code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
""" Util functions for ts.py """ import functools import numpy from qcelemental import constants as qcc import automol def reorder_zmatrix_for_redef(zma, a_idx, h_idx, frm_bnd_keys, brk_bnd_keys): """ performs z-matrix reordering operations required to build proper z-matrices for hydrogen migrations """ # initialize zmat components needed later symbols = automol.zmatrix.symbols(zma) # Get the longest chain for all the atoms _, gras = shifted_standard_zmas_graphs([zma], remove_stereo=True) gra = functools.reduce(automol.graph.union, gras) xgr1, = automol.graph.connected_components(gra) chains_dct = automol.graph.atom_longest_chains(xgr1) # find the longest heavy-atom chain for the forming atom form_chain = chains_dct[a_idx] # get the indices used for reordering # get the longest chain from the bond forming atom (not including H) order_idxs = [idx for idx in form_chain if symbols[idx] != 'H' and idx != h_idx] # add all the heavy-atoms not in the chain for i, atom in enumerate(symbols): if i not in order_idxs and atom != 'H': order_idxs.append(i) # add all the hydrogens for i, atom in enumerate(symbols): if i != h_idx and atom == 'H': order_idxs.append(i) # add the migrating atoms order_idxs.append(h_idx) # get the geometry and redorder it according to the order_idxs list geo = [list(x) for x in automol.zmatrix.geometry(zma)] geo2 = tuple(tuple(geo[idx]) for idx in order_idxs) # Convert the reordered geometry into a zma print('init_geo2\n', automol.geom.string(geo2)) zma2 = automol.geom.zmatrix(geo2) # Convert the frm and brk keys order_dct = automol.geom.zmatrix_atom_ordering(geo2) frm_bnd_keys = frozenset(order_dct[x] for x in frm_bnd_keys) brk_bnd_keys = frozenset(frozenset(order_dct[x] for x in keys) for keys in brk_bnd_keys) # brk_bnd_keys = frozenset(order_dct[x] for x in brk_bnd_keys) return zma2, frm_bnd_keys, brk_bnd_keys def include_babs3(frm_bnd, rct2_gra): """Should we include babs3? """ include = False atm_ngbs = automol.graph.atom_neighbor_keys(rct2_gra) is_terminal = False for atm in list(frm_bnd): if atm in atm_ngbs: if len(atm_ngbs[atm]) == 1: is_terminal = True if len(atm_ngbs.keys()) > 2 and is_terminal: include = True return include def shifted_standard_zmas_graphs(zmas, remove_stereo=False): """ Generate zmas and graphs from input zmas shfited and in their standard form """ zmas = list(zmas) conv = functools.partial( automol.convert.zmatrix.graph, remove_stereo=remove_stereo) gras = list(map(conv, zmas)) shift = 0 for idx, (zma, gra) in enumerate(zip(zmas, gras)): zmas[idx] = automol.zmatrix.standard_form(zma, shift=shift) gras[idx] = automol.graph.transform_keys(gra, lambda x: x+shift) shift += len(automol.graph.atoms(gra)) zmas = tuple(zmas) gras = tuple(map(automol.graph.without_dummy_atoms, gras)) return zmas, gras def join_atom_keys(zma, atm1_key): """ returns available join atom keys (if available) and a boolean indicating whether the atoms are in a chain or not """ gra = automol.convert.zmatrix.graph(zma) atm1_chain = ( automol.graph.atom_longest_chains(gra)[atm1_key]) atm1_ngb_keys = ( automol.graph.atom_neighbor_keys(gra)[atm1_key]) if len(atm1_chain) == 1: atm2_key = None atm3_key = None chain = False elif len(atm1_chain) == 2 and len(atm1_ngb_keys) == 1: atm2_key = atm1_chain[1] atm3_key = None chain = False elif len(atm1_chain) == 2: atm2_key = atm1_chain[1] atm3_key = sorted(atm1_ngb_keys - {atm2_key})[0] chain = False else: atm2_key, atm3_key = atm1_chain[1:3] chain = True return atm2_key, atm3_key, chain def reorder_zma_for_radicals(zma, rad_idx): """ Creates a zmatrix where the radical atom is the first entry in the zmatrix """ geo = automol.zmatrix.geometry(zma) geo_swp = automol.geom.swap_coordinates(geo, 0, rad_idx) zma_swp = automol.geom.zmatrix(geo_swp) return zma_swp def shift_vals_from_dummy(vals, zma): """ Shift a set of values using remdummy Shift requires indices be 1-indexed """ type_ = type(vals) dummy_idxs = automol.zmatrix.atom_indices(zma, sym='X') shift_vals = [] for val in vals: shift = 0 for dummy in dummy_idxs: if val >= dummy: shift += 1 shift_vals.append(val+shift) shift_vals = type_(shift_vals) return shift_vals def sort_zma_idxs(rct_zmas, prd_zmas, rxn_idxs): """ zma idxs """ rct_idxs, prd_idxs = rxn_idxs rct_zmas = list(map(rct_zmas.__getitem__, rct_idxs)) prd_zmas = list(map(prd_zmas.__getitem__, prd_idxs)) return rct_zmas, prd_zmas def rct1_x_join(rct1_zma, atm1_key, atm2_key, atm3_key): """ Build the R1+X matrix for bimol reactions """ x_zma = ((('X', (None, None, None), (None, None, None)),), {}) x_join_val_dct = { 'rx': 1. * qcc.conversion_factor('angstrom', 'bohr'), 'ax': 90. * qcc.conversion_factor('degree', 'radian'), 'dx': 180. * qcc.conversion_factor('degree', 'radian'), } x_join_keys = numpy.array( [[atm1_key, atm2_key, atm3_key]]) x_join_names = numpy.array([['rx', 'ax', 'dx']], dtype=numpy.object_) x_join_names[numpy.equal(x_join_keys, None)] = None x_join_name_set = set(numpy.ravel(x_join_names)) - {None} x_join_val_dct = {name: x_join_val_dct[name] for name in x_join_name_set} rct1_x_zma = automol.zmatrix.join( rct1_zma, x_zma, x_join_keys, x_join_names, x_join_val_dct) return rct1_x_zma # def _rct2_x_join(): # """ # """ def rct1x_rct2_join(rct1_x_zma, rct2_zma, dist_name, dist_val, jkey1, jkey2, jkey3, join_vals=(85., 85., 170., 85., 170.)): """ Second join function """ rct2_natms = automol.zmatrix.count(rct2_zma) join_val_dct = { dist_name: dist_val, 'aabs1': 85. * qcc.conversion_factor('degree', 'radian'), 'aabs2': 85. * qcc.conversion_factor('degree', 'radian'), 'babs1': 170. * qcc.conversion_factor('degree', 'radian'), 'babs2': 85. * qcc.conversion_factor('degree', 'radian'), 'babs3': 170. * qcc.conversion_factor('degree', 'radian'), } join_keys = numpy.array( [[jkey1, jkey2, jkey3], [None, jkey1, jkey2], [None, None, jkey1]])[:rct2_natms] join_names = numpy.array( [[dist_name, 'aabs1', 'babs1'], [None, 'aabs2', 'babs2'], [None, None, 'babs3']])[:rct2_natms] join_names[numpy.equal(join_keys, None)] = None join_name_set = set(numpy.ravel(join_names)) - {None} join_val_dct = {name: join_val_dct[name] for name in join_name_set} rct1_x_rct2_zma = automol.zmatrix.join( rct1_x_zma, rct2_zma, join_keys, join_names, join_val_dct) return rct1_x_rct2_zma
[ "numpy.equal", "numpy.array", "automol.graph.atom_neighbor_keys", "automol.zmatrix.symbols", "automol.zmatrix.atom_indices", "automol.geom.zmatrix_atom_ordering", "automol.zmatrix.geometry", "automol.zmatrix.join", "functools.reduce", "automol.geom.swap_coordinates", "automol.zmatrix.standard_form", "automol.zmatrix.count", "automol.geom.string", "automol.graph.transform_keys", "automol.graph.atoms", "automol.graph.connected_components", "automol.geom.zmatrix", "functools.partial", "automol.convert.zmatrix.graph", "numpy.ravel", "qcelemental.constants.conversion_factor", "automol.graph.atom_longest_chains" ]
[((417, 445), 'automol.zmatrix.symbols', 'automol.zmatrix.symbols', (['zma'], {}), '(zma)\n', (440, 445), False, 'import automol\n'), ((573, 616), 'functools.reduce', 'functools.reduce', (['automol.graph.union', 'gras'], {}), '(automol.graph.union, gras)\n', (589, 616), False, 'import functools\n'), ((629, 668), 'automol.graph.connected_components', 'automol.graph.connected_components', (['gra'], {}), '(gra)\n', (663, 668), False, 'import automol\n'), ((686, 725), 'automol.graph.atom_longest_chains', 'automol.graph.atom_longest_chains', (['xgr1'], {}), '(xgr1)\n', (719, 725), False, 'import automol\n'), ((1710, 1736), 'automol.geom.zmatrix', 'automol.geom.zmatrix', (['geo2'], {}), '(geo2)\n', (1730, 1736), False, 'import automol\n'), ((1789, 1829), 'automol.geom.zmatrix_atom_ordering', 'automol.geom.zmatrix_atom_ordering', (['geo2'], {}), '(geo2)\n', (1823, 1829), False, 'import automol\n'), ((2244, 2286), 'automol.graph.atom_neighbor_keys', 'automol.graph.atom_neighbor_keys', (['rct2_gra'], {}), '(rct2_gra)\n', (2276, 2286), False, 'import automol\n'), ((2731, 2808), 'functools.partial', 'functools.partial', (['automol.convert.zmatrix.graph'], {'remove_stereo': 'remove_stereo'}), '(automol.convert.zmatrix.graph, remove_stereo=remove_stereo)\n', (2748, 2808), False, 'import functools\n'), ((3396, 3430), 'automol.convert.zmatrix.graph', 'automol.convert.zmatrix.graph', (['zma'], {}), '(zma)\n', (3425, 3430), False, 'import automol\n'), ((4236, 4265), 'automol.zmatrix.geometry', 'automol.zmatrix.geometry', (['zma'], {}), '(zma)\n', (4260, 4265), False, 'import automol\n'), ((4280, 4326), 'automol.geom.swap_coordinates', 'automol.geom.swap_coordinates', (['geo', '(0)', 'rad_idx'], {}), '(geo, 0, rad_idx)\n', (4309, 4326), False, 'import automol\n'), ((4341, 4370), 'automol.geom.zmatrix', 'automol.geom.zmatrix', (['geo_swp'], {}), '(geo_swp)\n', (4361, 4370), False, 'import automol\n'), ((4569, 4611), 'automol.zmatrix.atom_indices', 'automol.zmatrix.atom_indices', (['zma'], {'sym': '"""X"""'}), "(zma, sym='X')\n", (4597, 4611), False, 'import automol\n'), ((5536, 5581), 'numpy.array', 'numpy.array', (['[[atm1_key, atm2_key, atm3_key]]'], {}), '([[atm1_key, atm2_key, atm3_key]])\n', (5547, 5581), False, 'import numpy\n'), ((5610, 5664), 'numpy.array', 'numpy.array', (["[['rx', 'ax', 'dx']]"], {'dtype': 'numpy.object_'}), "([['rx', 'ax', 'dx']], dtype=numpy.object_)\n", (5621, 5664), False, 'import numpy\n'), ((5932, 6017), 'automol.zmatrix.join', 'automol.zmatrix.join', (['rct1_zma', 'x_zma', 'x_join_keys', 'x_join_names', 'x_join_val_dct'], {}), '(rct1_zma, x_zma, x_join_keys, x_join_names, x_join_val_dct\n )\n', (5952, 6017), False, 'import automol\n'), ((6330, 6361), 'automol.zmatrix.count', 'automol.zmatrix.count', (['rct2_zma'], {}), '(rct2_zma)\n', (6351, 6361), False, 'import automol\n'), ((7245, 7324), 'automol.zmatrix.join', 'automol.zmatrix.join', (['rct1_x_zma', 'rct2_zma', 'join_keys', 'join_names', 'join_val_dct'], {}), '(rct1_x_zma, rct2_zma, join_keys, join_names, join_val_dct)\n', (7265, 7324), False, 'import automol\n'), ((1672, 1697), 'automol.geom.string', 'automol.geom.string', (['geo2'], {}), '(geo2)\n', (1691, 1697), False, 'import automol\n'), ((2940, 2987), 'automol.zmatrix.standard_form', 'automol.zmatrix.standard_form', (['zma'], {'shift': 'shift'}), '(zma, shift=shift)\n', (2969, 2987), False, 'import automol\n'), ((3008, 3062), 'automol.graph.transform_keys', 'automol.graph.transform_keys', (['gra', '(lambda x: x + shift)'], {}), '(gra, lambda x: x + shift)\n', (3036, 3062), False, 'import automol\n'), ((3458, 3496), 'automol.graph.atom_longest_chains', 'automol.graph.atom_longest_chains', (['gra'], {}), '(gra)\n', (3491, 3496), False, 'import automol\n'), ((3538, 3575), 'automol.graph.atom_neighbor_keys', 'automol.graph.atom_neighbor_keys', (['gra'], {}), '(gra)\n', (3570, 3575), False, 'import automol\n'), ((5713, 5743), 'numpy.equal', 'numpy.equal', (['x_join_keys', 'None'], {}), '(x_join_keys, None)\n', (5724, 5743), False, 'import numpy\n'), ((6768, 6847), 'numpy.array', 'numpy.array', (['[[jkey1, jkey2, jkey3], [None, jkey1, jkey2], [None, None, jkey1]]'], {}), '([[jkey1, jkey2, jkey3], [None, jkey1, jkey2], [None, None, jkey1]])\n', (6779, 6847), False, 'import numpy\n'), ((6905, 7002), 'numpy.array', 'numpy.array', (["[[dist_name, 'aabs1', 'babs1'], [None, 'aabs2', 'babs2'], [None, None, 'babs3']\n ]"], {}), "([[dist_name, 'aabs1', 'babs1'], [None, 'aabs2', 'babs2'], [None,\n None, 'babs3']])\n", (6916, 7002), False, 'import numpy\n'), ((7054, 7082), 'numpy.equal', 'numpy.equal', (['join_keys', 'None'], {}), '(join_keys, None)\n', (7065, 7082), False, 'import numpy\n'), ((1511, 1540), 'automol.zmatrix.geometry', 'automol.zmatrix.geometry', (['zma'], {}), '(zma)\n', (1535, 1540), False, 'import automol\n'), ((3082, 3106), 'automol.graph.atoms', 'automol.graph.atoms', (['gra'], {}), '(gra)\n', (3101, 3106), False, 'import automol\n'), ((5341, 5382), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""angstrom"""', '"""bohr"""'], {}), "('angstrom', 'bohr')\n", (5362, 5382), True, 'from qcelemental import constants as qcc\n'), ((5404, 5445), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (5425, 5445), True, 'from qcelemental import constants as qcc\n'), ((5468, 5509), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (5489, 5509), True, 'from qcelemental import constants as qcc\n'), ((5778, 5803), 'numpy.ravel', 'numpy.ravel', (['x_join_names'], {}), '(x_join_names)\n', (5789, 5803), False, 'import numpy\n'), ((6436, 6477), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (6457, 6477), True, 'from qcelemental import constants as qcc\n'), ((6502, 6543), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (6523, 6543), True, 'from qcelemental import constants as qcc\n'), ((6569, 6610), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (6590, 6610), True, 'from qcelemental import constants as qcc\n'), ((6635, 6676), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (6656, 6676), True, 'from qcelemental import constants as qcc\n'), ((6702, 6743), 'qcelemental.constants.conversion_factor', 'qcc.conversion_factor', (['"""degree"""', '"""radian"""'], {}), "('degree', 'radian')\n", (6723, 6743), True, 'from qcelemental import constants as qcc\n'), ((7116, 7139), 'numpy.ravel', 'numpy.ravel', (['join_names'], {}), '(join_names)\n', (7127, 7139), False, 'import numpy\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2015 Ericsson AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json from calvin.utilities.calvinlogger import get_logger _log = get_logger(__name__) _config = None class CalvinConfig(object): """ Handle configuration of Calvin, works similiarly to python's ConfigParser Looks for calvin.conf or .calvin.conf files in: 1. Built-ins 2. Calvin's install directory 3. $HOME 4. all directories between $CWD and $HOME 5. current working directory ($CWD) If $CWD is outside of $HOME, only (1) through (3) are searched. Simple values are overridden by later configs, whereas lists are prepended by later configs. If the environment variable CALVIN_CONFIG_PATH is set, it will be taken as a path to the ONLY configuration file, overriding even built-ins. Finally, wildcard environment variables on the form CALVIN_<SECTION>_<OPTION> may override options read from defaults or config files. <SECTION> must be one of GLOBAL, TESTING, or DEVELOPER, e.g. CALVIN_TESTING_UNITTEST_LOOPS=42 Printing the config object provides a great deal of information about the configuration. """ def __init__(self): super(CalvinConfig, self).__init__() self.config = {} self.wildcards = [] self.override_path = os.environ.get('CALVIN_CONFIG_PATH', None) # Setting CALVIN_CONFIG_PATH takes preceedence over all other configs if self.override_path is not None: config = self.config_at_path(self.override_path) if config is not None: self.set_config(self.config_at_path(self.override_path)) else: self.override_path = None _log.info("CALVIN_CONFIG_PATH does not point to a valid config file.") # This is the normal config procedure if self.override_path is None: # The next line is guaranteed to work, so we have at least a default config self.set_config(self.default_config()) conf_paths = self.config_paths() for p in conf_paths: delta_config = self.config_at_path(p) self.update_config(delta_config) # Check if any options were set on the command line self.set_wildcards() _log.debug("\n{0}\n{1}\n{0}".format("-" * 80, self)) def default_config(self): default = { 'global': { 'comment': 'User definable section', 'actor_paths': ['systemactors'], 'framework': 'twistedimpl', 'storage_type': 'dht', # supports dht, securedht, local, and proxy 'storage_proxy': None, 'capabilities_blacklist': [], 'remote_coder_negotiator': 'static', 'static_coder': 'json', 'metering_timeout': 10.0, 'metering_aggregated_timeout': 3600.0, # Larger or equal to metering_timeout 'media_framework': 'defaultimpl', 'display_plugin': 'stdout_impl', 'transports': ['calvinip'], 'control_proxy': None }, 'testing': { 'comment': 'Test settings', 'unittest_loops': 2 }, 'developer': { 'comment': 'Experimental settings', }, 'security': {} } return default def add_section(self, section): """Add a named section""" self.config.setdefault(section.lower(), {}) def get_in_order(self, option, default=None): v = self.get('ARGUMENTS', option) if v is None: v = self.get('GLOBAL', option) if v is None: v = default return v def get(self, section, option): """Get value of option in named section, if section is None 'global' section is implied.""" try: _section = 'global' if section is None else section.lower() _option = option.lower() return self.config[_section][_option] except KeyError: _log.info("Option {}.{} not set".format(_section, _option )) except Exception as e: _log.error("Error reading option {}.{}: {}".format(_section, _option, e)) return None def set(self, section, option, value): """Set value of option in named section""" _section = self.config[section.lower()] _section[option.lower()] = value def append(self, section, option, value): """Append value (list) of option in named section""" _section = self.config[section.lower()] _option = option.lower() old_value = _section.setdefault(_option, []) if type(old_value) is not list: raise Exception("Can't append, {}:{} is not a list".format(section, option)) if type(value) is not list: raise Exception("Can't append, value is not a list") _section[_option][:0] = value def set_config(self, config): """Set complete config""" for section in config: _section = section.lower() self.add_section(_section) for option, value in config[section].iteritems(): _option = option.lower() self.set(_section, _option, value) def _case_sensitive_keys(self, section, option, conf): """Return the case sensitive keys for 'secton' and 'option' (or None if not present) in 'conf'.""" for _section in conf: if _section.lower() != section.lower(): continue for _option in conf[section]: if _option.lower() == option.lower(): return _section, _option return _section, None return None, None def _expand_actor_paths(self, conf, conf_dir): """Expand $HOME, $USER etc. and resolve './actors' etc. relative to the config file.""" # Get the correct keys to use with the config dict since we allow mixed case, but convert to lower internally _section, _option = self._case_sensitive_keys('global', 'actor_paths', conf) if not _option: return paths = conf[_section][_option] # First handle expansion of env vars expanded = [os.path.expandvars(p) for p in paths] # Normalize and handle './', i.e. relative to config file conf[_section][_option] = [os.path.normpath(os.path.join(conf_dir, p) if p.startswith('./') else p) for p in expanded] def config_at_path(self, path): """Returns config or None if no config at path.""" if os.path.exists(path + '/calvin.conf'): confpath = path + '/calvin.conf' elif os.path.exists(path + '/.calvin.conf'): confpath = path + '/.calvin.conf' elif os.path.exists(path) and os.path.isfile(path): confpath = path else: return None try: with open(confpath) as f: conf = json.loads(f.read()) self._expand_actor_paths(conf, path) except Exception as e: _log.info("Could not read config at '{}': {}".format(confpath, e)) conf = None return conf def update_config(self, delta_config): """ Update config using delta_config. If value in delta_config is list, prepend to value in config, otherwise replace value in config. """ if not delta_config: return for section in delta_config: for option, value in delta_config[section].iteritems(): if option.lower() == 'comment': continue operation = self.append if type(value) is list else self.set operation(section, option, value) def install_location(self): """Return the 'installation dir'.""" this_dir = os.path.dirname(os.path.realpath(__file__)) install_dir = os.path.abspath(os.path.join(this_dir, '..')) return install_dir def config_paths(self): """ Return the install dir and list of paths from $HOME to the current working directory (CWD), unless CWD is not rooted in $HOME in which case only install dir and $HOME is returned. If install dir is in the path from $HOME to CWD it is not included a second time. """ if self.override_path is not None: return [self.override_path] inst_loc = self.install_location() curr_loc = os.getcwd() home = os.environ.get('HOME', curr_loc) paths = [home, inst_loc] if not curr_loc.startswith(home): return paths dpaths = [] while len(curr_loc) > len(home): if curr_loc != inst_loc: dpaths.append(curr_loc) curr_loc, part = curr_loc.rsplit('/', 1) return dpaths + paths def set_wildcards(self): """ Allow environment variables on the form CALVIN_<SECTION>_<OPTION> to override options read from defaults or config files. <SECTION> must be one of GLOBAL, TESTING, or DEVELOPER. """ wildcards = [e for e in os.environ if e.startswith('CALVIN_') and e != 'CALVIN_CONFIG_PATH'] for wildcard in wildcards: parts = wildcard.split('_', 2) if len(parts) < 3 or parts[1] not in ['GLOBAL', 'TESTING', 'DEVELOPER', 'ARGUMENTS']: _log.info("Malformed environment variable {}, skipping.".format(wildcard)) continue section, option = parts[1:3] value = os.environ[wildcard] try: self.set(section, option, json.loads(value)) self.wildcards.append(wildcard) except Exception as e: _log.warning("Value {} of environment variable {} is malformed, skipping.".format(repr(value), wildcard)) def save(self, path, skip_arguments=True): json.dump({k: v for k, v in self.config.iteritems() if k != "arguments" or not skip_arguments}, open(path, 'w')) def __str__(self): d = {} d['config searchpaths'] = self.config_paths(), d['config paths'] = [p for p in self.config_paths() if self.config_at_path(p) is not None], d['config'] = self.config d['CALVIN_CONFIG_PATH'] = self.override_path d['wildcards'] = self.wildcards return self.__class__.__name__ + " : " + json.dumps(d, indent=4, sort_keys=True) def get(): global _config if _config is None: _config = CalvinConfig() return _config if __name__ == "__main__": os.environ['CALVIN_CONFIG_PATH'] = '/Users/eperspe/Source/spikes/ConfigParser' os.environ['CALVIN_TESTING_UNITTEST_LOOPS'] = '44' a = get() print(a) p = a.get('global', 'actor_paths') print(p, type(p)) p = a.get(None, 'framework') print(p, type(p)) p = a.get(None, 'unittest_loops') print(p, type(p)) p = a.get('Testing', 'unittest_loops') print(p, type(p))
[ "os.path.exists", "json.loads", "os.path.expandvars", "json.dumps", "os.environ.get", "os.path.join", "os.getcwd", "os.path.realpath", "os.path.isfile", "calvin.utilities.calvinlogger.get_logger" ]
[((688, 708), 'calvin.utilities.calvinlogger.get_logger', 'get_logger', (['__name__'], {}), '(__name__)\n', (698, 708), False, 'from calvin.utilities.calvinlogger import get_logger\n'), ((1855, 1897), 'os.environ.get', 'os.environ.get', (['"""CALVIN_CONFIG_PATH"""', 'None'], {}), "('CALVIN_CONFIG_PATH', None)\n", (1869, 1897), False, 'import os\n'), ((7212, 7249), 'os.path.exists', 'os.path.exists', (["(path + '/calvin.conf')"], {}), "(path + '/calvin.conf')\n", (7226, 7249), False, 'import os\n'), ((9125, 9136), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (9134, 9136), False, 'import os\n'), ((9152, 9184), 'os.environ.get', 'os.environ.get', (['"""HOME"""', 'curr_loc'], {}), "('HOME', curr_loc)\n", (9166, 9184), False, 'import os\n'), ((6874, 6895), 'os.path.expandvars', 'os.path.expandvars', (['p'], {}), '(p)\n', (6892, 6895), False, 'import os\n'), ((7309, 7347), 'os.path.exists', 'os.path.exists', (["(path + '/.calvin.conf')"], {}), "(path + '/.calvin.conf')\n", (7323, 7347), False, 'import os\n'), ((8517, 8543), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (8533, 8543), False, 'import os\n'), ((8583, 8611), 'os.path.join', 'os.path.join', (['this_dir', '""".."""'], {}), "(this_dir, '..')\n", (8595, 8611), False, 'import os\n'), ((11052, 11091), 'json.dumps', 'json.dumps', (['d'], {'indent': '(4)', 'sort_keys': '(True)'}), '(d, indent=4, sort_keys=True)\n', (11062, 11091), False, 'import json\n'), ((7030, 7055), 'os.path.join', 'os.path.join', (['conf_dir', 'p'], {}), '(conf_dir, p)\n', (7042, 7055), False, 'import os\n'), ((7408, 7428), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (7422, 7428), False, 'import os\n'), ((7433, 7453), 'os.path.isfile', 'os.path.isfile', (['path'], {}), '(path)\n', (7447, 7453), False, 'import os\n'), ((10289, 10306), 'json.loads', 'json.loads', (['value'], {}), '(value)\n', (10299, 10306), False, 'import json\n')]
import random from configuration import config from src.genotype.cdn.genomes.blueprint_genome import BlueprintGenome from src.genotype.cdn.nodes.blueprint_node import BlueprintNode from src.genotype.cdn.nodes.module_node import ModuleNode from src.genotype.neat import mutation_record from src.genotype.neat.genome import Genome from src.genotype.neat.node import Node from src.genotype.neat.operators.mutators.genome_mutator import GenomeMutator from src.genotype.neat.operators.mutators.mutation_report import MutationReport class BlueprintGenomeMutator(GenomeMutator): def mutate(self, genome: BlueprintGenome, mutation_record: mutation_record): """ performs base neat genome mutations, as well as node and genome property mutations as well as all mutations specific to blueprint genomes """ mutation_report = self.mutate_base_genome(genome, mutation_record, add_node_chance=config.blueprint_add_node_chance, add_connection_chance=config.blueprint_add_connection_chance) mutation_report += self.mutate_node_types(genome) mutation_report += self.mutate_species_numbers(genome) mutation_report += self.forget_module_mappings_mutation(genome) mutation_report += self.forget_da_scheme(genome) return genome def mutate_node_types(self, genome:Genome) -> MutationReport: """ chance to change nodes from blueprint nodes to module nodes and visa versa """ mutation_report = MutationReport() if random.random() < config.blueprint_node_type_switch_chance: """chose 1 node to change type""" node: Node = random.choice(list(genome.nodes.values())) if type(node) == BlueprintNode: """change node to a module node""" module_node = ModuleNode(node.id,node.node_type) genome.nodes[module_node.id] = module_node mutation_report += "swapped blueprint node for a module node" if type(node) == ModuleNode: """change node back to a blueprint node""" blueprint_node = BlueprintNode(node.id,node.node_type) genome.nodes[blueprint_node.id] = blueprint_node mutation_report += "swapped module node for a blueprint node" return mutation_report def mutate_species_numbers(self, genome) -> MutationReport: mutation_report = MutationReport() import src.main.singleton as Singleton for node in genome.nodes.values(): if type(node) != BlueprintNode: continue if random.random() < config.blueprint_node_species_switch_chance: possible_species_ids = [spc.id for spc in Singleton.instance.module_population.species] new_species_id = random.choice(possible_species_ids) mutation_report+="changed species number of node " + str(node.id) + " from " + str(node.species_id) \ + " to " + str(new_species_id) node.species_id = new_species_id return mutation_report def forget_module_mappings_mutation(self, genome: BlueprintGenome) -> MutationReport: mutation_report = MutationReport() if config.use_module_retention and random.random()<config.module_map_forget_mutation_chance: choices = list(set([node.species_id for node in genome.get_fully_connected_blueprint_nodes_iter() if node.linked_module_id != -1])) if len(choices) == 0: return mutation_report species_id = random.choice(choices) for node in genome.get_blueprint_nodes_iter(): if node.species_id == species_id: node.linked_module_id = -1 # forget the link. will be sampled fresh next cycle mutation_report += "forgot module mapping for species " + str(species_id) return mutation_report def forget_da_scheme(self, genome: BlueprintGenome) -> MutationReport: mutation_report = MutationReport() if not config.evolve_da_pop: # blueprint tethered da schemes should not be forgotten by their da return mutation_report if random.random() < config.da_link_forget_chance: genome.da = None genome._da_id = -1 mutation_report += "forgot da scheme link" return mutation_report
[ "random.choice", "src.genotype.cdn.nodes.blueprint_node.BlueprintNode", "src.genotype.neat.operators.mutators.mutation_report.MutationReport", "src.genotype.cdn.nodes.module_node.ModuleNode", "random.random" ]
[((1604, 1620), 'src.genotype.neat.operators.mutators.mutation_report.MutationReport', 'MutationReport', ([], {}), '()\n', (1618, 1620), False, 'from src.genotype.neat.operators.mutators.mutation_report import MutationReport\n'), ((2542, 2558), 'src.genotype.neat.operators.mutators.mutation_report.MutationReport', 'MutationReport', ([], {}), '()\n', (2556, 2558), False, 'from src.genotype.neat.operators.mutators.mutation_report import MutationReport\n'), ((3350, 3366), 'src.genotype.neat.operators.mutators.mutation_report.MutationReport', 'MutationReport', ([], {}), '()\n', (3364, 3366), False, 'from src.genotype.neat.operators.mutators.mutation_report import MutationReport\n'), ((4165, 4181), 'src.genotype.neat.operators.mutators.mutation_report.MutationReport', 'MutationReport', ([], {}), '()\n', (4179, 4181), False, 'from src.genotype.neat.operators.mutators.mutation_report import MutationReport\n'), ((1633, 1648), 'random.random', 'random.random', ([], {}), '()\n', (1646, 1648), False, 'import random\n'), ((3712, 3734), 'random.choice', 'random.choice', (['choices'], {}), '(choices)\n', (3725, 3734), False, 'import random\n'), ((4347, 4362), 'random.random', 'random.random', ([], {}), '()\n', (4360, 4362), False, 'import random\n'), ((1932, 1967), 'src.genotype.cdn.nodes.module_node.ModuleNode', 'ModuleNode', (['node.id', 'node.node_type'], {}), '(node.id, node.node_type)\n', (1942, 1967), False, 'from src.genotype.cdn.nodes.module_node import ModuleNode\n'), ((2238, 2276), 'src.genotype.cdn.nodes.blueprint_node.BlueprintNode', 'BlueprintNode', (['node.id', 'node.node_type'], {}), '(node.id, node.node_type)\n', (2251, 2276), False, 'from src.genotype.cdn.nodes.blueprint_node import BlueprintNode\n'), ((2734, 2749), 'random.random', 'random.random', ([], {}), '()\n', (2747, 2749), False, 'import random\n'), ((2934, 2969), 'random.choice', 'random.choice', (['possible_species_ids'], {}), '(possible_species_ids)\n', (2947, 2969), False, 'import random\n'), ((3411, 3426), 'random.random', 'random.random', ([], {}), '()\n', (3424, 3426), False, 'import random\n')]
import setuptools import re with open("README.md", "r") as fh: long_description = fh.read() version = re.search( r"""__version__\s*=\s*[\'"]([^\'"]*)[\'"]""", open("msteams/__init__.py", "r").read(), ).group(1) setuptools.setup( name="msteams", version=version, author="<NAME>", author_email="<EMAIL>", description="A builder/formatter for MS Teams cards", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/johanjeppsson/msteams", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], python_requires=">=2.7", )
[ "setuptools.find_packages" ]
[((547, 573), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (571, 573), False, 'import setuptools\n')]
from django.contrib import admin from django.urls import include, path from django.views.generic import TemplateView from apps.core.views import Autocomplete, Home, Manual, Manual2 urlpatterns = [ path('', Home.as_view(), name='home'), path('manual/', Manual.as_view(), name='manual'), path('manual/2/', Manual2.as_view(), name='manual_2'), path('about/', TemplateView.as_view(template_name="core/about.html"), name='about'), path('tos/', TemplateView.as_view(template_name="core/tos.html"), name='tos'), path('privacy/', TemplateView.as_view(template_name="core/privacy.html"), name='privacy'), path('copyright/', TemplateView.as_view(template_name="core/copyright.html"), name='copyright'), path('autocomplete/<path:scope>/', Autocomplete.as_view(), name='autocomplete'), path('django-admin/', admin.site.urls), path('', include('apps.auth.urls')), path('', include('apps.univ.urls')), path('', include('apps.wiki.urls')), ]
[ "django.urls.include", "apps.core.views.Manual.as_view", "django.views.generic.TemplateView.as_view", "apps.core.views.Home.as_view", "apps.core.views.Autocomplete.as_view", "django.urls.path", "apps.core.views.Manual2.as_view" ]
[((812, 850), 'django.urls.path', 'path', (['"""django-admin/"""', 'admin.site.urls'], {}), "('django-admin/', admin.site.urls)\n", (816, 850), False, 'from django.urls import include, path\n'), ((211, 225), 'apps.core.views.Home.as_view', 'Home.as_view', ([], {}), '()\n', (223, 225), False, 'from apps.core.views import Autocomplete, Home, Manual, Manual2\n'), ((261, 277), 'apps.core.views.Manual.as_view', 'Manual.as_view', ([], {}), '()\n', (275, 277), False, 'from apps.core.views import Autocomplete, Home, Manual, Manual2\n'), ((317, 334), 'apps.core.views.Manual2.as_view', 'Manual2.as_view', ([], {}), '()\n', (332, 334), False, 'from apps.core.views import Autocomplete, Home, Manual, Manual2\n'), ((373, 426), 'django.views.generic.TemplateView.as_view', 'TemplateView.as_view', ([], {'template_name': '"""core/about.html"""'}), "(template_name='core/about.html')\n", (393, 426), False, 'from django.views.generic import TemplateView\n'), ((460, 511), 'django.views.generic.TemplateView.as_view', 'TemplateView.as_view', ([], {'template_name': '"""core/tos.html"""'}), "(template_name='core/tos.html')\n", (480, 511), False, 'from django.views.generic import TemplateView\n'), ((547, 602), 'django.views.generic.TemplateView.as_view', 'TemplateView.as_view', ([], {'template_name': '"""core/privacy.html"""'}), "(template_name='core/privacy.html')\n", (567, 602), False, 'from django.views.generic import TemplateView\n'), ((644, 701), 'django.views.generic.TemplateView.as_view', 'TemplateView.as_view', ([], {'template_name': '"""core/copyright.html"""'}), "(template_name='core/copyright.html')\n", (664, 701), False, 'from django.views.generic import TemplateView\n'), ((761, 783), 'apps.core.views.Autocomplete.as_view', 'Autocomplete.as_view', ([], {}), '()\n', (781, 783), False, 'from apps.core.views import Autocomplete, Home, Manual, Manual2\n'), ((866, 891), 'django.urls.include', 'include', (['"""apps.auth.urls"""'], {}), "('apps.auth.urls')\n", (873, 891), False, 'from django.urls import include, path\n'), ((907, 932), 'django.urls.include', 'include', (['"""apps.univ.urls"""'], {}), "('apps.univ.urls')\n", (914, 932), False, 'from django.urls import include, path\n'), ((948, 973), 'django.urls.include', 'include', (['"""apps.wiki.urls"""'], {}), "('apps.wiki.urls')\n", (955, 973), False, 'from django.urls import include, path\n')]
from itertools import chain from shardingpy.optimizer.insert_optimizer import InsertShardingCondition from shardingpy.routing.types.base import RoutingResult, TableUnit, RoutingTable from shardingpy.rule.base import DataNode from shardingpy.util.types import OrderedSet class StandardRoutingEngine: def __init__(self, sharding_rule, logic_table_name, sharding_conditions): self.sharding_rule = sharding_rule self.logic_table_name = logic_table_name self.sharding_conditions = sharding_conditions def route(self): table_rule = self.sharding_rule.get_table_rule(self.logic_table_name) database_sharding_columns = self.sharding_rule.get_database_sharding_strategy(table_rule).get_sharding_columns() table_sharding_columns = self.sharding_rule.get_table_sharding_strategy(table_rule).get_sharding_columns() routed_data_nodes = list() if not self.sharding_conditions.sharding_conditions: routed_data_nodes.extend(self._route(table_rule, list(), list())) else: for each in self.sharding_conditions.sharding_conditions: database_sharding_values = self._get_sharding_values(database_sharding_columns, each) table_sharding_values = self._get_sharding_values(table_sharding_columns, each) data_nodes = self._route(table_rule, database_sharding_values, table_sharding_values) routed_data_nodes.extend(data_nodes) if isinstance(each, InsertShardingCondition): each.data_nodes.extend(data_nodes) return self._generate_routing_result(list(OrderedSet(routed_data_nodes))) def _route(self, table_rule, database_sharding_values, table_sharding_values): routed_data_sources = self._route_data_sources(table_rule, database_sharding_values) return list(chain(*[self._route_tables(table_rule, e, table_sharding_values) for e in routed_data_sources])) def _route_data_sources(self, table_rule, database_sharding_values): available_target_databases = table_rule.get_actual_data_source_names() if not available_target_databases: return available_target_databases result = list(OrderedSet( self.sharding_rule.get_database_sharding_strategy(table_rule).do_sharding(available_target_databases, database_sharding_values))) assert result, 'no database route info' return result def _route_tables(self, table_rule, routed_data_source, table_sharding_values): available_target_tables = table_rule.get_actual_table_names(routed_data_source) if not table_sharding_values: routed_tables = available_target_tables else: routed_tables = list(OrderedSet( self.sharding_rule.get_table_sharding_strategy.do_sharding(available_target_tables, table_sharding_values))) return [DataNode(routed_data_source, e) for e in routed_tables] def _get_sharding_values(self, sharding_columns, sharding_condition): return [e for e in sharding_condition.sharding_values if self.logic_table_name == e.logic_table_name and e.column_name in sharding_columns] def _generate_routing_result(self, routed_data_nodes): result = RoutingResult() for each in routed_data_nodes: table_unit = TableUnit(each.data_source_name) table_unit.routing_tables.append(RoutingTable(self.logic_table_name, each.table_name)) result.table_units.table_units.append(table_unit) return result
[ "shardingpy.rule.base.DataNode", "shardingpy.routing.types.base.RoutingTable", "shardingpy.routing.types.base.RoutingResult", "shardingpy.routing.types.base.TableUnit", "shardingpy.util.types.OrderedSet" ]
[((3450, 3465), 'shardingpy.routing.types.base.RoutingResult', 'RoutingResult', ([], {}), '()\n', (3463, 3465), False, 'from shardingpy.routing.types.base import RoutingResult, TableUnit, RoutingTable\n'), ((3078, 3109), 'shardingpy.rule.base.DataNode', 'DataNode', (['routed_data_source', 'e'], {}), '(routed_data_source, e)\n', (3086, 3109), False, 'from shardingpy.rule.base import DataNode\n'), ((3530, 3562), 'shardingpy.routing.types.base.TableUnit', 'TableUnit', (['each.data_source_name'], {}), '(each.data_source_name)\n', (3539, 3562), False, 'from shardingpy.routing.types.base import RoutingResult, TableUnit, RoutingTable\n'), ((1640, 1669), 'shardingpy.util.types.OrderedSet', 'OrderedSet', (['routed_data_nodes'], {}), '(routed_data_nodes)\n', (1650, 1669), False, 'from shardingpy.util.types import OrderedSet\n'), ((3608, 3660), 'shardingpy.routing.types.base.RoutingTable', 'RoutingTable', (['self.logic_table_name', 'each.table_name'], {}), '(self.logic_table_name, each.table_name)\n', (3620, 3660), False, 'from shardingpy.routing.types.base import RoutingResult, TableUnit, RoutingTable\n')]
import clr, sys, os, ctypes from os.path import dirname, abspath, join, exists, expanduser # when we implement hosting in Trinity.FFI.Native, we can remove the dependency on pythonnet __dep_packages = [ 'FSharp.Core/4.2.3/lib/netstandard1.6/FSharp.Core.dll', 'GraphEngine.Core/2.0.9328/lib/netstandard2.0/Trinity.Core.dll', 'GraphEngine.Storage.Composite/2.0.9328/lib/netstandard2.0/Trinity.Storage.Composite.dll', 'GraphEngine.Jit/2.0.9328/lib/netstandard2.0/GraphEngine.Jit.dll', 'GraphEngine.FFI/2.0.9328/lib/netstandard2.0/Trinity.FFI.dll', 'Newtonsoft.Json/9.0.1/lib/netstandard1.0/Newtonsoft.Json.dll', 'Microsoft.Extensions.ObjectPool/2.0.0/lib/netstandard2.0/Microsoft.Extensions.ObjectPool.dll', ] __module_dir = dirname(abspath(__file__)) __dep_proj = join(__module_dir, "Dependencies.csproj") __nuget_root = expanduser('~/.nuget/packages') __package_dirs = [join(__nuget_root, f) for f in __dep_packages] if not all([exists(f) for f in __package_dirs]): os.system('dotnet restore "{}"'.format(__dep_proj)) #todo detect os and determine .net rid ge_native_lib = join(__nuget_root, "GraphEngine.Core/2.0.9328/runtimes/win-x64/native/Trinity.dll") ffi_native_lib = join(__nuget_root, "GraphEngine.FFI/2.0.9328/runtimes/win-x64/native/trinity_ffi.dll") sys.path.append(__module_dir) ctypes.cdll.LoadLibrary(ge_native_lib) ctypes.cdll.LoadLibrary(ffi_native_lib) for f in __package_dirs: clr.AddReference(f) __Trinity = __import__('Trinity') # set default storage root to cwd/storage __Trinity.TrinityConfig.StorageRoot = join(os.getcwd(), "storage") # set default logging level __Trinity.TrinityConfig.LoggingLevel = __Trinity.Diagnostics.LogLevel.Info # load default configuration file __Trinity.TrinityConfig.LoadConfig(join(os.getcwd(), "trinity.xml")) # then initialize Trinity __Trinity.Global.Initialize() __ffi = __import__('ffi') __ffi.Init()
[ "os.path.exists", "ctypes.cdll.LoadLibrary", "os.path.join", "os.getcwd", "clr.AddReference", "os.path.abspath", "sys.path.append", "os.path.expanduser" ]
[((798, 839), 'os.path.join', 'join', (['__module_dir', '"""Dependencies.csproj"""'], {}), "(__module_dir, 'Dependencies.csproj')\n", (802, 839), False, 'from os.path import dirname, abspath, join, exists, expanduser\n'), ((857, 888), 'os.path.expanduser', 'expanduser', (['"""~/.nuget/packages"""'], {}), "('~/.nuget/packages')\n", (867, 888), False, 'from os.path import dirname, abspath, join, exists, expanduser\n'), ((1117, 1204), 'os.path.join', 'join', (['__nuget_root', '"""GraphEngine.Core/2.0.9328/runtimes/win-x64/native/Trinity.dll"""'], {}), "(__nuget_root,\n 'GraphEngine.Core/2.0.9328/runtimes/win-x64/native/Trinity.dll')\n", (1121, 1204), False, 'from os.path import dirname, abspath, join, exists, expanduser\n'), ((1218, 1308), 'os.path.join', 'join', (['__nuget_root', '"""GraphEngine.FFI/2.0.9328/runtimes/win-x64/native/trinity_ffi.dll"""'], {}), "(__nuget_root,\n 'GraphEngine.FFI/2.0.9328/runtimes/win-x64/native/trinity_ffi.dll')\n", (1222, 1308), False, 'from os.path import dirname, abspath, join, exists, expanduser\n'), ((1306, 1335), 'sys.path.append', 'sys.path.append', (['__module_dir'], {}), '(__module_dir)\n', (1321, 1335), False, 'import clr, sys, os, ctypes\n'), ((1336, 1374), 'ctypes.cdll.LoadLibrary', 'ctypes.cdll.LoadLibrary', (['ge_native_lib'], {}), '(ge_native_lib)\n', (1359, 1374), False, 'import clr, sys, os, ctypes\n'), ((1375, 1414), 'ctypes.cdll.LoadLibrary', 'ctypes.cdll.LoadLibrary', (['ffi_native_lib'], {}), '(ffi_native_lib)\n', (1398, 1414), False, 'import clr, sys, os, ctypes\n'), ((762, 779), 'os.path.abspath', 'abspath', (['__file__'], {}), '(__file__)\n', (769, 779), False, 'from os.path import dirname, abspath, join, exists, expanduser\n'), ((907, 928), 'os.path.join', 'join', (['__nuget_root', 'f'], {}), '(__nuget_root, f)\n', (911, 928), False, 'from os.path import dirname, abspath, join, exists, expanduser\n'), ((1445, 1464), 'clr.AddReference', 'clr.AddReference', (['f'], {}), '(f)\n', (1461, 1464), False, 'import clr, sys, os, ctypes\n'), ((1585, 1596), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1594, 1596), False, 'import clr, sys, os, ctypes\n'), ((1786, 1797), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1795, 1797), False, 'import clr, sys, os, ctypes\n'), ((967, 976), 'os.path.exists', 'exists', (['f'], {}), '(f)\n', (973, 976), False, 'from os.path import dirname, abspath, join, exists, expanduser\n')]
import discord import psutil import os from utils import default from discord.ext import commands class Información(commands.Cog): def __init__(self, bot): self.bot = bot self.config = default.config() self.name = self.config['name'] self.version = self.config['version'] self.guild = self.config['guild'] self.process = psutil.Process(os.getpid()) @commands.command(aliases=['stats', 'botinfo']) async def about(self, ctx): ramUsage = self.process.memory_full_info().rss / 1024**2 before_ws = int(round(self.bot.latency * 1000, 1)) embed = discord.Embed(color=self.config['blurple']) embed.set_thumbnail(url=ctx.bot.user.avatar_url) embed.add_field( name='Desarrollador', value=', '.join([str(self.bot.get_user(x)) for x in self.config['owners']]), inline=True ) embed.add_field(name='Usuarios', value=f'{len(ctx.bot.users)}', inline=True) embed.add_field(name='Emojis', value=f'{len(ctx.bot.emojis)}', inline=True) embed.add_field(name='Librería', value=f'discord.py', inline=True) embed.add_field(name='Comandos', value=len([x.name for x in self.bot.commands]), inline=True) embed.add_field(name='Memoria', value=f'{ramUsage:.2f} MB / 16GB', inline=True) embed.add_field(name='Latencia', value=f'Websocket: {before_ws}ms') await ctx.send(content='ℹ Sobre **{0}** | **{1}**'.format(self.name, self.version), embed=embed, mention_author=False) def setup(bot): bot.add_cog(Información(bot))
[ "utils.default.config", "discord.Embed", "discord.ext.commands.command", "os.getpid" ]
[((409, 455), 'discord.ext.commands.command', 'commands.command', ([], {'aliases': "['stats', 'botinfo']"}), "(aliases=['stats', 'botinfo'])\n", (425, 455), False, 'from discord.ext import commands\n'), ((207, 223), 'utils.default.config', 'default.config', ([], {}), '()\n', (221, 223), False, 'from utils import default\n'), ((629, 672), 'discord.Embed', 'discord.Embed', ([], {'color': "self.config['blurple']"}), "(color=self.config['blurple'])\n", (642, 672), False, 'import discord\n'), ((390, 401), 'os.getpid', 'os.getpid', ([], {}), '()\n', (399, 401), False, 'import os\n')]
from jinja2 import FileSystemLoader from oacensus.report import Report import jinja2 import os import shutil cur_dir = os.path.abspath(os.path.dirname(__file__)) class JinjaReport(Report): """ Base class for reports which use jinja templating. """ _settings = { 'template-file' : ("Path to template file.", None), 'output-dir' : ("Directory to output report. Should start with 'report-' prefix", None), 'output-file' : ("Name of report.", "output.html"), 'template-dirs' : ( "Locations to look for template files.", ['.', os.path.join(cur_dir, 'templates')] ) } def file_in_output_dir(self, filename): return os.path.join(self.setting('output-dir'), filename) def template_data(self): """ Return a dictionary whose keys will be available in the jinja template. """ return { 'foo' : 123 } def process_jinja_template(self): dirs = self.setting('template-dirs') loader = FileSystemLoader(dirs) env = jinja2.Environment(loader=loader) template = env.get_template(self.setting('template-file')) template_data = self.template_data() output_filepath = os.path.join(self.setting('output-dir'), self.setting('output-file')) template.stream(template_data).dump(output_filepath, encoding="utf-8") def setup_output_dir(self): assert self.setting('output-dir'), "output-dir setting must be provided" assert self.setting('output-dir').startswith('report-'), "output-dir should start with report- prefix" shutil.rmtree(self.setting('output-dir'), ignore_errors=True) os.makedirs(self.setting('output-dir')) def run(self): self.setup_output_dir() self.process_jinja_template()
[ "os.path.dirname", "os.path.join", "jinja2.FileSystemLoader", "jinja2.Environment" ]
[((136, 161), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (151, 161), False, 'import os\n'), ((1097, 1119), 'jinja2.FileSystemLoader', 'FileSystemLoader', (['dirs'], {}), '(dirs)\n', (1113, 1119), False, 'from jinja2 import FileSystemLoader\n'), ((1134, 1167), 'jinja2.Environment', 'jinja2.Environment', ([], {'loader': 'loader'}), '(loader=loader)\n', (1152, 1167), False, 'import jinja2\n'), ((620, 654), 'os.path.join', 'os.path.join', (['cur_dir', '"""templates"""'], {}), "(cur_dir, 'templates')\n", (632, 654), False, 'import os\n')]
from police_lineups.singletons import Configuration, DB from .lineup_people import DbLineupPerson from .lineups import DbLineup from .people import DbPerson from .users import DbUser def init_current_db(): with DB().current as database: database.create_tables([DbUser, DbPerson, DbLineup, DbLineupPerson]) init_users() def init_users(): if len(DbUser) == 0: root_user = DbUser( is_admin=True, username=Configuration().root_user.username, email=Configuration().root_user.default_email, full_name=Configuration().root_user.default_full_name, password=Configuration().root_user.default_password ) root_user.save()
[ "police_lineups.singletons.DB", "police_lineups.singletons.Configuration" ]
[((218, 222), 'police_lineups.singletons.DB', 'DB', ([], {}), '()\n', (220, 222), False, 'from police_lineups.singletons import Configuration, DB\n'), ((460, 475), 'police_lineups.singletons.Configuration', 'Configuration', ([], {}), '()\n', (473, 475), False, 'from police_lineups.singletons import Configuration, DB\n'), ((514, 529), 'police_lineups.singletons.Configuration', 'Configuration', ([], {}), '()\n', (527, 529), False, 'from police_lineups.singletons import Configuration, DB\n'), ((577, 592), 'police_lineups.singletons.Configuration', 'Configuration', ([], {}), '()\n', (590, 592), False, 'from police_lineups.singletons import Configuration, DB\n'), ((643, 658), 'police_lineups.singletons.Configuration', 'Configuration', ([], {}), '()\n', (656, 658), False, 'from police_lineups.singletons import Configuration, DB\n')]
from keboola import docker cfg = docker.Config('/data/') params = cfg.get_parameters() print(params['object'])
[ "keboola.docker.Config" ]
[((34, 57), 'keboola.docker.Config', 'docker.Config', (['"""/data/"""'], {}), "('/data/')\n", (47, 57), False, 'from keboola import docker\n')]
import sys import pandas as pd from sqlalchemy import create_engine def load_data(messages_filepath, categories_filepath): ''' A function to load our two datasets, returning a merged dataframe :param messages_filepath: a string with the filepath to the file with the messages. This file has to be a CSV, and to be in the same folder as our script :param categories_filepath: a string with the filepath to the file with the categories of each message. This file has to be a CSV, and to be in the same folder as our script :return: tw ''' messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) df = messages.merge(categories, on ='id', how='inner') return df def clean_data(df): ''' A function to clean our merged dataframe. :param df: a merged dataframe of messages and the associated categories :return: the same dataframe, cleaned ''' # We isolate the categories from the categories column categories = df.categories.str.split(';', expand=True) # We use the first row for column names row = categories.iloc[0] category_colnames = row.apply(lambda x: x[:-2]) categories.columns = category_colnames # We only keep the 0 and 1 values for column in categories: categories[column] = categories[column].str[-1] categories[column] = categories[column].astype(int) # We replace the categories column from our original dataframe with these new columns df.drop('categories', axis=1, inplace=True) df = pd.concat([df, categories], axis=1) # We finish our cleaning by removing duplicates # and rows where the "related" category is 2 (values should only be 0 and 1 df.drop_duplicates(inplace=True) df = df.loc[df.related != 2,:] return(df) def save_data(df, database_filename): ''' Stores the dataframe to a SQLLite database :param df: the dataframe which we want to save to a SQLLite database :param database_filename: the name of the database where we want to store our dataframe :return: None ''' engine = create_engine('sqlite:///'+ database_filename) df.to_sql('messages_categorized', engine, index=False) def main(): if len(sys.argv) == 4: messages_filepath, categories_filepath, database_filepath = sys.argv[1:] print('Loading data...\n MESSAGES: {}\n CATEGORIES: {}' .format(messages_filepath, categories_filepath)) df = load_data(messages_filepath, categories_filepath) print('Cleaning data...') df = clean_data(df) print('Saving data...\n DATABASE: {}'.format(database_filepath)) save_data(df, database_filepath) print('Cleaned data saved to database!') else: print('Please provide the filepaths of the messages and categories '\ 'datasets as the first and second argument respectively, as '\ 'well as the filepath of the database to save the cleaned data '\ 'to as the third argument. \n\nExample: python process_data.py '\ 'disaster_messages.csv disaster_categories.csv '\ 'DisasterResponse.db') if __name__ == '__main__': main()
[ "sqlalchemy.create_engine", "pandas.concat", "pandas.read_csv" ]
[((588, 618), 'pandas.read_csv', 'pd.read_csv', (['messages_filepath'], {}), '(messages_filepath)\n', (599, 618), True, 'import pandas as pd\n'), ((636, 668), 'pandas.read_csv', 'pd.read_csv', (['categories_filepath'], {}), '(categories_filepath)\n', (647, 668), True, 'import pandas as pd\n'), ((1566, 1601), 'pandas.concat', 'pd.concat', (['[df, categories]'], {'axis': '(1)'}), '([df, categories], axis=1)\n', (1575, 1601), True, 'import pandas as pd\n'), ((2124, 2171), 'sqlalchemy.create_engine', 'create_engine', (["('sqlite:///' + database_filename)"], {}), "('sqlite:///' + database_filename)\n", (2137, 2171), False, 'from sqlalchemy import create_engine\n')]
import numpy as np import pandas as pd from sklearn.metrics.pairwise import cosine_similarity from textblob.blob import TextBlob from sklearn.feature_extraction.text import TfidfVectorizer def relevance_score(tweet: str, max_score: float) -> float: """Computes the 'relevance' of a tweet. Also uses the TextBlob subjectitvity measure to make subjective tweets more relevant. We don't want to highlight news articles, for example Args: tweets (str): Tweet (cleaned) Returns: float: Relevance (social importance of the tweets list) """ return ((tweet['likes']+tweet['rts'])*tweet['foll']/(max_score))*( (TextBlob(tweet['text']).subjectivity)) def representatives(tweets: list, n: int, tfidf: TfidfVectorizer) -> list: """Returns the representative tweets from a list of them, They are selected according to their cosine_similarity to every other tweet. The ones with the most cosine_similarity to every other tweet are selected (thus, they are the ones that held the most similarity to the whole group, the most representatives) Args: tweets (list): list of tweets (cleaned) n (int): number of representatives to keep in the returned list tfidf (TfidfVectorizer): TF-IDF vectorizer Returns: list: representatives """ tfidf_tweets = tfidf.transform([t['text'] for t in tweets]) tcosine = [(tweets[i], sum([cosine_similarity(tfidf_tweets[i], t2) for t2 in tfidf_tweets])) for i in range(0, len(tweets))] return get_top_tweets(tcosine, n=n) def get_top_tweets(tweets_w_score: list, n: int) -> list: """Get top n players by score Args: tweets_w_score (list): List of tuples (tweet(str), score(float)) n (int): Number of tweets to keep as "top" tweets according to their score (descending order) Returns: list: list of n top scored tweets """ indexes = [(i, e[1]) for i, e in enumerate(tweets_w_score)] top = sorted(indexes, key=lambda x: x[1], reverse=True)[:n] return list(np.array( [t[0] for t in tweets_w_score] )[np.array([ind[0] for ind in top])]) def max_relevance(tweets: list) -> float: """Computes the maximum 'relevance' of tweets Args: tweets (list): Tweets (cleaned) Returns: float: Max possible relevance (social importance of the tweets list) """ df = pd.DataFrame(list(tweets), columns=['text', 'rts', 'likes', 'foll']) return (max(df['likes'])+max(df['rts']))*max(df['foll'])
[ "numpy.array", "textblob.blob.TextBlob", "sklearn.metrics.pairwise.cosine_similarity" ]
[((658, 681), 'textblob.blob.TextBlob', 'TextBlob', (["tweet['text']"], {}), "(tweet['text'])\n", (666, 681), False, 'from textblob.blob import TextBlob\n'), ((2137, 2177), 'numpy.array', 'np.array', (['[t[0] for t in tweets_w_score]'], {}), '([t[0] for t in tweets_w_score])\n', (2145, 2177), True, 'import numpy as np\n'), ((2216, 2249), 'numpy.array', 'np.array', (['[ind[0] for ind in top]'], {}), '([ind[0] for ind in top])\n', (2224, 2249), True, 'import numpy as np\n'), ((1438, 1476), 'sklearn.metrics.pairwise.cosine_similarity', 'cosine_similarity', (['tfidf_tweets[i]', 't2'], {}), '(tfidf_tweets[i], t2)\n', (1455, 1476), False, 'from sklearn.metrics.pairwise import cosine_similarity\n')]
import glob import json from pprint import pprint # For merging data retrieved from API with data from dataset dumped as json if __name__ == '__main__' : raw_data_file = "../asinReviewDict.json" asin_product_dict = json.load ( open ( raw_data_file ) ) directory = "../" file_prefix = "partial" files = glob.glob( directory + "partial-*.json" ) for name in files : asin_new_data = json.load ( open ( name ) ) for asin in asin_new_data : # pprint( asin_new_data[asin] ) description = asin_new_data [ asin ]['description'] salesrank_2018 = asin_new_data [ asin ]['salesrank_2018'] asin_product_dict[ asin ][ 'description' ] = description asin_product_dict[ asin ][ 'salesrank_2018' ] = salesrank_2018 incomplete_asins = [] for asin in asin_product_dict : if 'salesrank_2018' not in asin_product_dict[asin] : # pprint(asin_product_dict[asin]) incomplete_asins.append( asin ) for asin in incomplete_asins : pprint("deleting asin " + asin ) del asin_product_dict[ asin ] pprint( "Final list length {}".format(len(asin_product_dict) )) with open('../asinReviewDict_v2_modified.json', 'w') as outfile: json.dump(asin_product_dict, outfile)
[ "json.dump", "pprint.pprint", "glob.glob" ]
[((327, 366), 'glob.glob', 'glob.glob', (["(directory + 'partial-*.json')"], {}), "(directory + 'partial-*.json')\n", (336, 366), False, 'import glob\n'), ((1061, 1092), 'pprint.pprint', 'pprint', (["('deleting asin ' + asin)"], {}), "('deleting asin ' + asin)\n", (1067, 1092), False, 'from pprint import pprint\n'), ((1279, 1316), 'json.dump', 'json.dump', (['asin_product_dict', 'outfile'], {}), '(asin_product_dict, outfile)\n', (1288, 1316), False, 'import json\n')]
""" Attitude discipline for CADRE. """ from six.moves import range import numpy as np from openmdao.api import ExplicitComponent from CADRE.kinematics import computepositionrotd, computepositionrotdjacobian class Attitude_Angular(ExplicitComponent): """ Calculates angular velocity vector from the satellite's orientation matrix and its derivative. """ def __init__(self, n=2): super(Attitude_Angular, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('O_BI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to Earth-centered ' 'inertial frame over time') self.add_input('Odot_BI', np.zeros((n, 3, 3)), units=None, desc='First derivative of O_BI over time') # Outputs self.add_output('w_B', np.zeros((n, 3)), units='1/s', desc='Angular velocity vector in body-fixed frame over time') self.dw_dOdot = np.zeros((n, 3, 3, 3)) self.dw_dO = np.zeros((n, 3, 3, 3)) row = np.array([1, 1, 1, 2, 2, 2, 0, 0, 0]) col = np.array([6, 7, 8, 0, 1, 2, 3, 4, 5]) rows = np.tile(row, n) + np.repeat(3*np.arange(n), 9) cols = np.tile(col, n) + np.repeat(9*np.arange(n), 9) self.declare_partials('w_B', 'O_BI', rows=rows, cols=cols) self.dw_dOdot = np.zeros((n, 3, 3, 3)) self.dw_dO = np.zeros((n, 3, 3, 3)) row = np.array([2, 2, 2, 0, 0, 0, 1, 1, 1]) col = np.array([3, 4, 5, 6, 7, 8, 0, 1, 2]) rows = np.tile(row, n) + np.repeat(3*np.arange(n), 9) cols = np.tile(col, n) + np.repeat(9*np.arange(n), 9) self.declare_partials('w_B', 'Odot_BI', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ O_BI = inputs['O_BI'] Odot_BI = inputs['Odot_BI'] w_B = outputs['w_B'] w_B[:, 0] = np.einsum("ij,ij->i", Odot_BI[:, 2, :], O_BI[:, 1, :]) w_B[:, 1] = np.einsum("ij,ij->i", Odot_BI[:, 0, :], O_BI[:, 2, :]) w_B[:, 2] = np.einsum("ij,ij->i", Odot_BI[:, 1, :], O_BI[:, 0, :]) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ O_BI = inputs['O_BI'] Odot_BI = inputs['Odot_BI'] partials['w_B', 'O_BI'] = Odot_BI.flatten() partials['w_B', 'Odot_BI'] = O_BI.flatten() class Attitude_AngularRates(ExplicitComponent): """ Calculates time derivative of angular velocity vector. This time derivative is a central difference at interior time points, and forward/backward at the start and end time. """ def __init__(self, n=2, h=28.8): super(Attitude_AngularRates, self).__init__() self.n = n self.h = h def setup(self): n = self.n h = self.h # Inputs self.add_input('w_B', np.zeros((n, 3)), units='1/s', desc='Angular velocity vector in body-fixed frame over time') # Outputs self.add_output('wdot_B', np.zeros((n, 3)), units='1/s**2', desc='Time derivative of w_B over time') # Upper and Lower Diag row1 = np.arange(3*(n-1)) col1 = row1 + 3 val1a = 0.5 * np.ones(3*(n-1)) val1a[:3] = 1.0 val1b = 0.5 * np.ones(3*(n-1)) val1b[-3:] = 1.0 val1a *= (1.0 / h) val1b *= (1.0 / h) # Central Diag row_col2 = np.array((0, 1, 2, 3*n-3, 3*n-2, 3*n-1)) val2 = np.array((-1.0, -1.0, -1.0, 1.0, 1.0, 1.0)) * (1.0 / h) rows = np.concatenate((row1, col1, row_col2)) cols = np.concatenate((col1, row1, row_col2)) val = np.concatenate((val1a, -val1b, val2)) self.declare_partials('wdot_B', 'w_B', rows=rows, cols=cols, val=val) def compute(self, inputs, outputs): """ Calculate outputs. """ h = self.h w_B = inputs['w_B'] wdot_B = outputs['wdot_B'] wdot_B[0, :] = w_B[1, :] - w_B[0, :] wdot_B[1:-1, :] = (w_B[2:, :] - w_B[:-2, :]) * 0.5 wdot_B[-1, :] = w_B[-1, :] - w_B[-2, :] wdot_B *= 1.0 / h class Attitude_Attitude(ExplicitComponent): """ Coordinate transformation from the inertial plane to the rolled (forward facing) plane. """ dvx_dv = np.zeros((3, 3, 3)) dvx_dv[0, :, 0] = (0., 0., 0.) dvx_dv[1, :, 0] = (0., 0., -1.) dvx_dv[2, :, 0] = (0., 1., 0.) dvx_dv[0, :, 1] = (0., 0., 1.) dvx_dv[1, :, 1] = (0., 0., 0.) dvx_dv[2, :, 1] = (-1., 0., 0.) dvx_dv[0, :, 2] = (0., -1., 0.) dvx_dv[1, :, 2] = (1., 0., 0.) dvx_dv[2, :, 2] = (0., 0., 0.) def __init__(self, n=2): super(Attitude_Attitude, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('r_e2b_I', np.zeros((n, 6)), units=None, desc='Position and velocity vector from earth to satellite in ' 'Earth-centered inertial frame over time') # Outputs self.add_output('O_RI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from rolled body-fixed frame to ' 'Earth-centered inertial frame over time') row1 = np.repeat(np.arange(3), 3) col1 = np.tile(np.arange(3), 3) col2 = col1 + 3 row3 = row1 + 3 row5 = row1 + 6 row = np.concatenate([row1, row1, row3, row3, row5]) col = np.concatenate([col1, col2, col1, col2, col2]) rows = np.tile(row, n) + np.repeat(9*np.arange(n), 45) cols = np.tile(col, n) + np.repeat(6*np.arange(n), 45) self.declare_partials('O_RI', 'r_e2b_I', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ r_e2b_I = inputs['r_e2b_I'] O_RI = outputs['O_RI'] O_RI[:] = np.zeros(O_RI.shape) for i in range(0, self.n): r = r_e2b_I[i, 0:3] v = r_e2b_I[i, 3:] normr = np.sqrt(np.dot(r, r)) normv = np.sqrt(np.dot(v, v)) # Prevent overflow if normr < 1e-10: normr = 1e-10 if normv < 1e-10: normv = 1e-10 r = r / normr v = v / normv vx = np.zeros((3, 3)) vx[0, :] = (0., -v[2], v[1]) vx[1, :] = (v[2], 0., -v[0]) vx[2, :] = (-v[1], v[0], 0.) iB = np.dot(vx, r) jB = -np.dot(vx, iB) O_RI[i, 0, :] = iB O_RI[i, 1, :] = jB O_RI[i, 2, :] = -v def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ r_e2b_I = inputs['r_e2b_I'] diB_dv = np.zeros((3, 3)) djB_dv = np.zeros((3, 3)) for i in range(0, self.n): r = r_e2b_I[i, 0:3] v = r_e2b_I[i, 3:] normr = np.sqrt(np.dot(r, r)) normv = np.sqrt(np.dot(v, v)) # Prevent overflow if normr < 1e-10: normr = 1e-10 if normv < 1e-10: normv = 1e-10 r = r / normr v = v / normv dr_dr = np.zeros((3, 3)) dv_dv = np.zeros((3, 3)) for k in range(0, 3): dr_dr[k, k] += 1.0 / normr dv_dv[k, k] += 1.0 / normv dr_dr[:, k] -= r * r_e2b_I[i, k] / normr ** 2 dv_dv[:, k] -= v * r_e2b_I[i, 3 + k] / normv ** 2 vx = np.zeros((3, 3)) vx[0, :] = (0., -v[2], v[1]) vx[1, :] = (v[2], 0., -v[0]) vx[2, :] = (-v[1], v[0], 0.) iB = np.dot(vx, r) diB_dr = vx diB_dv[:, 0] = np.dot(self.dvx_dv[:, :, 0], r) diB_dv[:, 1] = np.dot(self.dvx_dv[:, :, 1], r) diB_dv[:, 2] = np.dot(self.dvx_dv[:, :, 2], r) djB_diB = -vx djB_dv[:, 0] = -np.dot(self.dvx_dv[:, :, 0], iB) djB_dv[:, 1] = -np.dot(self.dvx_dv[:, :, 1], iB) djB_dv[:, 2] = -np.dot(self.dvx_dv[:, :, 2], iB) n0 = i*45 partials['O_RI', 'r_e2b_I'][n0:n0+9] = np.dot(diB_dr, dr_dr).flatten() partials['O_RI', 'r_e2b_I'][n0+9:n0+18] = np.dot(diB_dv, dv_dv).flatten() partials['O_RI', 'r_e2b_I'][n0+18:n0+27] = np.dot(np.dot(djB_diB, diB_dr), dr_dr).flatten() partials['O_RI', 'r_e2b_I'][n0+27:n0+36] = np.dot(np.dot(djB_diB, diB_dv) + djB_dv, dv_dv).flatten() partials['O_RI', 'r_e2b_I'][n0+36:n0+45] = -dv_dv.flatten() class Attitude_Roll(ExplicitComponent): """ Calculates the body-fixed orientation matrix. """ def __init__(self, n=2): super(Attitude_Roll, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('Gamma', np.zeros(n), units='rad', desc='Satellite roll angle over time') # Outputs self.add_output('O_BR', np.zeros((n, 3, 3)), units=None,\ desc='Rotation matrix from body-fixed frame to rolled ' 'body-fixed\ frame over time') rows = np.tile(9*np.arange(n), 4) + np.repeat(np.array([0, 1, 3, 4]), n) cols = np.tile(np.arange(n), 4) self.declare_partials('O_BR', 'Gamma', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ Gamma = inputs['Gamma'] O_BR = outputs['O_BR'] O_BR[:] = np.zeros((self.n, 3, 3)) O_BR[:, 0, 0] = np.cos(Gamma) O_BR[:, 0, 1] = np.sin(Gamma) O_BR[:, 1, 0] = -O_BR[:, 0, 1] O_BR[:, 1, 1] = O_BR[:, 0, 0] O_BR[:, 2, 2] = np.ones(self.n) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ n = self.n Gamma = inputs['Gamma'] sin_gam = np.sin(Gamma) cos_gam = np.cos(Gamma) partials['O_BR', 'Gamma'][:n] = -sin_gam partials['O_BR', 'Gamma'][n:2*n] = cos_gam partials['O_BR', 'Gamma'][2*n:3*n] = -cos_gam partials['O_BR', 'Gamma'][3*n:4*n] = -sin_gam class Attitude_RotationMtx(ExplicitComponent): """ Multiplies transformations to produce the orientation matrix of the body frame with respect to inertial. """ def __init__(self, n=2): super(Attitude_RotationMtx, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('O_BR', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to rolled ' 'body-fixed frame over time') self.add_input('O_RI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from rolled body-fixed ' 'frame to Earth-centered inertial frame over time') # Outputs self.add_output('O_BI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to ' 'Earth-centered inertial frame over time') row = np.repeat(np.arange(3), 3) row1 = np.tile(row, n) + np.repeat(9*np.arange(n), 9) col = np.tile(np.arange(3), 3) col1 = np.tile(col, n) + np.repeat(9*np.arange(n), 9) # Transpose here instead of in compute_partials rows = np.concatenate([col1, col1+3, col1+6]) cols = np.concatenate([row1, row1+3, row1+6]) self.declare_partials('O_BI', 'O_BR', rows=rows, cols=cols) row = np.repeat(3*np.arange(3), 3) row1 = np.tile(row, n) + np.repeat(9*np.arange(n), 9) col = np.tile(np.array([0, 3, 6]), 3) col1 = np.tile(col, n) + np.repeat(9*np.arange(n), 9) rows = np.concatenate([row1, row1+1, row1+2]) cols = np.concatenate([col1, col1+1, col1+2]) self.declare_partials('O_BI', 'O_RI', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ O_BR = inputs['O_BR'] O_RI = inputs['O_RI'] O_BI = outputs['O_BI'] for i in range(0, self.n): O_BI[i, :, :] = np.dot(O_BR[i, :, :], O_RI[i, :, :]) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ n = self.n O_BR = inputs['O_BR'].flatten() O_RI = inputs['O_RI'].flatten() nn = 9*n dO_BR = O_RI partials['O_BI', 'O_BR'][:nn] = dO_BR partials['O_BI', 'O_BR'][nn:2*nn] = dO_BR partials['O_BI', 'O_BR'][2*nn:3*nn] = dO_BR dO_RI = O_BR partials['O_BI', 'O_RI'][:nn] = dO_RI partials['O_BI', 'O_RI'][nn:2*nn] = dO_RI partials['O_BI', 'O_RI'][2*nn:3*nn] = dO_RI class Attitude_RotationMtxRates(ExplicitComponent): """ Calculates time derivative of body frame orientation matrix. """ def __init__(self, n=2, h=28.2): super(Attitude_RotationMtxRates, self).__init__() self.n = n self.h = h def setup(self): n = self.n h = self.h # Inputs self.add_input('O_BI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to Earth-centered ' 'inertial frame over time') # Outputs self.add_output('Odot_BI', np.zeros((n, 3, 3)), units=None, desc='First derivative of O_BI over time') base1 = np.arange(9) base2 = np.arange(9*(n - 2)) val1 = np.ones((9, )) / h val2 = np.ones((9*(n - 2), )) / (2.0 * h) nn = 9*(n - 1) rows = np.concatenate([base1, base1, base2+9, base2+9, base1+nn, base1+nn]) cols = np.concatenate([base1+9, base1, base2+18, base2, base1+nn, base1+nn-9]) vals = np.concatenate([val1, -val1, val2, -val2, val1, -val1]) self.declare_partials('Odot_BI', 'O_BI', rows=rows, cols=cols, val=vals) def compute(self, inputs, outputs): """ Calculate outputs. """ O_BI = inputs['O_BI'] h = self.h Odot_BI = outputs['Odot_BI'] Odot_BI[0, :, :] = O_BI[1, :, :] Odot_BI[0, :, :] -= O_BI[0, :, :] Odot_BI[1:-1, :, :] = O_BI[2:, :, :] / 2.0 Odot_BI[1:-1, :, :] -= O_BI[:-2, :, :] / 2.0 Odot_BI[-1, :, :] = O_BI[-1, :, :] Odot_BI[-1, :, :] -= O_BI[-2, :, :] Odot_BI *= 1.0/h class Attitude_Sideslip(ExplicitComponent): """ Determine velocity in the body frame. """ def __init__(self, n=2): super(Attitude_Sideslip, self).__init__() self.n = n def setup(self): n = self.n # Inputs self.add_input('r_e2b_I', np.zeros((n, 6)), units=None, desc='Position and velocity vector from earth to satellite ' 'in Earth-centered inertial frame over time') self.add_input('O_BI', np.zeros((n, 3, 3)), units=None, desc='Rotation matrix from body-fixed frame to ' 'Earth-centered inertial frame over time') # Outputs self.add_output('v_e2b_B', np.zeros((n, 3)), units='m/s', desc='Velocity vector from earth to satellite' 'in body-fixed frame over time') row = np.tile(np.array([0]), 9) + np.repeat(np.arange(3), 3) rows = np.tile(row, n) + np.repeat(3*np.arange(n), 9) col = np.tile(np.array([3, 4, 5]), 3) cols = np.tile(col, n) + np.repeat(6*np.arange(n), 9) self.declare_partials('v_e2b_B', 'r_e2b_I', rows=rows, cols=cols) row = np.tile(np.array([0, 0, 0]), n) + np.repeat(3*np.arange(n), 3) col = np.tile(np.arange(3), n) + np.repeat(9*np.arange(n), 3) rows = np.concatenate([row, row+1, row+2]) cols = np.concatenate([col, col+3, col+6]) self.declare_partials('v_e2b_B', 'O_BI', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ r_e2b_I = inputs['r_e2b_I'] O_BI = inputs['O_BI'] v_e2b_B = outputs['v_e2b_B'] v_e2b_B[:] = np.einsum('kij,kj->ki', O_BI, r_e2b_I[:, 3:]) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ n = self.n r_e2b_I = inputs['r_e2b_I'][:, 3:] O_BI = inputs['O_BI'] partials['v_e2b_B', 'r_e2b_I'] = O_BI.flatten() nn = 3*n dO_BI = r_e2b_I.flatten() partials['v_e2b_B', 'O_BI'][:nn] = dO_BI partials['v_e2b_B', 'O_BI'][nn:2*nn] = dO_BI partials['v_e2b_B', 'O_BI'][2*nn:3*nn] = dO_BI class Attitude_Torque(ExplicitComponent): """ Compute the required reaction wheel tourque. """ J = np.zeros((3, 3)) J[0, :] = (0.018, 0., 0.) J[1, :] = (0., 0.018, 0.) J[2, :] = (0., 0., 0.006) def __init__(self, n=2): super(Attitude_Torque, self).__init__() self.n = n self.dwx_dw = np.zeros((3, 3, 3)) self.dwx_dw[0, :, 0] = (0., 0., 0.) self.dwx_dw[1, :, 0] = (0., 0., -1.) self.dwx_dw[2, :, 0] = (0., 1., 0.) self.dwx_dw[0, :, 1] = (0., 0., 1.) self.dwx_dw[1, :, 1] = (0., 0., 0.) self.dwx_dw[2, :, 1] = (-1., 0, 0.) self.dwx_dw[0, :, 2] = (0., -1., 0) self.dwx_dw[1, :, 2] = (1., 0., 0.) self.dwx_dw[2, :, 2] = (0., 0., 0.) def setup(self): n = self.n # Inputs self.add_input('w_B', np.zeros((n, 3)), units='1/s', desc='Angular velocity in body-fixed frame over time') self.add_input('wdot_B', np.zeros((n, 3)), units='1/s**2', desc='Time derivative of w_B over time') # Outputs self.add_output('T_tot', np.zeros((n, 3)), units='N*m', desc='Total reaction wheel torque over time') rows = np.tile(np.array([0, 0, 0]), 3*n) + np.repeat(np.arange(3*n), 3) col = np.tile(np.array([0, 1, 2]), 3) cols = np.tile(col, n) + np.repeat(3*np.arange(n), 9) self.declare_partials('T_tot', 'w_B', rows=rows, cols=cols) self.declare_partials('T_tot', 'wdot_B', rows=rows, cols=cols) def compute(self, inputs, outputs): """ Calculate outputs. """ w_B = inputs['w_B'] wdot_B = inputs['wdot_B'] T_tot = outputs['T_tot'] wx = np.zeros((3, 3)) for i in range(0, self.n): wx[0, :] = (0., -w_B[i, 2], w_B[i, 1]) wx[1, :] = (w_B[i, 2], 0., -w_B[i, 0]) wx[2, :] = (-w_B[i, 1], w_B[i, 0], 0.) T_tot[i, :] = np.dot(self.J, wdot_B[i, :]) + \ np.dot(wx, np.dot(self.J, w_B[i, :])) def compute_partials(self, inputs, partials): """ Calculate and save derivatives. (i.e., Jacobian) """ w_B = inputs['w_B'] dT_dw = np.zeros((self.n, 3, 3)) dT_dwdot = np.zeros((self.n, 3, 3)) wx = np.zeros((3, 3)) for i in range(0, self.n): wx[0, :] = (0., -w_B[i, 2], w_B[i, 1]) wx[1, :] = (w_B[i, 2], 0., -w_B[i, 0]) wx[2, :] = (-w_B[i, 1], w_B[i, 0], 0.) dT_dwdot[i, :, :] = self.J dT_dw[i, :, :] = np.dot(wx, self.J) for k in range(0, 3): dT_dw[i, :, k] += np.dot(self.dwx_dw[:, :, k], np.dot(self.J, w_B[i, :])) partials['T_tot', 'w_B'] = dT_dw.flatten() partials['T_tot', 'wdot_B'] = dT_dwdot.flatten()
[ "numpy.tile", "six.moves.range", "numpy.ones", "numpy.array", "numpy.zeros", "numpy.dot", "numpy.einsum", "numpy.cos", "numpy.concatenate", "numpy.sin", "numpy.arange" ]
[((4483, 4502), 'numpy.zeros', 'np.zeros', (['(3, 3, 3)'], {}), '((3, 3, 3))\n', (4491, 4502), True, 'import numpy as np\n'), ((17266, 17282), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (17274, 17282), True, 'import numpy as np\n'), ((1059, 1081), 'numpy.zeros', 'np.zeros', (['(n, 3, 3, 3)'], {}), '((n, 3, 3, 3))\n', (1067, 1081), True, 'import numpy as np\n'), ((1103, 1125), 'numpy.zeros', 'np.zeros', (['(n, 3, 3, 3)'], {}), '((n, 3, 3, 3))\n', (1111, 1125), True, 'import numpy as np\n'), ((1141, 1178), 'numpy.array', 'np.array', (['[1, 1, 1, 2, 2, 2, 0, 0, 0]'], {}), '([1, 1, 1, 2, 2, 2, 0, 0, 0])\n', (1149, 1178), True, 'import numpy as np\n'), ((1193, 1230), 'numpy.array', 'np.array', (['[6, 7, 8, 0, 1, 2, 3, 4, 5]'], {}), '([6, 7, 8, 0, 1, 2, 3, 4, 5])\n', (1201, 1230), True, 'import numpy as np\n'), ((1448, 1470), 'numpy.zeros', 'np.zeros', (['(n, 3, 3, 3)'], {}), '((n, 3, 3, 3))\n', (1456, 1470), True, 'import numpy as np\n'), ((1492, 1514), 'numpy.zeros', 'np.zeros', (['(n, 3, 3, 3)'], {}), '((n, 3, 3, 3))\n', (1500, 1514), True, 'import numpy as np\n'), ((1530, 1567), 'numpy.array', 'np.array', (['[2, 2, 2, 0, 0, 0, 1, 1, 1]'], {}), '([2, 2, 2, 0, 0, 0, 1, 1, 1])\n', (1538, 1567), True, 'import numpy as np\n'), ((1582, 1619), 'numpy.array', 'np.array', (['[3, 4, 5, 6, 7, 8, 0, 1, 2]'], {}), '([3, 4, 5, 6, 7, 8, 0, 1, 2])\n', (1590, 1619), True, 'import numpy as np\n'), ((2023, 2077), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'Odot_BI[:, 2, :]', 'O_BI[:, 1, :]'], {}), "('ij,ij->i', Odot_BI[:, 2, :], O_BI[:, 1, :])\n", (2032, 2077), True, 'import numpy as np\n'), ((2098, 2152), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'Odot_BI[:, 0, :]', 'O_BI[:, 2, :]'], {}), "('ij,ij->i', Odot_BI[:, 0, :], O_BI[:, 2, :])\n", (2107, 2152), True, 'import numpy as np\n'), ((2173, 2227), 'numpy.einsum', 'np.einsum', (['"""ij,ij->i"""', 'Odot_BI[:, 1, :]', 'O_BI[:, 0, :]'], {}), "('ij,ij->i', Odot_BI[:, 1, :], O_BI[:, 0, :])\n", (2182, 2227), True, 'import numpy as np\n'), ((3337, 3359), 'numpy.arange', 'np.arange', (['(3 * (n - 1))'], {}), '(3 * (n - 1))\n', (3346, 3359), True, 'import numpy as np\n'), ((3605, 3657), 'numpy.array', 'np.array', (['(0, 1, 2, 3 * n - 3, 3 * n - 2, 3 * n - 1)'], {}), '((0, 1, 2, 3 * n - 3, 3 * n - 2, 3 * n - 1))\n', (3613, 3657), True, 'import numpy as np\n'), ((3733, 3771), 'numpy.concatenate', 'np.concatenate', (['(row1, col1, row_col2)'], {}), '((row1, col1, row_col2))\n', (3747, 3771), True, 'import numpy as np\n'), ((3787, 3825), 'numpy.concatenate', 'np.concatenate', (['(col1, row1, row_col2)'], {}), '((col1, row1, row_col2))\n', (3801, 3825), True, 'import numpy as np\n'), ((3840, 3877), 'numpy.concatenate', 'np.concatenate', (['(val1a, -val1b, val2)'], {}), '((val1a, -val1b, val2))\n', (3854, 3877), True, 'import numpy as np\n'), ((5610, 5656), 'numpy.concatenate', 'np.concatenate', (['[row1, row1, row3, row3, row5]'], {}), '([row1, row1, row3, row3, row5])\n', (5624, 5656), True, 'import numpy as np\n'), ((5671, 5717), 'numpy.concatenate', 'np.concatenate', (['[col1, col2, col1, col2, col2]'], {}), '([col1, col2, col1, col2, col2])\n', (5685, 5717), True, 'import numpy as np\n'), ((6096, 6116), 'numpy.zeros', 'np.zeros', (['O_RI.shape'], {}), '(O_RI.shape)\n', (6104, 6116), True, 'import numpy as np\n'), ((6134, 6150), 'six.moves.range', 'range', (['(0)', 'self.n'], {}), '(0, self.n)\n', (6139, 6150), False, 'from six.moves import range\n'), ((7009, 7025), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7017, 7025), True, 'import numpy as np\n'), ((7043, 7059), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7051, 7059), True, 'import numpy as np\n'), ((7078, 7094), 'six.moves.range', 'range', (['(0)', 'self.n'], {}), '(0, self.n)\n', (7083, 7094), False, 'from six.moves import range\n'), ((9827, 9851), 'numpy.zeros', 'np.zeros', (['(self.n, 3, 3)'], {}), '((self.n, 3, 3))\n', (9835, 9851), True, 'import numpy as np\n'), ((9876, 9889), 'numpy.cos', 'np.cos', (['Gamma'], {}), '(Gamma)\n', (9882, 9889), True, 'import numpy as np\n'), ((9914, 9927), 'numpy.sin', 'np.sin', (['Gamma'], {}), '(Gamma)\n', (9920, 9927), True, 'import numpy as np\n'), ((10029, 10044), 'numpy.ones', 'np.ones', (['self.n'], {}), '(self.n)\n', (10036, 10044), True, 'import numpy as np\n'), ((10247, 10260), 'numpy.sin', 'np.sin', (['Gamma'], {}), '(Gamma)\n', (10253, 10260), True, 'import numpy as np\n'), ((10279, 10292), 'numpy.cos', 'np.cos', (['Gamma'], {}), '(Gamma)\n', (10285, 10292), True, 'import numpy as np\n'), ((11748, 11790), 'numpy.concatenate', 'np.concatenate', (['[col1, col1 + 3, col1 + 6]'], {}), '([col1, col1 + 3, col1 + 6])\n', (11762, 11790), True, 'import numpy as np\n'), ((11802, 11844), 'numpy.concatenate', 'np.concatenate', (['[row1, row1 + 3, row1 + 6]'], {}), '([row1, row1 + 3, row1 + 6])\n', (11816, 11844), True, 'import numpy as np\n'), ((12141, 12183), 'numpy.concatenate', 'np.concatenate', (['[row1, row1 + 1, row1 + 2]'], {}), '([row1, row1 + 1, row1 + 2])\n', (12155, 12183), True, 'import numpy as np\n'), ((12195, 12237), 'numpy.concatenate', 'np.concatenate', (['[col1, col1 + 1, col1 + 2]'], {}), '([col1, col1 + 1, col1 + 2])\n', (12209, 12237), True, 'import numpy as np\n'), ((12504, 12520), 'six.moves.range', 'range', (['(0)', 'self.n'], {}), '(0, self.n)\n', (12509, 12520), False, 'from six.moves import range\n'), ((13901, 13913), 'numpy.arange', 'np.arange', (['(9)'], {}), '(9)\n', (13910, 13913), True, 'import numpy as np\n'), ((13930, 13952), 'numpy.arange', 'np.arange', (['(9 * (n - 2))'], {}), '(9 * (n - 2))\n', (13939, 13952), True, 'import numpy as np\n'), ((14074, 14150), 'numpy.concatenate', 'np.concatenate', (['[base1, base1, base2 + 9, base2 + 9, base1 + nn, base1 + nn]'], {}), '([base1, base1, base2 + 9, base2 + 9, base1 + nn, base1 + nn])\n', (14088, 14150), True, 'import numpy as np\n'), ((14158, 14243), 'numpy.concatenate', 'np.concatenate', (['[base1 + 9, base1, base2 + 18, base2, base1 + nn, base1 + nn - 9]'], {}), '([base1 + 9, base1, base2 + 18, base2, base1 + nn, base1 + nn -\n 9])\n', (14172, 14243), True, 'import numpy as np\n'), ((14245, 14300), 'numpy.concatenate', 'np.concatenate', (['[val1, -val1, val2, -val2, val1, -val1]'], {}), '([val1, -val1, val2, -val2, val1, -val1])\n', (14259, 14300), True, 'import numpy as np\n'), ((16236, 16275), 'numpy.concatenate', 'np.concatenate', (['[row, row + 1, row + 2]'], {}), '([row, row + 1, row + 2])\n', (16250, 16275), True, 'import numpy as np\n'), ((16287, 16326), 'numpy.concatenate', 'np.concatenate', (['[col, col + 3, col + 6]'], {}), '([col, col + 3, col + 6])\n', (16301, 16326), True, 'import numpy as np\n'), ((16612, 16657), 'numpy.einsum', 'np.einsum', (['"""kij,kj->ki"""', 'O_BI', 'r_e2b_I[:, 3:]'], {}), "('kij,kj->ki', O_BI, r_e2b_I[:, 3:])\n", (16621, 16657), True, 'import numpy as np\n'), ((17494, 17513), 'numpy.zeros', 'np.zeros', (['(3, 3, 3)'], {}), '((3, 3, 3))\n', (17502, 17513), True, 'import numpy as np\n'), ((18927, 18943), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (18935, 18943), True, 'import numpy as np\n'), ((18961, 18977), 'six.moves.range', 'range', (['(0)', 'self.n'], {}), '(0, self.n)\n', (18966, 18977), False, 'from six.moves import range\n'), ((19422, 19446), 'numpy.zeros', 'np.zeros', (['(self.n, 3, 3)'], {}), '((self.n, 3, 3))\n', (19430, 19446), True, 'import numpy as np\n'), ((19466, 19490), 'numpy.zeros', 'np.zeros', (['(self.n, 3, 3)'], {}), '((self.n, 3, 3))\n', (19474, 19490), True, 'import numpy as np\n'), ((19504, 19520), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (19512, 19520), True, 'import numpy as np\n'), ((19539, 19555), 'six.moves.range', 'range', (['(0)', 'self.n'], {}), '(0, self.n)\n', (19544, 19555), False, 'from six.moves import range\n'), ((562, 581), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (570, 581), True, 'import numpy as np\n'), ((768, 787), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (776, 787), True, 'import numpy as np\n'), ((917, 933), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (925, 933), True, 'import numpy as np\n'), ((1246, 1261), 'numpy.tile', 'np.tile', (['row', 'n'], {}), '(row, n)\n', (1253, 1261), True, 'import numpy as np\n'), ((1308, 1323), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (1315, 1323), True, 'import numpy as np\n'), ((1635, 1650), 'numpy.tile', 'np.tile', (['row', 'n'], {}), '(row, n)\n', (1642, 1650), True, 'import numpy as np\n'), ((1697, 1712), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (1704, 1712), True, 'import numpy as np\n'), ((3022, 3038), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (3030, 3038), True, 'import numpy as np\n'), ((3191, 3207), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (3199, 3207), True, 'import numpy as np\n'), ((3402, 3422), 'numpy.ones', 'np.ones', (['(3 * (n - 1))'], {}), '(3 * (n - 1))\n', (3409, 3422), True, 'import numpy as np\n'), ((3465, 3485), 'numpy.ones', 'np.ones', (['(3 * (n - 1))'], {}), '(3 * (n - 1))\n', (3472, 3485), True, 'import numpy as np\n'), ((3661, 3704), 'numpy.array', 'np.array', (['(-1.0, -1.0, -1.0, 1.0, 1.0, 1.0)'], {}), '((-1.0, -1.0, -1.0, 1.0, 1.0, 1.0))\n', (3669, 3704), True, 'import numpy as np\n'), ((5016, 5032), 'numpy.zeros', 'np.zeros', (['(n, 6)'], {}), '((n, 6))\n', (5024, 5032), True, 'import numpy as np\n'), ((5255, 5274), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (5263, 5274), True, 'import numpy as np\n'), ((5466, 5478), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (5475, 5478), True, 'import numpy as np\n'), ((5506, 5518), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (5515, 5518), True, 'import numpy as np\n'), ((5734, 5749), 'numpy.tile', 'np.tile', (['row', 'n'], {}), '(row, n)\n', (5741, 5749), True, 'import numpy as np\n'), ((5797, 5812), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (5804, 5812), True, 'import numpy as np\n'), ((6524, 6540), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (6532, 6540), True, 'import numpy as np\n'), ((6682, 6695), 'numpy.dot', 'np.dot', (['vx', 'r'], {}), '(vx, r)\n', (6688, 6695), True, 'import numpy as np\n'), ((7471, 7487), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7479, 7487), True, 'import numpy as np\n'), ((7508, 7524), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7516, 7524), True, 'import numpy as np\n'), ((7547, 7558), 'six.moves.range', 'range', (['(0)', '(3)'], {}), '(0, 3)\n', (7552, 7558), False, 'from six.moves import range\n'), ((7792, 7808), 'numpy.zeros', 'np.zeros', (['(3, 3)'], {}), '((3, 3))\n', (7800, 7808), True, 'import numpy as np\n'), ((7950, 7963), 'numpy.dot', 'np.dot', (['vx', 'r'], {}), '(vx, r)\n', (7956, 7963), True, 'import numpy as np\n'), ((8016, 8047), 'numpy.dot', 'np.dot', (['self.dvx_dv[:, :, 0]', 'r'], {}), '(self.dvx_dv[:, :, 0], r)\n', (8022, 8047), True, 'import numpy as np\n'), ((8075, 8106), 'numpy.dot', 'np.dot', (['self.dvx_dv[:, :, 1]', 'r'], {}), '(self.dvx_dv[:, :, 1], r)\n', (8081, 8106), True, 'import numpy as np\n'), ((8134, 8165), 'numpy.dot', 'np.dot', (['self.dvx_dv[:, :, 2]', 'r'], {}), '(self.dvx_dv[:, :, 2], r)\n', (8140, 8165), True, 'import numpy as np\n'), ((9153, 9164), 'numpy.zeros', 'np.zeros', (['n'], {}), '(n)\n', (9161, 9164), True, 'import numpy as np\n'), ((9292, 9311), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (9300, 9311), True, 'import numpy as np\n'), ((9566, 9578), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (9575, 9578), True, 'import numpy as np\n'), ((10872, 10891), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (10880, 10891), True, 'import numpy as np\n'), ((11069, 11088), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (11077, 11088), True, 'import numpy as np\n'), ((11298, 11317), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (11306, 11317), True, 'import numpy as np\n'), ((11496, 11508), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (11505, 11508), True, 'import numpy as np\n'), ((11528, 11543), 'numpy.tile', 'np.tile', (['row', 'n'], {}), '(row, n)\n', (11535, 11543), True, 'import numpy as np\n'), ((11597, 11609), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (11606, 11609), True, 'import numpy as np\n'), ((11629, 11644), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (11636, 11644), True, 'import numpy as np\n'), ((11969, 11984), 'numpy.tile', 'np.tile', (['row', 'n'], {}), '(row, n)\n', (11976, 11984), True, 'import numpy as np\n'), ((12039, 12058), 'numpy.array', 'np.array', (['[0, 3, 6]'], {}), '([0, 3, 6])\n', (12047, 12058), True, 'import numpy as np\n'), ((12078, 12093), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (12085, 12093), True, 'import numpy as np\n'), ((12550, 12586), 'numpy.dot', 'np.dot', (['O_BR[i, :, :]', 'O_RI[i, :, :]'], {}), '(O_BR[i, :, :], O_RI[i, :, :])\n', (12556, 12586), True, 'import numpy as np\n'), ((13554, 13573), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (13562, 13573), True, 'import numpy as np\n'), ((13784, 13803), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (13792, 13803), True, 'import numpy as np\n'), ((13966, 13979), 'numpy.ones', 'np.ones', (['(9,)'], {}), '((9,))\n', (13973, 13979), True, 'import numpy as np\n'), ((14000, 14023), 'numpy.ones', 'np.ones', (['(9 * (n - 2),)'], {}), '((9 * (n - 2),))\n', (14007, 14023), True, 'import numpy as np\n'), ((15158, 15174), 'numpy.zeros', 'np.zeros', (['(n, 6)'], {}), '((n, 6))\n', (15166, 15174), True, 'import numpy as np\n'), ((15373, 15392), 'numpy.zeros', 'np.zeros', (['(n, 3, 3)'], {}), '((n, 3, 3))\n', (15381, 15392), True, 'import numpy as np\n'), ((15598, 15614), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (15606, 15614), True, 'import numpy as np\n'), ((15842, 15857), 'numpy.tile', 'np.tile', (['row', 'n'], {}), '(row, n)\n', (15849, 15857), True, 'import numpy as np\n'), ((15911, 15930), 'numpy.array', 'np.array', (['[3, 4, 5]'], {}), '([3, 4, 5])\n', (15919, 15930), True, 'import numpy as np\n'), ((15950, 15965), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (15957, 15965), True, 'import numpy as np\n'), ((18003, 18019), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (18011, 18019), True, 'import numpy as np\n'), ((18146, 18162), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (18154, 18162), True, 'import numpy as np\n'), ((18296, 18312), 'numpy.zeros', 'np.zeros', (['(n, 3)'], {}), '((n, 3))\n', (18304, 18312), True, 'import numpy as np\n'), ((18500, 18519), 'numpy.array', 'np.array', (['[0, 1, 2]'], {}), '([0, 1, 2])\n', (18508, 18519), True, 'import numpy as np\n'), ((18539, 18554), 'numpy.tile', 'np.tile', (['col', 'n'], {}), '(col, n)\n', (18546, 18554), True, 'import numpy as np\n'), ((19779, 19797), 'numpy.dot', 'np.dot', (['wx', 'self.J'], {}), '(wx, self.J)\n', (19785, 19797), True, 'import numpy as np\n'), ((19820, 19831), 'six.moves.range', 'range', (['(0)', '(3)'], {}), '(0, 3)\n', (19825, 19831), False, 'from six.moves import range\n'), ((6245, 6257), 'numpy.dot', 'np.dot', (['r', 'r'], {}), '(r, r)\n', (6251, 6257), True, 'import numpy as np\n'), ((6287, 6299), 'numpy.dot', 'np.dot', (['v', 'v'], {}), '(v, v)\n', (6293, 6299), True, 'import numpy as np\n'), ((6714, 6728), 'numpy.dot', 'np.dot', (['vx', 'iB'], {}), '(vx, iB)\n', (6720, 6728), True, 'import numpy as np\n'), ((7189, 7201), 'numpy.dot', 'np.dot', (['r', 'r'], {}), '(r, r)\n', (7195, 7201), True, 'import numpy as np\n'), ((7231, 7243), 'numpy.dot', 'np.dot', (['v', 'v'], {}), '(v, v)\n', (7237, 7243), True, 'import numpy as np\n'), ((8221, 8253), 'numpy.dot', 'np.dot', (['self.dvx_dv[:, :, 0]', 'iB'], {}), '(self.dvx_dv[:, :, 0], iB)\n', (8227, 8253), True, 'import numpy as np\n'), ((8282, 8314), 'numpy.dot', 'np.dot', (['self.dvx_dv[:, :, 1]', 'iB'], {}), '(self.dvx_dv[:, :, 1], iB)\n', (8288, 8314), True, 'import numpy as np\n'), ((8343, 8375), 'numpy.dot', 'np.dot', (['self.dvx_dv[:, :, 2]', 'iB'], {}), '(self.dvx_dv[:, :, 2], iB)\n', (8349, 8375), True, 'import numpy as np\n'), ((9516, 9538), 'numpy.array', 'np.array', (['[0, 1, 3, 4]'], {}), '([0, 1, 3, 4])\n', (9524, 9538), True, 'import numpy as np\n'), ((11937, 11949), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (11946, 11949), True, 'import numpy as np\n'), ((15780, 15793), 'numpy.array', 'np.array', (['[0]'], {}), '([0])\n', (15788, 15793), True, 'import numpy as np\n'), ((15810, 15822), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (15819, 15822), True, 'import numpy as np\n'), ((16095, 16114), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (16103, 16114), True, 'import numpy as np\n'), ((16172, 16184), 'numpy.arange', 'np.arange', (['(3)'], {}), '(3)\n', (16181, 16184), True, 'import numpy as np\n'), ((18421, 18440), 'numpy.array', 'np.array', (['[0, 0, 0]'], {}), '([0, 0, 0])\n', (18429, 18440), True, 'import numpy as np\n'), ((18459, 18475), 'numpy.arange', 'np.arange', (['(3 * n)'], {}), '(3 * n)\n', (18468, 18475), True, 'import numpy as np\n'), ((19158, 19186), 'numpy.dot', 'np.dot', (['self.J', 'wdot_B[i, :]'], {}), '(self.J, wdot_B[i, :])\n', (19164, 19186), True, 'import numpy as np\n'), ((1276, 1288), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (1285, 1288), True, 'import numpy as np\n'), ((1338, 1350), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (1347, 1350), True, 'import numpy as np\n'), ((1665, 1677), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (1674, 1677), True, 'import numpy as np\n'), ((1727, 1739), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (1736, 1739), True, 'import numpy as np\n'), ((5764, 5776), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (5773, 5776), True, 'import numpy as np\n'), ((5827, 5839), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (5836, 5839), True, 'import numpy as np\n'), ((8450, 8471), 'numpy.dot', 'np.dot', (['diB_dr', 'dr_dr'], {}), '(diB_dr, dr_dr)\n', (8456, 8471), True, 'import numpy as np\n'), ((8536, 8557), 'numpy.dot', 'np.dot', (['diB_dv', 'dv_dv'], {}), '(diB_dv, dv_dv)\n', (8542, 8557), True, 'import numpy as np\n'), ((9487, 9499), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (9496, 9499), True, 'import numpy as np\n'), ((11558, 11570), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (11567, 11570), True, 'import numpy as np\n'), ((11659, 11671), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (11668, 11671), True, 'import numpy as np\n'), ((11999, 12011), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (12008, 12011), True, 'import numpy as np\n'), ((12108, 12120), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (12117, 12120), True, 'import numpy as np\n'), ((15872, 15884), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (15881, 15884), True, 'import numpy as np\n'), ((15980, 15992), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (15989, 15992), True, 'import numpy as np\n'), ((16133, 16145), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (16142, 16145), True, 'import numpy as np\n'), ((16203, 16215), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (16212, 16215), True, 'import numpy as np\n'), ((18569, 18581), 'numpy.arange', 'np.arange', (['n'], {}), '(n)\n', (18578, 18581), True, 'import numpy as np\n'), ((19218, 19243), 'numpy.dot', 'np.dot', (['self.J', 'w_B[i, :]'], {}), '(self.J, w_B[i, :])\n', (19224, 19243), True, 'import numpy as np\n'), ((19896, 19921), 'numpy.dot', 'np.dot', (['self.J', 'w_B[i, :]'], {}), '(self.J, w_B[i, :])\n', (19902, 19921), True, 'import numpy as np\n'), ((8631, 8654), 'numpy.dot', 'np.dot', (['djB_diB', 'diB_dr'], {}), '(djB_diB, diB_dr)\n', (8637, 8654), True, 'import numpy as np\n'), ((8735, 8758), 'numpy.dot', 'np.dot', (['djB_diB', 'diB_dv'], {}), '(djB_diB, diB_dv)\n', (8741, 8758), True, 'import numpy as np\n')]
from __future__ import division """ ResNeXt is introduced in https://arxiv.org/abs/1611.05431 Implementation is inspired by https://github.com/prlz77/ResNeXt.pytorch """ from keras import backend as K from keras.models import Model from keras.layers import Input from keras.layers import Dense from keras.layers import Flatten from keras.layers import Activation from keras.layers.merge import add from keras.layers.merge import concatenate from keras.layers.core import Lambda from keras.layers.convolutional import Conv2D from keras.layers.pooling import MaxPooling2D from keras.layers.pooling import AveragePooling2D from keras.layers.normalization import BatchNormalization from keras.regularizers import l2 def _handle_dim_ordering(): global ROW_AXIS global COL_AXIS global CHANNEL_AXIS if K.image_dim_ordering() == 'tf': ROW_AXIS = 1 COL_AXIS = 2 CHANNEL_AXIS = 3 else: CHANNEL_AXIS = 1 ROW_AXIS = 2 COL_AXIS = 3 def Conv2DGroup(filters, kernel_size, groups, strides=(1, 1), padding='valid', use_bias=True, kernel_initializer='glorot_uniform', kernel_regularizer=None, **kwargs): def get_slice(x, i, size): return x[:, :, :, size * i: size * (i + 1)] def f(inputs): split_filter = filters // groups split_input = K.int_shape(inputs)[-1] // groups output_convs = [] if groups > 1: for i in range(groups): _slice = Lambda(get_slice, arguments={'i': i, 'size': split_input})(inputs) output_convs.append(Conv2D(filters=split_filter, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=use_bias, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer, **kwargs)(_slice)) outputs = concatenate(output_convs) else: outputs = Conv2D(filters=filters, kernel_size=kernel_size, strides=strides, padding=padding, use_bias=use_bias, kernel_initializer=kernel_initializer, kernel_regularizer=kernel_regularizer, **kwargs)(inputs) return outputs return f def bottleneck_c(filters, strides, cardinality, base_width, widen_factor): width_ratio = filters / (widen_factor * 64.) D = cardinality * int(base_width * width_ratio) def f(inputs): conv_reduce = Conv2D(filters=D, kernel_size=1, strides=1, padding='valid', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) bn_reduce = BatchNormalization(axis=CHANNEL_AXIS)(conv_reduce) bn_reduce = Activation('relu')(bn_reduce) conv_conv = Conv2DGroup(filters=D, groups=cardinality, kernel_size=3, strides=strides, padding='same', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(bn_reduce) norm = BatchNormalization(axis=CHANNEL_AXIS)(conv_conv) norm = Activation('relu')(norm) conv_expand = Conv2D(filters=filters, kernel_size=1, strides=1, padding='valid', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(norm) bn_expand = BatchNormalization(axis=CHANNEL_AXIS)(conv_expand) if K.int_shape(inputs)[CHANNEL_AXIS] != filters: shortcut = Conv2D(filters=filters, kernel_size=1, strides=strides, padding='valid', use_bias=False, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) residual = BatchNormalization(axis=CHANNEL_AXIS)(shortcut) return Activation('relu')(add([residual, bn_expand])) else: return Activation('relu')(bn_expand) return f class ResNeXt(object): def __init__(self, input_shape, num_class, cardinality, depth, base_width, widen_factor=4): self.input_shape = input_shape self.cardinality = cardinality self.depth = depth self.block_depth = (self.depth - 2) // 9 self.base_width = base_width self.widen_factor = widen_factor self.num_class = num_class self.filters = 64 self.stages = [64, 64 * self.widen_factor, 128 * self.widen_factor, 256 * self.widen_factor] def build(self): _handle_dim_ordering() inputs = Input(shape=self.input_shape) conv_1 = Conv2D(filters=64, kernel_size=3, strides=1, padding='same', use_bias=True, kernel_initializer='he_normal', kernel_regularizer=l2(1e-4))(inputs) bn_1 = BatchNormalization(axis=CHANNEL_AXIS)(conv_1) init_block = Activation('relu')(bn_1) stage1 = self.block(self.stages[1], 1)(init_block) stage2 = self.block(self.stages[2], 2)(stage1) stage3 = self.block(self.stages[3], 2)(stage2) avg_pool = AveragePooling2D(pool_size=8, strides=1)(stage3) flatten = Flatten()(avg_pool) dense = Dense(units=self.num_class, kernel_initializer='he_normal', activation='linear')(flatten) model = Model(inputs=inputs, outputs=dense) return model def block(self, filters, strides=2): def f(inputs): for bottleneck in range(self.block_depth): if bottleneck == 0: block = bottleneck_c(filters, strides, self.cardinality, self.base_width, self.widen_factor)(inputs) else: block = bottleneck_c(filters, 1, self.cardinality, self.base_width, self.widen_factor)(block) return block return f
[ "keras.layers.Flatten", "keras.layers.merge.concatenate", "keras.layers.normalization.BatchNormalization", "keras.backend.image_dim_ordering", "keras.layers.core.Lambda", "keras.layers.merge.add", "keras.layers.Input", "keras.layers.convolutional.Conv2D", "keras.models.Model", "keras.layers.Activation", "keras.regularizers.l2", "keras.layers.Dense", "keras.backend.int_shape", "keras.layers.pooling.AveragePooling2D" ]
[((817, 839), 'keras.backend.image_dim_ordering', 'K.image_dim_ordering', ([], {}), '()\n', (837, 839), True, 'from keras import backend as K\n'), ((4982, 5011), 'keras.layers.Input', 'Input', ([], {'shape': 'self.input_shape'}), '(shape=self.input_shape)\n', (4987, 5011), False, 'from keras.layers import Input\n'), ((5783, 5818), 'keras.models.Model', 'Model', ([], {'inputs': 'inputs', 'outputs': 'dense'}), '(inputs=inputs, outputs=dense)\n', (5788, 5818), False, 'from keras.models import Model\n'), ((2070, 2095), 'keras.layers.merge.concatenate', 'concatenate', (['output_convs'], {}), '(output_convs)\n', (2081, 2095), False, 'from keras.layers.merge import concatenate\n'), ((2970, 3007), 'keras.layers.normalization.BatchNormalization', 'BatchNormalization', ([], {'axis': 'CHANNEL_AXIS'}), '(axis=CHANNEL_AXIS)\n', (2988, 3007), False, 'from keras.layers.normalization import BatchNormalization\n'), ((3041, 3059), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (3051, 3059), False, 'from keras.layers import Activation\n'), ((3415, 3452), 'keras.layers.normalization.BatchNormalization', 'BatchNormalization', ([], {'axis': 'CHANNEL_AXIS'}), '(axis=CHANNEL_AXIS)\n', (3433, 3452), False, 'from keras.layers.normalization import BatchNormalization\n'), ((3479, 3497), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (3489, 3497), False, 'from keras.layers import Activation\n'), ((3784, 3821), 'keras.layers.normalization.BatchNormalization', 'BatchNormalization', ([], {'axis': 'CHANNEL_AXIS'}), '(axis=CHANNEL_AXIS)\n', (3802, 3821), False, 'from keras.layers.normalization import BatchNormalization\n'), ((5261, 5298), 'keras.layers.normalization.BatchNormalization', 'BatchNormalization', ([], {'axis': 'CHANNEL_AXIS'}), '(axis=CHANNEL_AXIS)\n', (5279, 5298), False, 'from keras.layers.normalization import BatchNormalization\n'), ((5328, 5346), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (5338, 5346), False, 'from keras.layers import Activation\n'), ((5551, 5591), 'keras.layers.pooling.AveragePooling2D', 'AveragePooling2D', ([], {'pool_size': '(8)', 'strides': '(1)'}), '(pool_size=8, strides=1)\n', (5567, 5591), False, 'from keras.layers.pooling import AveragePooling2D\n'), ((5618, 5627), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (5625, 5627), False, 'from keras.layers import Flatten\n'), ((5654, 5739), 'keras.layers.Dense', 'Dense', ([], {'units': 'self.num_class', 'kernel_initializer': '"""he_normal"""', 'activation': '"""linear"""'}), "(units=self.num_class, kernel_initializer='he_normal', activation='linear'\n )\n", (5659, 5739), False, 'from keras.layers import Dense\n'), ((1378, 1397), 'keras.backend.int_shape', 'K.int_shape', (['inputs'], {}), '(inputs)\n', (1389, 1397), True, 'from keras import backend as K\n'), ((2132, 2330), 'keras.layers.convolutional.Conv2D', 'Conv2D', ([], {'filters': 'filters', 'kernel_size': 'kernel_size', 'strides': 'strides', 'padding': 'padding', 'use_bias': 'use_bias', 'kernel_initializer': 'kernel_initializer', 'kernel_regularizer': 'kernel_regularizer'}), '(filters=filters, kernel_size=kernel_size, strides=strides, padding=\n padding, use_bias=use_bias, kernel_initializer=kernel_initializer,\n kernel_regularizer=kernel_regularizer, **kwargs)\n', (2138, 2330), False, 'from keras.layers.convolutional import Conv2D\n'), ((3848, 3867), 'keras.backend.int_shape', 'K.int_shape', (['inputs'], {}), '(inputs)\n', (3859, 3867), True, 'from keras import backend as K\n'), ((4185, 4222), 'keras.layers.normalization.BatchNormalization', 'BatchNormalization', ([], {'axis': 'CHANNEL_AXIS'}), '(axis=CHANNEL_AXIS)\n', (4203, 4222), False, 'from keras.layers.normalization import BatchNormalization\n'), ((4253, 4271), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (4263, 4271), False, 'from keras.layers import Activation\n'), ((4272, 4298), 'keras.layers.merge.add', 'add', (['[residual, bn_expand]'], {}), '([residual, bn_expand])\n', (4275, 4298), False, 'from keras.layers.merge import add\n'), ((4334, 4352), 'keras.layers.Activation', 'Activation', (['"""relu"""'], {}), "('relu')\n", (4344, 4352), False, 'from keras.layers import Activation\n'), ((1523, 1581), 'keras.layers.core.Lambda', 'Lambda', (['get_slice'], {'arguments': "{'i': i, 'size': split_input}"}), "(get_slice, arguments={'i': i, 'size': split_input})\n", (1529, 1581), False, 'from keras.layers.core import Lambda\n'), ((2932, 2942), 'keras.regularizers.l2', 'l2', (['(0.0001)'], {}), '(0.0001)\n', (2934, 2942), False, 'from keras.regularizers import l2\n'), ((3379, 3389), 'keras.regularizers.l2', 'l2', (['(0.0001)'], {}), '(0.0001)\n', (3381, 3389), False, 'from keras.regularizers import l2\n'), ((3748, 3758), 'keras.regularizers.l2', 'l2', (['(0.0001)'], {}), '(0.0001)\n', (3750, 3758), False, 'from keras.regularizers import l2\n'), ((5228, 5238), 'keras.regularizers.l2', 'l2', (['(0.0001)'], {}), '(0.0001)\n', (5230, 5238), False, 'from keras.regularizers import l2\n'), ((1698, 1901), 'keras.layers.convolutional.Conv2D', 'Conv2D', ([], {'filters': 'split_filter', 'kernel_size': 'kernel_size', 'strides': 'strides', 'padding': 'padding', 'use_bias': 'use_bias', 'kernel_initializer': 'kernel_initializer', 'kernel_regularizer': 'kernel_regularizer'}), '(filters=split_filter, kernel_size=kernel_size, strides=strides,\n padding=padding, use_bias=use_bias, kernel_initializer=\n kernel_initializer, kernel_regularizer=kernel_regularizer, **kwargs)\n', (1704, 1901), False, 'from keras.layers.convolutional import Conv2D\n'), ((4144, 4154), 'keras.regularizers.l2', 'l2', (['(0.0001)'], {}), '(0.0001)\n', (4146, 4154), False, 'from keras.regularizers import l2\n')]
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ class cpu_util_process_history(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-RAS-operational - based on the path /cpu-state/history/cpu-util-process-history. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: CPU utilization histogram per process """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__cpu_process_id','__cpu_process_name','__cpu_util_current','__cpu_util_1m','__cpu_util_5m','__cpu_util_15m','__cpu_util_1h','__cpu_util_5h','__cpu_util_24h','__cpu_util_72h',) _yang_name = 'cpu-util-process-history' _rest_name = 'cpu-util-process-history' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__cpu_util_1m = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1m", rest_name="cpu-util-1m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_util_current = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-current", rest_name="cpu-util-current", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_util_1h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1h", rest_name="cpu-util-1h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_process_name = YANGDynClass(base=unicode, is_leaf=True, yang_name="cpu-process-name", rest_name="cpu-process-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='string', is_config=False) self.__cpu_process_id = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cpu-process-id", rest_name="cpu-process-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='uint32', is_config=False) self.__cpu_util_72h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-72h", rest_name="cpu-util-72h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_util_15m = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-15m", rest_name="cpu-util-15m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_util_5h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5h", rest_name="cpu-util-5h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_util_5m = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5m", rest_name="cpu-util-5m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) self.__cpu_util_24h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-24h", rest_name="cpu-util-24h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'cpu-state', u'history', u'cpu-util-process-history'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'cpu-state', u'history', u'cpu-util-process-history'] def _get_cpu_process_id(self): """ Getter method for cpu_process_id, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_process_id (uint32) YANG Description: Process ID """ return self.__cpu_process_id def _set_cpu_process_id(self, v, load=False): """ Setter method for cpu_process_id, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_process_id (uint32) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_process_id is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_process_id() directly. YANG Description: Process ID """ parent = getattr(self, "_parent", None) if parent is not None and load is False: raise AttributeError("Cannot set keys directly when" + " within an instantiated list") if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cpu-process-id", rest_name="cpu-process-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='uint32', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_process_id must be of a type compatible with uint32""", 'defined-type': "uint32", 'generated-type': """YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cpu-process-id", rest_name="cpu-process-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='uint32', is_config=False)""", }) self.__cpu_process_id = t if hasattr(self, '_set'): self._set() def _unset_cpu_process_id(self): self.__cpu_process_id = YANGDynClass(base=RestrictedClassType(base_type=long, restriction_dict={'range': ['0..4294967295']}, int_size=32), is_leaf=True, yang_name="cpu-process-id", rest_name="cpu-process-id", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, is_keyval=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='uint32', is_config=False) def _get_cpu_process_name(self): """ Getter method for cpu_process_name, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_process_name (string) YANG Description: Process name """ return self.__cpu_process_name def _set_cpu_process_name(self, v, load=False): """ Setter method for cpu_process_name, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_process_name (string) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_process_name is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_process_name() directly. YANG Description: Process name """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=unicode, is_leaf=True, yang_name="cpu-process-name", rest_name="cpu-process-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='string', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_process_name must be of a type compatible with string""", 'defined-type': "string", 'generated-type': """YANGDynClass(base=unicode, is_leaf=True, yang_name="cpu-process-name", rest_name="cpu-process-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='string', is_config=False)""", }) self.__cpu_process_name = t if hasattr(self, '_set'): self._set() def _unset_cpu_process_name(self): self.__cpu_process_name = YANGDynClass(base=unicode, is_leaf=True, yang_name="cpu-process-name", rest_name="cpu-process-name", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='string', is_config=False) def _get_cpu_util_current(self): """ Getter method for cpu_util_current, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_current (decimal64) YANG Description: Current CPU utilization of the process """ return self.__cpu_util_current def _set_cpu_util_current(self, v, load=False): """ Setter method for cpu_util_current, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_current (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_current is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_current() directly. YANG Description: Current CPU utilization of the process """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-current", rest_name="cpu-util-current", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_current must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-current", rest_name="cpu-util-current", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_current = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_current(self): self.__cpu_util_current = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-current", rest_name="cpu-util-current", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_1m(self): """ Getter method for cpu_util_1m, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_1m (decimal64) YANG Description: CPU utilization of the process in the last 1 minute """ return self.__cpu_util_1m def _set_cpu_util_1m(self, v, load=False): """ Setter method for cpu_util_1m, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_1m (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_1m is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_1m() directly. YANG Description: CPU utilization of the process in the last 1 minute """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1m", rest_name="cpu-util-1m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_1m must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1m", rest_name="cpu-util-1m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_1m = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_1m(self): self.__cpu_util_1m = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1m", rest_name="cpu-util-1m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_5m(self): """ Getter method for cpu_util_5m, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_5m (decimal64) YANG Description: CPU utilization of the process in the last 5 minute """ return self.__cpu_util_5m def _set_cpu_util_5m(self, v, load=False): """ Setter method for cpu_util_5m, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_5m (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_5m is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_5m() directly. YANG Description: CPU utilization of the process in the last 5 minute """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5m", rest_name="cpu-util-5m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_5m must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5m", rest_name="cpu-util-5m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_5m = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_5m(self): self.__cpu_util_5m = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5m", rest_name="cpu-util-5m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_15m(self): """ Getter method for cpu_util_15m, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_15m (decimal64) YANG Description: CPU utilization of the process in the last 15 minute """ return self.__cpu_util_15m def _set_cpu_util_15m(self, v, load=False): """ Setter method for cpu_util_15m, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_15m (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_15m is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_15m() directly. YANG Description: CPU utilization of the process in the last 15 minute """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-15m", rest_name="cpu-util-15m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_15m must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-15m", rest_name="cpu-util-15m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_15m = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_15m(self): self.__cpu_util_15m = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-15m", rest_name="cpu-util-15m", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_1h(self): """ Getter method for cpu_util_1h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_1h (decimal64) YANG Description: CPU utilization of the process in the last 1 hour """ return self.__cpu_util_1h def _set_cpu_util_1h(self, v, load=False): """ Setter method for cpu_util_1h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_1h (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_1h is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_1h() directly. YANG Description: CPU utilization of the process in the last 1 hour """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1h", rest_name="cpu-util-1h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_1h must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1h", rest_name="cpu-util-1h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_1h = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_1h(self): self.__cpu_util_1h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-1h", rest_name="cpu-util-1h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_5h(self): """ Getter method for cpu_util_5h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_5h (decimal64) YANG Description: CPU utilization of the process in the last 1 hour """ return self.__cpu_util_5h def _set_cpu_util_5h(self, v, load=False): """ Setter method for cpu_util_5h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_5h (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_5h is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_5h() directly. YANG Description: CPU utilization of the process in the last 1 hour """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5h", rest_name="cpu-util-5h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_5h must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5h", rest_name="cpu-util-5h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_5h = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_5h(self): self.__cpu_util_5h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-5h", rest_name="cpu-util-5h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_24h(self): """ Getter method for cpu_util_24h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_24h (decimal64) YANG Description: CPU utilization of the process in the last 24 hour """ return self.__cpu_util_24h def _set_cpu_util_24h(self, v, load=False): """ Setter method for cpu_util_24h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_24h (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_24h is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_24h() directly. YANG Description: CPU utilization of the process in the last 24 hour """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-24h", rest_name="cpu-util-24h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_24h must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-24h", rest_name="cpu-util-24h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_24h = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_24h(self): self.__cpu_util_24h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-24h", rest_name="cpu-util-24h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) def _get_cpu_util_72h(self): """ Getter method for cpu_util_72h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_72h (decimal64) YANG Description: CPU utilization of the process in the last 72 hour """ return self.__cpu_util_72h def _set_cpu_util_72h(self, v, load=False): """ Setter method for cpu_util_72h, mapped from YANG variable /cpu_state/history/cpu_util_process_history/cpu_util_72h (decimal64) If this variable is read-only (config: false) in the source YANG file, then _set_cpu_util_72h is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_cpu_util_72h() directly. YANG Description: CPU utilization of the process in the last 72 hour """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-72h", rest_name="cpu-util-72h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) except (TypeError, ValueError): raise ValueError({ 'error-string': """cpu_util_72h must be of a type compatible with decimal64""", 'defined-type': "decimal64", 'generated-type': """YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-72h", rest_name="cpu-util-72h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False)""", }) self.__cpu_util_72h = t if hasattr(self, '_set'): self._set() def _unset_cpu_util_72h(self): self.__cpu_util_72h = YANGDynClass(base=RestrictedPrecisionDecimalType(precision=2), is_leaf=True, yang_name="cpu-util-72h", rest_name="cpu-util-72h", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, namespace='urn:brocade.com:mgmt:brocade-RAS-operational', defining_module='brocade-RAS-operational', yang_type='decimal64', is_config=False) cpu_process_id = __builtin__.property(_get_cpu_process_id) cpu_process_name = __builtin__.property(_get_cpu_process_name) cpu_util_current = __builtin__.property(_get_cpu_util_current) cpu_util_1m = __builtin__.property(_get_cpu_util_1m) cpu_util_5m = __builtin__.property(_get_cpu_util_5m) cpu_util_15m = __builtin__.property(_get_cpu_util_15m) cpu_util_1h = __builtin__.property(_get_cpu_util_1h) cpu_util_5h = __builtin__.property(_get_cpu_util_5h) cpu_util_24h = __builtin__.property(_get_cpu_util_24h) cpu_util_72h = __builtin__.property(_get_cpu_util_72h) _pyangbind_elements = {'cpu_process_id': cpu_process_id, 'cpu_process_name': cpu_process_name, 'cpu_util_current': cpu_util_current, 'cpu_util_1m': cpu_util_1m, 'cpu_util_5m': cpu_util_5m, 'cpu_util_15m': cpu_util_15m, 'cpu_util_1h': cpu_util_1h, 'cpu_util_5h': cpu_util_5h, 'cpu_util_24h': cpu_util_24h, 'cpu_util_72h': cpu_util_72h, }
[ "pyangbind.lib.yangtypes.YANGDynClass", "__builtin__.property", "pyangbind.lib.yangtypes.RestrictedClassType", "pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType" ]
[((30841, 30882), '__builtin__.property', '__builtin__.property', (['_get_cpu_process_id'], {}), '(_get_cpu_process_id)\n', (30861, 30882), False, 'import __builtin__\n'), ((30904, 30947), '__builtin__.property', '__builtin__.property', (['_get_cpu_process_name'], {}), '(_get_cpu_process_name)\n', (30924, 30947), False, 'import __builtin__\n'), ((30969, 31012), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_current'], {}), '(_get_cpu_util_current)\n', (30989, 31012), False, 'import __builtin__\n'), ((31029, 31067), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_1m'], {}), '(_get_cpu_util_1m)\n', (31049, 31067), False, 'import __builtin__\n'), ((31084, 31122), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_5m'], {}), '(_get_cpu_util_5m)\n', (31104, 31122), False, 'import __builtin__\n'), ((31140, 31179), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_15m'], {}), '(_get_cpu_util_15m)\n', (31160, 31179), False, 'import __builtin__\n'), ((31196, 31234), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_1h'], {}), '(_get_cpu_util_1h)\n', (31216, 31234), False, 'import __builtin__\n'), ((31251, 31289), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_5h'], {}), '(_get_cpu_util_5h)\n', (31271, 31289), False, 'import __builtin__\n'), ((31307, 31346), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_24h'], {}), '(_get_cpu_util_24h)\n', (31327, 31346), False, 'import __builtin__\n'), ((31364, 31403), '__builtin__.property', '__builtin__.property', (['_get_cpu_util_72h'], {}), '(_get_cpu_util_72h)\n', (31384, 31403), False, 'import __builtin__\n'), ((3244, 3597), 'pyangbind.lib.yangtypes.YANGDynClass', 'YANGDynClass', ([], {'base': 'unicode', 'is_leaf': '(True)', 'yang_name': '"""cpu-process-name"""', 'rest_name': '"""cpu-process-name"""', 'parent': 'self', 'path_helper': 'self._path_helper', 'extmethods': 'self._extmethods', 'register_paths': '(True)', 'namespace': '"""urn:brocade.com:mgmt:brocade-RAS-operational"""', 'defining_module': '"""brocade-RAS-operational"""', 'yang_type': '"""string"""', 'is_config': '(False)'}), "(base=unicode, is_leaf=True, yang_name='cpu-process-name',\n rest_name='cpu-process-name', parent=self, path_helper=self.\n _path_helper, extmethods=self._extmethods, register_paths=True,\n namespace='urn:brocade.com:mgmt:brocade-RAS-operational',\n defining_module='brocade-RAS-operational', yang_type='string',\n is_config=False)\n", (3256, 3597), False, 'from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType\n'), ((11732, 12085), 'pyangbind.lib.yangtypes.YANGDynClass', 'YANGDynClass', ([], {'base': 'unicode', 'is_leaf': '(True)', 'yang_name': '"""cpu-process-name"""', 'rest_name': '"""cpu-process-name"""', 'parent': 'self', 'path_helper': 'self._path_helper', 'extmethods': 'self._extmethods', 'register_paths': '(True)', 'namespace': '"""urn:brocade.com:mgmt:brocade-RAS-operational"""', 'defining_module': '"""brocade-RAS-operational"""', 'yang_type': '"""string"""', 'is_config': '(False)'}), "(base=unicode, is_leaf=True, yang_name='cpu-process-name',\n rest_name='cpu-process-name', parent=self, path_helper=self.\n _path_helper, extmethods=self._extmethods, register_paths=True,\n namespace='urn:brocade.com:mgmt:brocade-RAS-operational',\n defining_module='brocade-RAS-operational', yang_type='string',\n is_config=False)\n", (11744, 12085), False, 'from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType\n'), ((10681, 11037), 'pyangbind.lib.yangtypes.YANGDynClass', 'YANGDynClass', (['v'], {'base': 'unicode', 'is_leaf': '(True)', 'yang_name': '"""cpu-process-name"""', 'rest_name': '"""cpu-process-name"""', 'parent': 'self', 'path_helper': 'self._path_helper', 'extmethods': 'self._extmethods', 'register_paths': '(True)', 'namespace': '"""urn:brocade.com:mgmt:brocade-RAS-operational"""', 'defining_module': '"""brocade-RAS-operational"""', 'yang_type': '"""string"""', 'is_config': '(False)'}), "(v, base=unicode, is_leaf=True, yang_name='cpu-process-name',\n rest_name='cpu-process-name', parent=self, path_helper=self.\n _path_helper, extmethods=self._extmethods, register_paths=True,\n namespace='urn:brocade.com:mgmt:brocade-RAS-operational',\n defining_module='brocade-RAS-operational', yang_type='string',\n is_config=False)\n", (10693, 11037), False, 'from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType\n'), ((2081, 2124), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (2111, 2124), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((2473, 2516), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (2503, 2516), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((2870, 2913), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (2900, 2913), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((3623, 3723), 'pyangbind.lib.yangtypes.RestrictedClassType', 'RestrictedClassType', ([], {'base_type': 'long', 'restriction_dict': "{'range': ['0..4294967295']}", 'int_size': '(32)'}), "(base_type=long, restriction_dict={'range': [\n '0..4294967295']}, int_size=32)\n", (3642, 3723), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((4082, 4125), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (4112, 4125), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((4472, 4515), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (4502, 4515), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((4861, 4904), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (4891, 4904), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((5248, 5291), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (5278, 5291), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((5636, 5679), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (5666, 5679), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((9432, 9532), 'pyangbind.lib.yangtypes.RestrictedClassType', 'RestrictedClassType', ([], {'base_type': 'long', 'restriction_dict': "{'range': ['0..4294967295']}", 'int_size': '(32)'}), "(base_type=long, restriction_dict={'range': [\n '0..4294967295']}, int_size=32)\n", (9451, 9532), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((14110, 14153), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (14140, 14153), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((16450, 16493), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (16480, 16493), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((18780, 18823), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (18810, 18823), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((21129, 21172), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (21159, 21172), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((23457, 23500), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (23487, 23500), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((25783, 25826), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (25813, 25826), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((28128, 28171), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (28158, 28171), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((30475, 30518), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (30505, 30518), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((8191, 8291), 'pyangbind.lib.yangtypes.RestrictedClassType', 'RestrictedClassType', ([], {'base_type': 'long', 'restriction_dict': "{'range': ['0..4294967295']}", 'int_size': '(32)'}), "(base_type=long, restriction_dict={'range': [\n '0..4294967295']}, int_size=32)\n", (8210, 8291), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((12977, 13020), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (13007, 13020), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((15357, 15400), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (15387, 15400), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((17687, 17730), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (17717, 17730), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((20028, 20071), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (20058, 20071), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((22364, 22407), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (22394, 22407), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((24690, 24733), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (24720, 24733), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((27027, 27070), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (27057, 27070), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n'), ((29374, 29417), 'pyangbind.lib.yangtypes.RestrictedPrecisionDecimalType', 'RestrictedPrecisionDecimalType', ([], {'precision': '(2)'}), '(precision=2)\n', (29404, 29417), False, 'from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType\n')]
# -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import numpy as np def unique_boxes(boxes, scale=1.0): """Return indices of unique boxes.""" v = np.array([1, 1e3, 1e6, 1e9]) hashes = np.round(boxes * scale).dot(v).astype(np.int) _, index = np.unique(hashes, return_index=True) return np.sort(index) def xywh_to_xyxy(boxes): """Convert [x y w h] box format to [x1 y1 x2 y2] format.""" return np.hstack((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1)) def xyxy_to_xywh(boxes): """Convert [x1 y1 x2 y2] box format to [x y w h] format.""" return np.hstack((boxes[:, 0:2], boxes[:, 2:4] - boxes[:, 0:2] + 1)) def validate_boxes(boxes, width=0, height=0): """Check that a set of boxes are valid.""" x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] assert (x1 >= 0).all() assert (y1 >= 0).all() assert (x2 >= x1).all() assert (y2 >= y1).all() assert (x2 < width).all() assert (y2 < height).all() def filter_small_boxes(boxes, min_size): w = boxes[:, 2] - boxes[:, 0] h = boxes[:, 3] - boxes[:, 1] keep = np.where((w >= min_size) & (h > min_size))[0] return keep def filter_validate_boxes(boxes, width, height): x1 = boxes[:, 0] y1 = boxes[:, 1] x2 = boxes[:, 2] y2 = boxes[:, 3] a = x1 >= 0 b = y1 >= 0 c = x2 >= x1 d = y2 >= y1 e = x2 < width f = y2 < height return np.logical_and(a, np.logical_and(b, np.logical_and(c, np.logical_and(d, np.logical_and(e, f))))) def overlaps(boxes1, boxes2): ovrs = np.zeros((boxes1.shape[0], boxes2.shape[0]), dtype=np.float32) areas1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) areas2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) for i in range(boxes1.shape[0]): xx1 = np.maximum(boxes1[i, 0], boxes2[:, 0]) yy1 = np.maximum(boxes1[i, 1], boxes2[:, 1]) xx2 = np.minimum(boxes1[i, 2], boxes2[:, 2]) yy2 = np.minimum(boxes1[i, 3], boxes2[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas1[i] + areas2 - inter) ovrs[i, :] = ovr[:] return ovrs def overlap(box, boxes): area = (box[2] - box[0]) * (box[3] - box[1]) areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) xx1 = np.maximum(box[0], boxes[:, 0]) yy1 = np.maximum(box[1], boxes[:, 1]) xx2 = np.minimum(box[2], boxes[:, 2]) yy2 = np.minimum(box[3], boxes[:, 3]) w = np.maximum(0.0, xx2 - xx1 + 1) h = np.maximum(0.0, yy2 - yy1 + 1) inter = w * h ovr = inter / (areas + areas - inter) return ovr
[ "numpy.unique", "numpy.minimum", "numpy.hstack", "numpy.where", "numpy.logical_and", "numpy.sort", "numpy.array", "numpy.zeros", "numpy.maximum", "numpy.round" ]
[((321, 367), 'numpy.array', 'np.array', (['[1, 1000.0, 1000000.0, 1000000000.0]'], {}), '([1, 1000.0, 1000000.0, 1000000000.0])\n', (329, 367), True, 'import numpy as np\n'), ((424, 460), 'numpy.unique', 'np.unique', (['hashes'], {'return_index': '(True)'}), '(hashes, return_index=True)\n', (433, 460), True, 'import numpy as np\n'), ((472, 486), 'numpy.sort', 'np.sort', (['index'], {}), '(index)\n', (479, 486), True, 'import numpy as np\n'), ((589, 650), 'numpy.hstack', 'np.hstack', (['(boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1)'], {}), '((boxes[:, 0:2], boxes[:, 0:2] + boxes[:, 2:4] - 1))\n', (598, 650), True, 'import numpy as np\n'), ((753, 814), 'numpy.hstack', 'np.hstack', (['(boxes[:, 0:2], boxes[:, 2:4] - boxes[:, 0:2] + 1)'], {}), '((boxes[:, 0:2], boxes[:, 2:4] - boxes[:, 0:2] + 1))\n', (762, 814), True, 'import numpy as np\n'), ((1742, 1804), 'numpy.zeros', 'np.zeros', (['(boxes1.shape[0], boxes2.shape[0])'], {'dtype': 'np.float32'}), '((boxes1.shape[0], boxes2.shape[0]), dtype=np.float32)\n', (1750, 1804), True, 'import numpy as np\n'), ((2565, 2596), 'numpy.maximum', 'np.maximum', (['box[0]', 'boxes[:, 0]'], {}), '(box[0], boxes[:, 0])\n', (2575, 2596), True, 'import numpy as np\n'), ((2607, 2638), 'numpy.maximum', 'np.maximum', (['box[1]', 'boxes[:, 1]'], {}), '(box[1], boxes[:, 1])\n', (2617, 2638), True, 'import numpy as np\n'), ((2649, 2680), 'numpy.minimum', 'np.minimum', (['box[2]', 'boxes[:, 2]'], {}), '(box[2], boxes[:, 2])\n', (2659, 2680), True, 'import numpy as np\n'), ((2691, 2722), 'numpy.minimum', 'np.minimum', (['box[3]', 'boxes[:, 3]'], {}), '(box[3], boxes[:, 3])\n', (2701, 2722), True, 'import numpy as np\n'), ((2732, 2762), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (2742, 2762), True, 'import numpy as np\n'), ((2771, 2801), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (2781, 2801), True, 'import numpy as np\n'), ((1287, 1329), 'numpy.where', 'np.where', (['((w >= min_size) & (h > min_size))'], {}), '((w >= min_size) & (h > min_size))\n', (1295, 1329), True, 'import numpy as np\n'), ((2006, 2044), 'numpy.maximum', 'np.maximum', (['boxes1[i, 0]', 'boxes2[:, 0]'], {}), '(boxes1[i, 0], boxes2[:, 0])\n', (2016, 2044), True, 'import numpy as np\n'), ((2059, 2097), 'numpy.maximum', 'np.maximum', (['boxes1[i, 1]', 'boxes2[:, 1]'], {}), '(boxes1[i, 1], boxes2[:, 1])\n', (2069, 2097), True, 'import numpy as np\n'), ((2112, 2150), 'numpy.minimum', 'np.minimum', (['boxes1[i, 2]', 'boxes2[:, 2]'], {}), '(boxes1[i, 2], boxes2[:, 2])\n', (2122, 2150), True, 'import numpy as np\n'), ((2165, 2203), 'numpy.minimum', 'np.minimum', (['boxes1[i, 3]', 'boxes2[:, 3]'], {}), '(boxes1[i, 3], boxes2[:, 3])\n', (2175, 2203), True, 'import numpy as np\n'), ((2217, 2247), 'numpy.maximum', 'np.maximum', (['(0.0)', '(xx2 - xx1 + 1)'], {}), '(0.0, xx2 - xx1 + 1)\n', (2227, 2247), True, 'import numpy as np\n'), ((2260, 2290), 'numpy.maximum', 'np.maximum', (['(0.0)', '(yy2 - yy1 + 1)'], {}), '(0.0, yy2 - yy1 + 1)\n', (2270, 2290), True, 'import numpy as np\n'), ((363, 386), 'numpy.round', 'np.round', (['(boxes * scale)'], {}), '(boxes * scale)\n', (371, 386), True, 'import numpy as np\n'), ((1674, 1694), 'numpy.logical_and', 'np.logical_and', (['e', 'f'], {}), '(e, f)\n', (1688, 1694), True, 'import numpy as np\n')]
#-*- coding:utf-8 -*- #''' # Created on 18-12-27 上午10:34 # # @Author: <NAME>(laygin) #''' import os import xml.etree.ElementTree as ET import numpy as np import cv2 from torch.utils.data import Dataset import torch from config import IMAGE_MEAN from ctpn_utils import cal_rpn def readxml(path): gtboxes = [] imgfile = '' xml = ET.parse(path) for elem in xml.iter(): if 'filename' in elem.tag: imgfile = elem.text if 'object' in elem.tag: for attr in list(elem): if 'bndbox' in attr.tag: xmin = int(round(float(attr.find('xmin').text))) ymin = int(round(float(attr.find('ymin').text))) xmax = int(round(float(attr.find('xmax').text))) ymax = int(round(float(attr.find('ymax').text))) gtboxes.append((xmin, ymin, xmax, ymax)) return np.array(gtboxes), imgfile # for ctpn text detection class VOCDataset(Dataset): def __init__(self, datadir, labelsdir): ''' :param txtfile: image name list text file :param datadir: image's directory :param labelsdir: annotations' directory ''' if not os.path.isdir(datadir): raise Exception('[ERROR] {} is not a directory'.format(datadir)) if not os.path.isdir(labelsdir): raise Exception('[ERROR] {} is not a directory'.format(labelsdir)) self.datadir = datadir self.img_names = os.listdir(self.datadir) self.labelsdir = labelsdir def __len__(self): return len(self.img_names) def __getitem__(self, idx): img_name = self.img_names[idx] img_path = os.path.join(self.datadir, img_name) print(img_path) xml_path = os.path.join(self.labelsdir, img_name.replace('.jpg', '.xml')) gtbox, _ = readxml(xml_path) img = cv2.imread(img_path) h, w, c = img.shape # clip image if np.random.randint(2) == 1: img = img[:, ::-1, :] newx1 = w - gtbox[:, 2] - 1 newx2 = w - gtbox[:, 0] - 1 gtbox[:, 0] = newx1 gtbox[:, 2] = newx2 [cls, regr], _ = cal_rpn((h, w), (int(h / 16), int(w / 16)), 16, gtbox) m_img = img - IMAGE_MEAN regr = np.hstack([cls.reshape(cls.shape[0], 1), regr]) cls = np.expand_dims(cls, axis=0) # transform to torch tensor m_img = torch.from_numpy(m_img.transpose([2, 0, 1])).float() cls = torch.from_numpy(cls).float() regr = torch.from_numpy(regr).float() return m_img, cls, regr
[ "os.listdir", "xml.etree.ElementTree.parse", "os.path.join", "torch.from_numpy", "numpy.array", "numpy.random.randint", "os.path.isdir", "numpy.expand_dims", "cv2.imread" ]
[((342, 356), 'xml.etree.ElementTree.parse', 'ET.parse', (['path'], {}), '(path)\n', (350, 356), True, 'import xml.etree.ElementTree as ET\n'), ((912, 929), 'numpy.array', 'np.array', (['gtboxes'], {}), '(gtboxes)\n', (920, 929), True, 'import numpy as np\n'), ((1531, 1555), 'os.listdir', 'os.listdir', (['self.datadir'], {}), '(self.datadir)\n', (1541, 1555), False, 'import os\n'), ((1741, 1777), 'os.path.join', 'os.path.join', (['self.datadir', 'img_name'], {}), '(self.datadir, img_name)\n', (1753, 1777), False, 'import os\n'), ((1935, 1955), 'cv2.imread', 'cv2.imread', (['img_path'], {}), '(img_path)\n', (1945, 1955), False, 'import cv2\n'), ((2415, 2442), 'numpy.expand_dims', 'np.expand_dims', (['cls'], {'axis': '(0)'}), '(cls, axis=0)\n', (2429, 2442), True, 'import numpy as np\n'), ((1253, 1275), 'os.path.isdir', 'os.path.isdir', (['datadir'], {}), '(datadir)\n', (1266, 1275), False, 'import os\n'), ((1369, 1393), 'os.path.isdir', 'os.path.isdir', (['labelsdir'], {}), '(labelsdir)\n', (1382, 1393), False, 'import os\n'), ((2016, 2036), 'numpy.random.randint', 'np.random.randint', (['(2)'], {}), '(2)\n', (2033, 2036), True, 'import numpy as np\n'), ((2563, 2584), 'torch.from_numpy', 'torch.from_numpy', (['cls'], {}), '(cls)\n', (2579, 2584), False, 'import torch\n'), ((2608, 2630), 'torch.from_numpy', 'torch.from_numpy', (['regr'], {}), '(regr)\n', (2624, 2630), False, 'import torch\n')]
from tdw.controller import Controller from tdw.tdw_utils import TDWUtils from tdw.output_data import OutputData, CompositeObjects, IdPassSegmentationColors, SegmentationColors from pathlib import Path import platform """ Create a composite object from a local asset bundle. Test that the object loaded correctly. Apply sub-object commands to the sub-objects. """ class CompositeObject(Controller): def run(self): commands = [TDWUtils.create_empty_room(12, 12)] # Find the local asset bundle for this platform. url = "file:///" + str(Path("composite_objects/" + platform.system() + "/test_composite_object").resolve()) # Add the local object. o_id = self.get_unique_id() commands.extend([{"$type": "add_object", "name": "test_composite_object", "url": url, "scale_factor": 1, "id": o_id}, {"$type": "set_mass", "id": o_id, "mass": 100}, {"$type": "send_segmentation_colors"}, {"$type": "send_id_pass_segmentation_colors"}, {"$type": "send_composite_objects"}, {"$type": "send_rigidbodies", "frequency": "always"}]) commands.extend(TDWUtils.create_avatar(position={"x": 0, "y": 1.49, "z": -2.77})) resp = self.communicate(commands) visible_objects = dict() segmentation_colors = dict() # Get all objects. for i in range(len(resp) - 1): r_id = OutputData.get_data_type_id(resp[i]) if r_id == "segm": segm = SegmentationColors(resp[i]) for j in range(segm.get_num()): object_id = segm.get_object_id(j) visible_objects[object_id] = False segmentation_colors[segm.get_object_color(j)] = object_id # Get all visible objects. Also, get the ID of the light and motor sub-objects. light_id = -1 motor_id = -1 for i in range(len(resp) - 1): r_id = OutputData.get_data_type_id(resp[i]) if r_id == "ipsc": ipsc = IdPassSegmentationColors(resp[i]) for j in range(ipsc.get_num_segmentation_colors()): object_color = ipsc.get_segmentation_color(j) object_id = segmentation_colors[object_color] visible_objects[object_id] = True elif r_id == "comp": comp = CompositeObjects(resp[i]) for j in range(comp.get_num()): object_id = comp.get_object_id(j) if object_id == o_id: for k in range(comp.get_num_sub_objects(j)): sub_object_id = comp.get_sub_object_id(j, k) sub_object_machine_type = comp.get_sub_object_machine_type(j, k) if sub_object_machine_type == "light": light_id = sub_object_id elif sub_object_machine_type == "motor": motor_id = sub_object_id print(visible_objects) # Start the motor and turn the light on. is_on = True self.communicate([{"$type": "set_motor", "target_velocity": 500, "force": 500, "id": motor_id}, {"$type": "set_sub_object_light", "is_on": is_on, "id": light_id}]) for i in range(1000): # Every 50 frames, blink the lights on and off. if i % 50 == 0: is_on = not is_on self.communicate({"$type": "set_sub_object_light", "is_on": is_on, "id": light_id}) else: self.communicate([]) self.communicate({"$type": "terminate"}) if __name__ == "__main__": CompositeObject().run()
[ "tdw.tdw_utils.TDWUtils.create_avatar", "tdw.output_data.CompositeObjects", "tdw.tdw_utils.TDWUtils.create_empty_room", "tdw.output_data.OutputData.get_data_type_id", "tdw.output_data.SegmentationColors", "platform.system", "tdw.output_data.IdPassSegmentationColors" ]
[((441, 475), 'tdw.tdw_utils.TDWUtils.create_empty_room', 'TDWUtils.create_empty_room', (['(12)', '(12)'], {}), '(12, 12)\n', (467, 475), False, 'from tdw.tdw_utils import TDWUtils\n'), ((1403, 1467), 'tdw.tdw_utils.TDWUtils.create_avatar', 'TDWUtils.create_avatar', ([], {'position': "{'x': 0, 'y': 1.49, 'z': -2.77}"}), "(position={'x': 0, 'y': 1.49, 'z': -2.77})\n", (1425, 1467), False, 'from tdw.tdw_utils import TDWUtils\n'), ((1667, 1703), 'tdw.output_data.OutputData.get_data_type_id', 'OutputData.get_data_type_id', (['resp[i]'], {}), '(resp[i])\n', (1694, 1703), False, 'from tdw.output_data import OutputData, CompositeObjects, IdPassSegmentationColors, SegmentationColors\n'), ((2211, 2247), 'tdw.output_data.OutputData.get_data_type_id', 'OutputData.get_data_type_id', (['resp[i]'], {}), '(resp[i])\n', (2238, 2247), False, 'from tdw.output_data import OutputData, CompositeObjects, IdPassSegmentationColors, SegmentationColors\n'), ((1758, 1785), 'tdw.output_data.SegmentationColors', 'SegmentationColors', (['resp[i]'], {}), '(resp[i])\n', (1776, 1785), False, 'from tdw.output_data import OutputData, CompositeObjects, IdPassSegmentationColors, SegmentationColors\n'), ((2302, 2335), 'tdw.output_data.IdPassSegmentationColors', 'IdPassSegmentationColors', (['resp[i]'], {}), '(resp[i])\n', (2326, 2335), False, 'from tdw.output_data import OutputData, CompositeObjects, IdPassSegmentationColors, SegmentationColors\n'), ((2646, 2671), 'tdw.output_data.CompositeObjects', 'CompositeObjects', (['resp[i]'], {}), '(resp[i])\n', (2662, 2671), False, 'from tdw.output_data import OutputData, CompositeObjects, IdPassSegmentationColors, SegmentationColors\n'), ((594, 611), 'platform.system', 'platform.system', ([], {}), '()\n', (609, 611), False, 'import platform\n')]
from knackpy.models import FIELD_SETTINGS from . import utils, formatters def get_id_field_args(): """TODO - id field is a global field def. weird, right? - field_defs should be immutable for this reason """ return {"key": "id", "name": "id", "type": "id", "obj": None} def set_field_def_views(key: str, scenes: list): """ Update FieldDef's `views` property to include a list of all view keys that use this field. TODO: make side effect of FieldDef...and document """ views = [] for scene in scenes: for view in scene["views"]: if view["type"] == "table": # must ignore "link" columns, etc field_keys = [ column["field"]["key"] for column in view["columns"] if column.get("field") ] if key in field_keys: views.append(view["key"]) # associate the id field every view elif key == "id": views.append(view["key"]) else: # todo: should we handle non-table views? continue return views class FieldDef: """ Knack field defintion wrapper """ def __repr__(self): name = getattr(self, "name", "(no name)") return f"<FieldDef '{name}'>" def __init__(self, **kwargs): for attr in [ # required definition attrs "key", "name", "type", "obj", ]: try: setattr(self, attr, kwargs[attr]) except KeyError: raise KeyError( f"FieldDef missing required FieldDef attribute: '{attr}'" ) self.identifier = kwargs["identifier"] if kwargs.get("identifier") else False self.views = [] self.settings = FIELD_SETTINGS.get(self.type) self.subfields = self.settings.get("subfields") if self.settings else None self.use_knack_format = ( self.settings.get("use_knack_format") if self.settings else False ) try: self.formatter = getattr(formatters, self.type) except AttributeError: self.formatter = getattr(formatters, "default") def field_defs_from_metadata(metadata: dict): """Generate a list of FieldDef's from Knack metadata. Note the "set_field_def_views()" side effect, which assigns to prop "views" a list of view keys which use the field. Args: metadata (dict): Knack application metadata dict. Returns: list: A list of FieldDef instances. """ field_defs = [] for obj in metadata["objects"]: id_field_args = get_id_field_args() id_field_args["obj"] = obj["key"] field_defs.append(FieldDef(**id_field_args)) for field in obj["fields"]: field["name"] = utils.valid_name(field["name"]) # the object is also available at field["object_key"], but # this is not always available field["obj"] = obj["key"] try: if field["key"] == obj["identifier"]: field["identifier"] = True else: field["identifier"] = False except KeyError: # built-in "Accounts" does not have an identifier # also identifier may only be present if set manually in the builder? field["identifier"] = False field_defs.append(FieldDef(**field)) for field_def in field_defs: field_def.views = set_field_def_views(field_def.key, metadata["scenes"]) return field_defs class Field(object): """A container for a single column of Knack data. This is the lowest-level container in the API. The hieracrchy being: App > Records > Record > Field. Typically you would not construct this class directly, but instead an App, which will generate Fields via App.records(). More specifically, the API is designed so that you would typically interface with a Field instance through the records.Record class. That class operates on Fields by returning their values through Record[<field name>] or Record[<field key>]. But it's fine to work directly with fields: - field.value: the unformatted input value - field.formatted: the formatted value - field.key: the knack field key - field.name: the knack field name Args: field_def (knackpy.fields.FieldDef): A knackpy FieldDef class object value (object): Anything, really. timezone ([pytz.timezone]): A pytz timezone object. knack_formatted_value (str, optional): There a fiew fields where it's easier to use knack's formatted value as a starting point, rather than the raw value. E.g. timer and name. In those cases, we assign that value here and pass it on to the self.formatter() function for further formatting. """ def __init__( self, field_def: FieldDef, value: object, timezone, knack_formatted_value=None ): self.key = field_def.key self.name = field_def.name self.raw = value self.field_def = field_def self.timezone = timezone self.knack_formatted_value = knack_formatted_value self.formatted = self._format() def __repr__(self): return f"<Field {{'{self.key}': '{self.formatted}'}}>" def __contains__(self, item): if item in self.raw: return True def _format(self): """ Knack applies it's own standard formatting to values, which are always available at the non-raw key. Knack includes the raw key in the dict when formatting is applied, allowing access to the unformatted data. Generally, the Knack formatting, where it exists, is fine. However there are cases where we want to apply our own formatters, such datestamps, (where the formatted value does not include a timezone offset). And there are other cases where we want to apply additional formatting to the knack-formatted value, e.g. Timers. See also: models.py, formatters.py. """ kwargs = self._set_formatter_kwargs() try: input_value = ( self.knack_formatted_value if self.knack_formatted_value else self.raw ) return self.field_def.formatter(input_value, **kwargs) except AttributeError: # thrown when value is None return self.raw def _set_formatter_kwargs(self): kwargs = {} if self.field_def.type == "date_time": kwargs["timezone"] = self.timezone return kwargs
[ "knackpy.models.FIELD_SETTINGS.get" ]
[((1921, 1950), 'knackpy.models.FIELD_SETTINGS.get', 'FIELD_SETTINGS.get', (['self.type'], {}), '(self.type)\n', (1939, 1950), False, 'from knackpy.models import FIELD_SETTINGS\n')]
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals # The MIT License # Copyright (c) 2017 - 2022 <NAME>, <EMAIL> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the 'Software'), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os try: from PIL import Image except ImportError: raise Exception('Need to have PIL / pillow installed for this example.') try: import numpy as np except ImportError: raise Exception('Need to have numpy installed for this example.') from plotille import Canvas, Figure, hist, hsl from plotille.data import circle current_dir = os.path.dirname(os.path.abspath(__file__)) X = np.random.normal(size=10000) width = 12 height = 10 spacer = ' ' def extend_plot_lines(lines): lines[0] += spacer * 20 lines[1] += spacer * 20 for idx in range(2, len(lines) - 2): lines[idx] += spacer * 7 return lines def int_formatter(val, chars, delta, left): return '{:{}{}}'.format(int(val), '<' if left else '>', chars) def logo(): # Canvas on its own can draw an image using dots img = Image.open(current_dir + '/../imgs/logo.png') img = img.convert('L') img = img.resize((270, 120)) cvs = Canvas(135, 30, background=hsl(0, 0, 0.8), mode='rgb') cvs.braille_image(img.getdata(), inverse=True, color=hsl(0, 0.5, 0.4)) indent = ' ' * 6 print(indent + cvs.plot().replace(os.linesep, os.linesep + indent)) def histogram(): fig = Figure() fig.width = width fig.height = height fig.color_mode = 'rgb' fig.register_label_formatter(float, int_formatter) fig.histogram(X, lc=hsl(17, 1, 0.8)) lines = extend_plot_lines(fig.show().split(os.linesep)) return lines def crappyhist(): lines = hist(X, bins=12, width=12, lc=hsl(285, 1, 0.74), color_mode='rgb').split(os.linesep) lines[1] += spacer return lines def plot(): fig = Figure() fig.width = width fig.height = height fig.set_y_limits(-2, 2) fig.color_mode = 'rgb' fig.register_label_formatter(float, int_formatter) x1 = np.random.normal(size=10) fig.scatter(list(range(len(x1))), x1, lc=hsl(122, 0.55, 0.43), marker='o') fig.plot([0, 9], [2, 0], lc=hsl(237, 1, 0.75), marker='x') x2 = np.linspace(0, 9, 20) fig.plot(x2, 0.25 * np.sin(x2) - 1, lc=hsl(70, 1, 0.5)) fig.text([5], [1], ['Hi'], lc=hsl(0, 0, 0.7)) fig.axvline(1, lc=hsl(0, 1, 0.5)) lines = extend_plot_lines(fig.show().split(os.linesep)) return lines def heat(): fig = Figure() fig.width = width fig.height = height fig.set_y_limits(-2, 2) fig.set_x_limits(-2, 2) fig.color_mode = 'rgb' fig.origin = False fig.register_label_formatter(float, int_formatter) xy = circle(0, 0, 1.5) fig.plot(xy[0], xy[1]) img = [] for _ in range(height): img += [[None] * width] img[int(height / 2)][int(width / 2)] = 1 img[int(height / 2) - 2][int(width / 2) - 1] = 0.8 img[int(height / 2) - 2][int(width / 2)] = 0.7 img[int(height / 2) - 1][int(width / 2) - 1] = 0.2 img[int(height / 2) ][int(width / 2) - 1] = 0.2 # noqa: E202 img[int(height / 2) + 1][int(width / 2) - 1] = 0.3 img[int(height / 2) - 1][int(width / 2) + 1] = 0.4 img[int(height / 2) ][int(width / 2) + 1] = 0.8 # noqa: E202 img[int(height / 2) + 1][int(width / 2) + 1] = 0.7 img[int(height / 2) - 1][int(width / 2)] = 0.7 img[int(height / 2) + 1][int(width / 2)] = 0.8 # img[int(height / 2)-1][int(width / 2)] = 1 # img[int(height / 2)][int(width / 2)] = 1 fig.imgshow(img, cmap='magma') lines = extend_plot_lines(fig.show().split(os.linesep)) return lines def main(): print('\n\n') logo() print() for lines in zip(histogram(), plot(), heat(), crappyhist()): print(' '.join(lines)) print('\n\n') if __name__ == '__main__': main()
[ "numpy.random.normal", "PIL.Image.open", "numpy.sin", "plotille.data.circle", "numpy.linspace", "os.path.abspath", "plotille.Figure", "plotille.hsl" ]
[((1627, 1655), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(10000)'}), '(size=10000)\n', (1643, 1655), True, 'import numpy as np\n'), ((1596, 1621), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1611, 1621), False, 'import os\n'), ((2062, 2107), 'PIL.Image.open', 'Image.open', (["(current_dir + '/../imgs/logo.png')"], {}), "(current_dir + '/../imgs/logo.png')\n", (2072, 2107), False, 'from PIL import Image\n'), ((2431, 2439), 'plotille.Figure', 'Figure', ([], {}), '()\n', (2437, 2439), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((2871, 2879), 'plotille.Figure', 'Figure', ([], {}), '()\n', (2877, 2879), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3046, 3071), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(10)'}), '(size=10)\n', (3062, 3071), True, 'import numpy as np\n'), ((3224, 3245), 'numpy.linspace', 'np.linspace', (['(0)', '(9)', '(20)'], {}), '(0, 9, 20)\n', (3235, 3245), True, 'import numpy as np\n'), ((3499, 3507), 'plotille.Figure', 'Figure', ([], {}), '()\n', (3505, 3507), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3725, 3742), 'plotille.data.circle', 'circle', (['(0)', '(0)', '(1.5)'], {}), '(0, 0, 1.5)\n', (3731, 3742), False, 'from plotille.data import circle\n'), ((2205, 2219), 'plotille.hsl', 'hsl', (['(0)', '(0)', '(0.8)'], {}), '(0, 0, 0.8)\n', (2208, 2219), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((2290, 2306), 'plotille.hsl', 'hsl', (['(0)', '(0.5)', '(0.4)'], {}), '(0, 0.5, 0.4)\n', (2293, 2306), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((2593, 2608), 'plotille.hsl', 'hsl', (['(17)', '(1)', '(0.8)'], {}), '(17, 1, 0.8)\n', (2596, 2608), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3117, 3137), 'plotille.hsl', 'hsl', (['(122)', '(0.55)', '(0.43)'], {}), '(122, 0.55, 0.43)\n', (3120, 3137), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3183, 3200), 'plotille.hsl', 'hsl', (['(237)', '(1)', '(0.75)'], {}), '(237, 1, 0.75)\n', (3186, 3200), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3289, 3304), 'plotille.hsl', 'hsl', (['(70)', '(1)', '(0.5)'], {}), '(70, 1, 0.5)\n', (3292, 3304), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3341, 3355), 'plotille.hsl', 'hsl', (['(0)', '(0)', '(0.7)'], {}), '(0, 0, 0.7)\n', (3344, 3355), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3380, 3394), 'plotille.hsl', 'hsl', (['(0)', '(1)', '(0.5)'], {}), '(0, 1, 0.5)\n', (3383, 3394), False, 'from plotille import Canvas, Figure, hist, hsl\n'), ((3270, 3280), 'numpy.sin', 'np.sin', (['x2'], {}), '(x2)\n', (3276, 3280), True, 'import numpy as np\n'), ((2751, 2768), 'plotille.hsl', 'hsl', (['(285)', '(1)', '(0.74)'], {}), '(285, 1, 0.74)\n', (2754, 2768), False, 'from plotille import Canvas, Figure, hist, hsl\n')]
""" Wrapper class that takes a list of template loaders as an argument and attempts to load templates from them in order, caching the result. Basically identical to the django default caching loader, but takes into account the blog id. """ from django.template.loaders.cached import Loader as BaseLoader from wp_frontman.models import Blog class Loader(BaseLoader): def load_template(self, template_name, template_dirs=None): blog = Blog.get_active() key = '%s-%s-%s' % (site.site_id, blog.blog_id, template_name) if template_dirs: # If template directories were specified, use a hash to differentiate key = '-'.join([siste.site_id, blog.blog_id, template_name, sha_constructor('|'.join(template_dirs)).hexdigest()]) if key not in self.template_cache: template, origin = self.find_template(template_name, template_dirs) if not hasattr(template, 'render'): try: template = get_template_from_string(template, origin, template_name) except TemplateDoesNotExist: # If compiling the template we found raises TemplateDoesNotExist, # back off to returning the source and display name for the template # we were asked to load. This allows for correct identification (later) # of the actual template that does not exist. return template, origin self.template_cache[key] = template return self.template_cache[key], None
[ "wp_frontman.models.Blog.get_active" ]
[((460, 477), 'wp_frontman.models.Blog.get_active', 'Blog.get_active', ([], {}), '()\n', (475, 477), False, 'from wp_frontman.models import Blog\n')]
# -*- coding: utf-8 -*- from wsgiref.simple_server import make_server from watson.dev.middleware import StaticFileMiddleware from watson.dev.reloader import main def make_dev_server(app, host='0.0.0.0', port=8000, noreload=False, script_dir=None, public_dir=None): """ A simple local development server utilizing the existing simple_server module, but allows for serving of static files. Never use this in production. EVER. Example: .. code-block:: python def my_app(environ, start_response): start_response('200 OK', [('Content-Type', 'text/html')]) return [b'<h1>Hello World!</h1>'] if __name__ == '__main__': make_dev_server(my_app) Args: app: A WSGI callable host: The host to bind to port: The port noreload: Whether or not to automatically reload the application when source code changes. """ wrapped_app = StaticFileMiddleware(app, initial_dir=public_dir) if not noreload: main(__run_server, (wrapped_app, host, port), script_dir=script_dir) else: try: __run_server(wrapped_app, host, port) except KeyboardInterrupt: print('\nTerminated.') def __run_server(app, host, port): print( 'Serving application at http://{0}:{1} in your favorite browser...'.format(host, port)) httpd = make_server(host, port, app) httpd.serve_forever()
[ "watson.dev.reloader.main", "watson.dev.middleware.StaticFileMiddleware", "wsgiref.simple_server.make_server" ]
[((979, 1028), 'watson.dev.middleware.StaticFileMiddleware', 'StaticFileMiddleware', (['app'], {'initial_dir': 'public_dir'}), '(app, initial_dir=public_dir)\n', (999, 1028), False, 'from watson.dev.middleware import StaticFileMiddleware\n'), ((1425, 1453), 'wsgiref.simple_server.make_server', 'make_server', (['host', 'port', 'app'], {}), '(host, port, app)\n', (1436, 1453), False, 'from wsgiref.simple_server import make_server\n'), ((1058, 1126), 'watson.dev.reloader.main', 'main', (['__run_server', '(wrapped_app, host, port)'], {'script_dir': 'script_dir'}), '(__run_server, (wrapped_app, host, port), script_dir=script_dir)\n', (1062, 1126), False, 'from watson.dev.reloader import main\n')]
#imports from __future__ import absolute_import from __future__ import division from __future__ import print_function from builtins import object import MDAnalysis as mda import numpy as np import sys from six.moves import range class LipidCOM(object): """ A lipid center of mass (COM) object. This object stores the COM coordinates of a lipid (or other molecule or group of atoms) computed from both the wrapped and unwrapped atomic coordinates. This object also stores information about the type of lipid as well as the total mass of the lipid. """ def __init__(self): """LipidCOM initialization Attributes: type (str): The lipid type (e.g. the lipid could be typed b resname). com (np.array): The length three vector holding the wrapped xyz coordinates. com_unwrap (np.array): The length three vector holding the unwrapped xyz coordinates. mass (float): The total mass of the atoms used to define LipidCOM. """ # lipid type/resname or other name self.type="UNK" # wrapped coordinates self.com=np.zeros(3) # unwrapped coordinates self.com_unwrap=np.zeros(3) # total mass self.mass=1.0 self.leaflet = "UNK" self.resid = 0 return # The name of this function could be changed to be more desriptive, e.g. # extract_com_mda_residue def extract(self, mda_residue, unwrap=False, box=None, name_dict=None, make_whole=True): """ Get the center of mass coordinates from an MDAnalysis residue This function calls the MDAnalysis member function center_of_mass() of the residue to compute the center of mass of the atoms constituting the residue. Args: mda_residue (MDAnalysis.residue): An MDAnalysis residue object from which to extract a center of masss coordinates. unwrap (bool, optional): Define which com container to store coordiates in. False (default) - The COM coordinates are stored in the container designated for the wrapped coordinate representation. True - The COM coordinates are stored in the container designated for the unwrapped coordinate representation. """ self.type = mda_residue.resname self.resid = mda_residue.resid self.atom_names = mda_residue.atoms.names atom_group = mda_residue.atoms if isinstance(name_dict, dict): names = name_dict[self.type] self.atom_names = names n_names = len(names) #print(mda_residue.atoms.select_atoms('name {}'.format(names[0]))) #atom_group = mda.core.groups.AtomGroup([eval("mda_residue.atoms."+names[0])]) atom_group = mda_residue.atoms.select_atoms('name {}'.format(names[0])) #if (not unwrap) and (n_names > 1): # mda.lib.mdamath.make_whole(mda_residue.atoms, reference_atom=atom_group) for i in range(1, n_names): #atom_group+=eval("mda_residue.atoms."+names[i]) atom_group += mda_residue.atoms.select_atoms('name {}'.format(names[i])) #else: if (not unwrap) and make_whole: mda.lib.mdamath.make_whole(mda_residue.atoms) if unwrap: self.com_unwrap = atom_group.center_of_mass() else: if box is not None: self.com = atom_group.center_of_mass() self.com_unwrap = self.com[:] else: self.com = atom_group.center_of_mass() self.com_unwrap = self.com[:] self.mass = atom_group.total_mass() return # a Center of Mass frame object class COMFrame(object): """ A molecular dynamics style Frame object for LipidCOM objects. Atrributes: lipidcom (list of obj:LipidCOM): A list of the LipidCOM objects assigned to the COMFrame. box (np.array): A 3 element vector containing the (rectangular) xyz box edge lengths. time (float): The simulation time that this Frame represents. number (int): The frame number of this Frame. mdnumber (int): The corresponding frame number in the original MD trajectory """ # does not check that nlipids is an int def __init__(self, mda_frame, mda_bilayer_selection, unwrap_coords, name_dict=None, multi_bead=False, rewrap=False, make_whole=False): """ Frame initialization. Args: mda_frame (MDAnalysis.Timestep): The MDAnalysis frame for the coordinates to use in computing the lipid centers of mass. mda_bilayer_selection (MDAnalysis.AtomSelection): The MDAnalsysis atom selection object for the containing the atoms in the bilayer. unwrap_coords (numpy.Array): A numpy array containing the the unwrapped coordinates of the bilayer selection atoms. """ # list to store the nlipids LipidCOM objects self.lipidcom = [] # box dimensions -- assumes the box originates a 0,0,0 # It might be worth adding functionality to specifiy the box origin (or center) # This also assumes a rectangular box self.box = mda_frame.dimensions[0:3] # simulation time self.time = mda_frame.time # frame number in the MD trajectory self.mdnumber = mda_frame.frame self.number = self.mdnumber self._multi_bead = multi_bead self._name_dict = name_dict self._rewrapped = rewrap self._make_whole = make_whole if (name_dict is not None) and multi_bead: self._build_multi_bead(mda_frame, mda_bilayer_selection, unwrap_coords, name_dict) else: self._build_single_bead(mda_frame, mda_bilayer_selection, unwrap_coords, name_dict=name_dict) if rewrap: self._rewrap() return def _build_single_bead(self, mda_frame, mda_bilayer_selection, unwrap_coords, name_dict=None): nlipids = len(mda_bilayer_selection.residues) # initialize all the LipidCOM objects for dummy_i in range(nlipids): self.lipidcom.append(LipidCOM()) #atom indices in mda selection/frame index = mda_bilayer_selection.indices # loop over the residues (lipids) and get the centers of mass ## do the wrapped coordinates r=0 for res in mda_bilayer_selection.residues: #print(res," ",res.center_of_mass()) self.lipidcom[r].extract(res, name_dict=name_dict, make_whole=self._make_whole) #self.lipidcom[r].mass = res.total_mass() r+=1 #now unwrapped coordinates mda_frame._pos[index] = unwrap_coords[:] #now we need to adjust for the center of mass motion of the membrane -- for simplicity set all frames to (0,0,0) # to remove center of mass motion of the membrane total_mass = mda_bilayer_selection.masses.sum() mem_com_x = (mda_frame.positions[index][:,0]*mda_bilayer_selection.masses).sum()/total_mass mem_com_y = (mda_frame.positions[index][:,1]*mda_bilayer_selection.masses).sum()/total_mass mem_com_z = (mda_frame.positions[index][:,2]*mda_bilayer_selection.masses).sum()/total_mass mem_com = np.array([mem_com_x, mem_com_y, mem_com_z]) mda_frame._pos[index] -= mem_com self.mem_com = mem_com r=0 for res in mda_bilayer_selection.residues: self.lipidcom[r].extract(res, unwrap=True, name_dict=name_dict, make_whole=self._make_whole) r+=1 return def _build_multi_bead(self, mda_frame, mda_bilayer_selection, unwrap_coords, name_dict): nlipids = len(mda_bilayer_selection.residues) #atom indices in mda selection/frame index = mda_bilayer_selection.indices # loop over the residues (lipids) and get the centers of mass ## do the wrapped coordinates r=0 for res in mda_bilayer_selection.residues: #print(res," ",res.center_of_mass()) resname = res.resname # initialize all the LipidCOM objects for atom in name_dict[resname]: name_dict_single = {resname:[atom]} self.lipidcom.append(LipidCOM()) self.lipidcom[r].extract(res, name_dict=name_dict_single, make_whole=self._make_whole) #self.lipidcom[r].mass = res.total_mass() r+=1 #now unwrapped coordinates mda_frame._pos[index] = unwrap_coords[:] #now we need to adjust for the center of mass motion of the membrane -- for simplicity set all frames to (0,0,0) # to remove center of mass motion of the membrane total_mass = mda_bilayer_selection.masses.sum() mem_com_x = (mda_frame.positions[index][:,0]*mda_bilayer_selection.masses).sum()/total_mass mem_com_y = (mda_frame.positions[index][:,1]*mda_bilayer_selection.masses).sum()/total_mass mem_com_z = (mda_frame.positions[index][:,2]*mda_bilayer_selection.masses).sum()/total_mass mem_com = np.array([mem_com_x, mem_com_y, mem_com_z]) mda_frame._pos[index] -= mem_com self.mem_com = mem_com r=0 for res in mda_bilayer_selection.residues: #print(res," ",res.center_of_mass()) resname = res.resname # initialize all the LipidCOM objects for atom in name_dict[resname]: name_dict_single = {resname:[atom]} self.lipidcom[r].extract(res, unwrap=True, name_dict=name_dict_single, make_whole=self._make_whole) #self.lipidcom[r].mass = res.total_mass() r+=1 return def _rewrap(self): ncom = len(self.lipidcom) box_low = np.array([0.0, 0.0, 0.0]) box_high = self.box # print(box_low) # print(box_high) # print(self.box) # print(self.mem_com) n_re = 0 for r in range(ncom): pos_c = self.lipidcom[r].com_unwrap + self.mem_com pos_n = np.zeros(3) diff = pos_c - self.lipidcom[r].com dist = np.sqrt(np.dot(diff, diff)) # is_wrap = False if dist > 1.0: n_re += 1 for i in range(3): p_i = pos_c[i] b_l = box_low[i] b_h = box_high[i] b = self.box[i] while p_i < b_l: p_i += b # is_wrap = True while p_i > b_h: p_i -= b # is_wrap = True pos_n[i] = p_i # print(r, pos_c, pos_n) # print('com', self.lipidcom[r].com) # print('com_u', self.lipidcom[r].com_unwrap) # print('bl bh',box_low, box_high) # print('mc b', self.mem_com, self.box) self.lipidcom[r].com = pos_n print(('n_re', n_re)) return def __repr__(self): return 'COMFrame for frame %s with %s lipids' % (self.number, len(self.lipidcom)) def set_box(self, box_lengths): """ Set the rectangular xyz box edge lengths. Args: box_lengths (numpy.array): A 1d, 3 element numpy.array containing the x,y,z box sizes (or edge lengths) """ self.box = box_lengths return def set_time(self, time): """ Set the simulation time. Args: time (float): The simulation time to assign to this Frame. """ self.time = time return def __len__(self): """ Returns the number of LipidCOM objects assigned to this Frame Returns: int: Number of LipidCOM objects currently assigned to this Frame """ return len(self.lipidcom) # def COG(self,unwrapped=False): # cog_out = np.zeros(3) # for lipid in self.lipidcom: # if not unwrapped: # cog_out+=lipid.com # else: # cog_out+=lipid.com_unwrap # cog_out/=len(self) # return com_out def com(self, wrapped=True): """ Computes the center of mass (COM) for the Frame This member function is used to compute the overall center of mass (COM) of the COMFrame using the LipidCOM object coordinates and masses. Args: wrapped (bool, optional): Define which set of coordinates to use in the computation. True (default) - The wrapped LipidCOM coordinates are used to compute the COM of the frame. False - The unwrapped LipidCOM coordinates are used to compute the COM of the frame. Returns: np.array: A 3 element vector containing the xyz coordinates of the Frame's COM """ com_out = np.zeros(3) total_mass = 0.0 for lipid in self.lipidcom: if wrapped: com_out+=lipid.com*lipid.mass total_mass+=lipid.mass else: com_out+=lipid.com_unwrap*lipid.mass total_mass+=lipid.mass com_out/=total_mass return com_out def cog(self, wrapped=True): """ Computes the center of geometry (COG) for the Frame This member function is used to compute the overall center of geometry (COG) of the COMFrame using the LipidCOM object coordinates. Args: wrapped (bool, optional): Define which set of coordinates to use in the computation. True (default) - The wrapped LipidCOM coordinates are used to compute the COG of the frame. False - The unwrapped LipidCOM coordinates are used to compute the COG of the frame. Returns: np.array: A 3 element vector containing the xyz coordinates of the Frame's COG """ com_out = np.zeros(3) total_mass = 0.0 for lipid in self.lipidcom: if wrapped: com_out+=lipid.com total_mass+=1.0 else: com_out+=lipid.com_unwrap total_mass+=1.0 com_out/=total_mass return com_out def coordinates(self, wrapped=True, leaflet=None): coords = [] if leaflet is None: for item in self.lipidcom: if wrapped: coords.append(item.com) else: coords.append(item.com_unwrap) else: for item in self.lipidcom: if item.leaflet == leaflet: if wrapped: coords.append(item.com) else: coords.append(item.com_unwrap) return np.array(coords) def masses(self): output = [] for lipid in self.lipidcom: output.append(lipid.mass) return np.array(output) def resids(self): output = [] for lipid in self.lipidcom: output.append(lipid.resid) return np.array(output) def resnames(self): output = [] for lipid in self.lipidcom: output.append(lipid.type) return output def leaflets(self): output = [] for lipid in self.lipidcom: output.append(lipid.leaflet) return output def unique_resnames(self): output = [] for lipid in self.lipidcom: if lipid.type not in output: output.append(lipid.type) return output def write_xyz(self, xyz_name, wrapped=True, name_by_leaflet=False): # Open up the file to write to xyz_out = open(xyz_name, "w") comment = "COMFrame "+str(self.number)+" MD Frame "+str(self.mdnumber) xyz_out.write(str(len(self.lipidcom))) xyz_out.write("\n") xyz_out.write(comment) xyz_out.write("\n") i=0 for dummy_lip in self.lipidcom: #get the coordinates x = self.lipidcom[i].com[0] y = self.lipidcom[i].com[1] z = self.lipidcom[i].com_unwrap[2] if not wrapped: x = self.lipidcom[i].com_unwrap[0] y = self.lipidcom[i].com_unwrap[1] #z = self.lipidcom[i].com_unwrap[2] #get the lipid resname oname = self.lipidcom[i].type if name_by_leaflet: oname = self.lipidcom[i].leaflet #write to file line = str(oname)+" "+str(x)+" "+str(y)+" "+str(z) xyz_out.write(line) xyz_out.write("\n") i+=1 xyz_out.close() return
[ "six.moves.range", "numpy.array", "numpy.dot", "numpy.zeros", "MDAnalysis.lib.mdamath.make_whole" ]
[((1133, 1144), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1141, 1144), True, 'import numpy as np\n'), ((1201, 1212), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (1209, 1212), True, 'import numpy as np\n'), ((6333, 6347), 'six.moves.range', 'range', (['nlipids'], {}), '(nlipids)\n', (6338, 6347), False, 'from six.moves import range\n'), ((7508, 7551), 'numpy.array', 'np.array', (['[mem_com_x, mem_com_y, mem_com_z]'], {}), '([mem_com_x, mem_com_y, mem_com_z])\n', (7516, 7551), True, 'import numpy as np\n'), ((9331, 9374), 'numpy.array', 'np.array', (['[mem_com_x, mem_com_y, mem_com_z]'], {}), '([mem_com_x, mem_com_y, mem_com_z])\n', (9339, 9374), True, 'import numpy as np\n'), ((10022, 10047), 'numpy.array', 'np.array', (['[0.0, 0.0, 0.0]'], {}), '([0.0, 0.0, 0.0])\n', (10030, 10047), True, 'import numpy as np\n'), ((10217, 10228), 'six.moves.range', 'range', (['ncom'], {}), '(ncom)\n', (10222, 10228), False, 'from six.moves import range\n'), ((13165, 13176), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (13173, 13176), True, 'import numpy as np\n'), ((14247, 14258), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (14255, 14258), True, 'import numpy as np\n'), ((15116, 15132), 'numpy.array', 'np.array', (['coords'], {}), '(coords)\n', (15124, 15132), True, 'import numpy as np\n'), ((15265, 15281), 'numpy.array', 'np.array', (['output'], {}), '(output)\n', (15273, 15281), True, 'import numpy as np\n'), ((15415, 15431), 'numpy.array', 'np.array', (['output'], {}), '(output)\n', (15423, 15431), True, 'import numpy as np\n'), ((3055, 3072), 'six.moves.range', 'range', (['(1)', 'n_names'], {}), '(1, n_names)\n', (3060, 3072), False, 'from six.moves import range\n'), ((3296, 3341), 'MDAnalysis.lib.mdamath.make_whole', 'mda.lib.mdamath.make_whole', (['mda_residue.atoms'], {}), '(mda_residue.atoms)\n', (3322, 3341), True, 'import MDAnalysis as mda\n'), ((10313, 10324), 'numpy.zeros', 'np.zeros', (['(3)'], {}), '(3)\n', (10321, 10324), True, 'import numpy as np\n'), ((10400, 10418), 'numpy.dot', 'np.dot', (['diff', 'diff'], {}), '(diff, diff)\n', (10406, 10418), True, 'import numpy as np\n'), ((10528, 10536), 'six.moves.range', 'range', (['(3)'], {}), '(3)\n', (10533, 10536), False, 'from six.moves import range\n')]
import h5py import numpy as np class SignalGenerator(object): def __init__(self): self.pred_data = None self.signal = None def load_prediction(self): prediction = "evaluater/predictions.hdf5" with h5py.File(prediction, "r") as pred: # List all groups a_group_key = list(pred.keys())[0] # Get the data self.pred_data = np.vstack(list(pred[a_group_key])) def generate_signal(self): self.signal = np.zeros([len(self.pred_data), 2]) self.signal[self.pred_data[:, 0] < 0, 0] = -1 self.signal[self.pred_data[:, 1] < 0, 1] = -1 self.signal[self.pred_data[:, 0] > 0, 0] = 1 self.signal[self.pred_data[:, 1] > 0, 1] = 1 if __name__ == '__main__': pass
[ "h5py.File" ]
[((241, 267), 'h5py.File', 'h5py.File', (['prediction', '"""r"""'], {}), "(prediction, 'r')\n", (250, 267), False, 'import h5py\n')]
""" File URL API """ from contextlib import contextmanager from pathlib import Path from pkg_resources import iter_entry_points from typing import Dict, Generator, Type from urllib.parse import ParseResult, urlparse from unfurl.provider import Provider def load_providers() -> Dict[str, Type[Provider]]: return { entry_point.name: entry_point.load() for entry_point in iter_entry_points("unfurl.providers") } def provider_for(parse_result: ParseResult) -> Provider: providers = load_providers() provider_class = providers.get(parse_result.scheme) if not provider_class: raise Exception(f"No unfurl provider found for scheme: {parse_result.scheme}") return provider_class() @contextmanager def unfurl(url: str) -> Generator[Path, None, None]: """ """ parse_result = urlparse(url) provider = provider_for(parse_result) with provider.unfurl(parse_result=parse_result) as path: yield path @contextmanager def furl(url: str) -> Generator[Path, None, None]: """ """ parse_result = urlparse(url) provider = provider_for(parse_result) with provider.furl(parse_result=parse_result) as path: yield path
[ "pkg_resources.iter_entry_points", "urllib.parse.urlparse" ]
[((833, 846), 'urllib.parse.urlparse', 'urlparse', (['url'], {}), '(url)\n', (841, 846), False, 'from urllib.parse import ParseResult, urlparse\n'), ((1073, 1086), 'urllib.parse.urlparse', 'urlparse', (['url'], {}), '(url)\n', (1081, 1086), False, 'from urllib.parse import ParseResult, urlparse\n'), ((393, 430), 'pkg_resources.iter_entry_points', 'iter_entry_points', (['"""unfurl.providers"""'], {}), "('unfurl.providers')\n", (410, 430), False, 'from pkg_resources import iter_entry_points\n')]
import numpy as np import plotly.offline as pyo import plotly.graph_objs as go np.random.seed(42) random_x=np.random.randint(1,101,100) random_y=np.random.randint(1,101,100) data = [go.Scatter(x=random_x, y=random_y, mode='markers', marker=dict( size=12, color='rgb(51,210,152)', symbol='pentagon', line=dict(width=2) ))] layout = go.Layout(title='Hello First Plot', xaxis={'title':'MY X AXIS'}, yaxis=dict(title='MY Y AXIS'), hovermode='closest') fig=go.Figure(data=data,layout=layout) pyo.plot(fig,filename='scatter.html')
[ "plotly.graph_objs.Figure", "numpy.random.randint", "numpy.random.seed", "plotly.offline.plot" ]
[((81, 99), 'numpy.random.seed', 'np.random.seed', (['(42)'], {}), '(42)\n', (95, 99), True, 'import numpy as np\n'), ((109, 139), 'numpy.random.randint', 'np.random.randint', (['(1)', '(101)', '(100)'], {}), '(1, 101, 100)\n', (126, 139), True, 'import numpy as np\n'), ((147, 177), 'numpy.random.randint', 'np.random.randint', (['(1)', '(101)', '(100)'], {}), '(1, 101, 100)\n', (164, 177), True, 'import numpy as np\n'), ((714, 749), 'plotly.graph_objs.Figure', 'go.Figure', ([], {'data': 'data', 'layout': 'layout'}), '(data=data, layout=layout)\n', (723, 749), True, 'import plotly.graph_objs as go\n'), ((749, 787), 'plotly.offline.plot', 'pyo.plot', (['fig'], {'filename': '"""scatter.html"""'}), "(fig, filename='scatter.html')\n", (757, 787), True, 'import plotly.offline as pyo\n')]
import os import sys import torch from torch.autograd import Variable sys.path.append(os.path.dirname(os.path.abspath(__file__)) + os.path.sep + '../../../') from in_out.deformable_object_reader import DeformableObjectReader from core.observations.deformable_objects.deformable_multi_object import DeformableMultiObject from core.model_tools.attachments.multi_object_attachment import MultiObjectAttachment import support.kernels as kernel_factory def compute_distance_squared(path_to_mesh_1, path_to_mesh_2, deformable_object_type, attachment_type, kernel_width=None): reader = DeformableObjectReader() object_1 = reader.create_object(path_to_mesh_1, deformable_object_type.lower()) object_2 = reader.create_object(path_to_mesh_2, deformable_object_type.lower()) multi_object_1 = DeformableMultiObject([object_1]) multi_object_2 = DeformableMultiObject([object_2]) multi_object_attachment = MultiObjectAttachment([attachment_type], [kernel_factory.factory('torch', kernel_width)]) return multi_object_attachment.compute_distances( {key: torch.from_numpy(value) for key, value in multi_object_1.get_points().items()}, multi_object_1, multi_object_2).data.cpu().numpy() if __name__ == '__main__': """ Basic info printing. """ logger.info('') logger.info('##############################') logger.info('##### PyDeformetrica 1.0 #####') logger.info('##############################') logger.info('') """ Read command line. """ assert len(sys.argv) in [5, 6], \ 'Usage: ' + sys.argv[0] \ + " <path_to_mesh_1.vtk> <path_to_mesh_2.vtk> <deformable_object_type> <attachment_type> " \ "[optional kernel_width]" path_to_mesh_1 = sys.argv[1] path_to_mesh_2 = sys.argv[2] deformable_object_type = sys.argv[3] attachment_type = sys.argv[4] kernel_width = None if len(sys.argv) == 6: kernel_width = float(sys.argv[5]) if not os.path.isfile(path_to_mesh_1): raise RuntimeError('The specified source file ' + path_to_mesh_1 + ' does not exist.') if not os.path.isfile(path_to_mesh_2): raise RuntimeError('The specified source file ' + path_to_mesh_2 + ' does not exist.') """ Core part. """ logger.info(compute_distance_squared( path_to_mesh_1, path_to_mesh_2, deformable_object_type, attachment_type, kernel_width))
[ "in_out.deformable_object_reader.DeformableObjectReader", "support.kernels.factory", "torch.from_numpy", "os.path.isfile", "core.observations.deformable_objects.deformable_multi_object.DeformableMultiObject", "os.path.abspath" ]
[((617, 641), 'in_out.deformable_object_reader.DeformableObjectReader', 'DeformableObjectReader', ([], {}), '()\n', (639, 641), False, 'from in_out.deformable_object_reader import DeformableObjectReader\n'), ((832, 865), 'core.observations.deformable_objects.deformable_multi_object.DeformableMultiObject', 'DeformableMultiObject', (['[object_1]'], {}), '([object_1])\n', (853, 865), False, 'from core.observations.deformable_objects.deformable_multi_object import DeformableMultiObject\n'), ((887, 920), 'core.observations.deformable_objects.deformable_multi_object.DeformableMultiObject', 'DeformableMultiObject', (['[object_2]'], {}), '([object_2])\n', (908, 920), False, 'from core.observations.deformable_objects.deformable_multi_object import DeformableMultiObject\n'), ((2009, 2039), 'os.path.isfile', 'os.path.isfile', (['path_to_mesh_1'], {}), '(path_to_mesh_1)\n', (2023, 2039), False, 'import os\n'), ((2147, 2177), 'os.path.isfile', 'os.path.isfile', (['path_to_mesh_2'], {}), '(path_to_mesh_2)\n', (2161, 2177), False, 'import os\n'), ((993, 1038), 'support.kernels.factory', 'kernel_factory.factory', (['"""torch"""', 'kernel_width'], {}), "('torch', kernel_width)\n", (1015, 1038), True, 'import support.kernels as kernel_factory\n'), ((104, 129), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (119, 129), False, 'import os\n'), ((1110, 1133), 'torch.from_numpy', 'torch.from_numpy', (['value'], {}), '(value)\n', (1126, 1133), False, 'import torch\n')]
# -*- coding: utf-8 -*- import unittest from dashboard.time_utils import (epoch_to_datetime, milliseconds_to_seconds, seconds_to_time) class TestTimeUtils(unittest.TestCase): def test_empty_epoch_to_datetime_should_raise_exception(self): with self.assertRaises(TypeError): epoch_to_datetime(seconds=None) def test_zero_epoch_to_datetime_should_return_data(self): result = epoch_to_datetime(seconds=0) expected = '1970-01-01 00:00:00' self.assertEqual(result, expected) def test_none_seconds_to_time_should_raise_excpetion(self): with self.assertRaises(TypeError): seconds_to_time(seconds=None) def test_one_hour_one_minute_one_second_to_time_should_return_data(self): result = seconds_to_time(seconds=3661) expected = '1:01:01' self.assertEqual(result, expected) def test_none_ms_milliseconds_to_seconds_should_raise_excpetion(self): with self.assertRaises(TypeError): milliseconds_to_seconds(milliseconds=None) def test_float_ms_milliseconds_to_seconds_should_return_data(self): result = milliseconds_to_seconds(milliseconds=8000.9) expected = 8.0 self.assertEqual(result, expected) def test_int_ms_milliseconds_to_seconds_should_return_data(self): result = milliseconds_to_seconds(milliseconds=8000) expected = 8.0 self.assertEqual(result, expected)
[ "dashboard.time_utils.milliseconds_to_seconds", "dashboard.time_utils.epoch_to_datetime", "dashboard.time_utils.seconds_to_time" ]
[((446, 474), 'dashboard.time_utils.epoch_to_datetime', 'epoch_to_datetime', ([], {'seconds': '(0)'}), '(seconds=0)\n', (463, 474), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n'), ((805, 834), 'dashboard.time_utils.seconds_to_time', 'seconds_to_time', ([], {'seconds': '(3661)'}), '(seconds=3661)\n', (820, 834), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n'), ((1171, 1215), 'dashboard.time_utils.milliseconds_to_seconds', 'milliseconds_to_seconds', ([], {'milliseconds': '(8000.9)'}), '(milliseconds=8000.9)\n', (1194, 1215), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n'), ((1370, 1412), 'dashboard.time_utils.milliseconds_to_seconds', 'milliseconds_to_seconds', ([], {'milliseconds': '(8000)'}), '(milliseconds=8000)\n', (1393, 1412), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n'), ((334, 365), 'dashboard.time_utils.epoch_to_datetime', 'epoch_to_datetime', ([], {'seconds': 'None'}), '(seconds=None)\n', (351, 365), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n'), ((679, 708), 'dashboard.time_utils.seconds_to_time', 'seconds_to_time', ([], {'seconds': 'None'}), '(seconds=None)\n', (694, 708), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n'), ((1038, 1080), 'dashboard.time_utils.milliseconds_to_seconds', 'milliseconds_to_seconds', ([], {'milliseconds': 'None'}), '(milliseconds=None)\n', (1061, 1080), False, 'from dashboard.time_utils import epoch_to_datetime, milliseconds_to_seconds, seconds_to_time\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver # Create your models here. class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) fullname = models.CharField(blank=True, max_length=1024) age = models.IntegerField(default=None, blank=True, null=True) @receiver(post_save, sender=User) def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance) @receiver(post_save, sender=User) def save_user_profile(sender, instance, **kwargs): instance.profile.save()
[ "django.dispatch.receiver", "django.db.models.OneToOneField", "django.db.models.CharField", "django.db.models.IntegerField" ]
[((464, 496), 'django.dispatch.receiver', 'receiver', (['post_save'], {'sender': 'User'}), '(post_save, sender=User)\n', (472, 496), False, 'from django.dispatch import receiver\n'), ((614, 646), 'django.dispatch.receiver', 'receiver', (['post_save'], {'sender': 'User'}), '(post_save, sender=User)\n', (622, 646), False, 'from django.dispatch import receiver\n'), ((287, 339), 'django.db.models.OneToOneField', 'models.OneToOneField', (['User'], {'on_delete': 'models.CASCADE'}), '(User, on_delete=models.CASCADE)\n', (307, 339), False, 'from django.db import models\n'), ((352, 397), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(1024)'}), '(blank=True, max_length=1024)\n', (368, 397), False, 'from django.db import models\n'), ((405, 461), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': 'None', 'blank': '(True)', 'null': '(True)'}), '(default=None, blank=True, null=True)\n', (424, 461), False, 'from django.db import models\n')]
version = '0.0.5' from setuptools import setup setup( name = 'nyaraka', version = version, url = 'http://github.com/edsu/nyaraka', author = '<NAME>', author_email = '<EMAIL>', py_modules = ['nyaraka',], scripts = ['nyaraka.py',], install_requires = ['requests', 'tqdm'], description = 'Download Omeka data', )
[ "setuptools.setup" ]
[((49, 300), 'setuptools.setup', 'setup', ([], {'name': '"""nyaraka"""', 'version': 'version', 'url': '"""http://github.com/edsu/nyaraka"""', 'author': '"""<NAME>"""', 'author_email': '"""<EMAIL>"""', 'py_modules': "['nyaraka']", 'scripts': "['nyaraka.py']", 'install_requires': "['requests', 'tqdm']", 'description': '"""Download Omeka data"""'}), "(name='nyaraka', version=version, url='http://github.com/edsu/nyaraka',\n author='<NAME>', author_email='<EMAIL>', py_modules=['nyaraka'],\n scripts=['nyaraka.py'], install_requires=['requests', 'tqdm'],\n description='Download Omeka data')\n", (54, 300), False, 'from setuptools import setup\n')]
"""Binning-based MI estimator.""" import numpy as np from frites.core.mi_bin_ephy import (mi_bin_time, mi_bin_ccd_time) from frites.estimator.est_mi_base import BaseMIEstimator from frites.utils import jit class BinMIEstimator(BaseMIEstimator): """Binning-based Mutual-Information estimator. .. note:: The functions for estimating the mutual-information using binning are relatively slow. If Numba is installed, those functions can be considerably accelerated. Parameters ---------- mi_type : {'cc', 'cd', 'ccd'} Mutual information type (default : 'cc') : * 'cc' : MI between two continuous variables * 'cd' : MI between a continuous and a discret variables * 'ccd' : MI between two continuous variables conditioned by a third discret one n_bins : int | 4 Number of bins to estimate the probability distribution. """ def __init__(self, mi_type='cc', n_bins=4, verbose=None): self.name = 'Binning-based Mutual Information Estimator' add_str = f", n_bins={n_bins}" super(BinMIEstimator, self).__init__( mi_type=mi_type, add_str=add_str, verbose=verbose) # =========================== Core function =========================== fcn = {'cc': mi_bin_cc, 'cd': mi_bin_cd, 'ccd': mi_bin_ccd}[mi_type] self._core_fun = fcn # ========================== Function kwargs ========================== # additional arguments that are going to be passed to the core function self._kwargs = dict(n_bins=n_bins) # update internal settings settings = dict(mi_type=mi_type, core_fun=self._core_fun.__name__) self.settings.merge([self._kwargs, settings]) def estimate(self, x, y, z=None, categories=None): """Estimate the (possibly conditional) mutual-information. This method is made for computing the mutual-information on 3D variables (i.e (n_var, 1, n_samples)) where n_var is an additional dimension (e.g times, times x freqs etc.), 1 is a multivariate axis and n_samples the number of samples. When computing MI, both the multivariate and samples axes are reduced. Parameters ---------- x : array_like Array of shape (n_var, 1, n_samples). If x has more than three dimensions, it's going to be internally reshaped. y : array_like Array with a shape that depends on the type of MI (mi_type) : * If mi_type is 'cc' or 'ccd', y should be an array with the same shape as x * If mi_type is 'cd', y should be a row vector of shape (n_samples,) z : array_like | None Array for conditional mutual-information. The shape is going to depend on the type of MI (mi_type) : * If mi_type is 'ccd', z should be a row vector of shape (n_samples,) * If mi_type is 'ccc', z should have the same shape as x and y categories : array_like | None Row vector of categories. This vector should have a shape of (n_samples,) and should contains integers describing the category of each sample. If categories are provided, the copnorm is going to be performed per categories. Returns ------- mi : array_like Array of (possibly conditional) mutual-information of shape (n_categories, n_var). If categories is None when computing MI, n_categories is going to be one. """ fcn = self.get_function() return fcn(x, y, z=z, categories=categories) def get_function(self): """Get the function to execute according to the input parameters. This can be particulary usefull when computing MI in parallel as it avoids to pickle the whole estimator and therefore, leading to faster computations. The returned function has the following signature : * fcn(x, y, z=None, categories=None) and return an array of shape (n_categories, n_var). """ n_bins = np.int64(self._kwargs['n_bins']) core_fun = self._core_fun mi_type = self.settings['mi_type'] def estimator(x, y, z=None, categories=None): # be sure that x is at least 3d if x.ndim == 1: x = x[np.newaxis, np.newaxis, :] if x.ndim == 2: x = x[np.newaxis, :] # internal reshaping if x has more than 3 dimensions assert x.ndim >= 3 reshape = None if x.ndim > 3: head_shape = list(x.shape)[0:-2] reshape = (head_shape, np.prod(head_shape)) tail_shape = list(x.shape)[-2::] x = x.reshape([reshape[1]] + tail_shape) # types checking if x.dtype != np.float32: x = x.astype(np.float32, copy=False) if y.dtype != np.float32: y = y.astype(np.float32, copy=False) if isinstance(z, np.ndarray) and (z.dtype != np.float32): z = z.astype(np.float32, copy=False) if not isinstance(categories, np.ndarray): categories = np.zeros((1), dtype=np.float32) if categories.dtype != np.float32: categories = categories.astype(np.float32, copy=False) # additional arguments for cmi args = () if mi_type in ['ccd', 'ccc']: args = [z] # compute mi mi = core_fun(x, y, *args, n_bins, categories) # retrieve original shape (if needed) if reshape is not None: mi = mi.reshape([mi.shape[0]] + reshape[0]) return mi return estimator @jit("f4[:, :](f4[:,:,:], f4[:], i8, f4[:])") def mi_bin_cc(x, y, n_bins, categories): # proper shape of the regressor n_times, _, n_trials = x.shape # compute mi across (ffx) or per subject (rfx) if len(categories) != n_trials: mi = np.zeros((1, n_times), dtype=np.float32) mi[0, :] = mi_bin_time(x[:, 0, :], y, n_bins, n_bins) else: # get categories informations u_cat = np.unique(categories) n_cats = len(u_cat) # compute mi per subject mi = np.zeros((n_cats, n_times), dtype=np.float32) for n_c, c in enumerate(u_cat): is_cat = categories == c x_cat, y_cat = x[:, :, is_cat], y[is_cat] mi[n_c, :] = mi_bin_time(x_cat[:, 0, :], y_cat, n_bins, n_bins) return mi @jit("f4[:, :](f4[:,:,:], f4[:], i8, f4[:])") def mi_bin_cd(x, y, bins_x, categories): # proper shape of the regressor n_times, _, n_trials = x.shape # get the number of bins for the y variable bins_y = len(np.unique(y)) # compute mi across (ffx) or per subject (rfx) if len(categories) != n_trials: mi = np.zeros((1, n_times), dtype=np.float32) mi[0, :] = mi_bin_time(x[:, 0, :], y, bins_x, bins_y) else: # get categories informations u_cat = np.unique(categories) n_cats = len(u_cat) # compute mi per subject mi = np.zeros((n_cats, n_times), dtype=np.float32) for n_c, c in enumerate(u_cat): is_cat = categories == c x_cat, y_cat = x[:, :, is_cat], y[is_cat] mi[n_c, :] = mi_bin_time(x_cat[:, 0, :], y_cat, bins_x, bins_y) return mi @jit("f4[:, :](f4[:,:,:], f4[:], f4[:], i8, f4[:])") def mi_bin_ccd(x, y, z, n_bins, categories): # proper shape of the regressor n_times, _, n_trials = x.shape # compute mi across (ffx) or per subject (rfx) if len(categories) != n_trials: mi = np.zeros((1, n_times), dtype=np.float32) mi[0, :] = mi_bin_ccd_time(x[:, 0, :], y, z, n_bins) else: # get categories informations u_cat = np.unique(categories) n_cats = len(u_cat) # compute mi per subject mi = np.zeros((n_cats, n_times), dtype=np.float32) for n_c, c in enumerate(u_cat): is_cat = categories == c x_cat, y_cat, z_cat = x[:, :, is_cat], y[is_cat], z[is_cat] mi[n_c, :] = mi_bin_ccd_time(x_cat[:, 0, :], y_cat, z_cat, n_bins) return mi
[ "numpy.prod", "numpy.int64", "numpy.unique", "frites.core.mi_bin_ephy.mi_bin_ccd_time", "numpy.zeros", "frites.core.mi_bin_ephy.mi_bin_time", "frites.utils.jit" ]
[((5943, 5987), 'frites.utils.jit', 'jit', (['"""f4[:, :](f4[:,:,:], f4[:], i8, f4[:])"""'], {}), "('f4[:, :](f4[:,:,:], f4[:], i8, f4[:])')\n", (5946, 5987), False, 'from frites.utils import jit\n'), ((6733, 6777), 'frites.utils.jit', 'jit', (['"""f4[:, :](f4[:,:,:], f4[:], i8, f4[:])"""'], {}), "('f4[:, :](f4[:,:,:], f4[:], i8, f4[:])')\n", (6736, 6777), False, 'from frites.utils import jit\n'), ((7602, 7653), 'frites.utils.jit', 'jit', (['"""f4[:, :](f4[:,:,:], f4[:], f4[:], i8, f4[:])"""'], {}), "('f4[:, :](f4[:,:,:], f4[:], f4[:], i8, f4[:])')\n", (7605, 7653), False, 'from frites.utils import jit\n'), ((4239, 4271), 'numpy.int64', 'np.int64', (["self._kwargs['n_bins']"], {}), "(self._kwargs['n_bins'])\n", (4247, 4271), True, 'import numpy as np\n'), ((6200, 6240), 'numpy.zeros', 'np.zeros', (['(1, n_times)'], {'dtype': 'np.float32'}), '((1, n_times), dtype=np.float32)\n', (6208, 6240), True, 'import numpy as np\n'), ((6260, 6302), 'frites.core.mi_bin_ephy.mi_bin_time', 'mi_bin_time', (['x[:, 0, :]', 'y', 'n_bins', 'n_bins'], {}), '(x[:, 0, :], y, n_bins, n_bins)\n', (6271, 6302), False, 'from frites.core.mi_bin_ephy import mi_bin_time, mi_bin_ccd_time\n'), ((6367, 6388), 'numpy.unique', 'np.unique', (['categories'], {}), '(categories)\n', (6376, 6388), True, 'import numpy as np\n'), ((6463, 6508), 'numpy.zeros', 'np.zeros', (['(n_cats, n_times)'], {'dtype': 'np.float32'}), '((n_cats, n_times), dtype=np.float32)\n', (6471, 6508), True, 'import numpy as np\n'), ((6955, 6967), 'numpy.unique', 'np.unique', (['y'], {}), '(y)\n', (6964, 6967), True, 'import numpy as np\n'), ((7069, 7109), 'numpy.zeros', 'np.zeros', (['(1, n_times)'], {'dtype': 'np.float32'}), '((1, n_times), dtype=np.float32)\n', (7077, 7109), True, 'import numpy as np\n'), ((7129, 7171), 'frites.core.mi_bin_ephy.mi_bin_time', 'mi_bin_time', (['x[:, 0, :]', 'y', 'bins_x', 'bins_y'], {}), '(x[:, 0, :], y, bins_x, bins_y)\n', (7140, 7171), False, 'from frites.core.mi_bin_ephy import mi_bin_time, mi_bin_ccd_time\n'), ((7236, 7257), 'numpy.unique', 'np.unique', (['categories'], {}), '(categories)\n', (7245, 7257), True, 'import numpy as np\n'), ((7332, 7377), 'numpy.zeros', 'np.zeros', (['(n_cats, n_times)'], {'dtype': 'np.float32'}), '((n_cats, n_times), dtype=np.float32)\n', (7340, 7377), True, 'import numpy as np\n'), ((7870, 7910), 'numpy.zeros', 'np.zeros', (['(1, n_times)'], {'dtype': 'np.float32'}), '((1, n_times), dtype=np.float32)\n', (7878, 7910), True, 'import numpy as np\n'), ((7930, 7971), 'frites.core.mi_bin_ephy.mi_bin_ccd_time', 'mi_bin_ccd_time', (['x[:, 0, :]', 'y', 'z', 'n_bins'], {}), '(x[:, 0, :], y, z, n_bins)\n', (7945, 7971), False, 'from frites.core.mi_bin_ephy import mi_bin_time, mi_bin_ccd_time\n'), ((8036, 8057), 'numpy.unique', 'np.unique', (['categories'], {}), '(categories)\n', (8045, 8057), True, 'import numpy as np\n'), ((8132, 8177), 'numpy.zeros', 'np.zeros', (['(n_cats, n_times)'], {'dtype': 'np.float32'}), '((n_cats, n_times), dtype=np.float32)\n', (8140, 8177), True, 'import numpy as np\n'), ((6665, 6715), 'frites.core.mi_bin_ephy.mi_bin_time', 'mi_bin_time', (['x_cat[:, 0, :]', 'y_cat', 'n_bins', 'n_bins'], {}), '(x_cat[:, 0, :], y_cat, n_bins, n_bins)\n', (6676, 6715), False, 'from frites.core.mi_bin_ephy import mi_bin_time, mi_bin_ccd_time\n'), ((7534, 7584), 'frites.core.mi_bin_ephy.mi_bin_time', 'mi_bin_time', (['x_cat[:, 0, :]', 'y_cat', 'bins_x', 'bins_y'], {}), '(x_cat[:, 0, :], y_cat, bins_x, bins_y)\n', (7545, 7584), False, 'from frites.core.mi_bin_ephy import mi_bin_time, mi_bin_ccd_time\n'), ((8352, 8405), 'frites.core.mi_bin_ephy.mi_bin_ccd_time', 'mi_bin_ccd_time', (['x_cat[:, 0, :]', 'y_cat', 'z_cat', 'n_bins'], {}), '(x_cat[:, 0, :], y_cat, z_cat, n_bins)\n', (8367, 8405), False, 'from frites.core.mi_bin_ephy import mi_bin_time, mi_bin_ccd_time\n'), ((5375, 5404), 'numpy.zeros', 'np.zeros', (['(1)'], {'dtype': 'np.float32'}), '(1, dtype=np.float32)\n', (5383, 5404), True, 'import numpy as np\n'), ((4829, 4848), 'numpy.prod', 'np.prod', (['head_shape'], {}), '(head_shape)\n', (4836, 4848), True, 'import numpy as np\n')]
from __future__ import division import numpy as np import matplotlib.pyplot as plt from pyhsmm.basic.distributions import PoissonDuration from autoregressive.distributions import AutoRegression from pyhsmm.util.text import progprint_xrange from pyslds.models import DefaultSLDS np.random.seed(0) ################### # generate data # ################### import autoregressive As = [np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) for alpha, theta in ((0.95,0.1), (0.95,-0.1), (1., 0.))] truemodel = autoregressive.models.ARHSMM( alpha=4.,init_state_concentration=4., obs_distns=[AutoRegression(A=A,sigma=0.05*np.eye(2)) for A in As], dur_distns=[PoissonDuration(alpha_0=3*50,beta_0=3) for _ in As]) truemodel.prefix = np.array([[0.,3.]]) data, labels = truemodel.generate(1000) data = data[truemodel.nlags:] plt.figure() plt.plot(data[:,0],data[:,1],'bx-') ################# # build model # ################# Kmax = 10 # number of latent discrete states D_latent = 2 # latent linear dynamics' dimension D_obs = 2 # data dimension Cs = [np.eye(D_obs) for _ in range(Kmax)] # Shared emission matrices sigma_obss = [0.05 * np.eye(D_obs) for _ in range(Kmax)] # Emission noise covariances model = DefaultSLDS( K=Kmax, D_obs=D_obs, D_latent=D_latent, Cs=Cs, sigma_obss=sigma_obss) model.add_data(data) model.resample_states() for _ in progprint_xrange(10): model.resample_model() model.states_list[0]._init_mf_from_gibbs() #################### # run mean field # #################### vlbs = [] for _ in progprint_xrange(50): vlbs.append(model.meanfield_coordinate_descent_step()) plt.figure() plt.plot(vlbs) plt.xlabel("Iteration") plt.ylabel("VLB") import matplotlib.gridspec as gridspec fig = plt.figure(figsize=(9,3)) gs = gridspec.GridSpec(7,1) ax1 = fig.add_subplot(gs[:-2]) ax2 = fig.add_subplot(gs[-2], sharex=ax1) ax3 = fig.add_subplot(gs[-1], sharex=ax1) im = ax1.matshow(model.states_list[0].expected_states.T, aspect='auto') ax1.set_xticks([]) ax1.set_yticks(np.arange(Kmax)) ax1.set_ylabel("Discrete State") ax2.matshow(model.states_list[0].expected_states.argmax(1)[None,:], aspect='auto') ax2.set_xticks([]) ax2.set_yticks([]) ax3.matshow(labels[None,:], aspect='auto') ax3.set_xticks([]) ax3.set_yticks([]) ax3.set_xlabel("Time") plt.show()
[ "pyslds.models.DefaultSLDS", "numpy.eye", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.array", "matplotlib.pyplot.figure", "matplotlib.gridspec.GridSpec", "pyhsmm.basic.distributions.PoissonDuration", "numpy.random.seed", "numpy.cos", "numpy.sin", "pyhsmm.util.text.progprint_xrange", "numpy.arange", "matplotlib.pyplot.show" ]
[((281, 298), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (295, 298), True, 'import numpy as np\n'), ((791, 813), 'numpy.array', 'np.array', (['[[0.0, 3.0]]'], {}), '([[0.0, 3.0]])\n', (799, 813), True, 'import numpy as np\n'), ((882, 894), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (892, 894), True, 'import matplotlib.pyplot as plt\n'), ((895, 934), 'matplotlib.pyplot.plot', 'plt.plot', (['data[:, 0]', 'data[:, 1]', '"""bx-"""'], {}), "(data[:, 0], data[:, 1], 'bx-')\n", (903, 934), True, 'import matplotlib.pyplot as plt\n'), ((1370, 1456), 'pyslds.models.DefaultSLDS', 'DefaultSLDS', ([], {'K': 'Kmax', 'D_obs': 'D_obs', 'D_latent': 'D_latent', 'Cs': 'Cs', 'sigma_obss': 'sigma_obss'}), '(K=Kmax, D_obs=D_obs, D_latent=D_latent, Cs=Cs, sigma_obss=\n sigma_obss)\n', (1381, 1456), False, 'from pyslds.models import DefaultSLDS\n'), ((1517, 1537), 'pyhsmm.util.text.progprint_xrange', 'progprint_xrange', (['(10)'], {}), '(10)\n', (1533, 1537), False, 'from pyhsmm.util.text import progprint_xrange\n'), ((1694, 1714), 'pyhsmm.util.text.progprint_xrange', 'progprint_xrange', (['(50)'], {}), '(50)\n', (1710, 1714), False, 'from pyhsmm.util.text import progprint_xrange\n'), ((1776, 1788), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (1786, 1788), True, 'import matplotlib.pyplot as plt\n'), ((1789, 1803), 'matplotlib.pyplot.plot', 'plt.plot', (['vlbs'], {}), '(vlbs)\n', (1797, 1803), True, 'import matplotlib.pyplot as plt\n'), ((1804, 1827), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Iteration"""'], {}), "('Iteration')\n", (1814, 1827), True, 'import matplotlib.pyplot as plt\n'), ((1828, 1845), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""VLB"""'], {}), "('VLB')\n", (1838, 1845), True, 'import matplotlib.pyplot as plt\n'), ((1892, 1918), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(9, 3)'}), '(figsize=(9, 3))\n', (1902, 1918), True, 'import matplotlib.pyplot as plt\n'), ((1923, 1946), 'matplotlib.gridspec.GridSpec', 'gridspec.GridSpec', (['(7)', '(1)'], {}), '(7, 1)\n', (1940, 1946), True, 'import matplotlib.gridspec as gridspec\n'), ((2447, 2457), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2455, 2457), True, 'import matplotlib.pyplot as plt\n'), ((1191, 1204), 'numpy.eye', 'np.eye', (['D_obs'], {}), '(D_obs)\n', (1197, 1204), True, 'import numpy as np\n'), ((2168, 2183), 'numpy.arange', 'np.arange', (['Kmax'], {}), '(Kmax)\n', (2177, 2183), True, 'import numpy as np\n'), ((1293, 1306), 'numpy.eye', 'np.eye', (['D_obs'], {}), '(D_obs)\n', (1299, 1306), True, 'import numpy as np\n'), ((718, 759), 'pyhsmm.basic.distributions.PoissonDuration', 'PoissonDuration', ([], {'alpha_0': '(3 * 50)', 'beta_0': '(3)'}), '(alpha_0=3 * 50, beta_0=3)\n', (733, 759), False, 'from pyhsmm.basic.distributions import PoissonDuration\n'), ((402, 415), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (408, 415), True, 'import numpy as np\n'), ((451, 464), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (457, 464), True, 'import numpy as np\n'), ((466, 479), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (472, 479), True, 'import numpy as np\n'), ((418, 431), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (424, 431), True, 'import numpy as np\n'), ((677, 686), 'numpy.eye', 'np.eye', (['(2)'], {}), '(2)\n', (683, 686), True, 'import numpy as np\n')]
#! /usr/bin/env python3 import pygame from polygon_app import PolygonApp, EqualPolygonApp from circled_polygon import CircledPolygon from polygoned_circle import PolygonedCircle, EqualPolygonedCircle from circle_app import CircleApp from math import pi, sin, cos, sqrt, pow from itertools import starmap from constants import OPAQUE from geometry import to_degrees class TextRing (CircledPolygon): # circled polygon with polygon'd circle # number of sides of polygon based on text def __init__ (self, child, text, font=None, *args, **kwargs): #assert child is not None if not isinstance (child, PolygonedCircle) and not isinstance (child, EqualPolygonedCircle): assert child is None or isinstance (child, CircleApp) child = EqualPolygonedCircle (None, child, background=None, *args, **kwargs) #child = EqualPolygonedCircle (None, child, *args, **kwargs) #assert child is not None CircledPolygon.__init__ (self, child, *args, **kwargs) self.text = text self.font = font #assert self.child is not None self.th = None def set_subsurface (self, ss): CircledPolygon.set_subsurface (self, ss) if self.font is None: df = pygame.font.get_default_font () font = pygame.font.Font (df, 8) self.font = font texts, tw, th, minn, maxn, x, y, w, h = self.compute_sizes () # TODO handle change in sizes self.texts = texts self.tw = tw self.th = th if self.child is not None: rect = self.inner_rect () ss2 = ss.subsurface (rect) self.child.set_subsurface (ss2) self.minn = minn self.maxn = maxn self.x = x self.y = y self.w = w self.h = h #self.next_cycle () def compute_sizes (self): text = self.text print ("text: %s" % (text,)) N = len (text) print ("N: %s" % (N,)) font = self.font crfg = (0, 255, 0, 255) f = lambda c: (font.render (c, True, crfg), *font.size (c)) g = lambda c: str (c) texts = map (g, text) texts = map (f, texts) texts = tuple (texts) # image, w, h f = lambda iwh: iwh[1] tw = max (texts, key=f)[1] f = lambda iwh: iwh[2] th = max (texts, key=f)[2] print ("tw: %s, th: %s" % (tw, th)) # each char of text is rotated => text is a polygon, circle is inscribed X, Y, W, H = self.inner_rect () # outer radii print ("(X, Y): (%s, %s) (W: %s, H: %s)" % (X, Y, W, H)) #w, h = W - 2 * tw, H - 2 * th # make room for text aligned at axes x, y, w, h = X + tw / 2, Y + th / 2, W - tw, H - th # text center print ("w: %s, h: %s" % (w, h)) # text is rendered between outer and inner radii minn = 3 # min number of chars that will look "arcane" n = minn while True: # TODO if the formula doesn't work, at least use an interpolated binary search n = n + 1 i = 0 theta1 = (i + 0) / n * 2 * pi theta2 = (i + 1) / n * 2 * pi dx = cos (theta2) - cos (theta1) dy = sin (theta2) - sin (theta1) sl = sqrt (pow (W * dx, 2) + pow (H * dy, 2)) # side length of polygon if sl < tw: break maxn = n - 1 print ("maxn: %s" % (maxn,)) assert maxn >= minn * (minn + 1) # lower bound is minn^2, and the numbers must be different return texts, tw, th, minn, maxn, x, y, w, h def transform_helper (self, text, w, h, angle): intermediate_alpha_surface = pygame.Surface ((w, h), flags=pygame.SRCALPHA) intermediate_alpha_surface.fill (pygame.Color (*OPAQUE)) text_rect = text.get_rect () text_rect.center = (w / 2, h / 2) intermediate_alpha_surface.blit (text, text_rect, special_flags=pygame.BLEND_RGBA_MIN) # when angle is 0 , rad is - pi / 2 # when angle is +pi / 2, rad is 0 # when angle is pi , rad is + pi / 2 # when angle is -pi / 2, rad is 0 #if 0 <= angle and angle <= pi: rad = angle #else: rad = angle - pi rad = angle - pi / 2 #orientation = NORTH degrees = to_degrees (rad) #degrees = 0 xform = pygame.transform.rotate (intermediate_alpha_surface, degrees) #xform = pygame.transform.rotate (text, angle) return xform def get_transforms (self): texts = self.texts # image, w, h angles = self.angles # TODO might have to blit onto a temp surface f = lambda text, angle: self.transform_helper (*text, angle) ntext = len (texts) nangle = len (angles) #assert ntext == nangle, "ntext: %s, nangle: %s" % (ntext, nangle) k = zip (self.get_text_for_transforms (), angles) xforms = starmap (f, k) xforms = tuple (xforms) return xforms def get_text_for_transforms (self): return self.texts # def minsz: minsz of inner circle... + tw, th => minsz of outer # 3 * 4 = 12 points on polygon... #def draw_foreground (self, temp): def draw_cropped_scene (self, temp): print ("circular_matrix_text.draw_foreground ()") #CircleApp.draw_foreground (self, temp) CircledPolygon.draw_cropped_scene (self, temp) xforms = self.xforms # image, w, h n = self.n ndx = self.sectioni pts = self.pts angles = self.angles print ("nsection: %s, ndx: %s" % (len (self.sections), ndx)) #k, section = self.sections[ndx] section = self.sections[ndx] #for i in range (0, n, k): for i in section: theta = angles[i] xform = xforms[i] pt = pts[i] #rect = text.get_rect () rect = xform.get_rect () rect.center = (round (pt[0]), round (pt[1])) temp.blit (xform, rect) #self.increment_section_index () # TODO move this to the troller def inner_rect (self): rect = self.outer_rect () X, Y, W, H = rect th = self.th if th is None: return rect w, h = W - 2 * th, H - 2 * th x, y = X + (W - w) / 2, Y + (H - h) / 2 rect = x, y, w, h return rect if __name__ == "__main__": def main (): # TODO a = None with HAL9000 (app=a) as g: g.run () main () quit ()
[ "pygame.Surface", "circled_polygon.CircledPolygon.__init__", "math.pow", "circled_polygon.CircledPolygon.set_subsurface", "pygame.transform.rotate", "math.cos", "math.sin", "circled_polygon.CircledPolygon.draw_cropped_scene", "itertools.starmap", "pygame.font.Font", "pygame.Color", "geometry.to_degrees", "pygame.font.get_default_font", "polygoned_circle.EqualPolygonedCircle" ]
[((901, 954), 'circled_polygon.CircledPolygon.__init__', 'CircledPolygon.__init__', (['self', 'child', '*args'], {}), '(self, child, *args, **kwargs)\n', (924, 954), False, 'from circled_polygon import CircledPolygon\n'), ((1078, 1117), 'circled_polygon.CircledPolygon.set_subsurface', 'CircledPolygon.set_subsurface', (['self', 'ss'], {}), '(self, ss)\n', (1107, 1117), False, 'from circled_polygon import CircledPolygon\n'), ((3461, 3506), 'pygame.Surface', 'pygame.Surface', (['(w, h)'], {'flags': 'pygame.SRCALPHA'}), '((w, h), flags=pygame.SRCALPHA)\n', (3475, 3506), False, 'import pygame\n'), ((4042, 4057), 'geometry.to_degrees', 'to_degrees', (['rad'], {}), '(rad)\n', (4052, 4057), False, 'from geometry import to_degrees\n'), ((4084, 4144), 'pygame.transform.rotate', 'pygame.transform.rotate', (['intermediate_alpha_surface', 'degrees'], {}), '(intermediate_alpha_surface, degrees)\n', (4107, 4144), False, 'import pygame\n'), ((4587, 4600), 'itertools.starmap', 'starmap', (['f', 'k'], {}), '(f, k)\n', (4594, 4600), False, 'from itertools import starmap\n'), ((4975, 5020), 'circled_polygon.CircledPolygon.draw_cropped_scene', 'CircledPolygon.draw_cropped_scene', (['self', 'temp'], {}), '(self, temp)\n', (5008, 5020), False, 'from circled_polygon import CircledPolygon\n'), ((738, 805), 'polygoned_circle.EqualPolygonedCircle', 'EqualPolygonedCircle', (['None', 'child', '*args'], {'background': 'None'}), '(None, child, *args, background=None, **kwargs)\n', (758, 805), False, 'from polygoned_circle import PolygonedCircle, EqualPolygonedCircle\n'), ((1158, 1188), 'pygame.font.get_default_font', 'pygame.font.get_default_font', ([], {}), '()\n', (1186, 1188), False, 'import pygame\n'), ((1205, 1228), 'pygame.font.Font', 'pygame.font.Font', (['df', '(8)'], {}), '(df, 8)\n', (1221, 1228), False, 'import pygame\n'), ((3543, 3564), 'pygame.Color', 'pygame.Color', (['*OPAQUE'], {}), '(*OPAQUE)\n', (3555, 3564), False, 'import pygame\n'), ((2981, 2992), 'math.cos', 'cos', (['theta2'], {}), '(theta2)\n', (2984, 2992), False, 'from math import pi, sin, cos, sqrt, pow\n'), ((2996, 3007), 'math.cos', 'cos', (['theta1'], {}), '(theta1)\n', (2999, 3007), False, 'from math import pi, sin, cos, sqrt, pow\n'), ((3021, 3032), 'math.sin', 'sin', (['theta2'], {}), '(theta2)\n', (3024, 3032), False, 'from math import pi, sin, cos, sqrt, pow\n'), ((3036, 3047), 'math.sin', 'sin', (['theta1'], {}), '(theta1)\n', (3039, 3047), False, 'from math import pi, sin, cos, sqrt, pow\n'), ((3067, 3081), 'math.pow', 'pow', (['(W * dx)', '(2)'], {}), '(W * dx, 2)\n', (3070, 3081), False, 'from math import pi, sin, cos, sqrt, pow\n'), ((3085, 3099), 'math.pow', 'pow', (['(H * dy)', '(2)'], {}), '(H * dy, 2)\n', (3088, 3099), False, 'from math import pi, sin, cos, sqrt, pow\n')]
# (c) 2015, <NAME> <<EMAIL>> # Based on `runner/lookup_plugins/items.py` for Ansible # (c) 2012, <NAME> <<EMAIL>> # # This file is part of Debops. # This file is NOT part of Ansible yet. # # Debops is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # Ansible is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with Debops. If not, see <https://www.gnu.org/licenses/>. ''' This file implements the `with_lists` lookup filter for Ansible. In differenceto `with_items`, this one does *not* flatten the lists passed to. Example: - debug: msg="{{item.0}} -- {{item.1}} -- {{item.2}}" with_lists: - ["General", "Verbosity", "0"] - ["Mapping", "Nobody-User", "nobody"] - ["Mapping", "Nobody-Group", "nogroup"] Output (shortend): "msg": "General -- Verbosity -- 0" "msg": "Mapping -- Nobody-User -- nobody" "msg": "Mapping -- Nobody-Group -- nogroup" ''' import ansible.utils as utils import ansible.errors as errors try: from ansible.plugins.lookup import LookupBase except ImportError: LookupBase = object class LookupModule(LookupBase): def __init__(self, basedir=None, **kwargs): self.basedir = basedir def run(self, terms, inject=None, **kwargs): terms = utils.listify_lookup_plugin_terms(terms, self.basedir, inject) if not isinstance(terms, (list, set)): raise errors.AnsibleError("with_list expects a list or a set") for i, elem in enumerate(terms): if not isinstance(elem, (list, tuple)): raise errors.AnsibleError( "with_list expects a list (or a set) of lists" " or tuples, but elem %i is not") return terms
[ "ansible.utils.listify_lookup_plugin_terms", "ansible.errors.AnsibleError" ]
[((1668, 1730), 'ansible.utils.listify_lookup_plugin_terms', 'utils.listify_lookup_plugin_terms', (['terms', 'self.basedir', 'inject'], {}), '(terms, self.basedir, inject)\n', (1701, 1730), True, 'import ansible.utils as utils\n'), ((1797, 1853), 'ansible.errors.AnsibleError', 'errors.AnsibleError', (['"""with_list expects a list or a set"""'], {}), "('with_list expects a list or a set')\n", (1816, 1853), True, 'import ansible.errors as errors\n'), ((1970, 2077), 'ansible.errors.AnsibleError', 'errors.AnsibleError', (['"""with_list expects a list (or a set) of lists or tuples, but elem %i is not"""'], {}), "(\n 'with_list expects a list (or a set) of lists or tuples, but elem %i is not'\n )\n", (1989, 2077), True, 'import ansible.errors as errors\n')]
from __future__ import annotations from math import ceil from typing import TYPE_CHECKING if TYPE_CHECKING: from ship_class import ShipClass from starship import Starship from components.starship_system import StarshipSystem class Cannon(StarshipSystem): starship:Starship def __init__(self, shipclass:ShipClass) -> None: super().__init__(f"{shipclass.energy_weapon.short_cannon_name_cap}s:") @property def ship_can_fire_cannons(self): return self.starship.ship_class.ship_type_can_fire_cannons and self.is_opperational @property def get_max_effective_cannon_firepower(self): return ceil(self.starship.ship_class.max_cannon_energy * self.get_effective_value) @property def get_max_cannon_firepower(self): return self.starship.ship_class.max_cannon_energy
[ "math.ceil" ]
[((666, 741), 'math.ceil', 'ceil', (['(self.starship.ship_class.max_cannon_energy * self.get_effective_value)'], {}), '(self.starship.ship_class.max_cannon_energy * self.get_effective_value)\n', (670, 741), False, 'from math import ceil\n')]
## The code is based on the implementation from: ## https://github.com/hongwang600/RelationDectection ## import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import random from data import gen_data from model import SimilarityModel from utils import process_testing_samples, process_samples, ranking_sequence,\ copy_grad_data, get_grad_params from evaluate import evaluate_model from config import CONFIG as conf embedding_dim = conf['embedding_dim'] hidden_dim = conf['hidden_dim'] batch_size = conf['batch_size'] model_path = conf['model_path'] num_cands = conf['num_cands'] device = conf['device'] lr = conf['learning_rate'] loss_margin = conf['loss_margin'] def sample_memory_data(sample_pool, sample_size): if len(sample_pool) > 0: sample_indexs = random.sample(range(len(sample_pool)), min(sample_size, len(sample_pool))) return [sample_pool[index] for index in sample_indexs] else: return [] def feed_samples(model, samples, loss_function, all_relations, device): questions, relations, relation_set_lengths = process_samples( samples, all_relations, device) #print('got data') ranked_questions, reverse_question_indexs = \ ranking_sequence(questions) ranked_relations, reverse_relation_indexs =\ ranking_sequence(relations) question_lengths = [len(question) for question in ranked_questions] relation_lengths = [len(relation) for relation in ranked_relations] #print(ranked_questions) pad_questions = torch.nn.utils.rnn.pad_sequence(ranked_questions) pad_relations = torch.nn.utils.rnn.pad_sequence(ranked_relations) #print(pad_questions) pad_questions = pad_questions.to(device) pad_relations = pad_relations.to(device) #print(pad_questions) model.zero_grad() model.init_hidden(device, sum(relation_set_lengths)) all_scores = model(pad_questions, pad_relations, device, reverse_question_indexs, reverse_relation_indexs, question_lengths, relation_lengths) all_scores = all_scores.to('cpu') pos_scores = [] neg_scores = [] start_index = 0 for length in relation_set_lengths: pos_scores.append(all_scores[start_index].expand(length-1)) neg_scores.append(all_scores[start_index+1:start_index+length]) start_index += length pos_scores = torch.cat(pos_scores) neg_scores = torch.cat(neg_scores) loss = loss_function(pos_scores, neg_scores, torch.ones(sum(relation_set_lengths)- len(relation_set_lengths))) loss.backward() # copied from facebook open scource. (https://github.com/facebookresearch/ # GradientEpisodicMemory/blob/master/model/gem.py) def project2cone2(gradient, memories, margin=0.5): """ Solves the GEM dual QP described in the paper given a proposed gradient "gradient", and a memory of task gradients "memories". Overwrites "gradient" with the final projected update. input: gradient, p-vector input: memories, (t * p)-vector output: x, p-vector """ memories_np = memories.cpu().view(-1).double().numpy() gradient_np = gradient.cpu().contiguous().view(-1).double().numpy() x = gradient_np - (np.dot(gradient_np, memories_np)/ np.dot(memories_np, memories_np)) * memories_np gradient.copy_(torch.Tensor(x).view(-1)) # copied from facebook open scource. (https://github.com/facebookresearch/ # GradientEpisodicMemory/blob/master/model/gem.py) def overwrite_grad(pp, newgrad, grad_dims): """ This is used to overwrite the gradients with a new gradient vector, whenever violations occur. pp: parameters newgrad: corrected gradient grad_dims: list storing number of parameters at each layer """ cnt = 0 for param in pp: if param.grad is not None: beg = 0 if cnt == 0 else sum(grad_dims[:cnt]) en = sum(grad_dims[:cnt + 1]) this_grad = newgrad[beg: en].contiguous().view( param.grad.data.size()) param.grad.data.copy_(this_grad) cnt += 1 def get_grads_memory_data(model, memory_data, loss_function, all_relations, device): if len(memory_data) == 0: return [] memory_data_grads = [] memory_data_set = [memory_data] for data in memory_data_set: #print(data) feed_samples(model, data, loss_function, all_relations, device) memory_data_grads.append(copy_grad_data(model)) #print(memory_data_grads[-1][:10]) if len(memory_data_grads) > 1: return torch.stack(memory_data_grads) elif len(memory_data_grads) == 1: return memory_data_grads[0].view(1,-1) else: return [] def train(training_data, valid_data, vocabulary, embedding_dim, hidden_dim, device, batch_size, lr, model_path, embedding, all_relations, model=None, epoch=100, all_seen_samples=[], task_memory_size=100, loss_margin=0.5, all_seen_rels=[]): if model is None: torch.manual_seed(100) model = SimilarityModel(embedding_dim, hidden_dim, len(vocabulary), np.array(embedding), 1, device) loss_function = nn.MarginRankingLoss(loss_margin) model = model.to(device) optimizer = optim.Adam(model.parameters(), lr=lr) best_acc = 0 for epoch_i in range(epoch): #print('epoch', epoch_i) #training_data = training_data[0:100] for i in range((len(training_data)-1)//batch_size+1): memory_data = sample_memory_data(all_seen_samples, task_memory_size) for this_sample in memory_data: rel_cands = [rel for rel in all_seen_rels if rel!=this_sample[0]] this_sample[1] = random.sample(rel_cands, min(len(rel_cands),num_cands)) memory_data_grads = get_grads_memory_data(model, memory_data, loss_function, all_relations, device) #print(memory_data_grads) samples = training_data[i*batch_size:(i+1)*batch_size] feed_samples(model, samples, loss_function, all_relations, device) sample_grad = copy_grad_data(model) if len(memory_data_grads) > 0: if torch.matmul(memory_data_grads, torch.t(sample_grad.view(1,-1))) < 0: project2cone2(sample_grad, memory_data_grads) grad_params = get_grad_params(model) grad_dims = [param.data.numel() for param in grad_params] overwrite_grad(grad_params, sample_grad, grad_dims) optimizer.step() ''' acc=evaluate_model(model, valid_data, batch_size, all_relations, device) if acc > best_acc: torch.save(model, model_path) best_model = torch.load(model_path) return best_model ''' return model if __name__ == '__main__': training_data, testing_data, valid_data, all_relations, vocabulary, \ embedding=gen_data() train(training_data, valid_data, vocabulary, embedding_dim, hidden_dim, device, batch_size, lr, model_path, embedding, all_relations, model=None, epoch=100) #print(training_data[0:10]) #print(testing_data[0:10]) #print(valid_data[0:10]) #print(all_relations[0:10])
[ "torch.manual_seed", "utils.ranking_sequence", "data.gen_data", "torch.stack", "torch.Tensor", "torch.nn.utils.rnn.pad_sequence", "utils.get_grad_params", "utils.process_samples", "utils.copy_grad_data", "numpy.array", "numpy.dot", "torch.nn.MarginRankingLoss", "torch.cat" ]
[((1160, 1207), 'utils.process_samples', 'process_samples', (['samples', 'all_relations', 'device'], {}), '(samples, all_relations, device)\n', (1175, 1207), False, 'from utils import process_testing_samples, process_samples, ranking_sequence, copy_grad_data, get_grad_params\n'), ((1298, 1325), 'utils.ranking_sequence', 'ranking_sequence', (['questions'], {}), '(questions)\n', (1314, 1325), False, 'from utils import process_testing_samples, process_samples, ranking_sequence, copy_grad_data, get_grad_params\n'), ((1383, 1410), 'utils.ranking_sequence', 'ranking_sequence', (['relations'], {}), '(relations)\n', (1399, 1410), False, 'from utils import process_testing_samples, process_samples, ranking_sequence, copy_grad_data, get_grad_params\n'), ((1604, 1653), 'torch.nn.utils.rnn.pad_sequence', 'torch.nn.utils.rnn.pad_sequence', (['ranked_questions'], {}), '(ranked_questions)\n', (1635, 1653), False, 'import torch\n'), ((1674, 1723), 'torch.nn.utils.rnn.pad_sequence', 'torch.nn.utils.rnn.pad_sequence', (['ranked_relations'], {}), '(ranked_relations)\n', (1705, 1723), False, 'import torch\n'), ((2464, 2485), 'torch.cat', 'torch.cat', (['pos_scores'], {}), '(pos_scores)\n', (2473, 2485), False, 'import torch\n'), ((2503, 2524), 'torch.cat', 'torch.cat', (['neg_scores'], {}), '(neg_scores)\n', (2512, 2524), False, 'import torch\n'), ((5410, 5443), 'torch.nn.MarginRankingLoss', 'nn.MarginRankingLoss', (['loss_margin'], {}), '(loss_margin)\n', (5430, 5443), True, 'import torch.nn as nn\n'), ((7402, 7412), 'data.gen_data', 'gen_data', ([], {}), '()\n', (7410, 7412), False, 'from data import gen_data\n'), ((4782, 4812), 'torch.stack', 'torch.stack', (['memory_data_grads'], {}), '(memory_data_grads)\n', (4793, 4812), False, 'import torch\n'), ((5227, 5249), 'torch.manual_seed', 'torch.manual_seed', (['(100)'], {}), '(100)\n', (5244, 5249), False, 'import torch\n'), ((4666, 4687), 'utils.copy_grad_data', 'copy_grad_data', (['model'], {}), '(model)\n', (4680, 4687), False, 'from utils import process_testing_samples, process_samples, ranking_sequence, copy_grad_data, get_grad_params\n'), ((5358, 5377), 'numpy.array', 'np.array', (['embedding'], {}), '(embedding)\n', (5366, 5377), True, 'import numpy as np\n'), ((6545, 6566), 'utils.copy_grad_data', 'copy_grad_data', (['model'], {}), '(model)\n', (6559, 6566), False, 'from utils import process_testing_samples, process_samples, ranking_sequence, copy_grad_data, get_grad_params\n'), ((3380, 3412), 'numpy.dot', 'np.dot', (['gradient_np', 'memories_np'], {}), '(gradient_np, memories_np)\n', (3386, 3412), True, 'import numpy as np\n'), ((3437, 3469), 'numpy.dot', 'np.dot', (['memories_np', 'memories_np'], {}), '(memories_np, memories_np)\n', (3443, 3469), True, 'import numpy as np\n'), ((3504, 3519), 'torch.Tensor', 'torch.Tensor', (['x'], {}), '(x)\n', (3516, 3519), False, 'import torch\n'), ((6831, 6853), 'utils.get_grad_params', 'get_grad_params', (['model'], {}), '(model)\n', (6846, 6853), False, 'from utils import process_testing_samples, process_samples, ranking_sequence, copy_grad_data, get_grad_params\n')]
from collections import defaultdict import math import numpy as np import ray from ray.rllib.agents.trainer import Trainer, COMMON_CONFIG from ray.rllib.utils.annotations import override from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch, DEFAULT_POLICY_ID from ray.rllib.agents import with_common_config from ray.rllib.evaluation.metrics import collect_episodes, summarize_episodes from ray.tune.result import TIMESTEPS_THIS_ITER from algorithms.agents.deep_nash_v1.deep_nash_policy_v1 import DeepNashPolicy DEFAULT_CONFIG = with_common_config({ # Replay buffer size (keep this fixed for now, we don't have a better way of setting it) "buffer_size": 100000, # Update batch size (number of transition to pass for each batch) "batch_size": 128, # Ratio between the number of steps sampled, and the number of updated performed "sampling_ratio": 5, # Learning rate for Adam updates "learning_rate": 0.0001, # Discount factor "gamma": 0.99, # Learning rate for multiplicative weights "beta": 0.05, # Implicit exploration constant "implicit_exploration": 0.05, # Whether the policy and Q-function should share feature layers "share_layers": False, # Q-network hidden layers "hidden_sizes": [256, 256], # TensorFlow activation function "activation": "tanh", }) class ReplayBuffer: def __init__(self, initial_size): self._max_size = initial_size self._index = 0 self._data = [] def expand(self, new_size): if new_size < self._max_size: raise ValueError("New buffer size is smaller than current size - cannot shrink buffer") self._max_size = new_size def add(self, sample): if len(self._data) <= self._index: self._data.append(sample) else: self._data[self._index] = sample self._index = (self._index + 1) % self._max_size def sample_batch(self, batch_size): indices = np.random.randint(0, len(self._data), batch_size) batch = defaultdict(list) for idx in indices: for key, value in self._data[idx].items(): batch[key].append(value) for key in batch.keys(): batch[key] = np.stack(batch[key]) return SampleBatch(batch) class DeepNash(Trainer): _policy = DeepNashPolicy _name = "DEEP_NASH_V1" _default_config = DEFAULT_CONFIG def __init__(self, config=None, env=None, logger_creator=None): Trainer.__init__(self, config, env, logger_creator) @override(Trainer) def _make_workers(self, env_creator, policy, config, num_workers): return Trainer._make_workers(self, env_creator, policy, config, num_workers) @override(Trainer) def _init(self, config, env_creator): # Define rollout-workers self.workers = self._make_workers(env_creator, self._policy, config, self.config["num_workers"]) # Define replay buffers dictionary self._replay_buffers = {} # Compute effective planning horizon self._horizon = np.log(0.1) / np.log(config["gamma"]) # Initialize learning rate and sample count self._num_steps_observed = 0 def _train(self): # Synchronize weights across remote workers if necessary if self.workers.remote_workers(): weights = ray.put(self.workers.local_worker().get_weights()) for worker in self.workers.remote_workers(): worker.set_weights.remote(weights) # Generate samples and add them to the replay buffer if self.workers.remote_workers(): samples = SampleBatch.concat_samples( ray.get([ worker.sample.remote() for worker in self.workers.remote_workers() ])) else: samples = self.workers.local_worker().sample() if isinstance(samples, SampleBatch): samples = MultiAgentBatch({ DEFAULT_POLICY_ID: samples }, samples.count) self._num_steps_observed += samples.count # Accumulate episode results episodes, _ = collect_episodes(self.workers.local_worker(), self.workers.remote_workers()) results = summarize_episodes(episodes) results[TIMESTEPS_THIS_ITER] = samples.count # Add data to replay buffers and do updates of policies policy_fetches = {} for policy_id, policy_batch in samples.policy_batches.items(): if policy_id in self.workers.local_worker().policies_to_train: if policy_id not in self._replay_buffers: self._replay_buffers[policy_id] = ReplayBuffer(self.config["buffer_size"]) for sample in policy_batch.rows(): self._replay_buffers[policy_id].add(sample) required_updates = math.ceil(policy_batch.count / self.config["sampling_ratio"]) average_fetches = defaultdict(list) for _ in range(required_updates): batch = self._replay_buffers[policy_id].sample_batch(self.config["batch_size"]) fetches = self.workers.local_worker().policy_map[policy_id].learn_on_batch(batch) for key, value in fetches["learner_stats"].items(): if value is not None and not isinstance(value, dict): average_fetches[key].append(value) for key, value in average_fetches.items(): average_fetches[key] = np.mean(value) policy_fetches[policy_id] = average_fetches results["learner/info"] = policy_fetches # Update learning rate across workers learning_rate = self.config["beta"] * np.sqrt(self._num_steps_observed / self._horizon) results["learner/info/learning_rate"] = learning_rate self.workers.foreach_trainable_policy(lambda policy, pid: policy.set_learning_rate(learning_rate)) return results
[ "numpy.mean", "numpy.sqrt", "math.ceil", "ray.rllib.agents.with_common_config", "ray.rllib.evaluation.metrics.summarize_episodes", "numpy.log", "ray.rllib.utils.annotations.override", "ray.rllib.agents.trainer.Trainer._make_workers", "numpy.stack", "collections.defaultdict", "ray.rllib.agents.trainer.Trainer.__init__", "ray.rllib.policy.sample_batch.SampleBatch", "ray.rllib.policy.sample_batch.MultiAgentBatch" ]
[((550, 803), 'ray.rllib.agents.with_common_config', 'with_common_config', (["{'buffer_size': 100000, 'batch_size': 128, 'sampling_ratio': 5,\n 'learning_rate': 0.0001, 'gamma': 0.99, 'beta': 0.05,\n 'implicit_exploration': 0.05, 'share_layers': False, 'hidden_sizes': [\n 256, 256], 'activation': 'tanh'}"], {}), "({'buffer_size': 100000, 'batch_size': 128,\n 'sampling_ratio': 5, 'learning_rate': 0.0001, 'gamma': 0.99, 'beta': \n 0.05, 'implicit_exploration': 0.05, 'share_layers': False,\n 'hidden_sizes': [256, 256], 'activation': 'tanh'})\n", (568, 803), False, 'from ray.rllib.agents import with_common_config\n'), ((2593, 2610), 'ray.rllib.utils.annotations.override', 'override', (['Trainer'], {}), '(Trainer)\n', (2601, 2610), False, 'from ray.rllib.utils.annotations import override\n'), ((2777, 2794), 'ray.rllib.utils.annotations.override', 'override', (['Trainer'], {}), '(Trainer)\n', (2785, 2794), False, 'from ray.rllib.utils.annotations import override\n'), ((2071, 2088), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2082, 2088), False, 'from collections import defaultdict\n'), ((2318, 2336), 'ray.rllib.policy.sample_batch.SampleBatch', 'SampleBatch', (['batch'], {}), '(batch)\n', (2329, 2336), False, 'from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch, DEFAULT_POLICY_ID\n'), ((2535, 2586), 'ray.rllib.agents.trainer.Trainer.__init__', 'Trainer.__init__', (['self', 'config', 'env', 'logger_creator'], {}), '(self, config, env, logger_creator)\n', (2551, 2586), False, 'from ray.rllib.agents.trainer import Trainer, COMMON_CONFIG\n'), ((2697, 2766), 'ray.rllib.agents.trainer.Trainer._make_workers', 'Trainer._make_workers', (['self', 'env_creator', 'policy', 'config', 'num_workers'], {}), '(self, env_creator, policy, config, num_workers)\n', (2718, 2766), False, 'from ray.rllib.agents.trainer import Trainer, COMMON_CONFIG\n'), ((4323, 4351), 'ray.rllib.evaluation.metrics.summarize_episodes', 'summarize_episodes', (['episodes'], {}), '(episodes)\n', (4341, 4351), False, 'from ray.rllib.evaluation.metrics import collect_episodes, summarize_episodes\n'), ((2281, 2301), 'numpy.stack', 'np.stack', (['batch[key]'], {}), '(batch[key])\n', (2289, 2301), True, 'import numpy as np\n'), ((3124, 3135), 'numpy.log', 'np.log', (['(0.1)'], {}), '(0.1)\n', (3130, 3135), True, 'import numpy as np\n'), ((3138, 3161), 'numpy.log', 'np.log', (["config['gamma']"], {}), "(config['gamma'])\n", (3144, 3161), True, 'import numpy as np\n'), ((4022, 4082), 'ray.rllib.policy.sample_batch.MultiAgentBatch', 'MultiAgentBatch', (['{DEFAULT_POLICY_ID: samples}', 'samples.count'], {}), '({DEFAULT_POLICY_ID: samples}, samples.count)\n', (4037, 4082), False, 'from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch, DEFAULT_POLICY_ID\n'), ((5889, 5938), 'numpy.sqrt', 'np.sqrt', (['(self._num_steps_observed / self._horizon)'], {}), '(self._num_steps_observed / self._horizon)\n', (5896, 5938), True, 'import numpy as np\n'), ((4950, 5011), 'math.ceil', 'math.ceil', (["(policy_batch.count / self.config['sampling_ratio'])"], {}), "(policy_batch.count / self.config['sampling_ratio'])\n", (4959, 5011), False, 'import math\n'), ((5046, 5063), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (5057, 5063), False, 'from collections import defaultdict\n'), ((5654, 5668), 'numpy.mean', 'np.mean', (['value'], {}), '(value)\n', (5661, 5668), True, 'import numpy as np\n')]
import os from conans.errors import ConanException import logging from conans.util.env_reader import get_env from conans.util.files import save, load from ConfigParser import NoSectionError, ConfigParser from conans.model.values import Values MIN_SERVER_COMPATIBLE_VERSION = '0.4.0' default_settings_yml = """ os: [Windows, Linux, Macos, Android] arch: [x86, x86_64, arm] compiler: gcc: version: ["4.6", "4.7", "4.8", "4.9", "5.0"] Visual Studio: runtime: [None, MD, MT, MTd, MDd] version: ["8", "9", "10", "11", "12", "14"] clang: version: ["3.3", "3.4", "3.5", "3.6", "3.7"] apple-clang: version: ["5.0", "5.1", "6.0", "6.1", "7.0"] build_type: [None, Debug, Release] """ default_client_conf = ''' [storage] # This is the default path, but you can write your own path: ~/.conan/data [remotes] conan.io: https://server.conan.io local: http://localhost:9300 [settings_defaults] ''' class ConanClientConfigParser(ConfigParser): def __init__(self, filename): ConfigParser.__init__(self) self.read(filename) def get_conf(self, varname): """Gets the section from config file or raises an exception""" try: return self.items(varname) except NoSectionError: raise ConanException("Invalid configuration, missing %s" % varname) @property def storage(self): return dict(self.get_conf("storage")) @property def storage_path(self): try: result = os.path.expanduser(self.storage["path"]) except KeyError: result = None result = get_env('CONAN_STORAGE_PATH', result) return result @property def remotes(self): return self.get_conf("remotes") @property def settings_defaults(self): default_settings = self.get_conf("settings_defaults") values = Values.from_list(default_settings) return values
[ "conans.model.values.Values.from_list", "ConfigParser.ConfigParser.__init__", "conans.util.env_reader.get_env", "conans.errors.ConanException", "os.path.expanduser" ]
[((1036, 1063), 'ConfigParser.ConfigParser.__init__', 'ConfigParser.__init__', (['self'], {}), '(self)\n', (1057, 1063), False, 'from ConfigParser import NoSectionError, ConfigParser\n'), ((1630, 1667), 'conans.util.env_reader.get_env', 'get_env', (['"""CONAN_STORAGE_PATH"""', 'result'], {}), "('CONAN_STORAGE_PATH', result)\n", (1637, 1667), False, 'from conans.util.env_reader import get_env\n'), ((1895, 1929), 'conans.model.values.Values.from_list', 'Values.from_list', (['default_settings'], {}), '(default_settings)\n', (1911, 1929), False, 'from conans.model.values import Values\n'), ((1521, 1561), 'os.path.expanduser', 'os.path.expanduser', (["self.storage['path']"], {}), "(self.storage['path'])\n", (1539, 1561), False, 'import os\n'), ((1298, 1359), 'conans.errors.ConanException', 'ConanException', (["('Invalid configuration, missing %s' % varname)"], {}), "('Invalid configuration, missing %s' % varname)\n", (1312, 1359), False, 'from conans.errors import ConanException\n')]
"""empty message Revision ID: fa952f537929 Revises: <PASSWORD> Create Date: 2021-06-02 16:00:18.342313 """ # revision identifiers, used by Alembic. revision = 'fa952f537929' down_revision = '<PASSWORD>' from alembic import op import sqlalchemy as sa import sqlalchemy_utils import app import app.extensions def upgrade(): """ Upgrade Semantic Description: ENTER DESCRIPTION HERE """ # ### commands auto generated by Alembic - please adjust! ### op.create_table('annotation_keywords', sa.Column('created', sa.DateTime(), nullable=False), sa.Column('updated', sa.DateTime(), nullable=False), sa.Column('viewed', sa.DateTime(), nullable=False), sa.Column('annotation_guid', app.extensions.GUID(), nullable=False), sa.Column('keyword_guid', app.extensions.GUID(), nullable=False), sa.ForeignKeyConstraint(['annotation_guid'], ['annotation.guid'], name=op.f('fk_annotation_keywords_annotation_guid_annotation')), sa.ForeignKeyConstraint(['keyword_guid'], ['keyword.guid'], name=op.f('fk_annotation_keywords_keyword_guid_keyword')), sa.PrimaryKeyConstraint('annotation_guid', 'keyword_guid', name=op.f('pk_annotation_keywords')) ) # ### end Alembic commands ### def downgrade(): """ Downgrade Semantic Description: ENTER DESCRIPTION HERE """ # ### commands auto generated by Alembic - please adjust! ### op.drop_table('annotation_keywords') # ### end Alembic commands ###
[ "alembic.op.drop_table", "alembic.op.f", "app.extensions.GUID", "sqlalchemy.DateTime" ]
[((1404, 1440), 'alembic.op.drop_table', 'op.drop_table', (['"""annotation_keywords"""'], {}), "('annotation_keywords')\n", (1417, 1440), False, 'from alembic import op\n'), ((545, 558), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (556, 558), True, 'import sqlalchemy as sa\n'), ((602, 615), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (613, 615), True, 'import sqlalchemy as sa\n'), ((658, 671), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (669, 671), True, 'import sqlalchemy as sa\n'), ((723, 744), 'app.extensions.GUID', 'app.extensions.GUID', ([], {}), '()\n', (742, 744), False, 'import app\n'), ((793, 814), 'app.extensions.GUID', 'app.extensions.GUID', ([], {}), '()\n', (812, 814), False, 'import app\n'), ((908, 965), 'alembic.op.f', 'op.f', (['"""fk_annotation_keywords_annotation_guid_annotation"""'], {}), "('fk_annotation_keywords_annotation_guid_annotation')\n", (912, 965), False, 'from alembic import op\n'), ((1037, 1088), 'alembic.op.f', 'op.f', (['"""fk_annotation_keywords_keyword_guid_keyword"""'], {}), "('fk_annotation_keywords_keyword_guid_keyword')\n", (1041, 1088), False, 'from alembic import op\n'), ((1159, 1189), 'alembic.op.f', 'op.f', (['"""pk_annotation_keywords"""'], {}), "('pk_annotation_keywords')\n", (1163, 1189), False, 'from alembic import op\n')]
import torch.optim as optim from torch.nn.utils import clip_grad_norm_ class Optim(object): def __init__(self, method, lr, alpha, max_grad_norm, model_size, lr_decay=1, start_decay_at=None, beta1=0.9, beta2=0.98, warm_up_step=400, warm_up_factor=1.0, opt=None): self.last_metric = None self.lr = lr self.model_size=model_size self.factor=warm_up_factor self.warmup=warm_up_step self.alpha = alpha self.max_grad_norm = max_grad_norm self.method = method self.lr_decay = lr_decay self.start_decay_at = start_decay_at self.start_decay = False self._step = 0 self.betas = (beta1, beta2) self.opt = opt def set_parameters(self, params): self.params = [p for p in params if p.requires_grad] if self.method == 'sgd': self.optimizer = optim.SGD(self.params, lr=self.lr) elif self.method == 'rmsprop': self.optimizer = optim.RMSprop( self.params, lr=self.lr, alpha=self.alpha) elif self.method == 'adam': self.optimizer = optim.Adam(self.params, lr=self.lr, betas=self.betas, eps=1e-9) else: raise RuntimeError("Invalid optim method: " + self.method) def _setRate(self, lr): self.lr = lr for p in self.optimizer.param_groups: p['lr'] = self.lr #self.optimizer.param_groups[0]['lr'] = self.lr def step(self): "Compute gradients norm." self._step += 1 if self.max_grad_norm: clip_grad_norm_(self.params, self.max_grad_norm) if self.opt.warm_up: lr = self.rate() self.lr=lr for p in self.optimizer.param_groups: p['lr'] = lr self.optimizer.step() def updateLearningRate(self, metric, epoch): """ Decay learning rate if val perf does not improve or we hit the start_decay_at limit. """ if self.opt.warm_up: print("Learning rate: %g" % self.lr) else: if (self.start_decay_at is not None) and (epoch >= self.start_decay_at): self.start_decay = True if (self.last_metric is not None) and (metric is not None) and (metric > self.last_metric): self.start_decay = True if self.start_decay: self.lr = self.lr * self.lr_decay print("Decaying learning rate to %g" % self.lr) self.last_metric = metric # self.optimizer.param_groups[0]['lr'] = self.lr for p in self.optimizer.param_groups: p['lr'] = self.lr def rate(self, step=None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-1) * min(step ** (-0.5), step * self.warmup ** (-1.5))) class NoamOpt: "Optim wrapper that implements rate." def __init__(self, model_size, factor, warmup, optimizer): self.optimizer = optimizer self._step = 0 self.warmup = warmup self.factor = factor self.model_size = model_size self._rate = 0 def step(self): "Update parameters and rate" self._step += 1 rate = self.rate() for p in self.optimizer.param_groups: p['lr'] = rate self._rate = rate self.optimizer.step() def rate(self, step=None): "Implement `lrate` above" if step is None: step = self._step return self.factor * \ (self.model_size ** (-0.5) * min(step ** (-0.5), step * self.warmup ** (-1.5))) def get_std_opt(model): return NoamOpt(model.src_embed[0].d_model, 2, 4000, optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
[ "torch.optim.Adam", "torch.optim.RMSprop", "torch.optim.SGD", "torch.nn.utils.clip_grad_norm_" ]
[((930, 964), 'torch.optim.SGD', 'optim.SGD', (['self.params'], {'lr': 'self.lr'}), '(self.params, lr=self.lr)\n', (939, 964), True, 'import torch.optim as optim\n'), ((1666, 1714), 'torch.nn.utils.clip_grad_norm_', 'clip_grad_norm_', (['self.params', 'self.max_grad_norm'], {}), '(self.params, self.max_grad_norm)\n', (1681, 1714), False, 'from torch.nn.utils import clip_grad_norm_\n'), ((1033, 1089), 'torch.optim.RMSprop', 'optim.RMSprop', (['self.params'], {'lr': 'self.lr', 'alpha': 'self.alpha'}), '(self.params, lr=self.lr, alpha=self.alpha)\n', (1046, 1089), True, 'import torch.optim as optim\n'), ((1172, 1236), 'torch.optim.Adam', 'optim.Adam', (['self.params'], {'lr': 'self.lr', 'betas': 'self.betas', 'eps': '(1e-09)'}), '(self.params, lr=self.lr, betas=self.betas, eps=1e-09)\n', (1182, 1236), True, 'import torch.optim as optim\n')]
import sys from config import DEBUG_MODE, SAIKI_BOT_VERSION if "-v" in sys.argv or "--version" in sys.argv: print(f"Saiki Discord Bot {SAIKI_BOT_VERSION}") quit() if "-h" in sys.argv or "--help" in sys.argv: print() print(" SAIKI DISCORD BOT SERVER HELP CENTER") print() print(f"Saiki Discord {SAIKI_BOT_VERSION}") print(f"DEBUG_MODE: {DEBUG_MODE}") print(""" The main discord bot server for Saiki. Args: --clear-log Clears the 'saiki_discord.log' file -h, --help Shows the Saiki Discord Bot Server Help Center and exits -d, --debug Launches Saiki Discord Server in DEBUG_MODE (note: --debug enables a higher debug level) -v, --version Shows the Server version and exits """) quit() from __protected import DISCORD_BOT_TOKEN from saiki import client from utils.log import log log("Running the Discord Bot") client.run(DISCORD_BOT_TOKEN)
[ "utils.log.log", "saiki.client.run" ]
[((929, 959), 'utils.log.log', 'log', (['"""Running the Discord Bot"""'], {}), "('Running the Discord Bot')\n", (932, 959), False, 'from utils.log import log\n'), ((960, 989), 'saiki.client.run', 'client.run', (['DISCORD_BOT_TOKEN'], {}), '(DISCORD_BOT_TOKEN)\n', (970, 989), False, 'from saiki import client\n')]
import argparse def get_args(): parser = argparse.ArgumentParser(description='Model architecture and training parameters') parser.add_argument('--mode', default='train', type=str, help='train/test/bc') # parser.add_argument('--env', default='Pendulum-v0', type=str, help='open-ai gym environment') # parser.add_argument('--env', default='BipedalWalker-v3', type=str, help='open-ai gym environment') # parser.add_argument('--env', default='BipedalWalkerHardcore-v3', type=str, help='open-ai gym environment') # parser.add_argument('--env', default='Hopper-v2', type=str, help='gym mujoco environment') # parser.add_argument('--env', default='Ant-v2', type=str, help='gym mujoco environment') # parser.add_argument('--env', default='Walker2d-v2', type=str, help='gym mujoco environment') # parser.add_argument('--env', default='HalfCheetah-v2', type=str, help='gym mujoco environment') parser.add_argument('--env', default='gym_kraby:HexapodBulletEnv-v0', type=str, help='open-ai gym Kraby environment') parser.add_argument('--method', default='NORMAL', type=str, choices=['NORMAL', 'COUPLR', 'ROTATION', 'AUTO'], help='trining method, MODE, ROTATION, AUTO') parser.add_argument('--demonstration_path', default='data/walker2d-poor.pkl', type=str, help='expert demonstration path') parser.add_argument('--demonstration_ratio', default=1, type=float) parser.add_argument('--demonstration_length', default=10, type=int) parser.add_argument('--debug', default=True, dest='debug', action='store') parser.add_argument('--seed', default=2, type=int, help='experiment seed') parser.add_argument('--resume', default='default', type=str, help='model saved path') parser.add_argument('--hidden1', default=256, type=int, help='units of first layer') parser.add_argument('--hidden2', default=512, type=int, help='units of of second layer') parser.add_argument('--rate', default=0.0001, type=float, help='learning rate') parser.add_argument('--L2', default=0.0001, type=float) parser.add_argument('--prate', default=0.001, type=float, help='policy net learning rate') parser.add_argument('--warmup', default=1000, type=int, help='warm up steps (fill the memory)') parser.add_argument('--discount', default=0.99, type=float, help='') parser.add_argument('--bsize', default=256, type=int, help='mini-batch size') # parser.add_argument('--rmsize', default=6000000, type=int, help='memory size') parser.add_argument('--rmsize', default=50000, type=int, help='memory size') parser.add_argument('--window_length', default=1, type=int, help='') parser.add_argument('--tau', default=0.001, type=float, help='moving average for target network') parser.add_argument('--ou_theta', default=0.15, type=float, help='noise theta') parser.add_argument('--ou_sigma', default=0.2, type=float, help='noise sigma') parser.add_argument('--ou_mu', default=0.0, type=float, help='noise mu') parser.add_argument('--max_episode_length', default=2000, type=int, help='') parser.add_argument('--validate_episodes', default=5, type=int, help='num of episode during validate experiment') parser.add_argument('--validate_steps', default=10000, type=int, help='num of steps per validate experiment') parser.add_argument('--output', default='output', type=str, help='') parser.add_argument('--init_w', default=0.003, type=float, help='') parser.add_argument('--train_iter', default=1000000, type=int, help='total training steps') parser.add_argument('--epsilon', default=800000, type=int, help='linear decay of exploration policy') parser.add_argument('--num_interm', default=20, type=int, help='how many intermidate saves') parser.add_argument('--policy_delay', default=2, type=int) parser.add_argument('--noise_decay', default=800000, type=int) args = parser.parse_args() return args
[ "argparse.ArgumentParser" ]
[((49, 136), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Model architecture and training parameters"""'}), "(description=\n 'Model architecture and training parameters')\n", (72, 136), False, 'import argparse\n')]
#!/usr/bin/python3 from scripts.utils import ( get_account, get_verify_status ) from brownie import ( Storage, network, Contract ) def main(): account = get_account() print(f"You are using the account {account}") verify = get_verify_status() deployed_contract = Storage.deploy({"from": account}, publish_source=verify) if type(deployed_contract) is network.transaction.TransactionReceipt: if network.active() == "halongbay": deployed_contract.wait(3) deployed_contract = Contract.from_abi("Storage", deployed_contract.contract_address, Storage.abi) print(deployed_contract)
[ "scripts.utils.get_account", "brownie.Contract.from_abi", "scripts.utils.get_verify_status", "brownie.network.active", "brownie.Storage.deploy" ]
[((181, 194), 'scripts.utils.get_account', 'get_account', ([], {}), '()\n', (192, 194), False, 'from scripts.utils import get_account, get_verify_status\n'), ((258, 277), 'scripts.utils.get_verify_status', 'get_verify_status', ([], {}), '()\n', (275, 277), False, 'from scripts.utils import get_account, get_verify_status\n'), ((302, 358), 'brownie.Storage.deploy', 'Storage.deploy', (["{'from': account}"], {'publish_source': 'verify'}), "({'from': account}, publish_source=verify)\n", (316, 358), False, 'from brownie import Storage, network, Contract\n'), ((543, 620), 'brownie.Contract.from_abi', 'Contract.from_abi', (['"""Storage"""', 'deployed_contract.contract_address', 'Storage.abi'], {}), "('Storage', deployed_contract.contract_address, Storage.abi)\n", (560, 620), False, 'from brownie import Storage, network, Contract\n'), ((444, 460), 'brownie.network.active', 'network.active', ([], {}), '()\n', (458, 460), False, 'from brownie import Storage, network, Contract\n')]
from flask import Flask, render_template, redirect, url_for, request # create the application object app = Flask(__name__) @app.route('/') def home(): return render_template('./home.html') ############################################################################## @app.route('/userLogin') def userLogin(): return render_template('./userLogin.html') @app.route('/userLogin', methods=['POST']) def userLoginPost(): username = request.form['username'] password = request.form['password'] msg = userLoginDriver(username, password) return msg # main driver function def userLoginDriver(username, password): userId = getUserId(username) if not userId: return "username not found" cipher = str(password) + str(userId) import hashlib hashedData = hashlib.sha256(cipher.encode()) if checkPassword(userId, hashedData): return "login successful" else: return "invalid password" # getting userId of username (returns None if not found) def getUserId(username): fp = open("file1.txt", "r") dataLine = fp.readline() userId = None while(dataLine): uname = dataLine.split(",")[1] uname = uname.replace("\n", "") if uname == username: userId = dataLine.split(",")[0] dataLine = fp.readline() fp.close() return userId # checking if password exist for userId def checkPassword(userId, hashedData): fp = open("file2.txt", "r") string = str(userId) + "," + str(hashedData.hexdigest()) dataLine = fp.readline() passwordFound = False while(dataLine): dataLine = dataLine.replace("\n", "") if dataLine == string: passwordFound = True dataLine = fp.readline() fp.close() return passwordFound ############################################################################## @app.route('/updatePassword') def updatePassword(): return render_template('./updatePassword.html') @app.route('/updatePassword', methods=['POST']) def updatePasswordPost(): username = request.form['username'] oldPassword = request.form['oldPassword'] newPassword = request.form['newPassword'] msg = updatePasswordDriver(username, oldPassword, newPassword) return msg # before ensure user is logged in # main driver function def updatePasswordDriver(username, password, newPassword): userId = getUserId(username) if not userId: return "username not found" cipher = str(password) + str(userId) newCipher = str(newPassword) + str(userId) import hashlib hashedData = hashlib.sha256(cipher.encode()) newHashedData = hashlib.sha256(newCipher.encode()) if checkPassword(userId, hashedData): changePassword(userId, hashedData, newHashedData) return "password changed" else: return "invalid password" # getting userId of username (returns None if not found) def getUserId(username): fp = open("file1.txt", "r") dataLine = fp.readline() userId = None while(dataLine): uname = dataLine.split(",")[1] uname = uname.replace("\n", "") if uname == username: userId = dataLine.split(",")[0] dataLine = fp.readline() fp.close() return userId # checking if password exist for userId def checkPassword(userId, hashedData): fp = open("file2.txt", "r") string = str(userId) + "," + str(hashedData.hexdigest()) dataLine = fp.readline() passwordFound = False while(dataLine): dataLine = dataLine.replace("\n", "") if dataLine == string: passwordFound = True dataLine = fp.readline() fp.close() return passwordFound # code for changing the password def changePassword(userId, hashedData, newHashedData): old = str(userId) + "," + str(hashedData.hexdigest()) new = str(userId) + "," + str(newHashedData.hexdigest()) with open("file2.txt", "r") as fp: lines = fp.readlines() with open("file2.txt", "w") as fp: for line in lines: if line.strip("\n") != old: fp.write(line) fp.write(new) ############################################################################## @app.route('/newUser') def newUser(): return render_template('./newUser.html') @app.route('/newUser', methods=['POST']) def newUserPost(): username = request.form['username'] password = request.form['password'] msg = addNewUserDriver(username, password) return msg # Main driver function def addNewUserDriver(username, password): if checkUsernameExists(username): return 'username already exists, try a new one' idExists = True while(idExists): userId = generateRandomId() # check if id already exists idExists = checkIdExists(userId) writeFile("file1.txt", userId, username) cipher = str(password) + str(userId) import hashlib hashedData = hashlib.sha256(cipher.encode()) writeFile("file2.txt", userId, hashedData.hexdigest()) return "New user added!" # checking if usename exists in file1 def checkUsernameExists(username): import os.path if not os.path.isfile("file1.txt"): fp = open("file1.txt", "w+") fp.close() fp = open("file1.txt", "r") dataLine = fp.readline() existsFlag = False while(dataLine): uname = dataLine.split(",")[1] uname = uname.replace("\n", "") if uname == username: existsFlag = True dataLine = fp.readline() fp.close() return existsFlag # generating random userId def generateRandomId(): import random, string x = ''.join(random.choice(string.ascii_letters + string.digits) for i in range(8)) return x # checking if userId already exists def checkIdExists(userId): fp = open("file1.txt", "r") dataLine = fp.readline() existsFlag = False while(dataLine): uId = dataLine.split(",")[1] if uId == userId: existsFlag = True dataLine = fp.readline() fp.close() return existsFlag # writing data in file def writeFile(file, arg1, arg2): fp = open(file, "a") string = str(arg1) + "," + str(arg2) + "\n" fp.write(string) fp.close() ##############################################################################
[ "flask.render_template", "random.choice", "flask.Flask" ]
[((111, 126), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (116, 126), False, 'from flask import Flask, render_template, redirect, url_for, request\n'), ((171, 201), 'flask.render_template', 'render_template', (['"""./home.html"""'], {}), "('./home.html')\n", (186, 201), False, 'from flask import Flask, render_template, redirect, url_for, request\n'), ((342, 377), 'flask.render_template', 'render_template', (['"""./userLogin.html"""'], {}), "('./userLogin.html')\n", (357, 377), False, 'from flask import Flask, render_template, redirect, url_for, request\n'), ((2014, 2054), 'flask.render_template', 'render_template', (['"""./updatePassword.html"""'], {}), "('./updatePassword.html')\n", (2029, 2054), False, 'from flask import Flask, render_template, redirect, url_for, request\n'), ((4422, 4455), 'flask.render_template', 'render_template', (['"""./newUser.html"""'], {}), "('./newUser.html')\n", (4437, 4455), False, 'from flask import Flask, render_template, redirect, url_for, request\n'), ((5877, 5928), 'random.choice', 'random.choice', (['(string.ascii_letters + string.digits)'], {}), '(string.ascii_letters + string.digits)\n', (5890, 5928), False, 'import random, string\n')]
import unittest from capnp import _capnp # pylint: disable=unused-import try: from capnp import _capnp_test except ImportError: _capnp_test = None # pylint: disable=c-extension-no-member @unittest.skipUnless(_capnp_test, '_capnp_test unavailable') class MessageTest(unittest.TestCase): def test_reader(self): data = b'' r = _capnp.FlatArrayMessageReader(data) self.assertFalse(r.isCanonical()) def test_builder(self): b = _capnp.MallocMessageBuilder() self.assertTrue(b.isCanonical()) self.assertEqual(_capnp.computeSerializedSizeInWords(b), 2) self.assertEqual(len(_capnp.messageToFlatArray(b).asBytes()), 16) array = _capnp.messageToPackedArray(b) self.assertEqual(_capnp.computeUnpackedSizeInWords(array.asBytes()), 2) self.assertEqual(array.asBytes(), b'\x10\x01\x00\x00') if __name__ == '__main__': unittest.main()
[ "capnp._capnp.FlatArrayMessageReader", "unittest.skipUnless", "capnp._capnp.messageToFlatArray", "capnp._capnp.computeSerializedSizeInWords", "capnp._capnp.messageToPackedArray", "capnp._capnp.MallocMessageBuilder", "unittest.main" ]
[((202, 261), 'unittest.skipUnless', 'unittest.skipUnless', (['_capnp_test', '"""_capnp_test unavailable"""'], {}), "(_capnp_test, '_capnp_test unavailable')\n", (221, 261), False, 'import unittest\n'), ((914, 929), 'unittest.main', 'unittest.main', ([], {}), '()\n', (927, 929), False, 'import unittest\n'), ((359, 394), 'capnp._capnp.FlatArrayMessageReader', '_capnp.FlatArrayMessageReader', (['data'], {}), '(data)\n', (388, 394), False, 'from capnp import _capnp\n'), ((478, 507), 'capnp._capnp.MallocMessageBuilder', '_capnp.MallocMessageBuilder', ([], {}), '()\n', (505, 507), False, 'from capnp import _capnp\n'), ((707, 737), 'capnp._capnp.messageToPackedArray', '_capnp.messageToPackedArray', (['b'], {}), '(b)\n', (734, 737), False, 'from capnp import _capnp\n'), ((574, 612), 'capnp._capnp.computeSerializedSizeInWords', '_capnp.computeSerializedSizeInWords', (['b'], {}), '(b)\n', (609, 612), False, 'from capnp import _capnp\n'), ((646, 674), 'capnp._capnp.messageToFlatArray', '_capnp.messageToFlatArray', (['b'], {}), '(b)\n', (671, 674), False, 'from capnp import _capnp\n')]
import sys def read_file(self, filename): try: with open(filename, 'r') as file: content = file.readlines() return content except Exception as e: print(e) sys.exit(1)
[ "sys.exit" ]
[((212, 223), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (220, 223), False, 'import sys\n')]
""" 출처: https://www.acmicpc.net/problem/5430 """ import collections import sys T = int(sys.stdin.readline().rstrip()) for _ in range(T): p = sys.stdin.readline().rstrip() n = int(sys.stdin.readline().rstrip()) x = list(sys.stdin.readline().rstrip()[1:-1].split(',')) if n == 0: x = [] deque = collections.deque(x) left = True try: for command in p: if command == "R": left = not left elif command == "D": if left: deque.popleft() else: deque.pop() print("["+",".join(deque)+"]") if left else print("["+",".join(reversed(deque))+"]") except IndexError: print("error")
[ "sys.stdin.readline", "collections.deque" ]
[((323, 343), 'collections.deque', 'collections.deque', (['x'], {}), '(x)\n', (340, 343), False, 'import collections\n'), ((88, 108), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (106, 108), False, 'import sys\n'), ((146, 166), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (164, 166), False, 'import sys\n'), ((188, 208), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (206, 208), False, 'import sys\n'), ((232, 252), 'sys.stdin.readline', 'sys.stdin.readline', ([], {}), '()\n', (250, 252), False, 'import sys\n')]
from pathlib import Path from django.core.management import call_command from pytest import fixture @fixture(scope='class') def django_db_setup(django_db_setup, django_db_blocker): fixtures_dir = Path(__file__).resolve().parent / 'fixtures' series_fixture = fixtures_dir / 'series.json' chapters_fixture = fixtures_dir / 'chapters.json' authors_artists_fixture = fixtures_dir / 'authors_artists.json' groups_fixture = fixtures_dir / 'groups.json' with django_db_blocker.unblock(): call_command('flush', '--no-input') call_command('loaddata', 'categories.xml') call_command('loaddata', str(authors_artists_fixture)) call_command('loaddata', str(groups_fixture)) call_command('loaddata', str(series_fixture)) call_command('loaddata', str(chapters_fixture))
[ "pytest.fixture", "pathlib.Path", "django.core.management.call_command" ]
[((105, 127), 'pytest.fixture', 'fixture', ([], {'scope': '"""class"""'}), "(scope='class')\n", (112, 127), False, 'from pytest import fixture\n'), ((517, 552), 'django.core.management.call_command', 'call_command', (['"""flush"""', '"""--no-input"""'], {}), "('flush', '--no-input')\n", (529, 552), False, 'from django.core.management import call_command\n'), ((561, 603), 'django.core.management.call_command', 'call_command', (['"""loaddata"""', '"""categories.xml"""'], {}), "('loaddata', 'categories.xml')\n", (573, 603), False, 'from django.core.management import call_command\n'), ((204, 218), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (208, 218), False, 'from pathlib import Path\n')]
# Generated by Django 2.1 on 2018-11-01 15:45 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('gw_app', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='nasmodel', options={'ordering': ('ip_address',), 'verbose_name': 'Network access server. Gateway', 'verbose_name_plural': 'Network access servers. Gateways'}, ), migrations.AlterField( model_name='nasmodel', name='auth_login', field=models.CharField(max_length=64, verbose_name='Auth login'), ), migrations.AlterField( model_name='nasmodel', name='auth_passw', field=models.CharField(max_length=127, verbose_name='Auth password'), ), ]
[ "django.db.migrations.AlterModelOptions", "django.db.models.CharField" ]
[((221, 423), 'django.db.migrations.AlterModelOptions', 'migrations.AlterModelOptions', ([], {'name': '"""nasmodel"""', 'options': "{'ordering': ('ip_address',), 'verbose_name':\n 'Network access server. Gateway', 'verbose_name_plural':\n 'Network access servers. Gateways'}"}), "(name='nasmodel', options={'ordering': (\n 'ip_address',), 'verbose_name': 'Network access server. Gateway',\n 'verbose_name_plural': 'Network access servers. Gateways'})\n", (249, 423), False, 'from django.db import migrations, models\n'), ((566, 624), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(64)', 'verbose_name': '"""Auth login"""'}), "(max_length=64, verbose_name='Auth login')\n", (582, 624), False, 'from django.db import migrations, models\n'), ((752, 814), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(127)', 'verbose_name': '"""Auth password"""'}), "(max_length=127, verbose_name='Auth password')\n", (768, 814), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python # coding: utf-8 from injectable import autowired from pandas.io.json import json_normalize from filmweb_integrator.fwimdbmerge.filmweb import Filmweb from movies_analyzer.Imdb import Imdb import json import pandas as pd def get_json_df(json_text): return json_normalize(json.loads(json_text)) def get_json_list_df(json_text): return pd.DataFrame(json.loads(json_text)) class Merger(object): @autowired def __init__(self, *, filmweb: Filmweb, imdb: Imdb): self.filmweb = filmweb self.imdb = imdb def get_data(self, df): filmweb_df = self.filmweb.get_dataframe(df, False) return filmweb_df, self.imdb.merge(filmweb_df)
[ "json.loads" ]
[((299, 320), 'json.loads', 'json.loads', (['json_text'], {}), '(json_text)\n', (309, 320), False, 'import json\n'), ((381, 402), 'json.loads', 'json.loads', (['json_text'], {}), '(json_text)\n', (391, 402), False, 'import json\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of Spactor, The SMS spam detector. # License: MIT, see the file "LICENSE" for details. import pickle import random from os import getcwd, path import numpy as np from pandas import read_csv from sklearn.calibration import * from sklearn.dummy import * from sklearn.ensemble import * from sklearn.feature_extraction.text import (CountVectorizer, HashingVectorizer, TfidfVectorizer) from sklearn.linear_model import * from sklearn.multiclass import * from sklearn.naive_bayes import * from sklearn.neighbors import * from sklearn.svm import * from sklearn.tree import * def perform(classifiers, vectorizers, train_data, test_data): scores = {} for vectorizer in vectorizers: features = vectorizer.fit_transform(train_data.text) for classifier in classifiers: if classifier.__class__.__name__ == "RidgeClassifierCV" and vectorizer.__class__.__name__ == "HashingVectorizer": continue # train classifier.fit(features, train_data.tag) # score vectorize_text = vectorizer.transform(test_data.text) score = classifier.score(vectorize_text, test_data.tag) string = "{}:{}:{}".format(classifier.__class__.__name__, vectorizer.__class__.__name__, score) scores[str(score)] = (score, classifier, vectorizer) print(string) scores_sorted = list(scores.keys()) scores_sorted.sort(reverse=True) heighest_score = scores_sorted[0] print( "Heighest: clf: {clf:s}, vec: {vec:s}, score: {score:s}.{score_prec:s}%" .format(clf=scores[heighest_score][1].__class__.__name__, vec=scores[heighest_score][2].__class__.__name__, score=heighest_score[2:4], score_prec=heighest_score[4:6]), ) print("-" * 10) return scores[heighest_score] def train(dataset_path, output_path="/etc/spactor", stop_score=0.95, test_size=0.2): # select the fastest combination clf = None vec = None score = 0 while score < stop_score: lines = [] with open(dataset_path, "r") as fd: lines = fd.readlines() lines.pop(0) random.shuffle(lines) with open(dataset_path, "w") as fd: fd.write("tag;text\n") for line in lines: fd.write(line) data = read_csv(dataset_path, encoding='ISO-8859-1', sep=";") test_size = 0.1 learn_items = int(len(data) - (len(data) * test_size)) learn = data[:learn_items].fillna(" ") test = data[learn_items:].fillna(" ") score, clf, vec = perform([ BernoulliNB(), AdaBoostClassifier(), BaggingClassifier(), ExtraTreesClassifier(), GradientBoostingClassifier(), DecisionTreeClassifier(), CalibratedClassifierCV(), DummyClassifier(), PassiveAggressiveClassifier(), RidgeClassifier(), RidgeClassifierCV(), SGDClassifier(), OneVsRestClassifier(SVC(kernel='linear')), OneVsRestClassifier(LogisticRegression()), KNeighborsClassifier() ], [ CountVectorizer(), TfidfVectorizer(), HashingVectorizer() ], learn, test) # save the clf clf_filename = "clf.pkl" clf_filepath = path.join(output_path, clf_filename) with open(clf_filepath, "wb") as file: pickle.dump(clf, file) print("clf saved") # save the vectorizer vec_filename = "vec.pkl" vec_filepath = path.join(getcwd(), "models", vec_filename) with open(vec_filepath, "wb") as file: pickle.dump(vec, file) print("Vectorizer saved") return 0
[ "pickle.dump", "random.shuffle", "pandas.read_csv", "sklearn.feature_extraction.text.CountVectorizer", "os.path.join", "os.getcwd", "sklearn.feature_extraction.text.TfidfVectorizer", "sklearn.feature_extraction.text.HashingVectorizer" ]
[((3583, 3619), 'os.path.join', 'path.join', (['output_path', 'clf_filename'], {}), '(output_path, clf_filename)\n', (3592, 3619), False, 'from os import getcwd, path\n'), ((2373, 2394), 'random.shuffle', 'random.shuffle', (['lines'], {}), '(lines)\n', (2387, 2394), False, 'import random\n'), ((2552, 2606), 'pandas.read_csv', 'read_csv', (['dataset_path'], {'encoding': '"""ISO-8859-1"""', 'sep': '""";"""'}), "(dataset_path, encoding='ISO-8859-1', sep=';')\n", (2560, 2606), False, 'from pandas import read_csv\n'), ((3671, 3693), 'pickle.dump', 'pickle.dump', (['clf', 'file'], {}), '(clf, file)\n', (3682, 3693), False, 'import pickle\n'), ((3802, 3810), 'os.getcwd', 'getcwd', ([], {}), '()\n', (3808, 3810), False, 'from os import getcwd, path\n'), ((3887, 3909), 'pickle.dump', 'pickle.dump', (['vec', 'file'], {}), '(vec, file)\n', (3898, 3909), False, 'import pickle\n'), ((3409, 3426), 'sklearn.feature_extraction.text.CountVectorizer', 'CountVectorizer', ([], {}), '()\n', (3424, 3426), False, 'from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer, TfidfVectorizer\n'), ((3440, 3457), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {}), '()\n', (3455, 3457), False, 'from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer, TfidfVectorizer\n'), ((3471, 3490), 'sklearn.feature_extraction.text.HashingVectorizer', 'HashingVectorizer', ([], {}), '()\n', (3488, 3490), False, 'from sklearn.feature_extraction.text import CountVectorizer, HashingVectorizer, TfidfVectorizer\n')]
import csv, argparse, os, re parser = argparse.ArgumentParser() parser.add_argument( "--data_file", default=None, type=str, required=True, help="The input data file (a text file)." ) parser.add_argument("--output_dir", default=None, type=str, required=True) args = parser.parse_args() with open(args.data_file,'r') as in_file: with open(os.path.join(args.output_dir,args.data_file.split('/')[-1]+'.proc'),'w') as out_file: reader = csv.reader(in_file, delimiter='\t') next(reader) sentences = [] for row in reader: if row[1] != 'misc': speaker = row[1].split('_')[1] if speaker == 'int': continue if row[3][:6] == '(pause': continue #print(row[3]) s = re.sub(r'<(.*?)>', '', row[3]) s = re.sub(r'\((.*?)\)', '', s) s = re.sub(r'/\?(.*?)/', '', s) s = s.replace('[','').replace(']','').replace('/unintelligible/','').replace('/','').replace(' ',' ').strip() if not s: continue if sentences and s[0].islower(): sentences[-1] += ' ' + s elif sentences and sentences[-1][-1] in ',-': sentences[-1] += ' ' + s else: sentences.append(s) for s in sentences: if len(s.split()) > 3: out_file.write(s + '\n')
[ "re.sub", "csv.reader", "argparse.ArgumentParser" ]
[((39, 64), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (62, 64), False, 'import csv, argparse, os, re\n'), ((458, 493), 'csv.reader', 'csv.reader', (['in_file'], {'delimiter': '"""\t"""'}), "(in_file, delimiter='\\t')\n", (468, 493), False, 'import csv, argparse, os, re\n'), ((818, 847), 're.sub', 're.sub', (['"""<(.*?)>"""', '""""""', 'row[3]'], {}), "('<(.*?)>', '', row[3])\n", (824, 847), False, 'import csv, argparse, os, re\n'), ((865, 893), 're.sub', 're.sub', (['"""\\\\((.*?)\\\\)"""', '""""""', 's'], {}), "('\\\\((.*?)\\\\)', '', s)\n", (871, 893), False, 'import csv, argparse, os, re\n'), ((909, 936), 're.sub', 're.sub', (['"""/\\\\?(.*?)/"""', '""""""', 's'], {}), "('/\\\\?(.*?)/', '', s)\n", (915, 936), False, 'import csv, argparse, os, re\n')]
from torch import nn from torch.nn import functional as F import torch from .base import Conv2dBnRelu, DecoderBlock from .encoders import get_encoder_channel_nr """ This script has been taken (and modified) from : https://github.com/ternaus/TernausNet @ARTICLE{arXiv:1801.05746, author = {<NAME> and <NAME>}, title = {TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation}, journal = {ArXiv e-prints}, eprint = {1801.05746}, year = 2018 } """ class UNet(nn.Module): def __init__(self, encoder, num_classes, dropout_2d=0.0, use_hypercolumn=False, pool0=False): super().__init__() self.num_classes = num_classes self.dropout_2d = dropout_2d self.use_hypercolumn = use_hypercolumn self.pool0 = pool0 self.encoder = encoder encoder_channel_nr = get_encoder_channel_nr(self.encoder) self.center = nn.Sequential(Conv2dBnRelu(encoder_channel_nr[3], encoder_channel_nr[3]), Conv2dBnRelu(encoder_channel_nr[3], encoder_channel_nr[2]), nn.AvgPool2d(kernel_size=2, stride=2) ) self.dec5 = DecoderBlock(encoder_channel_nr[3] + encoder_channel_nr[2], encoder_channel_nr[3], encoder_channel_nr[3] // 8) self.dec4 = DecoderBlock(encoder_channel_nr[2] + encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 2, encoder_channel_nr[3] // 8) self.dec3 = DecoderBlock(encoder_channel_nr[1] + encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 4, encoder_channel_nr[3] // 8) self.dec2 = DecoderBlock(encoder_channel_nr[0] + encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8) self.dec1 = DecoderBlock(encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 16, encoder_channel_nr[3] // 8) self.dec0 = DecoderBlock(encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 16, encoder_channel_nr[3] // 8) if self.use_hypercolumn: self.dec0 = DecoderBlock(5 * encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8, 5 * encoder_channel_nr[3] // 8) self.final = nn.Sequential(Conv2dBnRelu(5 * encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8), nn.Conv2d(encoder_channel_nr[3] // 8, num_classes, kernel_size=1, padding=0)) else: self.dec0 = DecoderBlock(encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8) self.final = nn.Sequential(Conv2dBnRelu(encoder_channel_nr[3] // 8, encoder_channel_nr[3] // 8), nn.Conv2d(encoder_channel_nr[3] // 8, num_classes, kernel_size=1, padding=0)) def forward(self, x): encoder2, encoder3, encoder4, encoder5 = self.encoder(x) encoder5 = F.dropout2d(encoder5, p=self.dropout_2d) center = self.center(encoder5) dec5 = self.dec5(center, encoder5) dec4 = self.dec4(dec5, encoder4) dec3 = self.dec3(dec4, encoder3) dec2 = self.dec2(dec3, encoder2) dec1 = self.dec1(dec2) if self.use_hypercolumn: dec1 = torch.cat([dec1, F.upsample(dec2, scale_factor=2, mode='bilinear'), F.upsample(dec3, scale_factor=4, mode='bilinear'), F.upsample(dec4, scale_factor=8, mode='bilinear'), F.upsample(dec5, scale_factor=16, mode='bilinear'), ], 1) if self.pool0: dec1 = self.dec0(dec1) return self.final(dec1)
[ "torch.nn.AvgPool2d", "torch.nn.functional.upsample", "torch.nn.functional.dropout2d", "torch.nn.Conv2d" ]
[((3437, 3477), 'torch.nn.functional.dropout2d', 'F.dropout2d', (['encoder5'], {'p': 'self.dropout_2d'}), '(encoder5, p=self.dropout_2d)\n', (3448, 3477), True, 'from torch.nn import functional as F\n'), ((1159, 1196), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)'}), '(kernel_size=2, stride=2)\n', (1171, 1196), False, 'from torch import nn\n'), ((2813, 2889), 'torch.nn.Conv2d', 'nn.Conv2d', (['(encoder_channel_nr[3] // 8)', 'num_classes'], {'kernel_size': '(1)', 'padding': '(0)'}), '(encoder_channel_nr[3] // 8, num_classes, kernel_size=1, padding=0)\n', (2822, 2889), False, 'from torch import nn\n'), ((3248, 3324), 'torch.nn.Conv2d', 'nn.Conv2d', (['(encoder_channel_nr[3] // 8)', 'num_classes'], {'kernel_size': '(1)', 'padding': '(0)'}), '(encoder_channel_nr[3] // 8, num_classes, kernel_size=1, padding=0)\n', (3257, 3324), False, 'from torch import nn\n'), ((3816, 3865), 'torch.nn.functional.upsample', 'F.upsample', (['dec2'], {'scale_factor': '(2)', 'mode': '"""bilinear"""'}), "(dec2, scale_factor=2, mode='bilinear')\n", (3826, 3865), True, 'from torch.nn import functional as F\n'), ((3897, 3946), 'torch.nn.functional.upsample', 'F.upsample', (['dec3'], {'scale_factor': '(4)', 'mode': '"""bilinear"""'}), "(dec3, scale_factor=4, mode='bilinear')\n", (3907, 3946), True, 'from torch.nn import functional as F\n'), ((3978, 4027), 'torch.nn.functional.upsample', 'F.upsample', (['dec4'], {'scale_factor': '(8)', 'mode': '"""bilinear"""'}), "(dec4, scale_factor=8, mode='bilinear')\n", (3988, 4027), True, 'from torch.nn import functional as F\n'), ((4059, 4109), 'torch.nn.functional.upsample', 'F.upsample', (['dec5'], {'scale_factor': '(16)', 'mode': '"""bilinear"""'}), "(dec5, scale_factor=16, mode='bilinear')\n", (4069, 4109), True, 'from torch.nn import functional as F\n')]
from lxml import etree, objectify import re class norm_attribute: def __remove_attributes_node(self, mt_node): if not mt_node.attrib: return True for at in mt_node.attrib.keys(): del mt_node.attrib[at] def __remove_attributes_tree(self, mt_tree): self.__remove_attributes_node(mt_tree) for child in mt_tree: self.__remove_attributes_tree(child) def __remove_xmlns(self, mt_string): mt_string = re.sub(' xmlns="[^"]+"', '', mt_string, count = 1) return mt_string def normalize(self, mt_string): mt_string = self.__remove_xmlns(mt_string) mt_tree = etree.fromstring(mt_string) self.__remove_attributes_tree(mt_tree) objectify.deannotate(mt_tree, cleanup_namespaces=True) return etree.tostring(mt_tree)
[ "lxml.objectify.deannotate", "re.sub", "lxml.etree.fromstring", "lxml.etree.tostring" ]
[((473, 521), 're.sub', 're.sub', (['""" xmlns="[^"]+\\""""', '""""""', 'mt_string'], {'count': '(1)'}), '(\' xmlns="[^"]+"\', \'\', mt_string, count=1)\n', (479, 521), False, 'import re\n'), ((655, 682), 'lxml.etree.fromstring', 'etree.fromstring', (['mt_string'], {}), '(mt_string)\n', (671, 682), False, 'from lxml import etree, objectify\n'), ((738, 792), 'lxml.objectify.deannotate', 'objectify.deannotate', (['mt_tree'], {'cleanup_namespaces': '(True)'}), '(mt_tree, cleanup_namespaces=True)\n', (758, 792), False, 'from lxml import etree, objectify\n'), ((808, 831), 'lxml.etree.tostring', 'etree.tostring', (['mt_tree'], {}), '(mt_tree)\n', (822, 831), False, 'from lxml import etree, objectify\n')]
""" ## Zemberek: Noisy Text Normalization Example # Documentation: https://bit.ly/2WkUVVF # Java Code Example: https://bit.ly/31Qi9Ew """ from jpype import JClass, JString from examples import DATA_PATH TurkishMorphology: JClass = JClass('zemberek.morphology.TurkishMorphology') TurkishSentenceNormalizer: JClass = JClass( 'zemberek.normalization.TurkishSentenceNormalizer' ) Paths: JClass = JClass('java.nio.file.Paths') def run(text: str) -> None: """ Noisy text normalization example. Args: text (str): Noisy text to normalize. """ normalizer = TurkishSentenceNormalizer( TurkishMorphology.createWithDefaults(), Paths.get(str(DATA_PATH.joinpath('normalization'))), Paths.get(str(DATA_PATH.joinpath('lm', 'lm.2gram.slm'))), ) print(f'\nNormalized: {normalizer.normalize(JString(text))}')
[ "examples.DATA_PATH.joinpath", "jpype.JClass", "jpype.JString" ]
[((233, 280), 'jpype.JClass', 'JClass', (['"""zemberek.morphology.TurkishMorphology"""'], {}), "('zemberek.morphology.TurkishMorphology')\n", (239, 280), False, 'from jpype import JClass, JString\n'), ((317, 375), 'jpype.JClass', 'JClass', (['"""zemberek.normalization.TurkishSentenceNormalizer"""'], {}), "('zemberek.normalization.TurkishSentenceNormalizer')\n", (323, 375), False, 'from jpype import JClass, JString\n'), ((398, 427), 'jpype.JClass', 'JClass', (['"""java.nio.file.Paths"""'], {}), "('java.nio.file.Paths')\n", (404, 427), False, 'from jpype import JClass, JString\n'), ((683, 718), 'examples.DATA_PATH.joinpath', 'DATA_PATH.joinpath', (['"""normalization"""'], {}), "('normalization')\n", (701, 718), False, 'from examples import DATA_PATH\n'), ((744, 784), 'examples.DATA_PATH.joinpath', 'DATA_PATH.joinpath', (['"""lm"""', '"""lm.2gram.slm"""'], {}), "('lm', 'lm.2gram.slm')\n", (762, 784), False, 'from examples import DATA_PATH\n'), ((843, 856), 'jpype.JString', 'JString', (['text'], {}), '(text)\n', (850, 856), False, 'from jpype import JClass, JString\n')]
from cProfile import run from time import sleep from typing import Optional, List from telegram import TelegramError from telegram import Update from telegram.error import BadRequest from telegram.ext import Filters, CommandHandler from telegram.ext.dispatcher import run_async, CallbackContext import random import YorForger.modules.sql.users_sql as sql from YorForger.modules.helper_funcs.filters import CustomFilters from YorForger import dispatcher, DEV_USERS, LOGGER from YorForger.modules.disable import DisableAbleCommandHandler def snipe(update: Update, context: CallbackContext): args = context.args bot = context.bot try: chat_id = str(args[0]) del args[0] except TypeError: update.effective_message.reply_text( "Please give me a chat to echo to!") to_send = " ".join(args) if len(to_send) >= 2: try: bot.sendMessage(int(chat_id), str(to_send)) except TelegramError: LOGGER.warning("Couldn't send to group %s", str(chat_id)) update.effective_message.reply_text( "Couldn't send the message. Perhaps I'm not part of that group?") __help__ = """ *Dev only:* 🔹 `/snipe` <chatid> <string> Make me send a message to a specific chat. """ __mod_name__ = "Snipe" SNIPE_HANDLER = CommandHandler( "snipe", snipe, pass_args=True, filters=CustomFilters.dev_filter, run_async = True) dispatcher.add_handler(SNIPE_HANDLER)
[ "YorForger.dispatcher.add_handler", "telegram.ext.CommandHandler" ]
[((1319, 1420), 'telegram.ext.CommandHandler', 'CommandHandler', (['"""snipe"""', 'snipe'], {'pass_args': '(True)', 'filters': 'CustomFilters.dev_filter', 'run_async': '(True)'}), "('snipe', snipe, pass_args=True, filters=CustomFilters.\n dev_filter, run_async=True)\n", (1333, 1420), False, 'from telegram.ext import Filters, CommandHandler\n'), ((1440, 1477), 'YorForger.dispatcher.add_handler', 'dispatcher.add_handler', (['SNIPE_HANDLER'], {}), '(SNIPE_HANDLER)\n', (1462, 1477), False, 'from YorForger import dispatcher, DEV_USERS, LOGGER\n')]
import http.server import socketserver import threading import os import pkg_resources as p def generate_handler(html, scripts=None): """ Generates an http.server.BaseHTTPRequestHandler that is triggered on webrequest :param html: path to root html file :param scripts: list of paths to scripts to add to page :return: """ if scripts is None: scripts = [] if isinstance(scripts, str): scripts = [scripts] class MyHandler(http.server.BaseHTTPRequestHandler): def do_GET(self): """Respond to a GET request.""" if self.path == '/': self.send_response(200) self.send_header("Content-type", "text/html") self.end_headers() self.wfile.write(html.encode()) for script in scripts: self.wfile.write("\n\n<script>".encode()) self.wfile.write(script.encode()) self.wfile.write("\n\n</script>".encode()) else: self.send_error(404) return MyHandler class webserver: """ """ def __init__(self, host="0.0.0.0", port=8889, commport=8890, serveDirectory=""): """! @param host: @param port: """ html, script = self.__getSources__(serveDirectory=serveDirectory) self.__loadWebFiles__(html=html, script=script, commport=commport) self.handler = generate_handler(self.html, scripts=[self.script]) self.host = host self.port = port self.server = None self.serving = False self.serverThread = None self.start() def __loadWebFiles__(self, html="", script="", commport=0): assert(html != "") assert(script != "") assert(commport != 0) with open(html, "r") as f: self.html = f.read() with open(script, "r") as f: self.script = f.read() # set requested communication port self.script = self.script.replace("port: \"7777\"", "port: \"" + str(commport) + "\"") # add local plotly & msgpack scripts: scriptPlotly = p.resource_filename('webplot', 'web/plotly-latest.min.js') scriptMsgpack = p.resource_filename('webplot', 'web/msgpack.min.js') assert (os.path.isfile(scriptPlotly)) assert (os.path.isfile(scriptMsgpack)) with open(scriptPlotly, "r") as f: scriptPlotlyRaw = f.read() with open(scriptMsgpack, "r") as f: scriptMsgpackRaw = f.read() self.html = self.html + "\n\n" + \ "<script>" + scriptMsgpackRaw + "</script>\n" + \ "<script>" + scriptPlotlyRaw + "</script>\n" @staticmethod def __getSources__(serveDirectory=""): if serveDirectory != "": htmlExternal = serveDirectory + ('/' if serveDirectory[-1] != '/' else '') + 'index.html' scriptExternal = serveDirectory + ('/' if serveDirectory[-1] != '/' else '') + 'visualizer.js' # check if it is a directory if os.path.isdir(serveDirectory) and os.path.isfile(htmlExternal) and os.path.isfile(scriptExternal): return htmlExternal, scriptExternal else: html = p.resource_filename('webplot', 'web/index.html') script = p.resource_filename('webplot', 'web/visualizer.js') assert(os.path.isfile(html)) assert(os.path.isfile(script)) return html, script def stop(self): """ :return: """ self.server.shutdown() self.serverThread.join() print("Stopping web serving") def start(self): """ :return: """ self.serverThread = threading.Thread(target=self.serve) self.serverThread.start() self.serving = True def serve(self): """ :return: """ print("Starting web serving at: http://{:s}:{:d}\n\n".format(self.host,self.port)) self.server = socketserver.TCPServer(("", self.port), self.handler, bind_and_activate=False) self.server.allow_reuse_address = True try: self.server.server_bind() self.server.server_activate() except: self.server.server_close() raise # Star the server self.server.serve_forever()
[ "socketserver.TCPServer", "pkg_resources.resource_filename", "os.path.isfile", "os.path.isdir", "threading.Thread" ]
[((2168, 2226), 'pkg_resources.resource_filename', 'p.resource_filename', (['"""webplot"""', '"""web/plotly-latest.min.js"""'], {}), "('webplot', 'web/plotly-latest.min.js')\n", (2187, 2226), True, 'import pkg_resources as p\n'), ((2251, 2303), 'pkg_resources.resource_filename', 'p.resource_filename', (['"""webplot"""', '"""web/msgpack.min.js"""'], {}), "('webplot', 'web/msgpack.min.js')\n", (2270, 2303), True, 'import pkg_resources as p\n'), ((2320, 2348), 'os.path.isfile', 'os.path.isfile', (['scriptPlotly'], {}), '(scriptPlotly)\n', (2334, 2348), False, 'import os\n'), ((2366, 2395), 'os.path.isfile', 'os.path.isfile', (['scriptMsgpack'], {}), '(scriptMsgpack)\n', (2380, 2395), False, 'import os\n'), ((3809, 3844), 'threading.Thread', 'threading.Thread', ([], {'target': 'self.serve'}), '(target=self.serve)\n', (3825, 3844), False, 'import threading\n'), ((4084, 4162), 'socketserver.TCPServer', 'socketserver.TCPServer', (["('', self.port)", 'self.handler'], {'bind_and_activate': '(False)'}), "(('', self.port), self.handler, bind_and_activate=False)\n", (4106, 4162), False, 'import socketserver\n'), ((3314, 3362), 'pkg_resources.resource_filename', 'p.resource_filename', (['"""webplot"""', '"""web/index.html"""'], {}), "('webplot', 'web/index.html')\n", (3333, 3362), True, 'import pkg_resources as p\n'), ((3384, 3435), 'pkg_resources.resource_filename', 'p.resource_filename', (['"""webplot"""', '"""web/visualizer.js"""'], {}), "('webplot', 'web/visualizer.js')\n", (3403, 3435), True, 'import pkg_resources as p\n'), ((3455, 3475), 'os.path.isfile', 'os.path.isfile', (['html'], {}), '(html)\n', (3469, 3475), False, 'import os\n'), ((3496, 3518), 'os.path.isfile', 'os.path.isfile', (['script'], {}), '(script)\n', (3510, 3518), False, 'import os\n'), ((3128, 3157), 'os.path.isdir', 'os.path.isdir', (['serveDirectory'], {}), '(serveDirectory)\n', (3141, 3157), False, 'import os\n'), ((3163, 3191), 'os.path.isfile', 'os.path.isfile', (['htmlExternal'], {}), '(htmlExternal)\n', (3177, 3191), False, 'import os\n'), ((3197, 3227), 'os.path.isfile', 'os.path.isfile', (['scriptExternal'], {}), '(scriptExternal)\n', (3211, 3227), False, 'import os\n')]
from haystack import indexes from cyder.cydns.address_record.models import AddressRecord from cyder.cydns.cydns_index import CydnsIndex class AddressRecordIndex(CydnsIndex, indexes.Indexable): ip_str = indexes.CharField(model_attr='ip_str') def get_model(self): return AddressRecord
[ "haystack.indexes.CharField" ]
[((208, 246), 'haystack.indexes.CharField', 'indexes.CharField', ([], {'model_attr': '"""ip_str"""'}), "(model_attr='ip_str')\n", (225, 246), False, 'from haystack import indexes\n')]
"""Unit tests for relabelling estimator.""" import numpy as np import pytest from themis_ml.preprocessing.relabelling import Relabeller from conftest import create_linear_X, create_y, create_s def test_relabeller_fit(): """Test that relabeller fitting """ relabeller = Relabeller() X_input = create_linear_X() targets = create_y() protected_class = create_s() # The formula to determine how many observations to promote/demote is # the number needed to make the proportion of positive labels equal # between the two groups. This proportion is rounded up. expected_n = 3 # Given data specified in X function, the default LogisticRegression # estimator should be able to draw a perfect decision boundary to seperate # the y target. relabeller.fit(X_input, targets, protected_class) assert relabeller.n_relabels_ == expected_n assert (relabeller.X_ == X_input).all() assert (relabeller.y_ == targets).all() assert (relabeller.s_ == protected_class).all() def test_relabeller_transform(): """Test that relabeller correctly relabels targets.""" expected = np.array([[0, 0, 1, 1, 1, 0, 0, 0, 1, 1]]) assert (Relabeller().fit_transform( create_linear_X(), create_y(), s=create_s()) == expected).all() def test_fit_error(): """Test fit method errors out.""" # case: s array not the same length as y array with pytest.raises(ValueError): Relabeller().fit(create_linear_X(), create_y(), np.array([1, 0, 0, 1])) # case: y targets are not a binary variable with pytest.raises(TypeError): targets = create_y() targets[0] = 100 Relabeller().fit_transform(create_linear_X(), targets, create_s()) # case: s protected classes are not a binary variable with pytest.raises(TypeError): s_classes = create_y() s_classes[0] = 100 Relabeller().fit_transform(create_linear_X(), targets, s_classes) def test_fit_transform_error(): """Test fit_transform method errors out. ValueError should occur when X input to transform method is not the same as the X input to fit method. """ X_input = create_linear_X() with pytest.raises(ValueError): Relabeller().fit(X_input, create_y(), create_s()).transform(X_input.T)
[ "themis_ml.preprocessing.relabelling.Relabeller", "conftest.create_y", "conftest.create_s", "numpy.array", "pytest.raises", "conftest.create_linear_X" ]
[((283, 295), 'themis_ml.preprocessing.relabelling.Relabeller', 'Relabeller', ([], {}), '()\n', (293, 295), False, 'from themis_ml.preprocessing.relabelling import Relabeller\n'), ((310, 327), 'conftest.create_linear_X', 'create_linear_X', ([], {}), '()\n', (325, 327), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((342, 352), 'conftest.create_y', 'create_y', ([], {}), '()\n', (350, 352), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((375, 385), 'conftest.create_s', 'create_s', ([], {}), '()\n', (383, 385), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1135, 1177), 'numpy.array', 'np.array', (['[[0, 0, 1, 1, 1, 0, 0, 0, 1, 1]]'], {}), '([[0, 0, 1, 1, 1, 0, 0, 0, 1, 1]])\n', (1143, 1177), True, 'import numpy as np\n'), ((2169, 2186), 'conftest.create_linear_X', 'create_linear_X', ([], {}), '()\n', (2184, 2186), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1412, 1437), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1425, 1437), False, 'import pytest\n'), ((1576, 1600), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1589, 1600), False, 'import pytest\n'), ((1620, 1630), 'conftest.create_y', 'create_y', ([], {}), '()\n', (1628, 1630), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1798, 1822), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (1811, 1822), False, 'import pytest\n'), ((1844, 1854), 'conftest.create_y', 'create_y', ([], {}), '()\n', (1852, 1854), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((2196, 2221), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2209, 2221), False, 'import pytest\n'), ((1464, 1481), 'conftest.create_linear_X', 'create_linear_X', ([], {}), '()\n', (1479, 1481), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1483, 1493), 'conftest.create_y', 'create_y', ([], {}), '()\n', (1491, 1493), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1495, 1517), 'numpy.array', 'np.array', (['[1, 0, 0, 1]'], {}), '([1, 0, 0, 1])\n', (1503, 1517), True, 'import numpy as np\n'), ((1691, 1708), 'conftest.create_linear_X', 'create_linear_X', ([], {}), '()\n', (1706, 1708), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1719, 1729), 'conftest.create_s', 'create_s', ([], {}), '()\n', (1727, 1729), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1917, 1934), 'conftest.create_linear_X', 'create_linear_X', ([], {}), '()\n', (1932, 1934), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1447, 1459), 'themis_ml.preprocessing.relabelling.Relabeller', 'Relabeller', ([], {}), '()\n', (1457, 1459), False, 'from themis_ml.preprocessing.relabelling import Relabeller\n'), ((1664, 1676), 'themis_ml.preprocessing.relabelling.Relabeller', 'Relabeller', ([], {}), '()\n', (1674, 1676), False, 'from themis_ml.preprocessing.relabelling import Relabeller\n'), ((1890, 1902), 'themis_ml.preprocessing.relabelling.Relabeller', 'Relabeller', ([], {}), '()\n', (1900, 1902), False, 'from themis_ml.preprocessing.relabelling import Relabeller\n'), ((1226, 1243), 'conftest.create_linear_X', 'create_linear_X', ([], {}), '()\n', (1241, 1243), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1245, 1255), 'conftest.create_y', 'create_y', ([], {}), '()\n', (1253, 1255), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((2257, 2267), 'conftest.create_y', 'create_y', ([], {}), '()\n', (2265, 2267), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((2269, 2279), 'conftest.create_s', 'create_s', ([], {}), '()\n', (2277, 2279), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((1190, 1202), 'themis_ml.preprocessing.relabelling.Relabeller', 'Relabeller', ([], {}), '()\n', (1200, 1202), False, 'from themis_ml.preprocessing.relabelling import Relabeller\n'), ((1259, 1269), 'conftest.create_s', 'create_s', ([], {}), '()\n', (1267, 1269), False, 'from conftest import create_linear_X, create_y, create_s\n'), ((2231, 2243), 'themis_ml.preprocessing.relabelling.Relabeller', 'Relabeller', ([], {}), '()\n', (2241, 2243), False, 'from themis_ml.preprocessing.relabelling import Relabeller\n')]
""" Secured-Pi, 2016. This is a script for the Secured-Pi project dealing with the machine learning aspects of the facial recognition. This script relies on the OpenCV 3.1 library installed with the opencv-contrib face module. If you do not have OpenCV installed, I highly recommend that you attempt to do so using a virtual box, making sure to also install the face module, which is part of the OpenCV-contrib project. For training, create a directory called 'training' inside of this directory. Each person's photo should be named like "member-1-a", where 1 identifies the person to whom the image belongs to, and the letter increments for each photo. For example, a training set of 2 people might contain the images: member-1-a.gif member-1-b.gif member-2-a.gif member-2-b.gif .. and so on .. For accuracy, we recommend a -minimum- of 10 pictures for each member. It is also important that no other files be contained in the training directory besides the pictures. Just want to thank the creators of the tutorials at: https://pythonprogramming.net/loading-video-python-opencv-tutorial/ """ import os import cv2 import numpy as np import re from PIL import Image from securedpi.settings import BASE_DIR, MEDIA_ROOT HERE = os.path.dirname(os.path.abspath(__file__)) CASCADE_MODEL = os.path.join(HERE, 'haarcascade_frontalface_default.xml') FACE_CASCADE = cv2.CascadeClassifier(CASCADE_MODEL) TRAINING_SET_PATH = os.path.join(MEDIA_ROOT, 'training') RECOG_MODEL = os.path.join(HERE, 'recog_brain.yml') def train_recognizer(recognizer=cv2.face.createLBPHFaceRecognizer, image_path=TRAINING_SET_PATH, save_file=os.path.join(HERE, 'recog_brain.yml'), recog_model=None, demo=False): """Train the facial recognition software with some training photos. This will train the recognizer, and save the training. This saved file will be used by test_individual to verify membership. """ recognizer = recognizer() if recog_model is not None: recognizer.load(recog_model) tr_files = os.listdir(image_path) tr_files = [image_path + '/' + f for f in tr_files] images = [] # image arrays of face cut-outs members = [] # this will be the ids of the members for tr_f in tr_files: print('training with file:' + tr_f) tr_img = np.array(Image.open(tr_f).convert('L'), 'uint8') curr_member = int(re.search('-(\d+)-', os.path.split(tr_f)[1]).group(1)) curr_face = FACE_CASCADE.detectMultiScale(tr_img) for (x, y, w, h) in curr_face: images.append(tr_img[y: y + h, x: x + w]) members.append(curr_member) if demo: cv2.imshow("Training...", tr_img[y: y + h, x: x + w]) cv2.waitKey(20) if demo: cv2.destroyAllWindows() recognizer.train(images, np.array(members)) recognizer.save(save_file) def test_individual(image_to_test, recog_model=RECOG_MODEL, verbose=False): """Test if an individual has access to the lock. Make sure there is a recog_model file that has been generated by the train_recognizer function. Returns a boolean. """ recognizer = cv2.face.createLBPHFaceRecognizer recognizer = recognizer() try: recognizer.load(recog_model) except: print('No training yml file found!') return (None, None) # image_array = np.array(Image.open(image_to_test).convert('L'), 'uint8') image_array = np.array(Image.open(os.path.join( BASE_DIR, image_to_test)).convert('L'), 'uint8') curr_face = FACE_CASCADE.detectMultiScale(image_array)[0] x, y, w, h = curr_face test_image = image_array[y: y + h, x: x + w] member_prediction, confidence = recognizer.predict(test_image) if verbose is True: print('member number: {}, confidence: {}'.format(member_prediction, confidence)) return (member_prediction, confidence)
[ "os.listdir", "PIL.Image.open", "os.path.join", "cv2.imshow", "os.path.split", "numpy.array", "cv2.destroyAllWindows", "os.path.abspath", "cv2.CascadeClassifier", "cv2.waitKey" ]
[((1291, 1348), 'os.path.join', 'os.path.join', (['HERE', '"""haarcascade_frontalface_default.xml"""'], {}), "(HERE, 'haarcascade_frontalface_default.xml')\n", (1303, 1348), False, 'import os\n'), ((1364, 1400), 'cv2.CascadeClassifier', 'cv2.CascadeClassifier', (['CASCADE_MODEL'], {}), '(CASCADE_MODEL)\n', (1385, 1400), False, 'import cv2\n'), ((1421, 1457), 'os.path.join', 'os.path.join', (['MEDIA_ROOT', '"""training"""'], {}), "(MEDIA_ROOT, 'training')\n", (1433, 1457), False, 'import os\n'), ((1472, 1509), 'os.path.join', 'os.path.join', (['HERE', '"""recog_brain.yml"""'], {}), "(HERE, 'recog_brain.yml')\n", (1484, 1509), False, 'import os\n'), ((1248, 1273), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1263, 1273), False, 'import os\n'), ((1661, 1698), 'os.path.join', 'os.path.join', (['HERE', '"""recog_brain.yml"""'], {}), "(HERE, 'recog_brain.yml')\n", (1673, 1698), False, 'import os\n'), ((2104, 2126), 'os.listdir', 'os.listdir', (['image_path'], {}), '(image_path)\n', (2114, 2126), False, 'import os\n'), ((2881, 2904), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (2902, 2904), False, 'import cv2\n'), ((2935, 2952), 'numpy.array', 'np.array', (['members'], {}), '(members)\n', (2943, 2952), True, 'import numpy as np\n'), ((2774, 2825), 'cv2.imshow', 'cv2.imshow', (['"""Training..."""', 'tr_img[y:y + h, x:x + w]'], {}), "('Training...', tr_img[y:y + h, x:x + w])\n", (2784, 2825), False, 'import cv2\n'), ((2844, 2859), 'cv2.waitKey', 'cv2.waitKey', (['(20)'], {}), '(20)\n', (2855, 2859), False, 'import cv2\n'), ((2398, 2414), 'PIL.Image.open', 'Image.open', (['tr_f'], {}), '(tr_f)\n', (2408, 2414), False, 'from PIL import Image\n'), ((3577, 3614), 'os.path.join', 'os.path.join', (['BASE_DIR', 'image_to_test'], {}), '(BASE_DIR, image_to_test)\n', (3589, 3614), False, 'import os\n'), ((2511, 2530), 'os.path.split', 'os.path.split', (['tr_f'], {}), '(tr_f)\n', (2524, 2530), False, 'import os\n')]
import sys from typing import Optional import click from stackwar.surveyutils import iter_squashed def mostly_sanitize(lang: str, year: int) -> Optional[str]: from stackwar.languages import unalias, get_ban, is_known real = unalias(lang.lower(), year) if real is None: return None ban = get_ban(real) if ban: click.secho(f"{lang!r} is not supported: {ban}", fg='red') sys.exit(1) if not is_known(real): click.secho(f"Unknown language {lang!r}", fg='red') sys.exit(1) return real def sanitize(lang: str, year: int) -> str: real = mostly_sanitize(lang, year) if real is None: click.secho(f"No data for {lang} in {year}", fg='red') sys.exit(1) return real @click.command() @click.option('--year', '-y', type=int, required=True) def print_languages(year: int) -> None: languages = set() for used, want in iter_squashed(year): languages.update(used) languages.update(want) print(f"{len(languages)} languages:") for lang in sorted(languages): print(lang)
[ "stackwar.surveyutils.iter_squashed", "click.secho", "click.option", "stackwar.languages.is_known", "sys.exit", "stackwar.languages.get_ban", "click.command" ]
[((765, 780), 'click.command', 'click.command', ([], {}), '()\n', (778, 780), False, 'import click\n'), ((782, 835), 'click.option', 'click.option', (['"""--year"""', '"""-y"""'], {'type': 'int', 'required': '(True)'}), "('--year', '-y', type=int, required=True)\n", (794, 835), False, 'import click\n'), ((318, 331), 'stackwar.languages.get_ban', 'get_ban', (['real'], {}), '(real)\n', (325, 331), False, 'from stackwar.languages import unalias, get_ban, is_known\n'), ((921, 940), 'stackwar.surveyutils.iter_squashed', 'iter_squashed', (['year'], {}), '(year)\n', (934, 940), False, 'from stackwar.surveyutils import iter_squashed\n'), ((352, 410), 'click.secho', 'click.secho', (['f"""{lang!r} is not supported: {ban}"""'], {'fg': '"""red"""'}), "(f'{lang!r} is not supported: {ban}', fg='red')\n", (363, 410), False, 'import click\n'), ((419, 430), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (427, 430), False, 'import sys\n'), ((443, 457), 'stackwar.languages.is_known', 'is_known', (['real'], {}), '(real)\n', (451, 457), False, 'from stackwar.languages import unalias, get_ban, is_known\n'), ((467, 518), 'click.secho', 'click.secho', (['f"""Unknown language {lang!r}"""'], {'fg': '"""red"""'}), "(f'Unknown language {lang!r}', fg='red')\n", (478, 518), False, 'import click\n'), ((527, 538), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (535, 538), False, 'import sys\n'), ((670, 724), 'click.secho', 'click.secho', (['f"""No data for {lang} in {year}"""'], {'fg': '"""red"""'}), "(f'No data for {lang} in {year}', fg='red')\n", (681, 724), False, 'import click\n'), ((733, 744), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (741, 744), False, 'import sys\n')]
import os import time from typing import List, Union, Dict, Callable, Any from functools import partial from queue import Queue from threading import Thread from ding.utils import read_file, save_file, get_data_decompressor, COMM_LEARNER_REGISTRY from ding.utils.file_helper import read_from_di_store from ding.interaction import Slave, TaskFail from .base_comm_learner import BaseCommLearner from ..learner_hook import LearnerHook class LearnerSlave(Slave): """ Overview: A slave, whose master is coordinator. Used to pass message between comm learner and coordinator. """ def __init__(self, *args, callback_fn: Dict[str, Callable], **kwargs) -> None: """ Overview: Init callback functions additionally. Callback functions are methods in comm learner. """ super().__init__(*args, **kwargs) self._callback_fn = callback_fn def _process_task(self, task: dict) -> Union[dict, TaskFail]: """ Overview: Process a task according to input task info dict, which is passed in by master coordinator. For each type of task, you can refer to corresponding callback function in comm learner for details. Arguments: - cfg (:obj:`EasyDict`): Task dict. Must contain key "name". Returns: - result (:obj:`Union[dict, TaskFail]`): Task result dict, or task fail exception. """ task_name = task['name'] if task_name == 'resource': return self._callback_fn['deal_with_resource']() elif task_name == 'learner_start_task': self._current_task_info = task['task_info'] self._callback_fn['deal_with_learner_start'](self._current_task_info) return {'message': 'learner task has started'} elif task_name == 'learner_get_data_task': data_demand = self._callback_fn['deal_with_get_data']() ret = { 'task_id': self._current_task_info['task_id'], 'buffer_id': self._current_task_info['buffer_id'], } ret.update(data_demand) return ret elif task_name == 'learner_learn_task': info = self._callback_fn['deal_with_learner_learn'](task['data']) data = {'info': info} data['buffer_id'] = self._current_task_info['buffer_id'] data['task_id'] = self._current_task_info['task_id'] return data elif task_name == 'learner_close_task': self._callback_fn['deal_with_learner_close']() return { 'task_id': self._current_task_info['task_id'], 'buffer_id': self._current_task_info['buffer_id'], } else: raise TaskFail(result={'message': 'task name error'}, message='illegal learner task <{}>'.format(task_name)) @COMM_LEARNER_REGISTRY.register('flask_fs') class FlaskFileSystemLearner(BaseCommLearner): """ Overview: An implementation of CommLearner, using flask and the file system. Interfaces: __init__, send_policy, get_data, send_learn_info, start, close Property: hooks4call """ def __init__(self, cfg: 'EasyDict') -> None: # noqa """ Overview: Init method. Arguments: - cfg (:obj:`EasyDict`): Config dict. """ BaseCommLearner.__init__(self, cfg) # Callback functions for message passing between comm learner and coordinator. self._callback_fn = { 'deal_with_resource': self.deal_with_resource, 'deal_with_learner_start': self.deal_with_learner_start, 'deal_with_get_data': self.deal_with_get_data, 'deal_with_learner_learn': self.deal_with_learner_learn, 'deal_with_learner_close': self.deal_with_learner_close, } # Learner slave to implement those callback functions. Host and port is used to build connection with master. host, port = cfg.host, cfg.port if isinstance(port, list): port = port[self._rank] elif isinstance(port, int) and self._world_size > 1: port = port + self._rank self._slave = LearnerSlave(host, port, callback_fn=self._callback_fn) self._path_data = cfg.path_data # path to read data from self._path_policy = cfg.path_policy # path to save policy # Queues to store info dicts. Only one info is needed to pass between learner and coordinator at a time. self._data_demand_queue = Queue(maxsize=1) self._data_result_queue = Queue(maxsize=1) self._learn_info_queue = Queue(maxsize=1) # Task-level learner and policy will only be set once received the task. self._learner = None self._policy_id = None def start(self) -> None: """ Overview: Start comm learner itself and the learner slave. """ BaseCommLearner.start(self) self._slave.start() def close(self) -> None: """ Overview: Join learner thread and close learner if still running. Then close learner slave and comm learner itself. """ if self._end_flag: return if self._learner is not None: self.deal_with_learner_close() self._slave.close() BaseCommLearner.close(self) def __del__(self) -> None: """ Overview: Call ``close`` for deletion. """ self.close() def deal_with_resource(self) -> dict: """ Overview: Callback function. Return how many resources are needed to start current learner. Returns: - resource (:obj:`dict`): Resource info dict, including ["gpu"]. """ return {'gpu': self._world_size} def deal_with_learner_start(self, task_info: dict) -> None: """ Overview: Callback function. Create a learner and help register its hooks. Start a learner thread of the created one. Arguments: - task_info (:obj:`dict`): Task info dict. .. note:: In ``_create_learner`` method in base class ``BaseCommLearner``, 3 methods ('get_data', 'send_policy', 'send_learn_info'), dataloader and policy are set. You can refer to it for details. """ self._policy_id = task_info['policy_id'] self._league_save_checkpoint_path = task_info.get('league_save_checkpoint_path', None) self._learner = self._create_learner(task_info) for h in self.hooks4call: self._learner.register_hook(h) self._learner_thread = Thread(target=self._learner.start, args=(), daemon=True, name='learner_start') self._learner_thread.start() def deal_with_get_data(self) -> Any: """ Overview: Callback function. Get data demand info dict from ``_data_demand_queue``, which will be sent to coordinator afterwards. Returns: - data_demand (:obj:`Any`): Data demand info dict. """ data_demand = self._data_demand_queue.get() return data_demand def deal_with_learner_learn(self, data: dict) -> dict: """ Overview: Callback function. Put training data info dict (i.e. meta data), which is received from coordinator, into ``_data_result_queue``, and wait for ``get_data`` to retrieve. Wait for learner training and get learn info dict from ``_learn_info_queue``. If task is finished, join the learner thread and close the learner. Returns: - learn_info (:obj:`Any`): Learn info dict. """ self._data_result_queue.put(data) learn_info = self._learn_info_queue.get() return learn_info def deal_with_learner_close(self) -> None: self._learner.close() self._learner_thread.join() del self._learner_thread self._learner = None self._policy_id = None # override def send_policy(self, state_dict: dict) -> None: """ Overview: Save learner's policy in corresponding path, called by ``SendPolicyHook``. Arguments: - state_dict (:obj:`dict`): State dict of the policy. """ if not os.path.exists(self._path_policy): os.mkdir(self._path_policy) path = self._policy_id if self._path_policy not in path: path = os.path.join(self._path_policy, path) setattr(self, "_latest_policy_path", path) save_file(path, state_dict, use_lock=True) if self._league_save_checkpoint_path is not None: save_file(self._league_save_checkpoint_path, state_dict, use_lock=True) @staticmethod def load_data_fn(path, meta: Dict[str, Any], decompressor: Callable) -> Any: """ Overview: The function that is used to load data file. Arguments: - meta (:obj:`Dict[str, Any]`): Meta data info dict. - decompressor (:obj:`Callable`): Decompress function. Returns: - s (:obj:`Any`): Data which is read from file. """ # Due to read-write conflict, read_file raise an error, therefore we set a while loop. while True: try: s = read_from_di_store(path) if read_from_di_store else read_file(path, use_lock=False) s = decompressor(s) break except Exception: time.sleep(0.01) unroll_len = meta.get('unroll_len', 1) if 'unroll_split_begin' in meta: begin = meta['unroll_split_begin'] if unroll_len == 1: s = s[begin] s.update(meta) else: end = begin + unroll_len s = s[begin:end] # add metadata key-value to stepdata for i in range(len(s)): s[i].update(meta) else: s.update(meta) return s # override def get_data(self, batch_size: int) -> List[Callable]: """ Overview: Get a list of data loading function, which can be implemented by dataloader to read data from files. Arguments: - batch_size (:obj:`int`): Batch size. Returns: - data (:obj:`List[Callable]`): A list of callable data loading function. """ while self._learner is None: time.sleep(1) # Tell coordinator that we need training data, by putting info dict in data_demand_queue. assert self._data_demand_queue.qsize() == 0 self._data_demand_queue.put({'batch_size': batch_size, 'cur_learner_iter': self._learner.last_iter.val}) # Get a list of meta data (data info dict) from coordinator, by getting info dict from data_result_queue. data = self._data_result_queue.get() assert isinstance(data, list) assert len(data) == batch_size, '{}/{}'.format(len(data), batch_size) # Transform meta data to callable data loading function (partial ``load_data_fn``). decompressor = get_data_decompressor(data[0].get('compressor', 'none')) data = [ partial( FlaskFileSystemLearner.load_data_fn, path=m['object_ref'] if read_from_di_store else os.path.join(self._path_data, m['data_id']), meta=m, decompressor=decompressor, ) for m in data ] return data # override def send_learn_info(self, learn_info: dict) -> None: """ Overview: Store learn info dict in queue, which will be retrieved by callback function "deal_with_learner_learn" in learner slave, then will be sent to coordinator. Arguments: - learn_info (:obj:`dict`): Learn info in `dict` type. Keys are like 'learner_step', 'priority_info' \ 'finished_task', etc. You can refer to ``learn_info``(``worker/learner/base_learner.py``) for details. """ assert self._learn_info_queue.qsize() == 0 self._learn_info_queue.put(learn_info) @property def hooks4call(self) -> List[LearnerHook]: """ Overview: Return the hooks that are related to message passing with coordinator. Returns: - hooks (:obj:`list`): The hooks which comm learner has. Will be registered in learner as well. """ return [ SendPolicyHook('send_policy', 100, position='before_run', ext_args={}), SendPolicyHook('send_policy', 100, position='after_iter', ext_args={'send_policy_freq': 1}), SendLearnInfoHook( 'send_learn_info', 100, position='after_iter', ext_args={'freq': 10}, ), SendLearnInfoHook( 'send_learn_info', 100, position='after_run', ext_args={'freq': 1}, ), ] class SendPolicyHook(LearnerHook): """ Overview: Hook to send policy Interfaces: __init__, __call__ Property: name, priority, position """ def __init__(self, *args, ext_args: dict = {}, **kwargs) -> None: """ Overview: init SendpolicyHook Arguments: - ext_args (:obj:`dict`): Extended arguments. Use ``ext_args.freq`` to set send_policy_freq """ super().__init__(*args, **kwargs) if 'send_policy_freq' in ext_args: self._freq = ext_args['send_policy_freq'] else: self._freq = 1 def __call__(self, engine: 'BaseLearner') -> None: # noqa """ Overview: Save learner's policy in corresponding path at interval iterations by calling ``engine``'s ``send_policy``. Saved file includes model_state_dict, learner_last_iter. Arguments: - engine (:obj:`BaseLearner`): The BaseLearner. .. note:: Only rank == 0 learner will save policy. """ last_iter = engine.last_iter.val if engine.rank == 0 and last_iter % self._freq == 0: state_dict = {'model': engine.policy.state_dict()['model'], 'iter': last_iter} engine.send_policy(state_dict) engine.debug('{} save iter{} policy'.format(engine.instance_name, last_iter)) class SendLearnInfoHook(LearnerHook): """ Overview: Hook to send learn info Interfaces: __init__, __call__ Property: name, priority, position """ def __init__(self, *args, ext_args: dict, **kwargs) -> None: """ Overview: init SendLearnInfoHook Arguments: - ext_args (:obj:`dict`): extended_args, use ext_args.freq """ super().__init__(*args, **kwargs) self._freq = ext_args['freq'] def __call__(self, engine: 'BaseLearner') -> None: # noqa """ Overview: Send learn info including last_iter at interval iterations and priority info Arguments: - engine (:obj:`BaseLearner`): the BaseLearner """ last_iter = engine.last_iter.val engine.send_learn_info(engine.learn_info) if last_iter % self._freq == 0: engine.debug('{} save iter{} learn_info'.format(engine.instance_name, last_iter))
[ "os.path.exists", "ding.utils.read_file", "os.path.join", "ding.utils.COMM_LEARNER_REGISTRY.register", "time.sleep", "ding.utils.save_file", "os.mkdir", "threading.Thread", "queue.Queue", "ding.utils.file_helper.read_from_di_store" ]
[((2886, 2928), 'ding.utils.COMM_LEARNER_REGISTRY.register', 'COMM_LEARNER_REGISTRY.register', (['"""flask_fs"""'], {}), "('flask_fs')\n", (2916, 2928), False, 'from ding.utils import read_file, save_file, get_data_decompressor, COMM_LEARNER_REGISTRY\n'), ((4579, 4595), 'queue.Queue', 'Queue', ([], {'maxsize': '(1)'}), '(maxsize=1)\n', (4584, 4595), False, 'from queue import Queue\n'), ((4630, 4646), 'queue.Queue', 'Queue', ([], {'maxsize': '(1)'}), '(maxsize=1)\n', (4635, 4646), False, 'from queue import Queue\n'), ((4680, 4696), 'queue.Queue', 'Queue', ([], {'maxsize': '(1)'}), '(maxsize=1)\n', (4685, 4696), False, 'from queue import Queue\n'), ((6730, 6808), 'threading.Thread', 'Thread', ([], {'target': 'self._learner.start', 'args': '()', 'daemon': '(True)', 'name': '"""learner_start"""'}), "(target=self._learner.start, args=(), daemon=True, name='learner_start')\n", (6736, 6808), False, 'from threading import Thread\n'), ((8658, 8700), 'ding.utils.save_file', 'save_file', (['path', 'state_dict'], {'use_lock': '(True)'}), '(path, state_dict, use_lock=True)\n', (8667, 8700), False, 'from ding.utils import read_file, save_file, get_data_decompressor, COMM_LEARNER_REGISTRY\n'), ((8394, 8427), 'os.path.exists', 'os.path.exists', (['self._path_policy'], {}), '(self._path_policy)\n', (8408, 8427), False, 'import os\n'), ((8441, 8468), 'os.mkdir', 'os.mkdir', (['self._path_policy'], {}), '(self._path_policy)\n', (8449, 8468), False, 'import os\n'), ((8561, 8598), 'os.path.join', 'os.path.join', (['self._path_policy', 'path'], {}), '(self._path_policy, path)\n', (8573, 8598), False, 'import os\n'), ((8772, 8843), 'ding.utils.save_file', 'save_file', (['self._league_save_checkpoint_path', 'state_dict'], {'use_lock': '(True)'}), '(self._league_save_checkpoint_path, state_dict, use_lock=True)\n', (8781, 8843), False, 'from ding.utils import read_file, save_file, get_data_decompressor, COMM_LEARNER_REGISTRY\n'), ((10588, 10601), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (10598, 10601), False, 'import time\n'), ((9423, 9447), 'ding.utils.file_helper.read_from_di_store', 'read_from_di_store', (['path'], {}), '(path)\n', (9441, 9447), False, 'from ding.utils.file_helper import read_from_di_store\n'), ((9475, 9506), 'ding.utils.read_file', 'read_file', (['path'], {'use_lock': '(False)'}), '(path, use_lock=False)\n', (9484, 9506), False, 'from ding.utils import read_file, save_file, get_data_decompressor, COMM_LEARNER_REGISTRY\n'), ((9611, 9627), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (9621, 9627), False, 'import time\n'), ((11467, 11510), 'os.path.join', 'os.path.join', (['self._path_data', "m['data_id']"], {}), "(self._path_data, m['data_id'])\n", (11479, 11510), False, 'import os\n')]
import os import base64 import json import logging from requests.adapters import Response import speech_recognition as sr from flask import Flask from flask_sockets import Sockets from pydub import AudioSegment from twilio.rest import Client from transformers import AutoTokenizer, AutoModelForSequenceClassification from scipy.special import softmax import numpy as np from indictrans import Transliterator import time for i in os.listdir("Audio"): os.remove(f"Audio/{i}") if os.path.exists("recording.wav") else None trn = Transliterator(source='eng', target='hin', build_lookup=True) mode = "rohanrajpal/bert-base-codemixed-uncased-sentiment" tokenizer = AutoTokenizer.from_pretrained(mode) model = AutoModelForSequenceClassification.from_pretrained(mode) app = Flask(__name__) sockets = Sockets(app) HTTP_SERVER_PORT = 8080 RAW_AUDIO_FILE_EXTENSION = "ulaw" CONVERTED_AUDIO_FILE_EXTENSION = "wav" ACC_SID = "XXXXXXXXX" AUTH_TOKEN = "<PASSWORD>" FROM_NUMBER = "XXXXXXXXX" TO_NUMBER = "XXXXXXXXX" account_sid = ACC_SID auth_token = AUTH_TOKEN client = Client(account_sid, auth_token) ngrok_url = "XXXXXXXXX.ngrok.io" class Sequence: def __init__(self): self.CALL_FLOW = 0 self.responses = [f"""<Response> <Play>XXXXXXXXX.wav</Play> <Start> <Stream url="wss://{ngrok_url}/" /> </Start> <Pause length = "10"/> </Response>""", f"""<Response> <Play>XXXXXXXXX.wav</Play> <Pause length = "10"/> </Response>""", f"""<Response> <Play>XXXXXXXXX.wav</Play> <Pause length = "30"/> </Response>""", f"""<Response> <Play>XXXXXXXXX.wav</Play> <Pause length = "30"/> </Response>""", f"""<Response> <Play>XXXXXXXXX.wav</Play> <Pause length = "30"/> </Response>""", f"""<Response> <Play>XXXXXXXXX.wav</Play> </Response>"""] def get_call_flow(self): return self.CALL_FLOW def get_response(self): try: tmp = self.responses[self.CALL_FLOW] self.CALL_FLOW += 1 except: print("exception in get response") tmp = self.responses[-1] return tmp seq = Sequence() call = client.calls.create( twiml=seq.get_response(), from_=FROM_NUMBER, to=TO_NUMBER) call_sid = call.sid r = sr.Recognizer() def getSentiment(text): labels = ["Neutral", "Negative", "Positive"] try: encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) except: text = text[:512] encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) sc = {} for i in range(3): sc[labels[i]] = np.round(float(scores[i]), 4) return 0 if sc["Negative"] > sc["Positive"] else 1 def recognize_speech(recording_audio_path): with sr.AudioFile(recording_audio_path) as source: audio = r.record(source) try: return r.recognize_google(audio) except Exception as e: return None def make_update(speech): hin = trn.transform(speech) sentiment = getSentiment(hin) CALL_FLOW = seq.get_call_flow() print(f"You said: {hin} | Sentiment: {sentiment} | Callflow: {CALL_FLOW}") if(CALL_FLOW == 2 or CALL_FLOW == 3 or CALL_FLOW == 4): call = client.calls(call_sid).update( twiml=seq.get_response()) else: if sentiment: call = client.calls(call_sid).update( twiml=seq.get_response()) else: call = client.calls(call_sid).update( twiml=seq.responses[-1]) class StreamAudioRecording: def __init__(self, audio_recording_path): self.audio_recording_path = audio_recording_path self.f = None self.audio_file_path = None self.data_buffer = b'' self.data = [] def start_recording(self, call_id): self.audio_file_path = os.path.join( self.audio_recording_path, f"{call_id}.{RAW_AUDIO_FILE_EXTENSION}") self.f = open(self.audio_file_path, 'wb') def write_buffer(self, buffer): self.data_buffer += buffer self.f.write(buffer) def append_buffer(self): self.data.append(self.data_buffer) self.data_buffer = b'' def stop_recording(self): self.f.close() converted_audio_path = self.audio_file_path.replace(RAW_AUDIO_FILE_EXTENSION, CONVERTED_AUDIO_FILE_EXTENSION) self.convert_call_recording(self.audio_file_path, converted_audio_path) return converted_audio_path @ staticmethod def convert_call_recording(mulaw_path, wav_path): new = AudioSegment.from_file( mulaw_path, "mulaw", frame_rate=8000, channels=1, sample_width=1) new.frame_rate = 8000 new.export(wav_path, format="wav", bitrate="8k") @ sockets.route('/') def echo(ws): app.logger.info("Connection accepted") # A lot of messages will be sent rapidly. We'll stop showing after the first one. has_seen_media = False message_count = 1 recording = StreamAudioRecording("/Users/ace/Desktop/Twilio/Audio") recording.start_recording("0") while not ws.closed: message = ws.receive() # print(f"Received message: {message}") if message is None: app.logger.info("No message received...") continue # Messages are a JSON encoded string data = json.loads(message) # Using the event type you can determine what type of message you are receiving if data['event'] == "connected": app.logger.info("Connected Message received: {}".format(message)) if data['event'] == "start": app.logger.info("Start Message received: {}".format(message)) if data['event'] == "media": payload = data['media']['payload'] chunk = base64.b64decode(payload) recording.write_buffer(chunk) if(message_count % 58 == 0): recording.append_buffer() try: rb1 = recording.data[-1].count(b'\xff') if(rb1 > 7000): st = time.time() recording_audio_path = recording.stop_recording() recording.start_recording(str(message_count)) speech = recognize_speech(recording_audio_path) if speech: print(time.time()-st) make_update(speech) except: pass message_count += 1 if not has_seen_media: payload = data['media']['payload'] chunk = base64.b64decode(payload) has_seen_media = True if data['event'] == "stop": app.logger.info("Stop Message received: {}".format(message)) recording.append_buffer() break app.logger.info( "Connection closed. Received a total of {} messages".format(message_count)) recording_audio_path = recording.stop_recording() recording_audio_path = recording.stop_recording() speech = recognize_speech(recording_audio_path) if speech: print("\n*****\n", speech, "\n******") if __name__ == '__main__': app.logger.setLevel(logging.DEBUG) from gevent import pywsgi from geventwebsocket.handler import WebSocketHandler server = pywsgi.WSGIServer( ('', HTTP_SERVER_PORT), app, handler_class=WebSocketHandler) print("Server listening on: http://localhost:" + str(HTTP_SERVER_PORT)) server.serve_forever()
[ "os.path.exists", "json.loads", "os.listdir", "indictrans.Transliterator", "flask.Flask", "flask_sockets.Sockets", "speech_recognition.AudioFile", "os.path.join", "base64.b64decode", "transformers.AutoModelForSequenceClassification.from_pretrained", "speech_recognition.Recognizer", "os.remove", "pydub.AudioSegment.from_file", "transformers.AutoTokenizer.from_pretrained", "gevent.pywsgi.WSGIServer", "twilio.rest.Client", "time.time", "scipy.special.softmax" ]
[((430, 449), 'os.listdir', 'os.listdir', (['"""Audio"""'], {}), "('Audio')\n", (440, 449), False, 'import os\n'), ((531, 592), 'indictrans.Transliterator', 'Transliterator', ([], {'source': '"""eng"""', 'target': '"""hin"""', 'build_lookup': '(True)'}), "(source='eng', target='hin', build_lookup=True)\n", (545, 592), False, 'from indictrans import Transliterator\n'), ((664, 699), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['mode'], {}), '(mode)\n', (693, 699), False, 'from transformers import AutoTokenizer, AutoModelForSequenceClassification\n'), ((708, 764), 'transformers.AutoModelForSequenceClassification.from_pretrained', 'AutoModelForSequenceClassification.from_pretrained', (['mode'], {}), '(mode)\n', (758, 764), False, 'from transformers import AutoTokenizer, AutoModelForSequenceClassification\n'), ((772, 787), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (777, 787), False, 'from flask import Flask\n'), ((798, 810), 'flask_sockets.Sockets', 'Sockets', (['app'], {}), '(app)\n', (805, 810), False, 'from flask_sockets import Sockets\n'), ((1063, 1094), 'twilio.rest.Client', 'Client', (['account_sid', 'auth_token'], {}), '(account_sid, auth_token)\n', (1069, 1094), False, 'from twilio.rest import Client\n'), ((2454, 2469), 'speech_recognition.Recognizer', 'sr.Recognizer', ([], {}), '()\n', (2467, 2469), True, 'import speech_recognition as sr\n'), ((2850, 2865), 'scipy.special.softmax', 'softmax', (['scores'], {}), '(scores)\n', (2857, 2865), False, 'from scipy.special import softmax\n'), ((7724, 7802), 'gevent.pywsgi.WSGIServer', 'pywsgi.WSGIServer', (["('', HTTP_SERVER_PORT)", 'app'], {'handler_class': 'WebSocketHandler'}), "(('', HTTP_SERVER_PORT), app, handler_class=WebSocketHandler)\n", (7741, 7802), False, 'from gevent import pywsgi\n'), ((482, 513), 'os.path.exists', 'os.path.exists', (['"""recording.wav"""'], {}), "('recording.wav')\n", (496, 513), False, 'import os\n'), ((455, 478), 'os.remove', 'os.remove', (['f"""Audio/{i}"""'], {}), "(f'Audio/{i}')\n", (464, 478), False, 'import os\n'), ((3065, 3099), 'speech_recognition.AudioFile', 'sr.AudioFile', (['recording_audio_path'], {}), '(recording_audio_path)\n', (3077, 3099), True, 'import speech_recognition as sr\n'), ((4139, 4224), 'os.path.join', 'os.path.join', (['self.audio_recording_path', 'f"""{call_id}.{RAW_AUDIO_FILE_EXTENSION}"""'], {}), "(self.audio_recording_path, f'{call_id}.{RAW_AUDIO_FILE_EXTENSION}'\n )\n", (4151, 4224), False, 'import os\n'), ((4924, 5016), 'pydub.AudioSegment.from_file', 'AudioSegment.from_file', (['mulaw_path', '"""mulaw"""'], {'frame_rate': '(8000)', 'channels': '(1)', 'sample_width': '(1)'}), "(mulaw_path, 'mulaw', frame_rate=8000, channels=1,\n sample_width=1)\n", (4946, 5016), False, 'from pydub import AudioSegment\n'), ((5707, 5726), 'json.loads', 'json.loads', (['message'], {}), '(message)\n', (5717, 5726), False, 'import json\n'), ((6150, 6175), 'base64.b64decode', 'base64.b64decode', (['payload'], {}), '(payload)\n', (6166, 6175), False, 'import base64\n'), ((6998, 7023), 'base64.b64decode', 'base64.b64decode', (['payload'], {}), '(payload)\n', (7014, 7023), False, 'import base64\n'), ((6447, 6458), 'time.time', 'time.time', ([], {}), '()\n', (6456, 6458), False, 'import time\n'), ((6744, 6755), 'time.time', 'time.time', ([], {}), '()\n', (6753, 6755), False, 'import time\n')]
# Copyright (c) 2015, The MITRE Corporation. All rights reserved. # See LICENSE.txt for complete terms. """ Internal module dedicated to translating observables and indicators as well as translating OpenIOC to CybOX and STIX. """ import logging import cybox.utils from cybox.core import Observables, Observable, ObservableComposition from cybox.common import ToolInformationList, ToolInformation import stix.utils from stix.core import STIXPackage, STIXHeader from stix.common import InformationSource from stix.common.vocabs import PackageIntent from stix.indicator import Indicator from . import openioc from . import objectify from . import xml from . import utils from . import version # ID format for translated OpenIOC items OPENIOC_ID_FMT = "openioc:item-%s" # Map of IndicatorItem conditions to CybOX operators CONDITIONS = { 'is': 'Equals', 'isnot': 'DoesNotEqual', 'contains': 'Contains', 'containsnot': 'DoesNotContain' } LOG = logging.getLogger(__name__) def _translate_id(id_): """Process an id which is normalized and has 'openioc:item-' prepended Args: id: String to uniquely represent an observable or indicator Returns: If there is no id, None is returned. Otherwise a normalized id with 'openioc:item-' prepended is returned. """ id_ = utils.normalize_id(id_) if not id_: return None return OPENIOC_ID_FMT % id_ def _make_observable(item): """Process an indicator item and creates a single observable from it. Args: item: Individual indicator item Returns: A cybox.core.Observable object """ content = openioc.get_content(item) search = openioc.get_search(item) condition = openioc.get_condition(item) if not (content and search and condition): fmt = "Unable to produce Observable from IndicatorItem on line: %d" LOG.warn(fmt, item.sourceline) return None # Map the OpenIOC condition to a CybOX condition condition = CONDITIONS[condition] # Convert the IndicatorItem into a CybOX Object object_ = objectify.make_object(search, content, condition) if object_: return Observable(object_) skipped_term = utils.forcestring(search) fmt = ("Error|Ignore. IndicatorItem not translated. Encountered IOC " "term '%s' , which does not currently map to CybOX.") desc = fmt % skipped_term desc = cybox.utils.wrap_cdata(desc) obs = Observable(description=desc) return obs def _translate_item(item): """Process an indicator item and creates a single observable from it. Args: item: Individual indicator item Returns: A cybox.core.Observable object """ return _make_observable(item) def _translate_items(items): """Process an indicator item(s) and creates an observable list from it. Args: item: Indicator item(s) Returns: cybox.core.Observable object list. """ observables = (_make_observable(x) for x in items) return [o for o in observables if o is not None] def _indicator_to_observable(indicator): """Process indicator item(s), that can be nested, and create a composite object with observables. Args: indicator: Indicator(s) that will be translated Returns: A cybox.core.Observable object if `indicator` can be translated. None is returned if `indicator` contains invalid or untranslatable items. """ items = openioc.get_items(indicator) nested = openioc.get_indicators(indicator) if not (nested or items): return None # If the openioc indicator has only one IndicatorItem, return an Observable # object which has a single CybOX Object child. if not nested and len(items) == 1: return _translate_item(items[0]) # The openioc Indicator had more than one item or nested indicators, so # we need to create an Observable Composition. # Initialize the parent Observable id_ = _translate_id(indicator.attrib.get("id")) root = Observable(id_=id_) operator = indicator.attrib.get("operator", "AND") composite = ObservableComposition(operator=operator) root.observable_composition = composite # Translate all the IndicatorItem and nested Indicator children observables = _translate_items(items) + _translate_indicators(nested) # Add the translated Observable objects to the composite composite.observables.extend(observables) return root def _observable_to_indicator_stix(observable): """Translate a CybOX Observable into a STIX Indicator. Args: observable: Observable object that will be translated Returns: Indicator object with STIX utility and CybOX tags """ # Build STIX tool content tool = ToolInformation(tool_name='OpenIOC to STIX Utility') tool.version = version.__version__ # Build Indicator.producer contents producer = InformationSource() producer.tools = ToolInformationList(tool) # Build Indicator indicator = Indicator(title="CybOX-represented Indicator Created from OpenIOC File") indicator.producer = producer indicator.add_observable(observable) return indicator def _translate_indicators(indicators): """Process an indicator item(s) and creates an observable list from it. Args: item: Indicator item(s) Returns: A cybox.core.Observable object list if `indicators` can be translated. """ is_empty = utils.is_empty_observable translated = (_indicator_to_observable(x) for x in indicators) return [x for x in translated if not is_empty(x)] def to_cybox(infile): """Translate the `infile` OpenIOC xml document into a CybOX Observable. Args: infile: OpenIOC xml filename to translate Returns: cybox.core.Observables object """ iocdoc = xml.parse(infile) indicators = openioc.get_top_indicators(iocdoc) if len(indicators) == 0: raise Exception("Input document contained no indicator items.") observables = _translate_indicators(indicators) if not observables: raise Exception("Input document contained no indicator items compatible with CybOX.") obsdoc = Observables(observables) return obsdoc @stix.utils.silence_warnings def to_stix(infile): """Converts the `infile` OpenIOC xml document into a STIX Package. Args: infile: OpenIOC xml filename to translate Returns: stix.core.STIXPackage object """ observables = to_cybox(infile) # Build Indicators from the Observable objects indicators = [_observable_to_indicator_stix(o) for o in observables] # Wrap the created Observables in a STIX Package/Indicator stix_package = STIXPackage() # Set the Indicators collection stix_package.indicators = indicators # Create and write the STIX Header. Warning: these fields have been # deprecated in STIX v1.2! stix_header = STIXHeader() stix_header.package_intent = PackageIntent.TERM_INDICATORS_MALWARE_ARTIFACTS stix_header.description = "CybOX-represented Indicators Translated from OpenIOC File" stix_package.stix_header = stix_header return stix_package
[ "logging.getLogger", "stix.core.STIXHeader", "cybox.common.ToolInformation", "cybox.common.ToolInformationList", "cybox.core.Observable", "stix.indicator.Indicator", "cybox.core.ObservableComposition", "stix.core.STIXPackage", "stix.common.InformationSource", "cybox.core.Observables" ]
[((963, 990), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (980, 990), False, 'import logging\n'), ((2475, 2503), 'cybox.core.Observable', 'Observable', ([], {'description': 'desc'}), '(description=desc)\n', (2485, 2503), False, 'from cybox.core import Observables, Observable, ObservableComposition\n'), ((4063, 4082), 'cybox.core.Observable', 'Observable', ([], {'id_': 'id_'}), '(id_=id_)\n', (4073, 4082), False, 'from cybox.core import Observables, Observable, ObservableComposition\n'), ((4155, 4195), 'cybox.core.ObservableComposition', 'ObservableComposition', ([], {'operator': 'operator'}), '(operator=operator)\n', (4176, 4195), False, 'from cybox.core import Observables, Observable, ObservableComposition\n'), ((4809, 4861), 'cybox.common.ToolInformation', 'ToolInformation', ([], {'tool_name': '"""OpenIOC to STIX Utility"""'}), "(tool_name='OpenIOC to STIX Utility')\n", (4824, 4861), False, 'from cybox.common import ToolInformationList, ToolInformation\n'), ((4957, 4976), 'stix.common.InformationSource', 'InformationSource', ([], {}), '()\n', (4974, 4976), False, 'from stix.common import InformationSource\n'), ((4998, 5023), 'cybox.common.ToolInformationList', 'ToolInformationList', (['tool'], {}), '(tool)\n', (5017, 5023), False, 'from cybox.common import ToolInformationList, ToolInformation\n'), ((5063, 5135), 'stix.indicator.Indicator', 'Indicator', ([], {'title': '"""CybOX-represented Indicator Created from OpenIOC File"""'}), "(title='CybOX-represented Indicator Created from OpenIOC File')\n", (5072, 5135), False, 'from stix.indicator import Indicator\n'), ((6247, 6271), 'cybox.core.Observables', 'Observables', (['observables'], {}), '(observables)\n', (6258, 6271), False, 'from cybox.core import Observables, Observable, ObservableComposition\n'), ((6775, 6788), 'stix.core.STIXPackage', 'STIXPackage', ([], {}), '()\n', (6786, 6788), False, 'from stix.core import STIXPackage, STIXHeader\n'), ((6989, 7001), 'stix.core.STIXHeader', 'STIXHeader', ([], {}), '()\n', (6999, 7001), False, 'from stix.core import STIXPackage, STIXHeader\n'), ((2187, 2206), 'cybox.core.Observable', 'Observable', (['object_'], {}), '(object_)\n', (2197, 2206), False, 'from cybox.core import Observables, Observable, ObservableComposition\n')]
# !/usr/bin/env python3 # -*- coding:utf-8 -*- __author__ = '<NAME>' __date__ = '2018/7/21 22:07' import socket class NetworkService(object): def __init__(self, _ip, _p): self.__host_ip = _ip self.__port = _p self.__socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.__socket.bind((self.__host_ip, self.__port)) self.__max_connect_num = 512 @property def socket(self): return self.__socket def listen(self): self.__socket.listen(self.__max_connect_num) # def __address_request(self, _c_socket_info): # client_socket = _c_socket_info[0] # try: # # Receive Client Message # while True: # data = client_socket.recv(2048) # if not data: # break # client_msg = data.decode('utf-8') # server_reply = self.__ref_ser_manager.address_request(client_msg, _c_socket_info) # client_socket.sendall(server_reply.get_message().encode('utf-8')) # client_socket.close() # except Exception: # print('Class:ServerNetwork:address_request') # client_socket.close()
[ "socket.socket" ]
[((255, 304), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (268, 304), False, 'import socket\n')]
import sys sys.path.insert(1, "../../") import h2o, tests def show_jira(): local_data = [[1, 'a'],[0, 'b']] h2o_data = h2o.H2OFrame(python_obj=local_data) h2o_data.set_names(['response', 'predictor']) h2o_data.show() if __name__ == "__main__": tests.run_test(sys.argv, show_jira)
[ "sys.path.insert", "h2o.H2OFrame", "tests.run_test" ]
[((11, 39), 'sys.path.insert', 'sys.path.insert', (['(1)', '"""../../"""'], {}), "(1, '../../')\n", (26, 39), False, 'import sys\n'), ((133, 168), 'h2o.H2OFrame', 'h2o.H2OFrame', ([], {'python_obj': 'local_data'}), '(python_obj=local_data)\n', (145, 168), False, 'import h2o, tests\n'), ((271, 306), 'tests.run_test', 'tests.run_test', (['sys.argv', 'show_jira'], {}), '(sys.argv, show_jira)\n', (285, 306), False, 'import h2o, tests\n')]
# Copyright (c) 2022, <NAME>. and contributors # For license information, please see license.txt import frappe from frappe.model.document import Document class Kurs(Document): def after_insert(self): for kurstermin in self.kurstermine: kurstermin.ende = frappe.utils.add_to_date(kurstermin.termin, hours=2) kurstermin.save() pass
[ "frappe.utils.add_to_date" ]
[((262, 314), 'frappe.utils.add_to_date', 'frappe.utils.add_to_date', (['kurstermin.termin'], {'hours': '(2)'}), '(kurstermin.termin, hours=2)\n', (286, 314), False, 'import frappe\n')]
import click from arrow.cli import pass_context, json_loads from arrow.decorators import custom_exception, list_output @click.command('get_statuses') @pass_context @custom_exception @list_output def cli(ctx): """Get all statuses available in this Apollo instance Output: list of status info dictionaries """ return ctx.gi.status.get_statuses()
[ "click.command" ]
[((122, 151), 'click.command', 'click.command', (['"""get_statuses"""'], {}), "('get_statuses')\n", (135, 151), False, 'import click\n')]
"""empty message Revision ID: <KEY> Revises: <KEY> Create Date: 2021-03-26 23:46:21.991775 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<KEY>' down_revision = '<KEY>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('phone_number_verifications', 'carrier_name', existing_type=sa.VARCHAR(length=30), type_=sa.String(length=255), existing_nullable=True) op.alter_column('phone_number_verifications', 'national_format', existing_type=sa.VARCHAR(length=20), type_=sa.String(length=30), existing_nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('phone_number_verifications', 'national_format', existing_type=sa.String(length=30), type_=sa.VARCHAR(length=20), existing_nullable=True) op.alter_column('phone_number_verifications', 'carrier_name', existing_type=sa.String(length=255), type_=sa.VARCHAR(length=30), existing_nullable=True) # ### end Alembic commands ###
[ "sqlalchemy.VARCHAR", "sqlalchemy.String" ]
[((447, 468), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(30)'}), '(length=30)\n', (457, 468), True, 'import sqlalchemy as sa\n'), ((491, 512), 'sqlalchemy.String', 'sa.String', ([], {'length': '(255)'}), '(length=255)\n', (500, 512), True, 'import sqlalchemy as sa\n'), ((651, 672), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(20)'}), '(length=20)\n', (661, 672), True, 'import sqlalchemy as sa\n'), ((695, 715), 'sqlalchemy.String', 'sa.String', ([], {'length': '(30)'}), '(length=30)\n', (704, 715), True, 'import sqlalchemy as sa\n'), ((974, 994), 'sqlalchemy.String', 'sa.String', ([], {'length': '(30)'}), '(length=30)\n', (983, 994), True, 'import sqlalchemy as sa\n'), ((1017, 1038), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(20)'}), '(length=20)\n', (1027, 1038), True, 'import sqlalchemy as sa\n'), ((1174, 1195), 'sqlalchemy.String', 'sa.String', ([], {'length': '(255)'}), '(length=255)\n', (1183, 1195), True, 'import sqlalchemy as sa\n'), ((1218, 1239), 'sqlalchemy.VARCHAR', 'sa.VARCHAR', ([], {'length': '(30)'}), '(length=30)\n', (1228, 1239), True, 'import sqlalchemy as sa\n')]
#!/usr/bin/env python class Aln : def __init__(self): self.names = [] self.seq = [] # self.seq_idnt = [] self.length = 0 self.idnt2loc = [] self.loc2idnt = [] self.loc2res = [] self.res2loc = [] self.gap = [] from my_error import Error class AlnFile : def __init__(self, filename, status): if status in ('r','w') : self._file = open(filename, status) else : raise Error('PdbFile', 'open_for_read', 'file is not closed') def close(self): self._file.close() def read_all(self): al = Aln() line = self._file.readline() # flg_read_aln = False while line : if line[6:27] == '|PDBID|CHAIN|SEQUENCE': self._add_aln(al, line) # flg_read_aln = True # elif flg_read_aln : # self._add_idnt(al, line) # flg_read_aln = False line = self._file.readline() length = len(al.seq[0]) for idx in range(len(al.names)) : if len(al.seq[idx]) != length : raise Error('AlnFile', 'read_all', 'al.seq[idx] != length') al.loc2res.append([]) al.res2loc.append([-1]) res_num = 0 # res -- 1 start # loc -- 0 start for i,s in enumerate(al.seq[idx]) : if s == '-' : al.loc2res[idx].append(-1) else : res_num += 1 al.loc2res[idx].append(res_num) al.res2loc[idx].append(i) al.length = length # # for i,s in enumerate(al.seq_idnt) : # if i == length : # break # if s == ' ' : # al.loc2idnt.append(False) # elif s == '*' : # al.loc2idnt.append(True) # al.idnt2loc.append(i) # else : # raise Error('AlnFile', 'read_all', 'unknown letter in seq_idnt') for i in range(length) : ref = al.seq[0][i] flg = True for idx in range(len(al.names)) : if al.seq[idx][i] != ref : flg = False break al.loc2idnt.append(flg) for i in range(length) : flg = True for idx in range(len(al.names)) : if al.seq[idx][i] == '-' : flg = False break if not flg : al.gap.append(True) else : al.gap.append(False) return al def _add_aln(self, al, line): if line[6:27] != '|PDBID|CHAIN|SEQUENCE': raise Error('AlnFile', '_add_aln', 'line[6:27] != |PDBID|CHAIN|SEQUENCE') name = line[0:6] seqall = line[33:83] if seqall.find(' ') != -1: seq = seqall[0: seqall.find(' ')] else : seq = seqall[:] # print name # print seq if name in al.names : idx = al.names.index(name) else : al.names.append(name) idx = len(al.names) - 1 if idx < len(al.seq) : al.seq[idx].extend(list(seq)) else : al.seq.append(list(seq)) # def _add_idnt(self, al, line): # al.seq_idnt.extend(list(line[33:83])) import sys if len(sys.argv) != 3: print ('\n Usage: [input aln file] [output list file]\n') sys.exit(2) f_aln = AlnFile(sys.argv[1], 'r') f_out = open(sys.argv[2], 'w') al = f_aln.read_all() for i in range(al.length) : print(al.seq[0][i], al.seq[1][i], al.loc2res[0][i], al.loc2res[1][i], al.loc2idnt[i], al.gap[i]) print('al.loc2res') print(al.loc2res[0]) print('al.res2loc') print(al.res2loc[0]) print('loc2idnt') print(al.loc2idnt) print('idnt2loc') print(al.idnt2loc) # write header f_out.write('#') for name in al.names : f_out.write('%6s' % name) f_out.write('\n') # write data for i in range(al.length) : if al.gap[i] : continue f_out.write(' ') for idx in range(len(al.names)) : f_out.write(' %5i' % al.loc2res[idx][i]) f_out.write('\n') #### Aln file sample ''' 0 1 2 3 4 5 6 7 8 9 0123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890 3R8O_A|PDBID|CHAIN|SEQUENCE AAUUGAAGAGUUUGAUCAUGGCUCAGAUUGAACGCUGGCGGCAGGCCUAA 3I8H_A|PDBID|CHAIN|SEQUENCE ---UGGAGAGUUUGAUCCUGGCUCAGGGUGAACGCUGGCGGCGUGCCUAA ** *********** ******** ************** ****** 3R8O_A|PDBID|CHAIN|SEQUENCE CACAUGCAAGUCGAACGGUAACAGGAAGAAGCUUGCUUCUUUGCUGACGA 3I8H_A|PDBID|CHAIN|SEQUENCE GACAUGCAAGUCGUGCGGG---CCGCGGGGUUUUACUCCGU----GGUCA ************ *** * * ** ** * * * * '''
[ "my_error.Error", "sys.exit" ]
[((3694, 3705), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (3702, 3705), False, 'import sys\n'), ((503, 558), 'my_error.Error', 'Error', (['"""PdbFile"""', '"""open_for_read"""', '"""file is not closed"""'], {}), "('PdbFile', 'open_for_read', 'file is not closed')\n", (508, 558), False, 'from my_error import Error\n'), ((2909, 2976), 'my_error.Error', 'Error', (['"""AlnFile"""', '"""_add_aln"""', '"""line[6:27] != |PDBID|CHAIN|SEQUENCE"""'], {}), "('AlnFile', '_add_aln', 'line[6:27] != |PDBID|CHAIN|SEQUENCE')\n", (2914, 2976), False, 'from my_error import Error\n'), ((1207, 1260), 'my_error.Error', 'Error', (['"""AlnFile"""', '"""read_all"""', '"""al.seq[idx] != length"""'], {}), "('AlnFile', 'read_all', 'al.seq[idx] != length')\n", (1212, 1260), False, 'from my_error import Error\n')]
import pygame,sys,random from pygame.math import Vector2 class SNAKE: def __init__(self): self.body = [Vector2(5,10),Vector2(4,10),Vector2(3,10)] self.direction = Vector2(0,0) self.new_block = False self.head_up = pygame.image.load('Graphics/head_up.png').convert_alpha() self.head_down = pygame.image.load('Graphics/head_down.png').convert_alpha() self.head_right = pygame.image.load('Graphics/head_right.png').convert_alpha() self.head_left = pygame.image.load('Graphics/head_left.png').convert_alpha() self.tail_up = pygame.image.load('Graphics/tail_up.png').convert_alpha() self.tail_down = pygame.image.load('Graphics/tail_down.png').convert_alpha() self.tail_right = pygame.image.load('Graphics/tail_right.png').convert_alpha() self.tail_left = pygame.image.load('Graphics/tail_left.png').convert_alpha() self.body_vertical = pygame.image.load('Graphics/body_vertical.png').convert_alpha() self.body_horizontal = pygame.image.load('Graphics/body_horizontal.png').convert_alpha() self.body_tr = pygame.image.load('Graphics/body_tr.png').convert_alpha() self.body_tl = pygame.image.load('Graphics/body_tl.png').convert_alpha() self.body_br = pygame.image.load('Graphics/body_br.png').convert_alpha() self.body_bl = pygame.image.load('Graphics/body_bl.png').convert_alpha() self.crunch_sound = pygame.mixer.Sound('Sound/crunch.wav') def draw_snake(self): self.update_head_graphics() self.update_tail_graphics() for index,block in enumerate(self.body): x_pos = int(block.x * cell_size) y_pos = int(block.y * cell_size) block_rect = pygame.Rect(x_pos,y_pos,cell_size,cell_size) if index == 0: screen.blit(self.head,block_rect) elif index == len(self.body) - 1: screen.blit(self.tail,block_rect) else: previous_block = self.body[index + 1] - block next_block = self.body[index - 1] - block if previous_block.x == next_block.x: screen.blit(self.body_vertical,block_rect) elif previous_block.y == next_block.y: screen.blit(self.body_horizontal,block_rect) else: if previous_block.x == -1 and next_block.y == -1 or previous_block.y == -1 and next_block.x == -1: screen.blit(self.body_tl,block_rect) elif previous_block.x == -1 and next_block.y == 1 or previous_block.y == 1 and next_block.x == -1: screen.blit(self.body_bl,block_rect) elif previous_block.x == 1 and next_block.y == -1 or previous_block.y == -1 and next_block.x == 1: screen.blit(self.body_tr,block_rect) elif previous_block.x == 1 and next_block.y == 1 or previous_block.y == 1 and next_block.x == 1: screen.blit(self.body_br,block_rect) def update_head_graphics(self): head_relation = self.body[1] - self.body[0] if head_relation == Vector2(1,0): self.head = self.head_left elif head_relation == Vector2(-1,0): self.head = self.head_right elif head_relation == Vector2(0,1): self.head = self.head_up elif head_relation == Vector2(0,-1): self.head = self.head_down def update_tail_graphics(self): tail_relation = self.body[-2] - self.body[-1] if tail_relation == Vector2(1,0): self.tail = self.tail_left elif tail_relation == Vector2(-1,0): self.tail = self.tail_right elif tail_relation == Vector2(0,1): self.tail = self.tail_up elif tail_relation == Vector2(0,-1): self.tail = self.tail_down def move_snake(self): if self.new_block == True: body_copy = self.body[:] body_copy.insert(0,body_copy[0] + self.direction) self.body = body_copy[:] self.new_block = False else: body_copy = self.body[:-1] body_copy.insert(0,body_copy[0] + self.direction) self.body = body_copy[:] def add_block(self): self.new_block = True def play_crunch_sound(self): self.crunch_sound.play() def reset(self): self.body = [Vector2(5,10),Vector2(4,10),Vector2(3,10)] self.direction = Vector2(0,0) class FRUIT: def __init__(self): self.randomize() def draw_fruit(self): fruit_rect = pygame.Rect(int(self.pos.x * cell_size),int(self.pos.y * cell_size),cell_size,cell_size) screen.blit(apple,fruit_rect) #pygame.draw.rect(screen,(126,166,114),fruit_rect) def randomize(self): self.x = random.randint(0,cell_number - 1) self.y = random.randint(0,cell_number - 1) self.pos = Vector2(self.x,self.y) class MAIN: def __init__(self): self.snake = SNAKE() self.fruit = FRUIT() def update(self): self.snake.move_snake() self.check_collision() self.check_fail() def draw_elements(self): self.draw_grass() self.fruit.draw_fruit() self.snake.draw_snake() self.draw_score() def check_collision(self): if self.fruit.pos == self.snake.body[0]: self.fruit.randomize() self.snake.add_block() self.snake.play_crunch_sound() for block in self.snake.body[1:]: if block == self.fruit.pos: self.fruit.randomize() def check_fail(self): if not 0 <= self.snake.body[0].x < cell_number or not 0 <= self.snake.body[0].y < cell_number: self.game_over() for block in self.snake.body[1:]: if block == self.snake.body[0]: self.game_over() def game_over(self): self.snake.reset() def draw_grass(self): grass_color = (167,209,61) for row in range(cell_number): if row % 2 == 0: for col in range(cell_number): if col % 2 == 0: grass_rect = pygame.Rect(col * cell_size,row * cell_size,cell_size,cell_size) pygame.draw.rect(screen,grass_color,grass_rect) else: for col in range(cell_number): if col % 2 != 0: grass_rect = pygame.Rect(col * cell_size,row * cell_size,cell_size,cell_size) pygame.draw.rect(screen,grass_color,grass_rect) def draw_score(self): score_text = str(len(self.snake.body) - 3) score_surface = game_font.render(score_text,True,(56,74,12)) score_x = int(cell_size * cell_number - 60) score_y = int(cell_size * cell_number - 40) score_rect = score_surface.get_rect(center = (score_x,score_y)) apple_rect = apple.get_rect(midright = (score_rect.left,score_rect.centery)) bg_rect = pygame.Rect(apple_rect.left,apple_rect.top,apple_rect.width + score_rect.width + 6,apple_rect.height) pygame.draw.rect(screen,(167,209,61),bg_rect) screen.blit(score_surface,score_rect) screen.blit(apple,apple_rect) pygame.draw.rect(screen,(56,74,12),bg_rect,2) pygame.mixer.pre_init(44100,-16,2,512) pygame.init() cell_size = 40 cell_number = 20 screen = pygame.display.set_mode((cell_number * cell_size,cell_number * cell_size)) clock = pygame.time.Clock() apple = pygame.image.load('Graphics/apple.png').convert_alpha() game_font = pygame.font.Font('Font/PoetsenOne-Regular.ttf', 25) SCREEN_UPDATE = pygame.USEREVENT pygame.time.set_timer(SCREEN_UPDATE,150) main_game = MAIN() while True: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() sys.exit() if event.type == SCREEN_UPDATE: main_game.update() if event.type == pygame.KEYDOWN: if event.key == pygame.K_UP: if main_game.snake.direction.y != 1: main_game.snake.direction = Vector2(0,-1) if event.key == pygame.K_RIGHT: if main_game.snake.direction.x != -1: main_game.snake.direction = Vector2(1,0) if event.key == pygame.K_DOWN: if main_game.snake.direction.y != -1: main_game.snake.direction = Vector2(0,1) if event.key == pygame.K_LEFT: if main_game.snake.direction.x != 1: main_game.snake.direction = Vector2(-1,0) screen.fill((175,215,70)) main_game.draw_elements() pygame.display.update() clock.tick(60)
[ "sys.exit", "pygame.init", "pygame.quit", "pygame.time.set_timer", "pygame.event.get", "pygame.display.set_mode", "pygame.mixer.pre_init", "pygame.mixer.Sound", "pygame.Rect", "pygame.math.Vector2", "pygame.draw.rect", "pygame.time.Clock", "pygame.image.load", "pygame.font.Font", "pygame.display.update", "random.randint" ]
[((6432, 6473), 'pygame.mixer.pre_init', 'pygame.mixer.pre_init', (['(44100)', '(-16)', '(2)', '(512)'], {}), '(44100, -16, 2, 512)\n', (6453, 6473), False, 'import pygame, sys, random\n'), ((6472, 6485), 'pygame.init', 'pygame.init', ([], {}), '()\n', (6483, 6485), False, 'import pygame, sys, random\n'), ((6530, 6605), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(cell_number * cell_size, cell_number * cell_size)'], {}), '((cell_number * cell_size, cell_number * cell_size))\n', (6553, 6605), False, 'import pygame, sys, random\n'), ((6614, 6633), 'pygame.time.Clock', 'pygame.time.Clock', ([], {}), '()\n', (6631, 6633), False, 'import pygame, sys, random\n'), ((6712, 6763), 'pygame.font.Font', 'pygame.font.Font', (['"""Font/PoetsenOne-Regular.ttf"""', '(25)'], {}), "('Font/PoetsenOne-Regular.ttf', 25)\n", (6728, 6763), False, 'import pygame, sys, random\n'), ((6801, 6842), 'pygame.time.set_timer', 'pygame.time.set_timer', (['SCREEN_UPDATE', '(150)'], {}), '(SCREEN_UPDATE, 150)\n', (6822, 6842), False, 'import pygame, sys, random\n'), ((6894, 6912), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (6910, 6912), False, 'import pygame, sys, random\n'), ((7633, 7656), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (7654, 7656), False, 'import pygame, sys, random\n'), ((175, 188), 'pygame.math.Vector2', 'Vector2', (['(0)', '(0)'], {}), '(0, 0)\n', (182, 188), False, 'from pygame.math import Vector2\n'), ((1367, 1405), 'pygame.mixer.Sound', 'pygame.mixer.Sound', (['"""Sound/crunch.wav"""'], {}), "('Sound/crunch.wav')\n", (1385, 1405), False, 'import pygame, sys, random\n'), ((3935, 3948), 'pygame.math.Vector2', 'Vector2', (['(0)', '(0)'], {}), '(0, 0)\n', (3942, 3948), False, 'from pygame.math import Vector2\n'), ((4263, 4297), 'random.randint', 'random.randint', (['(0)', '(cell_number - 1)'], {}), '(0, cell_number - 1)\n', (4277, 4297), False, 'import pygame, sys, random\n'), ((4309, 4343), 'random.randint', 'random.randint', (['(0)', '(cell_number - 1)'], {}), '(0, cell_number - 1)\n', (4323, 4343), False, 'import pygame, sys, random\n'), ((4357, 4380), 'pygame.math.Vector2', 'Vector2', (['self.x', 'self.y'], {}), '(self.x, self.y)\n', (4364, 4380), False, 'from pygame.math import Vector2\n'), ((6153, 6262), 'pygame.Rect', 'pygame.Rect', (['apple_rect.left', 'apple_rect.top', '(apple_rect.width + score_rect.width + 6)', 'apple_rect.height'], {}), '(apple_rect.left, apple_rect.top, apple_rect.width + score_rect.\n width + 6, apple_rect.height)\n', (6164, 6262), False, 'import pygame, sys, random\n'), ((6260, 6309), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', '(167, 209, 61)', 'bg_rect'], {}), '(screen, (167, 209, 61), bg_rect)\n', (6276, 6309), False, 'import pygame, sys, random\n'), ((6383, 6433), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', '(56, 74, 12)', 'bg_rect', '(2)'], {}), '(screen, (56, 74, 12), bg_rect, 2)\n', (6399, 6433), False, 'import pygame, sys, random\n'), ((6643, 6682), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/apple.png"""'], {}), "('Graphics/apple.png')\n", (6660, 6682), False, 'import pygame, sys, random\n'), ((112, 126), 'pygame.math.Vector2', 'Vector2', (['(5)', '(10)'], {}), '(5, 10)\n', (119, 126), False, 'from pygame.math import Vector2\n'), ((126, 140), 'pygame.math.Vector2', 'Vector2', (['(4)', '(10)'], {}), '(4, 10)\n', (133, 140), False, 'from pygame.math import Vector2\n'), ((140, 154), 'pygame.math.Vector2', 'Vector2', (['(3)', '(10)'], {}), '(3, 10)\n', (147, 154), False, 'from pygame.math import Vector2\n'), ((1631, 1678), 'pygame.Rect', 'pygame.Rect', (['x_pos', 'y_pos', 'cell_size', 'cell_size'], {}), '(x_pos, y_pos, cell_size, cell_size)\n', (1642, 1678), False, 'import pygame, sys, random\n'), ((2818, 2831), 'pygame.math.Vector2', 'Vector2', (['(1)', '(0)'], {}), '(1, 0)\n', (2825, 2831), False, 'from pygame.math import Vector2\n'), ((3166, 3179), 'pygame.math.Vector2', 'Vector2', (['(1)', '(0)'], {}), '(1, 0)\n', (3173, 3179), False, 'from pygame.math import Vector2\n'), ((3872, 3886), 'pygame.math.Vector2', 'Vector2', (['(5)', '(10)'], {}), '(5, 10)\n', (3879, 3886), False, 'from pygame.math import Vector2\n'), ((3886, 3900), 'pygame.math.Vector2', 'Vector2', (['(4)', '(10)'], {}), '(4, 10)\n', (3893, 3900), False, 'from pygame.math import Vector2\n'), ((3900, 3914), 'pygame.math.Vector2', 'Vector2', (['(3)', '(10)'], {}), '(3, 10)\n', (3907, 3914), False, 'from pygame.math import Vector2\n'), ((6951, 6964), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (6962, 6964), False, 'import pygame, sys, random\n'), ((6969, 6979), 'sys.exit', 'sys.exit', ([], {}), '()\n', (6977, 6979), False, 'import pygame, sys, random\n'), ((234, 275), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/head_up.png"""'], {}), "('Graphics/head_up.png')\n", (251, 275), False, 'import pygame, sys, random\n'), ((312, 355), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/head_down.png"""'], {}), "('Graphics/head_down.png')\n", (329, 355), False, 'import pygame, sys, random\n'), ((393, 437), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/head_right.png"""'], {}), "('Graphics/head_right.png')\n", (410, 437), False, 'import pygame, sys, random\n'), ((474, 517), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/head_left.png"""'], {}), "('Graphics/head_left.png')\n", (491, 517), False, 'import pygame, sys, random\n'), ((556, 597), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/tail_up.png"""'], {}), "('Graphics/tail_up.png')\n", (573, 597), False, 'import pygame, sys, random\n'), ((634, 677), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/tail_down.png"""'], {}), "('Graphics/tail_down.png')\n", (651, 677), False, 'import pygame, sys, random\n'), ((715, 759), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/tail_right.png"""'], {}), "('Graphics/tail_right.png')\n", (732, 759), False, 'import pygame, sys, random\n'), ((796, 839), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/tail_left.png"""'], {}), "('Graphics/tail_left.png')\n", (813, 839), False, 'import pygame, sys, random\n'), ((882, 929), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/body_vertical.png"""'], {}), "('Graphics/body_vertical.png')\n", (899, 929), False, 'import pygame, sys, random\n'), ((972, 1021), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/body_horizontal.png"""'], {}), "('Graphics/body_horizontal.png')\n", (989, 1021), False, 'import pygame, sys, random\n'), ((1058, 1099), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/body_tr.png"""'], {}), "('Graphics/body_tr.png')\n", (1075, 1099), False, 'import pygame, sys, random\n'), ((1134, 1175), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/body_tl.png"""'], {}), "('Graphics/body_tl.png')\n", (1151, 1175), False, 'import pygame, sys, random\n'), ((1210, 1251), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/body_br.png"""'], {}), "('Graphics/body_br.png')\n", (1227, 1251), False, 'import pygame, sys, random\n'), ((1286, 1327), 'pygame.image.load', 'pygame.image.load', (['"""Graphics/body_bl.png"""'], {}), "('Graphics/body_bl.png')\n", (1303, 1327), False, 'import pygame, sys, random\n'), ((2884, 2898), 'pygame.math.Vector2', 'Vector2', (['(-1)', '(0)'], {}), '(-1, 0)\n', (2891, 2898), False, 'from pygame.math import Vector2\n'), ((3232, 3246), 'pygame.math.Vector2', 'Vector2', (['(-1)', '(0)'], {}), '(-1, 0)\n', (3239, 3246), False, 'from pygame.math import Vector2\n'), ((2952, 2965), 'pygame.math.Vector2', 'Vector2', (['(0)', '(1)'], {}), '(0, 1)\n', (2959, 2965), False, 'from pygame.math import Vector2\n'), ((3300, 3313), 'pygame.math.Vector2', 'Vector2', (['(0)', '(1)'], {}), '(0, 1)\n', (3307, 3313), False, 'from pygame.math import Vector2\n'), ((7183, 7197), 'pygame.math.Vector2', 'Vector2', (['(0)', '(-1)'], {}), '(0, -1)\n', (7190, 7197), False, 'from pygame.math import Vector2\n'), ((7310, 7323), 'pygame.math.Vector2', 'Vector2', (['(1)', '(0)'], {}), '(1, 0)\n', (7317, 7323), False, 'from pygame.math import Vector2\n'), ((7435, 7448), 'pygame.math.Vector2', 'Vector2', (['(0)', '(1)'], {}), '(0, 1)\n', (7442, 7448), False, 'from pygame.math import Vector2\n'), ((7559, 7573), 'pygame.math.Vector2', 'Vector2', (['(-1)', '(0)'], {}), '(-1, 0)\n', (7566, 7573), False, 'from pygame.math import Vector2\n'), ((3016, 3030), 'pygame.math.Vector2', 'Vector2', (['(0)', '(-1)'], {}), '(0, -1)\n', (3023, 3030), False, 'from pygame.math import Vector2\n'), ((3364, 3378), 'pygame.math.Vector2', 'Vector2', (['(0)', '(-1)'], {}), '(0, -1)\n', (3371, 3378), False, 'from pygame.math import Vector2\n'), ((5431, 5498), 'pygame.Rect', 'pygame.Rect', (['(col * cell_size)', '(row * cell_size)', 'cell_size', 'cell_size'], {}), '(col * cell_size, row * cell_size, cell_size, cell_size)\n', (5442, 5498), False, 'import pygame, sys, random\n'), ((5503, 5552), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'grass_color', 'grass_rect'], {}), '(screen, grass_color, grass_rect)\n', (5519, 5552), False, 'import pygame, sys, random\n'), ((5640, 5707), 'pygame.Rect', 'pygame.Rect', (['(col * cell_size)', '(row * cell_size)', 'cell_size', 'cell_size'], {}), '(col * cell_size, row * cell_size, cell_size, cell_size)\n', (5651, 5707), False, 'import pygame, sys, random\n'), ((5712, 5761), 'pygame.draw.rect', 'pygame.draw.rect', (['screen', 'grass_color', 'grass_rect'], {}), '(screen, grass_color, grass_rect)\n', (5728, 5761), False, 'import pygame, sys, random\n')]
import uuid from functools import lru_cache from typing import List from django.core.exceptions import ValidationError from django.db import models from django.urls import reverse from django.utils.translation import gettext_lazy as _ from Learning.utils import produce_dataframe, read_file_data, ALLOWED_EXTENSIONS from .utils import arrayfy_strings, clean_array, validate_dataset class TrainingModel(models.Model): class FeatureSelectionAlgorithm(models.TextChoices): rfe = "rfe", "Recursive Feature Elimination" pearson = "pearson", "Pearson Correlation" class TrainingAlgorithm(models.TextChoices): dt = 'decision_tree', "Decision Tree Classifier" rf = 'random_forest', "Random Forest" uuid = models.UUIDField(default=uuid.uuid4, editable=False) title = models.CharField(max_length=64) dataset = models.FileField( upload_to='models', validators=[validate_dataset]) feature_selection_algorithm = models.CharField( choices=FeatureSelectionAlgorithm.choices, max_length=7, blank=True) training_algorithm = models.CharField( choices=TrainingAlgorithm.choices, max_length=13, blank=True) target_column = models.CharField(max_length=50, blank=True) feature_columns = models.TextField(blank=True) trained_model = models.FileField(upload_to='models/trained', blank=True) created = models.DateTimeField(auto_now_add=True, editable=False) last_updated = models.DateTimeField(auto_now=True, editable=False) def __str__(self): return self.title class Meta: ordering = ['-last_updated'] @lru_cache def get_dataframe_from_dataset(self, dataset_path, columns: List[str] = None): file_data = read_file_data(dataset_path.path) dataframe = produce_dataframe(file_data, columns) return dataframe def clean(self): extension = self.dataset.name.split('.')[-1] if extension not in ALLOWED_EXTENSIONS: raise ValidationError( _(f'Expected file with extension: {ALLOWED_EXTENSIONS}, found file type of {extension}')) try: value_array = arrayfy_strings(self.feature_columns) except: raise ValidationError( _('Columns are not valid as an array. Ensure input is a string of comma-separated values')) dataframe = self.get_dataframe_from_dataset(self.dataset) if self.target_column and self.target_column not in dataframe.columns: raise ValidationError( _(f"Target column '{self.target_column}' is not in dataset")) columns = clean_array(value_array) for column in columns: if column and column not in dataframe.columns: raise ValidationError( _(f"{column} is not a column in dataset")) def save(self, *args, **kwargs): value_array = arrayfy_strings(self.feature_columns) if self.target_column in value_array: value_array.remove(self.target_column) self.feature_columns = ', '.join(value_array) return super().save(*args, **kwargs) def get_absolute_url(self): return reverse("prediction:training-detail", kwargs={"uuid": self.uuid})
[ "django.db.models.TextField", "Learning.utils.read_file_data", "django.urls.reverse", "django.utils.translation.gettext_lazy", "django.db.models.FileField", "Learning.utils.produce_dataframe", "django.db.models.CharField", "django.db.models.DateTimeField", "django.db.models.UUIDField" ]
[((747, 799), 'django.db.models.UUIDField', 'models.UUIDField', ([], {'default': 'uuid.uuid4', 'editable': '(False)'}), '(default=uuid.uuid4, editable=False)\n', (763, 799), False, 'from django.db import models\n'), ((812, 843), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(64)'}), '(max_length=64)\n', (828, 843), False, 'from django.db import models\n'), ((858, 925), 'django.db.models.FileField', 'models.FileField', ([], {'upload_to': '"""models"""', 'validators': '[validate_dataset]'}), "(upload_to='models', validators=[validate_dataset])\n", (874, 925), False, 'from django.db import models\n'), ((969, 1058), 'django.db.models.CharField', 'models.CharField', ([], {'choices': 'FeatureSelectionAlgorithm.choices', 'max_length': '(7)', 'blank': '(True)'}), '(choices=FeatureSelectionAlgorithm.choices, max_length=7,\n blank=True)\n', (985, 1058), False, 'from django.db import models\n'), ((1089, 1167), 'django.db.models.CharField', 'models.CharField', ([], {'choices': 'TrainingAlgorithm.choices', 'max_length': '(13)', 'blank': '(True)'}), '(choices=TrainingAlgorithm.choices, max_length=13, blank=True)\n', (1105, 1167), False, 'from django.db import models\n'), ((1197, 1240), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'blank': '(True)'}), '(max_length=50, blank=True)\n', (1213, 1240), False, 'from django.db import models\n'), ((1263, 1291), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)'}), '(blank=True)\n', (1279, 1291), False, 'from django.db import models\n'), ((1312, 1368), 'django.db.models.FileField', 'models.FileField', ([], {'upload_to': '"""models/trained"""', 'blank': '(True)'}), "(upload_to='models/trained', blank=True)\n", (1328, 1368), False, 'from django.db import models\n'), ((1383, 1438), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)', 'editable': '(False)'}), '(auto_now_add=True, editable=False)\n', (1403, 1438), False, 'from django.db import models\n'), ((1458, 1509), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)', 'editable': '(False)'}), '(auto_now=True, editable=False)\n', (1478, 1509), False, 'from django.db import models\n'), ((1733, 1766), 'Learning.utils.read_file_data', 'read_file_data', (['dataset_path.path'], {}), '(dataset_path.path)\n', (1747, 1766), False, 'from Learning.utils import produce_dataframe, read_file_data, ALLOWED_EXTENSIONS\n'), ((1787, 1824), 'Learning.utils.produce_dataframe', 'produce_dataframe', (['file_data', 'columns'], {}), '(file_data, columns)\n', (1804, 1824), False, 'from Learning.utils import produce_dataframe, read_file_data, ALLOWED_EXTENSIONS\n'), ((3192, 3257), 'django.urls.reverse', 'reverse', (['"""prediction:training-detail"""'], {'kwargs': "{'uuid': self.uuid}"}), "('prediction:training-detail', kwargs={'uuid': self.uuid})\n", (3199, 3257), False, 'from django.urls import reverse\n'), ((2025, 2118), 'django.utils.translation.gettext_lazy', '_', (['f"""Expected file with extension: {ALLOWED_EXTENSIONS}, found file type of {extension}"""'], {}), "(f'Expected file with extension: {ALLOWED_EXTENSIONS}, found file type of {extension}'\n )\n", (2026, 2118), True, 'from django.utils.translation import gettext_lazy as _\n'), ((2549, 2609), 'django.utils.translation.gettext_lazy', '_', (['f"""Target column \'{self.target_column}\' is not in dataset"""'], {}), '(f"Target column \'{self.target_column}\' is not in dataset")\n', (2550, 2609), True, 'from django.utils.translation import gettext_lazy as _\n'), ((2260, 2355), 'django.utils.translation.gettext_lazy', '_', (['"""Columns are not valid as an array. Ensure input is a string of comma-separated values"""'], {}), "('Columns are not valid as an array. Ensure input is a string of comma-separated values'\n )\n", (2261, 2355), True, 'from django.utils.translation import gettext_lazy as _\n'), ((2805, 2846), 'django.utils.translation.gettext_lazy', '_', (['f"""{column} is not a column in dataset"""'], {}), "(f'{column} is not a column in dataset')\n", (2806, 2846), True, 'from django.utils.translation import gettext_lazy as _\n')]
import re from collections import defaultdict from typing import List from uuid import uuid4 import pytest from protean import BaseAggregate, BaseRepository, BaseValueObject, UnitOfWork from protean.exceptions import ExpectedVersionError from protean.fields import Integer, String, ValueObject from protean.globals import current_domain class Person(BaseAggregate): first_name = String(max_length=50, required=True) last_name = String(max_length=50, required=True) age = Integer(default=21) class PersonRepository(BaseRepository): def find_adults(self, minimum_age: int = 21) -> List[Person]: return current_domain.repository_for(Person)._dao.filter(age__gte=minimum_age) class Meta: aggregate_cls = Person class Email(BaseValueObject): REGEXP = r"\"?([-a-zA-Z0-9.`?{}]+@\w+\.\w+)\"?" # This is the external facing data attribute address = String(max_length=254, required=True) def clean(self): """Business rules of Email address""" errors = defaultdict(list) if not bool(re.match(Email.REGEXP, self.address)): errors["address"].append("is invalid") return errors class User(BaseAggregate): email = ValueObject(Email, required=True) password = String(required=True, max_length=255) @pytest.fixture(autouse=True) def register_elements(test_domain): test_domain.register(Person) test_domain.register(PersonRepository) test_domain.register(User) @pytest.mark.database class TestPersistenceViaRepository: def test_that_aggregate_can_be_persisted_with_repository(self, test_domain): test_domain.repository_for(Person).add( Person(first_name="John", last_name="Doe") ) assert len(test_domain.repository_for(Person)._dao.query.all().items) == 1 def test_that_an_aggregate_can_be_retrieved_with_repository(self, test_domain): person = Person(first_name="John", last_name="Doe") test_domain.repository_for(Person).add(person) assert test_domain.repository_for(Person).get(person.id) == person def test_that_all_aggregates_can_be_retrieved_with_repository(self, test_domain): person = Person(first_name="John", last_name="Doe") test_domain.repository_for(Person).add(person) assert test_domain.repository_for(Person).all() == [person] @pytest.mark.database class TestConcurrency: def test_expected_version_error_on_version_mismatch(self, test_domain): identifier = str(uuid4()) with UnitOfWork(): repo = test_domain.repository_for(Person) person = Person(id=identifier, first_name="John", last_name="Doe") repo.add(person) person_dup1 = repo.get(identifier) person_dup2 = repo.get(identifier) with UnitOfWork(): person_dup1.first_name = "Jane" repo.add(person_dup1) with pytest.raises(ExpectedVersionError) as exc: with UnitOfWork(): person_dup2.first_name = "Baby" repo.add(person_dup2) assert exc.value.args[0] == ( f"Wrong expected version: {person_dup2._version} " f"(Aggregate: Person({identifier}), Version: {person_dup2._version+1})" )
[ "protean.fields.ValueObject", "protean.fields.String", "protean.fields.Integer", "protean.globals.current_domain.repository_for", "re.match", "uuid.uuid4", "collections.defaultdict", "pytest.raises", "protean.UnitOfWork", "pytest.fixture" ]
[((1305, 1333), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (1319, 1333), False, 'import pytest\n'), ((388, 424), 'protean.fields.String', 'String', ([], {'max_length': '(50)', 'required': '(True)'}), '(max_length=50, required=True)\n', (394, 424), False, 'from protean.fields import Integer, String, ValueObject\n'), ((441, 477), 'protean.fields.String', 'String', ([], {'max_length': '(50)', 'required': '(True)'}), '(max_length=50, required=True)\n', (447, 477), False, 'from protean.fields import Integer, String, ValueObject\n'), ((488, 507), 'protean.fields.Integer', 'Integer', ([], {'default': '(21)'}), '(default=21)\n', (495, 507), False, 'from protean.fields import Integer, String, ValueObject\n'), ((899, 936), 'protean.fields.String', 'String', ([], {'max_length': '(254)', 'required': '(True)'}), '(max_length=254, required=True)\n', (905, 936), False, 'from protean.fields import Integer, String, ValueObject\n'), ((1215, 1248), 'protean.fields.ValueObject', 'ValueObject', (['Email'], {'required': '(True)'}), '(Email, required=True)\n', (1226, 1248), False, 'from protean.fields import Integer, String, ValueObject\n'), ((1264, 1301), 'protean.fields.String', 'String', ([], {'required': '(True)', 'max_length': '(255)'}), '(required=True, max_length=255)\n', (1270, 1301), False, 'from protean.fields import Integer, String, ValueObject\n'), ((1022, 1039), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1033, 1039), False, 'from collections import defaultdict\n'), ((2510, 2517), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (2515, 2517), False, 'from uuid import uuid4\n'), ((2533, 2545), 'protean.UnitOfWork', 'UnitOfWork', ([], {}), '()\n', (2543, 2545), False, 'from protean import BaseAggregate, BaseRepository, BaseValueObject, UnitOfWork\n'), ((2810, 2822), 'protean.UnitOfWork', 'UnitOfWork', ([], {}), '()\n', (2820, 2822), False, 'from protean import BaseAggregate, BaseRepository, BaseValueObject, UnitOfWork\n'), ((2916, 2951), 'pytest.raises', 'pytest.raises', (['ExpectedVersionError'], {}), '(ExpectedVersionError)\n', (2929, 2951), False, 'import pytest\n'), ((1061, 1097), 're.match', 're.match', (['Email.REGEXP', 'self.address'], {}), '(Email.REGEXP, self.address)\n', (1069, 1097), False, 'import re\n'), ((2977, 2989), 'protean.UnitOfWork', 'UnitOfWork', ([], {}), '()\n', (2987, 2989), False, 'from protean import BaseAggregate, BaseRepository, BaseValueObject, UnitOfWork\n'), ((631, 668), 'protean.globals.current_domain.repository_for', 'current_domain.repository_for', (['Person'], {}), '(Person)\n', (660, 668), False, 'from protean.globals import current_domain\n')]
from django import forms from .models import Post, Comment from users.models import Profile from django.contrib.auth.models import User class CommentModelForm(forms.ModelForm): comment = forms.CharField(label="", widget=forms.Textarea(attrs={'class': 'form-control', 'placeholder': 'Comment here!', 'rows': '3', 'cols': '50'})) class Meta: model = Comment fields = ['comment']
[ "django.forms.Textarea" ]
[((224, 334), 'django.forms.Textarea', 'forms.Textarea', ([], {'attrs': "{'class': 'form-control', 'placeholder': 'Comment here!', 'rows': '3',\n 'cols': '50'}"}), "(attrs={'class': 'form-control', 'placeholder':\n 'Comment here!', 'rows': '3', 'cols': '50'})\n", (238, 334), False, 'from django import forms\n')]
#!/usr/bin/env python import os import sys import django if __name__ == "__main__": # decide which settings to use base_dir = os.path.dirname(__file__) local_settings_module = ["slcpy","settings","local_settings"] filepath = os.path.join(base_dir,"apps","/".join(local_settings_module)+".py") if os.path.isfile(filepath): django_settings_module = ".".join(local_settings_module) else: django_settings_module = "slcpy.settings.local" # set the local settins os.environ.setdefault("DJANGO_SETTINGS_MODULE",django_settings_module) # execute from command line from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
[ "os.path.isfile", "os.path.dirname", "os.environ.setdefault", "django.core.management.execute_from_command_line" ]
[((136, 161), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (151, 161), False, 'import os\n'), ((323, 347), 'os.path.isfile', 'os.path.isfile', (['filepath'], {}), '(filepath)\n', (337, 347), False, 'import os\n'), ((517, 588), 'os.environ.setdefault', 'os.environ.setdefault', (['"""DJANGO_SETTINGS_MODULE"""', 'django_settings_module'], {}), "('DJANGO_SETTINGS_MODULE', django_settings_module)\n", (538, 588), False, 'import os\n'), ((694, 729), 'django.core.management.execute_from_command_line', 'execute_from_command_line', (['sys.argv'], {}), '(sys.argv)\n', (719, 729), False, 'from django.core.management import execute_from_command_line\n')]
# -*- coding: utf-8 -*- """ Created on Wed Apr 4 13:54:30 2018 @author: uqytu1 """ from osgeo import osr, ogr import json from . import prompt_widget def CreateGeojsonFC(AOI): # Open geometry shp = ogr.Open(AOI) lyr = shp.GetLayer() LyrDefn = lyr.GetLayerDefn() # Transform coordinate to WGS84 geographic crs sourceSR = lyr.GetSpatialRef() targetSR = osr.SpatialReference() # Set the axis order as the traditional x y z way (for gdal above 3) try: sourceSR.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) targetSR.SetAxisMappingStrategy(osr.OAMS_TRADITIONAL_GIS_ORDER) except AttributeError: pass targetSR.ImportFromEPSG(4326) coordTrans = osr.CoordinateTransformation(sourceSR,targetSR) # Create feature list for storing GeoJson feature collection my_features = list() # Loop through features for feat in lyr: geom = feat.GetGeometryRef() try: geom.Transform(coordTrans) except TypeError: prompt_widget.InfoBox('No projection found', 'If the CRS is not EPSG::4326, search result may not be desired.') pass # Flat geometry to 2D and assign it to the transformed feature geom.FlattenTo2D() transformed_feat = ogr.Feature(LyrDefn) transformed_feat.SetGeometry(geom) # Create a feature JSON object and strip 'properties' field as we don't need it feature = transformed_feat.ExportToJson() feature_json = json.loads(feature) feature_json.pop('properties') # Add the geometry into feature collections my_features.append(feature_json) # Close shapefile lyr = None shp = None # Create a Feature Collection geojson FeatureCollections = {'type': 'FeatureCollection', 'features': my_features} return FeatureCollections def LoadGeoJSON(AOI): # This function can check CRS information in a GeoJSON file with open(AOI) as json_data: #AOI_geojson = geojson.load(json_data) AOI_geojson = json.load(json_data) # Show warning if no CRS is detected if 'crs' not in AOI_geojson.keys(): prompt_widget.InfoBox('No projection found', 'If the CRS is not EPSG::4326, search result may not be desired.') # Transform coordinate to WGS84 geographic crs and convert it back to geojson FeatureCollections = CreateGeojsonFC(json.dumps(AOI_geojson)) return FeatureCollections def CalculateCoverPercentage(AOI_geom, ImageFrame_geom): # Create a list of CoverPercentage in case of multipolygon CoverPercentage = list() AOI_count = AOI_geom.GetGeometryCount() # Loop through geometry for every shapes in case it's multipolygon for i in range(AOI_count): AOI_shp = AOI_geom.GetGeometryRef(i) # If the AOI is not a valid polygon. Skip the calculation if not AOI_shp.IsValid() or not ImageFrame_geom.IsValid(): CoverPercentage.append(None) continue # Get the areas AOI_Area = AOI_shp.GetArea() ImageFrame_Area = ImageFrame_geom.GetArea() # Use AOI as reference to calculate the coverage if the image frame is larger than AOI # Otherwise, the coverage is calculated the other way around if ImageFrame_Area >= AOI_Area: Reference_Area = AOI_Area else: Reference_Area = ImageFrame_Area # Calculate the intersection percentage intersection = AOI_shp.Intersection(ImageFrame_geom) Cover_Area = intersection.GetArea() CoverPercentage.append(int((Cover_Area/Reference_Area)*100)) return CoverPercentage def MeetCoverageRange(AOI_geojson, ImageFrame_geojson, _min, _max): # Load data as ogr vectors. The GeoJSON inputs must be string AOI = ogr.Open(AOI_geojson) AOI_lyr = AOI.GetLayer() ImageFrame = ogr.Open(ImageFrame_geojson) ImageFrame_lyr = ImageFrame.GetLayer() # Get the geometry from Image Frame ImageFrame_feat = ImageFrame_lyr.GetNextFeature() ImageFrame_geom = ImageFrame_feat.GetGeometryRef() # Get the feature from AOI. Only one feature per input. AOI_feat = AOI_lyr.GetNextFeature() AOI_geom = AOI_feat.GetGeometryRef() # Get the list of coverage percentage. Null means to skip that AOI Coverage = CalculateCoverPercentage(AOI_geom, ImageFrame_geom) CoverageResults = list() for Result in Coverage: # If meet the Area Coverage condition or the AOI is invalid polygon, make the coverage valid if Result is None: CoverageResults.append(True) elif (Result >= _min and Result <= _max): CoverageResults.append(True) # Otherwise, invalid coverage percentage else: CoverageResults.append(False) return CoverageResults
[ "json.loads", "osgeo.osr.SpatialReference", "json.dumps", "osgeo.ogr.Open", "json.load", "osgeo.osr.CoordinateTransformation", "osgeo.ogr.Feature" ]
[((209, 222), 'osgeo.ogr.Open', 'ogr.Open', (['AOI'], {}), '(AOI)\n', (217, 222), False, 'from osgeo import osr, ogr\n'), ((383, 405), 'osgeo.osr.SpatialReference', 'osr.SpatialReference', ([], {}), '()\n', (403, 405), False, 'from osgeo import osr, ogr\n'), ((729, 777), 'osgeo.osr.CoordinateTransformation', 'osr.CoordinateTransformation', (['sourceSR', 'targetSR'], {}), '(sourceSR, targetSR)\n', (757, 777), False, 'from osgeo import osr, ogr\n'), ((3918, 3939), 'osgeo.ogr.Open', 'ogr.Open', (['AOI_geojson'], {}), '(AOI_geojson)\n', (3926, 3939), False, 'from osgeo import osr, ogr\n'), ((3987, 4015), 'osgeo.ogr.Open', 'ogr.Open', (['ImageFrame_geojson'], {}), '(ImageFrame_geojson)\n', (3995, 4015), False, 'from osgeo import osr, ogr\n'), ((1343, 1363), 'osgeo.ogr.Feature', 'ogr.Feature', (['LyrDefn'], {}), '(LyrDefn)\n', (1354, 1363), False, 'from osgeo import osr, ogr\n'), ((1569, 1588), 'json.loads', 'json.loads', (['feature'], {}), '(feature)\n', (1579, 1588), False, 'import json\n'), ((2130, 2150), 'json.load', 'json.load', (['json_data'], {}), '(json_data)\n', (2139, 2150), False, 'import json\n'), ((2508, 2531), 'json.dumps', 'json.dumps', (['AOI_geojson'], {}), '(AOI_geojson)\n', (2518, 2531), False, 'import json\n')]
# Copyright (c) 2015, 2014 Computational Molecular Biology Group, Free University # Berlin, 14195 Berlin, Germany. # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR # ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON # ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' Created on 22.01.2015 @author: marscher ''' from __future__ import absolute_import import numpy as np from pyemma.coordinates.transform.transformer import Transformer class WriterCSV(Transformer): ''' shall write to csv files ''' def __init__(self, filename): ''' Constructor ''' super(WriterCSV, self).__init__() # filename should be obtained from source trajectory filename, # eg suffix it to given filename self.filename = filename self._last_frame = False self._reset() def describe(self): return "[Writer filename='%s']" % self.filename def dimension(self): return self.data_producer.dimension() def _map_array(self, X): pass def _reset(self, stride=1): try: self._fh.close() self._logger.debug('closed file') except EnvironmentError: self._logger.exception('during close') except AttributeError: # no file handle exists yet pass try: self._fh = open(self.filename, 'wb') except EnvironmentError: self._logger.exception('could not open file "%s" for writing.') raise def _param_add_data(self, X, itraj, t, first_chunk, last_chunk_in_traj, last_chunk, ipass, Y=None, stride=1): np.savetxt(self._fh, X) if last_chunk: self._logger.debug("closing file") self._fh.close() return True # finished
[ "numpy.savetxt" ]
[((2791, 2814), 'numpy.savetxt', 'np.savetxt', (['self._fh', 'X'], {}), '(self._fh, X)\n', (2801, 2814), True, 'import numpy as np\n')]
#This Script normalizes the grounds data as Colombo(NBC) & Colombo(SBS) into Single venue like Colombo etc. import pandas as pd import re df = pd.read_csv('dataset.csv') ourRegex = r"(?P<Ground_id>[A-Za-z '.0-9]+(?<! ))+(.*)" matched = r"\g<Ground_id>" df['Ground'].replace(to_replace=ourRegex,value=matched,regex=True,inplace=True) df.to_csv('dataset_final.csv')
[ "pandas.read_csv" ]
[((145, 171), 'pandas.read_csv', 'pd.read_csv', (['"""dataset.csv"""'], {}), "('dataset.csv')\n", (156, 171), True, 'import pandas as pd\n')]
# Entrance of program from PCANet import * from data_loader import * import sys from sklearn.metrics import accuracy_score from sklearn import svm train_images, train_labels, test_images, test_labels = load_mnist('data/MNIST') test_train = (train_images[:10, :, :], train_labels[:10]) net = PCANet(k1=7, k2=7, L1=8, L2=8, block_size=7, overlapping_radio=0) test_predict = test_images[:10, :, :] prediction = net.predict(test_predict) print(accuracy_score(test_labels[:10], prediction)) # # cifar_train, cifar_train_labels, cifar_test, cifat_test_label = load_CIFAR10('data/cifar-10-batches-py') # test_train = (cifar_train[:10, :, :, :], cifar_train_labels[:10]) # print(test_train[0].shape, test_train[1].shape) # # net = PCANet(k1=5, k2=5, L1=40, L2=8, block_size=8, overlapping_radio=0.5, spp_parm=(4, 2, 1), dim_reduction=1280) # # net.classifier = svm.LinearSVC(C=10) # # net.fit(*test_train) # test_predict = cifar_test[:10, :, :] # prediction = net.predict(test_predict) # print('acc:', accuracy_score(cifat_test_label[:10], prediction))
[ "sklearn.metrics.accuracy_score" ]
[((444, 488), 'sklearn.metrics.accuracy_score', 'accuracy_score', (['test_labels[:10]', 'prediction'], {}), '(test_labels[:10], prediction)\n', (458, 488), False, 'from sklearn.metrics import accuracy_score\n')]
""" | Created: 2017-08-13 | Updated: 2017-08-13 """ from db import db class ItemModel(db.Model): """Item model.""" __tablename__ = 'items' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(80)) price = db.Column(db.Float(precision=2)) store_id = db.Column(db.Integer, db.ForeignKey('stores.id')) store = db.relationship('StoreModel') def __init__(self, name, price, store_id): self.name = name self.price = price self.store_id = store_id def json(self): """ Converts this item to JSON. :return: this item. :rtype: JSON. """ return {'name': self.name, 'price': self.price} @classmethod def find_by_name(cls, name): """ Selects an item from the DB and returns it. :param name: the name of the item. :type name: str :return: an item. :rtype: ItemModel. """ return cls.query.filter_by(name=name).first() def save_to_db(self): """ Inserts this item in the DB. """ db.session.add(self) db.session.commit() def delete_from_db(self): """ Deletes this item from the DB. """ db.session.delete(self) db.session.commit()
[ "db.db.session.delete", "db.db.session.commit", "db.db.relationship", "db.db.ForeignKey", "db.db.Column", "db.db.String", "db.db.Float", "db.db.session.add" ]
[((160, 199), 'db.db.Column', 'db.Column', (['db.Integer'], {'primary_key': '(True)'}), '(db.Integer, primary_key=True)\n', (169, 199), False, 'from db import db\n'), ((359, 388), 'db.db.relationship', 'db.relationship', (['"""StoreModel"""'], {}), "('StoreModel')\n", (374, 388), False, 'from db import db\n'), ((221, 234), 'db.db.String', 'db.String', (['(80)'], {}), '(80)\n', (230, 234), False, 'from db import db\n'), ((258, 279), 'db.db.Float', 'db.Float', ([], {'precision': '(2)'}), '(precision=2)\n', (266, 279), False, 'from db import db\n'), ((319, 345), 'db.db.ForeignKey', 'db.ForeignKey', (['"""stores.id"""'], {}), "('stores.id')\n", (332, 345), False, 'from db import db\n'), ((1108, 1128), 'db.db.session.add', 'db.session.add', (['self'], {}), '(self)\n', (1122, 1128), False, 'from db import db\n'), ((1137, 1156), 'db.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1154, 1156), False, 'from db import db\n'), ((1259, 1282), 'db.db.session.delete', 'db.session.delete', (['self'], {}), '(self)\n', (1276, 1282), False, 'from db import db\n'), ((1291, 1310), 'db.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1308, 1310), False, 'from db import db\n')]
# Generated by Django 3.0.7 on 2020-07-05 15:13 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('socialaccount', '0003_extra_data_default_dict'), ] operations = [ migrations.AlterUniqueTogether( name='socialtoken', unique_together=set(), ), migrations.RemoveField( model_name='socialtoken', name='app', ), ]
[ "django.db.migrations.RemoveField" ]
[((356, 416), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""socialtoken"""', 'name': '"""app"""'}), "(model_name='socialtoken', name='app')\n", (378, 416), False, 'from django.db import migrations\n')]
#!/usr/bin/env python """ This code provides a method to perform sensitivity analysis of the Metadynamics parameters 'w' and 'sigma'. """ import run_ebmetad.pair_data as pd import argparse import sys import json sys.path.append('/home/jennifer/Git/sample_restraint/build/src/pythonmodule') def force_table(weights=[0.1], sigmas=[0.2]): force_table = {} multi_pair = pd.MultiPair() multi_pair.read_from_json(args.f) # We'll make a whole bunch of these tables for different values of w and sigma for w in weights: for s in sigmas: key = 'w{}_s{}'.format(w, s) force_table[key] = {} for name in multi_pair.get_names(): idx = multi_pair.name_to_id(name) ft = multi_pair[idx].build_force_table(w=w, sigma=s) force_table[key][name] = ft return force_table if __name__ == '__main__': parser = argparse.ArgumentParser( "Builds a force table for specified w and sigma") parser.add_argument( '-f', help= 'path to json of pair data; should include the smoothed DEER distribution and a ' 'list of associated distance bins. See pair_data.json in the tests/ directory' ) parser.add_argument( '-w', nargs='+', help="weight, or height, of Gaussians (as in standard metadynmaics).", type=float) parser.add_argument( '-s', nargs='+', help="sigma. Width of Gaussians", type=float) parser.add_argument( '-o', help= "path to where the force table will be stored. For now, stored as json." ) args = parser.parse_args() ft = force_table(weights=args.w, sigmas=args.s) json.dump(ft, open(args.o, 'w'), indent=2)
[ "sys.path.append", "run_ebmetad.pair_data.MultiPair", "argparse.ArgumentParser" ]
[((215, 292), 'sys.path.append', 'sys.path.append', (['"""/home/jennifer/Git/sample_restraint/build/src/pythonmodule"""'], {}), "('/home/jennifer/Git/sample_restraint/build/src/pythonmodule')\n", (230, 292), False, 'import sys\n'), ((381, 395), 'run_ebmetad.pair_data.MultiPair', 'pd.MultiPair', ([], {}), '()\n', (393, 395), True, 'import run_ebmetad.pair_data as pd\n'), ((917, 990), 'argparse.ArgumentParser', 'argparse.ArgumentParser', (['"""Builds a force table for specified w and sigma"""'], {}), "('Builds a force table for specified w and sigma')\n", (940, 990), False, 'import argparse\n')]
from db import loadNews if __name__ == '__main__': print(loadNews(2, 0))
[ "db.loadNews" ]
[((63, 77), 'db.loadNews', 'loadNews', (['(2)', '(0)'], {}), '(2, 0)\n', (71, 77), False, 'from db import loadNews\n')]
import sys from ply import * TOP = 'True' BOTTOM = 'False' # Define classes for required operators - atomic, modalities and operators class Atomic(object): def __init__(self, atom): self.atom = atom def __str__(self): return str(self.atom) def __eq__(self, other): if str(self.atom) == str(other): return True else: return False def __hash__(self): return hash(str(self.atom)) __repr__ = __str__ class Modality(object): def __init__(self, mode, m_id): self.mode = mode self.id = m_id def __repr__(self): return str(self.mode) def __str__(self): if self.mode == "box": return "[" + self.id + "]" elif self.mode == "dia": return "<" + self.id + ">" def __eq__(self, other): if isinstance(self, Modality) and isinstance(other, Modality): if str(self.mode) == str(other.mode) and self.id == other.id: return True else: return False def __hash__(self): return hash(self.mode) + hash(self.id) class Operator(object): def __init__(self, mode): self.mode = mode def __str__(self): return str(self.mode) __repr__ = __str__ # Get the token mapping from lexer. from lexer import tokens # Define a BNF grammar for modal logic. ''' formula0 : 'false' | 'true' | term | '~' formula1 | '(' formula1 ')' | '[id]' formula1 | '<id>' formula1 | formula1 '=>' formula1 # right associative | formula1 '|' formula1 # left associative | formula1 '&' formula1 # left associative term0 : ATOM ''' # Define token preference, from lowest to highest. precedence = ( ('right', 'IMP', 'IFF'), ('left', 'OR'), ('left', 'AND'), ('right', 'BOX', 'DIA', 'NOT'), ) def p_formula_braced(p): """ formula : LPAREN formula RPAREN """ p[0] = p[2] def p_formula_modal(p): """ formula : BOX formula | DIA formula """ if p[1][:1] == '[': syn = 'box' elif p[1][:1] == '<': syn = 'dia' else: pass m_id = p[1][1:-1] p[0] = [Modality(syn, m_id), p[2]] def p_formula_not(p): """ formula : NOT formula """ p[0] = [Operator(p[1]), p[2]] def p_formula_binary(p): """ formula : formula IMP formula | formula IFF formula | formula AND formula | formula OR formula """ p[0] = [Operator(p[2]), p[1], p[3]] def p_formula_atomic(p): """ formula : false | true | term """ global TOP, BOTTOM if str(p[1]).lower() == 'true': p[0] = Atomic(TOP) elif str(p[1]).lower() == 'false': p[0] = Atomic(BOTTOM) else: p[0] = p[1] def p_term_atom(p): """ term : ATOM """ p[0] = Atomic(p[1]) # Error rule for syntax errors def p_error(p): sys.stderr.write('Syntax error in input. \n') raise SystemExit(1) bparser = yacc.yacc() def parse(data, debug=0): bparser.error = 0 p = bparser.parse(data, debug=debug) if bparser.error: return None return p
[ "sys.stderr.write" ]
[((3003, 3048), 'sys.stderr.write', 'sys.stderr.write', (['"""Syntax error in input. \n"""'], {}), "('Syntax error in input. \\n')\n", (3019, 3048), False, 'import sys\n')]
import z3 from pdb import set_trace import string import toolz import enum import logging import itertools from typing import Iterable, Tuple, Set from . import parsing from .parsing import (PToken, EMPTY, CHAR, DOT, STAR, BAR, CONCAT, GROUP, BACKREF, CARET, DOLLAR) from .preprocessing import (convert_stars, convert_bars, flatten_regex, remove_path, convert_to_encoded_symbols) logger = logging.getLogger(__name__) # set of nonzero lengths with which to approximate star # the zero length is included automatically DEFAULT_STAR_LENGTHS = [4] # space is not valid URL char. # pound (#) is invalid in domain. It gets replaced with /# in Chrome in the URL bar. # question (?) is also invalid in domain, and gets replaced with /? in Chrome URL bar. DEFAULT_DOT_CHARSET = 'abcdefghijklmnop012345' + "/" class RegexStringExpr: scratch_var_cnt = 0 ignore_wildcards = z3.Bool('ignore_wildcards') def _gen_string_var(self): x = z3.String('_x_{}'.format(self.string_var_count)) self.string_var_count += 1 return x def _gen_bool_var(self): b = z3.Bool('_b_{}'.format(self.bool_var_count)) self.bool_var_count += 1 return b def __init__(self, regex: str, unknown: z3.StringSort(), word_choice_cutoff=10, dot_charset=DEFAULT_DOT_CHARSET, star_lengths: Iterable[int] = DEFAULT_STAR_LENGTHS, symbolic=False): """ Compiles Regex to Z3 String expressions :param dot_charset: Characters that the DOT metachar can match. This should be limited to valid URL characters, or can be set to a taint marker. """ self.unknown = unknown self.star_lengths = star_lengths self.string_var_count = 0 self.bool_var_count = 0 self.symbolic = symbolic _parser = parsing.RegexParser() parse_result = _parser.parse(regex) self.parsing_errors = parse_result['errors'] regex_0 = flatten_regex(parse_result['root']) regex_1 = remove_path(regex_0) regex_2 = convert_stars(regex_1, star_lengths) regex_3 = convert_bars(regex_2, cutoff=word_choice_cutoff) if symbolic: regex_4, self.symbols = convert_to_encoded_symbols(regex_3, {}) else: regex_4, self.symbols = regex_3, {} self.regex = regex_4 assert self.regex self.groups = parse_result['groups'] self.backrefs = parse_result['backrefs'] self.dot_charset = dot_charset def _sat_expr(self, regex: Tuple) -> Tuple[z3.SeqRef, z3.BoolRef, z3.BoolRef, z3.BoolRef]: """ :returns: string that matches regex, constraint on string, whether string contains caret, whether string contains dollar Whether there is a caret or dollar needs to be tracked because they imply constraints on neighboring strings to the one returned. """ ty = regex[0] if ty == EMPTY: return (z3.StringVal(''), z3.BoolVal(True), z3.BoolVal(False), z3.BoolVal(False)) elif ty == CHAR: return (z3.StringVal(regex[1]), z3.BoolVal(True), z3.BoolVal(False), z3.BoolVal(False)) elif ty == DOT: x = self._gen_string_var() constraint = z3.And(z3.Implies(self.ignore_wildcards, x == z3.StringVal('')), z3.Implies(z3.Not(self.ignore_wildcards), z3.Or(*(x == z3.StringVal(y) for y in self.dot_charset)))) return (x, constraint, z3.BoolVal(False), z3.BoolVal(False)) elif ty == STAR: # STAR should have been approximated with something else during preprocessing. raise NotImplementedError elif ty == BAR: ys, constraints_list, carets_list, dollars_list = zip(*map(self._sat_expr, regex[1:])) x = self._gen_string_var() x_constraint = z3.Or(*(z3.And(x == y, y_constraint) for y, y_constraint in zip(ys, constraints_list))) return (x, x_constraint, z3.Or(*carets_list), z3.Or(*dollars_list)) elif ty == CONCAT: ys, y_constraints, carets_list, dollars_list = zip(*map(self._sat_expr, regex[1:])) x = z3.Concat(*ys) start_constraints = ( z3.Implies(b, z3.Length(y) == 0) for ii, b in enumerate(carets_list) for y in ys[:ii]) end_constraints = ( z3.Implies(b, z3.Length(y) == 0) for ii, b in enumerate(dollars_list) for y in ys[ii+1:] ) x_constraint = z3.And(*toolz.concatv(y_constraints, start_constraints, end_constraints)) return (x, x_constraint, z3.Or(*carets_list), z3.Or(*dollars_list)) elif ty == GROUP: # backrefs not supported idx = regex[1] - 1 # not used currently; would be used to implement backrefs inner = regex[2] return self._sat_expr(inner) elif ty == BACKREF: raise NotImplementedError elif ty == CARET: assert len(regex) == 1 b = self._gen_bool_var() return (z3.StringVal(''), b, b, z3.BoolVal(False)) elif ty == DOLLAR: assert len(regex) == 1 b = self._gen_bool_var() return (z3.StringVal(''), b, z3.BoolVal(False), b) else: raise ValueError("Unknown regex_parser type '%s'" % repr(ty)) def re_expr(self): ss, expr, carets, dollars = self._sat_expr(self.regex) return z3.simplify(z3.And(self.unknown == ss, expr))
[ "logging.getLogger", "z3.Concat", "z3.And", "z3.Bool", "z3.BoolVal", "toolz.concatv", "z3.Or", "z3.Not", "z3.StringVal", "z3.StringSort", "z3.Length" ]
[((394, 421), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (411, 421), False, 'import logging\n'), ((879, 906), 'z3.Bool', 'z3.Bool', (['"""ignore_wildcards"""'], {}), "('ignore_wildcards')\n", (886, 906), False, 'import z3\n'), ((1236, 1251), 'z3.StringSort', 'z3.StringSort', ([], {}), '()\n', (1249, 1251), False, 'import z3\n'), ((5708, 5740), 'z3.And', 'z3.And', (['(self.unknown == ss)', 'expr'], {}), '(self.unknown == ss, expr)\n', (5714, 5740), False, 'import z3\n'), ((3038, 3054), 'z3.StringVal', 'z3.StringVal', (['""""""'], {}), "('')\n", (3050, 3054), False, 'import z3\n'), ((3056, 3072), 'z3.BoolVal', 'z3.BoolVal', (['(True)'], {}), '(True)\n', (3066, 3072), False, 'import z3\n'), ((3074, 3091), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (3084, 3091), False, 'import z3\n'), ((3093, 3110), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (3103, 3110), False, 'import z3\n'), ((3158, 3180), 'z3.StringVal', 'z3.StringVal', (['regex[1]'], {}), '(regex[1])\n', (3170, 3180), False, 'import z3\n'), ((3182, 3198), 'z3.BoolVal', 'z3.BoolVal', (['(True)'], {}), '(True)\n', (3192, 3198), False, 'import z3\n'), ((3200, 3217), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (3210, 3217), False, 'import z3\n'), ((3219, 3236), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (3229, 3236), False, 'import z3\n'), ((3603, 3620), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (3613, 3620), False, 'import z3\n'), ((3622, 3639), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (3632, 3639), False, 'import z3\n'), ((3435, 3464), 'z3.Not', 'z3.Not', (['self.ignore_wildcards'], {}), '(self.ignore_wildcards)\n', (3441, 3464), False, 'import z3\n'), ((3373, 3389), 'z3.StringVal', 'z3.StringVal', (['""""""'], {}), "('')\n", (3385, 3389), False, 'import z3\n'), ((4148, 4167), 'z3.Or', 'z3.Or', (['*carets_list'], {}), '(*carets_list)\n', (4153, 4167), False, 'import z3\n'), ((4169, 4189), 'z3.Or', 'z3.Or', (['*dollars_list'], {}), '(*dollars_list)\n', (4174, 4189), False, 'import z3\n'), ((4332, 4346), 'z3.Concat', 'z3.Concat', (['*ys'], {}), '(*ys)\n', (4341, 4346), False, 'import z3\n'), ((4845, 4864), 'z3.Or', 'z3.Or', (['*carets_list'], {}), '(*carets_list)\n', (4850, 4864), False, 'import z3\n'), ((4866, 4886), 'z3.Or', 'z3.Or', (['*dollars_list'], {}), '(*dollars_list)\n', (4871, 4886), False, 'import z3\n'), ((3995, 4023), 'z3.And', 'z3.And', (['(x == y)', 'y_constraint'], {}), '(x == y, y_constraint)\n', (4001, 4023), False, 'import z3\n'), ((4741, 4805), 'toolz.concatv', 'toolz.concatv', (['y_constraints', 'start_constraints', 'end_constraints'], {}), '(y_constraints, start_constraints, end_constraints)\n', (4754, 4805), False, 'import toolz\n'), ((3522, 3537), 'z3.StringVal', 'z3.StringVal', (['y'], {}), '(y)\n', (3534, 3537), False, 'import z3\n'), ((4412, 4424), 'z3.Length', 'z3.Length', (['y'], {}), '(y)\n', (4421, 4424), False, 'import z3\n'), ((4580, 4592), 'z3.Length', 'z3.Length', (['y'], {}), '(y)\n', (4589, 4592), False, 'import z3\n'), ((5299, 5315), 'z3.StringVal', 'z3.StringVal', (['""""""'], {}), "('')\n", (5311, 5315), False, 'import z3\n'), ((5323, 5340), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (5333, 5340), False, 'import z3\n'), ((5462, 5478), 'z3.StringVal', 'z3.StringVal', (['""""""'], {}), "('')\n", (5474, 5478), False, 'import z3\n'), ((5483, 5500), 'z3.BoolVal', 'z3.BoolVal', (['(False)'], {}), '(False)\n', (5493, 5500), False, 'import z3\n')]
#coding:utf-8 from rest_framework import generics from rest_framework import permissions from rest_framework import response from rest_framework.decorators import api_view, permission_classes from rest_framework.reverse import reverse from catalogue import models from catalogue import serializers class FunctionList(generics.ListCreateAPIView): queryset = models.Function.objects.all() serializer_class = serializers.FunctionSerializer class FunctionDetail(generics.RetrieveUpdateDestroyAPIView): queryset = models.Function.objects.all() serializer_class = serializers.FunctionSerializer class PersonList(generics.ListCreateAPIView): queryset = models.Person.objects.all() serializer_class = serializers.PersonSerializer class PersonDetail(generics.RetrieveUpdateDestroyAPIView): queryset = models.Person.objects.all() serializer_class = serializers.PersonSerializer class ThemeList(generics.ListCreateAPIView): queryset = models.Theme.objects.all() serializer_class = serializers.ThemeSerializer class ThemeDetail(generics.RetrieveUpdateDestroyAPIView): queryset = models.Theme.objects.all() serializer_class = serializers.ThemeSerializer class TypeRessourceList(generics.ListCreateAPIView): queryset = models.TypeRessource.objects.all() serializer_class = serializers.TypeRessourceSerializer class TypeRessourceDetail(generics.RetrieveUpdateDestroyAPIView): queryset = models.TypeRessource.objects.all() serializer_class = serializers.TypeRessourceSerializer class RessourceList(generics.ListCreateAPIView): queryset = models.Ressource.objects.all() serializer_class = serializers.RessourceSerializer class RessourceDetail(generics.RetrieveUpdateDestroyAPIView): queryset = models.Ressource.objects.all() serializer_class = serializers.RessourceSerializer @api_view(['GET']) @permission_classes((permissions.AllowAny,)) def api_root(request, format=None): return response.Response({ 'function_list': reverse('function_list', request=request, format=format), 'person_list': reverse('person_list', request=request, format=format), 'theme_list': reverse('theme_list', request=request, format=format), 'type_ressource_list': reverse('type_ressource_list', request=request, format=format), 'ressource_list': reverse('ressource_list', request=request, format=format), })
[ "catalogue.models.TypeRessource.objects.all", "rest_framework.decorators.permission_classes", "catalogue.models.Ressource.objects.all", "catalogue.models.Theme.objects.all", "catalogue.models.Person.objects.all", "catalogue.models.Function.objects.all", "rest_framework.decorators.api_view", "rest_framework.reverse.reverse" ]
[((1864, 1881), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (1872, 1881), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((1883, 1926), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(permissions.AllowAny,)'], {}), '((permissions.AllowAny,))\n', (1901, 1926), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((365, 394), 'catalogue.models.Function.objects.all', 'models.Function.objects.all', ([], {}), '()\n', (392, 394), False, 'from catalogue import models\n'), ((527, 556), 'catalogue.models.Function.objects.all', 'models.Function.objects.all', ([], {}), '()\n', (554, 556), False, 'from catalogue import models\n'), ((674, 701), 'catalogue.models.Person.objects.all', 'models.Person.objects.all', ([], {}), '()\n', (699, 701), False, 'from catalogue import models\n'), ((830, 857), 'catalogue.models.Person.objects.all', 'models.Person.objects.all', ([], {}), '()\n', (855, 857), False, 'from catalogue import models\n'), ((972, 998), 'catalogue.models.Theme.objects.all', 'models.Theme.objects.all', ([], {}), '()\n', (996, 998), False, 'from catalogue import models\n'), ((1125, 1151), 'catalogue.models.Theme.objects.all', 'models.Theme.objects.all', ([], {}), '()\n', (1149, 1151), False, 'from catalogue import models\n'), ((1273, 1307), 'catalogue.models.TypeRessource.objects.all', 'models.TypeRessource.objects.all', ([], {}), '()\n', (1305, 1307), False, 'from catalogue import models\n'), ((1450, 1484), 'catalogue.models.TypeRessource.objects.all', 'models.TypeRessource.objects.all', ([], {}), '()\n', (1482, 1484), False, 'from catalogue import models\n'), ((1610, 1640), 'catalogue.models.Ressource.objects.all', 'models.Ressource.objects.all', ([], {}), '()\n', (1638, 1640), False, 'from catalogue import models\n'), ((1775, 1805), 'catalogue.models.Ressource.objects.all', 'models.Ressource.objects.all', ([], {}), '()\n', (1803, 1805), False, 'from catalogue import models\n'), ((2019, 2075), 'rest_framework.reverse.reverse', 'reverse', (['"""function_list"""'], {'request': 'request', 'format': 'format'}), "('function_list', request=request, format=format)\n", (2026, 2075), False, 'from rest_framework.reverse import reverse\n'), ((2100, 2154), 'rest_framework.reverse.reverse', 'reverse', (['"""person_list"""'], {'request': 'request', 'format': 'format'}), "('person_list', request=request, format=format)\n", (2107, 2154), False, 'from rest_framework.reverse import reverse\n'), ((2178, 2231), 'rest_framework.reverse.reverse', 'reverse', (['"""theme_list"""'], {'request': 'request', 'format': 'format'}), "('theme_list', request=request, format=format)\n", (2185, 2231), False, 'from rest_framework.reverse import reverse\n'), ((2264, 2326), 'rest_framework.reverse.reverse', 'reverse', (['"""type_ressource_list"""'], {'request': 'request', 'format': 'format'}), "('type_ressource_list', request=request, format=format)\n", (2271, 2326), False, 'from rest_framework.reverse import reverse\n'), ((2354, 2411), 'rest_framework.reverse.reverse', 'reverse', (['"""ressource_list"""'], {'request': 'request', 'format': 'format'}), "('ressource_list', request=request, format=format)\n", (2361, 2411), False, 'from rest_framework.reverse import reverse\n')]
import os def main(): x = os.listdir("/data/tmp/") y = [] for i in x: if i[0] != ".": n = int(i[0:8]) if n < 20200414: y.append(i) for i in y: os.remove("/data/tmp/" + i) main()
[ "os.listdir", "os.remove" ]
[((28, 52), 'os.listdir', 'os.listdir', (['"""/data/tmp/"""'], {}), "('/data/tmp/')\n", (38, 52), False, 'import os\n'), ((163, 190), 'os.remove', 'os.remove', (["('/data/tmp/' + i)"], {}), "('/data/tmp/' + i)\n", (172, 190), False, 'import os\n')]
# 01-01-2019 # <NAME> # This script is designed for renaming the files by using python os and sys. # Files are generated from Zen export. # %% import os, sys import re datapath = "/Volumes/LaCie_DataStorage/Mast_Lab/Mast_Lab_002/resource/raw_output" # %% nameset1 = os.listdir(datapath) print(nameset1) for i, item in enumerate(nameset1): print(i, item) slide_number = re.search('slide_(.*)-Scene', item) if slide_number != None: print(slide_number.group(1)) scene_number = re.search('Scene-(.*)-Scan', item) print(scene_number.group(1)) newfilename = 'batch_02_slide_' + slide_number.group(1) + '_scene_' + scene_number.group(1) + '.ome.tiff' print(newfilename) filedir_org = os.path.join(datapath, item) filedir_new = os.path.join(datapath, newfilename) os.rename(filedir_org, filedir_new) # %% nameset2 = os.listdir(datapath) print(nameset2) for i, item in enumerate(nameset2): print(i, item) slide_number = re.search('_ome.tiff', item) if slide_number != None: p = re.compile('_ome.tiff') newfilename = p.sub('.ome.tiff', item) print(newfilename) filedir_org = os.path.join(datapath, item) filedir_new = os.path.join(datapath, newfilename) os.rename(filedir_org, filedir_new) # %% for filename in os.listdir(): print(filename)
[ "os.listdir", "re.compile", "os.rename", "os.path.join", "re.search" ]
[((273, 293), 'os.listdir', 'os.listdir', (['datapath'], {}), '(datapath)\n', (283, 293), False, 'import os, sys\n'), ((902, 922), 'os.listdir', 'os.listdir', (['datapath'], {}), '(datapath)\n', (912, 922), False, 'import os, sys\n'), ((1362, 1374), 'os.listdir', 'os.listdir', ([], {}), '()\n', (1372, 1374), False, 'import os, sys\n'), ((384, 419), 're.search', 're.search', (['"""slide_(.*)-Scene"""', 'item'], {}), "('slide_(.*)-Scene', item)\n", (393, 419), False, 'import re\n'), ((1013, 1041), 're.search', 're.search', (['"""_ome.tiff"""', 'item'], {}), "('_ome.tiff', item)\n", (1022, 1041), False, 'import re\n'), ((514, 548), 're.search', 're.search', (['"""Scene-(.*)-Scan"""', 'item'], {}), "('Scene-(.*)-Scan', item)\n", (523, 548), False, 'import re\n'), ((750, 778), 'os.path.join', 'os.path.join', (['datapath', 'item'], {}), '(datapath, item)\n', (762, 778), False, 'import os, sys\n'), ((801, 836), 'os.path.join', 'os.path.join', (['datapath', 'newfilename'], {}), '(datapath, newfilename)\n', (813, 836), False, 'import os, sys\n'), ((845, 880), 'os.rename', 'os.rename', (['filedir_org', 'filedir_new'], {}), '(filedir_org, filedir_new)\n', (854, 880), False, 'import os, sys\n'), ((1088, 1111), 're.compile', 're.compile', (['"""_ome.tiff"""'], {}), "('_ome.tiff')\n", (1098, 1111), False, 'import re\n'), ((1209, 1237), 'os.path.join', 'os.path.join', (['datapath', 'item'], {}), '(datapath, item)\n', (1221, 1237), False, 'import os, sys\n'), ((1260, 1295), 'os.path.join', 'os.path.join', (['datapath', 'newfilename'], {}), '(datapath, newfilename)\n', (1272, 1295), False, 'import os, sys\n'), ((1304, 1339), 'os.rename', 'os.rename', (['filedir_org', 'filedir_new'], {}), '(filedir_org, filedir_new)\n', (1313, 1339), False, 'import os, sys\n')]
import datetime from django.db import models from django.contrib.auth.models import User # Create your models here. # from financial.models import Orders class Post(models.Model): type_of_shipping = [ ('post', 'post'), ('pishtaz', 'pishtaz'), ('aadi', 'aadi'), ('ersal_forooshgahi', "ersal_forooshgahi"), ('ersal_pekmotori', 'ersal_peykmotori '), ] date_chices = [ (datetime.date) ] day_division = [ ('صبح', '۸ تا ۱۲ بعد از ظهر'), ('ظهر', '۱۲ تا ۶ عصر'), ("شب", "۶ عصر تا ۱۲ شب"), ] post = models.CharField(max_length=20, choices=type_of_shipping) user = models.ForeignKey(User, on_delete=models.CASCADE) time_recived = models.CharField(max_length=3, choices=day_division) date_recived = models.DateField() class Meta: verbose_name = 'نحوه ارسال' verbose_name_plural = 'نحوه ارسال'
[ "django.db.models.DateField", "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((599, 656), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'choices': 'type_of_shipping'}), '(max_length=20, choices=type_of_shipping)\n', (615, 656), False, 'from django.db import models\n'), ((668, 717), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'on_delete': 'models.CASCADE'}), '(User, on_delete=models.CASCADE)\n', (685, 717), False, 'from django.db import models\n'), ((737, 789), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(3)', 'choices': 'day_division'}), '(max_length=3, choices=day_division)\n', (753, 789), False, 'from django.db import models\n'), ((809, 827), 'django.db.models.DateField', 'models.DateField', ([], {}), '()\n', (825, 827), False, 'from django.db import models\n')]
from setuptools import setup setup( name='ml02450', version='1.0.0', packages=[''], url='https://github.com/thomasnilsson/ml02450', license='MIT', author='tnni', author_email='<EMAIL>', description='A library for the machine learning and data mining course at DTU' )
[ "setuptools.setup" ]
[((30, 280), 'setuptools.setup', 'setup', ([], {'name': '"""ml02450"""', 'version': '"""1.0.0"""', 'packages': "['']", 'url': '"""https://github.com/thomasnilsson/ml02450"""', 'license': '"""MIT"""', 'author': '"""tnni"""', 'author_email': '"""<EMAIL>"""', 'description': '"""A library for the machine learning and data mining course at DTU"""'}), "(name='ml02450', version='1.0.0', packages=[''], url=\n 'https://github.com/thomasnilsson/ml02450', license='MIT', author=\n 'tnni', author_email='<EMAIL>', description=\n 'A library for the machine learning and data mining course at DTU')\n", (35, 280), False, 'from setuptools import setup\n')]
import pkg_resources version_file = pkg_resources.resource_stream(__name__, "VERSION") VERSION = version_file.readline().strip().decode()
[ "pkg_resources.resource_stream" ]
[((37, 87), 'pkg_resources.resource_stream', 'pkg_resources.resource_stream', (['__name__', '"""VERSION"""'], {}), "(__name__, 'VERSION')\n", (66, 87), False, 'import pkg_resources\n')]
# /******************************************************************************* # Copyright Intel Corporation. # This software and the related documents are Intel copyrighted materials, and your use of them # is governed by the express license under which they were provided to you (License). # Unless the License provides otherwise, you may not use, modify, copy, publish, distribute, disclose # or transmit this software or the related documents without Intel's prior written permission. # This software and the related documents are provided as is, with no express or implied warranties, # other than those that are expressly stated in the License. # # *******************************************************************************/ from modules.check import CheckSummary, CheckMetadataPy import os import re import json import subprocess from typing import List, Dict def get_hostname(json_node: Dict) -> None: value = { "Value": "Undefined", "RetVal": "INFO", "Command": "cat /etc/hostname" } try: with open("/etc/hostname", "r") as etc_hostname: hostname = etc_hostname.readline().strip() value["Value"] = hostname except Exception as error: value["RetVal"] = "ERROR" value["Message"] = str(error) json_node.update({"Hostname": value}) def _get_bios_vendor(json_node: Dict) -> None: value = {"BIOS vendor": { "Value": "Undefined", "RetVal": "INFO", "Command": "cat /sys/class/dmi/id/bios_vendor" }} try: with open("/sys/class/dmi/id/bios_vendor", "r") as bios_vendor_file: bios_vendor = bios_vendor_file.readline().strip() value["BIOS vendor"]["Value"] = bios_vendor except Exception as error: value["BIOS vendor"]["RetVal"] = "ERROR" value["BIOS vendor"]["Message"] = str(error) json_node.update(value) def _get_bios_version(json_node: Dict) -> None: value = {"BIOS version": { "Value": "Undefined", "RetVal": "INFO", "Command": "cat /sys/class/dmi/id/bios_version" }} try: with open("/sys/class/dmi/id/bios_version", "r") as bios_verion_file: bios_version = bios_verion_file.readline().strip() value["BIOS version"]["Value"] = bios_version except Exception as error: value["BIOS version"]["RetVal"] = "ERROR" value["BIOS version"]["Message"] = str(error) json_node.update(value) def _get_bios_release(json_node: Dict) -> None: value = {"BIOS release": { "Value": "Undefined", "RetVal": "INFO", "Command": "cat /sys/class/dmi/id/bios_release" }} can_provide_info = os.path.exists("/sys/class/dmi/id/bios_release") if can_provide_info: try: with open("/sys/class/dmi/id/bios_release", "r") as bios_release_file: bios_release = bios_release_file.readline().strip() value["BIOS release"]["Value"] = bios_release value["BIOS release"]["Verbosity"] = 1 except Exception as error: value["BIOS release"]["RetVal"] = "ERROR" value["BIOS release"]["Message"] = str(error) json_node.update(value) def _get_bios_date(json_node: Dict) -> None: value = {"BIOS date": { "Value": "Undefined", "RetVal": "INFO", "Command": "cat /sys/class/dmi/id/bios_date" }} can_provide_info = os.path.exists("/sys/class/dmi/id/bios_date") if can_provide_info: try: with open("/sys/class/dmi/id/bios_date", "r") as bios_date_file: bios_date = bios_date_file.readline().strip() value["BIOS date"]["Value"] = bios_date value["BIOS date"]["Verbosity"] = 2 except Exception as error: value["BIOS date"]["RetVal"] = "ERROR" value["BIOS date"]["Message"] = str(error) json_node.update(value) def get_bios_information(json_node: Dict) -> None: value = {"Value": "Undefined", "RetVal": "INFO"} bios_info = {} _get_bios_vendor(bios_info) _get_bios_version(bios_info) _get_bios_release(bios_info) _get_bios_date(bios_info) value["Value"] = bios_info json_node.update({"BIOS information": value}) def get_uname(json_node: Dict) -> None: value = {"Value": "Undefined", "RetVal": "INFO", "Command": "uname -a"} try: command = ["uname", "-a"] process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8") stdout, _ = process.communicate() if process.returncode != 0: raise Exception("Cannot get information about operating system name") uname = stdout.splitlines()[0].strip() value["Value"] = uname except Exception as error: value["RetVal"] = "ERROR" value["Message"] = str(error) json_node.update({"Operating system name": value}) def get_cpu_frequency(json_node: Dict) -> None: verbosity_level = 1 MHz_pattern = re.compile(r"cpu MHz\s*\:\s((\d*[.])?\d+)") value = { "Value": "Undefined", "RetVal": "INFO", "Verbosity": verbosity_level, "Command": "cat /proc/cpuinfo"} try: with open("/proc/cpuinfo", "r") as cpu_frequency_file: cpu_frequency = {} core_number = 0 for line in cpu_frequency_file.readlines(): result = MHz_pattern.search(line) if result: cpu_frequency.update( {f"Core {core_number}": { "Value": f"{result.group(1)} MHz", "RetVal": "INFO", "Verbosity": verbosity_level }}) core_number += 1 value["Value"] = cpu_frequency except Exception as error: value["RetVal"] = "ERROR" value["Message"] = str(error) json_node.update({"CPU frequency": value}) def get_cpu_info(json_node: Dict) -> None: value = { "Value": "Undefined", "RetVal": "INFO", "Command": "lscpu" } try: command = ["lscpu"] process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding="utf-8") stdout, _ = process.communicate() if process.returncode != 0: raise Exception("Cannot get information about CPU") output = {} for line in stdout.splitlines(): key, val = [elem.strip() for elem in line.split(":", 1)] output.update({key: val}) cpu_info = {} cpu_info.update({"Model name": {"Value": output["Model name"], "RetVal": "INFO"}}) cpu_info.update({"Architecture": {"Value": output["Architecture"], "RetVal": "INFO"}}) cpu_info.update({"Vendor": {"Value": output["Vendor ID"], "RetVal": "INFO", "Verbosity": 1}}) cpu_info.update({"CPU count": {"Value": output["CPU(s)"], "RetVal": "INFO"}}) cpu_info.update( {"Thread(s) per core": {"Value": output["Thread(s) per core"], "RetVal": "INFO", "Verbosity": 2}}) cpu_info.update( {"Core(s) per socket": {"Value": output["Core(s) per socket"], "RetVal": "INFO", "Verbosity": 2}}) cpu_info.update({"Socket(s)": {"Value": output["Socket(s)"], "RetVal": "INFO", "Verbosity": 2}}) get_cpu_frequency(cpu_info) value["Value"] = cpu_info except Exception as error: value["RetVal"] = "ERROR" value["Message"] = str(error) json_node.update({"CPU information": value}) def run_base_check(data: dict) -> CheckSummary: result_json = {"Value": {}} get_hostname(result_json["Value"]) get_cpu_info(result_json["Value"]) get_bios_information(result_json["Value"]) get_uname(result_json["Value"]) check_summary = CheckSummary( result=json.dumps(result_json, indent=4) ) return check_summary def get_api_version() -> str: return "0.1" def get_check_list() -> List[CheckMetadataPy]: someCheck = CheckMetadataPy( name="base_system_check", type="Data", tags="sysinfo,compile,runtime,host,target", descr="This check shows information about hostname, CPU, BIOS and operating system.", dataReq="{}", rights="user", timeout=5, version="0.1", run="run_base_check" ) return [someCheck]
[ "os.path.exists", "re.compile", "modules.check.CheckMetadataPy", "subprocess.Popen", "json.dumps" ]
[((2698, 2746), 'os.path.exists', 'os.path.exists', (['"""/sys/class/dmi/id/bios_release"""'], {}), "('/sys/class/dmi/id/bios_release')\n", (2712, 2746), False, 'import os\n'), ((3446, 3491), 'os.path.exists', 'os.path.exists', (['"""/sys/class/dmi/id/bios_date"""'], {}), "('/sys/class/dmi/id/bios_date')\n", (3460, 3491), False, 'import os\n'), ((5058, 5105), 're.compile', 're.compile', (['"""cpu MHz\\\\s*\\\\:\\\\s((\\\\d*[.])?\\\\d+)"""'], {}), "('cpu MHz\\\\s*\\\\:\\\\s((\\\\d*[.])?\\\\d+)')\n", (5068, 5105), False, 'import re\n'), ((8118, 8399), 'modules.check.CheckMetadataPy', 'CheckMetadataPy', ([], {'name': '"""base_system_check"""', 'type': '"""Data"""', 'tags': '"""sysinfo,compile,runtime,host,target"""', 'descr': '"""This check shows information about hostname, CPU, BIOS and operating system."""', 'dataReq': '"""{}"""', 'rights': '"""user"""', 'timeout': '(5)', 'version': '"""0.1"""', 'run': '"""run_base_check"""'}), "(name='base_system_check', type='Data', tags=\n 'sysinfo,compile,runtime,host,target', descr=\n 'This check shows information about hostname, CPU, BIOS and operating system.'\n , dataReq='{}', rights='user', timeout=5, version='0.1', run=\n 'run_base_check')\n", (8133, 8399), False, 'from modules.check import CheckSummary, CheckMetadataPy\n'), ((4465, 4560), 'subprocess.Popen', 'subprocess.Popen', (['command'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'encoding': '"""utf-8"""'}), "(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE,\n encoding='utf-8')\n", (4481, 4560), False, 'import subprocess\n'), ((6233, 6328), 'subprocess.Popen', 'subprocess.Popen', (['command'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE', 'encoding': '"""utf-8"""'}), "(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE,\n encoding='utf-8')\n", (6249, 6328), False, 'import subprocess\n'), ((7938, 7971), 'json.dumps', 'json.dumps', (['result_json'], {'indent': '(4)'}), '(result_json, indent=4)\n', (7948, 7971), False, 'import json\n')]
# Copyright 2017 <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from abc import ABCMeta, abstractmethod import logging import six from nirikshak.common import plugins LOG = logging.getLogger(__name__) @six.add_metaclass(ABCMeta) class FormatOutput(object): @abstractmethod def format_output(self, **kwargs): pass def format_for_output(**kwargs): if kwargs.get('post_task', 'console') == 'console': post_task = kwargs.get('post_task', 'console') else: post_task = kwargs.get('post_task', 'dummy') plugin = plugins.get_plugin(post_task) soochis = None try: soochis = getattr(plugin, 'format_output')(**kwargs) except AttributeError: LOG.error("%s plugin for task could not be found", post_task) return kwargs except Exception: LOG.error("Error in formatting %s jaanch for %s post_task", kwargs['name'], post_task, exc_info=True) else: LOG.info("%s jaanch has been formatter by %s plugin", kwargs['name'], post_task) return soochis
[ "logging.getLogger", "six.add_metaclass", "nirikshak.common.plugins.get_plugin" ]
[((686, 713), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (703, 713), False, 'import logging\n'), ((717, 743), 'six.add_metaclass', 'six.add_metaclass', (['ABCMeta'], {}), '(ABCMeta)\n', (734, 743), False, 'import six\n'), ((1068, 1097), 'nirikshak.common.plugins.get_plugin', 'plugins.get_plugin', (['post_task'], {}), '(post_task)\n', (1086, 1097), False, 'from nirikshak.common import plugins\n')]
from distutils.core import setup, Extension StringDict_module = Extension('StringDict', sources = ['src/StringDict.cpp', 'src/StringDictEntry.c', 'src/KeyInfo.c'], depends = ['LEB128.h', 'MakeKeyInfo.h', 'PythonUtils.h', 'StringDict_Docs.h', 'StringDictEntry.h', 'setup.py'], include_dirs = ['include'], extra_compile_args = ["-std=c++17", "-O3", '-fno-delete-null-pointer-checks']) setup (name = 'StringDict', version = '0.1', description = 'Provides a dict-like type that only allows bytes() (and bytes-like types) or str() keys.', ext_modules = [StringDict_module] )
[ "distutils.core.Extension", "distutils.core.setup" ]
[((65, 396), 'distutils.core.Extension', 'Extension', (['"""StringDict"""'], {'sources': "['src/StringDict.cpp', 'src/StringDictEntry.c', 'src/KeyInfo.c']", 'depends': "['LEB128.h', 'MakeKeyInfo.h', 'PythonUtils.h', 'StringDict_Docs.h',\n 'StringDictEntry.h', 'setup.py']", 'include_dirs': "['include']", 'extra_compile_args': "['-std=c++17', '-O3', '-fno-delete-null-pointer-checks']"}), "('StringDict', sources=['src/StringDict.cpp',\n 'src/StringDictEntry.c', 'src/KeyInfo.c'], depends=['LEB128.h',\n 'MakeKeyInfo.h', 'PythonUtils.h', 'StringDict_Docs.h',\n 'StringDictEntry.h', 'setup.py'], include_dirs=['include'],\n extra_compile_args=['-std=c++17', '-O3', '-fno-delete-null-pointer-checks']\n )\n", (74, 396), False, 'from distutils.core import setup, Extension\n'), ((451, 637), 'distutils.core.setup', 'setup', ([], {'name': '"""StringDict"""', 'version': '"""0.1"""', 'description': '"""Provides a dict-like type that only allows bytes() (and bytes-like types) or str() keys."""', 'ext_modules': '[StringDict_module]'}), "(name='StringDict', version='0.1', description=\n 'Provides a dict-like type that only allows bytes() (and bytes-like types) or str() keys.'\n , ext_modules=[StringDict_module])\n", (456, 637), False, 'from distutils.core import setup, Extension\n')]
import smtplib from email.mime.text import MIMEText from email.utils import formataddr def email(user, message): """ :param user: :param message: :return: 邮件发送 """ msg = MIMEText(message, 'plain', 'utf-8') msg['From'] = formataddr(["监控", '<EMAIL>']) msg['To'] = formataddr(["同信监控", '<EMAIL>']) msg['Subject'] = "短信下发接口监控" try: server = smtplib.SMTP("smtp.126.com", 25, timeout=5) server.set_debuglevel(1) server.login("<EMAIL>", "<PASSWORD>") # 126邮箱需要开启SMTP功能,使用授权码 server.sendmail('<EMAIL>', ['<EMAIL>',], msg.as_string()) server.quit() except Exception as err: print(err)
[ "smtplib.SMTP", "email.utils.formataddr", "email.mime.text.MIMEText" ]
[((196, 231), 'email.mime.text.MIMEText', 'MIMEText', (['message', '"""plain"""', '"""utf-8"""'], {}), "(message, 'plain', 'utf-8')\n", (204, 231), False, 'from email.mime.text import MIMEText\n'), ((250, 279), 'email.utils.formataddr', 'formataddr', (["['监控', '<EMAIL>']"], {}), "(['监控', '<EMAIL>'])\n", (260, 279), False, 'from email.utils import formataddr\n'), ((296, 327), 'email.utils.formataddr', 'formataddr', (["['同信监控', '<EMAIL>']"], {}), "(['同信监控', '<EMAIL>'])\n", (306, 327), False, 'from email.utils import formataddr\n'), ((387, 430), 'smtplib.SMTP', 'smtplib.SMTP', (['"""smtp.126.com"""', '(25)'], {'timeout': '(5)'}), "('smtp.126.com', 25, timeout=5)\n", (399, 430), False, 'import smtplib\n')]
from manim import * import colorsys RAINBOW = [PURPLE, PURE_BLUE, PURE_GREEN, YELLOW, ORANGE, PURE_RED] def shift_discrete_gradient(colors, delta: int): return list(map(lambda n: colors[(n + delta) % (len(colors) - 1)], range(len(colors)))) class ColorUpdater: def __init__(self) -> None: self.time_state = 0 def rotate_color(self, c, t): [r, g, b] = hex_to_rgb(c) [h, s, v] = colorsys.rgb_to_hsv(r, g, b) new_c = colorsys.hsv_to_rgb((h + t) % 1, s, v) return rgb_to_hex(new_c) def update_color(self, sq, dt): self.time_state = self.time_state + (dt / 60) sq.set_color_by_gradient([self.rotate_color(n, self.time_state) for n in RAINBOW])
[ "colorsys.rgb_to_hsv", "colorsys.hsv_to_rgb" ]
[((419, 447), 'colorsys.rgb_to_hsv', 'colorsys.rgb_to_hsv', (['r', 'g', 'b'], {}), '(r, g, b)\n', (438, 447), False, 'import colorsys\n'), ((465, 503), 'colorsys.hsv_to_rgb', 'colorsys.hsv_to_rgb', (['((h + t) % 1)', 's', 'v'], {}), '((h + t) % 1, s, v)\n', (484, 503), False, 'import colorsys\n')]
import torch import torch.nn as nn import os import numpy as np import cv2 from tqdm import tqdm from torch.utils.tensorboard import SummaryWriter from utils.misc import get_curtime from utils.loss import LossAll import utils.func_utils as func_utils def collater(data): out_data_dict = {} for name in data[0]: out_data_dict[name] = [] for sample in data: for name in sample: out_data_dict[name].append(torch.from_numpy(sample[name])) for name in out_data_dict: out_data_dict[name] = torch.stack(out_data_dict[name], dim=0) return out_data_dict class TrainModule(object): def __init__(self, dataset, num_classes, model, decoder, down_ratio): torch.manual_seed(317) self.dataset = dataset self.dataset_phase = { 'dota': ['train'], 'railway': ['train'] } self.num_classes = num_classes self.model = model self.decoder = decoder self.down_ratio = down_ratio def save_model(self, path, epoch, model, optimizer): if isinstance(model, torch.nn.DataParallel): state_dict = model.module.state_dict() else: state_dict = model.state_dict() torch.save({ 'epoch': epoch, 'model_state_dict': state_dict, 'optimizer_state_dict': optimizer.state_dict(), # 'loss': loss }, path) def load_model(self, model, optimizer, resume): checkpoint = torch.load(resume, map_location=lambda storage, loc: storage) print('loaded weights from {}, epoch {}'.format(resume, checkpoint['epoch'])) state_dict_ = checkpoint['model_state_dict'] # 从 state_dict_ 解析出参数 state_dict = {} for k in state_dict_: # 多 GPU 训练 key, module if k.startswith('module') and not k.startswith('module_list'): state_dict[k[7:]] = state_dict_[k] else: state_dict[k] = state_dict_[k] # override model param model.load_state_dict(state_dict, strict=True) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # for state in optimizer.state.values(): # for k, v in state.items(): # if isinstance(v, torch.Tensor): # state[k] = v.cuda() epoch = checkpoint['epoch'] return model, optimizer, epoch def train_network(self, args): optimizer = torch.optim.Adam(self.model.parameters(), args.init_lr) scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.96, last_epoch=-1) save_path = os.path.join('runs', args.dataset, f'{args.exp}_{get_curtime()}') writer = SummaryWriter(save_path) start_epoch = 1 # add resume part for continuing training when break previously, 10-16-2020 if args.resume_train: model, optimizer, start_epoch = self.load_model(self.model, optimizer, args.resume_train) if not os.path.exists(save_path): os.makedirs(save_path) self.model = torch.nn.DataParallel(self.model, device_ids=[0, 1]) # todo: gpus self.model.cuda() criterion = LossAll() print('Setting up data...') dataset_module = self.dataset[args.dataset] # get dataset cls # datasets dsets = { x: dataset_module(data_dir=args.data_dir, phase=x, # train input_h=args.input_h, input_w=args.input_w, down_ratio=self.down_ratio) for x in self.dataset_phase[args.dataset] } dsets_loader = { 'train': torch.utils.data.DataLoader(dsets['train'], batch_size=args.batch_size, shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=True, collate_fn=collater) } print('Starting training...') best_loss = 100. for epoch in range(start_epoch, args.num_epoch + 1): print('-' * 10) print('Epoch: {}/{} '.format(epoch, args.num_epoch)) epoch_loss = self.run_epoch(phase='train', data_loader=dsets_loader['train'], criterion=criterion, optimizer=optimizer) scheduler.step() # 每个 epoch 变换一次 lr writer.add_scalar('train_loss', epoch_loss, global_step=epoch) if epoch_loss < best_loss: best_loss = epoch_loss self.save_model(os.path.join(save_path, 'model_best.pth'), epoch, self.model, optimizer) # test 测试模型 if 'test' in self.dataset_phase[args.dataset] and epoch % 5 == 0: mAP = self.dec_eval(args, dsets['test']) writer.add_scalar('mAP', mAP, global_step=epoch) def run_epoch(self, phase, data_loader, criterion, optimizer): if phase == 'train': self.model.train() else: self.model.eval() running_loss = 0. # note: item tbar = tqdm(data_loader) for i, data_dict in enumerate(tbar): for name in data_dict: data_dict[name] = data_dict[name].cuda() if phase == 'train': optimizer.zero_grad() with torch.enable_grad(): pr_decs = self.model(data_dict['input']) # dict loss = criterion(pr_decs, data_dict) loss.backward() optimizer.step() else: with torch.no_grad(): pr_decs = self.model(data_dict['input']) loss = criterion(pr_decs, data_dict) running_loss += loss.item() tbar.set_description('{} loss: {:.3f}'.format(phase, running_loss / (i + 1))) epoch_loss = running_loss / len(data_loader) print('{} loss: {}'.format(phase, epoch_loss)) return epoch_loss def dec_eval(self, args, dsets): result_path = 'result_' + args.dataset if not os.path.exists(result_path): os.mkdir(result_path) self.model.eval() func_utils.write_results(args, self.model, dsets, self.down_ratio, self.decoder, result_path) ap = dsets.dec_evaluation(result_path) return ap
[ "torch.manual_seed", "torch.utils.tensorboard.SummaryWriter", "utils.func_utils.write_results", "os.path.exists", "torch.enable_grad", "torch.optim.lr_scheduler.ExponentialLR", "os.makedirs", "utils.misc.get_curtime", "torch.load", "torch.stack", "utils.loss.LossAll", "torch.nn.DataParallel", "tqdm.tqdm", "torch.from_numpy", "os.path.join", "os.mkdir", "torch.utils.data.DataLoader", "torch.no_grad" ]
[((558, 597), 'torch.stack', 'torch.stack', (['out_data_dict[name]'], {'dim': '(0)'}), '(out_data_dict[name], dim=0)\n', (569, 597), False, 'import torch\n'), ((740, 762), 'torch.manual_seed', 'torch.manual_seed', (['(317)'], {}), '(317)\n', (757, 762), False, 'import torch\n'), ((1548, 1609), 'torch.load', 'torch.load', (['resume'], {'map_location': '(lambda storage, loc: storage)'}), '(resume, map_location=lambda storage, loc: storage)\n', (1558, 1609), False, 'import torch\n'), ((2633, 2709), 'torch.optim.lr_scheduler.ExponentialLR', 'torch.optim.lr_scheduler.ExponentialLR', (['optimizer'], {'gamma': '(0.96)', 'last_epoch': '(-1)'}), '(optimizer, gamma=0.96, last_epoch=-1)\n', (2671, 2709), False, 'import torch\n'), ((2815, 2839), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', (['save_path'], {}), '(save_path)\n', (2828, 2839), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((3313, 3365), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['self.model'], {'device_ids': '[0, 1]'}), '(self.model, device_ids=[0, 1])\n', (3334, 3365), False, 'import torch\n'), ((3430, 3439), 'utils.loss.LossAll', 'LossAll', ([], {}), '()\n', (3437, 3439), False, 'from utils.loss import LossAll\n'), ((5830, 5847), 'tqdm.tqdm', 'tqdm', (['data_loader'], {}), '(data_loader)\n', (5834, 5847), False, 'from tqdm import tqdm\n'), ((6964, 7062), 'utils.func_utils.write_results', 'func_utils.write_results', (['args', 'self.model', 'dsets', 'self.down_ratio', 'self.decoder', 'result_path'], {}), '(args, self.model, dsets, self.down_ratio, self.\n decoder, result_path)\n', (6988, 7062), True, 'import utils.func_utils as func_utils\n'), ((3226, 3251), 'os.path.exists', 'os.path.exists', (['save_path'], {}), '(save_path)\n', (3240, 3251), False, 'import os\n'), ((3266, 3288), 'os.makedirs', 'os.makedirs', (['save_path'], {}), '(save_path)\n', (3277, 3288), False, 'import os\n'), ((3977, 4155), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (["dsets['train']"], {'batch_size': 'args.batch_size', 'shuffle': '(True)', 'num_workers': 'args.num_workers', 'pin_memory': '(True)', 'drop_last': '(True)', 'collate_fn': 'collater'}), "(dsets['train'], batch_size=args.batch_size,\n shuffle=True, num_workers=args.num_workers, pin_memory=True, drop_last=\n True, collate_fn=collater)\n", (4004, 4155), False, 'import torch\n'), ((6862, 6889), 'os.path.exists', 'os.path.exists', (['result_path'], {}), '(result_path)\n', (6876, 6889), False, 'import os\n'), ((6904, 6925), 'os.mkdir', 'os.mkdir', (['result_path'], {}), '(result_path)\n', (6912, 6925), False, 'import os\n'), ((463, 493), 'torch.from_numpy', 'torch.from_numpy', (['sample[name]'], {}), '(sample[name])\n', (479, 493), False, 'import torch\n'), ((2780, 2793), 'utils.misc.get_curtime', 'get_curtime', ([], {}), '()\n', (2791, 2793), False, 'from utils.misc import get_curtime\n'), ((5183, 5224), 'os.path.join', 'os.path.join', (['save_path', '"""model_best.pth"""'], {}), "(save_path, 'model_best.pth')\n", (5195, 5224), False, 'import os\n'), ((6083, 6102), 'torch.enable_grad', 'torch.enable_grad', ([], {}), '()\n', (6100, 6102), False, 'import torch\n'), ((6348, 6363), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6361, 6363), False, 'import torch\n')]
import os from logging import Logger from typing import List, Optional import numpy as np import pandas as pd from expiringdict import ExpiringDict from injector import inject, singleton from altymeter.api.exchange import (ExchangeOpenOrder, ExchangeOrder, ExchangeTransfer, PairRecentStats, TradedPair, TradingExchange) from altymeter.module.constants import Configuration from altymeter.pricing import PriceData @singleton class QuadrigaCxApi(TradingExchange): """ """ @inject def __init__(self, config: Configuration, logger: Logger, price_data: PriceData, ): config = config['exchanges'].get('QuadrigaCX') or dict() self._logger = logger self._price_data = price_data self._traded_pairs_cache = ExpiringDict(max_len=1, max_age_seconds=24 * 60 * 60) @property def name(self): return "QuadrigaCX" def collect_data(self, pair: str, since=None, sleep_time=90, stop_event=None): raise NotImplementedError def convert_actions(self, dir_path: str) -> pd.DataFrame: result = [] for path in os.listdir(dir_path): path = os.path.join(dir_path, path) data = pd.read_csv(path, parse_dates=['datetime'], ) if 'fundings' in path: net_amount_index = data.columns.get_loc('net amount') + 1 for row in data.itertuples(): quantity = row.gross if np.isnan(quantity): quantity = row[net_amount_index] if isinstance(row.address, str): wallet = row.address from_exchange = 'Local Wallet' else: wallet = None from_exchange = None currency = row.currency.upper() result.append({ 'Date': row.datetime, 'Type': 'Transfer', 'Quantity': quantity, 'Currency': currency, 'Exchange': from_exchange, 'Wallet': wallet, 'Price': quantity, 'Currency.1': currency, 'Exchange.1': self.name, 'Wallet.1': None, 'Disabled': None, }) elif 'trades' in path: for row in data.itertuples(): if row.type == 'buy': from_currency = row.minor.upper() to_currency = row.major.upper() price = row.value elif row.type == 'sell': from_currency = row.major.upper() to_currency = row.minor.upper() price = row.amount else: raise ValueError(f"Invalid row type: {row.type}\nfor row: {row}") result.append({ 'Date': row.datetime, 'Type': 'Trade', 'Quantity': row.total, 'Currency': to_currency, 'Exchange': self.name, 'Wallet': f'{to_currency} Wallet', 'Price': price, 'Currency.1': from_currency, 'Exchange.1': self.name, 'Wallet.1': f'{from_currency} Wallet', 'Disabled': None, }) elif 'withdrawals' in path: for row in data.itertuples(): if isinstance(row.address, str): wallet = row.address to_exchange = 'Local Wallet' else: wallet = None to_exchange = None currency = row.currency.upper() result.append({ 'Date': row.datetime, 'Type': 'Transfer', 'Quantity': row.amount, 'Currency': currency, 'Exchange': self.name, 'Wallet': f'{currency} Wallet', 'Price': row.amount, 'Currency.1': currency, 'Exchange.1': to_exchange, 'Wallet.1': wallet, 'Disabled': None, }) result = pd.DataFrame(result) return result def create_order(self, pair: str, action_type: str, order_type: str, volume: float, price: Optional[float] = None, **kwargs) -> ExchangeOrder: raise NotImplementedError def get_deposit_history(self) -> List[ExchangeTransfer]: raise NotImplementedError def get_order_book(self, pair: Optional[str] = None, base: Optional[str] = None, to: Optional[str] = None, order_type: Optional[str] = 'all') \ -> List[ExchangeOpenOrder]: raise NotImplementedError def get_pair(self, pair: Optional[str] = None, base: Optional[str] = None, to: Optional[str] = None) -> str: raise NotImplementedError def get_recent_stats(self, pair: str) -> PairRecentStats: raise NotImplementedError def get_traded_pairs(self) -> List[TradedPair]: raise NotImplementedError def get_withdrawal_history(self) -> List[ExchangeTransfer]: raise NotImplementedError if __name__ == '__main__': from altymeter.module.module import AltymeterModule injector = AltymeterModule.get_injector() q: QuadrigaCxApi = injector.get(QuadrigaCxApi)
[ "os.listdir", "altymeter.module.module.AltymeterModule.get_injector", "expiringdict.ExpiringDict", "pandas.read_csv", "os.path.join", "numpy.isnan", "pandas.DataFrame" ]
[((6114, 6144), 'altymeter.module.module.AltymeterModule.get_injector', 'AltymeterModule.get_injector', ([], {}), '()\n', (6142, 6144), False, 'from altymeter.module.module import AltymeterModule\n'), ((984, 1037), 'expiringdict.ExpiringDict', 'ExpiringDict', ([], {'max_len': '(1)', 'max_age_seconds': '(24 * 60 * 60)'}), '(max_len=1, max_age_seconds=24 * 60 * 60)\n', (996, 1037), False, 'from expiringdict import ExpiringDict\n'), ((1322, 1342), 'os.listdir', 'os.listdir', (['dir_path'], {}), '(dir_path)\n', (1332, 1342), False, 'import os\n'), ((4870, 4890), 'pandas.DataFrame', 'pd.DataFrame', (['result'], {}), '(result)\n', (4882, 4890), True, 'import pandas as pd\n'), ((1363, 1391), 'os.path.join', 'os.path.join', (['dir_path', 'path'], {}), '(dir_path, path)\n', (1375, 1391), False, 'import os\n'), ((1411, 1454), 'pandas.read_csv', 'pd.read_csv', (['path'], {'parse_dates': "['datetime']"}), "(path, parse_dates=['datetime'])\n", (1422, 1454), True, 'import pandas as pd\n'), ((1739, 1757), 'numpy.isnan', 'np.isnan', (['quantity'], {}), '(quantity)\n', (1747, 1757), True, 'import numpy as np\n')]