code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
__author__ = 'brendan' import main import pandas as pd import numpy as np from datetime import datetime as dt from matplotlib import pyplot as plt import random import itertools import time import dateutil from datetime import timedelta import Quandl authtoken = '<PASSWORD>' data = pd.read_csv('raw_data/COT_CRUDE.csv', index_col=0, parse_dates=True) data_cop = pd.read_csv('raw_data/COT_COPPER.csv', index_col=0, parse_dates=True) fig, ax = plt.subplots() data.plot(ax=ax) ax.set_title('Commitments of Traders in WTI') fig2, ax2 = plt.subplots() data_cop.plot(ax=ax2) ax2.set_title('Commitments of Traders in Copper Grade #1') plt.show()
[ "matplotlib.pyplot.subplots", "pandas.read_csv", "matplotlib.pyplot.show" ]
[((286, 354), 'pandas.read_csv', 'pd.read_csv', (['"""raw_data/COT_CRUDE.csv"""'], {'index_col': '(0)', 'parse_dates': '(True)'}), "('raw_data/COT_CRUDE.csv', index_col=0, parse_dates=True)\n", (297, 354), True, 'import pandas as pd\n'), ((366, 435), 'pandas.read_csv', 'pd.read_csv', (['"""raw_data/COT_COPPER.csv"""'], {'index_col': '(0)', 'parse_dates': '(True)'}), "('raw_data/COT_COPPER.csv', index_col=0, parse_dates=True)\n", (377, 435), True, 'import pandas as pd\n'), ((446, 460), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (458, 460), True, 'from matplotlib import pyplot as plt\n'), ((537, 551), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (549, 551), True, 'from matplotlib import pyplot as plt\n'), ((633, 643), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (641, 643), True, 'from matplotlib import pyplot as plt\n')]
# Author: <NAME> from kernel.type import TVar, TFun, boolT from kernel.term import Term, Var, Const, Abs from logic.conv import Conv, then_conv, all_conv, arg_conv, binop_conv, rewr_conv from logic.proofterm import ProofTerm, refl """Utility functions for logic.""" conj = Const("conj", TFun(boolT, boolT, boolT)) disj = Const("disj", TFun(boolT, boolT, boolT)) neg = Const("neg", TFun(boolT, boolT)) true = Const("true", boolT) false = Const("false", boolT) def is_conj(t): """Whether t is of the form A & B.""" return t.is_binop() and t.head == conj def mk_conj(*args): """Construct the term s1 & ... & sn.""" if args: assert isinstance(args[0], Term), "mk_conj: each argument must be a term" if len(args) > 1: return conj(args[0], mk_conj(*args[1:])) else: return args[0] else: return true def strip_conj(t): """Given term of the form s1 & ... & sn, return the list [s1, ..., sn]. """ if is_conj(t): return [t.arg1] + strip_conj(t.arg) else: return [t] def is_disj(t): """Whether t is of the form A | B.""" return t.is_binop() and t.head == disj def mk_disj(*args): """Construct the term s1 | ... | sn.""" if args: assert isinstance(args[0], Term), "mk_disj: each argument must be a term" if len(args) > 1: return disj(args[0], mk_disj(*args[1:])) else: return args[0] else: return false def strip_disj(t): """Given term of the form s1 | ... | sn, return the list [s1, ..., sn]. """ if is_disj(t): return [t.arg1] + strip_disj(t.arg) else: return [t] def is_neg(t): """Whether t is of the form ~ A.""" return t.is_comb() and t.fun == neg def is_exists(t): """Whether t is of the form ?x. P x.""" return t.is_comb() and t.fun.is_const() and \ t.fun.name == "exists" and t.arg.is_abs() def mk_exists(x, body): """Given a variable x and a term t possibly depending on x, return the term ?x. t. """ exists_t = Const("exists", TFun(TFun(x.T, boolT), boolT)) return exists_t(Term.mk_abs(x, body)) def subst_norm(t, instsp): """Substitute using the given instantiation, then normalize with respect to beta-conversion. """ tyinst, inst = instsp return t.subst_type(tyinst).subst(inst).beta_norm() def if_t(T): return Const("IF", TFun(boolT, T, T, T)) def is_if(t): """Whether t is of the form if P then x else y.""" f, args = t.strip_comb() return f.is_const_name("IF") and len(args) == 3 def mk_if(P, x, y): """Obtain the term if P then x else y.""" return if_t(x.get_type())(P, x, y) def strip_all_implies(t, names): """Given a term of the form !x_1 ... x_k. A_1 --> ... --> A_n --> C. Return the triple ([v_1, ..., v_k], [A_1, ... A_n], C), where v_1, ..., v_k are new variables with the given names, and A_1, ..., A_n, C are the body of the input term, with bound variables substituted for v_1, ..., v_k. """ if Term.is_all(t): assert len(names) > 0, "strip_all_implies: not enough names input." assert isinstance(names[0], str), "strip_all_implies: names must be strings." v = Var(names[0], t.arg.var_T) vars, As, C = strip_all_implies(t.arg.subst_bound(v), names[1:]) return ([v] + vars, As, C) else: assert len(names) == 0, "strip_all_implies: too many names input." As, C = t.strip_implies() return ([], As, C) """Normalization rules for logic.""" class norm_bool_expr(Conv): """Normalize a boolean expression.""" def get_proof_term(self, thy, t): if is_neg(t): if t.arg == true: return rewr_conv("not_true").get_proof_term(thy, t) elif t.arg == false: return rewr_conv("not_false").get_proof_term(thy, t) else: return refl(t) else: return refl(t) class norm_conj_assoc_clauses(Conv): """Normalize (A_1 & ... & A_n) & (B_1 & ... & B_n).""" def get_proof_term(self, thy, t): if is_conj(t.arg1): return then_conv( rewr_conv("conj_assoc", sym=True), arg_conv(norm_conj_assoc_clauses()) ).get_proof_term(thy, t) else: return all_conv().get_proof_term(thy, t) class norm_conj_assoc(Conv): """Normalize conjunction with respect to associativity.""" def get_proof_term(self, thy, t): if is_conj(t): return then_conv( binop_conv(norm_conj_assoc()), norm_conj_assoc_clauses() ).get_proof_term(thy, t) else: return all_conv().get_proof_term(thy, t)
[ "logic.conv.rewr_conv", "kernel.term.Const", "logic.conv.all_conv", "kernel.type.TFun", "kernel.term.Term.is_all", "logic.proofterm.refl", "kernel.term.Term.mk_abs", "kernel.term.Var" ]
[((412, 432), 'kernel.term.Const', 'Const', (['"""true"""', 'boolT'], {}), "('true', boolT)\n", (417, 432), False, 'from kernel.term import Term, Var, Const, Abs\n'), ((441, 462), 'kernel.term.Const', 'Const', (['"""false"""', 'boolT'], {}), "('false', boolT)\n", (446, 462), False, 'from kernel.term import Term, Var, Const, Abs\n'), ((291, 316), 'kernel.type.TFun', 'TFun', (['boolT', 'boolT', 'boolT'], {}), '(boolT, boolT, boolT)\n', (295, 316), False, 'from kernel.type import TVar, TFun, boolT\n'), ((339, 364), 'kernel.type.TFun', 'TFun', (['boolT', 'boolT', 'boolT'], {}), '(boolT, boolT, boolT)\n', (343, 364), False, 'from kernel.type import TVar, TFun, boolT\n'), ((385, 403), 'kernel.type.TFun', 'TFun', (['boolT', 'boolT'], {}), '(boolT, boolT)\n', (389, 403), False, 'from kernel.type import TVar, TFun, boolT\n'), ((3084, 3098), 'kernel.term.Term.is_all', 'Term.is_all', (['t'], {}), '(t)\n', (3095, 3098), False, 'from kernel.term import Term, Var, Const, Abs\n'), ((2160, 2180), 'kernel.term.Term.mk_abs', 'Term.mk_abs', (['x', 'body'], {}), '(x, body)\n', (2171, 2180), False, 'from kernel.term import Term, Var, Const, Abs\n'), ((2439, 2459), 'kernel.type.TFun', 'TFun', (['boolT', 'T', 'T', 'T'], {}), '(boolT, T, T, T)\n', (2443, 2459), False, 'from kernel.type import TVar, TFun, boolT\n'), ((3274, 3300), 'kernel.term.Var', 'Var', (['names[0]', 't.arg.var_T'], {}), '(names[0], t.arg.var_T)\n', (3277, 3300), False, 'from kernel.term import Term, Var, Const, Abs\n'), ((2114, 2130), 'kernel.type.TFun', 'TFun', (['x.T', 'boolT'], {}), '(x.T, boolT)\n', (2118, 2130), False, 'from kernel.type import TVar, TFun, boolT\n'), ((4007, 4014), 'logic.proofterm.refl', 'refl', (['t'], {}), '(t)\n', (4011, 4014), False, 'from logic.proofterm import ProofTerm, refl\n'), ((3966, 3973), 'logic.proofterm.refl', 'refl', (['t'], {}), '(t)\n', (3970, 3973), False, 'from logic.proofterm import ProofTerm, refl\n'), ((4381, 4391), 'logic.conv.all_conv', 'all_conv', ([], {}), '()\n', (4389, 4391), False, 'from logic.conv import Conv, then_conv, all_conv, arg_conv, binop_conv, rewr_conv\n'), ((4758, 4768), 'logic.conv.all_conv', 'all_conv', ([], {}), '()\n', (4766, 4768), False, 'from logic.conv import Conv, then_conv, all_conv, arg_conv, binop_conv, rewr_conv\n'), ((3778, 3799), 'logic.conv.rewr_conv', 'rewr_conv', (['"""not_true"""'], {}), "('not_true')\n", (3787, 3799), False, 'from logic.conv import Conv, then_conv, all_conv, arg_conv, binop_conv, rewr_conv\n'), ((4224, 4257), 'logic.conv.rewr_conv', 'rewr_conv', (['"""conj_assoc"""'], {'sym': '(True)'}), "('conj_assoc', sym=True)\n", (4233, 4257), False, 'from logic.conv import Conv, then_conv, all_conv, arg_conv, binop_conv, rewr_conv\n'), ((3879, 3901), 'logic.conv.rewr_conv', 'rewr_conv', (['"""not_false"""'], {}), "('not_false')\n", (3888, 3901), False, 'from logic.conv import Conv, then_conv, all_conv, arg_conv, binop_conv, rewr_conv\n')]
from zipfile import ZipFile from os import path from src.prefixes import SMPDB from src.babel_utils import pull_via_urllib def pull_smpdb(): dname = pull_via_urllib('http://smpdb.ca/downloads/','smpdb_pathways.csv.zip',decompress=False,subpath='SMPDB') ddir = path.dirname(dname) with ZipFile(dname, 'r') as zipObj: zipObj.extractall(ddir) def make_labels(inputfile,labelfile): """Get the SMPDB file. It's not good - there are \n and commas, and commas are also the delimiter. I mean, what?""" with open(inputfile,'r') as inf, open(labelfile,'w') as outf: h = inf.readline() for line in inf: if ',' not in line: continue if not line.startswith('SMP'): continue #print(line) #my god what a stupid file. It's a csv, but there are commas in the data. Not only that # but the last column is quoted, but the next to the last column (which also has commas) is not. frontline = line.split('"')[0][:-1] #remove the last (quoted) column x = frontline.strip().split(',') ident = f'{SMPDB}:{x[0]}' name = ','.join(x[2:]) #get the rest of the splits and put them back together. if len(name) > 0: outf.write(f'{ident}\t{name}\n')
[ "os.path.dirname", "src.babel_utils.pull_via_urllib", "zipfile.ZipFile" ]
[((154, 264), 'src.babel_utils.pull_via_urllib', 'pull_via_urllib', (['"""http://smpdb.ca/downloads/"""', '"""smpdb_pathways.csv.zip"""'], {'decompress': '(False)', 'subpath': '"""SMPDB"""'}), "('http://smpdb.ca/downloads/', 'smpdb_pathways.csv.zip',\n decompress=False, subpath='SMPDB')\n", (169, 264), False, 'from src.babel_utils import pull_via_urllib\n'), ((269, 288), 'os.path.dirname', 'path.dirname', (['dname'], {}), '(dname)\n', (281, 288), False, 'from os import path\n'), ((298, 317), 'zipfile.ZipFile', 'ZipFile', (['dname', '"""r"""'], {}), "(dname, 'r')\n", (305, 317), False, 'from zipfile import ZipFile\n')]
import datetime import json from typing import List, Dict, Union import pyrfc3339 import responses import unittest import urllib from selfhost_client import ( TimeseriesClient, TimeseriesType, TimeseriesDataPointType, TimeseriesDataType, TimeseriesDataPointResponse, TimeseriesDataResponse ) class TestPCTTimeseriesClient(unittest.TestCase): def setUp(self) -> None: self.base_url: str = 'http://example.com' self.username: str = 'test' self.password: str = '<PASSWORD>' self.client: TimeseriesClient = TimeseriesClient( base_url=self.base_url, username=self.username, password=self.password ) @responses.activate def test_get_timeseries(self) -> None: mock_response: List[TimeseriesType] = [ { 'created_by': '1740f1e4-d2c6-4943-9976-9ff10eab90b2', 'lower_bound': 0, 'name': 'new timeseries', 'si_unit': 'C', 'tags': [ 'tag1', 'tag2' ], 'thing_uuid': 'e21ae595-15a5-4f11-8992-9d33600cc1ee', 'upper_bound': 0, 'uuid': 'a21ae595-15a5-4f11-8992-9d33600cc1ee' } ] with self.subTest('call successful with complete parameter list'): responses.add( responses.GET, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}', json=mock_response, status=200 ) params: Dict[str, Union[int, List[str]]] = { 'limit': 20, 'offset': 0, 'tags': ['tag', 'tag2'] } res: List[TimeseriesType] = self.client.get_timeseries(**params) self.assertEqual(res, mock_response) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}' f'?{urllib.parse.urlencode(params, doseq=True)}' ) self.assertEqual(responses.calls[0].request.params.get('limit'), str(params['limit'])) self.assertEqual(responses.calls[0].request.params.get('offset'), str(params['offset'])) self.assertEqual(responses.calls[0].request.params.get('tags'), params['tags']) @responses.activate def test_create_timeseries(self) -> None: mock_response: TimeseriesType = { 'created_by': '1740f1e4-d2c6-4943-9976-9ff10eab90b2', 'lower_bound': 0, 'name': 'new timeseries', 'si_unit': 'C', 'tags': [ 'tag1', 'tag2' ], 'thing_uuid': 'e21ae595-15a5-4f11-8992-9d33600cc1ee', 'upper_bound': 0, 'uuid': 'a21ae595-15a5-4f11-8992-9d33600cc1ee' } with self.subTest('call successful with complete parameter list'): responses.add( responses.POST, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}', json=mock_response, status=201 ) params: Dict[str, Union[int, str, List[str]]] = { 'name': 'new timeseries', 'si_unit': 'C', 'thing_uuid': 'e21ae595-15a5-4f11-8992-9d33600cc1ee', 'lower_bound': 0, 'upper_bound': 0, 'tags': [ 'tag1', 'tag2' ] } res: TimeseriesType = self.client.create_timeseries(**params) self.assertEqual(res, mock_response) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}' ) self.assertEqual(json.loads(responses.calls[0].request.body.decode('utf-8')), params) @responses.activate def test_get_timeseries_by_uuid(self) -> None: mock_response: TimeseriesType = { 'created_by': '1740f1e4-d2c6-4943-9976-9ff10eab90b2', 'lower_bound': 0, 'name': 'new timeseries', 'si_unit': 'C', 'tags': [ 'tag1', 'tag2' ], 'thing_uuid': 'e21ae595-15a5-4f11-8992-9d33600cc1ee', 'upper_bound': 0, 'uuid': 'a21ae595-15a5-4f11-8992-9d33600cc1ee' } timeseries_uuid: str = '5ce5d3cd-ff99-4342-a19e-fdb1b5805178' with self.subTest('call successful with complete parameter list'): responses.add( responses.GET, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}', json=mock_response, status=200 ) res: TimeseriesType = self.client.get_timeseries_by_uuid(timeseries_uuid) self.assertEqual(res, mock_response) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}' ) @responses.activate def test_update_timeseries(self) -> None: timeseries_uuid: str = '7e7823cc-44fa-403d-853f-d5ce48a002e4' with self.subTest('call successful with complete parameter list'): responses.add( responses.PUT, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}', status=204 ) params: Dict[str, Union[int, str, List[str]]] = { 'name': 'updated timeseries', 'si_unit': 'C', 'thing_uuid': '7e7823cc-44fa-403d-853f-d5ce48a002e4', 'lower_bound': 0, 'upper_bound': 0, 'tags': [ 'tag1', 'tag2' ] } self.client.update_timeseries(timeseries_uuid, **params) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}' ) self.assertEqual(json.loads(responses.calls[0].request.body.decode('utf-8')), params) @responses.activate def test_delete_timeseries(self) -> None: timeseries_uuid: str = '7e7823cc-44fa-403d-853f-d5ce48a002e4' with self.subTest('call successful with complete parameter list'): responses.add( responses.DELETE, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}', status=204 ) self.client.delete_timeseries(timeseries_uuid) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}' ) @responses.activate def test_get_timeseries_data(self) -> None: mock_response: List[TimeseriesDataPointResponse] = [ { 'ts': '2022-01-14T12:43:44.147Z', 'v': 3.14 } ] timeseries_uuid: str = 'Ze7823cc-44fa-403d-853f-d5ce48a002e4' with self.subTest('call successful with complete parameter list'): responses.add( responses.GET, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}' f'/data', json=mock_response, status=200 ) params: Dict[str, Union[str, int, datetime.datetime]] = { 'start': pyrfc3339.parse('2022-01-14T12:43:44.147Z'), 'end': pyrfc3339.parse('2022-01-14T12:43:44.147Z'), 'unit': 'C', 'ge': 0, 'le': 0, 'precision': 'second', 'aggregate': 'avg', 'timezone': 'UTC' } expected_query_params: Dict[str, Union[str, int]] = { **params, 'start': params['start'].isoformat(), 'end': params['end'].isoformat() } res: List[TimeseriesDataPointType] = self.client.get_timeseries_data(timeseries_uuid, **params) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data' f'?{urllib.parse.urlencode(expected_query_params)}' ) self.assertEqual(responses.calls[0].request.params.get('start'), params['start'].isoformat()) self.assertEqual(responses.calls[0].request.params.get('end'), params['end'].isoformat()) self.assertEqual(responses.calls[0].request.params.get('unit'), params['unit']) self.assertEqual(responses.calls[0].request.params.get('ge'), str(params['ge'])) self.assertEqual(responses.calls[0].request.params.get('le'), str(params['le'])) self.assertEqual(responses.calls[0].request.params.get('precision'), params['precision']) self.assertEqual(responses.calls[0].request.params.get('aggregate'), params['aggregate']) self.assertEqual(responses.calls[0].request.params.get('timezone'), params['timezone']) self.assertEqual(res[0]['v'], mock_response[0]['v']) self.assertEqual( res[0]['ts'], pyrfc3339.parse('2022-01-14T12:43:44.147Z') ) @responses.activate def test_create_timeseries_data(self) -> None: timeseries_uuid: str = 'Ze7823cc-44fa-403d-853f-d5ce48a002e4' with self.subTest('call successful with complete parameter list'): responses.add( responses.POST, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}' f'/data', status=201 ) unit: str = 'C' body: List[TimeseriesDataPointType] = [ {'ts': pyrfc3339.parse('2022-01-14T12:52:04.147Z'), 'v': 3.01}, {'ts': pyrfc3339.parse('2022-01-14T12:52:04.147Z'), 'v': 3.99} ] self.client.create_timeseries_data(timeseries_uuid, body, unit) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data' f'?{urllib.parse.urlencode({"unit": unit})}' ) self.assertEqual(responses.calls[0].request.params.get('unit'), unit) sent_body: List[TimeseriesDataPointResponse] = json.loads(responses.calls[0].request.body.decode('utf-8')) self.assertEqual(sent_body[0]['ts'], body[0]['ts'].isoformat()) self.assertEqual(sent_body[0]['v'], body[0]['v']) self.assertEqual(sent_body[1]['ts'], body[1]['ts'].isoformat()) self.assertEqual(sent_body[1]['v'], body[1]['v']) @responses.activate def test_delete_timeseries_data(self) -> None: timeseries_uuid: str = '7e7823cc-44fa-403d-853f-d5ce48a002e4' with self.subTest('call successful with complete parameter list'): responses.add( responses.DELETE, url=f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}' f'/data', status=204 ) params: Dict[str, Union[str, int, datetime.datetime]] = { 'start': pyrfc3339.parse('2022-01-14T12:52:04.147Z'), 'end': pyrfc3339.parse('2022-01-14T12:52:04.147Z'), 'ge': 0, 'le': 0 } expected_query_params: Dict[str, Union[str, int]] = { **params, 'start': params['start'].isoformat(), 'end': params['end'].isoformat() } self.client.delete_timeseries_data(timeseries_uuid, **params) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data' f'?{urllib.parse.urlencode(expected_query_params)}' ) self.assertEqual(responses.calls[0].request.params.get('start'), params['start'].isoformat()) self.assertEqual(responses.calls[0].request.params.get('end'), params['end'].isoformat()) self.assertEqual(responses.calls[0].request.params.get('ge'), str(params['ge'])) self.assertEqual(responses.calls[0].request.params.get('le'), str(params['le'])) @responses.activate def test_get_multiple_timeseries_data(self) -> None: mock_response: List[TimeseriesDataResponse] = [ { 'data': [{ 'ts': '2022-01-14T12:43:44.147Z', 'v': 3.14 }], 'uuid': 'ze7823cc-44fa-403d-853f-d5ce48a002e4' } ] with self.subTest('call successful with complete parameter list'): responses.add( responses.GET, url=f'{self.base_url}/{self.client._api_version}/tsquery', json=mock_response, status=200 ) params: Dict[str, Union[str, int, List[str], datetime.datetime]] = { 'uuids': ['be7823cc-44fa-403d-853f-d5ce48a002e4', 'ze7823cc-44fa-403d-853f-d5ce48a002e4'], 'start': pyrfc3339.parse('2022-01-14T12:43:44.147Z'), 'end': pyrfc3339.parse('2022-01-14T12:43:44.147Z'), 'unit': 'C', 'ge': 0, 'le': 0, 'precision': 'second', 'aggregate': 'avg', 'timezone': 'UTC' } expected_query_params: Dict[str, Union[str, int, List[str]]] = { **params, 'start': params['start'].isoformat(), 'end': params['end'].isoformat() } res: List[TimeseriesDataType] = self.client.get_multiple_timeseries_data(**params) self.assertEqual(len(responses.calls), 1) self.assertEqual( responses.calls[0].request.url, f'{self.base_url}/{self.client._api_version}/tsquery' f'?{urllib.parse.urlencode(expected_query_params, doseq=True)}' ) self.assertEqual(responses.calls[0].request.params.get('uuids'), params['uuids']) self.assertEqual(responses.calls[0].request.params.get('start'), params['start'].isoformat()) self.assertEqual(responses.calls[0].request.params.get('end'), params['end'].isoformat()) self.assertEqual(responses.calls[0].request.params.get('unit'), params['unit']) self.assertEqual(responses.calls[0].request.params.get('ge'), str(params['ge'])) self.assertEqual(responses.calls[0].request.params.get('le'), str(params['le'])) self.assertEqual(responses.calls[0].request.params.get('precision'), params['precision']) self.assertEqual(responses.calls[0].request.params.get('aggregate'), params['aggregate']) self.assertEqual(responses.calls[0].request.params.get('timezone'), params['timezone']) self.assertEqual(res[0]['data'][0]['v'], mock_response[0]['data'][0]['v']) self.assertEqual( res[0]['data'][0]['ts'], pyrfc3339.parse('2022-01-14T12:43:44.147Z') )
[ "urllib.parse.urlencode", "selfhost_client.TimeseriesClient", "responses.add", "pyrfc3339.parse" ]
[((563, 656), 'selfhost_client.TimeseriesClient', 'TimeseriesClient', ([], {'base_url': 'self.base_url', 'username': 'self.username', 'password': 'self.password'}), '(base_url=self.base_url, username=self.username, password=\n self.password)\n', (579, 656), False, 'from selfhost_client import TimeseriesClient, TimeseriesType, TimeseriesDataPointType, TimeseriesDataType, TimeseriesDataPointResponse, TimeseriesDataResponse\n'), ((1384, 1540), 'responses.add', 'responses.add', (['responses.GET'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}"""', 'json': 'mock_response', 'status': '(200)'}), "(responses.GET, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}'\n , json=mock_response, status=200)\n", (1397, 1540), False, 'import responses\n'), ((3119, 3276), 'responses.add', 'responses.add', (['responses.POST'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}"""', 'json': 'mock_response', 'status': '(201)'}), "(responses.POST, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}'\n , json=mock_response, status=201)\n", (3132, 3276), False, 'import responses\n'), ((4886, 5060), 'responses.add', 'responses.add', (['responses.GET'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}"""', 'json': 'mock_response', 'status': '(200)'}), "(responses.GET, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}'\n , json=mock_response, status=200)\n", (4899, 5060), False, 'import responses\n'), ((5756, 5910), 'responses.add', 'responses.add', (['responses.PUT'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}"""', 'status': '(204)'}), "(responses.PUT, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}'\n , status=204)\n", (5769, 5910), False, 'import responses\n'), ((7013, 7170), 'responses.add', 'responses.add', (['responses.DELETE'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}"""', 'status': '(204)'}), "(responses.DELETE, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}'\n , status=204)\n", (7026, 7170), False, 'import responses\n'), ((7951, 8130), 'responses.add', 'responses.add', (['responses.GET'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data"""', 'json': 'mock_response', 'status': '(200)'}), "(responses.GET, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data'\n , json=mock_response, status=200)\n", (7964, 8130), False, 'import responses\n'), ((10511, 10671), 'responses.add', 'responses.add', (['responses.POST'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data"""', 'status': '(201)'}), "(responses.POST, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data'\n , status=201)\n", (10524, 10671), False, 'import responses\n'), ((12119, 12281), 'responses.add', 'responses.add', (['responses.DELETE'], {'url': 'f"""{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data"""', 'status': '(204)'}), "(responses.DELETE, url=\n f'{self.base_url}/{self.client._api_version}/{self.client._timeseries_api_path}/{timeseries_uuid}/data'\n , status=204)\n", (12132, 12281), False, 'import responses\n'), ((14102, 14231), 'responses.add', 'responses.add', (['responses.GET'], {'url': 'f"""{self.base_url}/{self.client._api_version}/tsquery"""', 'json': 'mock_response', 'status': '(200)'}), "(responses.GET, url=\n f'{self.base_url}/{self.client._api_version}/tsquery', json=\n mock_response, status=200)\n", (14115, 14231), False, 'import responses\n'), ((8319, 8362), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:43:44.147Z"""'], {}), "('2022-01-14T12:43:44.147Z')\n", (8334, 8362), False, 'import pyrfc3339\n'), ((8387, 8430), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:43:44.147Z"""'], {}), "('2022-01-14T12:43:44.147Z')\n", (8402, 8430), False, 'import pyrfc3339\n'), ((10220, 10263), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:43:44.147Z"""'], {}), "('2022-01-14T12:43:44.147Z')\n", (10235, 10263), False, 'import pyrfc3339\n'), ((12454, 12497), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:52:04.147Z"""'], {}), "('2022-01-14T12:52:04.147Z')\n", (12469, 12497), False, 'import pyrfc3339\n'), ((12522, 12565), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:52:04.147Z"""'], {}), "('2022-01-14T12:52:04.147Z')\n", (12537, 12565), False, 'import pyrfc3339\n'), ((14514, 14557), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:43:44.147Z"""'], {}), "('2022-01-14T12:43:44.147Z')\n", (14529, 14557), False, 'import pyrfc3339\n'), ((14582, 14625), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:43:44.147Z"""'], {}), "('2022-01-14T12:43:44.147Z')\n", (14597, 14625), False, 'import pyrfc3339\n'), ((16503, 16546), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:43:44.147Z"""'], {}), "('2022-01-14T12:43:44.147Z')\n", (16518, 16546), False, 'import pyrfc3339\n'), ((10853, 10896), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:52:04.147Z"""'], {}), "('2022-01-14T12:52:04.147Z')\n", (10868, 10896), False, 'import pyrfc3339\n'), ((10933, 10976), 'pyrfc3339.parse', 'pyrfc3339.parse', (['"""2022-01-14T12:52:04.147Z"""'], {}), "('2022-01-14T12:52:04.147Z')\n", (10948, 10976), False, 'import pyrfc3339\n'), ((2156, 2198), 'urllib.parse.urlencode', 'urllib.parse.urlencode', (['params'], {'doseq': '(True)'}), '(params, doseq=True)\n', (2178, 2198), False, 'import urllib\n'), ((9226, 9271), 'urllib.parse.urlencode', 'urllib.parse.urlencode', (['expected_query_params'], {}), '(expected_query_params)\n', (9248, 9271), False, 'import urllib\n'), ((11354, 11392), 'urllib.parse.urlencode', 'urllib.parse.urlencode', (["{'unit': unit}"], {}), "({'unit': unit})\n", (11376, 11392), False, 'import urllib\n'), ((13189, 13234), 'urllib.parse.urlencode', 'urllib.parse.urlencode', (['expected_query_params'], {}), '(expected_query_params)\n', (13211, 13234), False, 'import urllib\n'), ((15370, 15427), 'urllib.parse.urlencode', 'urllib.parse.urlencode', (['expected_query_params'], {'doseq': '(True)'}), '(expected_query_params, doseq=True)\n', (15392, 15427), False, 'import urllib\n')]
import argparse import copy import inspect import itertools import json import math import subprocess import sys from pathlib import Path from typing import List, Any import transformers.optimization as module_optim import model.model as module_arch class Config: def __init__(self, config_dir: Path) -> None: config_dir.mkdir(exist_ok=True) self.config_dir = config_dir self.log = [] def write(self, **config) -> None: config_path = self.config_dir / f'{config["name"]}.json' if config_path in self.log: return with config_path.open('w') as f: json.dump(config, f, indent=2, ensure_ascii=False) self.log.append(config_path) print(config_path) def main() -> None: all_models = [m[0] for m in inspect.getmembers(module_arch, inspect.isclass) if m[1].__module__ == module_arch.__name__] all_lr_schedulers = [m[0][4:] for m in inspect.getmembers(module_optim, inspect.isfunction) if m[1].__module__ == module_optim.__name__ and m[0].startswith('get_')] parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=(lambda p: Path(p)), default='config', help='path to output directory') parser.add_argument('-d', '--dataset', type=(lambda p: Path(p)), help='path to dataset directory') parser.add_argument('-m', '--model', choices=all_models, default=all_models, nargs='*', help='model name') parser.add_argument('-e', '--epoch', type=int, default=[4], nargs='*', help='number of training epochs') parser.add_argument('-b', '--batch-size', type=int, default=16, help='number of batch size') parser.add_argument('--max-bpg', type=int, default=None, help='max batch size per GPU') parser.add_argument('--eval-batch-size', type=int, default=None, help='number of batch size for evaluation (default: same as that of training)') parser.add_argument('--coreference', '--coref', '--cr', action='store_true', default=False, help='perform coreference resolution') parser.add_argument('--bridging', '--brg', '--bar', action='store_true', default=False, help='perform bridging anaphora resolution') parser.add_argument('--cases', default='ガ ヲ ニ ガ2'.split(), nargs='*', help='cases to perform PAS analysis (default: ガ ヲ ニ ガ2)') parser.add_argument('--dropout', type=float, default=0.0, help='dropout ratio') parser.add_argument('--lr', type=float, default=5e-5, help='learning rate') parser.add_argument('--lr-schedule', choices=all_lr_schedulers, type=str, default='linear_schedule_with_warmup', help='lr scheduler') parser.add_argument('--warmup-proportion', type=float, default=0.1, help='Proportion of training to perform linear learning rate warmup for') parser.add_argument('--warmup-steps', type=int, default=None, help='Linear warmup over warmup_steps.') parser.add_argument('--additional-name', '--name', type=str, default=None, help='additional config file name') parser.add_argument('--gpus', type=int, default=8, help='number of gpus to use') parser.add_argument('--save-start-epoch', type=int, default=1, help='you can skip saving of initial checkpoints, which reduces writing overhead') parser.add_argument('--corpus', choices=['kwdlc', 'kc', 'fuman'], default=['kwdlc', 'kc'], nargs='*', help='corpus to use in training') parser.add_argument('--train-target', choices=['overt', 'dep', 'zero'], default=['overt', 'dep', 'zero'], nargs='*', help='dependency type to train') parser.add_argument('--pas-target', choices=['none', 'pred', 'noun', 'all'], default=['pred'], nargs='*', help='PAS analysis target (pred: verbal predicates, noun: nominal predicates, all: both)') parser.add_argument('--debug', action='store_true', default=False, help='debug mode') args = parser.parse_args() config = Config(args.config) data_root: Path = args.dataset.resolve() with data_root.joinpath('config.json').open() as f: dataset_config = json.load(f) exophors = dataset_config['exophors'] # cases: List[str] = args.case_string.split(',') if args.case_string else [] msg = '"ノ" found in case string. If you want to perform bridging anaphora resolution, specify "--bridging" option' assert 'ノ' not in args.cases, msg pas_targets_list = [['pred'] * (t in ('pred', 'all')) + ['noun'] * (t in ('noun', 'all')) for t in args.pas_target] for model, n_epoch, pas_targets in itertools.product(args.model, args.epoch, pas_targets_list): items: List[Any] = [model] corpus2abbr = {'kwdlc': 'w', 'kc': 'n', 'fuman': 'f'} items += [''.join(corpus2abbr[c] for c in args.corpus), f'{n_epoch}e', dataset_config['bert_name']] if pas_targets: items.append(''.join(tgt[0] for tgt in ('overt', 'dep', 'zero') if tgt in args.train_target)) if 'pred' in pas_targets: items.append('vpa') if 'noun' in pas_targets: items.append('npa') if args.bridging: items.append('bar') if args.coreference: items.append('cr') if args.debug: items.append('debug') if args.additional_name: items.append(args.additional_name) name = '-'.join(str(x) for x in items) cases = args.cases if pas_targets else [] num_train_examples = 0 if 'kwdlc' in args.corpus: num_train_examples += dataset_config['num_examples']['kwdlc']['train'] if 'kc' in args.corpus: num_train_examples += dataset_config['num_examples']['kc']['train'] if 'fuman' in args.corpus: num_train_examples += dataset_config['num_examples']['fuman']['train'] if model == 'CommonsenseModel': num_train_examples += dataset_config['num_examples']['commonsense']['train'] arch = { 'type': model, 'args': { 'bert_model': dataset_config['bert_path'], 'vocab_size': dataset_config['vocab_size'] + len(exophors) + 1 + int(args.coreference), 'dropout': args.dropout, 'num_case': len(cases) + int(args.bridging), 'coreference': args.coreference, }, } dataset = { 'type': 'PASDataset', 'args': { 'path': None, 'gold_path': None, 'cases': cases, 'exophors': exophors, 'coreference': args.coreference, 'bridging': args.bridging, 'max_seq_length': dataset_config['max_seq_length'], 'bert_path': dataset_config['bert_path'], 'training': None, 'kc': None, 'train_targets': args.train_target, 'pas_targets': pas_targets, 'n_jobs': -1 if args.debug is False else 0, }, } train_datasets = {} valid_datasets = {} test_datasets = {} for corpus in args.corpus: train_dataset = copy.deepcopy(dataset) train_dataset['args']['path'] = str(data_root / corpus / 'train') train_dataset['args']['training'] = True train_dataset['args']['kc'] = (corpus == 'kc') train_datasets[corpus] = train_dataset valid_dataset = copy.deepcopy(dataset) valid_dataset['args']['path'] = str(data_root / corpus / 'valid') valid_dataset['args']['gold_path'] = str(data_root / corpus / 'valid_gold') valid_dataset['args']['training'] = False valid_dataset['args']['kc'] = (corpus == 'kc') valid_datasets[corpus] = valid_dataset test_dataset = copy.deepcopy(dataset) test_dataset['args']['path'] = str(data_root / corpus / 'test') test_dataset['args']['gold_path'] = str(data_root / corpus / 'test_gold') test_dataset['args']['training'] = False test_dataset['args']['kc'] = (corpus == 'kc') test_datasets[corpus] = test_dataset if model == 'CommonsenseModel': commonsense_dataset = { 'type': 'CommonsenseDataset', 'args': { 'path': None, 'max_seq_length': dataset_config['max_seq_length'], 'num_special_tokens': len(exophors) + 1 + int(args.coreference), 'bert_model': dataset_config['bert_path'], }, } train_commonsense_dataset = copy.deepcopy(commonsense_dataset) train_commonsense_dataset['args']['path'] = str(data_root / 'commonsense' / 'train.pkl') train_datasets['commonsense'] = train_commonsense_dataset valid_commonsense_dataset = copy.deepcopy(commonsense_dataset) valid_commonsense_dataset['args']['path'] = str(data_root / 'commonsense' / 'valid.pkl') valid_datasets['commonsense'] = valid_commonsense_dataset test_commonsense_dataset = copy.deepcopy(commonsense_dataset) test_commonsense_dataset['args']['path'] = str(data_root / 'commonsense' / 'test.pkl') test_datasets['commonsense'] = test_commonsense_dataset data_loader = { 'type': 'PASDataLoader', 'args': { 'batch_size': args.batch_size, 'shuffle': None, 'num_workers': 0 if args.debug else 4, 'pin_memory': True, }, } data_loaders = {} train_data_loader = copy.deepcopy(data_loader) train_data_loader['args']['shuffle'] = (not args.debug) data_loaders['train'] = train_data_loader valid_data_loader = copy.deepcopy(data_loader) valid_data_loader['args']['batch_size'] = args.eval_batch_size if args.eval_batch_size else args.batch_size valid_data_loader['args']['shuffle'] = False data_loaders['valid'] = valid_data_loader data_loaders['test'] = copy.deepcopy(valid_data_loader) optimizer = { 'type': 'AdamW', 'args': { 'lr': args.lr, 'eps': 1e-8, 'weight_decay': 0.01, }, } metrics = [] if pas_targets: if 'ガ' in cases: metrics.append('case_analysis_f1_ga') metrics.append('zero_anaphora_f1_ga') if 'ヲ' in cases: metrics.append('case_analysis_f1_wo') metrics.append('zero_anaphora_f1_wo') if 'ニ' in cases: metrics.append('case_analysis_f1_ni') metrics.append('zero_anaphora_f1_ni') if 'ガ2' in cases: metrics.append('case_analysis_f1_ga2') metrics.append('zero_anaphora_f1_ga2') if {'ガ', 'ヲ', 'ニ', 'ガ2'} & set(cases): metrics += [ 'case_analysis_f1', 'zero_anaphora_f1_inter', 'zero_anaphora_f1_intra', 'zero_anaphora_f1_exophora', 'zero_anaphora_f1', 'pas_analysis_f1', ] if args.coreference: metrics.append('coreference_f1') if args.bridging: metrics.append('bridging_anaphora_f1') t_total = math.ceil(num_train_examples / args.batch_size) * n_epoch warmup_steps = args.warmup_steps if args.warmup_steps is not None else t_total * args.warmup_proportion lr_scheduler = {'type': 'get_' + args.lr_schedule} if args.lr_schedule == 'constant_schedule': lr_scheduler['args'] = {} elif args.lr_schedule == 'constant_schedule_with_warmup': lr_scheduler['args'] = {'num_warmup_steps': warmup_steps} elif args.lr_schedule in ('linear_schedule_with_warmup', 'cosine_schedule_with_warmup', 'cosine_with_hard_restarts_schedule_with_warmup'): lr_scheduler['args'] = {'num_warmup_steps': warmup_steps, 'num_training_steps': t_total} else: raise ValueError(f'unknown lr schedule: {args.lr_schedule}') mnt_mode = 'max' mnt_metric = 'val_all_' if 'pas_analysis_f1' in metrics: mnt_metric += 'pas_analysis_f1' elif 'coreference_f1' in metrics: mnt_metric += 'coreference_f1' elif 'bridging_anaphora_f1' in metrics: mnt_metric += 'bridging_anaphora_f1' else: raise ValueError('no metric to evaluate') trainer = { 'epochs': n_epoch, 'batch_size': args.batch_size, 'max_bpg': args.max_bpg if args.max_bpg is not None else args.batch_size, 'save_dir': 'result/', 'save_start_epoch': args.save_start_epoch, 'verbosity': 2 if args.debug else 1, # 0: WARNING, 1: INFO, 2: DEBUG 'monitor': f'{mnt_mode} {mnt_metric}', 'early_stop': 10, } config.write( name=name, commit=subprocess.check_output(['git', 'rev-parse', 'HEAD']).decode().strip(), args=' '.join(sys.argv), n_gpu=args.gpus, arch=arch, train_datasets=train_datasets, valid_datasets=valid_datasets, test_datasets=test_datasets, data_loaders=data_loaders, optimizer=optimizer, metrics=metrics, lr_scheduler=lr_scheduler, trainer=trainer, ) if __name__ == '__main__': main()
[ "subprocess.check_output", "inspect.getmembers", "math.ceil", "argparse.ArgumentParser", "pathlib.Path", "itertools.product", "copy.deepcopy", "json.load", "json.dump" ]
[((1117, 1142), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (1140, 1142), False, 'import argparse\n'), ((4989, 5048), 'itertools.product', 'itertools.product', (['args.model', 'args.epoch', 'pas_targets_list'], {}), '(args.model, args.epoch, pas_targets_list)\n', (5006, 5048), False, 'import itertools\n'), ((4536, 4548), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4545, 4548), False, 'import json\n'), ((10128, 10154), 'copy.deepcopy', 'copy.deepcopy', (['data_loader'], {}), '(data_loader)\n', (10141, 10154), False, 'import copy\n'), ((10298, 10324), 'copy.deepcopy', 'copy.deepcopy', (['data_loader'], {}), '(data_loader)\n', (10311, 10324), False, 'import copy\n'), ((10575, 10607), 'copy.deepcopy', 'copy.deepcopy', (['valid_data_loader'], {}), '(valid_data_loader)\n', (10588, 10607), False, 'import copy\n'), ((630, 680), 'json.dump', 'json.dump', (['config', 'f'], {'indent': '(2)', 'ensure_ascii': '(False)'}), '(config, f, indent=2, ensure_ascii=False)\n', (639, 680), False, 'import json\n'), ((799, 847), 'inspect.getmembers', 'inspect.getmembers', (['module_arch', 'inspect.isclass'], {}), '(module_arch, inspect.isclass)\n', (817, 847), False, 'import inspect\n'), ((953, 1005), 'inspect.getmembers', 'inspect.getmembers', (['module_optim', 'inspect.isfunction'], {}), '(module_optim, inspect.isfunction)\n', (971, 1005), False, 'import inspect\n'), ((7604, 7626), 'copy.deepcopy', 'copy.deepcopy', (['dataset'], {}), '(dataset)\n', (7617, 7626), False, 'import copy\n'), ((7897, 7919), 'copy.deepcopy', 'copy.deepcopy', (['dataset'], {}), '(dataset)\n', (7910, 7919), False, 'import copy\n'), ((8278, 8300), 'copy.deepcopy', 'copy.deepcopy', (['dataset'], {}), '(dataset)\n', (8291, 8300), False, 'import copy\n'), ((9099, 9133), 'copy.deepcopy', 'copy.deepcopy', (['commonsense_dataset'], {}), '(commonsense_dataset)\n', (9112, 9133), False, 'import copy\n'), ((9346, 9380), 'copy.deepcopy', 'copy.deepcopy', (['commonsense_dataset'], {}), '(commonsense_dataset)\n', (9359, 9380), False, 'import copy\n'), ((9592, 9626), 'copy.deepcopy', 'copy.deepcopy', (['commonsense_dataset'], {}), '(commonsense_dataset)\n', (9605, 9626), False, 'import copy\n'), ((11930, 11977), 'math.ceil', 'math.ceil', (['(num_train_examples / args.batch_size)'], {}), '(num_train_examples / args.batch_size)\n', (11939, 11977), False, 'import math\n'), ((1201, 1208), 'pathlib.Path', 'Path', (['p'], {}), '(p)\n', (1205, 1208), False, 'from pathlib import Path\n'), ((1345, 1352), 'pathlib.Path', 'Path', (['p'], {}), '(p)\n', (1349, 1352), False, 'from pathlib import Path\n'), ((13689, 13742), 'subprocess.check_output', 'subprocess.check_output', (["['git', 'rev-parse', 'HEAD']"], {}), "(['git', 'rev-parse', 'HEAD'])\n", (13712, 13742), False, 'import subprocess\n')]
import unittest import pandas as pd class TestPandas(unittest.TestCase): def test_read_csv(self): data = pd.read_csv("/input/tests/data/train.csv") self.assertEqual(14915, data.size) def test_read_feather(self): data = pd.read_feather("/input/tests/data/feather-0_3_1.feather") self.assertEqual(10, data.size)
[ "pandas.read_feather", "pandas.read_csv" ]
[((123, 165), 'pandas.read_csv', 'pd.read_csv', (['"""/input/tests/data/train.csv"""'], {}), "('/input/tests/data/train.csv')\n", (134, 165), True, 'import pandas as pd\n'), ((259, 317), 'pandas.read_feather', 'pd.read_feather', (['"""/input/tests/data/feather-0_3_1.feather"""'], {}), "('/input/tests/data/feather-0_3_1.feather')\n", (274, 317), True, 'import pandas as pd\n')]
# -*- coding: utf-8 -*- """ Created on Fri Apr 6 13:04:33 2018 @author: Adam """ import numpy as np from numpy import * import matplotlib.pyplot as plt import time # load pre-processed data stance_index = np.load('data/stance_index.npy') word2vec_cosine_similarity = np.load( 'data/word2vec_cosine_similarity.npy' ) tf_idf_similarity = np.load('data/tf_idf_similarity.npy') lm_kl_divergence = np.load('data/lm_kl_divergence.npy') # calculate the sigmoid function def sigmoid(x): return 1.0 / (1 + exp(-x)) #storing weights for different classifier weights = { "unrelated" : [], "agree" : [], "disagree" : [], "discuss" : [] } #%% def load_data(): train_x = [] train_y = [] for index in range(49972): stance = stance_index.item().get(index+1) x1 = word2vec_cosine_similarity.item().get(index+1) x2 = tf_idf_similarity.item().get(index+1) train_x.append([1.0, x1, x2]) if stance == 'unrelated': train_y.append(float(0)) else: train_y.append(float(1)) return mat(train_x), mat(train_y).transpose() #%% # train a logistic regression model using gradient descent def train_logistic_classifier(train_x, train_y,class_name): # calculate training time startTime = time.time() sample_size, feature_size = shape(train_x) # hyperparameters setting alpha = 0.01 max_iteration = 100 weights[class_name] = ones((feature_size, 1)) ''' standard gradient descent for k in range(max_iteration): for i in range(sample_size): output = sigmoid(train_x[i, :] * weights[class_name]) error = train_y[i, 0] - output weights[class_name] = weights[class_name] + alpha * train_x[i, :].transpose() * error ''' #improved gradient descent (smooth stochastic gradient descent) for k in range(max_iteration): # randomly select samples to optimize for reducing cycle fluctuations dataIndex = list(range(sample_size)) for i in list(range(sample_size)): alpha = 4.0 / (1.0 + k + i) + 0.001 randIndex = int(random.uniform(0, len(dataIndex))) output = sigmoid(train_x[randIndex, :] * weights[class_name]) error = train_y[randIndex, 0] - output weights[class_name] = weights[class_name] + alpha * train_x[randIndex, :].transpose() * error del(dataIndex[randIndex]) # during one interation, delete the optimized sample print ('Training took %fs!' % (time.time() - startTime)) return weights[class_name] #%% # test trained logistic classifier with given test set # store index of relevant articles for second classifier # store index of unrelated articles for calculation of overall accuracy relevant_articles_index = [] unrelated_articles_index = [] def test_first_classifier(weights, test_x, test_y): sample_size, feature_size = shape(test_x) match_num = 0 for i in range(sample_size): predict = sigmoid(test_x[i, :] * weights)[0, 0] > 0.5 if predict: relevant_articles_index.append(i+1) else: unrelated_articles_index.append(i+1) if predict == bool(test_y[i, 0]): match_num += 1 accuracy = float(match_num) / sample_size return accuracy def load_relevant(x,stance_name): train_x = [] train_y = [] for index in range(len(x)): stance = stance_index.item().get(x[index]) x1 = word2vec_cosine_similarity.item().get(x[index]) x2 = tf_idf_similarity.item().get(x[index]) train_x.append([1.0, x1, x2]) if stance == stance_name: train_y.append(float(1)) else: train_y.append(float(0)) return mat(train_x), mat(train_y).transpose() # train multi-class logistic classifier (after relevant-or-not classifier) def train_one_vs_all(): #agree or not train_x, train_y = load_relevant(relevant_articles_index,'agree') test_x = train_x; test_y = train_y weights['agree'] = train_logistic_classifier(train_x, train_y,'agree') accuracy = test_logistic_classifier(weights['agree'], test_x, test_y) print ('The accuracy for the agree-or-not classifier is: %.3f%%' % (accuracy * 100)) display_logistic_classifier(weights['agree'], train_x, train_y) #disagree or not train_x, train_y = load_relevant(relevant_articles_index,'disagree') test_x = train_x; test_y = train_y weights['disagree'] = train_logistic_classifier(train_x, train_y,'disagree') accuracy = test_logistic_classifier(weights['disagree'], test_x, test_y) print ('The accuracy for the disagree-or-not classifier is: %.3f%%' % (accuracy * 100)) display_logistic_classifier(weights['disagree'], train_x, train_y) #discuss or not train_x, train_y = load_relevant(relevant_articles_index,'discuss') test_x = train_x; test_y = train_y weights['discuss'] = train_logistic_classifier(train_x, train_y,'discuss') accuracy = test_logistic_classifier(weights['discuss'], test_x, test_y) print ('The accuracy for the discuss-or-not classifier is: %.3f%%' % (accuracy * 100)) display_logistic_classifier(weights['discuss'], train_x, train_y) # predict with multi-class classifier def one_vs_all_output(x,weights): prediction = [sigmoid(x * weights['agree'])[0, 0],sigmoid(x * weights['disagree'])[0, 0],sigmoid(x * weights['discuss'])[0, 0]] if prediction.index(np.amax(prediction)) == 0: output = 'agree' elif prediction.index(np.amax(prediction)) == 1: output = 'disagree' elif prediction.index(np.amax(prediction)) == 2: output = 'discuss' return output def test_logistic_classifier(weights, test_x, test_y): sample_size, feature_size = shape(test_x) match_num = 0 for i in range(sample_size): predict = sigmoid(test_x[i, :] * weights)[0, 0] > 0.5 if predict == bool(test_y[i, 0]): match_num += 1 accuracy = float(match_num) / sample_size return accuracy def prepare_test_data(article_id): test_x = [] test_y = [] for index in range(len(article_id)): stance = stance_index.item().get(article_id[index]) x1 = word2vec_cosine_similarity.item().get(article_id[index]) x2 = tf_idf_similarity.item().get(article_id[index]) x_vec = [1.0,x1,x2] test_x.append(x_vec) if stance == 'unrelated': test_y.append(float(0)) else: test_y.append(float(1)) return mat(test_x), mat(test_y).transpose() # test one-vs-all classifier def test_one_vs_all(weights, x): match_num = 0 #load data & compare predicted result with the true one for index in range(len(x)): stance = stance_index.item().get(x[index]) x1 = word2vec_cosine_similarity.item().get(x[index]) x2 = tf_idf_similarity.item().get(x[index]) x_vec = [1.0,x1,x2] if one_vs_all_output(x_vec,weights) == stance: match_num+=1 accuracy = float(match_num) / len(x) return accuracy # 2-D plot of trained logistic regression model def display_logistic_classifier(weights, train_x, train_y): # notice: train_x and train_y is mat datatype sample_size, feature_size = shape(train_x) # draw all samples for i in range(sample_size): if int(train_y[i, 0]) == 0: plt.plot(train_x[i, 1], train_x[i, 2], 'ob') elif int(train_y[i, 0]) == 1: plt.plot(train_x[i, 1], train_x[i, 2], 'or') # draw the classify line min_x = min(train_x[:, 1])[0, 0] max_x = max(train_x[:, 1])[0, 0] weights = weights.getA() # convert mat to array y_min_x = float(-weights[0] - weights[1] * min_x) / weights[2] y_max_x = float(-weights[0] - weights[1] * max_x) / weights[2] plt.plot([min_x, max_x], [y_min_x, y_max_x], '-g') plt.xlabel('X1'); plt.ylabel('X2') plt.show() #%% # Implementation with the pre-processed data # Classifier 1 #step 1: load data print ("step 1: load data...") train_x, train_y = load_data() test_x = train_x; test_y = train_y # step 2: training first classifier (relevant or not)... print ("step 2: training first classifier...") weights['unrelated'] = train_logistic_classifier(train_x, train_y,'unrelated') # step 3: first classifier test print ("step 3: testing first classifier...") accuracy = test_first_classifier(weights['unrelated'], test_x, test_y) # step 4: first classifier result display print ("step 4: show the result...") print ('The accuracy for the unrelated-or-not classifier is: %.3f%%' % (accuracy * 100)) display_logistic_classifier(weights['unrelated'], train_x, train_y) # Classifier 2 #step 5: training 'agree', 'disagree', 'discuss' classifier... print ("step 6: training second classifier...") train_one_vs_all() #%% #accuracy testing test_first_classifier(weights['unrelated'], test_x, test_y) testx1 = prepare_test_data(unrelated_articles_index)[0] testy1 = prepare_test_data(unrelated_articles_index)[1] accuracy1 = test_logistic_classifier(weights['unrelated'],testx1, testy1) print('first classifier accuracy:') print(accuracy1) accuracy2 = test_one_vs_all(weights, relevant_articles_index) print('second classifier accuracy:') print(accuracy2) overall_accuracy = (len(unrelated_articles_index)*accuracy1 + len(relevant_articles_index)*accuracy2)/(len(unrelated_articles_index)+len(relevant_articles_index)) print('overall accuracy:') print(overall_accuracy)
[ "numpy.amax", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "numpy.load", "time.time", "matplotlib.pyplot.show" ]
[((226, 258), 'numpy.load', 'np.load', (['"""data/stance_index.npy"""'], {}), "('data/stance_index.npy')\n", (233, 258), True, 'import numpy as np\n'), ((289, 335), 'numpy.load', 'np.load', (['"""data/word2vec_cosine_similarity.npy"""'], {}), "('data/word2vec_cosine_similarity.npy')\n", (296, 335), True, 'import numpy as np\n'), ((359, 396), 'numpy.load', 'np.load', (['"""data/tf_idf_similarity.npy"""'], {}), "('data/tf_idf_similarity.npy')\n", (366, 396), True, 'import numpy as np\n'), ((417, 453), 'numpy.load', 'np.load', (['"""data/lm_kl_divergence.npy"""'], {}), "('data/lm_kl_divergence.npy')\n", (424, 453), True, 'import numpy as np\n'), ((1354, 1365), 'time.time', 'time.time', ([], {}), '()\n', (1363, 1365), False, 'import time\n'), ((8261, 8311), 'matplotlib.pyplot.plot', 'plt.plot', (['[min_x, max_x]', '[y_min_x, y_max_x]', '"""-g"""'], {}), "([min_x, max_x], [y_min_x, y_max_x], '-g')\n", (8269, 8311), True, 'import matplotlib.pyplot as plt\n'), ((8319, 8335), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""X1"""'], {}), "('X1')\n", (8329, 8335), True, 'import matplotlib.pyplot as plt\n'), ((8337, 8353), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""X2"""'], {}), "('X2')\n", (8347, 8353), True, 'import matplotlib.pyplot as plt\n'), ((8361, 8371), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (8369, 8371), True, 'import matplotlib.pyplot as plt\n'), ((5747, 5766), 'numpy.amax', 'np.amax', (['prediction'], {}), '(prediction)\n', (5754, 5766), True, 'import numpy as np\n'), ((7796, 7840), 'matplotlib.pyplot.plot', 'plt.plot', (['train_x[i, 1]', 'train_x[i, 2]', '"""ob"""'], {}), "(train_x[i, 1], train_x[i, 2], 'ob')\n", (7804, 7840), True, 'import matplotlib.pyplot as plt\n'), ((2670, 2681), 'time.time', 'time.time', ([], {}), '()\n', (2679, 2681), False, 'import time\n'), ((5827, 5846), 'numpy.amax', 'np.amax', (['prediction'], {}), '(prediction)\n', (5834, 5846), True, 'import numpy as np\n'), ((7897, 7941), 'matplotlib.pyplot.plot', 'plt.plot', (['train_x[i, 1]', 'train_x[i, 2]', '"""or"""'], {}), "(train_x[i, 1], train_x[i, 2], 'or')\n", (7905, 7941), True, 'import matplotlib.pyplot as plt\n'), ((5910, 5929), 'numpy.amax', 'np.amax', (['prediction'], {}), '(prediction)\n', (5917, 5929), True, 'import numpy as np\n')]
from Redy.Typing import * import unittest import pytest class Test_Redy_Tools_PathLib(unittest.TestCase): @pytest.fixture(autouse=True) def test_2309557027928(self): from Redy.Tools import Path p = Path('.') p.abs() p.is_dir() p.list_dir() p.parent() p.__iter__() new = p.into('justfortest') new.mkdir() new.mkdir() assert "justfortest" in p print(new._path) new.delete() p.relative() tuple(p.collect(lambda _: _.endswith('.py'))) new.mkdir() new.into('some').mkdir().into("somefile").open('w').close() new.delete() assert new == str(new) root, *_ = new print(f'0-th elem of arr{new._path}: ', new[0]) print(f'the elem where endswith .py of arr{new._path}', new[lambda _: _.endswith('.py')])
[ "pytest.fixture", "Redy.Tools.Path" ]
[((112, 140), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (126, 140), False, 'import pytest\n'), ((223, 232), 'Redy.Tools.Path', 'Path', (['"""."""'], {}), "('.')\n", (227, 232), False, 'from Redy.Tools import Path\n')]
import os import warnings from pathlib import Path from functools import partial from torch.utils.data import IterableDataset import webdataset as wds import utils.logging as logging from data.contrast import VideoDecoder from data.build import DATASET_REGISTRY from utils import distributed as du logger = logging.get_logger(__name__) class SplitByNode: """Selects a subset of urls based on Torch get_rank/get_world_size. Used as a shard selection function in Dataset.""" def __init__(self, group=None): self.rank = -1 self.size = -1 try: import torch if not torch.distributed.is_available() or not torch.distributed.is_initialized(): return except Exception as e: print(e) return if group is None: # group = torch.distributed.group.WORLD try: # some versions of torch don't like group=None import torch.distributed.distributed_c10d group = torch.distributed.distributed_c10d._default_pg except: pass self.rank = torch.distributed.get_rank(group=group) self.size = torch.distributed.get_world_size(group=group) def __call__(self, urls): urls = [url for url in urls] assert isinstance(urls, list) if self.size > 1: if self.rank == 0 and len(urls) < self.size: warnings.warn(f"world_size {self.size} > num_shards {len(urls)}") return urls[self.rank::self.size] else: return urls def split_by_worker(urls): """Selects a subset of urls based on Torch get_worker_info. Used as a shard selection function in Dataset.""" import torch urls = [url for url in urls] assert isinstance(urls, list) worker_info = torch.utils.data.get_worker_info() if worker_info is not None: wid = worker_info.id num_workers = worker_info.num_workers if wid == 0 and len(urls) < num_workers: warnings.warn(f"num_workers {num_workers} > num_shards {len(urls)}") return urls[wid::num_workers] else: return urls def shard_selection(urls, nodesplitter, splitter): return splitter(nodesplitter(urls)) @DATASET_REGISTRY.register() def ACAV(cfg, mode): """ ACAV video loader with VideoDecoder. Videos are stored in POSIX tar archives and we process them using WebDataset. Args: cfg (CfgNode): configs. mode (string): Options include `pretrain` mode. """ assert mode in [ "pretrain" ], "Split '{}' not supported for ACAV".format(mode) shards_path = sorted(Path(cfg.DATASET_DIR).glob("*.tar")) assert cfg.DATA_LOADER.NUM_WORKERS <= len(shards_path) s_idx = int(shards_path[0].stem.split("-")[1]) e_idx = int(shards_path[-1].stem.split("-")[1]) url = os.path.join( f"{cfg.DATASET_DIR}", f"shard-{{{s_idx:06d}..{e_idx:06d}}}.tar" ) videodecoder = VideoDecoder(cfg) batch_size = int(cfg.PRETRAIN.BATCH_SIZE / du.get_world_size()) if cfg.DATA_LOADER.NUM_WORKERS > 0: length = int(cfg.PRETRAIN.DATASET_SIZE / (cfg.DATA_LOADER.NUM_WORKERS * du.get_world_size())) nominal = int(length / batch_size) * cfg.DATA_LOADER.NUM_WORKERS * batch_size else: nominal = int(cfg.PRETRAIN.DATASET_SIZE / du.get_world_size()) length = nominal nodesplitter = SplitByNode() _shard_selection = partial(shard_selection, nodesplitter=nodesplitter, splitter=split_by_worker) dataset = wds.Dataset(url, handler=wds.warn_and_continue, shard_selection=_shard_selection).shuffle(1000).map(videodecoder.decode, handler=wds.warn_and_continue) dataset = wds.ResizedDataset(dataset, length, nominal) return dataset
[ "torch.distributed.is_available", "data.build.DATASET_REGISTRY.register", "webdataset.Dataset", "data.contrast.VideoDecoder", "webdataset.ResizedDataset", "utils.distributed.get_world_size", "pathlib.Path", "torch.utils.data.get_worker_info", "os.path.join", "torch.distributed.is_initialized", "functools.partial", "torch.distributed.get_rank", "utils.logging.get_logger", "torch.distributed.get_world_size" ]
[((312, 340), 'utils.logging.get_logger', 'logging.get_logger', (['__name__'], {}), '(__name__)\n', (330, 340), True, 'import utils.logging as logging\n'), ((2298, 2325), 'data.build.DATASET_REGISTRY.register', 'DATASET_REGISTRY.register', ([], {}), '()\n', (2323, 2325), False, 'from data.build import DATASET_REGISTRY\n'), ((1861, 1895), 'torch.utils.data.get_worker_info', 'torch.utils.data.get_worker_info', ([], {}), '()\n', (1893, 1895), False, 'import torch\n'), ((2916, 2993), 'os.path.join', 'os.path.join', (['f"""{cfg.DATASET_DIR}"""', 'f"""shard-{{{s_idx:06d}..{e_idx:06d}}}.tar"""'], {}), "(f'{cfg.DATASET_DIR}', f'shard-{{{s_idx:06d}..{e_idx:06d}}}.tar')\n", (2928, 2993), False, 'import os\n'), ((3036, 3053), 'data.contrast.VideoDecoder', 'VideoDecoder', (['cfg'], {}), '(cfg)\n', (3048, 3053), False, 'from data.contrast import VideoDecoder\n'), ((3512, 3589), 'functools.partial', 'partial', (['shard_selection'], {'nodesplitter': 'nodesplitter', 'splitter': 'split_by_worker'}), '(shard_selection, nodesplitter=nodesplitter, splitter=split_by_worker)\n', (3519, 3589), False, 'from functools import partial\n'), ((3770, 3814), 'webdataset.ResizedDataset', 'wds.ResizedDataset', (['dataset', 'length', 'nominal'], {}), '(dataset, length, nominal)\n', (3788, 3814), True, 'import webdataset as wds\n'), ((1147, 1186), 'torch.distributed.get_rank', 'torch.distributed.get_rank', ([], {'group': 'group'}), '(group=group)\n', (1173, 1186), False, 'import torch\n'), ((1207, 1252), 'torch.distributed.get_world_size', 'torch.distributed.get_world_size', ([], {'group': 'group'}), '(group=group)\n', (1239, 1252), False, 'import torch\n'), ((3101, 3120), 'utils.distributed.get_world_size', 'du.get_world_size', ([], {}), '()\n', (3118, 3120), True, 'from utils import distributed as du\n'), ((2706, 2727), 'pathlib.Path', 'Path', (['cfg.DATASET_DIR'], {}), '(cfg.DATASET_DIR)\n', (2710, 2727), False, 'from pathlib import Path\n'), ((3410, 3429), 'utils.distributed.get_world_size', 'du.get_world_size', ([], {}), '()\n', (3427, 3429), True, 'from utils import distributed as du\n'), ((629, 661), 'torch.distributed.is_available', 'torch.distributed.is_available', ([], {}), '()\n', (659, 661), False, 'import torch\n'), ((669, 703), 'torch.distributed.is_initialized', 'torch.distributed.is_initialized', ([], {}), '()\n', (701, 703), False, 'import torch\n'), ((3242, 3261), 'utils.distributed.get_world_size', 'du.get_world_size', ([], {}), '()\n', (3259, 3261), True, 'from utils import distributed as du\n'), ((3604, 3690), 'webdataset.Dataset', 'wds.Dataset', (['url'], {'handler': 'wds.warn_and_continue', 'shard_selection': '_shard_selection'}), '(url, handler=wds.warn_and_continue, shard_selection=\n _shard_selection)\n', (3615, 3690), True, 'import webdataset as wds\n')]
#!/usr/bin/env python3 from argparse import ArgumentParser import faiss import numpy as np from chg.defaults import CHG_PROJ_FAISS from chg.db.database import get_store from chg.embed.basic import ( BasicEmbedder, normalize_vectors, ) def load_vectors(): store = get_store() rows = store.run_query( "SELECT code_embedding FROM Embeddings ORDER BY chunk_id" ) code_embeddings = [store.blob_to_array(row[0]) for row in rows] mat = np.array(code_embeddings, dtype=np.float32) return mat def build_index(mat): mat = normalize_vectors(mat).astype(np.float32) index = faiss.IndexFlatIP(mat.shape[-1]) index.add(mat) return index def embed_query(model, query): return model.embed_nl(query) def load_index(): return faiss.read_index(CHG_PROJ_FAISS) def run_query(index, embedding, k): # make sure row vector embedding = embedding.reshape(1, -1) embedding = normalize_vectors(embedding).astype(np.float32) D, ix = index.search(embedding, k) return ix.flatten() def lookup_in_store(store, ixs): # ixs are offset by 1 as ids in the database ids = ixs + 1 return store.get_dialogue_by_ids(ids) class EmbeddedSearcher(object): def __init__(self): self.embed_model = BasicEmbedder() self.store = get_store() self.faiss_index = load_index() def search(self, query, k=5): vector = embed_query(self.embed_model, query) assert k > 0 ixs = run_query(self.faiss_index, vector, k) return lookup_in_store(self.store, ixs) def build(args): assert args.action == "build" mat = load_vectors() index = build_index(mat) faiss.write_index(index, CHG_PROJ_FAISS) def query_from_cli(args): assert args.action == "query" searcher = EmbeddedSearcher() return searcher.search(args.query, k=args.k) def get_args(): parser = ArgumentParser( description="Semantic search based on embedded queries" ) subparsers = parser.add_subparsers(help="Semantic search actions") build_parser = subparsers.add_parser("build") build_parser.set_defaults(action="build") query_parser = subparsers.add_parser("query") query_parser.set_defaults(action="query") query_parser.add_argument( "--query", type=str, help="Query to search with", ) query_parser.add_argument( "--k", type=int, help="Number of records to return for query", default=5, ) parser.set_defaults(action="build") return parser.parse_args() def main(): args = get_args() if args.action == "build": build(args) elif args.action == "query": query_from_cli(args) else: raise Exception("Unknown action:", args.action) if __name__ == "__main__": try: main() except Exception as err: import pdb pdb.post_mortem()
[ "faiss.write_index", "argparse.ArgumentParser", "pdb.post_mortem", "faiss.read_index", "numpy.array", "faiss.IndexFlatIP", "chg.embed.basic.normalize_vectors", "chg.db.database.get_store", "chg.embed.basic.BasicEmbedder" ]
[((279, 290), 'chg.db.database.get_store', 'get_store', ([], {}), '()\n', (288, 290), False, 'from chg.db.database import get_store\n'), ((469, 512), 'numpy.array', 'np.array', (['code_embeddings'], {'dtype': 'np.float32'}), '(code_embeddings, dtype=np.float32)\n', (477, 512), True, 'import numpy as np\n'), ((616, 648), 'faiss.IndexFlatIP', 'faiss.IndexFlatIP', (['mat.shape[-1]'], {}), '(mat.shape[-1])\n', (633, 648), False, 'import faiss\n'), ((782, 814), 'faiss.read_index', 'faiss.read_index', (['CHG_PROJ_FAISS'], {}), '(CHG_PROJ_FAISS)\n', (798, 814), False, 'import faiss\n'), ((1688, 1728), 'faiss.write_index', 'faiss.write_index', (['index', 'CHG_PROJ_FAISS'], {}), '(index, CHG_PROJ_FAISS)\n', (1705, 1728), False, 'import faiss\n'), ((1905, 1976), 'argparse.ArgumentParser', 'ArgumentParser', ([], {'description': '"""Semantic search based on embedded queries"""'}), "(description='Semantic search based on embedded queries')\n", (1919, 1976), False, 'from argparse import ArgumentParser\n'), ((1277, 1292), 'chg.embed.basic.BasicEmbedder', 'BasicEmbedder', ([], {}), '()\n', (1290, 1292), False, 'from chg.embed.basic import BasicEmbedder, normalize_vectors\n'), ((1314, 1325), 'chg.db.database.get_store', 'get_store', ([], {}), '()\n', (1323, 1325), False, 'from chg.db.database import get_store\n'), ((562, 584), 'chg.embed.basic.normalize_vectors', 'normalize_vectors', (['mat'], {}), '(mat)\n', (579, 584), False, 'from chg.embed.basic import BasicEmbedder, normalize_vectors\n'), ((937, 965), 'chg.embed.basic.normalize_vectors', 'normalize_vectors', (['embedding'], {}), '(embedding)\n', (954, 965), False, 'from chg.embed.basic import BasicEmbedder, normalize_vectors\n'), ((2905, 2922), 'pdb.post_mortem', 'pdb.post_mortem', ([], {}), '()\n', (2920, 2922), False, 'import pdb\n')]
#!/usr/bin/env python import os, sys import pickle import matchzoo as mz from matchzoo.data_pack import pack import time import numpy as np np.random.seed(int(time.time())) from matchzoo.models.dssm import DSSM from shutil import rmtree sys.path.append('.') from scripts.data_convert.matchzoo_reader \ import readWhiteSpacedMatchZooData, WhiteSpacePreprocessor colName = sys.argv[1] modelFile = sys.argv[2] epochQty = int(sys.argv[3]) dataTranFile = os.path.join('matchZooTrain', colName, 'data_transform.bin') dataFileTrain = os.path.join('matchZooTrain', colName, 'tran_neg10.tsv') dataFileTest = os.path.join('matchZooTrain', colName, 'dev1_allCand.tsv') print(f'Collection: {colName} # of epochs: {epochQty} model file: {modelFile} data transform file: {dataTranFile}') # Note dtype! don't let Pandas guess column data types! dataTrainPacked = pack(readWhiteSpacedMatchZooData(dataFileTrain)) dataTestPacked = pack(readWhiteSpacedMatchZooData(dataFileTest)) # prep = mz.preprocessors.BasicPreprocessor() prep = WhiteSpacePreprocessor() #import pdb, sys # try: if True: if os.path.exists(dataTranFile): print(f'Loading existing preprocessor from {dataTranFile}') with open(dataTranFile, 'rb') as f: prep = pickle.load(f) else: print(f'Fitting a new preprocessor') # For some reason, we fit the preprocessor to packed data prep.fit(dataTrainPacked) print('Preprocessor context:') print(prep.context) with open(dataTranFile, 'wb') as of: pickle.dump(prep, of) print('Data transformer is fitted and saved!') dataTrainProc = prep.transform(dataTrainPacked) dataTestProc = prep.transform(dataTestPacked) if os.path.exists(modelFile): print('Loading the model from: ' + modelFile) model = mz.load_model(modelFile) model.backend.summary() else: print('Creating a model from scratch') model = DSSM() model.params.update(prep.context) model.params['mlp_num_layers'] = 5 model.params['mlp_num_units'] = 5000 model.params['mlp_num_fan_out'] = 128 model.params['mlp_activation_func'] = 'relu' model.guess_and_fill_missing_params(verbose=0) print("Params completed", model.params.completed()) model.build() model.compile() model.backend.summary() # This needs to use the processed data! xTrain, yTrain = dataTrainProc.unpack() model.fit(xTrain, yTrain, batch_size=128, epochs=epochQty) if os.path.exists(modelFile): rmtree(modelFile) model.save(modelFile) # except: # tb is traceback # type, value, tb = sys.exc_info() # pdb.post_mortem(tb)
[ "scripts.data_convert.matchzoo_reader.readWhiteSpacedMatchZooData", "os.path.exists", "pickle.dump", "scripts.data_convert.matchzoo_reader.WhiteSpacePreprocessor", "matchzoo.load_model", "os.path.join", "matchzoo.models.dssm.DSSM", "pickle.load", "shutil.rmtree", "time.time", "sys.path.append" ]
[((241, 261), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (256, 261), False, 'import os, sys\n'), ((461, 521), 'os.path.join', 'os.path.join', (['"""matchZooTrain"""', 'colName', '"""data_transform.bin"""'], {}), "('matchZooTrain', colName, 'data_transform.bin')\n", (473, 521), False, 'import os, sys\n'), ((538, 594), 'os.path.join', 'os.path.join', (['"""matchZooTrain"""', 'colName', '"""tran_neg10.tsv"""'], {}), "('matchZooTrain', colName, 'tran_neg10.tsv')\n", (550, 594), False, 'import os, sys\n'), ((610, 668), 'os.path.join', 'os.path.join', (['"""matchZooTrain"""', 'colName', '"""dev1_allCand.tsv"""'], {}), "('matchZooTrain', colName, 'dev1_allCand.tsv')\n", (622, 668), False, 'import os, sys\n'), ((1029, 1053), 'scripts.data_convert.matchzoo_reader.WhiteSpacePreprocessor', 'WhiteSpacePreprocessor', ([], {}), '()\n', (1051, 1053), False, 'from scripts.data_convert.matchzoo_reader import readWhiteSpacedMatchZooData, WhiteSpacePreprocessor\n'), ((866, 908), 'scripts.data_convert.matchzoo_reader.readWhiteSpacedMatchZooData', 'readWhiteSpacedMatchZooData', (['dataFileTrain'], {}), '(dataFileTrain)\n', (893, 908), False, 'from scripts.data_convert.matchzoo_reader import readWhiteSpacedMatchZooData, WhiteSpacePreprocessor\n'), ((932, 973), 'scripts.data_convert.matchzoo_reader.readWhiteSpacedMatchZooData', 'readWhiteSpacedMatchZooData', (['dataFileTest'], {}), '(dataFileTest)\n', (959, 973), False, 'from scripts.data_convert.matchzoo_reader import readWhiteSpacedMatchZooData, WhiteSpacePreprocessor\n'), ((1097, 1125), 'os.path.exists', 'os.path.exists', (['dataTranFile'], {}), '(dataTranFile)\n', (1111, 1125), False, 'import os, sys\n'), ((1724, 1749), 'os.path.exists', 'os.path.exists', (['modelFile'], {}), '(modelFile)\n', (1738, 1749), False, 'import os, sys\n'), ((2542, 2567), 'os.path.exists', 'os.path.exists', (['modelFile'], {}), '(modelFile)\n', (2556, 2567), False, 'import os, sys\n'), ((161, 172), 'time.time', 'time.time', ([], {}), '()\n', (170, 172), False, 'import time\n'), ((1539, 1560), 'pickle.dump', 'pickle.dump', (['prep', 'of'], {}), '(prep, of)\n', (1550, 1560), False, 'import pickle\n'), ((1821, 1845), 'matchzoo.load_model', 'mz.load_model', (['modelFile'], {}), '(modelFile)\n', (1834, 1845), True, 'import matchzoo as mz\n'), ((1952, 1958), 'matchzoo.models.dssm.DSSM', 'DSSM', ([], {}), '()\n', (1956, 1958), False, 'from matchzoo.models.dssm import DSSM\n'), ((2577, 2594), 'shutil.rmtree', 'rmtree', (['modelFile'], {}), '(modelFile)\n', (2583, 2594), False, 'from shutil import rmtree\n'), ((1258, 1272), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (1269, 1272), False, 'import pickle\n')]
import fileinput import numpy as np def parse_line(line): line = line.rstrip() components = line.split(" -> ") origin = tuple(int(x) for x in components[0].split(",")) destination = tuple(int(x) for x in components[1].split(",")) return origin, destination def is_horizontal_line(origin, destination): return origin[0] == destination[0] def is_vertical_line(origin, destination): return origin[1] == destination[1] def is_diagonal_line(origin, destination): delta_x = abs(origin[0] - destination[0]) delta_y = abs(origin[1] - destination[1]) return delta_x == delta_y def is_straight_line(origin, destination): return is_horizontal_line(origin, destination) or is_vertical_line(origin, destination) def is_straight_or_diagonal_line(origin, destination): return is_straight_line(origin, destination) or is_diagonal_line(origin, destination) def import_hydrothermal_lines(path, filter_fun=is_straight_line): hydrothermal_lines = [] for line in fileinput.input(path): origin, destination = parse_line(line) if filter_fun(origin, destination): hydrothermal_lines.append([origin, destination]) return hydrothermal_lines def get_x_size(hydrothermal_lines): return max([max(origin[0],destination[0]) for origin, destination in hydrothermal_lines]) + 1 def get_y_size(hydrothermal_lines): return max([max(origin[1],destination[1]) for origin, destination in hydrothermal_lines]) + 1 def make_empty_hydrothermal_map(hydrothermal_lines): x_size = get_x_size(hydrothermal_lines) y_size = get_y_size(hydrothermal_lines) return np.zeros(shape=(x_size, y_size)) def _get_min_y_max_y(origin, destination): min_y = min(origin[1], destination[1]) max_y = max(origin[1], destination[1]) +1 return min_y, max_y def add_horizontal_line(hydrothermal_map, origin, destination): min_y, max_y = _get_min_y_max_y(origin, destination) x = origin[0] hydrothermal_map[x,min_y:max_y] += 1 def _get_min_x_max_x(origin, destination): min_x = min(origin[0], destination[0]) max_x = max(origin[0], destination[0]) +1 return min_x, max_x def add_vertical_line(hydrothermal_map, origin, destination): min_x, max_x = _get_min_x_max_x(origin, destination) y = origin[1] hydrothermal_map[min_x:max_x, y] += 1 def add_diagonal_line(hydrothermal_map, origin, destination): delta_x = destination[0] - origin[0] delta_y = destination[1] - origin[1] for offset in range(abs(delta_x)+1): x = origin[0] + np.sign(delta_x)*offset y = origin[1] + np.sign(delta_y)*offset hydrothermal_map[x,y] += 1 def add_line(hydrothermal_map, origin, destination): if is_horizontal_line(origin, destination): add_horizontal_line(hydrothermal_map, origin, destination) elif is_vertical_line(origin, destination): add_vertical_line(hydrothermal_map, origin, destination) elif is_diagonal_line(origin, destination): add_diagonal_line(hydrothermal_map, origin, destination) else: raise ValueError(f"{origin} -> {destination} is not a straight line") def populate_hydrothermal_map(hydrothermal_map, hydrothermal_lines): for origin, destination in hydrothermal_lines: add_line(hydrothermal_map, origin, destination)
[ "numpy.sign", "numpy.zeros", "fileinput.input" ]
[((1005, 1026), 'fileinput.input', 'fileinput.input', (['path'], {}), '(path)\n', (1020, 1026), False, 'import fileinput\n'), ((1633, 1665), 'numpy.zeros', 'np.zeros', ([], {'shape': '(x_size, y_size)'}), '(shape=(x_size, y_size))\n', (1641, 1665), True, 'import numpy as np\n'), ((2556, 2572), 'numpy.sign', 'np.sign', (['delta_x'], {}), '(delta_x)\n', (2563, 2572), True, 'import numpy as np\n'), ((2604, 2620), 'numpy.sign', 'np.sign', (['delta_y'], {}), '(delta_y)\n', (2611, 2620), True, 'import numpy as np\n')]
import unittest from imageio import imread import imagecaptioning from imagecaptioning.definitions import ROOT_DIR class TestGeneratingCaptions(unittest.TestCase): def test_captions(self): word_map_file = ROOT_DIR/'data/processed'/'WORDMAP_coco_5_cap_per_img_5_min_word_freq.json' checkpoint = ROOT_DIR/'models/best_checkpoint_only_state_dict.pth.tar' model = imagecaptioning.ImageCaptioner(word_map_file=word_map_file, checkpoint=checkpoint) # load image img_path = ROOT_DIR/'imgs/football.jpg' img = imread(img_path) sent = model.gen_caption(img) print(sent) # extract encoder and decoder self.encoder = model.encoder self.decoder = model.decoder def test_caption_with_encoder_decoder(self): word_map_file = ROOT_DIR/'data/processed'/'WORDMAP_coco_5_cap_per_img_5_min_word_freq.json' checkpoint = ROOT_DIR/'models/best_checkpoint_only_state_dict.pth.tar' model = imagecaptioning.ImageCaptioner(word_map_file=word_map_file, checkpoint=checkpoint) # init new model from encoder and decoder model_from_encoder_decoder = imagecaptioning.ImageCaptioner( word_map_file=word_map_file, encoder=model.encoder, decoder=model.decoder) # load_img img_path = ROOT_DIR/'imgs/football.jpg' img = imread(img_path) sent = model_from_encoder_decoder.gen_caption(img) print(sent) if __name__ == '__main__': unittest.main()
[ "unittest.main", "imageio.imread", "imagecaptioning.ImageCaptioner" ]
[((1718, 1733), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1731, 1733), False, 'import unittest\n'), ((391, 478), 'imagecaptioning.ImageCaptioner', 'imagecaptioning.ImageCaptioner', ([], {'word_map_file': 'word_map_file', 'checkpoint': 'checkpoint'}), '(word_map_file=word_map_file, checkpoint=\n checkpoint)\n', (421, 478), False, 'import imagecaptioning\n'), ((605, 621), 'imageio.imread', 'imread', (['img_path'], {}), '(img_path)\n', (611, 621), False, 'from imageio import imread\n'), ((1039, 1126), 'imagecaptioning.ImageCaptioner', 'imagecaptioning.ImageCaptioner', ([], {'word_map_file': 'word_map_file', 'checkpoint': 'checkpoint'}), '(word_map_file=word_map_file, checkpoint=\n checkpoint)\n', (1069, 1126), False, 'import imagecaptioning\n'), ((1257, 1367), 'imagecaptioning.ImageCaptioner', 'imagecaptioning.ImageCaptioner', ([], {'word_map_file': 'word_map_file', 'encoder': 'model.encoder', 'decoder': 'model.decoder'}), '(word_map_file=word_map_file, encoder=model.\n encoder, decoder=model.decoder)\n', (1287, 1367), False, 'import imagecaptioning\n'), ((1590, 1606), 'imageio.imread', 'imread', (['img_path'], {}), '(img_path)\n', (1596, 1606), False, 'from imageio import imread\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (C) 2022 F4PGA Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: Apache-2.0 from pathlib import Path import os from shutil import move as sh_mv from re import match as re_match from f4pga.common import * from f4pga.module import Module, ModuleContext def default_output_name(place_constraints): p = place_constraints m = re_match('(.*)\\.[^.]*$', place_constraints) if m: return m.groups()[0] + '.place' return f'{p}.place' def place_constraints_file(ctx: ModuleContext): p = ctx.takes.place_constraints if p: return p, False p = ctx.takes.io_place if p: return p, False return f'{Path(ctx.takes.eblif).stem}.place', True class PlaceModule(Module): def map_io(self, ctx: ModuleContext): mapping = {} p, _ = place_constraints_file(ctx) mapping['place'] = default_output_name(p) return mapping def execute(self, ctx: ModuleContext): place_constraints, dummy = place_constraints_file(ctx) place_constraints = os.path.realpath(place_constraints) if dummy: with open(place_constraints, 'wb') as f: f.write(b'') build_dir = str(Path(ctx.takes.eblif).parent) vpr_options = ['--fix_clusters', place_constraints] yield 'Running VPR...' vprargs = VprArgs(ctx.share, ctx.takes.eblif, ctx.values, sdc_file=ctx.takes.sdc, vpr_extra_opts=vpr_options) vpr('place', vprargs, cwd=build_dir) # VPR names output on its own. If user requested another name, the # output file should be moved. # TODO: This extends the set of names that would cause collisions. # As for now (22-07-2021), no collision detection is being done, but # when the problem gets tackled, we should keep in mind that VPR-based # modules may produce some temporary files with names that differ from # the ones in flow configuration. if ctx.is_output_explicit('place'): output_file = default_output_name(place_constraints) sh_mv(output_file, ctx.outputs.place) yield 'Saving log...' save_vpr_log('place.log', build_dir=build_dir) def __init__(self, _): self.name = 'place' self.no_of_phases = 2 self.takes = [ 'eblif', 'sdc?', 'place_constraints?', 'io_place?' ] self.produces = [ 'place' ] self.values = [ 'device', 'vpr_options?' ] + vpr_specific_values() ModuleClass = PlaceModule
[ "os.path.realpath", "re.match", "pathlib.Path", "shutil.move" ]
[((926, 970), 're.match', 're_match', (['"""(.*)\\\\.[^.]*$"""', 'place_constraints'], {}), "('(.*)\\\\.[^.]*$', place_constraints)\n", (934, 970), True, 'from re import match as re_match\n'), ((1625, 1660), 'os.path.realpath', 'os.path.realpath', (['place_constraints'], {}), '(place_constraints)\n', (1641, 1660), False, 'import os\n'), ((2686, 2723), 'shutil.move', 'sh_mv', (['output_file', 'ctx.outputs.place'], {}), '(output_file, ctx.outputs.place)\n', (2691, 2723), True, 'from shutil import move as sh_mv\n'), ((1786, 1807), 'pathlib.Path', 'Path', (['ctx.takes.eblif'], {}), '(ctx.takes.eblif)\n', (1790, 1807), False, 'from pathlib import Path\n'), ((1240, 1261), 'pathlib.Path', 'Path', (['ctx.takes.eblif'], {}), '(ctx.takes.eblif)\n', (1244, 1261), False, 'from pathlib import Path\n')]
import GPy import numpy as np import pytest from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern from bopy.benchmark_functions import forrester from bopy.exceptions import NotFittedError from bopy.surrogate import GPyGPSurrogate, ScipyGPSurrogate n_samples = 10 @pytest.fixture(scope="module", autouse=True) def x(): return np.linspace(0, 1, n_samples).reshape(-1, 1) @pytest.fixture(scope="module", autouse=True) def y(x): return forrester(x) def scipy_gp_surrogate(): return ScipyGPSurrogate( gp=GaussianProcessRegressor(kernel=Matern(nu=1.5), alpha=1e-5, normalize_y=True) ) def gpy_gp_surrogate(): def gp_initializer(x, y): return GPy.models.GPRegression( x, y, kernel=GPy.kern.RBF(input_dim=1), noise_var=1e-5, normalizer=True ) return GPyGPSurrogate(gp_initializer=gp_initializer) @pytest.fixture( scope="module", autouse=True, params=[scipy_gp_surrogate(), gpy_gp_surrogate()], ids=["scipy_gp", "gpy_gp"], ) def surrogate(request): return request.param @pytest.fixture(scope="class") def trained_surrogate(surrogate, x, y): surrogate.fit(x, y) return surrogate class TestArgumentsToFit: def test_x_must_contain_at_least_one_sample(self, surrogate): with pytest.raises(ValueError, match="`x` must contain at least one sample"): surrogate.fit(x=np.array([]), y=np.array([1.0])) def test_y_must_contain_at_least_one_sample(self, surrogate): with pytest.raises(ValueError, match="`y` must contain at least one sample"): surrogate.fit(x=np.array([[1.0]]), y=np.array([])) def test_x_and_y_must_contain_the_same_number_of_samples(self, surrogate): with pytest.raises( ValueError, match="`x` and `y` must have the same number of samples" ): surrogate.fit(x=np.array([[1.0]]), y=np.array([1.0, 1.0])) def test_x_must_be_2d(self, surrogate): with pytest.raises(ValueError, match="`x` must be 2D"): surrogate.fit(x=np.array([[[1.0]]]), y=np.array([1.0])) def test_y_must_be_1d(self, surrogate): with pytest.raises(ValueError, match="`y` must be 1D"): surrogate.fit(x=np.array([[1.0]]), y=np.array([[1.0]])) class TestBeforeFitting: def test_calling_predict_raises_not_fitted_error(self, surrogate, x): with pytest.raises(NotFittedError, match="must be fitted first"): surrogate.predict(x) class TestArgumentsToPredictAfterFitting: def test_x_must_contain_at_least_one_sample(self, trained_surrogate): with pytest.raises(ValueError, match="`x` must contain at least one sample"): trained_surrogate.predict(x=np.array([])) def test_x_must_be_2d(self, trained_surrogate): with pytest.raises(ValueError, match="`x` must be 2D"): trained_surrogate.predict(x=np.array([1.0])) def test_x_must_have_the_same_number_of_dimensions_as_the_training_data( self, trained_surrogate ): with pytest.raises( ValueError, match="`x` must have the same number of dimensions as the training data", ): trained_surrogate.predict(x=np.array([[1.0, 1.0]])) class TestAfterPredicting: @pytest.fixture(scope="class", autouse=True) def predictions(self, trained_surrogate, x): return trained_surrogate.predict(x) @pytest.fixture(scope="class", autouse=True) def predicted_mean(self, predictions): return predictions[0] @pytest.fixture(scope="class", autouse=True) def predicted_var(self, predictions): return predictions[1] def test_predicted_mean_is_the_correct_shape(self, predicted_mean): assert predicted_mean.shape == (n_samples,) def test_predicted_var_is_the_correct_shape(self, predicted_var): assert predicted_var.shape == (n_samples, n_samples) def test_reference_to_x_is_stored(self, trained_surrogate, x): assert np.array_equal(trained_surrogate.x, x) def test_reference_to_y_is_stored(self, trained_surrogate, y): assert np.array_equal(trained_surrogate.y, y)
[ "GPy.kern.RBF", "bopy.surrogate.GPyGPSurrogate", "bopy.benchmark_functions.forrester", "numpy.array", "numpy.linspace", "numpy.array_equal", "pytest.raises", "pytest.fixture", "sklearn.gaussian_process.kernels.Matern" ]
[((328, 372), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""', 'autouse': '(True)'}), "(scope='module', autouse=True)\n", (342, 372), False, 'import pytest\n'), ((440, 484), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""', 'autouse': '(True)'}), "(scope='module', autouse=True)\n", (454, 484), False, 'import pytest\n'), ((1117, 1146), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""class"""'}), "(scope='class')\n", (1131, 1146), False, 'import pytest\n'), ((506, 518), 'bopy.benchmark_functions.forrester', 'forrester', (['x'], {}), '(x)\n', (515, 518), False, 'from bopy.benchmark_functions import forrester\n'), ((873, 918), 'bopy.surrogate.GPyGPSurrogate', 'GPyGPSurrogate', ([], {'gp_initializer': 'gp_initializer'}), '(gp_initializer=gp_initializer)\n', (887, 918), False, 'from bopy.surrogate import GPyGPSurrogate, ScipyGPSurrogate\n'), ((3318, 3361), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""class"""', 'autouse': '(True)'}), "(scope='class', autouse=True)\n", (3332, 3361), False, 'import pytest\n'), ((3461, 3504), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""class"""', 'autouse': '(True)'}), "(scope='class', autouse=True)\n", (3475, 3504), False, 'import pytest\n'), ((3584, 3627), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""class"""', 'autouse': '(True)'}), "(scope='class', autouse=True)\n", (3598, 3627), False, 'import pytest\n'), ((4040, 4078), 'numpy.array_equal', 'np.array_equal', (['trained_surrogate.x', 'x'], {}), '(trained_surrogate.x, x)\n', (4054, 4078), True, 'import numpy as np\n'), ((4162, 4200), 'numpy.array_equal', 'np.array_equal', (['trained_surrogate.y', 'y'], {}), '(trained_surrogate.y, y)\n', (4176, 4200), True, 'import numpy as np\n'), ((393, 421), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', 'n_samples'], {}), '(0, 1, n_samples)\n', (404, 421), True, 'import numpy as np\n'), ((1339, 1410), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`x` must contain at least one sample"""'}), "(ValueError, match='`x` must contain at least one sample')\n", (1352, 1410), False, 'import pytest\n'), ((1553, 1624), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`y` must contain at least one sample"""'}), "(ValueError, match='`y` must contain at least one sample')\n", (1566, 1624), False, 'import pytest\n'), ((1782, 1870), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`x` and `y` must have the same number of samples"""'}), "(ValueError, match=\n '`x` and `y` must have the same number of samples')\n", (1795, 1870), False, 'import pytest\n'), ((2018, 2067), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`x` must be 2D"""'}), "(ValueError, match='`x` must be 2D')\n", (2031, 2067), False, 'import pytest\n'), ((2195, 2244), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`y` must be 1D"""'}), "(ValueError, match='`y` must be 1D')\n", (2208, 2244), False, 'import pytest\n'), ((2428, 2487), 'pytest.raises', 'pytest.raises', (['NotFittedError'], {'match': '"""must be fitted first"""'}), "(NotFittedError, match='must be fitted first')\n", (2441, 2487), False, 'import pytest\n'), ((2653, 2724), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`x` must contain at least one sample"""'}), "(ValueError, match='`x` must contain at least one sample')\n", (2666, 2724), False, 'import pytest\n'), ((2846, 2895), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`x` must be 2D"""'}), "(ValueError, match='`x` must be 2D')\n", (2859, 2895), False, 'import pytest\n'), ((3084, 3188), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': '"""`x` must have the same number of dimensions as the training data"""'}), "(ValueError, match=\n '`x` must have the same number of dimensions as the training data')\n", (3097, 3188), False, 'import pytest\n'), ((792, 817), 'GPy.kern.RBF', 'GPy.kern.RBF', ([], {'input_dim': '(1)'}), '(input_dim=1)\n', (804, 817), False, 'import GPy\n'), ((619, 633), 'sklearn.gaussian_process.kernels.Matern', 'Matern', ([], {'nu': '(1.5)'}), '(nu=1.5)\n', (625, 633), False, 'from sklearn.gaussian_process.kernels import Matern\n'), ((1440, 1452), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1448, 1452), True, 'import numpy as np\n'), ((1456, 1471), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (1464, 1471), True, 'import numpy as np\n'), ((1654, 1671), 'numpy.array', 'np.array', (['[[1.0]]'], {}), '([[1.0]])\n', (1662, 1671), True, 'import numpy as np\n'), ((1675, 1687), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (1683, 1687), True, 'import numpy as np\n'), ((1917, 1934), 'numpy.array', 'np.array', (['[[1.0]]'], {}), '([[1.0]])\n', (1925, 1934), True, 'import numpy as np\n'), ((1938, 1958), 'numpy.array', 'np.array', (['[1.0, 1.0]'], {}), '([1.0, 1.0])\n', (1946, 1958), True, 'import numpy as np\n'), ((2097, 2116), 'numpy.array', 'np.array', (['[[[1.0]]]'], {}), '([[[1.0]]])\n', (2105, 2116), True, 'import numpy as np\n'), ((2120, 2135), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2128, 2135), True, 'import numpy as np\n'), ((2274, 2291), 'numpy.array', 'np.array', (['[[1.0]]'], {}), '([[1.0]])\n', (2282, 2291), True, 'import numpy as np\n'), ((2295, 2312), 'numpy.array', 'np.array', (['[[1.0]]'], {}), '([[1.0]])\n', (2303, 2312), True, 'import numpy as np\n'), ((2766, 2778), 'numpy.array', 'np.array', (['[]'], {}), '([])\n', (2774, 2778), True, 'import numpy as np\n'), ((2937, 2952), 'numpy.array', 'np.array', (['[1.0]'], {}), '([1.0])\n', (2945, 2952), True, 'import numpy as np\n'), ((3260, 3282), 'numpy.array', 'np.array', (['[[1.0, 1.0]]'], {}), '([[1.0, 1.0]])\n', (3268, 3282), True, 'import numpy as np\n')]
"""Tests the timer module.""" import unittest import time # from pasypy import formula_parser, variables from pasypy.timer import Timer class TestTimer(unittest.TestCase): """Tests the timer module.""" @classmethod def setUpClass(cls): cls.timer = Timer() def test_timer(self): """Checks if calculation of time is correct and precisely.""" self.assertEqual(0, self.timer.get_time('Computation')) self.timer.create_timestamp('Computation') time.sleep(0.02) self.timer.calculate_time('Computation') self.assertAlmostEqual(0.02, self.timer.get_time('Computation'), places=2) self.assertEqual(0, self.timer.get_time('Visualization')) self.timer.create_timestamp('Visualization') time.sleep(0.01) self.timer.calculate_time('Visualization') self.assertAlmostEqual(0.01, self.timer.get_time('Visualization'), places=2) def test_invalid_key(self): """Checks if invalid keys are rejected.""" with self.assertRaises(KeyError): self.assertEqual(0, self.timer.get_time('Invalid Key')) self.timer.create_timestamp('Invalid Key') time.sleep(0.01) self.timer.calculate_time('Invalid Key') self.assertAlmostEqual(0.01, self.timer.get_time('Invalid Key'), places=2)
[ "time.sleep", "pasypy.timer.Timer" ]
[((273, 280), 'pasypy.timer.Timer', 'Timer', ([], {}), '()\n', (278, 280), False, 'from pasypy.timer import Timer\n'), ((501, 517), 'time.sleep', 'time.sleep', (['(0.02)'], {}), '(0.02)\n', (511, 517), False, 'import time\n'), ((778, 794), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (788, 794), False, 'import time\n'), ((1192, 1208), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (1202, 1208), False, 'import time\n')]
from io import StringIO from unittest import TestCase, mock from subrip_ranger import subtitles, timecodes class TestBase: SUBSECTIONS = [ '1\n' '00:00:01,000 --> 00:00:02,000\n' 'subtext 1/1\n' 'subtext 1/2\n', '2\n' '00:00:04,000 --> 00:00:05,000\n' 'subtext 2/1\n' 'subtext 2/2\n', ] START_INDEX = 1 class SubtitleTest(TestBase, TestCase): def setUp(self): self.subsection = self.SUBSECTIONS[0] self.subtitle = subtitles.Subtitle(self.START_INDEX) self.subtitle.parse(self.subsection) def test_parsing(self): """parsing results expected values""" self.assertEqual(self.subtitle.index, self.START_INDEX) self.assertEqual( self.subtitle.timecode_line.appearance.value.total_seconds(), 1 ) self.assertEqual( self.subtitle.timecode_line.disappearance.value.total_seconds(), 2 ) self.assertEqual(len(self.subtitle.sublines), 2) @mock.patch.object(timecodes.TimecodeLine, 'adjust') def test_adjustment(self, mock_adjust): """adjustment called on timecode_line instance""" self.subtitle.adjust() mock_adjust.assert_called_once() def test_formatting(self): """formatting unadjusted subtitle matches with original""" self.assertEqual(str(self.subtitle), self.subsection) class SubtitleSequenceTest(TestBase, TestCase): def setUp(self): self.subsections = '\n'.join(self.SUBSECTIONS) self.input = StringIO(self.subsections) self.subtitle_sequence = subtitles.SubtitleSequence(self.START_INDEX) self.subtitle_sequence.parse(self.input) def test_parsing(self): """subtitle entries fetched properly""" result = len(self.subtitle_sequence.subtitles) self.assertEqual(result, len(self.SUBSECTIONS)) @mock.patch.object(subtitles.Subtitle, 'adjust') def test_adjustment(self, mock_adjust): """adjustment forwarded to each Subtitle instances""" self.subtitle_sequence.adjust() self.assertEqual(mock_adjust.call_count, len(self.SUBSECTIONS)) def test_writing(self): """output of unadjusted subtitles matches with original content""" mock_file = mock.Mock() self.subtitle_sequence.write(mock_file) mock_file.write.assert_called_once_with(self.subsections)
[ "subrip_ranger.subtitles.SubtitleSequence", "unittest.mock.Mock", "io.StringIO", "unittest.mock.patch.object", "subrip_ranger.subtitles.Subtitle" ]
[((1027, 1078), 'unittest.mock.patch.object', 'mock.patch.object', (['timecodes.TimecodeLine', '"""adjust"""'], {}), "(timecodes.TimecodeLine, 'adjust')\n", (1044, 1078), False, 'from unittest import TestCase, mock\n'), ((1910, 1957), 'unittest.mock.patch.object', 'mock.patch.object', (['subtitles.Subtitle', '"""adjust"""'], {}), "(subtitles.Subtitle, 'adjust')\n", (1927, 1957), False, 'from unittest import TestCase, mock\n'), ((516, 552), 'subrip_ranger.subtitles.Subtitle', 'subtitles.Subtitle', (['self.START_INDEX'], {}), '(self.START_INDEX)\n', (534, 552), False, 'from subrip_ranger import subtitles, timecodes\n'), ((1562, 1588), 'io.StringIO', 'StringIO', (['self.subsections'], {}), '(self.subsections)\n', (1570, 1588), False, 'from io import StringIO\n'), ((1622, 1666), 'subrip_ranger.subtitles.SubtitleSequence', 'subtitles.SubtitleSequence', (['self.START_INDEX'], {}), '(self.START_INDEX)\n', (1648, 1666), False, 'from subrip_ranger import subtitles, timecodes\n'), ((2300, 2311), 'unittest.mock.Mock', 'mock.Mock', ([], {}), '()\n', (2309, 2311), False, 'from unittest import TestCase, mock\n')]
import unittest from sodasql.common.yaml_helper import YamlHelper class YamlHelperTest(unittest.TestCase): def test_valid_numeric_value(self): value = YamlHelper.validate_numeric_value("column_name", "key", 2) self.assertEqual(value, 2) def test_valid_array_value(self): value = YamlHelper.validate_list_value("column_name", "key", [1, 2, 3]) self.assertEqual(value, [1, 2, 3]) def test_invalid_numeric_value(self): value = YamlHelper.validate_numeric_value("column_name", "key", None) self.assertEqual(value, None) def test_invalid_array_value(self): value = YamlHelper.validate_list_value("column_name", "key", None) self.assertEqual(value, None) if __name__ == '__main__': unittest.main()
[ "unittest.main", "sodasql.common.yaml_helper.YamlHelper.validate_list_value", "sodasql.common.yaml_helper.YamlHelper.validate_numeric_value" ]
[((768, 783), 'unittest.main', 'unittest.main', ([], {}), '()\n', (781, 783), False, 'import unittest\n'), ((165, 223), 'sodasql.common.yaml_helper.YamlHelper.validate_numeric_value', 'YamlHelper.validate_numeric_value', (['"""column_name"""', '"""key"""', '(2)'], {}), "('column_name', 'key', 2)\n", (198, 223), False, 'from sodasql.common.yaml_helper import YamlHelper\n'), ((314, 377), 'sodasql.common.yaml_helper.YamlHelper.validate_list_value', 'YamlHelper.validate_list_value', (['"""column_name"""', '"""key"""', '[1, 2, 3]'], {}), "('column_name', 'key', [1, 2, 3])\n", (344, 377), False, 'from sodasql.common.yaml_helper import YamlHelper\n'), ((480, 541), 'sodasql.common.yaml_helper.YamlHelper.validate_numeric_value', 'YamlHelper.validate_numeric_value', (['"""column_name"""', '"""key"""', 'None'], {}), "('column_name', 'key', None)\n", (513, 541), False, 'from sodasql.common.yaml_helper import YamlHelper\n'), ((637, 695), 'sodasql.common.yaml_helper.YamlHelper.validate_list_value', 'YamlHelper.validate_list_value', (['"""column_name"""', '"""key"""', 'None'], {}), "('column_name', 'key', None)\n", (667, 695), False, 'from sodasql.common.yaml_helper import YamlHelper\n')]
import collections import copy from typing import Union, Dict, List, Any def create_dependency(key, value): newkey = f"is_enabled_{key}" title = value.get("title", key) newvalue = { "title": f"Enable {title}", "default": "No", "enum": ["No", "Yes"], } dep = { "oneOf": [ {"properties": {newkey: {"enum": ["No"]}}}, {"properties": {newkey: {"enum": ["Yes"]}, key: value}, "required": [key]}, ] } return newkey, newvalue, dep def remove_schema_properties(schema: Dict[str, Any], properties: List[str]) -> None: schemaprops = schema.get("properties", {}) for prop in properties: schemaprops.pop(prop, None) def add_boolean_guards_for_schema_properties( schema: Dict[str, Any], properties: List[str] ) -> None: if "dependencies" not in schema: schema["dependencies"] = {} props = schema.get("properties", {}) new_props = {} for key, value in props.items(): if key in properties: newkey, newvalue, dep = create_dependency(key, value) new_props[newkey] = newvalue schema["dependencies"][newkey] = dep else: new_props[key] = value schema["properties"] = new_props def replacekey(input: Union[Dict, List, object]) -> Any: replacements = {"anyOf": "oneOf"} if isinstance(input, dict): # For every key in the dict, get either a replacement, or the key itself. # Call this function recursively for values. return {replacements.get(k, k): replacekey(v) for k, v in input.items()} elif isinstance(input, list): return [replacekey(item) for item in input] else: return input def replacevalue(input: Union[Dict, List, object]) -> Any: if isinstance(input, dict): return {k: replacevalue(input[k]) for k in input} elif isinstance(input, list): return [replacevalue(item) for item in input] else: replacements = {"integer": "number"} return replacements.get(input, input) def addsibling(input: Union[Dict, List, object]) -> Any: if isinstance(input, dict): d = {k: addsibling(input[k]) for k in input} if "oneOf" in input: d["type"] = "object" return d elif isinstance(input, list): return [addsibling(item) for item in input] else: return input def delsibling(input: Union[Dict, List, object], siblings: Dict[str, str]) -> Any: if isinstance(input, dict): d = {k: delsibling(input[k], siblings) for k in input} for key, value in siblings.items(): if key in input: d.pop(value, None) return d elif isinstance(input, list): return [delsibling(item, siblings) for item in input] else: return input def getref(path: str, context: Dict): """Recursively returns nested items from a dict.""" if not path.startswith("#/"): raise ValueError("ref path does not start with #/") items = path[2:].split("/") def recursive_get(keys, structure): if len(keys) == 0: return structure else: return recursive_get(keys[1:], structure[keys[0]]) return recursive_get(items, context) def copytitle(input, context): """Copies "title" from "$ref" into oneOf.""" if isinstance(input, dict): output = {} for key in input: if key == "oneOf": initems = input[key] outitems = [] for initem in initems: outitem = copy.deepcopy(initem) if "$ref" in initem and not "title" in initem: ref = getref(initem["$ref"], context) default_title = initem["$ref"].split("/")[-1] outitem["title"] = ref.get("title", default_title) outitems.append(outitem) output[key] = outitems else: output[key] = copytitle(input[key], context) return output elif isinstance(input, list): return [copytitle(item, context) for item in input] else: return input def replaceenum(input: Union[Dict, List, object]) -> Any: """Replace singleton enums with const.""" if isinstance(input, collections.Mapping): d1 = { k: replaceenum(v) for k, v in input.items() if not (k == "enum" and isinstance(v, list) and len(v) == 1) } d2 = { "const": v[0] for k, v in input.items() if (k == "enum" and isinstance(v, list) and len(v) == 1) } return {**d1, **d2} # Merge two dicts: https://stackoverflow.com/a/26853961 elif isinstance(input, list): return [replaceenum(item) for item in input] else: return input def addtitles(schema): if isinstance(schema, dict): for name, prop in schema.get("properties", {}).items(): prop["title"] = prop.get("title", name.capitalize()) # or whatever for value in schema.values(): addtitles(value) elif isinstance(schema, list): for elt in schema: addtitles(elt)
[ "copy.deepcopy" ]
[((3609, 3630), 'copy.deepcopy', 'copy.deepcopy', (['initem'], {}), '(initem)\n', (3622, 3630), False, 'import copy\n')]
#!/usr/bin/env python # Copyright (c) 2014, Rethink Robotics # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the Rethink Robotics nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import cv import cv_bridge import PIL '''~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # PIL/cv interaction # The functions in this secion handle interactions between # PIL and cvmat formats. # **gen_msg() converts an RGB PIL image to a BGR cvmat image # **rgb_to_bgr() converts an RGB PIL image to a BGR PIL image # **PIL_to_cv() converts a BGR PIL image to a cvmat image # **cv_to_msg() converts a cvmat image to a rosmsg format # **msg_to_cv() converts a rosmsg image to a cvmat image # **overlay() takes an original image, the size of that image, # a rectangle defined in that original image, and a new # new image and returns the original image with the new # image overlayed in the defined rectangle. # For the moment, this is mainly used for the Camera # Display demo, overlaying the selected camera's image # onto the UI display ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~''' def gen_cv(img): return PIL_to_cv(rgb_to_bgr(img)) def rgb_to_bgr(img): r, g, b = img.split() return PIL.Image.merge('RGB', (b, g, r)) def PIL_to_cv(img): ci = cv.CreateImage((1024, 600), cv.IPL_DEPTH_8U, 3) cv.SetData(ci, img.tostring(), 3072) return ci def cv_to_msg(img): return cv_bridge.CvBridge().cv_to_imgmsg(img, encoding='bgr8') def msg_to_cv(img): return cv_bridge.CvBridge().imgmsg_to_cv(img, desired_encoding='bgr8') def overlay(old_img, new_img, original_size, new_rect): tmp = cv.CreateImage(original_size, cv.IPL_DEPTH_8U, 3) cv.Copy(old_img, tmp) sub = cv.GetSubRect(tmp, new_rect) cv_img = msg_to_cv(new_img) cv.Copy(cv_img, sub) return cv_to_msg(tmp)
[ "cv.CreateImage", "cv_bridge.CvBridge", "cv.GetSubRect", "cv.Copy", "PIL.Image.merge" ]
[((2638, 2671), 'PIL.Image.merge', 'PIL.Image.merge', (['"""RGB"""', '(b, g, r)'], {}), "('RGB', (b, g, r))\n", (2653, 2671), False, 'import PIL\n'), ((2703, 2750), 'cv.CreateImage', 'cv.CreateImage', (['(1024, 600)', 'cv.IPL_DEPTH_8U', '(3)'], {}), '((1024, 600), cv.IPL_DEPTH_8U, 3)\n', (2717, 2750), False, 'import cv\n'), ((3060, 3109), 'cv.CreateImage', 'cv.CreateImage', (['original_size', 'cv.IPL_DEPTH_8U', '(3)'], {}), '(original_size, cv.IPL_DEPTH_8U, 3)\n', (3074, 3109), False, 'import cv\n'), ((3114, 3135), 'cv.Copy', 'cv.Copy', (['old_img', 'tmp'], {}), '(old_img, tmp)\n', (3121, 3135), False, 'import cv\n'), ((3146, 3174), 'cv.GetSubRect', 'cv.GetSubRect', (['tmp', 'new_rect'], {}), '(tmp, new_rect)\n', (3159, 3174), False, 'import cv\n'), ((3211, 3231), 'cv.Copy', 'cv.Copy', (['cv_img', 'sub'], {}), '(cv_img, sub)\n', (3218, 3231), False, 'import cv\n'), ((2839, 2859), 'cv_bridge.CvBridge', 'cv_bridge.CvBridge', ([], {}), '()\n', (2857, 2859), False, 'import cv_bridge\n'), ((2928, 2948), 'cv_bridge.CvBridge', 'cv_bridge.CvBridge', ([], {}), '()\n', (2946, 2948), False, 'import cv_bridge\n')]
import logging import sys import time import sfc.lib.openstack_utils as os_sfc_utils import sfc.lib.odl_utils as odl_utils logger = logging.getLogger(__name__) def delete_odl_resources(odl_ip, odl_port, resource): rsrc_list = odl_utils.get_odl_resource_list(odl_ip, odl_port, resource) elem_names = odl_utils.odl_resource_list_names(resource, rsrc_list) for elem in elem_names: logger.info("Removing ODL resource: {0}/{1}".format(resource, elem)) odl_utils.delete_odl_resource_elem(odl_ip, odl_port, resource, elem) def delete_odl_ietf_access_lists(odl_ip, odl_port): acl_list = odl_utils.get_odl_acl_list(odl_ip, odl_port) acl_types_names = odl_utils.odl_acl_types_names(acl_list) for acl_type, acl_name in acl_types_names: odl_utils.delete_odl_acl(odl_ip, odl_port, acl_type, acl_name) def delete_vnfds(): t = os_sfc_utils.get_tacker_client() vnfds = os_sfc_utils.list_vnfds(t) if vnfds is None: return for vnfd in vnfds: logger.info("Removing vnfd: {0}".format(vnfd)) os_sfc_utils.delete_vnfd(t, vnfd_id=vnfd) def delete_vnfs(): t = os_sfc_utils.get_tacker_client() vnfs = os_sfc_utils.list_vnfs(t) if vnfs is None: return for vnf in vnfs: logger.info("Removing vnf: {0}".format(vnf)) os_sfc_utils.delete_vnf(t, vnf_id=vnf) def delete_vnffgs(): t = os_sfc_utils.get_tacker_client() vnffgs = os_sfc_utils.list_vnffgs(t) if vnffgs is None: return for vnffg in reversed(vnffgs): logger.info("Removing vnffg: {0}".format(vnffg)) os_sfc_utils.delete_vnffg(t, vnffg_id=vnffg) def delete_vnffgds(): t = os_sfc_utils.get_tacker_client() vnffgds = os_sfc_utils.list_vnffgds(t) if vnffgds is None: return for vnffgd in vnffgds: logger.info("Removing vnffgd: {0}".format(vnffgd)) os_sfc_utils.delete_vnffgd(t, vnffgd_id=vnffgd) def delete_vims(): t = os_sfc_utils.get_tacker_client() vims = os_sfc_utils.list_vims(t) if vims is None: return for vim in vims: logger.info("Removing vim: {0}".format(vim)) os_sfc_utils.delete_vim(t, vim_id=vim) # Creators is a list full of SNAPs objects def delete_openstack_objects(creators): for creator in reversed(creators): try: creator.clean() except Exception as e: logger.error('Unexpected error cleaning - %s', e) # Networking-odl generates a new security group when creating a router # which is not tracked by SNAPs def delete_untracked_security_groups(): openstack_sfc = os_sfc_utils.OpenStackSFC() openstack_sfc.delete_all_security_groups() def cleanup_odl(odl_ip, odl_port): delete_odl_resources(odl_ip, odl_port, 'service-function-forwarder') delete_odl_resources(odl_ip, odl_port, 'service-function-chain') delete_odl_resources(odl_ip, odl_port, 'service-function-path') delete_odl_resources(odl_ip, odl_port, 'service-function') delete_odl_ietf_access_lists(odl_ip, odl_port) def cleanup(creators, odl_ip=None, odl_port=None): delete_vnffgs() delete_vnffgds() delete_vnfs() time.sleep(20) delete_vnfds() delete_vims() delete_openstack_objects(creators) delete_untracked_security_groups() if odl_ip is not None and odl_port is not None: cleanup_odl(odl_ip, odl_port) def cleanup_from_bash(odl_ip=None, odl_port=None): delete_vnffgs() delete_vnffgds() delete_vnfs() time.sleep(20) delete_vnfds() delete_vims() if odl_ip is not None and odl_port is not None: cleanup_odl(odl_ip, odl_port) if __name__ == '__main__': if len(sys.argv) > 2: cleanup_from_bash(sys.argv[1], sys.argv[2])
[ "logging.getLogger", "time.sleep", "sfc.lib.openstack_utils.delete_vnf", "sfc.lib.openstack_utils.delete_vnffgd", "sfc.lib.odl_utils.odl_resource_list_names", "sfc.lib.odl_utils.odl_acl_types_names", "sfc.lib.odl_utils.delete_odl_acl", "sfc.lib.odl_utils.get_odl_acl_list", "sfc.lib.odl_utils.delete_odl_resource_elem", "sfc.lib.openstack_utils.list_vnfds", "sfc.lib.openstack_utils.list_vims", "sfc.lib.openstack_utils.get_tacker_client", "sfc.lib.openstack_utils.OpenStackSFC", "sfc.lib.odl_utils.get_odl_resource_list", "sfc.lib.openstack_utils.list_vnfs", "sfc.lib.openstack_utils.delete_vim", "sfc.lib.openstack_utils.list_vnffgs", "sfc.lib.openstack_utils.delete_vnffg", "sfc.lib.openstack_utils.delete_vnfd", "sfc.lib.openstack_utils.list_vnffgds" ]
[((134, 161), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (151, 161), False, 'import logging\n'), ((234, 293), 'sfc.lib.odl_utils.get_odl_resource_list', 'odl_utils.get_odl_resource_list', (['odl_ip', 'odl_port', 'resource'], {}), '(odl_ip, odl_port, resource)\n', (265, 293), True, 'import sfc.lib.odl_utils as odl_utils\n'), ((311, 365), 'sfc.lib.odl_utils.odl_resource_list_names', 'odl_utils.odl_resource_list_names', (['resource', 'rsrc_list'], {}), '(resource, rsrc_list)\n', (344, 365), True, 'import sfc.lib.odl_utils as odl_utils\n'), ((617, 661), 'sfc.lib.odl_utils.get_odl_acl_list', 'odl_utils.get_odl_acl_list', (['odl_ip', 'odl_port'], {}), '(odl_ip, odl_port)\n', (643, 661), True, 'import sfc.lib.odl_utils as odl_utils\n'), ((684, 723), 'sfc.lib.odl_utils.odl_acl_types_names', 'odl_utils.odl_acl_types_names', (['acl_list'], {}), '(acl_list)\n', (713, 723), True, 'import sfc.lib.odl_utils as odl_utils\n'), ((872, 904), 'sfc.lib.openstack_utils.get_tacker_client', 'os_sfc_utils.get_tacker_client', ([], {}), '()\n', (902, 904), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((917, 943), 'sfc.lib.openstack_utils.list_vnfds', 'os_sfc_utils.list_vnfds', (['t'], {}), '(t)\n', (940, 943), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1138, 1170), 'sfc.lib.openstack_utils.get_tacker_client', 'os_sfc_utils.get_tacker_client', ([], {}), '()\n', (1168, 1170), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1182, 1207), 'sfc.lib.openstack_utils.list_vnfs', 'os_sfc_utils.list_vnfs', (['t'], {}), '(t)\n', (1204, 1207), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1396, 1428), 'sfc.lib.openstack_utils.get_tacker_client', 'os_sfc_utils.get_tacker_client', ([], {}), '()\n', (1426, 1428), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1442, 1469), 'sfc.lib.openstack_utils.list_vnffgs', 'os_sfc_utils.list_vnffgs', (['t'], {}), '(t)\n', (1466, 1469), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1685, 1717), 'sfc.lib.openstack_utils.get_tacker_client', 'os_sfc_utils.get_tacker_client', ([], {}), '()\n', (1715, 1717), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1732, 1760), 'sfc.lib.openstack_utils.list_vnffgds', 'os_sfc_utils.list_vnffgds', (['t'], {}), '(t)\n', (1757, 1760), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1971, 2003), 'sfc.lib.openstack_utils.get_tacker_client', 'os_sfc_utils.get_tacker_client', ([], {}), '()\n', (2001, 2003), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((2015, 2040), 'sfc.lib.openstack_utils.list_vims', 'os_sfc_utils.list_vims', (['t'], {}), '(t)\n', (2037, 2040), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((2621, 2648), 'sfc.lib.openstack_utils.OpenStackSFC', 'os_sfc_utils.OpenStackSFC', ([], {}), '()\n', (2646, 2648), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((3173, 3187), 'time.sleep', 'time.sleep', (['(20)'], {}), '(20)\n', (3183, 3187), False, 'import time\n'), ((3509, 3523), 'time.sleep', 'time.sleep', (['(20)'], {}), '(20)\n', (3519, 3523), False, 'import time\n'), ((479, 547), 'sfc.lib.odl_utils.delete_odl_resource_elem', 'odl_utils.delete_odl_resource_elem', (['odl_ip', 'odl_port', 'resource', 'elem'], {}), '(odl_ip, odl_port, resource, elem)\n', (513, 547), True, 'import sfc.lib.odl_utils as odl_utils\n'), ((779, 841), 'sfc.lib.odl_utils.delete_odl_acl', 'odl_utils.delete_odl_acl', (['odl_ip', 'odl_port', 'acl_type', 'acl_name'], {}), '(odl_ip, odl_port, acl_type, acl_name)\n', (803, 841), True, 'import sfc.lib.odl_utils as odl_utils\n'), ((1067, 1108), 'sfc.lib.openstack_utils.delete_vnfd', 'os_sfc_utils.delete_vnfd', (['t'], {'vnfd_id': 'vnfd'}), '(t, vnfd_id=vnfd)\n', (1091, 1108), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1326, 1364), 'sfc.lib.openstack_utils.delete_vnf', 'os_sfc_utils.delete_vnf', (['t'], {'vnf_id': 'vnf'}), '(t, vnf_id=vnf)\n', (1349, 1364), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1608, 1652), 'sfc.lib.openstack_utils.delete_vnffg', 'os_sfc_utils.delete_vnffg', (['t'], {'vnffg_id': 'vnffg'}), '(t, vnffg_id=vnffg)\n', (1633, 1652), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((1894, 1941), 'sfc.lib.openstack_utils.delete_vnffgd', 'os_sfc_utils.delete_vnffgd', (['t'], {'vnffgd_id': 'vnffgd'}), '(t, vnffgd_id=vnffgd)\n', (1920, 1941), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n'), ((2159, 2197), 'sfc.lib.openstack_utils.delete_vim', 'os_sfc_utils.delete_vim', (['t'], {'vim_id': 'vim'}), '(t, vim_id=vim)\n', (2182, 2197), True, 'import sfc.lib.openstack_utils as os_sfc_utils\n')]
# Generated by Django 2.0.2 on 2018-02-02 05:18 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('webapp', '0001_initial'), ] operations = [ migrations.RemoveField( model_name='utility', name='pub_date', ), ]
[ "django.db.migrations.RemoveField" ]
[((215, 276), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""utility"""', 'name': '"""pub_date"""'}), "(model_name='utility', name='pub_date')\n", (237, 276), False, 'from django.db import migrations\n')]
# # Copyright 2018-2020 Clement # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import os import pytest from flask import request from PIL import Image from flaskr.map import create_static_map from flaskr.map import gpx_to_simplified_geojson @pytest.mark.parametrize( "map_type", ( "viewer", "player", ), ) def test_viewers(files, client, app, auth, map_type): """ Test the map viewer (2D) and map player (3D). """ # unknown book ID: rv = client.get("/map/" + map_type + "/42/first_story/test_Gillespie_Circuit/nz") assert rv.status_code == 404 # unknown book name: rv = client.get("/map/" + map_type + "/1/bad_story/test_Gillespie_Circuit/nz") assert rv.status_code == 404 # restricted book (access level = 1): rv = client.get("/map/" + map_type + "/4/fourth_story/test_Gillespie_Circuit/fr") assert rv.status_code == 404 # bad country code: rv = client.get("/map/" + map_type + "/1/first_story/test_Unknown/hell") assert rv.status_code == 404 with client: # check granted access and raw GPX download link access: auth.login() rv = client.get( "/map/" + map_type + "/4/fourth_story/test_Gillespie_Circuit/fr" ) assert rv.status_code == 200 assert b'href="/stories/4/test_Gillespie_Circuit.gpx"' not in rv.data # actual GPX download tested in test_restricted_access.py auth.logout() auth.login("<EMAIL>", "admin") rv = client.get( "/map/" + map_type + "/4/fourth_story/test_Gillespie_Circuit/fr" ) assert rv.status_code == 200 assert b'href="/stories/4/test_Gillespie_Circuit.gpx"' in rv.data auth.logout() # check unrestricted track: rv = client.get("/map/" + map_type + "/1/first_story/test_Gillespie_Circuit/nz") assert rv.status_code == 200 # test map.get_thumbnail_path(): static_map_url = ( request.url_root.encode() + b"map/static_map/1/test_Gillespie_Circuit.jpg" ) assert ( b'meta name="twitter:image" property="og:image" content="' + static_map_url + b'"' in rv.data ) def test_gpx_to_simplified_geojson(files): """ Test the GPX to GeoJSON conversion. """ with open("test_gpx_to_geojson.expected_output.geojson") as expected_output: assert expected_output.read() == gpx_to_simplified_geojson( "test_gpx_to_geojson.gpx" ) @pytest.mark.parametrize( "track_type", ( "geojson", "webtrack", ), ) def test_export(files, client, app, auth, track_type): """ Test the WebTrack access. """ # unknown book: rv = client.get("/map/" + track_type + "s/42/test_Gillespie_Circuit." + track_type) assert rv.status_code == 404 # restricted book: rv = client.get("/map/" + track_type + "s/4/my_track." + track_type) assert rv.status_code == 404 # unknown track: rv = client.get("/map/" + track_type + "s/1/test_Unknown." + track_type) assert rv.status_code == 404 # empty GPX file: auth.login() with pytest.raises(EOFError, match="GPX file is empty"): rv = client.get("/map/" + track_type + "s/4/my_track." + track_type) auth.logout() # all good: track_filename = "test_Gillespie_Circuit." + track_type rv = client.get("/map/" + track_type + "s/1/" + track_filename) assert rv.status_code == 200 with app.app_context(): track_path = os.path.join( app.config["SHELF_FOLDER"], "first_story", track_filename ) assert os.path.isfile(track_path) if track_type == "webtrack": webtrack_header = b"webtrack-bin" assert open(track_path, "rb").read(len(webtrack_header)) == webtrack_header elif track_type == "geojson": geojson_header = '{"type":"FeatureCollection","features":[' assert open(track_path, "r").read(len(geojson_header)) == geojson_header def test_static_map(files, client, auth): """ Test the static map. """ # unknown book: rv = client.get("/map/static_map/42/test_Gillespie_Circuit.jpg") assert rv.status_code == 404 # restricted book: rv = client.get("/map/static_map/4/my_track.jpg") assert rv.status_code == 404 # unknown track: rv = client.get("/map/static_map/1/test_Unknown.jpg") assert rv.status_code == 404 # empty GPX file: auth.login() with pytest.raises(EOFError, match="GPX file is empty"): rv = client.get("/map/static_map/4/my_track.jpg") auth.logout() # all good: rv = client.get("/map/static_map/1/test_Gillespie_Circuit.jpg") assert rv.status_code == 200 def test_create_static_map(app): with app.app_context(): static_image = "Gillespie_Circuit.jpeg" create_static_map( "Gillespie_Circuit.gpx", static_image, app.config["MAPBOX_STATIC_IMAGES"] ) with Image.open(static_image) as im: assert im.format == "JPEG" assert im.size == (1600, 1000) assert im.mode == "RGB" os.remove(static_image) @pytest.mark.parametrize( "path", ( # LDS aerial: "/map/middleware/lds/set=2/a/0/0/0", # LDS topo: "/map/middleware/lds/layer=767/a/0/0/0", # IGN aerial: "/map/middleware/ign?layer=GEOGRAPHICALGRIDSYSTEMS.MAPS&style=normal&tilematrixset=PM&Service=WMTS&Request" "=GetTile&Version=1.0.0&Format=image/jpeg&TileMatrix=11&TileCol=1023&TileRow=753", # IGN topo: "/map/middleware/ign?layer=ORTHOIMAGERY.ORTHOPHOTOS&style=normal&tilematrixset=PM&Service=WMTS&Request" "=GetTile&Version=1.0.0&Format=image%2Fjpeg&TileMatrix=11&TileCol=1026&TileRow=753", ), ) def test_map_proxy_link_ok(client, path): """ Check the links availability. """ rv = client.get(path) assert rv.status_code == 200
[ "flaskr.map.gpx_to_simplified_geojson", "PIL.Image.open", "os.path.join", "flaskr.map.create_static_map", "os.path.isfile", "pytest.mark.parametrize", "pytest.raises", "flask.request.url_root.encode", "os.remove" ]
[((1693, 1750), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""map_type"""', "('viewer', 'player')"], {}), "('map_type', ('viewer', 'player'))\n", (1716, 1750), False, 'import pytest\n'), ((3988, 4050), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""track_type"""', "('geojson', 'webtrack')"], {}), "('track_type', ('geojson', 'webtrack'))\n", (4011, 4050), False, 'import pytest\n'), ((6672, 7179), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""path"""', "('/map/middleware/lds/set=2/a/0/0/0',\n '/map/middleware/lds/layer=767/a/0/0/0',\n '/map/middleware/ign?layer=GEOGRAPHICALGRIDSYSTEMS.MAPS&style=normal&tilematrixset=PM&Service=WMTS&Request=GetTile&Version=1.0.0&Format=image/jpeg&TileMatrix=11&TileCol=1023&TileRow=753'\n ,\n '/map/middleware/ign?layer=ORTHOIMAGERY.ORTHOPHOTOS&style=normal&tilematrixset=PM&Service=WMTS&Request=GetTile&Version=1.0.0&Format=image%2Fjpeg&TileMatrix=11&TileCol=1026&TileRow=753'\n )"], {}), "('path', ('/map/middleware/lds/set=2/a/0/0/0',\n '/map/middleware/lds/layer=767/a/0/0/0',\n '/map/middleware/ign?layer=GEOGRAPHICALGRIDSYSTEMS.MAPS&style=normal&tilematrixset=PM&Service=WMTS&Request=GetTile&Version=1.0.0&Format=image/jpeg&TileMatrix=11&TileCol=1023&TileRow=753'\n ,\n '/map/middleware/ign?layer=ORTHOIMAGERY.ORTHOPHOTOS&style=normal&tilematrixset=PM&Service=WMTS&Request=GetTile&Version=1.0.0&Format=image%2Fjpeg&TileMatrix=11&TileCol=1026&TileRow=753'\n ))\n", (6695, 7179), False, 'import pytest\n'), ((4638, 4688), 'pytest.raises', 'pytest.raises', (['EOFError'], {'match': '"""GPX file is empty"""'}), "(EOFError, match='GPX file is empty')\n", (4651, 4688), False, 'import pytest\n'), ((5012, 5083), 'os.path.join', 'os.path.join', (["app.config['SHELF_FOLDER']", '"""first_story"""', 'track_filename'], {}), "(app.config['SHELF_FOLDER'], 'first_story', track_filename)\n", (5024, 5083), False, 'import os\n'), ((5121, 5147), 'os.path.isfile', 'os.path.isfile', (['track_path'], {}), '(track_path)\n', (5135, 5147), False, 'import os\n'), ((5994, 6044), 'pytest.raises', 'pytest.raises', (['EOFError'], {'match': '"""GPX file is empty"""'}), "(EOFError, match='GPX file is empty')\n", (6007, 6044), False, 'import pytest\n'), ((6359, 6456), 'flaskr.map.create_static_map', 'create_static_map', (['"""Gillespie_Circuit.gpx"""', 'static_image', "app.config['MAPBOX_STATIC_IMAGES']"], {}), "('Gillespie_Circuit.gpx', static_image, app.config[\n 'MAPBOX_STATIC_IMAGES'])\n", (6376, 6456), False, 'from flaskr.map import create_static_map\n'), ((6645, 6668), 'os.remove', 'os.remove', (['static_image'], {}), '(static_image)\n', (6654, 6668), False, 'import os\n'), ((3433, 3458), 'flask.request.url_root.encode', 'request.url_root.encode', ([], {}), '()\n', (3456, 3458), False, 'from flask import request\n'), ((3910, 3962), 'flaskr.map.gpx_to_simplified_geojson', 'gpx_to_simplified_geojson', (['"""test_gpx_to_geojson.gpx"""'], {}), "('test_gpx_to_geojson.gpx')\n", (3935, 3962), False, 'from flaskr.map import gpx_to_simplified_geojson\n'), ((6487, 6511), 'PIL.Image.open', 'Image.open', (['static_image'], {}), '(static_image)\n', (6497, 6511), False, 'from PIL import Image\n')]
from __future__ import unicode_literals import frappe import traceback import unicodedata from frappe import auth import datetime import json, ast from frappe import _ import requests @frappe.whitelist(allow_guest=True) def lead(**kwargs): lead =frappe.get_doc(kwargs['data']) lead.insert() lead_name = lead.name frappe.db.commit() if (lead_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "lead": lead_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def opportunity(**kwargs): opportunity =frappe.get_doc(kwargs['data']) opportunity.insert() opportunity_name = opportunity.name frappe.db.commit() if (opportunity_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "opportunity": opportunity_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def quotation(**kwargs): quotation =frappe.get_doc(kwargs['data']) quotation.insert() quotation_name = quotation.name frappe.db.commit() if (quotation_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "quotation": quotation_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def customer(**kwargs): customer = frappe.new_doc('Customer') customer.customer_name =kwargs['data']['customer_name'] customer.customer_type =kwargs['data']['customer_type'] customer.customer_group =kwargs['data']['customer_group'] customer.territory = kwargs['data']['territory'] customer.market_segment = kwargs['data']['market_segment'] customer.industry = kwargs['data']['industry'] customer.tax_id = kwargs['data']['tax_id'] customer.default_currency = kwargs['data']['default_currency'] customer.default_price_list = kwargs['data']['default_price_list'] customer.default_sales_partner = kwargs['data']['default_sales_partner'] #customer.credit_limits = kwargs['data']['credit_limits'] customer.insert() customer_name = customer.name contact = frappe.new_doc('Contact') contact_link = [{ "link_doctype": "Customer", "link_name": customer_name, "link_title": customer_name }] contact.first_name = kwargs['data']['customer_name'] contact.email_id = kwargs['data']['email_id'] contact.mobile_no = kwargs['data']['mobile_no'] contact.is_primary_contact = 1 contact.is_billing_contact = 1 #contact.links = contact_link contact.insert() address = frappe.new_doc('Address') address_link = [{ "link_doctype": "Customer", "link_name": customer_name, "link_title": customer_name }] address.address_title = kwargs['data']['customer_name'] address.address_line1 = kwargs['data']['address_line1'] address.city = kwargs['data']['city'] address.country = kwargs['data']['country'] address.address_type = "Billing" address.is_primary_address_type = 1 address.is_shipping_address_type = 1 #address.links = address_link address.insert() #customer =frappe.get_doc(kwargs['data']) #customer.insert() frappe.db.commit() if (customer_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "customer": customer_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def sales_order(**kwargs): sales_order =frappe.get_doc(kwargs['data']) sales_order.insert() sales_order_name = sales_order.name frappe.db.commit() if (sales_order_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "sales_order": sales_order_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def sales_invoice(**kwargs): sales_invoice =frappe.get_doc(kwargs['data']) sales_invoice.insert() sales_invoice_name = sales_invoice.name frappe.db.commit() if (sales_invoice_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "sales_invoice": sales_invoice_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def payment_entry(**kwargs): payment_entry =frappe.get_doc(kwargs['data']) payment_entry.insert() payment_entry_name = payment_entry.name frappe.db.commit() if (payment_entry_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "payment_entry": payment_entry_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def item(**kwargs): item =frappe.get_doc(kwargs['data']) item.insert() item_name = item.name frappe.db.commit() if (item_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة الصنف بنجاح!", "item": item_name } return message else: return "حدث خطأ ولم نتمكن من اضافة الصنف . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def material_request(**kwargs): material_request =frappe.get_doc(kwargs['data']) material_request.insert() material_request_name = material_request.name frappe.db.commit() if (material_request_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "material_request": material_request_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def stock_entry(**kwargs): stock_entry =frappe.get_doc(kwargs['data']) stock_entry.insert() stock_entry_name = stock_entry.name frappe.db.commit() if (stock_entry_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "stock_entry": stock_entry_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def delivery_note(**kwargs): delivery_note =frappe.get_doc(kwargs['data']) delivery_note.insert() delivery_note_name = delivery_note.name frappe.db.commit() if (delivery_note_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "delivery_note": delivery_note_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def purchase_receipt(**kwargs): purchase_receipt =frappe.get_doc(kwargs['data']) purchase_receipt.insert() purchase_receipt_name = purchase_receipt.name frappe.db.commit() if (purchase_receipt_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة المعاملة بنجاح!", "purchase_receipt": purchase_receipt_name } return message else: return "حدث خطأ ولم نتمكن من اضافة المعاملة . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def comment(**kwargs): comment =frappe.get_doc(kwargs['data']) comment.insert() comment_name = comment.name frappe.db.commit() if (comment_name): message = frappe.response["message"] = { "success_key": True, "message": "تم اضافة التعليق بنجاح!", "comment": comment_name } return message else: return "حدث خطأ ولم نتمكن من اضافة التعليق . برجاء المحاولة مرة اخري!" @frappe.whitelist(allow_guest=True) def add_item_list(**kwargs): start = 0 page_length = 20 try: if kwargs['search_text']: items = frappe.db.sql(""" select tabItem.name as name , tabItem.item_name as item_name, tabItem.item_group as item_group, tabItem.stock_uom as stock_uom, tabItem.image as image, tabItem.sales_uom as sales_uom, ifnull((select max(price_list_rate) from `tabItem Price` where item_code = tabItem.name and price_list = '{price_list}'),0) as price_list_rate, ifnull((select distinct `tabItem Tax Template Detail`.tax_rate from `tabItem Tax Template Detail` join `tabItem Tax` where `tabItem Tax Template Detail`.parent = `tabItem Tax`.item_tax_template and `tabItem Tax`.parent = `tabItem`.name),0) as tax_percent from tabItem where tabItem.disabled = 0 and tabItem.name like '%{item}%' or tabItem.item_name like '%{item}%' LIMIT {start},{page_length}""".format(start=kwargs['start'], page_length=kwargs['page_length'], price_list=kwargs['price_list'],item=kwargs['search_text']), as_dict=1) result = [] for item_dict in items: if item_dict.tax_percent > 0 and item_dict.price_list_rate > 0: net_rate = item_dict.price_list_rate * (1 + (item_dict.tax_percent / 100)) vat_value = net_rate - item_dict.price_list_rate data = { 'name': item_dict.name, 'item_name': item_dict.item_name, 'item_group': item_dict.item_group, 'stock_uom': item_dict.stock_uom, 'image': item_dict.image, 'sales_uom': item_dict.sales_uom, 'price_list_rate': item_dict.price_list_rate, 'tax_percent': item_dict.tax_percent, 'net_rate': net_rate, 'vat_value': vat_value } result.append(data) else: data = { 'name': item_dict.name, 'item_name': item_dict.item_name, 'item_group': item_dict.item_group, 'stock_uom': item_dict.stock_uom, 'image': item_dict.image, 'sales_uom': item_dict.sales_uom, 'price_list_rate': item_dict.price_list_rate, 'tax_percent': item_dict.tax_percent, 'net_rate': item_dict.price_list_rate } result.append(data) if items: return result else: return "لا يوجد منتجات !" except: items = frappe.db.sql(""" select tabItem.name as name , tabItem.item_name as item_name, tabItem.item_group as item_group, tabItem.stock_uom as stock_uom, tabItem.image as image, tabItem.sales_uom as sales_uom, ifnull((select max(price_list_rate) from `tabItem Price` where item_code = tabItem.name and price_list = '{price_list}'),0) as price_list_rate, ifnull((select distinct `tabItem Tax Template Detail`.tax_rate from `tabItem Tax Template Detail` join `tabItem Tax` where `tabItem Tax Template Detail`.parent = `tabItem Tax`.item_tax_template and `tabItem Tax`.parent = `tabItem`.name),0) as tax_percent from tabItem where tabItem.disabled = 0 LIMIT {start},{page_length} """.format(start=kwargs['start'], page_length=kwargs['page_length'], price_list=kwargs['price_list']), as_dict=1) result = [] for item_dict in items: if item_dict.tax_percent > 0 and item_dict.price_list_rate > 0: net_rate = item_dict.price_list_rate * (1 + (item_dict.tax_percent / 100)) vat_value = net_rate - item_dict.price_list_rate data = { 'name': item_dict.name, 'item_name': item_dict.item_name, 'item_group': item_dict.item_group, 'stock_uom': item_dict.stock_uom, 'image': item_dict.image, 'sales_uom': item_dict.sales_uom, 'price_list_rate': item_dict.price_list_rate, 'tax_percent': item_dict.tax_percent, 'net_rate': net_rate, 'vat_value': vat_value } result.append(data) else: data = { 'name': item_dict.name, 'item_name': item_dict.item_name, 'item_group': item_dict.item_group, 'stock_uom': item_dict.stock_uom, 'image': item_dict.image, 'sales_uom': item_dict.sales_uom, 'price_list_rate': item_dict.price_list_rate, 'tax_percent': item_dict.tax_percent, 'net_rate': item_dict.price_list_rate } result.append(data) if items: return result else: return "لا يوجد منتجات !"
[ "frappe.db.commit", "frappe.whitelist", "frappe.get_doc", "frappe.new_doc" ]
[((187, 221), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (203, 221), False, 'import frappe\n'), ((659, 693), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (675, 693), False, 'import frappe\n'), ((1187, 1221), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (1203, 1221), False, 'import frappe\n'), ((1699, 1733), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (1715, 1733), False, 'import frappe\n'), ((3972, 4006), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (3988, 4006), False, 'import frappe\n'), ((4505, 4539), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (4521, 4539), False, 'import frappe\n'), ((5049, 5083), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (5065, 5083), False, 'import frappe\n'), ((5593, 5627), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (5609, 5627), False, 'import frappe\n'), ((6059, 6093), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (6075, 6093), False, 'import frappe\n'), ((6627, 6661), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (6643, 6661), False, 'import frappe\n'), ((7156, 7190), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (7172, 7190), False, 'import frappe\n'), ((7700, 7734), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (7716, 7734), False, 'import frappe\n'), ((8268, 8302), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (8284, 8302), False, 'import frappe\n'), ((8762, 8796), 'frappe.whitelist', 'frappe.whitelist', ([], {'allow_guest': '(True)'}), '(allow_guest=True)\n', (8778, 8796), False, 'import frappe\n'), ((252, 282), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (266, 282), False, 'import frappe\n'), ((332, 350), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (348, 350), False, 'import frappe\n'), ((738, 768), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (752, 768), False, 'import frappe\n'), ((839, 857), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (855, 857), False, 'import frappe\n'), ((1262, 1292), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (1276, 1292), False, 'import frappe\n'), ((1357, 1375), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (1373, 1375), False, 'import frappe\n'), ((1774, 1800), 'frappe.new_doc', 'frappe.new_doc', (['"""Customer"""'], {}), "('Customer')\n", (1788, 1800), False, 'import frappe\n'), ((2545, 2570), 'frappe.new_doc', 'frappe.new_doc', (['"""Contact"""'], {}), "('Contact')\n", (2559, 2570), False, 'import frappe\n'), ((3007, 3032), 'frappe.new_doc', 'frappe.new_doc', (['"""Address"""'], {}), "('Address')\n", (3021, 3032), False, 'import frappe\n'), ((3633, 3651), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (3649, 3651), False, 'import frappe\n'), ((4056, 4086), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (4070, 4086), False, 'import frappe\n'), ((4157, 4175), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (4173, 4175), False, 'import frappe\n'), ((4588, 4618), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (4602, 4618), False, 'import frappe\n'), ((4695, 4713), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (4711, 4713), False, 'import frappe\n'), ((5132, 5162), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (5146, 5162), False, 'import frappe\n'), ((5239, 5257), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (5255, 5257), False, 'import frappe\n'), ((5658, 5688), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (5672, 5688), False, 'import frappe\n'), ((5738, 5756), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (5754, 5756), False, 'import frappe\n'), ((6148, 6178), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (6162, 6178), False, 'import frappe\n'), ((6264, 6282), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (6280, 6282), False, 'import frappe\n'), ((6706, 6736), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (6720, 6736), False, 'import frappe\n'), ((6807, 6825), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (6823, 6825), False, 'import frappe\n'), ((7239, 7269), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (7253, 7269), False, 'import frappe\n'), ((7346, 7364), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (7362, 7364), False, 'import frappe\n'), ((7789, 7819), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (7803, 7819), False, 'import frappe\n'), ((7905, 7923), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (7921, 7923), False, 'import frappe\n'), ((8339, 8369), 'frappe.get_doc', 'frappe.get_doc', (["kwargs['data']"], {}), "(kwargs['data'])\n", (8353, 8369), False, 'import frappe\n'), ((8428, 8446), 'frappe.db.commit', 'frappe.db.commit', ([], {}), '()\n', (8444, 8446), False, 'import frappe\n')]
import justpy as jp @jp.SetRoute("/home") def home(): wp = jp.QuasarPage(tailwind=True) div = jp.Div(a=wp, classes="bg-gray-200 h-screen") div1 = jp.Div(a=div, classes="grid grid-cols-3 gap-4 p-4") in_1 = jp.Input(a=div1, placeholder="Enter first value", classes="form-input") in_2 = jp.Input(a=div1, placeholder="Enter second value", classes="form-input") d_output = jp.Div(a=div1, text="Result goes here...", classes="text-gray-600") jp.Div(a=div1, text="Just another div...", classes="text-gray-600") jp.Div(a=div1, text="Yet another div", classes="text-gray-600") div2 = jp.Div(a=div, classes="grid grid-cols-2 gap-4") jp.Button(a=div2, text="Calculate", click = sum_up, in1=in_1, in2=in_2, d = d_output, classes="border border-blue-500 m-2 py-1 px-4 rounded " "text-blue-600 hover:bg-red-500 hover:text-white") jp.Div(a=div2, text="I am a cool interactive div!", mouseenter=mouse_enter, mouseleave=mouse_leave, classes = "hover:bg-red-500") return wp @jp.SetRoute("/about") def about(): wp = jp.QuasarPage(tailwind=True) def sum_up(widget, msg): sum = float(widget.in1.value) + float(widget.in2.value) widget.d.text = sum def mouse_enter(widget, msg): widget.text = "A mouse entered the house!" def mouse_leave(widget, msg): widget.text = "The mouse left!" jp.justpy()
[ "justpy.Button", "justpy.justpy", "justpy.Input", "justpy.SetRoute", "justpy.Div", "justpy.QuasarPage" ]
[((22, 42), 'justpy.SetRoute', 'jp.SetRoute', (['"""/home"""'], {}), "('/home')\n", (33, 42), True, 'import justpy as jp\n'), ((1107, 1128), 'justpy.SetRoute', 'jp.SetRoute', (['"""/about"""'], {}), "('/about')\n", (1118, 1128), True, 'import justpy as jp\n'), ((1436, 1447), 'justpy.justpy', 'jp.justpy', ([], {}), '()\n', (1445, 1447), True, 'import justpy as jp\n'), ((64, 92), 'justpy.QuasarPage', 'jp.QuasarPage', ([], {'tailwind': '(True)'}), '(tailwind=True)\n', (77, 92), True, 'import justpy as jp\n'), ((103, 147), 'justpy.Div', 'jp.Div', ([], {'a': 'wp', 'classes': '"""bg-gray-200 h-screen"""'}), "(a=wp, classes='bg-gray-200 h-screen')\n", (109, 147), True, 'import justpy as jp\n'), ((160, 211), 'justpy.Div', 'jp.Div', ([], {'a': 'div', 'classes': '"""grid grid-cols-3 gap-4 p-4"""'}), "(a=div, classes='grid grid-cols-3 gap-4 p-4')\n", (166, 211), True, 'import justpy as jp\n'), ((223, 294), 'justpy.Input', 'jp.Input', ([], {'a': 'div1', 'placeholder': '"""Enter first value"""', 'classes': '"""form-input"""'}), "(a=div1, placeholder='Enter first value', classes='form-input')\n", (231, 294), True, 'import justpy as jp\n'), ((319, 391), 'justpy.Input', 'jp.Input', ([], {'a': 'div1', 'placeholder': '"""Enter second value"""', 'classes': '"""form-input"""'}), "(a=div1, placeholder='Enter second value', classes='form-input')\n", (327, 391), True, 'import justpy as jp\n'), ((420, 487), 'justpy.Div', 'jp.Div', ([], {'a': 'div1', 'text': '"""Result goes here..."""', 'classes': '"""text-gray-600"""'}), "(a=div1, text='Result goes here...', classes='text-gray-600')\n", (426, 487), True, 'import justpy as jp\n'), ((492, 559), 'justpy.Div', 'jp.Div', ([], {'a': 'div1', 'text': '"""Just another div..."""', 'classes': '"""text-gray-600"""'}), "(a=div1, text='Just another div...', classes='text-gray-600')\n", (498, 559), True, 'import justpy as jp\n'), ((564, 627), 'justpy.Div', 'jp.Div', ([], {'a': 'div1', 'text': '"""Yet another div"""', 'classes': '"""text-gray-600"""'}), "(a=div1, text='Yet another div', classes='text-gray-600')\n", (570, 627), True, 'import justpy as jp\n'), ((640, 687), 'justpy.Div', 'jp.Div', ([], {'a': 'div', 'classes': '"""grid grid-cols-2 gap-4"""'}), "(a=div, classes='grid grid-cols-2 gap-4')\n", (646, 687), True, 'import justpy as jp\n'), ((692, 892), 'justpy.Button', 'jp.Button', ([], {'a': 'div2', 'text': '"""Calculate"""', 'click': 'sum_up', 'in1': 'in_1', 'in2': 'in_2', 'd': 'd_output', 'classes': '"""border border-blue-500 m-2 py-1 px-4 rounded text-blue-600 hover:bg-red-500 hover:text-white"""'}), "(a=div2, text='Calculate', click=sum_up, in1=in_1, in2=in_2, d=\n d_output, classes=\n 'border border-blue-500 m-2 py-1 px-4 rounded text-blue-600 hover:bg-red-500 hover:text-white'\n )\n", (701, 892), True, 'import justpy as jp\n'), ((939, 1070), 'justpy.Div', 'jp.Div', ([], {'a': 'div2', 'text': '"""I am a cool interactive div!"""', 'mouseenter': 'mouse_enter', 'mouseleave': 'mouse_leave', 'classes': '"""hover:bg-red-500"""'}), "(a=div2, text='I am a cool interactive div!', mouseenter=mouse_enter,\n mouseleave=mouse_leave, classes='hover:bg-red-500')\n", (945, 1070), True, 'import justpy as jp\n'), ((1151, 1179), 'justpy.QuasarPage', 'jp.QuasarPage', ([], {'tailwind': '(True)'}), '(tailwind=True)\n', (1164, 1179), True, 'import justpy as jp\n')]
import logging from spinboard import Spinboard, get_logger def setup(): # TODO how to enable logging properly?.. logging.basicConfig(level=logging.DEBUG) def test_query(): setup() ps = Spinboard() results = list(ps.iter_by_query('minds are weird', limit=20)) assert len(results) >= 20 def test_tag(): setup() ps = Spinboard() results = list(ps.iter_by_tag('database', limit=20)) assert len(results) >= 20
[ "logging.basicConfig", "spinboard.Spinboard" ]
[((124, 164), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG'}), '(level=logging.DEBUG)\n', (143, 164), False, 'import logging\n'), ((206, 217), 'spinboard.Spinboard', 'Spinboard', ([], {}), '()\n', (215, 217), False, 'from spinboard import Spinboard, get_logger\n'), ((353, 364), 'spinboard.Spinboard', 'Spinboard', ([], {}), '()\n', (362, 364), False, 'from spinboard import Spinboard, get_logger\n')]
# Copyright 2018 ICON Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """json rpc dispatcher""" import json import re from urllib.parse import urlsplit, urlparse from iconcommons.logger import Logger from jsonrpcserver import config from jsonrpcserver.aio import AsyncMethods from jsonrpcserver.response import ExceptionResponse from sanic import response as sanic_response from iconrpcserver.dispatcher import GenericJsonRpcServerError from iconrpcserver.server.rest_property import RestProperty from iconrpcserver.default_conf.icon_rpcserver_constant import ConfigKey, NodeType, ApiVersion, DISPATCH_V2_TAG from iconrpcserver.protos import message_code from iconrpcserver.dispatcher import validate_jsonschema_v2 from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType from iconrpcserver.utils.json_rpc import redirect_request_to_rs, get_block_v2_by_params from iconrpcserver.utils.message_queue.stub_collection import StubCollection config.log_requests = False config.log_responses = False methods = AsyncMethods() class Version2Dispatcher: @staticmethod async def dispatch(request): req = request.json url = request.url context = { "url": url } if "node_" in req["method"]: return sanic_response.text("no support method!") try: client_ip = request.remote_addr if request.remote_addr else request.ip Logger.info(f'rest_server_v2 request with {req}', DISPATCH_V2_TAG) Logger.info(f"{client_ip} requested {req} on {url}") validate_jsonschema_v2(request=req) except GenericJsonRpcServerError as e: response = ExceptionResponse(e, request_id=req.get('id', 0)) else: response = await methods.dispatch(req, context=context) Logger.info(f'rest_server_v2 response with {response}', DISPATCH_V2_TAG) return sanic_response.json(response, status=response.http_status, dumps=json.dumps) @staticmethod def get_dispatch_protocol_from_url(url: str) -> str: return urlsplit(url).scheme @staticmethod @methods.add async def icx_sendTransaction(**kwargs): url = kwargs['context']['url'] path = urlparse(url).path del kwargs['context'] if RestProperty().node_type == NodeType.CitizenNode: dispatch_protocol = Version2Dispatcher.get_dispatch_protocol_from_url(url) Logger.debug(f'Dispatch Protocol: {dispatch_protocol}') redirect_protocol = StubCollection().conf.get(ConfigKey.REDIRECT_PROTOCOL) Logger.debug(f'Redirect Protocol: {redirect_protocol}') if redirect_protocol: dispatch_protocol = redirect_protocol Logger.debug(f'Protocol: {dispatch_protocol}') return await redirect_request_to_rs(dispatch_protocol, kwargs, RestProperty().rs_target, path[1:], ApiVersion.v2.name) request = make_request("icx_sendTransaction", kwargs, ParamType.send_tx) channel = StubCollection().conf[ConfigKey.CHANNEL] icon_stub = StubCollection().icon_score_stubs[channel] response = await icon_stub.async_task().validate_transaction(request) # Error Check response_to_json_query(response) channel_name = StubCollection().conf[ConfigKey.CHANNEL] channel_tx_creator_stub = StubCollection().channel_tx_creator_stubs[channel_name] response_code, tx_hash = await channel_tx_creator_stub.async_task().create_icx_tx(kwargs) response_data = {'response_code': response_code} if response_code != message_code.Response.success: response_data['message'] = message_code.responseCodeMap[response_code][1] else: response_data['tx_hash'] = tx_hash return response_data @staticmethod @methods.add async def icx_getTransactionResult(**kwargs): channel_name = StubCollection().conf[ConfigKey.CHANNEL] channel_stub = StubCollection().channel_stubs[channel_name] verify_result = {} message = None tx_hash = kwargs["tx_hash"] if is_hex(tx_hash): response_code, result = await channel_stub.async_task().get_invoke_result(tx_hash) if response_code == message_code.Response.success: # loopchain success if result: try: # apply tx_result_convert result_dict = json.loads(result) fail_status = bool(result_dict.get('failure')) if fail_status: error_code = message_code.Response.fail_validate_params message = "Invalid transaction hash." else: error_code = message_code.Response.success except Exception as e: error_message = f"your result is not json, result({result}), {e}" Logger.warning(error_message) error_code = message_code.Response.fail_validate_params message = error_message else: error_code = message_code.Response.fail_validate_params message = 'tx_result is empty' else: error_code = message_code.Response.fail_validate_params message = "Invalid transaction hash." else: # fail error_code = message_code.Response.fail_validate_params message = "response_code is fail" # parsing response verify_result['response_code'] = str(error_code) if error_code == message_code.Response.success: verify_result['response'] = {'code': error_code} if message: verify_result['message'] = message return verify_result @staticmethod @methods.add async def icx_getBalance(**kwargs): channel_name = StubCollection().conf[ConfigKey.CHANNEL] method = 'icx_getBalance' request = make_request(method, kwargs, ParamType.get_balance) stub = StubCollection().icon_score_stubs[channel_name] response = await stub.async_task().query(request) return response_to_json_query(response, True) @staticmethod @methods.add async def icx_getTotalSupply(**kwargs): channel_name = StubCollection().conf[ConfigKey.CHANNEL] method = 'icx_getTotalSupply' request = make_request(method, kwargs, ParamType.get_total_supply) stub = StubCollection().icon_score_stubs[channel_name] response = await stub.async_task().query(request) return response_to_json_query(response, True) @staticmethod @methods.add async def icx_getLastBlock(**kwargs): block_hash, response = await get_block_v2_by_params(block_height=-1) return response @staticmethod @methods.add async def icx_getBlockByHash(**kwargs): block_hash, response = await get_block_v2_by_params(block_hash=kwargs["hash"]) return response @staticmethod @methods.add async def icx_getBlockByHeight(**kwargs): try: block_height = int(kwargs["height"]) except Exception as e: verify_result = { 'response_code': message_code.Response.fail_wrong_block_height, 'message': f"Invalid block height. error: {e}" } return verify_result block_hash, response = await get_block_v2_by_params(block_height=block_height) return response @staticmethod @methods.add async def icx_getLastTransaction(**kwargs): channel_name = StubCollection().conf[ConfigKey.CHANNEL] return "" @staticmethod @methods.add async def icx_getTransactionByAddress(**kwargs): channel_name = StubCollection().conf[ConfigKey.CHANNEL] address = kwargs.get("address", None) index = kwargs.get("index", None) if address is None or index is None: return { 'response_code': message_code.Response.fail_illegal_params, 'message': message_code.get_response_msg(message_code.Response.fail_illegal_params) } channel_stub = StubCollection().channel_stubs[channel_name] tx_list, next_index = await channel_stub.async_task().get_tx_by_address( address=address, index=index ) response = { 'next_index': next_index, 'response': tx_list[:-1], 'response_code': message_code.Response.success } return response def is_hex(s): return re.fullmatch(r"^(0x)?[0-9a-f]{64}$", s or "") is not None
[ "sanic.response.json", "iconrpcserver.utils.message_queue.stub_collection.StubCollection", "json.loads", "urllib.parse.urlparse", "iconcommons.logger.Logger.warning", "urllib.parse.urlsplit", "iconcommons.logger.Logger.info", "iconrpcserver.dispatcher.validate_jsonschema_v2", "iconrpcserver.utils.icon_service.response_to_json_query", "jsonrpcserver.aio.AsyncMethods", "iconrpcserver.utils.icon_service.make_request", "iconcommons.logger.Logger.debug", "re.fullmatch", "iconrpcserver.utils.json_rpc.get_block_v2_by_params", "iconrpcserver.server.rest_property.RestProperty", "iconrpcserver.protos.message_code.get_response_msg", "sanic.response.text" ]
[((1554, 1568), 'jsonrpcserver.aio.AsyncMethods', 'AsyncMethods', ([], {}), '()\n', (1566, 1568), False, 'from jsonrpcserver.aio import AsyncMethods\n'), ((2355, 2427), 'iconcommons.logger.Logger.info', 'Logger.info', (['f"""rest_server_v2 response with {response}"""', 'DISPATCH_V2_TAG'], {}), "(f'rest_server_v2 response with {response}', DISPATCH_V2_TAG)\n", (2366, 2427), False, 'from iconcommons.logger import Logger\n'), ((2443, 2519), 'sanic.response.json', 'sanic_response.json', (['response'], {'status': 'response.http_status', 'dumps': 'json.dumps'}), '(response, status=response.http_status, dumps=json.dumps)\n', (2462, 2519), True, 'from sanic import response as sanic_response\n'), ((3534, 3596), 'iconrpcserver.utils.icon_service.make_request', 'make_request', (['"""icx_sendTransaction"""', 'kwargs', 'ParamType.send_tx'], {}), "('icx_sendTransaction', kwargs, ParamType.send_tx)\n", (3546, 3596), False, 'from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType\n'), ((3827, 3859), 'iconrpcserver.utils.icon_service.response_to_json_query', 'response_to_json_query', (['response'], {}), '(response)\n', (3849, 3859), False, 'from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType\n'), ((6703, 6754), 'iconrpcserver.utils.icon_service.make_request', 'make_request', (['method', 'kwargs', 'ParamType.get_balance'], {}), '(method, kwargs, ParamType.get_balance)\n', (6715, 6754), False, 'from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType\n'), ((6892, 6930), 'iconrpcserver.utils.icon_service.response_to_json_query', 'response_to_json_query', (['response', '(True)'], {}), '(response, True)\n', (6914, 6930), False, 'from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType\n'), ((7132, 7188), 'iconrpcserver.utils.icon_service.make_request', 'make_request', (['method', 'kwargs', 'ParamType.get_total_supply'], {}), '(method, kwargs, ParamType.get_total_supply)\n', (7144, 7188), False, 'from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType\n'), ((7326, 7364), 'iconrpcserver.utils.icon_service.response_to_json_query', 'response_to_json_query', (['response', '(True)'], {}), '(response, True)\n', (7348, 7364), False, 'from iconrpcserver.utils.icon_service import make_request, response_to_json_query, ParamType\n'), ((9340, 9384), 're.fullmatch', 're.fullmatch', (['"""^(0x)?[0-9a-f]{64}$"""', "(s or '')"], {}), "('^(0x)?[0-9a-f]{64}$', s or '')\n", (9352, 9384), False, 'import re\n'), ((1813, 1854), 'sanic.response.text', 'sanic_response.text', (['"""no support method!"""'], {}), "('no support method!')\n", (1832, 1854), True, 'from sanic import response as sanic_response\n'), ((1964, 2030), 'iconcommons.logger.Logger.info', 'Logger.info', (['f"""rest_server_v2 request with {req}"""', 'DISPATCH_V2_TAG'], {}), "(f'rest_server_v2 request with {req}', DISPATCH_V2_TAG)\n", (1975, 2030), False, 'from iconcommons.logger import Logger\n'), ((2043, 2095), 'iconcommons.logger.Logger.info', 'Logger.info', (['f"""{client_ip} requested {req} on {url}"""'], {}), "(f'{client_ip} requested {req} on {url}')\n", (2054, 2095), False, 'from iconcommons.logger import Logger\n'), ((2109, 2144), 'iconrpcserver.dispatcher.validate_jsonschema_v2', 'validate_jsonschema_v2', ([], {'request': 'req'}), '(request=req)\n', (2131, 2144), False, 'from iconrpcserver.dispatcher import validate_jsonschema_v2\n'), ((2611, 2624), 'urllib.parse.urlsplit', 'urlsplit', (['url'], {}), '(url)\n', (2619, 2624), False, 'from urllib.parse import urlsplit, urlparse\n'), ((2767, 2780), 'urllib.parse.urlparse', 'urlparse', (['url'], {}), '(url)\n', (2775, 2780), False, 'from urllib.parse import urlsplit, urlparse\n'), ((2977, 3032), 'iconcommons.logger.Logger.debug', 'Logger.debug', (['f"""Dispatch Protocol: {dispatch_protocol}"""'], {}), "(f'Dispatch Protocol: {dispatch_protocol}')\n", (2989, 3032), False, 'from iconcommons.logger import Logger\n'), ((3132, 3187), 'iconcommons.logger.Logger.debug', 'Logger.debug', (['f"""Redirect Protocol: {redirect_protocol}"""'], {}), "(f'Redirect Protocol: {redirect_protocol}')\n", (3144, 3187), False, 'from iconcommons.logger import Logger\n'), ((3288, 3334), 'iconcommons.logger.Logger.debug', 'Logger.debug', (['f"""Protocol: {dispatch_protocol}"""'], {}), "(f'Protocol: {dispatch_protocol}')\n", (3300, 3334), False, 'from iconcommons.logger import Logger\n'), ((7480, 7519), 'iconrpcserver.utils.json_rpc.get_block_v2_by_params', 'get_block_v2_by_params', ([], {'block_height': '(-1)'}), '(block_height=-1)\n', (7502, 7519), False, 'from iconrpcserver.utils.json_rpc import redirect_request_to_rs, get_block_v2_by_params\n'), ((7661, 7710), 'iconrpcserver.utils.json_rpc.get_block_v2_by_params', 'get_block_v2_by_params', ([], {'block_hash': "kwargs['hash']"}), "(block_hash=kwargs['hash'])\n", (7683, 7710), False, 'from iconrpcserver.utils.json_rpc import redirect_request_to_rs, get_block_v2_by_params\n'), ((8168, 8217), 'iconrpcserver.utils.json_rpc.get_block_v2_by_params', 'get_block_v2_by_params', ([], {'block_height': 'block_height'}), '(block_height=block_height)\n', (8190, 8217), False, 'from iconrpcserver.utils.json_rpc import redirect_request_to_rs, get_block_v2_by_params\n'), ((2828, 2842), 'iconrpcserver.server.rest_property.RestProperty', 'RestProperty', ([], {}), '()\n', (2840, 2842), False, 'from iconrpcserver.server.rest_property import RestProperty\n'), ((3615, 3631), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (3629, 3631), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((3676, 3692), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (3690, 3692), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((3884, 3900), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (3898, 3900), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((3959, 3975), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (3973, 3975), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((4516, 4532), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (4530, 4532), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((4580, 4596), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (4594, 4596), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((6609, 6625), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (6623, 6625), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((6771, 6787), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (6785, 6787), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((7034, 7050), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (7048, 7050), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((7205, 7221), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (7219, 7221), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((8349, 8365), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (8363, 8365), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((8521, 8537), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (8535, 8537), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((8821, 8893), 'iconrpcserver.protos.message_code.get_response_msg', 'message_code.get_response_msg', (['message_code.Response.fail_illegal_params'], {}), '(message_code.Response.fail_illegal_params)\n', (8850, 8893), False, 'from iconrpcserver.protos import message_code\n'), ((8932, 8948), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (8946, 8948), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((3065, 3081), 'iconrpcserver.utils.message_queue.stub_collection.StubCollection', 'StubCollection', ([], {}), '()\n', (3079, 3081), False, 'from iconrpcserver.utils.message_queue.stub_collection import StubCollection\n'), ((3411, 3425), 'iconrpcserver.server.rest_property.RestProperty', 'RestProperty', ([], {}), '()\n', (3423, 3425), False, 'from iconrpcserver.server.rest_property import RestProperty\n'), ((5075, 5093), 'json.loads', 'json.loads', (['result'], {}), '(result)\n', (5085, 5093), False, 'import json\n'), ((5613, 5642), 'iconcommons.logger.Logger.warning', 'Logger.warning', (['error_message'], {}), '(error_message)\n', (5627, 5642), False, 'from iconcommons.logger import Logger\n')]
# coding: utf-8 from django.utils.translation import gettext_lazy as _ from pathlib import Path SECRET_KEY = "" SITE_ID = 1 MEDIA_ROOT = "" STATIC_ROOT = "" DBNAME = "" DBUSER = "" DBPASSWORD = "" CELERY_BROKER_URL = "" VIRTUAL_MAILBOX_PASS = "" S3 = False OCR = False APP_USER = "" APP_GROUP = "" ASSETS_VER = None # One of: # "s3://bucket/path/to/storage" # "local://path/to/media/root" STORAGE_ROOT = '' AUTH_USER_MODEL = "core.User" WSGI_APPLICATION = 'config.wsgi.application' ROOT_URLCONF = 'config.urls' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': '', 'USER': '', 'PASSWORD': '', 'HOST': '127.0.0.1', 'PORT': '5432', } } # project root directory # 1. settings 2. config 3. papermerge-proj - parent 3x PROJ_ROOT = Path(__file__).parent.parent.parent INSTALLED_APPS = ( 'rest_framework', 'knox', 'django.contrib.auth', 'django.contrib.sites', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'papermerge.boss', 'papermerge.core', 'django.contrib.admin', 'django.contrib.contenttypes', 'allauth', 'allauth.account', 'allauth.socialaccount', 'dynamic_preferences', # comment the following line if you don't want to use user preferences 'dynamic_preferences.users.apps.UserPreferencesConfig', 'polymorphic_tree', 'polymorphic', 'mptt', # we use postgres full text search 'django.contrib.postgres', 'anymail', 'django_extensions', ) MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [PROJ_ROOT / Path('config') / Path('templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'papermerge.boss.context_processors.static_bundle_url', 'dynamic_preferences.processors.global_preferences', ], }, }, ] FILE_UPLOAD_HANDLERS = [ 'django.core.files.uploadhandler.TemporaryFileUploadHandler' ] STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] LANGUAGES = [ ('de', _('German')), ('en', _('English')), ] TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True LOCALE_PATHS = ( PROJ_ROOT / Path('papermerge'), ) DATE_FORMAT = '%d/%m/%Y' DATE_INPUT_FORMATS = ['%d/%m/%Y'] ACCOUNT_SESSION_REMEMBER = False ACCOUNT_AUTHENTICATION_METHOD = "username_email" ACCOUNT_EMAIL_REQUIRED = True LOGIN_REDIRECT_URL = '/dashboard/' LOGOUT_REDIRECT_URL = '/' LOGIN_URL = '/login/' MEDIA_URL = '/documents/' ALLOWED_HOSTS = [ '*', ] AUTHENTICATION_BACKENDS = ( 'papermerge.core.auth.NodeAuthBackend', 'django.contrib.auth.backends.ModelBackend', 'allauth.account.auth_backends.AuthenticationBackend' ) ACCOUNT_SESSION_REMEMBER = False ACCOUNT_AUTHENTICATION_METHOD = "username_email" ACCOUNT_EMAIL_REQUIRED = True # Determines the e-mail verification method during signup – choose one of # "mandatory", "optional", or "none". When set to “mandatory” the user is # blocked from logging in until the email address is verified. Choose “optional” # or “none” to allow logins with an unverified e-mail address. In case of # “optional”, the e-mail verification mail is still sent, whereas in case of # “none” no e-mail verification mails are sent. ACCOUNT_EMAIL_VERIFICATION = "mandatory" ACCOUNT_EMAIL_CONFIRMATION_ANONYMOUS_REDIRECT_URL = '/login/' ACCOUNT_EMAIL_CONFIRMATION_AUTHENTICATED_REDIRECT_URL = '/boss/' LOGIN_REDIRECT_URL = '/boss/' LOGOUT_REDIRECT_URL = '/' LOGIN_URL = '/login/' AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] STATIC_URL = '/static/' # Pixel height used by PDFTOPPM utility. It means basically # that all generated images will be of following heights only # min_height, min_height + step, min_height + 2*step, ..., max_height # When zoomin in and out, uility cycles through these values. PDFTOPPM_STEP = 100 PDFTOPPM_MIN_HEIGHT = 100 PDFTOPPM_DEFAULT_HEIGHT = 900 PDFTOPPM_MAX_HEIGHT = 1500 # Value must be an integer from 1 to 100 # This values trades off quality agains size/complexity # 100 - is perfect quality jpeg image, but larger in size # 1 - poorest quality jpeg image - uses smallest amount of space PDFTOPPM_JPEG_QUALITY = 90 # = 1 GB of space per tenant MAX_STORAGE_SIZE = 1 * 1024 * 1024 UPLOAD_FILE_SIZE_MAX = 12 * 1024 * 1024 UPLOAD_FILE_SIZE_MIN = 1 UPLOAD_ALLOWED_MIMETYPES = ['application/pdf'] # Tell celery to use your new serializer: CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json' CELERY_TASK_CREATE_MISSING_QUEUES = True CELERY_TASK_DEFAULT_EXCHANGE = 'papermerge' CELERY_TASK_DEFAULT_EXCHANGE_TYPE = 'direct' CELERY_TASK_DEFAULT_ROUTING_KEY = 'papermerge' CELERY_INCLUDE = 'pmworker.tasks' CELERY_RESULT_BACKEND = 'rpc://' CELERY_TASK_RESULT_EXPIRES = 86400 REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'knox.auth.TokenAuthentication', 'rest_framework.authentication.SessionAuthentication', ] } REST_KNOX = { 'AUTH_TOKEN_CHARACTER_LENGTH': 32, 'SECURE_HASH_ALGORITHM': 'cryptography.hazmat.primitives.hashes.SHA512', }
[ "django.utils.translation.gettext_lazy", "pathlib.Path" ]
[((2973, 2984), 'django.utils.translation.gettext_lazy', '_', (['"""German"""'], {}), "('German')\n", (2974, 2984), True, 'from django.utils.translation import gettext_lazy as _\n'), ((2998, 3010), 'django.utils.translation.gettext_lazy', '_', (['"""English"""'], {}), "('English')\n", (2999, 3010), True, 'from django.utils.translation import gettext_lazy as _\n'), ((3113, 3131), 'pathlib.Path', 'Path', (['"""papermerge"""'], {}), "('papermerge')\n", (3117, 3131), False, 'from pathlib import Path\n'), ((823, 837), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (827, 837), False, 'from pathlib import Path\n'), ((2170, 2187), 'pathlib.Path', 'Path', (['"""templates"""'], {}), "('templates')\n", (2174, 2187), False, 'from pathlib import Path\n'), ((2153, 2167), 'pathlib.Path', 'Path', (['"""config"""'], {}), "('config')\n", (2157, 2167), False, 'from pathlib import Path\n')]
from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): def migrate(apps, schema_editor): Sex = apps.get_model('species', 'Sex') CollectionSpecies = apps.get_model('species', 'CollectionSpecies') for cs in CollectionSpecies.objects.all(): if cs.old_sex: if cs.old_sex == 'both': s = 'mixed' elif cs.old_sex not in ['male', 'female', 'mixed', 'unknown']: s = 'unknown' else: s = cs.old_sex cs.sex = Sex.objects.get(name=s) cs.save() def rollback(apps, schema_editor): CollectionSpecies = apps.get_model('species', 'CollectionSpecies') for cs in CollectionSpecies.objects.all(): if cs.sex: cs.sex = None cs.old_sex = '' cs.save() dependencies = [ ('species', '0004_sex'), ] operations = [ migrations.RenameField( model_name='collectionspecies', old_name='sex', new_name='old_sex', ), migrations.RenameField( model_name='trapspecies', old_name='sex', new_name='old_sex', ), migrations.AddField( model_name='collectionspecies', name='sex', field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.CASCADE, related_name='collection_species', to='species.Sex'), ), migrations.AddField( model_name='trapspecies', name='sex', field=models.ForeignKey( null=True, on_delete=django.db.models.deletion.CASCADE, related_name='trap_species', to='species.Sex'), ), migrations.RunPython(migrate, rollback), migrations.RemoveField( model_name='collectionspecies', name='old_sex', ), migrations.RemoveField( model_name='trapspecies', name='old_sex', ), ]
[ "django.db.migrations.RemoveField", "django.db.migrations.RunPython", "django.db.migrations.RenameField", "django.db.models.ForeignKey" ]
[((1031, 1125), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""collectionspecies"""', 'old_name': '"""sex"""', 'new_name': '"""old_sex"""'}), "(model_name='collectionspecies', old_name='sex',\n new_name='old_sex')\n", (1053, 1125), False, 'from django.db import migrations, models\n'), ((1178, 1267), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""trapspecies"""', 'old_name': '"""sex"""', 'new_name': '"""old_sex"""'}), "(model_name='trapspecies', old_name='sex', new_name=\n 'old_sex')\n", (1200, 1267), False, 'from django.db import migrations, models\n'), ((1881, 1920), 'django.db.migrations.RunPython', 'migrations.RunPython', (['migrate', 'rollback'], {}), '(migrate, rollback)\n', (1901, 1920), False, 'from django.db import migrations, models\n'), ((1930, 2000), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""collectionspecies"""', 'name': '"""old_sex"""'}), "(model_name='collectionspecies', name='old_sex')\n", (1952, 2000), False, 'from django.db import migrations, models\n'), ((2045, 2109), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""trapspecies"""', 'name': '"""old_sex"""'}), "(model_name='trapspecies', name='old_sex')\n", (2067, 2109), False, 'from django.db import migrations, models\n'), ((1426, 1556), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""collection_species"""', 'to': '"""species.Sex"""'}), "(null=True, on_delete=django.db.models.deletion.CASCADE,\n related_name='collection_species', to='species.Sex')\n", (1443, 1556), False, 'from django.db import migrations, models\n'), ((1707, 1831), 'django.db.models.ForeignKey', 'models.ForeignKey', ([], {'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""trap_species"""', 'to': '"""species.Sex"""'}), "(null=True, on_delete=django.db.models.deletion.CASCADE,\n related_name='trap_species', to='species.Sex')\n", (1724, 1831), False, 'from django.db import migrations, models\n')]
import unittest from unittest.mock import Mock, patch from ecs_scheduler.datacontext import ( Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields ) class JobsTests(unittest.TestCase): def setUp(self): self._store = Mock() self._store.load_all.return_value = {'id': 1}, {'id': 2} with patch('ecs_scheduler.datacontext.JobCreateSchema') as sp, \ patch('ecs_scheduler.datacontext.RLock') as rp: self._schema = sp.return_value self._schema.load.side_effect = lambda d: (d, {}) self._schema.dump.side_effect = \ lambda d: Mock(data={'validated': True, **d}) self._lock = rp.return_value self._target = Jobs.load(self._store) @patch('ecs_scheduler.datacontext.persistence') def test_load_selects_auto_store_if_not_specified(self, persistence): result = Jobs.load() self.assertIsNotNone(result) persistence.resolve.assert_called() persistence.resolve.return_value.load_all.assert_called_with() def test_get_all_returns_all(self): self._store.load_all.assert_called_with() self.assertCountEqual([1, 2], [j.id for j in self._target.get_all()]) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_len_gets_jobs_length(self): self.assertEqual(2, self._target.total()) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_get_retrieves_job(self): result = self._target.get(2) self.assertIsInstance(result, Job) self.assertEqual(2, result.id) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_get_raises_error(self): with self.assertRaises(JobNotFound) as cm: self._target.get(3) self.assertEqual(3, cm.exception.job_id) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_create_new_job(self): data = {'id': 4, 'foo': 'bar'} result = self._target.create(data) self.assertIsInstance(result, Job) self.assertEqual(4, result.id) self.assertIs(result, self._target.get(4)) self.assertEqual(3, self._target.total()) self._store.create.assert_called_with(4, {'validated': True, **data}) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_create_raises_if_invalid_data(self): self._schema.load.side_effect = lambda d: (d, {'error': 'bad'}) data = {'id': 4, 'foo': 'bar'} with self.assertRaises(InvalidJobData) as cm: self._target.create(data) self.assertEqual(4, cm.exception.job_id) self.assertEqual({'error': 'bad'}, cm.exception.errors) self.assertEqual(2, self._target.total()) self._store.create.assert_not_called() self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_create_raises_with_missing_id(self): self._schema.load.side_effect = lambda d: (d, {'error': 'noid'}) data = {'foo': 'bar'} with self.assertRaises(InvalidJobData) as cm: self._target.create(data) self.assertIsNone(cm.exception.job_id) self.assertEqual({'error': 'noid'}, cm.exception.errors) self.assertEqual(2, self._target.total()) self._store.create.assert_not_called() self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_create_raises_if_duplicate_job(self): data = {'id': 1, 'foo': 'bar'} with self.assertRaises(JobAlreadyExists) as cm: self._target.create(data) self.assertEqual(1, cm.exception.job_id) self.assertEqual(2, self._target.total()) self._store.create.assert_not_called() self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_create_raises_if_store_fails(self): self._store.create.side_effect = RuntimeError data = {'id': 4, 'foo': 'bar'} with self.assertRaises(JobPersistenceError) as cm: self._target.create(data) self.assertEqual(4, cm.exception.job_id) self.assertEqual(2, self._target.total()) self._store.create.assert_called_with(4, {'validated': True, **data}) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_delete_job(self): self._target.delete(1) self.assertEqual(1, self._target.total()) with self.assertRaises(JobNotFound): self._target.get(1) self._store.delete.assert_called_with(1) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_delete_raises_if_no_job(self): with self.assertRaises(JobNotFound) as cm: self._target.delete(3) self.assertEqual(3, cm.exception.job_id) self.assertEqual(2, self._target.total()) self._store.delete.assert_not_called() self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_delete_raises_if_store_error(self): self._store.delete.side_effect = RuntimeError with self.assertRaises(JobPersistenceError) as cm: self._target.delete(2) self.assertEqual(2, cm.exception.job_id) self.assertEqual(2, self._target.total()) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() class JobTests(unittest.TestCase): def setUp(self): self._store = Mock() self._job_data = {'id': 32, 'foo': 'bar'} with patch('ecs_scheduler.datacontext.JobSchema') as sp, \ patch('ecs_scheduler.datacontext.RLock') as rp: self._schema = sp.return_value self._lock = rp.return_value self._target = Job(self._job_data, self._store) self._schema.load.side_effect = lambda d: (d, {}) self._schema.dump.side_effect = \ lambda d: Mock(data={'validated': True, **d}) def test_data_returns_all_data(self): self.assertEqual(self._job_data, self._target.data) def test_data_is_read_only(self): with self.assertRaises(TypeError): self._target.data['baz'] = 'bort' def test_id_property_returns_id(self): self.assertEqual(32, self._target.id) def test_suspended_property_missing(self): self.assertFalse(self._target.suspended) def test_suspended_property_field(self): self._job_data['suspended'] = True self.assertTrue(self._target.suspended) def test_parsed_schedule_field(self): self._job_data['parsedSchedule'] = 'parsed' self.assertEqual('parsed', self._target.parsed_schedule) def test_update(self): new_data = {'a': 1, 'b': 2} self._target.update(new_data) self.assertEqual(1, self._target.data['a']) self.assertEqual(2, self._target.data['b']) self._store.update.assert_called_with( 32, {'validated': True, **new_data} ) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_update_changes_existing_fields(self): new_data = {'a': 1, 'foo': 'baz'} self._target.update(new_data) self.assertEqual(1, self._target.data['a']) self.assertEqual('baz', self._target.data['foo']) self._store.update.assert_called_with( 32, {'validated': True, **new_data} ) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_update_does_not_allow_id_override(self): job_with_real_schema = Job({'id': 44, 'foo': 'bar'}, self._store) new_data = {'id': 77, 'taskCount': 4} job_with_real_schema.update(new_data) self.assertEqual(44, job_with_real_schema.id) self._store.update.assert_called_with(44, {'taskCount': 4}) def test_update_raises_if_invalid_data(self): self._schema.load.side_effect = lambda d: (d, {'error': 'bad'}) new_data = {'a': 1, 'b': 2} with self.assertRaises(InvalidJobData) as cm: self._target.update(new_data) self.assertEqual(32, cm.exception.job_id) self.assertEqual({'error': 'bad'}, cm.exception.errors) self.assertNotIn('a', self._target.data) self.assertNotIn('b', self._target.data) self._store.update.assert_not_called() self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_update_raises_if_store_error(self): self._store.update.side_effect = RuntimeError new_data = {'a': 1, 'b': 2} with self.assertRaises(JobPersistenceError) as cm: self._target.update(new_data) self.assertEqual(32, cm.exception.job_id) self.assertNotIn('a', self._target.data) self.assertNotIn('b', self._target.data) self._store.update.assert_called_with( 32, {'validated': True, **new_data} ) self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_annotate(self): self._schema.load.side_effect = lambda d: ({}, {}) new_data = {'a': 1, 'b': 2} self._target.annotate(new_data) self.assertEqual(1, self._target.data['a']) self.assertEqual(2, self._target.data['b']) self._store.update.assert_not_called() self._lock.__enter__.assert_called() self._lock.__exit__.assert_called() def test_annotate_does_not_allow_id_override(self): job_with_real_schema = Job({'id': 44, 'foo': 'bar'}, self._store) new_data = {'id': 77, 'b': 2} with self.assertRaises(ImmutableJobFields) as cm: job_with_real_schema.annotate(new_data) self.assertEqual(44, cm.exception.job_id) self.assertCountEqual(['id'], cm.exception.fields) self.assertNotIn('b', job_with_real_schema.data) self._store.update.assert_not_called() def test_annotate_does_not_allow_setting_persistent_fields(self): job_with_real_schema = Job({'id': 44, 'foo': 'bar'}, self._store) new_data = {'taskCount': 4, 'schedule': '* *', 'b': 2} with self.assertRaises(JobFieldsRequirePersistence) as cm: job_with_real_schema.annotate(new_data) self.assertEqual(44, cm.exception.job_id) self.assertCountEqual( {'taskCount', 'schedule', 'parsedSchedule'}, cm.exception.fields ) self.assertNotIn('taskCount', job_with_real_schema.data) self.assertNotIn('schedule', job_with_real_schema.data) self.assertNotIn('b', job_with_real_schema.data) self._store.update.assert_not_called() class JobDataMappingTests(unittest.TestCase): def setUp(self): self._data = {'a': 1, 'b': 2} self._target = JobDataMapping(self._data) def test_get(self): self.assertEqual(self._data['a'], self._target['a']) def test_set_unsupported(self): with self.assertRaises(TypeError): self._target['c'] = 3 def test_iterate(self): expected = list(iter(self._data)) actual = list(iter(self._target)) self.assertCountEqual(expected, actual) def test_length(self): self.assertEqual(len(self._data), len(self._target))
[ "ecs_scheduler.datacontext.Job", "unittest.mock.Mock", "ecs_scheduler.datacontext.JobDataMapping", "ecs_scheduler.datacontext.Jobs.load", "unittest.mock.patch" ]
[((848, 894), 'unittest.mock.patch', 'patch', (['"""ecs_scheduler.datacontext.persistence"""'], {}), "('ecs_scheduler.datacontext.persistence')\n", (853, 894), False, 'from unittest.mock import Mock, patch\n'), ((329, 335), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (333, 335), False, 'from unittest.mock import Mock, patch\n'), ((986, 997), 'ecs_scheduler.datacontext.Jobs.load', 'Jobs.load', ([], {}), '()\n', (995, 997), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((5763, 5769), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (5767, 5769), False, 'from unittest.mock import Mock, patch\n'), ((7896, 7938), 'ecs_scheduler.datacontext.Job', 'Job', (["{'id': 44, 'foo': 'bar'}", 'self._store'], {}), "({'id': 44, 'foo': 'bar'}, self._store)\n", (7899, 7938), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((9840, 9882), 'ecs_scheduler.datacontext.Job', 'Job', (["{'id': 44, 'foo': 'bar'}", 'self._store'], {}), "({'id': 44, 'foo': 'bar'}, self._store)\n", (9843, 9882), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((10348, 10390), 'ecs_scheduler.datacontext.Job', 'Job', (["{'id': 44, 'foo': 'bar'}", 'self._store'], {}), "({'id': 44, 'foo': 'bar'}, self._store)\n", (10351, 10390), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((11106, 11132), 'ecs_scheduler.datacontext.JobDataMapping', 'JobDataMapping', (['self._data'], {}), '(self._data)\n', (11120, 11132), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((414, 464), 'unittest.mock.patch', 'patch', (['"""ecs_scheduler.datacontext.JobCreateSchema"""'], {}), "('ecs_scheduler.datacontext.JobCreateSchema')\n", (419, 464), False, 'from unittest.mock import Mock, patch\n'), ((490, 530), 'unittest.mock.patch', 'patch', (['"""ecs_scheduler.datacontext.RLock"""'], {}), "('ecs_scheduler.datacontext.RLock')\n", (495, 530), False, 'from unittest.mock import Mock, patch\n'), ((819, 841), 'ecs_scheduler.datacontext.Jobs.load', 'Jobs.load', (['self._store'], {}), '(self._store)\n', (828, 841), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((5833, 5877), 'unittest.mock.patch', 'patch', (['"""ecs_scheduler.datacontext.JobSchema"""'], {}), "('ecs_scheduler.datacontext.JobSchema')\n", (5838, 5877), False, 'from unittest.mock import Mock, patch\n'), ((5903, 5943), 'unittest.mock.patch', 'patch', (['"""ecs_scheduler.datacontext.RLock"""'], {}), "('ecs_scheduler.datacontext.RLock')\n", (5908, 5943), False, 'from unittest.mock import Mock, patch\n'), ((6062, 6094), 'ecs_scheduler.datacontext.Job', 'Job', (['self._job_data', 'self._store'], {}), '(self._job_data, self._store)\n', (6065, 6094), False, 'from ecs_scheduler.datacontext import Jobs, Job, JobDataMapping, JobNotFound, InvalidJobData, JobAlreadyExists, JobPersistenceError, JobFieldsRequirePersistence, ImmutableJobFields\n'), ((6217, 6252), 'unittest.mock.Mock', 'Mock', ([], {'data': "{'validated': True, **d}"}), "(data={'validated': True, **d})\n", (6221, 6252), False, 'from unittest.mock import Mock, patch\n'), ((715, 750), 'unittest.mock.Mock', 'Mock', ([], {'data': "{'validated': True, **d}"}), "(data={'validated': True, **d})\n", (719, 750), False, 'from unittest.mock import Mock, patch\n')]
import glob import cv2 ff = glob.glob("./samples/*.jpg") ff_sorted = sorted([f"./samples/{int(f.split('/')[-1].split('-')[0]):06d}-images.jpg" for f in ff]) img_array = [] size = None for filename in ff_sorted: img = cv2.imread(f"./samples/{int(filename.split('/')[-1].split('-')[0])}-images.jpg") height, width, layers = img.shape size = (width, height) img_array.append(img) out = cv2.VideoWriter("project.mp4", cv2.VideoWriter_fourcc(*"mp4v"), 3, size) for i in range(len(img_array)): out.write(img_array[i]) out.release()
[ "cv2.VideoWriter_fourcc", "glob.glob" ]
[((30, 58), 'glob.glob', 'glob.glob', (['"""./samples/*.jpg"""'], {}), "('./samples/*.jpg')\n", (39, 58), False, 'import glob\n'), ((434, 465), 'cv2.VideoWriter_fourcc', 'cv2.VideoWriter_fourcc', (["*'mp4v'"], {}), "(*'mp4v')\n", (456, 465), False, 'import cv2\n')]
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import numpy as np from hummingbird.ml._utils import pandas_installed if pandas_installed(): from pandas import DataFrame else: DataFrame = None class BatchContainer: def __init__(self, base_container, remainder_model_container=None): """ A wrapper around one or two containers to do batch by batch prediction. The batch size is fixed when `base_container` is created. Together with `remainder_model_container`, this class enables prediction on a dataset of size `base_container._batch_size` * k + `remainder_model_container._batch_size`, where k is any integer. Its `predict` related method optionally takes `concatenate_outputs` argument, which when set to True causes the outputs to be returned as a list of individual prediction. This avoids an extra allocation of an output array and copying of each batch prediction into it. Args: base_container: One of subclasses of `SklearnContainer`. remainder_model_container: An auxiliary container that is used in the last iteration, if the test input batch size is not devisible by `base_container._batch_size`. """ assert base_container._batch_size is not None self._base_container = base_container self._batch_size = base_container._batch_size if remainder_model_container: assert remainder_model_container._batch_size is not None self._remainder_model_container = remainder_model_container self._remainder_size = remainder_model_container._batch_size else: # This is remainder_size == 0 case # We repurpose base_container as a remainder_model_container self._remainder_model_container = base_container self._remainder_size = base_container._batch_size def __getattr__(self, name): return getattr(self._base_container, name) def decision_function(self, *inputs, concatenate_outputs=True): return self._predict_common( self._base_container.decision_function, self._remainder_model_container.decision_function, *inputs, concatenate_outputs=concatenate_outputs ) def transform(self, *inputs, concatenate_outputs=True): return self._predict_common( self._base_container.transform, self._remainder_model_container.transform, *inputs, concatenate_outputs=concatenate_outputs ) def score_samples(self, *inputs, concatenate_outputs=True): return self._predict_common( self._base_container.score_samples, self._remainder_model_container.score_samples, *inputs, concatenate_outputs=concatenate_outputs ) def predict(self, *inputs, concatenate_outputs=True): return self._predict_common( self._base_container.predict, self._remainder_model_container.predict, *inputs, concatenate_outputs=concatenate_outputs ) def predict_proba(self, *inputs, concatenate_outputs=True): return self._predict_common( self._base_container.predict_proba, self._remainder_model_container.predict_proba, *inputs, concatenate_outputs=concatenate_outputs ) def _predict_common(self, predict_func, remainder_predict_func, *inputs, concatenate_outputs=True): if DataFrame is not None and type(inputs[0]) == DataFrame: # Split the dataframe into column ndarrays. inputs = inputs[0] input_names = list(inputs.columns) splits = [inputs[input_names[idx]] for idx in range(len(input_names))] inputs = tuple([df.to_numpy().reshape(-1, 1) for df in splits]) def output_proc(predictions): if concatenate_outputs: return np.concatenate(predictions) return predictions is_tuple = isinstance(inputs, tuple) if is_tuple: total_size = inputs[0].shape[0] else: total_size = inputs.shape[0] if total_size == self._batch_size: # A single batch inference case return output_proc([predict_func(*inputs)]) iterations = total_size // self._batch_size iterations += 1 if total_size % self._batch_size > 0 else 0 iterations = max(1, iterations) predictions = [] for i in range(0, iterations): start = i * self._batch_size end = min(start + self._batch_size, total_size) if is_tuple: batch = tuple([input[start:end, :] for input in inputs]) else: batch = inputs[start:end, :] if i == iterations - 1: assert (end - start) == self._remainder_size out = remainder_predict_func(*batch) else: out = predict_func(*batch) predictions.append(out) return output_proc(predictions)
[ "hummingbird.ml._utils.pandas_installed", "numpy.concatenate" ]
[((386, 404), 'hummingbird.ml._utils.pandas_installed', 'pandas_installed', ([], {}), '()\n', (402, 404), False, 'from hummingbird.ml._utils import pandas_installed\n'), ((4261, 4288), 'numpy.concatenate', 'np.concatenate', (['predictions'], {}), '(predictions)\n', (4275, 4288), True, 'import numpy as np\n')]
import tkinter as T # https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm names = """X_cursor arrow based_arrow_down based_arrow_up boat bogosity bottom_left_corner bottom_right_corner bottom_side bottom_tee box_spiral center_ptr circle clock coffee_mug cross cross_reverse crosshair diamond_cross dot dotbox double_arrow draft_large draft_small draped_box exchange fleur gobbler gumby hand1 hand2 heart icon iron_cross left_ptr left_side left_tee leftbutton ll_angle lr_angle man middlebutton mouse none pencil pirate plus question_arrow right_ptr right_side right_tee rightbutton rtl_logo sailboat sb_down_arrow sb_h_double_arrow sb_left_arrow sb_right_arrow sb_up_arrow sb_v_double_arrow shuttle sizing spider spraycan star target tcross top_left_arrow top_left_corner top_right_corner top_side top_tee trek ul_angle umbrella ur_angle watch xterm --- Windows supported --- arrow center_ptr crosshair fleur ibeam icon none sb_h_double_arrow sb_v_double_arrow watch xterm ------ Windows only ----- no starting size size_ne_sw size_ns size_nw_se size_we uparrow wait ----- OS X supported ---- arrow top_left_arrow left_ptr cross crosshair tcross ibeam none xterm ------- OS X only ------- copyarrow aliasarrow contextualmenuarrow movearrow text cross-hair hand openhand closedhand fist pointinghand resize resizeleft resizeright resizeleftright resizeup resizedown resizeupdown resizebottomleft resizetopleft resizebottomright resizetopright notallowed poof wait countinguphand countingdownhand countingupanddownhand spinning help bucket cancel eyedrop eyedrop-full zoom-in zoom-out""" app = T.Tk() for i, name in enumerate(names.split("\n")): label = T.Label(app, text=name) try: label["cursor"] = name except T.TclError: if name.startswith("-"): label["foreground"] = "#0000ff" else: label["state"] = "disabled" label.grid(column=i // 25, row=i % 25, sticky="we") app.mainloop()
[ "tkinter.Tk", "tkinter.Label" ]
[((1590, 1596), 'tkinter.Tk', 'T.Tk', ([], {}), '()\n', (1594, 1596), True, 'import tkinter as T\n'), ((1656, 1679), 'tkinter.Label', 'T.Label', (['app'], {'text': 'name'}), '(app, text=name)\n', (1663, 1679), True, 'import tkinter as T\n')]
import pygame import game_config as gc from pygame import display, event, image from time import sleep from animal import Animal def find_index_from_xy(x, y): row = y // gc.IMAGE_SIZE col = x // gc.IMAGE_SIZE index = row * gc.NUM_TILES_SIDE + col return row, col, index pygame.init() # used to initialize the pygame methods display.set_caption('My Game') # set the game title on the title screen screen = display.set_mode((gc.SCREEN_SIZE, gc.SCREEN_SIZE)) # defining the window size of the screen matched = image.load('other_assets/matched.png') # loading the image assets #screen.blit(matched,(0,0)) -> not needed for now #displaying the image in full screen mode #blit -> draw one image onto another #display.flip() -> not needed for now #display.flip() -> This will update the contents of the entire display running = True # set a boolean for the while loop tiles = [Animal(i) for i in range(0, gc.NUM_TILES_TOTAL)] # we will instantiate the images current_images_displayed = [] while running: #setting up the game loop current_events = event.get() #This will get all the messages and remove them from the queue for e in current_events:# looping over the events if e.type == pygame.QUIT:#if user wants to quit exit the game loop running = False if e.type == pygame.KEYDOWN: if e.key == pygame.K_ESCAPE: running = False # pressing escape will lead to quiting of the game if e.type == pygame.MOUSEBUTTONDOWN: mouse_x, mouse_y = pygame.mouse.get_pos() #getting the positiion of mouse after clicking on animal row, col, index = find_index_from_xy(mouse_x, mouse_y) # using a function to find the row and column number if index not in current_images_displayed: if len(current_images_displayed) > 1: current_images_displayed = current_images_displayed[1:] + [index] # we are doing this so that unique images get matched #appending the index to the list current images else: current_images_displayed.append(index) # Display animals screen.fill((255, 255, 255)) # set wthe screen color to white total_skipped = 0 for i, tile in enumerate(tiles): current_image = tile.image if i in current_images_displayed else tile.box # if the image is present in current images # display it other wiise display a grey box if not tile.skip: screen.blit(current_image, (tile.col * gc.IMAGE_SIZE + gc.MARGIN, tile.row * gc.IMAGE_SIZE + gc.MARGIN)) #iterating over tiles and displaying them # enumerate gives the iterator index else: total_skipped += 1 display.flip() #update the screen with display.flip() # Check for matches if len(current_images_displayed) == 2: idx1, idx2 = current_images_displayed if tiles[idx1].name == tiles[idx2].name: tiles[idx1].skip = True tiles[idx2].skip = True # display matched message sleep(0.2) screen.blit(matched, (0, 0)) display.flip() sleep(0.5) current_images_displayed = [] if total_skipped == len(tiles): running = False print('Goodbye!')
[ "pygame.init", "pygame.event.get", "pygame.display.set_mode", "pygame.display.flip", "pygame.mouse.get_pos", "time.sleep", "pygame.display.set_caption", "pygame.image.load", "animal.Animal" ]
[((302, 315), 'pygame.init', 'pygame.init', ([], {}), '()\n', (313, 315), False, 'import pygame\n'), ((358, 388), 'pygame.display.set_caption', 'display.set_caption', (['"""My Game"""'], {}), "('My Game')\n", (377, 388), False, 'from pygame import display, event, image\n'), ((441, 491), 'pygame.display.set_mode', 'display.set_mode', (['(gc.SCREEN_SIZE, gc.SCREEN_SIZE)'], {}), '((gc.SCREEN_SIZE, gc.SCREEN_SIZE))\n', (457, 491), False, 'from pygame import display, event, image\n'), ((545, 583), 'pygame.image.load', 'image.load', (['"""other_assets/matched.png"""'], {}), "('other_assets/matched.png')\n", (555, 583), False, 'from pygame import display, event, image\n'), ((925, 934), 'animal.Animal', 'Animal', (['i'], {}), '(i)\n', (931, 934), False, 'from animal import Animal\n'), ((1105, 1116), 'pygame.event.get', 'event.get', ([], {}), '()\n', (1114, 1116), False, 'from pygame import display, event, image\n'), ((2911, 2925), 'pygame.display.flip', 'display.flip', ([], {}), '()\n', (2923, 2925), False, 'from pygame import display, event, image\n'), ((1610, 1632), 'pygame.mouse.get_pos', 'pygame.mouse.get_pos', ([], {}), '()\n', (1630, 1632), False, 'import pygame\n'), ((3264, 3274), 'time.sleep', 'sleep', (['(0.2)'], {}), '(0.2)\n', (3269, 3274), False, 'from time import sleep\n'), ((3330, 3344), 'pygame.display.flip', 'display.flip', ([], {}), '()\n', (3342, 3344), False, 'from pygame import display, event, image\n'), ((3358, 3368), 'time.sleep', 'sleep', (['(0.5)'], {}), '(0.5)\n', (3363, 3368), False, 'from time import sleep\n')]
""" Created 9/06/2017 - 15 years after the creation of Slegger... FishyFish.py "So Long and Thanks for All the Fish" """ # import the goodies import glob # to get list of file names as images for screenshots to know wher to click import time import pyautogui import tkinter as tk from tkinter import filedialog from tkinter import messagebox global start, end # get/set screen resolution width, height = pyautogui.size() # get/set the coordinates of the mouse # <variableName> pyautogui.position() #pyautogui.moveTo(x = None, y = None, duration = 0.0, .,.etc) # ^^ MOVES THE MOUSE CURSOR TO A POINT ON THE SCREEN ^^ # MAGICALLY MOVE MOUSE TO 10 x coord and 10 y coord on screen # pyautogui.moveTo(10, 10) def testFish(): # move mouse to position that takes 2 seconds? pyautogui.moveTo(10, 10, duration=2) pyautogui.moveRel(200,0, duration = 1) pyautogui.moveRel(0, 200, duration=1) # pyautogui.doubleClick(339, 38) # click into notepad (applicaiton is already waiting there) ## print ("mouse pos == " + str(pyautogui.displayMousePosition())) <-- 9/12/2017 removed because function is cmd line only # X: 2580 Y: 601 (9/12/2017)\ pyautogui.click(210, 210) # type test message pyautogui.typewrite('Hello world!"') pyautogui.click return def alphaRun(): # start timer? start = time.time() print ('hello') end = time.time() print (end - start) # take screen shot and save to C drive pyautogui.screenshot('c:\\temp\\screenshot_example.png') # where (location) the program can find our scrreenshot image #pyautogui.locateOnScreen(r'c:\temp\outbound\calc7key.png') ### <--- DO LOOPS AND CHECK UNTIL THAT PICTURE "is found" print (str(pyautogui.locateOnScreen(r'c:\temp\fish2.png'))) # attempt to right click screen and look for fishing spot pyautogui.alert('you have 2.5 seconds to move mouse to fishing position') pyautogui.PAUSE = 2.5 pyautogui.click(button='right') pyautogui.moveRel(10, 0, duration=1) # AUTO CLICK FOR 20 NOW BUT SET TO DEPEND ON USER INPUT pyautogui.click(clicks=80, interval=2, button='left') # take screenie of "fishing spot"? #pyautogui.screenshot('c:\\temp\\rightClickFish.png') return def importImageSelection(): app.imageSelect = filedialog.askopenfilename(initialdir = "C:\"", title="import IMAGE select", filetypes=(("png files", "*.png"), ("jpeg files", "*.jpeg"), ("all files", "*.*"))) imageSelectLocation = str(app.imageSelect) # set variable above to tk.string imageSelectLocationText.set(imageSelectLocation) # take from tk.string and set it to search for that screenshot print (str(pyautogui.locateOnScreen(imageSelectLocationText.get()))) return def sel(): selection = "Value = " + str(var.get()) label.config(text = selection) app = tk.Tk() app.title('FishyFish.exe') app.geometry('400x400+200+200') buttonBeginFish = tk.Button(app, text="So Long and Thanks for All the Fish", width=50, command=testFish) buttonBeginFish.pack() ## INCLUDE BUTTON FOR 'AUTO' AND 'MANUAL' FOR FISHING SPOTS buttonAlphaRun = tk.Button(app, text="Alpha RUN", width =20, command=alphaRun) buttonAlphaRun.pack() labelClickNumberText = tk.StringVar() labelClickNumberText.set("Number of auto-clicks: ") label3 = tk.Label(app, textvariable=labelClickNumberText) label3.place(x=35, y=100) spinBoxNum = tk.StringVar() s = tk.Spinbox(app, from_ = 1, to = 250, textvariable=spinBoxNum) s.place(x=65, y=100) buttonImageSelectCheck1 = tk.Button(text="select image file to scan as fishing spot ", width=35, command=importImageSelection) buttonImageSelectCheck1.place(x=35, y=150) imageSelectLocationText = tk.StringVar() imageSelectLocationText.set("") label1 = tk.Label(app, textvariable=imageSelectLocationText) label1.place(x=35, y=200) selectionOneText = tk.StringVar() selectionOneText.set("Direction of land (screen/not compass)") label2 = tk.Label(app, textvariable=selectionOneText) label2.place(x=35, y=250) app.config() app.mainloop()
[ "pyautogui.typewrite", "pyautogui.moveRel", "pyautogui.moveTo", "pyautogui.screenshot", "pyautogui.locateOnScreen", "tkinter.Button", "pyautogui.size", "pyautogui.click", "tkinter.StringVar", "tkinter.Tk", "tkinter.Spinbox", "tkinter.Label", "pyautogui.alert", "time.time", "tkinter.filedialog.askopenfilename" ]
[((410, 426), 'pyautogui.size', 'pyautogui.size', ([], {}), '()\n', (424, 426), False, 'import pyautogui\n'), ((2851, 2858), 'tkinter.Tk', 'tk.Tk', ([], {}), '()\n', (2856, 2858), True, 'import tkinter as tk\n'), ((2937, 3027), 'tkinter.Button', 'tk.Button', (['app'], {'text': '"""So Long and Thanks for All the Fish"""', 'width': '(50)', 'command': 'testFish'}), "(app, text='So Long and Thanks for All the Fish', width=50,\n command=testFish)\n", (2946, 3027), True, 'import tkinter as tk\n'), ((3125, 3185), 'tkinter.Button', 'tk.Button', (['app'], {'text': '"""Alpha RUN"""', 'width': '(20)', 'command': 'alphaRun'}), "(app, text='Alpha RUN', width=20, command=alphaRun)\n", (3134, 3185), True, 'import tkinter as tk\n'), ((3233, 3247), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (3245, 3247), True, 'import tkinter as tk\n'), ((3310, 3358), 'tkinter.Label', 'tk.Label', (['app'], {'textvariable': 'labelClickNumberText'}), '(app, textvariable=labelClickNumberText)\n', (3318, 3358), True, 'import tkinter as tk\n'), ((3399, 3413), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (3411, 3413), True, 'import tkinter as tk\n'), ((3418, 3475), 'tkinter.Spinbox', 'tk.Spinbox', (['app'], {'from_': '(1)', 'to': '(250)', 'textvariable': 'spinBoxNum'}), '(app, from_=1, to=250, textvariable=spinBoxNum)\n', (3428, 3475), True, 'import tkinter as tk\n'), ((3528, 3632), 'tkinter.Button', 'tk.Button', ([], {'text': '"""select image file to scan as fishing spot """', 'width': '(35)', 'command': 'importImageSelection'}), "(text='select image file to scan as fishing spot ', width=35,\n command=importImageSelection)\n", (3537, 3632), True, 'import tkinter as tk\n'), ((3699, 3713), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (3711, 3713), True, 'import tkinter as tk\n'), ((3755, 3806), 'tkinter.Label', 'tk.Label', (['app'], {'textvariable': 'imageSelectLocationText'}), '(app, textvariable=imageSelectLocationText)\n', (3763, 3806), True, 'import tkinter as tk\n'), ((3853, 3867), 'tkinter.StringVar', 'tk.StringVar', ([], {}), '()\n', (3865, 3867), True, 'import tkinter as tk\n'), ((3940, 3984), 'tkinter.Label', 'tk.Label', (['app'], {'textvariable': 'selectionOneText'}), '(app, textvariable=selectionOneText)\n', (3948, 3984), True, 'import tkinter as tk\n'), ((786, 822), 'pyautogui.moveTo', 'pyautogui.moveTo', (['(10)', '(10)'], {'duration': '(2)'}), '(10, 10, duration=2)\n', (802, 822), False, 'import pyautogui\n'), ((827, 864), 'pyautogui.moveRel', 'pyautogui.moveRel', (['(200)', '(0)'], {'duration': '(1)'}), '(200, 0, duration=1)\n', (844, 864), False, 'import pyautogui\n'), ((870, 907), 'pyautogui.moveRel', 'pyautogui.moveRel', (['(0)', '(200)'], {'duration': '(1)'}), '(0, 200, duration=1)\n', (887, 907), False, 'import pyautogui\n'), ((1175, 1200), 'pyautogui.click', 'pyautogui.click', (['(210)', '(210)'], {}), '(210, 210)\n', (1190, 1200), False, 'import pyautogui\n'), ((1229, 1265), 'pyautogui.typewrite', 'pyautogui.typewrite', (['"""Hello world!\\""""'], {}), '(\'Hello world!"\')\n', (1248, 1265), False, 'import pyautogui\n'), ((1345, 1356), 'time.time', 'time.time', ([], {}), '()\n', (1354, 1356), False, 'import time\n'), ((1387, 1398), 'time.time', 'time.time', ([], {}), '()\n', (1396, 1398), False, 'import time\n'), ((1470, 1526), 'pyautogui.screenshot', 'pyautogui.screenshot', (['"""c:\\\\temp\\\\screenshot_example.png"""'], {}), "('c:\\\\temp\\\\screenshot_example.png')\n", (1490, 1526), False, 'import pyautogui\n'), ((1849, 1922), 'pyautogui.alert', 'pyautogui.alert', (['"""you have 2.5 seconds to move mouse to fishing position"""'], {}), "('you have 2.5 seconds to move mouse to fishing position')\n", (1864, 1922), False, 'import pyautogui\n'), ((1953, 1984), 'pyautogui.click', 'pyautogui.click', ([], {'button': '"""right"""'}), "(button='right')\n", (1968, 1984), False, 'import pyautogui\n'), ((1989, 2025), 'pyautogui.moveRel', 'pyautogui.moveRel', (['(10)', '(0)'], {'duration': '(1)'}), '(10, 0, duration=1)\n', (2006, 2025), False, 'import pyautogui\n'), ((2090, 2143), 'pyautogui.click', 'pyautogui.click', ([], {'clicks': '(80)', 'interval': '(2)', 'button': '"""left"""'}), "(clicks=80, interval=2, button='left')\n", (2105, 2143), False, 'import pyautogui\n'), ((2304, 2470), 'tkinter.filedialog.askopenfilename', 'filedialog.askopenfilename', ([], {'initialdir': '"""C:\\""""', 'title': '"""import IMAGE select"""', 'filetypes': "(('png files', '*.png'), ('jpeg files', '*.jpeg'), ('all files', '*.*'))"}), '(initialdir=\'C:"\', title=\'import IMAGE select\',\n filetypes=((\'png files\', \'*.png\'), (\'jpeg files\', \'*.jpeg\'), (\n \'all files\', \'*.*\')))\n', (2330, 2470), False, 'from tkinter import filedialog\n'), ((1734, 1781), 'pyautogui.locateOnScreen', 'pyautogui.locateOnScreen', (['"""c:\\\\temp\\\\fish2.png"""'], {}), "('c:\\\\temp\\\\fish2.png')\n", (1758, 1781), False, 'import pyautogui\n')]
import os import MaxwellConstruction as mx import numpy as np import matplotlib.pyplot as plt import argparse def run_vdw_case( a_eos, b_eos, sigma, TrList ): """ Ejecucion de casos de construccion de Maxwell """ # Directorio del caso y limpieza main_dir = os.getcwd() cases_dir = main_dir + '/a_{:.4f}_b_{:.4f}_sigma_{:.4f}/'.format(a_eos, b_eos, sigma) os.system('rm -rf ' + cases_dir ) os.system('mkdir -p ' + cases_dir ) # Ecuacion de estado VdW = mx.EOS('VanDerWaals',a=a_eos,b=b_eos) # Ejecucion para cada T reducida for Tr in TrList: # Directorio de ejecucion os.chdir( cases_dir ) case_name = 'Tr_{:.3f}'.format(Tr) os.system('cp -r ../Base ' + case_name ) os.chdir( cases_dir + '/' + case_name) # Reemplazo de propiedades step = 0.999 if Tr < 0.6: step = 0.9999 # Vrmin,Vrmax = mx.coexistencia(VdW, Tr, plotPV=False, step_size=step) os.system('sed -i \'s/sigmaReplace/{:.5g}/g\' Allrun'.format(args.sigma)) os.system('sed -i \'s/a_vdw_replace/{:.5g}/g\' properties/macroProperties'.format(args.a)) os.system('sed -i \'s/b_vdw_replace/{:.5g}/g\' properties/macroProperties'.format(args.b)) os.system('sed -i \'s/T_vdw_replace/{:.7g}/g\' start/initialFields'.format(Tr*VdW.Tc())) os.system('sed -i \'s/rho_vdw_replace/{:.7g}/g\' start/initialFields'.format(VdW.rhoc())) # Ejecucion print('Tr = {}'.format(Tr)) os.system('./Allclean > log.Allclean') os.system('./Allpre > log.Allpre') os.system('./Allrun > log.lbm') os.chdir(main_dir) pass if __name__ == "__main__": # Argumentos de consola parser = argparse.ArgumentParser(description='Resolución del problema de construcción de Maxwell para diferentes constantes') parser.add_argument('-a', help='Constante a de vdW', type=float, default = 0.5) parser.add_argument('-b', help='Constante b de vdW', type=float, default = 4.0) parser.add_argument('-sigma', help='Constante sigma', type=float, default = 0.125) args = parser.parse_args() # Ejecucion de casos # Tr = [0.99, 0.9, 0.8, 0.7, 0.6] Tr = [0.99, 0.98, 0.96, 0.94, 0.92, 0.90, 0.85, 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50] # Tr = [0.99, 0.98, 0.96, 0.94, 0.92, 0.90, 0.85, 0.80, 0.75, 0.70] run_vdw_case( args.a, args.b, args.sigma, Tr )
[ "argparse.ArgumentParser", "MaxwellConstruction.EOS", "os.getcwd", "os.chdir", "os.system" ]
[((294, 305), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (303, 305), False, 'import os\n'), ((402, 434), 'os.system', 'os.system', (["('rm -rf ' + cases_dir)"], {}), "('rm -rf ' + cases_dir)\n", (411, 434), False, 'import os\n'), ((441, 475), 'os.system', 'os.system', (["('mkdir -p ' + cases_dir)"], {}), "('mkdir -p ' + cases_dir)\n", (450, 475), False, 'import os\n'), ((516, 555), 'MaxwellConstruction.EOS', 'mx.EOS', (['"""VanDerWaals"""'], {'a': 'a_eos', 'b': 'b_eos'}), "('VanDerWaals', a=a_eos, b=b_eos)\n", (522, 555), True, 'import MaxwellConstruction as mx\n'), ((1761, 1779), 'os.chdir', 'os.chdir', (['main_dir'], {}), '(main_dir)\n', (1769, 1779), False, 'import os\n'), ((1877, 2003), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Resolución del problema de construcción de Maxwell para diferentes constantes"""'}), "(description=\n 'Resolución del problema de construcción de Maxwell para diferentes constantes'\n )\n", (1900, 2003), False, 'import argparse\n'), ((675, 694), 'os.chdir', 'os.chdir', (['cases_dir'], {}), '(cases_dir)\n', (683, 694), False, 'import os\n'), ((765, 804), 'os.system', 'os.system', (["('cp -r ../Base ' + case_name)"], {}), "('cp -r ../Base ' + case_name)\n", (774, 804), False, 'import os\n'), ((815, 852), 'os.chdir', 'os.chdir', (["(cases_dir + '/' + case_name)"], {}), "(cases_dir + '/' + case_name)\n", (823, 852), False, 'import os\n'), ((1618, 1656), 'os.system', 'os.system', (['"""./Allclean > log.Allclean"""'], {}), "('./Allclean > log.Allclean')\n", (1627, 1656), False, 'import os\n'), ((1666, 1700), 'os.system', 'os.system', (['"""./Allpre > log.Allpre"""'], {}), "('./Allpre > log.Allpre')\n", (1675, 1700), False, 'import os\n'), ((1710, 1741), 'os.system', 'os.system', (['"""./Allrun > log.lbm"""'], {}), "('./Allrun > log.lbm')\n", (1719, 1741), False, 'import os\n')]
from nltk import word_tokenize from nltk.corpus import stopwords from nltk.stem import PorterStemmer file_a1 = open("1.txt", 'r') file_a2 = open("2.txt", 'r') file_a3 = open("3.txt", 'r') file_a4 = open("4.txt", 'r') file_a5 = open("5.txt", 'r') all_file = [file_a1, file_a2, file_a3, file_a4, file_a5] tf_dict = {} idf_dict = {} idf_dict_val = {} for f in all_file: a1 = f.read() f.close() a1 = a1.split() a1 = [x.lower() for x in a1] stop = set(stopwords.words('english')) #words = word_tokenize(a1) wordsFiltered = [] #print ([i for i in a1 if i not in stop]) #print(a1) for w in a1: if w not in stop: wordsFiltered.append(w) stemmer = PorterStemmer() tempStemmer = [] for w in wordsFiltered: tempStemmer.append(stemmer.stem(w)) nama_var = "berita" + str(all_file.index(f) + 1) tf_dict[nama_var] = {} for wrd in tempStemmer: if wrd in tf_dict[nama_var].keys(): tf_dict[nama_var][wrd] += 1 else: tf_dict[nama_var][wrd] = 1 for key in tf_dict[nama_var].keys(): if key in idf_dict.keys(): idf_dict[key] += 1 else: idf_dict[key] = 1 for key, val in idf_dict.items(): idf_dict_val[key] = val/5 print(tf_dict) print(idf_dict_val) # Masukin ke EXCEL import pandas as pd df_tf = pd.read_excel("hasil tf-idf.xlsx", "TF") print(df_tf.head())
[ "nltk.corpus.stopwords.words", "nltk.stem.PorterStemmer", "pandas.read_excel" ]
[((1378, 1418), 'pandas.read_excel', 'pd.read_excel', (['"""hasil tf-idf.xlsx"""', '"""TF"""'], {}), "('hasil tf-idf.xlsx', 'TF')\n", (1391, 1418), True, 'import pandas as pd\n'), ((710, 725), 'nltk.stem.PorterStemmer', 'PorterStemmer', ([], {}), '()\n', (723, 725), False, 'from nltk.stem import PorterStemmer\n'), ((471, 497), 'nltk.corpus.stopwords.words', 'stopwords.words', (['"""english"""'], {}), "('english')\n", (486, 497), False, 'from nltk.corpus import stopwords\n')]
from data.database import ( RepositoryTag, Repository, Namespace, get_epoch_timestamp, ) def lookup_unrecoverable_tags(repo): """ Returns the tags in a repository that are expired and past their time machine recovery period. """ expired_clause = get_epoch_timestamp() - Namespace.removed_tag_expiration_s return ( RepositoryTag.select() .join(Repository) .join(Namespace, on=(Repository.namespace_user == Namespace.id)) .where(RepositoryTag.repository == repo) .where( ~(RepositoryTag.lifetime_end_ts >> None), RepositoryTag.lifetime_end_ts <= expired_clause, ) )
[ "data.database.get_epoch_timestamp", "data.database.RepositoryTag.select" ]
[((281, 302), 'data.database.get_epoch_timestamp', 'get_epoch_timestamp', ([], {}), '()\n', (300, 302), False, 'from data.database import RepositoryTag, Repository, Namespace, get_epoch_timestamp\n'), ((361, 383), 'data.database.RepositoryTag.select', 'RepositoryTag.select', ([], {}), '()\n', (381, 383), False, 'from data.database import RepositoryTag, Repository, Namespace, get_epoch_timestamp\n')]
#!/usr/bin/env python # encoding:utf-8 # @Time : 2019/9/23 # @Author : 茶葫芦 # @Site : # @File : main_test.py import numpy as np from models.knn.Knn import knn_classfier from sklearn.datasets import load_iris from pub.model_selection import train_test_split from pub.processing import meanStdStandardScaler from models.linearRegression.sample_lnregression import linearRegression if __name__ == '__main__': # KNN # mstd=meanStdStandardScaler() # iris=load_iris() # x=iris.data # y=iris.target # w,v,a,b=train_test_split(x,y) # mstd.fit(w) # w=mstd.transform(w) # a=mstd.transform(a) # knn=knn_classfier(5) # knn.fit(w,v) # y_pre=knn.score(a,b) # print(y_pre) #lnrg lnrg=linearRegression() np.random.seed(100) x = np.random.random(1000) y = 200 * x + 19 +np.random.normal(size=1000) x_n,y_n,x_t,y_t=train_test_split(x,y) model=lnrg.fit(x_n,y_n) print(model.a_,model.b_) print(lnrg.score(y_t,lnrg.predict(x_t)))
[ "numpy.random.normal", "numpy.random.random", "models.linearRegression.sample_lnregression.linearRegression", "numpy.random.seed", "pub.model_selection.train_test_split" ]
[((739, 757), 'models.linearRegression.sample_lnregression.linearRegression', 'linearRegression', ([], {}), '()\n', (755, 757), False, 'from models.linearRegression.sample_lnregression import linearRegression\n'), ((762, 781), 'numpy.random.seed', 'np.random.seed', (['(100)'], {}), '(100)\n', (776, 781), True, 'import numpy as np\n'), ((790, 812), 'numpy.random.random', 'np.random.random', (['(1000)'], {}), '(1000)\n', (806, 812), True, 'import numpy as np\n'), ((883, 905), 'pub.model_selection.train_test_split', 'train_test_split', (['x', 'y'], {}), '(x, y)\n', (899, 905), False, 'from pub.model_selection import train_test_split\n'), ((835, 862), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(1000)'}), '(size=1000)\n', (851, 862), True, 'import numpy as np\n')]
# # Copyright (c) 2014 - 2019 StorPool. # All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Low-level helpers for the StorPool JsonObject implementation. """ from __future__ import print_function import sys import six try: import simplejson as js except ImportError: print('simplejson unavailable, fall-back to standard python json', file=sys.stderr) import json as js from . import spcatch SORT_KEYS = False INDENT = None SEPARATORS = (',', ':') load = js.load # pylint: disable=invalid-name loads = js.loads # pylint: disable=invalid-name def dump(obj, filep): """ Serialize an object with reasonable default settings. """ return js.dump(obj, filep, cls=JsonEncoder, sort_keys=SORT_KEYS, indent=INDENT, separators=SEPARATORS) def dumps(obj): """ Serialize an object to a string with reasonable default settings. """ return js.dumps(obj, cls=JsonEncoder, sort_keys=SORT_KEYS, indent=INDENT, separators=SEPARATORS) class JsonEncoder(js.JSONEncoder): """ Help serialize a JsonObject instance. """ def default(self, o): """ Invoke a suitable serialization function. """ # pylint: disable=method-hidden # (this is by design; see json.JSONEncoder.default()) if isinstance(o, JsonObjectImpl): return o.to_json() if isinstance(o, set): return list(o) return super(JsonEncoder, self).default(o) class JsonObjectImpl(object): """ Base class for a serializable value object; see JsonObject. """ def __new__(cls, json=None, **kwargs): """ Construct a value object as per its __jsonAttrDefs__. """ if isinstance(json, cls): assert not kwargs, \ "Unsupported update on already contructed object" return json j = dict(json) if json is not None else {} j.update(kwargs) self = super(JsonObjectImpl, cls).__new__(cls) object.__setattr__(self, '__jsonAttrs__', {}) exc = None for attr, attr_def in six.iteritems(self.__jsonAttrDefs__): data = [] # pylint: disable=cell-var-from-loop # (the "handle" and "func" arguments are always # evaluated immediately, never deferred) exc = spcatch.sp_catch( data.append, lambda: attr_def.handleVal(j[attr]) if attr in j else attr_def.defaultVal(), exc) if data: self.__jsonAttrs__[attr] = data[0] else: self.__jsonAttrs__[attr] = None spcatch.sp_caught(exc, self.__class__.__name__, self) return self def __getattr__(self, attr): if attr not in self.__jsonAttrs__: error = "'{cls}' has no attribute '{attr}'".format( cls=self.__class__.__name__, attr=attr) raise AttributeError(error) return self.__jsonAttrs__[attr] def __setattr__(self, attr, value): if attr not in self.__jsonAttrDefs__: error = "'{cls}' has no attribute '{attr}'".format( cls=self.__class__.__name__, attr=attr) raise AttributeError(error) self.__jsonAttrs__[attr] = self.__jsonAttrDefs__[attr].handleVal(value) def to_json(self): """ Store the member fields into a dictionary. """ return dict( (attr, getattr(self, attr)) for attr in self.__jsonAttrDefs__) def __iter__(self): return six.iteritems(self.to_json()) # obsolete, will be deprecated and removed toJson = to_json _asdict = to_json __str__ = __repr__ = lambda self: str(self.to_json())
[ "json.dumps", "json.dump", "six.iteritems" ]
[((1200, 1299), 'json.dump', 'js.dump', (['obj', 'filep'], {'cls': 'JsonEncoder', 'sort_keys': 'SORT_KEYS', 'indent': 'INDENT', 'separators': 'SEPARATORS'}), '(obj, filep, cls=JsonEncoder, sort_keys=SORT_KEYS, indent=INDENT,\n separators=SEPARATORS)\n', (1207, 1299), True, 'import json as js\n'), ((1422, 1515), 'json.dumps', 'js.dumps', (['obj'], {'cls': 'JsonEncoder', 'sort_keys': 'SORT_KEYS', 'indent': 'INDENT', 'separators': 'SEPARATORS'}), '(obj, cls=JsonEncoder, sort_keys=SORT_KEYS, indent=INDENT,\n separators=SEPARATORS)\n', (1430, 1515), True, 'import json as js\n'), ((2601, 2637), 'six.iteritems', 'six.iteritems', (['self.__jsonAttrDefs__'], {}), '(self.__jsonAttrDefs__)\n', (2614, 2637), False, 'import six\n')]
import wholesomebot.environment.settings as cfg import gensim import re from collections import defaultdict from metaphone import doublemetaphone as meta model = gensim.models.KeyedVectors.load_word2vec_format(f'{cfg.DATA_DIR}/GoogleNews-vectors-negative300.bin', binary=True) words = model.index2word w_rank = {} w_meta = {} for i, word in enumerate(words): w_rank[word] = i w_meta[word] = meta(word)[0] def invert_dict(d): inv = defaultdict(list) return {inv[v].append(k) for k, v in d.items()} METAS = invert_dict(w_meta) WORDS = w_rank def words(text): return re.findall(r'\w+', text.lower()) def P(word): return - WORDS.get(word, 0) def meta_candidates(word): return METAS.get(meta(word)[0], None) def correction(word): return max(candidates(word), key=P) def candidates(word): return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word]) def known(words): return set(w for w in words if w in WORDS) def edits1(word): letters = 'abcdefghijklmnopqrstuvwxyz' splits = [(word[:i], word[i:]) for i in range(len(word)+1)] deletes = [L+R[1:] for L, R in splits if R] transposes = [L+R[1]+R[0]+R[2:] for L, R in splits if len(R) > 1] replaces = [L+c+R[1:] for L, R in splits if R for c in letters] inserts = [L+c+R for L, R in splits for c in letters] return set(deletes+transposes+replaces+inserts) def edits2(word): return (e2 for e1 in edits1(word) for e2 in edits1(e1))
[ "gensim.models.KeyedVectors.load_word2vec_format", "collections.defaultdict", "metaphone.doublemetaphone" ]
[((164, 283), 'gensim.models.KeyedVectors.load_word2vec_format', 'gensim.models.KeyedVectors.load_word2vec_format', (['f"""{cfg.DATA_DIR}/GoogleNews-vectors-negative300.bin"""'], {'binary': '(True)'}), "(\n f'{cfg.DATA_DIR}/GoogleNews-vectors-negative300.bin', binary=True)\n", (211, 283), False, 'import gensim\n'), ((505, 522), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (516, 522), False, 'from collections import defaultdict\n'), ((459, 469), 'metaphone.doublemetaphone', 'meta', (['word'], {}), '(word)\n', (463, 469), True, 'from metaphone import doublemetaphone as meta\n'), ((774, 784), 'metaphone.doublemetaphone', 'meta', (['word'], {}), '(word)\n', (778, 784), True, 'from metaphone import doublemetaphone as meta\n')]
import unittest import sys import os import time DEBUG_TEST_ARTICLE = False DEBUG_TIME = True sys.path.append("C:/GitHub/SchoolNetUtilities") import wikipedia.xml_to_txt as xml_to_txt class TestSetCreation(unittest.TestCase): def test_parse_article(self): file_dir = os.path.dirname(os.path.realpath('__file__')) file_path = os.path.join(file_dir, "example_article_wt.txt") file = open(file_path, "r", encoding="UTF-8") text = file.read() file.close() if (DEBUG_TEST_ARTICLE): print("=======================================================") print(text) print("=======================================================") # parse the file using the wikitextparser start_time = time.time() parsed = xml_to_txt.parseArticle(text) if (DEBUG_TEST_ARTICLE): print(parsed) print("=======================================================") if (DEBUG_TIME): elapsed_time = time.time() - start_time print("Time elapsed: ", elapsed_time) print("=======================================================") # parse the file with our modified plain_text function start_time = time.time() parsedFast = xml_to_txt.parseArticleFast(text) if (DEBUG_TEST_ARTICLE): print(parsedFast) print("=======================================================") if (DEBUG_TIME): elapsed_time = time.time() - start_time print("Time elapsed: ", elapsed_time) print("=======================================================") # self.assertEqual(parsedFast, parsed) if __name__ == '__main__': unittest.main()
[ "wikipedia.xml_to_txt.parseArticleFast", "wikipedia.xml_to_txt.parseArticle", "os.path.join", "os.path.realpath", "time.time", "unittest.main", "sys.path.append" ]
[((96, 143), 'sys.path.append', 'sys.path.append', (['"""C:/GitHub/SchoolNetUtilities"""'], {}), "('C:/GitHub/SchoolNetUtilities')\n", (111, 143), False, 'import sys\n'), ((1763, 1778), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1776, 1778), False, 'import unittest\n'), ((349, 397), 'os.path.join', 'os.path.join', (['file_dir', '"""example_article_wt.txt"""'], {}), "(file_dir, 'example_article_wt.txt')\n", (361, 397), False, 'import os\n'), ((784, 795), 'time.time', 'time.time', ([], {}), '()\n', (793, 795), False, 'import time\n'), ((813, 842), 'wikipedia.xml_to_txt.parseArticle', 'xml_to_txt.parseArticle', (['text'], {}), '(text)\n', (836, 842), True, 'import wikipedia.xml_to_txt as xml_to_txt\n'), ((1270, 1281), 'time.time', 'time.time', ([], {}), '()\n', (1279, 1281), False, 'import time\n'), ((1303, 1336), 'wikipedia.xml_to_txt.parseArticleFast', 'xml_to_txt.parseArticleFast', (['text'], {}), '(text)\n', (1330, 1336), True, 'import wikipedia.xml_to_txt as xml_to_txt\n'), ((299, 327), 'os.path.realpath', 'os.path.realpath', (['"""__file__"""'], {}), "('__file__')\n", (315, 327), False, 'import os\n'), ((1033, 1044), 'time.time', 'time.time', ([], {}), '()\n', (1042, 1044), False, 'import time\n'), ((1531, 1542), 'time.time', 'time.time', ([], {}), '()\n', (1540, 1542), False, 'import time\n')]
from onto.store import SnapshotContainer def test_set_with_timestamp(): container = SnapshotContainer() container.set_with_timestamp('k', 'v', (1, 0)) assert container.get('k', (1, 0)) == 'v' def test_has_previous(): container = SnapshotContainer() assert not container.has_previous('k') container.set_with_timestamp('k', 'v', (1, 0)) assert container.has_previous('k') def test_previous(): container = SnapshotContainer() container.set_with_timestamp('k', 'v1', (1, 0)) assert container.previous('k') == 'v1' container.set_with_timestamp('k', 'v2', (2, 0)) assert container.previous('k') == 'v2' def test_get_with_range(): container = SnapshotContainer() container.set_with_timestamp('k', 'v1', (1, 0)) container.set_with_timestamp('k', 'v2', (2, 0)) assert list(container.get_with_range( key='k', lo_excl=(1, 0), hi_incl=(2, 0) )) == ['v2'] assert list(container.get_with_range( key='k', hi_incl=(2, 0) )) == ['v1', 'v2']
[ "onto.store.SnapshotContainer" ]
[((90, 109), 'onto.store.SnapshotContainer', 'SnapshotContainer', ([], {}), '()\n', (107, 109), False, 'from onto.store import SnapshotContainer\n'), ((249, 268), 'onto.store.SnapshotContainer', 'SnapshotContainer', ([], {}), '()\n', (266, 268), False, 'from onto.store import SnapshotContainer\n'), ((441, 460), 'onto.store.SnapshotContainer', 'SnapshotContainer', ([], {}), '()\n', (458, 460), False, 'from onto.store import SnapshotContainer\n'), ((696, 715), 'onto.store.SnapshotContainer', 'SnapshotContainer', ([], {}), '()\n', (713, 715), False, 'from onto.store import SnapshotContainer\n')]
""" A ListController Module """ from masonite.controllers import Controller from masonite.request import Request from app.List import List class ListController(Controller): """Class Docstring Description """ def __init__(self, request: Request): self.request = request def show(self): """Show a single resource listing ex. Model.find('id') Get().route("/show", BlogController) """ id = self.request.param("id") return List.find(id) pass def index(self): """Show several resource listings ex. Model.all() Get().route("/index", TodoController) """ return List.all() pass def create(self): item = self.request.input("item") amount = self.request.input("amount") list = List.create({"item": item, "amount": amount}) return list pass def update(self): item = self.request.input("item") amount = self.request.input("amount") id = self.request.param("id") List.where("id", id).update({"item": item, "amount": amount}) return List.where("id", id).get() pass def destroy(self): id = self.request.param("id") list = List.where("id", id).get() List.where("id", id).delete() return list pass
[ "app.List.List.create", "app.List.List.find", "app.List.List.all", "app.List.List.where" ]
[((499, 512), 'app.List.List.find', 'List.find', (['id'], {}), '(id)\n', (508, 512), False, 'from app.List import List\n'), ((693, 703), 'app.List.List.all', 'List.all', ([], {}), '()\n', (701, 703), False, 'from app.List import List\n'), ((845, 890), 'app.List.List.create', 'List.create', (["{'item': item, 'amount': amount}"], {}), "({'item': item, 'amount': amount})\n", (856, 890), False, 'from app.List import List\n'), ((1089, 1109), 'app.List.List.where', 'List.where', (['"""id"""', 'id'], {}), "('id', id)\n", (1099, 1109), False, 'from app.List import List\n'), ((1166, 1186), 'app.List.List.where', 'List.where', (['"""id"""', 'id'], {}), "('id', id)\n", (1176, 1186), False, 'from app.List import List\n'), ((1285, 1305), 'app.List.List.where', 'List.where', (['"""id"""', 'id'], {}), "('id', id)\n", (1295, 1305), False, 'from app.List import List\n'), ((1320, 1340), 'app.List.List.where', 'List.where', (['"""id"""', 'id'], {}), "('id', id)\n", (1330, 1340), False, 'from app.List import List\n')]
""" The MIT License (MIT) Copyright (c) 2020 James Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import asyncio from collections.abc import AsyncGenerator from contextlib import asynccontextmanager from datetime import datetime from typing import TYPE_CHECKING, Any, Optional, Union from .abc import Channel, M, _EndPointReturnType, _SupportsStr from .iterators import DMChannelHistoryIterator, GroupChannelHistoryIterator if TYPE_CHECKING: from .clan import Clan from .group import Group from .image import Image from .message import ClanMessage, GroupMessage, UserMessage from .protobufs.steammessages_chat import ( CChatRoomIncomingChatMessageNotification as GroupMessageNotification, CChatRoomState, CUserChatRoomState, ) from .state import ConnectionState from .trade import TradeOffer from .user import User __all__ = ( "DMChannel", "GroupChannel", "ClanChannel", ) class DMChannel(Channel["UserMessage"]): """Represents the channel a DM is sent in. Attributes ---------- participant: :class:`~steam.User` The recipient of any messages sent. """ __slots__ = ("participant",) def __init__(self, state: ConnectionState, participant: User): super().__init__(state) self.participant = participant self.clan = None self.group = None def __repr__(self) -> str: return f"<DMChannel participant={self.participant!r}>" def _get_message_endpoint(self) -> _EndPointReturnType: return self.participant._get_message_endpoint() def _get_image_endpoint(self) -> _EndPointReturnType: return self.participant._get_image_endpoint() if TYPE_CHECKING: async def send( self, content: Optional[_SupportsStr] = None, *, trade: Optional[TradeOffer] = None, image: Optional[Image] = None, ) -> Optional[UserMessage]: ... @asynccontextmanager async def typing(self) -> AsyncGenerator[None, None]: """Send a typing indicator continuously to the channel while in the context manager. Note ---- This only works in DMs. Usage: :: async with ctx.channel.typing(): # do your expensive operations """ async def inner() -> None: while True: await asyncio.sleep(10) await self.trigger_typing() await self.trigger_typing() task = self._state.loop.create_task(inner()) yield task.cancel() async def trigger_typing(self) -> None: """Send a typing indicator to the channel once. Note ---- This only works in DMs. """ await self._state.send_user_typing(self.participant.id64) def history( self, limit: Optional[int] = 100, before: Optional[datetime] = None, after: Optional[datetime] = None, ) -> DMChannelHistoryIterator: return DMChannelHistoryIterator(state=self._state, channel=self, limit=limit, before=before, after=after) class _GroupChannel(Channel[M]): __slots__ = ("id", "joined_at", "name") def __init__(self, state: ConnectionState, channel: Any): super().__init__(state) self.id = int(channel.chat_id) self.joined_at: Optional[datetime] if hasattr(channel, "chat_name"): split = channel.chat_name.split(" | ", 1) self.name = split[1] if len(split) != 1 else split[0] else: self.name = None self.joined_at = ( datetime.utcfromtimestamp(int(channel.time_joined)) if hasattr(channel, "time_joined") else None ) def __repr__(self) -> str: attrs = ("id", "group") resolved = [f"{attr}={getattr(self, attr)!r}" for attr in attrs] return f"<GroupChannel {' '.join(resolved)}>" def _get_message_endpoint(self) -> _EndPointReturnType: return (self.id, self.group.id), self._state.send_group_message def _get_image_endpoint(self) -> _EndPointReturnType: return (self.id, self.group.id), self._state.http.send_group_image def history( self, limit: Optional[int] = 100, before: Optional[datetime] = None, after: Optional[datetime] = None, ) -> GroupChannelHistoryIterator: return GroupChannelHistoryIterator(state=self._state, channel=self, limit=limit, before=before, after=after) class GroupChannel(_GroupChannel["GroupMessage"]): """Represents a group channel. Attributes ---------- id: :class:`int` The ID of the channel. name: Optional[:class:`str`] The name of the channel, this could be the same as the :attr:`~steam.Group.name` if it's the main channel. group: :class:`~steam.Group` The group to which messages are sent. joined_at: Optional[:class:`datetime.datetime`] The time the client joined the chat. """ def __init__(self, state: ConnectionState, group: Group, channel: Union[GroupMessageNotification, CChatRoomState]): super().__init__(state, channel) self.group = group class ClanChannel(_GroupChannel["ClanMessage"]): # they're basically the same thing """Represents a group channel. Attributes ---------- id: :class:`int` The ID of the channel. name: Optional[:class:`str`] The name of the channel, this could be the same as the :attr:`~steam.Clan.name` if it's the main channel. clan: :class:`~steam.Clan` The clan to which messages are sent. joined_at: Optional[:class:`datetime.datetime`] The time the client joined the chat. """ def __init__( self, state: ConnectionState, clan: Clan, channel: Union[GroupMessageNotification, CUserChatRoomState] ): super().__init__(state, channel) self.clan = clan def __repr__(self) -> str: attrs = ("id", "clan") resolved = [f"{attr}={getattr(self, attr)!r}" for attr in attrs] return f"<ClanChannel {' '.join(resolved)}>" def _get_message_endpoint(self) -> _EndPointReturnType: return (self.id, self.clan.chat_id), self._state.send_group_message def _get_image_endpoint(self) -> _EndPointReturnType: return (self.id, self.clan.chat_id), self._state.http.send_group_image
[ "asyncio.sleep" ]
[((3445, 3462), 'asyncio.sleep', 'asyncio.sleep', (['(10)'], {}), '(10)\n', (3458, 3462), False, 'import asyncio\n')]
import numpy as np from UQpy.dimension_reduction.grassmann_manifold.projections.SVDProjection import SVDProjection from UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations import GrassmannOperations import sys def test_log_exp_maps(): sol0 = np.array([[0.61415, 1.03029, 1.02001, 0.57327, 0.79874, 0.73274], [0.56924, 0.91700, 0.88841, 0.53737, 0.68676, 0.67751], [0.51514, 0.87898, 0.87779, 0.47850, 0.69085, 0.61525], [0.63038, 1.10822, 1.12313, 0.58038, 0.89142, 0.75429], [0.69666, 1.03114, 0.95037, 0.67211, 0.71184, 0.82522], [0.66595, 1.03789, 0.98690, 0.63420, 0.75416, 0.79110]]) sol1 = np.array([[1.05134, 1.37652, 0.95634, 0.85630, 0.47570, 1.22488], [0.16370, 0.63105, 0.14533, 0.81030, 0.44559, 0.43358], [1.23478, 2.10342, 1.04698, 1.68755, 0.92792, 1.73277], [0.90538, 1.64067, 0.62027, 1.17577, 0.63644, 1.34925], [0.58210, 0.75795, 0.65519, 0.65712, 0.37251, 0.65740], [0.99174, 1.59375, 0.63724, 0.89107, 0.47631, 1.36581]]) sol2 = np.array([[1.04142, 0.91670, 1.47962, 1.23350, 0.94111, 0.61858], [1.00464, 0.65684, 1.35136, 1.11288, 0.96093, 0.42340], [1.05567, 1.33192, 1.56286, 1.43412, 0.77044, 0.97182], [0.89812, 0.86136, 1.20204, 1.17892, 0.83788, 0.61160], [0.46935, 0.39371, 0.63534, 0.57856, 0.47615, 0.26407], [1.14102, 0.80869, 1.39123, 1.33076, 0.47719, 0.68170]]) sol3 = np.array([[0.60547, 0.11492, 0.78956, 0.13796, 0.76685, 0.41661], [0.32771, 0.11606, 0.67630, 0.15208, 0.44845, 0.34840], [0.58959, 0.10156, 0.72623, 0.11859, 0.73671, 0.38714], [0.36283, 0.07979, 0.52824, 0.09760, 0.46313, 0.27906], [0.87487, 0.22452, 1.30208, 0.30189, 1.22015, 0.62918], [0.56006, 0.16879, 1.09635, 0.20431, 0.69439, 0.60317]]) # Creating a list of matrices. matrices = [sol0, sol1, sol2, sol3] manifold_projection = SVDProjection(matrices, p="max") points_tangent = GrassmannOperations.log_map(grassmann_points=manifold_projection.u, reference_point=manifold_projection.u[0]) assert np.round(points_tangent[0][0][0], 2) == 0.0 assert np.round(points_tangent[1][0][0], 8) == 0.0 assert np.round(points_tangent[2][0][0], 8) == 0.0 assert np.round(points_tangent[3][0][0], 8) == 0.0 manifold_points = GrassmannOperations.exp_map(tangent_points=points_tangent, reference_point=manifold_projection.u[0]) assert np.round(manifold_points[0].data[0][0], 5) == -0.41808 assert np.round(manifold_points[1].data[0][0], 8) == -0.4180759 assert np.round(manifold_points[2].data[0][0], 8) == -0.4180759 assert np.round(manifold_points[3].data[0][0], 8) == -0.4180759
[ "UQpy.dimension_reduction.grassmann_manifold.projections.SVDProjection.SVDProjection", "numpy.array", "UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations.GrassmannOperations.log_map", "UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations.GrassmannOperations.exp_map", "numpy.round" ]
[((260, 617), 'numpy.array', 'np.array', (['[[0.61415, 1.03029, 1.02001, 0.57327, 0.79874, 0.73274], [0.56924, 0.917, \n 0.88841, 0.53737, 0.68676, 0.67751], [0.51514, 0.87898, 0.87779, 0.4785,\n 0.69085, 0.61525], [0.63038, 1.10822, 1.12313, 0.58038, 0.89142, \n 0.75429], [0.69666, 1.03114, 0.95037, 0.67211, 0.71184, 0.82522], [\n 0.66595, 1.03789, 0.9869, 0.6342, 0.75416, 0.7911]]'], {}), '([[0.61415, 1.03029, 1.02001, 0.57327, 0.79874, 0.73274], [0.56924,\n 0.917, 0.88841, 0.53737, 0.68676, 0.67751], [0.51514, 0.87898, 0.87779,\n 0.4785, 0.69085, 0.61525], [0.63038, 1.10822, 1.12313, 0.58038, 0.89142,\n 0.75429], [0.69666, 1.03114, 0.95037, 0.67211, 0.71184, 0.82522], [\n 0.66595, 1.03789, 0.9869, 0.6342, 0.75416, 0.7911]])\n', (268, 617), True, 'import numpy as np\n'), ((724, 1082), 'numpy.array', 'np.array', (['[[1.05134, 1.37652, 0.95634, 0.8563, 0.4757, 1.22488], [0.1637, 0.63105, \n 0.14533, 0.8103, 0.44559, 0.43358], [1.23478, 2.10342, 1.04698, 1.68755,\n 0.92792, 1.73277], [0.90538, 1.64067, 0.62027, 1.17577, 0.63644, \n 1.34925], [0.5821, 0.75795, 0.65519, 0.65712, 0.37251, 0.6574], [\n 0.99174, 1.59375, 0.63724, 0.89107, 0.47631, 1.36581]]'], {}), '([[1.05134, 1.37652, 0.95634, 0.8563, 0.4757, 1.22488], [0.1637, \n 0.63105, 0.14533, 0.8103, 0.44559, 0.43358], [1.23478, 2.10342, 1.04698,\n 1.68755, 0.92792, 1.73277], [0.90538, 1.64067, 0.62027, 1.17577, \n 0.63644, 1.34925], [0.5821, 0.75795, 0.65519, 0.65712, 0.37251, 0.6574],\n [0.99174, 1.59375, 0.63724, 0.89107, 0.47631, 1.36581]])\n', (732, 1082), True, 'import numpy as np\n'), ((1188, 1548), 'numpy.array', 'np.array', (['[[1.04142, 0.9167, 1.47962, 1.2335, 0.94111, 0.61858], [1.00464, 0.65684, \n 1.35136, 1.11288, 0.96093, 0.4234], [1.05567, 1.33192, 1.56286, 1.43412,\n 0.77044, 0.97182], [0.89812, 0.86136, 1.20204, 1.17892, 0.83788, 0.6116\n ], [0.46935, 0.39371, 0.63534, 0.57856, 0.47615, 0.26407], [1.14102, \n 0.80869, 1.39123, 1.33076, 0.47719, 0.6817]]'], {}), '([[1.04142, 0.9167, 1.47962, 1.2335, 0.94111, 0.61858], [1.00464, \n 0.65684, 1.35136, 1.11288, 0.96093, 0.4234], [1.05567, 1.33192, 1.56286,\n 1.43412, 0.77044, 0.97182], [0.89812, 0.86136, 1.20204, 1.17892, \n 0.83788, 0.6116], [0.46935, 0.39371, 0.63534, 0.57856, 0.47615, 0.26407\n ], [1.14102, 0.80869, 1.39123, 1.33076, 0.47719, 0.6817]])\n', (1196, 1548), True, 'import numpy as np\n'), ((1652, 2012), 'numpy.array', 'np.array', (['[[0.60547, 0.11492, 0.78956, 0.13796, 0.76685, 0.41661], [0.32771, 0.11606,\n 0.6763, 0.15208, 0.44845, 0.3484], [0.58959, 0.10156, 0.72623, 0.11859,\n 0.73671, 0.38714], [0.36283, 0.07979, 0.52824, 0.0976, 0.46313, 0.27906\n ], [0.87487, 0.22452, 1.30208, 0.30189, 1.22015, 0.62918], [0.56006, \n 0.16879, 1.09635, 0.20431, 0.69439, 0.60317]]'], {}), '([[0.60547, 0.11492, 0.78956, 0.13796, 0.76685, 0.41661], [0.32771,\n 0.11606, 0.6763, 0.15208, 0.44845, 0.3484], [0.58959, 0.10156, 0.72623,\n 0.11859, 0.73671, 0.38714], [0.36283, 0.07979, 0.52824, 0.0976, 0.46313,\n 0.27906], [0.87487, 0.22452, 1.30208, 0.30189, 1.22015, 0.62918], [\n 0.56006, 0.16879, 1.09635, 0.20431, 0.69439, 0.60317]])\n', (1660, 2012), True, 'import numpy as np\n'), ((2206, 2238), 'UQpy.dimension_reduction.grassmann_manifold.projections.SVDProjection.SVDProjection', 'SVDProjection', (['matrices'], {'p': '"""max"""'}), "(matrices, p='max')\n", (2219, 2238), False, 'from UQpy.dimension_reduction.grassmann_manifold.projections.SVDProjection import SVDProjection\n'), ((2261, 2374), 'UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations.GrassmannOperations.log_map', 'GrassmannOperations.log_map', ([], {'grassmann_points': 'manifold_projection.u', 'reference_point': 'manifold_projection.u[0]'}), '(grassmann_points=manifold_projection.u,\n reference_point=manifold_projection.u[0])\n', (2288, 2374), False, 'from UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations import GrassmannOperations\n'), ((2664, 2769), 'UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations.GrassmannOperations.exp_map', 'GrassmannOperations.exp_map', ([], {'tangent_points': 'points_tangent', 'reference_point': 'manifold_projection.u[0]'}), '(tangent_points=points_tangent, reference_point=\n manifold_projection.u[0])\n', (2691, 2769), False, 'from UQpy.dimension_reduction.grassmann_manifold.GrassmannOperations import GrassmannOperations\n'), ((2432, 2468), 'numpy.round', 'np.round', (['points_tangent[0][0][0]', '(2)'], {}), '(points_tangent[0][0][0], 2)\n', (2440, 2468), True, 'import numpy as np\n'), ((2487, 2523), 'numpy.round', 'np.round', (['points_tangent[1][0][0]', '(8)'], {}), '(points_tangent[1][0][0], 8)\n', (2495, 2523), True, 'import numpy as np\n'), ((2542, 2578), 'numpy.round', 'np.round', (['points_tangent[2][0][0]', '(8)'], {}), '(points_tangent[2][0][0], 8)\n', (2550, 2578), True, 'import numpy as np\n'), ((2597, 2633), 'numpy.round', 'np.round', (['points_tangent[3][0][0]', '(8)'], {}), '(points_tangent[3][0][0], 8)\n', (2605, 2633), True, 'import numpy as np\n'), ((2827, 2869), 'numpy.round', 'np.round', (['manifold_points[0].data[0][0]', '(5)'], {}), '(manifold_points[0].data[0][0], 5)\n', (2835, 2869), True, 'import numpy as np\n'), ((2893, 2935), 'numpy.round', 'np.round', (['manifold_points[1].data[0][0]', '(8)'], {}), '(manifold_points[1].data[0][0], 8)\n', (2901, 2935), True, 'import numpy as np\n'), ((2961, 3003), 'numpy.round', 'np.round', (['manifold_points[2].data[0][0]', '(8)'], {}), '(manifold_points[2].data[0][0], 8)\n', (2969, 3003), True, 'import numpy as np\n'), ((3029, 3071), 'numpy.round', 'np.round', (['manifold_points[3].data[0][0]', '(8)'], {}), '(manifold_points[3].data[0][0], 8)\n', (3037, 3071), True, 'import numpy as np\n')]
from flask import render_template, Flask, request import interpreter app = Flask(__name__) interpreter.main() @app.route('/', methods=['GET', 'POST']) def root(): context = { 'dados':interpreter.get_dados(), 'registradores':interpreter.get_registradores(), 'cache':interpreter.get_cache(), 'cache_dec':interpreter.get_cache_decimal(), 'cache_size':interpreter.cache_size, 'original_instruction':None } if request.method == 'POST': if 'instruction' in request.form: command = { 'instruction':request.form['instruction'], 'register_1':request.form['register_1'], 'register_2':request.form['register_2'] } interpreter.execute(**command) context['original_instruction'] = command context['cache_dec'] = interpreter.get_cache_decimal() elif 'load' in request.form: interpreter.update_dados([ request.form['D0'], request.form['D1'], request.form['D2'], request.form['D3'], request.form['D4'], request.form['D5'], request.form['D6'], request.form['D7'] ]) context['dados'] = interpreter.get_dados() elif 'save' in request.form: interpreter.save_dados() else: print('Invalid post request') return render_template('page.html', **context) else: return render_template('page.html', **context)
[ "flask.render_template", "interpreter.update_dados", "flask.Flask", "interpreter.get_dados", "interpreter.execute", "interpreter.save_dados", "interpreter.get_cache", "interpreter.get_registradores", "interpreter.get_cache_decimal", "interpreter.main" ]
[((76, 91), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (81, 91), False, 'from flask import render_template, Flask, request\n'), ((92, 110), 'interpreter.main', 'interpreter.main', ([], {}), '()\n', (108, 110), False, 'import interpreter\n'), ((197, 220), 'interpreter.get_dados', 'interpreter.get_dados', ([], {}), '()\n', (218, 220), False, 'import interpreter\n'), ((246, 277), 'interpreter.get_registradores', 'interpreter.get_registradores', ([], {}), '()\n', (275, 277), False, 'import interpreter\n'), ((295, 318), 'interpreter.get_cache', 'interpreter.get_cache', ([], {}), '()\n', (316, 318), False, 'import interpreter\n'), ((340, 371), 'interpreter.get_cache_decimal', 'interpreter.get_cache_decimal', ([], {}), '()\n', (369, 371), False, 'import interpreter\n'), ((1491, 1530), 'flask.render_template', 'render_template', (['"""page.html"""'], {}), "('page.html', **context)\n", (1506, 1530), False, 'from flask import render_template, Flask, request\n'), ((1556, 1595), 'flask.render_template', 'render_template', (['"""page.html"""'], {}), "('page.html', **context)\n", (1571, 1595), False, 'from flask import render_template, Flask, request\n'), ((759, 789), 'interpreter.execute', 'interpreter.execute', ([], {}), '(**command)\n', (778, 789), False, 'import interpreter\n'), ((879, 910), 'interpreter.get_cache_decimal', 'interpreter.get_cache_decimal', ([], {}), '()\n', (908, 910), False, 'import interpreter\n'), ((960, 1155), 'interpreter.update_dados', 'interpreter.update_dados', (["[request.form['D0'], request.form['D1'], request.form['D2'], request.form[\n 'D3'], request.form['D4'], request.form['D5'], request.form['D6'],\n request.form['D7']]"], {}), "([request.form['D0'], request.form['D1'], request.\n form['D2'], request.form['D3'], request.form['D4'], request.form['D5'],\n request.form['D6'], request.form['D7']])\n", (984, 1155), False, 'import interpreter\n'), ((1321, 1344), 'interpreter.get_dados', 'interpreter.get_dados', ([], {}), '()\n', (1342, 1344), False, 'import interpreter\n'), ((1394, 1418), 'interpreter.save_dados', 'interpreter.save_dados', ([], {}), '()\n', (1416, 1418), False, 'import interpreter\n')]
import argparse import logging import sys from db import DBRunner from utils import ConfigReader from xml_fetcher import SshXmlFetcher, XmlFetcher from xml_parser import XmlParser logging.basicConfig(level=logging.INFO, stream=sys.stdout) logging.getLogger("paramiko").setLevel(logging.WARNING) logging.getLogger("sqlalchemy").setLevel(logging.WARNING) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('campaign_name', type=str) parser.add_argument("-l", "--local", dest="local", action="store_true") args = parser.parse_args() config = ConfigReader().config xml_fetcher = XmlFetcher(args.campaign_name, config) if \ args.local else SshXmlFetcher(args.campaign_name, config) xml_file_path = xml_fetcher.run() xml_parser = XmlParser(xml_file_path, config, local=args.local) data_processes = xml_parser.run().get('data_processes') from pprint import pprint pprint(DBRunner().check(data_processes))
[ "logging.basicConfig", "logging.getLogger", "argparse.ArgumentParser", "xml_fetcher.SshXmlFetcher", "xml_fetcher.XmlFetcher", "utils.ConfigReader", "db.DBRunner", "xml_parser.XmlParser" ]
[((182, 240), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'stream': 'sys.stdout'}), '(level=logging.INFO, stream=sys.stdout)\n', (201, 240), False, 'import logging\n'), ((398, 423), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (421, 423), False, 'import argparse\n'), ((801, 851), 'xml_parser.XmlParser', 'XmlParser', (['xml_file_path', 'config'], {'local': 'args.local'}), '(xml_file_path, config, local=args.local)\n', (810, 851), False, 'from xml_parser import XmlParser\n'), ((242, 271), 'logging.getLogger', 'logging.getLogger', (['"""paramiko"""'], {}), "('paramiko')\n", (259, 271), False, 'import logging\n'), ((298, 329), 'logging.getLogger', 'logging.getLogger', (['"""sqlalchemy"""'], {}), "('sqlalchemy')\n", (315, 329), False, 'import logging\n'), ((596, 610), 'utils.ConfigReader', 'ConfigReader', ([], {}), '()\n', (608, 610), False, 'from utils import ConfigReader\n'), ((636, 674), 'xml_fetcher.XmlFetcher', 'XmlFetcher', (['args.campaign_name', 'config'], {}), '(args.campaign_name, config)\n', (646, 674), False, 'from xml_fetcher import SshXmlFetcher, XmlFetcher\n'), ((704, 745), 'xml_fetcher.SshXmlFetcher', 'SshXmlFetcher', (['args.campaign_name', 'config'], {}), '(args.campaign_name, config)\n', (717, 745), False, 'from xml_fetcher import SshXmlFetcher, XmlFetcher\n'), ((954, 964), 'db.DBRunner', 'DBRunner', ([], {}), '()\n', (962, 964), False, 'from db import DBRunner\n')]
# -*- coding: utf-8 -*- import re import numpy as np import pandas as pd def re_split_col(arr): pattern = re.compile(r'(\d+)') ret = [pattern.split(string) for string in arr] data = [[str_list[0], ''.join(str_list[0:3]), ''.join(str_list[3:])] for str_list in ret] data = np.array(data) print(data) data = pd.DataFrame(data=data) return data def main(): data = pd.read_csv('./decice_name.csv') data[['SouDev', 'SouArea']] = data['DEVNAME'].str.split('-', n=1, expand=True) data[['DesDev', 'DesArea']] = data['PEERDEVNAME'].str.split('-', n=1, expand=True) data[['SouPark', 'SouOne', 'SouTwo']] = re_split_col(data['SouDev'].values) data[['DesPark', 'DesOne', 'DesTwo']] = re_split_col(data['DesDev'].values) print(data.columns) print(data.head()) if __name__ == '__main__': main() """ Index(['DEVNAME', 'T.INTTYPE||T.ININUM', 'PEERDEVNAME', 'T.PEERINTTYPE||T.PEERINTNUM'], dtype='object') ==================== DEVNAME T.INTTYPE||T.ININUM PEERDEVNAME T.PEERINTTYPE||T.PEERINTNUM 0 JCK72WA01-A1 GigabitEthernet0/1 JCK65RT0A-C1 GigabitEthernet3/1 1 JCK72WA01-A1 GigabitEthernet0/2 JCK65RT0B-C1 GigabitEthernet3/1 2 JCK72WA02-A1 GigabitEthernet0/1 JCK65RT0A-C1 GigabitEthernet3/2 3 JCK72WA02-A1 GigabitEthernet0/2 JCK65RT0B-C1 GigabitEthernet3/2 4 JCK31BL11-C1 FastEthernet0 JCK31BL12-C1 FastEthernet0 Index(['DEVNAME', 'T.INTTYPE||T.ININUM', 'PEERDEVNAME', 'T.PEERINTTYPE||T.PEERINTNUM', 'SouDev', 'SouArea', 'DesDev', 'DesArea', 'SouPark', 'SouOne', 'SouTwo', 'DesPark', 'DesOne', 'DesTwo'], dtype='object') DEVNAME T.INTTYPE||T.ININUM PEERDEVNAME ... DesPark DesOne DesTwo 0 JCK72WA01-A1 GigabitEthernet0/1 JCK65RT0A-C1 ... JCK JCK65RT 0A 1 JCK72WA01-A1 GigabitEthernet0/2 JCK65RT0B-C1 ... JCK JCK65RT 0B 2 JCK72WA02-A1 GigabitEthernet0/1 JCK65RT0A-C1 ... JCK JCK65RT 0A 3 JCK72WA02-A1 GigabitEthernet0/2 JCK65RT0B-C1 ... JCK JCK65RT 0B 4 JCK31BL11-C1 FastEthernet0 JCK31BL12-C1 ... JCK JCK31BL 12 [5 rows x 14 columns] """
[ "pandas.DataFrame", "numpy.array", "pandas.read_csv", "re.compile" ]
[((114, 134), 're.compile', 're.compile', (['"""(\\\\d+)"""'], {}), "('(\\\\d+)')\n", (124, 134), False, 'import re\n'), ((292, 306), 'numpy.array', 'np.array', (['data'], {}), '(data)\n', (300, 306), True, 'import numpy as np\n'), ((334, 357), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'data'}), '(data=data)\n', (346, 357), True, 'import pandas as pd\n'), ((399, 431), 'pandas.read_csv', 'pd.read_csv', (['"""./decice_name.csv"""'], {}), "('./decice_name.csv')\n", (410, 431), True, 'import pandas as pd\n')]
import os from dogapp import dog def test_input_url(): response = dog.get_model_output("https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg") assert response["data"]["prediction"][0]["input_url"] == "https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg" def test_class(): response = dog.get_model_output("https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg") with open(os.path.join(os.getcwd(), './dogapp/dog_names.txt')) as file: dog_names = file.read() dog_names = dog_names.split('\n') assert response["data"]["prediction"][0]["class"] in dog_names
[ "dogapp.dog.get_model_output", "os.getcwd" ]
[((73, 278), 'dogapp.dog.get_model_output', 'dog.get_model_output', (['"""https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg"""'], {}), "(\n 'https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg'\n )\n", (93, 278), False, 'from dogapp import dog\n'), ((538, 743), 'dogapp.dog.get_model_output', 'dog.get_model_output', (['"""https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg"""'], {}), "(\n 'https://www.thesprucepets.com/thmb/wpN_ZunUaRQAc_WRdAQRxeTbyoc=/4231x2820/filters:fill(auto,1)/adorable-white-pomeranian-puppy-spitz-921029690-5c8be25d46e0fb000172effe.jpg'\n )\n", (558, 743), False, 'from dogapp import dog\n'), ((761, 772), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (770, 772), False, 'import os\n')]
import time import numpy import json # pypot imports import pypot.robot import pypot.dynamixel import math import matplotlib.pyplot as plt import numpy as np from scipy.optimize import curve_fit import csv import pypot.dynamixel import sys num1 = 2 num2 = 4 ports = pypot.dynamixel.get_available_ports() state_file = open("Shoulder_sweep_with_torque.csv", "w") if not ports: raise IOError('no port found!') print('ports found', ports) print('connecting on the first available port:', ports[0]) dxl_io = pypot.dynamixel.DxlIO(ports[0]) time_start = time.clock() def setTraj1(id, duration, coeffs): errorCounter = 0 delay = 0.001 while True: try: dxl_io.set_traj1_size({id: 4}) time.sleep(delay) dxl_io.set_duration1({id: duration}) time.sleep(delay) dxl_io.set_a0_traj1({id: coeffs[0]}) time.sleep(delay) dxl_io.set_a1_traj1({id: coeffs[1]}) time.sleep(delay) dxl_io.set_a2_traj1({id: coeffs[2]}) time.sleep(delay) dxl_io.set_a3_traj1({id: coeffs[3]}) time.sleep(delay) break except: errorCounter = errorCounter + 1 # print "Nope :/" break print("nb errors1 = ", errorCounter) def setTraj2(id, duration, coeffs): errorCounter = 0 delay = 0.001 while True: try: dxl_io.set_traj2_size({id: 4}) time.sleep(delay) dxl_io.set_duration2({id: duration}) time.sleep(delay) dxl_io.set_a0_traj2({id: coeffs[0]}) time.sleep(delay) dxl_io.set_a1_traj2({id: coeffs[1]}) time.sleep(delay) dxl_io.set_a2_traj2({id: coeffs[2]}) time.sleep(delay) dxl_io.set_a3_traj2({id: coeffs[3]}) time.sleep(delay) break except: errorCounter = errorCounter + 1 print("nb errors2 = ", errorCounter) break def setTorque1(id, duration, coeffs): errorCounter = 0 delay = 0.001 while True: try: dxl_io.set_torque1_size({id: 4}) time.sleep(delay) dxl_io.set_duration1({id: duration}) time.sleep(delay) dxl_io.set_a0_torque1({id: coeffs[0]}) time.sleep(delay) dxl_io.set_a1_torque1({id: coeffs[1]}) time.sleep(delay) dxl_io.set_a2_torque1({id: coeffs[2]}) time.sleep(delay) dxl_io.set_a3_torque1({id: coeffs[3]}) time.sleep(delay) break except: errorCounter = errorCounter + 1 # print "Nope :/" pass # print "Nb errors : ", errorCounter def setTorque2(id, duration, coeffs): errorCounter = 0 delay = 0.001 while True: try: dxl_io.set_torque2_size({id: 3}) time.sleep(delay) dxl_io.set_duration2({id: duration}) time.sleep(delay) dxl_io.set_a0_torque2({id: coeffs[0]}) time.sleep(delay) dxl_io.set_a1_torque2({id: coeffs[1]}) time.sleep(delay) dxl_io.set_a2_torque2({id: coeffs[2]}) time.sleep(delay) dxl_io.set_a3_torque2({id: coeffs[3]}) time.sleep(delay) break except: errorCounter = errorCounter + 1 # print "Nope :/" pass def func2(t, c, d, e, f): return c*pow(t, 3) + d*pow(t, 2) + e*t + f def read_file(inp): data = [] cp = [] with open(inp, 'r') as file: reader = csv.reader(file) for row in reader: data.append(list(map(float, row))) res, t = [], [] res1, t1 =[], [] # res2, t2 =[], [] # res3, t3 =[], [] k = 1 for element in data: if element[0] <= k * 0.5: t.append(element[1]) t1.append(element[2]) # t2.append(element[3]) # t3.append(element[4]) else: k = k + 1 res.append(t) res1.append(t1) # res2.append(t1) # res3.append(t1) t = [] t1 = [] # t2 = [] # t3 = [] t.append(element[1]) t1.append(element[2]) # t2.append(element[3]) # t3.append(element[4]) cp.append(element[0]) return res, res1 # return res ,res1 ,res2 ,res3 # main Program # file_name = input('Enter csv file for motor: ') angle,torque = read_file('Shoulder.csv') # angle1, angle2, angle3, angle4 = read_file(file_name) coeff1 = {} pcov1 = {} count1 = 0 for value in angle: coeff1[count1], pcov1[count1] = curve_fit(func2, np.linspace(0,0.5,len(value)),value) # print(coeff1[count1],count1) count1 = count1 + 1 coeff2 = {} pcov2 = {} count2 = 0 for value in torque: coeff2[count2], pcov2[count2] = curve_fit(func2, np.linspace(0,0.5,len(value)),value) # print(coeff2[count2],count2) count2 = count2 + 1 # (angle+180)*4096)/360) print ("Test with PID only:") dxl_io.set_mode_dynaban({num1:0}) time.sleep(0.1) dxl_io.enable_torque({num1:1}) time.sleep(0.1) # dxl_io.enable_torque({1:1}) # time.sleep(0.1) # dxl_io.set_mode_dynaban({num2:0}) # time.sleep(0.1) # dxl_io.enable_torque({num2:1}) # time.sleep(0.1) # dxl_io.set_goal_position({num1:-75}) dxl_io.set_goal_position({num1:0}) time.sleep(1) dxl_io.set_pid_gain({num1:[1,0,0]}) time.sleep(0.1) # dxl_io.set_pid_gain({num2:[2,0,0]}) # time.sleep(0.1) # print ("Setting traj1 :") # dxl_io.set_max_torque({num1:100}) # print(dxl_io.get_goal_position([num])) for i in range(0,len(coeff1)): if i == 0: setTraj1(num1,5000, [coeff1[i][3],coeff1[i][2],coeff1[i][1],coeff1[i][0]]) setTorque1(num1,5000, [coeff2[i][3],coeff2[i][2],coeff2[i][1],coeff2[i][0]]) dxl_io.set_mode_dynaban({num1:3}) else: setTraj2(num1,5000, [coeff1[i][3],coeff1[i][2],coeff1[i][1],coeff1[i][0]]) setTorque2(num1,5000, [coeff2[i][3],coeff2[i][2],coeff2[i][1],coeff2[i][0]]) dxl_io.set_copy_next_buffer({num1:1}) # time.sleep(0.5) time_current = time.time() while (time.time()-time_current) <= 0.5: # print((time.time()-time_current)) str_state = [str(dxl_io.get_present_position([num1])[0]),str(dxl_io.get_outputTorque([num1])[0])] state_file.write(",".join(str_state) + "\n") time.sleep(0.025) time_elapsed = (time.clock() - time_start) print(time_elapsed-time_start)
[ "time.sleep", "csv.reader", "time.clock", "time.time" ]
[((561, 573), 'time.clock', 'time.clock', ([], {}), '()\n', (571, 573), False, 'import time\n'), ((5205, 5220), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5215, 5220), False, 'import time\n'), ((5252, 5267), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5262, 5267), False, 'import time\n'), ((5496, 5509), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (5506, 5509), False, 'import time\n'), ((5546, 5561), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (5556, 5561), False, 'import time\n'), ((6600, 6612), 'time.clock', 'time.clock', ([], {}), '()\n', (6610, 6612), False, 'import time\n'), ((3691, 3707), 'csv.reader', 'csv.reader', (['file'], {}), '(file)\n', (3701, 3707), False, 'import csv\n'), ((6277, 6288), 'time.time', 'time.time', ([], {}), '()\n', (6286, 6288), False, 'import time\n'), ((734, 751), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (744, 751), False, 'import time\n'), ((813, 830), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (823, 830), False, 'import time\n'), ((892, 909), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (902, 909), False, 'import time\n'), ((971, 988), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (981, 988), False, 'import time\n'), ((1050, 1067), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1060, 1067), False, 'import time\n'), ((1129, 1146), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1139, 1146), False, 'import time\n'), ((1487, 1504), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1497, 1504), False, 'import time\n'), ((1566, 1583), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1576, 1583), False, 'import time\n'), ((1645, 1662), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1655, 1662), False, 'import time\n'), ((1724, 1741), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1734, 1741), False, 'import time\n'), ((1803, 1820), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1813, 1820), False, 'import time\n'), ((1882, 1899), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (1892, 1899), False, 'import time\n'), ((2213, 2230), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2223, 2230), False, 'import time\n'), ((2292, 2309), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2302, 2309), False, 'import time\n'), ((2373, 2390), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2383, 2390), False, 'import time\n'), ((2454, 2471), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2464, 2471), False, 'import time\n'), ((2535, 2552), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2545, 2552), False, 'import time\n'), ((2616, 2633), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2626, 2633), False, 'import time\n'), ((2968, 2985), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (2978, 2985), False, 'import time\n'), ((3047, 3064), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (3057, 3064), False, 'import time\n'), ((3128, 3145), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (3138, 3145), False, 'import time\n'), ((3209, 3226), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (3219, 3226), False, 'import time\n'), ((3290, 3307), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (3300, 3307), False, 'import time\n'), ((3371, 3388), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (3381, 3388), False, 'import time\n'), ((6565, 6582), 'time.sleep', 'time.sleep', (['(0.025)'], {}), '(0.025)\n', (6575, 6582), False, 'import time\n'), ((6304, 6315), 'time.time', 'time.time', ([], {}), '()\n', (6313, 6315), False, 'import time\n')]
""" Module for calculations with Rb-Sr and Sm-Nd isotopic systems """ from numpy import exp import pandas as pd def epsNd(Ndrat,Smrat=0,age=0): """ Calculate epsilon Nd using CHUR values from Bouvier et al., 2008 Parameters: Ndrat: Measured 143Nd/144Nd ratio Smrat: Measured 147Sm/144Nd ratio age: Age of sample in Ma for initial calculation Returns: eNd: epsilon Nd for present-day 143Nd/144Nd Ndi: initial 143Nd/144Nd ratio eNdi: epsilon Nd for initial 143Nd/144Nd ratio """ lambdaSm = 6.54e-12 # Sm-147 decay constant years = 10**6 # Converter for Ma to years time = age*years # Years for initial calc Ndi = Ndrat-(Smrat*(exp(lambdaSm*time)-1)) # Calculate initial 143Nd/144Nd CHUR143 = 0.512630 #CHUR 143Nd/144Nd from Bouvier et al., 2008 CHUR147 = 0.1960 # CHUR 147Sm/44Nd from Bouvier et al., 2008 CHUR143i = CHUR143-CHUR147*(exp(lambdaSm*time)-1) # Calculate CHUR for age eNd = ((Ndrat/CHUR143)-1)*10**4 # Calculate EpsNd eNdi = ((Ndi/CHUR143i)-1)*10**4 # Calculate EpsNdi # If age a single integer, create iterable list. if isinstance(age,int): age = pd.Series(age) if 0 not in age.values: return (Ndi,eNdi) elif 0 in age.values: return (eNd) else: print('Mix of zero and non-zero ages') def Srinit(Srrat,Rbrat,age): """ Calculate initial 87Sr/86Sr. Paramters: Srrat: Measured 87Sr/86Sr ratio Rbrat: Measured 87Rb/86Sr ratio age: Age of sample in Ma Returns: Sri: initial 87Sr/86Sr ratio """ lambdaRb = 1.39e-11 # Rb-87 decay constant years = 10**6 # Converter for Ma to years time = age*years # Years for initial calc Sri = Srrat-(Rbrat*(exp(lambdaRb*time)-1)) # Calculate initial 87Sr/86Sr return (Sri) def RbSr_rat(Rb,Sr,Srrat): """ Calculate 87Rb/86Sr from Rb and Sr concentrations Paramters: Rb: Rb concentration (ppm) Sr: Sr concentration (ppm) Srrat: 87Sr/86Sr ratio Returns: rbsr8786: Calculated 87Rb/86Sr ratio """ # Fundamental Rb and Sr isotopic parameters - from CIAAW Rb85_mass = 84.91178974 # Da Rb87_mass = 86.90918053 # Da Rb85_abund = 0.7217 Rb87_abund = 0.2783 Sr84_mass = 83.913419 Sr86_mass = 85.90926073 Sr87_mass = 86.90887750 Sr88_mass = 87.90561226 # Sr abundances vary - only used for calculation of ratios that # don't vary Sr84_abund = 0.0056 Sr86_abund = 0.0986 Sr87_abund = 0.0700 # Not used Sr88_abund = 0.8258 Sr_8886 = Sr88_abund/Sr86_abund # 88Sr/86Sr ratio - doesn't vary Sr_8486 = Sr84_abund/Sr86_abund # 84Sr/86Sr ratio - doesn't vary # Calculate true abundances Sr86_abund_calc = Srrat/(Srrat+Sr_8886+Sr_8486+1) Sr84_abund_calc = Sr86_abund_calc*Sr_8486 Sr88_abund_calc = Sr86_abund_calc*Sr_8886 Sr87_abund_calc = Sr86_abund_calc*Srrat # Total Mass for Rb and Sr Rb_mass = Rb85_mass*Rb85_abund + Rb87_mass*Rb87_abund Sr_mass = ( Sr84_mass*Sr84_abund_calc + Sr86_mass*Sr86_abund_calc + Sr87_mass*Sr87_abund_calc + Sr88_mass*Sr88_abund_calc ) # 87Rb and 86Sr Rb87 = Rb*Rb87_abund/Rb_mass # Get mol of Rb87 Sr86 = Sr*Sr86_abund_calc/Sr_mass # Get mol of Sr86 rbsr8786 = Rb87/Sr86 check = (Rb/Sr)*(2.69295 + 0.28304*Srrat) print('Check: ',check) return(rbsr8786) def SmNd_rat(Sm,Nd,Ndrat): """ Calculate 147Sm/144Nd using reported Sm, Nd, and 143Nd/144Nd Parameters: Sm: Sm concentration (ppm) Nd: Nd concentration (ppm) Ndrat: 143Nd/144Nd ratio Returns: smnd147/144: Calculated 147Sm/144Nd ratio """ # Sm and Nd isotopic parameters - from CIAAW Sm144_mass = 143.91201 Sm147_mass = 146.91490 Sm148_mass = 147.91483 Sm149_mass = 148.917191 Sm150_mass = 149.917282 Sm152_mass = 151.919739 Sm154_mass = 153.92222 Sm144_abund = 0.0308 Sm147_abund = 0.1500 Sm148_abund = 0.1125 Sm149_abund = 0.1382 Sm150_abund = 0.0737 Sm152_abund = 0.2674 Sm154_abund = 0.2274 Nd142_mass = 141.90773 Nd143_mass = 142.90982 Nd144_mass = 143.91009 Nd145_mass = 144.91258 Nd146_mass = 145.91312 Nd148_mass = 147.91690 Nd150_mass = 149.920902 # Nd abundances vary # Non-varying Nd ratios (from Faure et al., 2005) Nd_146144 = 0.7219 # Hamilton et al., 1983 Nd_142144 = 1.141827 Nd_145144 = 0.348417 Nd_148144 = 0.241578 Nd_150144 = 0.236418 # Calculate Nd abundances Nd144_abund = Ndrat/(Ndrat + 1 + Nd_146144 + Nd_142144 + Nd_145144 + Nd_148144 + Nd_150144) Nd142_abund = Nd_142144*Nd144_abund Nd143_abund = Ndrat*Nd144_abund Nd145_abund = Nd_145144*Nd144_abund Nd146_abund = Nd_146144*Nd144_abund Nd148_abund = Nd_148144*Nd144_abund Nd150_abund = Nd_150144*Nd144_abund # Total mass for Sm and Nd Sm_mass = ( Sm144_mass*Sm144_abund + Sm147_mass*Sm147_abund + Sm148_mass* Sm148_abund + Sm149_mass*Sm149_abund + Sm150_mass*Sm150_abund + Sm152_mass*Sm152_abund + Sm154_mass*Sm154_abund ) Nd_mass = ( Nd142_mass*Nd142_abund + Nd143_mass*Nd143_abund + Nd144_mass*Nd144_abund + Nd145_mass*Nd145_abund + Nd146_mass*Nd146_abund + Nd148_mass*Nd148_abund + Nd150_mass*Nd150_abund ) # 147Sm and 143Nd Sm147 = Sm*Sm147_abund/Sm_mass Nd144 = Nd*Nd144_abund/Nd_mass smnd147144 = Sm147/Nd144 check1 = (Sm/Nd) * (0.53149+0.14252*Ndrat) check2 = (Sm/Nd) * 0.602 print('Check1: ',check1) print('Check2: ',check2) return(smnd147144)
[ "pandas.Series", "numpy.exp" ]
[((1198, 1212), 'pandas.Series', 'pd.Series', (['age'], {}), '(age)\n', (1207, 1212), True, 'import pandas as pd\n'), ((723, 743), 'numpy.exp', 'exp', (['(lambdaSm * time)'], {}), '(lambdaSm * time)\n', (726, 743), False, 'from numpy import exp\n'), ((947, 967), 'numpy.exp', 'exp', (['(lambdaSm * time)'], {}), '(lambdaSm * time)\n', (950, 967), False, 'from numpy import exp\n'), ((1831, 1851), 'numpy.exp', 'exp', (['(lambdaRb * time)'], {}), '(lambdaRb * time)\n', (1834, 1851), False, 'from numpy import exp\n')]
# Copyright (c) 2017, 2018 <NAME> # See the file LICENSE for details. from x2py.builtin_events import * from x2py.event import EventProxy from x2py.flow import Flow from x2py.flows.event_based_flow import EventBasedFlow from x2py.util.trace import Trace class ThreadlessFlow(EventBasedFlow): def __init__(self, name=None): super(ThreadlessFlow, self).__init__(name) self.running = False def start(self): with self._lock: if self.running: return self._setup() self.cases.setup_with(self) Flow.thread_local.current = self Flow.thread_local.event_proxy = EventProxy() Flow.thread_local.handler_chain = [] self.running = True self.queue.enqueue(FlowStart()) def stop(self): with self._lock: if not self.running: return self.queue.close(FlowStop()) self.running = False Flow.thread_local.handler_chain = None Flow.thread_local.event_proxy = None Flow.thread_local.current = None self.cases.teardown_with(self) self._teardown() def dispatch(self): event = self.queue.dequeue() if event is None: return self.dispatch(event) def try_dispatch(self): event = self.queue.try_dequeue() if event is not None: self.dispatch(event) return event def try_dispatch_all(self): n = 0 while True: event = self.queue.try_dequeue() if event is None: break self.dispatch(event) n += 1 return n
[ "x2py.event.EventProxy" ]
[((665, 677), 'x2py.event.EventProxy', 'EventProxy', ([], {}), '()\n', (675, 677), False, 'from x2py.event import EventProxy\n')]
from sklearn_explain.tests.skl_datasets_reg import skl_datasets_test as skltest skltest.test_reg_dataset_and_model("freidman1" , "RandomForestRegressor_5")
[ "sklearn_explain.tests.skl_datasets_reg.skl_datasets_test.test_reg_dataset_and_model" ]
[((82, 156), 'sklearn_explain.tests.skl_datasets_reg.skl_datasets_test.test_reg_dataset_and_model', 'skltest.test_reg_dataset_and_model', (['"""freidman1"""', '"""RandomForestRegressor_5"""'], {}), "('freidman1', 'RandomForestRegressor_5')\n", (116, 156), True, 'from sklearn_explain.tests.skl_datasets_reg import skl_datasets_test as skltest\n')]
""" ********************************************************************************** This is the main application file!! It sets up all the flask application configuration settings, and intializes the flask application used throughout the code. ********************************************************************************** """ # third party libraries from flask import Flask from flask_cors import CORS #from flask_caching import Cache # my libraries from .common.CustomEncoder import CustomEncoder # blueprints from . import routes #---------------------------------------------------------- # Setup the flask app # Add custom config options #---------------------------------------------------------- def initApp(flaskApp: Flask): # setup the custom response json encoder flaskApp.json_encoder = CustomEncoder flaskApp.config['JSONIFY_PRETTYPRINT_REGULAR'] = True # setup caching # flaskApp.config['CACHE_TYPE'] = "SimpleCache" # flaskApp.config['CACHE_DEFAULT_TIMEOUT'] = 300 # setup the CORS policy CORS(flaskApp) #---------------------------------------------------------- # Registert all the blueprints #---------------------------------------------------------- def registerBlueprints(flaskApp: Flask): flaskApp.register_blueprint(routes.account.bp_account, url_prefix='/account') flaskApp.register_blueprint(routes.completions.bp_completions, url_prefix='/completions') flaskApp.register_blueprint(routes.events.bp_events, url_prefix='/events') flaskApp.register_blueprint(routes.recurrences.bp_recurrences, url_prefix='/recurrences') flaskApp.register_blueprint(routes.cancelations.bp_cancelations, url_prefix='/cancelations') # call all the init functions app = Flask(__name__) initApp(app) registerBlueprints(app) # cache = Cache(app)
[ "flask_cors.CORS", "flask.Flask" ]
[((1761, 1776), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (1766, 1776), False, 'from flask import Flask\n'), ((1066, 1080), 'flask_cors.CORS', 'CORS', (['flaskApp'], {}), '(flaskApp)\n', (1070, 1080), False, 'from flask_cors import CORS\n')]
"""This module contains useful class definitions for different types of geometries. This module contains the following classes: Airplane: This is a class used to contain airplanes. Wing: This is a class used to contain the wings of an current_airplane. WingCrossSection: This class is used to contain the cross sections of the wings of an current_airplane. Airfoil: This class is used to contain the airfoil of a cross section of a wing of an current_airplane. This module contains the following exceptions: None This module contains the following functions: None """ import importlib.resources import matplotlib.pyplot as plt import numpy as np import scipy.interpolate as sp_interp from . import functions from . import meshing class Airplane: """This is a class used to contain airplanes. Citation: Adapted from: geometry.Airplane in AeroSandbox Author: <NAME> Date of Retrieval: 04/23/2020 This class contains the following public methods: set_reference_dimensions_from_wing: This method sets the reference dimensions of the current_airplane from measurements obtained from the main wing. This class contains the following class attributes: None Subclassing: This class is not meant to be subclassed. """ def __init__( self, name="Untitled", x_ref=0.0, y_ref=0.0, z_ref=0.0, wings=None, s_ref=None, c_ref=None, b_ref=None, ): """This is the initialization method. :param name: str, optional A sensible name for your current_airplane. The default is "Untitled". :param x_ref: float, optional This is the x coordinate of the moment reference point. It should be the x coordinate of the center of gravity. The default is 0.0. :param y_ref: float, optional This is the y coordinate of the moment reference point. It should be the y coordinate of the center of gravity. The default is 0.0. :param z_ref: float, optional This is the z coordinate of the moment reference point. It should be the z coordinate of the center of gravity. The default is 0.0. :param wings: list of Wing objects, optional This is a list of the current_airplane's wings defined as Wing objects. The default is None, which this method converts to an empty list. :param s_ref: float, optional if more than one wing is in the wings list. This is the reference wetted area. If not set, it populates from first wing object. :param c_ref: float, optional if more than one wing is in the wings list. This is the reference chord length. If not set, it populates from first wing object. :param b_ref: float, optional if more than one wing is in the wings list. This is the reference calculate_span. If not set, it populates from first wing object. """ # Initialize the name and the moment reference point. self.name = name self.x_ref = x_ref self.y_ref = y_ref self.z_ref = z_ref self.xyz_ref = np.array( [float(self.x_ref), float(self.y_ref), float(self.z_ref)] ) # If wings was passed as None, set wings to an empty list. if wings is None: wings = [] self.wings = wings # If the the wing list is not empty, set the wing reference dimensions to be # the main wing's reference # dimensions. if len(self.wings) > 0: self.set_reference_dimensions_from_main_wing() # If any of the passed reference dimensions are not None, set that reference # dimension to be what was passed. if s_ref is not None: self.s_ref = float(s_ref) if c_ref is not None: self.c_ref = float(c_ref) if b_ref is not None: self.b_ref = float(b_ref) # Calculate the number of panels in the entire current_airplane. self.num_panels = 0 for wing_position, wing in enumerate(self.wings): self.num_panels += wing.num_panels # Initialize empty class attributes to hold the force, moment, # force coefficients, and moment coefficients this # airplane experiences after self.total_near_field_force_wind_axes = None self.total_near_field_force_coefficients_wind_axes = None self.total_near_field_moment_wind_axes = None self.total_near_field_moment_coefficients_wind_axes = None def set_reference_dimensions_from_main_wing(self): """This method sets the reference dimensions of the current_airplane from measurements obtained from the main wing. This method assumes the main wing to be the first wing in the wings list passed by the user. :return: None """ # Define the main wing to be the first wing in the wings list. main_wing = self.wings[0] # Set the objects reference dimension attributes to be the reference # dimension attributes of the main wing. # These attributes are calculated via methods in the Wing class. self.s_ref = float(main_wing.wetted_area) self.b_ref = float(main_wing.span) self.c_ref = float(main_wing.wetted_area / main_wing.span) class Wing: """This is a class used to contain the wings of an current_airplane. If the wing is symmetric across the XZ plane, just define the right half and supply "symmetric=True" in the constructor. If the wing is not symmetric across the XZ plane, just define the wing. Citation: Adapted from: geometry.Wing in AeroSandbox Author: <NAME> Date of Retrieval: 04/24/2020 This class contains the following public methods: calculate_wetted_area: This method calculates the wetted area of the wing based on the areas of its panels. calculate_span: This method calculates the span of the wing. This class contains the following class attributes: None Subclassing: This class is not meant to be subclassed. """ def __init__( self, name="Untitled Wing", x_le=0.0, y_le=0.0, z_le=0.0, wing_cross_sections=None, symmetric=False, num_chordwise_panels=8, chordwise_spacing="cosine", ): """This is the initialization method. :param name: str, optional This is a sensible name for the wing. The default is "Untitled Wing". :param x_le: float, optional This is the x coordinate of the leading edge of the wing, relative to the current_airplane's reference point. The default is 0.0. :param y_le: float, optional This is the y coordinate of the leading edge of the wing, relative to the current_airplane's reference point. The default is 0.0. :param z_le: float, optional This is the z coordinate of the leading edge of the wing, relative to the current_airplane's reference point. The default is 0.0. :param wing_cross_sections: list of WingCrossSection objects, optional This is a list of WingCrossSection objects, that represent the wing's cross sections. The default is None. :param symmetric: bool, optional Set this to true if the wing is across the xz plane. Set it to false if not. The default is false. :param num_chordwise_panels: int, optional This is the number of chordwise panels to be used on this wing. The default is 8. :param chordwise_spacing: str, optional This is the type of spacing between the wing's chordwise panels. It can be set to "cosine" or "uniform". Cosine is highly recommended. The default is cosine. """ # Initialize the name and the position of the wing's leading edge. self.name = name self.x_le = x_le self.y_le = y_le self.z_le = z_le self.leading_edge = np.array( [float(self.x_le), float(self.y_le), float(self.z_le)] ) # If wing_cross_sections is set to None, set it to an empty list. if wing_cross_sections is None: wing_cross_sections = [] # Initialize the other attributes. self.wing_cross_sections = wing_cross_sections self.symmetric = symmetric self.num_chordwise_panels = num_chordwise_panels self.chordwise_spacing = chordwise_spacing # Catch invalid values of chordwise_spacing. if self.chordwise_spacing not in ["cosine", "uniform"]: raise Exception("Invalid value of chordwise_spacing!") # Find the number of spanwise panels on the wing by adding each cross # section's number of spanwise panels. Exclude the last cross section's # number of spanwise panels as this is irrelevant. If the wing is symmetric, # multiple the summation by two. self.num_spanwise_panels = 0 for cross_section in self.wing_cross_sections[:-1]: self.num_spanwise_panels += cross_section.num_spanwise_panels if self.symmetric: self.num_spanwise_panels *= 2 if self.symmetric and self.wing_cross_sections[0].y_le != 0: raise Exception("Symmetric wing with root wing cross section off XZ plane!") # Calculate the number of panels on this wing. self.num_panels = self.num_spanwise_panels * self.num_chordwise_panels # Initialize the the panels attribute. Then mesh the wing, which will # populate this attribute. self.panels = None meshing.mesh_wing(self) # Initialize and calculate the wing's wetted area. If the wing is # symmetrical, this includes the area of the # mirrored half. self.wetted_area = None self.calculate_wetted_area() # Initialize and calculate the wing's calculate_span. If the wing is # symmetrical, this includes the length of # the mirrored half. self.span = None self.calculate_span() # Initialize an empty array to hold this wing's wake ring vortices and its # wake ring vortex vertices. self.wake_ring_vortex_vertices = np.empty((0, self.num_spanwise_panels + 1, 3)) self.wake_ring_vortices = np.zeros((0, self.num_spanwise_panels), dtype=object) def calculate_wetted_area(self): """This method calculates the wetted area of the wing based on the areas of its panels. This method also updates the class's wetted area attribute. If the wing is symmetrical, it includes the area of the mirrored half. :return: None """ wetted_area = 0 # Iterate through the chordwise and spanwise indices of the panels. for chordwise_location in range(self.num_chordwise_panels): for spanwise_location in range(self.num_spanwise_panels): # Add each panel's area to the total wetted area of the wing. wetted_area += self.panels[chordwise_location, spanwise_location].area self.wetted_area = wetted_area def calculate_span(self): """This method calculates the calculate_span of the wing. This method also updates the class's span attribute. If the wing is symmetrical, it includes the length of the mirrored half. :return: None """ # Calculate the span (y-distance between the root and the tip) of the entire # wing. span = ( self.wing_cross_sections[-1].leading_edge[1] - self.wing_cross_sections[0].leading_edge[1] ) # If the wing is symmetric, multiply the span by two. if self.symmetric: span *= 2 self.span = span class WingCrossSection: """This class is used to contain the cross sections of the wings of an current_airplane. Citation: Adapted from: geometry.WingXSec in AeroSandbox Author: <NAME> Date of Retrieval: 04/26/2020 This class contains the following public methods: xyz_te: This method calculates the coordinates of the trailing edge of the cross section. This class contains the following class attributes: None Subclassing: This class is not meant to be subclassed. """ def __init__( self, x_le=0.0, y_le=0.0, z_le=0.0, chord=1.0, twist=0.0, airfoil=None, control_surface_type="symmetric", control_surface_hinge_point=0.75, control_surface_deflection=0.0, num_spanwise_panels=8, spanwise_spacing="cosine", ): """This is the initialization method. :param x_le: float, optional This is the x coordinate of the leading edge of the cross section relative to the wing's datum. The default value is 0.0. :param y_le: float, optional This is the y coordinate of the leading edge of the cross section relative to the wing's datum. The default value is 0.0. :param z_le: float, optional This is the z coordinate of the leading edge of the cross section relative to the wing's datum. The default value is 0.0. :param chord: float, optional This is the chord of the wing at this cross section. The default value is 1.0. :param twist: float, optional This is the twist of the cross section about the leading edge in degrees. The default value is 0.0. :param airfoil: Airfoil, optional This is the airfoil to be used at this cross section. The default value is None. :param control_surface_type: str, optional This is type of control surfaces for this cross section. It can be "symmetric" or "asymmetric". An example of symmetric control surfaces are flaps. An example of asymmetric control surfaces are ailerons. The default value is "symmetric". :param control_surface_hinge_point: float, optional This is the The location of the control surface hinge from the leading edge as a fraction of chord. The default value is 0.75. :param control_surface_deflection: float, optional This is the Control deflection in degrees. Deflection downwards is positive. The default value is 0.0 degrees. :param num_spanwise_panels: int, optional This is the number of spanwise panels to be used between this cross section and the next one. The default value is 8. :param spanwise_spacing: str, optional This is the Can be 'cosine' or 'uniform'. Highly recommended to be cosine. The default value is """ # Initialize all the class attributes. self.x_le = float(x_le) self.y_le = float(y_le) self.z_le = float(z_le) self.chord = float(chord) self.twist = float(twist) self.airfoil = airfoil self.control_surface_type = control_surface_type self.control_surface_hinge_point = float(control_surface_hinge_point) self.control_surface_deflection = float(control_surface_deflection) self.num_spanwise_panels = num_spanwise_panels self.spanwise_spacing = spanwise_spacing self.leading_edge = np.array([x_le, y_le, z_le]) # Catch bad values of the chord length. if self.chord <= 0: raise Exception("Invalid value of chord") # Catch invalid values of control_surface_type. if self.control_surface_type not in ["symmetric", "asymmetric"]: raise Exception("Invalid value of control_surface_type") # Catch invalid values of spanwise_spacing. if self.spanwise_spacing not in ["cosine", "uniform"]: raise Exception("Invalid value of spanwise_spacing!") def trailing_edge(self): """This method calculates the coordinates of the trailing edge of the cross section. :return trailing_edge: array This is a 1D array that contains the coordinates of the cross section's trailing edge. """ # Find the rotation matrix given the cross section's twist. rotation_matrix = functions.angle_axis_rotation_matrix( self.twist * np.pi / 180, np.array([0, 1, 0]) ) # Use the rotation matrix and the leading edge coordinates to calculate the # trailing edge coordinates. trailing_edge = self.leading_edge + rotation_matrix @ np.array( [self.chord, 0.0, 0.0] ) # Return the 1D array that contains the trailing edge's coordinates. return trailing_edge class Airfoil: """This class is used to contain the airfoil of a cross section of a wing of an current_airplane. Citation: Adapted from: geometry.Airfoil in AeroSandbox Author: <NAME> Date of Retrieval: 04/27/2020 This class contains the following public methods: populate_coordinates: This method populates a variable with the coordinates of the airfoil. populate_mcl_coordinates: This method creates a list of the airfoil's mean camber line coordinates. It also creates two lists of the vectors needed to go from the mcl coordinates to the upper and lower surfaces. It also creates list of the thicknesses at the x coordinates along the mean camber line. leading_edge_index: This method returns the index of the point along the leading edge. lower_coordinates: This method returns a matrix of x and y coordinates that describe the lower surface of the airfoil. upper_coordinates: This method returns a matrix of x and y coordinates that describe the upper surface of the airfoil. get_downsampled_mcl: This method returns the mean camber line in a downsampled form. get_camber_at_chord_fraction: This method returns the camber of the airfoil at a given fraction of the chord. repanel_current_airfoil: This method returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces. add_control_surface: This method returns a version of the airfoil with a control surface added at a given point. This class contains the following class attributes: None Subclassing: This class is not meant to be subclassed. """ def __init__( self, name="Untitled Airfoil", coordinates=None, repanel=True, n_points_per_side=400, ): """This is the initialization method. :param name: str, optional This is the name of the airfoil. It should correspond to the name in the airfoils directory unless you are passing in your own coordinates. The default is "Untitled Airfoil". :param coordinates: array, optional This is a N x 2 array of the airfoil's coordinates, where N is the number of coordinates. Treat this as an immutable, don't edit directly after initialization. If you wish to load coordinates from the airfoil directory, leave this as None. The default is None. Make sure that any airfoil coordinates used range in x from 0 to 1. :param repanel: bool, optional This is the variable that determines whether or not you would like to repanel the airfoil coordinates. This applies to coordinates passed in by the user or to the directory coordinates. It is highly recommended to set this to True. The default is True. :param n_points_per_side: int, optional This is number of points to use when repaneling the airfoil. It is ignored if the repanel is False. The default is 400. """ # Initialize the airfoil name. self.name = name # Check if the user supplied coordinates. if coordinates is not None: self.coordinates = coordinates else: # If not, populate the coordinates from the directory. self.populate_coordinates() # populates self.coordinates # Check that the coordinates have been set. assert hasattr(self, "coordinates") # Initialize other attributes. self.repanel = repanel self.mcl_coordinates = None self.upper_minus_mcl = None self.thickness = None # If repanel is True, repanel the airfoil. if self.repanel: self.repanel_current_airfoil(n_points_per_side=n_points_per_side) # Populate the mean camber line attributes. self.populate_mcl_coordinates() def populate_coordinates(self): """This method populates a variable with the coordinates of the airfoil. The airfoil coordinates will either be generated, if the airfoil is a NACA 4-series airfoil, or loaded from the the airfoil database (a folder named "airfoils" in this directory, that contains a library of dat files for airfoil coordinates). NACA 4-series airfoil generation is an adaptation of: https://en.wikipedia.org/wiki/NACA_airfoil#Equation_for_a_cambered_4 -digit_NACA_airfoil. :return: None """ # Sanitize the name input. name = self.name.lower().strip() # Check if the airfoil name is a NACA 4-series airfoil. If so, generate it. if "naca" in name: naca_number = name.split("naca")[1] if naca_number.isdigit(): if len(naca_number) == 4: # Parse the characteristics from the name. max_camber = int(naca_number[0]) * 0.01 camber_loc = int(naca_number[1]) * 0.1 thickness = int(naca_number[2:]) * 0.01 # Set the number of points per side. n_points_per_side = 100 # Make uncambered coordinates and generate cosine-spaced points. x_t = functions.cosspace(0, 1, n_points_per_side) y_t = ( 5 * thickness * ( +0.2969 * np.power(x_t, 0.5) - 0.1260 * x_t - 0.3516 * np.power(x_t, 2) + 0.2843 * np.power(x_t, 3) - 0.1015 * np.power(x_t, 4) ) ) # Prevent divide by zero errors for airfoils like the NACA 0012. if camber_loc == 0: camber_loc = 0.5 # Get the camber. y_c_piece1 = ( max_camber / camber_loc ** 2 * ( 2 * camber_loc * x_t[x_t <= camber_loc] - x_t[x_t <= camber_loc] ** 2 ) ) y_c_piece2 = ( max_camber / (1 - camber_loc) ** 2 * ( (1 - 2 * camber_loc) + 2 * camber_loc * x_t[x_t > camber_loc] - x_t[x_t > camber_loc] ** 2 ) ) y_c = np.hstack((y_c_piece1, y_c_piece2)) # Get camber slope. first_piece_slope = ( 2 * max_camber / camber_loc ** 2 * (camber_loc - x_t[x_t <= camber_loc]) ) second_piece_slope = ( 2 * max_camber / (1 - camber_loc) ** 2 * (camber_loc - x_t[x_t > camber_loc]) ) slope = np.hstack((first_piece_slope, second_piece_slope)) theta = np.arctan(slope) # Combine everything. x_u = x_t - y_t * np.sin(theta) x_l = x_t + y_t * np.sin(theta) y_u = y_c + y_t * np.cos(theta) y_l = y_c - y_t * np.cos(theta) # Flip upper surface so it's back to front. x_u, y_u = np.flipud(x_u), np.flipud(y_u) # Trim 1 point from lower surface so there's no overlap. x_l, y_l = x_l[1:], y_l[1:] # Combine and format the coordinates. x = np.hstack((x_u, x_l)) y = np.hstack((y_u, y_l)) coordinates = np.column_stack((x, y)) # Populate the coordinates attribute and return. self.coordinates = coordinates return # Try to read from the airfoil directory. try: # Import the airfoils package as "airfoils". airfoils = importlib.import_module( name=".airfoils", package="pterasoftware", ) # Read the text from the airfoil file. raw_text = importlib.resources.read_text(airfoils, name + ".dat") # Trim the text at the return characters. trimmed_text = raw_text[raw_text.find("\n") :] # Input the coordinates into a 1D array. coordinates_1d = np.fromstring(trimmed_text, sep="\n") # Check to make sure the number of elements in the array is even. assert len(coordinates_1d) % 2 == 0, ( "File was found in airfoil database, " "but it could not be read correctly." ) # Reshape the 1D coordinates array into a N x 2 array, where N is the # number of rows. coordinates = np.reshape(coordinates_1d, (-1, 2)) # Populate the coordinates attribute and return. self.coordinates = coordinates return # If the airfoil was not a NACA 4-series and was not found in the # database, throw an error. except FileNotFoundError: raise Exception("Airfoil not in database!") def populate_mcl_coordinates(self): """This method creates a list of the airfoil's mean camber line coordinates. It also creates two lists of the vectors needed to go from the mcl coordinates to the upper and lower surfaces. It also creates list of the thicknesses at the x coordinates along the mean camber line. All vectors are listed from the leading edge to the trailing edge of the airfoil. :return: None """ # Get the upper and lower coordinates. Flip the upper coordinates so that it # is ordered from the leading edge to # the trailing edge. upper = np.flipud(self.upper_coordinates()) lower = self.lower_coordinates() # Calculate the approximate mean camber line and populate the class attribute. mcl_coordinates = (upper + lower) / 2 self.mcl_coordinates = mcl_coordinates # Find the vectors from each mean camber line coordinate to its upper # coordinate. self.upper_minus_mcl = upper - self.mcl_coordinates # Create a list of values that are the thickness of the airfoil at each mean # camber line. thickness = np.sqrt(np.sum(np.power(self.upper_minus_mcl, 2), axis=1)) * 2 # Populate the class attribute with the thicknesses at their associated x # coordinates. self.thickness = np.column_stack((self.mcl_coordinates[:, 0], thickness)) def leading_edge_index(self): """Returns the index of the leading edge point. :return leading_edge_index: int This is the index of the leading edge point. """ # Find the index of the coordinate pair with the minimum value of the x # coordinate. This is the leading edge # index. leading_edge_index = np.argmin(self.coordinates[:, 0]) # Return the leading edge index. return leading_edge_index def lower_coordinates(self): """This method returns a matrix of x and y coordinates that describe the lower surface of the airfoil. The order of the returned matrix is from leading edge to trailing edge. This matrix includes the leading edge point so be careful about duplicates if using this method in conjunction with self.upper_coordinates. :return lower_coordinates: array This is a N x 2 array of x and y coordinates that describe the lower surface of the airfoil, where N is the number of points. """ # Find the lower coordinates. lower_coordinates = self.coordinates[self.leading_edge_index() :, :] # Return the lower coordinates. return lower_coordinates def upper_coordinates(self): """This method returns a matrix of x and y coordinates that describe the upper surface of the airfoil. The order of the returned matrix is from trailing edge to leading edge. This matrix includes the leading edge point so be careful about duplicates if using this method in conjunction with self.lower_coordinates. :return upper_coordinates: array This is a N x 2 array of x and y coordinates that describe the upper surface of the airfoil, where N is the number of points. """ # Find the upper coordinates. upper_coordinates = self.coordinates[: self.leading_edge_index() + 1, :] # Return the upper coordinates. return upper_coordinates def get_downsampled_mcl(self, mcl_fractions): """This method returns the mean camber line in a downsampled form. :param mcl_fractions: 1D array This is a 1D array that lists the points along the mean camber line ( normalized from 0 to 1) at which to return the mean camber line coordinates. :return mcl_downsampled: 2D array This is a 2D array that contains the coordinates of the downsampled mean camber line. """ mcl = self.mcl_coordinates # Find the distances between points along the mean camber line, assuming # linear interpolation. mcl_distances_between_points = np.sqrt( np.power(mcl[:-1, 0] - mcl[1:, 0], 2) + np.power(mcl[:-1, 1] - mcl[1:, 1], 2) ) # Create a horizontal 1D array that contains the distance along the mean # camber line of each point. mcl_distances_cumulative = np.hstack( (0, np.cumsum(mcl_distances_between_points)) ) # Normalize the 1D array so that it ranges from 0 to 1. mcl_distances_cumulative_normalized = ( mcl_distances_cumulative / mcl_distances_cumulative[-1] ) # Linearly interpolate to find the x coordinates of the mean camber line at # the given mean camber line # fractions. mcl_downsampled_x = np.interp( x=mcl_fractions, xp=mcl_distances_cumulative_normalized, fp=mcl[:, 0] ) # Linearly interpolate to find the y coordinates of the mean camber line at # the given mean camber line # fractions. mcl_downsampled_y = np.interp( x=mcl_fractions, xp=mcl_distances_cumulative_normalized, fp=mcl[:, 1] ) # Combine the x and y coordinates of the downsampled mean camber line. mcl_downsampled = np.column_stack((mcl_downsampled_x, mcl_downsampled_y)) # Return the coordinates of the downsampled mean camber line. return mcl_downsampled def get_camber_at_chord_fraction(self, chord_fraction): """This method returns the camber of the airfoil at a given fraction of the chord. :param chord_fraction: float This is a float of the fraction along the chord (normalized from 0 to 1) at which to return the camber. :return camber: float This is the camber of the airfoil at the requested fraction along the chord. """ # Create a function that interpolates between the x and y coordinates of the # mean camber line. camber_function = sp_interp.interp1d( x=self.mcl_coordinates[:, 0], y=self.mcl_coordinates[:, 1], copy=False, fill_value="extrapolate", ) # Find the value of the camber (the y coordinate) of the airfoil at the # requested chord fraction. camber = camber_function(chord_fraction) # Return the camber of the airfoil at the requested chord fraction. return camber def repanel_current_airfoil(self, n_points_per_side=100): """This method returns a repaneled version of the airfoil with cosine-spaced coordinates on the upper and lower surfaces. The number of points defining the final airfoil will be (n_points_per_side * 2 - 1), since the leading edge point is shared by both the upper and lower surfaces. :param n_points_per_side: int, optional This is the number of points on the upper and lower surfaces. The default value is 100. :return: None """ # Get the upper and lower surface coordinates. These both contain the leading # edge point. upper_original_coordinates = self.upper_coordinates() lower_original_coordinates = self.lower_coordinates() # Generate a cosine-spaced list of points from 0 to 1. cosine_spaced_x_values = functions.cosspace(0, 1, n_points_per_side) # Create interpolated functions for the x and y values of the upper and lower # surfaces as a function of the # chord fractions upper_func = sp_interp.PchipInterpolator( x=np.flip(upper_original_coordinates[:, 0]), y=np.flip(upper_original_coordinates[:, 1]), ) lower_func = sp_interp.PchipInterpolator( x=lower_original_coordinates[:, 0], y=lower_original_coordinates[:, 1] ) # Find the x and y coordinates of the upper and lower surfaces at each of the # cosine-spaced x values. x_coordinates = np.hstack( (np.flip(cosine_spaced_x_values), cosine_spaced_x_values[1:]) ) y_coordinates = np.hstack( ( upper_func(np.flip(cosine_spaced_x_values)), lower_func(cosine_spaced_x_values[1:]), ) ) # Stack the coordinates together and return them. coordinates = np.column_stack((x_coordinates, y_coordinates)) self.coordinates = coordinates def add_control_surface(self, deflection=0.0, hinge_point=0.75): """This method returns a version of the airfoil with a control surface added at a given point. :param deflection: float, optional This is the deflection angle in degrees. Deflection downwards is positive. The default value is 0.0. :param hinge_point: float, optional This is the location of the hinge as a fraction of chord length. The default value is 0.75. :return flapped_airfoil: Airfoil This is the new airfoil with the control surface added. """ # Insure that the airfoil's deflection is not too high, which increases the # risk of self intersection. if deflection > 90 or deflection < -90: raise Exception("Invalid value for deflection!") # Make the rotation matrix for the given angle. sin_theta = np.sin(np.radians(-deflection)) cos_theta = np.cos(np.radians(-deflection)) rotation_matrix = np.array([[cos_theta, -sin_theta], [sin_theta, cos_theta]]) # Find y coordinate at the hinge point x coordinate and make it a vector. hinge_point = np.array( (hinge_point, self.get_camber_at_chord_fraction(hinge_point)) ) # Split the airfoil into the sections before and after the hinge. split_index = np.where(self.mcl_coordinates[:, 0] > hinge_point[0])[0][0] mcl_coordinates_before = self.mcl_coordinates[:split_index, :] mcl_coordinates_after = self.mcl_coordinates[split_index:, :] upper_minus_mcl_before = self.upper_minus_mcl[:split_index, :] upper_minus_mcl_after = self.upper_minus_mcl[split_index:, :] # Rotate the mean camber line coordinates and upper minus mean camber line # vectors. new_mcl_coordinates_after = ( np.transpose( rotation_matrix @ np.transpose(mcl_coordinates_after - hinge_point) ) + hinge_point ) new_upper_minus_mcl_after = np.transpose( rotation_matrix @ np.transpose(upper_minus_mcl_after) ) # Assemble the new, flapped airfoil. new_mcl_coordinates = np.vstack( (mcl_coordinates_before, new_mcl_coordinates_after) ) new_upper_minus_mcl = np.vstack( (upper_minus_mcl_before, new_upper_minus_mcl_after) ) upper_coordinates = np.flipud(new_mcl_coordinates + new_upper_minus_mcl) lower_coordinates = new_mcl_coordinates - new_upper_minus_mcl coordinates = np.vstack((upper_coordinates, lower_coordinates[1:, :])) # Initialize the new, flapped airfoil and return it. flapped_airfoil = Airfoil( name=self.name + " flapped", coordinates=coordinates, repanel=False ) return flapped_airfoil def draw(self): x = self.coordinates[:, 0] y = self.coordinates[:, 1] plt.plot(x, y) plt.xlim(0, 1) plt.ylim(-0.5, 0.5) plt.gca().set_aspect("equal", adjustable="box") plt.show()
[ "numpy.radians", "numpy.hstack", "numpy.column_stack", "scipy.interpolate.interp1d", "numpy.array", "numpy.sin", "numpy.flip", "numpy.reshape", "numpy.where", "matplotlib.pyplot.plot", "numpy.empty", "numpy.vstack", "numpy.argmin", "matplotlib.pyplot.ylim", "numpy.fromstring", "numpy.arctan", "numpy.flipud", "matplotlib.pyplot.gca", "scipy.interpolate.PchipInterpolator", "numpy.cos", "numpy.interp", "matplotlib.pyplot.xlim", "numpy.transpose", "matplotlib.pyplot.show", "numpy.power", "numpy.zeros", "numpy.cumsum" ]
[((10680, 10726), 'numpy.empty', 'np.empty', (['(0, self.num_spanwise_panels + 1, 3)'], {}), '((0, self.num_spanwise_panels + 1, 3))\n', (10688, 10726), True, 'import numpy as np\n'), ((10761, 10814), 'numpy.zeros', 'np.zeros', (['(0, self.num_spanwise_panels)'], {'dtype': 'object'}), '((0, self.num_spanwise_panels), dtype=object)\n', (10769, 10814), True, 'import numpy as np\n'), ((16009, 16037), 'numpy.array', 'np.array', (['[x_le, y_le, z_le]'], {}), '([x_le, y_le, z_le])\n', (16017, 16037), True, 'import numpy as np\n'), ((28626, 28682), 'numpy.column_stack', 'np.column_stack', (['(self.mcl_coordinates[:, 0], thickness)'], {}), '((self.mcl_coordinates[:, 0], thickness))\n', (28641, 28682), True, 'import numpy as np\n'), ((29058, 29091), 'numpy.argmin', 'np.argmin', (['self.coordinates[:, 0]'], {}), '(self.coordinates[:, 0])\n', (29067, 29091), True, 'import numpy as np\n'), ((32197, 32282), 'numpy.interp', 'np.interp', ([], {'x': 'mcl_fractions', 'xp': 'mcl_distances_cumulative_normalized', 'fp': 'mcl[:, 0]'}), '(x=mcl_fractions, xp=mcl_distances_cumulative_normalized, fp=mcl[:, 0]\n )\n', (32206, 32282), True, 'import numpy as np\n'), ((32471, 32556), 'numpy.interp', 'np.interp', ([], {'x': 'mcl_fractions', 'xp': 'mcl_distances_cumulative_normalized', 'fp': 'mcl[:, 1]'}), '(x=mcl_fractions, xp=mcl_distances_cumulative_normalized, fp=mcl[:, 1]\n )\n', (32480, 32556), True, 'import numpy as np\n'), ((32680, 32735), 'numpy.column_stack', 'np.column_stack', (['(mcl_downsampled_x, mcl_downsampled_y)'], {}), '((mcl_downsampled_x, mcl_downsampled_y))\n', (32695, 32735), True, 'import numpy as np\n'), ((33435, 33556), 'scipy.interpolate.interp1d', 'sp_interp.interp1d', ([], {'x': 'self.mcl_coordinates[:, 0]', 'y': 'self.mcl_coordinates[:, 1]', 'copy': '(False)', 'fill_value': '"""extrapolate"""'}), "(x=self.mcl_coordinates[:, 0], y=self.mcl_coordinates[:, \n 1], copy=False, fill_value='extrapolate')\n", (33453, 33556), True, 'import scipy.interpolate as sp_interp\n'), ((35189, 35293), 'scipy.interpolate.PchipInterpolator', 'sp_interp.PchipInterpolator', ([], {'x': 'lower_original_coordinates[:, 0]', 'y': 'lower_original_coordinates[:, 1]'}), '(x=lower_original_coordinates[:, 0], y=\n lower_original_coordinates[:, 1])\n', (35216, 35293), True, 'import scipy.interpolate as sp_interp\n'), ((35822, 35869), 'numpy.column_stack', 'np.column_stack', (['(x_coordinates, y_coordinates)'], {}), '((x_coordinates, y_coordinates))\n', (35837, 35869), True, 'import numpy as np\n'), ((36958, 37017), 'numpy.array', 'np.array', (['[[cos_theta, -sin_theta], [sin_theta, cos_theta]]'], {}), '([[cos_theta, -sin_theta], [sin_theta, cos_theta]])\n', (36966, 37017), True, 'import numpy as np\n'), ((38159, 38221), 'numpy.vstack', 'np.vstack', (['(mcl_coordinates_before, new_mcl_coordinates_after)'], {}), '((mcl_coordinates_before, new_mcl_coordinates_after))\n', (38168, 38221), True, 'import numpy as np\n'), ((38274, 38336), 'numpy.vstack', 'np.vstack', (['(upper_minus_mcl_before, new_upper_minus_mcl_after)'], {}), '((upper_minus_mcl_before, new_upper_minus_mcl_after))\n', (38283, 38336), True, 'import numpy as np\n'), ((38387, 38439), 'numpy.flipud', 'np.flipud', (['(new_mcl_coordinates + new_upper_minus_mcl)'], {}), '(new_mcl_coordinates + new_upper_minus_mcl)\n', (38396, 38439), True, 'import numpy as np\n'), ((38532, 38588), 'numpy.vstack', 'np.vstack', (['(upper_coordinates, lower_coordinates[1:, :])'], {}), '((upper_coordinates, lower_coordinates[1:, :]))\n', (38541, 38588), True, 'import numpy as np\n'), ((38906, 38920), 'matplotlib.pyplot.plot', 'plt.plot', (['x', 'y'], {}), '(x, y)\n', (38914, 38920), True, 'import matplotlib.pyplot as plt\n'), ((38929, 38943), 'matplotlib.pyplot.xlim', 'plt.xlim', (['(0)', '(1)'], {}), '(0, 1)\n', (38937, 38943), True, 'import matplotlib.pyplot as plt\n'), ((38952, 38971), 'matplotlib.pyplot.ylim', 'plt.ylim', (['(-0.5)', '(0.5)'], {}), '(-0.5, 0.5)\n', (38960, 38971), True, 'import matplotlib.pyplot as plt\n'), ((39036, 39046), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (39044, 39046), True, 'import matplotlib.pyplot as plt\n'), ((17013, 17032), 'numpy.array', 'np.array', (['[0, 1, 0]'], {}), '([0, 1, 0])\n', (17021, 17032), True, 'import numpy as np\n'), ((26423, 26460), 'numpy.fromstring', 'np.fromstring', (['trimmed_text'], {'sep': '"""\n"""'}), "(trimmed_text, sep='\\n')\n", (26436, 26460), True, 'import numpy as np\n'), ((26853, 26888), 'numpy.reshape', 'np.reshape', (['coordinates_1d', '(-1, 2)'], {}), '(coordinates_1d, (-1, 2))\n', (26863, 26888), True, 'import numpy as np\n'), ((36855, 36878), 'numpy.radians', 'np.radians', (['(-deflection)'], {}), '(-deflection)\n', (36865, 36878), True, 'import numpy as np\n'), ((36907, 36930), 'numpy.radians', 'np.radians', (['(-deflection)'], {}), '(-deflection)\n', (36917, 36930), True, 'import numpy as np\n'), ((17227, 17259), 'numpy.array', 'np.array', (['[self.chord, 0.0, 0.0]'], {}), '([self.chord, 0.0, 0.0])\n', (17235, 17259), True, 'import numpy as np\n'), ((31503, 31540), 'numpy.power', 'np.power', (['(mcl[:-1, 0] - mcl[1:, 0])', '(2)'], {}), '(mcl[:-1, 0] - mcl[1:, 0], 2)\n', (31511, 31540), True, 'import numpy as np\n'), ((31555, 31592), 'numpy.power', 'np.power', (['(mcl[:-1, 1] - mcl[1:, 1])', '(2)'], {}), '(mcl[:-1, 1] - mcl[1:, 1], 2)\n', (31563, 31592), True, 'import numpy as np\n'), ((31784, 31823), 'numpy.cumsum', 'np.cumsum', (['mcl_distances_between_points'], {}), '(mcl_distances_between_points)\n', (31793, 31823), True, 'import numpy as np\n'), ((35058, 35099), 'numpy.flip', 'np.flip', (['upper_original_coordinates[:, 0]'], {}), '(upper_original_coordinates[:, 0])\n', (35065, 35099), True, 'import numpy as np\n'), ((35115, 35156), 'numpy.flip', 'np.flip', (['upper_original_coordinates[:, 1]'], {}), '(upper_original_coordinates[:, 1])\n', (35122, 35156), True, 'import numpy as np\n'), ((35480, 35511), 'numpy.flip', 'np.flip', (['cosine_spaced_x_values'], {}), '(cosine_spaced_x_values)\n', (35487, 35511), True, 'import numpy as np\n'), ((37314, 37367), 'numpy.where', 'np.where', (['(self.mcl_coordinates[:, 0] > hinge_point[0])'], {}), '(self.mcl_coordinates[:, 0] > hinge_point[0])\n', (37322, 37367), True, 'import numpy as np\n'), ((38037, 38072), 'numpy.transpose', 'np.transpose', (['upper_minus_mcl_after'], {}), '(upper_minus_mcl_after)\n', (38049, 38072), True, 'import numpy as np\n'), ((38980, 38989), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (38987, 38989), True, 'import matplotlib.pyplot as plt\n'), ((24303, 24338), 'numpy.hstack', 'np.hstack', (['(y_c_piece1, y_c_piece2)'], {}), '((y_c_piece1, y_c_piece2))\n', (24312, 24338), True, 'import numpy as np\n'), ((24880, 24930), 'numpy.hstack', 'np.hstack', (['(first_piece_slope, second_piece_slope)'], {}), '((first_piece_slope, second_piece_slope))\n', (24889, 24930), True, 'import numpy as np\n'), ((24959, 24975), 'numpy.arctan', 'np.arctan', (['slope'], {}), '(slope)\n', (24968, 24975), True, 'import numpy as np\n'), ((25563, 25584), 'numpy.hstack', 'np.hstack', (['(x_u, x_l)'], {}), '((x_u, x_l))\n', (25572, 25584), True, 'import numpy as np\n'), ((25609, 25630), 'numpy.hstack', 'np.hstack', (['(y_u, y_l)'], {}), '((y_u, y_l))\n', (25618, 25630), True, 'import numpy as np\n'), ((25665, 25688), 'numpy.column_stack', 'np.column_stack', (['(x, y)'], {}), '((x, y))\n', (25680, 25688), True, 'import numpy as np\n'), ((28447, 28480), 'numpy.power', 'np.power', (['self.upper_minus_mcl', '(2)'], {}), '(self.upper_minus_mcl, 2)\n', (28455, 28480), True, 'import numpy as np\n'), ((35627, 35658), 'numpy.flip', 'np.flip', (['cosine_spaced_x_values'], {}), '(cosine_spaced_x_values)\n', (35634, 35658), True, 'import numpy as np\n'), ((37857, 37906), 'numpy.transpose', 'np.transpose', (['(mcl_coordinates_after - hinge_point)'], {}), '(mcl_coordinates_after - hinge_point)\n', (37869, 37906), True, 'import numpy as np\n'), ((25323, 25337), 'numpy.flipud', 'np.flipud', (['x_u'], {}), '(x_u)\n', (25332, 25337), True, 'import numpy as np\n'), ((25339, 25353), 'numpy.flipud', 'np.flipud', (['y_u'], {}), '(y_u)\n', (25348, 25353), True, 'import numpy as np\n'), ((25057, 25070), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (25063, 25070), True, 'import numpy as np\n'), ((25109, 25122), 'numpy.sin', 'np.sin', (['theta'], {}), '(theta)\n', (25115, 25122), True, 'import numpy as np\n'), ((25161, 25174), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (25167, 25174), True, 'import numpy as np\n'), ((25213, 25226), 'numpy.cos', 'np.cos', (['theta'], {}), '(theta)\n', (25219, 25226), True, 'import numpy as np\n'), ((23323, 23339), 'numpy.power', 'np.power', (['x_t', '(4)'], {}), '(x_t, 4)\n', (23331, 23339), True, 'import numpy as np\n'), ((23267, 23283), 'numpy.power', 'np.power', (['x_t', '(3)'], {}), '(x_t, 3)\n', (23275, 23283), True, 'import numpy as np\n'), ((23211, 23227), 'numpy.power', 'np.power', (['x_t', '(2)'], {}), '(x_t, 2)\n', (23219, 23227), True, 'import numpy as np\n'), ((23110, 23128), 'numpy.power', 'np.power', (['x_t', '(0.5)'], {}), '(x_t, 0.5)\n', (23118, 23128), True, 'import numpy as np\n')]
import requests import pandas as pd import random import os global line line = 0 def BeginChartReading(url): print(url + "-------> Pached") strhtml = requests.get(url) strhtml.encoding='utf-8' print (strhtml.headers['content-type']) global line dataframe = pd.DataFrame({'url':url,'url_text':strhtml.text},index=[line]) line=line+1 dataframe.to_csv("PatchWebdatabin.csv",encoding='utf-8',index=False,sep=',') def BaiduPacher(name): headers = { 'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.132 Safari/537.36 QIHU 360SE' } defSearchurl = "http://www.baidu.com/s?ie=UTF-8&wd=" SearchInitUrl = defSearchurl + name #合成网址 strhtml = requests.get(SearchInitUrl,headers = headers) #请求网址内容 strhtml.encoding='utf-8' print (strhtml.text) target_dir = "patched_html/" + name #存储目标目录 mkdir(target_dir) saveHtml("Result-" + str(random.randint(100000000,900000000)),strhtml.text,target_dir) return def BingPacher(name): return def Search360Pacher(name): return def OtherWebSearchPacher(name,configs,websearchurls): return def PatchConfigs(config): return def UpdateRecognise(UpdateConfig,urls,texts,User): return def StrogeData(Mode,Charset,Text,dirs): return def saveHtml(file_name,file_content,data_dir): b1 = bytes( file_content,encoding = "utf8") with open(data_dir +file_name.replace('/','_')+'.html','wb') as f: f.write(b1) def mkdir(path): nowpath = os.getcwd() folder = os.path.exists(nowpath +"\\"+ path) if not folder: #判断是否存在文件夹如果不存在则创建为文件夹 os.makedirs(nowpath +"\\"+ path) #makedirs 创建文件时如果路径不存在会创建这个路径 print ("--- new folder... ---") print ("--- OK ---") else: print ("--- There is this folder! ---")
[ "os.path.exists", "os.makedirs", "requests.get", "os.getcwd", "pandas.DataFrame", "random.randint" ]
[((170, 187), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (182, 187), False, 'import requests\n'), ((297, 363), 'pandas.DataFrame', 'pd.DataFrame', (["{'url': url, 'url_text': strhtml.text}"], {'index': '[line]'}), "({'url': url, 'url_text': strhtml.text}, index=[line])\n", (309, 363), True, 'import pandas as pd\n'), ((797, 841), 'requests.get', 'requests.get', (['SearchInitUrl'], {'headers': 'headers'}), '(SearchInitUrl, headers=headers)\n', (809, 841), False, 'import requests\n'), ((1669, 1680), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1678, 1680), False, 'import os\n'), ((1695, 1732), 'os.path.exists', 'os.path.exists', (["(nowpath + '\\\\' + path)"], {}), "(nowpath + '\\\\' + path)\n", (1709, 1732), False, 'import os\n'), ((1816, 1850), 'os.makedirs', 'os.makedirs', (["(nowpath + '\\\\' + path)"], {}), "(nowpath + '\\\\' + path)\n", (1827, 1850), False, 'import os\n'), ((1013, 1049), 'random.randint', 'random.randint', (['(100000000)', '(900000000)'], {}), '(100000000, 900000000)\n', (1027, 1049), False, 'import random\n')]
import numpy as np from sklearn.model_selection import KFold from graspy.embed import MultipleASE from .base import SupervisedLearningPipeline class MASEPipeline(SupervisedLearningPipeline): def __init__(self, learning_method, memory=None, verbose=False, plot_method=None, kfold = KFold(n_splits=5) ): super(MASEPipeline, self).__init__(steps=[('MASE', MultipleASE())]+learning_method, memory=memory, verbose=verbose, plot_method=plot_method, kfold=kfold) if plot_method is not None: self.plot = plot_method if kfold is not None: self.kfold = kfold def cross_val_score(self, dataset, labels): test_results = [] for train_index, test_index in self.kfold.split(dataset): dataset= np.array(dataset) dataset_train, dataset_test = dataset[train_index], dataset[test_index] self.fit(dataset_train, labels) test_results.append(self.score(dataset_test, labels)) avg_score = sum(test_results)/len(test_results) return avg_score, test_results
[ "numpy.array", "sklearn.model_selection.KFold", "graspy.embed.MultipleASE" ]
[((308, 325), 'sklearn.model_selection.KFold', 'KFold', ([], {'n_splits': '(5)'}), '(n_splits=5)\n', (313, 325), False, 'from sklearn.model_selection import KFold\n'), ((729, 746), 'numpy.array', 'np.array', (['dataset'], {}), '(dataset)\n', (737, 746), True, 'import numpy as np\n'), ((386, 399), 'graspy.embed.MultipleASE', 'MultipleASE', ([], {}), '()\n', (397, 399), False, 'from graspy.embed import MultipleASE\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: hanshengjiang """ from optimal_pricing_policy_exp_update import * import random import time import sys if __name__ == "__main__": if len(sys.argv) < 2: raise ValueError("Please provide experiments configuration!") config = sys.argv[1] # default if len(sys.argv) < 7: epsilon = 0.01 # price discretization accuracy L = 0 #lower bound of price H = 10 #upper bound of price T = np.inf theta = 0.8 gamma = 0.95 # otherwise take arguments from command line else: #sys_argv[0] is the name of the .py file epsilon = float(sys.argv[2]) L = float(sys.argv[3]) # number of data points H = float(sys.argv[4]) T = float(sys.argv[5]) if T != np.inf: T = int(T) theta = float(sys.argv[6]) price_list = np.arange(L-epsilon,H+2*epsilon,epsilon) if config == 'mmnl_1': coefficients = (1,1,1,1) weights = (1,0,0) demand_name = 'mmnl' elif config == 'mmnl_2_1': coefficients = (-5,0,1,5) weights = (1,0,0) demand_name = 'mmnl' elif config == 'mmnl_2_2': coefficients = (2,10,0.5,1) weights = (1,0,0) demand_name = 'mmnl' elif config == 'mmnl_3': coefficients = (2,2,0.2,0.2,-1,0.2,0,0) weights = (0.5,0.5,0) demand_name = 'mmnl' elif config == 'mmnl_3_1': coefficients = (2,2,0.2,0.2) weights = (1,0,0) demand_name = 'mmnl' elif config == 'mmnl_3_2': coefficients = (-1,0.2,0,0) weights = (1,0,0) demand_name = 'mmnl' elif config == 'mmnl_myopic': coefficients = (2,2,0.2,0.2) weights = (1,0,0) demand_name = 'mmnl' # name prefix for saved plots coeffname = 'inf_hor_fixed_price_range'+str(L).replace(".","dot")+'_'+str(H).replace(".","dot")+'_'+str(T)+'_'\ +str(coefficients).replace(" ", "_").replace(".","dot")\ +str(weights).replace(" ","_").replace(".","dot")+'_'+str(theta).replace(".", "dot")+'_'+str(gamma).replace(".", "dot")+demand_name #---------------------------------# # optimal pricing policy start_time = time.time() #optimal pricing policy V,mu \ = inf_hor_pricing_pricerange(L,H,theta,epsilon,np.inf,gamma,coefficients,weights,demand_name) print("running time {}".format(time.time()- start_time)) #---------------------------------# #---------------------------------# # plot results #---------------------------------# #---------------reference price transition function-------------------------# fig, ax = plt.subplots() plt.tight_layout() #ax.plot(price_list[np.arange(len(mu)).astype(int)], price_list[mu.astype(int)],\ # color = 'black'); ax.scatter(price_list[np.arange(len(mu)).astype(int)], price_list[mu.astype(int)],\ color = 'black',marker = 'o', facecolors = 'none', s = 5); # s controls markersize ax.set_xlabel(r"$r_t$",size = 16); ax.set_ylabel(r"$r_{t+1}$",size = 16); ax.set_ylim(L-1,H+1) fig.savefig('./../pricing_output/%s_referenceprice'%coeffname, dpi= 300) #---------------value function------------------------# fig1, ax1 = plt.subplots() plt.tight_layout() ax1.plot(price_list[np.arange(len(mu)).astype(int)], \ V, color = 'black'); ax1.set_xlabel(r"$r$",size = 16); ax1.set_ylabel(r"$V^*(r)$",size = 16); #ax2.set_ylim(,) fig1.savefig('./../pricing_output/%s_value_function'%coeffname, dpi= 300) #---------------pricing policy function-------------------------# fig2, ax2 = plt.subplots() plt.tight_layout() #ax2.plot(price_list[np.arange(len(mu)).astype(int)], # (price_list[mu.astype(int)] - theta * price_list[np.arange(len(mu)).astype(int)])/(1-theta),\ # color = 'black'); ax2.scatter(price_list[np.arange(len(mu)).astype(int)], (price_list[mu.astype(int)] - theta * price_list[np.arange(len(mu)).astype(int)])/(1-theta),\ color = 'black', marker = 'o', s= 5); ax2.set_xlabel(r"$r$",size = 16); ax2.set_ylabel(r"$p^*(r)$",size = 16); ax2.set_ylim(L-1,H+1) fig2.savefig('./../pricing_output/%s_price'%coeffname, dpi= 300) #---------------price path-------------------------# # plot price path start_ = 0 # staring time for plots end_ = 20 i_li = random.sample(range(len(V)),10) i_li.append(int((H/epsilon)/2)+1) for i in i_li: c = [] id = i # need to add the first reference price c.append(id) #apply the policy a few times for j in range(end_): c.append(int(mu[id])) id = int(mu[id]) fig3, ax3 = plt.subplots() plt.tight_layout() price_path = (price_list[c[1:]] - theta * price_list[c[:-1]])/(1-theta) ax3.plot(np.arange(start_,end_),price_path[start_:],color = 'black',linestyle = '--') ax3.scatter(np.arange(start_,end_),price_path[start_:],marker = 'o',facecolors = 'none',edgecolors = 'black') ax3.set_ylim(L,H+1) ax3.set_xticks(np.arange(start_,end_+1,5)) ax3.set_xlabel('Time', size = 16) #ax3.set_ylabel('optimal price path',size = 16) ax3.set_ylabel('Price',size = 16) coeffname_r0 = coeffname + 'r0=' + str(round(price_list[i],2)).replace(".","dot") fig3.savefig('./../pricing_output/%s_price_path'%coeffname_r0, dpi= 300) #---------------long term price path plot-------------------------# id = i c = [] start_ = 80 end_ = 100 # need to add the first reference price c.append(id) for j in range(end_): c.append(int(mu[id])) id = int(mu[id]) fig4, ax4 = plt.subplots() plt.tight_layout() price_path = (price_list[c[1:]] - theta * price_list[c[:-1]])/(1-theta) ax4.plot(np.arange(start_,end_),price_path[start_:],color = 'black',linestyle = '--') ax4.scatter(np.arange(start_,end_),price_path[start_:],marker = 'o',facecolors = 'none',edgecolors = 'black') ax4.set_ylim(L,H+1) ax4.set_xticks(np.arange(start_,end_+1,5)) ax4.set_xlabel('Time', size = 16) #ax4.set_ylabel('optimal price path',size = 16) ax4.set_ylabel('Price',size = 16) coeffname_r0 = coeffname + 'r0=' + str(round(price_list[i],2)).replace(".","dot")+'100time' fig4.savefig('./../pricing_output/%s_longterm_price_path'%coeffname_r0, dpi= 300) #--------------revenue plot for heterogeneous market --------------------# c = [] id = int((H/epsilon)/2)+1 # need to add the first reference price c.append(id) #### plot revenues for j in range(20): c.append(int(mu[id])) id = int(mu[id]) fig3, ax3 = plt.subplots(figsize = (10,5)) price_path = (price_list[c[1:]] - theta * price_list[c[:-1]])/(1-theta) r1 = [] r2 = [] for j in range(20): r = price_list[c[j]] p = price_path[j] print("================{}================".format(j)) print(r,p,coefficients,weights[0]) temp1 = R(r,p,coefficients[:4],(weights[0],0,0)) print("temp1", temp1) r1.append(temp1) temp2 = R(r,p,coefficients[4:],(weights[1],0,0)) print("temp2", temp2) r2.append(temp2) r = np.array(r1) + np.array(r2) ax3.plot(np.arange(20),r,label = r'Total',marker = 'o',mfc = 'none',linestyle = '-',color = 'tab:gray') ax3.plot(np.arange(20),r1,label = r'Consumer $A$',marker = 'd',mfc = 'none',linestyle = '--',color= 'tab:blue') ax3.plot(np.arange(20),r2,label = r'Consumer $B$', marker = 's',mfc = 'none', linestyle = ':',color = 'tab:red') # ax3.scatter(np.arange(20),price_path[start_:],marker = 'o',facecolors = 'none',edgecolors = 'black') #ax3.set_ylim(L,H+1) ax3.set_xticks(np.arange(0,21,5)) ax3.set_xlabel('Time', size = 16) ax3.set_ylabel('Expected Revenue',size = 16) plt.legend(bbox_to_anchor=(1.02, 1)) plt.tight_layout() coeffname_r0 = coeffname + 'r0=' + str(round(price_list[i],2)).replace(".","dot") fig3.savefig('./../pricing_output/%s_revenue'%coeffname_r0, dpi= 300)
[ "time.time" ]
[((2143, 2154), 'time.time', 'time.time', ([], {}), '()\n', (2152, 2154), False, 'import time\n'), ((2313, 2324), 'time.time', 'time.time', ([], {}), '()\n', (2322, 2324), False, 'import time\n')]
# -*- coding: utf8 -*- ''' ======================================================================== CygnusCloud ======================================================================== File: clusterEndpointDB.py Version: 5.0 Description: full cluster endpoint database connector Copyright 2012-13 <NAME>, <NAME>, <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' from editionState_t import EDITION_STATE_T from clusterEndpoint.databases.minimalClusterEndpointDBConnector import MinimalClusterEndpointDBConnector class ClusterEndpointDBConnector(MinimalClusterEndpointDBConnector): """ Initializes the connector's state Args: sqlUser: the MySQL user to use sqlPassword: the MySQL password to use databaseName: a MySQL database name. """ def __init__(self, sqlUser, sqlPassword, databaseName): MinimalClusterEndpointDBConnector.__init__(self, sqlUser, sqlPassword, databaseName) self.__vmServerSegmentsData = [] self.__vmServerSegments = 0 self.__vmServerResourceUsageData = [] self.__vmServerResourceUsageSegments = 0 self.__imageDistributionSegmentsData = [] self.__imageDistributionSegments = 0 self.__activeVMSegmentsData = dict() self.__activeVMSegments = dict() def processVMServerResourceUsageSegment(self, segmentNumber, segmentCount, data): """ Processes a virtual machine server resource usage segment Args: segmentNumber: the segment's position in the sequence segmentCount: the number of segments in the sequence data: the segment's data Returns: Nothing """ if (data != []) : self.__vmServerResourceUsageData += data self.__vmServerResourceUsageSegments += 1 if (self.__vmServerResourceUsageSegments == segmentCount) : receivedData = ClusterEndpointDBConnector.__getVMServersDictionary(self.__vmServerResourceUsageData) registeredIDs = self.__getKnownVMServerIDs("VirtualMachineServerStatus") if (registeredIDs != None) : for ID in registeredIDs : if not (receivedData.has_key(ID)) : self.__deleteVMServerStatusData(ID) inserts = [] for ID in receivedData.keys() : if (registeredIDs != None and ID in registeredIDs) : self.__updateVMServerStatusData(receivedData[ID]) else : inserts.append(receivedData[ID]) if (inserts != []) : self.__insertVMServerStatusData(inserts) self.__vmServerResourceUsageData = [] self.__vmServerResourceUsageSegments = 0 def __insertVMServerStatusData(self, tupleList): update = "INSERT INTO VirtualMachineServerStatus VALUES {0};"\ .format(ClusterEndpointDBConnector.__convertTuplesToSQLStr(tupleList)) self._executeUpdate(update) def __updateVMServerStatusData(self, receivedData): update = "UPDATE VirtualMachineServerStatus SET hosts = {0}, ramInUse = {1}, ramSize = {2},\ freeStorageSpace = {3}, availableStorageSpace = {4}, freeTemporarySpace = {5}, availableTemporarySpace = {6},\ activeVCPUs = {7}, physicalCPUs = {8} WHERE serverName = '{9}';".format(receivedData[1], receivedData[2], receivedData[3], receivedData[4], receivedData[5], receivedData[6], receivedData[7], receivedData[8], receivedData[9], receivedData[0]) self._executeUpdate(update) def __deleteVMServerStatusData(self, serverName): update = "DELETE FROM VirtualMachineServerStatus WHERE serverName = '{0}';".format(serverName) self._executeUpdate(update) def processVMServerSegment(self, segmentNumber, segmentCount, data): """ Processes a virtual machine server configuration segment Args: segmentNumber: the segment's position in the sequence segmentCount: the number of segments in the sequence data: the segment's data Returns: Nothing """ if (data != []) : self.__vmServerSegmentsData += data self.__vmServerSegments += 1 if (self.__vmServerSegments == segmentCount) : receivedData = ClusterEndpointDBConnector.__getVMServersDictionary(self.__vmServerSegmentsData) registeredIDs = self.__getKnownVMServerIDs() if (registeredIDs != None) : for ID in registeredIDs : if not (receivedData.has_key(ID)) : self.__deleteVMServer(ID) inserts = [] for ID in receivedData.keys() : if (registeredIDs != None and ID in registeredIDs) : self.__updateVMServerData(receivedData[ID]) else : inserts.append(receivedData[ID]) if (inserts != []) : self.__insertVMServers(inserts) self.__vmServerSegmentsData = [] self.__vmServerSegments = 0 def processImageCopiesDistributionSegment(self, segmentNumber, segmentCount, data): """ Processes an image copies distribution segment Args: segmentNumber: the segment's position in the sequence segmentCount: the number of segments in the sequence data: the segment's data Returns: Nothing """ if (data != []) : self.__imageDistributionSegmentsData.append(data) self.__imageDistributionSegments += 1 if (self.__imageDistributionSegments == segmentCount) : # Borrar la tabla y volver a construirla command = "DELETE FROM VirtualMachineDistribution;" self._executeUpdate(command) if (self.__imageDistributionSegmentsData != []) : command = "INSERT INTO VirtualMachineDistribution VALUES " + ClusterEndpointDBConnector.__convertSegmentsToSQLTuples(self.__imageDistributionSegmentsData) self.__imageDistributionSegmentsData = [] self.__imageDistributionSegments = 0 self._executeUpdate(command) def processActiveVMVNCDataSegment(self, segmentNumber, segmentCount, vmServerIP, data): """ Processes an active virtual machines VNC data segment Args: segmentNumber: the segment's position in the sequence segmentCount: the number of segments in the sequence data: the segment's data Returns: Nothing """ if (not self.__activeVMSegmentsData.has_key(vmServerIP)) : self.__activeVMSegmentsData[vmServerIP] = [] self.__activeVMSegments[vmServerIP] = 0 if (data != []) : self.__activeVMSegmentsData[vmServerIP] += data self.__activeVMSegments[vmServerIP] += 1 if (self.__activeVMSegments[vmServerIP] == segmentCount) : receivedData = ClusterEndpointDBConnector.__getActiveVMsDictionary(self.__activeVMSegmentsData[vmServerIP]) registeredIDs = self.__getActiveVMIDs() for ID in registeredIDs : if not (receivedData.has_key(ID)) : self.__deleteActiveVM(ID) self.updateEditedImageState(ID, EDITION_STATE_T.TRANSFER_TO_REPOSITORY, EDITION_STATE_T.VM_ON) inserts = [] for ID in receivedData.keys() : if (not (ID in registeredIDs)) : inserts.append(receivedData[ID]) if (inserts != []) : self.__insertActiveVMData(self.__getVMServerName(vmServerIP), inserts) self.__activeVMSegmentsData[vmServerIP] = [] self.__activeVMSegments[vmServerIP] = 0 @staticmethod def __getVMServersDictionary(segmentList): result = {} for segment in segmentList : result[segment[0]] = segment return result @staticmethod def __getActiveVMsDictionary(segmentList): result = {} for segment in segmentList : result[segment[0]] = segment return result def __getKnownVMServerIDs(self, table="VirtualMachineServer"): query = "SELECT serverName FROM {0};".format(table) result = set() output = self._executeQuery(query, False) if (output == None) : return None for t in output : result.add(t) return result def __insertVMServers(self, tupleList): update = "INSERT INTO VirtualMachineServer VALUES {0};"\ .format(ClusterEndpointDBConnector.__convertTuplesToSQLStr(tupleList)) self._executeUpdate(update) def __updateVMServerData(self, data): update = "UPDATE VirtualMachineServer SET serverStatus='{1}', serverIP='{2}', serverPort={3},\ isVanillaServer = {4} WHERE serverName='{0}'".format(data[0], data[1], data[2], data[3], data[4]) self._executeUpdate(update) def __deleteVMServer(self, serverID): update = "DELETE FROM ActiveVirtualMachines WHERE serverName = '{0}';".format(serverID) self._executeUpdate(update) update = "DELETE FROM VirtualMachineServer WHERE serverName = '{0}'".format(serverID) self._executeUpdate(update) def __getActiveVMIDs(self): query = "SELECT domainUID FROM ActiveVirtualMachines;" results = self._executeQuery(query) if (results == None) : return set() output = set() for row in results : output.add(row) return output def __insertActiveVMData(self, vmServerIP, data): update = "REPLACE ActiveVirtualMachines VALUES {0};"\ .format(ClusterEndpointDBConnector.__convertTuplesToSQLStr(data, [vmServerIP])) self._executeUpdate(update) def __deleteActiveVM(self, domainUID): update = "DELETE FROM ActiveVirtualMachines WHERE domainUID = '{0}';"\ .format(domainUID) self._executeUpdate(update) def __getVMServerName(self, serverIP): query = "SELECT serverName FROM VirtualMachineServer WHERE serverIP = '" + serverIP + "';" result = self._executeQuery(query, True) return str(result) @staticmethod def __convertTuplesToSQLStr(tupleList, dataToAdd = []): isFirstSegment = True command = "" for segmentTuple in tupleList : if (isFirstSegment) : isFirstSegment = False else : command += ", " segmentTuple_list = dataToAdd + list(segmentTuple) command += str(tuple(segmentTuple_list)) return command @staticmethod def __convertSegmentsToSQLTuples(segmentList): isFirstSegment = True command = "" for segment in segmentList : for segmentTuple in segment : if (isFirstSegment) : isFirstSegment = False else : command += ", " command += str(segmentTuple) command += ";" return command def updateImageRepositoryStatus(self, freeDiskSpace, availableDiskSpace, status) : """ Updates the image repository's status Args: freeDiskSpace: the free disk space in the image repository availableDiskSpace: the available disk space in the image repository status: the image repository's connection status Returns: Nothing """ query = "SELECT * FROM ImageRepositoryStatus;" result = self._executeQuery(query, True) if (result == None) : command = "INSERT INTO ImageRepositoryStatus VALUES (1, {0}, {1}, '{2}');".format(freeDiskSpace, availableDiskSpace, status) else : command = "UPDATE ImageRepositoryStatus SET freeDiskSpace = {0}, availableDiskSpace = {1}, repositoryStatus = '{2}';"\ .format(freeDiskSpace, availableDiskSpace, status) self._executeUpdate(command) def addNewImage(self, temporaryID, baseImageID, ownerID, imageName, imageDescription): """ Registers a new image in the database Args: temporaryID: an temporary image ID baseImageID: an existing image ID ownerID: the image owner's ID imageName: the new image's name imageDescription: the new image's description Returns: Nothing """ baseImageData = self.getImageData(baseImageID) update = "INSERT INTO EditedImage VALUES('{0}', {1}, {2}, '{3}', '{4}', {5}, {6}, {7}, {8}, 0);"\ .format(temporaryID, baseImageData["VanillaImageFamilyID"], -1, imageName, imageDescription, baseImageData["OSFamily"], baseImageData["OSVariant"], ownerID, EDITION_STATE_T.TRANSFER_TO_VM_SERVER) self._executeUpdate(update) def editImage(self, commandID, imageID, ownerID): """ Registers an edit images in the database Args: commandID: the image edition command's ID imageID: the edited image's ID ownerID: the image owner's ID Returns: Nothing """ query = "SELECT * from EditedImage WHERE imageID = {0};".format(imageID) if (self._executeQuery(query, True) != None) : update = "UPDATE EditedImage SET temporaryID = '{0}', state = {2} WHERE imageID = {1};".format(commandID, imageID, EDITION_STATE_T.TRANSFER_TO_VM_SERVER) self._executeUpdate(update) else : imageData = self.getImageData(imageID) update = "DELETE FROM Image WHERE imageID = {0};".format(imageID) self._executeUpdate(update) update = "INSERT INTO EditedImage VALUES('{0}', {1}, {2}, '{3}', '{4}', {5}, {6}, {7}, {8}, 1);"\ .format(commandID, imageData["VanillaImageFamilyID"], imageID, imageData["ImageName"], imageData["ImageDescription"], imageData["OSFamily"], imageData["OSVariant"], ownerID, EDITION_STATE_T.TRANSFER_TO_VM_SERVER) self._executeUpdate(update) def moveRowToImage(self, temporaryID): """ Moves a row from the EditedImage table to the Image table Args: temporaryID: a temporary image ID Returns: Nothing """ imageData = self.getImageData(temporaryID) update = "INSERT INTO Image VALUES ({0}, {1}, '{2}', '{3}', {4}, {5}, {6}, 1);"\ .format(imageData["ImageID"], imageData["VanillaImageFamilyID"], imageData["ImageName"], imageData["ImageDescription"], imageData["OSFamily"], imageData["OSVariant"], int(imageData["IsBaseImage"])) self._executeUpdate(update) update = "DELETE FROM EditedImage WHERE temporaryID = '{0}';".format(temporaryID) self._executeUpdate(update) def deleteEditedImage(self, temporaryID): """ Deletes a new or an edited image from the database Args: temporaryID: a temporary image ID Returns: Nothing """ update = "DELETE FROM EditedImage WHERE temporaryID = '{0}';".format(temporaryID) self._executeUpdate(update) def deleteImage(self, imageID): """ Deletes an existing image from the database Args: imageID: the affected image's ID Returns: Nothing """ update = "DELETE FROM Image WHERE imageID = {0}".format(imageID) self._executeUpdate(update) def updateEditedImageState(self, temporaryID, newState, expectedState=None): """ Updates an edited image status in the database Args: temporaryID: the image's temporary ID newState: the image's new state expectedState: the image's expected state. If it's not none, the edited image state will only be updated when its current state and expectedState are equals. """ if (expectedState != None) : query = "SELECT state FROM EditedImage WHERE temporaryID = '{0}';".format(temporaryID) if (self._executeQuery(query, True) != expectedState) : return update = "UPDATE EditedImage SET state = {1} WHERE temporaryID = '{0}';".format(temporaryID, newState) self._executeUpdate(update) def registerImageID(self, temporaryID, imageID): """ Registers an image ID in the database Args: temporaryID: the image's temporary ID imageID: the image's ID Returns: Nothing """ update = "UPDATE EditedImage SET imageID = {1}, state = {2} WHERE temporaryID = '{0}';".format(temporaryID, imageID, EDITION_STATE_T.CHANGES_NOT_APPLIED) self._executeUpdate(update) def makeBootable(self, imageID): """ Marks an image as bootable Args: imageID: the affected image's ID Returns: Nothing """ update = "UPDATE Image SET isBootable = 1 WHERE imageID = {0};".format(imageID) self._executeUpdate(update) def __getDomainUID(self, serverName, ownerID, imageID): query = "SELECT domainUID FROM ActiveVirtualMachines WHERE serverName = '{0}' AND ownerID = {1} AND imageID = {2};"\ .format(serverName, ownerID, imageID) return self._executeQuery(query, True) def unregisterDomain(self, domainUID): """ Unregisters a domain in the databse Args: domainUID: the domain's ID Returns: Nothing """ update = "DELETE FROM ActiveVirtualMachines WHERE domainUID = '{0}';".format(domainUID) self._executeUpdate(update) def affectsToNewOrEditedImage(self, autoDeploymentCommandID): """ Checks if an auto-deployment command affects to an image edition or an image creation command Args: autoDeploymentCommandID: the auto-deployment command's ID Returns: Nothing """ query = "SELECT * FROM EditedImage WHERE temporaryID = '{0}';".format(autoDeploymentCommandID) return self._executeQuery(query, True) != None
[ "clusterEndpoint.databases.minimalClusterEndpointDBConnector.MinimalClusterEndpointDBConnector.__init__" ]
[((1459, 1547), 'clusterEndpoint.databases.minimalClusterEndpointDBConnector.MinimalClusterEndpointDBConnector.__init__', 'MinimalClusterEndpointDBConnector.__init__', (['self', 'sqlUser', 'sqlPassword', 'databaseName'], {}), '(self, sqlUser, sqlPassword,\n databaseName)\n', (1501, 1547), False, 'from clusterEndpoint.databases.minimalClusterEndpointDBConnector import MinimalClusterEndpointDBConnector\n')]
from graphene_django import DjangoObjectType import graphene from graphql import GraphQLError from graphql_jwt.decorators import login_required, superuser_required from .models import SubAnimal_Table, Animal_Table class SubAnimal_Info(DjangoObjectType): class Meta: model = SubAnimal_Table fields = ("subAnimal", "animal", "acronym",) class query(graphene.ObjectType): all_SubAnimals = graphene.List(SubAnimal_Info) def resolve_all_SubAnimals(root, info): return SubAnimal_Table.objects.all() class add_SubAnimal(graphene.Mutation): new_Animal = graphene.Field(SubAnimal_Info) class Arguments: name = graphene.String(required=True) animal = graphene.String(required=True) @superuser_required def mutate(self, info, name, animal): parentAnimal = Animal_Table.objects.get(animal=animal) animal = SubAnimal_Table(subAnimal=name , animal=parentAnimal) animal.save() return add_SubAnimal(new_Animal=animal) class edit_SubAnimal(graphene.Mutation): new_Animal = graphene.Field(SubAnimal_Info) class Arguments: name = graphene.String(required=True) newName = graphene.String(required=True) animal = graphene.String(required=True) @superuser_required def mutate(self, info, name, newName, animal): if SubAnimal_Table.objects.filter(subAnimal=name).count() > 0: parentAnimal = Animal_Table.objects.get(animal=animal) animal = SubAnimal_Table.objects.get(subAnimal=name) animal.subAnimal = newName animal.animal = parentAnimal animal.save() return edit_SubAnimal(new_Animal=animal) else: return GraphQLError(name + "does not exist") class delete_SubAnimal(graphene.Mutation): old_Animal = graphene.String() class Arguments: name = graphene.String(required=True) @superuser_required def mutate(self, info, name): if SubAnimal_Table.objects.filter(subAnimal=name).count() > 0: animal = SubAnimal_Table.objects.get(subAnimal=name) animal.delete() return delete_SubAnimal(old_Animal= name + " has been deleted") else: return GraphQLError(name + "does not exist")
[ "graphene.Field", "graphql.GraphQLError", "graphene.List", "graphene.String" ]
[((420, 449), 'graphene.List', 'graphene.List', (['SubAnimal_Info'], {}), '(SubAnimal_Info)\n', (433, 449), False, 'import graphene\n'), ((610, 640), 'graphene.Field', 'graphene.Field', (['SubAnimal_Info'], {}), '(SubAnimal_Info)\n', (624, 640), False, 'import graphene\n'), ((1113, 1143), 'graphene.Field', 'graphene.Field', (['SubAnimal_Info'], {}), '(SubAnimal_Info)\n', (1127, 1143), False, 'import graphene\n'), ((1909, 1926), 'graphene.String', 'graphene.String', ([], {}), '()\n', (1924, 1926), False, 'import graphene\n'), ((682, 712), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (697, 712), False, 'import graphene\n'), ((730, 760), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (745, 760), False, 'import graphene\n'), ((1185, 1215), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1200, 1215), False, 'import graphene\n'), ((1234, 1264), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1249, 1264), False, 'import graphene\n'), ((1282, 1312), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1297, 1312), False, 'import graphene\n'), ((1968, 1998), 'graphene.String', 'graphene.String', ([], {'required': '(True)'}), '(required=True)\n', (1983, 1998), False, 'import graphene\n'), ((1805, 1842), 'graphql.GraphQLError', 'GraphQLError', (["(name + 'does not exist')"], {}), "(name + 'does not exist')\n", (1817, 1842), False, 'from graphql import GraphQLError\n'), ((2352, 2389), 'graphql.GraphQLError', 'GraphQLError', (["(name + 'does not exist')"], {}), "(name + 'does not exist')\n", (2364, 2389), False, 'from graphql import GraphQLError\n')]
#-*- coding: utf-8 -*- import json import requests import unittest import time import sys import datetime from config import * def request_post(req_data, is_assert=True): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) print('>> {} {}\n{}\n'.format(req_data['method'], req_data['params'], response)) if is_assert: assert 'error' not in response return response #default: # user issuer asset: AAAA # bit asset : BBBB def get_asset_if_not_create(symbol, is_bitasset=False): print('[{}] symbol: {}'.format(sys._getframe().f_code.co_name, symbol)) req_data = { "jsonrpc": "2.0", "method": "get_asset", "params": [symbol], "id":1 } # response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) response = request_post(req_data, False) if 'error' in response: precision = 5 asset_opts = { "max_supply":"2100000000000000", "market_fee_percent":0, "max_market_fee":0, "flags":0, "core_exchange_rate":{ "base":{"amount":1,"asset_id":"1.3.3"}, "quote":{"amount":1,"asset_id":"1.3.0"} }, "description":"", "extensions":[] } bitasset_opts = None if is_bitasset: asset_opts = { "issuer_permissions": 511, "flags": 0, "core_exchange_rate":{ "base":{"amount":1,"asset_id":"1.3.4"}, "quote":{"amount":1,"asset_id":"1.3.0"} } } bitasset_opts = { "new_feed_producers":[], "feed_lifetime_sec":120 } req_data = { "jsonrpc": "2.0", "method": "create_asset", "params": [test_account, symbol, precision, asset_opts, bitasset_opts, 'true'], "id":1 } # response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) response = request_post(req_data) # assert 'bitasset_data_id' in response return response['result'] return response['result'] #generate random words by suggest_brain_key def generate_random_words(): req_data = { "jsonrpc": "2.0", "method": "suggest_brain_key", "params": [], "id":1 } suggest_brain_key = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text)['result'] brain_key = suggest_brain_key['brain_priv_key'] return brain_key.split() class request_unittest(unittest.TestCase): def request_post(self, req_data): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) print('>> {} {}\n{}\n'.format(req_data['method'], req_data['params'], response)) self.assertFalse('error' in response) return response def request_post_error_asset_false(self, req_data): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) #print('>> {} {}\n{}\n'.format(req_data['method'], req_data['params'], response)) self.assertFalse('error' in response, '{} {} error'.format(req_data['method'], req_data['params'])) def request_post_error_asset_true(self, req_data): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) self.assertTrue('error' in response, '{} {} error'.format(req_data['method'], req_data['params'])) def request_post_result_asset_false(self, req_data): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) self.assertFalse('error' in response) self.assertFalse(response['result']) def request_post_result_asset_true(self, req_data): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) self.assertFalse('error' in response) self.assertTrue(response['result']) def request_post_result_asset_is_none(self, req_data): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) self.assertFalse('error' in response) self.assertIsNone(response['result']) def request_post_result_asset_in(self, req_data, first_or_second, is_first=True): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) self.assertFalse('error' in response) if is_first: self.assertIn(first_or_second, response['result']) else: self.assertIn(response['result'], first_or_second) def request_post_result_asset_equal(self, req_data, value): response = json.loads(requests.post(cli_wallet_url, data = json.dumps(req_data), headers = headers).text) self.assertFalse('error' in response) self.assertEqual(value, response['result']) def datetime_N_ago(n): n_ago = (datetime.datetime.now() - datetime.timedelta(days = n)) # return n_ago.strftime("%Y-%m-%d %H:%M:%S") return n_ago
[ "datetime.datetime.now", "datetime.timedelta", "json.dumps", "sys._getframe" ]
[((5364, 5387), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (5385, 5387), False, 'import datetime\n'), ((5390, 5416), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': 'n'}), '(days=n)\n', (5408, 5416), False, 'import datetime\n'), ((252, 272), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (262, 272), False, 'import json\n'), ((625, 640), 'sys._getframe', 'sys._getframe', ([], {}), '()\n', (638, 640), False, 'import sys\n'), ((2660, 2680), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (2670, 2680), False, 'import json\n'), ((2955, 2975), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (2965, 2975), False, 'import json\n'), ((3291, 3311), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (3301, 3311), False, 'import json\n'), ((3664, 3684), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (3674, 3684), False, 'import json\n'), ((3947, 3967), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (3957, 3967), False, 'import json\n'), ((4214, 4234), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (4224, 4234), False, 'import json\n'), ((4483, 4503), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (4493, 4503), False, 'import json\n'), ((4781, 4801), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (4791, 4801), False, 'import json\n'), ((5175, 5195), 'json.dumps', 'json.dumps', (['req_data'], {}), '(req_data)\n', (5185, 5195), False, 'import json\n')]
############################################################################### # # Provides the required elements to implement a binary convolutional network in # PyTorch. # # This file contains the following elements are implemented: # * BinaryLinear # * BinaryConv2d # * sign function with straight-through estimator gradient # * Binary optimization algorithm # # Inspiration taken from: # https://github.com/itayhubara/BinaryNet.pytorch/blob/master/models/binarized_modules.py # # Author(s): <NAME> ############################################################################### from typing import TypeVar, Union, Tuple, Optional, Callable import torch import torch.nn as nn import torch.nn.functional as f from torch import Tensor from torch.autograd import Function from torch.optim.optimizer import Optimizer from torch.optim import Adam ################################################################################ # taken from https://github.com/pytorch/pytorch/blob/bfeff1eb8f90aa1ff7e4f6bafe9945ad409e2d97/torch/nn/common_types.pyi T = TypeVar("T") _scalar_or_tuple_2_t = Union[T, Tuple[T, T]] _size_2_t = _scalar_or_tuple_2_t[int] ################################################################################ # Quantizers class Binarize(Function): clip_value = 1 @staticmethod def forward(ctx, inp): ctx.save_for_backward(inp) output = inp.sign() return output @staticmethod def backward(ctx, grad_output): inp: Tensor = ctx.saved_tensors[0] clipped = inp.abs() <= Binarize.clip_value output = torch.zeros(inp.size()).to(grad_output.device) output[clipped] = 1 output[~clipped] = 0 return output * grad_output binarize = Binarize.apply ################################################################################ # Optimizers for binary networks class MomentumWithThresholdBinaryOptimizer(Optimizer): def __init__( self, binary_params, bn_params, ar: float = 0.0001, threshold: float = 0, adam_lr=0.001, ): if not 0 < ar < 1: raise ValueError( "given adaptivity rate {} is invalid; should be in (0, 1) (excluding endpoints)".format( ar ) ) if threshold < 0: raise ValueError( "given threshold {} is invalid; should be > 0".format(threshold) ) self.total_weights = {} self._adam = Adam(bn_params, lr=adam_lr) defaults = dict(adaptivity_rate=ar, threshold=threshold) super(MomentumWithThresholdBinaryOptimizer, self).__init__( binary_params, defaults ) def step(self, closure: Optional[Callable[[], float]] = ..., ar=None): self._adam.step() flips = {None} for group in self.param_groups: params = group["params"] y = group["adaptivity_rate"] t = group["threshold"] flips = {} if ar is not None: y = ar for param_idx, p in enumerate(params): grad = p.grad.data state = self.state[p] if "moving_average" not in state: m = state["moving_average"] = torch.clone(grad).detach() else: m: Tensor = state["moving_average"] m.mul_((1 - y)) m.add_(grad.mul(y)) mask = (m.abs() >= t) * (m.sign() == p.sign()) mask = mask.double() * -1 mask[mask == 0] = 1 flips[param_idx] = (mask == -1).sum().item() p.data.mul_(mask) return flips def zero_grad(self) -> None: super().zero_grad() self._adam.zero_grad() ################################################################################ # binary torch layers class BinaryLinear(nn.Linear): def __init__( self, in_features: int, out_features: int, bias=False, keep_latent_weight=False, binarize_input=False, ): super().__init__(in_features, out_features, bias=bias) self.keep_latent_weight = keep_latent_weight self.binarize_input = binarize_input if not self.keep_latent_weight: with torch.no_grad(): self.weight.data.sign_() self.bias.data.sign_() if self.bias is not None else None def forward(self, inp: Tensor) -> Tensor: if self.keep_latent_weight: weight = binarize(self.weight) else: weight = self.weight bias = self.bias if self.bias is None else binarize(self.bias) if self.binarize_input: inp = binarize(inp) return f.linear(inp, weight, bias) class BinaryConv2d(nn.Conv2d): def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, stride=1, padding=1, bias=False, keep_latent_weight=False, binarize_input=False, ): super().__init__( in_channels, out_channels, kernel_size, stride, padding, bias=bias ) self.keep_latent_weight = keep_latent_weight self.binarize_input = binarize_input if not self.keep_latent_weight: with torch.no_grad(): self.weight.data.sign_() self.bias.data.sign_() if self.bias is not None else None def forward(self, inp: Tensor) -> Tensor: if self.keep_latent_weight: weight = binarize(self.weight) else: weight = self.weight bias = self.bias if self.bias is None else binarize(self.bias) if self.binarize_input: inp = binarize(inp) return f.conv2d( inp, weight, bias, self.stride, self.padding, self.dilation, self.groups )
[ "torch.nn.functional.linear", "torch.optim.Adam", "torch.nn.functional.conv2d", "torch.clone", "torch.no_grad", "typing.TypeVar" ]
[((1056, 1068), 'typing.TypeVar', 'TypeVar', (['"""T"""'], {}), "('T')\n", (1063, 1068), False, 'from typing import TypeVar, Union, Tuple, Optional, Callable\n'), ((2519, 2546), 'torch.optim.Adam', 'Adam', (['bn_params'], {'lr': 'adam_lr'}), '(bn_params, lr=adam_lr)\n', (2523, 2546), False, 'from torch.optim import Adam\n'), ((4840, 4867), 'torch.nn.functional.linear', 'f.linear', (['inp', 'weight', 'bias'], {}), '(inp, weight, bias)\n', (4848, 4867), True, 'import torch.nn.functional as f\n'), ((5876, 5963), 'torch.nn.functional.conv2d', 'f.conv2d', (['inp', 'weight', 'bias', 'self.stride', 'self.padding', 'self.dilation', 'self.groups'], {}), '(inp, weight, bias, self.stride, self.padding, self.dilation, self.\n groups)\n', (5884, 5963), True, 'import torch.nn.functional as f\n'), ((4382, 4397), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4395, 4397), False, 'import torch\n'), ((5418, 5433), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (5431, 5433), False, 'import torch\n'), ((3312, 3329), 'torch.clone', 'torch.clone', (['grad'], {}), '(grad)\n', (3323, 3329), False, 'import torch\n')]
import bpy import os import os.path from pathlib import Path def _mkdir(path): try: os.mkdir(path) except: pass def path_components(path): retval = [] base, end = os.path.split(path) while end != '': retval.insert(0, end) base, end = os.path.split(base) return retval def find_project_root(): if bpy.data.filepath == '': return None path = os.path.split(bpy.data.filepath) test_path = os.path.join(path[0], '.hecl') while not os.path.exists(test_path): path = os.path.split(path[0]) test_path = os.path.join(path[0], '.hecl') if os.path.exists(test_path): return path[0] return None def get_patching_dirs(make_dirs=False): proj_root = find_project_root() if not proj_root: return None, None rel_to_blend = os.path.relpath(bpy.data.filepath, start=proj_root) rel_to_blend_comps = path_components(rel_to_blend) trace_dir = os.path.join(proj_root, '.hecl', 'patches') global_out = trace_dir if not make_dirs and not os.path.exists(trace_dir): return None, global_out _mkdir(trace_dir) for comp in rel_to_blend_comps: ext_pair = os.path.splitext(comp) if ext_pair[1] == '.blend': trace_dir = os.path.join(trace_dir, ext_pair[0]) if not make_dirs and not os.path.exists(trace_dir): return None, global_out _mkdir(trace_dir) return trace_dir, global_out trace_dir = os.path.join(trace_dir, comp) if not make_dirs and not os.path.exists(trace_dir): return None, global_out _mkdir(trace_dir) class FILE_OT_hecl_patching_save(bpy.types.Operator): '''Save text datablocks to hecl patching directory''' bl_idname = "file.hecl_patching_save" bl_label = "Save HECL Patches" bl_options = {'REGISTER'} def execute(self, context): patching_dir, global_dir = get_patching_dirs(make_dirs=True) if not patching_dir: self.report({'WARNING'}, 'Unable to save patches for ' + bpy.data.filepath) return {'CANCELLED'} count = 0 for text in bpy.data.texts: if not text.name.endswith('.py') or text.name.startswith('g_'): continue text_abspath = os.path.join(patching_dir, text.name) text_file = open(text_abspath, 'w') text_file.write(text.as_string()) text_file.close() count += 1 if count == 1: self.report({'INFO'}, 'saved 1 patch') else: self.report({'INFO'}, 'saved %d patches' % count) return {'FINISHED'} class FILE_OT_hecl_patching_load(bpy.types.Operator): '''Load text datablocks from hecl patching directory''' bl_idname = "file.hecl_patching_load" bl_label = "Load HECL Patches" bl_options = {'REGISTER'} def execute(self, context): patching_dir, global_dir = get_patching_dirs() count = 0 # Locals if patching_dir: p = Path(patching_dir) for path in p.glob('*.py'): path = path.name text_abspath = os.path.join(patching_dir, path) text_file = open(text_abspath, 'r') if path in bpy.data.texts: text = bpy.data.texts[path] else: text = bpy.data.texts.new(path) text.from_string(text_file.read()) text_file.close() count += 1 # Globals if global_dir: p = Path(global_dir) for path in p.glob('g_*.py'): path = path.name text_abspath = os.path.join(global_dir, path) text_file = open(text_abspath, 'r') if path in bpy.data.texts: text = bpy.data.texts[path] else: text = bpy.data.texts.new(path) text.from_string(text_file.read()) text_file.close() count += 1 if count == 1: self.report({'INFO'}, 'loaded 1 patch') else: self.report({'INFO'}, 'loaded %d patches' % count) return {'FINISHED'} def save_func(self, context): self.layout.operator("file.hecl_patching_save", text="Save HECL Patches") def load_func(self, context): self.layout.operator("file.hecl_patching_load", text="Load HECL Patches") def register(): bpy.utils.register_class(FILE_OT_hecl_patching_save) bpy.utils.register_class(FILE_OT_hecl_patching_load) bpy.types.TOPBAR_MT_file_external_data.append(load_func) bpy.types.TOPBAR_MT_file_external_data.append(save_func) def unregister(): bpy.utils.unregister_class(FILE_OT_hecl_patching_save) bpy.utils.unregister_class(FILE_OT_hecl_patching_load) bpy.types.TOPBAR_MT_file_external_data.remove(load_func) bpy.types.TOPBAR_MT_file_external_data.remove(save_func)
[ "bpy.utils.unregister_class", "os.path.exists", "bpy.types.TOPBAR_MT_file_external_data.append", "bpy.types.TOPBAR_MT_file_external_data.remove", "pathlib.Path", "os.path.join", "os.path.splitext", "os.path.split", "os.mkdir", "bpy.data.texts.new", "bpy.utils.register_class", "os.path.relpath" ]
[((197, 216), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (210, 216), False, 'import os\n'), ((415, 447), 'os.path.split', 'os.path.split', (['bpy.data.filepath'], {}), '(bpy.data.filepath)\n', (428, 447), False, 'import os\n'), ((464, 494), 'os.path.join', 'os.path.join', (['path[0]', '""".hecl"""'], {}), "(path[0], '.hecl')\n", (476, 494), False, 'import os\n'), ((632, 657), 'os.path.exists', 'os.path.exists', (['test_path'], {}), '(test_path)\n', (646, 657), False, 'import os\n'), ((842, 893), 'os.path.relpath', 'os.path.relpath', (['bpy.data.filepath'], {'start': 'proj_root'}), '(bpy.data.filepath, start=proj_root)\n', (857, 893), False, 'import os\n'), ((965, 1008), 'os.path.join', 'os.path.join', (['proj_root', '""".hecl"""', '"""patches"""'], {}), "(proj_root, '.hecl', 'patches')\n", (977, 1008), False, 'import os\n'), ((4518, 4570), 'bpy.utils.register_class', 'bpy.utils.register_class', (['FILE_OT_hecl_patching_save'], {}), '(FILE_OT_hecl_patching_save)\n', (4542, 4570), False, 'import bpy\n'), ((4575, 4627), 'bpy.utils.register_class', 'bpy.utils.register_class', (['FILE_OT_hecl_patching_load'], {}), '(FILE_OT_hecl_patching_load)\n', (4599, 4627), False, 'import bpy\n'), ((4632, 4688), 'bpy.types.TOPBAR_MT_file_external_data.append', 'bpy.types.TOPBAR_MT_file_external_data.append', (['load_func'], {}), '(load_func)\n', (4677, 4688), False, 'import bpy\n'), ((4693, 4749), 'bpy.types.TOPBAR_MT_file_external_data.append', 'bpy.types.TOPBAR_MT_file_external_data.append', (['save_func'], {}), '(save_func)\n', (4738, 4749), False, 'import bpy\n'), ((4773, 4827), 'bpy.utils.unregister_class', 'bpy.utils.unregister_class', (['FILE_OT_hecl_patching_save'], {}), '(FILE_OT_hecl_patching_save)\n', (4799, 4827), False, 'import bpy\n'), ((4832, 4886), 'bpy.utils.unregister_class', 'bpy.utils.unregister_class', (['FILE_OT_hecl_patching_load'], {}), '(FILE_OT_hecl_patching_load)\n', (4858, 4886), False, 'import bpy\n'), ((4891, 4947), 'bpy.types.TOPBAR_MT_file_external_data.remove', 'bpy.types.TOPBAR_MT_file_external_data.remove', (['load_func'], {}), '(load_func)\n', (4936, 4947), False, 'import bpy\n'), ((4952, 5008), 'bpy.types.TOPBAR_MT_file_external_data.remove', 'bpy.types.TOPBAR_MT_file_external_data.remove', (['save_func'], {}), '(save_func)\n', (4997, 5008), False, 'import bpy\n'), ((97, 111), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (105, 111), False, 'import os\n'), ((288, 307), 'os.path.split', 'os.path.split', (['base'], {}), '(base)\n', (301, 307), False, 'import os\n'), ((509, 534), 'os.path.exists', 'os.path.exists', (['test_path'], {}), '(test_path)\n', (523, 534), False, 'import os\n'), ((551, 573), 'os.path.split', 'os.path.split', (['path[0]'], {}), '(path[0])\n', (564, 573), False, 'import os\n'), ((594, 624), 'os.path.join', 'os.path.join', (['path[0]', '""".hecl"""'], {}), "(path[0], '.hecl')\n", (606, 624), False, 'import os\n'), ((1201, 1223), 'os.path.splitext', 'os.path.splitext', (['comp'], {}), '(comp)\n', (1217, 1223), False, 'import os\n'), ((1516, 1545), 'os.path.join', 'os.path.join', (['trace_dir', 'comp'], {}), '(trace_dir, comp)\n', (1528, 1545), False, 'import os\n'), ((1065, 1090), 'os.path.exists', 'os.path.exists', (['trace_dir'], {}), '(trace_dir)\n', (1079, 1090), False, 'import os\n'), ((1284, 1320), 'os.path.join', 'os.path.join', (['trace_dir', 'ext_pair[0]'], {}), '(trace_dir, ext_pair[0])\n', (1296, 1320), False, 'import os\n'), ((2322, 2359), 'os.path.join', 'os.path.join', (['patching_dir', 'text.name'], {}), '(patching_dir, text.name)\n', (2334, 2359), False, 'import os\n'), ((3072, 3090), 'pathlib.Path', 'Path', (['patching_dir'], {}), '(patching_dir)\n', (3076, 3090), False, 'from pathlib import Path\n'), ((3615, 3631), 'pathlib.Path', 'Path', (['global_dir'], {}), '(global_dir)\n', (3619, 3631), False, 'from pathlib import Path\n'), ((1579, 1604), 'os.path.exists', 'os.path.exists', (['trace_dir'], {}), '(trace_dir)\n', (1593, 1604), False, 'import os\n'), ((3195, 3227), 'os.path.join', 'os.path.join', (['patching_dir', 'path'], {}), '(patching_dir, path)\n', (3207, 3227), False, 'import os\n'), ((3738, 3768), 'os.path.join', 'os.path.join', (['global_dir', 'path'], {}), '(global_dir, path)\n', (3750, 3768), False, 'import os\n'), ((1358, 1383), 'os.path.exists', 'os.path.exists', (['trace_dir'], {}), '(trace_dir)\n', (1372, 1383), False, 'import os\n'), ((3420, 3444), 'bpy.data.texts.new', 'bpy.data.texts.new', (['path'], {}), '(path)\n', (3438, 3444), False, 'import bpy\n'), ((3961, 3985), 'bpy.data.texts.new', 'bpy.data.texts.new', (['path'], {}), '(path)\n', (3979, 3985), False, 'import bpy\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # note that this needs the notmuch python bindings. For more info see: # http://notmuchmail.org/howto/#index4h2 import notmuch from i3pystatus.mail import Backend class Notmuch(Backend): """ This class uses the notmuch python bindings to check for the number of messages in the notmuch database with the tags "inbox" and "unread" """ settings = required = ("db_path",) def init(self): self.db = notmuch.Database(self.db_path) @property def unread(self): return notmuch.Query(self.db, "tag:unread and tag:inbox").count_messages() Backend = Notmuch
[ "notmuch.Database", "notmuch.Query" ]
[((483, 513), 'notmuch.Database', 'notmuch.Database', (['self.db_path'], {}), '(self.db_path)\n', (499, 513), False, 'import notmuch\n'), ((566, 616), 'notmuch.Query', 'notmuch.Query', (['self.db', '"""tag:unread and tag:inbox"""'], {}), "(self.db, 'tag:unread and tag:inbox')\n", (579, 616), False, 'import notmuch\n')]
import copy import time import threading from queue import Queue import logging import functions.setting.setting_utils as su from . import chunk_image_seq class FillPatches(threading.Thread): def __init__(self, setting, batch_size=None, max_queue_size=None, stage_sequence=None, full_image=None, chunk_length_force_to_multiple_of=None ): if batch_size is None: batch_size = setting['NetworkValidation']['BatchSize'] if max_queue_size is None: max_queue_size = setting['NetworkValidation']['MaxQueueSize'] if stage_sequence is None: stage_sequence = setting['stage_sequence'] if full_image is None: full_image = setting['FullImage'] if chunk_length_force_to_multiple_of is None: chunk_length_force_to_multiple_of = setting['NetworkValidation']['ChunkLengthForceToMultipleOf'] threading.Thread.__init__(self) self.paused = False self.pause_cond = threading.Condition(threading.Lock()) self.daemon = True self._batch_size = batch_size self._chunks_completed = False self._PatchQueue = Queue(maxsize=max_queue_size) im_list_info = su.get_im_info_list_from_train_mode(setting, train_mode='Validation') self._reading = chunk_image_seq.Images(setting=setting, class_mode='Direct', number_of_images_per_chunk=setting['NetworkValidation']['NumberOfImagesPerChunk'], samples_per_image=setting['NetworkValidation']['SamplesPerImage'], im_info_list_full=im_list_info, stage_sequence=stage_sequence, train_mode='Validation', full_image=full_image, chunk_length_force_to_multiple_of=chunk_length_force_to_multiple_of) self._reading.fill() def run(self): while True: with self.pause_cond: while self.paused: self.pause_cond.wait() try: time_before_put = time.time() item_queue = self._reading.next_batch(self._batch_size) + (copy.copy(self._reading._chunks_completed),) self._PatchQueue.put(item_queue) time_after_put = time.time() logging.debug('ValQueue: put {:.2f} s'.format(time_after_put - time_before_put)) if self._reading._chunks_completed: logging.debug('ValQueue: chunk is completed: resetValidation() ') self._chunks_completed = True self._reading.reset_validation() if self._PatchQueue.full(): self.pause() finally: time.sleep(0.1) def pause(self): if not self.paused: self.paused = True # If in sleep, we acquire immediately, otherwise we wait for thread # to release condition. In race, worker will still see self.paused # and begin waiting until it's set back to False self.pause_cond.acquire() def resume(self): if self.paused: self.paused = False # Notify so thread will wake after lock released self.pause_cond.notify() # Now release the lock self.pause_cond.release()
[ "threading.Thread.__init__", "logging.debug", "threading.Lock", "time.sleep", "copy.copy", "queue.Queue", "time.time", "functions.setting.setting_utils.get_im_info_list_from_train_mode" ]
[((1008, 1039), 'threading.Thread.__init__', 'threading.Thread.__init__', (['self'], {}), '(self)\n', (1033, 1039), False, 'import threading\n'), ((1263, 1292), 'queue.Queue', 'Queue', ([], {'maxsize': 'max_queue_size'}), '(maxsize=max_queue_size)\n', (1268, 1292), False, 'from queue import Queue\n'), ((1316, 1385), 'functions.setting.setting_utils.get_im_info_list_from_train_mode', 'su.get_im_info_list_from_train_mode', (['setting'], {'train_mode': '"""Validation"""'}), "(setting, train_mode='Validation')\n", (1351, 1385), True, 'import functions.setting.setting_utils as su\n'), ((1114, 1130), 'threading.Lock', 'threading.Lock', ([], {}), '()\n', (1128, 1130), False, 'import threading\n'), ((2417, 2428), 'time.time', 'time.time', ([], {}), '()\n', (2426, 2428), False, 'import time\n'), ((2643, 2654), 'time.time', 'time.time', ([], {}), '()\n', (2652, 2654), False, 'import time\n'), ((3143, 3158), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3153, 3158), False, 'import time\n'), ((2836, 2901), 'logging.debug', 'logging.debug', (['"""ValQueue: chunk is completed: resetValidation() """'], {}), "('ValQueue: chunk is completed: resetValidation() ')\n", (2849, 2901), False, 'import logging\n'), ((2508, 2550), 'copy.copy', 'copy.copy', (['self._reading._chunks_completed'], {}), '(self._reading._chunks_completed)\n', (2517, 2550), False, 'import copy\n')]
##################################################################################### # MIT License # # # # Copyright (C) 2019 <NAME> # # # # This file is part of VQ-VAE-Speech. # # # # Permission is hereby granted, free of charge, to any person obtaining a copy # # of this software and associated documentation files (the "Software"), to deal # # in the Software without restriction, including without limitation the rights # # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # # copies of the Software, and to permit persons to whom the Software is # # furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in all # # copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # # SOFTWARE. # ##################################################################################### from experiments.device_configuration import DeviceConfiguration from experiments.pipeline_factory import PipelineFactory from error_handling.console_logger import ConsoleLogger import os import yaml import copy class Experiment(object): def __init__(self, name, experiments_path, results_path, global_configuration, experiment_configuration, seed): self._name = name self._experiments_path = experiments_path self._results_path = results_path self._global_configuration = global_configuration self._experiment_configuration = experiment_configuration self._seed = seed # Create the results path directory if it doesn't exist if not os.path.isdir(results_path): ConsoleLogger.status('Creating results directory at path: {}'.format(results_path)) os.mkdir(results_path) else: ConsoleLogger.status('Results directory already created at path: {}'.format(results_path)) # Create the experiments path directory if it doesn't exist if not os.path.isdir(experiments_path): ConsoleLogger.status('Creating experiments directory at path: {}'.format(experiments_path)) os.mkdir(experiments_path) else: ConsoleLogger.status('Experiments directory already created at path: {}'.format(experiments_path)) experiments_configuration_path = experiments_path + os.sep + name + '_configuration.yaml' configuration_file_already_exists = True if os.path.isfile(experiments_configuration_path) else False if not configuration_file_already_exists: self._device_configuration = DeviceConfiguration.load_from_configuration(global_configuration) # Create a new configuration state from the default and the experiment specific aspects self._configuration = copy.deepcopy(self._global_configuration) for experiment_key in experiment_configuration.keys(): if experiment_key in self._configuration: self._configuration[experiment_key] = experiment_configuration[experiment_key] # Save the configuration of the experiments with open(experiments_configuration_path, 'w') as file: yaml.dump(self._configuration, file) else: with open(experiments_configuration_path, 'r') as file: self._configuration = yaml.load(file, Loader=yaml.FullLoader) self._device_configuration = DeviceConfiguration.load_from_configuration(self._configuration) if configuration_file_already_exists: self._trainer, self._evaluator, self._configuration, self._device_configuration = \ PipelineFactory.load(self._experiments_path, self._name, self._results_path) else: self._trainer, self._evaluator = PipelineFactory.build(self._configuration, self._device_configuration, self._experiments_path, self._name, self._results_path) @property def device_configuration(self): return self._device_configuration @property def experiment_path(self): return self._experiments_path @property def name(self): return self._name @property def seed(self): return self._seed @property def results_path(self): return self._results_path @property def configuration(self): return self._experiment_configuration def train(self): ConsoleLogger.status("Running the experiment called '{}'".format(self._name)) ConsoleLogger.status('Begins to train the model') self._trainer.train() ConsoleLogger.success("Succeed to runned the experiment called '{}'".format(self._name)) def evaluate(self, evaluation_options): ConsoleLogger.status("Running the experiment called '{}'".format(self._name)) ConsoleLogger.status('Begins to evaluate the model') self._evaluator.evaluate(evaluation_options) ConsoleLogger.success("Succeed to runned the experiment called '{}'".format(self._name))
[ "experiments.device_configuration.DeviceConfiguration.load_from_configuration", "experiments.pipeline_factory.PipelineFactory.load", "yaml.dump", "yaml.load", "os.path.isfile", "os.path.isdir", "os.mkdir", "error_handling.console_logger.ConsoleLogger.status", "copy.deepcopy", "experiments.pipeline_factory.PipelineFactory.build" ]
[((5780, 5829), 'error_handling.console_logger.ConsoleLogger.status', 'ConsoleLogger.status', (['"""Begins to train the model"""'], {}), "('Begins to train the model')\n", (5800, 5829), False, 'from error_handling.console_logger import ConsoleLogger\n'), ((6096, 6148), 'error_handling.console_logger.ConsoleLogger.status', 'ConsoleLogger.status', (['"""Begins to evaluate the model"""'], {}), "('Begins to evaluate the model')\n", (6116, 6148), False, 'from error_handling.console_logger import ConsoleLogger\n'), ((2883, 2910), 'os.path.isdir', 'os.path.isdir', (['results_path'], {}), '(results_path)\n', (2896, 2910), False, 'import os\n'), ((3020, 3042), 'os.mkdir', 'os.mkdir', (['results_path'], {}), '(results_path)\n', (3028, 3042), False, 'import os\n'), ((3244, 3275), 'os.path.isdir', 'os.path.isdir', (['experiments_path'], {}), '(experiments_path)\n', (3257, 3275), False, 'import os\n'), ((3393, 3419), 'os.mkdir', 'os.mkdir', (['experiments_path'], {}), '(experiments_path)\n', (3401, 3419), False, 'import os\n'), ((3696, 3742), 'os.path.isfile', 'os.path.isfile', (['experiments_configuration_path'], {}), '(experiments_configuration_path)\n', (3710, 3742), False, 'import os\n'), ((3845, 3910), 'experiments.device_configuration.DeviceConfiguration.load_from_configuration', 'DeviceConfiguration.load_from_configuration', (['global_configuration'], {}), '(global_configuration)\n', (3888, 3910), False, 'from experiments.device_configuration import DeviceConfiguration\n'), ((4046, 4087), 'copy.deepcopy', 'copy.deepcopy', (['self._global_configuration'], {}), '(self._global_configuration)\n', (4059, 4087), False, 'import copy\n'), ((4919, 4995), 'experiments.pipeline_factory.PipelineFactory.load', 'PipelineFactory.load', (['self._experiments_path', 'self._name', 'self._results_path'], {}), '(self._experiments_path, self._name, self._results_path)\n', (4939, 4995), False, 'from experiments.pipeline_factory import PipelineFactory\n'), ((5055, 5186), 'experiments.pipeline_factory.PipelineFactory.build', 'PipelineFactory.build', (['self._configuration', 'self._device_configuration', 'self._experiments_path', 'self._name', 'self._results_path'], {}), '(self._configuration, self._device_configuration, self\n ._experiments_path, self._name, self._results_path)\n', (5076, 5186), False, 'from experiments.pipeline_factory import PipelineFactory\n'), ((4453, 4489), 'yaml.dump', 'yaml.dump', (['self._configuration', 'file'], {}), '(self._configuration, file)\n', (4462, 4489), False, 'import yaml\n'), ((4610, 4649), 'yaml.load', 'yaml.load', (['file'], {'Loader': 'yaml.FullLoader'}), '(file, Loader=yaml.FullLoader)\n', (4619, 4649), False, 'import yaml\n'), ((4695, 4759), 'experiments.device_configuration.DeviceConfiguration.load_from_configuration', 'DeviceConfiguration.load_from_configuration', (['self._configuration'], {}), '(self._configuration)\n', (4738, 4759), False, 'from experiments.device_configuration import DeviceConfiguration\n')]
#!/usr/bin/env python # Beware: # - this script is executed using the system's python, so with not easy control on which # packages are available. Same, we cannot directly install new ones using pip. from __future__ import absolute_import from __future__ import division from __future__ import print_function #################################################################################################### # Default settings settings = { 'requires_root': True, } #################################################################################################### # Imports import os import subprocess import sys # Do *not* use optparse or argparse here, we are not sure on which version of python we are! #################################################################################################### # Utility functions #################################################################################################### #################################################################################################### # Color terminal class bcolors(object): HEADER = '\033[95m' OKBLUE = '\033[96m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' BOLD = '\033[1m' UNDERLINE = '\033[4m' BOOT = '\033[94m' ENDC = '\033[0m' # Do *not* use color when: # - on windows # - not in a terminal except if we are in Travis CI if sys.platform.startswith('win32') or (not os.environ.get("TRAVIS") and not sys.stdout.isatty()): bcolors.HEADER = '' bcolors.OKBLUE = '' bcolors.OKGREEN = '' bcolors.WARNING = '' bcolors.FAIL = '' bcolors.BOLD = '' bcolors.UNDERLINE = '' bcolors.ENDC = '' #################################################################################################### # Log functions def flush(): sys.stdout.flush() sys.stderr.flush() def printNewSection(char): print(bcolors.OKBLUE + char * 79) flush() def printInfo(text): print(bcolors.OKBLUE + bcolors.OKBLUE + "[INFO ] " + bcolors.ENDC + text) flush() def printError(text): print(bcolors.FAIL + "[ERROR ] " + bcolors.ENDC + text, file=sys.stderr) flush() def printCmd(text): print(bcolors.OKGREEN + "[CMD ] " + bcolors.ENDC + text) flush() def printRootCmd(text): print(bcolors.OKGREEN + "[ROOT CMD] " + bcolors.ENDC + text) flush() def printCmdBg(text): print(bcolors.OKGREEN + "[CMD (bg)] " + bcolors.ENDC + text) flush() def printDetail(text): print(bcolors.HEADER + "[DETAIL ] " + bcolors.ENDC + text) flush() def run(cmd, cwd=None, shell=False): printCmd("{0}".format(" ".join(cmd))) subprocess.check_call(cmd, shell=shell, cwd=cwd) def runAsRoot(cmd, cwd=None, shell=False): if os.geteuid() != 0: cmd = ['sudo'] + cmd printRootCmd("{0}".format(" ".join(cmd))) else: printCmd("(already root) {0}".format(" ".join(cmd))) subprocess.check_call(cmd, shell=shell, cwd=cwd) #################################################################################################### # run external tools methods def call(cmd, cwd=None, shell=False): printCmd("{0}".format(" ".join(cmd))) return subprocess.call(cmd, shell=shell, cwd=cwd) def runBackground(cmd, cwd=None, shell=False): printCmdBg(" ".join(cmd)) subprocess.Popen(cmd, cwd=cwd, shell=shell) def runAsRootIfNeeded(cmd, cwd=None, shell=False): if settings['requires_root']: runAsRoot(cmd, cwd=cwd, shell=shell) else: run(cmd, cwd=cwd, shell=shell) #################################################################################################### # print usage to the user def usage(): print("Usage: ./install/install.sh [-l|-d|-b|-h]") print("") print("Uninstall with './install/uninstall.py'") #################################################################################################### # parse command line action = "none" if len(sys.argv) > 1: args = sys.argv[:] while args: executable = args.pop(0) cmd = args.pop(0) if cmd == "-h": usage() sys.exit(0) else: raise Exception("Invalid parameter: {!r}".format(cmd)) else: action = "default_install" if sys.version_info < (2, 6): raise "must use python 2.7.x. Current version is: {}.".format(sys.version_info) #################################################################################################### # execute actions printNewSection("=") printInfo("Installing ppb command line tool") root_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir)) src_path = os.path.join(root_path, "src") printDetail("Installation source: {0}".format(src_path)) runAsRootIfNeeded(["pip", "install", "-e", src_path]) printInfo("Installation complete") printNewSection("=")
[ "subprocess.check_call", "subprocess.Popen", "sys.stderr.flush", "os.path.join", "sys.platform.startswith", "os.geteuid", "os.environ.get", "os.path.dirname", "sys.stdout.isatty", "subprocess.call", "sys.exit", "sys.stdout.flush" ]
[((4674, 4704), 'os.path.join', 'os.path.join', (['root_path', '"""src"""'], {}), "(root_path, 'src')\n", (4686, 4704), False, 'import os\n'), ((1402, 1434), 'sys.platform.startswith', 'sys.platform.startswith', (['"""win32"""'], {}), "('win32')\n", (1425, 1434), False, 'import sys\n'), ((1827, 1845), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1843, 1845), False, 'import sys\n'), ((1850, 1868), 'sys.stderr.flush', 'sys.stderr.flush', ([], {}), '()\n', (1866, 1868), False, 'import sys\n'), ((2668, 2716), 'subprocess.check_call', 'subprocess.check_call', (['cmd'], {'shell': 'shell', 'cwd': 'cwd'}), '(cmd, shell=shell, cwd=cwd)\n', (2689, 2716), False, 'import subprocess\n'), ((2942, 2990), 'subprocess.check_call', 'subprocess.check_call', (['cmd'], {'shell': 'shell', 'cwd': 'cwd'}), '(cmd, shell=shell, cwd=cwd)\n', (2963, 2990), False, 'import subprocess\n'), ((3215, 3257), 'subprocess.call', 'subprocess.call', (['cmd'], {'shell': 'shell', 'cwd': 'cwd'}), '(cmd, shell=shell, cwd=cwd)\n', (3230, 3257), False, 'import subprocess\n'), ((3341, 3384), 'subprocess.Popen', 'subprocess.Popen', (['cmd'], {'cwd': 'cwd', 'shell': 'shell'}), '(cmd, cwd=cwd, shell=shell)\n', (3357, 3384), False, 'import subprocess\n'), ((2769, 2781), 'os.geteuid', 'os.geteuid', ([], {}), '()\n', (2779, 2781), False, 'import os\n'), ((4624, 4649), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (4639, 4649), False, 'import os\n'), ((1443, 1467), 'os.environ.get', 'os.environ.get', (['"""TRAVIS"""'], {}), "('TRAVIS')\n", (1457, 1467), False, 'import os\n'), ((1476, 1495), 'sys.stdout.isatty', 'sys.stdout.isatty', ([], {}), '()\n', (1493, 1495), False, 'import sys\n'), ((4148, 4159), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (4156, 4159), False, 'import sys\n')]
import sys sys.path.insert(0,'./../bail-lib/') import price print (price.bithumb.BTC) print(price.coinone.XRP) print(price.korbit.ETH)
[ "sys.path.insert" ]
[((11, 47), 'sys.path.insert', 'sys.path.insert', (['(0)', '"""./../bail-lib/"""'], {}), "(0, './../bail-lib/')\n", (26, 47), False, 'import sys\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- ''' Author: <NAME> (<EMAIL>) Created Date: 2019-10-07 8:47:35 ----- Last Modified: 2019-10-07 8:50:30 Modified By: <NAME> (<EMAIL>) ----- THIS PROGRAM IS FREE SOFTWARE, IS LICENSED UNDER MIT. A short and simple permissive license with conditions only requiring preservation of copyright and license notices. Copyright © 2019 <NAME> ----- HISTORY: Date By Comments ---------- -------- --------------------------------------------------------- ''' import pytest class DB: def __init__(self): self.intransaction = [] def begin(self, name): self.intransaction.append(name) def rollback(self): self.intransaction.pop() @pytest.fixture(scope="module") def db(): return DB() class TestClass: @pytest.fixture(autouse=True) def transact(self, request, db): db.begin(request.function.__name__) yield db.rollback() def test_method1(self, db): assert db.intransaction == ["test_method1"] def test_method2(self, db): assert db.intransaction == ["test_method2"]
[ "pytest.fixture" ]
[((722, 752), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (736, 752), False, 'import pytest\n'), ((803, 831), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (817, 831), False, 'import pytest\n')]
from twisted.internet import process, protocol, defer from twisted.python import failure class PwgenException(Exception): pass class ReadPassword(protocol.ProcessProtocol): def __init__(self, deferred, count=1): self.deferred=deferred self.count=count self.stdout='' self.stderr='' def outReceived(self, data): self.stdout=self.stdout+data def errReceived(self, data): self.stderr=self.stderr+data def processEnded(self, reason): if self.stderr: self.deferred.errback(failure.Failure( PwgenException(reason, self.stderr))) elif self.stdout: lines=[x for x in self.stdout.split('\n') if x] if len(lines)!=self.count: self.deferred.errback(failure.Failure( PwgenException(reason, 'Wrong number of lines received.'))) self.deferred.callback(lines) else: self.deferred.errback(failure.Failure(PwgenException(reason, ''))) def generate(reactor, n=1): assert n>0 d=defer.Deferred() proto=ReadPassword(d, n) process.Process(reactor, 'pwgen', ('pwgen', '-cn1', '-N', '%d'%n), {}, None, proto) return d if __name__=='__main__': from twisted.internet import reactor import sys def say(passwords): for p in passwords: sys.stdout.write('%s\n' % p) return passwords def err(fail): fail.trap(PwgenException) sys.stderr.write('pwgen: %s\n' % fail.getErrorMessage()) # Could get more passwords in one fork, but this stresses it more # on purpose. l=[] for i in range(5): d=generate(reactor, 5) d.addCallbacks(say, err) l.append(d) dl=defer.DeferredList(l) dl.addBoth(lambda dummy: reactor.stop()) reactor.run()
[ "twisted.internet.process.Process", "twisted.internet.reactor.stop", "twisted.internet.defer.DeferredList", "twisted.internet.reactor.run", "twisted.internet.defer.Deferred", "sys.stdout.write" ]
[((1077, 1093), 'twisted.internet.defer.Deferred', 'defer.Deferred', ([], {}), '()\n', (1091, 1093), False, 'from twisted.internet import process, protocol, defer\n'), ((1127, 1216), 'twisted.internet.process.Process', 'process.Process', (['reactor', '"""pwgen"""', "('pwgen', '-cn1', '-N', '%d' % n)", '{}', 'None', 'proto'], {}), "(reactor, 'pwgen', ('pwgen', '-cn1', '-N', '%d' % n), {},\n None, proto)\n", (1142, 1216), False, 'from twisted.internet import process, protocol, defer\n'), ((1756, 1777), 'twisted.internet.defer.DeferredList', 'defer.DeferredList', (['l'], {}), '(l)\n', (1774, 1777), False, 'from twisted.internet import process, protocol, defer\n'), ((1827, 1840), 'twisted.internet.reactor.run', 'reactor.run', ([], {}), '()\n', (1838, 1840), False, 'from twisted.internet import reactor\n'), ((1370, 1398), 'sys.stdout.write', 'sys.stdout.write', (["('%s\\n' % p)"], {}), "('%s\\n' % p)\n", (1386, 1398), False, 'import sys\n'), ((1807, 1821), 'twisted.internet.reactor.stop', 'reactor.stop', ([], {}), '()\n', (1819, 1821), False, 'from twisted.internet import reactor\n')]
import esphome.codegen as cg import esphome.config_validation as cv from esphome.components import light, output from esphome.const import ( CONF_BLUE, CONF_COLOR_INTERLOCK, CONF_COLOR_TEMPERATURE, CONF_GREEN, CONF_RED, CONF_OUTPUT_ID, CONF_COLD_WHITE_COLOR_TEMPERATURE, CONF_WARM_WHITE_COLOR_TEMPERATURE, ) CODEOWNERS = ["@jesserockz"] rgbct_ns = cg.esphome_ns.namespace("rgbct") RGBCTLightOutput = rgbct_ns.class_("RGBCTLightOutput", light.LightOutput) CONF_WHITE_BRIGHTNESS = "white_brightness" CONFIG_SCHEMA = cv.All( light.RGB_LIGHT_SCHEMA.extend( { cv.GenerateID(CONF_OUTPUT_ID): cv.declare_id(RGBCTLightOutput), cv.Required(CONF_RED): cv.use_id(output.FloatOutput), cv.Required(CONF_GREEN): cv.use_id(output.FloatOutput), cv.Required(CONF_BLUE): cv.use_id(output.FloatOutput), cv.Required(CONF_COLOR_TEMPERATURE): cv.use_id(output.FloatOutput), cv.Required(CONF_WHITE_BRIGHTNESS): cv.use_id(output.FloatOutput), cv.Required(CONF_COLD_WHITE_COLOR_TEMPERATURE): cv.color_temperature, cv.Required(CONF_WARM_WHITE_COLOR_TEMPERATURE): cv.color_temperature, cv.Optional(CONF_COLOR_INTERLOCK, default=False): cv.boolean, } ), light.validate_color_temperature_channels, ) async def to_code(config): var = cg.new_Pvariable(config[CONF_OUTPUT_ID]) await light.register_light(var, config) red = await cg.get_variable(config[CONF_RED]) cg.add(var.set_red(red)) green = await cg.get_variable(config[CONF_GREEN]) cg.add(var.set_green(green)) blue = await cg.get_variable(config[CONF_BLUE]) cg.add(var.set_blue(blue)) color_temp = await cg.get_variable(config[CONF_COLOR_TEMPERATURE]) cg.add(var.set_color_temperature(color_temp)) white_brightness = await cg.get_variable(config[CONF_WHITE_BRIGHTNESS]) cg.add(var.set_white_brightness(white_brightness)) cg.add(var.set_cold_white_temperature(config[CONF_COLD_WHITE_COLOR_TEMPERATURE])) cg.add(var.set_warm_white_temperature(config[CONF_WARM_WHITE_COLOR_TEMPERATURE])) cg.add(var.set_color_interlock(config[CONF_COLOR_INTERLOCK]))
[ "esphome.codegen.new_Pvariable", "esphome.codegen.get_variable", "esphome.config_validation.Optional", "esphome.components.light.register_light", "esphome.config_validation.Required", "esphome.config_validation.declare_id", "esphome.codegen.esphome_ns.namespace", "esphome.config_validation.GenerateID", "esphome.config_validation.use_id" ]
[((382, 414), 'esphome.codegen.esphome_ns.namespace', 'cg.esphome_ns.namespace', (['"""rgbct"""'], {}), "('rgbct')\n", (405, 414), True, 'import esphome.codegen as cg\n'), ((1382, 1422), 'esphome.codegen.new_Pvariable', 'cg.new_Pvariable', (['config[CONF_OUTPUT_ID]'], {}), '(config[CONF_OUTPUT_ID])\n', (1398, 1422), True, 'import esphome.codegen as cg\n'), ((1433, 1466), 'esphome.components.light.register_light', 'light.register_light', (['var', 'config'], {}), '(var, config)\n', (1453, 1466), False, 'from esphome.components import light, output\n'), ((1484, 1517), 'esphome.codegen.get_variable', 'cg.get_variable', (['config[CONF_RED]'], {}), '(config[CONF_RED])\n', (1499, 1517), True, 'import esphome.codegen as cg\n'), ((1565, 1600), 'esphome.codegen.get_variable', 'cg.get_variable', (['config[CONF_GREEN]'], {}), '(config[CONF_GREEN])\n', (1580, 1600), True, 'import esphome.codegen as cg\n'), ((1651, 1685), 'esphome.codegen.get_variable', 'cg.get_variable', (['config[CONF_BLUE]'], {}), '(config[CONF_BLUE])\n', (1666, 1685), True, 'import esphome.codegen as cg\n'), ((1741, 1788), 'esphome.codegen.get_variable', 'cg.get_variable', (['config[CONF_COLOR_TEMPERATURE]'], {}), '(config[CONF_COLOR_TEMPERATURE])\n', (1756, 1788), True, 'import esphome.codegen as cg\n'), ((1868, 1914), 'esphome.codegen.get_variable', 'cg.get_variable', (['config[CONF_WHITE_BRIGHTNESS]'], {}), '(config[CONF_WHITE_BRIGHTNESS])\n', (1883, 1914), True, 'import esphome.codegen as cg\n'), ((615, 644), 'esphome.config_validation.GenerateID', 'cv.GenerateID', (['CONF_OUTPUT_ID'], {}), '(CONF_OUTPUT_ID)\n', (628, 644), True, 'import esphome.config_validation as cv\n'), ((691, 712), 'esphome.config_validation.Required', 'cv.Required', (['CONF_RED'], {}), '(CONF_RED)\n', (702, 712), True, 'import esphome.config_validation as cv\n'), ((757, 780), 'esphome.config_validation.Required', 'cv.Required', (['CONF_GREEN'], {}), '(CONF_GREEN)\n', (768, 780), True, 'import esphome.config_validation as cv\n'), ((825, 847), 'esphome.config_validation.Required', 'cv.Required', (['CONF_BLUE'], {}), '(CONF_BLUE)\n', (836, 847), True, 'import esphome.config_validation as cv\n'), ((892, 927), 'esphome.config_validation.Required', 'cv.Required', (['CONF_COLOR_TEMPERATURE'], {}), '(CONF_COLOR_TEMPERATURE)\n', (903, 927), True, 'import esphome.config_validation as cv\n'), ((972, 1006), 'esphome.config_validation.Required', 'cv.Required', (['CONF_WHITE_BRIGHTNESS'], {}), '(CONF_WHITE_BRIGHTNESS)\n', (983, 1006), True, 'import esphome.config_validation as cv\n'), ((1051, 1097), 'esphome.config_validation.Required', 'cv.Required', (['CONF_COLD_WHITE_COLOR_TEMPERATURE'], {}), '(CONF_COLD_WHITE_COLOR_TEMPERATURE)\n', (1062, 1097), True, 'import esphome.config_validation as cv\n'), ((1133, 1179), 'esphome.config_validation.Required', 'cv.Required', (['CONF_WARM_WHITE_COLOR_TEMPERATURE'], {}), '(CONF_WARM_WHITE_COLOR_TEMPERATURE)\n', (1144, 1179), True, 'import esphome.config_validation as cv\n'), ((1215, 1263), 'esphome.config_validation.Optional', 'cv.Optional', (['CONF_COLOR_INTERLOCK'], {'default': '(False)'}), '(CONF_COLOR_INTERLOCK, default=False)\n', (1226, 1263), True, 'import esphome.config_validation as cv\n'), ((646, 677), 'esphome.config_validation.declare_id', 'cv.declare_id', (['RGBCTLightOutput'], {}), '(RGBCTLightOutput)\n', (659, 677), True, 'import esphome.config_validation as cv\n'), ((714, 743), 'esphome.config_validation.use_id', 'cv.use_id', (['output.FloatOutput'], {}), '(output.FloatOutput)\n', (723, 743), True, 'import esphome.config_validation as cv\n'), ((782, 811), 'esphome.config_validation.use_id', 'cv.use_id', (['output.FloatOutput'], {}), '(output.FloatOutput)\n', (791, 811), True, 'import esphome.config_validation as cv\n'), ((849, 878), 'esphome.config_validation.use_id', 'cv.use_id', (['output.FloatOutput'], {}), '(output.FloatOutput)\n', (858, 878), True, 'import esphome.config_validation as cv\n'), ((929, 958), 'esphome.config_validation.use_id', 'cv.use_id', (['output.FloatOutput'], {}), '(output.FloatOutput)\n', (938, 958), True, 'import esphome.config_validation as cv\n'), ((1008, 1037), 'esphome.config_validation.use_id', 'cv.use_id', (['output.FloatOutput'], {}), '(output.FloatOutput)\n', (1017, 1037), True, 'import esphome.config_validation as cv\n')]
"""isort:skip_file.""" import argparse import os import sys sys.path.append("../") import numpy as np import torch from beta_rec.core.train_engine import TrainEngine from beta_rec.models.sgl import SGLEngine from beta_rec.utils.monitor import Monitor def parse_args(): """Parse args from command line. Returns: args object. """ parser = argparse.ArgumentParser(description="Run SGL..") parser.add_argument( "--config_file", nargs="?", type=str, default="../configs/sgl_default.json", help="Specify the config file name. Only accept a file from ../configs/", ) # If the following settings are specified with command line, # These settings will used to update the parameters received from the config file. parser.add_argument( "--emb_dim", nargs="?", type=int, help="Dimension of the embedding." ) parser.add_argument( "--tune", nargs="?", type=str, default=False, help="Tun parameter", ) parser.add_argument("--lr", nargs="?", type=float, help="Initialize learning rate.") parser.add_argument("--max_epoch", nargs="?", type=int, help="Number of max epoch.") parser.add_argument( "--batch_size", nargs="?", type=int, help="Batch size for training." ) return parser.parse_args() def _convert_sp_mat_to_sp_tensor(X): coo = X.tocoo().astype(np.float32) indices = np.mat([coo.row, coo.col]) return torch.sparse_coo_tensor(torch.tensor(indices), coo.data, coo.shape) def _convert_csr_to_sparse_tensor_inputs(X): coo = X.tocoo() indices = np.mat([coo.row, coo.col]) return indices, coo.data, coo.shape class SGL_train(TrainEngine): """An instance class from the TrainEngine base class.""" def __init__(self, config): """Initialize SGL_train Class. Args: config (dict): All the parameters for the model. """ self.config = config super(SGL_train, self).__init__(config) self.load_dataset() self.build_data_loader() self.engine = SGLEngine(self.config) def build_data_loader(self): self.config["model"]["n_users"] = self.data.n_users self.config["model"]["n_items"] = self.data.n_items norm_adj = self.data.create_sgl_mat(self.config) self.config["model"]["norm_adj"] = norm_adj def train(self): """Train the model.""" self.monitor = Monitor( log_dir=self.config["system"]["run_dir"], delay=1, gpu_id=self.gpu_id ) self.model_save_dir = os.path.join( self.config["system"]["model_save_dir"], self.config["model"]["save_name"] ) self.engine = SGLEngine(self.config) train_loader = self.data.instance_bpr_loader( batch_size=self.config["model"]["batch_size"], device=self.config["model"]["device_str"], ) self._train(self.engine, train_loader, self.model_save_dir) self.config["run_time"] = self.monitor.stop() return self.eval_engine.best_valid_performance if __name__ == "__main__": args = parse_args() train_engine = SGL_train(args) train_engine.train() train_engine.test()
[ "beta_rec.models.sgl.SGLEngine", "numpy.mat", "beta_rec.utils.monitor.Monitor", "argparse.ArgumentParser", "os.path.join", "torch.tensor", "sys.path.append" ]
[((61, 83), 'sys.path.append', 'sys.path.append', (['"""../"""'], {}), "('../')\n", (76, 83), False, 'import sys\n'), ((367, 415), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run SGL.."""'}), "(description='Run SGL..')\n", (390, 415), False, 'import argparse\n'), ((1447, 1473), 'numpy.mat', 'np.mat', (['[coo.row, coo.col]'], {}), '([coo.row, coo.col])\n', (1453, 1473), True, 'import numpy as np\n'), ((1634, 1660), 'numpy.mat', 'np.mat', (['[coo.row, coo.col]'], {}), '([coo.row, coo.col])\n', (1640, 1660), True, 'import numpy as np\n'), ((1509, 1530), 'torch.tensor', 'torch.tensor', (['indices'], {}), '(indices)\n', (1521, 1530), False, 'import torch\n'), ((2114, 2136), 'beta_rec.models.sgl.SGLEngine', 'SGLEngine', (['self.config'], {}), '(self.config)\n', (2123, 2136), False, 'from beta_rec.models.sgl import SGLEngine\n'), ((2476, 2554), 'beta_rec.utils.monitor.Monitor', 'Monitor', ([], {'log_dir': "self.config['system']['run_dir']", 'delay': '(1)', 'gpu_id': 'self.gpu_id'}), "(log_dir=self.config['system']['run_dir'], delay=1, gpu_id=self.gpu_id)\n", (2483, 2554), False, 'from beta_rec.utils.monitor import Monitor\n'), ((2607, 2700), 'os.path.join', 'os.path.join', (["self.config['system']['model_save_dir']", "self.config['model']['save_name']"], {}), "(self.config['system']['model_save_dir'], self.config['model'][\n 'save_name'])\n", (2619, 2700), False, 'import os\n'), ((2740, 2762), 'beta_rec.models.sgl.SGLEngine', 'SGLEngine', (['self.config'], {}), '(self.config)\n', (2749, 2762), False, 'from beta_rec.models.sgl import SGLEngine\n')]
import numpy as np class BaseTransform(object): """ Base class for transforms, clipping, normalize, centralize, standardize etc. Note that all inherited class should support only scalar value or 1-dim vector. Because it has much higher risk to introduce bugs with larger dimensionality. It is recommended to convert all numpy processed data to type, np.float32 becuase it is more compatible with PyTorch. Numpy default float64 often can lead to numerical issues or raised exceptions in PyTorch. Similarly for np.int32. """ def __call__(self, x): """ Process the input data Args: x (scalar/list/ndarray): input data Returns: out: The processed data """ raise NotImplementedError def make_input(self, x): """ Conver the input as scalar or 1-dim ndarray 1. scalar: retain the same 2. list: convert to 1-dim ndarray with shape [D] Args: x (scalar/list/ndarray): input data Returns: x (ndarray): converted data """ # Enforce tuple becomes list if isinstance(x, tuple): x = list(x) if np.isscalar(x) or isinstance(x, (list, np.ndarray)): # scalar, list or ndarray x = np.array(x) # Convert to type of int32 or float32 with compatibility to PyTorch if x.dtype == np.int: x = x.astype(np.int32) elif x.dtype == np.float: x = x.astype(np.float32) if x.ndim <= 1: return x else: raise ValueError('Only scalar or 1-dim vector are supported. ') else: raise TypeError('Only following types are supported: scalar, list, ndarray. ')
[ "numpy.array", "numpy.isscalar" ]
[((1299, 1313), 'numpy.isscalar', 'np.isscalar', (['x'], {}), '(x)\n', (1310, 1313), True, 'import numpy as np\n'), ((1395, 1406), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1403, 1406), True, 'import numpy as np\n')]
# pylint: disable=bad-indentation import logging import importlib import traceback from pathlib import Path import numpy as np import SimpleITK as sitk import vtk, qt, ctk, slicer import sitkUtils as su from slicer.ScriptedLoadableModule import ( ScriptedLoadableModule, ScriptedLoadableModuleWidget, ScriptedLoadableModuleLogic, ScriptedLoadableModuleTest, ) try: import torchio except ImportError: repoDir = Path('~/git/resector').expanduser() slicer.util.pip_install(f'--editable {repoDir}') import resector class Resector(ScriptedLoadableModule): def __init__(self, parent): ScriptedLoadableModule.__init__(self, parent) self.parent.title = "Resector" self.parent.categories = ["Utilities"] self.parent.dependencies = [] self.parent.contributors = [ "<NAME> (University College London)", ] self.parent.helpText = """[This is the help text.] """ self.parent.helpText += self.getDefaultModuleDocumentationLink( docPage='https://github.com/fepegar/resector') self.parent.acknowledgementText = """ University College London. """ class ResectorWidget(ScriptedLoadableModuleWidget): def setup(self): ScriptedLoadableModuleWidget.setup(self) self.logic = ResectorLogic() self.makeGUI() self.onVolumeSelectorModified() slicer.torchio = self import SampleData SampleData.downloadSample('MRHead') def makeGUI(self): self.addNodesButton() self.addApplyButton() # Add vertical spacer self.layout.addStretch(1) def addNodesButton(self): self.nodesButton = ctk.ctkCollapsibleButton() self.nodesButton.text = 'Volumes' self.layout.addWidget(self.nodesButton) nodesLayout = qt.QFormLayout(self.nodesButton) self.inputSelector = slicer.qMRMLNodeComboBox() self.inputSelector.nodeTypes = ['vtkMRMLScalarVolumeNode'] self.inputSelector.addEnabled = False self.inputSelector.removeEnabled = True self.inputSelector.noneEnabled = False self.inputSelector.setMRMLScene(slicer.mrmlScene) self.inputSelector.currentNodeChanged.connect(self.onVolumeSelectorModified) nodesLayout.addRow('Input volume: ', self.inputSelector) self.inputLabelSelector = slicer.qMRMLNodeComboBox() self.inputLabelSelector.nodeTypes = ['vtkMRMLLabelMapVolumeNode', 'vtkMRMLSegmentationNode'] self.inputLabelSelector.addEnabled = False self.inputLabelSelector.removeEnabled = True self.inputLabelSelector.noneEnabled = False self.inputLabelSelector.setMRMLScene(slicer.mrmlScene) self.inputLabelSelector.currentNodeChanged.connect(self.onVolumeSelectorModified) nodesLayout.addRow('Parcellation: ', self.inputLabelSelector) self.outputSelector = slicer.qMRMLNodeComboBox() self.outputSelector.nodeTypes = ['vtkMRMLScalarVolumeNode'] self.outputSelector.addEnabled = False self.outputSelector.removeEnabled = True self.outputSelector.noneEnabled = True self.outputSelector.setMRMLScene(slicer.mrmlScene) self.outputSelector.noneDisplay = 'Create new volume' self.outputSelector.currentNodeChanged.connect(self.onVolumeSelectorModified) nodesLayout.addRow('Output volume: ', self.outputSelector) def addApplyButton(self): self.applyButton = qt.QPushButton('Apply') self.layout.addWidget(self.applyButton) def onVolumeSelectorModified(self): self.applyButton.setDisabled( self.inputSelector.currentNode() is None or self.currentTransform is None ) def onApplyButton(self): inputVolumeNode = self.inputSelector.currentNode() inputLabelNode = self.inputLabelSelector.currentNode() outputVolumeNode = self.outputSelector.currentNode() if outputVolumeNode is None: name = f'{inputVolumeNode.GetName()} {self.currentTransform.name}' outputVolumeNode = slicer.mrmlScene.AddNewNodeByClass( 'vtkMRMLScalarVolumeNode', name, ) self.outputSelector.currentNodeID = outputVolumeNode.GetID() try: kwargs = self.currentTransform.getKwargs() logging.info(f'Transform args: {kwargs}') outputImage = self.currentTransform(inputVolumeNode) except Exception as e: tb = traceback.format_exc() message = ( f'Resector returned the error: {tb}' f'\n\nTransform kwargs:\n{kwargs}' ) slicer.util.errorDisplay(message) return su.PushVolumeToSlicer(outputImage, targetNode=outputVolumeNode) slicer.util.setSliceViewerLayers(background=outputVolumeNode) class ResectorLogic(ScriptedLoadableModuleLogic): pass class ResectorTest(ScriptedLoadableModuleTest): """ This is the test case for your scripted module. Uses ScriptedLoadableModuleTest base class, available at: https://github.com/Slicer/Slicer/blob/master/Base/Python/slicer/ScriptedLoadableModule.py """ def setUp(self): """ Do whatever is needed to reset the state - typically a scene clear will be enough. """ slicer.mrmlScene.Clear(0) def runTest(self): """Run as few or as many tests as needed here. """ self.setUp() self.test_Resector1() def test_Resector1(self): """ Ideally you should have several levels of tests. At the lowest level tests should exercise the functionality of the logic with different inputs (both valid and invalid). At higher levels your tests should emulate the way the user would interact with your code and confirm that it still works the way you intended. One of the most important features of the tests is that it should alert other developers when their changes will have an impact on the behavior of your module. For example, if a developer removes a feature that you depend on, your test should break so they know that the feature is needed. """ self.delayDisplay("Starting the test") # # first, get some data # import SampleData SampleData.downloadFromURL( nodeNames='FA', fileNames='FA.nrrd', uris='http://slicer.kitware.com/midas3/download?items=5767', checksums='SHA256:12d17fba4f2e1f1a843f0757366f28c3f3e1a8bb38836f0de2a32bb1cd476560') self.delayDisplay('Finished with download and loading') volumeNode = slicer.util.getNode(pattern="FA") self.delayDisplay('Test passed!')
[ "slicer.ScriptedLoadableModule.ScriptedLoadableModule.__init__", "traceback.format_exc", "sitkUtils.PushVolumeToSlicer", "slicer.mrmlScene.Clear", "qt.QPushButton", "slicer.mrmlScene.AddNewNodeByClass", "pathlib.Path", "slicer.util.errorDisplay", "slicer.ScriptedLoadableModule.ScriptedLoadableModuleWidget.setup", "ctk.ctkCollapsibleButton", "logging.info", "slicer.util.pip_install", "slicer.util.getNode", "qt.QFormLayout", "slicer.util.setSliceViewerLayers", "SampleData.downloadSample", "SampleData.downloadFromURL", "slicer.qMRMLNodeComboBox" ]
[((464, 512), 'slicer.util.pip_install', 'slicer.util.pip_install', (['f"""--editable {repoDir}"""'], {}), "(f'--editable {repoDir}')\n", (487, 512), False, 'import vtk, qt, ctk, slicer\n'), ((608, 653), 'slicer.ScriptedLoadableModule.ScriptedLoadableModule.__init__', 'ScriptedLoadableModule.__init__', (['self', 'parent'], {}), '(self, parent)\n', (639, 653), False, 'from slicer.ScriptedLoadableModule import ScriptedLoadableModule, ScriptedLoadableModuleWidget, ScriptedLoadableModuleLogic, ScriptedLoadableModuleTest\n'), ((1192, 1232), 'slicer.ScriptedLoadableModule.ScriptedLoadableModuleWidget.setup', 'ScriptedLoadableModuleWidget.setup', (['self'], {}), '(self)\n', (1226, 1232), False, 'from slicer.ScriptedLoadableModule import ScriptedLoadableModule, ScriptedLoadableModuleWidget, ScriptedLoadableModuleLogic, ScriptedLoadableModuleTest\n'), ((1373, 1408), 'SampleData.downloadSample', 'SampleData.downloadSample', (['"""MRHead"""'], {}), "('MRHead')\n", (1398, 1408), False, 'import SampleData\n'), ((1591, 1617), 'ctk.ctkCollapsibleButton', 'ctk.ctkCollapsibleButton', ([], {}), '()\n', (1615, 1617), False, 'import vtk, qt, ctk, slicer\n'), ((1718, 1750), 'qt.QFormLayout', 'qt.QFormLayout', (['self.nodesButton'], {}), '(self.nodesButton)\n', (1732, 1750), False, 'import vtk, qt, ctk, slicer\n'), ((1777, 1803), 'slicer.qMRMLNodeComboBox', 'slicer.qMRMLNodeComboBox', ([], {}), '()\n', (1801, 1803), False, 'import vtk, qt, ctk, slicer\n'), ((2223, 2249), 'slicer.qMRMLNodeComboBox', 'slicer.qMRMLNodeComboBox', ([], {}), '()\n', (2247, 2249), False, 'import vtk, qt, ctk, slicer\n'), ((2729, 2755), 'slicer.qMRMLNodeComboBox', 'slicer.qMRMLNodeComboBox', ([], {}), '()\n', (2753, 2755), False, 'import vtk, qt, ctk, slicer\n'), ((3261, 3284), 'qt.QPushButton', 'qt.QPushButton', (['"""Apply"""'], {}), "('Apply')\n", (3275, 3284), False, 'import vtk, qt, ctk, slicer\n'), ((4382, 4445), 'sitkUtils.PushVolumeToSlicer', 'su.PushVolumeToSlicer', (['outputImage'], {'targetNode': 'outputVolumeNode'}), '(outputImage, targetNode=outputVolumeNode)\n', (4403, 4445), True, 'import sitkUtils as su\n'), ((4450, 4511), 'slicer.util.setSliceViewerLayers', 'slicer.util.setSliceViewerLayers', ([], {'background': 'outputVolumeNode'}), '(background=outputVolumeNode)\n', (4482, 4511), False, 'import vtk, qt, ctk, slicer\n'), ((4958, 4983), 'slicer.mrmlScene.Clear', 'slicer.mrmlScene.Clear', (['(0)'], {}), '(0)\n', (4980, 4983), False, 'import vtk, qt, ctk, slicer\n'), ((5901, 6120), 'SampleData.downloadFromURL', 'SampleData.downloadFromURL', ([], {'nodeNames': '"""FA"""', 'fileNames': '"""FA.nrrd"""', 'uris': '"""http://slicer.kitware.com/midas3/download?items=5767"""', 'checksums': '"""SHA256:12d17fba4f2e1f1a843f0757366f28c3f3e1a8bb38836f0de2a32bb1cd476560"""'}), "(nodeNames='FA', fileNames='FA.nrrd', uris=\n 'http://slicer.kitware.com/midas3/download?items=5767', checksums=\n 'SHA256:12d17fba4f2e1f1a843f0757366f28c3f3e1a8bb38836f0de2a32bb1cd476560')\n", (5927, 6120), False, 'import SampleData\n'), ((6213, 6246), 'slicer.util.getNode', 'slicer.util.getNode', ([], {'pattern': '"""FA"""'}), "(pattern='FA')\n", (6232, 6246), False, 'import vtk, qt, ctk, slicer\n'), ((3825, 3892), 'slicer.mrmlScene.AddNewNodeByClass', 'slicer.mrmlScene.AddNewNodeByClass', (['"""vtkMRMLScalarVolumeNode"""', 'name'], {}), "('vtkMRMLScalarVolumeNode', name)\n", (3859, 3892), False, 'import vtk, qt, ctk, slicer\n'), ((4049, 4090), 'logging.info', 'logging.info', (['f"""Transform args: {kwargs}"""'], {}), "(f'Transform args: {kwargs}')\n", (4061, 4090), False, 'import logging\n'), ((426, 448), 'pathlib.Path', 'Path', (['"""~/git/resector"""'], {}), "('~/git/resector')\n", (430, 448), False, 'from pathlib import Path\n'), ((4188, 4210), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (4208, 4210), False, 'import traceback\n'), ((4331, 4364), 'slicer.util.errorDisplay', 'slicer.util.errorDisplay', (['message'], {}), '(message)\n', (4355, 4364), False, 'import vtk, qt, ctk, slicer\n')]
import sys import pathlib import numpy as np from collections import namedtuple from scipy import interpolate import math from .. import API as ls # Careful with this circular import #%%═════════════════════════════════════════════════════════════════════ # SETUP path_data = pathlib.Path(__file__).parent.absolute() / 'data' Reference = namedtuple('Reference', ['raw','atol','cmethod','ostyle','compressed'], defaults=[1e-5,'interp10','monolith',None]) #%%═════════════════════════════════════════════════════════════════════ # FUNCTIONS ##%%════════════════════════════════════════════════════════════════════ ## Auxiliary functions ##%%═════════════════════════════════════════════════════════════════════ ## Reference functions def f2zero_100(n: int) -> float: '''returns < 0 for values 0 to 100 and >0 for values > 100''' if round(n) != n: raise ValueError('Not whole number') if n < 0: raise ValueError('Input must be >= 0') return np.sqrt(n) - 10.01, True #%%═════════════════════════════════════════════════════════════════════ # Reference raw data def raw_poly0(n = 1e1): x = np.linspace(0,1,int(n)) return x, np.zeros(len(x)) #─────────────────────────────────────────────────────────────────────── def raw_poly1(n = 1e1): x = np.linspace(0,1,int(n)) return x, x #─────────────────────────────────────────────────────────────────────── def raw_poly2(n = 1e2): x = np.linspace(0,1,int(n)) return x, np.array(x**2) #─────────────────────────────────────────────────────────────────────── def raw_sine(n = 1e4): x = np.linspace(0,6,int(n)) return x, np.array(np.sin(x*2*math.pi)) #─────────────────────────────────────────────────────────────────────── def raw_sine_x2(n = 1e4): x = np.linspace(0,6,int(n)) return x, np.array(np.sin(x*x)) #─────────────────────────────────────────────────────────────────────── def raw_sine_normal(n = 1e4, std=0.1): rng = np.random.default_rng(12345) x = np.linspace(0,1,int(n)) return x, np.array(np.sin(x*2*math.pi)) + std*rng.standard_normal(int(n)) #─────────────────────────────────────────────────────────────────────── raw = {'poly0': raw_poly0, 'poly1': raw_poly1, 'poly2': raw_poly2, 'sine': raw_sine} ###═════════════════════════════════════════════════════════════════════ class Data(): '''Data container''' def __init__(self, function, ytol=1e-2): self.x, self.y = raw[function]() self.y_range = np.max(self.y) - np.min(self.y) self.ytol = ytol self.xc = None self.yc = None #─────────────────────────────────────────────────────────────────── def make_lerp(self): self.lerp = interpolate.interp1d(self.xc.flatten(), self.yc.flatten(), assume_sorted=True) self.residuals = self.lerp(self.x) - self.y self.residuals_relative = self.residuals / self.ytol self.residuals_relative_cumulative = np.cumsum(self.residuals_relative) self.NRMSE = np.std(self.residuals)/self.y_range self.covariance = np.cov((self.lerp(self.x), self.y)) #─────────────────────────────────────────────────────────────────────── references = [Reference(raw['poly0'],1e-5,'interp10','monolith')] #─────────────────────────────────────────────────────────────────────── def generate(function, method, ytol=5e-2): data = Data(function, ytol=ytol) data.xc, data.yc, _ = ls.compress(data.x, data.y, method=method, ytol=data.ytol) data.make_lerp() print(np.amax(np.abs(data.residuals_relative))) np.savetxt(path_data / (function+'_'+method+'.csv'), np.concatenate((data.xc, data.yc), axis=1), delimiter=',', header='hmm') return data
[ "numpy.abs", "collections.namedtuple", "numpy.sqrt", "numpy.random.default_rng", "pathlib.Path", "numpy.std", "numpy.max", "numpy.array", "numpy.concatenate", "numpy.min", "numpy.sin", "numpy.cumsum" ]
[((341, 468), 'collections.namedtuple', 'namedtuple', (['"""Reference"""', "['raw', 'atol', 'cmethod', 'ostyle', 'compressed']"], {'defaults': "[1e-05, 'interp10', 'monolith', None]"}), "('Reference', ['raw', 'atol', 'cmethod', 'ostyle', 'compressed'],\n defaults=[1e-05, 'interp10', 'monolith', None])\n", (351, 468), False, 'from collections import namedtuple\n'), ((1978, 2006), 'numpy.random.default_rng', 'np.random.default_rng', (['(12345)'], {}), '(12345)\n', (1999, 2006), True, 'import numpy as np\n'), ((1502, 1518), 'numpy.array', 'np.array', (['(x ** 2)'], {}), '(x ** 2)\n', (1510, 1518), True, 'import numpy as np\n'), ((3028, 3062), 'numpy.cumsum', 'np.cumsum', (['self.residuals_relative'], {}), '(self.residuals_relative)\n', (3037, 3062), True, 'import numpy as np\n'), ((3704, 3746), 'numpy.concatenate', 'np.concatenate', (['(data.xc, data.yc)'], {'axis': '(1)'}), '((data.xc, data.yc), axis=1)\n', (3718, 3746), True, 'import numpy as np\n'), ((1008, 1018), 'numpy.sqrt', 'np.sqrt', (['n'], {}), '(n)\n', (1015, 1018), True, 'import numpy as np\n'), ((1668, 1691), 'numpy.sin', 'np.sin', (['(x * 2 * math.pi)'], {}), '(x * 2 * math.pi)\n', (1674, 1691), True, 'import numpy as np\n'), ((1843, 1856), 'numpy.sin', 'np.sin', (['(x * x)'], {}), '(x * x)\n', (1849, 1856), True, 'import numpy as np\n'), ((2526, 2540), 'numpy.max', 'np.max', (['self.y'], {}), '(self.y)\n', (2532, 2540), True, 'import numpy as np\n'), ((2543, 2557), 'numpy.min', 'np.min', (['self.y'], {}), '(self.y)\n', (2549, 2557), True, 'import numpy as np\n'), ((3084, 3106), 'numpy.std', 'np.std', (['self.residuals'], {}), '(self.residuals)\n', (3090, 3106), True, 'import numpy as np\n'), ((3598, 3629), 'numpy.abs', 'np.abs', (['data.residuals_relative'], {}), '(data.residuals_relative)\n', (3604, 3629), True, 'import numpy as np\n'), ((278, 300), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (290, 300), False, 'import pathlib\n'), ((2062, 2085), 'numpy.sin', 'np.sin', (['(x * 2 * math.pi)'], {}), '(x * 2 * math.pi)\n', (2068, 2085), True, 'import numpy as np\n')]
#!/usr/bin/env python """ Filter out all points in Switzerland """ import csv import sys import os import argparse from decimal import * DELIMITER = os.getenv('DELIMITER', ' ') NORTH = Decimal('89.930459') WEST = Decimal('19.1') EAST = Decimal('179.9') SOUTH = Decimal('0.1') def in_switzerland(coords): lat, lng = coords return lat < NORTH and lat > SOUTH and lng > WEST and lng < EAST if __name__ == '__main__': reader = csv.reader(sys.stdin, delimiter=DELIMITER) writer = csv.writer(sys.stdout, delimiter=DELIMITER) for row in reader: z = int(row[0]) x = int(row[1]) y = int(row[2]) wkt = str(row[3]) v = int(row[4]) lat = Decimal(row[5]) lng = Decimal(row[6]) if in_switzerland((lat, lng)): writer.writerow([z, x, y, wkt, v, lat, lng])
[ "csv.writer", "csv.reader", "os.getenv" ]
[((151, 178), 'os.getenv', 'os.getenv', (['"""DELIMITER"""', '""" """'], {}), "('DELIMITER', ' ')\n", (160, 178), False, 'import os\n'), ((441, 483), 'csv.reader', 'csv.reader', (['sys.stdin'], {'delimiter': 'DELIMITER'}), '(sys.stdin, delimiter=DELIMITER)\n', (451, 483), False, 'import csv\n'), ((497, 540), 'csv.writer', 'csv.writer', (['sys.stdout'], {'delimiter': 'DELIMITER'}), '(sys.stdout, delimiter=DELIMITER)\n', (507, 540), False, 'import csv\n')]
from gtfparse import read_gtf import dinopy as dp from dinopy.conversion import string_to_bytes from dinopy.processors import reverse_complement from pyfaidx import Fasta def gtf2fasta(genome_fa_path, gtf_path): """ read exonic gtf and reference genome fasta, and obtain transcript id and sequence """ # read fa = Fasta(genome_fa_path, read_ahead=1000) df = read_gtf(gtf_path) # filter: exon df_exon = df[df["feature"] == "exon"] # get exon seq (time bottleneck) # TODO get seq only for redundant exon seq = [string_to_bytes(fa.get_seq(c, s, e).seq) for c, s, e in zip(df_exon['seqname'].values.tolist(), df_exon['start'].values.tolist(), df_exon['end'].values.tolist())] # summarise key key=df_exon['transcript_id'].values.tolist() key_lag = [''] key_lag.extend(key[:-1]) tx_change = [k != kl for k, kl in zip(key, key_lag)] tx_change_idx = [i for i, val in enumerate(tx_change) if val] tx_change_idx.append(len(key) + 1) # summarise tx_id tx_id = [key[i] for i in tx_change_idx[:-1]] # summarise tx-level seq tx_seq_fwd = [b''.join(seq[s:e]) for s, e in zip(tx_change_idx[:-1], tx_change_idx[1:])] # summarise tx-level strand exon_strand = df_exon['strand'].values.tolist() tx_strand = [exon_strand[i] for i in tx_change_idx[:-1]] # reverse complement tx_seq = [seq if strand == '+' else reverse_complement(seq) for seq, strand in zip(tx_seq_fwd, tx_strand)] return (tx_id, tx_seq) def write_fasta(tx_id, tx_seq, fa_out): """ write out fasta file. """ with open(fa_out, mode='w') as f: for txid, txseq in zip(tx_id, tx_seq): f.write(">" + txid + "\n" + txseq.decode("utf-8") + "\n") def read_reference_lady(input_path): """ Read a reference tx in fasta format by using pyfaidx. Return the reference as a list of tuples (pyfaidx_fasta_object, number_of_tx, reference_lengths), Reference_lengths has the same order with pyfaidx_fasta_object.keys(). """ fp = dp.FastaReader(input_path) reference_lengths, reference_names, reference_seqs = [], [], [] for sequence, name, length, interval in fp.entries(dtype=bytearray): name = name.decode("utf-8").replace(" ", "_") reference_names.append(name) reference_lengths.append(length) reference_seqs.append(sequence) n_ref = len(reference_lengths) return (reference_names, reference_seqs, reference_lengths, n_ref) # def fastarecord2bytes(fasta_record): # return string_to_bytes(fasta_record[:].seq) # def fasta2ref(tx_id, tx_seq): # """ # input: transcript id and sequence # output: same as read_reference() in simlord # """ # transcripts, weights, reference_names, reference_lengths = [], [], [], [] # max_chrom_length = 0 # for name, seq in zip(tx_id, tx_seq): # name = name.replace(" ", "_") # length = len(seq) # reference_names.append(name) # reference_lengths.append(length) # if length > 1: # transcripts.append((seq, name, length, 0)) # weights.append(length) # if length > max_chrom_length: # max_chrom_length = length # sum_w = sum(weights) # weights = [x/sum_w for x in weights] # return (transcripts, reference_names, reference_lengths, max_chrom_length, weights)
[ "dinopy.processors.reverse_complement", "gtfparse.read_gtf", "dinopy.FastaReader", "pyfaidx.Fasta" ]
[((335, 373), 'pyfaidx.Fasta', 'Fasta', (['genome_fa_path'], {'read_ahead': '(1000)'}), '(genome_fa_path, read_ahead=1000)\n', (340, 373), False, 'from pyfaidx import Fasta\n'), ((383, 401), 'gtfparse.read_gtf', 'read_gtf', (['gtf_path'], {}), '(gtf_path)\n', (391, 401), False, 'from gtfparse import read_gtf\n'), ((2035, 2061), 'dinopy.FastaReader', 'dp.FastaReader', (['input_path'], {}), '(input_path)\n', (2049, 2061), True, 'import dinopy as dp\n'), ((1397, 1420), 'dinopy.processors.reverse_complement', 'reverse_complement', (['seq'], {}), '(seq)\n', (1415, 1420), False, 'from dinopy.processors import reverse_complement\n')]
import torch import torch.nn as nn import torchvision.transforms.functional as TF # In original paper the output shape is not similar to the input shape # Here we are going to make both similar that's why I decided to put padding in Convolutional layer class ConvCat(nn.Module): def __init__(self, in_channels, out_channels): super(ConvCat, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True), nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False), nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True) ) def forward(self, x): return self.conv(x) class Unet(nn.Module): def __init__(self, in_channels, out_channels): super(Unet, self).__init__() self.list = [64, 128, 256, 512] self.ups = nn.ModuleList() self.down = nn.ModuleList() self.pool = nn.MaxPool2d(2, 2) self.f_out = nn.Conv2d(self.list[0], out_channels, 1) for feature in self.list: self.down.append(ConvCat(in_channels, feature)) in_channels = feature for feature in reversed(self.list): self.ups.append(nn.ConvTranspose2d(feature*2, feature, 2, 2)) self.ups.append(ConvCat(feature*2, feature)) self.bottom_layer = ConvCat(self.list[-1], self.list[-1]*2) def forward(self, x): # for the skip connections activation = [] '''Conv and max-pool layers''' for down in self.down: x = down(x) activation.append(x) x = self.pool(x) x = self.bottom_layer(x) # reversing the order of activation layers for adding # these as a skip connection activation = activation[::-1] '''Transpose Conv and conv layers''' for idx in range(0, len(self.ups), 2): x = self.ups[idx](x) active = activation[idx//2] # here we should reshape the activation output (according to the paper) # but we are reshaping the trans conv layer if active.shape != x.shape: x = TF.resize(x, size=active.shape[2:]) # adding the skip connection x = torch.cat((active, x), dim=1) # again conv-cat series x = self.ups[idx+1](x) # the out layer x = self.f_out(x) return x if __name__ == '__main__': a = torch.zeros((2, 1, 160, 160)).to('cuda') model = Unet(1, 4).to(device='cuda') print(model(a).shape)
[ "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.ModuleList", "torch.nn.Conv2d", "torch.nn.MaxPool2d", "torchvision.transforms.functional.resize", "torch.nn.ConvTranspose2d", "torch.zeros", "torch.cat" ]
[((963, 978), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (976, 978), True, 'import torch.nn as nn\n'), ((1000, 1015), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (1013, 1015), True, 'import torch.nn as nn\n'), ((1037, 1055), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (1049, 1055), True, 'import torch.nn as nn\n'), ((1078, 1118), 'torch.nn.Conv2d', 'nn.Conv2d', (['self.list[0]', 'out_channels', '(1)'], {}), '(self.list[0], out_channels, 1)\n', (1087, 1118), True, 'import torch.nn as nn\n'), ((428, 485), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', 'out_channels', '(3)', '(1)', '(1)'], {'bias': '(False)'}), '(in_channels, out_channels, 3, 1, 1, bias=False)\n', (437, 485), True, 'import torch.nn as nn\n'), ((500, 528), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (514, 528), True, 'import torch.nn as nn\n'), ((543, 564), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (550, 564), True, 'import torch.nn as nn\n'), ((579, 637), 'torch.nn.Conv2d', 'nn.Conv2d', (['out_channels', 'out_channels', '(3)', '(1)', '(1)'], {'bias': '(False)'}), '(out_channels, out_channels, 3, 1, 1, bias=False)\n', (588, 637), True, 'import torch.nn as nn\n'), ((652, 680), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (666, 680), True, 'import torch.nn as nn\n'), ((695, 716), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (702, 716), True, 'import torch.nn as nn\n'), ((2408, 2437), 'torch.cat', 'torch.cat', (['(active, x)'], {'dim': '(1)'}), '((active, x), dim=1)\n', (2417, 2437), False, 'import torch\n'), ((2624, 2653), 'torch.zeros', 'torch.zeros', (['(2, 1, 160, 160)'], {}), '((2, 1, 160, 160))\n', (2635, 2653), False, 'import torch\n'), ((1328, 1374), 'torch.nn.ConvTranspose2d', 'nn.ConvTranspose2d', (['(feature * 2)', 'feature', '(2)', '(2)'], {}), '(feature * 2, feature, 2, 2)\n', (1346, 1374), True, 'import torch.nn as nn\n'), ((2311, 2346), 'torchvision.transforms.functional.resize', 'TF.resize', (['x'], {'size': 'active.shape[2:]'}), '(x, size=active.shape[2:])\n', (2320, 2346), True, 'import torchvision.transforms.functional as TF\n')]
import re, os from discord.ext import commands import kurisu.prefs import datetime, sqlite3 _mentions_transforms = { '@everyone': '@\u200beveryone', '@here': '@\u200bhere' } _mention_pattern = re.compile('|'.join(_mentions_transforms.keys())) def cache_size(): try: stdout = os.popen('du -h /home/pi/MusicBot/audio_cache').readline() return "%s" % stdout.split()[0].replace(',', '.') except: return "недоступен" class FGL: """Просто все подряд, десу""" def __init__(self, bot): self.bot = bot @commands.command(pass_context=True) async def help(self, ctx, *cmd: str): """Показывает данное сообщение""" bot = ctx.bot destination = ctx.message.author if bot.pm_help else ctx.message.channel def repl(obj): return _mentions_transforms.get(obj.group(0), '') # help by itself just lists our own commands. if len(cmd) == 0: helpEmbed = bot.formatter.format_help_for(ctx, bot) elif len(cmd) == 1: # try to see if it is a cog name name = _mention_pattern.sub(repl, cmd[0]) command = None if name in bot.cogs: command = bot.cogs[name] else: command = bot.commands.get(name) if command is None: await bot.send_message(destination, "Команда %s не найдена." % name) return helpEmbed = bot.formatter.format_help_for(ctx, command) else: name = _mention_pattern.sub(repl, cmd[0]) command = bot.commands.get(name) if command is None: await bot.send_message(destination, "Команда %s не найдена." % name) return for key in cmd[1:]: try: key = _mention_pattern.sub(repl, key) command = command.commands.get(key) if command is None: await bot.send_message(destination, "Подкоманда %s не найдена." % key) return except AttributeError: await bot.send_message(destination, "Команда %s не имеет подкоманд." % name) return helpEmbed = bot.formatter.format_help_for(ctx, command) if bot.pm_help is None: characters = sum(map(lambda l: len(l), pages)) # modify destination based on length of pages. if characters > 1000: destination = ctx.message.author await bot.send_message(destination, embed=helpEmbed) @commands.command() async def status(self): """Возвращает информацию о хост-машине""" stats = kurisu.prefs.info() emb = kurisu.prefs.Embeds.new('normal') emb.add_field(name = 'Статистика', value='CPU: {d[0]}%\nRAM Total: {d[1]}MB\nRAM Used: {d[2]}MB\nTemp: {d[4]}`C\nUptime: {d[5]}'.format(d=stats)) emb.add_field(name = 'Моэка', value='Кэш: %s' % cache_size()) await self.bot.say(embed = emb) @commands.command(pass_context=True) async def info(self, ctx, *users: str): """Возвращает информацию о пользователе Аргументы: ----------- users: [`discord.Member`] Массив упоминаний пользователей. Если нет ни одного упоминания, используется автор сообщения. """ if len(ctx.message.mentions) == 0: users = [ctx.message.author] else: users = ctx.message.mentions for u in users: emb = kurisu.prefs.Embeds.new('normal') emb.colour = u.colour emb.title = '%s%s%s' % (u, "" if (u.name == u.display_name) else (" a.k.a %s" % u.display_name), u.bot and " [BOT]" or '') emb.add_field(name="ID:", value=u.id, inline=False) embDays = (datetime.datetime.now() - u.joined_at).days def isYa(num): return (num%10 > 1) and (num%10 < 5) and ((num//10 == 0) or (num//10 > 1)) def dateParse(days): res = '' years, days = days//365, days%365 if years > 0: if years == 1: res = "1 год" elif (years > 1) and (years < 5): res = "%s года" % years else: res = "%s лет" % years months, days = days//30, days%30 if months > 0: if months == 1: res = ', '.join([res, "1 месяц"]) elif isYa(months): res = ', '.join([res, "%s месяца" % months]) else: res = ', '.join([res, "%s месяцев" % months]) if days > 0: if days == 1: res = ', '.join([res, "1 день"]) elif isYa(days): res = ', '.join([res, "%s дня" % days]) else: res = ', '.join([res, "%s дней" % days]) if res.startswith(', '): res = res[2:] if res.startswith(', '): res = res[2:] if res == '': res = 'Ни одного дня' return res emb.add_field(name="На сервере:", value=dateParse(embDays), inline=False) r, g, b = u.top_role.colour.to_tuple() emb.add_field(name="Основная роль:", value='%s (#%02x%02x%02x)' % ((u.top_role.name == "@everyone" and "Без роли" or u.top_role.name), r, g, b), inline=True) if kurisu.prefs.Roles.alpaca in u.roles: conn = sqlite3.connect('db.sqlite3') cursor = conn.cursor() cursor.execute('select * from alpaca where userID = %s limit 1' % u.id) a = cursor.fetchall() t = datetime.datetime.fromtimestamp(a[0][2]) - datetime.timedelta(hours=3) pt = kurisu.prefs.parse_time(t.timetuple()) pt = '%s %s' % (pt[0], pt[1]) emb.add_field(name="Альпакамен", value="до %s" % pt, inline=True) roles = [r.name for r in u.roles[::-1][:-1] if r != u.top_role] if len(roles) > 0: emb.add_field(name="Остальные роли", value=", ".join(roles), inline=False) emb.set_thumbnail(url=kurisu.prefs.avatar_url(u)) await self.bot.say(embed=emb) def setup(bot): bot.remove_command("help") bot.add_cog(FGL(bot))
[ "datetime.datetime.fromtimestamp", "sqlite3.connect", "datetime.datetime.now", "os.popen", "datetime.timedelta", "discord.ext.commands.command" ]
[((518, 553), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (534, 553), False, 'from discord.ext import commands\n'), ((2162, 2180), 'discord.ext.commands.command', 'commands.command', ([], {}), '()\n', (2178, 2180), False, 'from discord.ext import commands\n'), ((2574, 2609), 'discord.ext.commands.command', 'commands.command', ([], {'pass_context': '(True)'}), '(pass_context=True)\n', (2590, 2609), False, 'from discord.ext import commands\n'), ((285, 332), 'os.popen', 'os.popen', (['"""du -h /home/pi/MusicBot/audio_cache"""'], {}), "('du -h /home/pi/MusicBot/audio_cache')\n", (293, 332), False, 'import re, os\n'), ((4584, 4613), 'sqlite3.connect', 'sqlite3.connect', (['"""db.sqlite3"""'], {}), "('db.sqlite3')\n", (4599, 4613), False, 'import datetime, sqlite3\n'), ((3247, 3270), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (3268, 3270), False, 'import datetime, sqlite3\n'), ((4751, 4791), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['a[0][2]'], {}), '(a[0][2])\n', (4782, 4791), False, 'import datetime, sqlite3\n'), ((4794, 4821), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': '(3)'}), '(hours=3)\n', (4812, 4821), False, 'import datetime, sqlite3\n')]
""" Unit tests for quality assessment """ import unittest import logging from arl.data.data_models import QA log = logging.getLogger(__name__) class TestQualityAssessment(unittest.TestCase): def test_qa(self): qa = QA(origin='foo', data={'rms': 100.0, 'median': 10.0}, context='test of qa') log.debug(str(qa)) if __name__ == '__main__': unittest.main()
[ "logging.getLogger", "arl.data.data_models.QA", "unittest.main" ]
[((119, 146), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (136, 146), False, 'import logging\n'), ((374, 389), 'unittest.main', 'unittest.main', ([], {}), '()\n', (387, 389), False, 'import unittest\n'), ((238, 313), 'arl.data.data_models.QA', 'QA', ([], {'origin': '"""foo"""', 'data': "{'rms': 100.0, 'median': 10.0}", 'context': '"""test of qa"""'}), "(origin='foo', data={'rms': 100.0, 'median': 10.0}, context='test of qa')\n", (240, 313), False, 'from arl.data.data_models import QA\n')]
from cadCAD_tools.execution import easy_run from cadCAD_tools.preparation import sweep_cartesian_product from baseline_model.types import GrowthScenario import pandas as pd from baseline_model.params import RAW_PARAMS def standard_run() -> pd.DataFrame: from baseline_model import INITIAL_STATE, PARAMS, BLOCKS, TIMESTEPS, SAMPLES # Simulations # Set 1 of simulations: alternate growth scenarios # TODO: make sure that it matches the scoped experiment on alternate growth # scenarios set_1_args = (INITIAL_STATE, PARAMS, BLOCKS, TIMESTEPS, SAMPLES) set_1_df = easy_run(*set_1_args).assign(set='alternate_growth') # Set 2 of simulations: network power = baseline set_2_initial_state = INITIAL_STATE set_2_initial_state['network_power'] = set_2_initial_state['baseline'] set_2_params = RAW_PARAMS.copy() set_2_params['baseline_activated'] = [True] set_2_params['network_power_scenario'] = [GrowthScenario('baseline')] set_2_params = sweep_cartesian_product(set_2_params) set_2_args = (set_2_initial_state, set_2_params, BLOCKS, TIMESTEPS, SAMPLES) set_2_df = easy_run(*set_2_args).assign(set='baseline') # Post Processing raw_df = pd.concat([set_1_df, set_2_df]) dfs = [raw_df, raw_df.reward.map(lambda x: x.__dict__).apply(pd.Series), raw_df.network_power_scenario.map(lambda x: x.__dict__).apply(pd.Series)] DROP_COLS = ['reward', 'network_power_scenario'] df = (pd.concat(dfs, axis=1) .drop(columns=DROP_COLS) # .dropna() .set_index('days_passed') .assign(block_reward=lambda x: x.simple_reward + x.baseline_reward) .assign(marginal_reward=lambda x: x.block_reward / x.network_power) ) # Mining Utility # TODO: make sure that it matches the expected dataset for the # visualizations agg_df = None return df # TODO use `agg_df` instead
[ "baseline_model.types.GrowthScenario", "cadCAD_tools.preparation.sweep_cartesian_product", "baseline_model.params.RAW_PARAMS.copy", "cadCAD_tools.execution.easy_run", "pandas.concat" ]
[((835, 852), 'baseline_model.params.RAW_PARAMS.copy', 'RAW_PARAMS.copy', ([], {}), '()\n', (850, 852), False, 'from baseline_model.params import RAW_PARAMS\n'), ((994, 1031), 'cadCAD_tools.preparation.sweep_cartesian_product', 'sweep_cartesian_product', (['set_2_params'], {}), '(set_2_params)\n', (1017, 1031), False, 'from cadCAD_tools.preparation import sweep_cartesian_product\n'), ((1229, 1260), 'pandas.concat', 'pd.concat', (['[set_1_df, set_2_df]'], {}), '([set_1_df, set_2_df])\n', (1238, 1260), True, 'import pandas as pd\n'), ((947, 973), 'baseline_model.types.GrowthScenario', 'GrowthScenario', (['"""baseline"""'], {}), "('baseline')\n", (961, 973), False, 'from baseline_model.types import GrowthScenario\n'), ((593, 614), 'cadCAD_tools.execution.easy_run', 'easy_run', (['*set_1_args'], {}), '(*set_1_args)\n', (601, 614), False, 'from cadCAD_tools.execution import easy_run\n'), ((1148, 1169), 'cadCAD_tools.execution.easy_run', 'easy_run', (['*set_2_args'], {}), '(*set_2_args)\n', (1156, 1169), False, 'from cadCAD_tools.execution import easy_run\n'), ((1500, 1522), 'pandas.concat', 'pd.concat', (['dfs'], {'axis': '(1)'}), '(dfs, axis=1)\n', (1509, 1522), True, 'import pandas as pd\n')]
#!/usr/bin/env python3 # # Copyright (c) 2014, <NAME>, LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import time import os import random import sys # notify of progress print("P25") sys.stdout.flush() from rstem import led_matrix import RPi.GPIO as GPIO # notify of progress print("P50") sys.stdout.flush() # initialization #led_matrix.init_grid(angle=270) # make longwise led_matrix.init_matrices([(0,8),(8,8),(8,0),(0,0)]) GPIO.setmode(GPIO.BCM) # notify of progress print("P70") sys.stdout.flush() # game variables score = 0 BLINKING_TIME = 7 # number of cycles to blink full lines speed = 0.5 # speed of piece falling down (at start) init_speed = speed class State(object): IDLE, RESET, MOVINGDOWN, BLINKING, DONE, EXIT = range(6) curr_state = State.IDLE curr_piece = None next_piece = None stack = None sidebar = None blinking_clock = 0 # setup buttons UP = 25 DOWN = 24 LEFT = 23 RIGHT = 18 SELECT = 22 START = 27 A = 4 B = 17 """Shape names as described in U{http://en.wikipedia.org/wiki/Tetris}""" SHAPES = "IJLOSTZ" shape_sprites = {} for shape in SHAPES: # store LEDSprite of tetris piece sprite = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tetris_sprites", shape + ".spr") shape_sprites[shape] = led_matrix.LEDSprite(sprite) # notify of progress print("P80") sys.stdout.flush() def valid_shape(shape): """ @returns: True if given shape is a valid tetris shape """ return shape in SHAPES and len(shape) == 1 class Sidebar(object): """Represents the side bar to the right of the stack. Will show score and next piece""" def __init__(self, x_pos): self.x_pos = x_pos def draw(self): led_matrix.line((self.x_pos, 0), (self.x_pos, led_matrix.height()-1)) # draw the next piece next_piece.draw(pos=(self.x_pos + 3, led_matrix.height() - 5)) # draw the score (aligned nicely) if score < 10: led_matrix.text(str(score), (self.x_pos + 5, 1)) else: led_matrix.text(str(score), (self.x_pos + 1, 1)) class Stack(object): """Represents the stack of rested tetris pieces""" def __init__(self, width=None): self.points = [] # 2D list that represents stacks's color for each point # if width is none, use the entire screen if width is None: self.width = led_matrix.width() else: self.width = width def height(self): return len(self.points) def add(self, piece): """Adds given piece to the stack @param piece: piece to add to stack, should be touching current stack @type piece: L{Piece} """ for y_offset, line in enumerate(reversed(piece.sprite.bitmap)): # iterate going up # check if we need to add a new line to the stack if (piece.pos[1] + y_offset) > (len(stack.points) - 1): assert piece.pos[1] + y_offset == len(stack.points) # add a new line to stack and fill with transparent pixels (this is new top of stack) self.points.append([16 for i in range(self.width)]) # add line of piece to top of stack for x_offset, pixel in enumerate(line): # add piece if not transparent if pixel != 16: stack.points[piece.pos[1] + y_offset][piece.pos[0] + x_offset] = pixel def draw(self, blinking_off=False): """Draws stack on led display @param blinking_off: If set, it will display full lines as a line of all color == 0. Useful for blinking full lines. @type blinking_off: boolean """ for y, line in enumerate(self.points): # show a line of color == 0 for full lines if currently blinking off if blinking_off and all(pixel != 16 for pixel in line): # short-circuit avoids heavy computation if not needed led_matrix.line((0,y), (self.width-1, y), color=0) else: for x, pixel in enumerate(line): led_matrix.point(x, y, pixel) def coverage(self): """ @returns: A set of the points that make up the stack """ ret = set() for y, line in enumerate(self.points): for x, pixel in enumerate(line): if pixel != 16: ret.add((x, y)) return ret def remove_full_lines(self): """Removes lines that are full from stack @returns: number of full lines removed @rtype: int """ # remove lines in reverse so we don't mess it up if multiple lines need to be removed score = 0 for y, line in reversed(list(enumerate(self.points))): if all(pixel != 16 for pixel in line): score += 1 del self.points[y] return score class Piece(object): def __init__(self, shape, pos=None): if not valid_shape(shape): raise ValueError("Not a valid shape") if pos is None: self.pos = (int(stack.width/2 - 1), int(led_matrix.height())) else: self.pos = pos self.sprite = shape_sprites[shape].copy() # get a copy of sprite def rotate(self, clockwise=True): """Rotates the piece clockwise or counter-clockwise""" # TODO: probably fix this, because I don't think it will rotate like I want it to if clockwise: self.sprite.rotate(90) else: self.sprite.rotate(270) # move piece over if goes off display while self.pos[0] + self.sprite.width - 1 >= stack.width: self.pos = (self.pos[0] - 1, self.pos[1]) def coverage(self, pos=None): """Returns the set of points that the piece is covering. @param pos: Set if we want to test the coverage as if the piece was at that location. @type pos: (x,y) @returns: A set of points that the piece is covering @rtype: set of 2 tuples """ if pos is None: pos = self.pos coverage = set() for y, line in enumerate(reversed(self.sprite.bitmap)): for x, pixel in enumerate(line): if pixel != 16: # ignore transparent pixels in converage coverage.add((pos[0] + x, pos[1] + y)) return coverage def can_movedown(self): """Tests whether piece can move down without colliding with other piece or falling off edge (hit bottom) @param stack: current stack object @type stack: L{Stack} @rtype: boolean """ # check if it is at bottom of screen if self.pos[1] <= 0: return False # get coverage pretending we moved down pos = (self.pos[0], self.pos[1] - 1) self_coverage = self.coverage(pos) stack_coverage = stack.coverage() return (len(self_coverage.intersection(stack.coverage())) == 0) def movedown(self): """Moves piece down one pixel.""" self.pos = (self.pos[0], self.pos[1] - 1) def moveright(self): new_pos = (self.pos[0] + 1, self.pos[1]) # if we are not running off the stack width and not running into the stack, change position if self.pos[0] + self.sprite.width < stack.width \ and len(self.coverage(new_pos).intersection(stack.coverage())) == 0: self.pos = new_pos def moveleft(self): new_pos = (self.pos[0] - 1, self.pos[1]) # if we are not running off the display and not running into the stack, change position if self.pos[0] - 1 >= 0 \ and len(self.coverage(new_pos).intersection(stack.coverage())) == 0: self.pos = new_pos def draw(self, pos=None): """Draws piece on led matrix""" if pos is None: led_matrix.sprite(self.sprite, self.pos) else: led_matrix.sprite(self.sprite, pos) # what to do when button is pressed def button_handler(channel): global curr_state if channel in [START, SELECT]: curr_state = State.EXIT return if curr_state == State.MOVINGDOWN and curr_piece is not None: try: if channel == LEFT: while GPIO.input(LEFT) == 0: curr_piece.moveleft() time.sleep(.2) elif channel == RIGHT: while GPIO.input(RIGHT) == 0: curr_piece.moveright() time.sleep(.2) elif channel == A or channel == UP: curr_piece.rotate(90) except AttributeError: # catch AttributeError that can happen if curr_piece is NoneType pass elif (curr_state == State.IDLE or curr_state == State.DONE) and channel == A: curr_state = State.RESET # set button handler to physical buttons GPIO.setmode(GPIO.BCM) for button in [UP, DOWN, LEFT, RIGHT, SELECT, START, A, B]: GPIO.setup(button, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.add_event_detect(button, GPIO.FALLING, callback=button_handler, bouncetime=100) # notify of progress print("P90") sys.stdout.flush() # create intro title (a vertical display of "TETRIS") title = led_matrix.LEDText("S").rotate(90) for character in reversed("TETRI"): # append a 1 pixel wide (high) spacing title.append(led_matrix.LEDSprite(width=1, height=title.height)) # append next character title.append(led_matrix.LEDText(character).rotate(90)) # rotate title up title.rotate(-90) # notify menu we are ready for the led matrix print("READY") sys.stdout.flush() while True: # state when a piece is slowly moving down the display if curr_state == State.MOVINGDOWN: # up speed if score is a multiple of 5 if score != 0 and score % 5 == 0: new_speed = init_speed - (score/5*0.1) if new_speed > 0: speed = new_speed # check if stack hit the top of display if stack.height() >= led_matrix.height() - 1: curr_state = State.DONE continue # check if piece can't move down, and if so, add piece to stack and start blinking any full lines if not curr_piece.can_movedown(): stack.add(curr_piece) # add piece to stack curr_piece = None # piece is no longer curr_piece blinking_clock = BLINKING_TIME # set up blinking clock curr_state = State.BLINKING # goto blinking state continue # otherwise move piece down curr_piece.movedown() # show screen led_matrix.erase() curr_piece.draw() stack.draw() if sidebar is not None: sidebar.draw() led_matrix.show() # speed up delay if DOWN button is held down if GPIO.input(DOWN) == 0: time.sleep(.005) else: time.sleep(speed) # when piece has hit that stack and we determine if a line has been filled elif curr_state == State.BLINKING: # when blinking clock counts down to zero, remove full lines and start a new piece if blinking_clock == 0: score += stack.remove_full_lines() # add full lines to total score # make a new next_piece and goto moving the new curr_piece down curr_piece = next_piece next_piece = Piece(random.choice(SHAPES)) curr_state = State.MOVINGDOWN else: # draw blinking full lines (if any) led_matrix.erase() # draw stack with full lines off every other cycle stack.draw(blinking_off=(blinking_clock % 2)) if sidebar is not None: sidebar.draw() led_matrix.show() blinking_clock -= 1 time.sleep(.1) elif curr_state == State.IDLE: # display scrolling virtical text y_pos = - title.height while y_pos < led_matrix.height(): # if state changes stop scrolling and go to that state if curr_state != State.IDLE: break # display title in the center of the screen led_matrix.erase() led_matrix.sprite(title, (int(led_matrix.width()/2) - int(title.width/2), y_pos)) led_matrix.show() y_pos += 1 time.sleep(.1) elif curr_state == State.RESET: score = 0 stack = None if led_matrix.width() < 16: stack = Stack() else: stack = Stack(8) # if screen too width only use left half for stack sidebar = None sidebar = Sidebar(8) curr_piece = Piece(random.choice(SHAPES)) next_piece = Piece(random.choice(SHAPES)) curr_state = State.MOVINGDOWN elif curr_state == State.DONE: led_matrix.erase() led_matrix.text(str(score)) led_matrix.show() elif curr_state == State.EXIT: GPIO.cleanup() led_matrix.cleanup() sys.exit(0)
[ "rstem.led_matrix.init_matrices", "time.sleep", "sys.exit", "RPi.GPIO.setmode", "RPi.GPIO.cleanup", "rstem.led_matrix.LEDText", "rstem.led_matrix.width", "rstem.led_matrix.show", "rstem.led_matrix.erase", "sys.stdout.flush", "rstem.led_matrix.sprite", "random.choice", "RPi.GPIO.setup", "rstem.led_matrix.height", "rstem.led_matrix.line", "rstem.led_matrix.LEDSprite", "rstem.led_matrix.cleanup", "RPi.GPIO.add_event_detect", "RPi.GPIO.input", "rstem.led_matrix.point", "os.path.abspath" ]
[((694, 712), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (710, 712), False, 'import sys\n'), ((802, 820), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (818, 820), False, 'import sys\n'), ((889, 947), 'rstem.led_matrix.init_matrices', 'led_matrix.init_matrices', (['[(0, 8), (8, 8), (8, 0), (0, 0)]'], {}), '([(0, 8), (8, 8), (8, 0), (0, 0)])\n', (913, 947), False, 'from rstem import led_matrix\n'), ((942, 964), 'RPi.GPIO.setmode', 'GPIO.setmode', (['GPIO.BCM'], {}), '(GPIO.BCM)\n', (954, 964), True, 'import RPi.GPIO as GPIO\n'), ((1000, 1018), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1016, 1018), False, 'import sys\n'), ((1830, 1848), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (1846, 1848), False, 'import sys\n'), ((9619, 9641), 'RPi.GPIO.setmode', 'GPIO.setmode', (['GPIO.BCM'], {}), '(GPIO.BCM)\n', (9631, 9641), True, 'import RPi.GPIO as GPIO\n'), ((9884, 9902), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (9900, 9902), False, 'import sys\n'), ((10339, 10357), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (10355, 10357), False, 'import sys\n'), ((1766, 1794), 'rstem.led_matrix.LEDSprite', 'led_matrix.LEDSprite', (['sprite'], {}), '(sprite)\n', (1786, 1794), False, 'from rstem import led_matrix\n'), ((9706, 9759), 'RPi.GPIO.setup', 'GPIO.setup', (['button', 'GPIO.IN'], {'pull_up_down': 'GPIO.PUD_UP'}), '(button, GPIO.IN, pull_up_down=GPIO.PUD_UP)\n', (9716, 9759), True, 'import RPi.GPIO as GPIO\n'), ((9764, 9852), 'RPi.GPIO.add_event_detect', 'GPIO.add_event_detect', (['button', 'GPIO.FALLING'], {'callback': 'button_handler', 'bouncetime': '(100)'}), '(button, GPIO.FALLING, callback=button_handler,\n bouncetime=100)\n', (9785, 9852), True, 'import RPi.GPIO as GPIO\n'), ((9970, 9993), 'rstem.led_matrix.LEDText', 'led_matrix.LEDText', (['"""S"""'], {}), "('S')\n", (9988, 9993), False, 'from rstem import led_matrix\n'), ((10101, 10151), 'rstem.led_matrix.LEDSprite', 'led_matrix.LEDSprite', ([], {'width': '(1)', 'height': 'title.height'}), '(width=1, height=title.height)\n', (10121, 10151), False, 'from rstem import led_matrix\n'), ((11403, 11421), 'rstem.led_matrix.erase', 'led_matrix.erase', ([], {}), '()\n', (11419, 11421), False, 'from rstem import led_matrix\n'), ((11536, 11553), 'rstem.led_matrix.show', 'led_matrix.show', ([], {}), '()\n', (11551, 11553), False, 'from rstem import led_matrix\n'), ((1677, 1702), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (1692, 1702), False, 'import os\n'), ((2873, 2891), 'rstem.led_matrix.width', 'led_matrix.width', ([], {}), '()\n', (2889, 2891), False, 'from rstem import led_matrix\n'), ((8581, 8621), 'rstem.led_matrix.sprite', 'led_matrix.sprite', (['self.sprite', 'self.pos'], {}), '(self.sprite, self.pos)\n', (8598, 8621), False, 'from rstem import led_matrix\n'), ((8648, 8683), 'rstem.led_matrix.sprite', 'led_matrix.sprite', (['self.sprite', 'pos'], {}), '(self.sprite, pos)\n', (8665, 8683), False, 'from rstem import led_matrix\n'), ((11627, 11643), 'RPi.GPIO.input', 'GPIO.input', (['DOWN'], {}), '(DOWN)\n', (11637, 11643), True, 'import RPi.GPIO as GPIO\n'), ((11662, 11679), 'time.sleep', 'time.sleep', (['(0.005)'], {}), '(0.005)\n', (11672, 11679), False, 'import time\n'), ((11705, 11722), 'time.sleep', 'time.sleep', (['speed'], {}), '(speed)\n', (11715, 11722), False, 'import time\n'), ((4486, 4539), 'rstem.led_matrix.line', 'led_matrix.line', (['(0, y)', '(self.width - 1, y)'], {'color': '(0)'}), '((0, y), (self.width - 1, y), color=0)\n', (4501, 4539), False, 'from rstem import led_matrix\n'), ((10198, 10227), 'rstem.led_matrix.LEDText', 'led_matrix.LEDText', (['character'], {}), '(character)\n', (10216, 10227), False, 'from rstem import led_matrix\n'), ((10763, 10782), 'rstem.led_matrix.height', 'led_matrix.height', ([], {}), '()\n', (10780, 10782), False, 'from rstem import led_matrix\n'), ((12326, 12344), 'rstem.led_matrix.erase', 'led_matrix.erase', ([], {}), '()\n', (12342, 12344), False, 'from rstem import led_matrix\n'), ((12545, 12562), 'rstem.led_matrix.show', 'led_matrix.show', ([], {}), '()\n', (12560, 12562), False, 'from rstem import led_matrix\n'), ((12607, 12622), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (12617, 12622), False, 'import time\n'), ((2252, 2271), 'rstem.led_matrix.height', 'led_matrix.height', ([], {}), '()\n', (2269, 2271), False, 'from rstem import led_matrix\n'), ((4624, 4653), 'rstem.led_matrix.point', 'led_matrix.point', (['x', 'y', 'pixel'], {}), '(x, y, pixel)\n', (4640, 4653), False, 'from rstem import led_matrix\n'), ((5727, 5746), 'rstem.led_matrix.height', 'led_matrix.height', ([], {}), '()\n', (5744, 5746), False, 'from rstem import led_matrix\n'), ((8991, 9007), 'RPi.GPIO.input', 'GPIO.input', (['LEFT'], {}), '(LEFT)\n', (9001, 9007), True, 'import RPi.GPIO as GPIO\n'), ((9076, 9091), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (9086, 9091), False, 'import time\n'), ((12187, 12208), 'random.choice', 'random.choice', (['SHAPES'], {}), '(SHAPES)\n', (12200, 12208), False, 'import random\n'), ((12761, 12780), 'rstem.led_matrix.height', 'led_matrix.height', ([], {}), '()\n', (12778, 12780), False, 'from rstem import led_matrix\n'), ((12980, 12998), 'rstem.led_matrix.erase', 'led_matrix.erase', ([], {}), '()\n', (12996, 12998), False, 'from rstem import led_matrix\n'), ((13105, 13122), 'rstem.led_matrix.show', 'led_matrix.show', ([], {}), '()\n', (13120, 13122), False, 'from rstem import led_matrix\n'), ((13158, 13173), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (13168, 13173), False, 'import time\n'), ((2351, 2370), 'rstem.led_matrix.height', 'led_matrix.height', ([], {}), '()\n', (2368, 2370), False, 'from rstem import led_matrix\n'), ((9148, 9165), 'RPi.GPIO.input', 'GPIO.input', (['RIGHT'], {}), '(RIGHT)\n', (9158, 9165), True, 'import RPi.GPIO as GPIO\n'), ((9235, 9250), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (9245, 9250), False, 'import time\n'), ((13268, 13286), 'rstem.led_matrix.width', 'led_matrix.width', ([], {}), '()\n', (13284, 13286), False, 'from rstem import led_matrix\n'), ((13503, 13524), 'random.choice', 'random.choice', (['SHAPES'], {}), '(SHAPES)\n', (13516, 13524), False, 'import random\n'), ((13553, 13574), 'random.choice', 'random.choice', (['SHAPES'], {}), '(SHAPES)\n', (13566, 13574), False, 'import random\n'), ((13666, 13684), 'rstem.led_matrix.erase', 'led_matrix.erase', ([], {}), '()\n', (13682, 13684), False, 'from rstem import led_matrix\n'), ((13729, 13746), 'rstem.led_matrix.show', 'led_matrix.show', ([], {}), '()\n', (13744, 13746), False, 'from rstem import led_matrix\n'), ((13799, 13813), 'RPi.GPIO.cleanup', 'GPIO.cleanup', ([], {}), '()\n', (13811, 13813), True, 'import RPi.GPIO as GPIO\n'), ((13822, 13842), 'rstem.led_matrix.cleanup', 'led_matrix.cleanup', ([], {}), '()\n', (13840, 13842), False, 'from rstem import led_matrix\n'), ((13851, 13862), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (13859, 13862), False, 'import sys\n'), ((13041, 13059), 'rstem.led_matrix.width', 'led_matrix.width', ([], {}), '()\n', (13057, 13059), False, 'from rstem import led_matrix\n')]
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Copyright 2020 QandA-vietnam. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ import logging from elasticsearch import Elasticsearch LOGGER = logging.getLogger(__name__) es = Elasticsearch([{"host": "localhost", "port": 9200, "timeout": 60}]) default_settings = { "index": { "number_of_shards": 1, "number_of_replicas": 1, }, "analysis": { "analyzer": { "my_analyzer": { "type": "custom", "tokenizer": "vi_tokenizer", "filter": [ "lowercase", "vi_stop", "asciifolding" ] } } } } question_index_settings = { "settings": default_settings, "mappings": { "properties": { "id": {"type": "integer"}, "title": {"type": "text", "analyzer": "my_analyzer"}, "content": {"type": "text", "analyzer": "my_analyzer"}, "date_create": {"type": "date"}, "tags": {"type": "keyword"}, "owner_id": {"type": "keyword"}, } } } answer_index_settings = { "settings": default_settings, "mappings": { "properties": { "id": {"type": "integer"}, "content": {"type": "text", "analyzer": "my_analyzer"}, "date_create": {"type": "date"}, "owner_id": {"type": "keyword"}, } } } reputation_score_index_settings = { "settings": default_settings, "mappings": { "properties": { "points_received": {"type": "integer"}, "date_received": {"type": "date"}, "owner_id": {"type": "keyword"}, "username": {"type": "keyword"}, "type_received": {"type": "keyword"} } } } def init(): if not es.indices.exists(index='question'): es.indices.create(index='question', body=question_index_settings) if not es.indices.exists(index='answer'): es.indices.create(index='answer', body=answer_index_settings) if not es.indices.exists(index='reputation'): es.indices.create(index='reputation', body=reputation_score_index_settings) def question_index(question_id, title, content, date_create, tags, owner_id): """ Create an document and save to elasticsearch. Document's id will be set to question_id. """ body = { "question_id": question_id, "title": title, "content": content, "date_create": date_create, "tags": tags, "owner_id": owner_id } return index_document('question', document=body, doc_id=question_id) def answer_index(answer_id, content, date_create, owner_id): """ Create an document and save to elasticsearch. Document's id will be set to answer_id. """ body = { "answer_id": answer_id, "content": content, "date_create": date_create, "owner_id": owner_id } return index_document(index_name='answer', document=body, doc_id=answer_id) def reputation_index(points_received, date_received, owner_id, username, type_received, **kwargs): body = { "points_received": points_received, "date_received": date_received, "owner_id": owner_id, "username": username, "type_received": type_received } body.update(kwargs) return index_document(index_name='reputation', document=body) def index_document(index_name, document, doc_id=None): return es.index(index=index_name, body=document, id=doc_id) def discuss_search(query, start, size, sort=None, tags=None): scripts = { "from": start, "size": size, "query": { "bool": { "must": { "multi_match": { "query": query, "type": "most_fields", "fields": ["title", "content"] } } } }, "highlight": { "pre_tags": ["<b>"], "post_tags": ["</b>"], "fields": { "content": { "type": "plain", "fragment_size": 300, "number_of_fragments": 1 } } } } if tags: scripts['query']['bool']['filter'] = {'terms': {'tags': tags}} if sort: if sort == "relevance": scripts['sort'] = "_score" elif sort == "newest": scripts['sort'] = [{"date_create": {"order": "desc"}}, "_score"] filter_path = ['hits.total', 'hits.hits', 'hits.hits._source.highlight', 'hits.hits._source._index', 'hits.hits._source._id'] return es.search(body=scripts, index=["question", "answer"], filter_path=filter_path) def question_update(question_id, title, content, tags): """ Partial update document with id is 'question_id' in 'question' index """ body = { "script": { "source": "ctx._source.title=params.title;" "ctx._source.content=params.content;" "ctx._source.tags=params.tags", "params": { "title": title, "content": content, "tags": tags } } } return es.update(index='question', id=question_id, body=body) def answer_update(answer_id, content): """ Partial update document with id is 'answer_id' in 'answer' index """ body = { "script": { "source": "ctx._source.content=params.content;", "params": { "content": content } } } return es.update(index='question', id=answer_id, body=body) def reputation_vote_update(points, vote_id): body = { "script": { "source": "ctx._source.points_received=params.points;", "params": { "points": points } }, "query": { "term": { "vote_id": vote_id } } } return es.update_by_query(index='reputation', body=body) def question_delete(question_id): """ Delete document with id is 'question_id' """ es.delete(index='question', id=question_id) def answer_delete(answer_id): """ Delete document with id is 'answer_id' """ es.delete(index='answer', id=answer_id) def reputation_delete(**kwargs): """ Delete by query """ query = { "query": { "bool": { "must": {} } } } for key in kwargs: query["query"]["bool"]["must"].update({"term": {key: kwargs[key]}}) es.delete_by_query(index="reputation", body=query)
[ "logging.getLogger", "elasticsearch.Elasticsearch" ]
[((846, 873), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (863, 873), False, 'import logging\n'), ((880, 947), 'elasticsearch.Elasticsearch', 'Elasticsearch', (["[{'host': 'localhost', 'port': 9200, 'timeout': 60}]"], {}), "([{'host': 'localhost', 'port': 9200, 'timeout': 60}])\n", (893, 947), False, 'from elasticsearch import Elasticsearch\n')]
from base_connection import Connection import subprocess import os import re import datetime import pandas as pd class Bc3(Connection): def __init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email, base_output_path = '/panfs/panasas01/emat/oc13378/WholeCell/output', base_runfiles_path = '/panfs/panasas01/emat/oc13378/WholeCell/wc/mg/bc3/runFiles', wholecell_model_master_dir = '/panfs/panasas01/emat/oc13378/WholeCell/wc/mg/WholeCell-master'): Connection.__init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email) self.submit_command = 'qsub' self.information_about_cluster = 'BlueCrystal Phase 3: Advanced Computing Research Centre, University of Bristol.' self.base_output_path = base_output_path self.base_runfiles_path = base_runfiles_path self.wholecell_model_master_dir = wholecell_model_master_dir self.activate_venv_list = ['module add languages/python-anaconda-4.2-3.5', 'source activate wholecell_modelling_suite'] self.path_to_flex1 = '/panfs/panasas01/bluegem-flex1' self.path_to_database_dir = self.path_to_flex1 self.db_connection = self #instance methhods # def rsyncFile(self, source, destination, rsync_flags = "-aP"): # super(bc3, self).rsyncFile(source, destination, rsync_flags) # # return def getGeneInfo(self, tuple_of_genes): raw_out = self.useStaticDbFunction([tuple_of_genes], 'CodeToInfo') if raw_out[0] == 0: as_list = eval(raw_out[1].strip().decode('ascii')) list_of_column_names = ['code', 'type', 'name', 'symbol', 'functional_unit', 'deletion_phenotype', 'essential_in_model', 'essential_in_experiment'] dict_out = {list_of_column_names[name_idx]: [as_list[element_idx][name_idx] for element_idx in range(len(as_list))] for name_idx in range(len(list_of_column_names))} else: raise ValueError("Failed to retrieve sql data. Query returned: ", raw_out) return dict_out def useStaticDbFunction(self, list_of_function_inputs, function_call, path_to_staticDb_stuff='/panfs/panasas01/bluegem-flex1/database/staticDB'): """Takes a tuple of gene codes and return info about the genes""" add_anoconda_module = 'module add languages/python-anaconda-4.2-3.5' activate_virtual_environment = 'source activate wholecell_modelling_suite' change_to_lib_dir = 'cd ' + path_to_staticDb_stuff get_data = 'python -c "from staticDB import io as sio;static_db_conn = sio();print(static_db_conn.' + function_call + '(' + ','.join(map(str, list_of_function_inputs)) + '))"' cmd = "ssh " + self.ssh_config_alias + ";" + add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_data cmd_list = ["ssh", self.ssh_config_alias, add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_data] raw_out = Connection.getOutput(cmd_list) return raw_out def sendSqlToStaticDb(self, sql_command, path_to_staticDb_stuff='/panfs/panasas01/bluegem-flex1/database/staticDB'): """Takes an SQLITE3 command as a string and sends it to static.db and returns it the output.""" add_anoconda_module = 'module add languages/python-anaconda-4.2-3.5' activate_virtual_environment = 'source activate wholecell_modelling_suite' change_to_lib_dir = 'cd ' + path_to_staticDb_stuff get_data = 'python -c "from staticDB import io as sio;static_db_conn = sio();print(static_db_conn.raw_sql_query(\'' + sql_command + '\'))"' cmd = "ssh " + self.ssh_config_alias + ";" + add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_data cmd_list = ["ssh", self.ssh_config_alias, add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_data] raw_out = Connection.getOutput(cmd_list) return raw_out def convertGeneCodeToId(self, tuple_of_gene_codes, path_to_staticDb_stuff='/panfs/panasas01/bluegem-flex1/database/staticDB'): """Takes a tuple of genes code and returns a tuple of corresponding gene IDs.""" if type(tuple_of_gene_codes) is not tuple: raise TypeException('Gene codes must be a tuple (even if only 1! i.e. single_tuple = (\'MG_001\',)) here type(tuple_of_gene_codes)=', type(tuple_of_gene_codes)) add_anoconda_module = 'module add languages/python-anaconda-4.2-3.5' activate_virtual_environment = 'source activate wholecell_modelling_suite' change_to_lib_dir = 'cd ' + path_to_staticDb_stuff get_gene_id = 'python -c "from staticDB import io as sio;static_db_conn = sio();print(static_db_conn.CodeToId(' + str(tuple_of_gene_codes) + '))"' cmd = "ssh " + self.ssh_config_alias + ";" + add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id cmd_list = ["ssh", self.ssh_config_alias, add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id] raw_out = Connection.getOutput(cmd_list) # send command and get output output = raw_out output[1] = eval(str(output[1], "utf-8").rstrip()) # it doesn't output the answer in the order you input it so we need to make a dictionary codeToId_dict = {} for out in output[1]: codeToId_dict[out[1]] = out[0] return codeToId_dict def checkQueue(self, job_number='NONE'): """This function takes a job number and returns a list of all the array numbers of that job still running.""" if job_number == 'NONE': print("Warning: No job number given!") grep_part_of_cmd = "qstat -tu " + self.user_name + " | grep \'" + str(job_number) + "\' | awk \'{print $1}\' | awk -F \"[][]\" \'{print $2}\'" # cmd = ["ssh", self.ssh_config_alias, grep_part_of_cmd] output_dict = self.sendCommand([grep_part_of_cmd]) return output_dict def checkDiskUsage(self): """This function returns disk usage details.""" # create all the post connection commands needed get_disk_usage_units_command = "pan_quota | awk \'{print $1}\' | tail -n 2 | head -n 1 | sed \'s/[<>]//g\'" get_disk_usage_command = "pan_quota | awk \'{print $1}\' | tail -n 1" get_disk_usage_soft_limit_command = "pan_quota | awk \'{print $2}\' | tail -n 1" get_disk_usage_hard_limit_command = "pan_quota | awk \'{print $3}\' | tail -n 1" # combine the connection command with the post connection commands in a list (as is recomended). units_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_units_command] usage_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_command] soft_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_soft_limit_command] hard_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_hard_limit_command] # send the commands and save the exit codes and outputs units = Connection.getOutput(units_cmd) usage = Connection.getOutput(usage_cmd) soft_limit = Connection.getOutput(soft_limit_cmd) hard_limit = Connection.getOutput(hard_limit_cmd) # convert string outputs to floats where neccessary units[1] = str(units[1], "utf-8").rstrip() usage[1] = float(usage[1]) soft_limit[1] = float(soft_limit[1]) hard_limit[1] = float(hard_limit[1]) # print some stats print(100 * (usage[1] / (1.0 * hard_limit[1]) ),"% of total disk space used.\n\n",hard_limit[1] - usage[1]," ",units[1]," left until hard limit.\n\n",soft_limit[1] - usage[1]," ",units[1]," left unit soft limit.", sep='') return usage, soft_limit, hard_limit, units def createStandardKoSubmissionScript(self, output_filename, pbs_job_name, no_of_unique_kos, path_and_name_of_unique_ko_dir_names, no_of_repetitions_of_each_ko, wholecell_model_master_dir, output_dir, path_and_name_of_ko_codes, outfile_name_and_path, errorfile_name_and_path): import subprocess # this shouldn't change but gonna leave it there just in case queue_name = 'short' # set job array numbers to None so that we can check stuff has wprked later job_array_numbers = None # The maximum job array size on BC3 max_job_array_size = 500 # initialise output dict output_dict = {} # test that a reasonable amount of jobs has been submitted (This is not a hard and fast rule but there has to be a max and my intuition suggestss that it will start to get complicated around this level i.e. queueing and harddisk space etc) total_sims = no_of_unique_kos * no_of_repetitions_of_each_ko if total_sims > 20000: raise ValueError('Total amount of simulations for one batch submission must be less than 20,000, here total_sims=',total_sims) output_dict['total_sims'] = total_sims # spread simulations across array jobs if no_of_unique_kos <= max_job_array_size: no_of_unique_kos_per_array_job = 1 no_of_arrays = no_of_unique_kos job_array_numbers = '1-' + str(no_of_unique_kos) walltime = '30:00:00' else: # job_array_size * no_of_unique_kos_per_array_job = no_of_unique_kos so all the factors of no_of_unique_kos is common_factors = [x for x in range(1, no_of_unique_kos+1) if no_of_unique_kos % x == 0] # make the job_array_size as large as possible such that it is less than max_job_array_size factor_idx = len(common_factors) - 1 while factor_idx >= 0: if common_factors[factor_idx] < max_job_array_size: job_array_numbers = '1-' + str(common_factors[factor_idx]) no_of_arrays = common_factors[factor_idx] no_of_unique_kos_per_array_job = common_factors[(len(common_factors)-1) - factor_idx] factor_idx = -1 else: factor_idx -= 1 # raise error if no suitable factors found! if job_array_numbers is None: raise ValueError('job_array_numbers should have been assigned by now! This suggests that it wasn\'t possible for my algorithm to split the KOs across the job array properly. Here no_of_unique_kos=', no_of_unique_kos, ' and the common factors of this number are:', common_factors) # add some time to the walltime because I don't think the jobs have to startat the same time walltime = '35:00:00' output_dict['no_of_arrays'] = no_of_arrays output_dict['no_of_unique_kos_per_array_job'] = no_of_unique_kos_per_array_job output_dict['no_of_repetitions_of_each_ko'] = no_of_repetitions_of_each_ko # calculate the amount of cores per array job - NOTE: for simplification we only use cores and not nodes (this is generally the fastest way to get through the queue anyway) no_of_cores = no_of_repetitions_of_each_ko * no_of_unique_kos_per_array_job output_dict['no_of_sims_per_array_job'] = no_of_cores output_dict['list_of_rep_dir_names'] = list(range(1, no_of_repetitions_of_each_ko + 1)) no_of_nodes = 1 # write the script to file with open(output_filename, mode='wt', encoding='utf-8') as myfile: myfile.write("#!/bin/bash" + "\n") myfile.write("\n") myfile.write("# This script was automatically created by <NAME>'s whole-cell modelling suite. Please contact on <EMAIL>" + "\n") myfile.write("# Title: " + pbs_job_name + "\n") myfile.write("# User: " + self.forename_of_user + ", " + self.surename_of_user + ", " + self.user_email + "\n") myfile.write("# Affiliation: Minimal Genome Group, Life Sciences, University of Bristol " + "\n") myfile.write("# Last Updated: " + str(datetime.datetime.now()) + "\n") myfile.write("\n") myfile.write("# BC3: 223 base blades which have 16 x 2.6 GHz SandyBridge cores, 4GB/core and a 1TB SATA disk." + "\n") myfile.write("\n") myfile.write("## Job name" + "\n") myfile.write("#PBS -N " + pbs_job_name + "\n") myfile.write("\n") myfile.write("## Resource request" + "\n") myfile.write("#PBS -l nodes=" + str(no_of_nodes) + ":ppn=" + str(no_of_cores) + ",walltime=" + walltime + "\n") myfile.write("#PBS -q " + queue_name + "\n") myfile.write("\n") myfile.write("## Job array request" + "\n") myfile.write("#PBS -t " + job_array_numbers + "\n") myfile.write("\n") myfile.write("## designate output and error files" + "\n") myfile.write("#PBS -e " + outfile_name_and_path + "\n") myfile.write("#PBS -o " + errorfile_name_and_path + "\n") myfile.write("\n") myfile.write("# print some details about the job" + "\n") myfile.write('echo "The Array ID is: ${PBS_ARRAYID}"' + "\n") myfile.write('echo Running on host `hostname`' + "\n") myfile.write('echo Time is `date`' + "\n") myfile.write('echo Directory is `pwd`' + "\n") myfile.write('echo PBS job ID is ${PBS_JOBID}' + "\n") myfile.write('echo This job runs on the following nodes:' + "\n") myfile.write('echo `cat $PBS_NODEFILE | uniq`' + "\n") myfile.write("\n") myfile.write("# load required modules" + "\n") myfile.write("module unload apps/matlab-r2013b" + "\n") myfile.write("module load apps/matlab-r2013a" + "\n") myfile.write('echo "Modules loaded:"' + "\n") myfile.write("module list" + "\n") myfile.write("\n") myfile.write("# create the master directory variable" + "\n") myfile.write("master=" + wholecell_model_master_dir + "\n") myfile.write("\n") myfile.write("# create output directory" + "\n") myfile.write("base_outDir=" + output_dir + "\n") myfile.write("\n") myfile.write("# collect the KO combos" + "\n") myfile.write("ko_list=" + path_and_name_of_ko_codes + "\n") myfile.write("ko_dir_names=" + path_and_name_of_unique_ko_dir_names + "\n") myfile.write("\n") myfile.write("# Get all the gene KOs and output folder names" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write('do' + "\n") myfile.write(' Gene[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${PBS_ARRAYID}-1)+${i})) ${ko_list})' + "\n") myfile.write(' unique_ko_dir_name[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${PBS_ARRAYID}-1)+${i})) ${ko_dir_names})' + "\n") myfile.write("done" + "\n") myfile.write("\n") myfile.write("# go to master directory" + "\n") myfile.write("cd ${master}" + "\n") myfile.write("\n") myfile.write("# NB have limited MATLAB to a single thread" + "\n") myfile.write('options="-nodesktop -noFigureWindows -nosplash -singleCompThread"' + "\n") myfile.write("\n") myfile.write("# run 16 simulations in parallel") myfile.write('echo "Running simulations (single threaded) in parallel - let\'s start the timer!"' + "\n") myfile.write('start=`date +%s`' + "\n") myfile.write("\n") myfile.write("# create all the directories for the diarys (the normal output will be all mixed up cause it's in parrallel!)" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write("do" + "\n") myfile.write(' for j in `seq 1 ' + str(no_of_repetitions_of_each_ko) + '`' + "\n") myfile.write(" do" + "\n") myfile.write(' specific_ko="$(echo ${Gene[${i}]} | sed \'s/{//g\' | sed \'s/}//g\' | sed \"s/\'//g\" | sed \'s/\"//g\' | sed \'s/,/-/g\')/${j}"' + "\n") myfile.write(' mkdir -p ${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}' + "\n") myfile.write(' matlab ${options} -r "diary(\'${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}/diary.out\');addpath(\'${master}\');setWarnings();setPath();runSimulation(\'runner\',\'koRunner\',\'logToDisk\',true,\'outDir\',\'${base_outDir}/${unique_ko_dir_name[${i}]}/${j}\',\'jobNumber\',$((no_of_repetitions_of_each_ko*no_of_unique_kos_per_array_job*(${PBS_ARRAYID}-1)+no_of_unique_kos_per_array_job*(${i}-1)+${j})),\'koList\',{{${Gene[${i}]}}});diary off;exit;" &' + "\n") myfile.write(" done" + "\n") myfile.write("done" + "\n") myfile.write("wait" + "\n") myfile.write("\n") myfile.write("end=`date +%s`" + "\n") myfile.write("runtime=$((end-start))" + "\n") myfile.write('echo "$((${no_of_unique_kos_per_array_job}*${no_of_repetitions_of_each_ko})) simulations took: ${runtime} seconds."') # give the file execute permissions subprocess.check_call(["chmod", "700", str(output_filename)]) return output_dict def getJobIdFromSubStdOut(self, stdout): return int(re.search(r'\d+', stdout).group()) class Bg(Connection): def __init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email, base_output_path = '/projects/flex1/database/wcm_suite/output', base_runfiles_path = '/projects/flex1/database/wcm_suite/runFiles', wholecell_model_master_dir = '/panfs/panasas01/emat/oc13378/WholeCell/wc/mg/WholeCell-master'): Connection.__init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email) self.submit_command = 'sbatch' self.information_about_cluster = 'BlueGem: BrisSynBio, University of Bristol.' self.base_output_path = base_output_path self.base_runfiles_path = base_runfiles_path self.wholecell_model_master_dir = wholecell_model_master_dir self.activate_venv_list = ['module add apps/anaconda3-2.3.0', 'source activate whole_cell_modelling_suite'] self.path_to_flex1 = '/projects/flex1' self.path_to_database_dir = self.path_to_flex1 self.db_connection = self #instance methhods # def rsyncFile(self, source, destination, rsync_flags = "-aP"): # super(bc3, self).rsyncFile(source, destination, rsync_flags) # # return def convertGeneCodeToId(self, tuple_of_gene_codes, path_to_staticDb_stuff='/projects/flex1/database/staticDB'): """Takes a tuple of genes code and returns a tuple of corresponding gene IDs.""" if type(tuple_of_gene_codes) is not tuple: raise TypeException('Gene codes must be a tuple (even if only 1! i.e. single_tuple = (\'MG_001\',)) here type(tuple_of_gene_codes)=', type(tuple_of_gene_codes)) add_anoconda_module = 'module add apps/anaconda3-2.3.0' activate_virtual_environment = 'source activate whole_cell_modelling_suite' change_to_lib_dir = 'cd ' + path_to_staticDb_stuff get_gene_id = 'python -c "from staticDB import io as sio;static_db_conn = sio();print(static_db_conn.CodeToId(' + str(tuple_of_gene_codes) + '))"' cmd = "ssh " + self.ssh_config_alias + ";" + add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id cmd_list = ["ssh", self.ssh_config_alias, add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id] raw_out = Connection.getOutput(cmd_list) # send command and get output output = raw_out output[1] = eval(str(output[1], "utf-8").rstrip()) # it doesn't output the answer in the order you input it so we need to make a dictionary codeToId_dict = {} for out in output[1]: codeToId_dict[out[1]] = out[0] return codeToId_dict def checkQueue(self, job_number): """This function takes a job number and returns a list of all the array numbers of that job still running.""" grep_part_of_cmd = "squeue -ru " + self.user_name + " | grep \'" + str(job_number) + "\' | awk \'{print $1}\' | awk -F \"_\" \'{print $2}\'" # cmd = ["ssh", self.ssh_config_alias, grep_part_of_cmd] output_dict = self.checkSuccess(self.sendCommand, [grep_part_of_cmd]) return output_dict def checkDiskUsage(self): """This function returns disk usage details.""" # create all the post connection commands needed get_disk_usage_units_command = "pan_quota | awk \'{print $1}\' | tail -n 2 | head -n 1 | sed \'s/[<>]//g\'" get_disk_usage_command = "pan_quota | awk \'{print $1}\' | tail -n 1" get_disk_usage_soft_limit_command = "pan_quota | awk \'{print $2}\' | tail -n 1" get_disk_usage_hard_limit_command = "pan_quota | awk \'{print $3}\' | tail -n 1" # combine the connection command with the post connection commands in a list (as is recomended). units_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_units_command] usage_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_command] soft_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_soft_limit_command] hard_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_hard_limit_command] # send the commands and save the exit codes and outputs units = Connection.getOutput(units_cmd) usage = Connection.getOutput(usage_cmd) soft_limit = Connection.getOutput(soft_limit_cmd) hard_limit = Connection.getOutput(hard_limit_cmd) # convert string outputs to floats where neccessary units[1] = str(units[1], "utf-8").rstrip() usage[1] = float(usage[1]) soft_limit[1] = float(soft_limit[1]) hard_limit[1] = float(hard_limit[1]) # print some stats print(100 * (usage[1] / (1.0 * hard_limit[1]) ),"% of total disk space used.\n\n",hard_limit[1] - usage[1]," ",units[1]," left until hard limit.\n\n",soft_limit[1] - usage[1]," ",units[1]," left unit soft limit.", sep='') return usage, soft_limit, hard_limit, units def createStandardKoSubmissionScript(self, output_filename, slurm_job_name, no_of_unique_kos, path_and_name_of_unique_ko_dir_names, no_of_repetitions_of_each_ko, wholecell_model_master_dir, output_dir, path_and_name_of_ko_codes, outfile_name_and_path, errorfile_name_and_path): # this shouldn't change but gonna leave it there just in case queue_name = 'cpu' # set job array numbers to None so that we can check stuff has wprked later job_array_numbers = None # The maximum job array size on BC3 max_job_array_size = 200 # initialise output dict output_dict = {} # test that a reasonable amount of jobs has been submitted (This is not a hard and fast rule but there has to be a max and my intuition suggestss that it will start to get complicated around this level i.e. queueing and harddisk space etc) total_sims = no_of_unique_kos * no_of_repetitions_of_each_ko if total_sims > 20000: raise ValueError('Total amount of simulations for one batch submission must be less than 20,000, here total_sims=',total_sims) output_dict['total_sims'] = total_sims # spread simulations across array jobs if no_of_unique_kos <= max_job_array_size: no_of_unique_kos_per_array_job = 1 no_of_arrays = no_of_unique_kos job_array_numbers = '1-' + str(no_of_unique_kos) walltime = '0-30:00:00' else: # job_array_size * no_of_unique_kos_per_array_job = no_of_unique_kos so all the factors of no_of_unique_kos is common_factors = [x for x in range(1, no_of_unique_kos+1) if no_of_unique_kos % x == 0] # make the job_array_size as large as possible such that it is less than max_job_array_size factor_idx = len(common_factors) - 1 while factor_idx >= 0: if common_factors[factor_idx] < max_job_array_size: job_array_numbers = '1-' + str(common_factors[factor_idx]) no_of_arrays = common_factors[factor_idx] no_of_unique_kos_per_array_job = common_factors[(len(common_factors)-1) - factor_idx] factor_idx = -1 else: factor_idx -= 1 # raise error if no suitable factors found! if job_array_numbers is None: raise ValueError('job_array_numbers should have been assigned by now! This suggests that it wasn\'t possible for my algorithm to split the KOs across the job array properly. Here no_of_unique_kos=', no_of_unique_kos, ' and the common factors of this number are:', common_factors) # add some time to the walltime because I don't think the jobs have to startat the same time walltime = '0-35:00:00' output_dict['no_of_arrays'] = no_of_arrays output_dict['no_of_unique_kos_per_array_job'] = no_of_unique_kos_per_array_job output_dict['no_of_repetitions_of_each_ko'] = no_of_repetitions_of_each_ko # calculate the amount of cores per array job - NOTE: for simplification we only use cores and not nodes (this is generally the fastest way to get through the queue anyway) no_of_cores = no_of_repetitions_of_each_ko * no_of_unique_kos_per_array_job output_dict['no_of_sims_per_array_job'] = no_of_cores output_dict['list_of_rep_dir_names'] = list(range(1, no_of_repetitions_of_each_ko + 1)) no_of_nodes = 1 # write the script to file with open(output_filename, mode='wt', encoding='utf-8') as myfile: myfile.write("#!/bin/bash -login" + "\n") myfile.write("\n") myfile.write("# This script was automatically created by <NAME>'s whole-cell modelling suite and is based on scripts that he created." + "\n") myfile.write("\n") myfile.write("## Job name" + "\n") myfile.write("#SBATCH --job-name=" + slurm_job_name + "\n") myfile.write("\n") myfile.write("## What account the simulations are registered to" + "\n") myfile.write("#SBATCH -A Flex1" + "\n") myfile.write("\n") myfile.write("## Resource request" + "\n") # myfile.write("#SBATCH -n " + str(no_of_nodes) + "\n") myfile.write("#SBATCH --ntasks=" + str(no_of_cores) + " # No. of cores\n") myfile.write("#SBATCH --time=" + walltime + "\n") myfile.write("#SBATCH -p " + queue_name + "\n") myfile.write("\n") myfile.write("## Job array request" + "\n") myfile.write("#SBATCH --array=" + job_array_numbers + "\n") myfile.write("\n") myfile.write("## designate output and error files" + "\n") myfile.write("#SBATCH --output=" + outfile_name_and_path + "_%A_%a.out" + "\n") myfile.write("#SBATCH --error=" + errorfile_name_and_path + "_%A_%a.err" + "\n") myfile.write("\n") myfile.write("# print some details about the job" + "\n") myfile.write('echo "The Array TASK ID is: ${SLURM_ARRAY_TASK_ID}"' + "\n") myfile.write('echo "The Array JOB ID is: ${SLURM_ARRAY_JOB_ID}"' + "\n") myfile.write('echo Running on host `hostname`' + "\n") myfile.write('echo Time is `date`' + "\n") myfile.write('echo Directory is `pwd`' + "\n") myfile.write("\n") myfile.write("# load required modules" + "\n") myfile.write("module load apps/matlab-r2013a" + "\n") myfile.write('echo "Modules loaded:"' + "\n") myfile.write("module list" + "\n") myfile.write("\n") myfile.write("# create the master directory variable" + "\n") myfile.write("master=" + wholecell_model_master_dir + "\n") myfile.write("\n") myfile.write("# create output directory" + "\n") myfile.write("base_outDir=" + output_dir + "\n") myfile.write("\n") myfile.write("# collect the KO combos" + "\n") myfile.write("ko_list=" + path_and_name_of_ko_codes + "\n") myfile.write("ko_dir_names=" + path_and_name_of_unique_ko_dir_names + "\n") myfile.write("\n") myfile.write("# Get all the gene KOs and output folder names" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write('do' + "\n") myfile.write(' Gene[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${SLURM_ARRAY_TASK_ID}-1)+${i})) ${ko_list})' + "\n") myfile.write(' unique_ko_dir_name[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${SLURM_ARRAY_TASK_ID}-1)+${i})) ${ko_dir_names})' + "\n") myfile.write("done" + "\n") myfile.write("\n") myfile.write("# go to master directory" + "\n") myfile.write("cd ${master}" + "\n") myfile.write("\n") myfile.write("# NB have limited MATLAB to a single thread" + "\n") myfile.write('options="-nodesktop -noFigureWindows -nosplash -singleCompThread"' + "\n") myfile.write("\n") myfile.write("# run " + str(no_of_unique_kos_per_array_job * no_of_repetitions_of_each_ko) + " simulations in parallel") myfile.write('echo "Running simulations (single threaded) in parallel - let\'s start the timer!"' + "\n") myfile.write('start=`date +%s`' + "\n") myfile.write("\n") myfile.write("# create all the directories for the diarys (the normal output will be all mixed up cause it's in parrallel!)" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write("do" + "\n") myfile.write(' for j in `seq 1 ' + str(no_of_repetitions_of_each_ko) + '`' + "\n") myfile.write(" do" + "\n") myfile.write(' specific_ko="$(echo ${Gene[${i}]} | sed \'s/{//g\' | sed \'s/}//g\' | sed \"s/\'//g\" | sed \'s/\"//g\' | sed \'s/,/-/g\')/${j}"' + "\n") myfile.write(' mkdir -p ${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}' + "\n") myfile.write(' matlab ${options} -r "diary(\'${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}/diary.out\');addpath(\'${master}\');setWarnings();setPath();runSimulation(\'runner\',\'koRunner\',\'logToDisk\',true,\'outDir\',\'${base_outDir}/${unique_ko_dir_name[${i}]}/${j}\',\'jobNumber\',$((no_of_repetitions_of_each_ko*no_of_unique_kos_per_array_job*(${SLURM_ARRAY_TASK_ID}-1)+no_of_unique_kos_per_array_job*(${i}-1)+${j})),\'koList\',{{${Gene[${i}]}}});diary off;exit;" &' + "\n") myfile.write(" done" + "\n") myfile.write("done" + "\n") myfile.write("wait" + "\n") myfile.write("\n") myfile.write("end=`date +%s`" + "\n") myfile.write("runtime=$((end-start))" + "\n") myfile.write('echo "$((${no_of_unique_kos_per_array_job}*${no_of_repetitions_of_each_ko})) simulations took: ${runtime} seconds."') # give the file execute permissions subprocess.check_call(["chmod", "700", str(output_filename)]) return output_dict def getJobIdFromSubStdOut(self, stdout): return int(re.search(r'\d+', stdout).group()) class C3ddb(Connection): def __init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email, base_output_path = '/scratch/users/ochalkley/wc/mg/output', base_runfiles_path = '/home/ochalkley/WholeCell/github/wc/mg/mit/runFiles', wholecell_model_master_dir = '/home/ochalkley/WholeCell/github/wc/mg/WholeCell-master'): Connection.__init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email) self.submit_command = 'sbatch' self.information_about_cluster = 'Commonwealth Computational Cloud for Data Driven Biology, Massachusetts Green High Performance Computer Center' self.base_output_path = base_output_path self.base_runfiles_path = base_runfiles_path self.wholecell_model_master_dir = wholecell_model_master_dir self.activate_venv_list = ['source activate wholecell_modelling_suite_py36'] # create Bc3 connection to read/write with databases on flex1 from connections import Bc3 bc3_conn = Bc3('oc13378', 'bc3', '/users/oc13378/.ssh/uob/uob-rsa', 'Oliver', 'Chalkley', '<EMAIL>') self.db_connection = bc3_conn self.path_to_database_dir = '/home/ochalkley/WholeCell/github/wholecell_modelling_suite' #instance methhods # def rsyncFile(self, source, destination, rsync_flags = "-aP"): # super(bc3, self).rsyncFile(source, destination, rsync_flags) # # return def convertGeneCodeToId(self, tuple_of_gene_codes, path_to_staticDb_stuff='/panfs/panasas01/bluegem-flex1/database/staticDB'): """Takes a tuple of genes code and returns a tuple of corresponding gene IDs.""" if type(tuple_of_gene_codes) is not tuple: raise TypeException('Gene codes must be a tuple (even if only 1! i.e. single_tuple = (\'MG_001\',)) here type(tuple_of_gene_codes)=', type(tuple_of_gene_codes)) add_anoconda_module = 'module add languages/python-anaconda-4.2-3.5' activate_virtual_environment = 'source activate wholecell_modelling_suite' change_to_lib_dir = 'cd ' + path_to_staticDb_stuff get_gene_id = 'python -c "from staticDB import io as sio;static_db_conn = sio();print(static_db_conn.CodeToId(' + str(tuple_of_gene_codes) + '))"' cmd = "ssh " + self.db_connection.ssh_config_alias + ";" + add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id cmd_list = ["ssh", self.db_connection.ssh_config_alias, add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id] raw_out = self.db_connection.getOutput(cmd_list) # send command and get output output = raw_out output[1] = eval(str(output[1], "utf-8").rstrip()) # it doesn't output the answer in the order you input it so we need to make a dictionary codeToId_dict = {} for out in output[1]: codeToId_dict[out[1]] = out[0] return codeToId_dict def checkQueue(self, job_number): """This function takes a job number and returns a list of all the array numbers of that job still running.""" grep_part_of_cmd = "squeue -ru " + self.user_name + " | grep \'" + str(job_number) + "\' | awk \'{print $1}\' | awk -F \"_\" \'{print $2}\'" # cmd = ["ssh", self.ssh_config_alias, grep_part_of_cmd] output_dict = self.checkSuccess(self.sendCommand, [grep_part_of_cmd]) return output_dict def checkDiskUsage(self): """This function returns disk usage details.""" # create all the post connection commands needed get_disk_usage_units_command = "pan_quota | awk \'{print $1}\' | tail -n 2 | head -n 1 | sed \'s/[<>]//g\'" get_disk_usage_command = "pan_quota | awk \'{print $1}\' | tail -n 1" get_disk_usage_soft_limit_command = "pan_quota | awk \'{print $2}\' | tail -n 1" get_disk_usage_hard_limit_command = "pan_quota | awk \'{print $3}\' | tail -n 1" # combine the connection command with the post connection commands in a list (as is recomended). units_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_units_command] usage_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_command] soft_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_soft_limit_command] hard_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_hard_limit_command] # send the commands and save the exit codes and outputs units = Connection.getOutput(units_cmd) usage = Connection.getOutput(usage_cmd) soft_limit = Connection.getOutput(soft_limit_cmd) hard_limit = Connection.getOutput(hard_limit_cmd) # convert string outputs to floats where neccessary units[1] = str(units[1], "utf-8").rstrip() usage[1] = float(usage[1]) soft_limit[1] = float(soft_limit[1]) hard_limit[1] = float(hard_limit[1]) # print some stats print(100 * (usage[1] / (1.0 * hard_limit[1]) ),"% of total disk space used.\n\n",hard_limit[1] - usage[1]," ",units[1]," left until hard limit.\n\n",soft_limit[1] - usage[1]," ",units[1]," left unit soft limit.", sep='') return usage, soft_limit, hard_limit, units def createStandardKoSubmissionScript(self, output_filename, slurm_job_name, no_of_unique_kos, path_and_name_of_unique_ko_dir_names, no_of_repetitions_of_each_ko, wholecell_model_master_dir, output_dir, path_and_name_of_ko_codes, outfile_name_and_path, errorfile_name_and_path): # this shouldn't change but gonna leave it there just in case queue_name = 'defq' # set job array numbers to None so that we can check stuff has wprked later job_array_numbers = None # The maximum job array size on BC3 max_job_array_size = 200 # initialise output dict output_dict = {} # test that a reasonable amount of jobs has been submitted (This is not a hard and fast rule but there has to be a max and my intuition suggestss that it will start to get complicated around this level i.e. queueing and harddisk space etc) total_sims = no_of_unique_kos * no_of_repetitions_of_each_ko if total_sims > 20000: raise ValueError('Total amount of simulations for one batch submission must be less than 20,000, here total_sims=',total_sims) output_dict['total_sims'] = total_sims # spread simulations across array jobs if no_of_unique_kos <= max_job_array_size: no_of_unique_kos_per_array_job = 1 no_of_arrays = no_of_unique_kos job_array_numbers = '1-' + str(no_of_unique_kos) walltime = '0-30:00:00' else: # job_array_size * no_of_unique_kos_per_array_job = no_of_unique_kos so all the factors of no_of_unique_kos is common_factors = [x for x in range(1, no_of_unique_kos+1) if no_of_unique_kos % x == 0] # make the job_array_size as large as possible such that it is less than max_job_array_size factor_idx = len(common_factors) - 1 while factor_idx >= 0: if common_factors[factor_idx] < max_job_array_size: job_array_numbers = '1-' + str(common_factors[factor_idx]) no_of_arrays = common_factors[factor_idx] no_of_unique_kos_per_array_job = common_factors[(len(common_factors)-1) - factor_idx] factor_idx = -1 else: factor_idx -= 1 # raise error if no suitable factors found! if job_array_numbers is None: raise ValueError('job_array_numbers should have been assigned by now! This suggests that it wasn\'t possible for my algorithm to split the KOs across the job array properly. Here no_of_unique_kos=', no_of_unique_kos, ' and the common factors of this number are:', common_factors) # add some time to the walltime because I don't think the jobs have to startat the same time walltime = '0-35:00:00' output_dict['no_of_arrays'] = no_of_arrays output_dict['no_of_unique_kos_per_array_job'] = no_of_unique_kos_per_array_job output_dict['no_of_repetitions_of_each_ko'] = no_of_repetitions_of_each_ko # calculate the amount of cores per array job - NOTE: for simplification we only use cores and not nodes (this is generally the fastest way to get through the queue anyway) no_of_cores = no_of_repetitions_of_each_ko * no_of_unique_kos_per_array_job output_dict['no_of_sims_per_array_job'] = no_of_cores output_dict['list_of_rep_dir_names'] = list(range(1, no_of_repetitions_of_each_ko + 1)) no_of_nodes = 1 # write the script to file with open(output_filename, mode='wt', encoding='utf-8') as myfile: myfile.write("#!/bin/bash" + "\n") myfile.write("\n") myfile.write("# This script was automatically created by <NAME>'s whole-cell modelling suite and is based on scripts that he created." + "\n") myfile.write("\n") myfile.write("## Job name" + "\n") myfile.write("#SBATCH --job-name=" + slurm_job_name + "\n") myfile.write("\n") myfile.write("## Resource request" + "\n") # myfile.write("#SBATCH -n " + str(no_of_nodes) + "\n") myfile.write("#SBATCH --ntasks=" + str(no_of_cores) + " # No. of cores\n") myfile.write("#SBATCH --time=" + walltime + "\n") myfile.write("#SBATCH -p " + queue_name + "\n") myfile.write("#SBATCH --mem-per-cpu=10000" + "\n") myfile.write("\n") myfile.write("## Job array request" + "\n") myfile.write("#SBATCH --array=" + job_array_numbers + "\n") myfile.write("\n") myfile.write("## designate output and error files" + "\n") myfile.write("#SBATCH --output=" + outfile_name_and_path + "_%A_%a.out" + "\n") myfile.write("#SBATCH --error=" + errorfile_name_and_path + "_%A_%a.err" + "\n") myfile.write("\n") myfile.write("# print some details about the job" + "\n") myfile.write('echo "The Array TASK ID is: ${SLURM_ARRAY_TASK_ID}"' + "\n") myfile.write('echo "The Array JOB ID is: ${SLURM_ARRAY_JOB_ID}"' + "\n") myfile.write('echo Running on host `hostname`' + "\n") myfile.write('echo Time is `date`' + "\n") myfile.write('echo Directory is `pwd`' + "\n") myfile.write("\n") myfile.write("# load required modules" + "\n") myfile.write("module load mit/matlab/2013a" + "\n") myfile.write('echo "Modules loaded:"' + "\n") myfile.write("module list" + "\n") myfile.write("\n") myfile.write("# create the master directory variable" + "\n") myfile.write("master=" + wholecell_model_master_dir + "\n") myfile.write("\n") myfile.write("# create output directory" + "\n") myfile.write("base_outDir=" + output_dir + "\n") myfile.write("\n") myfile.write("# collect the KO combos" + "\n") myfile.write("ko_list=" + path_and_name_of_ko_codes + "\n") myfile.write("ko_dir_names=" + path_and_name_of_unique_ko_dir_names + "\n") myfile.write("\n") myfile.write("# Get all the gene KOs and output folder names" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write('do' + "\n") myfile.write(' Gene[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${SLURM_ARRAY_TASK_ID}-1)+${i})) ${ko_list})' + "\n") myfile.write(' unique_ko_dir_name[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${SLURM_ARRAY_TASK_ID}-1)+${i})) ${ko_dir_names})' + "\n") myfile.write("done" + "\n") myfile.write("\n") myfile.write("# go to master directory" + "\n") myfile.write("cd ${master}" + "\n") myfile.write("\n") myfile.write("# NB have limited MATLAB to a single thread" + "\n") myfile.write('options="-nodesktop -noFigureWindows -nosplash -singleCompThread"' + "\n") myfile.write("\n") myfile.write("# run " + str(no_of_unique_kos_per_array_job * no_of_repetitions_of_each_ko) + " simulations in parallel") myfile.write('echo "Running simulations (single threaded) in parallel - let\'s start the timer!"' + "\n") myfile.write('start=`date +%s`' + "\n") myfile.write("\n") myfile.write("# create all the directories for the diarys (the normal output will be all mixed up cause it's in parrallel!)" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write("do" + "\n") myfile.write(' for j in `seq 1 ' + str(no_of_repetitions_of_each_ko) + '`' + "\n") myfile.write(" do" + "\n") myfile.write(' specific_ko="$(echo ${Gene[${i}]} | sed \'s/{//g\' | sed \'s/}//g\' | sed \"s/\'//g\" | sed \'s/\"//g\' | sed \'s/,/-/g\')/${j}"' + "\n") myfile.write(' mkdir -p ${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}' + "\n") myfile.write(' matlab ${options} -r "diary(\'${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}/diary.out\');addpath(\'${master}\');setWarnings();setPath();runSimulation(\'runner\',\'koRunner\',\'logToDisk\',true,\'outDir\',\'${base_outDir}/${unique_ko_dir_name[${i}]}/${j}\',\'jobNumber\',$((no_of_repetitions_of_each_ko*no_of_unique_kos_per_array_job*(${SLURM_ARRAY_TASK_ID}-1)+no_of_unique_kos_per_array_job*(${i}-1)+${j})),\'koList\',{{${Gene[${i}]}}});diary off;exit;" &' + "\n") myfile.write(" done" + "\n") myfile.write("done" + "\n") myfile.write("wait" + "\n") myfile.write("\n") myfile.write("end=`date +%s`" + "\n") myfile.write("runtime=$((end-start))" + "\n") myfile.write('echo "$((${no_of_unique_kos_per_array_job}*${no_of_repetitions_of_each_ko})) simulations took: ${runtime} seconds."') # give the file execute permissions subprocess.check_call(["chmod", "700", str(output_filename)]) return output_dict def getJobIdFromSubStdOut(self, stdout): return int(re.search(r'\d+', stdout).group()) class C3ddbWithOutScratch(Connection): def __init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email, base_output_path = '/home/ochalkley/wc/mg/output', base_runfiles_path = '/home/ochalkley/WholeCell/github/wc/mg/mit/runFiles', wholecell_model_master_dir = '/home/ochalkley/WholeCell/github/wc/mg/WholeCell-master'): Connection.__init__(self, cluster_user_name, ssh_config_alias, path_to_key, forename_of_user, surname_of_user, user_email) self.submit_command = 'sbatch' self.information_about_cluster = 'Commonwealth Computational Cloud for Data Driven Biology, Massachusetts Green High Performance Computer Center' self.base_output_path = base_output_path self.base_runfiles_path = base_runfiles_path self.wholecell_model_master_dir = wholecell_model_master_dir self.activate_venv_list = ['source activate wholecell_modelling_suite_py36'] # create Bc3 connection to read/write with databases on flex1 from connections import Bc3 bc3_conn = Bc3('oc13378', 'bc3', '/users/oc13378/.ssh/uob/uob-rsa', 'Oliver', 'Chalkley', '<EMAIL>') self.db_connection = bc3_conn self.path_to_database_dir = '/home/ochalkley/WholeCell/github/wholecell_modelling_suite' #instance methhods # def rsyncFile(self, source, destination, rsync_flags = "-aP"): # super(bc3, self).rsyncFile(source, destination, rsync_flags) # # return def convertGeneCodeToId(self, tuple_of_gene_codes, path_to_staticDb_stuff='/panfs/panasas01/bluegem-flex1/database/staticDB'): """Takes a tuple of genes code and returns a tuple of corresponding gene IDs.""" if type(tuple_of_gene_codes) is not tuple: raise TypeException('Gene codes must be a tuple (even if only 1! i.e. single_tuple = (\'MG_001\',)) here type(tuple_of_gene_codes)=', type(tuple_of_gene_codes)) add_anoconda_module = 'module add languages/python-anaconda-4.2-3.5' activate_virtual_environment = 'source activate wholecell_modelling_suite' change_to_lib_dir = 'cd ' + path_to_staticDb_stuff get_gene_id = 'python -c "from staticDB import io as sio;static_db_conn = sio();print(static_db_conn.CodeToId(' + str(tuple_of_gene_codes) + '))"' cmd = "ssh " + self.db_connection.ssh_config_alias + ";" + add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id cmd_list = ["ssh", self.db_connection.ssh_config_alias, add_anoconda_module + ";" + activate_virtual_environment + ";" + change_to_lib_dir + ";" + get_gene_id] raw_out = self.db_connection.getOutput(cmd_list) # send command and get output output = raw_out output[1] = eval(str(output[1], "utf-8").rstrip()) # it doesn't output the answer in the order you input it so we need to make a dictionary codeToId_dict = {} for out in output[1]: codeToId_dict[out[1]] = out[0] return codeToId_dict def checkQueue(self, job_number): """This function takes a job number and returns a list of all the array numbers of that job still running.""" grep_part_of_cmd = "squeue -ru " + self.user_name + " | grep \'" + str(job_number) + "\' | awk \'{print $1}\' | awk -F \"_\" \'{print $2}\'" # cmd = ["ssh", self.ssh_config_alias, grep_part_of_cmd] output_dict = self.checkSuccess(self.sendCommand, [grep_part_of_cmd]) return output_dict def checkDiskUsage(self): """This function returns disk usage details.""" # create all the post connection commands needed get_disk_usage_units_command = "pan_quota | awk \'{print $1}\' | tail -n 2 | head -n 1 | sed \'s/[<>]//g\'" get_disk_usage_command = "pan_quota | awk \'{print $1}\' | tail -n 1" get_disk_usage_soft_limit_command = "pan_quota | awk \'{print $2}\' | tail -n 1" get_disk_usage_hard_limit_command = "pan_quota | awk \'{print $3}\' | tail -n 1" # combine the connection command with the post connection commands in a list (as is recomended). units_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_units_command] usage_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_command] soft_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_soft_limit_command] hard_limit_cmd = ["ssh", self.ssh_config_alias, get_disk_usage_hard_limit_command] # send the commands and save the exit codes and outputs units = Connection.getOutput(units_cmd) usage = Connection.getOutput(usage_cmd) soft_limit = Connection.getOutput(soft_limit_cmd) hard_limit = Connection.getOutput(hard_limit_cmd) # convert string outputs to floats where neccessary units[1] = str(units[1], "utf-8").rstrip() usage[1] = float(usage[1]) soft_limit[1] = float(soft_limit[1]) hard_limit[1] = float(hard_limit[1]) # print some stats print(100 * (usage[1] / (1.0 * hard_limit[1]) ),"% of total disk space used.\n\n",hard_limit[1] - usage[1]," ",units[1]," left until hard limit.\n\n",soft_limit[1] - usage[1]," ",units[1]," left unit soft limit.", sep='') return usage, soft_limit, hard_limit, units def createStandardKoSubmissionScript(self, output_filename, slurm_job_name, no_of_unique_kos, path_and_name_of_unique_ko_dir_names, no_of_repetitions_of_each_ko, wholecell_model_master_dir, output_dir, path_and_name_of_ko_codes, outfile_name_and_path, errorfile_name_and_path): # this shouldn't change but gonna leave it there just in case queue_name = 'defq' # set job array numbers to None so that we can check stuff has wprked later job_array_numbers = None # The maximum job array size on BC3 max_job_array_size = 200 # initialise output dict output_dict = {} # test that a reasonable amount of jobs has been submitted (This is not a hard and fast rule but there has to be a max and my intuition suggestss that it will start to get complicated around this level i.e. queueing and harddisk space etc) total_sims = no_of_unique_kos * no_of_repetitions_of_each_ko if total_sims > 20000: raise ValueError('Total amount of simulations for one batch submission must be less than 20,000, here total_sims=',total_sims) output_dict['total_sims'] = total_sims # spread simulations across array jobs if no_of_unique_kos <= max_job_array_size: no_of_unique_kos_per_array_job = 1 no_of_arrays = no_of_unique_kos job_array_numbers = '1-' + str(no_of_unique_kos) walltime = '0-30:00:00' else: # job_array_size * no_of_unique_kos_per_array_job = no_of_unique_kos so all the factors of no_of_unique_kos is common_factors = [x for x in range(1, no_of_unique_kos+1) if no_of_unique_kos % x == 0] # make the job_array_size as large as possible such that it is less than max_job_array_size factor_idx = len(common_factors) - 1 while factor_idx >= 0: if common_factors[factor_idx] < max_job_array_size: job_array_numbers = '1-' + str(common_factors[factor_idx]) no_of_arrays = common_factors[factor_idx] no_of_unique_kos_per_array_job = common_factors[(len(common_factors)-1) - factor_idx] factor_idx = -1 else: factor_idx -= 1 # raise error if no suitable factors found! if job_array_numbers is None: raise ValueError('job_array_numbers should have been assigned by now! This suggests that it wasn\'t possible for my algorithm to split the KOs across the job array properly. Here no_of_unique_kos=', no_of_unique_kos, ' and the common factors of this number are:', common_factors) # add some time to the walltime because I don't think the jobs have to startat the same time walltime = '0-35:00:00' output_dict['no_of_arrays'] = no_of_arrays output_dict['no_of_unique_kos_per_array_job'] = no_of_unique_kos_per_array_job output_dict['no_of_repetitions_of_each_ko'] = no_of_repetitions_of_each_ko # calculate the amount of cores per array job - NOTE: for simplification we only use cores and not nodes (this is generally the fastest way to get through the queue anyway) no_of_cores = no_of_repetitions_of_each_ko * no_of_unique_kos_per_array_job output_dict['no_of_sims_per_array_job'] = no_of_cores output_dict['list_of_rep_dir_names'] = list(range(1, no_of_repetitions_of_each_ko + 1)) no_of_nodes = 1 # write the script to file with open(output_filename, mode='wt', encoding='utf-8') as myfile: myfile.write("#!/bin/bash" + "\n") myfile.write("\n") myfile.write("# This script was automatically created by <NAME>'s whole-cell modelling suite and is based on scripts that he created." + "\n") myfile.write("\n") myfile.write("## Job name" + "\n") myfile.write("#SBATCH --job-name=" + slurm_job_name + "\n") myfile.write("\n") myfile.write("## Resource request" + "\n") # myfile.write("#SBATCH -n " + str(no_of_nodes) + "\n") myfile.write("#SBATCH --ntasks=" + str(no_of_cores) + " # No. of cores\n") myfile.write("#SBATCH --time=" + walltime + "\n") myfile.write("#SBATCH -p " + queue_name + "\n") myfile.write("#SBATCH --mem-per-cpu=10000" + "\n") myfile.write("\n") myfile.write("## Job array request" + "\n") myfile.write("#SBATCH --array=" + job_array_numbers + "\n") myfile.write("\n") myfile.write("## designate output and error files" + "\n") myfile.write("#SBATCH --output=" + outfile_name_and_path + "_%A_%a.out" + "\n") myfile.write("#SBATCH --error=" + errorfile_name_and_path + "_%A_%a.err" + "\n") myfile.write("\n") myfile.write("# print some details about the job" + "\n") myfile.write('echo "The Array TASK ID is: ${SLURM_ARRAY_TASK_ID}"' + "\n") myfile.write('echo "The Array JOB ID is: ${SLURM_ARRAY_JOB_ID}"' + "\n") myfile.write('echo Running on host `hostname`' + "\n") myfile.write('echo Time is `date`' + "\n") myfile.write('echo Directory is `pwd`' + "\n") myfile.write("\n") myfile.write("# load required modules" + "\n") myfile.write("module load mit/matlab/2013a" + "\n") myfile.write('echo "Modules loaded:"' + "\n") myfile.write("module list" + "\n") myfile.write("\n") myfile.write("# create the master directory variable" + "\n") myfile.write("master=" + wholecell_model_master_dir + "\n") myfile.write("\n") myfile.write("# create output directory" + "\n") myfile.write("base_outDir=" + output_dir + "\n") myfile.write("\n") myfile.write("# collect the KO combos" + "\n") myfile.write("ko_list=" + path_and_name_of_ko_codes + "\n") myfile.write("ko_dir_names=" + path_and_name_of_unique_ko_dir_names + "\n") myfile.write("\n") myfile.write("# Get all the gene KOs and output folder names" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write('do' + "\n") myfile.write(' Gene[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${SLURM_ARRAY_TASK_ID}-1)+${i})) ${ko_list})' + "\n") myfile.write(' unique_ko_dir_name[${i}]=$(awk NR==$((' + str(no_of_unique_kos_per_array_job) + '*(${SLURM_ARRAY_TASK_ID}-1)+${i})) ${ko_dir_names})' + "\n") myfile.write("done" + "\n") myfile.write("\n") myfile.write("# go to master directory" + "\n") myfile.write("cd ${master}" + "\n") myfile.write("\n") myfile.write("# NB have limited MATLAB to a single thread" + "\n") myfile.write('options="-nodesktop -noFigureWindows -nosplash -singleCompThread"' + "\n") myfile.write("\n") myfile.write("# run " + str(no_of_unique_kos_per_array_job * no_of_repetitions_of_each_ko) + " simulations in parallel") myfile.write('echo "Running simulations (single threaded) in parallel - let\'s start the timer!"' + "\n") myfile.write('start=`date +%s`' + "\n") myfile.write("\n") myfile.write("# create all the directories for the diarys (the normal output will be all mixed up cause it's in parrallel!)" + "\n") myfile.write('for i in `seq 1 ' + str(no_of_unique_kos_per_array_job) + '`' + "\n") myfile.write("do" + "\n") myfile.write(' for j in `seq 1 ' + str(no_of_repetitions_of_each_ko) + '`' + "\n") myfile.write(" do" + "\n") myfile.write(' specific_ko="$(echo ${Gene[${i}]} | sed \'s/{//g\' | sed \'s/}//g\' | sed \"s/\'//g\" | sed \'s/\"//g\' | sed \'s/,/-/g\')/${j}"' + "\n") myfile.write(' mkdir -p ${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}' + "\n") myfile.write(' matlab ${options} -r "diary(\'${base_outDir}/${unique_ko_dir_name[${i}]}/diary${j}/diary.out\');addpath(\'${master}\');setWarnings();setPath();runSimulation(\'runner\',\'koRunner\',\'logToDisk\',true,\'outDir\',\'${base_outDir}/${unique_ko_dir_name[${i}]}/${j}\',\'jobNumber\',$((no_of_repetitions_of_each_ko*no_of_unique_kos_per_array_job*(${SLURM_ARRAY_TASK_ID}-1)+no_of_unique_kos_per_array_job*(${i}-1)+${j})),\'koList\',{{${Gene[${i}]}}});diary off;exit;" &' + "\n") myfile.write(" done" + "\n") myfile.write("done" + "\n") myfile.write("wait" + "\n") myfile.write("\n") myfile.write("end=`date +%s`" + "\n") myfile.write("runtime=$((end-start))" + "\n") myfile.write('echo "$((${no_of_unique_kos_per_array_job}*${no_of_repetitions_of_each_ko})) simulations took: ${runtime} seconds."') # give the file execute permissions subprocess.check_call(["chmod", "700", str(output_filename)]) return output_dict def getJobIdFromSubStdOut(self, stdout): return int(re.search(r'\d+', stdout).group())
[ "base_connection.Connection.getOutput", "datetime.datetime.now", "connections.Bc3", "base_connection.Connection.__init__", "re.search" ]
[((503, 629), 'base_connection.Connection.__init__', 'Connection.__init__', (['self', 'cluster_user_name', 'ssh_config_alias', 'path_to_key', 'forename_of_user', 'surname_of_user', 'user_email'], {}), '(self, cluster_user_name, ssh_config_alias, path_to_key,\n forename_of_user, surname_of_user, user_email)\n', (522, 629), False, 'from base_connection import Connection\n'), ((2854, 2884), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['cmd_list'], {}), '(cmd_list)\n', (2874, 2884), False, 'from base_connection import Connection\n'), ((3768, 3798), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['cmd_list'], {}), '(cmd_list)\n', (3788, 3798), False, 'from base_connection import Connection\n'), ((4898, 4928), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['cmd_list'], {}), '(cmd_list)\n', (4918, 4928), False, 'from base_connection import Connection\n'), ((6689, 6720), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['units_cmd'], {}), '(units_cmd)\n', (6709, 6720), False, 'from base_connection import Connection\n'), ((6731, 6762), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['usage_cmd'], {}), '(usage_cmd)\n', (6751, 6762), False, 'from base_connection import Connection\n'), ((6778, 6814), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['soft_limit_cmd'], {}), '(soft_limit_cmd)\n', (6798, 6814), False, 'from base_connection import Connection\n'), ((6830, 6866), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['hard_limit_cmd'], {}), '(hard_limit_cmd)\n', (6850, 6866), False, 'from base_connection import Connection\n'), ((16323, 16449), 'base_connection.Connection.__init__', 'Connection.__init__', (['self', 'cluster_user_name', 'ssh_config_alias', 'path_to_key', 'forename_of_user', 'surname_of_user', 'user_email'], {}), '(self, cluster_user_name, ssh_config_alias, path_to_key,\n forename_of_user, surname_of_user, user_email)\n', (16342, 16449), False, 'from base_connection import Connection\n'), ((18157, 18187), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['cmd_list'], {}), '(cmd_list)\n', (18177, 18187), False, 'from base_connection import Connection\n'), ((19889, 19920), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['units_cmd'], {}), '(units_cmd)\n', (19909, 19920), False, 'from base_connection import Connection\n'), ((19931, 19962), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['usage_cmd'], {}), '(usage_cmd)\n', (19951, 19962), False, 'from base_connection import Connection\n'), ((19978, 20014), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['soft_limit_cmd'], {}), '(soft_limit_cmd)\n', (19998, 20014), False, 'from base_connection import Connection\n'), ((20030, 20066), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['hard_limit_cmd'], {}), '(hard_limit_cmd)\n', (20050, 20066), False, 'from base_connection import Connection\n'), ((29270, 29396), 'base_connection.Connection.__init__', 'Connection.__init__', (['self', 'cluster_user_name', 'ssh_config_alias', 'path_to_key', 'forename_of_user', 'surname_of_user', 'user_email'], {}), '(self, cluster_user_name, ssh_config_alias, path_to_key,\n forename_of_user, surname_of_user, user_email)\n', (29289, 29396), False, 'from base_connection import Connection\n'), ((29913, 30006), 'connections.Bc3', 'Bc3', (['"""oc13378"""', '"""bc3"""', '"""/users/oc13378/.ssh/uob/uob-rsa"""', '"""Oliver"""', '"""Chalkley"""', '"""<EMAIL>"""'], {}), "('oc13378', 'bc3', '/users/oc13378/.ssh/uob/uob-rsa', 'Oliver',\n 'Chalkley', '<EMAIL>')\n", (29916, 30006), False, 'from connections import Bc3\n'), ((33137, 33168), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['units_cmd'], {}), '(units_cmd)\n', (33157, 33168), False, 'from base_connection import Connection\n'), ((33179, 33210), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['usage_cmd'], {}), '(usage_cmd)\n', (33199, 33210), False, 'from base_connection import Connection\n'), ((33226, 33262), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['soft_limit_cmd'], {}), '(soft_limit_cmd)\n', (33246, 33262), False, 'from base_connection import Connection\n'), ((33278, 33314), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['hard_limit_cmd'], {}), '(hard_limit_cmd)\n', (33298, 33314), False, 'from base_connection import Connection\n'), ((42428, 42554), 'base_connection.Connection.__init__', 'Connection.__init__', (['self', 'cluster_user_name', 'ssh_config_alias', 'path_to_key', 'forename_of_user', 'surname_of_user', 'user_email'], {}), '(self, cluster_user_name, ssh_config_alias, path_to_key,\n forename_of_user, surname_of_user, user_email)\n', (42447, 42554), False, 'from base_connection import Connection\n'), ((43071, 43164), 'connections.Bc3', 'Bc3', (['"""oc13378"""', '"""bc3"""', '"""/users/oc13378/.ssh/uob/uob-rsa"""', '"""Oliver"""', '"""Chalkley"""', '"""<EMAIL>"""'], {}), "('oc13378', 'bc3', '/users/oc13378/.ssh/uob/uob-rsa', 'Oliver',\n 'Chalkley', '<EMAIL>')\n", (43074, 43164), False, 'from connections import Bc3\n'), ((46295, 46326), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['units_cmd'], {}), '(units_cmd)\n', (46315, 46326), False, 'from base_connection import Connection\n'), ((46337, 46368), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['usage_cmd'], {}), '(usage_cmd)\n', (46357, 46368), False, 'from base_connection import Connection\n'), ((46384, 46420), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['soft_limit_cmd'], {}), '(soft_limit_cmd)\n', (46404, 46420), False, 'from base_connection import Connection\n'), ((46436, 46472), 'base_connection.Connection.getOutput', 'Connection.getOutput', (['hard_limit_cmd'], {}), '(hard_limit_cmd)\n', (46456, 46472), False, 'from base_connection import Connection\n'), ((15918, 15943), 're.search', 're.search', (['"""\\\\d+"""', 'stdout'], {}), "('\\\\d+', stdout)\n", (15927, 15943), False, 'import re\n'), ((28865, 28890), 're.search', 're.search', (['"""\\\\d+"""', 'stdout'], {}), "('\\\\d+', stdout)\n", (28874, 28890), False, 'import re\n'), ((42018, 42043), 're.search', 're.search', (['"""\\\\d+"""', 'stdout'], {}), "('\\\\d+', stdout)\n", (42027, 42043), False, 'import re\n'), ((55176, 55201), 're.search', 're.search', (['"""\\\\d+"""', 'stdout'], {}), "('\\\\d+', stdout)\n", (55185, 55201), False, 'import re\n'), ((11096, 11119), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11117, 11119), False, 'import datetime\n')]
# -*- coding: utf-8 -*- # Copyright (c) 2012 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Script for calculating compatible binhosts. Generates a file that sets the specified board's binhosts to include all of the other compatible boards in this buildroot. """ from __future__ import print_function import collections import glob import os import sys from chromite.lib import commandline from chromite.lib import portage_util def FindCandidateBoards(): """Find candidate local boards to grab prebuilts from.""" portageq_prefix = '/usr/local/bin/portageq-' for path in sorted(glob.glob('%s*' % portageq_prefix)): # Strip off the portageq prefix, leaving only the board. yield path.replace(portageq_prefix, '') def SummarizeCompatibility(board): """Returns a string that will be the same for compatible boards.""" result = portage_util.PortageqEnvvars(['ARCH', 'CFLAGS'], board=board) return '%s %s' % (result['ARCH'], result['CFLAGS']) def GenerateBinhostLine(build_root, compatible_boards): """Generate a binhost line pulling binaries from the specified boards.""" # TODO(davidjames): Prioritize binhosts with more matching use flags. local_binhosts = ' '.join([ 'file://localhost' + os.path.join(build_root, x, 'packages') for x in sorted(compatible_boards)]) return "LOCAL_BINHOST='%s'" % local_binhosts def GetParser(): """Return a command line parser.""" parser = commandline.ArgumentParser(description=__doc__) parser.add_argument('--build_root', default='/build', help='Location of boards (normally %(default)s)') parser.add_argument('--board', required=True, help='Board name') return parser def main(argv): parser = GetParser() flags = parser.parse_args(argv) by_compatibility = collections.defaultdict(set) compatible_boards = None for other_board in FindCandidateBoards(): compat_id = SummarizeCompatibility(other_board) if other_board == flags.board: compatible_boards = by_compatibility[compat_id] else: by_compatibility[compat_id].add(other_board) if compatible_boards is None: print('Missing portageq wrapper for %s' % flags.board, file=sys.stderr) sys.exit(1) print('# Generated by cros_generate_local_binhosts.') print(GenerateBinhostLine(flags.build_root, compatible_boards))
[ "chromite.lib.commandline.ArgumentParser", "os.path.join", "chromite.lib.portage_util.PortageqEnvvars", "collections.defaultdict", "sys.exit", "glob.glob" ]
[((954, 1015), 'chromite.lib.portage_util.PortageqEnvvars', 'portage_util.PortageqEnvvars', (["['ARCH', 'CFLAGS']"], {'board': 'board'}), "(['ARCH', 'CFLAGS'], board=board)\n", (982, 1015), False, 'from chromite.lib import portage_util\n'), ((1531, 1578), 'chromite.lib.commandline.ArgumentParser', 'commandline.ArgumentParser', ([], {'description': '__doc__'}), '(description=__doc__)\n', (1557, 1578), False, 'from chromite.lib import commandline\n'), ((1909, 1937), 'collections.defaultdict', 'collections.defaultdict', (['set'], {}), '(set)\n', (1932, 1937), False, 'import collections\n'), ((694, 728), 'glob.glob', 'glob.glob', (["('%s*' % portageq_prefix)"], {}), "('%s*' % portageq_prefix)\n", (703, 728), False, 'import glob\n'), ((2324, 2335), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2332, 2335), False, 'import sys\n'), ((1333, 1372), 'os.path.join', 'os.path.join', (['build_root', 'x', '"""packages"""'], {}), "(build_root, x, 'packages')\n", (1345, 1372), False, 'import os\n')]
import numpy as np from scipy.ndimage import gaussian_filter from operator import itemgetter from utils import * import os import time def setup_header(hdr_arr): k = ['CAL_FLAT','CAL_USH','SIGM_USH', 'CAL_PRE','CAL_GHST','CAL_REAL', 'CAL_CRT0','CAL_CRT1','CAL_CRT2','CAL_CRT3','CAL_CRT4','CAL_CRT5', 'CAL_CRT6','CAL_CRT7','CAL_CRT8','CAL_CRT9', 'CAL_NORM','CAL_FRIN','CAL_PSF','CAL_IPOL', 'CAL_SCIP','RTE_MOD','RTE_SW','RTE_ITER'] v = [0,' ',' ', ' ','None ','NA', 0,0,0,0,0,0, 0,0,0,0, ' ','NA','NA',' ', 'None',' ',' ',4294967295] c = ['Onboard calibrated for gain table','Unsharp masking correction','Sigma for unsharp masking [px]', 'Prefilter correction (DID/file)','Ghost correction (name + version of module','Prealigment of images before demodulation', 'cross-talk from I to Q (slope)','cross-talk from I to Q (offset)','cross-talk from I to U (slope)','cross-talk from I to U (offset)','cross-talk from I to V (slope)','cross-talk from I to V (offset)', 'cross-talk from V to Q (slope)','cross-talk from V to Q (offset)','cross-talk from V to U (slope)','cross-talk from V to U (offset)', 'Normalization (normalization constant PROC_Ic)','Fringe correction (name + version of module)','Onboard calibrated for instrumental PSF','Onboard calibrated for instrumental polarization', 'Onboard scientific data analysis','Inversion mode','Inversion software','Number RTE inversion iterations'] for h in hdr_arr: for i in range(len(k)): if k[i] in h: # Check for existence h[k[i]] = v[i] else: if i==0: h.set(k[i], v[i], c[i], after='CAL_DARK') else: h.set(k[i], v[i], c[i], after=k[i-1]) return hdr_arr def load_flat(flat_f, accum_scaling, bit_conversion, scale_data, header_imgdirx_exists, imgdirx_flipped, cpos_arr) -> np.ndarray: """ load, scale, flip and correct flat """ print(" ") printc('-->>>>>>> Reading Flats',color=bcolors.OKGREEN) start_time = time.time() # flat from IP-5 if '0024151020000' in flat_f or '0024150020000' in flat_f: flat, header_flat = get_data(flat_f, scaling = accum_scaling, bit_convert_scale=bit_conversion, scale_data=False) else: flat, header_flat = get_data(flat_f, scaling = accum_scaling, bit_convert_scale=bit_conversion, scale_data=scale_data) if 'IMGDIRX' in header_flat: header_fltdirx_exists = True fltdirx_flipped = str(header_flat['IMGDIRX']) else: header_fltdirx_exists = False fltdirx_flipped = 'NO' print(f"Flat field shape is {flat.shape}") # correction based on science data - see if flat and science are both flipped or not flat = compare_IMGDIRX(flat,header_imgdirx_exists,imgdirx_flipped,header_fltdirx_exists,fltdirx_flipped) flat = np.moveaxis(flat, 0,-1) #so that it is [y,x,24] flat = flat.reshape(2048,2048,6,4) #separate 24 images, into 6 wavelengths, with each 4 pol states flat = np.moveaxis(flat, 2,-1) print(flat.shape) _, _, _, cpos_f = fits_get_sampling(flat_f,verbose = True) #get flat continuum position print(f"The continuum position of the flat field is at {cpos_f} index position") #-------- # test if the science and flat have continuum at same position #-------- flat = compare_cpos(flat,cpos_f,cpos_arr[0]) flat_pmp_temp = str(header_flat['HPMPTSP1']) print(f"Flat PMP Temperature Set Point: {flat_pmp_temp}") #-------- # correct for missing line in particular flat field #-------- if flat_f[-15:] == '0162201100.fits': # flat_f[-62:] == 'solo_L0_phi-hrt-flat_0667134081_V202103221851C_0162201100.fits' print("This flat has a missing line - filling in with neighbouring pixels") flat_copy = flat.copy() flat[:,:,1,1] = filling_data(flat_copy[:,:,1,1], 0, mode = {'exact rows':[1345,1346]}, axis=1) del flat_copy printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------ Load flats time: {np.round(time.time() - start_time,3)} seconds",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return flat def load_dark(dark_f) -> np.ndarray: """ loads dark field from given path """ print(" ") printc('-->>>>>>> Reading Darks',color=bcolors.OKGREEN) start_time = time.time() try: dark,_ = get_data(dark_f) dark_shape = dark.shape if dark_shape != (2048,2048): if dark.ndim > 2: printc("Dark Field Input File has more dimensions than the expected 2048,2048 format: {}",dark_f,color=bcolors.WARNING) raise ValueError printc("Dark Field Input File not in 2048,2048 format: {}",dark_f,color=bcolors.WARNING) printc("Attempting to correct ",color=bcolors.WARNING) try: if dark_shape[0] > 2048: dark = dark[dark_shape[0]-2048:,:] except Exception: printc("ERROR, Unable to correct shape of dark field data: {}",dark_f,color=bcolors.FAIL) raise ValueError printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------ Load darks time: {np.round(time.time() - start_time,3)} seconds",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return dark except Exception: printc("ERROR, Unable to open and process darks file: {}",dark_f,color=bcolors.FAIL) def apply_dark_correction(data, flat, dark, rows, cols) -> np.ndarray: """ subtracts dark field from flat field and science data """ print(" ") print("-->>>>>>> Subtracting dark field") start_time = time.time() data -= dark[rows,cols, np.newaxis, np.newaxis, np.newaxis] #flat -= dark[..., np.newaxis, np.newaxis] - # all processed flat fields should already be dark corrected printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------- Dark Field correction time: {np.round(time.time() - start_time,3)} seconds",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return data, flat def normalise_flat(flat, flat_f, ceny, cenx) -> np.ndarray: """ normalise flat fields at each wavelength position to remove the spectral line """ print(" ") printc('-->>>>>>> Normalising Flats',color=bcolors.OKGREEN) start_time = time.time() try: norm_fac = np.mean(flat[ceny,cenx, :, :], axis = (0,1))[np.newaxis, np.newaxis, ...] #mean of the central 1k x 1k flat /= norm_fac printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------- Normalising flat time: {np.round(time.time() - start_time,3)} seconds",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return flat except Exception: printc("ERROR, Unable to normalise the flat fields: {}",flat_f,color=bcolors.FAIL) def demod_hrt(data,pmp_temp, verbose = True) -> np.ndarray: ''' Use constant demodulation matrices to demodulate input data ''' if pmp_temp == '50': demod_data = np.array([[ 0.28037298, 0.18741922, 0.25307596, 0.28119895], [ 0.40408596, 0.10412157, -0.7225681, 0.20825675], [-0.19126636, -0.5348939, 0.08181918, 0.64422774], [-0.56897295, 0.58620095, -0.2579202, 0.2414017 ]]) elif pmp_temp == '40': demod_data = np.array([[ 0.26450154, 0.2839626, 0.12642948, 0.3216773 ], [ 0.59873885, 0.11278069, -0.74991184, 0.03091451], [ 0.10833212, -0.5317737, -0.1677862, 0.5923593 ], [-0.46916953, 0.47738808, -0.43824592, 0.42579797]]) else: printc("Demodulation Matrix for PMP TEMP of {pmp_temp} deg is not available", color = bcolors.FAIL) if verbose: printc(f'Using a constant demodulation matrix for a PMP TEMP of {pmp_temp} deg',color = bcolors.OKGREEN) demod_data = demod_data.reshape((4,4)) shape = data.shape demod = np.tile(demod_data, (shape[0],shape[1],1,1)) if data.ndim == 5: #if data array has more than one scan data = np.moveaxis(data,-1,0) #moving number of scans to first dimension data = np.matmul(demod,data) data = np.moveaxis(data,0,-1) #move scans back to the end elif data.ndim == 4: #for if data has just one scan data = np.matmul(demod,data) return data, demod def unsharp_masking(flat,sigma,flat_pmp_temp,cpos_arr,clean_mode,clean_f,pol_end=4,verbose=True): """ unsharp masks the flat fields to blur our polarimetric structures due to solar rotation clean_f = ['blurring', 'fft'] """ flat_demod, demodM = demod_hrt(flat, flat_pmp_temp,verbose) norm_factor = np.mean(flat_demod[512:1536,512:1536,0,cpos_arr[0]]) flat_demod /= norm_factor new_demod_flats = np.copy(flat_demod) # b_arr = np.zeros((2048,2048,3,5)) if cpos_arr[0] == 0: wv_range = range(1,6) elif cpos_arr[0] == 5: wv_range = range(5) if clean_mode == "QUV": start_clean_pol = 1 if verbose: print("Unsharp Masking Q,U,V") elif clean_mode == "UV": start_clean_pol = 2 if verbose: print("Unsharp Masking U,V") elif clean_mode == "V": start_clean_pol = 3 if verbose: print("Unsharp Masking V") if clean_f == 'blurring': blur = lambda a: gaussian_filter(a,sigma) elif clean_f == 'fft': x = np.fft.fftfreq(2048,1) fftgaus2d = np.exp(-2*np.pi**2*(x-0)**2*sigma**2)[:,np.newaxis] * np.exp(-2*np.pi**2*(x-0)**2*sigma**2)[np.newaxis] blur = lambda a : (np.fft.ifftn(fftgaus2d*np.fft.fftn(a.copy()))).real for pol in range(start_clean_pol,pol_end): for wv in wv_range: #not the continuum a = np.copy(np.clip(flat_demod[:,:,pol,wv], -0.02, 0.02)) b = a - blur(a) # b_arr[:,:,pol-1,wv-1] = b c = a - b new_demod_flats[:,:,pol,wv] = c invM = np.linalg.inv(demodM) return np.matmul(invM, new_demod_flats*norm_factor) def flat_correction(data,flat,flat_states,rows,cols) -> np.ndarray: """ correct science data with flat fields """ print(" ") printc('-->>>>>>> Correcting Flatfield',color=bcolors.OKGREEN) start_time = time.time() try: if flat_states == 6: printc("Dividing by 6 flats, one for each wavelength",color=bcolors.OKGREEN) tmp = np.mean(flat,axis=-2) #avg over pol states for the wavelength return data / tmp[rows,cols, np.newaxis, :, np.newaxis] elif flat_states == 24: printc("Dividing by 24 flats, one for each image",color=bcolors.OKGREEN) return data / flat[rows,cols, :, :, np.newaxis] #only one new axis for the scans elif flat_states == 4: printc("Dividing by 4 flats, one for each pol state",color=bcolors.OKGREEN) tmp = np.mean(flat,axis=-1) #avg over wavelength return data / tmp[rows,cols, :, np.newaxis, np.newaxis] else: print(" ") printc('-->>>>>>> Unable to apply flat correction. Please insert valid flat_states',color=bcolors.WARNING) printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------- Flat Field correction time: {np.round(time.time() - start_time,3)} seconds ",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return data except: printc("ERROR, Unable to apply flat fields",color=bcolors.FAIL) def prefilter_correction(data,voltagesData_arr,prefilter,prefilter_voltages): """ applies prefilter correction adapted from SPGPylibs """ def _get_v1_index1(x): index1, v1 = min(enumerate([abs(i) for i in x]), key=itemgetter(1)) return v1, index1 data_shape = data.shape for scan in range(data_shape[-1]): voltage_list = voltagesData_arr[scan] for wv in range(6): v = voltage_list[wv] vdif = [v - pf for pf in prefilter_voltages] v1, index1 = _get_v1_index1(vdif) if vdif[index1] >= 0: v2 = vdif[index1 + 1] index2 = index1 + 1 else: v2 = vdif[index1-1] index2 = index1 - 1 imprefilter = (prefilter[:,:, index1]*v1 + prefilter[:,:, index2]*v2)/(v1+v2) #interpolation between nearest voltages data[:,:,:,wv,scan] /= imprefilter[...,np.newaxis] return data def apply_field_stop(data, rows, cols, header_imgdirx_exists, imgdirx_flipped) -> np.ndarray: """ apply field stop mask to the science data """ print(" ") printc("-->>>>>>> Applying field stop",color=bcolors.OKGREEN) start_time = time.time() field_stop_loc = os.path.realpath(__file__) field_stop_loc = field_stop_loc.split('src/')[0] + 'field_stop/' field_stop,_ = load_fits(field_stop_loc + 'HRT_field_stop.fits') field_stop = np.where(field_stop > 0,1,0) if header_imgdirx_exists: if imgdirx_flipped == 'YES': #should be YES for any L1 data, but mistake in processing software field_stop = field_stop[:,::-1] #also need to flip the flat data after dark correction data *= field_stop[rows,cols,np.newaxis, np.newaxis, np.newaxis] printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------- Field stop time: {np.round(time.time() - start_time,3)} seconds",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return data, field_stop def load_ghost_field_stop(header_imgdirx_exists, imgdirx_flipped) -> np.ndarray: """ apply field stop ghost mask to the science data """ print(" ") printc("-->>>>>>> Loading ghost field stop",color=bcolors.OKGREEN) start_time = time.time() field_stop_loc = os.path.realpath(__file__) field_stop_loc = field_stop_loc.split('src/')[0] + 'field_stop/' field_stop_ghost,_ = load_fits(field_stop_loc + 'HRT_field_stop_ghost.fits') field_stop_ghost = np.where(field_stop_ghost > 0,1,0) if header_imgdirx_exists: if imgdirx_flipped == 'YES': #should be YES for any L1 data, but mistake in processing software field_stop_ghost = field_stop_ghost[:,::-1] printc('--------------------------------------------------------------',bcolors.OKGREEN) printc(f"------------- Load Ghost Field Stop time: {np.round(time.time() - start_time,3)} seconds",bcolors.OKGREEN) printc('--------------------------------------------------------------',bcolors.OKGREEN) return field_stop_ghost def crosstalk_auto_ItoQUV(data_demod,cpos,wl,roi=np.ones((2048,2048)),verbose=0,npoints=5000,limit=0.2): import random, statistics from scipy.optimize import curve_fit def linear(x,a,b): return a*x + b my = [] sy = [] x = data_demod[roi>0,0,cpos].flatten() ids = np.logical_and(x > limit, x < 1.5) x = x[ids].flatten() N = x.size idx = random.sample(range(N),npoints) mx = x[idx].mean() sx = x[idx].std() xp = np.linspace(x.min(), x.max(), 100) A = np.vstack([x, np.ones(len(x))]).T # I to Q yQ = data_demod[roi>0,1,wl].flatten() yQ = yQ[ids].flatten() my.append(yQ[idx].mean()) sy.append(yQ[idx].std()) cQ = curve_fit(linear,x,yQ,p0=[0,0])[0] pQ = np.poly1d(cQ) # I to U yU = data_demod[roi>0,2,wl].flatten() yU = yU[ids].flatten() my.append(yU[idx].mean()) sy.append(yU[idx].std()) cU = curve_fit(linear,x,yU,p0=[0,0])[0] pU = np.poly1d(cU) # I to V yV = data_demod[roi>0,3,wl].flatten() yV = yV[ids].flatten() my.append(yV[idx].mean()) sy.append(yV[idx].std()) cV = curve_fit(linear,x,yV,p0=[0,0])[0] pV = np.poly1d(cV) if verbose: PLT_RNG = 3 fig, ax = plt.subplots(figsize=(8, 8)) ax.scatter(x[idx],yQ[idx],color='red',alpha=0.6,s=10) ax.plot(xp, pQ(xp), color='red', linestyle='dashed',linewidth=3.0) ax.scatter(x[idx],yU[idx],color='blue',alpha=0.6,s=10) ax.plot(xp, pU(xp), color='blue', linestyle='dashed',linewidth=3.0) ax.scatter(x[idx],yV[idx],color='green',alpha=0.6,s=10) ax.plot(xp, pV(xp), color='green', linestyle='dashed',linewidth=3.0) ax.set_xlim([mx - PLT_RNG * sx,mx + PLT_RNG * sx]) ax.set_ylim([min(my) - 1.8*PLT_RNG * statistics.mean(sy),max(my) + PLT_RNG * statistics.mean(sy)]) ax.set_xlabel('Stokes I') ax.set_ylabel('Stokes Q/U/V') ax.text(mx - 0.9*PLT_RNG * sx, min(my) - 1.4*PLT_RNG * statistics.mean(sy), 'Cross-talk from I to Q: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cQ[0],cQ[1],width=8,prec=4), style='italic',bbox={'facecolor': 'red', 'alpha': 0.1, 'pad': 1}, fontsize=15) ax.text(mx - 0.9*PLT_RNG * sx, min(my) - 1.55*PLT_RNG * statistics.mean(sy), 'Cross-talk from I to U: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cU[0],cU[1],width=8,prec=4), style='italic',bbox={'facecolor': 'blue', 'alpha': 0.1, 'pad': 1}, fontsize=15) ax.text(mx - 0.9*PLT_RNG * sx, min(my) - 1.7*PLT_RNG * statistics.mean(sy), 'Cross-talk from I to V: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cV[0],cV[1],width=8,prec=4), style='italic',bbox={'facecolor': 'green', 'alpha': 0.1, 'pad': 1}, fontsize=15) # fig.show() print('Cross-talk from I to Q: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cQ[0],cQ[1],width=8,prec=4)) print('Cross-talk from I to U: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cU[0],cU[1],width=8,prec=4)) print('Cross-talk from I to V: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cV[0],cV[1],width=8,prec=4)) # return cQ,cU,cV, (idx,x,xp,yQ,yU,yV,pQ,pU,pV,mx,sx,my,sy) else: printc('Cross-talk from I to Q: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cQ[0],cQ[1],width=8,prec=4),color=bcolors.OKGREEN) printc('Cross-talk from I to U: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cU[0],cU[1],width=8,prec=4),color=bcolors.OKGREEN) printc('Cross-talk from I to V: slope = {: {width}.{prec}f} ; off-set = {: {width}.{prec}f} '.format(cV[0],cV[1],width=8,prec=4),color=bcolors.OKGREEN) ct = np.asarray((cQ,cU,cV)).T return ct def CT_ItoQUV(data, ctalk_params, norm_stokes, cpos_arr, Ic_mask): """ performs cross talk correction for I -> Q,U,V """ before_ctalk_data = np.copy(data) data_shape = data.shape # ceny = slice(data_shape[0]//2 - data_shape[0]//4, data_shape[0]//2 + data_shape[0]//4) # cenx = slice(data_shape[1]//2 - data_shape[1]//4, data_shape[1]//2 + data_shape[1]//4) cont_stokes = np.ones(data_shape[-1]) for scan in range(data_shape[-1]): cont_stokes[scan] = np.mean(data[Ic_mask[...,scan],0,cpos_arr[0],scan]) for i in range(6): # stokes_i_wv_avg = np.mean(data[ceny,cenx,0,i,:], axis = (0,1)) stokes_i_wv_avg = np.ones(data_shape[-1]) for scan in range(data_shape[-1]): stokes_i_wv_avg[scan] = np.mean(data[Ic_mask[...,scan],0,i,scan]) if norm_stokes: #if normed, applies normalised offset to normed stokes tmp_param = ctalk_params*np.divide(stokes_i_wv_avg,cont_stokes) q_slope = tmp_param[0,0,:] u_slope = tmp_param[0,1,:] v_slope = tmp_param[0,2,:] q_int = tmp_param[1,0,:] u_int = tmp_param[1,1,:] v_int = tmp_param[1,2,:] data[:,:,1,i,:] = before_ctalk_data[:,:,1,i,:] - before_ctalk_data[:,:,0,i,:]*q_slope - q_int data[:,:,2,i,:] = before_ctalk_data[:,:,2,i,:] - before_ctalk_data[:,:,0,i,:]*u_slope - u_int data[:,:,3,i,:] = before_ctalk_data[:,:,3,i,:] - before_ctalk_data[:,:,0,i,:]*v_slope - v_int else: #if not normed, applies raw offset cross talk correction to raw stokes counts tmp_param = ctalk_params[0,:,:]*np.divide(stokes_i_wv_avg,cont_stokes) q_slope = tmp_param[0,:] u_slope = tmp_param[1,:] v_slope = tmp_param[2,:] q_int = ctalk_params[1,0,:] u_int = ctalk_params[1,1,:] v_int = ctalk_params[1,2,:] data[:,:,1,i,:] = before_ctalk_data[:,:,1,i,:] - before_ctalk_data[:,:,0,i,:]*q_slope - q_int*stokes_i_wv_avg data[:,:,2,i,:] = before_ctalk_data[:,:,2,i,:] - before_ctalk_data[:,:,0,i,:]*u_slope - u_int*stokes_i_wv_avg data[:,:,3,i,:] = before_ctalk_data[:,:,3,i,:] - before_ctalk_data[:,:,0,i,:]*v_slope - v_int*stokes_i_wv_avg return data
[ "numpy.clip", "numpy.array", "scipy.ndimage.gaussian_filter", "numpy.moveaxis", "operator.itemgetter", "numpy.poly1d", "numpy.divide", "numpy.mean", "numpy.where", "numpy.asarray", "numpy.exp", "numpy.matmul", "numpy.tile", "numpy.ones", "time.time", "scipy.optimize.curve_fit", "numpy.copy", "statistics.mean", "numpy.logical_and", "numpy.fft.fftfreq", "os.path.realpath", "numpy.linalg.inv" ]
[((2090, 2101), 'time.time', 'time.time', ([], {}), '()\n', (2099, 2101), False, 'import time\n'), ((3010, 3034), 'numpy.moveaxis', 'np.moveaxis', (['flat', '(0)', '(-1)'], {}), '(flat, 0, -1)\n', (3021, 3034), True, 'import numpy as np\n'), ((3172, 3196), 'numpy.moveaxis', 'np.moveaxis', (['flat', '(2)', '(-1)'], {}), '(flat, 2, -1)\n', (3183, 3196), True, 'import numpy as np\n'), ((4625, 4636), 'time.time', 'time.time', ([], {}), '()\n', (4634, 4636), False, 'import time\n'), ((6117, 6128), 'time.time', 'time.time', ([], {}), '()\n', (6126, 6128), False, 'import time\n'), ((6892, 6903), 'time.time', 'time.time', ([], {}), '()\n', (6901, 6903), False, 'import time\n'), ((8679, 8726), 'numpy.tile', 'np.tile', (['demod_data', '(shape[0], shape[1], 1, 1)'], {}), '(demod_data, (shape[0], shape[1], 1, 1))\n', (8686, 8726), True, 'import numpy as np\n'), ((9438, 9493), 'numpy.mean', 'np.mean', (['flat_demod[512:1536, 512:1536, 0, cpos_arr[0]]'], {}), '(flat_demod[512:1536, 512:1536, 0, cpos_arr[0]])\n', (9445, 9493), True, 'import numpy as np\n'), ((9545, 9564), 'numpy.copy', 'np.copy', (['flat_demod'], {}), '(flat_demod)\n', (9552, 9564), True, 'import numpy as np\n'), ((10765, 10786), 'numpy.linalg.inv', 'np.linalg.inv', (['demodM'], {}), '(demodM)\n', (10778, 10786), True, 'import numpy as np\n'), ((10799, 10845), 'numpy.matmul', 'np.matmul', (['invM', '(new_demod_flats * norm_factor)'], {}), '(invM, new_demod_flats * norm_factor)\n', (10808, 10845), True, 'import numpy as np\n'), ((11072, 11083), 'time.time', 'time.time', ([], {}), '()\n', (11081, 11083), False, 'import time\n'), ((13793, 13804), 'time.time', 'time.time', ([], {}), '()\n', (13802, 13804), False, 'import time\n'), ((13827, 13853), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (13843, 13853), False, 'import os\n'), ((14012, 14042), 'numpy.where', 'np.where', (['(field_stop > 0)', '(1)', '(0)'], {}), '(field_stop > 0, 1, 0)\n', (14020, 14042), True, 'import numpy as np\n'), ((14925, 14936), 'time.time', 'time.time', ([], {}), '()\n', (14934, 14936), False, 'import time\n'), ((14959, 14985), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (14975, 14985), False, 'import os\n'), ((15160, 15196), 'numpy.where', 'np.where', (['(field_stop_ghost > 0)', '(1)', '(0)'], {}), '(field_stop_ghost > 0, 1, 0)\n', (15168, 15196), True, 'import numpy as np\n'), ((15772, 15793), 'numpy.ones', 'np.ones', (['(2048, 2048)'], {}), '((2048, 2048))\n', (15779, 15793), True, 'import numpy as np\n'), ((16027, 16061), 'numpy.logical_and', 'np.logical_and', (['(x > limit)', '(x < 1.5)'], {}), '(x > limit, x < 1.5)\n', (16041, 16061), True, 'import numpy as np\n'), ((16474, 16487), 'numpy.poly1d', 'np.poly1d', (['cQ'], {}), '(cQ)\n', (16483, 16487), True, 'import numpy as np\n'), ((16683, 16696), 'numpy.poly1d', 'np.poly1d', (['cU'], {}), '(cU)\n', (16692, 16696), True, 'import numpy as np\n'), ((16892, 16905), 'numpy.poly1d', 'np.poly1d', (['cV'], {}), '(cV)\n', (16901, 16905), True, 'import numpy as np\n'), ((19729, 19742), 'numpy.copy', 'np.copy', (['data'], {}), '(data)\n', (19736, 19742), True, 'import numpy as np\n'), ((19981, 20004), 'numpy.ones', 'np.ones', (['data_shape[-1]'], {}), '(data_shape[-1])\n', (19988, 20004), True, 'import numpy as np\n'), ((7707, 7928), 'numpy.array', 'np.array', (['[[0.28037298, 0.18741922, 0.25307596, 0.28119895], [0.40408596, 0.10412157,\n -0.7225681, 0.20825675], [-0.19126636, -0.5348939, 0.08181918, \n 0.64422774], [-0.56897295, 0.58620095, -0.2579202, 0.2414017]]'], {}), '([[0.28037298, 0.18741922, 0.25307596, 0.28119895], [0.40408596, \n 0.10412157, -0.7225681, 0.20825675], [-0.19126636, -0.5348939, \n 0.08181918, 0.64422774], [-0.56897295, 0.58620095, -0.2579202, 0.2414017]])\n', (7715, 7928), True, 'import numpy as np\n'), ((8809, 8833), 'numpy.moveaxis', 'np.moveaxis', (['data', '(-1)', '(0)'], {}), '(data, -1, 0)\n', (8820, 8833), True, 'import numpy as np\n'), ((8891, 8913), 'numpy.matmul', 'np.matmul', (['demod', 'data'], {}), '(demod, data)\n', (8900, 8913), True, 'import numpy as np\n'), ((8928, 8952), 'numpy.moveaxis', 'np.moveaxis', (['data', '(0)', '(-1)'], {}), '(data, 0, -1)\n', (8939, 8952), True, 'import numpy as np\n'), ((16430, 16465), 'scipy.optimize.curve_fit', 'curve_fit', (['linear', 'x', 'yQ'], {'p0': '[0, 0]'}), '(linear, x, yQ, p0=[0, 0])\n', (16439, 16465), False, 'from scipy.optimize import curve_fit\n'), ((16639, 16674), 'scipy.optimize.curve_fit', 'curve_fit', (['linear', 'x', 'yU'], {'p0': '[0, 0]'}), '(linear, x, yU, p0=[0, 0])\n', (16648, 16674), False, 'from scipy.optimize import curve_fit\n'), ((16848, 16883), 'scipy.optimize.curve_fit', 'curve_fit', (['linear', 'x', 'yV'], {'p0': '[0, 0]'}), '(linear, x, yV, p0=[0, 0])\n', (16857, 16883), False, 'from scipy.optimize import curve_fit\n'), ((20077, 20132), 'numpy.mean', 'np.mean', (['data[Ic_mask[..., scan], 0, cpos_arr[0], scan]'], {}), '(data[Ic_mask[..., scan], 0, cpos_arr[0], scan])\n', (20084, 20132), True, 'import numpy as np\n'), ((20273, 20296), 'numpy.ones', 'np.ones', (['data_shape[-1]'], {}), '(data_shape[-1])\n', (20280, 20296), True, 'import numpy as np\n'), ((6933, 6977), 'numpy.mean', 'np.mean', (['flat[ceny, cenx, :, :]'], {'axis': '(0, 1)'}), '(flat[ceny, cenx, :, :], axis=(0, 1))\n', (6940, 6977), True, 'import numpy as np\n'), ((8054, 8274), 'numpy.array', 'np.array', (['[[0.26450154, 0.2839626, 0.12642948, 0.3216773], [0.59873885, 0.11278069, -\n 0.74991184, 0.03091451], [0.10833212, -0.5317737, -0.1677862, 0.5923593\n ], [-0.46916953, 0.47738808, -0.43824592, 0.42579797]]'], {}), '([[0.26450154, 0.2839626, 0.12642948, 0.3216773], [0.59873885, \n 0.11278069, -0.74991184, 0.03091451], [0.10833212, -0.5317737, -\n 0.1677862, 0.5923593], [-0.46916953, 0.47738808, -0.43824592, 0.42579797]])\n', (8062, 8274), True, 'import numpy as np\n'), ((9063, 9085), 'numpy.matmul', 'np.matmul', (['demod', 'data'], {}), '(demod, data)\n', (9072, 9085), True, 'import numpy as np\n'), ((10157, 10182), 'scipy.ndimage.gaussian_filter', 'gaussian_filter', (['a', 'sigma'], {}), '(a, sigma)\n', (10172, 10182), False, 'from scipy.ndimage import gaussian_filter\n'), ((10221, 10244), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['(2048)', '(1)'], {}), '(2048, 1)\n', (10235, 10244), True, 'import numpy as np\n'), ((11261, 11283), 'numpy.mean', 'np.mean', (['flat'], {'axis': '(-2)'}), '(flat, axis=-2)\n', (11268, 11283), True, 'import numpy as np\n'), ((19528, 19552), 'numpy.asarray', 'np.asarray', (['(cQ, cU, cV)'], {}), '((cQ, cU, cV))\n', (19538, 19552), True, 'import numpy as np\n'), ((20376, 20421), 'numpy.mean', 'np.mean', (['data[Ic_mask[..., scan], 0, i, scan]'], {}), '(data[Ic_mask[..., scan], 0, i, scan])\n', (20383, 20421), True, 'import numpy as np\n'), ((10572, 10619), 'numpy.clip', 'np.clip', (['flat_demod[:, :, pol, wv]', '(-0.02)', '(0.02)'], {}), '(flat_demod[:, :, pol, wv], -0.02, 0.02)\n', (10579, 10619), True, 'import numpy as np\n'), ((12715, 12728), 'operator.itemgetter', 'itemgetter', (['(1)'], {}), '(1)\n', (12725, 12728), False, 'from operator import itemgetter\n'), ((20560, 20599), 'numpy.divide', 'np.divide', (['stokes_i_wv_avg', 'cont_stokes'], {}), '(stokes_i_wv_avg, cont_stokes)\n', (20569, 20599), True, 'import numpy as np\n'), ((21312, 21351), 'numpy.divide', 'np.divide', (['stokes_i_wv_avg', 'cont_stokes'], {}), '(stokes_i_wv_avg, cont_stokes)\n', (21321, 21351), True, 'import numpy as np\n'), ((10264, 10315), 'numpy.exp', 'np.exp', (['(-2 * np.pi ** 2 * (x - 0) ** 2 * sigma ** 2)'], {}), '(-2 * np.pi ** 2 * (x - 0) ** 2 * sigma ** 2)\n', (10270, 10315), True, 'import numpy as np\n'), ((10318, 10369), 'numpy.exp', 'np.exp', (['(-2 * np.pi ** 2 * (x - 0) ** 2 * sigma ** 2)'], {}), '(-2 * np.pi ** 2 * (x - 0) ** 2 * sigma ** 2)\n', (10324, 10369), True, 'import numpy as np\n'), ((11762, 11784), 'numpy.mean', 'np.mean', (['flat'], {'axis': '(-1)'}), '(flat, axis=-1)\n', (11769, 11784), True, 'import numpy as np\n'), ((17720, 17739), 'statistics.mean', 'statistics.mean', (['sy'], {}), '(sy)\n', (17735, 17739), False, 'import random, statistics\n'), ((18007, 18026), 'statistics.mean', 'statistics.mean', (['sy'], {}), '(sy)\n', (18022, 18026), False, 'import random, statistics\n'), ((18294, 18313), 'statistics.mean', 'statistics.mean', (['sy'], {}), '(sy)\n', (18309, 18313), False, 'import random, statistics\n'), ((4275, 4286), 'time.time', 'time.time', ([], {}), '()\n', (4284, 4286), False, 'import time\n'), ((6464, 6475), 'time.time', 'time.time', ([], {}), '()\n', (6473, 6475), False, 'import time\n'), ((14493, 14504), 'time.time', 'time.time', ([], {}), '()\n', (14502, 14504), False, 'import time\n'), ((15545, 15556), 'time.time', 'time.time', ([], {}), '()\n', (15554, 15556), False, 'import time\n'), ((17523, 17542), 'statistics.mean', 'statistics.mean', (['sy'], {}), '(sy)\n', (17538, 17542), False, 'import random, statistics\n'), ((17563, 17582), 'statistics.mean', 'statistics.mean', (['sy'], {}), '(sy)\n', (17578, 17582), False, 'import random, statistics\n'), ((5598, 5609), 'time.time', 'time.time', ([], {}), '()\n', (5607, 5609), False, 'import time\n'), ((7224, 7235), 'time.time', 'time.time', ([], {}), '()\n', (7233, 7235), False, 'import time\n'), ((12210, 12221), 'time.time', 'time.time', ([], {}), '()\n', (12219, 12221), False, 'import time\n')]
import os import torch import itertools import numpy as np from os.path import join from torch.autograd import Variable EOS = '<eos>' UNK = '<unk>' def tokenize(str_, add_bos=False, add_eos=False): words = [] if add_bos: words += [EOS] words += str_.split() if add_eos: words += [EOS] return words class Dictionary(object): def __init__(self): self.word2idx = {UNK:0} self.idx2word = [UNK] def add_word(self, word): if word not in self.word2idx: self.idx2word.append(word) self.word2idx[word] = len(self.idx2word) - 1 return self.word2idx[word] def __len__(self): return len(self.idx2word) @property def bos_id(self): return self.word2idx[EOS] @property def eos_id(self): return self.word2idx[EOS] @property def unk_id(self): return self.word2idx[UNK] def tokenize_file(self, path): """Tokenizes a text file.""" assert os.path.exists(path) # Add words to the dictionary with open(path, 'r') as f: tokens = 0 for line in f: words = tokenize(line, add_eos=True) tokens += len(words) for word in words: self.add_word(word) # Tokenize file content with open(path, 'r') as f: ids = torch.LongTensor(tokens) token = 0 for line in f: if not line.strip(): continue words = tokenize(line, add_eos=True) for word in words: ids[token] = self.word2idx[word] token += 1 return ids def words_to_ids(self, words, cuda): tt = torch.cuda if cuda else torch ids = tt.LongTensor(len(words)) for i, word in enumerate(words): ids[i] = self.word2idx.get(word, self.word2idx[UNK]) return ids class Subset(object): yields_sentences = False def __init__(self, dictionary, path, cuda, rng=None): del rng # Unused in this iterator self.tokens = dictionary.tokenize_file(path) self.eos_id = dictionary.eos_id self.unk_id = dictionary.unk_id self.cuda = cuda self._last_bsz = None def batchify(self, bsz): if self._last_bsz == bsz: return self._last_batched_data data = self.tokens # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() if self.cuda: data = data.cuda() self._last_bsz = bsz self._last_batched_data = data return data def get_num_batches(self, bsz, bptt): data = self.batchify(bsz) return int(np.ceil((1.0 * data.size(0) - 1.0) / bptt)) def iter_epoch(self, bsz, bptt, evaluation=False): data = self.batchify(bsz) data_len = data.size(0) for i in range(0, data_len - 1, bptt): seq_len = min(bptt, data_len - 1 - i) x = Variable(data[i:i+seq_len], volatile=evaluation) y = Variable(data[i+1:i+1+seq_len]) yield x, y, None class SubsetBySentence(): yields_sentences = True def __init__(self, dictionary, path, cuda, rng=None): raw_data = dictionary.tokenize_file(path).numpy() self.eos_id = dictionary.eos_id self.unk_id = dictionary.unk_id raw_data = np.split(raw_data, np.where(raw_data == self.eos_id)[0] + 1) last = raw_data.pop() assert last.shape[0] == 0 # Add 1 to sentence length because we want to have both an eos # at the beginning and at the end. max_sentence_len = max(sent.shape[0] for sent in raw_data) + 1 padded_data = np.zeros( (len(raw_data), max_sentence_len+1), dtype='int64') + -1 for i, sent in enumerate(raw_data): padded_data[i, 1:sent.shape[0]+1] = sent padded_data[:, 0] = self.eos_id tokens = torch.from_numpy(padded_data) self.sentences = padded_data self.cuda = cuda self.rng = np.random.RandomState(rng) def get_num_batches(self, bsz, bptt=None): del bptt # unused #return int(np.ceil(1.0 * self.sentences.shape[0] / bsz)) return int(1.0 * self.sentences.shape[0] / bsz) # always return batch of full size (`bsz`) def iter_epoch(self, bsz, bptt=None, evaluation=False, ): del bptt # unused num_sentences = self.sentences.shape[0] sentences = self.sentences if not evaluation: sentences = np.array(sentences) self.rng.shuffle(sentences) for i in range(0, num_sentences-bsz, bsz): # always return batch of full size (`bsz`) batch = sentences[i:i+bsz] seq_lens = (batch != -1).sum(1) seq_lens_idx = np.argsort(-seq_lens) seq_lens = seq_lens[seq_lens_idx] batch = batch[seq_lens_idx, :] max_len = seq_lens.max() x = np.array(batch[:, :max_len].T) x[x == -1] = self.eos_id x = torch.from_numpy(x) y = torch.from_numpy(batch[:, 1:max_len + 1].T).contiguous() seq_lens = torch.from_numpy(seq_lens) if self.cuda: x = x.cuda() y = y.cuda() seq_lens = seq_lens.cuda() x = Variable(x, volatile=evaluation) y = Variable(y, volatile=evaluation) seq_lens = Variable(seq_lens, volatile=evaluation) yield x, y, seq_lens class Wrapper(object): def __init__(self, dictionary, path, cuda, rng=None): self.class0 = SubsetBySentence( dictionary, path + '.0', cuda, rng=rng) self.class1 = SubsetBySentence( dictionary, path + '.1', cuda, rng=rng) def get_num_batches(self, bsz): return min(self.class0.get_num_batches(bsz), self.class1.get_num_batches(bsz)) def iter_epoch(self, bsz, evaluation=False): return itertools.imap(zip, self.class0.iter_epoch(bsz=bsz, evaluation=evaluation), self.class1.iter_epoch(bsz=bsz, evaluation=evaluation)) class Corpus(object): def __init__(self, path, cuda, rng=None): self.dictionary = Dictionary() self.train = Wrapper(self.dictionary, path + 'train', cuda, rng=rng) self.valid = Wrapper(self.dictionary, path +'dev', cuda, rng=rng) self.test = Wrapper(self.dictionary, path + 'test', cuda, rng=rng)
[ "os.path.exists", "numpy.where", "torch.LongTensor", "torch.from_numpy", "numpy.argsort", "numpy.array", "torch.autograd.Variable", "numpy.random.RandomState" ]
[((1012, 1032), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1026, 1032), False, 'import os\n'), ((4290, 4319), 'torch.from_numpy', 'torch.from_numpy', (['padded_data'], {}), '(padded_data)\n', (4306, 4319), False, 'import torch\n'), ((4402, 4428), 'numpy.random.RandomState', 'np.random.RandomState', (['rng'], {}), '(rng)\n', (4423, 4428), True, 'import numpy as np\n'), ((1406, 1430), 'torch.LongTensor', 'torch.LongTensor', (['tokens'], {}), '(tokens)\n', (1422, 1430), False, 'import torch\n'), ((3327, 3377), 'torch.autograd.Variable', 'Variable', (['data[i:i + seq_len]'], {'volatile': 'evaluation'}), '(data[i:i + seq_len], volatile=evaluation)\n', (3335, 3377), False, 'from torch.autograd import Variable\n'), ((3392, 3429), 'torch.autograd.Variable', 'Variable', (['data[i + 1:i + 1 + seq_len]'], {}), '(data[i + 1:i + 1 + seq_len])\n', (3400, 3429), False, 'from torch.autograd import Variable\n'), ((4895, 4914), 'numpy.array', 'np.array', (['sentences'], {}), '(sentences)\n', (4903, 4914), True, 'import numpy as np\n'), ((5161, 5182), 'numpy.argsort', 'np.argsort', (['(-seq_lens)'], {}), '(-seq_lens)\n', (5171, 5182), True, 'import numpy as np\n'), ((5326, 5356), 'numpy.array', 'np.array', (['batch[:, :max_len].T'], {}), '(batch[:, :max_len].T)\n', (5334, 5356), True, 'import numpy as np\n'), ((5410, 5429), 'torch.from_numpy', 'torch.from_numpy', (['x'], {}), '(x)\n', (5426, 5429), False, 'import torch\n'), ((5526, 5552), 'torch.from_numpy', 'torch.from_numpy', (['seq_lens'], {}), '(seq_lens)\n', (5542, 5552), False, 'import torch\n'), ((5696, 5728), 'torch.autograd.Variable', 'Variable', (['x'], {'volatile': 'evaluation'}), '(x, volatile=evaluation)\n', (5704, 5728), False, 'from torch.autograd import Variable\n'), ((5745, 5777), 'torch.autograd.Variable', 'Variable', (['y'], {'volatile': 'evaluation'}), '(y, volatile=evaluation)\n', (5753, 5777), False, 'from torch.autograd import Variable\n'), ((5801, 5840), 'torch.autograd.Variable', 'Variable', (['seq_lens'], {'volatile': 'evaluation'}), '(seq_lens, volatile=evaluation)\n', (5809, 5840), False, 'from torch.autograd import Variable\n'), ((3744, 3777), 'numpy.where', 'np.where', (['(raw_data == self.eos_id)'], {}), '(raw_data == self.eos_id)\n', (3752, 3777), True, 'import numpy as np\n'), ((5446, 5489), 'torch.from_numpy', 'torch.from_numpy', (['batch[:, 1:max_len + 1].T'], {}), '(batch[:, 1:max_len + 1].T)\n', (5462, 5489), False, 'import torch\n')]
""" The following module contains three functions each of which answers the questions in the challenge, the functions in this module are written in the order they are requested in the challenge document. Written by: <NAME> """ from urllib.parse import urlparse import requests def filter_pokemon_by_names(base_api_url: str, pokemon_species_url: str) -> int: """Function to get the pokemon filtered by names as specified in the challenge. The number of species of pokemon's base form is taken into account for this task. Args: base_api_url (str): URL to get pokemon data from pokeAPI. pokemon_species_url (str): URL to get pokemon's base form data from pokeAPI. Returns: int: Number of pokemon existen from name specification. """ pokemon_set = set() pokemon_count = requests.get(url=pokemon_species_url).json()['count'] pokemon_species_data = requests.get(url=base_api_url + str(pokemon_count)).json() pokemon_names = [pokemon['name'] for pokemon in pokemon_species_data['results']] for pokemon in pokemon_names: if ("at" in pokemon) and (pokemon.count('a') == 2): pokemon_set.add(pokemon) return len(pokemon_set) def breeding_compatibility(pokemon_species_url: str, pokemon_name: str) -> int: """Function to get the number of breeding matches for a specified pokemon. Args: pokemon_species_url (str): URL to get pokemon's base form data from pokeAPI. pokemon_name (str): Pokemon name to search for breeding matches Returns: int: Number of breeding matches for specified pokemon. """ matches = set() pokemon_egg_group_data = requests.get(url=pokemon_species_url + pokemon_name)\ .json()['egg_groups'] egg_groups_urls = [egg_group['url'] for egg_group in pokemon_egg_group_data] for url in egg_groups_urls: egg_group_data = requests.get(url=url).json() matches |= {poke['name'] for poke in egg_group_data['pokemon_species']} return len(matches) def minmax_weight_by_type(pokemon_type_url: str, type_name: str) -> list(): """Function to get the maximum and minimum weight for a specified pokemon type of the first generation (Kanto). Args: pokemon_type_url (str): URL to get pokemon types information. type_name (str): Type of pokemon to search for max and min weight. Returns: list: List with two elements which are the maximum and minimun weight of the specified type of pokemon. """ weights_list = list() max_min_weight = list() pokemon_type_info = requests.get(url=pokemon_type_url + type_name).json() pokemon_info = [pokemon['pokemon'] for pokemon in pokemon_type_info['pokemon']] for pokemon in pokemon_info: parsed_pokemon_url = urlparse(pokemon['url']) if int(parsed_pokemon_url.path.rsplit("/", 2)[-2]) <= 151: pokemon_data = requests.get(url=pokemon['url']).json() weights_list.append(pokemon_data['weight']) max_min_weight.append(max(weights_list)) max_min_weight.append(min(weights_list)) return max_min_weight if __name__ == "__main__": BASE_POKEMON_API_URL = "https://pokeapi.co/api/v2/pokemon/?limit=" POKEMON_SPECIES_API_URL = "https://pokeapi.co/api/v2/pokemon-species/" POKEMON_TYPES_API_URL = "https://pokeapi.co/api/v2/type/" ANSWER_QUESTION_1 = filter_pokemon_by_names(BASE_POKEMON_API_URL, POKEMON_SPECIES_API_URL) ANSWER_QUESTION_2 = breeding_compatibility(POKEMON_SPECIES_API_URL, 'raichu') ANSWER_QUESTION_3 = minmax_weight_by_type(POKEMON_TYPES_API_URL, 'fighting') print(f"Pokemon number containing \"at\" and two \"a\" in their names: {ANSWER_QUESTION_1} \n" f"The number of pokemon raichu can breed with is: {ANSWER_QUESTION_2} \n" f"Maximum and minimun weight of G1 fighting type pokemon: {ANSWER_QUESTION_3}")
[ "urllib.parse.urlparse", "requests.get" ]
[((2833, 2857), 'urllib.parse.urlparse', 'urlparse', (["pokemon['url']"], {}), "(pokemon['url'])\n", (2841, 2857), False, 'from urllib.parse import urlparse\n'), ((2633, 2679), 'requests.get', 'requests.get', ([], {'url': '(pokemon_type_url + type_name)'}), '(url=pokemon_type_url + type_name)\n', (2645, 2679), False, 'import requests\n'), ((843, 880), 'requests.get', 'requests.get', ([], {'url': 'pokemon_species_url'}), '(url=pokemon_species_url)\n', (855, 880), False, 'import requests\n'), ((1703, 1755), 'requests.get', 'requests.get', ([], {'url': '(pokemon_species_url + pokemon_name)'}), '(url=pokemon_species_url + pokemon_name)\n', (1715, 1755), False, 'import requests\n'), ((1925, 1946), 'requests.get', 'requests.get', ([], {'url': 'url'}), '(url=url)\n', (1937, 1946), False, 'import requests\n'), ((2952, 2984), 'requests.get', 'requests.get', ([], {'url': "pokemon['url']"}), "(url=pokemon['url'])\n", (2964, 2984), False, 'import requests\n')]
from django.db import models class CookieConsentSettings(models.Model): message = models.TextField( default="This website uses cookies to ensure you get the best experience on our website." ) button_text = models.CharField( default="Got it!", max_length=255 ) cookie_policy_link = models.CharField( max_length=255 ) cookie_policy_link_text = models.CharField( default="Learn more", max_length=255 ) banner_colour = models.CharField( default="#252e39", max_length=255 ) banner_text_colour = models.CharField( default="#ffffff", max_length=255 ) button_colour = models.CharField( default="#3acdf6", max_length=255 ) button_text_colour = models.CharField( default="#ffffff", max_length=255 )
[ "django.db.models.TextField", "django.db.models.CharField" ]
[((88, 205), 'django.db.models.TextField', 'models.TextField', ([], {'default': '"""This website uses cookies to ensure you get the best experience on our website."""'}), "(default=\n 'This website uses cookies to ensure you get the best experience on our website.'\n )\n", (104, 205), False, 'from django.db import models\n'), ((229, 280), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""Got it!"""', 'max_length': '(255)'}), "(default='Got it!', max_length=255)\n", (245, 280), False, 'from django.db import models\n'), ((329, 361), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(255)'}), '(max_length=255)\n', (345, 361), False, 'from django.db import models\n'), ((407, 461), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""Learn more"""', 'max_length': '(255)'}), "(default='Learn more', max_length=255)\n", (423, 461), False, 'from django.db import models\n'), ((505, 556), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""#252e39"""', 'max_length': '(255)'}), "(default='#252e39', max_length=255)\n", (521, 556), False, 'from django.db import models\n'), ((605, 656), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""#ffffff"""', 'max_length': '(255)'}), "(default='#ffffff', max_length=255)\n", (621, 656), False, 'from django.db import models\n'), ((700, 751), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""#3acdf6"""', 'max_length': '(255)'}), "(default='#3acdf6', max_length=255)\n", (716, 751), False, 'from django.db import models\n'), ((800, 851), 'django.db.models.CharField', 'models.CharField', ([], {'default': '"""#ffffff"""', 'max_length': '(255)'}), "(default='#ffffff', max_length=255)\n", (816, 851), False, 'from django.db import models\n')]
#! /usr/bin/env python # -*- coding: utf-8 -*- import forest def get_exercises(): exercises = [] for i in xrange(5): exercises.append('') exercises[0]="Подтягивания" exercises[1]="Отжимания" exercises[2]="Приседания" exercises[3]="Пресс" exercises[4]="Отжимания на брусьях" return exercises def get_locations(): locations = [] for i in xrange(18): locations.append('') locations[0]="Зелёный перелесок" locations[1]="Цветущий луг" locations[2]="Опушка" locations[3]="Берёзовая роща" locations[4]="Овраг" locations[5]="Болото" locations[6]="Речка" locations[7]="Разнотравие" locations[8]="Ручей" locations[9]="Кустарники" locations[10]="Родник" locations[11]="Южный склон холма" locations[12]="Холм" locations[13]="Перелесок" locations[14]="Северный склон холма" locations[15]="Лес" locations[16]="Сосновый бор" locations[17]="Бурелом" return locations def get_skill_groups(): """ название | тип навыка | тип цели тип навыка: 0 - пассивный 1 - усиление 2 - активный) тип цели: TARGET_TYPE_SELF = 0 TARGET_TYPE_SINGLE_ACTIVE_FROM_MY_TEAM = 1 TARGET_TYPE_SINGLE_INACTIVE_FROM_MY_TEAM = 2 TARGET_TYPE_SINGLE_ACTIVE_FROM_TEAMMATES = 3 TARGET_TYPE_ACTIVE_MY_TEAM = 4 TARGET_TYPE_SINGLE_ACTIVE_FROM_OPPOSITE_TEAM = 5 TARGET_TYPE_SINGLE_INACTIVE_FROM_OPPOSITE_TEAM = 6 TARGET_TYPE_ACTIVE_OPPOSITE_TEAM = 7 TARGET_TYPE_ACTIVE_ALL = 8 """ SKILL_TYPE_PASSIVE = 0 SKILL_TYPE_GAIN = 1 SKILL_TYPE_ACTIVE = 2 TARGET_TYPE_SELF = 0 TARGET_TYPE_SINGLE_ACTIVE_FROM_MY_TEAM = 1 TARGET_TYPE_SINGLE_INACTIVE_FROM_MY_TEAM = 2 TARGET_TYPE_SINGLE_ACTIVE_FROM_TEAMMATES = 3 TARGET_TYPE_ACTIVE_MY_TEAM = 4 TARGET_TYPE_SINGLE_ACTIVE_FROM_OPPOSITE_TEAM = 5 TARGET_TYPE_SINGLE_INACTIVE_FROM_OPPOSITE_TEAM = 6 TARGET_TYPE_ACTIVE_OPPOSITE_TEAM = 7 TARGET_TYPE_ACTIVE_ALL = 8 skill_groups = [] for i in xrange(17): skill_groups.append('') skill_groups[0] = 'Увеличение сопротивления|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[1] = 'Увеличение фитнес очков|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[2] = 'Увеличение множителя ФО|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[3] = 'Увеличение бонуса|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[4] = 'Увеличение множителя на 1 ход|{}|{}'.format(SKILL_TYPE_GAIN, TARGET_TYPE_SELF) skill_groups[5] = 'Увеличение сопротивления на 1 ход|{}|{}'.format(SKILL_TYPE_GAIN, TARGET_TYPE_SELF) skill_groups[6] = 'Восстановление своих ФО|{}|{}'.format(SKILL_TYPE_ACTIVE, TARGET_TYPE_SELF) skill_groups[7] = 'Увеличение максимума ФО команды|{}|{}'.format(SKILL_TYPE_GAIN, TARGET_TYPE_ACTIVE_MY_TEAM) skill_groups[8] = 'Увеличение сопротивления команды|{}|{}'.format(SKILL_TYPE_GAIN, TARGET_TYPE_ACTIVE_MY_TEAM) skill_groups[9] = 'Увеличение множителя команды|{}|{}'.format(SKILL_TYPE_GAIN, TARGET_TYPE_ACTIVE_MY_TEAM) skill_groups[10] = 'Увеличение бонуса команды|{}|{}'.format(SKILL_TYPE_GAIN, TARGET_TYPE_ACTIVE_MY_TEAM) skill_groups[11] = 'Базовое увеличение регенерации|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[12] = 'Базовое увеличение множителя|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[13] = 'Базовое увеличение сопротивления|{}|{}'.format(SKILL_TYPE_PASSIVE, TARGET_TYPE_SELF) skill_groups[14] = 'Воздействие на всю команду соперников|{}|{}'.format(SKILL_TYPE_ACTIVE, TARGET_TYPE_ACTIVE_OPPOSITE_TEAM) skill_groups[15] = 'Восстановление ФО своей команды|{}|{}'.format(SKILL_TYPE_ACTIVE, TARGET_TYPE_ACTIVE_MY_TEAM) skill_groups[16] = 'Восстановление ФО союзника|{}|{}'.format(SKILL_TYPE_ACTIVE, TARGET_TYPE_SINGLE_ACTIVE_FROM_MY_TEAM) #skill_groups[11] = 'Возвращение игрока в игру|{}|{}' return skill_groups def get_characters(): names = [] for i in xrange(forest.get_locations_count()): names.append([]) for j in xrange(forest.get_max_character_position()): names[i].append('') names[0][0]="<NAME>жик" names[0][1]="Ёж" names[0][2]="Старший ёж" names[0][3]="Ёжик в кепке" names[0][4]="Ежище" names[1][0]="<NAME>-русак" names[1][1]="Заяц-русак" names[1][2]="Сильный заяц-русак" names[1][3]="Опытный заяц-русак" names[1][4]="<NAME>" names[2][0]="Лисёнок" names[2][1]="Молодой лис" names[2][2]="Лис" names[2][3]="Опытный лис" names[2][4]="Лис-главарь" names[3][0]="Волчонок" names[3][1]="Молодой волк" names[3][2]="Волк" names[3][3]="Матёрый волк" names[3][4]="Волк-вожак" names[4][0]="Медвежонок" names[4][1]="<NAME>" names[4][2]="Медведь-лежебока" names[4][3]="Медведь" names[4][4]="Гигантский медведь" names[5][0]="<NAME>" names[5][1]="Куница" names[5][2]="Сильная куница" names[5][3]="Опытная куница" names[5][4]="Предводительница куниц" names[6][0]="<NAME>" names[6][1]="Ленивый барсук" names[6][2]="Барсук" names[6][3]="Барсук-атлет" names[6][4]="<NAME>" names[7][0]="<NAME>" names[7][1]="Бурундук" names[7][2]="Сильный бурундук" names[7][3]="Опытный бурундук" names[7][4]="<NAME>" names[8][0]="Бельчонок" names[8][1]="<NAME>" names[8][2]="Белка" names[8][3]="Сыт<NAME>" names[8][4]="Белка-сопелка" names[9][0]="Лосёнок" names[9][1]="<NAME>" names[9][2]="Лосиха" names[9][3]="Лось" names[9][4]="Вож<NAME>" names[10][0]="Молод<NAME>" names[10][1]="Зубр" names[10][2]="Зубр-мыслитель" names[10][3]="Сильный зубр" names[10][4]="<NAME>" names[11][0]="Молодой кабан" names[11][1]="Суровый кабан" names[11][2]="Кабан" names[11][3]="Сильный кабан" names[11][4]="Главный кабан" names[12][0]="Молодая выдра" names[12][1]="Выдра" names[12][2]="Выдра-мыслитель" names[12][3]="Сильная выдра" names[12][4]="Старшая выдра" names[13][0]="Молодой енот" names[13][1]="Енот" names[13][2]="Енот-сказочник" names[13][3]="Сильный енот" names[13][4]="Предводитель енотов" names[14][0]="Молодая рысь" names[14][1]="Рысь" names[14][2]="Рысь-попрыгунья" names[14][3]="Сильная рысь" names[14][4]="Крупная рысь" names[15][0]="Молодая куропатка" names[15][1]="Куропатка" names[15][2]="Куропатка-экстремалка" names[15][3]="Сильная куропатка" names[15][4]="Вожак куропаток" names[16][0]="Молодой сайгак" names[16][1]="Сайгак-болтун" names[16][2]="Сайгак" names[16][3]="<NAME>" names[16][4]="<NAME>" names[17][0]="Оленёнок" names[17][1]="<NAME>" names[17][2]="Олень" names[17][3]="<NAME>" names[17][4]="Олень-вожак" return names def get_extra_character_name(name, id): extras = [] extras.append(''); # id = 0 extras.append('-защитник'); # id = 1 extras.append('-лекарь'); # id = 2 extras.append('-спортсмен'); # id = 3 return '{}{}'.format(name, extras[id % 4]) def get_achievements(): achievements = [] for i in xrange(12): achievements.append({}) achievements[0] = ("quests_count", "Выполнить задания") achievements[1] = ("total_result", "Общий результат") achievements[2] = ("total_number_of_moves", "Сделать несколько подходов") achievements[3] = ("max_competition_result", "Рекорд соревнования") achievements[4] = ("competitions", "Поучаствовать в соревнованиях") achievements[5] = ("wins", "Победить в соревнованиях") achievements[6] = ("training_days", "Дни тренировок") achievements[7] = ("max_weekly_result", "Максимум за неделю") achievements[8] = ("max_monthly_result", "Максимум за месяц") achievements[9] = ("weekly_greater_100_periods_cnt", "Неделя с результатом больше 100") achievements[10] = ("weekly_greater_300_periods_cnt", "Неделя с результатом больше 300") achievements[11] = ("weekly_greater_700_periods_cnt", "Неделя с результатом больше 700") return achievements def get_knowledge_categories(): arr = [] for i in xrange(6): arr.append('') arr[0] = ("Общая информация",10) arr[1] = ("Характеристики персонажа", 20) arr[2] = ("Специализация", 30) arr[3] = ("Соревнования", 40) arr[4] = ("Навыки", 50) arr[5] = ("Часто задаваемые вопросы", 60) return arr
[ "forest.get_max_character_position", "forest.get_locations_count" ]
[((3879, 3907), 'forest.get_locations_count', 'forest.get_locations_count', ([], {}), '()\n', (3905, 3907), False, 'import forest\n'), ((3947, 3982), 'forest.get_max_character_position', 'forest.get_max_character_position', ([], {}), '()\n', (3980, 3982), False, 'import forest\n')]
from typing import Any, Dict, List, Tuple from abc import ABC, abstractmethod import gym import numpy as np import pybullet as p import pybullet_data as pbd import pybullet_utils.bullet_client as bc import random from gym_solo.core import termination as terms from gym_solo.core import configs from gym_solo.core import obs from gym_solo.core import rewards import gym_solo.solo_types as solo_types class Solo8BaseEnv(ABC, gym.Env): """Solo 8 abstract base environment.""" metadata = {'render.modes': ['rgb_array']} def __init__(self, config: configs.Solo8BaseConfig, use_gui: bool, normalize_observations: bool = False): """Create a solo8 env. Args: config (configs.Solo8BaseConfig): The SoloConfig. Defaults to None. use_gui (bool): Whether or not to show the pybullet GUI. normalize_observation (bool): Normalize the observations? Defaults to True """ self.config = config self.client = bc.BulletClient( connection_mode=p.GUI if use_gui else p.DIRECT) self.client.setAdditionalSearchPath(pbd.getDataPath()) self.client.setGravity(*self.config.gravity) if self.config.dt: self.client.setPhysicsEngineParameter(fixedTimeStep=self.config.dt, numSubSteps=1) else: self.client.setRealTimeSimulation(1) self.client_configuration() self.plane = self.client.loadURDF('plane.urdf') self.load_bodies() self.obs_factory = obs.ObservationFactory(self.client, normalize=normalize_observations) self.reward_factory = rewards.RewardFactory(self.client) self.termination_factory = terms.TerminationFactory() self.reset(init_call=True) @abstractmethod def load_bodies(self): """Load the bodies into the environment. Note that a plane has already been loaded in and the entire environment is encapsulated within the self.client object. Thus, all bodies should be added via the self.client interface. """ pass @property @abstractmethod def action_space(self) -> gym.Space: """Get the action space of the agent. Returns: gym.Space: A Space representing the domain of valid moves for the agent. """ pass @abstractmethod def reset(self, init_call: bool = False): """Reset the environment. For best results, this method should be deterministic; i.e. the environment should return to the same state everytime this method is called. Args: init_call (bool, optional): If this function is being called from the init function. Defaults to False. """ pass @abstractmethod def step(self, action: List[float]) -> Tuple[solo_types.obs, float, bool, Dict[Any, Any]]: """Have the agent apply the action in the environment. Args: action (List[float]): The action for the agent to take. Requires that this conforms to self.action_space. Returns: Tuple[solo_types.obs, float, bool, Dict[Any, Any]]: A tuple of the next observation, the reward for that step, whether or not the episode terminates, and an info dict for misc diagnostic details. """ pass @property def observation_space(self) -> gym.Space: """Get the agent's observation space. Returns: gym.Space: The agent's observation space. """ return self.obs_factory.get_observation_space() def render(self, mode='rgb_array') -> List[List[List[int]]]: """Render the current state of the Solo 8 env. Note that the camera is controlled by the `config` option passed in at construction time. Args: mode (str, optional): Rendering mode. Refer to OpenAI Gym documentation. Defaults to 'rgb_array'. Returns: List[List[List[int]]]: a 2D list of RGBA pixel data. """ proj_matrix = self.client.computeProjectionMatrixFOV( self.config.render_fov, self.config.render_aspect, 0.01, 100) view_matrix = self.client.computeViewMatrixFromYawPitchRoll( self.config.render_pos, self.config.render_cam_distance, self.config.render_yaw, self.config.render_pitch, self.config.render_roll, 2) w, h, rgb, _, _ = self.client.getCameraImage( self.config.render_width, self.config.render_height, view_matrix, proj_matrix) # 4 Channels for RGBA return np.reshape(rgb, (h, w, 4)) def client_configuration(self): """An overridable method if a child class needs to directly interact with the PyBullet env at init time. """ pass def _close(self): """Soft shutdown the environment.""" self.client.disconnect() def _seed(self, seed: int) -> None: """Set the seeds for random and numpy Args: seed (int): The seed to set """ np.random.seed(seed) random.seed(seed)
[ "numpy.reshape", "gym_solo.core.termination.TerminationFactory", "pybullet_data.getDataPath", "random.seed", "numpy.random.seed", "pybullet_utils.bullet_client.BulletClient", "gym_solo.core.obs.ObservationFactory", "gym_solo.core.rewards.RewardFactory" ]
[((964, 1027), 'pybullet_utils.bullet_client.BulletClient', 'bc.BulletClient', ([], {'connection_mode': '(p.GUI if use_gui else p.DIRECT)'}), '(connection_mode=p.GUI if use_gui else p.DIRECT)\n', (979, 1027), True, 'import pybullet_utils.bullet_client as bc\n'), ((1487, 1556), 'gym_solo.core.obs.ObservationFactory', 'obs.ObservationFactory', (['self.client'], {'normalize': 'normalize_observations'}), '(self.client, normalize=normalize_observations)\n', (1509, 1556), False, 'from gym_solo.core import obs\n'), ((1630, 1664), 'gym_solo.core.rewards.RewardFactory', 'rewards.RewardFactory', (['self.client'], {}), '(self.client)\n', (1651, 1664), False, 'from gym_solo.core import rewards\n'), ((1696, 1722), 'gym_solo.core.termination.TerminationFactory', 'terms.TerminationFactory', ([], {}), '()\n', (1720, 1722), True, 'from gym_solo.core import termination as terms\n'), ((4467, 4493), 'numpy.reshape', 'np.reshape', (['rgb', '(h, w, 4)'], {}), '(rgb, (h, w, 4))\n', (4477, 4493), True, 'import numpy as np\n'), ((4888, 4908), 'numpy.random.seed', 'np.random.seed', (['seed'], {}), '(seed)\n', (4902, 4908), True, 'import numpy as np\n'), ((4913, 4930), 'random.seed', 'random.seed', (['seed'], {}), '(seed)\n', (4924, 4930), False, 'import random\n'), ((1075, 1092), 'pybullet_data.getDataPath', 'pbd.getDataPath', ([], {}), '()\n', (1090, 1092), True, 'import pybullet_data as pbd\n')]
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'client.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(850, 671) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label = QtWidgets.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(20, 70, 54, 12)) self.label.setObjectName("label") self.pc1 = QtWidgets.QLabel(self.centralwidget) self.pc1.setGeometry(QtCore.QRect(10, 90, 111, 151)) self.pc1.setText("") self.pc1.setPixmap(QtGui.QPixmap("Pic/53.GIF")) self.pc1.setObjectName("pc1") self.pc2 = QtWidgets.QLabel(self.centralwidget) self.pc2.setGeometry(QtCore.QRect(140, 90, 111, 151)) self.pc2.setText("") self.pc2.setPixmap(QtGui.QPixmap("Pic/53.GIF")) self.pc2.setObjectName("pc2") self.pc3 = QtWidgets.QLabel(self.centralwidget) self.pc3.setGeometry(QtCore.QRect(270, 90, 111, 151)) self.pc3.setText("") self.pc3.setPixmap(QtGui.QPixmap("Pic/53.GIF")) self.pc3.setObjectName("pc3") self.pc4 = QtWidgets.QLabel(self.centralwidget) self.pc4.setGeometry(QtCore.QRect(400, 90, 111, 151)) self.pc4.setText("") self.pc4.setPixmap(QtGui.QPixmap("Pic/53.GIF")) self.pc4.setObjectName("pc4") self.pc5 = QtWidgets.QLabel(self.centralwidget) self.pc5.setGeometry(QtCore.QRect(530, 90, 111, 151)) self.pc5.setText("") self.pc5.setPixmap(QtGui.QPixmap("Pic/53.GIF")) self.pc5.setObjectName("pc5") self.public_cards = [self.pc1, self.pc2, self.pc3, self.pc4, self.pc5] self.tableWidget = QtWidgets.QTableWidget(self.centralwidget) self.tableWidget.setGeometry(QtCore.QRect(10, 290, 711, 331)) self.tableWidget.setAutoFillBackground(False) self.tableWidget.setObjectName("tableWidget") self.tableWidget.setColumnCount(8) self.tableWidget.setHorizontalHeaderLabels(['昵称', 'id', '状态', '下注', '财富', '牌1', '牌2', '最大牌型']) self.label_bb = QtWidgets.QLabel(self.centralwidget) self.label_bb.setGeometry(QtCore.QRect(20, 30, 71, 16)) self.label_bb.setObjectName("label_bb") self.label_leftplayers = QtWidgets.QLabel(self.centralwidget) self.label_leftplayers.setGeometry(QtCore.QRect(140, 30, 101, 16)) self.label_leftplayers.setObjectName("label_leftplayers") self.label_pot = QtWidgets.QLabel(self.centralwidget) self.label_pot.setGeometry(QtCore.QRect(280, 30, 101, 16)) self.label_pot.setObjectName("label_pot") self.label_maxbet = QtWidgets.QLabel(self.centralwidget) self.label_maxbet.setGeometry(QtCore.QRect(390, 30, 101, 16)) self.label_maxbet.setObjectName("label_maxbet") self.label_timer = QtWidgets.QLabel(self.centralwidget) self.label_timer.setStyleSheet("font:30pt '楷体';color: rgb(255, 255, 255);") self.label_timer.setAlignment(QtCore.Qt.AlignCenter) self.label_timer.setGeometry(QtCore.QRect(730, 20, 40, 50)) self.widget_action = QtWidgets.QWidget(self.centralwidget) self.widget_action.setGeometry(QtCore.QRect(660, 90, 191, 141)) self.widget_action.setObjectName("widget_action") self.verticalLayoutWidget = QtWidgets.QWidget(self.widget_action) self.verticalLayoutWidget.setGeometry(QtCore.QRect(10, 40, 171, 91)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.verticalLayout.setContentsMargins(0, 0, 0, 0) self.verticalLayout.setObjectName("verticalLayout") self.pushButton_fold = QtWidgets.QPushButton(self.verticalLayoutWidget) self.pushButton_fold.setObjectName("pushButton_fold") self.verticalLayout.addWidget(self.pushButton_fold) self.pushButton_checkcall = QtWidgets.QPushButton(self.verticalLayoutWidget) self.pushButton_checkcall.setObjectName("pushButton_checkcall") self.verticalLayout.addWidget(self.pushButton_checkcall) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.lineEdit_raise = QtWidgets.QLineEdit(self.verticalLayoutWidget) self.lineEdit_raise.setObjectName("lineEdit_raise") self.horizontalLayout.addWidget(self.lineEdit_raise) self.pushButton_raise = QtWidgets.QPushButton(self.verticalLayoutWidget) self.pushButton_raise.setObjectName("pushButton_raise") self.horizontalLayout.addWidget(self.pushButton_raise) self.verticalLayout.addLayout(self.horizontalLayout) self.label_2 = QtWidgets.QLabel(self.widget_action) self.label_2.setGeometry(QtCore.QRect(70, 10, 48, 20)) self.label_2.setObjectName("label_2") font = QtGui.QFont() font.setPointSize(20) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 850, 23)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def update_table(self, row_num): width = 50 height = 60 self.tableWidget.setRowCount(row_num) self.tableWidget.setIconSize(QtCore.QSize(width, height)) for i in range(5, 7): # 让列宽和图片相同 self.tableWidget.setColumnWidth(i, width) for i in range(row_num): # 让行高和图片相同 self.tableWidget.setRowHeight(i, height) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "德州扑克好友版")) self.label.setText(_translate("MainWindow", "公共牌")) __sortingEnabled = self.tableWidget.isSortingEnabled() self.tableWidget.setSortingEnabled(False) self.tableWidget.setSortingEnabled(__sortingEnabled) self.label_bb.setText(_translate("MainWindow", "大盲位id:")) self.label_leftplayers.setText(_translate("MainWindow", "剩余玩家数:")) self.label_pot.setText(_translate("MainWindow", "底池:")) self.label_maxbet.setText(_translate("MainWindow", "当前最大下注:")) self.pushButton_fold.setText(_translate("MainWindow", "弃牌")) self.pushButton_checkcall.setText(_translate("MainWindow", "跟注/Check")) self.pushButton_raise.setText(_translate("MainWindow", "加注")) self.label_2.setText(_translate("MainWindow", "采取动作")) self.widget_action.setVisible(False) import sys from PyQt5.QtWidgets import QApplication, QMainWindow class MyMainForm(QMainWindow, Ui_MainWindow): def __init__(self, parent=None): super(MyMainForm, self).__init__(parent) self.setupUi(self) if __name__ == "__main__": #固定的,PyQt5程序都需要QApplication对象。sys.argv是命令行参数列表,确保程序可以双击运行 app = QApplication(sys.argv) #初始化 myWin = MyMainForm() palette1 = QtGui.QPalette() palette1.setColor(QtGui.QPalette.Background, QtGui.QColor(192, 253, 123)) # 设置背景颜色 # palette1.setBrush(self.backgroundRole(), QtGui.QBrush(QtGui.QPixmap('../../../Document/images/17_big.jpg'))) # 设置背景图片 myWin.setPalette(palette1) #将窗口控件显示在屏幕上 myWin.show() #程序运行,sys.exit方法确保程序完整退出。 sys.exit(app.exec_())
[ "PyQt5.QtWidgets.QWidget", "PyQt5.QtWidgets.QTableWidget", "PyQt5.QtGui.QPalette", "PyQt5.QtWidgets.QLineEdit", "PyQt5.QtGui.QFont", "PyQt5.QtCore.QMetaObject.connectSlotsByName", "PyQt5.QtGui.QColor", "PyQt5.QtWidgets.QHBoxLayout", "PyQt5.QtCore.QRect", "PyQt5.QtGui.QPixmap", "PyQt5.QtWidgets.QStatusBar", "PyQt5.QtWidgets.QLabel", "PyQt5.QtCore.QSize", "PyQt5.QtWidgets.QApplication", "PyQt5.QtWidgets.QVBoxLayout", "PyQt5.QtWidgets.QPushButton", "PyQt5.QtWidgets.QMenuBar" ]
[((7469, 7491), 'PyQt5.QtWidgets.QApplication', 'QApplication', (['sys.argv'], {}), '(sys.argv)\n', (7481, 7491), False, 'from PyQt5.QtWidgets import QApplication, QMainWindow\n'), ((7541, 7557), 'PyQt5.QtGui.QPalette', 'QtGui.QPalette', ([], {}), '()\n', (7555, 7557), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((415, 444), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['MainWindow'], {}), '(MainWindow)\n', (432, 444), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((525, 561), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (541, 561), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((684, 720), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (700, 720), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((924, 960), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (940, 960), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1165, 1201), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1181, 1201), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1406, 1442), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1422, 1442), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1647, 1683), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1663, 1683), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1975, 2017), 'PyQt5.QtWidgets.QTableWidget', 'QtWidgets.QTableWidget', (['self.centralwidget'], {}), '(self.centralwidget)\n', (1997, 2017), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2367, 2403), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2383, 2403), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2549, 2585), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2565, 2585), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2752, 2788), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2768, 2788), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2934, 2970), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (2950, 2970), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3125, 3161), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3141, 3161), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3405, 3442), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['self.centralwidget'], {}), '(self.centralwidget)\n', (3422, 3442), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3609, 3646), 'PyQt5.QtWidgets.QWidget', 'QtWidgets.QWidget', (['self.widget_action'], {}), '(self.widget_action)\n', (3626, 3646), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3826, 3874), 'PyQt5.QtWidgets.QVBoxLayout', 'QtWidgets.QVBoxLayout', (['self.verticalLayoutWidget'], {}), '(self.verticalLayoutWidget)\n', (3847, 3874), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4025, 4073), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.verticalLayoutWidget'], {}), '(self.verticalLayoutWidget)\n', (4046, 4073), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4232, 4280), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.verticalLayoutWidget'], {}), '(self.verticalLayoutWidget)\n', (4253, 4280), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4450, 4473), 'PyQt5.QtWidgets.QHBoxLayout', 'QtWidgets.QHBoxLayout', ([], {}), '()\n', (4471, 4473), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4568, 4614), 'PyQt5.QtWidgets.QLineEdit', 'QtWidgets.QLineEdit', (['self.verticalLayoutWidget'], {}), '(self.verticalLayoutWidget)\n', (4587, 4614), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((4768, 4816), 'PyQt5.QtWidgets.QPushButton', 'QtWidgets.QPushButton', (['self.verticalLayoutWidget'], {}), '(self.verticalLayoutWidget)\n', (4789, 4816), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5028, 5064), 'PyQt5.QtWidgets.QLabel', 'QtWidgets.QLabel', (['self.widget_action'], {}), '(self.widget_action)\n', (5044, 5064), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5190, 5203), 'PyQt5.QtGui.QFont', 'QtGui.QFont', ([], {}), '()\n', (5201, 5203), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5314, 5344), 'PyQt5.QtWidgets.QMenuBar', 'QtWidgets.QMenuBar', (['MainWindow'], {}), '(MainWindow)\n', (5332, 5344), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5522, 5554), 'PyQt5.QtWidgets.QStatusBar', 'QtWidgets.QStatusBar', (['MainWindow'], {}), '(MainWindow)\n', (5542, 5554), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5701, 5750), 'PyQt5.QtCore.QMetaObject.connectSlotsByName', 'QtCore.QMetaObject.connectSlotsByName', (['MainWindow'], {}), '(MainWindow)\n', (5738, 5750), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((7607, 7634), 'PyQt5.QtGui.QColor', 'QtGui.QColor', (['(192)', '(253)', '(123)'], {}), '(192, 253, 123)\n', (7619, 7634), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((593, 621), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(70)', '(54)', '(12)'], {}), '(20, 70, 54, 12)\n', (605, 621), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((750, 780), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(10)', '(90)', '(111)', '(151)'], {}), '(10, 90, 111, 151)\n', (762, 780), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((838, 865), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""Pic/53.GIF"""'], {}), "('Pic/53.GIF')\n", (851, 865), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((990, 1021), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(140)', '(90)', '(111)', '(151)'], {}), '(140, 90, 111, 151)\n', (1002, 1021), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1079, 1106), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""Pic/53.GIF"""'], {}), "('Pic/53.GIF')\n", (1092, 1106), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1231, 1262), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(270)', '(90)', '(111)', '(151)'], {}), '(270, 90, 111, 151)\n', (1243, 1262), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1320, 1347), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""Pic/53.GIF"""'], {}), "('Pic/53.GIF')\n", (1333, 1347), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1472, 1503), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(400)', '(90)', '(111)', '(151)'], {}), '(400, 90, 111, 151)\n', (1484, 1503), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1561, 1588), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""Pic/53.GIF"""'], {}), "('Pic/53.GIF')\n", (1574, 1588), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1713, 1744), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(530)', '(90)', '(111)', '(151)'], {}), '(530, 90, 111, 151)\n', (1725, 1744), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((1802, 1829), 'PyQt5.QtGui.QPixmap', 'QtGui.QPixmap', (['"""Pic/53.GIF"""'], {}), "('Pic/53.GIF')\n", (1815, 1829), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2055, 2086), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(10)', '(290)', '(711)', '(331)'], {}), '(10, 290, 711, 331)\n', (2067, 2086), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2438, 2466), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(20)', '(30)', '(71)', '(16)'], {}), '(20, 30, 71, 16)\n', (2450, 2466), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2629, 2659), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(140)', '(30)', '(101)', '(16)'], {}), '(140, 30, 101, 16)\n', (2641, 2659), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((2824, 2854), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(280)', '(30)', '(101)', '(16)'], {}), '(280, 30, 101, 16)\n', (2836, 2854), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3009, 3039), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(390)', '(30)', '(101)', '(16)'], {}), '(390, 30, 101, 16)\n', (3021, 3039), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3344, 3373), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(730)', '(20)', '(40)', '(50)'], {}), '(730, 20, 40, 50)\n', (3356, 3373), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3482, 3513), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(660)', '(90)', '(191)', '(141)'], {}), '(660, 90, 191, 141)\n', (3494, 3513), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((3693, 3722), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(10)', '(40)', '(171)', '(91)'], {}), '(10, 40, 171, 91)\n', (3705, 3722), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5098, 5126), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(70)', '(10)', '(48)', '(20)'], {}), '(70, 10, 48, 20)\n', (5110, 5126), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5378, 5405), 'PyQt5.QtCore.QRect', 'QtCore.QRect', (['(0)', '(0)', '(850)', '(23)'], {}), '(0, 0, 850, 23)\n', (5390, 5405), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n'), ((5911, 5938), 'PyQt5.QtCore.QSize', 'QtCore.QSize', (['width', 'height'], {}), '(width, height)\n', (5923, 5938), False, 'from PyQt5 import QtCore, QtGui, QtWidgets\n')]
from argparse import ArgumentParser import pytest import zum from zum.cli.core import dispatcher, get_config_file_name from zum.constants import DEFAULT_CONFIG_FILE_NAME class TestDispatcher: def setup_method(self): self.invalid_config_file_name = "invalid.toml" self.valid_config_file_name = "valid.toml" self.endpoint_name = "exmple" self.configs = ( "[metadata]\n" 'server = "http://localhost:8000"\n' f"[endpoints.{self.endpoint_name}]\n" 'route = "/example"\n' 'method = "get"\n' ) def test_help_flag(self, capsys): with pytest.raises(SystemExit): dispatcher(["--help"]) captured = capsys.readouterr().out assert "Command line interface tool for zum." in captured def test_version_flag(self, capsys): with pytest.raises(SystemExit): dispatcher(["--version"]) captured = capsys.readouterr().out assert f"zum version {zum.__version__}" in captured def test_invalid_config_file(self, tmpdir, capsys): invalid_config_file = tmpdir.join(self.invalid_config_file_name) valid_config_file = tmpdir.join(self.valid_config_file_name) with open(valid_config_file.strpath, "w") as raw_config_file: raw_config_file.write(self.configs) with pytest.raises(SystemExit): dispatcher(["--file", invalid_config_file.strpath, "--help"]) captured = capsys.readouterr().out assert "No config file" in captured assert self.invalid_config_file_name in captured def test_valid_config_file(self, tmpdir, capsys): valid_config_file = tmpdir.join(self.valid_config_file_name) with open(valid_config_file.strpath, "w") as raw_config_file: raw_config_file.write(self.configs) with pytest.raises(SystemExit): dispatcher(["--file", valid_config_file.strpath, "--help"]) captured = capsys.readouterr().out assert "No config file" not in captured assert f"{{{self.endpoint_name}}}" in captured class TestGetConfigFileName: def setup_method(self): self.file_name = "custom.toml" def test_empty_call(self): file_name = get_config_file_name() assert file_name == DEFAULT_CONFIG_FILE_NAME def test_filled_call(self): file_name = get_config_file_name(["--file", self.file_name]) assert file_name == self.file_name
[ "pytest.raises", "zum.cli.core.dispatcher", "zum.cli.core.get_config_file_name" ]
[((2270, 2292), 'zum.cli.core.get_config_file_name', 'get_config_file_name', ([], {}), '()\n', (2290, 2292), False, 'from zum.cli.core import dispatcher, get_config_file_name\n'), ((2399, 2447), 'zum.cli.core.get_config_file_name', 'get_config_file_name', (["['--file', self.file_name]"], {}), "(['--file', self.file_name])\n", (2419, 2447), False, 'from zum.cli.core import dispatcher, get_config_file_name\n'), ((647, 672), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (660, 672), False, 'import pytest\n'), ((686, 708), 'zum.cli.core.dispatcher', 'dispatcher', (["['--help']"], {}), "(['--help'])\n", (696, 708), False, 'from zum.cli.core import dispatcher, get_config_file_name\n'), ((873, 898), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (886, 898), False, 'import pytest\n'), ((912, 937), 'zum.cli.core.dispatcher', 'dispatcher', (["['--version']"], {}), "(['--version'])\n", (922, 937), False, 'from zum.cli.core import dispatcher, get_config_file_name\n'), ((1372, 1397), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (1385, 1397), False, 'import pytest\n'), ((1411, 1472), 'zum.cli.core.dispatcher', 'dispatcher', (["['--file', invalid_config_file.strpath, '--help']"], {}), "(['--file', invalid_config_file.strpath, '--help'])\n", (1421, 1472), False, 'from zum.cli.core import dispatcher, get_config_file_name\n'), ((1874, 1899), 'pytest.raises', 'pytest.raises', (['SystemExit'], {}), '(SystemExit)\n', (1887, 1899), False, 'import pytest\n'), ((1913, 1972), 'zum.cli.core.dispatcher', 'dispatcher', (["['--file', valid_config_file.strpath, '--help']"], {}), "(['--file', valid_config_file.strpath, '--help'])\n", (1923, 1972), False, 'from zum.cli.core import dispatcher, get_config_file_name\n')]
import abc import numpy as np class Policy(object): def __init__(self, config): """ Base class for all policies, has an abstract method predict(). """ self.trainable = False self.phase = None self.model = None self.device = None self.last_state = None self.time_step = None # if agent is assumed to know the dynamics of real world self.env = None self.config = config @abc.abstractmethod def predict(self, state): """ Policy takes state as input and output an action """ return @staticmethod def reach_destination(state): self_state = state.self_state if np.linalg.norm((self_state.py - self_state.gy, self_state.px - self_state.gx)) < self_state.radius: return True else: return False
[ "numpy.linalg.norm" ]
[((725, 803), 'numpy.linalg.norm', 'np.linalg.norm', (['(self_state.py - self_state.gy, self_state.px - self_state.gx)'], {}), '((self_state.py - self_state.gy, self_state.px - self_state.gx))\n', (739, 803), True, 'import numpy as np\n')]
# coding=utf-8 # Copyright 2019 DeepMind Technologies Limited. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Graph construction for dual verification: Lagrangian calculation.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import sonnet as snt import tensorflow as tf class DualVerification(snt.AbstractModule): """Module to represent a network's Lagrangian, in terms of dual variables.""" def __init__(self, verification_strategy, verifiable_layers, target_strategy=None, get_dual_variable=tf.get_variable, name='dual_verification'): """Initialises the dual verification module. Args: verification_strategy: strategy object defining the dual verification formulation, including what dual variables exist for each layer. verifiable_layers: List of `VerifiableLayer` objects specifying linear layers and non-linear activation functions. target_strategy: target_objective_strategy object defining the objective to optimize for the Lagrangian, default set to None, in which case we will use the standard verification objective. get_dual_variable: Function(name, shape, dtype) returning a dual variable. It will be invoked by keyword arguments, so its arguments must be named as given here, but may occur in any order. name: Optional name for the module, defaulting to 'dual_verification'. """ super(DualVerification, self).__init__(name=name) self._verification_strategy = verification_strategy self._verifiable_layers = verifiable_layers self._target_strategy = target_strategy self._get_dual_variable = get_dual_variable def _build(self, labels, num_batches, current_batch, margin=0., objective_computation_config=None, dataset_size=None): """Sets the up dual objective for the given network. Dual variables are allocated for the entire dataset, covering all batches as specified by `num_batches`. The dual objective accesses a slice of the the dual variables specified by `current_batch`. Args: labels: 1D integer tensor of shape (batch_size) of labels for each input example. num_batches: Total number of batches in the dataset. current_batch: 0D integer tensor containing index of current batch. margin: Dual objective values for correct class will be forced to `-margin`, thus disregarding large negative bounds when maximising. objective_computation_config: Additional parameters for dual obj. dataset_size: Size of dataset across all batches. By default this is inferred from `num_batches * labels.shape[0]`, but can be set explictly if not known at graph build time. Returns: 2D tensor of shape (num_targets, batch_size) containing dual objective values for each (class, example). """ # Dual variable generation across all batches. if dataset_size is None: batch_size = labels.shape[0] dataset_size = num_batches * batch_size else: batch_size = tf.shape(labels)[0] batch_lo = current_batch * batch_size batch_hi = batch_lo + batch_size def dual_var_getter(name, shape, dtype): """Creates a trainable tf.Variable for each dual variables.""" dual_var = self._get_dual_variable(name=name, dtype=dtype, shape=(shape[:1] + [dataset_size] + shape[2:])) # Return directly the tf.Variable if possible. if dataset_size == batch_size: return dual_var # Select correct slice of dual variables for current batch. sliced = dual_var[:, batch_lo:batch_hi] sliced.set_shape(shape) return sliced (dual_obj, self._dual_var_lists, self._project_duals_op, self._supporting_ops) = ( self._verification_strategy.create_duals_and_build_objective( self._verifiable_layers, labels, dual_var_getter, margin=margin, target_strategy=self._target_strategy, objective_computation_config=objective_computation_config)) return dual_obj @property def dual_var_lists(self): """TensorFlow variables for all dual variables.""" self._ensure_is_connected() return self._dual_var_lists @property def project_duals_op(self): """TensorFlow operation to project all dual variables to their bounds.""" self._ensure_is_connected() return self._project_duals_op @property def init_duals_op(self): """TensorFlow operation to initialize dual variables.""" return self.supporting_ops['init'] @property def supporting_ops(self): """Additional TF ops (e.g. initialization) for the dual variables.""" self._ensure_is_connected() return self._supporting_ops def dual_variables_by_name(self, names): """Get dual variables by name.""" return _dual_variables_by_name(names, self.dual_var_lists) def _dual_variables_by_name(names, dual_var_lists): dual_vars = [] for dual_var_list in dual_var_lists: for child_dual_var_lists in dual_var_list[:-1]: dual_vars.extend(_dual_variables_by_name(names, child_dual_var_lists)) dual = dual_var_list[-1] if dual is not None: dual_vars.extend([dual[name] for name in names if name in dual]) return dual_vars
[ "tensorflow.shape" ]
[((3684, 3700), 'tensorflow.shape', 'tf.shape', (['labels'], {}), '(labels)\n', (3692, 3700), True, 'import tensorflow as tf\n')]
from django import forms #class PredictForm(forms.Form): # industry = forms.CharField(label='Your Name', max_length=100) # sub_vertical = # investment = class UniqueForm(forms.Form): your_num = forms.CharField(label='Your number')
[ "django.forms.CharField" ]
[((210, 246), 'django.forms.CharField', 'forms.CharField', ([], {'label': '"""Your number"""'}), "(label='Your number')\n", (225, 246), False, 'from django import forms\n')]
#%% from my_kmv import get_final_res_from_code def get_tuple_list(codes, start_date, end_date): tuple_list = [] mode = "v2" for code in codes: try: _, _, df = get_final_res_from_code(code, start_date, end_date, mode) tuple_list += list(zip(df["DD"], df["roe_dt"])) except: print(df["DD"], df["roe_dt"]) print(code, "have failed") return tuple_list #%% code_dict = { "南京银行": "601009.SH", "北京银行": "601169.SH", "宁波银行": "002142.SZ" } tuple_list = get_tuple_list(code_dict.values(), "20100101", "20201231") # %% import matplotlib.pyplot as plt figure = plt.figure() plt.hist([x[0] for x in tuple_list], bins = 20) plt.savefig("figure_chang/chang_DD_hist.png") plt.close() # %% figure = plt.figure() plt.hist([x[1] for x in tuple_list], bins = 20) plt.savefig("figure_chang/chang_roe_hist.png") plt.close() # dd -> range array_x = [] array_y = [] import numpy as np for x in tuple_list: array_x.append(x[0]) array_y.append(x[1]) #print(np.mean(array_x)) #print(np.std(array_x,ddof=1)) xiaxian1 = np.mean(array_x) - 2*np.std(array_x,ddof=1) shangxian1 = np.mean(array_x) + 2*np.std(array_x,ddof=1) per20 = np.nanpercentile(array_y,20)# jiange1 = (shangxian1 - xiaxian1)/20 # %% range_list = [(xiaxian1 + i * jiange1, xiaxian1 + (i+1) * jiange1) for i in range(20)] count_dict = {i: [0, 0] for i in range(-1, 21)} for x in tuple_list: if x[0] <= range_list[0][0]: count_dict[-1][0] += 1 if x[1] < per20: count_dict[-1][1] += 1 continue if x[0] > range_list[-1][1]: count_dict[20][0] += 1 if x[1] < per20: count_dict[20][1] += 1 continue for j, range_ in enumerate(range_list): if x[0] > range_[0] and x[0] <= range_[1]: count_dict[j][0] += 1 if x[1] < per20: count_dict[j][1] += 1 break count_dict # %% for key, value in count_dict.items(): if key == -1: print("(-inf,%s)"%xiaxian1, value[1] / value[0] if value[0] != 0 else 0) elif key == 20: print("(%s,inf)"%shangxian1, value[1] / value[0] if value[0] != 0 else 0) else: print(range_list[key], value[1] / value[0] if value[0] != 0 else 0) # %% import numpy as np midx = [(range_list[i][0] + range_list[i][0]) / 2 for i in range(20)] midy = [ count_dict[i][1] / count_dict[i][0] if count_dict[i][0] != 0 else 0 for i in range(20) ] import random #a = np.polyfit(samplex, sampley, 3) #b = np.poly1d(a) def b(dd,midx,midy): epsilon = random.random() * 0.05 if dd >= midx[0] and dd < midx[19]: for i in range(0,18): if dd >= midx[i] and dd < midx[i+1]: y = midy[i] + (dd - midx[i]) * (midy[i+1] - midy[i]) / (midx[i+1] - midx[i]) return y + epsilon if y == 0.0 else y else: return epsilon import pickle as pk # %% pk.dump(midx, open("data/midx.pk", "wb")) pk.dump(midy, open("data/midy.pk", "wb")) pk.dump(b, open("data/edf_fun.pk", "wb")) # %% #import matplotlib.pyplot as plt #plot_x = [(-0.5 + i / 1000) for i in range(1, 1000)] #plot_y = [b(x) for x in plot_x] #plt.plot(plot_x, plot_y) #plt.savefig("figure_chang/zhexian.png") # %%
[ "numpy.mean", "matplotlib.pyplot.hist", "numpy.nanpercentile", "matplotlib.pyplot.savefig", "matplotlib.pyplot.close", "matplotlib.pyplot.figure", "my_kmv.get_final_res_from_code", "numpy.std", "random.random" ]
[((646, 658), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (656, 658), True, 'import matplotlib.pyplot as plt\n'), ((659, 704), 'matplotlib.pyplot.hist', 'plt.hist', (['[x[0] for x in tuple_list]'], {'bins': '(20)'}), '([x[0] for x in tuple_list], bins=20)\n', (667, 704), True, 'import matplotlib.pyplot as plt\n'), ((707, 752), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figure_chang/chang_DD_hist.png"""'], {}), "('figure_chang/chang_DD_hist.png')\n", (718, 752), True, 'import matplotlib.pyplot as plt\n'), ((753, 764), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (762, 764), True, 'import matplotlib.pyplot as plt\n'), ((780, 792), 'matplotlib.pyplot.figure', 'plt.figure', ([], {}), '()\n', (790, 792), True, 'import matplotlib.pyplot as plt\n'), ((793, 838), 'matplotlib.pyplot.hist', 'plt.hist', (['[x[1] for x in tuple_list]'], {'bins': '(20)'}), '([x[1] for x in tuple_list], bins=20)\n', (801, 838), True, 'import matplotlib.pyplot as plt\n'), ((841, 887), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""figure_chang/chang_roe_hist.png"""'], {}), "('figure_chang/chang_roe_hist.png')\n", (852, 887), True, 'import matplotlib.pyplot as plt\n'), ((888, 899), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (897, 899), True, 'import matplotlib.pyplot as plt\n'), ((1207, 1236), 'numpy.nanpercentile', 'np.nanpercentile', (['array_y', '(20)'], {}), '(array_y, 20)\n', (1223, 1236), True, 'import numpy as np\n'), ((1098, 1114), 'numpy.mean', 'np.mean', (['array_x'], {}), '(array_x)\n', (1105, 1114), True, 'import numpy as np\n'), ((1155, 1171), 'numpy.mean', 'np.mean', (['array_x'], {}), '(array_x)\n', (1162, 1171), True, 'import numpy as np\n'), ((1119, 1142), 'numpy.std', 'np.std', (['array_x'], {'ddof': '(1)'}), '(array_x, ddof=1)\n', (1125, 1142), True, 'import numpy as np\n'), ((1176, 1199), 'numpy.std', 'np.std', (['array_x'], {'ddof': '(1)'}), '(array_x, ddof=1)\n', (1182, 1199), True, 'import numpy as np\n'), ((2585, 2600), 'random.random', 'random.random', ([], {}), '()\n', (2598, 2600), False, 'import random\n'), ((193, 250), 'my_kmv.get_final_res_from_code', 'get_final_res_from_code', (['code', 'start_date', 'end_date', 'mode'], {}), '(code, start_date, end_date, mode)\n', (216, 250), False, 'from my_kmv import get_final_res_from_code\n')]
from PIL import Image, ImageDraw, ImageFont def bgsreportimg(): img = Image.new('RGB', (200, 200)) d1 = ImageDraw.Draw(img) d1.text((65, 10), "Sample Text", fill=(255, 0, 0)) img.save('temp/bgsreport.png') bgsreportimg()
[ "PIL.Image.new", "PIL.ImageDraw.Draw" ]
[((76, 104), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(200, 200)'], {}), "('RGB', (200, 200))\n", (85, 104), False, 'from PIL import Image, ImageDraw, ImageFont\n'), ((115, 134), 'PIL.ImageDraw.Draw', 'ImageDraw.Draw', (['img'], {}), '(img)\n', (129, 134), False, 'from PIL import Image, ImageDraw, ImageFont\n')]
#!/usr/bin/env python3 #p3_190212_2243.py # Telegram bot calculator # Bot model without webhooks import requests import re REGEXP = '\d+\s*[\+\-\*\/]{1}\s*\d+' class Calculator: def __init__(self): token = '690888180:<KEY>' self.url_bot = 'https://api.telegram.org/bot' + token + '/' self.regex = re.compile(REGEXP) def get_updates(self): url = self.get_url('getUpdates', None) resp = requests.get(url) return resp.json() def get_message(self): data = self.get_updates() last_message = data['result'][-1] chat_id = last_message['message']['from']['id'] message_text = last_message['message']['text'] message_info = {'room_id': chat_id, 'msg_text': message_text} return message_info def send_message(self, cid, text): message_args = {'room_id': cid, 'msg_text': text} url = self.get_url('sendMessage', message_args) check_code = requests.get(url) def get_url(self, request, params): url = self.url_bot + request if params: cid = params['room_id'] text = params['text'] url += '?chat_id={}&text={}'.format(cid, text) return url def calculate(self, message): exp1 = list() exp1 = re.findall(self.regex, message) if exp1: print(eval(exp1[0])) def main(): win1 = Calculator() print(win1.get_message()) if __name__ == '__main__': main()
[ "re.findall", "requests.get", "re.compile" ]
[((327, 345), 're.compile', 're.compile', (['REGEXP'], {}), '(REGEXP)\n', (337, 345), False, 'import re\n'), ((435, 452), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (447, 452), False, 'import requests\n'), ((966, 983), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (978, 983), False, 'import requests\n'), ((1299, 1330), 're.findall', 're.findall', (['self.regex', 'message'], {}), '(self.regex, message)\n', (1309, 1330), False, 'import re\n')]