values': [attr1_value, attr1_value] }, { 'attrName': attr2, 'values': [attr2_value, attr2_value] } ] }
[ "urllib.parse.quote", "time.sleep", "requests.get", "pytest.mark.parametrize", "pytest.fixture", "conftest.do_clean_crate" ]
[((808, 838), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (822, 838), False, 'import pytest\n'), ((1777, 1840), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""attr_name"""', "[attr1, 'attr1', 'atTr1']"], {}), "('attr_name', [attr1, 'attr1', 'atTr1'])\n", (1800, 1840), False, 'import pytest\n'), ((2132, 2195), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""attr_name"""', "[attr1, 'attr1', 'atTr1']"], {}), "('attr_name', [attr1, 'attr1', 'atTr1'])\n", (2155, 2195), False, 'import pytest\n'), ((2741, 2854), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""attr1_name, attr2_name"""', "[(attr1, attr2), ('attr1', 'attr_2'), ('atTr1', 'ATtr_2')]"], {}), "('attr1_name, attr2_name', [(attr1, attr2), ('attr1',\n 'attr_2'), ('atTr1', 'ATtr_2')])\n", (2764, 2854), False, 'import pytest\n'), ((891, 904), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (901, 904), False, 'import time\n'), ((921, 937), 'conftest.do_clean_crate', 'do_clean_crate', ([], {}), '()\n', (935, 937), False, 'from conftest import QL_URL, do_clean_crate\n'), ((1004, 1033), 'urllib.parse.quote', 'urllib.parse.quote', (['attr_name'], {}), '(attr_name)\n', (1022, 1033), False, 'import urllib\n'), ((1130, 1147), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1142, 1147), False, 'import requests\n'), ((1269, 1298), 'urllib.parse.quote', 'urllib.parse.quote', (['attr_name'], {}), '(attr_name)\n', (1287, 1298), False, 'import urllib\n'), ((1394, 1411), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (1406, 1411), False, 'import requests\n'), ((1676, 1707), 'requests.get', 'requests.get', (['url', 'query_params'], {}), '(url, query_params)\n', (1688, 1707), False, 'import requests\n')]
# -*- coding: utf-8 -*- """ .. moduleauthor:: <NAME> (<EMAIL>, <EMAIL>) """ import fnmatch import os import random import shutil import time from collections import OrderedDict import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from scipy import stats from scipy.stats import spearmanr, pearsonr from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from ..shared import apply_cyclic_transform, pickle_file class ModelGeneratorBase(object): def __init__(self, analysis_id, random_seed=None, **kwargs): """ Base class for generating ROMs :param analysis_id: string, identifier of the model to build :param random_seed: int, random seed to use :param kwargs: See below :Keyword Arguments: * *downsample* (``double``) -- Fraction to downsample the dataframe. If this exists then the data will be downsampled, and the results will be stored in a directory with this value appended. """ self.analysis_id = analysis_id self.random_seed = random_seed if random_seed else np.random.seed(time.time()) self.model_results = [] self.model_type = self.__class__.__name__ self.dataset = None self.downsample = kwargs.get('downsample', None) print("Initializing %s" % self.model_type) # Initialize the directories where results are to be stored. if self.downsample: self.base_dir = 'output/%s_%s/%s' % (self.analysis_id, self.downsample, self.model_type) else: self.base_dir = 'output/%s/%s' % (self.analysis_id, self.model_type) self.images_dir = '%s/images' % self.base_dir self.models_dir = '%s/models' % self.base_dir if self.downsample: self.validation_dir = 'output/%s_%s/ValidationData' % ( self.analysis_id, self.downsample) else: self.validation_dir = 'output/%s/ValidationData' % self.analysis_id self.data_dir = '%s/data' % self.base_dir # Remove some directories if they exist for dir_n in ['images_dir', 'models_dir']: if os.path.exists(getattr(self, dir_n)): # print("removing the directory %s" % dir) shutil.rmtree(getattr(self, dir_n)) # create directory if not exist for each of the above for dir_n in ['base_dir', 'images_dir', 'models_dir', 'data_dir', 'validation_dir']: if not os.path.exists(getattr(self, dir_n)): os.makedirs(getattr(self, dir_n)) for root, dirnames, filenames in os.walk(self.base_dir): for filename in fnmatch.filter(filenames, 'cv_results_*.csv'): os.remove('%s/%s' % (self.base_dir, filename)) for filename in fnmatch.filter(filenames, 'model_results.csv'): os.remove('%s/%s' % (self.base_dir, filename)) def save_dataframe(self, dataframe, path): pickle_file(dataframe, path) def inspect(self): """ Inspect the dataframe and return the statistics of the dataframe. :return: """ # look at the entire datatset and save the statistics from the file to the data_dir out_df = self.dataset.describe() out_df.to_csv(f'{self.data_dir}/statistics.csv') # list out all the columns out_df = self.dataset.columns with open(f'{self.data_dir}/column_names.csv', 'w') as f: for column in self.dataset.columns: f.write(column + '\n') def load_data(self, datafile): """ Load the data into a dataframe. The data needs to be a CSV file at the moment. :param datafile: str, path to the CSV file to load :return: None """ if os.path.exists(datafile): self.dataset = pd.read_csv(datafile) else: raise Exception(f"Datafile does not exist: {datafile}") print(f'Loading results data file: {datafile}') # message the data as needed based on the kwargs arg # TODO: remove these hard coded options and pass in as kwargs. drop_columns = ['DistrictCoolingOutletTemperature'] rename_columns = { 'DistrictHeatingOutletTemperature': 'ETSInletTemperature', 'DistrictHeatingInletTemperature': 'ETSHeatingOutletTemperature', 'DistrictCoolingInletTemperature': 'ETSCoolingOutletTemperature', } for column in drop_columns: if column in list(self.dataset.columns.values): self.dataset = self.dataset.drop(column, 1) if rename_columns: self.dataset = self.dataset.rename(columns=rename_columns) def evaluate(self, model, model_name, model_moniker, x_data, y_data, downsample, build_time, cv_time, covariates=None, scaler=None): """ Generic base function to evaluate the performance of the models. :param model: :param model_name: :param x_data: :param y_data: :param downsample: :param build_time: :return: Ordered dict """ yhat = model.predict(x_data) if scaler: yhat = scaler[model_name].inverse_transform(yhat) y_data = scaler[model_name].inverse_transform(y_data) errors = abs(yhat - y_data) spearman = spearmanr(y_data, yhat) pearson = pearsonr(y_data, yhat) slope, intercept, r_value, _p_value, _std_err = stats.linregress(y_data, yhat) self.yy_plots(y_data, yhat, model_name) return yhat, OrderedDict([ ('name', model_name), ('model_type', model_moniker), ('downsample', downsample), ('slope', slope), ('intercept', intercept), ('mae', np.mean(errors)), ('r_value', r_value), ('r_squared', r_value ** 2), ('spearman', spearman[0]), ('pearson', pearson[0]), ('time_to_build', build_time), ('time_to_cv', cv_time), ]) def build(self, metamodel, **kwargs): if self.dataset is None: raise Exception("Need to load the datafile first by calling Metamodel.load_data(<path-to-file>)") # Type cast the columns - this is probably not needed data_types = metamodel.covariate_types(self.model_type) self.dataset[data_types['float']] = self.dataset[data_types['float']].astype(float) self.dataset[data_types['int']] = self.dataset[data_types['int']].astype(int) def train_test_validate_split(self, dataset, metamodel, downsample=None, scale=False): """ Use the built in method to generate the train and test data. This adds an additional set of data for validation. This vaildation dataset is a unique ID that is pulled out of the dataset before the test_train method is called. """ print("Initial dataset size is %s" % len(dataset)) validate_id = None if metamodel.validation_id == 'first': # grab the first id in the dataset. This is non-ideal, but allow for rapid testing validate_id = dataset.iloc[0]['id'] elif metamodel.validation_id == 'median': raise Exception('Median validation ID is not implemented') # look at all of the covariates and try to find the median value from them all # this method should be deterministic # Code below only works if the space is fully filled out and if only looking at variables # that are constant for the whole annual simulation. # closest_medians = dataset # for cv in metamodel.covariates(self.model_type): # if cv.get('alogithm_option', None): # if cv['algorithm_options'].get(self.model_type, None): # if cv['algorithm_options'][self.model_type]['ignore']: # continue # median = dataset[cv['name']].median() # print(f'my median is {median}') # closest_medians = closest_medians[closest_medians[cv['name']] == median] # print(f'len of dataframe is {len(closest_medians)}') elif metamodel.validation_id == 'random': ids = dataset['id'].unique() validate_id = random.choice(ids) else: # assume that there is a validation id that has been passed validate_id = metamodel.validation_id if validate_id and validate_id in dataset['id'].unique(): print('Extracting validation dataset and converting to date time') validate_xy = dataset[dataset['id'] == validate_id] # Covert the validation dataset datetime to actual datetime objects # validate_xy['DateTime'] = pd.to_datetime(dataset['DateTime']) # # Constrain to minute precision to make this method much faster validate_xy['DateTime'] = validate_xy['DateTime'].astype('datetime64[m]') dataset = dataset[dataset['id'] != validate_id] else: raise Exception( "Validation id does not exist in dataframe. ID was %s" % validate_id) if downsample: num_rows = int(len(dataset.index.values) * downsample) print("Downsampling dataframe by %s to %s rows" % (downsample, num_rows)) dataset = dataset.sample(n=num_rows) for cv in metamodel.covariates(self.model_type): if cv.get('algorithm_options', None): if cv['algorithm_options'].get(self.model_type, None): if cv['algorithm_options'][self.model_type].get('variable_type', None): if cv['algorithm_options'][self.model_type]['variable_type'] == 'cyclical': print("Transforming covariate to be cyclical %s" % cv['name']) dataset[cv['name']] = dataset.apply( apply_cyclic_transform, column_name=cv['name'], category_count=cv['algorithm_options'][self.model_type][ 'category_count'], axis=1 ) train_x, test_x, train_y, test_y = train_test_split( dataset[metamodel.covariate_names(self.model_type)], dataset[metamodel.available_response_names(self.model_type)], train_size=0.7, test_size=0.3, random_state=self.random_seed ) # If scaling, then fit the scaler on the training data, then use the trained data # scalar to scale the test data. if scale: scalers = {'features': StandardScaler()} train_x[train_x.columns] = scalers['features'].fit_transform(train_x[train_x.columns]) test_x[test_x.columns] = scalers['features'].transform(test_x[test_x.columns]) for response in metamodel.available_response_names(self.model_type): scalers[response] = StandardScaler() train_y[response] = scalers[response].fit_transform( train_y[response].values.reshape(-1, 1) ) test_y[response] = scalers[response].transform( test_y[response].values.reshape(-1, 1) ) else: scalers = None print("Dataset size is %s" % len(dataset)) print("Training dataset size is %s" % len(train_x)) print("Validation dataset size is %s" % len(validate_xy)) return train_x, test_x, train_y, test_y, validate_xy, scalers def yy_plots(self, y_data, yhat, model_name): """ Plot the yy-plots :param y_data: :param yhat: :param model_name: :return: """ # This need to be updated with the creating a figure with a size sns.set(color_codes=True) # Find the items that are zero / zero across y and yhat and remove to look at # plots and other statistics clean_data = zip(y_data, yhat) clean_data = [x for x in clean_data if x != (0, 0)] y_data = np.asarray([y[0] for y in clean_data]) yhat = np.asarray([y[1] for y in clean_data]) # Convert data to dataframe data = pd.DataFrame.from_dict({'Y': y_data, 'Yhat': yhat}) with plt.rc_context(dict(sns.axes_style("whitegrid"))): fig = plt.figure(figsize=(6, 6), dpi=100) sns.regplot( x='Y', y='Yhat', data=data, ci=None, scatter_kws={"s": 50, "alpha": 1} ) # plt.title("Training Set: Y-Y Plot for %s" % model_name) plt.tight_layout() plt.savefig('%s/fig_yy_%s.png' % (self.images_dir, model_name)) fig.clf() plt.clf() # Hex plots for YY data # Full resolution YY Plots with plt.rc_context(dict(sns.axes_style("ticks"))): newplt = sns.jointplot( data['Y'], data['Yhat'], kind="hex", space=0 ) newplt.savefig('%s/fig_yy_hexplot_%s.png' % (self.images_dir, model_name)) plt.clf() # Remove 0,0 points for higher resolution sub_data = data[(data.Y != 0) & (data.Yhat != 0)] # Hex plots for YY data newplt = sns.jointplot( sub_data['Y'], sub_data['Yhat'], kind="hex", space=0 ) newplt.savefig('%s/fig_yy_hexplot_hres_%s.png' % (self.images_dir, model_name)) plt.clf() def anova_plots(self, y_data, yhat, model_name): residuals = y_data - yhat # figsize = width, height fig = plt.figure(figsize=(8, 4), dpi=100) ax1 = fig.add_subplot(1, 2, 1) ax1.plot(yhat, residuals, 'o') plt.axhline(y=0, color='grey', linestyle='dashed') ax1.set_xlabel('Fitted values') ax1.set_ylabel('Residuals') ax1.set_title('Residuals vs Fitted') # ax2 = fig.add_subplot(1, 2, 2) # sm.qqplot(residuals, line='s', ax=ax2) # ax2.set_title('Normal Q-Q') # plt.tight_layout() # fig.savefig('%s/fig_anova_%s.png' % (self.images_dir, model_name)) # fig.clf() # plt.clf()
[ "scipy.stats.linregress", "pandas.read_csv", "scipy.stats.pearsonr", "os.walk", "os.remove", "os.path.exists", "seaborn.set", "seaborn.regplot", "numpy.mean", "numpy.asarray", "pandas.DataFrame.from_dict", "matplotlib.pyplot.axhline", "scipy.stats.spearmanr", "seaborn.axes_style", "random.choice", "matplotlib.pyplot.savefig", "seaborn.jointplot", "time.time", "matplotlib.pyplot.clf", "sklearn.preprocessing.StandardScaler", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "fnmatch.filter" ]
[((2697, 2719), 'os.walk', 'os.walk', (['self.base_dir'], {}), '(self.base_dir)\n', (2704, 2719), False, 'import os\n'), ((3881, 3905), 'os.path.exists', 'os.path.exists', (['datafile'], {}), '(datafile)\n', (3895, 3905), False, 'import os\n'), ((5480, 5503), 'scipy.stats.spearmanr', 'spearmanr', (['y_data', 'yhat'], {}), '(y_data, yhat)\n', (5489, 5503), False, 'from scipy.stats import spearmanr, pearsonr\n'), ((5522, 5544), 'scipy.stats.pearsonr', 'pearsonr', (['y_data', 'yhat'], {}), '(y_data, yhat)\n', (5530, 5544), False, 'from scipy.stats import spearmanr, pearsonr\n'), ((5602, 5632), 'scipy.stats.linregress', 'stats.linregress', (['y_data', 'yhat'], {}), '(y_data, yhat)\n', (5618, 5632), False, 'from scipy import stats\n'), ((12137, 12162), 'seaborn.set', 'sns.set', ([], {'color_codes': '(True)'}), '(color_codes=True)\n', (12144, 12162), True, 'import seaborn as sns\n'), ((12403, 12441), 'numpy.asarray', 'np.asarray', (['[y[0] for y in clean_data]'], {}), '([y[0] for y in clean_data])\n', (12413, 12441), True, 'import numpy as np\n'), ((12457, 12495), 'numpy.asarray', 'np.asarray', (['[y[1] for y in clean_data]'], {}), '([y[1] for y in clean_data])\n', (12467, 12495), True, 'import numpy as np\n'), ((12548, 12599), 'pandas.DataFrame.from_dict', 'pd.DataFrame.from_dict', (["{'Y': y_data, 'Yhat': yhat}"], {}), "({'Y': y_data, 'Yhat': yhat})\n", (12570, 12599), True, 'import pandas as pd\n'), ((14001, 14036), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 4)', 'dpi': '(100)'}), '(figsize=(8, 4), dpi=100)\n', (14011, 14036), True, 'import matplotlib.pyplot as plt\n'), ((14124, 14174), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': '(0)', 'color': '"""grey"""', 'linestyle': '"""dashed"""'}), "(y=0, color='grey', linestyle='dashed')\n", (14135, 14174), True, 'import matplotlib.pyplot as plt\n'), ((2749, 2794), 'fnmatch.filter', 'fnmatch.filter', (['filenames', '"""cv_results_*.csv"""'], {}), "(filenames, 'cv_results_*.csv')\n", (2763, 2794), False, 'import fnmatch\n'), ((2888, 2934), 'fnmatch.filter', 'fnmatch.filter', (['filenames', '"""model_results.csv"""'], {}), "(filenames, 'model_results.csv')\n", (2902, 2934), False, 'import fnmatch\n'), ((3934, 3955), 'pandas.read_csv', 'pd.read_csv', (['datafile'], {}), '(datafile)\n', (3945, 3955), True, 'import pandas as pd\n'), ((12683, 12718), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 6)', 'dpi': '(100)'}), '(figsize=(6, 6), dpi=100)\n', (12693, 12718), True, 'import matplotlib.pyplot as plt\n'), ((12731, 12818), 'seaborn.regplot', 'sns.regplot', ([], {'x': '"""Y"""', 'y': '"""Yhat"""', 'data': 'data', 'ci': 'None', 'scatter_kws': "{'s': 50, 'alpha': 1}"}), "(x='Y', y='Yhat', data=data, ci=None, scatter_kws={'s': 50,\n 'alpha': 1})\n", (12742, 12818), True, 'import seaborn as sns\n'), ((12991, 13009), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (13007, 13009), True, 'import matplotlib.pyplot as plt\n'), ((13022, 13085), 'matplotlib.pyplot.savefig', 'plt.savefig', (["('%s/fig_yy_%s.png' % (self.images_dir, model_name))"], {}), "('%s/fig_yy_%s.png' % (self.images_dir, model_name))\n", (13033, 13085), True, 'import matplotlib.pyplot as plt\n'), ((13120, 13129), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (13127, 13129), True, 'import matplotlib.pyplot as plt\n'), ((13280, 13339), 'seaborn.jointplot', 'sns.jointplot', (["data['Y']", "data['Yhat']"], {'kind': '"""hex"""', 'space': '(0)'}), "(data['Y'], data['Yhat'], kind='hex', space=0)\n", (13293, 13339), True, 'import seaborn as sns\n'), ((13469, 13478), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (13476, 13478), True, 'import matplotlib.pyplot as plt\n'), ((13653, 13720), 'seaborn.jointplot', 'sns.jointplot', (["sub_data['Y']", "sub_data['Yhat']"], {'kind': '"""hex"""', 'space': '(0)'}), "(sub_data['Y'], sub_data['Yhat'], kind='hex', space=0)\n", (13666, 13720), True, 'import seaborn as sns\n'), ((13855, 13864), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (13862, 13864), True, 'import matplotlib.pyplot as plt\n'), ((1203, 1214), 'time.time', 'time.time', ([], {}), '()\n', (1212, 1214), False, 'import time\n'), ((2812, 2858), 'os.remove', 'os.remove', (["('%s/%s' % (self.base_dir, filename))"], {}), "('%s/%s' % (self.base_dir, filename))\n", (2821, 2858), False, 'import os\n'), ((2952, 2998), 'os.remove', 'os.remove', (["('%s/%s' % (self.base_dir, filename))"], {}), "('%s/%s' % (self.base_dir, filename))\n", (2961, 2998), False, 'import os\n'), ((10945, 10961), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (10959, 10961), False, 'from sklearn.preprocessing import StandardScaler\n'), ((11271, 11287), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (11285, 11287), False, 'from sklearn.preprocessing import StandardScaler\n'), ((8486, 8504), 'random.choice', 'random.choice', (['ids'], {}), '(ids)\n', (8499, 8504), False, 'import random\n'), ((12634, 12661), 'seaborn.axes_style', 'sns.axes_style', (['"""whitegrid"""'], {}), "('whitegrid')\n", (12648, 12661), True, 'import seaborn as sns\n'), ((13232, 13255), 'seaborn.axes_style', 'sns.axes_style', (['"""ticks"""'], {}), "('ticks')\n", (13246, 13255), True, 'import seaborn as sns\n'), ((5923, 5938), 'numpy.mean', 'np.mean', (['errors'], {}), '(errors)\n', (5930, 5938), True, 'import numpy as np\n')]
import numpy as np import os import sys def plot_sample_efficiency(file_name, num_samples, pretrain_scores, scratch_scores, metric_name): import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.figure import Figure rows, cols, size = 1,1,5 font_size = 30; label_size = 25; line_width = 2.5; markder_size = 10 fig = Figure(tight_layout=True,figsize=(8, 6)); ax = fig.subplots(rows,cols) ax.plot(num_samples, pretrain_scores,linewidth = line_width, marker = 's', markersize=markder_size);ax.plot(num_samples, scratch_scores, linewidth=line_width, marker = 'o', markersize=markder_size) ax.set_ylabel(metric_name, fontsize = font_size-2);ax.set_xlabel('Number of training images',fontsize = font_size);ax.legend(['Pretrain','Scratch'],fontsize = font_size) ax.tick_params(axis = 'x', labelsize = label_size); ax.tick_params(axis = 'y', labelsize = label_size); ax.set_xlim([100-10, num_samples[-1]+10]) canvas = FigureCanvasAgg(fig); canvas.print_figure(file_name, dpi=100) pretrain_scores = np.array([0.5784, 0.6756, 0.7117, 0.7137, 0.7352])*100 scratch_scores = np.array([0.4585, 0.5193, 0.5790, 0.6218, 0.6767])*100 num_samples = [100,300,500,700,899] metric_name = 'Average pixel f1-score(%)' file_name = 'sample_efficiency.png' plot_sample_efficiency(file_name, num_samples, pretrain_scores, scratch_scores, metric_name)
[ "matplotlib.figure.Figure", "numpy.array", "matplotlib.backends.backend_agg.FigureCanvasAgg" ]
[((376, 417), 'matplotlib.figure.Figure', 'Figure', ([], {'tight_layout': '(True)', 'figsize': '(8, 6)'}), '(tight_layout=True, figsize=(8, 6))\n', (382, 417), False, 'from matplotlib.figure import Figure\n'), ((980, 1000), 'matplotlib.backends.backend_agg.FigureCanvasAgg', 'FigureCanvasAgg', (['fig'], {}), '(fig)\n', (995, 1000), False, 'from matplotlib.backends.backend_agg import FigureCanvasAgg\n'), ((1062, 1112), 'numpy.array', 'np.array', (['[0.5784, 0.6756, 0.7117, 0.7137, 0.7352]'], {}), '([0.5784, 0.6756, 0.7117, 0.7137, 0.7352])\n', (1070, 1112), True, 'import numpy as np\n'), ((1135, 1184), 'numpy.array', 'np.array', (['[0.4585, 0.5193, 0.579, 0.6218, 0.6767]'], {}), '([0.4585, 0.5193, 0.579, 0.6218, 0.6767])\n', (1143, 1184), True, 'import numpy as np\n')]
import json from django.contrib.auth import get_user_model as user_model User = user_model() from django.urls import reverse from rest_framework import status from rest_framework.authtoken.models import Token from rest_framework.test import APITestCase from .serializers import OrderSerializer from .models import Order from rest_framework.response import Response class OrderTestCase(APITestCase): def setUp(self): self.user = User.objects.create_user(email = "<EMAIL>", username = "Customer", phone_number = "+254722122122", password = "<PASSWORD>") self.token = self.user.tokens()['access'] self.api_authentication() self.order = Order.objects.create(item = "pens", amount=5, customer=self.user) def tearDown(self): User.objects.all().delete() Order.objects.all().delete() def api_authentication(self): self.client.credentials(HTTP_AUTHORIZATION="Bearer "+ self.token) def test_post_order(self): data = {"item": "books", "amount": 50} response = self.client.post(reverse("order-list"), data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) # self.assertEqual(response.data["item"], "books") # self.assertEqual(response.data["amount"], 50) def test_get_customer_orders_by_owner(self): this_customer_id = self.user.id response = self.client.get(reverse("order-detail", kwargs={"pk": this_customer_id})) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_get_single_order_by_owner(self): this_order_id = self.order.id response = self.client.get(reverse("order-detail", kwargs={"pk": this_order_id})) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data["item"], "pens") def test_update_single_order_by_owner(self): this_order_id = self.order.id response = self.client.put(reverse("order-detail", kwargs={"pk": this_order_id}), ) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data["amount"], 10) def test_delete_single_order(self): this_order_id = self.order.id # import pdb; pdb.set_trace() response = self.client.delete(reverse("order-detail", kwargs={"pk": this_order_id})) self.assertEqual(response.status_code, status.HTTP_404_NOT_FOUND)
[ "django.contrib.auth.get_user_model", "django.urls.reverse" ]
[((80, 92), 'django.contrib.auth.get_user_model', 'user_model', ([], {}), '()\n', (90, 92), True, 'from django.contrib.auth import get_user_model as user_model\n'), ((1260, 1281), 'django.urls.reverse', 'reverse', (['"""order-list"""'], {}), "('order-list')\n", (1267, 1281), False, 'from django.urls import reverse\n'), ((1617, 1673), 'django.urls.reverse', 'reverse', (['"""order-detail"""'], {'kwargs': "{'pk': this_customer_id}"}), "('order-detail', kwargs={'pk': this_customer_id})\n", (1624, 1673), False, 'from django.urls import reverse\n'), ((1878, 1931), 'django.urls.reverse', 'reverse', (['"""order-detail"""'], {'kwargs': "{'pk': this_order_id}"}), "('order-detail', kwargs={'pk': this_order_id})\n", (1885, 1931), False, 'from django.urls import reverse\n'), ((2187, 2240), 'django.urls.reverse', 'reverse', (['"""order-detail"""'], {'kwargs': "{'pk': this_order_id}"}), "('order-detail', kwargs={'pk': this_order_id})\n", (2194, 2240), False, 'from django.urls import reverse\n'), ((2573, 2626), 'django.urls.reverse', 'reverse', (['"""order-detail"""'], {'kwargs': "{'pk': this_order_id}"}), "('order-detail', kwargs={'pk': this_order_id})\n", (2580, 2626), False, 'from django.urls import reverse\n')]
from tkinter import * # this is a base for us project, tkinter is native python GUI. from tkinter import colorchooser # For chooser all parameters of colors. import pyscreenshot # library for a screenshot class PaintTk: """In this class we have the entire project. I will enter comments by step""" def __init__(self): # Start the tkinter in the variable window. Define a title, and # the size window. self.window = Tk() self.window.title('PaintTk by Rafa') self.window.geometry("1200x600") self.window.minsize(width=680, height=480) self.window.resizable(0, 0) # This blocks screen scaling. # The applications start with oval brush selected. self.oval_brush = True self.line_brush = False self.eraser_brush = False # Set icons self.img_line = PhotoImage(file='assets/icons/line.png') self.img_oval = PhotoImage(file='assets/icons/oval.png') self.img_eraser = PhotoImage(file='assets/icons/eraser.png') self.img_save = PhotoImage(file='assets/icons/save.png') self.img_square = PhotoImage(file='assets/icons/rainbow.png') self.img_new = PhotoImage(file='assets/icons/new.png') self.list_colors = ('black', 'gray', 'red', 'green', 'blue', 'yellow', 'magenta', 'cyan') self.pick_colors = 'black' self.bar_menu = Frame(self.window, bg='#3b3b3b', padx=10, pady=10) self.bar_menu.pack(fill='x') # "fill='x' fills the entire x-axis self.text_color = Label(self.bar_menu, text=' Colors: ', fg='white', bg='#3b3b3b') self.text_color.pack(side='left') for cor in self.list_colors: self.button_color = Button(self.bar_menu, bg=cor, width=3, height=2, bd=1, command=lambda col=cor: self.select_colors(col)).pack(side='left') self.label_colors_choose = Label(self.bar_menu, text=' Color Choose: ', fg='white', bg='#3b3b3b') self.label_colors_choose.pack(side='left') self.color_choose = Button(self.bar_menu, image=self.img_square, bd=1, command=self.selected_color) self.color_choose.pack(side='left') self.text_pen_size = Label(self.bar_menu, text=' Size: ', fg='white', bg='#3b3b3b') self.text_pen_size.pack(side='left') self.pen_size = Spinbox(self.bar_menu, justify='center', from_=1, to=50, width=4) self.pen_size.pack(side='left') self.text_brushs = Label(self.bar_menu, text=' Brushs: ', fg='white', bg='#3b3b3b').pack(side='left') self.button_line = Button(self.bar_menu, image=self.img_line, bd=1, command=self.brush_line) self.button_line.pack(side='left') self.button_oval = Button(self.bar_menu, image=self.img_oval, bd=1, command=self.brush_oval) self.button_oval.pack(side='left') self.button_eraser = Button(self.bar_menu, image=self.img_eraser, bd=1, command=self.brush_eraser) self.button_eraser.pack(side='left') self.text_options = Label(self.bar_menu, text=' Options: ', fg='white', bg='#3b3b3b').pack(side='left') self.button_save = Button(self.bar_menu, image=self.img_save, bd=3, command=self.save).pack(side='left') self.button_new = Button(self.bar_menu, image=self.img_new, bd=3, command=self.clean).pack(side='left') self.area_draw = Canvas(self.window, height=720, bg='gainsboro') # Canvas widget to display graphical # elements like lines or text. self.area_draw.pack(fill='both') # "fill = both" in x-axis and y-axis self.area_draw.bind('<B1-Motion>', self.draw) # The mouse is moved, with mouse button 1 being held down (use # B2 for the middle button, B3 for the right button). # Utilizing bind for define shortcut key self.window.bind("<F1>", self.save) self.window.bind("<F2>", self.clean) self.window.mainloop() # Defined x and y axis for the mouse draw def draw(self, event): x1, y1 = event.x, event.y x2, y2 = event.x, event.y if self.oval_brush: self.area_draw.create_oval(x1, y1, x2, y2, fill=self.pick_colors, outline=self.pick_colors, width=self.pen_size.get()) elif self.line_brush: self.area_draw.create_line(x1 - 10, y1 - 10, x2, y2, fill=self.pick_colors, width=self.pen_size.get()) else: self.area_draw.create_oval(x1, y1, x2, y2, fill='gainsboro', outline='gainsboro', width=self.pen_size.get()) def select_colors(self, col): self.pick_colors = col def brush_oval(self): self.oval_brush = True self.line_brush = False self.eraser_brush = False def brush_line(self): self.oval_brush = False self.line_brush = True self.eraser_brush = False def brush_eraser(self): self.oval_brush = False self.line_brush = False self.eraser_brush = True def clean(self, event): self.area_draw.delete("all") def save(self, event): x = self.window.winfo_rootx() + self.area_draw.winfo_x() y = self.window.winfo_rooty() + self.area_draw.winfo_y() x1 = self.window.winfo_rootx() + self.area_draw.winfo_width() y1 = self.window.winfo_rooty() + self.area_draw.winfo_height() img = pyscreenshot.grab(bbox=(x, y, x1, y1)) img.save('image.png', 'png') def selected_color(self): color = colorchooser.askcolor() self.pick_colors = color[1] if __name__ == '__main__': PaintTk()
[ "pyscreenshot.grab", "tkinter.colorchooser.askcolor" ]
[((5501, 5539), 'pyscreenshot.grab', 'pyscreenshot.grab', ([], {'bbox': '(x, y, x1, y1)'}), '(bbox=(x, y, x1, y1))\n', (5518, 5539), False, 'import pyscreenshot\n'), ((5624, 5647), 'tkinter.colorchooser.askcolor', 'colorchooser.askcolor', ([], {}), '()\n', (5645, 5647), False, 'from tkinter import colorchooser\n')]
from functools import partial import os import numpy as np import cv2 import torch import torch.backends.cudnn as cudnn import torch.nn as nn import torch.nn.functional as F from .dataset.transform import SegmentationTransform import envs.GTAV.models as models from .modules.bn import ABN from .modules.deeplab import DeeplabV3 from utils import color_text class_map = { 0: 2, # "animal--bird" 1: 2, # "animal--ground-animal" 2: 0, # "construction--barrier--curb" 3: 0, # "construction--barrier--fence" 4: 0, # "construction--barrier--guard-rail" 5: 0, # "construction--barrier--other-barrier" 6: 0, # "construction--barrier--wall" 7: 1, # "construction--flat--bike-lane" 8: 1, # "construction--flat--crosswalk-plain" 9: 1, # "construction--flat--curb-cut" 10: 1, # "construction--flat--parking" 11: 0, # "construction--flat--pedestrian-area" 12: 1, # "construction--flat--rail-track" 13: 1, # "construction--flat--road" 14: 1, # "construction--flat--service-lane" 15: 0, # "construction--flat--sidewalk" 16: 0, # "construction--structure--bridge" 17: 0, # "construction--structure--building" 18: 0, # "construction--structure--tunnel" 19: 2, # "human--person" 20: 2, # "human--rider--bicyclist" 21: 2, # "human--rider--motorcyclist" 22: 2, # "human--rider--other-rider" 23: 1, # "marking--crosswalk-zebra" 24: 1, # "marking--general" 25: 0, # "nature--mountain" 26: 0, # "nature--sand" Ignored, due to rare to see 27: 3, # "nature--sky" 28: 0, # "nature--snow" Not sure whether snow mountain or snow on road 29: 0, # "nature--terrain" Ignored due to rare appearance 30: 0, # "nature--vegetation" 31: 0, # "nature--water" 32: 0, # "object--banner" 33: 0, # "object--bench" 34: 0, # "object--bike-rack" 35: 0, # "object--billboard" 36: 0, # "object--catch-basin" Ignored since not frequent 37: 0, # "object--cctv-camera" Ignored since not frequent 38: 0, # "object--fire-hydrant" 39: 0, # "object--junction-box" 40: 0, # "object--mailbox" 41: 0, # "object--manhole" 42: 0, # "object--phone-booth" 43: 0, # "object--pothole" Ignored, since not frequent 44: 0, # "object--street-light" 45: 0, # "object--support--pole" 46: 0, # "object--support--traffic-sign-frame" 47: 0, # "object--support--utility-pole" 48: 0, # "object--traffic-light" 49: 0, # "object--traffic-sign--back" 50: 0, # "object--traffic-sign--front" 51: 0, # "object--trash-can" 52: 2, # "object--vehicle--bicycle" 53: 0, # "object--vehicle--boat" Ignoring boat 54: 2, # "object--vehicle--bus" 55: 2, # "object--vehicle--car" 56: 2, # "object--vehicle--caravan" 57: 2, # "object--vehicle--motorcycle" 58: 2, # "object--vehicle--on-rails" 59: 2, # "object--vehicle--other-vehicle" 60: 2, # "object--vehicle--trailer" 61: 2, # "object--vehicle--truck" 62: 2, # "object--vehicle--wheeled-slow" 63: 2, # "void--car-mount" 64: 2 # "void--ego-vehicle" } def vis(array): classes = { 0: [0, 0, 0], # None 1: [70, 70, 70], # Buildings 2: [190, 153, 153], # Fences 3: [72, 0, 90], # Other 4: [220, 20, 60], # Pedestrians 5: [153, 153, 153], # Poles 6: [157, 234, 50], # RoadLines 7: [128, 64, 128], # Roads 8: [244, 35, 232], # Sidewalks 9: [107, 142, 35], # Vegetation 10: [0, 0, 255], # Vehicles 11: [102, 102, 156], # Walls 12: [220, 220, 0] # TrafficSigns } result = np.zeros((array.shape[0], array.shape[1], 3)) for key, value in classes.items(): result[np.where(array == key)] = value return result class SegmentationModule(nn.Module): def __init__(self, head_channels, classes, snapshot_file='model.pth.tar'): super(SegmentationModule, self).__init__() norm_act = partial(ABN, activation="leaky_relu", slope=.01) self.body = models.__dict__["net_wider_resnet38_a2"](norm_act=norm_act, dilation=(1, 2, 4, 4)) self.head = DeeplabV3(4096, 256, 256, norm_act=norm_act, pooling_size=(84, 84)) self.cls = nn.Conv2d(head_channels, classes, 1) self.transform = SegmentationTransform( 2048, (0.41738699, 0.45732192, 0.46886091), (0.25685097, 0.26509955, 0.29067996), ) dir_path = os.path.dirname(os.path.realpath(__file__)) snapshot_file = os.path.join(dir_path, snapshot_file) if snapshot_file is not None: if not os.path.exists(snapshot_file): print(color_text('No local model found at {}'.format(snapshot_file), 'red')) print(color_text('Please download pretrained model from https://drive.google.com/file/d/1SJJx5-LFG3J3M99TrPMU-z6ZmgWynxo-/view', 'red')) data = torch.load(snapshot_file) self.body.load_state_dict(data["state_dict"]["body"]) self.head.load_state_dict(data["state_dict"]["head"]) self.cls.load_state_dict(data["state_dict"]["cls"]) print('Loading segmentation model from %s' % snapshot_file) def forward(self, x): x = self.transform(x).unsqueeze(0).cuda() img_shape = x.shape[-2:] x = self.body(x) x = self.head(x) x = self.cls(x) x = F.interpolate(x, size=img_shape, mode='bilinear', align_corners=True) x = torch.argmax(x, dim=1).data.cpu().numpy()[0] result = np.zeros_like(x, dtype=np.int32) for key, value in class_map.items(): result[np.where(x == key)] = value return result def main(): cudnn.benchmark = True model = SegmentationModule(256, 65) model = model.cuda().eval() transformation = SegmentationTransform( 2048, (0.41738699, 0.45732192, 0.46886091), (0.25685097, 0.26509955, 0.29067996), ) # Run testing for fname in os.listdir('a'): print(fname) x = cv2.imread(os.path.join('a', fname)) x = cv2.cvtColor(x, cv2.COLOR_RGB2BGR) with torch.no_grad(): y = model(x) y = vis(y) cv2.imwrite(fname.replace('.jpg', '.png'), y) break if __name__ == '__main__': main()
[ "os.path.exists", "os.listdir", "numpy.where", "torch.load", "os.path.join", "torch.nn.Conv2d", "os.path.realpath", "numpy.zeros", "utils.color_text", "functools.partial", "torch.nn.functional.interpolate", "cv2.cvtColor", "torch.no_grad", "numpy.zeros_like", "torch.argmax" ]
[((3669, 3714), 'numpy.zeros', 'np.zeros', (['(array.shape[0], array.shape[1], 3)'], {}), '((array.shape[0], array.shape[1], 3))\n', (3677, 3714), True, 'import numpy as np\n'), ((6047, 6062), 'os.listdir', 'os.listdir', (['"""a"""'], {}), "('a')\n", (6057, 6062), False, 'import os\n'), ((4008, 4057), 'functools.partial', 'partial', (['ABN'], {'activation': '"""leaky_relu"""', 'slope': '(0.01)'}), "(ABN, activation='leaky_relu', slope=0.01)\n", (4015, 4057), False, 'from functools import partial\n'), ((4267, 4303), 'torch.nn.Conv2d', 'nn.Conv2d', (['head_channels', 'classes', '(1)'], {}), '(head_channels, classes, 1)\n', (4276, 4303), True, 'import torch.nn as nn\n'), ((4568, 4605), 'os.path.join', 'os.path.join', (['dir_path', 'snapshot_file'], {}), '(dir_path, snapshot_file)\n', (4580, 4605), False, 'import os\n'), ((5449, 5518), 'torch.nn.functional.interpolate', 'F.interpolate', (['x'], {'size': 'img_shape', 'mode': '"""bilinear"""', 'align_corners': '(True)'}), "(x, size=img_shape, mode='bilinear', align_corners=True)\n", (5462, 5518), True, 'import torch.nn.functional as F\n'), ((5594, 5626), 'numpy.zeros_like', 'np.zeros_like', (['x'], {'dtype': 'np.int32'}), '(x, dtype=np.int32)\n', (5607, 5626), True, 'import numpy as np\n'), ((6146, 6180), 'cv2.cvtColor', 'cv2.cvtColor', (['x', 'cv2.COLOR_RGB2BGR'], {}), '(x, cv2.COLOR_RGB2BGR)\n', (6158, 6180), False, 'import cv2\n'), ((3769, 3791), 'numpy.where', 'np.where', (['(array == key)'], {}), '(array == key)\n', (3777, 3791), True, 'import numpy as np\n'), ((4516, 4542), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (4532, 4542), False, 'import os\n'), ((4959, 4984), 'torch.load', 'torch.load', (['snapshot_file'], {}), '(snapshot_file)\n', (4969, 4984), False, 'import torch\n'), ((6108, 6132), 'os.path.join', 'os.path.join', (['"""a"""', 'fname'], {}), "('a', fname)\n", (6120, 6132), False, 'import os\n'), ((6194, 6209), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6207, 6209), False, 'import torch\n'), ((4663, 4692), 'os.path.exists', 'os.path.exists', (['snapshot_file'], {}), '(snapshot_file)\n', (4677, 4692), False, 'import os\n'), ((5691, 5709), 'numpy.where', 'np.where', (['(x == key)'], {}), '(x == key)\n', (5699, 5709), True, 'import numpy as np\n'), ((4809, 4948), 'utils.color_text', 'color_text', (['"""Please download pretrained model from https://drive.google.com/file/d/1SJJx5-LFG3J3M99TrPMU-z6ZmgWynxo-/view"""', '"""red"""'], {}), "(\n 'Please download pretrained model from https://drive.google.com/file/d/1SJJx5-LFG3J3M99TrPMU-z6ZmgWynxo-/view'\n , 'red')\n", (4819, 4948), False, 'from utils import color_text\n'), ((5531, 5553), 'torch.argmax', 'torch.argmax', (['x'], {'dim': '(1)'}), '(x, dim=1)\n', (5543, 5553), False, 'import torch\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import os from numpy import array, savetxt if __name__ == "__main__": missing_goja_results = [] with open(".Gate/main/main.split") as f: lines = f.readlines() for line in lines: if line[0:14] == "Root filename:": output = line.split(' ')[2] path = output.replace('\n','') + '.root' if os.path.isfile(path): gate_result = int(output.split('output/output')[-1]) goja_result = "./goja/output" + str(gate_result) + "_" if not os.path.isfile(goja_result + "coincidences") or \ not os.path.isfile(goja_result + "realtime") or \ not os.path.isfile(goja_result + "statistics"): missing_goja_result = gate_result missing_goja_results.append(missing_goja_result) savetxt("./missing_goja_results.txt", array(missing_goja_results).T, fmt="%d")
[ "os.path.isfile", "numpy.array" ]
[((866, 893), 'numpy.array', 'array', (['missing_goja_results'], {}), '(missing_goja_results)\n', (871, 893), False, 'from numpy import array, savetxt\n'), ((377, 397), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (391, 397), False, 'import os\n'), ((544, 588), 'os.path.isfile', 'os.path.isfile', (["(goja_result + 'coincidences')"], {}), "(goja_result + 'coincidences')\n", (558, 588), False, 'import os\n'), ((611, 651), 'os.path.isfile', 'os.path.isfile', (["(goja_result + 'realtime')"], {}), "(goja_result + 'realtime')\n", (625, 651), False, 'import os\n'), ((674, 716), 'os.path.isfile', 'os.path.isfile', (["(goja_result + 'statistics')"], {}), "(goja_result + 'statistics')\n", (688, 716), False, 'import os\n')]
################################################################################# # Author: <NAME> # Username:mualcinp # # Assignment:Drawing a house # Purpose: # Google Doc Link: https://docs.google.com/document/d/18hX6TBTxMAM3jqEVwUzHyhHAaNCBpwCo1KeekIJJCHw/edit# # ################################################################################# # # # ################################################################################# import turtle def create_box(): """ this function draws the bottom half of a house """ square = turtle.Turtle() square.color("black") square.pensize(6) for i in range(2): square.forward(200) square.right(90) square.forward(200) square.right(90) square.forward(90) def create_roof(): """ creates roof of house """ tri = turtle.Turtle() tri.forward(200) tri.left(120) tri.forward(290) tri.left(120) tri.forward(300) def create_window(): """creates windows""" fry = turtle.Turtle() fry.pencolor(100, 40, 69) fry.penup() fry.right(90) fry.forward(30) fry.pendown() fry.right(90) fry.forward(50) fry.left(90) fry.forward(50) fry.left(90) fry.forward(50) fry.left(90) fry.forward(50) fry.penup() fry.right(90) fry.forward(110) for i in range(2): fry.pendown() fry.forward(50) fry.right(90) fry.forward(50) fry.right(90) fry.penup() def create_door(): dor = turtle.Turtle() dor.penup() dor.forward(30) dor.right(90) dor.forward(200) dor.pendown() dor.left(180) dor.forward(90) dor.right(90) dor.forward(60) dor.right(90) dor.forward(90) def main(): wn = turtle.Screen() wn.colormode(255) wn.bgcolor("pink") create_box() create_roof() create_window() create_door() wn.exitonclick() main()
[ "turtle.Screen", "turtle.Turtle" ]
[((554, 569), 'turtle.Turtle', 'turtle.Turtle', ([], {}), '()\n', (567, 569), False, 'import turtle\n'), ((848, 863), 'turtle.Turtle', 'turtle.Turtle', ([], {}), '()\n', (861, 863), False, 'import turtle\n'), ((1022, 1037), 'turtle.Turtle', 'turtle.Turtle', ([], {}), '()\n', (1035, 1037), False, 'import turtle\n'), ((1530, 1545), 'turtle.Turtle', 'turtle.Turtle', ([], {}), '()\n', (1543, 1545), False, 'import turtle\n'), ((1776, 1791), 'turtle.Screen', 'turtle.Screen', ([], {}), '()\n', (1789, 1791), False, 'import turtle\n')]
import re from werkzeug import datastructures from werkzeug.wrappers import Request, Response, ResponseStream from datetime import date, datetime, timedelta unhealth = False; unready_until = datetime.now() def set_unhealth(): global unhealth unhealth = True def set_unready_for_seconds(seconds): global unready_until unready_until = datetime.now() + timedelta(0,seconds) class middleware(): def __init__(self, app): self.app = app def __call__(self, environ, start_response): global unhealth global unready_until request = Request(environ) print(request.path) if unhealth: res = Response(u'Out', mimetype= 'text/plain', status=500) elif unready_until > datetime.now() and '/ready' in request.path: res = Response(u'UnReady', mimetype= 'text/plain', status=500) else: return self.app(environ, start_response)
[ "werkzeug.wrappers.Response", "datetime.datetime.now", "datetime.timedelta", "werkzeug.wrappers.Request" ]
[((193, 207), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (205, 207), False, 'from datetime import date, datetime, timedelta\n'), ((353, 367), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (365, 367), False, 'from datetime import date, datetime, timedelta\n'), ((370, 391), 'datetime.timedelta', 'timedelta', (['(0)', 'seconds'], {}), '(0, seconds)\n', (379, 391), False, 'from datetime import date, datetime, timedelta\n'), ((587, 603), 'werkzeug.wrappers.Request', 'Request', (['environ'], {}), '(environ)\n', (594, 603), False, 'from werkzeug.wrappers import Request, Response, ResponseStream\n'), ((673, 724), 'werkzeug.wrappers.Response', 'Response', (['u"""Out"""'], {'mimetype': '"""text/plain"""', 'status': '(500)'}), "(u'Out', mimetype='text/plain', status=500)\n", (681, 724), False, 'from werkzeug.wrappers import Request, Response, ResponseStream\n'), ((818, 873), 'werkzeug.wrappers.Response', 'Response', (['u"""UnReady"""'], {'mimetype': '"""text/plain"""', 'status': '(500)'}), "(u'UnReady', mimetype='text/plain', status=500)\n", (826, 873), False, 'from werkzeug.wrappers import Request, Response, ResponseStream\n'), ((755, 769), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (767, 769), False, 'from datetime import date, datetime, timedelta\n')]
import logging from pathlib import Path import re import typing as ty from bs4 import BeautifulSoup # type: ignore import pycountry # type: ignore from termcolor import colored from .utils.load_chapters import load_chapter from .utils.misc import get_package_folders from .utils.misc import load_common_words from .utils.misc import load_word_pairs from .utils.Sentence import Sentence from .utils.SentenceList import SentenceList def color_in_dict( color_sent: Sentence, match_sent: Sentence, word_pairs: ty.Dict[str, ty.List[str]], common_words_color: ty.Set[str], color_pair: str = "green", color_frac: str = "yellow", ) -> str: r"""Use match_sent to color interesting words in color_sent. Args: color_sent: Sentence to color. match_sent: Sentence to match from. word_pairs: Dict from match to color language. common_words_color: Common words in the color language. color_pair: Color to use for translation match. color_frac: Color to use for fraction match. """ logg = logging.getLogger(f"c.{__name__}.color_in_dict") # logg.setLevel("DEBUG") logg.debug("Start color_in_dict") # build set of words in match_sent words_seen_match = set() words_seen_color = set() for word_match in match_sent.norm_tra.split(" "): # keep only alphabetic chars [^\W\d_] word_match = re.sub(r"[\W\d_]", "", word_match) word_match = word_match.lower() # keep vaguely interesting match words if len(word_match) < 3: continue words_seen_match.add(word_match) # add the color words if a translation exists if word_match in word_pairs: for word_color in word_pairs[word_match]: # if len(word_color) < 2: # continue word_color_clean = re.sub(r"[\W\d_]", "", word_color) word_color_clean = word_color_clean.lower() if word_color_clean not in common_words_color: words_seen_color.add(word_color_clean) logg.debug(f"words_seen_match: {words_seen_match}") color_str = "" for word_color_orig in color_sent.norm_tra.split(" "): # only keep alpha and compare lowercase word_color_clean = re.sub(r"[\W\d_]", "", word_color_orig) word_color_clean = word_color_clean.lower() # match if the color word is a translation of one of the match words if word_color_clean in words_seen_color: matched_pair = True else: matched_pair = False # match using fractions of the l0 and l1 word # if the beginning of a seen word_color is in the current word_color, color it matched_frac = False for word_match in words_seen_match: frac_len = int(len(word_match) * 0.6) # keep vaguely interesting matches if frac_len < 3: continue if word_color_clean.startswith(word_match[:frac_len]): logg.debug(f"word_color_clean: {word_color_clean} matches {word_match}") matched_frac = True if matched_pair: color_str += colored(f"{word_color_orig} ", color_pair) elif matched_frac: color_str += colored(f"{word_color_orig} ", color_frac) else: color_str += f"{word_color_orig} " return color_str def align_chapter_basic( sent0: SentenceList, sent1: SentenceList, inc_len0: ty.List[int], inc_sca_len1: ty.List[float], ) -> ty.Tuple[SentenceList, ty.List[ty.Tuple[int, int]]]: r"""MAKEDOC: what is align_chapter_basic doing? l1 paragraphs have to be after l0 we track the current len for l0 and the scaled len for l1 if the old tot_len0 is smaller than scaled_len1 add the l0 paragraph (we want to read the l0 paragraph before the l1) else add the l1 paragraph finally add the remaining paragraphs p0 p1 link len0 len1 sc_len1 tot0 tot1 t_sc_1 ---------------------------- > 0 a A 0 46 | 47 | 43.08 46 | 47 | 43.08 > 1 - B 0 1 | 306 | 280.47 47 | 353 | 323.55 > 2 bc C 1 857 | 551 | 505.03 904 | 904 | 828.57 > 3 def D 3 1289 | 147 | 134.73 2193 | 1051 | 963.31 > 4 g E 6 723 | 774 | 709.42 2916 | 1825 | 1672.72 > 5 h F 7 95 | 582 | 533.44 3011 | 2407 | 2206.16 > 6 i G 8 406 | 664 | 608.60 3417 | 3071 | 2814.76 > 7 jkl H 9 768 | 76 | 69.66 4185 | 3147 | 2884.42 > 8 - I - 916 | 388 | 355.63 5101 | 3535 | 3240.04 > 9 - J - 1520 | 305 | 279.55 6621 | 3840 | 3519.60 > 10 - K - 820 | 337 | 308.88 7441 | 4177 | 3828.48 > 11 - L - 532 | 152 | 139.32 7973 | 4329 | 3967.79 """ logg = logging.getLogger(f"c.{__name__}.align_chapter_basic") # logg.setLevel("DEBUG") logg.debug("Start align_chapter_basic") # the first paragraph is always from l0: if in l1 the first paragraph is split in # smaller sentences, those are not added before the long single paragraph from l0 # the index of the NEXT sentence to add next0: int = 1 next1: int = 0 # the aligned list of sentences composed = SentenceList() composed.append(sent0[0]) # the aligned list of indexes composed_indexes: ty.List[ty.Tuple[int, int]] = [(0, 0)] # while there are sentences left on either list while next0 < len(sent0) and next1 < len(sent1): recap = f"> next {next0: 3d} {next1: 3d}" recap += f" curr {next0-1: 3d} {next1-1: 3d}" logg.debug(recap) # we know that there are more sentences on BOTH # the total length if the next was added curr_tot0 = inc_len0[next0 - 1] next_tot0 = inc_len0[next0] next_tot_sca1 = inc_sca_len1[next1] recap = f" curr_tot0: {curr_tot0}" recap += f" next_tot0: {next_tot0}" recap += f" next_tot_sca1: {next_tot_sca1:.2f}" logg.debug(recap) # different approach # if the end of the next l0 is lower than the next l1 # if next_tot0 <= next_tot_sca1 : # if the current 0 is still lower than the next 1 # you need to add p0 # add the sentence 0 if curr_tot0 <= next_tot_sca1: composed.append(sent0[next0]) logg.debug(f" add 0: {next0}") composed_indexes.append((0, next0)) next0 += 1 # add the sentence 1 else: composed.append(sent1[next1]) logg.debug(f" add 1: {next1}") composed_indexes.append((1, next1)) next1 += 1 # we check if there are more sentences on l0 if next0 < len(sent0): logg.debug(" finish 0") while next0 < len(sent0): composed.append(sent0[next0]) logg.debug(f" add 0: {next0}") composed_indexes.append((0, next0)) next0 += 1 # we check if there are more sentences on l1 if next1 < len(sent1): logg.debug(" finish 1") while next1 < len(sent1): composed.append(sent1[next1]) logg.debug(f" add 1: {next1}") composed_indexes.append((1, next1)) next1 += 1 return composed, composed_indexes def compute_incremental_len( sent0: SentenceList, sent1: SentenceList ) -> ty.Tuple[float, ty.List[int], ty.List[float]]: r"""MAKEDOC: what is compute_incremental_len doing?""" logg = logging.getLogger(f"c.{__name__}.compute_incremental_len") # logg.setLevel("DEBUG") logg.debug("Start compute_incremental_len") tot_len0: int = 0 tot_len1: int = 0 tot_scaled_len1: float = 0 scaling_factor = sent0.tot_chars / sent1.tot_chars logg.debug(f"scaling_factor: {scaling_factor}") logg.debug(f"len(sent0): {len(sent0)}") logg.debug(f"len(sent1): {len(sent1)}") inc_len0: ty.List[int] = [] inc_sca_len1: ty.List[float] = [] # for i in range(len(sent0), len(sent1)): for i in range(len(sent0)): len0 = sent0[i].len_norm_tra tot_len0 += len0 inc_len0.append(tot_len0) for i in range(len(sent1)): len1 = sent1[i].len_norm_tra tot_len1 += len1 scaled_len1 = len1 * scaling_factor tot_scaled_len1 += scaled_len1 inc_sca_len1.append(tot_scaled_len1) # this fancy log is done by iterating over both lists at once # recap = f"\n>>>>>> {i}" # recap += f"\n0 ({len0}): >{sent0[i]}<" # recap += f"\n1 ({len1}): >{sent1[i]}<" # recap += f"\nlen0 {len0: 6d}" # recap += f" | len1 {len1: 6d}" # recap += f" | sc_len1 {scaled_len1: 10.2f}" # recap += f"\ntot0 {tot_len0: 6d}" # recap += f" | tot1 {tot_len1: 6d}" # recap += f" | t_sc_1 {tot_scaled_len1: 10.2f}" # logg.debug(recap) return scaling_factor, inc_len0, inc_sca_len1 def interactive_hints( # noqa: C901 very COMPLEX sorry sent0: SentenceList, sent1: SentenceList, composed_indexes: ty.List[ty.Tuple[int, int]], hint_dist: int, word_pairs: ty.Dict[str, ty.List[str]], common_words1: ty.Set[str], ) -> ty.List[ty.Tuple[int, int]]: r"""MAKEDOC: what is interactive_hints doing?""" logg = logging.getLogger(f"c.{__name__}.interactive_hints") logg.setLevel("DEBUG") logg.debug("Start interactive_hints") # for ci in composed_indexes: # logg.debug(f"{' ' if ci[0] == 1 else ''}{ci[1]: 3d}") # build the links from s0 to s1, to provide a better prompt curr_i1: int = len(sent1) - 1 link0to1: ty.List[int] = [] for ci in composed_indexes[::-1]: if ci[0] == 0: link0to1.insert(0, curr_i1) else: curr_i1 = ci[1] # for i in range(len(link0to1)): # logg.debug(f"i: {i} -> {link0to1[i]}") hint_indexes0 = list(range(3, len(sent0), hint_dist)) logg.debug(f"hint_indexes0: {hint_indexes0}") logg.debug(f"len(sent0): {len(sent0)}") logg.debug(f"len(sent1): {len(sent1)}") # a visible tag vt = ">>>>>> " tv = " <<<<<<" # the hint will link a sentence from l0 to l1 hints: ty.List[ty.Tuple[int, int]] = [] window_size0 = 1 window_size1 = 4 for hi0 in hint_indexes0: done = False curr_hi0 = hi0 curr_window_size0 = window_size0 curr_window_size1 = window_size1 while not done: # extract the central index for l1 i1 = link0to1[curr_hi0] # line to split the flow recap = colored(f"{vt*3}", "grey", "on_cyan") recap += colored(f"curr_hi0: {curr_hi0} -> {i1}", "white", "on_cyan") recap += colored(f"{tv*3}", "grey", "on_cyan") logg.debug(recap) # the l0 sentence to align # logg.debug(f"sent0[{curr_hi0}]:\n{sent0[curr_hi0]}") i0_min = max(curr_hi0 - curr_window_size0, 0) i0_max = min(curr_hi0 + curr_window_size0, len(sent0) - 1) for hi0_show in range(i0_min, i0_max + 1): recap = f"\n{vt}" if hi0_show == curr_hi0: recap += colored(f"sent0[{hi0_show}]:", "green", attrs=["bold"]) recap += f"{tv}" else: recap += f"sent0[{hi0_show}]:" recap += f"\n{sent0[hi0_show]}" logg.debug(recap) # line to split the flow recap = f"\n{vt*3}" recap += colored(f"{vt}{tv}", "cyan") recap += f"{tv*3}" logg.debug(recap) # the range of l1 sentences to pick from i1_min = max(i1 - curr_window_size1, 0) i1_max = min(i1 + curr_window_size1, len(sent1) - 1) for hi1 in range(i1_min, i1_max + 1): recap = f"\n{vt}" if hi1 == i1: recap += colored( f"sent1[{hi1-i1}] ({hi1}):", "green", attrs=["bold"] ) recap += f"{tv}" else: recap += f"sent1[{hi1-i1}] ({hi1}):" # recap += f"\n{sent1[hi1]}" color_str = color_in_dict( sent1[hi1], sent0[curr_hi0], word_pairs, common_words1 ) recap += f"\n{color_str}" logg.debug(recap) prompt = "Change the l0 sentence: s0[NUM]." prompt += "\tChange the window size: w{0|1}[NUM]." prompt += "\tInsert the correct l1 sentence: [NUM]: " ri = input(prompt) # change the l0 sentence if ri.startswith("s0"): ri_cmd = ri[2:] recap = f"Change l0: parsing {ri}" recap += f" ri_cmd {ri_cmd}" logg.debug(recap) try: delta_hi0 = int(ri_cmd) except ValueError: logg.warning(f"{ri_cmd} is not a valid integer.") delta_hi0 = 0 curr_hi0 += delta_hi0 # validate the value for hi0 curr_hi0 = max(curr_hi0, 0) curr_hi0 = min(curr_hi0, len(sent0) - 1) logg.debug(f"Using delta_hi0: {delta_hi0} curr_hi0: {curr_hi0}") # change the window size elif ri.startswith("w0") or ri.startswith("w1"): ri_type = ri[:2] ri_cmd = ri[2:] recap = f"Window size: parsing {ri}" recap += f" ri_type {ri_type} ri_cmd {ri_cmd}" logg.debug(recap) try: delta_winsize = int(ri_cmd) except ValueError: logg.warning(f"{ri_cmd} is not a valid integer.") delta_winsize = 0 if ri_type == "w0": curr_window_size0 += delta_winsize # validate win size, must be at least 0 for l0 curr_window_size0 = max(curr_window_size0, 0) elif ri_type == "w1": curr_window_size1 += delta_winsize # validate win size, must be at least 2 for l1 curr_window_size1 = max(curr_window_size1, 2) # select which sentence to align else: ri_cmd = ri try: delta_hi1 = int(ri_cmd) good_hi1 = i1 + delta_hi1 # validate the result, within the list good_hi1 = max(good_hi1, 0) good_hi1 = min(good_hi1, len(sent1) - 1) done = True except ValueError: logg.warning(f"{ri_cmd} is not a valid integer.") logg.debug(f"\n{vt}Adding curr_hi0: {curr_hi0} good_hi1: {good_hi1}") hints.append((curr_hi0, good_hi1)) # sanity check for hint in hints: logg.debug(f"\n{vt*3}{hint}") logg.debug(f"{vt}sent0[{hint[0]}]:\n{sent0[hint[0]]}") logg.debug(f"{vt}sent1[{hint[1]}]:\n{sent1[hint[1]]}") return hints def align_with_hints( sent0: SentenceList, sent1: SentenceList, inc_len0: ty.List[int], inc_sca_len1: ty.List[float], hints: ty.List[ty.Tuple[int, int]], ) -> SentenceList: r"""MAKEDOC: what is align_with_hints doing? We basically copy align_chapter_basic but fancier. """ logg = logging.getLogger(f"c.{__name__}.align_with_hints") logg.setLevel("DEBUG") logg.debug("Start align_with_hints") # the aligned list of sentences composed = SentenceList() # the aligned list of indexes composed_indexes: ty.List[ty.Tuple[int, int]] = [] # a visible tag vt = ">>>>>> " logg.debug(f"len(sent0): {len(sent0)}") logg.debug(f"len(sent1): {len(sent1)}") # add artificial first and last hint hints.insert(0, (0, 0)) hints.append((len(sent0), len(sent1))) for ih, hint in enumerate(hints[:-1]): next_hint = hints[ih + 1] logg.debug(f"\n{vt*3}{hint} - {next_hint}{vt*3}\n") # how many sentences in each list to use chunk_len0 = next_hint[0] - hint[0] chunk_len1 = next_hint[1] - hint[1] # the index of the NEXT sentence to add, relative to the hint rel_next0: int = 1 rel_next1: int = 0 # add a Sentence to debug things # sentence_soup = BeautifulSoup("<p>New hint.</p>", "html.parser") # sentence_tag = sentence_soup.find_all("p")[0] # composed.append(Sentence(sentence_tag)) # add the first sentence from l0 composed.append(sent0[hint[0]]) composed_indexes.append((0, hint[0])) logg.debug(f" add 0 manual: {hint[0]}") # track the amount of chars in each side relative to the start of the hint start_curr_tot0 = inc_len0[hint[0]] start_next_tot_sca1 = inc_sca_len1[hint[1]] while rel_next0 < chunk_len0 and rel_next1 < chunk_len1: # the absolute position in the SentenceList next0 = hint[0] + rel_next0 next1 = hint[1] + rel_next1 recap = f"> rel_next {rel_next0: 2d} {rel_next1: 2d}" recap += f" - curr {rel_next0-1: 2d} {rel_next1-1: 2d}" recap += f" - next {next0: 2d} {next1: 2d}" logg.debug(recap) # the relative amount of chars in each side curr_tot0 = inc_len0[next0 - 0] - start_curr_tot0 next_tot_sca1 = inc_sca_len1[next1] - start_next_tot_sca1 recap = f" curr_tot0: {curr_tot0}" recap += f" next_tot_sca1: {next_tot_sca1:.2f}" logg.debug(recap) # if the current 0 is still lower than the next 1 # you need to add p0 # add the sentence 0 if curr_tot0 <= next_tot_sca1: composed.append(sent0[next0]) logg.debug(f" add 0: {next0}") composed_indexes.append((0, next0)) rel_next0 += 1 # add the sentence 1 else: composed.append(sent1[next1]) logg.debug(f" add 1: {next1}") composed_indexes.append((1, next1)) rel_next1 += 1 recap = f"> rel_next0 {rel_next0: 2d} chunk_len0 {chunk_len0: 2d}" logg.debug(recap) if rel_next0 < chunk_len0: logg.debug(" finish 0") while rel_next0 < chunk_len0: next0 = hint[0] + rel_next0 composed.append(sent0[next0]) logg.debug(f" add 0: {next0}") composed_indexes.append((0, next0)) rel_next0 += 1 recap = f"> rel_next1 {rel_next1: 2d} chunk_len1 {chunk_len1: 2d}" logg.debug(recap) if rel_next1 < chunk_len1: logg.debug(" finish 1") while rel_next1 < chunk_len1: next1 = hint[1] + rel_next1 composed.append(sent1[next1]) logg.debug(f" add 1: {next1}") composed_indexes.append((1, next1)) rel_next1 += 1 # sanity check for ci in composed_indexes: logg.debug(f"{' ' if ci[0] == 1 else ''}{ci[1]: 3d}") return composed def align_chapter( sent0: SentenceList, sent1: SentenceList, do_interactive: bool, word_pairs: ty.Dict[str, ty.List[str]], common_words1: ty.Set[str], ) -> SentenceList: r"""MAKEDOC: what is align_chapter doing?""" logg = logging.getLogger(f"c.{__name__}.align_chapter") logg.setLevel("DEBUG") logg.debug("Start align_chapter") ############################################################# # compute the incremental lengths ############################################################# scaling_factor, inc_len0, inc_sca_len1 = compute_incremental_len(sent0, sent1) ############################################################# # align the paragraphs with basic method ############################################################# composed, composed_indexes = align_chapter_basic( sent0, sent1, inc_len0, inc_sca_len1 ) ############################################################# # use the basic alignment to prompt for hints ############################################################# hint_dist = 5 if do_interactive: hints = interactive_hints( sent0, sent1, composed_indexes, hint_dist, word_pairs, common_words1 ) composed = align_with_hints(sent0, sent1, inc_len0, inc_sca_len1, hints) return composed def align_book( book_folder: Path, languages: ty.Tuple[str, str], chapter_templates: ty.Tuple[str, str], chapter_start_indexes: ty.Tuple[int, int], tot_chapter_num: int, author_name_full: str, book_name_full: str, do_interactive: bool, ) -> None: r"""Align every chapter in a book""" logg = logging.getLogger(f"c.{__name__}.align_book") logg.setLevel("DEBUG") logg.info("\nStart align_book") ############################################################# # build the input/output paths ############################################################# # get the chapter output folder composed_folder = book_folder / "composed" if not composed_folder.exists(): # pragma: nocover composed_folder.mkdir(parents=True, exist_ok=True) # get the template path template_epub_folder = get_package_folders("template_epub") tmpl_ch_path = template_epub_folder / "tmpl_ch.xhtml" # load the template tmpl_ch = tmpl_ch_path.read_text() # build the composed tag composed_tag = f"{languages[0]}/{languages[1]}" # load the word pairs word_pairs = load_word_pairs(languages) # load the common words for l1 common_words1 = load_common_words(languages[1], 300) # for chapter_index in list(range(tot_chapter_num))[10:11]: for chapter_index in list(range(tot_chapter_num))[:]: chapter_index0 = chapter_index + chapter_start_indexes[0] chapter_index1 = chapter_index + chapter_start_indexes[1] recap = f"\nchapter_index0: {chapter_index0}" recap += f" chapter_index1: {chapter_index1}" logg.info(recap) # get the chapter output path composed_chapter_name = f"ch_{chapter_index+1:04d}.xhtml" composed_chapter_path = composed_folder / composed_chapter_name logg.debug(f"composed_chapter_path: {composed_chapter_path}") if composed_chapter_path.exists(): logg.info(f"Skipping: {composed_chapter_path}, already processed.") continue ############################################################# # load the chapter for l0 ############################################################# lang_folder0 = book_folder / languages[0] chapter_name0 = chapter_templates[0].format(chapter_index0) chapter_path0 = lang_folder0 / chapter_name0 lang0 = pycountry.languages.get(name=languages[0]) logg.debug(f"lang0: {lang0}") lang_alpha2_tag0 = lang0.alpha_2 sent0 = load_chapter(chapter_path0, lang_alpha2_tag0) recap = f"{chapter_path0=}" recap += f" len(sent0): {len(sent0)}" recap += f" sent0.tot_chars: {sent0.tot_chars}" logg.info(recap) ############################################################# # load the chapter for l1 ############################################################# lang_folder1 = book_folder / languages[1] chapter_name1 = chapter_templates[1].format(chapter_index1) chapter_path1 = lang_folder1 / chapter_name1 lang1 = pycountry.languages.get(name=languages[1]) logg.debug(f"lang1: {lang1}") lang_alpha2_tag1 = lang1.alpha_2 sent1 = load_chapter(chapter_path1, lang_alpha2_tag1) recap = f"{chapter_path1=}" recap += f" len(sent1): {len(sent1)}" recap += f" sent1.tot_chars: {sent1.tot_chars}" logg.info(recap) ############################################################# # align the two SentenceList ############################################################# composed = align_chapter( sent0, sent1, do_interactive, word_pairs, common_words1 ) ############################################################# # save the composed chapter ############################################################# # build the chapter content composed_chapter_text = "" for i, sent in enumerate(composed): composed_chapter_text += f"{sent.orig_str}\n" recap = f"\n>>>>>> {i}" recap += f"\n>{sent}<" logg.debug(recap) # build a vague chapter title chapter_title = f"Chapter {chapter_index+1}" # create the full chapter text full_ch_text = tmpl_ch.format( book_title=book_name_full, book_author=author_name_full, composed_tag=composed_tag, chapter_title=chapter_title, chapter_content=composed_chapter_text, ) # composed_chapter_path.write_text(full_ch_text) # build a soup for the chapter parsed_text = BeautifulSoup(full_ch_text, features="html.parser") # write the prettified text composed_chapter_path.write_text(parsed_text.prettify())
[ "logging.getLogger", "termcolor.colored", "bs4.BeautifulSoup", "pycountry.languages.get", "re.sub" ]
[((1068, 1116), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.color_in_dict"""'], {}), "(f'c.{__name__}.color_in_dict')\n", (1085, 1116), False, 'import logging\n'), ((5509, 5563), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.align_chapter_basic"""'], {}), "(f'c.{__name__}.align_chapter_basic')\n", (5526, 5563), False, 'import logging\n'), ((8217, 8275), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.compute_incremental_len"""'], {}), "(f'c.{__name__}.compute_incremental_len')\n", (8234, 8275), False, 'import logging\n'), ((9978, 10030), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.interactive_hints"""'], {}), "(f'c.{__name__}.interactive_hints')\n", (9995, 10030), False, 'import logging\n'), ((16188, 16239), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.align_with_hints"""'], {}), "(f'c.{__name__}.align_with_hints')\n", (16205, 16239), False, 'import logging\n'), ((20296, 20344), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.align_chapter"""'], {}), "(f'c.{__name__}.align_chapter')\n", (20313, 20344), False, 'import logging\n'), ((21736, 21781), 'logging.getLogger', 'logging.getLogger', (['f"""c.{__name__}.align_book"""'], {}), "(f'c.{__name__}.align_book')\n", (21753, 21781), False, 'import logging\n'), ((1404, 1439), 're.sub', 're.sub', (['"""[\\\\W\\\\d_]"""', '""""""', 'word_match'], {}), "('[\\\\W\\\\d_]', '', word_match)\n", (1410, 1439), False, 'import re\n'), ((2304, 2344), 're.sub', 're.sub', (['"""[\\\\W\\\\d_]"""', '""""""', 'word_color_orig'], {}), "('[\\\\W\\\\d_]', '', word_color_orig)\n", (2310, 2344), False, 'import re\n'), ((23815, 23857), 'pycountry.languages.get', 'pycountry.languages.get', ([], {'name': 'languages[0]'}), '(name=languages[0])\n', (23838, 23857), False, 'import pycountry\n'), ((24526, 24568), 'pycountry.languages.get', 'pycountry.languages.get', ([], {'name': 'languages[1]'}), '(name=languages[1])\n', (24549, 24568), False, 'import pycountry\n'), ((26130, 26181), 'bs4.BeautifulSoup', 'BeautifulSoup', (['full_ch_text'], {'features': '"""html.parser"""'}), "(full_ch_text, features='html.parser')\n", (26143, 26181), False, 'from bs4 import BeautifulSoup\n'), ((3211, 3253), 'termcolor.colored', 'colored', (['f"""{word_color_orig} """', 'color_pair'], {}), "(f'{word_color_orig} ', color_pair)\n", (3218, 3253), False, 'from termcolor import colored\n'), ((11283, 11322), 'termcolor.colored', 'colored', (['f"""{vt * 3}"""', '"""grey"""', '"""on_cyan"""'], {}), "(f'{vt * 3}', 'grey', 'on_cyan')\n", (11290, 11322), False, 'from termcolor import colored\n'), ((11342, 11402), 'termcolor.colored', 'colored', (['f"""curr_hi0: {curr_hi0} -> {i1}"""', '"""white"""', '"""on_cyan"""'], {}), "(f'curr_hi0: {curr_hi0} -> {i1}', 'white', 'on_cyan')\n", (11349, 11402), False, 'from termcolor import colored\n'), ((11424, 11463), 'termcolor.colored', 'colored', (['f"""{tv * 3}"""', '"""grey"""', '"""on_cyan"""'], {}), "(f'{tv * 3}', 'grey', 'on_cyan')\n", (11431, 11463), False, 'from termcolor import colored\n'), ((12226, 12254), 'termcolor.colored', 'colored', (['f"""{vt}{tv}"""', '"""cyan"""'], {}), "(f'{vt}{tv}', 'cyan')\n", (12233, 12254), False, 'from termcolor import colored\n'), ((1875, 1910), 're.sub', 're.sub', (['"""[\\\\W\\\\d_]"""', '""""""', 'word_color'], {}), "('[\\\\W\\\\d_]', '', word_color)\n", (1881, 1910), False, 'import re\n'), ((3306, 3348), 'termcolor.colored', 'colored', (['f"""{word_color_orig} """', 'color_frac'], {}), "(f'{word_color_orig} ', color_frac)\n", (3313, 3348), False, 'from termcolor import colored\n'), ((11887, 11942), 'termcolor.colored', 'colored', (['f"""sent0[{hi0_show}]:"""', '"""green"""'], {'attrs': "['bold']"}), "(f'sent0[{hi0_show}]:', 'green', attrs=['bold'])\n", (11894, 11942), False, 'from termcolor import colored\n'), ((12630, 12693), 'termcolor.colored', 'colored', (['f"""sent1[{hi1 - i1}] ({hi1}):"""', '"""green"""'], {'attrs': "['bold']"}), "(f'sent1[{hi1 - i1}] ({hi1}):', 'green', attrs=['bold'])\n", (12637, 12693), False, 'from termcolor import colored\n')]
from comparator.comparator import Comparator from gate.and_gate import And from gate.or_gate import Or class HazardDetectionUnit: def __init__(self, rm_id_ex, rt_id_ex, rt_if_id, rs_if_id, name="HazardDetectionUnit"): self.memread_id_ex = rm_id_ex self.rt_id_ex = rt_id_ex self.rt_if_id = rt_if_id self.rs_if_id = rs_if_id self.name = name self.output = None self.build() def build(self): self.output = And(( self.memread_id_ex, Or(( Comparator((self.rt_id_ex, self.rs_if_id), 5), Comparator((self.rt_id_ex, self.rt_if_id), 5) )) )) def logic(self, depend=[]): if self in depend: return self.output self.output.logic(depend + [self]) return self.output.output def get_output(self): return self.output.output
[ "comparator.comparator.Comparator" ]
[((551, 596), 'comparator.comparator.Comparator', 'Comparator', (['(self.rt_id_ex, self.rs_if_id)', '(5)'], {}), '((self.rt_id_ex, self.rs_if_id), 5)\n', (561, 596), False, 'from comparator.comparator import Comparator\n'), ((614, 659), 'comparator.comparator.Comparator', 'Comparator', (['(self.rt_id_ex, self.rt_if_id)', '(5)'], {}), '((self.rt_id_ex, self.rt_if_id), 5)\n', (624, 659), False, 'from comparator.comparator import Comparator\n')]
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Join source and target text files generated for MCD splits to TSV.""" from absl import app from absl import flags from language.nqg.tasks import tsv_utils from tensorflow.io import gfile FLAGS = flags.FLAGS flags.DEFINE_string("source", "", "Source txt file.") flags.DEFINE_string("target", "", "Target txt file.") flags.DEFINE_string("output", "", "Joined tsv file.") def read_examples(source_file, target_file): """Return list of (source, target) tuples.""" sources = [] targets = [] with gfile.GFile(source_file, "r") as txt_file: for line in txt_file: sources.append(line.rstrip("\n")) with gfile.GFile(target_file, "r") as txt_file: for line in txt_file: targets.append(line.rstrip("\n")) examples = list(zip(sources, targets)) return examples def main(unused_argv): examples = read_examples(FLAGS.source, FLAGS.target) tsv_utils.write_tsv(examples, FLAGS.output) if __name__ == "__main__": app.run(main)
[ "absl.flags.DEFINE_string", "tensorflow.io.gfile.GFile", "absl.app.run", "language.nqg.tasks.tsv_utils.write_tsv" ]
[((830, 883), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""source"""', '""""""', '"""Source txt file."""'], {}), "('source', '', 'Source txt file.')\n", (849, 883), False, 'from absl import flags\n'), ((885, 938), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""target"""', '""""""', '"""Target txt file."""'], {}), "('target', '', 'Target txt file.')\n", (904, 938), False, 'from absl import flags\n'), ((940, 993), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""output"""', '""""""', '"""Joined tsv file."""'], {}), "('output', '', 'Joined tsv file.')\n", (959, 993), False, 'from absl import flags\n'), ((1495, 1538), 'language.nqg.tasks.tsv_utils.write_tsv', 'tsv_utils.write_tsv', (['examples', 'FLAGS.output'], {}), '(examples, FLAGS.output)\n', (1514, 1538), False, 'from language.nqg.tasks import tsv_utils\n'), ((1570, 1583), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (1577, 1583), False, 'from absl import app\n'), ((1127, 1156), 'tensorflow.io.gfile.GFile', 'gfile.GFile', (['source_file', '"""r"""'], {}), "(source_file, 'r')\n", (1138, 1156), False, 'from tensorflow.io import gfile\n'), ((1244, 1273), 'tensorflow.io.gfile.GFile', 'gfile.GFile', (['target_file', '"""r"""'], {}), "(target_file, 'r')\n", (1255, 1273), False, 'from tensorflow.io import gfile\n')]
import pytest from gemd.entity.source.performed_source import PerformedSource def test_construction(): """Make sure we can and cannot construct correct and incorrect performed sources.""" PerformedSource() PerformedSource(performed_by="<NAME>") PerformedSource(performed_date="1898-07-01") PerformedSource(performed_date="1898-07-01", performed_by="<NAME>") with pytest.raises(TypeError): PerformedSource(performed_date=1234) with pytest.raises(TypeError): PerformedSource(performed_by={"first_name": "Marie", "last_name": "Curie"})
[ "gemd.entity.source.performed_source.PerformedSource", "pytest.raises" ]
[((199, 216), 'gemd.entity.source.performed_source.PerformedSource', 'PerformedSource', ([], {}), '()\n', (214, 216), False, 'from gemd.entity.source.performed_source import PerformedSource\n'), ((221, 259), 'gemd.entity.source.performed_source.PerformedSource', 'PerformedSource', ([], {'performed_by': '"""<NAME>"""'}), "(performed_by='<NAME>')\n", (236, 259), False, 'from gemd.entity.source.performed_source import PerformedSource\n'), ((264, 308), 'gemd.entity.source.performed_source.PerformedSource', 'PerformedSource', ([], {'performed_date': '"""1898-07-01"""'}), "(performed_date='1898-07-01')\n", (279, 308), False, 'from gemd.entity.source.performed_source import PerformedSource\n'), ((313, 380), 'gemd.entity.source.performed_source.PerformedSource', 'PerformedSource', ([], {'performed_date': '"""1898-07-01"""', 'performed_by': '"""<NAME>"""'}), "(performed_date='1898-07-01', performed_by='<NAME>')\n", (328, 380), False, 'from gemd.entity.source.performed_source import PerformedSource\n'), ((391, 415), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (404, 415), False, 'import pytest\n'), ((425, 461), 'gemd.entity.source.performed_source.PerformedSource', 'PerformedSource', ([], {'performed_date': '(1234)'}), '(performed_date=1234)\n', (440, 461), False, 'from gemd.entity.source.performed_source import PerformedSource\n'), ((472, 496), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (485, 496), False, 'import pytest\n'), ((506, 581), 'gemd.entity.source.performed_source.PerformedSource', 'PerformedSource', ([], {'performed_by': "{'first_name': 'Marie', 'last_name': 'Curie'}"}), "(performed_by={'first_name': 'Marie', 'last_name': 'Curie'})\n", (521, 581), False, 'from gemd.entity.source.performed_source import PerformedSource\n')]
import pandas as pd import re def read_data(file_path): data=pd.read_excel(file_path) new_data=data.iloc[:, 0:2] new_data.columns=[["Question", "Answers"]] new_data=new_data[:-1] return new_data origin = read_data("../DATA/all.xlsx") year = "[0-9][0-9][0-9][0-9]" y = [re.search(year, i[0]) != None for i in origin["Question"].values] other = [not i for i in y] df_y = origin[y] df_other = origin[other] df_y.to_csv ('../DATA/year_related.csv',index=False) df_other.to_csv ('../DATA/other.csv',index=False)
[ "re.search", "pandas.read_excel" ]
[((69, 93), 'pandas.read_excel', 'pd.read_excel', (['file_path'], {}), '(file_path)\n', (82, 93), True, 'import pandas as pd\n'), ((304, 325), 're.search', 're.search', (['year', 'i[0]'], {}), '(year, i[0])\n', (313, 325), False, 'import re\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2018-05-16 13:45 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('library', '0023_auto_20180516_2054'), ] operations = [ migrations.AddField( model_name='ordering', name='date_due_to_returned', field=models.DateField(default='2018-5-16'), ), migrations.AddField( model_name='ordering', name='date_issued', field=models.DateField(default='2018-5-16'), ), migrations.AddField( model_name='ordering', name='date_returned', field=models.DateField(null=True), ), ]
[ "django.db.models.DateField" ]
[((415, 452), 'django.db.models.DateField', 'models.DateField', ([], {'default': '"""2018-5-16"""'}), "(default='2018-5-16')\n", (431, 452), False, 'from django.db import migrations, models\n'), ((579, 616), 'django.db.models.DateField', 'models.DateField', ([], {'default': '"""2018-5-16"""'}), "(default='2018-5-16')\n", (595, 616), False, 'from django.db import migrations, models\n'), ((745, 772), 'django.db.models.DateField', 'models.DateField', ([], {'null': '(True)'}), '(null=True)\n', (761, 772), False, 'from django.db import migrations, models\n')]
import codecs import json import util TG_BASE_URL = 'http://tangorin.com' TG_KANJI_PATH = '/kanji' class Tangorin: # for each kanji on the list, loads word examples from tangorin website # and returns a map {kanji : {reading : [words sorted by appearance]}} @staticmethod def get_kanji_to_words(cache_file, kanjis, log): log.info('loading tangorin words') kanji_to_words = {} try: with codecs.open(cache_file, 'rb', 'utf-8') as f: kanji_to_words = json.load(f) log.info('loaded from cache file %s', cache_file) except (FileNotFoundError, IOError): pass i = 1 for kanji in kanjis: if kanji not in kanji_to_words: kanji_to_words[kanji] = Tangorin._get_words_for_kanji(kanji, log) log.debug('[%d/%d] %s: %s', i, len(kanjis), kanji, str(kanji_to_words[kanji])) i += 1 try: with codecs.open(cache_file, 'wb', 'utf-8') as f: json.dump(kanji_to_words, f, ensure_ascii=False) log.info('saved cache file %s', cache_file) except IOError: pass return kanji_to_words # given one kanji, uses tangorin to find example words # and returns a map {kanji : {reading : [words sorted by appearance]}} # a word is {'word': <in kanji>, 'furigana': <kana>, 'meaning': <meaning>} @staticmethod def _get_words_for_kanji(kanji, log): try: doc = util.get_html(TG_BASE_URL + TG_KANJI_PATH + '/' + kanji, log) if doc is not None: kanji_words = {} for tr in doc.xpath('//table[@class="k-compounds-table"]//tr'): reading, reading_words = Tangorin._process_reading_row(tr) if not reading: log.debug('invalid kanji: %s', kanji) return None kanji_words[reading] = reading_words return kanji_words except: log.exception('failed to load words for kanji %s', kanji) return None # processes one row from the tangorin page main table @staticmethod def _process_reading_row(tr): words = [] reading = str(tr.xpath('.//td[1]/span[@class="kana"]/b')[0].text).strip() for a in tr.xpath('.//td[2]/a'): word = ''.join(a.xpath('.//text()')).strip() furigana = a.xpath('(./following-sibling::span[@class="kana"])[1]')[0].text.strip() meaning = a.xpath('(./following-sibling::span[@class="romaji"])[1]')[0].tail.replace(u'】', '').strip() words.append({'word': word, 'furigana': furigana, 'meaning': meaning}) return reading, words
[ "json.load", "util.get_html", "codecs.open", "json.dump" ]
[((1513, 1574), 'util.get_html', 'util.get_html', (["(TG_BASE_URL + TG_KANJI_PATH + '/' + kanji)", 'log'], {}), "(TG_BASE_URL + TG_KANJI_PATH + '/' + kanji, log)\n", (1526, 1574), False, 'import util\n'), ((442, 480), 'codecs.open', 'codecs.open', (['cache_file', '"""rb"""', '"""utf-8"""'], {}), "(cache_file, 'rb', 'utf-8')\n", (453, 480), False, 'import codecs\n'), ((520, 532), 'json.load', 'json.load', (['f'], {}), '(f)\n', (529, 532), False, 'import json\n'), ((971, 1009), 'codecs.open', 'codecs.open', (['cache_file', '"""wb"""', '"""utf-8"""'], {}), "(cache_file, 'wb', 'utf-8')\n", (982, 1009), False, 'import codecs\n'), ((1032, 1080), 'json.dump', 'json.dump', (['kanji_to_words', 'f'], {'ensure_ascii': '(False)'}), '(kanji_to_words, f, ensure_ascii=False)\n', (1041, 1080), False, 'import json\n')]
import warnings import pytest from nipype.external.version import LooseVersion as Vendored with warnings.catch_warnings(): warnings.simplefilter("ignore") try: from distutils.version import LooseVersion as Original except ImportError: pytest.skip() @pytest.mark.parametrize("v1, v2", [("0.0.0", "0.0.0"), ("0.0.0", "1.0.0")]) def test_LooseVersion_compat(v1, v2): vend1, vend2 = Vendored(v1), Vendored(v2) with warnings.catch_warnings(): warnings.simplefilter("ignore") orig1, orig2 = Original(v1), Original(v2) assert vend1 == orig1 assert orig1 == vend1 assert vend2 == orig2 assert orig2 == vend2 assert (vend1 == orig2) == (v1 == v2) assert (vend1 < orig2) == (v1 < v2) assert (vend1 > orig2) == (v1 > v2) assert (vend1 <= orig2) == (v1 <= v2) assert (vend1 >= orig2) == (v1 >= v2) assert (orig1 == vend2) == (v1 == v2) assert (orig1 < vend2) == (v1 < v2) assert (orig1 > vend2) == (v1 > v2) assert (orig1 <= vend2) == (v1 <= v2) assert (orig1 >= vend2) == (v1 >= v2)
[ "warnings.catch_warnings", "nipype.external.version.LooseVersion", "pytest.mark.parametrize", "warnings.simplefilter", "distutils.version.LooseVersion", "pytest.skip" ]
[((283, 358), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""v1, v2"""', "[('0.0.0', '0.0.0'), ('0.0.0', '1.0.0')]"], {}), "('v1, v2', [('0.0.0', '0.0.0'), ('0.0.0', '1.0.0')])\n", (306, 358), False, 'import pytest\n'), ((99, 124), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (122, 124), False, 'import warnings\n'), ((130, 161), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (151, 161), False, 'import warnings\n'), ((416, 428), 'nipype.external.version.LooseVersion', 'Vendored', (['v1'], {}), '(v1)\n', (424, 428), True, 'from nipype.external.version import LooseVersion as Vendored\n'), ((430, 442), 'nipype.external.version.LooseVersion', 'Vendored', (['v2'], {}), '(v2)\n', (438, 442), True, 'from nipype.external.version import LooseVersion as Vendored\n'), ((452, 477), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (475, 477), False, 'import warnings\n'), ((487, 518), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (508, 518), False, 'import warnings\n'), ((266, 279), 'pytest.skip', 'pytest.skip', ([], {}), '()\n', (277, 279), False, 'import pytest\n'), ((542, 554), 'distutils.version.LooseVersion', 'Original', (['v1'], {}), '(v1)\n', (550, 554), True, 'from distutils.version import LooseVersion as Original\n'), ((556, 568), 'distutils.version.LooseVersion', 'Original', (['v2'], {}), '(v2)\n', (564, 568), True, 'from distutils.version import LooseVersion as Original\n')]
#!/bin/python import sys import json import os.path import argparse from google.cloud import storage # Synopsis: # Copies workflow outputs needed for downstream processing to a destination bucket. # # Author: <NAME> (<EMAIL>) # Output file definitions: FILENAME_MAP[workflow_name][output_variable] = destination_file_suffix FILENAME_MAP = { 'GATKSVPipelinePhase1': { 'filtered_depth_vcf': 'filtered_depth_vcf.vcf.gz', 'filtered_pesr_vcf': 'filtered_pesr_vcf.vcf.gz', 'cutoffs': 'rf_cutoffs.tsv', 'outlier_samples_excluded_file': 'outliers.list', 'batch_samples_postOutlierExclusion_file': 'filtered_samples.list', 'ped_file_postOutlierExclusion': 'filtered.ped', 'merged_SR': 'SR.txt.gz', 'merged_SR_index': 'SR.txt.gz.tbi', 'merged_PE': 'PE.txt.gz', 'merged_PE_index': 'PE.txt.gz.tbi', 'merged_bincov': 'RD.txt.gz', 'merged_bincov_index': 'RD.txt.gz.tbi', 'median_cov': 'median_cov.bed' }, 'MergeCohortVcfs': { 'cohort_pesr_vcf': 'cohort_pesr.vcf.gz', 'cohort_depth_vcf': 'cohort_depth.vcf.gz', 'cohort_combined': 'cohort.combined.bed', 'lookup': 'master_cluster_dups.bed', 'cohort_sort': 'cohort.sort.bed', 'cluster_combined': 'cluster.combined.bed' }, 'Module04': { 'sr_bothside_pass': 'sr_bothside_pass.txt', 'sr_background_fail': 'sr_background_fail.txt', 'trained_PE_metrics': 'trained_PE_metrics.txt', 'trained_SR_metrics': 'trained_SR_metrics.txt', 'trained_genotype_pesr_pesr_sepcutoff': 'trained_genotype_pesr_pesr_sepcutoff.txt', 'trained_genotype_pesr_depth_sepcutoff': 'trained_genotype_pesr_depth_sepcutoff.txt', 'trained_genotype_depth_pesr_sepcutoff': 'trained_genotype_depth_pesr_sepcutoff.txt', 'trained_genotype_depth_depth_sepcutoff': 'trained_genotype_depth_depth_sepcutoff.txt', 'genotyped_depth_vcf': 'genotyped.depth.vcf.gz', 'genotyped_depth_vcf_index': 'genotyped.depth.vcf.gz.tbi', 'genotyped_pesr_vcf': 'genotyped.pesr.vcf.gz', 'genotyped_pesr_vcf_index': 'genotyped.pesr.vcf.gz.tbi', 'regeno_depth': 'regeno_depth.bed' } } def get_uris(metadata, output_name, dest_prefix): if 'workflowName' not in metadata: raise ValueError("Workflow name not found. Check metadata file.") workflow = metadata['workflowName'] if workflow not in FILENAME_MAP: raise ValueError(f"Unknown workflow {workflow}") outputs = metadata['outputs'] for var in FILENAME_MAP[workflow]: key = f"{workflow}.{var}" if outputs[key] is not None: source_uri = outputs[key] dest_filename = f"{output_name}.{FILENAME_MAP[workflow][var]}" dest_uri = os.path.join(dest_prefix, dest_filename) yield (source_uri, dest_uri) def copy_blob(storage_client, bucket_name, blob_name, destination_bucket_name, destination_blob_name): source_bucket = storage_client.bucket(bucket_name) source_blob = source_bucket.blob(blob_name) destination_bucket = storage_client.bucket(destination_bucket_name) destination_blob = destination_bucket.blob(destination_blob_name) source_uri = f"gs://{source_bucket.name}/{source_blob.name}" destination_uri = f"gs://{destination_bucket.name}/{destination_blob_name}" if destination_blob.exists(): sys.stderr.write( f"Target {destination_uri} exists, cautiously refusing to overwrite. Aborting...\n") sys.exit(1) sys.stderr.write(f"Copying {source_uri}...") (token, bytes_rewritten, total_bytes) = destination_blob.rewrite(source=source_blob) while token is not None: (token, bytes_rewritten, total_bytes) = destination_blob.rewrite( source=source_blob, token=token) size_kb = int(bytes_rewritten / 1024) sys.stderr.write(f"done ({size_kb} KB)\n") def copy_uri(source_uri, dest_uri, storage_client): def _parse_uri(uri): tokens = uri.split('/') bucket_name = tokens[2] bucket_object = '/'.join(tokens[3:]) return bucket_name, bucket_object source_bucket_name, source_blob_name = _parse_uri(source_uri) dest_bucket_name, dest_blob_name = _parse_uri(dest_uri) copy_blob(storage_client, source_bucket_name, source_blob_name, dest_bucket_name, dest_blob_name) # Main function def main(): parser = argparse.ArgumentParser() parser.add_argument("--name", help="Batch or cohort name", required=True) parser.add_argument( "--metadata", help="Workflow metadata JSON file", required=True) parser.add_argument( "--dest", help="Destination GCS URI (e.g. \"gs://my-bucket/output\")", required=True) args = parser.parse_args() metadata = json.load(open(args.metadata, 'r')) output_uris = get_uris(metadata, args.name, args.dest) client = storage.Client() for source_uri, dest_uri in output_uris: copy_uri(source_uri, dest_uri, client) if __name__ == "__main__": main()
[ "sys.stderr.write", "google.cloud.storage.Client", "argparse.ArgumentParser", "sys.exit" ]
[((3573, 3617), 'sys.stderr.write', 'sys.stderr.write', (['f"""Copying {source_uri}..."""'], {}), "(f'Copying {source_uri}...')\n", (3589, 3617), False, 'import sys\n'), ((3901, 3943), 'sys.stderr.write', 'sys.stderr.write', (['f"""done ({size_kb} KB)\n"""'], {}), "(f'done ({size_kb} KB)\\n')\n", (3917, 3943), False, 'import sys\n'), ((4459, 4484), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (4482, 4484), False, 'import argparse\n'), ((4934, 4950), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (4948, 4950), False, 'from google.cloud import storage\n'), ((3434, 3545), 'sys.stderr.write', 'sys.stderr.write', (['f"""Target {destination_uri} exists, cautiously refusing to overwrite. Aborting...\n"""'], {}), "(\n f'Target {destination_uri} exists, cautiously refusing to overwrite. Aborting...\\n'\n )\n", (3450, 3545), False, 'import sys\n'), ((3557, 3568), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3565, 3568), False, 'import sys\n')]
from keras.models import Sequential from keras.layers import Dense, Flatten from keras.layers import Conv2D from keras.layers import MaxPooling2D def generate_vgg16(): """ 搭建VGG16网络结构 :return: VGG16网络 """ input_shape = (224, 224, 3) model = Sequential([ Conv2D(64, (3, 3), input_shape=input_shape, padding='same', activation='relu'), Conv2D(64, (3, 3), padding='same', activation='relu'), MaxPooling2D(pool_size=(2,2), strides=(2,2)), Conv2D(128, (3, 3), padding='same', activation='relu'), Conv2D(128, (3, 3), padding='same', activation='relu'), MaxPooling2D(pool_size=(2, 2), strides=(2, 2)), Conv2D(256, (3, 3), padding='same', activation='relu'), Conv2D(256, (3, 3), padding='same', activation='relu'), Conv2D(256, (3, 3), padding='same', activation='relu'), MaxPooling2D(pool_size=(2, 2), strides=(2, 2)), Conv2D(512, (3, 3), padding='same', activation='relu'), Conv2D(512, (3, 3), padding='same', activation='relu'), Conv2D(512, (3, 3), padding='same', activation='relu'), MaxPooling2D(pool_size=(2, 2), strides=(2, 2)), Conv2D(512, (3, 3), padding='same', activation='relu'), Conv2D(512, (3, 3), padding='same', activation='relu'), Conv2D(512, (3, 3), padding='same', activation='relu'), MaxPooling2D(pool_size=(2,2), strides=(2,2)), Flatten(), Dense(4096, activation='relu'), Dense(4096, activation='relu'), Dense(1000, activation='softmax') ]) return model if __name__ == '__main__': model = generate_vgg16() model.summary()
[ "keras.layers.Dense", "keras.layers.Conv2D", "keras.layers.Flatten", "keras.layers.MaxPooling2D" ]
[((288, 366), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'input_shape': 'input_shape', 'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, (3, 3), input_shape=input_shape, padding='same', activation='relu')\n", (294, 366), False, 'from keras.layers import Conv2D\n'), ((376, 429), 'keras.layers.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(64, (3, 3), padding='same', activation='relu')\n", (382, 429), False, 'from keras.layers import Conv2D\n'), ((439, 485), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), '(pool_size=(2, 2), strides=(2, 2))\n', (451, 485), False, 'from keras.layers import MaxPooling2D\n'), ((493, 547), 'keras.layers.Conv2D', 'Conv2D', (['(128)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(128, (3, 3), padding='same', activation='relu')\n", (499, 547), False, 'from keras.layers import Conv2D\n'), ((557, 611), 'keras.layers.Conv2D', 'Conv2D', (['(128)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(128, (3, 3), padding='same', activation='relu')\n", (563, 611), False, 'from keras.layers import Conv2D\n'), ((621, 667), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), '(pool_size=(2, 2), strides=(2, 2))\n', (633, 667), False, 'from keras.layers import MaxPooling2D\n'), ((677, 731), 'keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), padding='same', activation='relu')\n", (683, 731), False, 'from keras.layers import Conv2D\n'), ((741, 795), 'keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), padding='same', activation='relu')\n", (747, 795), False, 'from keras.layers import Conv2D\n'), ((805, 859), 'keras.layers.Conv2D', 'Conv2D', (['(256)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(256, (3, 3), padding='same', activation='relu')\n", (811, 859), False, 'from keras.layers import Conv2D\n'), ((869, 915), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), '(pool_size=(2, 2), strides=(2, 2))\n', (881, 915), False, 'from keras.layers import MaxPooling2D\n'), ((925, 979), 'keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), padding='same', activation='relu')\n", (931, 979), False, 'from keras.layers import Conv2D\n'), ((989, 1043), 'keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), padding='same', activation='relu')\n", (995, 1043), False, 'from keras.layers import Conv2D\n'), ((1053, 1107), 'keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), padding='same', activation='relu')\n", (1059, 1107), False, 'from keras.layers import Conv2D\n'), ((1117, 1163), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), '(pool_size=(2, 2), strides=(2, 2))\n', (1129, 1163), False, 'from keras.layers import MaxPooling2D\n'), ((1173, 1227), 'keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), padding='same', activation='relu')\n", (1179, 1227), False, 'from keras.layers import Conv2D\n'), ((1237, 1291), 'keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), padding='same', activation='relu')\n", (1243, 1291), False, 'from keras.layers import Conv2D\n'), ((1301, 1355), 'keras.layers.Conv2D', 'Conv2D', (['(512)', '(3, 3)'], {'padding': '"""same"""', 'activation': '"""relu"""'}), "(512, (3, 3), padding='same', activation='relu')\n", (1307, 1355), False, 'from keras.layers import Conv2D\n'), ((1365, 1411), 'keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(2, 2)', 'strides': '(2, 2)'}), '(pool_size=(2, 2), strides=(2, 2))\n', (1377, 1411), False, 'from keras.layers import MaxPooling2D\n'), ((1419, 1428), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1426, 1428), False, 'from keras.layers import Dense, Flatten\n'), ((1438, 1468), 'keras.layers.Dense', 'Dense', (['(4096)'], {'activation': '"""relu"""'}), "(4096, activation='relu')\n", (1443, 1468), False, 'from keras.layers import Dense, Flatten\n'), ((1478, 1508), 'keras.layers.Dense', 'Dense', (['(4096)'], {'activation': '"""relu"""'}), "(4096, activation='relu')\n", (1483, 1508), False, 'from keras.layers import Dense, Flatten\n'), ((1518, 1551), 'keras.layers.Dense', 'Dense', (['(1000)'], {'activation': '"""softmax"""'}), "(1000, activation='softmax')\n", (1523, 1551), False, 'from keras.layers import Dense, Flatten\n')]
from datetime import datetime from dateutil.parser import parse as date_parser from easytrakt.models import Episode from easytrakt.models import Movie from easytrakt.models import MovieWatchlist from easytrakt.models import Season from easytrakt.models import Settings from easytrakt.models import Show from easytrakt.models import ShowWatchlist def test_search_show(client): result = client.search("Dexter") assert result show = result[0] assert isinstance(show, Show) assert show.title == "Dexter" assert show.ids.trakt == 1396 assert show.id == 1396 assert show.images.poster.full.startswith("http") assert show.images.banner.full.startswith("http") def test_search_movie(client): result = client.movies("The Big Lebowski") assert result movie = result[0] assert isinstance(movie, Movie) assert movie.title == "The Big Lebowski" assert movie.year == 1998 assert movie.id == 84 assert isinstance(movie.released, datetime) assert movie.released == date_parser("1998-03-06") assert movie.images.poster.full.startswith("http") assert movie.images.fanart.full.startswith("http") def test_season(client): show = Show(client, 1396) seasons = show.seasons assert seasons season = seasons[1] assert isinstance(season, Season) assert season.number == 1 assert season.trakt == 3999 assert season.aired_episodes == 12 assert season.images.poster.full.startswith("http") def test_episodes(client): show = Show(client, 1396) episodes = show.seasons[1].episodes episode = episodes[1] assert isinstance(episode, Episode) assert episode.season == 1 assert episode.number == 2 assert episode.trakt == 74162 assert episode.title == "Crocodile" assert isinstance(episode.first_aired, datetime) assert episode.first_aired == date_parser("2006-10-08T04:00:00.000Z") assert episode.images.screenshot.full.startswith("http") def test_settings(client): settings = Settings(client) assert settings.user.username == "lad1337" def test_movie_watchlist(client): watchlist = MovieWatchlist(client) assert watchlist.items assert isinstance(watchlist.items[0], Movie) def test_show_watchlist(client): watchlist = ShowWatchlist(client) assert watchlist.items assert isinstance(watchlist.items[0], Show)
[ "dateutil.parser.parse", "easytrakt.models.ShowWatchlist", "easytrakt.models.Settings", "easytrakt.models.MovieWatchlist", "easytrakt.models.Show" ]
[((1202, 1220), 'easytrakt.models.Show', 'Show', (['client', '(1396)'], {}), '(client, 1396)\n', (1206, 1220), False, 'from easytrakt.models import Show\n'), ((1526, 1544), 'easytrakt.models.Show', 'Show', (['client', '(1396)'], {}), '(client, 1396)\n', (1530, 1544), False, 'from easytrakt.models import Show\n'), ((2019, 2035), 'easytrakt.models.Settings', 'Settings', (['client'], {}), '(client)\n', (2027, 2035), False, 'from easytrakt.models import Settings\n'), ((2135, 2157), 'easytrakt.models.MovieWatchlist', 'MovieWatchlist', (['client'], {}), '(client)\n', (2149, 2157), False, 'from easytrakt.models import MovieWatchlist\n'), ((2285, 2306), 'easytrakt.models.ShowWatchlist', 'ShowWatchlist', (['client'], {}), '(client)\n', (2298, 2306), False, 'from easytrakt.models import ShowWatchlist\n'), ((1028, 1053), 'dateutil.parser.parse', 'date_parser', (['"""1998-03-06"""'], {}), "('1998-03-06')\n", (1039, 1053), True, 'from dateutil.parser import parse as date_parser\n'), ((1874, 1913), 'dateutil.parser.parse', 'date_parser', (['"""2006-10-08T04:00:00.000Z"""'], {}), "('2006-10-08T04:00:00.000Z')\n", (1885, 1913), True, 'from dateutil.parser import parse as date_parser\n')]
from pydatastructs.miscellaneous_data_structures.sparse_table import SparseTable from pydatastructs.miscellaneous_data_structures.segment_tree import ArraySegmentTree from pydatastructs.utils.misc_util import ( _check_range_query_inputs, Backend, raise_if_backend_is_not_python) __all__ = [ 'RangeQueryStatic', 'RangeQueryDynamic' ] class RangeQueryStatic: """ Produces results for range queries of different kinds by using specified data structure. Parameters ========== array: OneDimensionalArray The array for which we need to answer queries. All the elements should be of type `int`. func: callable The function to be used for generating results of a query. It should accept only one tuple as an argument. The size of the tuple will be either 1 or 2 and any one of the elements can be `None`. You can treat `None` in whatever way you want according to the query you are performing. For example, in case of range minimum queries, `None` can be treated as infinity. We provide the following which can be used as an argument value for this parameter, `minimum` - For range minimum queries. `greatest_common_divisor` - For queries finding greatest common divisor of a range. `summation` - For range sum queries. data_structure: str The data structure to be used for performing range queries. Currently the following data structures are supported, 'array' -> Array data structure. Each query takes O(end - start) time asymptotically. 'sparse_table' -> Sparse table data structure. Each query takes O(log(end - start)) time asymptotically. By default, 'sparse_table'. backend: pydatastructs.Backend The backend to be used. Optional, by default, the best available backend is used. Examples ======== >>> from pydatastructs import OneDimensionalArray, RangeQueryStatic >>> from pydatastructs import minimum >>> arr = OneDimensionalArray(int, [4, 6, 1, 5, 7, 3]) >>> RMQ = RangeQueryStatic(arr, minimum) >>> RMQ.query(3, 4) 5 >>> RMQ.query(0, 4) 1 >>> RMQ.query(0, 2) 1 Note ==== The array once passed as an input should not be modified once the `RangeQueryStatic` constructor is called. If you have updated the array, then you need to create a new `RangeQueryStatic` object with this updated array. """ def __new__(cls, array, func, data_structure='sparse_table', **kwargs): raise_if_backend_is_not_python( cls, kwargs.get('backend', Backend.PYTHON)) if len(array) == 0: raise ValueError("Input %s array is empty."%(array)) if data_structure == 'array': return RangeQueryStaticArray(array, func) elif data_structure == 'sparse_table': return RangeQueryStaticSparseTable(array, func) else: raise NotImplementedError( "Currently %s data structure for range " "query without updates isn't implemented yet." % (data_structure)) @classmethod def methods(cls): return ['query'] def query(start, end): """ Method to perform a query in [start, end) range. Parameters ========== start: int The starting index of the range. end: int The ending index of the range. """ raise NotImplementedError( "This is an abstract method.") class RangeQueryStaticSparseTable(RangeQueryStatic): __slots__ = ["sparse_table", "bounds"] def __new__(cls, array, func, **kwargs): raise_if_backend_is_not_python( cls, kwargs.get('backend', Backend.PYTHON)) obj = object.__new__(cls) sparse_table = SparseTable(array, func) obj.bounds = (0, len(array)) obj.sparse_table = sparse_table return obj @classmethod def methods(cls): return ['query'] def query(self, start, end): _check_range_query_inputs((start, end + 1), self.bounds) return self.sparse_table.query(start, end) class RangeQueryStaticArray(RangeQueryStatic): __slots__ = ["array", "func"] def __new__(cls, array, func): obj = object.__new__(cls) obj.array = array obj.func = func return obj @classmethod def methods(cls): return ['query'] def query(self, start, end): _check_range_query_inputs((start, end + 1), (0, len(self.array))) rsize = end - start + 1 if rsize == 1: return self.func((self.array[start],)) query_ans = self.func((self.array[start], self.array[start + 1])) for i in range(start + 2, end + 1): query_ans = self.func((query_ans, self.array[i])) return query_ans class RangeQueryDynamic: """ Produces results for range queries of different kinds while allowing point updates by using specified data structure. Parameters ========== array: OneDimensionalArray The array for which we need to answer queries. All the elements should be of type `int`. func: callable The function to be used for generating results of a query. It should accept only one tuple as an argument. The size of the tuple will be either 1 or 2 and any one of the elements can be `None`. You can treat `None` in whatever way you want according to the query you are performing. For example, in case of range minimum queries, `None` can be treated as infinity. We provide the following which can be used as an argument value for this parameter, `minimum` - For range minimum queries. `greatest_common_divisor` - For queries finding greatest common divisor of a range. `summation` - For range sum queries. data_structure: str The data structure to be used for performing range queries. Currently the following data structures are supported, 'array' -> Array data structure. Each query takes O(end - start) time asymptotically. Each point update takes O(1) time asymptotically. 'segment_tree' -> Segment tree data structure. Each query takes O(log(end - start)) time asymptotically. Each point update takes O(log(len(array))) time asymptotically. By default, 'segment_tree'. backend: pydatastructs.Backend The backend to be used. Optional, by default, the best available backend is used. Examples ======== >>> from pydatastructs import OneDimensionalArray, RangeQueryDynamic >>> from pydatastructs import minimum >>> arr = OneDimensionalArray(int, [4, 6, 1, 5, 7, 3]) >>> RMQ = RangeQueryDynamic(arr, minimum) >>> RMQ.query(3, 4) 5 >>> RMQ.query(0, 4) 1 >>> RMQ.query(0, 2) 1 >>> RMQ.update(2, 0) >>> RMQ.query(0, 2) 0 Note ==== The array once passed as an input should be modified only with `RangeQueryDynamic.update` method. """ def __new__(cls, array, func, data_structure='segment_tree', **kwargs): raise_if_backend_is_not_python( cls, kwargs.get('backend', Backend.PYTHON)) if len(array) == 0: raise ValueError("Input %s array is empty."%(array)) if data_structure == 'array': return RangeQueryDynamicArray(array, func, **kwargs) elif data_structure == 'segment_tree': return RangeQueryDynamicSegmentTree(array, func, **kwargs) else: raise NotImplementedError( "Currently %s data structure for range " "query with point updates isn't implemented yet." % (data_structure)) @classmethod def methods(cls): return ['query', 'update'] def query(start, end): """ Method to perform a query in [start, end) range. Parameters ========== start: int The starting index of the range. end: int The ending index of the range. """ raise NotImplementedError( "This is an abstract method.") def update(self, index, value): """ Method to update index with a new value. Parameters ========== index: int The index to be update. value: int The new value. """ raise NotImplementedError( "This is an abstract method.") class RangeQueryDynamicArray(RangeQueryDynamic): __slots__ = ["range_query_static"] def __new__(cls, array, func, **kwargs): raise_if_backend_is_not_python( cls, kwargs.get('backend', Backend.PYTHON)) obj = object.__new__(cls) obj.range_query_static = RangeQueryStaticArray(array, func) return obj @classmethod def methods(cls): return ['query', 'update'] def query(self, start, end): return self.range_query_static.query(start, end) def update(self, index, value): self.range_query_static.array[index] = value class RangeQueryDynamicSegmentTree(RangeQueryDynamic): __slots__ = ["segment_tree", "bounds"] def __new__(cls, array, func, **kwargs): raise_if_backend_is_not_python( cls, kwargs.pop('backend', Backend.PYTHON)) obj = object.__new__(cls) obj.segment_tree = ArraySegmentTree(array, func, dimensions=1) obj.segment_tree.build() obj.bounds = (0, len(array)) return obj @classmethod def methods(cls): return ['query', 'update'] def query(self, start, end): _check_range_query_inputs((start, end + 1), self.bounds) return self.segment_tree.query(start, end) def update(self, index, value): self.segment_tree.update(index, value)
[ "pydatastructs.utils.misc_util._check_range_query_inputs", "pydatastructs.miscellaneous_data_structures.segment_tree.ArraySegmentTree", "pydatastructs.miscellaneous_data_structures.sparse_table.SparseTable" ]
[((4022, 4046), 'pydatastructs.miscellaneous_data_structures.sparse_table.SparseTable', 'SparseTable', (['array', 'func'], {}), '(array, func)\n', (4033, 4046), False, 'from pydatastructs.miscellaneous_data_structures.sparse_table import SparseTable\n'), ((4250, 4306), 'pydatastructs.utils.misc_util._check_range_query_inputs', '_check_range_query_inputs', (['(start, end + 1)', 'self.bounds'], {}), '((start, end + 1), self.bounds)\n', (4275, 4306), False, 'from pydatastructs.utils.misc_util import _check_range_query_inputs, Backend, raise_if_backend_is_not_python\n'), ((9864, 9907), 'pydatastructs.miscellaneous_data_structures.segment_tree.ArraySegmentTree', 'ArraySegmentTree', (['array', 'func'], {'dimensions': '(1)'}), '(array, func, dimensions=1)\n', (9880, 9907), False, 'from pydatastructs.miscellaneous_data_structures.segment_tree import ArraySegmentTree\n'), ((10114, 10170), 'pydatastructs.utils.misc_util._check_range_query_inputs', '_check_range_query_inputs', (['(start, end + 1)', 'self.bounds'], {}), '((start, end + 1), self.bounds)\n', (10139, 10170), False, 'from pydatastructs.utils.misc_util import _check_range_query_inputs, Backend, raise_if_backend_is_not_python\n')]
import numpy as np import matplotlib.pyplot as plt from matplotlib import cm, animation def animate3d(C,dt,phi,frames=100,interval=50,cmin=0,cmax=1): """Creates an animation of a time series of scalar values on a 2D grid. The scalar field is plotted as a surface mesh.""" step = len(C)//frames C = np.vstack([C[0],C[1::step]]) n = int(np.sqrt(len(C[0]))) (x,y) = np.meshgrid(range(n),range(n)) def init(): surf = ax.plot_surface(x,y,C[0].reshape(n,n),cmap=cm.coolwarm,vmin=cmin,vmax=cmax) time_text.set_text('t={0:.4f}'.format(0)) return (surf,time_text) def animate(i): #ax.collections.clear() surf = ax.plot_surface(x,y,C[i].reshape(n,n),cmap=cm.coolwarm,vmin=cmin,vmax=cmax) time_text.set_text('t={0:.4f}'.format(i*dt*step)) return (surf,time_text) fig, ax = plt.subplots(subplot_kw={'projection': '3d'}) surf = ax.plot_surface(x,y,C[0].reshape(n,n),cmap=cm.coolwarm,vmin=cmin,vmax=cmax) time_text = ax.text2D(0.75, 0.9, 't=0', transform=ax.transAxes, fontsize=12) phi_text = ax.text2D(0.1, 0.9, r'$\phi=$%.2f'%phi, transform=ax.transAxes, fontsize=12) fig.colorbar(surf, label=r'$C/C_0$') ax.axes.set_zlim3d(bottom=cmin, top=1) ax.set_title('Concentration Profile') ax.set_xlabel('x') ax.set_ylabel('y') ani = animation.FuncAnimation(fig, animate, init_func=init, frames=len(C), interval=interval, blit=True) plt.close() return ani def animate2d(C,dt,phi,cmin=1,cmax=1,frames=100,interval=50): """Creates an animation of a time series of scalar values on a 2D grid. The scalar field is plotted as a heatmap.""" step = len(C)//frames C = np.vstack([C[0],C[1::step]]) n = int(np.sqrt(len(C[0]))) def init(): surf = ax.imshow(C[0].reshape(n,n),cmap=cm.coolwarm,vmin=cmin,vmax=cmax) time_text.set_text('t={0:.4f}'.format(0)) return (surf,time_text) def animate(i): surf = ax.imshow(C[i].reshape(n,n),cmap=cm.coolwarm,vmin=cmin,vmax=cmax) time_text.set_text('t={0:.4f}'.format(i*dt*step)) return (surf,time_text) fig, ax = plt.subplots() surf = ax.imshow(C[0].reshape(n,n),cmap=cm.coolwarm,vmin=cmin,vmax=cmax) time_text = ax.text(0.65, 0.9, 't=0', transform=ax.transAxes, color='w', fontsize=14) phi_text = ax.text(0.05, 0.9, r'$\phi=$%.2f'%phi, transform=ax.transAxes, color='w', fontsize=14) fig.colorbar(surf, label=r'$C/C_0$') ax.set_title('Concentration Profile') ax.set_xlabel('x') ax.set_ylabel('y') ani = animation.FuncAnimation(fig, animate, init_func=init, frames=len(C), interval=interval, blit=True) plt.close() return ani
[ "matplotlib.pyplot.subplots", "numpy.vstack", "matplotlib.pyplot.close" ]
[((310, 339), 'numpy.vstack', 'np.vstack', (['[C[0], C[1::step]]'], {}), '([C[0], C[1::step]])\n', (319, 339), True, 'import numpy as np\n'), ((816, 861), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'subplot_kw': "{'projection': '3d'}"}), "(subplot_kw={'projection': '3d'})\n", (828, 861), True, 'import matplotlib.pyplot as plt\n'), ((1420, 1431), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1429, 1431), True, 'import matplotlib.pyplot as plt\n'), ((1670, 1699), 'numpy.vstack', 'np.vstack', (['[C[0], C[1::step]]'], {}), '([C[0], C[1::step]])\n', (1679, 1699), True, 'import numpy as np\n'), ((2111, 2125), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (2123, 2125), True, 'import matplotlib.pyplot as plt\n'), ((2672, 2683), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (2681, 2683), True, 'import matplotlib.pyplot as plt\n')]
# Copyright (c) 2021. Universidad de Pinar del Rio # This file is part of SCEIBA (sceiba.cu). # SCEIBA is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. # from flask_login import current_user from invenio_access import Permission, action_factory from invenio_access.utils import get_identity # creando action notification_admin_actions = action_factory('notification_admin_actions') ObjectNotificationViewed = action_factory('notification_viewed_actions', parameter=True) notification_viewed_actions = ObjectNotificationViewed(None) def notification_viewed_permission_factory(obj): try: permission = Permission(notification_admin_actions) current_identity = get_identity(current_user) if permission.allows(current_identity): return permission except Exception as e: pass return Permission(ObjectNotificationViewed(obj['id']))
[ "invenio_access.action_factory", "invenio_access.Permission", "invenio_access.utils.get_identity" ]
[((426, 470), 'invenio_access.action_factory', 'action_factory', (['"""notification_admin_actions"""'], {}), "('notification_admin_actions')\n", (440, 470), False, 'from invenio_access import Permission, action_factory\n'), ((499, 560), 'invenio_access.action_factory', 'action_factory', (['"""notification_viewed_actions"""'], {'parameter': '(True)'}), "('notification_viewed_actions', parameter=True)\n", (513, 560), False, 'from invenio_access import Permission, action_factory\n'), ((703, 741), 'invenio_access.Permission', 'Permission', (['notification_admin_actions'], {}), '(notification_admin_actions)\n', (713, 741), False, 'from invenio_access import Permission, action_factory\n'), ((769, 795), 'invenio_access.utils.get_identity', 'get_identity', (['current_user'], {}), '(current_user)\n', (781, 795), False, 'from invenio_access.utils import get_identity\n')]
#!/usr/bin/env python """ Function eee for Efficient/Sequential Elementary Effects, an extension of Morris' method of Elementary Effects by Cuntz, Mai et al. (Water Res Research, 2015). This function was written by <NAME> while at Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Nancy, France. Copyright (c) 2017-2021 <NAME> - mc (at) macu (dot) de Released under the MIT License; see LICENSE file for details. .. moduleauthor:: <NAME> The following functions are provided .. autosummary:: see eee History * Written Nov 2017 by <NAME> (mc (at) macu (dot) de) * Added `weight` option, Jan 2018, <NAME> * Added `plotfile` and made docstring sphinx compatible option, Jan 2018, <NAME> * x0 optional; added verbose keyword; distinguish iterable and array_like parameter types, Jan 2020, <NAME> * Rename ntsteps to nsteps to be consistent with screening/ee; and check if logfile is string rather thean checking for file handle, Feb 2020, <NAME> * Sample not only from uniform distribution but allow all distributions of scipy.stats, Mar 2020, <NAME> * Use pyjams package, Oct 2021, <NAME> * Make flake8 compatible, Oct 2021, <NAME> """ from __future__ import division, absolute_import, print_function import numpy as np import scipy.optimize as opt from pyjams import screening, tee from pyjams.functions import cost_square, curvature, logistic_offset_p from pyjams.functions import dlogistic, d2logistic __all__ = ['eee', 'see'] def _cleanup(lfile, pool, ipool): ''' Helper function closing logfile and pool if open. ''' try: lfile.close() except: pass if pool is None: ipool.close() # Python 3 # def eee(func, lb, ub, # x0=None, mask=None, ntfirst=5, ntlast=5, nsteps=6, weight=False, # seed=None, processes=1, pool=None, # verbose=0, logfile=None, plotfile=None): def eee(func, *args, **kwargs): """ Parameter screening using Efficient/Sequential Elementary Effects of Cuntz, Mai et al. (Water Res Research, 2015). Note, the input function must be callable as `func(x)`. Parameters ---------- func : callable Python function callable as `func(x)` with `x` the function parameters. lb : array_like Lower bounds of parameters or lower fraction of percent point function `ppf` if distribution given. Be aware that the percent point function `ppf` of most continuous distributions is infinite at 0. ub : array_like Upper bounds of parameters or upper fraction of percent point function `ppf` if distribution given. Be aware that the percent point function `ppf` of most continuous distributions is infinite at 1. x0 : array_like, optional Parameter values used with `mask==0`. mask : array_like, optional Include (1,True) or exclude (0,False) parameters in screening (default: include all parameters). ntfirst : int, optional Number of trajectories in first step of sequential elementary effects (default: 5). ntlast : int, optional Number of trajectories in last step of sequential elementary effects (default: 5). nsteps : int, optional Number of intervals for each trajectory (default: 6) dist : list, optional List of None or scipy.stats distribution objects for each factor having the method `ppf`, Percent Point Function (Inverse of CDF) (default: None) If None, the uniform distribution will be sampled from lower bound `lb` to upper bound `ub`. If `dist` is scipy.stats.uniform, the `ppf` will be sampled from the lower fraction given in `lb` and the upper fraction in `ub`. The sampling interval is then given by the parameters `loc=lower` and `scale=interval=upper-lower` in distparam. This means `dist=None`, `lb=a`, `ub=b` corresponds to `lb=0`, `ub=1`, `dist=scipy.stats.uniform`, `distparam=[a,b-a]` distparam : list, optional List with tuples with parameters as required for `dist` (default: (0,1)). All distributions of scipy.stats have location and scale parameters, at least. `loc` and `scale` are implemented as keyword arguments in scipy.stats. Other parameters such as the shape parameter of the gamma distribution must hence be given first, e.g. `(shape,loc,scale)` for the gamma distribution. `distparam` is ignored if `dist` is None. The percent point function `ppf` is called like this: `dist(*distparam).ppf(x)` weight : boolean, optional If False, use the arithmetic mean mu* for each parameter if function has multiple outputs, such as the mean mu* of each time step of a time series (default). If True, return weighted mean `mu*`, weighted by `sd`. seed : int or array_like Seed for numpy's random number generator (default: None). processes : int, optinal The number of processes to use to evaluate objective function and constraints (default: 1). pool : `schwimmbad` pool object, optinal Generic map function used from module `schwimmbad <https://schwimmbad.readthedocs.io/en/latest/>`_, which provides, serial, multiprocessor, and MPI mapping functions (default: None). The pool is chosen with: schwimmbad.choose_pool(mpi=True/False, processes=processes). The pool will be chosen automatically if `pool` is None. MPI pools can only be opened and closed once. If you want to use screening several times in one program, then you have to choose the `pool`, pass it to `eee`, and later close the `pool` in the calling program. verbose : int, optional Print progress report during execution if `verbose>0` (default: 0). logfile : File handle or logfile name File name of possible log file (default: None = no logfile will be written). plotfile : Plot file name File name of possible plot file with fit of logistic function to `mu*` of first trajectories (default: None = no plot produced). Returns ------- mask : ndarray (len(lb),) mask with 1=informative and 0=uninformative model parameters, to be used with '&' on input mask. See Also -------- :func:`~pyeee.screening.screening` : Elementary Effects, same as :func:`~pyeee.screening.ee` : Elementary Effects Examples -------- >>> from functools import partial >>> import numpy as np >>> import scipy.stats as stats >>> from pyjams.functions import G >>> from partialwrap import function_wrapper >>> seed = 1234 >>> np.random.seed(seed=seed) >>> func = G >>> npars = 6 >>> params = [78., 12., 0.5, 2., 97., 33.] # G >>> arg = [params] >>> kwarg = {} >>> obj = partial(function_wrapper, func, arg, kwarg) >>> lb = np.zeros(npars) >>> ub = np.ones(npars) >>> ntfirst = 10 >>> ntlast = 5 >>> nsteps = 6 >>> out = eee(obj, lb, ub, mask=None, ntfirst=ntfirst, ntlast=ntlast, ... nsteps=nsteps, processes=4) >>> print(np.where(out)[0] + 1) [2 3 4 6] """ # Get keyword arguments This allows mixing keyword arguments of eee and # keyword arguments to be passed to optimiser. The mixed syntax eee(func, # *args, logfile=None, **kwargs) is only working in Python 3 so need a # workaround in Python 2, i.e. read all as keyword args and take out the # keywords for eee. x0 = kwargs.pop('x0', None) mask = kwargs.pop('mask', None) ntfirst = kwargs.pop('ntfirst', 5) ntlast = kwargs.pop('ntlast', 5) nsteps = kwargs.pop('nsteps', 6) dist = kwargs.pop('dist', None) distparam = kwargs.pop('distparam', None) weight = kwargs.pop('weight', False) seed = kwargs.pop('seed', None) processes = kwargs.pop('processes', 1) pool = kwargs.pop('pool', None) verbose = kwargs.pop('verbose', 0) logfile = kwargs.pop('logfile', None) plotfile = kwargs.pop('plotfile', None) # Set up MPI if available try: from mpi4py import MPI comm = MPI.COMM_WORLD csize = comm.Get_size() crank = comm.Get_rank() except ImportError: comm = None csize = 1 crank = 0 # Logfile if crank == 0: if logfile is None: lfile = None else: # haswrite = getattr(logfile, "write", None) # if haswrite is None: # lfile = open(logfile, "w") # else: # if not callable(haswrite): # lfile = logfile # else: # raise InputError('x0 must be given if mask is set') if isinstance(logfile, str): lfile = open(logfile, "w") else: lfile = logfile else: lfile = None # Start if crank == 0: if (verbose > 0): tee('Start screening in eee.', file=lfile) else: if lfile is not None: print('Start screening in eee.', file=lfile) # Check assert len(args) == 2, 'lb and ub must be given as arguments.' lb, ub = args[:2] npara = len(lb) if crank == 0: assert len(lb) == len(ub), ( 'Lower and upper bounds have not the same size.') lb = np.array(lb) ub = np.array(ub) # mask if mask is None: ix0 = np.ones(npara) imask = np.ones(npara, dtype=bool) iimask = np.arange(npara, dtype=int) nmask = npara else: if x0 is None: raise IOError('x0 must be given if mask is set') ix0 = np.copy(x0) imask = np.copy(mask) iimask = np.where(imask)[0] nmask = iimask.size if nmask == 0: if crank == 0: if (verbose > 0): tee('\nAll parameters masked, nothing to do.', file=lfile) tee('Finished screening in eee.', file=lfile) else: if lfile is not None: print('\nAll parameters masked, nothing to do.', file=lfile) print('Finished screening in eee.', file=lfile) if logfile is not None: lfile.close() # Return all true if mask is None: return np.ones(len(lb), dtype=bool) else: return mask if crank == 0: if (verbose > 0): tee('\nScreen unmasked parameters: ', nmask, iimask+1, file=lfile) else: if lfile is not None: print('\nScreen unmasked parameters: ', nmask, iimask+1, file=lfile) # Seed random number generator if seed is not None: # same on all ranks because trajectories are sampled on all ranks np.random.seed(seed=seed) # Choose the right mapping function: single, multiprocessor or mpi if pool is None: import schwimmbad ipool = schwimmbad.choose_pool(mpi=False if csize == 1 else True, processes=processes) else: ipool = pool # Step 1 of Cuntz et al. (2015) - first screening with ntfirst # trajectories, calc mu* res = screening( # returns (npara,3) with mu*, mu, std if nt>1 func, lb, ub, ntfirst, x0=ix0, mask=imask, nsteps=nsteps, ntotal=10*ntfirst, dist=dist, distparam=distparam, processes=processes, pool=ipool, verbose=0) if res.ndim > 2: if weight: mustar = (np.sum(res[:, iimask, 2] * res[:, iimask, 0], axis=0) / np.sum(res[:, iimask, 2], axis=0)) else: mustar = np.mean(res[:, iimask, 0], axis=0) else: mustar = res[iimask, 0] # Step 2 of Cuntz et al. (2015) - calc eta* mumax = np.amax(mustar) xx = np.arange(nmask) / float(nmask-1) iisort = np.argsort(mustar) yy = mustar[iisort] / mumax if crank == 0: if (verbose > 0): tee('\nSorted means of absolute elementary effects (mu*): ', mustar[iisort], file=lfile) tee('Normalised mu* = eta*: ', yy, file=lfile) tee('Corresponding to parameters: ', iimask[iisort] + 1, file=lfile) else: if lfile is not None: print('\nSorted means of absolute elementary effects (mu*): ', mustar[iisort], file=lfile) print('Normalised mu* = eta*: ', yy, file=lfile) print('Corresponding to parameters: ', iimask[iisort] + 1, file=lfile) # Step 3.1 of Cuntz et al. (2015) - fit logistic function # [y-max, steepness, inflection point, offset] pini = np.array([yy.max(), (yy.max() - yy.max()) / xx.max(), 0.5 * xx.max(), yy.min()]) plogistic, f, d = opt.fmin_l_bfgs_b(cost_square, pini, args=(logistic_offset_p, xx, yy), approx_grad=1, bounds=[(None, None), (None, None), (None, None), (None, None)], iprint=0, disp=0) # Step 3.2 of Cuntz et al. (2015) - determine point of steepest curvature # -> eta*_thresh def mcurvature(*args, **kwargs): return -curvature(*args, **kwargs) x_K = opt.brent(mcurvature, # x_K args=(dlogistic, d2logistic, plogistic[0], plogistic[1], plogistic[2]), brack=(xx[0], xx[-1])) curvmax = logistic_offset_p(x_K, plogistic) # L(x_K) # eta*_thresh = L(x_K) # in range 0-1 eta_thresh = curvmax if (curvmax > 0.2) or (x_K < xx[0]): x_scaled = xx[0] # x_K = min(x) eta_thresh = np.min(mustar) / mumax # eta*_thresh = min(mu*)/max(mu*) mu_thresh = eta_thresh * mumax # mu*_thresh = eta*_thresh*max(mu*) if crank == 0: if (verbose > 0): tee('\nThreshold eta*_thresh, mu*_tresh: ', eta_thresh, mu_thresh, file=lfile) tee('L(x_K): ', logistic_offset_p(x_K, plogistic), file=lfile) tee('p_opt of L: ', plogistic, file=lfile) else: if lfile is not None: print('\nThreshold eta*_thresh, mu*_tresh: ', eta_thresh, mu_thresh, file=lfile) print('L(x_K): ', logistic_offset_p(x_K, plogistic), file=lfile) print('p_opt of L: ', plogistic, file=lfile) # Plot first mu* of elementary effects with logistic function and threshold if crank == 0: if plotfile is not None: try: import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt mpl.rcParams['font.family'] = 'sans-serif' mpl.rcParams['font.sans-serif'] = 'Arial' # Arial, Verdana mpl.rc('savefig', dpi=300, format='png') if npara > 99: mpl.rc('font', size=8) else: mpl.rc('font', size=11) fig = plt.figure() sub = plt.subplot(111) xx = xx yy = mustar[iisort] line1 = sub.plot(xx, yy, 'ro') nn = 1000 xx2 = (xx.min() + np.arange(nn) / float(nn - 1) * (xx.max() - xx.min())) yy2 = logistic_offset_p(xx2, plogistic) * mumax line2 = sub.plot(xx2, yy2, 'b-') xmin, xmax = sub.get_xlim() line3 = sub.plot([xmin, xmax], [mu_thresh, mu_thresh], 'k-') if npara > 99: xnames = ['{:03d}'.format(i) for i in iimask[iisort] + 1] else: xnames = ['{:02d}'.format(i) for i in iimask[iisort] + 1] plt.setp(sub, xticks=xx, xticklabels=xnames) plt.setp(sub, xlabel='Parameter') plt.setp(sub, ylabel=r'$\mu*$') fig.savefig(plotfile, transparent=False, bbox_inches='tight', pad_inches=0.035) plt.close(fig) except ImportError: pass # Step 4 of Cuntz et al. (2015) - Discard from next steps all parameters # with eta* >= eta*_tresh, i.e. mu* >= mu*_tresh imask[iimask] = imask[iimask] & (mustar < mu_thresh) if np.all(~imask): if crank == 0: if (verbose > 0): tee('\nNo more parameters to screen, i.e. all ' '(unmasked) parameters are informative.', file=lfile) tee('Finished screening in eee.', file=lfile) else: if lfile is not None: print('\nNo more parameters to screen, i.e. all ' '(unmasked) parameters are informative.', file=lfile) print('Finished screening in eee.', file=lfile) _cleanup(lfile, pool, ipool) # Return all true if mask is None: return np.ones(len(lb), dtype=bool) else: return mask # Step 5 and 6 of Cuntz et al. (2015) # - Next trajectory with remaining parameters. # Discard all parameters with |EE| >= mu*_tresh # - Repeat until no |EE| >= mu*_tresh niter = 1 donext = True while donext: if crank == 0: if (verbose > 0): tee('\nParameters remaining for iteration ', niter, ':', np.where(imask)[0] + 1, file=lfile) else: if lfile is not None: print('\nParameters remaining for iteration ', niter, ':', np.where(imask)[0] + 1, file=lfile) iimask = np.where(imask)[0] res = screening( # returns EE(parameters) if nt=1 func, lb, ub, 1, x0=ix0, mask=imask, nsteps=nsteps, ntotal=10, dist=dist, distparam=distparam, processes=processes, pool=ipool, verbose=0) # absolute EE if res.ndim > 2: if weight: mustar = (np.sum(res[:, iimask, 2] * res[:, iimask, 0], axis=0) / np.sum(res[:, iimask, 2], axis=0)) else: mustar = np.mean(res[:, iimask, 0], axis=0) else: mustar = res[iimask, 0] if crank == 0: if (verbose > 0): tee('Absolute elementary effects |EE|: ', mustar, file=lfile) else: if lfile is not None: print('Absolute elementary effects |EE|: ', mustar, file=lfile) imask[iimask] = imask[iimask] & (mustar < mu_thresh) if np.all(~imask): if crank == 0: if (verbose > 0): tee('\nNo more parameters to screen, i.e. all ' '(unmasked) parameters are informative.', file=lfile) tee('Finished screening in eee.', file=lfile) else: if lfile is not None: print('\nNo more parameters to screen, i.e. all ' '(unmasked) parameters are informative.', file=lfile) print('Finished screening in eee.', file=lfile) _cleanup(lfile, pool, ipool) # Return all true if mask is None: return np.ones(len(lb), dtype=bool) else: return mask # Step 6 of Cuntz et al. (2015) - Repeat until no |EE| >= mu*_tresh if np.all(mustar < mu_thresh): donext = False niter += 1 # Step 7 of Cuntz et al. (2015) # - last screening with ntlast trajectories all parameters with # mu* < mu*_thresh are final noninformative parameters if crank == 0: if (verbose > 0): tee('\nParameters remaining for last screening:', np.where(imask)[0] + 1, file=lfile) else: if lfile is not None: print('\nParameters remaining for last screening:', np.where(imask)[0] + 1, file=lfile) iimask = np.where(imask)[0] res = screening( # (npara,3) with mu*, mu, std if nt>1 func, lb, ub, ntlast, x0=ix0, mask=imask, nsteps=nsteps, ntotal=10 * ntlast, dist=dist, distparam=distparam, processes=processes, pool=ipool, verbose=0) if res.ndim > 2: if weight: mustar = (np.sum(res[:, iimask, 2] * res[:, iimask, 0], axis=0) / np.sum(res[:, iimask, 2], axis=0)) else: mustar = np.mean(res[:, iimask, 0], axis=0) else: mustar = res[iimask, 0] if crank == 0: if ntlast > 1: if (verbose > 0): tee('Final mu*: ', mustar, file=lfile) else: if lfile is not None: print('Final mu*: ', mustar, file=lfile) else: if (verbose > 0): tee('Final absolute elementary effects |EE|: ', mustar, file=lfile) else: if lfile is not None: print('Final absolute elementary effects |EE|: ', mustar, file=lfile) imask[iimask] = imask[iimask] & (mustar < mu_thresh) if np.all(~imask): if crank == 0: if (verbose > 0): tee('\nNo more parameters left after screening, i.e. all ' '(unmasked) parameters are informative.', file=lfile) tee('Finished screening in eee.', file=lfile) else: if lfile is not None: print('\nNo more parameters left after screening, ' 'i.e. all (unmasked) parameters are informative.', file=lfile) print('Finished screening in eee.', file=lfile) _cleanup(lfile, pool, ipool) # Return all true if mask is None: return np.ones(len(lb), dtype=bool) else: return mask # Return mask with unmasked informative model parameters (to be used with # 'and' on initial mask) if mask is None: out = ~imask else: # (true where now zero, i.e. were masked or informative) and (initial # mask) out = (~imask) & mask if crank == 0: if (verbose > 0): tee('\nFinal informative parameters:', np.sum(out), np.where(out)[0] + 1, file=lfile) tee('Final noninformative parameters:', np.sum(imask), np.where(imask)[0] + 1, file=lfile) tee('\nFinished screening in eee.', file=lfile) else: if lfile is not None: print('\nFinal informative parameters:', np.sum(out), np.where(out)[0] + 1, file=lfile) print('Final noninformative parameters:', np.sum(imask), np.where(imask)[0] + 1, file=lfile) print('\nFinished screening in eee.', file=lfile) # Close logfile and pool _cleanup(lfile, pool, ipool) return out def see(func, *args, **kwargs): """ Wrapper function for :func:`~pyeee.eee.eee`. """ return eee(func, *args, **kwargs) if __name__ == '__main__': import doctest doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE) # # from pyjams import tee # # from pyjams.functions import fmorris # # # Morris with MPI # # import time as ptime # # t1 = ptime.time() # # try: # # from mpi4py import MPI # # comm = MPI.COMM_WORLD # # csize = comm.Get_size() # # crank = comm.Get_rank() # # except ImportError: # # comm = None # # csize = 1 # # crank = 0 # # seed = None # 1025 # # if seed is not None: # # np.random.seed(seed=seed) # # func = fmorris # # npars = 20 # # lb = np.zeros(npars) # # ub = np.ones(npars) # # beta0 = 0. # # beta1 = np.random.standard_normal(npars) # # beta1[:10] = 20. # # beta2 = np.random.standard_normal((npars,npars)) # # beta2[:6,:6] = -15. # # beta3 = np.zeros((npars,npars,npars)) # # beta3[:5,:5,:5] = -10. # # beta4 = np.zeros((npars,npars,npars,npars)) # # beta4[:4,:4,:4,:4] = 5. # # args = [beta0, beta1, beta2, beta3, beta4] # Morris # # ntfirst = 10 # # ntlast = 5 # # nsteps = 6 # # verbose = 1 # # out = eee(func, lb, ub, *args, x0=None, mask=None, ntfirst=ntfirst, # # ntlast=ntlast, nsteps=nsteps, processes=4) # # t2 = ptime.time() # # if crank == 0: # # strin = ('[m]: {:.1f}'.format((t2-t1)/60.) # # if (t2-t1)>60. else '[s]: {:d}'.format(int(t2-t1))) # # tee('Time elapsed: ', strin) # # tee('mask (1: informative, 0: noninformative): ', out) # # PYEEE # from functools import partial # import numpy as np # import scipy.stats as stats # from pyjams.functions import G, Gstar, K, fmorris # from partialwrap import function_wrapper # # # # G function # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = G # npars = 6 # params = [78., 12., 0.5, 2., 97., 33.] # G # # Partialise function with fixed parameters # arg = [params] # kwarg = {} # obj = partial(function_wrapper, func, arg, kwarg) # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # out = eee(obj, lb, ub, mask=None, ntfirst=ntfirst, ntlast=ntlast, # nsteps=nsteps, processes=4, plotfile='g.png') # print('G') # print(np.where(out)[0] + 1) # # # # Gstar function # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = Gstar # npars = 10 # params = [[np.ones(npars), np.random.random(npars), # [0., 0., 9., 9., 9., 9., 9., 9., 9., 9.]], # G* # [np.ones(npars), np.random.random(npars), # [0., 0.1, 0.2, 0.3, 0.4, 0.8, 1., 2., 3., 4.]], # [np.ones(npars)*0.5, np.random.random(npars), # [0., 0., 9., 9., 9., 9., 9., 9., 9., 9.]], # [np.ones(npars)*0.5, np.random.random(npars), # [0., 0.1, 0.2, 0.3, 0.4, 0.8, 1., 2., 3., 4.]], # [np.ones(npars)*2.0, np.random.random(npars), # [0., 0., 9., 9., 9., 9., 9., 9., 9., 9.]], # [np.ones(npars)*2.0, np.random.random(npars), # [0., 0.1, 0.2, 0.3, 0.4, 0.8, 1., 2., 3., 4.]] # ] # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # for ii in range(len(params)): # # Partialise function with fixed parameters # arg = params[ii] # kwarg = {} # obj = partial(function_wrapper, func, arg, kwarg) # out = eee(obj, lb, ub, mask=None, ntfirst=ntfirst, ntlast=ntlast, # nsteps=nsteps, processes=4, # plotfile='gstar'+str(ii)+'.png',logfile='log'+str(ii)+'.txt') # print('G* ', ii) # print(np.where(out)[0] + 1) # # # # Bratley / K function # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = K # npars = 10 # params = [] # K # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # out = eee(func, lb, ub, mask=None, ntfirst=ntfirst, ntlast=ntlast, # nsteps=nsteps, processes=4, plotfile='k.png') # print('K') # print(np.where(out)[0] + 1) # # # # Morris function # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = fmorris # npars = 20 # beta0 = 0. # beta1 = np.random.standard_normal(npars) # beta1[:10] = 20. # beta2 = np.random.standard_normal((npars,npars)) # beta2[:6,:6] = -15. # beta3 = np.zeros((npars,npars,npars)) # beta3[:5,:5,:5] = -10. # beta4 = np.zeros((npars,npars,npars,npars)) # beta4[:4,:4,:4,:4] = 5. # # Partialise Morris function with fixed parameters beta0-4 # arg = [beta0, beta1, beta2, beta3, beta4] # kwarg = {} # obj = partial(function_wrapper, func, arg, kwarg) # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # out = eee(obj, lb, ub, mask=None, ntfirst=ntfirst, ntlast=ntlast, # nsteps=nsteps, processes=4, plotfile='morris.png', verbose=1) # print('Morris') # print(np.where(out)[0] + 1) # # # # Morris function with distributions # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = fmorris # npars = 20 # beta0 = 0. # beta1 = np.random.standard_normal(npars) # beta1[:10] = 20. # beta2 = np.random.standard_normal((npars,npars)) # beta2[:6,:6] = -15. # beta3 = np.zeros((npars,npars,npars)) # beta3[:5,:5,:5] = -10. # beta4 = np.zeros((npars,npars,npars,npars)) # beta4[:4,:4,:4,:4] = 5. # # Partialise Morris function with fixed parameters beta0-4 # arg = [beta0, beta1, beta2, beta3, beta4] # kwarg = {} # obj = partial(function_wrapper, func, arg, kwarg) # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # dist = [ stats.uniform for i in range(npars) ] # distparam = [ (lb[i],ub[i]-lb[i]) for i in range(npars) ] # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # out = eee(obj, lb, ub, mask=None, ntfirst=ntfirst, ntlast=ntlast, # nsteps=nsteps, dist=dist, distparam=distparam, processes=4) # print('Morris dist') # print(np.where(out)[0] + 1) # # # # Morris function # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = fmorris # npars = 20 # beta0 = 0. # beta1 = np.random.standard_normal(npars) # beta1[:10] = 20. # beta2 = np.random.standard_normal((npars,npars)) # beta2[:6,:6] = -15. # beta3 = np.zeros((npars,npars,npars)) # beta3[:5,:5,:5] = -10. # beta4 = np.zeros((npars,npars,npars,npars)) # beta4[:4,:4,:4,:4] = 5. # # Partialise Morris function with fixed parameters beta0-4 # arg = [beta0, beta1, beta2, beta3, beta4] # kwarg = {} # obj = partial(function_wrapper, func, arg, kwarg) # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # x0 = np.ones(npars)*0.5 # mask = np.ones(npars, dtype=bool) # mask[1] = False # out = eee(obj, lb, ub, x0=x0, mask=mask, ntfirst=ntfirst, # ntlast=ntlast, nsteps=nsteps, processes=4) # print('Morris mask') # print(np.where(out)[0] + 1) # # # # Morris function # # seed for reproducible results # seed = 1234 # np.random.seed(seed=seed) # func = fmorris # npars = 20 # beta0 = 0. # beta1 = np.random.standard_normal(npars) # beta1[:10] = 20. # beta2 = np.random.standard_normal((npars,npars)) # beta2[:6,:6] = -15. # beta3 = np.zeros((npars,npars,npars)) # beta3[:5,:5,:5] = -10. # beta4 = np.zeros((npars,npars,npars,npars)) # beta4[:4,:4,:4,:4] = 5. # # Partialise Morris function with fixed parameters beta0-4 # arg = [beta0, beta1, beta2, beta3, beta4] # kwarg = {} # obj = partial(function_wrapper, func, arg, kwarg) # # eee parameters # lb = np.zeros(npars) # ub = np.ones(npars) # dist = [ stats.uniform for i in range(npars) ] # distparam = [ (lb[i],ub[i]-lb[i]) for i in range(npars) ] # lb = np.zeros(npars) # ub = np.ones(npars) # ntfirst = 10 # ntlast = 5 # nsteps = 6 # verbose = 1 # x0 = np.ones(npars)*0.5 # mask = np.ones(npars, dtype=bool) # mask[1] = False # out = eee(obj, lb, ub, x0=x0, mask=mask, ntfirst=ntfirst, ntlast=ntlast, # nsteps=nsteps, dist=dist, distparam=distparam, processes=4) # print('Morris dist mask') # print(np.where(out)[0] + 1)
[ "numpy.argsort", "numpy.array", "pyjams.functions.logistic_offset_p", "matplotlib.rc", "schwimmbad.choose_pool", "pyjams.functions.curvature", "numpy.arange", "numpy.mean", "numpy.where", "matplotlib.pyplot.close", "doctest.testmod", "numpy.random.seed", "numpy.min", "numpy.amax", "numpy.ones", "matplotlib.use", "matplotlib.pyplot.subplot", "scipy.optimize.brent", "scipy.optimize.fmin_l_bfgs_b", "numpy.copy", "matplotlib.pyplot.setp", "pyjams.tee", "numpy.sum", "matplotlib.pyplot.figure", "numpy.all", "pyjams.screening" ]
[((9616, 9628), 'numpy.array', 'np.array', (['lb'], {}), '(lb)\n', (9624, 9628), True, 'import numpy as np\n'), ((9638, 9650), 'numpy.array', 'np.array', (['ub'], {}), '(ub)\n', (9646, 9650), True, 'import numpy as np\n'), ((11597, 11771), 'pyjams.screening', 'screening', (['func', 'lb', 'ub', 'ntfirst'], {'x0': 'ix0', 'mask': 'imask', 'nsteps': 'nsteps', 'ntotal': '(10 * ntfirst)', 'dist': 'dist', 'distparam': 'distparam', 'processes': 'processes', 'pool': 'ipool', 'verbose': '(0)'}), '(func, lb, ub, ntfirst, x0=ix0, mask=imask, nsteps=nsteps, ntotal=\n 10 * ntfirst, dist=dist, distparam=distparam, processes=processes, pool\n =ipool, verbose=0)\n', (11606, 11771), False, 'from pyjams import screening, tee\n'), ((12205, 12220), 'numpy.amax', 'np.amax', (['mustar'], {}), '(mustar)\n', (12212, 12220), True, 'import numpy as np\n'), ((12281, 12299), 'numpy.argsort', 'np.argsort', (['mustar'], {}), '(mustar)\n', (12291, 12299), True, 'import numpy as np\n'), ((13269, 13445), 'scipy.optimize.fmin_l_bfgs_b', 'opt.fmin_l_bfgs_b', (['cost_square', 'pini'], {'args': '(logistic_offset_p, xx, yy)', 'approx_grad': '(1)', 'bounds': '[(None, None), (None, None), (None, None), (None, None)]', 'iprint': '(0)', 'disp': '(0)'}), '(cost_square, pini, args=(logistic_offset_p, xx, yy),\n approx_grad=1, bounds=[(None, None), (None, None), (None, None), (None,\n None)], iprint=0, disp=0)\n', (13286, 13445), True, 'import scipy.optimize as opt\n'), ((13917, 14038), 'scipy.optimize.brent', 'opt.brent', (['mcurvature'], {'args': '(dlogistic, d2logistic, plogistic[0], plogistic[1], plogistic[2])', 'brack': '(xx[0], xx[-1])'}), '(mcurvature, args=(dlogistic, d2logistic, plogistic[0], plogistic[\n 1], plogistic[2]), brack=(xx[0], xx[-1]))\n', (13926, 14038), True, 'import scipy.optimize as opt\n'), ((14143, 14176), 'pyjams.functions.logistic_offset_p', 'logistic_offset_p', (['x_K', 'plogistic'], {}), '(x_K, plogistic)\n', (14160, 14176), False, 'from pyjams.functions import cost_square, curvature, logistic_offset_p\n'), ((17048, 17062), 'numpy.all', 'np.all', (['(~imask)'], {}), '(~imask)\n', (17054, 17062), True, 'import numpy as np\n'), ((20949, 21121), 'pyjams.screening', 'screening', (['func', 'lb', 'ub', 'ntlast'], {'x0': 'ix0', 'mask': 'imask', 'nsteps': 'nsteps', 'ntotal': '(10 * ntlast)', 'dist': 'dist', 'distparam': 'distparam', 'processes': 'processes', 'pool': 'ipool', 'verbose': '(0)'}), '(func, lb, ub, ntlast, x0=ix0, mask=imask, nsteps=nsteps, ntotal=\n 10 * ntlast, dist=dist, distparam=distparam, processes=processes, pool=\n ipool, verbose=0)\n', (20958, 21121), False, 'from pyjams import screening, tee\n'), ((22118, 22132), 'numpy.all', 'np.all', (['(~imask)'], {}), '(~imask)\n', (22124, 22132), True, 'import numpy as np\n'), ((24176, 24233), 'doctest.testmod', 'doctest.testmod', ([], {'optionflags': 'doctest.NORMALIZE_WHITESPACE'}), '(optionflags=doctest.NORMALIZE_WHITESPACE)\n', (24191, 24233), False, 'import doctest\n'), ((9701, 9715), 'numpy.ones', 'np.ones', (['npara'], {}), '(npara)\n', (9708, 9715), True, 'import numpy as np\n'), ((9733, 9759), 'numpy.ones', 'np.ones', (['npara'], {'dtype': 'bool'}), '(npara, dtype=bool)\n', (9740, 9759), True, 'import numpy as np\n'), ((9777, 9804), 'numpy.arange', 'np.arange', (['npara'], {'dtype': 'int'}), '(npara, dtype=int)\n', (9786, 9804), True, 'import numpy as np\n'), ((9939, 9950), 'numpy.copy', 'np.copy', (['x0'], {}), '(x0)\n', (9946, 9950), True, 'import numpy as np\n'), ((9968, 9981), 'numpy.copy', 'np.copy', (['mask'], {}), '(mask)\n', (9975, 9981), True, 'import numpy as np\n'), ((11180, 11205), 'numpy.random.seed', 'np.random.seed', ([], {'seed': 'seed'}), '(seed=seed)\n', (11194, 11205), True, 'import numpy as np\n'), ((11341, 11419), 'schwimmbad.choose_pool', 'schwimmbad.choose_pool', ([], {'mpi': '(False if csize == 1 else True)', 'processes': 'processes'}), '(mpi=False if csize == 1 else True, processes=processes)\n', (11363, 11419), False, 'import schwimmbad\n'), ((12234, 12250), 'numpy.arange', 'np.arange', (['nmask'], {}), '(nmask)\n', (12243, 12250), True, 'import numpy as np\n'), ((18450, 18602), 'pyjams.screening', 'screening', (['func', 'lb', 'ub', '(1)'], {'x0': 'ix0', 'mask': 'imask', 'nsteps': 'nsteps', 'ntotal': '(10)', 'dist': 'dist', 'distparam': 'distparam', 'processes': 'processes', 'pool': 'ipool', 'verbose': '(0)'}), '(func, lb, ub, 1, x0=ix0, mask=imask, nsteps=nsteps, ntotal=10,\n dist=dist, distparam=distparam, processes=processes, pool=ipool, verbose=0)\n', (18459, 18602), False, 'from pyjams import screening, tee\n'), ((19420, 19434), 'numpy.all', 'np.all', (['(~imask)'], {}), '(~imask)\n', (19426, 19434), True, 'import numpy as np\n'), ((20323, 20349), 'numpy.all', 'np.all', (['(mustar < mu_thresh)'], {}), '(mustar < mu_thresh)\n', (20329, 20349), True, 'import numpy as np\n'), ((20919, 20934), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (20927, 20934), True, 'import numpy as np\n'), ((9215, 9257), 'pyjams.tee', 'tee', (['"""Start screening in eee."""'], {'file': 'lfile'}), "('Start screening in eee.', file=lfile)\n", (9218, 9257), False, 'from pyjams import screening, tee\n'), ((9999, 10014), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (10007, 10014), True, 'import numpy as np\n'), ((10815, 10886), 'pyjams.tee', 'tee', (['"""\nScreen unmasked parameters: """', 'nmask', '(iimask + 1)'], {'file': 'lfile'}), '("""\nScreen unmasked parameters: """, nmask, iimask + 1, file=lfile)\n', (10818, 10886), False, 'from pyjams import screening, tee\n'), ((12066, 12100), 'numpy.mean', 'np.mean', (['res[:, iimask, 0]'], {'axis': '(0)'}), '(res[:, iimask, 0], axis=0)\n', (12073, 12100), True, 'import numpy as np\n'), ((12394, 12490), 'pyjams.tee', 'tee', (['"""\nSorted means of absolute elementary effects (mu*): """', 'mustar[iisort]'], {'file': 'lfile'}), '("""\nSorted means of absolute elementary effects (mu*): """, mustar[\n iisort], file=lfile)\n', (12397, 12490), False, 'from pyjams import screening, tee\n'), ((12511, 12557), 'pyjams.tee', 'tee', (['"""Normalised mu* = eta*: """', 'yy'], {'file': 'lfile'}), "('Normalised mu* = eta*: ', yy, file=lfile)\n", (12514, 12557), False, 'from pyjams import screening, tee\n'), ((12570, 12638), 'pyjams.tee', 'tee', (['"""Corresponding to parameters: """', '(iimask[iisort] + 1)'], {'file': 'lfile'}), "('Corresponding to parameters: ', iimask[iisort] + 1, file=lfile)\n", (12573, 12638), False, 'from pyjams import screening, tee\n'), ((13879, 13905), 'pyjams.functions.curvature', 'curvature', (['*args'], {}), '(*args, **kwargs)\n', (13888, 13905), False, 'from pyjams.functions import cost_square, curvature, logistic_offset_p\n'), ((14376, 14390), 'numpy.min', 'np.min', (['mustar'], {}), '(mustar)\n', (14382, 14390), True, 'import numpy as np\n'), ((14564, 14650), 'pyjams.tee', 'tee', (['"""\nThreshold eta*_thresh, mu*_tresh: """', 'eta_thresh', 'mu_thresh'], {'file': 'lfile'}), '("""\nThreshold eta*_thresh, mu*_tresh: """, eta_thresh, mu_thresh, file=\n lfile)\n', (14567, 14650), False, 'from pyjams import screening, tee\n'), ((14746, 14788), 'pyjams.tee', 'tee', (['"""p_opt of L: """', 'plogistic'], {'file': 'lfile'}), "('p_opt of L: ', plogistic, file=lfile)\n", (14749, 14788), False, 'from pyjams import screening, tee\n'), ((18417, 18432), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (18425, 18432), True, 'import numpy as np\n'), ((21410, 21444), 'numpy.mean', 'np.mean', (['res[:, iimask, 0]'], {'axis': '(0)'}), '(res[:, iimask, 0], axis=0)\n', (21417, 21444), True, 'import numpy as np\n'), ((23482, 23532), 'pyjams.tee', 'tee', (['"""\nFinished screening in eee."""'], {'file': 'lfile'}), '("""\nFinished screening in eee.""", file=lfile)\n', (23485, 23532), False, 'from pyjams import screening, tee\n'), ((11918, 11971), 'numpy.sum', 'np.sum', (['(res[:, iimask, 2] * res[:, iimask, 0])'], {'axis': '(0)'}), '(res[:, iimask, 2] * res[:, iimask, 0], axis=0)\n', (11924, 11971), True, 'import numpy as np\n'), ((11996, 12029), 'numpy.sum', 'np.sum', (['res[:, iimask, 2]'], {'axis': '(0)'}), '(res[:, iimask, 2], axis=0)\n', (12002, 12029), True, 'import numpy as np\n'), ((14687, 14720), 'pyjams.functions.logistic_offset_p', 'logistic_offset_p', (['x_K', 'plogistic'], {}), '(x_K, plogistic)\n', (14704, 14720), False, 'from pyjams.functions import cost_square, curvature, logistic_offset_p\n'), ((15327, 15341), 'matplotlib.use', 'mpl.use', (['"""Agg"""'], {}), "('Agg')\n", (15334, 15341), True, 'import matplotlib as mpl\n'), ((15541, 15581), 'matplotlib.rc', 'mpl.rc', (['"""savefig"""'], {'dpi': '(300)', 'format': '"""png"""'}), "('savefig', dpi=300, format='png')\n", (15547, 15581), True, 'import matplotlib as mpl\n'), ((15744, 15756), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (15754, 15756), True, 'import matplotlib.pyplot as plt\n'), ((15779, 15795), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(111)'], {}), '(111)\n', (15790, 15795), True, 'import matplotlib.pyplot as plt\n'), ((16500, 16544), 'matplotlib.pyplot.setp', 'plt.setp', (['sub'], {'xticks': 'xx', 'xticklabels': 'xnames'}), '(sub, xticks=xx, xticklabels=xnames)\n', (16508, 16544), True, 'import matplotlib.pyplot as plt\n'), ((16561, 16594), 'matplotlib.pyplot.setp', 'plt.setp', (['sub'], {'xlabel': '"""Parameter"""'}), "(sub, xlabel='Parameter')\n", (16569, 16594), True, 'import matplotlib.pyplot as plt\n'), ((16611, 16642), 'matplotlib.pyplot.setp', 'plt.setp', (['sub'], {'ylabel': '"""$\\\\mu*$"""'}), "(sub, ylabel='$\\\\mu*$')\n", (16619, 16642), True, 'import matplotlib.pyplot as plt\n'), ((16783, 16797), 'matplotlib.pyplot.close', 'plt.close', (['fig'], {}), '(fig)\n', (16792, 16797), True, 'import matplotlib.pyplot as plt\n'), ((17133, 17239), 'pyjams.tee', 'tee', (['"""\nNo more parameters to screen, i.e. all (unmasked) parameters are informative."""'], {'file': 'lfile'}), '("""\nNo more parameters to screen, i.e. all (unmasked) parameters are informative."""\n , file=lfile)\n', (17136, 17239), False, 'from pyjams import screening, tee\n'), ((17271, 17316), 'pyjams.tee', 'tee', (['"""Finished screening in eee."""'], {'file': 'lfile'}), "('Finished screening in eee.', file=lfile)\n", (17274, 17316), False, 'from pyjams import screening, tee\n'), ((18963, 18997), 'numpy.mean', 'np.mean', (['res[:, iimask, 0]'], {'axis': '(0)'}), '(res[:, iimask, 0], axis=0)\n', (18970, 18997), True, 'import numpy as np\n'), ((19118, 19179), 'pyjams.tee', 'tee', (['"""Absolute elementary effects |EE|: """', 'mustar'], {'file': 'lfile'}), "('Absolute elementary effects |EE|: ', mustar, file=lfile)\n", (19121, 19179), False, 'from pyjams import screening, tee\n'), ((21262, 21315), 'numpy.sum', 'np.sum', (['(res[:, iimask, 2] * res[:, iimask, 0])'], {'axis': '(0)'}), '(res[:, iimask, 2] * res[:, iimask, 0], axis=0)\n', (21268, 21315), True, 'import numpy as np\n'), ((21340, 21373), 'numpy.sum', 'np.sum', (['res[:, iimask, 2]'], {'axis': '(0)'}), '(res[:, iimask, 2], axis=0)\n', (21346, 21373), True, 'import numpy as np\n'), ((21576, 21614), 'pyjams.tee', 'tee', (['"""Final mu*: """', 'mustar'], {'file': 'lfile'}), "('Final mu*: ', mustar, file=lfile)\n", (21579, 21614), False, 'from pyjams import screening, tee\n'), ((21792, 21859), 'pyjams.tee', 'tee', (['"""Final absolute elementary effects |EE|: """', 'mustar'], {'file': 'lfile'}), "('Final absolute elementary effects |EE|: ', mustar, file=lfile)\n", (21795, 21859), False, 'from pyjams import screening, tee\n'), ((22203, 22320), 'pyjams.tee', 'tee', (['"""\nNo more parameters left after screening, i.e. all (unmasked) parameters are informative."""'], {'file': 'lfile'}), '("""\nNo more parameters left after screening, i.e. all (unmasked) parameters are informative."""\n , file=lfile)\n', (22206, 22320), False, 'from pyjams import screening, tee\n'), ((22372, 22417), 'pyjams.tee', 'tee', (['"""Finished screening in eee."""'], {'file': 'lfile'}), "('Finished screening in eee.', file=lfile)\n", (22375, 22417), False, 'from pyjams import screening, tee\n'), ((23288, 23299), 'numpy.sum', 'np.sum', (['out'], {}), '(out)\n', (23294, 23299), True, 'import numpy as np\n'), ((23403, 23416), 'numpy.sum', 'np.sum', (['imask'], {}), '(imask)\n', (23409, 23416), True, 'import numpy as np\n'), ((10151, 10212), 'pyjams.tee', 'tee', (['"""\nAll parameters masked, nothing to do."""'], {'file': 'lfile'}), '("""\nAll parameters masked, nothing to do.""", file=lfile)\n', (10154, 10212), False, 'from pyjams import screening, tee\n'), ((10230, 10275), 'pyjams.tee', 'tee', (['"""Finished screening in eee."""'], {'file': 'lfile'}), "('Finished screening in eee.', file=lfile)\n", (10233, 10275), False, 'from pyjams import screening, tee\n'), ((14990, 15023), 'pyjams.functions.logistic_offset_p', 'logistic_offset_p', (['x_K', 'plogistic'], {}), '(x_K, plogistic)\n', (15007, 15023), False, 'from pyjams.functions import cost_square, curvature, logistic_offset_p\n'), ((15633, 15655), 'matplotlib.rc', 'mpl.rc', (['"""font"""'], {'size': '(8)'}), "('font', size=8)\n", (15639, 15655), True, 'import matplotlib as mpl\n'), ((15698, 15721), 'matplotlib.rc', 'mpl.rc', (['"""font"""'], {'size': '(11)'}), "('font', size=11)\n", (15704, 15721), True, 'import matplotlib as mpl\n'), ((16063, 16096), 'pyjams.functions.logistic_offset_p', 'logistic_offset_p', (['xx2', 'plogistic'], {}), '(xx2, plogistic)\n', (16080, 16096), False, 'from pyjams.functions import cost_square, curvature, logistic_offset_p\n'), ((18803, 18856), 'numpy.sum', 'np.sum', (['(res[:, iimask, 2] * res[:, iimask, 0])'], {'axis': '(0)'}), '(res[:, iimask, 2] * res[:, iimask, 0], axis=0)\n', (18809, 18856), True, 'import numpy as np\n'), ((18885, 18918), 'numpy.sum', 'np.sum', (['res[:, iimask, 2]'], {'axis': '(0)'}), '(res[:, iimask, 2], axis=0)\n', (18891, 18918), True, 'import numpy as np\n'), ((19517, 19623), 'pyjams.tee', 'tee', (['"""\nNo more parameters to screen, i.e. all (unmasked) parameters are informative."""'], {'file': 'lfile'}), '("""\nNo more parameters to screen, i.e. all (unmasked) parameters are informative."""\n , file=lfile)\n', (19520, 19623), False, 'from pyjams import screening, tee\n'), ((19663, 19708), 'pyjams.tee', 'tee', (['"""Finished screening in eee."""'], {'file': 'lfile'}), "('Finished screening in eee.', file=lfile)\n", (19666, 19708), False, 'from pyjams import screening, tee\n'), ((23635, 23646), 'numpy.sum', 'np.sum', (['out'], {}), '(out)\n', (23641, 23646), True, 'import numpy as np\n'), ((23762, 23775), 'numpy.sum', 'np.sum', (['imask'], {}), '(imask)\n', (23768, 23775), True, 'import numpy as np\n'), ((20695, 20710), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (20703, 20710), True, 'import numpy as np\n'), ((23317, 23330), 'numpy.where', 'np.where', (['out'], {}), '(out)\n', (23325, 23330), True, 'import numpy as np\n'), ((23434, 23449), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (23442, 23449), True, 'import numpy as np\n'), ((15963, 15976), 'numpy.arange', 'np.arange', (['nn'], {}), '(nn)\n', (15972, 15976), True, 'import numpy as np\n'), ((18167, 18182), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (18175, 18182), True, 'import numpy as np\n'), ((20869, 20884), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (20877, 20884), True, 'import numpy as np\n'), ((23670, 23683), 'numpy.where', 'np.where', (['out'], {}), '(out)\n', (23678, 23683), True, 'import numpy as np\n'), ((23799, 23814), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (23807, 23814), True, 'import numpy as np\n'), ((18364, 18379), 'numpy.where', 'np.where', (['imask'], {}), '(imask)\n', (18372, 18379), True, 'import numpy as np\n')]
import functools import itertools import matplotlib.pyplot as plt import networkx as nx from . import utils # Colorbrewer2: qualitative _colors = [ '#a6cee3', '#1f78b4', '#b2df8a', '#33a02c', '#fb9a99', '#e31a1c', '#fdbf6f', '#ff7f00', '#cab2d6', '#6a3d9a', '#ffff99', ] class Plot(object): def __init__(self, g): self.g = g self.vias = [] self.path = [] def plot(self): plt.hold(True) colors = itertools.cycle(_colors) for n1, n2 in self.plottable_edges(): lon1, lat1 = self.g.node[n1]['coordinates'] lon2, lat2 = self.g.node[n2]['coordinates'] plt.plot([lon1, lon2], [lat1, lat2], color=next(colors)) coordinates = [self.g.node[n]['coordinates'] for n in self.g.nodes_iter()] lon, lat = zip(*coordinates) plt.scatter(lon, lat, s=0.5, picker=True) plt.gcf().canvas.mpl_connect('pick_event', self.on_click) def plottable_edges(self): """ If the forward and backward edge are in the graph, only use one Use the edge where first node_id is less than the second. """ edges = set(self.g.edges()) for n1, n2 in edges: if n1 < n2 or (n2, n1) not in edges: yield n1, n2 def on_click(self, event): ind = event.ind[0] node = self.g.nodes()[ind] self.add_remove_via(node) self.update_path() return node def add_remove_via(self, node): if node in self.vias: self.vias.remove(node) self.remove_via(node) else: self.vias.append(node) self.add_via(node) self.compute_path() def remove_via(self, node): # Delete pass def add_via(self, node): lon, lat = self.g.node[node]['coordinates'] plt.scatter(lon, lat, c='k', s=25.0) def compute_path(self): self.path = [] if len(self.vias) <= 1: return for i, (n1, n2) in enumerate(utils.pairwise(self.vias)): nodes = nx.shortest_path(self.g, n1, n2, weight='length') if i > 0: nodes = nodes[1:] self.path.extend(nodes) def update_path(self): coordinates = [self.g.node[n]['coordinates'] for n in self.path] if not coordinates: return lon, lat = zip(*coordinates) plt.plot(lon, lat, linewidth=5, color='k')
[ "itertools.cycle", "matplotlib.pyplot.gcf", "matplotlib.pyplot.plot", "networkx.shortest_path", "matplotlib.pyplot.scatter", "matplotlib.pyplot.hold" ]
[((426, 440), 'matplotlib.pyplot.hold', 'plt.hold', (['(True)'], {}), '(True)\n', (434, 440), True, 'import matplotlib.pyplot as plt\n'), ((458, 482), 'itertools.cycle', 'itertools.cycle', (['_colors'], {}), '(_colors)\n', (473, 482), False, 'import itertools\n'), ((862, 903), 'matplotlib.pyplot.scatter', 'plt.scatter', (['lon', 'lat'], {'s': '(0.5)', 'picker': '(True)'}), '(lon, lat, s=0.5, picker=True)\n', (873, 903), True, 'import matplotlib.pyplot as plt\n'), ((1884, 1920), 'matplotlib.pyplot.scatter', 'plt.scatter', (['lon', 'lat'], {'c': '"""k"""', 's': '(25.0)'}), "(lon, lat, c='k', s=25.0)\n", (1895, 1920), True, 'import matplotlib.pyplot as plt\n'), ((2446, 2488), 'matplotlib.pyplot.plot', 'plt.plot', (['lon', 'lat'], {'linewidth': '(5)', 'color': '"""k"""'}), "(lon, lat, linewidth=5, color='k')\n", (2454, 2488), True, 'import matplotlib.pyplot as plt\n'), ((2110, 2159), 'networkx.shortest_path', 'nx.shortest_path', (['self.g', 'n1', 'n2'], {'weight': '"""length"""'}), "(self.g, n1, n2, weight='length')\n", (2126, 2159), True, 'import networkx as nx\n'), ((913, 922), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (920, 922), True, 'import matplotlib.pyplot as plt\n')]
"""Script to compare different versions (mutative vs. constructive) versions of DyNA-PPO. For reference, the original DyNA-PPO paper is constructive.""" from typing import Callable import flexs from flexs import baselines from flexs.utils import sequence_utils as s_utils alphabet = s_utils.RNAA sequences_batch_size = 100 model_queries_per_batch = 2000 def run_dynappo_constructive(landscape, wt, problem_name, start_num): def make_explorer(model, ss): return baselines.explorers.DynaPPO( model=model, landscape=landscape, rounds=10, starting_sequence=wt, sequences_batch_size=sequences_batch_size, model_queries_per_batch=model_queries_per_batch, num_experiment_rounds=10, num_model_rounds=8, alphabet=alphabet, log_file=f"runs/dynappo_constructive/{problem_name}_start{start_num}_ss{ss}", ) results = flexs.evaluate.robustness(landscape, make_explorer, verbose=False) return results def run_dynappo_mutative(landscape, wt, problem_name, start_num): def make_explorer(model, ss): return baselines.explorers.DynaPPOMutative( model=model, landscape=landscape, rounds=10, starting_sequence=wt, sequences_batch_size=sequences_batch_size, model_queries_per_batch=model_queries_per_batch, num_experiment_rounds=10, num_model_rounds=8, alphabet=alphabet, log_file=f"runs/dynappo_mutative/{problem_name}_start{start_num}_ss{ss}", ) results = flexs.evaluate.robustness(landscape, make_explorer, verbose=False) return results if __name__ == "__main__": for p in ["L14_RNA1"]: problem = flexs.landscapes.rna.registry()[p] landscape = flexs.landscapes.RNABinding(**problem["params"]) for s in range(5): wt = problem["starts"][s] results = run_dynappo_constructive(landscape, wt, p, s) results = run_dynappo_mutative(landscape, wt, p, s)
[ "flexs.evaluate.robustness", "flexs.landscapes.rna.registry", "flexs.landscapes.RNABinding", "flexs.baselines.explorers.DynaPPOMutative", "flexs.baselines.explorers.DynaPPO" ]
[((953, 1019), 'flexs.evaluate.robustness', 'flexs.evaluate.robustness', (['landscape', 'make_explorer'], {'verbose': '(False)'}), '(landscape, make_explorer, verbose=False)\n', (978, 1019), False, 'import flexs\n'), ((1636, 1702), 'flexs.evaluate.robustness', 'flexs.evaluate.robustness', (['landscape', 'make_explorer'], {'verbose': '(False)'}), '(landscape, make_explorer, verbose=False)\n', (1661, 1702), False, 'import flexs\n'), ((477, 824), 'flexs.baselines.explorers.DynaPPO', 'baselines.explorers.DynaPPO', ([], {'model': 'model', 'landscape': 'landscape', 'rounds': '(10)', 'starting_sequence': 'wt', 'sequences_batch_size': 'sequences_batch_size', 'model_queries_per_batch': 'model_queries_per_batch', 'num_experiment_rounds': '(10)', 'num_model_rounds': '(8)', 'alphabet': 'alphabet', 'log_file': 'f"""runs/dynappo_constructive/{problem_name}_start{start_num}_ss{ss}"""'}), "(model=model, landscape=landscape, rounds=10,\n starting_sequence=wt, sequences_batch_size=sequences_batch_size,\n model_queries_per_batch=model_queries_per_batch, num_experiment_rounds=\n 10, num_model_rounds=8, alphabet=alphabet, log_file=\n f'runs/dynappo_constructive/{problem_name}_start{start_num}_ss{ss}')\n", (504, 824), False, 'from flexs import baselines\n'), ((1156, 1506), 'flexs.baselines.explorers.DynaPPOMutative', 'baselines.explorers.DynaPPOMutative', ([], {'model': 'model', 'landscape': 'landscape', 'rounds': '(10)', 'starting_sequence': 'wt', 'sequences_batch_size': 'sequences_batch_size', 'model_queries_per_batch': 'model_queries_per_batch', 'num_experiment_rounds': '(10)', 'num_model_rounds': '(8)', 'alphabet': 'alphabet', 'log_file': 'f"""runs/dynappo_mutative/{problem_name}_start{start_num}_ss{ss}"""'}), "(model=model, landscape=landscape,\n rounds=10, starting_sequence=wt, sequences_batch_size=\n sequences_batch_size, model_queries_per_batch=model_queries_per_batch,\n num_experiment_rounds=10, num_model_rounds=8, alphabet=alphabet,\n log_file=f'runs/dynappo_mutative/{problem_name}_start{start_num}_ss{ss}')\n", (1191, 1506), False, 'from flexs import baselines\n'), ((1851, 1899), 'flexs.landscapes.RNABinding', 'flexs.landscapes.RNABinding', ([], {}), "(**problem['params'])\n", (1878, 1899), False, 'import flexs\n'), ((1796, 1827), 'flexs.landscapes.rna.registry', 'flexs.landscapes.rna.registry', ([], {}), '()\n', (1825, 1827), False, 'import flexs\n')]
import argparse import time import subprocess import paramiko from scp import SCPClient from pathlib import Path from google.cloud import storage import os parser = argparse.ArgumentParser(description='Download and uncompress the data on all the nodes.') parser.add_argument('data', type=int, choices=[100, 300, 1000, 3000, 10000], help='data scale factor.') parser.add_argument('ip', type=str, help='starting ip address') parser.add_argument('nodes', type=int, help='the number of nodes') parser.add_argument('--key','-k', type=str, default=None, help='location of the service key json file') parser.add_argument('--thread','-t', type=int, default=1, help='number of threads for each node') parser.add_argument('--parts','-p', type=int, default=0, help='number of parts to split the data (0 means the same as node number)') parser.add_argument('--start','-s', type=int, default=0, help='the start index of the data partition (default 0)') args = parser.parse_args() user = "tigergraph" pin = "tigergraph" # please change the pin here workdir = '/home/tigergraph' bucket_name = 'ldbc_bi' root = f'sf{args.data}-bi/' def createSSHClient(server, port, user, password): client = paramiko.SSHClient() client.load_system_host_keys() client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) client.connect(server, port, user, password) return client def main(): key = '' if args.key: os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = args.key key = f'-k {args.key}' print("check data accessibility") storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) stats = storage.Blob(bucket=bucket, name=root).exists(storage_client) print("The bucket can be accessed") start_ip = args.ip.split('.') for i in range(args.nodes): ip4 = int(start_ip[-1]) + i ip = start_ip[:-1] + [str(ip4)] ip = '.'.join(ip) ssh = createSSHClient(ip, 22, user, pin) scp = SCPClient(ssh.get_transport()) print(f'logging to {ip}') scp.put('../k8s/download_one_partition.py', workdir) scp.put('../k8s/download_decompress.sh', workdir) if args.key: scp.put(args.key, workdir) stdin, stdout, stderr = ssh.exec_command(f''' cd {workdir} . .profile pip3 install google-cloud-storage export SF={args.data} export i={i + args.start} export NUM_NODES={args.parts if args.parts else args.nodes} export target=~/sf{args.data} export DOWNLOAD_THREAD={args.thread} export SERVICE_KEY="{key}" nohup sh download_decompress.sh $i > log.download 2>&1 < /dev/null & ''') time.sleep(4) stdin, stdout, stderr = ssh.exec_command(f'tail {workdir}/log.download') for line in stdout.read().splitlines(): print(line.decode('utf-8')) ssh.close() scp.close() if __name__ == '__main__': main()
[ "google.cloud.storage.Client", "argparse.ArgumentParser", "paramiko.AutoAddPolicy", "time.sleep", "google.cloud.storage.Blob", "paramiko.SSHClient" ]
[((167, 261), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Download and uncompress the data on all the nodes."""'}), "(description=\n 'Download and uncompress the data on all the nodes.')\n", (190, 261), False, 'import argparse\n'), ((1185, 1205), 'paramiko.SSHClient', 'paramiko.SSHClient', ([], {}), '()\n', (1203, 1205), False, 'import paramiko\n'), ((1554, 1570), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (1568, 1570), False, 'from google.cloud import storage\n'), ((1280, 1304), 'paramiko.AutoAddPolicy', 'paramiko.AutoAddPolicy', ([], {}), '()\n', (1302, 1304), False, 'import paramiko\n'), ((2625, 2638), 'time.sleep', 'time.sleep', (['(4)'], {}), '(4)\n', (2635, 2638), False, 'import time\n'), ((1629, 1667), 'google.cloud.storage.Blob', 'storage.Blob', ([], {'bucket': 'bucket', 'name': 'root'}), '(bucket=bucket, name=root)\n', (1641, 1667), False, 'from google.cloud import storage\n')]
from jinja2 import Environment, FileSystemLoader import sys # Import config.py with open('/etc/footloose-vpc/footloose-vpc.conf') as f: config_path = f.read().split('\n')[0] sys.path.insert(0, config_path) import config as cfg # Import modules import htansw def print_j2_template(template, j2_vars): htansw.print_html() env = Environment(loader=FileSystemLoader('%s/' % cfg.DIR_PATH['templates'])) j2_html = env.get_template(template) rendered_html = j2_html.render(j2_vars=j2_vars) print(rendered_html)
[ "jinja2.FileSystemLoader", "htansw.print_html", "sys.path.insert" ]
[((179, 210), 'sys.path.insert', 'sys.path.insert', (['(0)', 'config_path'], {}), '(0, config_path)\n', (194, 210), False, 'import sys\n'), ((311, 330), 'htansw.print_html', 'htansw.print_html', ([], {}), '()\n', (328, 330), False, 'import htansw\n'), ((360, 411), 'jinja2.FileSystemLoader', 'FileSystemLoader', (["('%s/' % cfg.DIR_PATH['templates'])"], {}), "('%s/' % cfg.DIR_PATH['templates'])\n", (376, 411), False, 'from jinja2 import Environment, FileSystemLoader\n')]
import optuna import json import numpy as np import argparse parser = argparse.ArgumentParser() parser.add_argument("--study-name", help="Study name used during hyperparameter optimization", type=str, default=None) parser.add_argument("--storage", help="Database storage path used during hyperparameter optimization", type=str, default=None) parser.add_argument("--print-n-best-trials", help="Show final return values for n best trials", type=int, default=0) parser.add_argument("--save-n-best-hyperparameters", help="Save the hyperparameters for the n best trials that resulted in the best returns", type=int, default=0) args = parser.parse_args() study = optuna.create_study(study_name=args.study_name, storage=args.storage, load_if_exists=True, direction="maximize") values = [] for i in study.trials: if i.number < args.print_n_best_trials: print(i.value) values.append(i.value) scratch_values = [-np.inf if i is None else i for i in values] ordered_indices = np.argsort(scratch_values)[::-1] for i in range(args.save_n_best_hyperparameters): params = study.trials[ordered_indices[i]].params text = json.dumps(params) jsonFile = open('hyperparameter_jsons/' + 'hyperparameters_' + str(i) + ".json", "w+") jsonFile.write(text) jsonFile.close()
[ "numpy.argsort", "json.dumps", "optuna.create_study", "argparse.ArgumentParser" ]
[((72, 97), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (95, 97), False, 'import argparse\n'), ((660, 776), 'optuna.create_study', 'optuna.create_study', ([], {'study_name': 'args.study_name', 'storage': 'args.storage', 'load_if_exists': '(True)', 'direction': '"""maximize"""'}), "(study_name=args.study_name, storage=args.storage,\n load_if_exists=True, direction='maximize')\n", (679, 776), False, 'import optuna\n'), ((985, 1011), 'numpy.argsort', 'np.argsort', (['scratch_values'], {}), '(scratch_values)\n', (995, 1011), True, 'import numpy as np\n'), ((1133, 1151), 'json.dumps', 'json.dumps', (['params'], {}), '(params)\n', (1143, 1151), False, 'import json\n')]
import time import requests from absl import app, flags flags.DEFINE_string("database_id", None, "The id of the todo database.", required=True) flags.DEFINE_list( "complete_selects", "Completed,Archived", "The status of the objects to mark as completed.", ) flags.DEFINE_string("datetime_field", "Completed On", "The datetime to use to mark the todo.") flags.DEFINE_string("token", None, "The API token of the notion integration.", required=True) flags.DEFINE_string("status_column", "Status", "The column to use for completion status selection") flags.DEFINE_integer("sleep_for", 1, "The number of seconds to sleep between requests.") FLAGS = flags.FLAGS def main(*unused_argv): # Setup the authorization headers headers = { "Authorization": f"Bearer {FLAGS.token}", "Notion-Version": "2021-05-13", } # Setup the database # Get the database, and see if the edit time is in the future. res = requests.get(f"https://api.notion.com/v1/databases/{FLAGS.database_id}", headers=headers) if res.status_code == 404: print(f"Error finding database: {FLAGS.database_id}. Are you sure you shared the DB with the integration?") return db = res.json() if FLAGS.datetime_field not in db["properties"] or db["properties"][FLAGS.datetime_field]["type"] != "date": print(f"Database does not have the required field {FLAGS.datetime_field}, or it is not a datetime") if ( FLAGS.status_column not in db["properties"] or db["properties"][FLAGS.status_column]["type"] != "select" or any( f not in [q["name"] for q in db["properties"][FLAGS.status_column]["select"]["options"]] for f in FLAGS.complete_selects ) ): print(db["properties"][FLAGS.status_column]["select"]["options"]) print(f"Database does not have a {FLAGS.status_column} column with fields {FLAGS.complete_selects}") return while True: # Query the database for all todos with the status in the complete_selects list # and does not have a completion time. filter_data = { "and": [ {"property": FLAGS.datetime_field, "date": {"is_empty": True}}, {"or": [{"property": FLAGS.status_column, "select": {"equals": q}} for q in FLAGS.complete_selects]}, ] } objects_needing_updates = [] while True: start_cursor = None if start_cursor: page = requests.post( f"https://api.notion.com/v1/databases/{FLAGS.database_id}/query", json={"filter": filter_data, "start_cursor": start_cursor}, headers=headers, ) else: page = requests.post( f"https://api.notion.com/v1/databases/{FLAGS.database_id}/query", json={"filter": filter_data}, headers=headers, ) if page.status_code != 200: print(f"Error querying database: {FLAGS.database_id}") return if res.status_code == 429: # Back-off, and retry time.sleep(FLAGS.sleep_for) continue page = page.json() for q in page["results"]: objects_needing_updates.append(q) if page["has_more"]: start_cursor = page["next_cursor"] else: break for page in objects_needing_updates: page_id = page["id"] patch = { "properties": { FLAGS.datetime_field: { "date": {"start": page["last_edited_time"]}, } } } print(f"Updating TODO, id: {page_id}, patch: {patch}") res = requests.patch(f"https://api.notion.com/v1/pages/{page_id}", json=patch, headers=headers) time.sleep(0.2) if __name__ == "__main__": app.run(main)
[ "requests.post", "absl.flags.DEFINE_integer", "requests.patch", "absl.app.run", "requests.get", "time.sleep", "absl.flags.DEFINE_string", "absl.flags.DEFINE_list" ]
[((58, 149), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""database_id"""', 'None', '"""The id of the todo database."""'], {'required': '(True)'}), "('database_id', None, 'The id of the todo database.',\n required=True)\n", (77, 149), False, 'from absl import app, flags\n'), ((146, 260), 'absl.flags.DEFINE_list', 'flags.DEFINE_list', (['"""complete_selects"""', '"""Completed,Archived"""', '"""The status of the objects to mark as completed."""'], {}), "('complete_selects', 'Completed,Archived',\n 'The status of the objects to mark as completed.')\n", (163, 260), False, 'from absl import app, flags\n'), ((272, 370), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""datetime_field"""', '"""Completed On"""', '"""The datetime to use to mark the todo."""'], {}), "('datetime_field', 'Completed On',\n 'The datetime to use to mark the todo.')\n", (291, 370), False, 'from absl import app, flags\n'), ((367, 464), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""token"""', 'None', '"""The API token of the notion integration."""'], {'required': '(True)'}), "('token', None,\n 'The API token of the notion integration.', required=True)\n", (386, 464), False, 'from absl import app, flags\n'), ((461, 564), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""status_column"""', '"""Status"""', '"""The column to use for completion status selection"""'], {}), "('status_column', 'Status',\n 'The column to use for completion status selection')\n", (480, 564), False, 'from absl import app, flags\n'), ((561, 653), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""sleep_for"""', '(1)', '"""The number of seconds to sleep between requests."""'], {}), "('sleep_for', 1,\n 'The number of seconds to sleep between requests.')\n", (581, 653), False, 'from absl import app, flags\n'), ((951, 1044), 'requests.get', 'requests.get', (['f"""https://api.notion.com/v1/databases/{FLAGS.database_id}"""'], {'headers': 'headers'}), "(f'https://api.notion.com/v1/databases/{FLAGS.database_id}',\n headers=headers)\n", (963, 1044), False, 'import requests\n'), ((4051, 4064), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (4058, 4064), False, 'from absl import app, flags\n'), ((4002, 4017), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (4012, 4017), False, 'import time\n'), ((3903, 3996), 'requests.patch', 'requests.patch', (['f"""https://api.notion.com/v1/pages/{page_id}"""'], {'json': 'patch', 'headers': 'headers'}), "(f'https://api.notion.com/v1/pages/{page_id}', json=patch,\n headers=headers)\n", (3917, 3996), False, 'import requests\n'), ((2512, 2677), 'requests.post', 'requests.post', (['f"""https://api.notion.com/v1/databases/{FLAGS.database_id}/query"""'], {'json': "{'filter': filter_data, 'start_cursor': start_cursor}", 'headers': 'headers'}), "(f'https://api.notion.com/v1/databases/{FLAGS.database_id}/query',\n json={'filter': filter_data, 'start_cursor': start_cursor}, headers=headers\n )\n", (2525, 2677), False, 'import requests\n'), ((2789, 2919), 'requests.post', 'requests.post', (['f"""https://api.notion.com/v1/databases/{FLAGS.database_id}/query"""'], {'json': "{'filter': filter_data}", 'headers': 'headers'}), "(f'https://api.notion.com/v1/databases/{FLAGS.database_id}/query',\n json={'filter': filter_data}, headers=headers)\n", (2802, 2919), False, 'import requests\n'), ((3222, 3249), 'time.sleep', 'time.sleep', (['FLAGS.sleep_for'], {}), '(FLAGS.sleep_for)\n', (3232, 3249), False, 'import time\n')]
''' The main file for the URL shortener service - implemented using the Falcon REST framework for Python ''' # External imports import falcon import os # Internal imports from models.userhandler import UserHandler from models.urlshandler import UrlsHandler from models.urlshistoryhandler import UrlsHistoryHandler from routers.adduserrouter import AddUserRouter from routers.urlsrouter import UrlsRouter from routers.redirectrouter import RedirectRouter from routers.urlinforouter import UrlInfoRouter # Retrieve some OS variables mongodb_location = os.environ.get("DBURL","mongodb://localhost:27017/") mongodb_name = os.environ.get("DBNAME","urlsdb") memcached_location = os.environ.get("MEMCACHEHOST","localhost") # Create DB Handlers and connect to the database usersHandler = UserHandler(mongodb_location,mongodb_name) usersHandler.connectToDatabase() urlsHandler = UrlsHandler(mongodb_location,mongodb_name,memcached_location) urlsHandler.connectToDatabase() urlsHistoryHandler = UrlsHistoryHandler(mongodb_location,mongodb_name) urlsHistoryHandler.connectToDatabase() # Create routers addUsersRouter = AddUserRouter(usersHandler,urlsHandler,urlsHistoryHandler) urlsRouter = UrlsRouter(usersHandler,urlsHandler,urlsHistoryHandler) redirectRouter = RedirectRouter(usersHandler,urlsHandler,urlsHistoryHandler) urlInfoRouter = UrlInfoRouter(usersHandler,urlsHandler,urlsHistoryHandler) # Configure the REST framework routing app = falcon.API() app.add_route("/users",addUsersRouter) app.add_route("/urls",urlsRouter) app.add_route("/{shortform}",redirectRouter) app.add_route("/urls/{shortform}",urlInfoRouter)
[ "models.urlshandler.UrlsHandler", "models.urlshistoryhandler.UrlsHistoryHandler", "models.userhandler.UserHandler", "falcon.API", "os.environ.get", "routers.redirectrouter.RedirectRouter", "routers.urlinforouter.UrlInfoRouter", "routers.urlsrouter.UrlsRouter", "routers.adduserrouter.AddUserRouter" ]
[((558, 611), 'os.environ.get', 'os.environ.get', (['"""DBURL"""', '"""mongodb://localhost:27017/"""'], {}), "('DBURL', 'mongodb://localhost:27017/')\n", (572, 611), False, 'import os\n'), ((626, 660), 'os.environ.get', 'os.environ.get', (['"""DBNAME"""', '"""urlsdb"""'], {}), "('DBNAME', 'urlsdb')\n", (640, 660), False, 'import os\n'), ((681, 724), 'os.environ.get', 'os.environ.get', (['"""MEMCACHEHOST"""', '"""localhost"""'], {}), "('MEMCACHEHOST', 'localhost')\n", (695, 724), False, 'import os\n'), ((789, 832), 'models.userhandler.UserHandler', 'UserHandler', (['mongodb_location', 'mongodb_name'], {}), '(mongodb_location, mongodb_name)\n', (800, 832), False, 'from models.userhandler import UserHandler\n'), ((879, 942), 'models.urlshandler.UrlsHandler', 'UrlsHandler', (['mongodb_location', 'mongodb_name', 'memcached_location'], {}), '(mongodb_location, mongodb_name, memcached_location)\n', (890, 942), False, 'from models.urlshandler import UrlsHandler\n'), ((994, 1044), 'models.urlshistoryhandler.UrlsHistoryHandler', 'UrlsHistoryHandler', (['mongodb_location', 'mongodb_name'], {}), '(mongodb_location, mongodb_name)\n', (1012, 1044), False, 'from models.urlshistoryhandler import UrlsHistoryHandler\n'), ((1119, 1179), 'routers.adduserrouter.AddUserRouter', 'AddUserRouter', (['usersHandler', 'urlsHandler', 'urlsHistoryHandler'], {}), '(usersHandler, urlsHandler, urlsHistoryHandler)\n', (1132, 1179), False, 'from routers.adduserrouter import AddUserRouter\n'), ((1191, 1248), 'routers.urlsrouter.UrlsRouter', 'UrlsRouter', (['usersHandler', 'urlsHandler', 'urlsHistoryHandler'], {}), '(usersHandler, urlsHandler, urlsHistoryHandler)\n', (1201, 1248), False, 'from routers.urlsrouter import UrlsRouter\n'), ((1264, 1325), 'routers.redirectrouter.RedirectRouter', 'RedirectRouter', (['usersHandler', 'urlsHandler', 'urlsHistoryHandler'], {}), '(usersHandler, urlsHandler, urlsHistoryHandler)\n', (1278, 1325), False, 'from routers.redirectrouter import RedirectRouter\n'), ((1340, 1400), 'routers.urlinforouter.UrlInfoRouter', 'UrlInfoRouter', (['usersHandler', 'urlsHandler', 'urlsHistoryHandler'], {}), '(usersHandler, urlsHandler, urlsHistoryHandler)\n', (1353, 1400), False, 'from routers.urlinforouter import UrlInfoRouter\n'), ((1446, 1458), 'falcon.API', 'falcon.API', ([], {}), '()\n', (1456, 1458), False, 'import falcon\n')]
import pytest import climpred @pytest.mark.xfail( reason="not properly implemented see https://github.com/pangeo-data/climpred/issues/605" ) @pytest.mark.parametrize( "cross_validate", [False, pytest.param(True, marks=pytest.mark.xfail)] ) def test_seasonality_remove_bias(hindcast_recon_1d_dm, cross_validate): """Test the climpred.set_option(seasonality) changes bias reduction. Currently fails for cross_validate bias reduction.""" hindcast = hindcast_recon_1d_dm hindcast._datasets["initialized"] = ( hindcast.get_initialized().resample(init="1MS").interpolate("linear") ) alignment = "maximize" kw = { "metric": "mse", "comparison": "e2o", "dim": "init", "alignment": alignment, "reference": None, } with climpred.set_options(seasonality="dayofyear"): dayofyear_seasonality = hindcast.remove_bias( alignment=alignment, cross_validate=cross_validate ) with climpred.set_options(seasonality="weekofyear"): weekofyear_seasonality = hindcast.remove_bias( alignment=alignment, cross_validate=cross_validate ) assert not weekofyear_seasonality.get_initialized().identical( dayofyear_seasonality.get_initialized() ) assert not weekofyear_seasonality.verify(**kw).identical( dayofyear_seasonality.verify(**kw) ) def test_seasonality_climatology(hindcast_recon_1d_dm): """Test the climpred.set_option(seasonality) changes climatology.""" hindcast = hindcast_recon_1d_dm alignment = "maximize" kw = { "metric": "mse", "comparison": "e2o", "dim": "init", "alignment": alignment, "reference": "climatology", } with climpred.set_options(seasonality="dayofyear"): dayofyear_seasonality = hindcast.verify(**kw).sel(skill="climatology") with climpred.set_options(seasonality="month"): month_seasonality = hindcast.verify(**kw).sel(skill="climatology") assert not month_seasonality.identical(dayofyear_seasonality) @pytest.mark.parametrize("option_bool", [False, True]) def test_option_warn_for_failed_PredictionEnsemble_xr_call( hindcast_recon_1d_dm, option_bool ): with climpred.set_options(warn_for_failed_PredictionEnsemble_xr_call=option_bool): with pytest.warns(None if not option_bool else UserWarning) as record: hindcast_recon_1d_dm.sel(lead=[1, 2]) if not option_bool: assert len(record) == 0, print(record[0]) @pytest.mark.parametrize("option_bool", [False, True]) def test_climpred_warnings(hindcast_recon_1d_dm, option_bool): with climpred.set_options(warn_for_failed_PredictionEnsemble_xr_call=True): with climpred.set_options(climpred_warnings=option_bool): print(climpred.options.OPTIONS) with pytest.warns(UserWarning if option_bool else None) as record: hindcast_recon_1d_dm.sel(lead=[1, 2]) if not option_bool: assert len(record) == 0, print(record[0])
[ "pytest.mark.xfail", "pytest.param", "pytest.mark.parametrize", "climpred.set_options", "pytest.warns" ]
[((34, 151), 'pytest.mark.xfail', 'pytest.mark.xfail', ([], {'reason': '"""not properly implemented see https://github.com/pangeo-data/climpred/issues/605"""'}), "(reason=\n 'not properly implemented see https://github.com/pangeo-data/climpred/issues/605'\n )\n", (51, 151), False, 'import pytest\n'), ((2081, 2134), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""option_bool"""', '[False, True]'], {}), "('option_bool', [False, True])\n", (2104, 2134), False, 'import pytest\n'), ((2537, 2590), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""option_bool"""', '[False, True]'], {}), "('option_bool', [False, True])\n", (2560, 2590), False, 'import pytest\n'), ((803, 848), 'climpred.set_options', 'climpred.set_options', ([], {'seasonality': '"""dayofyear"""'}), "(seasonality='dayofyear')\n", (823, 848), False, 'import climpred\n'), ((986, 1032), 'climpred.set_options', 'climpred.set_options', ([], {'seasonality': '"""weekofyear"""'}), "(seasonality='weekofyear')\n", (1006, 1032), False, 'import climpred\n'), ((204, 247), 'pytest.param', 'pytest.param', (['(True)'], {'marks': 'pytest.mark.xfail'}), '(True, marks=pytest.mark.xfail)\n', (216, 247), False, 'import pytest\n'), ((1759, 1804), 'climpred.set_options', 'climpred.set_options', ([], {'seasonality': '"""dayofyear"""'}), "(seasonality='dayofyear')\n", (1779, 1804), False, 'import climpred\n'), ((1894, 1935), 'climpred.set_options', 'climpred.set_options', ([], {'seasonality': '"""month"""'}), "(seasonality='month')\n", (1914, 1935), False, 'import climpred\n'), ((2245, 2321), 'climpred.set_options', 'climpred.set_options', ([], {'warn_for_failed_PredictionEnsemble_xr_call': 'option_bool'}), '(warn_for_failed_PredictionEnsemble_xr_call=option_bool)\n', (2265, 2321), False, 'import climpred\n'), ((2663, 2732), 'climpred.set_options', 'climpred.set_options', ([], {'warn_for_failed_PredictionEnsemble_xr_call': '(True)'}), '(warn_for_failed_PredictionEnsemble_xr_call=True)\n', (2683, 2732), False, 'import climpred\n'), ((2336, 2390), 'pytest.warns', 'pytest.warns', (['(None if not option_bool else UserWarning)'], {}), '(None if not option_bool else UserWarning)\n', (2348, 2390), False, 'import pytest\n'), ((2747, 2798), 'climpred.set_options', 'climpred.set_options', ([], {'climpred_warnings': 'option_bool'}), '(climpred_warnings=option_bool)\n', (2767, 2798), False, 'import climpred\n'), ((2861, 2911), 'pytest.warns', 'pytest.warns', (['(UserWarning if option_bool else None)'], {}), '(UserWarning if option_bool else None)\n', (2873, 2911), False, 'import pytest\n')]
from LJ_surrogates.LJ_surrogates.build_surrogates import collate_physical_property_data import json import matplotlib.pyplot as plt import numpy as np path = '/media/owenmadin/storage/alcohol_alkane/modified_8_runs_7_15' smirks_types_to_change = ['[#6X4:1]', '[#1:1]-[#6X4]', '[#8X2H1+0:1]', '[#1:1]-[#8]'] properties_all = collate_physical_property_data(path, smirks_types_to_change) y = properties_all[15][list(properties_all[15].keys())[0]][2] x = np.linspace(0,np.shape(y)[0]-1,num=np.shape(y)[0]) plt.scatter(x,y[:,0],ls='None',marker='x',label='Simulated Values') plt.axhline(0.717,ls='--',color='k',label='Experimental Value') plt.title(f'Density \n {list(properties_all[15].keys())[0]}') plt.legend() plt.show() y = properties_all[30][list(properties_all[30].keys())[0]][2] x = np.linspace(0,np.shape(y)[0]-1,num=np.shape(y)[0]) plt.scatter(x,y[:,0],ls='None',marker='x',label='Simulated Values') plt.axhline(0.5012,ls='--',color='k',label='Experimental Value') plt.title(f'Enthalpy of Mixing \n {list(properties_all[30].keys())[0]}') plt.legend() plt.show()
[ "matplotlib.pyplot.axhline", "matplotlib.pyplot.scatter", "numpy.shape", "LJ_surrogates.LJ_surrogates.build_surrogates.collate_physical_property_data", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((326, 386), 'LJ_surrogates.LJ_surrogates.build_surrogates.collate_physical_property_data', 'collate_physical_property_data', (['path', 'smirks_types_to_change'], {}), '(path, smirks_types_to_change)\n', (356, 386), False, 'from LJ_surrogates.LJ_surrogates.build_surrogates import collate_physical_property_data\n'), ((506, 578), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y[:, 0]'], {'ls': '"""None"""', 'marker': '"""x"""', 'label': '"""Simulated Values"""'}), "(x, y[:, 0], ls='None', marker='x', label='Simulated Values')\n", (517, 578), True, 'import matplotlib.pyplot as plt\n'), ((574, 640), 'matplotlib.pyplot.axhline', 'plt.axhline', (['(0.717)'], {'ls': '"""--"""', 'color': '"""k"""', 'label': '"""Experimental Value"""'}), "(0.717, ls='--', color='k', label='Experimental Value')\n", (585, 640), True, 'import matplotlib.pyplot as plt\n'), ((700, 712), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (710, 712), True, 'import matplotlib.pyplot as plt\n'), ((713, 723), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (721, 723), True, 'import matplotlib.pyplot as plt\n'), ((842, 914), 'matplotlib.pyplot.scatter', 'plt.scatter', (['x', 'y[:, 0]'], {'ls': '"""None"""', 'marker': '"""x"""', 'label': '"""Simulated Values"""'}), "(x, y[:, 0], ls='None', marker='x', label='Simulated Values')\n", (853, 914), True, 'import matplotlib.pyplot as plt\n'), ((910, 977), 'matplotlib.pyplot.axhline', 'plt.axhline', (['(0.5012)'], {'ls': '"""--"""', 'color': '"""k"""', 'label': '"""Experimental Value"""'}), "(0.5012, ls='--', color='k', label='Experimental Value')\n", (921, 977), True, 'import matplotlib.pyplot as plt\n'), ((1048, 1060), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1058, 1060), True, 'import matplotlib.pyplot as plt\n'), ((1061, 1071), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1069, 1071), True, 'import matplotlib.pyplot as plt\n'), ((469, 480), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (477, 480), True, 'import numpy as np\n'), ((490, 501), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (498, 501), True, 'import numpy as np\n'), ((805, 816), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (813, 816), True, 'import numpy as np\n'), ((826, 837), 'numpy.shape', 'np.shape', (['y'], {}), '(y)\n', (834, 837), True, 'import numpy as np\n')]
import plotly import plotly.offline as offline import plotly.graph_objs as go import json import sys def plot(input, output): dataFile = open(input, 'r') data = json.load(dataFile) # set up relevant data arrays best = [] avg = [] fitBest = [] fitAvg = [] gen = [] for x in range(0, len(data) - 1): # analyze objectives [0] (should usually always be the ceres data) ceresObj = [] for i in range(0, len(data[x]["objectives"])): ceresObj.append(data[x]["objectives"][i][0]) best.append(min(ceresObj)) avg.append(sum(ceresObj) / len(ceresObj)) fitBest.append(min(data[x]["fitness"])) fitAvg.append(sum(data[x]["fitness"]) / len(data[x]["fitness"])) gen.append(x) # construct plots bestGraph = go.Bar(x=gen, y=best, name='Best Ceres Score in Population') avgGraph = go.Bar(x=gen, y=avg, name='Average Population Score') plots = [bestGraph, avgGraph] offline.plot(dict(data=plots, layout=dict(title="Ceres Objective Scores")), filename=output + "_ceres.html", auto_open=False) fitBestGraph = go.Bar(x=gen, y=fitBest, name='Best Fitness Score in Population') fitAvgGraph = go.Bar(x=gen, y=fitAvg, name='Average Population Fitness') plots2 = [fitBestGraph, fitAvgGraph] offline.plot(dict(data=plots2, layout=dict(title="Fitness Scores")), filename=output + "_fitness.html", auto_open=False) if __name__ == "__main__": plot(sys.argv[1], sys.argv[2])
[ "json.load", "plotly.graph_objs.Bar" ]
[((164, 183), 'json.load', 'json.load', (['dataFile'], {}), '(dataFile)\n', (173, 183), False, 'import json\n'), ((725, 785), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'x': 'gen', 'y': 'best', 'name': '"""Best Ceres Score in Population"""'}), "(x=gen, y=best, name='Best Ceres Score in Population')\n", (731, 785), True, 'import plotly.graph_objs as go\n'), ((798, 851), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'x': 'gen', 'y': 'avg', 'name': '"""Average Population Score"""'}), "(x=gen, y=avg, name='Average Population Score')\n", (804, 851), True, 'import plotly.graph_objs as go\n'), ((1029, 1094), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'x': 'gen', 'y': 'fitBest', 'name': '"""Best Fitness Score in Population"""'}), "(x=gen, y=fitBest, name='Best Fitness Score in Population')\n", (1035, 1094), True, 'import plotly.graph_objs as go\n'), ((1110, 1168), 'plotly.graph_objs.Bar', 'go.Bar', ([], {'x': 'gen', 'y': 'fitAvg', 'name': '"""Average Population Fitness"""'}), "(x=gen, y=fitAvg, name='Average Population Fitness')\n", (1116, 1168), True, 'import plotly.graph_objs as go\n')]
# -*- coding: utf-8 -*- # Part of BrowseInfo. See LICENSE file for full copyright and licensing details. from odoo import api, fields, models, _ from datetime import date,datetime class medical_neomatal_apgar(models.Model): _name = 'medical.neomatal.apgar' _rec_name = 'new_born_id' new_born_id = fields.Many2one('medical.newborn', 'Name') apgar_activity = fields.Selection([('0', 'None'),('1','Some Flexion'),('2','Fixed Arm and Legs')], 'Activity') apgar_appearance = fields.Selection([('0', 'Central cyanosis'),('1', 'Acrosynosis'), ('2', 'No Cynosis')], 'Appearance') apgar_grimace = fields.Selection([('0', 'No response to simulation'), ('1','Grimance when simulated'),('2','Cry Or pull away when simulated')], 'Grimace') apgar_minute = fields.Integer('Minute', required = True) apgar_respiration = fields.Selection([('0', 'Absent'),('1', 'Weak / Irregular'),('2', 'Strong')], 'Respiration') apgar_pulse = fields.Selection([('0', 'None'), ('1', '< 100'), ('2','> 100')], 'Pulse') apgar_scores = fields.Integer('Apgar Score') @api.onchange('apgar_activity' , 'apgar_appearance', 'apgar_grimace', 'apgar_minute', 'apgar_respiration', 'apgar_pulse',) def on_change_selection(self): self.apgar_scores = int(self.apgar_activity)+ int(self.apgar_appearance)+ int(self.apgar_grimace)+ int(self.apgar_minute)+ int(self.apgar_respiration)+int(self.apgar_pulse) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
[ "odoo.fields.Many2one", "odoo.fields.Integer", "odoo.api.onchange", "odoo.fields.Selection" ]
[((318, 360), 'odoo.fields.Many2one', 'fields.Many2one', (['"""medical.newborn"""', '"""Name"""'], {}), "('medical.newborn', 'Name')\n", (333, 360), False, 'from odoo import api, fields, models, _\n'), ((382, 483), 'odoo.fields.Selection', 'fields.Selection', (["[('0', 'None'), ('1', 'Some Flexion'), ('2', 'Fixed Arm and Legs')]", '"""Activity"""'], {}), "([('0', 'None'), ('1', 'Some Flexion'), ('2',\n 'Fixed Arm and Legs')], 'Activity')\n", (398, 483), False, 'from odoo import api, fields, models, _\n'), ((499, 605), 'odoo.fields.Selection', 'fields.Selection', (["[('0', 'Central cyanosis'), ('1', 'Acrosynosis'), ('2', 'No Cynosis')]", '"""Appearance"""'], {}), "([('0', 'Central cyanosis'), ('1', 'Acrosynosis'), ('2',\n 'No Cynosis')], 'Appearance')\n", (515, 605), False, 'from odoo import api, fields, models, _\n'), ((621, 770), 'odoo.fields.Selection', 'fields.Selection', (["[('0', 'No response to simulation'), ('1', 'Grimance when simulated'), ('2',\n 'Cry Or pull away when simulated')]", '"""Grimace"""'], {}), "([('0', 'No response to simulation'), ('1',\n 'Grimance when simulated'), ('2', 'Cry Or pull away when simulated')],\n 'Grimace')\n", (637, 770), False, 'from odoo import api, fields, models, _\n'), ((780, 819), 'odoo.fields.Integer', 'fields.Integer', (['"""Minute"""'], {'required': '(True)'}), "('Minute', required=True)\n", (794, 819), False, 'from odoo import api, fields, models, _\n'), ((846, 944), 'odoo.fields.Selection', 'fields.Selection', (["[('0', 'Absent'), ('1', 'Weak / Irregular'), ('2', 'Strong')]", '"""Respiration"""'], {}), "([('0', 'Absent'), ('1', 'Weak / Irregular'), ('2',\n 'Strong')], 'Respiration')\n", (862, 944), False, 'from odoo import api, fields, models, _\n'), ((957, 1031), 'odoo.fields.Selection', 'fields.Selection', (["[('0', 'None'), ('1', '< 100'), ('2', '> 100')]", '"""Pulse"""'], {}), "([('0', 'None'), ('1', '< 100'), ('2', '> 100')], 'Pulse')\n", (973, 1031), False, 'from odoo import api, fields, models, _\n'), ((1050, 1079), 'odoo.fields.Integer', 'fields.Integer', (['"""Apgar Score"""'], {}), "('Apgar Score')\n", (1064, 1079), False, 'from odoo import api, fields, models, _\n'), ((1090, 1213), 'odoo.api.onchange', 'api.onchange', (['"""apgar_activity"""', '"""apgar_appearance"""', '"""apgar_grimace"""', '"""apgar_minute"""', '"""apgar_respiration"""', '"""apgar_pulse"""'], {}), "('apgar_activity', 'apgar_appearance', 'apgar_grimace',\n 'apgar_minute', 'apgar_respiration', 'apgar_pulse')\n", (1102, 1213), False, 'from odoo import api, fields, models, _\n')]
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from collections import OrderedDict import sys sys.path.append("coco-caption") from pycocoevalcap.bleu.bleu import Bleu from pycocoevalcap.cider.cider import Cider def array_to_str(arr): out = '' for i in range(len(arr)): out += str(arr[i]) + ' ' if arr[i] == 0: break return out.strip() def get_self_critical_reward(greedy_res, data_gts, sample_res, opt): batch_size = len(data_gts) sample_res = sample_res.numpy() greedy_res = greedy_res.numpy() scores_greedy = get_scores(greedy_res, data_gts, opt) scores_sample = get_scores(sample_res, data_gts, opt) s_sample = scores_sample.reshape([batch_size, -1]) b_greedy = scores_greedy.reshape([batch_size, -1]) scores = s_sample - b_greedy scores = scores.reshape(-1) rewards = np.repeat(scores[:, np.newaxis], sample_res.shape[1], 1) return rewards def get_scores(candidates, references, opt): batch_size = len(references) candidates_size = candidates.shape[0] seq_per_img = candidates_size // batch_size # gen_result_size = batch_size * seq_per_img candidates_dict = OrderedDict() references_dict = OrderedDict() for i in range(candidates_size): candidates_dict[i] = [array_to_str(candidates[i])] for i in range(candidates_size): references_dict[i] = \ [array_to_str(references[i // seq_per_img][j]) for j in range(len(references[i // seq_per_img]))] if opt.cider_reward_weight > 0: _, cider_scores = Cider().compute_score(references_dict, candidates_dict) else: cider_scores = 0 if opt.bleu_reward_weight > 0: _, bleu_scores = Bleu().compute_score(references_dict, candidates_dict) bleu_scores = np.array(bleu_scores[0]) else: bleu_scores = 0 scores = opt.cider_reward_weight * cider_scores + opt.bleu_reward_weight * bleu_scores return scores
[ "collections.OrderedDict", "numpy.repeat", "pycocoevalcap.bleu.bleu.Bleu", "numpy.array", "sys.path.append", "pycocoevalcap.cider.cider.Cider" ]
[((177, 208), 'sys.path.append', 'sys.path.append', (['"""coco-caption"""'], {}), "('coco-caption')\n", (192, 208), False, 'import sys\n'), ((941, 997), 'numpy.repeat', 'np.repeat', (['scores[:, np.newaxis]', 'sample_res.shape[1]', '(1)'], {}), '(scores[:, np.newaxis], sample_res.shape[1], 1)\n', (950, 997), True, 'import numpy as np\n'), ((1257, 1270), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1268, 1270), False, 'from collections import OrderedDict\n'), ((1293, 1306), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1304, 1306), False, 'from collections import OrderedDict\n'), ((1873, 1897), 'numpy.array', 'np.array', (['bleu_scores[0]'], {}), '(bleu_scores[0])\n', (1881, 1897), True, 'import numpy as np\n'), ((1645, 1652), 'pycocoevalcap.cider.cider.Cider', 'Cider', ([], {}), '()\n', (1650, 1652), False, 'from pycocoevalcap.cider.cider import Cider\n'), ((1796, 1802), 'pycocoevalcap.bleu.bleu.Bleu', 'Bleu', ([], {}), '()\n', (1800, 1802), False, 'from pycocoevalcap.bleu.bleu import Bleu\n')]
#!/usr/bin/python3.8 #OpenCV 4.2, Raspberry pi 3/3b/4b - test on macOS import cv2 import numpy as np import time from utils.dir import get_data_xml from utils.settings import get_settings_camera from core.alert import Alert from core.record import Record class Camera: def __init__(self, cam_id = 0, on_guard = False): super().__init__() self.font = cv2.FONT_HERSHEY_SIMPLEX self.on_guard = on_guard #cam and dimentions self.cam_id = cam_id self.cam = None self.frame1 = None self.frame2 = None self.RELEASE_CAM = False self._ALERT = Alert() self._RECORD = Record() #initialize def initialize(self): self.settings_camera = get_settings_camera() self.RELEASE_CAM = False if self.cam and self.cam.isOpened(): return elif self.cam: self.clear() self._put_cam_video() def _put_cam_video(self): self.cam = cv2.VideoCapture(self.cam_id) fheight = int(self.cam.get(3)) fwidth = int(self.cam.get(4)) self.cam.set(3,fheight) self.cam.set(4,fwidth) self._RECORD.set_dimentions(fheight, fwidth) def _get_frame_gray(self, frame1, frame2): # Difference between frame1(image) and frame2(image) diff = cv2.absdiff(frame1, frame2) # Converting color image to gray_scale image gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) return gray def _get_frame_diff(self, frame1, frame2): # Difference between frame1(image) and frame2(image) diff = cv2.absdiff(frame1, frame2) # Converting color image to gray_scale image gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) # Converting gray scale image to GaussianBlur, so that change can be find easily blur = cv2.GaussianBlur(gray, (5, 5), 0) # If pixel value is greater than 20, it is assigned white(255) otherwise black _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) return thresh def _get_contours(self, frame1, frame2): # Difference between frame1(image) and frame2(image) diff = cv2.absdiff(frame1, frame2) # Converting color image to gray_scale image gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY) # Converting gray scale image to GaussianBlur, so that change can be find easily blur = cv2.GaussianBlur(gray, (5, 5), 0) # If pixel value is greater than 20, it is assigned white(255) otherwise black _, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) dilated = cv2.dilate(thresh, None, iterations=4) # finding contours of moving object contours, hirarchy = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours, hirarchy def get_frame_gray(self): if self.frame1 is None: _, self.frame1 = self.cam.read() elif self.frame2 is None: _, self.frame1 = self.cam.read() else: self.frame1 = self.frame2 ret, self.frame2 = self.cam.read() contours, hirarchy = self._get_contours(self.frame1, self.frame2) is_mov = False # making rectangle around moving object for contour in contours: (x, y, w, h) = cv2.boundingRect(contour) referenceArea = self._is_object(contour) if referenceArea is None: continue is_mov = True break frame = self._get_frame_gray(self.frame1, self.frame2) self._process_mov(4, is_mov, ret, frame) return frame def get_frame_diff(self): if self.frame1 is None: _, self.frame1 = self.cam.read() elif self.frame2 is None: _, self.frame1 = self.cam.read() else: self.frame1 = self.frame2 ret, self.frame2 = self.cam.read() contours, hirarchy = self._get_contours(self.frame1, self.frame2) is_mov = False # making rectangle around moving object for contour in contours: (x, y, w, h) = cv2.boundingRect(contour) referenceArea = self._is_object(contour) if referenceArea is None: continue is_mov = True break frame = self._get_frame_diff(self.frame1, self.frame2) self._process_mov(3, is_mov, ret, frame) return frame def get_frame_normal(self): if self.frame1 is None: _, self.frame1 = self.cam.read() elif self.frame2 is None: _, self.frame1 = self.cam.read() else: self.frame1 = self.frame2 frame = cv2.flip(self.frame1, 180) ret, self.frame2 = self.cam.read() contours, hirarchy = self._get_contours(self.frame1, self.frame2) is_mov = False # making rectangle around moving object for contour in contours: (x, y, w, h) = cv2.boundingRect(contour) referenceArea = self._is_object(contour) if referenceArea is None: continue is_mov = True break self._process_mov(1, is_mov, ret, frame) return frame def get_frame_mov(self): if self.frame1 is None: _, self.frame1 = self.cam.read() elif self.frame2 is None: _, self.frame1 = self.cam.read() else: self.frame1 = self.frame2 ret, self.frame2 = self.cam.read() contours, hirarchy = self._get_contours(self.frame1, self.frame2) is_mov = False # making rectangle around moving object for contour in contours: (x, y, w, h) = cv2.boundingRect(contour) referenceArea = self._is_object(contour) if referenceArea is None: continue self._draw(self.frame1, x, y, w, h, "movimiento") is_mov = True self._process_mov(2, is_mov, ret, self.frame1) return self.frame1 def _draw(self, frame, x, y, w, h, text): cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 255), 2) cv2.putText(frame, text, (x+5, y-5), self.font, 1, (255, 255, 255), 2) def _is_object(self, contour): referenceArea = cv2.contourArea(contour) if referenceArea < int(self.settings_camera["MIN_AREA_OBJECT"]): return None return referenceArea def _process_mov(self, type_cam, is_mov, ret, frame): item = { "type_cam": type_cam, "is_mov": is_mov, "ret": ret, "frame": frame } self._RECORD.put_nowait(item) if is_mov == True: if int(self.settings_camera["ON_GUARD"]) == 1: item = { "message" : "Se ha detectado un movimiento."} self._ALERT.put_nowait(item=item) def get_stream(self, type_cam = 1): if type_cam == 3: frame = self.get_frame_diff() ret, frame_jpeg = cv2.imencode('.jpg', frame) return frame_jpeg elif type_cam == 4: frame = self.get_frame_gray() ret, frame_jpeg = cv2.imencode('.jpg', frame) return frame_jpeg elif type_cam == 2: frame = self.get_frame_mov() ret, frame_jpeg = cv2.imencode('.jpg', frame) return frame_jpeg else: frame = self.get_frame_normal() ret, frame_jpeg = cv2.imencode('.jpg', frame) return frame_jpeg def generated_stream(self, type_cam = 1): self.initialize() while self.cam.isOpened(): frame_jpeg = self.get_stream(type_cam=type_cam) if self.RELEASE_CAM == True or self.RELEASE_CAM is None: break else: yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame_jpeg.tobytes() + b'\r\n\r\n') def clear(self): try: self.frame1 = None self.frame2 = None if self.cam: self.cam.release() except Exception as e: print(e) def release(self, with_threading = False, window = False): try: self.RELEASE_CAM = True time.sleep(0.9) self.frame1 = None self.frame2 = None if self.cam: self.cam.release() if with_threading: self.cam.stop() if window: cv2.destroyAllWindows() self._RECORD.release() except Exception as e: print(e) def __del__(self): try: self.RELEASE_CAM = None time.sleep(0.9) self.frame1 = None self.frame2 = None if self.cam: self.cam.release() self._RECORD.release() self._RECORD = None self._ALERT = None cv2.destroyAllWindows() except Exception as e: print(e)
[ "cv2.rectangle", "core.record.Record", "utils.settings.get_settings_camera", "cv2.flip", "cv2.imencode", "cv2.threshold", "core.alert.Alert", "time.sleep", "cv2.putText", "cv2.contourArea", "cv2.destroyAllWindows", "cv2.VideoCapture", "cv2.cvtColor", "cv2.findContours", "cv2.dilate", "cv2.GaussianBlur", "cv2.absdiff", "cv2.boundingRect" ]
[((620, 627), 'core.alert.Alert', 'Alert', ([], {}), '()\n', (625, 627), False, 'from core.alert import Alert\n'), ((651, 659), 'core.record.Record', 'Record', ([], {}), '()\n', (657, 659), False, 'from core.record import Record\n'), ((734, 755), 'utils.settings.get_settings_camera', 'get_settings_camera', ([], {}), '()\n', (753, 755), False, 'from utils.settings import get_settings_camera\n'), ((981, 1010), 'cv2.VideoCapture', 'cv2.VideoCapture', (['self.cam_id'], {}), '(self.cam_id)\n', (997, 1010), False, 'import cv2\n'), ((1328, 1355), 'cv2.absdiff', 'cv2.absdiff', (['frame1', 'frame2'], {}), '(frame1, frame2)\n', (1339, 1355), False, 'import cv2\n'), ((1424, 1462), 'cv2.cvtColor', 'cv2.cvtColor', (['diff', 'cv2.COLOR_BGR2GRAY'], {}), '(diff, cv2.COLOR_BGR2GRAY)\n', (1436, 1462), False, 'import cv2\n'), ((1611, 1638), 'cv2.absdiff', 'cv2.absdiff', (['frame1', 'frame2'], {}), '(frame1, frame2)\n', (1622, 1638), False, 'import cv2\n'), ((1707, 1745), 'cv2.cvtColor', 'cv2.cvtColor', (['diff', 'cv2.COLOR_BGR2GRAY'], {}), '(diff, cv2.COLOR_BGR2GRAY)\n', (1719, 1745), False, 'import cv2\n'), ((1850, 1883), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['gray', '(5, 5)', '(0)'], {}), '(gray, (5, 5), 0)\n', (1866, 1883), False, 'import cv2\n'), ((1991, 2038), 'cv2.threshold', 'cv2.threshold', (['blur', '(20)', '(255)', 'cv2.THRESH_BINARY'], {}), '(blur, 20, 255, cv2.THRESH_BINARY)\n', (2004, 2038), False, 'import cv2\n'), ((2183, 2210), 'cv2.absdiff', 'cv2.absdiff', (['frame1', 'frame2'], {}), '(frame1, frame2)\n', (2194, 2210), False, 'import cv2\n'), ((2279, 2317), 'cv2.cvtColor', 'cv2.cvtColor', (['diff', 'cv2.COLOR_BGR2GRAY'], {}), '(diff, cv2.COLOR_BGR2GRAY)\n', (2291, 2317), False, 'import cv2\n'), ((2422, 2455), 'cv2.GaussianBlur', 'cv2.GaussianBlur', (['gray', '(5, 5)', '(0)'], {}), '(gray, (5, 5), 0)\n', (2438, 2455), False, 'import cv2\n'), ((2563, 2610), 'cv2.threshold', 'cv2.threshold', (['blur', '(20)', '(255)', 'cv2.THRESH_BINARY'], {}), '(blur, 20, 255, cv2.THRESH_BINARY)\n', (2576, 2610), False, 'import cv2\n'), ((2629, 2667), 'cv2.dilate', 'cv2.dilate', (['thresh', 'None'], {'iterations': '(4)'}), '(thresh, None, iterations=4)\n', (2639, 2667), False, 'import cv2\n'), ((2741, 2806), 'cv2.findContours', 'cv2.findContours', (['dilated', 'cv2.RETR_TREE', 'cv2.CHAIN_APPROX_SIMPLE'], {}), '(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\n', (2757, 2806), False, 'import cv2\n'), ((4710, 4736), 'cv2.flip', 'cv2.flip', (['self.frame1', '(180)'], {}), '(self.frame1, 180)\n', (4718, 4736), False, 'import cv2\n'), ((6095, 6157), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(x, y)', '(x + w, y + h)', '(0, 255, 255)', '(2)'], {}), '(frame, (x, y), (x + w, y + h), (0, 255, 255), 2)\n', (6108, 6157), False, 'import cv2\n'), ((6162, 6236), 'cv2.putText', 'cv2.putText', (['frame', 'text', '(x + 5, y - 5)', 'self.font', '(1)', '(255, 255, 255)', '(2)'], {}), '(frame, text, (x + 5, y - 5), self.font, 1, (255, 255, 255), 2)\n', (6173, 6236), False, 'import cv2\n'), ((6293, 6317), 'cv2.contourArea', 'cv2.contourArea', (['contour'], {}), '(contour)\n', (6308, 6317), False, 'import cv2\n'), ((3328, 3353), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (3344, 3353), False, 'import cv2\n'), ((4134, 4159), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (4150, 4159), False, 'import cv2\n'), ((4986, 5011), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (5002, 5011), False, 'import cv2\n'), ((5728, 5753), 'cv2.boundingRect', 'cv2.boundingRect', (['contour'], {}), '(contour)\n', (5744, 5753), False, 'import cv2\n'), ((6981, 7008), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'frame'], {}), "('.jpg', frame)\n", (6993, 7008), False, 'import cv2\n'), ((8223, 8238), 'time.sleep', 'time.sleep', (['(0.9)'], {}), '(0.9)\n', (8233, 8238), False, 'import time\n'), ((8667, 8682), 'time.sleep', 'time.sleep', (['(0.9)'], {}), '(0.9)\n', (8677, 8682), False, 'import time\n'), ((8915, 8938), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8936, 8938), False, 'import cv2\n'), ((7139, 7166), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'frame'], {}), "('.jpg', frame)\n", (7151, 7166), False, 'import cv2\n'), ((8471, 8494), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (8492, 8494), False, 'import cv2\n'), ((7296, 7323), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'frame'], {}), "('.jpg', frame)\n", (7308, 7323), False, 'import cv2\n'), ((7442, 7469), 'cv2.imencode', 'cv2.imencode', (['""".jpg"""', 'frame'], {}), "('.jpg', frame)\n", (7454, 7469), False, 'import cv2\n')]
#!/usr/bin/env python3 from __future__ import annotations from typing import Optional, List from lxml import etree from capybara_tw.model.capy_context import CapyContext from capybara_tw.util.xliff_util import Xliff12Tag class CapyContextGroup(object): contexts: List[CapyContext] def __init__(self): self.contexts = [] @classmethod def from_element(cls, elem) -> Optional[CapyContextGroup]: if elem is None: return None obj = cls() obj.contexts = [CapyContext.from_element(e) for e in elem.iterchildren(Xliff12Tag.context)] return obj def to_element(self): root = etree.Element(Xliff12Tag.context_group) for context in self.contexts: root.append(context.to_element()) return root
[ "lxml.etree.Element", "capybara_tw.model.capy_context.CapyContext.from_element" ]
[((653, 692), 'lxml.etree.Element', 'etree.Element', (['Xliff12Tag.context_group'], {}), '(Xliff12Tag.context_group)\n', (666, 692), False, 'from lxml import etree\n'), ((516, 543), 'capybara_tw.model.capy_context.CapyContext.from_element', 'CapyContext.from_element', (['e'], {}), '(e)\n', (540, 543), False, 'from capybara_tw.model.capy_context import CapyContext\n')]
import mimetypes from datetime import datetime import requests import os from loguru import logger class ApiVideo: DATE_TIME_FORMAT = "%Y-%M-%d %H:%M:%S" CHUNK_SIZE = 6000000 # Set up variables for endpoints (we will create the third URL programmatically later) AUTH_URL = "https://ws.api.video/auth/api-key" CREATE_URL = "https://ws.api.video/videos" # Set up headers and payload for first authentication request HEADERS = { "Accept": "application/json", "Content-Type": "application/json" } PAYLOAD = {"apiKey": os.environ["API_VIDEO_API_KEY"]} def __init__(self): self.token = None def get_token(self): # Send the first authentication request to get a token. # The token can be used for one hour with the rest of the API endpoints. response = requests.request("POST", self.AUTH_URL, json=self.PAYLOAD, headers=self.HEADERS) response = response.json() return response.get("access_token") def create_video(self): # Set up headers for authentication - the rest of the endpoints use Bearer authentication. headers = { "Accept": "application/json", "Content-Type": "application/json", "Authorization": self.__auth_token() } # Create the video container payload, you can add more parameters if you like, # check out the docs at https://docs.api.video payload = { "title": f"Tesla Video {datetime.now().strftime(self.DATE_TIME_FORMAT)}", "description": f"Tesla video captured at {datetime.now().strftime(self.DATE_TIME_FORMAT)}" } # Send the request to create the container, and retrieve the videoId from the response. response = requests.request("POST", self.CREATE_URL, json=payload, headers=headers) response = response.json() return response["videoId"] def upload_video(self, file_path: str): # Set up the chunk size. This is how much you want to read from the file every time you grab a new chunk of # your file to read. If you're doing a big upload, the recommendation is 50 - 80 MB (50000000-80000000 bytes). # It's listed at 6MB (6000000 bytes) because then you can try this sample code with a small file just to see how # it will work. The minimum size for a chunk is 5 MB. logger.info(f"Uploading {file_path} to api.video") if self.__is_video(file_path): # This is our chunk reader. This is what gets the next chunk of data ready to send. def read_in_chunks(file_object): while True: data = file_object.read(self.CHUNK_SIZE) if not data: break yield data # Create endpoint to upload video to - you have to add the videoId into the URL video_id = self.create_video() upload_url = f"{self.CREATE_URL}/{video_id}/source" content_size = os.stat(file_path).st_size logger.info(f"{file_path} {content_size / 1024 / 1024} MB") file = open(file_path, "rb") index = 0 headers = {} for chunk in read_in_chunks(file): offset = index + len(chunk) headers["Content-Range"] = "bytes %s-%s/%s" % (index, offset - 1, content_size) headers["Authorization"] = self.__auth_token() index = offset try: file = {"file": chunk} requests.post(upload_url, files=file, headers=headers) except Exception as e: logger.error(e) logger.info(f"Finished uploading {file_path} to api.video") else: logger.debug("Skipping uploading non video file!") def __auth_token(self): if not self.token: self.token = self.get_token() return "Bearer " + self.get_token() @staticmethod def __is_video(file_path): file_type = mimetypes.guess_type(file_path)[0] if file_type is not None and file_type.split("/")[0] == "video": return True else: return False
[ "requests.post", "loguru.logger.debug", "loguru.logger.info", "requests.request", "loguru.logger.error", "datetime.datetime.now", "mimetypes.guess_type", "os.stat" ]
[((847, 932), 'requests.request', 'requests.request', (['"""POST"""', 'self.AUTH_URL'], {'json': 'self.PAYLOAD', 'headers': 'self.HEADERS'}), "('POST', self.AUTH_URL, json=self.PAYLOAD, headers=self.HEADERS\n )\n", (863, 932), False, 'import requests\n'), ((1783, 1855), 'requests.request', 'requests.request', (['"""POST"""', 'self.CREATE_URL'], {'json': 'payload', 'headers': 'headers'}), "('POST', self.CREATE_URL, json=payload, headers=headers)\n", (1799, 1855), False, 'import requests\n'), ((2399, 2449), 'loguru.logger.info', 'logger.info', (['f"""Uploading {file_path} to api.video"""'], {}), "(f'Uploading {file_path} to api.video')\n", (2410, 2449), False, 'from loguru import logger\n'), ((3082, 3141), 'loguru.logger.info', 'logger.info', (['f"""{file_path} {content_size / 1024 / 1024} MB"""'], {}), "(f'{file_path} {content_size / 1024 / 1024} MB')\n", (3093, 3141), False, 'from loguru import logger\n'), ((3739, 3798), 'loguru.logger.info', 'logger.info', (['f"""Finished uploading {file_path} to api.video"""'], {}), "(f'Finished uploading {file_path} to api.video')\n", (3750, 3798), False, 'from loguru import logger\n'), ((3825, 3875), 'loguru.logger.debug', 'logger.debug', (['"""Skipping uploading non video file!"""'], {}), "('Skipping uploading non video file!')\n", (3837, 3875), False, 'from loguru import logger\n'), ((4089, 4120), 'mimetypes.guess_type', 'mimetypes.guess_type', (['file_path'], {}), '(file_path)\n', (4109, 4120), False, 'import mimetypes\n'), ((3042, 3060), 'os.stat', 'os.stat', (['file_path'], {}), '(file_path)\n', (3049, 3060), False, 'import os\n'), ((3596, 3650), 'requests.post', 'requests.post', (['upload_url'], {'files': 'file', 'headers': 'headers'}), '(upload_url, files=file, headers=headers)\n', (3609, 3650), False, 'import requests\n'), ((3710, 3725), 'loguru.logger.error', 'logger.error', (['e'], {}), '(e)\n', (3722, 3725), False, 'from loguru import logger\n'), ((1504, 1518), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1516, 1518), False, 'from datetime import datetime\n'), ((1608, 1622), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1620, 1622), False, 'from datetime import datetime\n')]
#! /usr/bin/env python ################################################################################# # File Name : IPADS_GraphX_Plot_Shuffle.py # Created By : xd # Creation Date : [2014-08-14 21:12] # Last Modified : [2014-08-14 22:09] # Description : report on the shuffle (cross executor communication) ################################################################################# #!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt N = 3 # partition partition = [340400244, 333502667, 222239123, 244820041, 259525698, 255664500, 361246936, 357519858, 238320000, 258216451, 278573962, 280966093, 361764493, 360257019, 249256047, 259805173, 288140314, 288141909] # execution execution = [880857006, 795795372, 942038390, 1444367668, 1575656386, 1581155335, 937547349, 866032921, 1048610600, 1552889437, 1751384300, 1749533720, 1014937184, 972140679, 1278409479, 1670842576, 1952079232, 1951972584] # convert unit partition = map(lambda x: x/1024.0/1024/1024, partition) execution = map(lambda x: x/1024.0/1024/1024, execution) ind = np.arange(N) # the x locations for the groups width = 0.1 # the width of the bars: can also be len(x) sequence labelPartition = ["Partition"] labelExecution = ["Execution"] for i in range(0, 6): if i<len(labelExecution): plt.bar(ind+i*width, execution[i::6], width, color='b', bottom=partition[i::6], label=labelExecution[i]) else: plt.bar(ind+i*width, execution[i::6], width, color='b', bottom=partition[i::6]) if i<len(labelPartition): plt.bar(ind+i*width, partition[i::6], width, color='r', label=labelPartition[i]) else: plt.bar(ind+i*width, partition[i::6], width, color='r') plt.ylabel('Network Shuffle (GB)') plt.xlabel('Number of Partitions') plt.title('Network Shuffle') plt.text(0.1,2.0,'\nEach group from left to right:\nHybrid(100), Hybrid(30),\nEdge2D, Edge1D, Random, CanonicalRandom\n') plt.xticks(ind + 2 * width, ('16', '25', '48')) plt.legend() plt.autoscale(tight=False) #plt.show() plt.savefig('7.png')
[ "matplotlib.pyplot.text", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.legend", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.bar", "matplotlib.pyplot.autoscale", "matplotlib.pyplot.title", "numpy.arange" ]
[((1146, 1158), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (1155, 1158), True, 'import numpy as np\n'), ((1787, 1821), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Network Shuffle (GB)"""'], {}), "('Network Shuffle (GB)')\n", (1797, 1821), True, 'import matplotlib.pyplot as plt\n'), ((1822, 1856), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of Partitions"""'], {}), "('Number of Partitions')\n", (1832, 1856), True, 'import matplotlib.pyplot as plt\n'), ((1857, 1885), 'matplotlib.pyplot.title', 'plt.title', (['"""Network Shuffle"""'], {}), "('Network Shuffle')\n", (1866, 1885), True, 'import matplotlib.pyplot as plt\n'), ((1886, 2018), 'matplotlib.pyplot.text', 'plt.text', (['(0.1)', '(2.0)', '"""\nEach group from left to right:\nHybrid(100), Hybrid(30),\nEdge2D, Edge1D, Random, CanonicalRandom\n"""'], {}), '(0.1, 2.0,\n """\nEach group from left to right:\nHybrid(100), Hybrid(30),\nEdge2D, Edge1D, Random, CanonicalRandom\n"""\n )\n', (1894, 2018), True, 'import matplotlib.pyplot as plt\n'), ((2008, 2055), 'matplotlib.pyplot.xticks', 'plt.xticks', (['(ind + 2 * width)', "('16', '25', '48')"], {}), "(ind + 2 * width, ('16', '25', '48'))\n", (2018, 2055), True, 'import matplotlib.pyplot as plt\n'), ((2056, 2068), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (2066, 2068), True, 'import matplotlib.pyplot as plt\n'), ((2069, 2095), 'matplotlib.pyplot.autoscale', 'plt.autoscale', ([], {'tight': '(False)'}), '(tight=False)\n', (2082, 2095), True, 'import matplotlib.pyplot as plt\n'), ((2109, 2129), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""7.png"""'], {}), "('7.png')\n", (2120, 2129), True, 'import matplotlib.pyplot as plt\n'), ((1389, 1502), 'matplotlib.pyplot.bar', 'plt.bar', (['(ind + i * width)', 'execution[i::6]', 'width'], {'color': '"""b"""', 'bottom': 'partition[i::6]', 'label': 'labelExecution[i]'}), "(ind + i * width, execution[i::6], width, color='b', bottom=\n partition[i::6], label=labelExecution[i])\n", (1396, 1502), True, 'import matplotlib.pyplot as plt\n'), ((1512, 1600), 'matplotlib.pyplot.bar', 'plt.bar', (['(ind + i * width)', 'execution[i::6]', 'width'], {'color': '"""b"""', 'bottom': 'partition[i::6]'}), "(ind + i * width, execution[i::6], width, color='b', bottom=\n partition[i::6])\n", (1519, 1600), True, 'import matplotlib.pyplot as plt\n'), ((1630, 1719), 'matplotlib.pyplot.bar', 'plt.bar', (['(ind + i * width)', 'partition[i::6]', 'width'], {'color': '"""r"""', 'label': 'labelPartition[i]'}), "(ind + i * width, partition[i::6], width, color='r', label=\n labelPartition[i])\n", (1637, 1719), True, 'import matplotlib.pyplot as plt\n'), ((1729, 1788), 'matplotlib.pyplot.bar', 'plt.bar', (['(ind + i * width)', 'partition[i::6]', 'width'], {'color': '"""r"""'}), "(ind + i * width, partition[i::6], width, color='r')\n", (1736, 1788), True, 'import matplotlib.pyplot as plt\n')]
"""Position sensor ================== """ from __future__ import print_function import os import signal import atexit import sys import numpy as np import u3 from fluiddyn.util import time_as_str path_save = os.path.join(os.path.expanduser("~"), ".fluidlab") if not os.path.exists(path_save): os.mkdir(path_save) def sig_handler(signo, frame): sys.exit(0) class PositionSensor: """Communicate with the position sensor (2 output signals A and B in quadrature) via an acquisition card LabJack U3-HV. Parameters ---------- port : {4, integer} Number of the FIO port on the card for A signal. B will be on the next port. Note tat you can't use AIN0-AIN3 which are dedicated for analog inputs. Notes ----- The acquisition card considers these 2 signals as timers. They have to be configured in quadrature (mode 8). The sensor does not provide an absolute position but only a relative displacement. This class save the absolute position in a file save_position.txt. """ def __init__(self, port=4): print("start init position sensor") self.daq_u3 = u3.U3() self.daq_u3.configIO( TimerCounterPinOffset=port, NumberOfTimersEnabled=2, FIOAnalog=0 ) self.daq_u3.getFeedback(u3.Timer0Config(8), u3.Timer1Config(8)) self.meter_per_increment = 0.000105 / 4 try: self._shift_absolute_pos, self._shift_relative_pos = self.load() except IOError: self._shift_relative_pos = 0.0 self._shift_absolute_pos = 0.0 atexit.register(self.save) signal.signal(signal.SIGTERM, sig_handler) print(time_as_str() + ": position sensor initialized.") sys.stdout.flush() def get_value_counter(self): print("get_value_counter") return self.daq_u3.getFeedback(u3.QuadratureInputTimer())[0] def get_relative_position(self): counter = self.get_value_counter() return counter * self.meter_per_increment + self._shift_relative_pos def get_absolute_position(self): counter = self.get_value_counter() return counter * self.meter_per_increment + self._shift_absolute_pos def reset_counter_to_zero(self): self._shift_relative_pos = self.get_relative_position() self._shift_absolute_pos = self.get_absolute_position() self.daq_u3.getFeedback( u3.Timer0(UpdateReset=True), u3.Timer1(UpdateReset=True) ) def set_relative_origin(self, value=0.0): rel_pos = self.get_relative_position() self._shift_relative_pos += value - rel_pos def set_absolute_origin(self, value=0.0): abs_pos = self.get_absolute_position() self._shift_absolute_pos += value - abs_pos def save(self): abs_pos = self.get_absolute_position() rel_pos = self.get_relative_position() print("save positions:", [abs_pos, rel_pos]) data = np.array([abs_pos, rel_pos]) date = time_as_str() path = os.path.join(path_save, "positions_sensor.txt") np.savetxt( path, data, fmt="%.8e", header=date + ": positions (absolute and relative, m)", ) def load(self): path = os.path.join(path_save, "positions_sensor.txt") return np.loadtxt(path) if __name__ == "__main__": sensor = PositionSensor()
[ "u3.Timer1", "os.path.exists", "signal.signal", "u3.Timer1Config", "u3.Timer0", "os.path.join", "u3.Timer0Config", "u3.U3", "fluiddyn.util.time_as_str", "u3.QuadratureInputTimer", "numpy.array", "numpy.loadtxt", "os.mkdir", "numpy.savetxt", "sys.exit", "sys.stdout.flush", "atexit.register", "os.path.expanduser" ]
[((230, 253), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (248, 253), False, 'import os\n'), ((275, 300), 'os.path.exists', 'os.path.exists', (['path_save'], {}), '(path_save)\n', (289, 300), False, 'import os\n'), ((306, 325), 'os.mkdir', 'os.mkdir', (['path_save'], {}), '(path_save)\n', (314, 325), False, 'import os\n'), ((363, 374), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (371, 374), False, 'import sys\n'), ((1161, 1168), 'u3.U3', 'u3.U3', ([], {}), '()\n', (1166, 1168), False, 'import u3\n'), ((1617, 1643), 'atexit.register', 'atexit.register', (['self.save'], {}), '(self.save)\n', (1632, 1643), False, 'import atexit\n'), ((1652, 1694), 'signal.signal', 'signal.signal', (['signal.SIGTERM', 'sig_handler'], {}), '(signal.SIGTERM, sig_handler)\n', (1665, 1694), False, 'import signal\n'), ((1767, 1785), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1783, 1785), False, 'import sys\n'), ((2993, 3021), 'numpy.array', 'np.array', (['[abs_pos, rel_pos]'], {}), '([abs_pos, rel_pos])\n', (3001, 3021), True, 'import numpy as np\n'), ((3037, 3050), 'fluiddyn.util.time_as_str', 'time_as_str', ([], {}), '()\n', (3048, 3050), False, 'from fluiddyn.util import time_as_str\n'), ((3066, 3113), 'os.path.join', 'os.path.join', (['path_save', '"""positions_sensor.txt"""'], {}), "(path_save, 'positions_sensor.txt')\n", (3078, 3113), False, 'import os\n'), ((3123, 3217), 'numpy.savetxt', 'np.savetxt', (['path', 'data'], {'fmt': '"""%.8e"""', 'header': "(date + ': positions (absolute and relative, m)')"}), "(path, data, fmt='%.8e', header=date +\n ': positions (absolute and relative, m)')\n", (3133, 3217), True, 'import numpy as np\n'), ((3309, 3356), 'os.path.join', 'os.path.join', (['path_save', '"""positions_sensor.txt"""'], {}), "(path_save, 'positions_sensor.txt')\n", (3321, 3356), False, 'import os\n'), ((3372, 3388), 'numpy.loadtxt', 'np.loadtxt', (['path'], {}), '(path)\n', (3382, 3388), True, 'import numpy as np\n'), ((1318, 1336), 'u3.Timer0Config', 'u3.Timer0Config', (['(8)'], {}), '(8)\n', (1333, 1336), False, 'import u3\n'), ((1338, 1356), 'u3.Timer1Config', 'u3.Timer1Config', (['(8)'], {}), '(8)\n', (1353, 1356), False, 'import u3\n'), ((2451, 2478), 'u3.Timer0', 'u3.Timer0', ([], {'UpdateReset': '(True)'}), '(UpdateReset=True)\n', (2460, 2478), False, 'import u3\n'), ((2480, 2507), 'u3.Timer1', 'u3.Timer1', ([], {'UpdateReset': '(True)'}), '(UpdateReset=True)\n', (2489, 2507), False, 'import u3\n'), ((1709, 1722), 'fluiddyn.util.time_as_str', 'time_as_str', ([], {}), '()\n', (1720, 1722), False, 'from fluiddyn.util import time_as_str\n'), ((1894, 1919), 'u3.QuadratureInputTimer', 'u3.QuadratureInputTimer', ([], {}), '()\n', (1917, 1919), False, 'import u3\n')]