code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
import json import logging from typing import Dict, Optional import requests from requests.auth import HTTPBasicAuth from requests.models import Response log = logging.getLogger(__name__) class NoGithubCredentials(Exception): pass class BasicAuthRequester: """ Object used for issuing authenticated API calls. """ def __init__(self, username: str, password: str) -> None: self.username = username self.password = password def get_auth(self) -> Optional[HTTPBasicAuth]: if self.username and self.password: return HTTPBasicAuth(self.username, self.password) return None def get(self, url: str) -> Response: log.debug("Fetching %s", url) response = requests.get(url, auth=self.get_auth()) if response.status_code > 400: log.warning("Error on GET to %s. Response: %s", url, response.content) return response def delete(self, url): log.debug("Deleting %s", url) return requests.delete(url, auth=self.get_auth()) def post(self, url: str, payload: Dict) -> Response: log.debug("Posting %s to %s", payload, url) response = requests.post(url, data=json.dumps(payload), auth=self.get_auth()) if response.status_code > 400: log.warning("Error on POST to %s. Response: %s", url, response.content) return response
[ "logging.getLogger", "json.dumps", "requests.auth.HTTPBasicAuth" ]
[((162, 189), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (179, 189), False, 'import logging\n'), ((580, 623), 'requests.auth.HTTPBasicAuth', 'HTTPBasicAuth', (['self.username', 'self.password'], {}), '(self.username, self.password)\n', (593, 623), False, 'from requests.auth import HTTPBasicAuth\n'), ((1207, 1226), 'json.dumps', 'json.dumps', (['payload'], {}), '(payload)\n', (1217, 1226), False, 'import json\n')]
#!/usr/bin/env python3 import argparse import csv import sys from pathlib import Path from typing import Dict, Set, List from util import utils def main() -> None: parser = argparse.ArgumentParser() parser.add_argument("csv_path", help="Path to function CSV to merge") args = parser.parse_args() csv_path = Path(args.csv_path) known_fn_addrs: Set[int] = {func.addr for func in utils.get_functions(all=True)} names: Dict[int, str] = {func.addr: func.name for func in utils.get_functions(all=True)} new_fns: List[utils.FunctionInfo] = [] for func in utils.get_functions(csv_path, all=True): if func.addr in known_fn_addrs: if not names[func.addr].startswith("_") and not func.name.startswith("_Z"): names[func.addr] = func.name else: new_fns.append(func) new_fn_list: List[utils.FunctionInfo] = [] new_fn_list.extend(utils.get_functions(all=True)) new_fn_list.extend(new_fns) new_fn_list.sort(key=lambda func: func.addr) # Output the modified function CSV. writer = csv.writer(sys.stdout, lineterminator="\n") writer.writerow("Address,Quality,Size,Name".split(",")) for func in new_fn_list: if func.addr in names: func.raw_row[3] = names[func.addr] writer.writerow(func.raw_row) if __name__ == "__main__": main()
[ "csv.writer", "util.utils.get_functions", "argparse.ArgumentParser", "pathlib.Path" ]
[((181, 206), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (204, 206), False, 'import argparse\n'), ((328, 347), 'pathlib.Path', 'Path', (['args.csv_path'], {}), '(args.csv_path)\n', (332, 347), False, 'from pathlib import Path\n'), ((586, 625), 'util.utils.get_functions', 'utils.get_functions', (['csv_path'], {'all': '(True)'}), '(csv_path, all=True)\n', (605, 625), False, 'from util import utils\n'), ((1084, 1127), 'csv.writer', 'csv.writer', (['sys.stdout'], {'lineterminator': '"""\n"""'}), "(sys.stdout, lineterminator='\\n')\n", (1094, 1127), False, 'import csv\n'), ((918, 947), 'util.utils.get_functions', 'utils.get_functions', ([], {'all': '(True)'}), '(all=True)\n', (937, 947), False, 'from util import utils\n'), ((403, 432), 'util.utils.get_functions', 'utils.get_functions', ([], {'all': '(True)'}), '(all=True)\n', (422, 432), False, 'from util import utils\n'), ((496, 525), 'util.utils.get_functions', 'utils.get_functions', ([], {'all': '(True)'}), '(all=True)\n', (515, 525), False, 'from util import utils\n')]
# Global import from flask import Flask # Local Import from main.routes import v1 server = Flask(__name__) server.register_blueprint(v1.v1_router)
[ "flask.Flask" ]
[((93, 108), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (98, 108), False, 'from flask import Flask\n')]
from datetime import datetime, timedelta from tests.app.domain.models import Batch, OrderLine, allocate today = datetime.today() tomorrow = today + timedelta(days=1) later = tomorrow + timedelta(days=10) def test_prefers_current_stock_batches_to_shipments() -> None: in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None) shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow) line = OrderLine("oref", "RETRO-CLOCK", 10) allocate(line, [in_stock_batch, shipment_batch]) assert in_stock_batch.available_quantity == 90 assert shipment_batch.available_quantity == 100 def test_prefers_earlier_batches() -> None: earliest = Batch("speedy-batch", "MINIMALIST-SPOON", 100, eta=today) medium = Batch("normal-batch", "MINIMALIST-SPOON", 100, eta=tomorrow) latest = Batch("slow-batch", "MINIMALIST-SPOON", 100, eta=later) line = OrderLine("order1", "MINIMALIST-SPOON", 10) allocate(line, [medium, earliest, latest]) assert earliest.available_quantity == 90 assert medium.available_quantity == 100 assert latest.available_quantity == 100 def test_returns_allocated_batch_ref() -> None: in_stock_batch = Batch("in-stock-batch-ref", "HIGHBROW-POSTER", 100, eta=None) shipment_batch = Batch("shipment-batch-ref", "HIGHBROW-POSTER", 100, eta=tomorrow) line = OrderLine("oref", "HIGHBROW-POSTER", 10) allocation = allocate(line, [in_stock_batch, shipment_batch]) assert allocation == in_stock_batch.reference
[ "tests.app.domain.models.OrderLine", "tests.app.domain.models.Batch", "tests.app.domain.models.allocate", "datetime.datetime.today", "datetime.timedelta" ]
[((114, 130), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (128, 130), False, 'from datetime import datetime, timedelta\n'), ((150, 167), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (159, 167), False, 'from datetime import datetime, timedelta\n'), ((187, 205), 'datetime.timedelta', 'timedelta', ([], {'days': '(10)'}), '(days=10)\n', (196, 205), False, 'from datetime import datetime, timedelta\n'), ((292, 345), 'tests.app.domain.models.Batch', 'Batch', (['"""in-stock-batch"""', '"""RETRO-CLOCK"""', '(100)'], {'eta': 'None'}), "('in-stock-batch', 'RETRO-CLOCK', 100, eta=None)\n", (297, 345), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((367, 424), 'tests.app.domain.models.Batch', 'Batch', (['"""shipment-batch"""', '"""RETRO-CLOCK"""', '(100)'], {'eta': 'tomorrow'}), "('shipment-batch', 'RETRO-CLOCK', 100, eta=tomorrow)\n", (372, 424), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((436, 472), 'tests.app.domain.models.OrderLine', 'OrderLine', (['"""oref"""', '"""RETRO-CLOCK"""', '(10)'], {}), "('oref', 'RETRO-CLOCK', 10)\n", (445, 472), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((478, 526), 'tests.app.domain.models.allocate', 'allocate', (['line', '[in_stock_batch, shipment_batch]'], {}), '(line, [in_stock_batch, shipment_batch])\n', (486, 526), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((692, 749), 'tests.app.domain.models.Batch', 'Batch', (['"""speedy-batch"""', '"""MINIMALIST-SPOON"""', '(100)'], {'eta': 'today'}), "('speedy-batch', 'MINIMALIST-SPOON', 100, eta=today)\n", (697, 749), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((763, 823), 'tests.app.domain.models.Batch', 'Batch', (['"""normal-batch"""', '"""MINIMALIST-SPOON"""', '(100)'], {'eta': 'tomorrow'}), "('normal-batch', 'MINIMALIST-SPOON', 100, eta=tomorrow)\n", (768, 823), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((837, 892), 'tests.app.domain.models.Batch', 'Batch', (['"""slow-batch"""', '"""MINIMALIST-SPOON"""', '(100)'], {'eta': 'later'}), "('slow-batch', 'MINIMALIST-SPOON', 100, eta=later)\n", (842, 892), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((904, 947), 'tests.app.domain.models.OrderLine', 'OrderLine', (['"""order1"""', '"""MINIMALIST-SPOON"""', '(10)'], {}), "('order1', 'MINIMALIST-SPOON', 10)\n", (913, 947), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((953, 995), 'tests.app.domain.models.allocate', 'allocate', (['line', '[medium, earliest, latest]'], {}), '(line, [medium, earliest, latest])\n', (961, 995), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((1201, 1262), 'tests.app.domain.models.Batch', 'Batch', (['"""in-stock-batch-ref"""', '"""HIGHBROW-POSTER"""', '(100)'], {'eta': 'None'}), "('in-stock-batch-ref', 'HIGHBROW-POSTER', 100, eta=None)\n", (1206, 1262), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((1284, 1349), 'tests.app.domain.models.Batch', 'Batch', (['"""shipment-batch-ref"""', '"""HIGHBROW-POSTER"""', '(100)'], {'eta': 'tomorrow'}), "('shipment-batch-ref', 'HIGHBROW-POSTER', 100, eta=tomorrow)\n", (1289, 1349), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((1361, 1401), 'tests.app.domain.models.OrderLine', 'OrderLine', (['"""oref"""', '"""HIGHBROW-POSTER"""', '(10)'], {}), "('oref', 'HIGHBROW-POSTER', 10)\n", (1370, 1401), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n'), ((1419, 1467), 'tests.app.domain.models.allocate', 'allocate', (['line', '[in_stock_batch, shipment_batch]'], {}), '(line, [in_stock_batch, shipment_batch])\n', (1427, 1467), False, 'from tests.app.domain.models import Batch, OrderLine, allocate\n')]
from CONSTANTS import ERR_CODE_COMMAND_LINE_ARGS, WARNING_CODE_INVALID_FORMAT, ERR_CODE_NON_EXISTING_DIRECTORY, \ WARNING_CODE_NO_PAIR_FOUND, ERR_CODE_CREATING_XML, TMX_MIN_ARGS from utilities.error_manager import run_warning, run_error from utilities.file_handler import get_file_content_safe, get_output_file_name from processors.tmx_xml_vtt_handler import create_tmx_from_dicts from utilities import printing_utilities as pu import time import os def _create_dict(lines): """ Creates formatted dictionaries for processing and creating .tmx files. The form of the dictionary is {timestamp: (paragraph_id, text), ...} Arguments: lines: lines of text from a .srt file Returns: Dictionary that is formatted for processing and creating .tmx files. """ ret = {} idx = 0 # -- Idx specifies one line to process while idx < len(lines): # -- Skip any blank lines if lines[idx].strip() == '': idx += 1 continue # -- Get the id of this line # -- The id is just the number from a .srt file paragraph local_id = lines[idx].strip() idx += 1 # -- Get the timestamp from the paragraph timestamp = lines[idx].strip() idx += 1 # -- Fetch all content until the first empty line content = "" while len(lines) > idx and lines[idx].strip() != '': content += lines[idx] idx += 1 # -- If anything that was parsed is actually blank, toss it and # inform the user of the warning if local_id.strip() == '' or timestamp.strip() == '' or \ content.strip() == '': run_warning(WARNING_CODE_INVALID_FORMAT, [local_id, timestamp, content]) continue # -- Add the (id, content) pair on the key of the timestamp because # it is the only thing that is actually unique ret[timestamp] = (local_id, content) idx += 1 return ret def _process_srt_by_dir(directory_path, src_lang): """ Essentially processes .srt files in the same way as _full_srt_process, but takes an entire directory as the input. Files are taken as pairs, so that pairs have the same name except the postfix of the filename (not the extension). The postfix of exactly one of the pairs must be the same as the src_lang parameter eg. filename-one-EN.srt, filename-one-DE.srt, for a src_lang parameter of either EN or DE. Arguments: directory_path: The directory from which to pull .srt file pairs src_lang: The language of the source file, and also the postfix of exactly one of the file pairs Returns: None """ if not os.path.exists(directory_path): run_error(ERR_CODE_NON_EXISTING_DIRECTORY, directory_path) # -- Transform the src_lang to lower at once so that no problems are caused # later due to casing src_lang = src_lang.lower() # -- Filename - {source-file, source-lang, trans-file, trans-lang} files_to_translate = {} # -- Create {"path1":"path1", lang1:"lang1", # "path2":"path2", "lang2":"lang2"} dicts for # each unique filename with it's trailing # language sliced off. for item in os.listdir(directory_path): filename = item.split(".srt")[0][:-3] if filename not in files_to_translate: files_to_translate[filename] = {} t = {} file_lang = item.split(".srt")[0][-2:].lower() if file_lang == src_lang: path_key = 'path1' lang_key = 'lang1' else: path_key = 'path2' lang_key = 'lang2' t[path_key] = os.path.join(directory_path, item) t[lang_key] = file_lang files_to_translate[filename].update(t) files = [] for k, v in files_to_translate.items(): # Check if any files or paths are found by themselves, and raise a # warning if not ('path1' in v and 'lang1' in v and 'path2' in v and 'lang2' in v): run_warning(WARNING_CODE_NO_PAIR_FOUND, k) continue # -- If all is well, forward items to the _full_srt_process function # with predetermined filename path1 = v['path1'] lang1 = v['lang1'] path2 = v['path2'] lang2 = v['lang2'] filepath = \ _full_srt_process(path1, lang1, path2, lang2, str(k) + ".tmx") if filepath is not None: files.append(filepath) return files def process_srt(arguments): """ Processes arguments for creating tmx files. Arguments: arguments: arguments from the command line which must have either 4 or 2 args. The arguments can be seen in the help_script section of the project. """ if arguments is None or len(arguments) not in TMX_MIN_ARGS: run_error(ERR_CODE_COMMAND_LINE_ARGS) if len(arguments) == 4: return _full_srt_process( arguments[0], arguments[1], arguments[2], arguments[3]) else: return _process_srt_by_dir(arguments[0], arguments[1]) def _full_srt_process(path1, lang1, path2, lang2, result_name=None): """ Creates a .tmx file based on .srt files specified by parh1, and path2, taking into account the languages specified by lang1 and lang2. Arguments: path1: path to the source .srt file lang1: language of the source .srt file path2: path to the translation .srt file lang2: language of the translation .srt file result_name: (optional) name of the resulting .tmx file. If left blank the name will be generated based on the current time Returns: None """ # -- Check both files existence and read all content pu.display_message('#1 Searching for files and ' 'scanning all lines in files ...') lines_1 = get_file_content_safe(path1) lines_2 = get_file_content_safe(path2) pu.display_message('#1 ... Files found and all lines ' 'in both files were read!\n') # -- Create dictionaries from all scanned lines in files pu.display_message('#2 Creating dictionaries from scanned lines ...') dict_1 = _create_dict(lines_1) dict_2 = _create_dict(lines_2) pu.display_message('#2 ... Created dictionaries from scanned lines!\n') # -- Create xml file # -- Create full filepath pu.display_message("#3 Generating tmx file ...") if result_name is None: xml_filename = str(time.time()) + '.tmx' else: xml_filename = result_name full_file_path = get_output_file_name(xml_filename) pu.display_message("File will be generated in: [" + full_file_path + "]") # -- Create root xml_string = create_tmx_from_dicts(dict_1, lang1, dict_2, lang2) try: with open(full_file_path, mode='w') as result_file: result_file.write(xml_string) except Exception as e: run_error(ERR_CODE_CREATING_XML, full_file_path, e) return None pu.display_message("#3 ... File " + full_file_path + " generated!\n") return full_file_path
[ "processors.tmx_xml_vtt_handler.create_tmx_from_dicts", "os.path.exists", "os.listdir", "utilities.error_manager.run_error", "os.path.join", "utilities.file_handler.get_file_content_safe", "utilities.file_handler.get_output_file_name", "utilities.error_manager.run_warning", "utilities.printing_utilities.display_message", "time.time" ]
[((3294, 3320), 'os.listdir', 'os.listdir', (['directory_path'], {}), '(directory_path)\n', (3304, 3320), False, 'import os\n'), ((5905, 5990), 'utilities.printing_utilities.display_message', 'pu.display_message', (['"""#1 Searching for files and scanning all lines in files ..."""'], {}), "('#1 Searching for files and scanning all lines in files ...'\n )\n", (5923, 5990), True, 'from utilities import printing_utilities as pu\n'), ((6026, 6054), 'utilities.file_handler.get_file_content_safe', 'get_file_content_safe', (['path1'], {}), '(path1)\n', (6047, 6054), False, 'from utilities.file_handler import get_file_content_safe, get_output_file_name\n'), ((6069, 6097), 'utilities.file_handler.get_file_content_safe', 'get_file_content_safe', (['path2'], {}), '(path2)\n', (6090, 6097), False, 'from utilities.file_handler import get_file_content_safe, get_output_file_name\n'), ((6102, 6188), 'utilities.printing_utilities.display_message', 'pu.display_message', (['"""#1 ... Files found and all lines in both files were read!\n"""'], {}), "(\n '#1 ... Files found and all lines in both files were read!\\n')\n", (6120, 6188), True, 'from utilities import printing_utilities as pu\n'), ((6276, 6345), 'utilities.printing_utilities.display_message', 'pu.display_message', (['"""#2 Creating dictionaries from scanned lines ..."""'], {}), "('#2 Creating dictionaries from scanned lines ...')\n", (6294, 6345), True, 'from utilities import printing_utilities as pu\n'), ((6420, 6491), 'utilities.printing_utilities.display_message', 'pu.display_message', (['"""#2 ... Created dictionaries from scanned lines!\n"""'], {}), "('#2 ... Created dictionaries from scanned lines!\\n')\n", (6438, 6491), True, 'from utilities import printing_utilities as pu\n'), ((6552, 6600), 'utilities.printing_utilities.display_message', 'pu.display_message', (['"""#3 Generating tmx file ..."""'], {}), "('#3 Generating tmx file ...')\n", (6570, 6600), True, 'from utilities import printing_utilities as pu\n'), ((6744, 6778), 'utilities.file_handler.get_output_file_name', 'get_output_file_name', (['xml_filename'], {}), '(xml_filename)\n', (6764, 6778), False, 'from utilities.file_handler import get_file_content_safe, get_output_file_name\n'), ((6783, 6856), 'utilities.printing_utilities.display_message', 'pu.display_message', (["('File will be generated in: [' + full_file_path + ']')"], {}), "('File will be generated in: [' + full_file_path + ']')\n", (6801, 6856), True, 'from utilities import printing_utilities as pu\n'), ((6895, 6946), 'processors.tmx_xml_vtt_handler.create_tmx_from_dicts', 'create_tmx_from_dicts', (['dict_1', 'lang1', 'dict_2', 'lang2'], {}), '(dict_1, lang1, dict_2, lang2)\n', (6916, 6946), False, 'from processors.tmx_xml_vtt_handler import create_tmx_from_dicts\n'), ((7169, 7238), 'utilities.printing_utilities.display_message', 'pu.display_message', (["('#3 ... File ' + full_file_path + ' generated!\\n')"], {}), "('#3 ... File ' + full_file_path + ' generated!\\n')\n", (7187, 7238), True, 'from utilities import printing_utilities as pu\n'), ((2767, 2797), 'os.path.exists', 'os.path.exists', (['directory_path'], {}), '(directory_path)\n', (2781, 2797), False, 'import os\n'), ((2807, 2865), 'utilities.error_manager.run_error', 'run_error', (['ERR_CODE_NON_EXISTING_DIRECTORY', 'directory_path'], {}), '(ERR_CODE_NON_EXISTING_DIRECTORY, directory_path)\n', (2816, 2865), False, 'from utilities.error_manager import run_warning, run_error\n'), ((3726, 3760), 'os.path.join', 'os.path.join', (['directory_path', 'item'], {}), '(directory_path, item)\n', (3738, 3760), False, 'import os\n'), ((4959, 4996), 'utilities.error_manager.run_error', 'run_error', (['ERR_CODE_COMMAND_LINE_ARGS'], {}), '(ERR_CODE_COMMAND_LINE_ARGS)\n', (4968, 4996), False, 'from utilities.error_manager import run_warning, run_error\n'), ((1702, 1774), 'utilities.error_manager.run_warning', 'run_warning', (['WARNING_CODE_INVALID_FORMAT', '[local_id, timestamp, content]'], {}), '(WARNING_CODE_INVALID_FORMAT, [local_id, timestamp, content])\n', (1713, 1774), False, 'from utilities.error_manager import run_warning, run_error\n'), ((4136, 4178), 'utilities.error_manager.run_warning', 'run_warning', (['WARNING_CODE_NO_PAIR_FOUND', 'k'], {}), '(WARNING_CODE_NO_PAIR_FOUND, k)\n', (4147, 4178), False, 'from utilities.error_manager import run_warning, run_error\n'), ((7093, 7144), 'utilities.error_manager.run_error', 'run_error', (['ERR_CODE_CREATING_XML', 'full_file_path', 'e'], {}), '(ERR_CODE_CREATING_XML, full_file_path, e)\n', (7102, 7144), False, 'from utilities.error_manager import run_warning, run_error\n'), ((6656, 6667), 'time.time', 'time.time', ([], {}), '()\n', (6665, 6667), False, 'import time\n')]
from django.db import models from django.contrib.auth.models import User # Create your models here. class Detail(models.Model): """用户信息名""" text = models.CharField(max_length=20) owner = models.ForeignKey(User, on_delete=models.CASCADE, null=True) def __str__(self): """返回模型的字符串表示""" return self.text class Information(models.Model): """具体信息""" title = models.ForeignKey(Detail, on_delete=models.CASCADE, null=True) text = models.TextField(max_length=50) class Meta: verbose_name_plural = 'informations' def __str__(self): """返回模型的字符串表示""" return self.text
[ "django.db.models.TextField", "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((156, 187), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (172, 187), False, 'from django.db import models\n'), ((200, 260), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'on_delete': 'models.CASCADE', 'null': '(True)'}), '(User, on_delete=models.CASCADE, null=True)\n', (217, 260), False, 'from django.db import models\n'), ((396, 458), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Detail'], {'on_delete': 'models.CASCADE', 'null': '(True)'}), '(Detail, on_delete=models.CASCADE, null=True)\n', (413, 458), False, 'from django.db import models\n'), ((470, 501), 'django.db.models.TextField', 'models.TextField', ([], {'max_length': '(50)'}), '(max_length=50)\n', (486, 501), False, 'from django.db import models\n')]
import re from datetime import timedelta DURATION_PATTERN = re.compile( r"((?P<days>[-\d]+) day[s]*, )?(?P<hours>\d+):(?P<minutes>\d+):(?P<seconds>\d[\.\d+]*)" ) def unique(s): seen = set() seen_add = seen.add return [x for x in s if not (x in seen or seen_add(x))] def parse_timedelta(s): m = DURATION_PATTERN.match(s) d = m.groupdict() return timedelta(**{k: float(d[k]) for k in d if d[k] is not None})
[ "re.compile" ]
[((62, 176), 're.compile', 're.compile', (['"""((?P<days>[-\\\\d]+) day[s]*, )?(?P<hours>\\\\d+):(?P<minutes>\\\\d+):(?P<seconds>\\\\d[\\\\.\\\\d+]*)"""'], {}), "(\n '((?P<days>[-\\\\d]+) day[s]*, )?(?P<hours>\\\\d+):(?P<minutes>\\\\d+):(?P<seconds>\\\\d[\\\\.\\\\d+]*)'\n )\n", (72, 176), False, 'import re\n')]
import numpy as np import math w1 = np.array([ [-1], [-1], ], dtype=float) w2 = np.array([ [0], [0], ], dtype=float) w3 = np.array([ [1], [1], ], dtype=float) # 初始化 预处理 C = 1 m, n = w1.shape w = np.zeros((m + 1, 3)) print("Initial:\n", w) add_row = np.ones(n) w1 = np.row_stack((w1, add_row)) w2 = np.row_stack((w2, add_row)) w3 = np.row_stack((w3, add_row)) # w2 = -1 * w2 w1 = np.matrix(w1) w2 = np.matrix(w2) w3 = np.matrix(w3) w = np.matrix(w) def interate(idx, wn): changed = False d = w[idx] * wn for i in range(0, w.shape[0]): cur_w = w[i] if d <= cur_w * wn and i != idx: changed = True w[i] -= C * wn.T if changed: w[idx] += C * wn.T return changed cnt = 0 while True: changed = False changed |= interate(0, w1) changed |= interate(1, w2) changed |= interate(2, w3) cnt += 1 if not changed: break print(cnt, "times\n ", w)
[ "numpy.ones", "numpy.array", "numpy.zeros", "numpy.row_stack", "numpy.matrix" ]
[((37, 72), 'numpy.array', 'np.array', (['[[-1], [-1]]'], {'dtype': 'float'}), '([[-1], [-1]], dtype=float)\n', (45, 72), True, 'import numpy as np\n'), ((90, 123), 'numpy.array', 'np.array', (['[[0], [0]]'], {'dtype': 'float'}), '([[0], [0]], dtype=float)\n', (98, 123), True, 'import numpy as np\n'), ((141, 174), 'numpy.array', 'np.array', (['[[1], [1]]'], {'dtype': 'float'}), '([[1], [1]], dtype=float)\n', (149, 174), True, 'import numpy as np\n'), ((223, 243), 'numpy.zeros', 'np.zeros', (['(m + 1, 3)'], {}), '((m + 1, 3))\n', (231, 243), True, 'import numpy as np\n'), ((278, 288), 'numpy.ones', 'np.ones', (['n'], {}), '(n)\n', (285, 288), True, 'import numpy as np\n'), ((294, 321), 'numpy.row_stack', 'np.row_stack', (['(w1, add_row)'], {}), '((w1, add_row))\n', (306, 321), True, 'import numpy as np\n'), ((327, 354), 'numpy.row_stack', 'np.row_stack', (['(w2, add_row)'], {}), '((w2, add_row))\n', (339, 354), True, 'import numpy as np\n'), ((360, 387), 'numpy.row_stack', 'np.row_stack', (['(w3, add_row)'], {}), '((w3, add_row))\n', (372, 387), True, 'import numpy as np\n'), ((409, 422), 'numpy.matrix', 'np.matrix', (['w1'], {}), '(w1)\n', (418, 422), True, 'import numpy as np\n'), ((428, 441), 'numpy.matrix', 'np.matrix', (['w2'], {}), '(w2)\n', (437, 441), True, 'import numpy as np\n'), ((447, 460), 'numpy.matrix', 'np.matrix', (['w3'], {}), '(w3)\n', (456, 460), True, 'import numpy as np\n'), ((465, 477), 'numpy.matrix', 'np.matrix', (['w'], {}), '(w)\n', (474, 477), True, 'import numpy as np\n')]
""" Tests for languaged-tagged text value rendering. """ from __future__ import unicode_literals from __future__ import absolute_import, division, print_function __author__ = "<NAME> (<EMAIL>)" __copyright__ = "Copyright 2019, <NAME>" __license__ = "MIT (http://opensource.org/licenses/MIT)" import logging log = logging.getLogger(__name__) import sys import os import unittest import re from annalist.resourcetypes import ( file_extension, file_extension_for_content_type ) from annalist.views.fields.render_text_language import ( get_text_language_renderer, TextLanguageValueMapper ) from .field_rendering_support import FieldRendererTestSupport class TextLanguageRenderingTest(FieldRendererTestSupport): def setUp(self): return def tearDown(self): return # Rendering test def test_RenderTextLanguageValue(self): def language_text_value(text, lang): return {'@value': text, '@language': lang} if lang else {'@value': text} def expect_render(text, lang): view_text = "%s (%s)"%(text, lang) if lang else text render_view = '''<span>%s</span>'''%(view_text) render_edit = ( '''<input type="text" size="64" name="repeat_prefix_test_field" '''+ '''placeholder="(test placeholder)" '''+ '''value="%s" />''' )%view_text return {'view': render_view, 'edit': render_edit} test_values = ( [ ("text-en", "en", "text-en (en)") , ("text-en", "en", "text-en (en)") , ("text-nl", "", "text-nl") , ("text (en) nl", "", "text (en) nl") ]) test_value_context_renders = ( [ (self._make_test_context(render_text), expect_render(text, lang)) for text, lang, render_text in test_values ]) renderer = get_text_language_renderer() for render_context, expect_render in test_value_context_renders: # print repr(render_context['field']['field_value']) self._check_value_renderer_results( renderer, context=render_context, expect_rendered_view=expect_render['view'], expect_rendered_edit=expect_render['edit'], collapse_whitespace=True ) return def test_DecodeTextLanguageValue(self): test_decode_values = ( { None: { "@value": "" } , "text": { "@value": "text" } , "text (en)": { "@value": "text", "@language": "en" } , "text (en) more": { "@value": "text (en) more" } , "": { "@value": "" } }) for valtext, expect_valdata in test_decode_values.items(): valdata = TextLanguageValueMapper.decode(valtext) self.assertEqual( valdata, expect_valdata, "Value decode(%s) = %r, expect %r"%(valtext, valdata, expect_valdata) ) return # End. if __name__ == "__main__": # import django # django.setup() # Needed for template loader # Runtests in this module # runner = unittest.TextTestRunner(verbosity=2) # tests = unittest.TestSuite() # tests = getSuite(select=sel) # if tests: runner.run(tests) unittest.main()
[ "logging.getLogger", "annalist.views.fields.render_text_language.get_text_language_renderer", "annalist.views.fields.render_text_language.TextLanguageValueMapper.decode", "unittest.main" ]
[((327, 354), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (344, 354), False, 'import logging\n'), ((3442, 3457), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3455, 3457), False, 'import unittest\n'), ((1961, 1989), 'annalist.views.fields.render_text_language.get_text_language_renderer', 'get_text_language_renderer', ([], {}), '()\n', (1987, 1989), False, 'from annalist.views.fields.render_text_language import get_text_language_renderer, TextLanguageValueMapper\n'), ((2913, 2952), 'annalist.views.fields.render_text_language.TextLanguageValueMapper.decode', 'TextLanguageValueMapper.decode', (['valtext'], {}), '(valtext)\n', (2943, 2952), False, 'from annalist.views.fields.render_text_language import get_text_language_renderer, TextLanguageValueMapper\n')]
import turtle #Create Board def draw_board(Boardsize, squares_per_row): ''' Initial Function to Create Board, Based on size of board and squares per row Also creates 3 dictionaries: Dictionary of all the Red Squares and their positions, Dictionary of all Black Squares and their positions, and a General dictionary of all Squares and their positions ''' sc = turtle.Screen() sc.setup(Boardsize, Boardsize) pen = turtle.Turtle() pen.speed(100) pen.up() pen.setpos(-Boardsize/2,-Boardsize/2) pen.down() def draw_square(Boardsize, squares_per_row): for _ in range(4): pen.forward(Boardsize/squares_per_row) pen.left(90) pen.forward(Boardsize/squares_per_row) def draw_circle(Boardsize, squares_per_row, color): pen.speed(100) pen.color(color) pen.down() pen.begin_fill() pen.circle(((Boardsize/squares_per_row)/2)-1) pen.end_fill() for row in range(1,squares_per_row+1): for i in range(squares_per_row): draw_square(Boardsize, squares_per_row) pen.up() pen.setpos((-Boardsize/2), ((-Boardsize/2)+row*(Boardsize/squares_per_row))) pen.down() pen.up() pen.setpos((-Boardsize/2)+.5*(Boardsize/squares_per_row), (-Boardsize/2)) #Red's Pieces Red = list(range(0,2*squares_per_row)) #Black's Pieces Black = list(range((squares_per_row*squares_per_row)-(2*squares_per_row),squares_per_row*squares_per_row)) Black_Positions = [] Red_Positions = [] for row in range(1, 3): for i in range(squares_per_row): a = round(pen.xcor(),1) b = round(pen.ycor(),1) t = tuple([a,b,'normal']) Red_Positions.append(t) draw_circle(Boardsize, squares_per_row, 'red') pen.forward(Boardsize/squares_per_row) pen.up() pen.setpos((-Boardsize/2)+.5*(Boardsize/squares_per_row), (-Boardsize/2)+row*(Boardsize/squares_per_row)) pen.up() pen.setpos((-Boardsize/2)+.5*(Boardsize/squares_per_row), (Boardsize/2)-(2*(Boardsize/squares_per_row))) for row in range(squares_per_row-1,squares_per_row+1): for i in range(squares_per_row): a = round(pen.xcor(),1) b = round(pen.ycor(),1) t = tuple([a,b,'normal']) Black_Positions.append(t) draw_circle(Boardsize, squares_per_row, 'black') pen.forward(Boardsize/squares_per_row) pen.up() pen.setpos((-Boardsize/2)+.5*(Boardsize/squares_per_row), (-Boardsize/2)+row*(Boardsize/squares_per_row)) Total_Squares = list(range(0,squares_per_row*squares_per_row)) Tuple_Position_List = [] starting_x_cord = (-Boardsize/2)+.5*(Boardsize/squares_per_row) starting_y_cord = (-Boardsize/2) a = starting_x_cord b = starting_y_cord for i in range(0, squares_per_row): b+= i*(Boardsize/squares_per_row) for _ in range(squares_per_row): tup = tuple([a,b]) Tuple_Position_List.append(tup) a += Boardsize/squares_per_row a = starting_x_cord b = starting_y_cord Position_Dictionary = dict(zip(Total_Squares, Tuple_Position_List)) Final_Black_Dict = dict(zip(Black, Black_Positions)) Final_Red_Dict = dict(zip(Red, Red_Positions)) return Final_Black_Dict, Final_Red_Dict, Position_Dictionary A = draw_board(800, 8) Black = A[0] print(Black) Red = A[1] Total = A[2] print(Red) def find_open_spots(): ''' Takes in Black and Red Dictionary of checkers as Global Variables, checks them against overall dictionary, returns open possible positions to move to ''' Positions = [] for v in Total.values(): Positions.append(v) for v in Black.values(): x = tuple([v[0], v[1]]) Positions.remove(x) for v in Red.values(): x = tuple([v[0], v[1]]) Positions.remove(x) return Positions print(find_open_spots()) def find_piece_type(Coordinate): ''' Creates possible spots to move to for a given piece, Use Dictionary of that piece and the overall dictionary of open spots ''' #Access Red and Black Dictionaries Red_Spots = [] Red_Types = [] Black_Spots = [] Black_Types = [] for v in Red.values(): x = tuple([v[0], v[1]]) Red_Spots.append(x) Red_Types.append(v[2]) for v in Black.values(): x = tuple([v[0], v[1]]) Black_Spots.append(x) Black_Types.append(v[2]) Red_Dict = dict(zip(Red_Spots, Red_Types)) Black_Dict = dict(zip(Black_Spots, Black_Types)) if Coordinate in Red_Spots: for k,v in Red_Dict.items(): if Coordinate == k: return v if Coordinate in Black_Spots: for k,v in Black_Dict.items(): if Coordinate == k: return v print(find_piece_type((-350.0, -400.0))) #Have to create function that teaches movement patterns for specific squares and their classification # Normal pieces can move forward at a left diagonal, forward, forward at a right diagonal...one space at a time #If a normal piece jumps another piece, it becomes a king ## Kings can move any direction, one space at a time, if it jumps a piece, it becomes a Super King ### Super Kings can move any direction, 1-3 spaces at a time, but only in one consistent direction, once it jumps # a piece, it becomes a God #### Gods can move any direction,1-4 spaces at a time, and are able to change their direction each time they # move, so they can go forward one, forward diagonal, left, then back....etc, or they can just go forward one #spot, etc #The idea is to have the human cursors clicking on the starting pieces coordinates first, then moving to a new #coordinate, and if the piece can move there, it draws the checker in that spot, and erases the initial checker, #changes the checker's coordinates, and if necessary updates its status or classification #Going to have a list before every move, based on the player's turn, of all possible open spots #When player clicks on spot, it identifies the piece, and the type of piece, then when clicks again, #It checks whether that particular piece can move to that particular spot, #If so, it draws that same piece in that new spot, and erases it from the previous spot, #Otherwise, does nothing #Normal Movement Class Below #Normal, for Red, check its key, if key % squares_per_row !=0 or key % (squares_per_row ) !=(squares_per_row -1): # Then it can move to Key+squares_to_win, Key+squares_to_win -1, or Key + squares_to_win +1 #If key % squares_to_win == 0: #Then it can move to Key + squares_to_win, and Key+squares_to_win+1 #if Key % (squares_per_row) == (squares_per_row -1): # it can move to Key+ squares_to_win, and Key+squares_to_win - 1 #Normal for Black, check its key, if key % squares_per_row !=0 or key % (squares_per_row !=(squares_per_row -1): # Then it can move to Key-squares_to_win, Key-squares_to_win -1, or Key - squares_to_win +1 #If key % squares_to_win == 0: #Then it can move to Key - squares_to_win, and Key-squares_to_win+1 #if Key % (squares_per_row) == (squares_per_row -1) : # it can move to Key- squares_to_win, and Key-squares_to_win - 1 #King Movement Class Below #-boardsize/2, -boardsize/2 #Create Checkers, Red/Black #Also need to give each checker a current position, based on the center of the checker #It has to move to a spot that another checker is not currently occupying #So the function needs to create the checkers, and also create a dictionary of the checkers starting positions #When a piece moves, basically we check the future position, if it is open, we remove the checker from the current #position by erasing it's current checker, and then draw it at the new position #List of open positions, just based on the center of the piece, on the board #List of checkers and their coordinates/status(coordinates of center)... #Possible statuses... Off, Normal, King, Super-King, God #So each piece has a number as its Key, and their value is a list of [Coordinate, status] #For the user, once piece has been clicked, we check it's coordinate and status to see its possible moves #possible moves are moves it CAN go to that are unoccupied # user then clicks on spot he wants piece to move to, if unoccupied it moves # user can unclick piece, and choose new piece # once piece moves, its status and coordinates are updated #First player to knock out all other players pieces wins # Normal pieces can move forward at a left diagonal, forward, forward at a right diagonal...one space at a time #If a normal piece jumps another piece, it becomes a king ## Kings can move any direction, one space at a time, if it jumps a piece, it becomes a Super King ### Super Kings can move any direction, 1-3 spaces at a time, but only in one consistent direction, once it jumps # a piece, it becomes a God #### Gods can move any direction,1-4 spaces at a time, and are able to change their direction each time they # move, so they can go forward one, forward diagonal, left, then back....etc, or they can just go forward one #spot, etc #TODO Create starting checkers, their coordinates, and create the dictionary that stores them, so function # will both map and draw the different colored checkers, and it will return a dictionary for each circle #Then we need a movement function, finds possible positions of each piece, returns an updated dictionary # based on movement of particular piece, and its interaction with the board and other pieces, so this function # will move one piece, and return updated dictionary # And that will be the game, it will continue until players quit, or ALL pieces from one color have their # status as "OFF", then game will close #As statuses of pieces change, so will their colors #King = Blue #Super King = Green #God = Orange turtle.done()
[ "turtle.Screen", "turtle.done", "turtle.Turtle" ]
[((10200, 10213), 'turtle.done', 'turtle.done', ([], {}), '()\n', (10211, 10213), False, 'import turtle\n'), ((404, 419), 'turtle.Screen', 'turtle.Screen', ([], {}), '()\n', (417, 419), False, 'import turtle\n'), ((465, 480), 'turtle.Turtle', 'turtle.Turtle', ([], {}), '()\n', (478, 480), False, 'import turtle\n')]
# Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Dialogflow TestCase API interactions.""" import time import dialogflow_sample as ds import google.api_core.exceptions import google.auth import google.cloud.dialogflowcx as cx from .client_delegator import ClientDelegator class DialogflowTestCaseFailure(Exception): """Exception to raise when a test case fails""" class TestCaseDelegator(ClientDelegator): """Class for organizing interactions with the Dialogflow TestCases API.""" _CLIENT_CLASS = cx.TestCasesClient def __init__(self, controller: ds.DialogflowSample, **kwargs) -> None: self._is_webhook_enabled = kwargs.pop("is_webhook_enabled", False) self._conversation_turns = kwargs.pop("conversation_turns") self.expected_exception = kwargs.pop("expected_exception", None) self._test_case = None super().__init__(controller, **kwargs) @property def test_case(self): """Test Case set in Dialogflow.""" if not self._test_case: raise RuntimeError("Test Case not yet created") return self._test_case def setup(self): """Initializes the test cases delegator.""" try: self._test_case = self.client.create_test_case( parent=self.controller.agent_delegator.agent.name, test_case=cx.TestCase( display_name=self.display_name, test_case_conversation_turns=[ t.get_conversation_turn(self._is_webhook_enabled) for t in self._conversation_turns ], test_config=cx.TestConfig(flow=self.controller.start_flow), ), ) except google.api_core.exceptions.AlreadyExists: request = cx.ListTestCasesRequest(parent=self.parent) for curr_test_case in self.client.list_test_cases(request=request): if curr_test_case.display_name == self.display_name: request = cx.GetTestCaseRequest( name=curr_test_case.name, ) self._test_case = self.client.get_test_case(request=request) return def tear_down(self): """Destroys the test case.""" request = cx.BatchDeleteTestCasesRequest( parent=self.parent, names=[self.test_case.name], ) try: self.client.batch_delete_test_cases(request=request) self._test_case = None except google.api_core.exceptions.NotFound: pass def run_test_case(self, wait=10, max_retries=3): """Runs the test case.""" retry_count = 0 result = None while retry_count < max_retries: time.sleep(wait) lro = self.client.run_test_case( request=cx.RunTestCaseRequest(name=self.test_case.name) ) while lro.running(): try: result = lro.result().result agent_response_differences = [ conversation_turn.virtual_agent_output.differences for conversation_turn in result.conversation_turns ] test_case_fail = result.test_result != cx.TestResult.PASSED if any(agent_response_differences) or test_case_fail: raise DialogflowTestCaseFailure( f'Test "{self.test_case.display_name}" failed' ) return except google.api_core.exceptions.NotFound as exc: if str(exc) == ( "404 com.google.apps.framework.request.NotFoundException: " "NLU model for flow '00000000-0000-0000-0000-000000000000' does not exist. " "Please try again after retraining the flow." ): retry_count += 1 raise RuntimeError(f"Retry count exceeded: {retry_count}")
[ "google.cloud.dialogflowcx.RunTestCaseRequest", "google.cloud.dialogflowcx.BatchDeleteTestCasesRequest", "google.cloud.dialogflowcx.GetTestCaseRequest", "time.sleep", "google.cloud.dialogflowcx.ListTestCasesRequest", "google.cloud.dialogflowcx.TestConfig" ]
[((2852, 2931), 'google.cloud.dialogflowcx.BatchDeleteTestCasesRequest', 'cx.BatchDeleteTestCasesRequest', ([], {'parent': 'self.parent', 'names': '[self.test_case.name]'}), '(parent=self.parent, names=[self.test_case.name])\n', (2882, 2931), True, 'import google.cloud.dialogflowcx as cx\n'), ((3336, 3352), 'time.sleep', 'time.sleep', (['wait'], {}), '(wait)\n', (3346, 3352), False, 'import time\n'), ((2344, 2387), 'google.cloud.dialogflowcx.ListTestCasesRequest', 'cx.ListTestCasesRequest', ([], {'parent': 'self.parent'}), '(parent=self.parent)\n', (2367, 2387), True, 'import google.cloud.dialogflowcx as cx\n'), ((3422, 3469), 'google.cloud.dialogflowcx.RunTestCaseRequest', 'cx.RunTestCaseRequest', ([], {'name': 'self.test_case.name'}), '(name=self.test_case.name)\n', (3443, 3469), True, 'import google.cloud.dialogflowcx as cx\n'), ((2567, 2614), 'google.cloud.dialogflowcx.GetTestCaseRequest', 'cx.GetTestCaseRequest', ([], {'name': 'curr_test_case.name'}), '(name=curr_test_case.name)\n', (2588, 2614), True, 'import google.cloud.dialogflowcx as cx\n'), ((2184, 2230), 'google.cloud.dialogflowcx.TestConfig', 'cx.TestConfig', ([], {'flow': 'self.controller.start_flow'}), '(flow=self.controller.start_flow)\n', (2197, 2230), True, 'import google.cloud.dialogflowcx as cx\n')]
#!/usr/bin/python import os import re import sys import getpass import unicodedata import copy from os import stat from pwd import getpwuid from .colors import * from . import log if __name__ == "__main__": logger = log.gen(mode="dev") else: logger = log.gen() __author__ = '<NAME>' # important constants: ENCODING_INPUT_FILES = "utf8" COCCURRENCES = PURPLE CFILE_PATHS = BLUE CTEXT_FILES = WHITE # indicator strings ASK_CONFIRMATION_INDICATORS_STRINGS = ["--ask_confirmation", "--ask"] CASE_SENSITIVE_INDICATORS_STRINGS = ["--case_sensitive", "--case_respect"] INITIAL_STRING_INDICATORS_STRINGS = ["--init_str", "--initial", "--init"] DESTINATION_STRING_INDICATORS_STRINGS = ["--dest_str", "--destination", "--dest"] DIRECTORY_PATH_TO_APPLY_INDICATORS_STRINGS = ["--directory_path", "--dirpath", "--path"] LIST_FILES_PATHS_TO_APPLY_INDICATORS_STRINGS = ["--file_paths_list", "--file_paths"] FILENAME_MUST_END_BY_INDICATORS_STRINGS = ["--file_name_must_end_by", "--end_by"] NO_ASK_CONFIRMATION_INDICATORS_STRINGS = ["--no_ask_confirmation", "--no_ask"] CASE_INSENSITIVE_INDICATORS_STRINGS = ["--case_insensitive", "--no_case_respect"] BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS = ["--extension_filter", "--no_all_extensions"] NO_BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS = ["--all_extensions", "--no_extension_filter"] ADD_EXCLUDED_EXTENSIONS_INDICATORS_STRINGS = ["--add_excluded_extensions", "--filter_extensions"] ADD_EXCLUDED_STRINGS_INDICATORS_STRINGS = ["--add_excluded_strings", "--filter_strings"] EXCLUDED_PATHS_INDICATORS_STRINGS = ["--excluded_paths"] NO_BINARY_INDICATORS_STRINGS = ["--binary_exclusion", "--no_binary"] BINARY_INDICATORS_STRINGS = ["--binary_accepted", "--no_binary_exclusion", "--binary"] NO_SYMLINK_INDICATORS_STRINGS = ["--symlink_exclusion", "--no_symlink"] SYMLINK_INDICATORS_STRINGS = ["--symlink_accepted", "--no_symlink_exclusion", "--symlink"] END_INDICATORS_STRINGS = ["end_last_param", "--end_param", "--end"] # black list extensions AUDIO_EXTENSIONS = ["mp3", "MP3", "wav", "WAV", "m4a", "M4A", "aac", "AAC", "mp1", "MP1", "mp2", "MP2", "mpg", "MPG", "flac", "FLAC"] IMAGE_EXTENSIONS = ["jpg", "JPG", "jpeg", "JPEG", "png", "PNG", "tif", "TIF", "gif", "GIF", "bmp", "BMP", "pjpeg", "PJPEG"] VIDEO_EXTENSIONS = ["mp4", "MP4", "mpeg", "MPEG", "avi", "AVI", "wma", "WMA", "ogg", "OGG", "quicktime", "QUICKTIME", "webm", "WEBM", "mp2t", "MP2T", "flv", "FLV", "mov", "MOV", "webm", "WEBM", "mkv", "MKV"] PROGRAMMING_EXTENSIONS = ["class", "CLASS"] BLACK_LIST_EXTENSIONS_LIST = AUDIO_EXTENSIONS + IMAGE_EXTENSIONS + VIDEO_EXTENSIONS + PROGRAMMING_EXTENSIONS # supported short indicators SUPPORTED_SHORT_INDICATORS = ['l', 'r', 's', 'a', 'c'] found_nb = 0 replaced_nb = 0 def _help_requested(arguments): if len(arguments) == 1 and (arguments[0] == "-h" or arguments[0] == "--help"): README_path = "/usr/lib/replace/README.md" f = open(README_path, 'r') print(CFILE_PATHS + "\n\t####### replace documentation #######\n" + WHITE) for line in f: if line == "```sh\n" or line == "```\n" or line == "<pre>\n" or line == "</pre>\n": continue line = line.replace('```sh', '').replace('```', '').replace('<pre>', '').replace('</b>', ''). \ replace('<b>', '').replace('<!-- -->', '').replace('<br/>', '').replace('```sh', ''). \ replace('***', '').replace('***', '').replace('**', '').replace('*', '') print(" " + line, end='') print(BASE_C) exit() def _check_input_args(args): if len(args) < 2: logger.error("not enough arguments, needs at least the initial string and the destination string\n\tneeds the " "replace mode (-l -r or -s), the initial string, the destination string and the path to process" "\n\ta typical example would be: " + WHITE + "replace -l dog cat ." + BASE_C) exit(1) def _init_indicators(): file_name_must_end_by = [] local = True # default recursive = False specific = False ask_replace = True # default case_sensitive = True # default black_list_extensions = True # default binary_accepted = False # default symlink_accepted = False # default excluded_strings = [] excluded_extensions = [] excluded_paths = [] return file_name_must_end_by, local, recursive, specific, ask_replace, case_sensitive, black_list_extensions, + \ binary_accepted, symlink_accepted, excluded_strings, excluded_extensions, excluded_paths def _init_args(): init_str = None dest_str = None dir_path_to_apply = None file_paths_to_apply = [] return init_str, dest_str, dir_path_to_apply, file_paths_to_apply def _treat_input_args(input_args): file_name_must_end_by, local, recursive, specific, ask_replace, case_sensitive, \ black_list_extensions, binary_accepted, symlink_accepted, excluded_strings, \ excluded_extensions, excluded_paths = _init_indicators() init_str, dest_str, dir_path_to_apply, file_paths_to_apply = _init_args() nb_args = len(input_args) not_compatible_shorts_indicators = [] args_not_used_indexes = list(range(nb_args)) for arg_index, arg in enumerate(input_args): if arg.startswith("--"): if arg in FILENAME_MUST_END_BY_INDICATORS_STRINGS + INITIAL_STRING_INDICATORS_STRINGS + \ DESTINATION_STRING_INDICATORS_STRINGS + DIRECTORY_PATH_TO_APPLY_INDICATORS_STRINGS + \ LIST_FILES_PATHS_TO_APPLY_INDICATORS_STRINGS + ASK_CONFIRMATION_INDICATORS_STRINGS + \ NO_ASK_CONFIRMATION_INDICATORS_STRINGS + CASE_SENSITIVE_INDICATORS_STRINGS + \ CASE_INSENSITIVE_INDICATORS_STRINGS + NO_BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS + \ BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS + ADD_EXCLUDED_EXTENSIONS_INDICATORS_STRINGS + \ EXCLUDED_PATHS_INDICATORS_STRINGS + ADD_EXCLUDED_STRINGS_INDICATORS_STRINGS + \ BINARY_INDICATORS_STRINGS + NO_BINARY_INDICATORS_STRINGS + \ SYMLINK_INDICATORS_STRINGS + NO_SYMLINK_INDICATORS_STRINGS + END_INDICATORS_STRINGS: if arg in ASK_CONFIRMATION_INDICATORS_STRINGS: ask_replace = True elif arg in NO_ASK_CONFIRMATION_INDICATORS_STRINGS: ask_replace = False elif arg in CASE_SENSITIVE_INDICATORS_STRINGS: case_sensitive = True elif arg in CASE_INSENSITIVE_INDICATORS_STRINGS: case_sensitive = False elif arg in NO_BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS: black_list_extensions = False elif arg in BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS: black_list_extensions = True elif arg in BINARY_INDICATORS_STRINGS: binary_accepted = True elif arg in NO_BINARY_INDICATORS_STRINGS: binary_accepted = False elif arg in SYMLINK_INDICATORS_STRINGS: symlink_accepted = True elif arg in NO_SYMLINK_INDICATORS_STRINGS: symlink_accepted = False elif arg in END_INDICATORS_STRINGS: pass elif arg_index < nb_args - 1: if arg in FILENAME_MUST_END_BY_INDICATORS_STRINGS: for potential_end_filter_index, potential_end_filter in enumerate(input_args[arg_index + 1:]): if not potential_end_filter.startswith("-"): file_name_must_end_by.append(potential_end_filter) args_not_used_indexes.remove(arg_index + 1 + potential_end_filter_index) else: break elif arg in EXCLUDED_PATHS_INDICATORS_STRINGS: for potential_file_path_to_exclude_index, potential_file_path_to_exclude in enumerate( input_args[arg_index + 1:]): if not potential_file_path_to_exclude.startswith("-"): potential_file_path_to_exclude = get_full_path_joined(potential_file_path_to_exclude) args_not_used_indexes.remove( arg_index + 1 + potential_file_path_to_exclude_index) if _check_path_exists(potential_file_path_to_exclude): excluded_paths.append(potential_file_path_to_exclude) else: break elif arg in ADD_EXCLUDED_EXTENSIONS_INDICATORS_STRINGS: for potential_new_excluded_extension_index, potential_new_excluded_extension in enumerate( input_args[arg_index + 1:]): if not potential_new_excluded_extension.startswith("-"): excluded_extensions.append(potential_new_excluded_extension) args_not_used_indexes.remove( arg_index + 1 + potential_new_excluded_extension_index) else: break elif arg in ADD_EXCLUDED_STRINGS_INDICATORS_STRINGS: for potential_new_excluded_string_index, potential_new_excluded_string in enumerate( input_args[arg_index + 1:]): if not potential_new_excluded_string.startswith("-"): excluded_strings.append(potential_new_excluded_string) args_not_used_indexes.remove( arg_index + 1 + potential_new_excluded_string_index) else: break elif arg in INITIAL_STRING_INDICATORS_STRINGS: init_str = input_args[arg_index + 1] args_not_used_indexes.remove(arg_index + 1) elif arg in DESTINATION_STRING_INDICATORS_STRINGS: dest_str = input_args[arg_index + 1] args_not_used_indexes.remove(arg_index + 1) elif arg in DIRECTORY_PATH_TO_APPLY_INDICATORS_STRINGS: dir_path_to_apply = input_args[arg_index + 1] args_not_used_indexes.remove(arg_index + 1) elif arg in LIST_FILES_PATHS_TO_APPLY_INDICATORS_STRINGS: for potential_file_path_to_replace_index, potential_file_path_to_replace in enumerate( input_args[arg_index + 1:]): if not potential_file_path_to_replace.startswith("-"): file_paths_to_apply.append(potential_file_path_to_replace) args_not_used_indexes.remove( arg_index + 1 + potential_file_path_to_replace_index) else: break else: logger.error("no parameter after %s indicator" % arg + "\n\tneeds a parameter after the %s indicator" % arg) exit(1) args_not_used_indexes.remove(arg_index) else: logger.error("the indicator %s is not supported" % arg + "\n\tplease remove the %s parameter from the command" % arg) exit(1) elif arg.startswith("-"): for short_indicator in arg[1:]: if short_indicator not in SUPPORTED_SHORT_INDICATORS: logger.error("the short indicator -%s is not supported" % short_indicator + "\n\tplease remove the -%s short indicator from the command" % short_indicator) exit(1) elif short_indicator in not_compatible_shorts_indicators: logger.error("the short indicator -%s is not compatible with these short " "indicators %s" % (short_indicator, not_compatible_shorts_indicators) + "\n\tplease remove one of the incompatibles shorts indicators from the command") exit(1) elif short_indicator == 'l': local = True not_compatible_shorts_indicators += ['r', 's'] elif short_indicator == 'r': recursive = True local = False not_compatible_shorts_indicators += ['l', 's'] elif short_indicator == 's': specific = True local = False not_compatible_shorts_indicators += ['l', 'r'] elif short_indicator == 'a': ask_replace = True elif short_indicator == 'c': case_sensitive = True args_not_used_indexes.remove(arg_index) return file_name_must_end_by, init_str, dest_str, dir_path_to_apply, file_paths_to_apply, local, recursive, \ specific, ask_replace, case_sensitive, black_list_extensions, binary_accepted, symlink_accepted, \ excluded_strings, excluded_extensions, excluded_paths, args_not_used_indexes def _check_only_one_replace_mode_picked(local, specific, recursive): nb_of_true = 0 for replace_mode in [local, specific, recursive]: if replace_mode: nb_of_true += 1 if nb_of_true != 1: logger.error( "the replace mode can only be \"local\", \"recursive\" or \"specific\"\n\tplease pick only one mode " + "with the -l, -r or -s short options") exit(1) def _get_final_args_local_recursive(dir_path_to_apply, dest_str, init_str, local, recursive, input_args, args_not_used_indexes): if dir_path_to_apply is None: if not args_not_used_indexes: logger.error("arguments are missing ... please review the command syntax.") _args_local_recursive_error(local, recursive) dir_path_to_apply = input_args[args_not_used_indexes[-1]] args_not_used_indexes.pop() if dest_str is None: if not args_not_used_indexes: logger.error("arguments are missing ... please review the command syntax.") _args_local_recursive_error(local, recursive) dest_str = input_args[args_not_used_indexes[-1]] args_not_used_indexes.pop() if init_str is None: if not args_not_used_indexes: logger.error("arguments are missing ... please review the command syntax.") _args_local_recursive_error(local, recursive) init_str = input_args[args_not_used_indexes[-1]] args_not_used_indexes.pop() if dir_path_to_apply is None or dest_str is None or init_str is None: logger.error("arguments are missing ... please review the command syntax.") _args_local_recursive_error(local, recursive) if args_not_used_indexes: logger.error("too much args entered ... please review the command syntax.") _args_local_recursive_error(local, recursive) return dir_path_to_apply, dest_str, init_str def _args_local_recursive_error(local, recursive): if local: logger.error("for a \"local replace\" please precise the \"initial string\", the \"destination string\" and " "the \"directory path\" to apply the local replacement\na correct command would be:\n\t" + WHITE + "replace -l titi toto /home/toto/documents/titi_folder" + BASE_C) exit(1) if recursive: logger.error( "for a \"recursive replace\" please precise the \"initial string\", the \"destination string\" and " "the \"directory path\" to apply the recursive replacement from\na correct command would be:\n\t" + WHITE + "replace -r titi toto /home/toto/documents/titi_folder" + BASE_C) exit(1) def _get_final_args_specific(file_paths_to_apply, dest_str, init_str, specific, input_args, args_not_used_indexes): if init_str is None: if not args_not_used_indexes: logger.error("arguments are missing ... please review the command syntax.") _args_specific_error(specific) init_str = input_args[args_not_used_indexes[0]] args_not_used_indexes.pop(0) if dest_str is None: if not args_not_used_indexes: logger.error("arguments are missing ... please review the command syntax.") _args_specific_error(specific) dest_str = input_args[args_not_used_indexes[0]] args_not_used_indexes.pop(0) if not file_paths_to_apply: if not args_not_used_indexes: logger.error("arguments are missing ... please review the command syntax.") _args_specific_error(specific) for parameter_not_already_used_index in args_not_used_indexes: file_paths_to_apply.append(input_args[parameter_not_already_used_index]) args_not_used_indexes = [] if args_not_used_indexes: logger.error("too much args entered ... please review the command syntax.") _args_specific_error(specific) return file_paths_to_apply, dest_str, init_str def _args_specific_error(specific): if specific: logger.error("for a \"specific replace\" please precise the \"initial string\", " "the \"destination string\" and the \"list files paths\" to apply the specific replacement\n\t" + "a correct command would be: " + WHITE + "replace -s titi toto /home/toto/documents/test00 " "documents/titi_folder/test01 documents/titi_" "folder/secret_titi_folder/test02" + BASE_C) exit(1) def _check_init_str_in_file(file_path, init_str, case_sensitive): try: if case_sensitive: for line in open(file_path, 'r', encoding=ENCODING_INPUT_FILES): if init_str in line: return True return False elif not case_sensitive: for line in open(file_path, 'r', encoding=ENCODING_INPUT_FILES): if _case_less_str1_in_str2(init_str, line): return True return False except PermissionError: logger.warning("\tyou don't have the permission to access the file " + CFILE_PATHS + "%s" % file_path + BASE_C) _skipped() return False except UnicodeDecodeError: logger.warning("\tthe file " + CFILE_PATHS + "%s" % file_path + BASE_C + " owns non unicode characters") _skipped() return False except: logger.error("the file %s seems to cause problem to be opened" % file_path) exit(1) def _get_str_positions_in_lines(string, line, case_sensitive): start_string_indexes = [] if case_sensitive: for index in range(len(line)): if line[index:].startswith(string): start_string_indexes.append(index) if not case_sensitive: for index in range(len(line)): if _normalize_case_less(line)[index:].startswith(_normalize_case_less(string)): start_string_indexes.append(index) return start_string_indexes # def ok(msg=""): # print(GREEN + "\n\t[OK] " + BASE_C + msg) # def _info(msg=""): # print(WHITE + "\n\t[INFO] " + BASE_C + msg) # # # def _warning(msg=""): # print(ORANGE + "\n\t[WARNING] " + BASE_C + msg) # # # def _error(msg=""): # print(RED + "\n\t[ERROR] " + BASE_C + msg) def _skipped(): print(BLUE + "\n\t\t\tskipped\n\n" + BASE_C) def _check_user_rights(file_path): current_user = getpass.getuser() owner_file = getpwuid(stat(file_path).st_uid).pw_name if owner_file != current_user: logger.warning("the file " + CFILE_PATHS + "%s" % file_path + BASE_C + " is owned by " + CFILE_PATHS + "%s" % owner_file + BASE_C + ", might be necessary to manage its permissions") def _print_prev_lines(previous_lines, line_nb): if len(previous_lines) == 2: print(YELLOW + "\t %s: " % (line_nb - 2) + CTEXT_FILES + "%s" % previous_lines[1], end='') print(YELLOW + "\t %s: " % (line_nb - 1) + CTEXT_FILES + "%s" % previous_lines[0] + BASE_C, end='') elif len(previous_lines) == 1: print(YELLOW + "\t %s: " % (line_nb - 1) + CTEXT_FILES + "%s" % previous_lines[0] + BASE_C, end='') def _display_line_highlighting_init_strs(line, line_nb, start_string_positions, init_str, previous_lines): if len(start_string_positions) > 1: logger.info( "\n\tthere are several occurrences of " + COCCURRENCES + "\"%s\"" % init_str + BASE_C + " in this line:\n") _print_prev_lines(previous_lines, line_nb) print(COCCURRENCES + "\t %s: " % line_nb + CTEXT_FILES + "%s" % line[0:start_string_positions[0]], end='') for string_list_index, string_index in enumerate(start_string_positions): print(COCCURRENCES + "%s" % init_str + BASE_C, end='') if string_list_index == len(start_string_positions) - 1: print(CTEXT_FILES + "%s" % line[string_index + len(init_str):] + BASE_C, end='') else: print(CTEXT_FILES + "%s" % line[string_index + len(init_str):start_string_positions[ string_list_index + 1]] + BASE_C, end='') return start_string_positions def _display_line_highlighting_defined_init_str(new_line, line, init_str, defined_init_str_start_position): print(CTEXT_FILES + "\t\t%s" % new_line, end='') print(COCCURRENCES + "%s" % init_str + BASE_C, end='') print(CTEXT_FILES + "%s" % line[defined_init_str_start_position + len(init_str):] + BASE_C, end='') def _normalize_case_less(string): return unicodedata.normalize("NFKD", string.casefold()) def _case_less_equal(str1, str2): return _normalize_case_less(str1) == _normalize_case_less(str2) def _case_less_str1_in_str2(str1, str2): if _normalize_case_less(str1) in _normalize_case_less(str2): return True else: return False class Abort(Exception): pass def _abort_process(temporary_file, temporary_file_path): temporary_file.close() os.remove(temporary_file_path) logger.info(YELLOW + "\n\t\t\taborted ...\n\t\t\t\tSee you later" + BASE_C) raise Abort def _complete_new_line(new_line, line, start_string_index, nb_occurrences_in_line, start_string_position, start_string_positions, len_init_str): if start_string_index == nb_occurrences_in_line - 1: new_line += line[start_string_position + len_init_str:] else: new_line += line[start_string_position + len_init_str:start_string_positions[start_string_index + 1]] return new_line def _build_new_line(new_line, line, start_string_index, nb_occurrences_in_line, start_string_position, start_string_positions, init_str): new_line += init_str new_line = _complete_new_line(new_line, line, start_string_index, nb_occurrences_in_line, start_string_position, start_string_positions, len(init_str)) return new_line def _multi_replacement_on_same_line(line, start_string_positions, init_str, dest_str, temporary_file, temporary_file_path, skip_file): global replaced_nb new_line = line[:start_string_positions[0]] nb_occurrences_in_line = len(start_string_positions) for start_string_index, start_string_position in enumerate(start_string_positions): if skip_file: new_line = _build_new_line(new_line, line, start_string_index, nb_occurrences_in_line, start_string_position, start_string_positions, init_str) else: print(YELLOW + "\n\toccurrence %s:" % (start_string_index + 1) + BASE_C) _display_line_highlighting_defined_init_str(new_line, line, init_str, start_string_position) replace_conf = input("\n\tperform replacement for this occurrence?\n\t\t[Enter] to proceed\t\t[fF] to " "skip the rest of the file\n\t\t[oO] to skip this occurrence\t[aA] to abort " "the replace process\n\t") if replace_conf == "": print(CFILE_PATHS + "\t\t\tdone\n\n" + BASE_C) new_line += dest_str new_line = _complete_new_line(new_line, line, start_string_index, nb_occurrences_in_line, start_string_position, start_string_positions, len(init_str)) replaced_nb += 1 elif replace_conf in ["a", "A"]: raise Abort # _abort_process(temporary_file, temporary_file_path) else: new_line = _build_new_line(new_line, line, start_string_index, nb_occurrences_in_line, start_string_position, start_string_positions, init_str) _skipped() if replace_conf in ["f", "F"]: skip_file = True temporary_file.write(new_line) return skip_file def _replace_one_occurrence_asked(replace_conf, temporary_file, temporary_file_path, init_str, dest_str, line, case_sensitive, skip_file): global replaced_nb if replace_conf == "": if case_sensitive: temporary_file.write(re.sub(init_str, dest_str, line)) else: temporary_file.write(re.sub(init_str, dest_str, line, flags=re.I)) replaced_nb += 1 print(CFILE_PATHS + "\t\t\tdone\n\n" + BASE_C) elif replace_conf in ["a", "A"]: raise Abort # _abort_process(temporary_file, temporary_file_path) else: temporary_file.write(line) _skipped() if replace_conf in ["f", "F"]: skip_file = True return skip_file def _update_previous_lines(previous_lines, line): if len(previous_lines) == 0: previous_lines.append(copy.deepcopy(line)) elif len(previous_lines) == 1: previous_lines.append(copy.deepcopy(previous_lines[0])) elif len(previous_lines) == 2: previous_lines[1] = copy.deepcopy(previous_lines[0]) previous_lines[0] = copy.deepcopy(line) else: logger.error("previous lines can not have more than 2 lines, check %s" % previous_lines) exit(1) def _find_tmp_file_not_existing(file_path): for i in range(9): temporary_file_path = file_path + ".rp0" + str(i + 1) + ".tmp" if not os.path.exists(temporary_file_path): return temporary_file_path logger.error("all the available tmp extensions are used for the %s path" % file_path) exit(1) def _file_replace(file_path, temporary_file_path, init_str, dest_str, ask_replace, case_sensitive, file_mask): global found_nb global replaced_nb if not os.path.isfile(file_path): logger.error("The file %s doesn't exist" % file_path) return temporary_file = open(temporary_file_path, "w") logger.info("There is " + COCCURRENCES + "\"%s\"" % init_str + BASE_C + " in the file " + CFILE_PATHS + "%s" % file_path + BASE_C) logger.info("Replacing " + COCCURRENCES + "\"%s\"" % init_str + BASE_C + " by " + COCCURRENCES + "\"%s\"" % dest_str + BASE_C + " in " + CFILE_PATHS + "%s" % file_path + BASE_C + " for the following lines:") previous_lines = [] skip_file = False try: for line_index, line in enumerate(open(file_path, encoding=ENCODING_INPUT_FILES)): line_nb = line_index + 1 if case_sensitive: if init_str in line and not skip_file: start_string_positions = _get_str_positions_in_lines(init_str, line, case_sensitive) _display_line_highlighting_init_strs(line, line_nb, start_string_positions, init_str, previous_lines) found_nb += len(start_string_positions) if not ask_replace: temporary_file.write(re.sub(init_str, dest_str, line)) replaced_nb += len(start_string_positions) elif ask_replace: if len(start_string_positions) == 1: replace_conf = input("\n\tperform replacement?\n\t\t[Enter] to proceed\t\t[fF] to skip " "the rest of the file\n\t\t[oO] to skip this occurrence\t" "[aA] to abort the replace process\n\t") skip_file = _replace_one_occurrence_asked(replace_conf, temporary_file, temporary_file_path, init_str, dest_str, line, case_sensitive, skip_file) else: skip_file = _multi_replacement_on_same_line(line, start_string_positions, init_str, dest_str, temporary_file, temporary_file_path, skip_file) else: logger.error("the ask_replace parameter can only be \"True\" or \"False\"" + "the ask_replace parameter can not be %s" % ask_replace) exit(1) else: temporary_file.write(line) elif not case_sensitive: if _case_less_str1_in_str2(init_str, line) and not skip_file: start_string_positions = _get_str_positions_in_lines(init_str, line, case_sensitive) _display_line_highlighting_init_strs(line, line_nb, start_string_positions, init_str, previous_lines) found_nb += len(start_string_positions) if not ask_replace: replaced_nb += len(start_string_positions) temporary_file.write(re.sub(init_str, dest_str, line, flags=re.I)) elif ask_replace: if len(start_string_positions) == 1: replace_conf = input("\n\tPerform replacement?\n\t\t[Enter] to proceed\t\t[fF] to skip " "The rest of the file\n\t\t[oO] to skip this occurrence\t[aA] to abort " "The replace process\n\t") skip_file = _replace_one_occurrence_asked(replace_conf, temporary_file, temporary_file_path, init_str, dest_str, line, case_sensitive, skip_file) else: skip_file = _multi_replacement_on_same_line(line, start_string_positions, init_str, dest_str, temporary_file, temporary_file_path, skip_file) else: logger.error("The ask_replace parameter can only be \"True\" or \"False\"" + "The ask_replace parameter can not be %s" % ask_replace) exit(1) else: temporary_file.write(line) else: logger.error("The case_sensitive parameter can only be \"True\" or \"False\"" + "The case_sensitive parameter can not be %s" % case_sensitive) exit(1) _update_previous_lines(previous_lines, line) except UnicodeDecodeError as e: logger.error("File with utf-8 encoding issue\n\t%s" % e) temporary_file.close() os.remove(temporary_file_path) return except Abort: temporary_file.close() os.remove(temporary_file_path) logger.info(YELLOW + "\n\t\t\taborted ...\n\t\t\t\tSee you later" + BASE_C) exit(0) except: logger.error("Issue while parsing file\n\t%s" % sys.exc_info()[0]) temporary_file.close() os.remove(file_path) os.rename(temporary_file_path, file_path) os.chmod(file_path, int(file_mask, 8)) def _check_file_extension_in_blacklist(file_path): for black_list_extension in BLACK_LIST_EXTENSIONS_LIST: if file_path.endswith(black_list_extension): logger.warning("the file %s owns the extension %s that is not accepted by default\n\t" "use one of these parameters %s if you want to perform replacement in this kind of file " "anyway" % (file_path, black_list_extension, NO_BLACK_LIST_EXTENSIONS_INDICATORS_STRINGS)) _skipped() return True return False def _check_file_name_must_end_by(file_name_must_end_by, file_path): for acceptable_file_name_end in file_name_must_end_by: if file_path.endswith(acceptable_file_name_end): return True logger.warning( "the file %s doesn't end by the acceptable end extensions you entered: %s" % (file_path, file_name_must_end_by)) _skipped() return False def _check_file_owns_excluded_path(excluded_paths, file_path): for excluded_path in excluded_paths: if file_path.startswith(excluded_path): logger.warning( "the file %s is excluded regarding the excluded path %s you entered" % (file_path, excluded_path)) _skipped() return True return False def _check_file_owns_excluded_extension(excluded_extensions, file_path): for excluded_extension in excluded_extensions: if file_path.endswith(excluded_extension): logger.warning("the file %s is excluded regarding the " "excluded extension %s you entered" % (file_path, excluded_extension)) _skipped() return True return False def _check_file_owns_excluded_str(excluded_strings, file_path): for excluded_string in excluded_strings: if excluded_string in file_path: logger.warning( "the file %s is excluded regarding the excluded string %s you entered" % (file_path, excluded_string)) _skipped() return True return False def _check_able_open_file(file_path): try: open_test = open(file_path, 'r', encoding=ENCODING_INPUT_FILES) open_test.close() return True except FileNotFoundError: logger.error("The file " + CFILE_PATHS + "%s" % file_path + BASE_C + " doesn't exist") _skipped() return False except PermissionError: logger.error("You don't have the permission to access the file " + CFILE_PATHS + "%s" % file_path + BASE_C) _skipped() return False except IsADirectoryError: logger.error("The path " + CFILE_PATHS + "%s" % file_path + BASE_C + "is a directory, not a file") _skipped() return False except OSError: logger.error("No such device or address " + CFILE_PATHS + "%s" % file_path + BASE_C) _skipped() return False except UnicodeDecodeError as e: print("Decode byte error for file %s\n%s" % (file_path, e)) return False def _check_able_create_temporary(temporary_file_path, file_mask): try: open_test = open(temporary_file_path, 'w+') open_test.close() os.chmod(temporary_file_path, int(file_mask, 8)) os.remove(temporary_file_path) return True except FileNotFoundError: logger.error("the file " + CFILE_PATHS + "%s" % temporary_file_path + BASE_C + " doesn't exist") _skipped() return False except PermissionError: logger.error( "you don't have the permission to create the file " + CFILE_PATHS + "%s" % temporary_file_path + BASE_C) _skipped() return False except IsADirectoryError: logger.error(" the path " + CFILE_PATHS + "%s" % temporary_file_path + BASE_C + "is a directory, not a file") _skipped() return False def _check_binary_file(file_path): textchars = bytearray({7, 8, 9, 10, 12, 13, 27} | set(range(0x20, 0x100)) - {0x7f}) is_binary_string = lambda bytes: bool(bytes.translate(None, textchars)) try: if is_binary_string(open(file_path, 'rb').read(1024)): logger.warning("the file %s is a binary file" % file_path) _skipped() return True return False except PermissionError: logger.error("you don't have the permission to access the file " + CFILE_PATHS + "%s" % file_path + BASE_C) _skipped() return True def _check_symlink_path(file_path): if os.path.islink(file_path): logger.warning("the file %s is a symlink file" % file_path) _skipped() return True return False def _get_temporary_file_path(file_path, excluded_paths): temporary_file_path = file_path + ".tmp" if os.path.exists(temporary_file_path): temporary_file_path = _find_tmp_file_not_existing(file_path) excluded_paths.append(temporary_file_path) return temporary_file_path def _get_file_permission_mask(file_path): return oct(os.stat(file_path).st_mode & 0o777) def _replace_local_recursive(directory_path, init_str, dest_str, black_list_extensions, file_name_must_end_by, excluded_paths, excluded_strings, excluded_extensions, local, ask_replace, case_sensitive, binary_accepted, symlink_accepted): for directory_path, directory_names, file_names in os.walk(directory_path): for file_name in file_names: file_path = os.path.join(directory_path, file_name) if _check_file_owns_excluded_path(excluded_paths, file_path): continue if _check_file_owns_excluded_extension(excluded_extensions, file_path): continue if _check_file_owns_excluded_str(excluded_strings, file_path): continue if not _check_path_exists(file_path): logger.warning("the file path " + CFILE_PATHS + "%s" % file_path + BASE_C + " seems to cause problem, might be a broken symlink") continue _check_user_rights(file_path) if not _check_able_open_file(file_path): continue if black_list_extensions: if _check_file_extension_in_blacklist(file_path): continue if not symlink_accepted: if _check_symlink_path(file_path): continue if not binary_accepted: if _check_binary_file(file_path): continue if file_name_must_end_by: if not _check_file_name_must_end_by(file_name_must_end_by, file_path): continue file_mask = _get_file_permission_mask(file_path) temporary_file_path = _get_temporary_file_path(file_path, excluded_paths) if not _check_able_create_temporary(temporary_file_path, file_mask): continue if _check_init_str_in_file(file_path, init_str, case_sensitive): _file_replace(file_path, temporary_file_path, init_str, dest_str, ask_replace, case_sensitive, file_mask) if local: break def _check_folder_path_exists(folder_path): if not os.path.isdir(folder_path): logger.warning(CFILE_PATHS + " %s " % folder_path + BASE_C + "folder doesn't exist" + "\n\tthe directory path to apply %s doesn't exist, you may review it" % folder_path) exit(1) def _check_path_exists(path): if not os.path.exists(path): logger.warning(CFILE_PATHS + " %s " % path + BASE_C + "path doesn't exist") return False return True def _replace_specific(file_paths_to_apply, init_str, dest_str, black_list_extensions, ask_replace, case_sensitive, binary_accepted, symlink_accepted): for file_path in file_paths_to_apply: if not _check_path_exists(file_path): logger.warning("the file path %s seems to cause problem, might be a broken symlink" % file_path) _skipped() continue _check_user_rights(file_path) if not _check_able_open_file(file_path): continue if black_list_extensions: if _check_file_extension_in_blacklist(file_path): continue if not symlink_accepted: if _check_symlink_path(file_path): continue if not binary_accepted: if _check_binary_file(file_path): continue # # except UnicodeDecodeError as e: # print("Decode byte error for file %s\n%s" % (file_path, e)) file_mask = _get_file_permission_mask(file_path) temporary_file_path = _get_temporary_file_path(file_path, []) if not _check_able_create_temporary(temporary_file_path, file_mask): continue if _check_init_str_in_file(file_path, init_str, case_sensitive): _file_replace(file_path, temporary_file_path, init_str, dest_str, ask_replace, case_sensitive, file_mask) def _occs_summary(init_str): global found_nb global replaced_nb if found_nb == 0: logger.info( CFILE_PATHS + "\n\t0" + BASE_C + " occurrence of " + COCCURRENCES + "%s" % init_str + BASE_C + " found") elif found_nb == 1: logger.info(CFILE_PATHS + "\n\t1" + BASE_C + " occurrence of " + COCCURRENCES + "%s" % init_str + BASE_C + " found and " + CFILE_PATHS + "%s" % replaced_nb + BASE_C + " replaced") else: logger.info(CFILE_PATHS + "\n\t%s" % found_nb + BASE_C + " occurrences of " + COCCURRENCES + "%s" % init_str + BASE_C + " found and " + CFILE_PATHS + "%s" % replaced_nb + BASE_C + " replaced") def _get_full_paths(dir_path_to_apply, file_paths_to_apply): if file_paths_to_apply: file_paths_list = [] for file_name in file_paths_to_apply: file_paths_list.append(get_full_path_joined(file_name)) file_paths_to_apply = file_paths_list if dir_path_to_apply is not None: dir_path_to_apply = get_full_path_joined(dir_path_to_apply) return dir_path_to_apply, file_paths_to_apply def get_full_path_joined(given_path): return os.path.normpath((os.path.join(os.getcwd(), os.path.expanduser(given_path)))) def _check_integrity_of_mode_request(local, recursive, specific, dir_path_to_apply, file_paths_to_apply): if local or recursive: if file_paths_to_apply: logger.warning("The replace mode is not specific, file_paths_to_apply should be empty and " "is: %s" % file_paths_to_apply + "\n\tfile_paths_to_apply should be empty") exit(1) if dir_path_to_apply is None: logger.warning("The replace mode is not specific, dir_path_to_apply should not be None" + "\n\tdir_path_to_apply should be defined") exit(1) if not _check_path_exists(dir_path_to_apply): logger.error("The directory path %s doesn't exist" % dir_path_to_apply) exit(1) if not os.path.isdir(dir_path_to_apply): logger.info( CFILE_PATHS + "%s" % dir_path_to_apply + BASE_C + " is a file, proceeding specific replace mode") local = False recursive = False specific = True file_paths_to_apply.append(dir_path_to_apply) elif specific: if not file_paths_to_apply: logger.error( "The replace mode is specific, file_paths_to_apply should not be empty and is: %s" % file_paths_to_apply + "\n\tfile_paths_to_apply should not be empty in specific mode replacement") exit(1) if dir_path_to_apply is not None: logger.error("The replace mode is specific, dir_path_to_apply should be None" + "\n\tdir_path_to_apply should not be defined") exit(1) file_paths = [] for file_path in file_paths_to_apply: if not _check_path_exists(file_path): logger.warning( CFILE_PATHS + "%s" % file_path + BASE_C + " doesn't exist, removing it from the file list") elif os.path.isdir(file_path): logger.warning(CFILE_PATHS + "%s" % file_path + BASE_C + " is a folder, removing it from the file list") else: file_paths.append(file_path) file_paths_to_apply = file_paths return local, recursive, specific, dir_path_to_apply, file_paths_to_apply def launch(): input_args = sys.argv[1:] _help_requested(input_args) _check_input_args(input_args) # file_name_must_end_by, local, recursive, specific, ask_replace, case_sensitive, \ # black_list_extensions, binary_accepted, symlink_accepted, excluded_strings, \ # excluded_extensions, excluded_paths = _init_indicators() # init_str, dest_str, dir_path_to_apply, file_paths_to_apply = _init_args() file_name_must_end_by, init_str, dest_str, dir_path_to_apply, \ file_paths_to_apply, local, recursive, specific, ask_replace, \ case_sensitive, black_list_extensions, binary_accepted, \ symlink_accepted, excluded_strings, excluded_extensions, \ excluded_paths, args_not_used_indexes = _treat_input_args(input_args) _check_only_one_replace_mode_picked(local, specific, recursive) # finalize getting all the parameters if local or recursive: dir_path_to_apply, dest_str, init_str = \ _get_final_args_local_recursive(dir_path_to_apply, dest_str, init_str, local, recursive, input_args, args_not_used_indexes) elif specific: file_paths_to_apply, dest_str, init_str = \ _get_final_args_specific(file_paths_to_apply, dest_str, init_str, specific, input_args, args_not_used_indexes) else: logger.error("the replace mode can only be \"local\", \"recursive\" or \"specific\"" + "\n\tplease pick only one mode with the -l, -r or -s short options") exit(1) dir_path_to_apply, file_paths_to_apply = _get_full_paths(dir_path_to_apply, file_paths_to_apply) local, recursive, specific, dir_path_to_apply, file_paths_to_apply = \ _check_integrity_of_mode_request(local, recursive, specific, dir_path_to_apply, file_paths_to_apply) # apply the replace # if local: # found_nb, replaced_nb = \ # _replace_local_recursive(dir_path_to_apply, init_str, dest_str, black_list_extensions, # file_name_must_end_by, excluded_paths, excluded_strings, excluded_extensions, # local, # found_nb, replaced_nb, ask_replace, case_sensitive, # binary_accepted, symlink_accepted) # # elif recursive: # found_nb, replaced_nb = \ # _replace_local_recursive(dir_path_to_apply, init_str, dest_str, black_list_extensions, # file_name_must_end_by, excluded_paths, excluded_strings, excluded_extensions, # local, # found_nb, replaced_nb, ask_replace, case_sensitive, # binary_accepted, symlink_accepted) if local or recursive: _replace_local_recursive(dir_path_to_apply, init_str, dest_str, black_list_extensions, file_name_must_end_by, excluded_paths, excluded_strings, excluded_extensions, local, ask_replace, case_sensitive, binary_accepted, symlink_accepted) elif specific: _replace_specific(file_paths_to_apply, init_str, dest_str, black_list_extensions, ask_replace, case_sensitive, binary_accepted, symlink_accepted) else: logger.error("the replace mode can only be \"local\", \"recursive\" or \"specific\"\n\t" "please pick only one mode with the -l, -r or -s short options") exit(1) _occs_summary(init_str) if __name__ == "__main__": launch()
[ "os.path.expanduser", "os.path.exists", "os.rename", "os.path.join", "os.getcwd", "os.path.isfile", "sys.exc_info", "re.sub", "os.path.isdir", "copy.deepcopy", "getpass.getuser", "os.stat", "os.path.islink", "os.walk", "os.remove" ]
[((20248, 20265), 'getpass.getuser', 'getpass.getuser', ([], {}), '()\n', (20263, 20265), False, 'import getpass\n'), ((22837, 22867), 'os.remove', 'os.remove', (['temporary_file_path'], {}), '(temporary_file_path)\n', (22846, 22867), False, 'import os\n'), ((34246, 34266), 'os.remove', 'os.remove', (['file_path'], {}), '(file_path)\n', (34255, 34266), False, 'import os\n'), ((34271, 34312), 'os.rename', 'os.rename', (['temporary_file_path', 'file_path'], {}), '(temporary_file_path, file_path)\n', (34280, 34312), False, 'import os\n'), ((38887, 38912), 'os.path.islink', 'os.path.islink', (['file_path'], {}), '(file_path)\n', (38901, 38912), False, 'import os\n'), ((39149, 39184), 'os.path.exists', 'os.path.exists', (['temporary_file_path'], {}), '(temporary_file_path)\n', (39163, 39184), False, 'import os\n'), ((39781, 39804), 'os.walk', 'os.walk', (['directory_path'], {}), '(directory_path)\n', (39788, 39804), False, 'import os\n'), ((27677, 27702), 'os.path.isfile', 'os.path.isfile', (['file_path'], {}), '(file_path)\n', (27691, 27702), False, 'import os\n'), ((37626, 37656), 'os.remove', 'os.remove', (['temporary_file_path'], {}), '(temporary_file_path)\n', (37635, 37656), False, 'import os\n'), ((41694, 41720), 'os.path.isdir', 'os.path.isdir', (['folder_path'], {}), '(folder_path)\n', (41707, 41720), False, 'import os\n'), ((41983, 42003), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (41997, 42003), False, 'import os\n'), ((26788, 26807), 'copy.deepcopy', 'copy.deepcopy', (['line'], {}), '(line)\n', (26801, 26807), False, 'import copy\n'), ((27331, 27366), 'os.path.exists', 'os.path.exists', (['temporary_file_path'], {}), '(temporary_file_path)\n', (27345, 27366), False, 'import os\n'), ((33893, 33923), 'os.remove', 'os.remove', (['temporary_file_path'], {}), '(temporary_file_path)\n', (33902, 33923), False, 'import os\n'), ((33996, 34026), 'os.remove', 'os.remove', (['temporary_file_path'], {}), '(temporary_file_path)\n', (34005, 34026), False, 'import os\n'), ((39868, 39907), 'os.path.join', 'os.path.join', (['directory_path', 'file_name'], {}), '(directory_path, file_name)\n', (39880, 39907), False, 'import os\n'), ((44763, 44774), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (44772, 44774), False, 'import os\n'), ((44776, 44806), 'os.path.expanduser', 'os.path.expanduser', (['given_path'], {}), '(given_path)\n', (44794, 44806), False, 'import os\n'), ((45607, 45639), 'os.path.isdir', 'os.path.isdir', (['dir_path_to_apply'], {}), '(dir_path_to_apply)\n', (45620, 45639), False, 'import os\n'), ((20292, 20307), 'os.stat', 'stat', (['file_path'], {}), '(file_path)\n', (20296, 20307), False, 'from os import stat\n'), ((26202, 26234), 're.sub', 're.sub', (['init_str', 'dest_str', 'line'], {}), '(init_str, dest_str, line)\n', (26208, 26234), False, 'import re\n'), ((26283, 26327), 're.sub', 're.sub', (['init_str', 'dest_str', 'line'], {'flags': 're.I'}), '(init_str, dest_str, line, flags=re.I)\n', (26289, 26327), False, 'import re\n'), ((26875, 26907), 'copy.deepcopy', 'copy.deepcopy', (['previous_lines[0]'], {}), '(previous_lines[0])\n', (26888, 26907), False, 'import copy\n'), ((26972, 27004), 'copy.deepcopy', 'copy.deepcopy', (['previous_lines[0]'], {}), '(previous_lines[0])\n', (26985, 27004), False, 'import copy\n'), ((27033, 27052), 'copy.deepcopy', 'copy.deepcopy', (['line'], {}), '(line)\n', (27046, 27052), False, 'import copy\n'), ((39392, 39410), 'os.stat', 'os.stat', (['file_path'], {}), '(file_path)\n', (39399, 39410), False, 'import os\n'), ((46747, 46771), 'os.path.isdir', 'os.path.isdir', (['file_path'], {}), '(file_path)\n', (46760, 46771), False, 'import os\n'), ((34195, 34209), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (34207, 34209), False, 'import sys\n'), ((28915, 28947), 're.sub', 're.sub', (['init_str', 'dest_str', 'line'], {}), '(init_str, dest_str, line)\n', (28921, 28947), False, 'import re\n'), ((31522, 31566), 're.sub', 're.sub', (['init_str', 'dest_str', 'line'], {'flags': 're.I'}), '(init_str, dest_str, line, flags=re.I)\n', (31528, 31566), False, 'import re\n')]
from inspect import getframeinfo, stack from math import ceil, log from . import back_end def number_of_bits_needed(x): x = int(x) n = 1 while 1: max_value = (2 ** n) - 1 min_value = 0 if min_value <= x <= max_value: return n n += 1 def const(value): if hasattr(value, "vector"): return value bits = number_of_bits_needed(value) subtype = Unsigned(bits) return Constant(subtype, value) class Unsigned: def __init__(self, bits): self.bits = bits def to_vector(self, value): return int(value) def from_vector(self, value): return value def constant(self, value): return Constant(self, value) def input(self, name): return Input(self, name) def output(self, name, expression): return Output(self, name, expression) def select(self, select, *args, **kwargs): return Select(self, select, *args, **kwargs) def register(self, clk, en=1, init=None, d=None): return Register(self, clk, en, init, d) def wire(self): caller = getframeinfo(stack()[1][0]) return Wire(self, caller.filename, caller.lineno) def rom(self, select, *args, **kwargs): return ROM(self, select, *args, **kwargs) def ram(self, *args, **kwargs): return RAM(self, *args, **kwargs) def dpr(self, *args, **kwargs): return DPR(self, *args, **kwargs) def Boolean(): return Unsigned(1) def binary(a, b, operator): b = const(b) binary = back_end.Binary(a.vector, b.vector, operator) subtype = Unsigned(binary.bits) return Expression(subtype, binary, "(" + repr(a) + operator + repr(b) + ")") def unary(a, operator): unary = back_end.Unary(a.vector, operator) subtype = Unsigned(unary.bits) return Expression(subtype, unary, "(" + operator + repr(a) + ")") class Expression: def __init__(self, subtype, vector, string): self.subtype = subtype self.vector = vector self.string = string def label(self, label_string): a = self vector = back_end.Label(self.vector, label_string) subtype = Unsigned(vector.bits) return Expression( subtype, vector, "%s.label(%s)" % (repr(a), str(label_string)) ) def cat(self, other): a = self b = const(other) vector = back_end.Concatenate(a.vector, b.vector) subtype = Unsigned(vector.bits) return Expression(subtype, vector, "%s.cat(%s)" % (repr(a), repr(b))) def resize(self, bits): binary = back_end.Resize(self.vector, bits) subtype = Unsigned(binary.bits) return Expression(subtype, binary, "%s.resize(%s)" % (repr(self), str(bits))) def __add__(self, other): return binary(self, other, "+") def __sub__(self, other): return binary(self, other, "-") def __mul__(self, other): return binary(self, other, "*") def __gt__(self, other): return binary(self, other, ">") def __ge__(self, other): return binary(self, other, ">=") def __lt__(self, other): return binary(self, other, "<") def __le__(self, other): return binary(self, other, "<=") def __eq__(self, other): return binary(self, other, "==") def __ne__(self, other): return binary(self, other, "!=") def __lshift__(self, other): return binary(self, other, "<<") def __rshift__(self, other): return binary(self, other, ">>") def __and__(self, other): return binary(self, other, "&") def __or__(self, other): return binary(self, other, "|") def __xor__(self, other): return binary(self, other, "^") def __neg__(self): return unary(self, "-") def __invert__(self): return unary(self, "~") def __abs__(self): return self def __getitem__(self, other): try: vector = back_end.Index(self.vector, int(other)) subtype = Unsigned(vector.bits) return Expression(subtype, vector, "%s[%s]" % (self, other)) except TypeError: vector = back_end.Slice(self.vector, other.start, other.stop) subtype = Unsigned(vector.bits) return Expression( subtype, vector, "%s[%s:%s]" % (self, other.start, other.stop) ) def get(self): return self.subtype.from_vector(self.vector.get()) def __repr__(self): return self.string class Constant(Expression): def __init__(self, subtype, value): self.subtype = subtype self.vector = back_end.Constant(subtype.to_vector(value), subtype.bits) def __repr__(self): return str(self.vector.value) class Input(Expression): def __init__(self, subtype, name): self.subtype = subtype self.vector = back_end.Input(name, subtype.bits) self.string = "Input(%s)" % name def set(self, value): self.vector.set(self.subtype.to_vector(value)) class Output(Expression): def __init__(self, subtype, name, expression): self.subtype = subtype self.vector = back_end.Output(name, expression.vector) self.string = "Output(%s)" % name def get(self): return self.subtype.from_vector(self.vector.get()) class Select(Expression): def __init__(self, subtype, select, *args, **kwargs): select = const(select).vector args = [const(i).vector for i in args] default = const(kwargs.get("default", 0)).vector self.vector = back_end.Select(select, *args, default=default) self.subtype = Unsigned(self.vector.bits) self.string = "select()" class ROM(Expression): def __init__(self, subtype, select, *args, **kwargs): select = const(select).vector args = [int(i) for i in args] default = int(kwargs.get("default", 0)) self.vector = back_end.ROM(subtype.bits, select, *args, default=default) self.subtype = subtype self.string = "ROM()" def DPRPort(ram, clk, addr, data, wen): subtype = ram.subtype ram = back_end.DPRPort( ram.ram, clk, addr.vector, data.vector, wen.vector, ) return Expression(subtype, ram, "DPR.portb()") class DPR: def __init__(self, subtype, depth, clk, initialise=None): self.subtype = subtype self.depth = depth self.clk = clk self.initialise = initialise def porta(self, addr, data, wen): self.ram = back_end.DPR( self.subtype.bits, self.depth, self.clk, addr.vector, data.vector, wen.vector, self.initialise ) return Expression(self.subtype, self.ram, "DPR.porta()") def portb(self, addr, data, wen): return DPRPort(self, self.clk, addr, data, wen) class RAM: def __init__(self, subtype, depth, clk, asynchronous=True, initialise=None): self.subtype = subtype self.write_address = Unsigned(int(ceil(log(depth, 2)))).wire() self.read_address = Unsigned(int(ceil(log(depth, 2)))).wire() self.write_data = subtype.wire() self.read_data = subtype.wire() self.write_enable = Boolean().wire() self.read_enable = Boolean().wire() self.ram = back_end.RAM( subtype.bits, depth, clk, self.write_address.vector, self.write_data.vector, self.write_enable.vector, self.read_address.vector, self.read_enable.vector, asynchronous=asynchronous, initialise=initialise, ) def add_port(self, clk): return RAMPort(self, clk) def write(self, wraddr, wrdata, wren): self.write_address.drive(wraddr) self.write_data.drive(wrdata) self.write_enable.drive(wren) def read(self, rdaddr, rden=1): self.read_address.drive(rdaddr) self.read_enable.drive(const(rden)) return Expression(self.subtype, self.ram, "ram()") class Register(Expression): def __init__(self, subtype, clk, en, init, d): self.subtype = subtype d = d if d is None else const(d).vector init = init if init is None else int(init) en = const(en).vector self.vector = back_end.Register( clock=clk, bits=subtype.bits, en=en, d=d, init=init ) def d(self, expression): self.vector.d = expression.vector def __repr__(self): return "register" class Wire(Expression): def __init__(self, subtype, filename, lineno): self.subtype = subtype self.vector = back_end.Wire(filename, lineno, bits=subtype.bits) def drive(self, expression): self.vector.drive(expression.vector) def __repr__(self): return "wire"
[ "inspect.stack", "math.log" ]
[((1131, 1138), 'inspect.stack', 'stack', ([], {}), '()\n', (1136, 1138), False, 'from inspect import getframeinfo, stack\n'), ((7133, 7146), 'math.log', 'log', (['depth', '(2)'], {}), '(depth, 2)\n', (7136, 7146), False, 'from math import ceil, log\n'), ((7203, 7216), 'math.log', 'log', (['depth', '(2)'], {}), '(depth, 2)\n', (7206, 7216), False, 'from math import ceil, log\n')]
""""sitk_align - Align using simple ITK and Elastix Partially derived from elastix_auto.py by <NAME> """ import argparse import json import SimpleITK as sitk import numpy as np import os import re import shutil import tempfile from ._sitk_align import parse as parse_pts_file FINAL_GRID_SPACING_IN_VOXELS = ['32', '32', '32'] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--moving-file", help="Path to file to be aligned", required=True) parser.add_argument("--fixed-file", help="Path to the reference file", required=True) parser.add_argument("--fixed-point-file", help="Path to the marked points on the reference image") parser.add_argument("--alignment-point-file", help="Path to the file for nuggt-align's initial pts", default=None) parser.add_argument("--xyz", help="Coordinates in --fixed-point-file are in " "X, Y, Z form, not Z, Y, X (e.g. the output of nuggt)", action="store_true", default=False) parser.add_argument("--aligned-file", help="Path to the alignment image file to be written.", default=None) parser.add_argument("--final-grid-spacing", help="The spacing between voxels for the bspline grid", default=None) parser.add_argument("--transform-parameters-folder", help="sitk-align will save the TransformParameters.txt" " files in this directory if specified.", default=None) return parser.parse_args() def getParameterMap(rigid=True, affine=True, bspline=True): parameterMapVector = sitk.VectorOfParameterMap() if rigid: rigidMap = sitk.GetDefaultParameterMap("rigid") rigidMap['MaximumNumberOfIterations'] = ['1000'] rigidMap['NumberOfHistogramBins'] = ['8','16','32'] rigidMap['NumberOfResolutions'] = ['6'] rigidMap['MaximumStepLength'] = ['0.5'] rigidMap['Registration'] = ['MultiMetricMultiResolutionRegistration'] rigidMap['Interpolator'] = ['BSplineInterpolator'] parameterMapVector.append(rigidMap) if affine: affineMap = sitk.GetDefaultParameterMap("affine") affineMap['MaximumNumberOfIterations'] = ['1000'] affineMap['Registration'] = ['MultiMetricMultiResolutionRegistration'] affineMap['Interpolator'] = ['BSplineInterpolator'] affineMap['BSplineInterpolationOrder'] = ['3'] affineMap['FinalBSplineInterpolationOrder'] = ['3'] affineMap['NumberOfHistogramBins'] = ['4','8','16','32'] affineMap['NumberOfResolutions'] = ['5'] affineMap['MaximumStepLength'] = ['0.5'] parameterMapVector.append(affineMap) if bspline: bsplineMap = sitk.GetDefaultParameterMap("bspline") bsplineMap['MaximumNumberOfIterations'] = ['5000'] bsplineMap['Registration'] = ['MultiMetricMultiResolutionRegistration'] bsplineMap['Interpolator'] = ['BSplineInterpolator'] bsplineMap['BSplineInterpolationOrder'] = ['3'] # increasing make atlas deform more, decrease deform less. should be odd numbers from 3 bsplineMap['FinalBSplineInterpolationOrder'] = ['3'] # increasing make atlas deform more, decrease deform less. should be odd numbers from 3 #bsplineMap['FinalGridSpacingInVoxels'] = ['8'] bsplineMap['FinalGridSpacingInVoxels'] = FINAL_GRID_SPACING_IN_VOXELS # increasing make atlas deform less, decrease deform more., current issue might be the gridspacing issue bsplineMap['NumberOfHistogramBins'] = ['4','8','16','32','64'] bsplineMap['NumberOfResolutions'] = ['6'] bsplineMap['MaximumStepLength'] = ['1'] # default : 1 bsplineMap['ResultImagePixelType'] = ['int'] bsplineMap['Metric0Weight'] = ['4'] bsplineMap['Metric1Weight'] = ['1000'] bsplineMap['Metric2Weight'] = ['1'] bsplineMap.erase('FinalGridSpacingInPhysicalUnits') bsplineMap.erase('GridSpacingSchedule') parameterMapVector.append(bsplineMap) return parameterMapVector def align(fixed_image, moving_image, aligned_image_path, transform_parameter_folder = None): """Align the files :param fixed_image: the SimpleITK image for the fixed image :param moving_path: the SimpleITK moving image :param aligned_image_path: path to write the image after alignment or None if user does not want the image :param transform_parameter_folder: where to store the transform parameter files (this is a side-effect of running ElastixImageFilter.Execute in the transfer_parameter_folder directory) :returns: a transform map """ selx = sitk.ElastixImageFilter() parameterMapVector = getParameterMap(False,True,True) selx.SetParameterMap(parameterMapVector) selx.SetFixedImage(fixed_image) selx.SetMovingImage(moving_image) curdir = os.path.abspath(os.getcwd()) try: if transform_parameter_folder is not None: os.chdir(transform_parameter_folder) selx.Execute() finally: os.chdir(curdir) if aligned_image_path is not None: sitk.WriteImage(selx.GetResultImage(), aligned_image_path) return selx.GetTransformParameterMap() def write_point_set(filename, points): """Write a point set file, the way Elastix wants The format of the file: "point" or "index" # of points x y z ... :param filename: Write to this file :param points: an Nx3 array of points to write """ with open(filename, "w") as fd: fd.write("point\n") fd.write("%d\n" % len(points)) for z, y, x in points: fd.write("%f %f %f\n" % (x, y, z)) def read_point_set(filename): """Read the point set file that's the output of the transformation :param filename: The location of the point set file :returns: an Nx3 array of the output points """ pattern = \ "%s\\s*=\\s*\\[\\s*(-?\\d+.?\\d*)\\s+(-?\\d+.?\\d*)\\s+(-?\\d+.?\\d*)\\s*\\]" outpoints = [] with open(filename) as fd: for line in fd: match = re.search(pattern % "OutputPoint", line) outpoints.append(list(reversed([float(_) for _ in match.groups()]))) return outpoints def transform(points, moving_image, transform_parameter_map): """Transform the points in the fixed coordinate space to moving :param points: Points in the fixed coordinate space :param moving_image: The moving image as loaded by SimpleITK (needed by the transformation to find the image dimensions) :param transform_parameter_map: The transform parameter map produced by ElastixImageFilter after running. :returns: the point coordinates in the moving coordinate space """ temp_dir = tempfile.mkdtemp() try: fixed_point_set_path = os.path.join(temp_dir, "fixed_points.txt") write_point_set(fixed_point_set_path, points) tif = sitk.TransformixImageFilter() tif.SetTransformParameterMap(transform_parameter_map) tif.SetFixedPointSetFileName(fixed_point_set_path) tif.SetMovingImage(moving_image) tif.SetOutputDirectory(temp_dir) tif.LogToConsoleOn() tif.Execute() output_path = os.path.join(temp_dir, "outputpoints.txt") out_a = np.memmap(output_path, np.uint8, mode="r") shape = (len(points), len(points[0])) result = np.zeros(shape, np.float32) parse_pts_file(out_a, result) return result[:,::-1] finally: shutil.rmtree(temp_dir) def main(): global FINAL_GRID_SPACING_IN_VOXELS args = parse_args() if args.final_grid_spacing is not None: FINAL_GRID_SPACING_IN_VOXELS = args.final_grid_spacing.split(",") fixed_image = sitk.ReadImage(args.fixed_file) moving_image = sitk.ReadImage(args.moving_file) aligned_file = args.aligned_file fixed_point_file = args.fixed_point_file alignment_point_file = args.alignment_point_file transform_pm = align(fixed_image, moving_image, aligned_file, args.transform_parameters_folder) if alignment_point_file is not None: with open(fixed_point_file) as fd: points = json.load(fd) if args.xyz: points = [_[::-1] for _ in points] out_points = transform(points, moving_image, transform_pm) out_points = out_points.astype(float).tolist() with open(alignment_point_file, "w") as fd: json.dump(dict(reference=points, moving=out_points), fd, indent=2) if __name__=="__main__": main()
[ "argparse.ArgumentParser", "SimpleITK.ElastixImageFilter", "numpy.memmap", "SimpleITK.VectorOfParameterMap", "os.path.join", "os.getcwd", "os.chdir", "json.load", "numpy.zeros", "SimpleITK.GetDefaultParameterMap", "tempfile.mkdtemp", "SimpleITK.TransformixImageFilter", "shutil.rmtree", "SimpleITK.ReadImage", "re.search" ]
[((360, 385), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (383, 385), False, 'import argparse\n'), ((1912, 1939), 'SimpleITK.VectorOfParameterMap', 'sitk.VectorOfParameterMap', ([], {}), '()\n', (1937, 1939), True, 'import SimpleITK as sitk\n'), ((5004, 5029), 'SimpleITK.ElastixImageFilter', 'sitk.ElastixImageFilter', ([], {}), '()\n', (5027, 5029), True, 'import SimpleITK as sitk\n'), ((7114, 7132), 'tempfile.mkdtemp', 'tempfile.mkdtemp', ([], {}), '()\n', (7130, 7132), False, 'import tempfile\n'), ((8110, 8141), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['args.fixed_file'], {}), '(args.fixed_file)\n', (8124, 8141), True, 'import SimpleITK as sitk\n'), ((8161, 8193), 'SimpleITK.ReadImage', 'sitk.ReadImage', (['args.moving_file'], {}), '(args.moving_file)\n', (8175, 8193), True, 'import SimpleITK as sitk\n'), ((1973, 2009), 'SimpleITK.GetDefaultParameterMap', 'sitk.GetDefaultParameterMap', (['"""rigid"""'], {}), "('rigid')\n", (2000, 2009), True, 'import SimpleITK as sitk\n'), ((2439, 2476), 'SimpleITK.GetDefaultParameterMap', 'sitk.GetDefaultParameterMap', (['"""affine"""'], {}), "('affine')\n", (2466, 2476), True, 'import SimpleITK as sitk\n'), ((3034, 3072), 'SimpleITK.GetDefaultParameterMap', 'sitk.GetDefaultParameterMap', (['"""bspline"""'], {}), "('bspline')\n", (3061, 3072), True, 'import SimpleITK as sitk\n'), ((5237, 5248), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5246, 5248), False, 'import os\n'), ((5403, 5419), 'os.chdir', 'os.chdir', (['curdir'], {}), '(curdir)\n', (5411, 5419), False, 'import os\n'), ((7173, 7215), 'os.path.join', 'os.path.join', (['temp_dir', '"""fixed_points.txt"""'], {}), "(temp_dir, 'fixed_points.txt')\n", (7185, 7215), False, 'import os\n'), ((7284, 7313), 'SimpleITK.TransformixImageFilter', 'sitk.TransformixImageFilter', ([], {}), '()\n', (7311, 7313), True, 'import SimpleITK as sitk\n'), ((7590, 7632), 'os.path.join', 'os.path.join', (['temp_dir', '"""outputpoints.txt"""'], {}), "(temp_dir, 'outputpoints.txt')\n", (7602, 7632), False, 'import os\n'), ((7649, 7691), 'numpy.memmap', 'np.memmap', (['output_path', 'np.uint8'], {'mode': '"""r"""'}), "(output_path, np.uint8, mode='r')\n", (7658, 7691), True, 'import numpy as np\n'), ((7755, 7782), 'numpy.zeros', 'np.zeros', (['shape', 'np.float32'], {}), '(shape, np.float32)\n', (7763, 7782), True, 'import numpy as np\n'), ((7872, 7895), 'shutil.rmtree', 'shutil.rmtree', (['temp_dir'], {}), '(temp_dir)\n', (7885, 7895), False, 'import shutil\n'), ((5322, 5358), 'os.chdir', 'os.chdir', (['transform_parameter_folder'], {}), '(transform_parameter_folder)\n', (5330, 5358), False, 'import os\n'), ((6442, 6482), 're.search', 're.search', (["(pattern % 'OutputPoint')", 'line'], {}), "(pattern % 'OutputPoint', line)\n", (6451, 6482), False, 'import re\n'), ((8559, 8572), 'json.load', 'json.load', (['fd'], {}), '(fd)\n', (8568, 8572), False, 'import json\n')]
from pathlib import Path import pygame from janzeng.entity import Entity PIVOTS = [ "topleft", "topcenter", "topright", "midleft", "center", "midright", "bottomleft", "bottomcenter", "bottomright", ] class Sprite(Entity): def __init__(self, *, image, pos, pivot="bottomcenter", alpha=True): super().__init__() if isinstance(image, Path): self.image = pygame.image.load(image) elif isinstance(image, str): self.image = pygame.image.load(Path(image)) elif isinstance(image, pygame.Surface): self.image = image else: raise TypeError(f"Image must be Path-object or string, got {type(image)}") if alpha: self.image = self.image.convert_alpha() else: self.image = self.image.convert() self.pivot = pivot self.rect = self.image.get_rect(**{pivot: pos}) self._position = pygame.Vector2(pos) @property def position(self): return self._position @position.setter def position(self, value): self._position = value setattr(self.rect, self.pivot, (int(value[0]), int(value[1]))) def render(self, surface): surface.blit(self.image, self.rect)
[ "pygame.image.load", "pygame.Vector2", "pathlib.Path" ]
[((960, 979), 'pygame.Vector2', 'pygame.Vector2', (['pos'], {}), '(pos)\n', (974, 979), False, 'import pygame\n'), ((424, 448), 'pygame.image.load', 'pygame.image.load', (['image'], {}), '(image)\n', (441, 448), False, 'import pygame\n'), ((529, 540), 'pathlib.Path', 'Path', (['image'], {}), '(image)\n', (533, 540), False, 'from pathlib import Path\n')]
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. import pytest from pages.dashboard import DashboardPage class TestPagination: SEARCH_TERM = u'firefox' @pytest.mark.nondestructive def test_search_pagination(self, mozwebqa): dashboard_pg = DashboardPage(mozwebqa) dashboard_pg.go_to_dashboard_page() # Set the date range to 2013-01-01 -> today so that we're more # likely to have so many messages in the results that it # paginates. Otherwise it might not paginate on stage or local # environments. dashboard_pg.set_date_range('2013-01-01') dashboard_pg.search_for(self.SEARCH_TERM) # Check the total message count. If it's less than 50 (two # pages worth), then we will fail with a helpful message. assert dashboard_pg.total_message_count >= 50, 'Not enough data to test. Add more data.' assert dashboard_pg.is_older_messages_link_visible is True assert dashboard_pg.is_newer_messages_link_visible is False assert dashboard_pg.older_messages_link == 'Older Messages' dashboard_pg.click_older_messages() assert dashboard_pg.search_term_from_url == self.SEARCH_TERM assert dashboard_pg.is_older_messages_link_visible is True assert dashboard_pg.is_newer_messages_link_visible is True assert dashboard_pg.older_messages_link == 'Older Messages' assert dashboard_pg.newer_messages_link == 'Newer Messages' assert dashboard_pg.page_from_url == 2 dashboard_pg.click_newer_messages() assert dashboard_pg.search_term_from_url == self.SEARCH_TERM assert dashboard_pg.is_older_messages_link_visible is True assert dashboard_pg.is_newer_messages_link_visible is False assert dashboard_pg.older_messages_link == 'Older Messages' assert dashboard_pg.page_from_url == 1
[ "pages.dashboard.DashboardPage" ]
[((414, 437), 'pages.dashboard.DashboardPage', 'DashboardPage', (['mozwebqa'], {}), '(mozwebqa)\n', (427, 437), False, 'from pages.dashboard import DashboardPage\n')]
import math catop = int(input('Digite aqui o valor do cateto oposto: ')) catad = int(input('Digite aqui o valor do cateto adjascente: ')) hip = math.sqrt(catop**2 + catad**2) print('O valor do da hipotenusa é: ', hip)
[ "math.sqrt" ]
[((144, 178), 'math.sqrt', 'math.sqrt', (['(catop ** 2 + catad ** 2)'], {}), '(catop ** 2 + catad ** 2)\n', (153, 178), False, 'import math\n')]
from configparser import ConfigParser from x_com import DB_CONFIG def config( filename=None, section='postgresql' ): filename = filename if filename is not None else DB_CONFIG parser = ConfigParser() parser.read(filename) db = {} if parser.has_section(section): params = parser.items(section) for param in params: db[param[0]] = param[1] else: raise FileNotFoundError('Section {0} not found in the {1} file'.format(section, filename)) return db
[ "configparser.ConfigParser" ]
[((197, 211), 'configparser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (209, 211), False, 'from configparser import ConfigParser\n')]
import matplotlib.pyplot as plt import numpy as np import time class PlotResults: """ Class to plot the results. """ def plot_results(self, data1, data2, label1, label2, filename): """ This method receives two lists of data point (data1 and data2) and plots a scatter plot with the information. The lists store statistics about individual search problems such as the number of nodes a search algorithm needs to expand to solve the problem. The function assumes that data1 and data2 have the same size. label1 and label2 are the labels of the axes of the scatter plot. filename is the name of the file in which the plot will be saved. """ _, ax = plt.subplots() ax.scatter(data1, data2, s=100, c="g", alpha=0.5, cmap=plt.cm.coolwarm, zorder=10) lims = [ np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes ] ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0) ax.set_aspect('equal') ax.set_xlim(lims) ax.set_ylim(lims) plt.xlabel(label1) plt.ylabel(label2) plt.grid() plt.savefig(filename) class Grid: """ Class to represent an assignment of values to the 81 variables defining a Sudoku puzzle. Variable _cells stores a matrix with 81 entries, one for each variable in the puzzle. Each entry of the matrix stores the domain of a variable. Initially, the domains of variables that need to have their values assigned are 123456789; the other domains are limited to the value initially assigned on the grid. Backtracking search and AC3 reduce the the domain of the variables as they proceed with search and inference. """ def __init__(self): self._cells = [] self._complete_domain = "123456789" self._width = 9 def copy(self): """ Returns a copy of the grid. """ copy_grid = Grid() copy_grid._cells = [row.copy() for row in self._cells] return copy_grid def get_cells(self): """ Returns the matrix with the domains of all variables in the puzzle. """ return self._cells def get_width(self): """ Returns the width of the grid. """ return self._width def read_file(self, string_puzzle): """ Reads a Sudoku puzzle from string and initializes the matrix _cells. This is a valid input string: 4.....8.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4...... This is translated into the following Sudoku grid: - - - - - - - - - - - - - | 4 . . | . . . | 8 . 5 | | . 3 . | . . . | . . . | | . . . | 7 . . | . . . | - - - - - - - - - - - - - | . 2 . | . . . | . 6 . | | . . . | . 8 . | 4 . . | | . . . | . 1 . | . . . | - - - - - - - - - - - - - | . . . | 6 . 3 | . 7 . | | 5 . . | 2 . . | . . . | | 1 . 4 | . . . | . . . | - - - - - - - - - - - - - """ i = 0 row = [] for p in string_puzzle: if p == '.': row.append(self._complete_domain) else: row.append(p) i += 1 if i % self._width == 0: self._cells.append(row) row = [] def print(self): """ Prints the grid on the screen. Example: - - - - - - - - - - - - - | 4 . . | . . . | 8 . 5 | | . 3 . | . . . | . . . | | . . . | 7 . . | . . . | - - - - - - - - - - - - - | . 2 . | . . . | . 6 . | | . . . | . 8 . | 4 . . | | . . . | . 1 . | . . . | - - - - - - - - - - - - - | . . . | 6 . 3 | . 7 . | | 5 . . | 2 . . | . . . | | 1 . 4 | . . . | . . . | - - - - - - - - - - - - - """ for _ in range(self._width + 4): print('-', end=" ") print() for i in range(self._width): print('|', end=" ") for j in range(self._width): if len(self._cells[i][j]) == 1: print(self._cells[i][j], end=" ") elif len(self._cells[i][j]) > 1: print('.', end=" ") else: print(';', end=" ") if (j + 1) % 3 == 0: print('|', end=" ") print() if (i + 1) % 3 == 0: for _ in range(self._width + 4): print('-', end=" ") print() print() def print_domains(self): """ Print the domain of each variable for a given grid of the puzzle. """ for row in self._cells: print(row) def is_solved(self): """ Returns True if the puzzle is solved and False otherwise. """ for i in range(self._width): for j in range(self._width): if len(self._cells[i][j]) != 1: return False return True class VarSelector: """ Interface for selecting variables in a partial assignment. Extend this class when implementing a new heuristic for variable selection. """ def select_variable(self, grid): pass class FirstAvailable(VarSelector): """ Naïve method for selecting variables; simply returns the first variable encountered whose domain is larger than one. """ def select_variable(self, grid): # Implement here the first available heuristic # Sequentially loop all the cells until finding an unassigned variable for i in range(grid.get_width()): for j in range(grid.get_width()): if len(grid.get_cells()[i][j]) > 1: return i, j return -1, -1 # All variables has been assigned, so return (-1, -1) class MRV(VarSelector): """ Implements the MRV heuristic, which returns one of the variables with smallest domain. """ def select_variable(self, grid): # Implement here the mrv heuristic minimum_remaining_value = float("inf") # infinity minimum_remaining_value_position = (-1, -1) # Loop all the cells, find the one with minimum length for i in range(grid.get_width()): for j in range(grid.get_width()): l = len(grid.get_cells()[i][j]) if (l != 1) and (l < minimum_remaining_value): minimum_remaining_value = len(grid.get_cells()[i][j]) minimum_remaining_value_position = (i, j) return minimum_remaining_value_position class AC3: """ This class implements the methods needed to run AC3 on Sudoku. """ def remove_domain_row(self, grid, row, column): """ Given a matrix (grid) and a cell on the grid (row and column) whose domain is of size 1 (i.e., the variable has its value assigned), this method removes the value of (row, column) from all variables in the same row. """ variables_assigned = [] for j in range(grid.get_width()): if j != column: new_domain = grid.get_cells()[row][j].replace(grid.get_cells()[row][column], '') if len(new_domain) == 0: return None, True if len(new_domain) == 1 and len(grid.get_cells()[row][j]) > 1: variables_assigned.append((row, j)) grid.get_cells()[row][j] = new_domain return variables_assigned, False def remove_domain_column(self, grid, row, column): """ Given a matrix (grid) and a cell on the grid (row and column) whose domain is of size 1 (i.e., the variable has its value assigned), this method removes the value of (row, column) from all variables in the same column. """ variables_assigned = [] for j in range(grid.get_width()): if j != row: new_domain = grid.get_cells()[j][column].replace(grid.get_cells()[row][column], '') if len(new_domain) == 0: return None, True if len(new_domain) == 1 and len(grid.get_cells()[j][column]) > 1: variables_assigned.append((j, column)) grid.get_cells()[j][column] = new_domain return variables_assigned, False def remove_domain_unit(self, grid, row, column): """ Given a matrix (grid) and a cell on the grid (row and column) whose domain is of size 1 (i.e., the variable has its value assigned), this method removes the value of (row, column) from all variables in the same unit. """ variables_assigned = [] row_init = (row // 3) * 3 column_init = (column // 3) * 3 for i in range(row_init, row_init + 3): for j in range(column_init, column_init + 3): if i == row and j == column: continue new_domain = grid.get_cells()[i][j].replace(grid.get_cells()[row][column], '') if len(new_domain) == 0: return None, True if len(new_domain) == 1 and len(grid.get_cells()[i][j]) > 1: variables_assigned.append((i, j)) grid.get_cells()[i][j] = new_domain return variables_assigned, False def pre_process_consistency(self, grid): """ This method enforces arc consistency for the initial grid of the puzzle. The method runs AC3 for the arcs involving the variables whose values are already assigned in the initial grid. """ # Implement here the code for making the CSP arc consistent as a pre-processing step; this method should be called once before search Q = [] for i in range(grid.get_width()): for j in range(grid.get_width()): if len(grid.get_cells()[i][j]) == 1: Q.append((i, j)) temp = self.consistency(grid, Q) if (temp == "failure"): return None, "failure" return grid, "success" def consistency(self, grid, Q): """ This is a domain-specific implementation of AC3 for Sudoku. It keeps a set of variables to be processed (Q) which is provided as input to the method. Since this is a domain-specific implementation, we don't need to maintain a graph and a set of arcs in memory. We can store in Q the cells of the grid and, when processing a cell, we ensure arc consistency of all variables related to this cell by removing the value of cell from all variables in its column, row, and unit. For example, if the method is used as a preprocessing step, then Q is initialized with all cells that start with a number on the grid. This method ensures arc consistency by removing from the domain of all variables in the row, column, and unit the values of the cells given as input. Like the general implementation of AC3, the method adds to Q all variables that have their values assigned during the propagation of the contraints. The method returns True if AC3 detected that the problem can't be solved with the current partial assignment; the method returns False otherwise. """ # Implement here the domain-dependent version of AC3. while len(Q) != 0: row, column = Q.pop() variables_assigned1, failure1 = self.remove_domain_row(grid, row, column) variables_assigned2, failure2 = self.remove_domain_column(grid, row, column) variables_assigned3, failure3 = self.remove_domain_unit(grid, row, column) if failure1 or failure2 or failure3: return "failure" variables_assigned = variables_assigned1 + variables_assigned2 + variables_assigned3 for t in variables_assigned: if t not in Q: Q.append(t) return "success" class Backtracking: """ Class that implements backtracking search for solving CSPs. """ def search(self, grid, var_selector): """ Implements backtracking search with inference. """ # Backtracking without inference # Checking whether the tree is complete or not complete = True for i in range(grid.get_width()): for j in range(grid.get_width()): if len(grid.get_cells()[i][j]) > 1: complete = False break if not complete: break if complete: return grid row, col = var_selector.select_variable(grid) # Variable to be assigned for d in grid.get_cells()[row][col]: if not self.consistent_check(grid, d, row, col): continue # If consistent: copy_grid = grid.copy() # Copy the grid copy_grid.get_cells()[row][col] = d # Assigned value to the copy version rb = self.search(copy_grid, var_selector) if rb != "failure": return rb return "failure" def search_AC3(self, grid, var_selector): # Backtracking with AC3 inference # Using the helper function to do all the work ac3 = AC3() ac3.pre_process_consistency(grid) # Pre-process the grid before running Backtracking return self.helper_search_AC3(grid, var_selector) def helper_search_AC3(self, grid, var_selector): # Backtracking with AC3 inference # Checking whether the tree is complete or not complete = True for i in range(grid.get_width()): for j in range(grid.get_width()): if len(grid.get_cells()[i][j]) > 1: complete = False break if not complete: break if complete: return grid row, col = var_selector.select_variable(grid) # Variable to be assigned for d in grid.get_cells()[row][col]: if not self.consistent_check(grid, d, row, col): continue # If consistent: copy_grid = grid.copy() # Copy the grid copy_grid.get_cells()[row][col] = d # Assigned value to the copy version # Find unselected variables in copy_grid, then run AC3 on it ac3 = AC3() ri = ac3.consistency(copy_grid, [(row, col)]) # Run AC3 inference if (ri != "failure"): rb = self.helper_search_AC3(copy_grid, var_selector) if rb != "failure": return rb return "failure" def consistent_check(self, grid, d, row, col): # Checking the consistency if we assign value d to position (row, col) in the matrix # Strategy: Check consistency in row and col, then check consistency in the unit # Check consistency within column and row for i in range(grid.get_width()): temp1 = grid.get_cells()[row][i] # Iterate column temp2 = grid.get_cells()[i][col] # Iterate row if len(temp1) == 1 and temp1 == d and i != col: return False if len(temp2) == 1 and temp2 == d and i != row: return False unit_row_position = (-1, -1) # unit_row_position is the range of row of the unit var is in # (-1, 1) is just a dummy value if (row % 3 == 0): unit_row_position = (row, row + 2) elif (row % 3 == 1): unit_row_position = (row - 1, row + 1) else: unit_row_position = (row - 2, row) unit_col_position = (-1, -1) # unit_col_position is the range of row of the unit var is in # (-1, 1) is just a dummy value if (col % 3 == 0): unit_col_position = (col, col + 2) elif (col % 3 == 1): unit_col_position = (col - 1, col + 1) else: unit_col_position = (col - 2, col) # Check consistency within a unit for i in range(unit_row_position[0], unit_row_position[1] + 1): for j in range(unit_col_position[0], unit_col_position[1] + 1): temp = grid.get_cells()[i][j] if len(temp) == 1 and temp == d and (i != row or j != col): return False return True file = open('top95.txt', 'r') problems = file.readlines() running_time_mrv = [] running_time_first_available = [] i = 1 for p in problems: print("\n\nSudoku", i) g = Grid() g.read_file(p) g.print() # MRV b = Backtracking() mrv = MRV() start = time.time() temp = b.search_AC3(g, mrv) end = time.time() running_time_mrv.append(end - start) temp.print() print("Is solved:", temp.is_solved()) # FA fa = FirstAvailable() start = time.time() temp = b.search_AC3(g, fa) end = time.time() running_time_first_available.append(end - start) temp.print() print("Is solved:", temp.is_solved()) i += 1 plotter = PlotResults() plotter.plot_results(running_time_mrv, running_time_first_available, "Running Time Backtracking (MRV)", "Running Time Backtracking (FA)", "running_time")
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.savefig", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "time.time", "matplotlib.pyplot.subplots" ]
[((17109, 17120), 'time.time', 'time.time', ([], {}), '()\n', (17118, 17120), False, 'import time\n'), ((17163, 17174), 'time.time', 'time.time', ([], {}), '()\n', (17172, 17174), False, 'import time\n'), ((17323, 17334), 'time.time', 'time.time', ([], {}), '()\n', (17332, 17334), False, 'import time\n'), ((17376, 17387), 'time.time', 'time.time', ([], {}), '()\n', (17385, 17387), False, 'import time\n'), ((750, 764), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (762, 764), True, 'import matplotlib.pyplot as plt\n'), ((1176, 1194), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['label1'], {}), '(label1)\n', (1186, 1194), True, 'import matplotlib.pyplot as plt\n'), ((1203, 1221), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['label2'], {}), '(label2)\n', (1213, 1221), True, 'import matplotlib.pyplot as plt\n'), ((1230, 1240), 'matplotlib.pyplot.grid', 'plt.grid', ([], {}), '()\n', (1238, 1240), True, 'import matplotlib.pyplot as plt\n'), ((1249, 1270), 'matplotlib.pyplot.savefig', 'plt.savefig', (['filename'], {}), '(filename)\n', (1260, 1270), True, 'import matplotlib.pyplot as plt\n')]
import sys import codecs gold_file=sys.argv[1] pred_file=sys.argv[2] def read_data(fname): for line in codecs.open(fname): line = line.strip().split() tagged = [x.rsplit("/",1) for x in line] yield tagged def normalize_bio(tagged_sent): last_bio, last_type = "O","O" normalized = [] for word, tag in tagged_sent: if tag == "O": tag = "O-O" bio,typ = tag.split("-",1) if bio=="I" and last_bio=="O": bio="B" if bio=="I" and last_type!=typ: bio="B" normalized.append((word,(bio,typ))) last_bio,last_type=bio,typ return normalized def compare_accuracy(gold, pred): assert(len(gold_data)==len(pred_data)) correct = 0.0 total = 0.0 for gold_sent, pred_sent in zip(gold, pred): assert(len(gold_sent)==len(pred_sent)) gws = [w for w,t in gold_sent] pws = [w for w,t in pred_sent] assert(gws==pws) gtags = [t for w,t in gold_sent] ptags = [t for w,t in pred_sent] correct += sum([1 if g==p else 0 for g,p in zip(gold_sent, pred_sent)]) total += len(gold_sent) return correct/total def get_entities(sent): ent=[] for i,(word,tag) in enumerate(sent): bio,typ=tag if bio=="B": if ent: yield tuple(ent) ent=[] ent.append(i) ent.append(typ) ent.append(word) if bio=="I": ent.append(word) if bio=="O": if ent: yield tuple(ent) ent=[] if ent: yield tuple(ent) if __name__=='__main__': gold_data = [normalize_bio(tagged) for tagged in read_data(gold_file)] pred_data = [normalize_bio(tagged) for tagged in read_data(pred_file)] assert(len(gold_data)==len(pred_data)) gold_entities = set() for i,sent in enumerate(gold_data): for entity in get_entities(sent): gold_entities.add((i,entity)) pred_entities = set() for i,sent in enumerate(pred_data): for entity in get_entities(sent): pred_entities.add((i,entity)) print acc = compare_accuracy(gold_data, pred_data) print ("Accuracy:", acc) print prec = len(gold_entities.intersection(pred_entities)) / float(len(pred_entities)) rec = len(gold_entities.intersection(pred_entities)) / float(len(gold_entities)) print("All-types \tPrec:%s Rec:%s" % (prec, rec)) types = set([e[1][1] for e in gold_entities]) - set(["O"]) for t in types: gents = set([e for e in gold_entities if e[1][1]==t]) pents = set([e for e in pred_entities if e[1][1]==t]) prec = len(gents.intersection(pents)) / float(len(pents)) rec = len(gents.intersection(pents)) / float(len(gents)) print("%10s \tPrec:%s Rec:%s" % (t, prec, rec))
[ "codecs.open" ]
[((108, 126), 'codecs.open', 'codecs.open', (['fname'], {}), '(fname)\n', (119, 126), False, 'import codecs\n')]
import checkers env = checkers.CheckersAgent() state = env.observation() actions = env.possible_actions(state) s, r, done, info = env.step(actions[0])
[ "checkers.CheckersAgent" ]
[((105, 129), 'checkers.CheckersAgent', 'checkers.CheckersAgent', ([], {}), '()\n', (127, 129), False, 'import checkers\n')]
from rest_framework import serializers from .models import Question, Choice class ChoiceSerializer(serializers.ModelSerializer): class Meta: model = Choice fields = ["id", "message"] class QuestionSerializer(serializers.ModelSerializer): choices = ChoiceSerializer(many=True, read_only=True) class Meta: model = Question fields = ["id", "enable", "message", "min_num_chosen", "max_num_chosen", "choices"] class ChoiceCountSerializer(serializers.ModelSerializer): count = serializers.IntegerField() class Meta: model = Choice fields = ["id", "message", "count"]
[ "rest_framework.serializers.IntegerField" ]
[((526, 552), 'rest_framework.serializers.IntegerField', 'serializers.IntegerField', ([], {}), '()\n', (550, 552), False, 'from rest_framework import serializers\n')]
"""PPPIPAM's setup script.""" try: from setuptools import setup, find_packages except ImportError: from distutils.core import setup, find_packages from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='pppipam', # Required version='0.1.0', # Required description="Poor person's Python IP Address Manager", # Required long_description=long_description, # Optional long_description_content_type='text/markdown', # Optional url='https://github.com/ayharano/pppipam', # Optional author='<NAME>', # Optional author_email='<EMAIL>', # Optional classifiers=[ # Optional 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.7', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: System :: Networking', 'Topic :: System :: Systems Administration', ], keywords='ip address management ipv4 ipv6 network system administration', # Optional packages=find_packages(exclude=['tests']), # Required project_urls={ # Optional 'Bug Reports': 'https://github.com/ayharano/pppipam/issues', 'Source': 'https://github.com/ayharano/pppipam', }, python_requires='>=3.7, <4', # Optional )
[ "os.path.dirname", "os.path.join", "distutils.core.find_packages" ]
[((197, 219), 'os.path.dirname', 'path.dirname', (['__file__'], {}), '(__file__)\n', (209, 219), False, 'from os import path\n'), ((232, 260), 'os.path.join', 'path.join', (['here', '"""README.md"""'], {}), "(here, 'README.md')\n", (241, 260), False, 'from os import path\n'), ((1408, 1440), 'distutils.core.find_packages', 'find_packages', ([], {'exclude': "['tests']"}), "(exclude=['tests'])\n", (1421, 1440), False, 'from distutils.core import setup, find_packages\n')]
from django.contrib import admin from .models import ProductAquaticPlantPackage, ProductAquaticPlant # Register your models here. class ProductAquaticPlantAdminInline(admin.TabularInline): model = ProductAquaticPlant extra = 1 @admin.register(ProductAquaticPlantPackage) class ProductAquaticPlantPackageAdmin(admin.ModelAdmin): inlines = (ProductAquaticPlantAdminInline,) list_display = ('id', 'name') pass @admin.register(ProductAquaticPlant) class ProductAquaticPlantAdmin(admin.ModelAdmin): filter_horizontal = ('image',) pass
[ "django.contrib.admin.register" ]
[((237, 279), 'django.contrib.admin.register', 'admin.register', (['ProductAquaticPlantPackage'], {}), '(ProductAquaticPlantPackage)\n', (251, 279), False, 'from django.contrib import admin\n'), ((430, 465), 'django.contrib.admin.register', 'admin.register', (['ProductAquaticPlant'], {}), '(ProductAquaticPlant)\n', (444, 465), False, 'from django.contrib import admin\n')]
import logging import sys import time from node.core.commands import CustomCommand from node.core.database import is_replica_set_initialized logger = logging.getLogger(__name__) class Command(CustomCommand): help = 'Check if replica set is initialized' # noqa: A003 def add_arguments(self, parser): parser.add_argument('-w', '--wait', action='store_true') parser.add_argument('-t', '--timeout', type=int, default=60, help='Timeout in seconds') parser.add_argument('-p', '--period', type=int, default=1, help='Check period') def handle(self, *args, **options): expiration = time.time() + options['timeout'] should_wait = options['wait'] while True: if is_replica_set_initialized(): self.write_success('Replica set is initialized') break if should_wait: now = time.time() if now < expiration: self.write(f'Replica set is not initialized yet, waiting (ts: {now})..') time.sleep(1) else: self.write_error('Timed out') sys.exit(1) else: self.write_error('Replica set is not initialized') sys.exit(1)
[ "logging.getLogger", "time.sleep", "sys.exit", "time.time", "node.core.database.is_replica_set_initialized" ]
[((152, 179), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (169, 179), False, 'import logging\n'), ((624, 635), 'time.time', 'time.time', ([], {}), '()\n', (633, 635), False, 'import time\n'), ((730, 758), 'node.core.database.is_replica_set_initialized', 'is_replica_set_initialized', ([], {}), '()\n', (756, 758), False, 'from node.core.database import is_replica_set_initialized\n'), ((898, 909), 'time.time', 'time.time', ([], {}), '()\n', (907, 909), False, 'import time\n'), ((1279, 1290), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1287, 1290), False, 'import sys\n'), ((1060, 1073), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1070, 1073), False, 'import time\n'), ((1166, 1177), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1174, 1177), False, 'import sys\n')]
from pyspark.sql.types import * def window(x, y, yerr, start, end) -> ( StructType( [ StructField("x", ArrayType(FloatType())), StructField("y", ArrayType(FloatType())), StructField("yerr", ArrayType(FloatType())), ] ) ): import numpy as np x = np.array(x) y = np.array(y) yerr = np.array(yerr) in_window = (x > start) & (x < end) return { "x" : x[in_window].tolist(), "y" : y[in_window].tolist(), "yerr" : yerr[in_window].tolist(), } def window_udf(): from fit_utils import make_udf_from_annotated_function return make_udf_from_annotated_function(window) def around_window(x, y, yerr, start, end, wiggle=0.5) -> ( StructType( [ StructField("x", ArrayType(FloatType())), StructField("y", ArrayType(FloatType())), StructField("yerr", ArrayType(FloatType())), ] ) ): import numpy as np width = end - start x = np.array(x) y = np.array(y) yerr = np.array(yerr) min_x = start - wiggle * width max_x = end + wiggle * width in_window = (x > min_x) & (x < max_x) return { "x" : x[in_window].tolist(), "y" : y[in_window].tolist(), "yerr" : yerr[in_window].tolist(), } def around_window_udf(**kwargs): from functools import partial from fit_utils import make_udf_from_annotated_function return make_udf_from_annotated_function(partial(around_window, **kwargs))
[ "functools.partial", "numpy.array", "fit_utils.make_udf_from_annotated_function" ]
[((314, 325), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (322, 325), True, 'import numpy as np\n'), ((334, 345), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (342, 345), True, 'import numpy as np\n'), ((357, 371), 'numpy.array', 'np.array', (['yerr'], {}), '(yerr)\n', (365, 371), True, 'import numpy as np\n'), ((647, 687), 'fit_utils.make_udf_from_annotated_function', 'make_udf_from_annotated_function', (['window'], {}), '(window)\n', (679, 687), False, 'from fit_utils import make_udf_from_annotated_function\n'), ((1014, 1025), 'numpy.array', 'np.array', (['x'], {}), '(x)\n', (1022, 1025), True, 'import numpy as np\n'), ((1034, 1045), 'numpy.array', 'np.array', (['y'], {}), '(y)\n', (1042, 1045), True, 'import numpy as np\n'), ((1057, 1071), 'numpy.array', 'np.array', (['yerr'], {}), '(yerr)\n', (1065, 1071), True, 'import numpy as np\n'), ((1509, 1541), 'functools.partial', 'partial', (['around_window'], {}), '(around_window, **kwargs)\n', (1516, 1541), False, 'from functools import partial\n')]
from query import FilterableQuery class Update(FilterableQuery): """Implements an UPDATE query.""" template = 'UPDATE {table} SET {updates} {conditions}' def __init__(self, table=None, **kwargs): FilterableQuery.__init__(self, table) self.updates = kwargs def set(self, **kwargs): """Similar to Insert.set(), this will update a column's value.""" self.updates.update(kwargs) return self @property def statement(self): update_list = ['{} = {}'.format(k, self.placeholder) for k in self.updates.keys()] return self.template.format( table = self.table, updates = ', '.join(update_list), conditions = self.where_clause ).strip() @property def variables(self): return self.updates.values() + self.conditions.values()
[ "query.FilterableQuery.__init__" ]
[((220, 257), 'query.FilterableQuery.__init__', 'FilterableQuery.__init__', (['self', 'table'], {}), '(self, table)\n', (244, 257), False, 'from query import FilterableQuery\n')]
from absl import app from absl import flags from camera_replay_operator import CameraReplayOperator from detection_operator import DetectionOperator from tracker_crt_operator import TrackerCRTOperator from tracker_cv2_operator import TrackerCV2Operator import erdos.graph FLAGS = flags.FLAGS flags.DEFINE_string('framework', 'ros', 'Execution framework to use: ros | ray.') flags.DEFINE_integer('num_cameras', 1, 'Number of cameras.') flags.DEFINE_bool('obj_detection', False, 'True to enable object detection operator') flags.DEFINE_bool('obj_tracking', False, 'True to enable object tracking operator') flags.DEFINE_string('tracker_type', 'cv2', 'Tracker type: cv2 | crt') def main(argv): graph = erdos.graph.get_current_graph() camera_ops = [] for i in range(0, FLAGS.num_cameras, 1): op_name = 'camera{}'.format(i) camera_op = graph.add( CameraReplayOperator, name=op_name, setup_args={'op_name': op_name}) camera_ops.append(camera_op) if FLAGS.obj_detection: obj_detector_op = graph.add(DetectionOperator, name='detection') graph.connect(camera_ops, [obj_detector_op]) if FLAGS.obj_tracking: tracker_op = None if FLAGS.tracker_type == 'cv2': tracker_op = graph.add(TrackerCV2Operator, name='tracker') elif FLAGS.tracker_type == 'crt': tracker_op = graph.add(TrackerCRTOperator, name='tracker') graph.connect(camera_ops + [obj_detector_op], [tracker_op]) graph.execute(FLAGS.framework) if __name__ == '__main__': app.run(main)
[ "absl.app.run", "absl.flags.DEFINE_integer", "absl.flags.DEFINE_string", "absl.flags.DEFINE_bool" ]
[((295, 380), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""framework"""', '"""ros"""', '"""Execution framework to use: ros | ray."""'], {}), "('framework', 'ros',\n 'Execution framework to use: ros | ray.')\n", (314, 380), False, 'from absl import flags\n'), ((397, 457), 'absl.flags.DEFINE_integer', 'flags.DEFINE_integer', (['"""num_cameras"""', '(1)', '"""Number of cameras."""'], {}), "('num_cameras', 1, 'Number of cameras.')\n", (417, 457), False, 'from absl import flags\n'), ((458, 547), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""obj_detection"""', '(False)', '"""True to enable object detection operator"""'], {}), "('obj_detection', False,\n 'True to enable object detection operator')\n", (475, 547), False, 'from absl import flags\n'), ((562, 649), 'absl.flags.DEFINE_bool', 'flags.DEFINE_bool', (['"""obj_tracking"""', '(False)', '"""True to enable object tracking operator"""'], {}), "('obj_tracking', False,\n 'True to enable object tracking operator')\n", (579, 649), False, 'from absl import flags\n'), ((664, 733), 'absl.flags.DEFINE_string', 'flags.DEFINE_string', (['"""tracker_type"""', '"""cv2"""', '"""Tracker type: cv2 | crt"""'], {}), "('tracker_type', 'cv2', 'Tracker type: cv2 | crt')\n", (683, 733), False, 'from absl import flags\n'), ((1672, 1685), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (1679, 1685), False, 'from absl import app\n')]
"""Generate a log file from a folder of data files.""" import argparse import csv import logging import os import pathlib logger = logging.getLogger(__name__) def generate_log(folder): """Generate a log file for a folder of data. Parameters ---------- folder : pathlib.Path Folder containing data. Returns ------- log_path : pathlib.Path New log file path. """ logger.info(f"Generating a log file for folder: {folder}") log_path = folder.joinpath("log.log") files = [ p for p in folder.iterdir() if p.suffix in [".liv1", ".liv2", ".mpp", ".voc", ".jsc", ".div1", ".div2"] ] # sort by date modified to preserve measurement order files.sort(key=os.path.getctime) # for each data file, list the log metadata log = [] for i, file in enumerate(files): with open(file) as f: csv_reader = csv.reader(f, delimiter="\t") # each row of metadata is a tab-separated list of length 2 meta = [row for row in csv_reader if len(row) == 2] # store the header from the first iteration only if i == 0: header = [x[0] for x in meta] log.append(header) data = [x[1] for x in meta] log.append(data) # the list of metadata to a tab separated file with open(log_path, mode="w", newline="\n") as lf: csv_writer = csv.writer(lf, delimiter="\t") for entry in log: csv_writer.writerow(entry) logger.info(f"Generated new log file successfully: {log_path}") return log_path if __name__ == "__main__": parser = argparse.ArgumentParser(description="Get folder path") parser.add_argument( "--folder", default=str(pathlib.Path.cwd()), help="Absolute path to data folder", ) args = parser.parse_args() generate_log(pathlib.Path(args.folder))
[ "logging.getLogger", "argparse.ArgumentParser", "pathlib.Path", "pathlib.Path.cwd", "csv.writer", "csv.reader" ]
[((134, 161), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (151, 161), False, 'import logging\n'), ((1650, 1704), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Get folder path"""'}), "(description='Get folder path')\n", (1673, 1704), False, 'import argparse\n'), ((1423, 1453), 'csv.writer', 'csv.writer', (['lf'], {'delimiter': '"""\t"""'}), "(lf, delimiter='\\t')\n", (1433, 1453), False, 'import csv\n'), ((1890, 1915), 'pathlib.Path', 'pathlib.Path', (['args.folder'], {}), '(args.folder)\n', (1902, 1915), False, 'import pathlib\n'), ((920, 949), 'csv.reader', 'csv.reader', (['f'], {'delimiter': '"""\t"""'}), "(f, delimiter='\\t')\n", (930, 949), False, 'import csv\n'), ((1770, 1788), 'pathlib.Path.cwd', 'pathlib.Path.cwd', ([], {}), '()\n', (1786, 1788), False, 'import pathlib\n')]
from __future__ import annotations import typing import rich import toolcli from toolcli import spec def get_command_spec() -> toolcli.CommandSpec: return { 'f': theme_command, 'help': 'display cli style theme', 'hidden': True, 'extra_data': ['parse_spec'], } def theme_command(parse_spec: spec.ParseSpec) -> None: config = parse_spec.get('config') if config is None: print('no theme') else: theme = config.get('style_theme') if theme is None: print('no theme') else: longest = max(len(key) for key in theme.keys()) longest = longest + 1 for key, value in theme.items(): value_str = typing.cast(str, value) rich.print( (key + ':').ljust(longest) + ' ' + '[' + value_str + ']' + value_str + '[/' + value_str + ']', )
[ "typing.cast" ]
[((738, 761), 'typing.cast', 'typing.cast', (['str', 'value'], {}), '(str, value)\n', (749, 761), False, 'import typing\n')]
#!/usr/bin/env python """ Functions for running dyPolyChord using compiled PolyChord C++ or Fortran likelihoods. """ import os class RunCompiledPolyChord(object): """Object for running a compiled PolyChord executable with specified inputs.""" def __init__(self, executable_path, prior_str, **kwargs): """ Specify path to executable, priors and derived parameters. Parameters ---------- executable_path: str Path to compiled likelihood. If this is in the directory from which dyPolyChord is being run, you may need to prepend "./" to the executable name for it to work. prior_str: str String specifying prior in the format required for PolyChord .ini files (see get_prior_block_str for more details). config_str: str, optional String to be written to [root].cfg file if required. derived_str: str or None, optional String specifying prior in the format required for PolyChord .ini files (see prior_str for more details). mpi_str: str or None, optional Optional mpi command to preprend to run command. For example to run with 8 processors, use mpi_str = 'mprun -np 8'. Note that PolyChord must be installed with MPI enabled to allow running with MPI. """ self.config_str = kwargs.pop('config_str', None) self.derived_str = kwargs.pop('derived_str', None) self.mpi_str = kwargs.pop('mpi_str', None) if kwargs: raise TypeError('unexpected **kwargs: {0}'.format(kwargs)) self.executable_path = executable_path self.prior_str = prior_str def __call__(self, settings_dict, comm=None): """ Run PolyChord with the input settings by writing a .ini file then using the compiled likelihood specified in executable_path. See the PolyChord documentation for more details. Parameters ---------- settings_dict: dict Input PolyChord settings. comm: None, optional Not used. Included only so __call__ has the same arguments as the equivalent python function (which uses the comm argument for runnign with MPI). """ assert os.path.isfile(self.executable_path), ( 'executable not found: ' + self.executable_path) assert comm is None, 'comm not used for compiled likelihoods.' # Write settings to ini file file_path = os.path.join( settings_dict['base_dir'], settings_dict['file_root']) with open(file_path + '.ini', 'w') as ini_file: ini_file.write(self.ini_string(settings_dict)) # If required, write config file if self.config_str is not None: with open(file_path + '.cfg', 'w') as cfg_file: cfg_file.write(self.config_str) # Execute command command_str = self.executable_path + ' ' + file_path + '.ini' if self.mpi_str is not None: command_str = self.mpi_str + ' ' + command_str os.system(command_str) def ini_string(self, settings): """Get a PolyChord format .ini file string based on the input settings. Parameters ---------- settings: dict Returns ------- string: str """ string = '' # Add the settings for key, value in settings.items(): if key == 'nlives': if value: loglikes = sorted(settings['nlives']) string += 'loglikes = ' + format_setting(loglikes) + '\n' nlives = [settings['nlives'][ll] for ll in loglikes] string += 'nlives = ' + format_setting(nlives) + '\n' else: string += key + ' = ' + format_setting(value) + '\n' # Add the prior string += self.prior_str if self.derived_str is not None: string += self.derived_str return string # Helper functions for making PolyChord prior strings # --------------------------------------------------- def get_prior_block_str(prior_name, prior_params, nparam, **kwargs): """ Returns a PolyChord format prior block for inclusion in PolyChord .ini files. See the PolyChord documentation for more details. Parameters ---------- prior_name: str Name of prior. See the PolyChord documentation for a list of currently available priors and details of how to add your own. prior_params: str, float or list of strs and floats Parameters for the prior function. nparam: int Number of parameters. start_param: int, optional Where to start param numbering. For when multiple prior blocks are being used. block: int, optional Number of block (only needed when using multiple prior blocks). speed: int, optional Use to specify fast and slow parameters if required. See the PolyChord documentation for more details. Returns ------- block_str: str PolyChord format prior block string for ini file. """ start_param = kwargs.pop('start_param', 1) speed = kwargs.pop('speed', 1) block = kwargs.pop('block', 1) if kwargs: raise TypeError('unexpected **kwargs: {0}'.format(kwargs)) block_str = '' for i in range(start_param, nparam + start_param): block_str += ('P : p{0} | \\theta_{{{0}}} | {1} | {2} | {3} |' .format(i, speed, prior_name, block)) block_str += format_setting(prior_params) + '\n' return block_str def format_setting(setting): """ Return setting as string in the format needed for PolyChord's .ini files. These use 'T' for True and 'F' for False, and require lists of numbers written separated by spaces and without commas or brackets. Parameters ---------- setting: (can be any type for which str(settings) works) Returns ------- str """ if isinstance(setting, bool): return str(setting)[0] elif isinstance(setting, (list, tuple)): string = str(setting) for char in [',', '[', ']', '(', ')']: string = string.replace(char, '') return string else: return str(setting) def python_prior_to_str(prior, **kwargs): """Utility function for mapping python priors (of the type in python_priors.py) to ini file format strings used for compiled (C++ or Fortran) likelihoods. The input prior must correspond to a prior function set up in PolyChord/src/polychord/priors.f90. You can easily add your own too. Note that some of the priors are only available in PolyChord >= v1.15. Parameters ---------- prior_obj: python prior object Of the type defined in python_priors.py kwargs: dict, optional Passed to get_prior_block_str (see its docstring for more details). Returns ------- block_str: str PolyChord format prior block string for ini file. """ nparam = kwargs.pop('nparam') name = type(prior).__name__.lower() if name == 'uniform': parameters = [prior.minimum, prior.maximum] elif name == 'poweruniform': name = 'power_uniform' parameters = [prior.minimum, prior.maximum, prior.power] assert prior.power < 0, ( 'compiled power_uniform currently only takes negative powers.' 'power={}'.format(prior.power)) elif name == 'gaussian': parameters = [getattr(prior, 'mu', 0.0), prior.sigma] if getattr(prior, 'half', False): name = 'half_' + name elif name == 'exponential': parameters = [prior.lambd] else: raise TypeError('Not set up for ' + name) if getattr(prior, 'sort', False): name = 'sorted_' + name if getattr(prior, 'adaptive', False): name = 'adaptive_' + name assert getattr(prior, "nfunc_min", 1) == 1, ( 'compiled adaptive priors currently only take nfunc_min=1.' 'prior.nfunc_min={}'.format(prior.nfunc_min)) return get_prior_block_str(name, parameters, nparam, **kwargs) def python_block_prior_to_str(bp_obj): """As for python_prior_to_str, but for BlockPrior objects of the type defined in python_priors.py. python_prior_to_str is called seperately on every block. Parameters ---------- prior_obj: python prior object Of the type defined in python_priors.py. kwargs: dict, optional Passed to get_prior_block_str (see its docstring for more details). Returns ------- block_str: str PolyChord format prior block string for ini file. """ assert type(bp_obj).__name__ == 'BlockPrior', ( 'Unexpected input object type: {}'.format( type(bp_obj).__name__)) start_param = 1 string = '' for i, prior in enumerate(bp_obj.prior_blocks): string += python_prior_to_str( prior, block=(i + 1), start_param=start_param, nparam=bp_obj.block_sizes[i]) start_param += bp_obj.block_sizes[i] return string
[ "os.path.isfile", "os.system", "os.path.join" ]
[((2340, 2376), 'os.path.isfile', 'os.path.isfile', (['self.executable_path'], {}), '(self.executable_path)\n', (2354, 2376), False, 'import os\n'), ((2569, 2636), 'os.path.join', 'os.path.join', (["settings_dict['base_dir']", "settings_dict['file_root']"], {}), "(settings_dict['base_dir'], settings_dict['file_root'])\n", (2581, 2636), False, 'import os\n'), ((3154, 3176), 'os.system', 'os.system', (['command_str'], {}), '(command_str)\n', (3163, 3176), False, 'import os\n')]
from django.contrib import admin from . import models class NotesAdmin(admin.ModelAdmin): list_display = ('title',) admin.site.register(models.Notes, NotesAdmin)
[ "django.contrib.admin.site.register" ]
[((123, 168), 'django.contrib.admin.site.register', 'admin.site.register', (['models.Notes', 'NotesAdmin'], {}), '(models.Notes, NotesAdmin)\n', (142, 168), False, 'from django.contrib import admin\n')]
import pyaf.tests.periodicities.period_test as per per.buildModel((5 , 'D' , 100));
[ "pyaf.tests.periodicities.period_test.buildModel" ]
[((52, 81), 'pyaf.tests.periodicities.period_test.buildModel', 'per.buildModel', (["(5, 'D', 100)"], {}), "((5, 'D', 100))\n", (66, 81), True, 'import pyaf.tests.periodicities.period_test as per\n')]
import pathlib import sys NB_ROOT = pathlib.Path(__file__).parent PYNSTEIN_ROOT = pathlib.Path(__file__).parent.parent.parent.parent / 'utilities' / 'pystein' GR2_ROOT = NB_ROOT.parent def setup_nb(): sys.path.append(PYNSTEIN_ROOT.as_posix()) sys.path.append(GR2_ROOT.as_posix())
[ "pathlib.Path" ]
[((37, 59), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (49, 59), False, 'import pathlib\n'), ((83, 105), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (95, 105), False, 'import pathlib\n')]
def _valueOr(dictionary, key, default): return dictionary[key] if key in dictionary else default def _operationNetValue(operation): return operation['price'] * _valueOr(operation, 'currencyConversion', 1.0) def _printJson(data): from bson.json_util import dumps print(dumps(data, indent=2)) from .operations import Operations from .profits import Profits from .period import Period from .categories import Categories
[ "bson.json_util.dumps" ]
[((286, 307), 'bson.json_util.dumps', 'dumps', (['data'], {'indent': '(2)'}), '(data, indent=2)\n', (291, 307), False, 'from bson.json_util import dumps\n')]
import unittest from test_gpeg import TestGPEG from test_tpeg import TestTPEG def suite(): suite = unittest.TestSuite() suite.addTests(unittest.makeSuite(TestGPEG)) suite.addTests(unittest.makeSuite(TestTPEG)) return suite
[ "unittest.TestSuite", "unittest.makeSuite" ]
[((102, 122), 'unittest.TestSuite', 'unittest.TestSuite', ([], {}), '()\n', (120, 122), False, 'import unittest\n'), ((140, 168), 'unittest.makeSuite', 'unittest.makeSuite', (['TestGPEG'], {}), '(TestGPEG)\n', (158, 168), False, 'import unittest\n'), ((187, 215), 'unittest.makeSuite', 'unittest.makeSuite', (['TestTPEG'], {}), '(TestTPEG)\n', (205, 215), False, 'import unittest\n')]
#!/usr/bin/env python3 # -*- coding:utf-8 -*- # Copyright (c) Megvii, Inc. and its affiliates. import os import random import torch.utils.data from loguru import logger import torch import cv2 import numpy as np import json import glob import hashlib #from ..dataloading import get_yolox_datadir #from .datasets_wrapper import Dataset from yolox.data.datasets.datasets_wrapper import Dataset from DOTA_devkit import dota_utils from yolox.data.data_augment import OrientedValTransform, OrientedTrainTransform from pathlib import Path from tqdm import tqdm IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes dotav10_classes = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter'] dotav15_classes = ['plane', 'baseball-diamond', 'bridge', 'ground-track-field', 'small-vehicle', 'large-vehicle', 'ship', 'tennis-court', 'basketball-court', 'storage-tank', 'soccer-ball-field', 'roundabout', 'harbor', 'swimming-pool', 'helicopter', 'container-crane'] def collate_fn(batch): img, label, img_info, img_id = zip(*batch) for i, l in enumerate(label): l[:, 0] = i return torch.from_numpy(np.array(img)), torch.from_numpy(np.vstack(label)), np.vstack(img_info), img_id def draw(img, label, savepath=False, windowName='image'): pts = label[:, 1: -1] for i, poly in enumerate(pts): poly = poly.reshape([4, 2]).astype(np.int32) cv2.polylines(img, [poly], isClosed=True, color=(0, 0, 255), thickness=2) if savepath: cv2.imwrite(savepath, img) else: cv2.namedWindow(windowName, 0) cv2.imshow(windowName, img) cv2.waitKey() def drawOneImg(img, label, savepath=False, windowName='image'): pts = label[:, 1: -1] for i, poly in enumerate(pts): poly = poly.reshape([4, 2]).astype(np.int32) cv2.polylines(img, [poly], isClosed=True, color=(0, 0, 255), thickness=2) if savepath: cv2.imwrite(savepath, img) else: cv2.namedWindow("img", 0) cv2.imshow("img", img) cv2.waitKey() class DOTADataset(Dataset): def __init__(self, name="train", data_dir=None, img_size=(1024, 1024), preproc=None, cache=False, save_result_dir=None): super().__init__(img_size) self.imgs = None self.name = name self.data_dir = data_dir self.img_size = img_size self.labels_dir = os.path.join(data_dir, name, 'labelTxt') self.imgs_dir = os.path.join(data_dir, name, 'images') self.preproc = preproc self.save_result_dir = save_result_dir self.labels_file = [files for root, dirs, files in os.walk(self.labels_dir)] self.labels_file = [os.path.join(self.labels_dir, file) for file in self.labels_file[0]] self.imgs_file = [file.replace('labelTxt', 'images').replace('.txt', '.png') for file in self.labels_file] assert len(self.labels_file) == len(self.imgs_file) self.imgs_num = len(self.imgs_file) self.class_id = {} for i, cls in enumerate(dotav15_classes): self.class_id[cls] = i self.ids = [i for i in range(len(self.labels_file))] random.shuffle(self.ids) if cache : self._cache_images() def __len__(self): return self.imgs_num def load_image(self, index): return cv2.imread(self.imgs_file[index]) def load_resized_img(self, index): img = self.load_image(index) r = min(self.img_size[0] / img.shape[0], self.img_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * r), int(img.shape[0] * r)), interpolation=cv2.INTER_LINEAR, ).astype(np.uint8) return resized_img def load_anno(self, index): ann_file = self.labels_file[index] objects = dota_utils.parse_dota_poly2(ann_file) targets = [] for obj in objects: class_id = self.class_id[obj['name']] poly = obj['poly'] targets.append([0] + poly + [class_id]) return np.array([targets]) def pull_item(self, index): id_ = self.ids[index] img = self.load_image(index) height, width = img.shape[0], img.shape[1] ann_file = self.labels_file[index] objects = dota_utils.parse_dota_poly2(ann_file) targets = [] for obj in objects: class_id = self.class_id[obj['name']] poly = obj['poly'] targets.append([0] + poly + [class_id]) res = np.array(targets) img_info = np.array([height, width]) #self.draw(img, res) return img, res.copy(), img_info, np.array([id_]) def __getitem__(self, index): img, target, img_info, img_id = self.pull_item(index) save_path = f"/home/yanggang/exprimentsForDataRead/{index}_draw.png" if self.preproc is not None: img, target = self.preproc(img, target, self.input_dim, savepath=save_path) return img, target, img_info, img_id def letterbox(self, img, new_shape=(1024,1024), color=(114,114,114),auto=False, scaleFill=False, scale_up=True, stride=32): shape = img.shape[:2] if isinstance(new_shape, int): new_shape = (new_shape, new_shape) r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) if not scale_up: r = min(r, 1.0) radio = r, r new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] if auto: dh, dw = np.mod(dh, stride), np.mod(dw, stride) elif scaleFill: dh, dw = 0.0, 0.0 new_unpad = (new_shape[1], new_shape[0]) radio = new_shape[1]/shape[1], new_shape[0]/shape[0] dw /= 2 dh /= 2 if shape[::-1] != new_unpad: img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1)) left, right = int(round(dw - 0.1)), int(round(dw + 0.1)) im = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) return im, radio, (dw, dh) if __name__ == '__main__': dataset = DOTADataset(name='train', data_dir='/home/yanggang/data/DOTA_SPLIT', preproc=OrientedTrainTransform()) dataloader = torch.utils.data.DataLoader(dataset=dataset, batch_size=4, shuffle=False,collate_fn=collate_fn) for i, (img, target, img_info, img_id) in enumerate(dataloader): labels = target[:, -1] gt_classes = torch.nn.functional.one_hot(labels.to(torch.int64), 16) print(f"reading {i} batch, {img.shape}")
[ "cv2.imwrite", "DOTA_devkit.dota_utils.parse_dota_poly2", "random.shuffle", "cv2.polylines", "cv2.copyMakeBorder", "os.path.join", "yolox.data.data_augment.OrientedTrainTransform", "cv2.imshow", "numpy.array", "numpy.mod", "numpy.vstack", "torch.utils.data.DataLoader", "cv2.resize", "cv2.waitKey", "cv2.namedWindow", "os.walk", "cv2.imread" ]
[((6665, 6765), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', ([], {'dataset': 'dataset', 'batch_size': '(4)', 'shuffle': '(False)', 'collate_fn': 'collate_fn'}), '(dataset=dataset, batch_size=4, shuffle=False,\n collate_fn=collate_fn)\n', (6692, 6765), False, 'import torch\n'), ((1476, 1495), 'numpy.vstack', 'np.vstack', (['img_info'], {}), '(img_info)\n', (1485, 1495), True, 'import numpy as np\n'), ((1685, 1758), 'cv2.polylines', 'cv2.polylines', (['img', '[poly]'], {'isClosed': '(True)', 'color': '(0, 0, 255)', 'thickness': '(2)'}), '(img, [poly], isClosed=True, color=(0, 0, 255), thickness=2)\n', (1698, 1758), False, 'import cv2\n'), ((1785, 1811), 'cv2.imwrite', 'cv2.imwrite', (['savepath', 'img'], {}), '(savepath, img)\n', (1796, 1811), False, 'import cv2\n'), ((1830, 1860), 'cv2.namedWindow', 'cv2.namedWindow', (['windowName', '(0)'], {}), '(windowName, 0)\n', (1845, 1860), False, 'import cv2\n'), ((1870, 1897), 'cv2.imshow', 'cv2.imshow', (['windowName', 'img'], {}), '(windowName, img)\n', (1880, 1897), False, 'import cv2\n'), ((1906, 1919), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (1917, 1919), False, 'import cv2\n'), ((2107, 2180), 'cv2.polylines', 'cv2.polylines', (['img', '[poly]'], {'isClosed': '(True)', 'color': '(0, 0, 255)', 'thickness': '(2)'}), '(img, [poly], isClosed=True, color=(0, 0, 255), thickness=2)\n', (2120, 2180), False, 'import cv2\n'), ((2207, 2233), 'cv2.imwrite', 'cv2.imwrite', (['savepath', 'img'], {}), '(savepath, img)\n', (2218, 2233), False, 'import cv2\n'), ((2252, 2277), 'cv2.namedWindow', 'cv2.namedWindow', (['"""img"""', '(0)'], {}), "('img', 0)\n", (2267, 2277), False, 'import cv2\n'), ((2287, 2309), 'cv2.imshow', 'cv2.imshow', (['"""img"""', 'img'], {}), "('img', img)\n", (2297, 2309), False, 'import cv2\n'), ((2318, 2331), 'cv2.waitKey', 'cv2.waitKey', ([], {}), '()\n', (2329, 2331), False, 'import cv2\n'), ((2663, 2703), 'os.path.join', 'os.path.join', (['data_dir', 'name', '"""labelTxt"""'], {}), "(data_dir, name, 'labelTxt')\n", (2675, 2703), False, 'import os\n'), ((2728, 2766), 'os.path.join', 'os.path.join', (['data_dir', 'name', '"""images"""'], {}), "(data_dir, name, 'images')\n", (2740, 2766), False, 'import os\n'), ((3431, 3455), 'random.shuffle', 'random.shuffle', (['self.ids'], {}), '(self.ids)\n', (3445, 3455), False, 'import random\n'), ((3611, 3644), 'cv2.imread', 'cv2.imread', (['self.imgs_file[index]'], {}), '(self.imgs_file[index])\n', (3621, 3644), False, 'import cv2\n'), ((4107, 4144), 'DOTA_devkit.dota_utils.parse_dota_poly2', 'dota_utils.parse_dota_poly2', (['ann_file'], {}), '(ann_file)\n', (4134, 4144), False, 'from DOTA_devkit import dota_utils\n'), ((4346, 4365), 'numpy.array', 'np.array', (['[targets]'], {}), '([targets])\n', (4354, 4365), True, 'import numpy as np\n'), ((4579, 4616), 'DOTA_devkit.dota_utils.parse_dota_poly2', 'dota_utils.parse_dota_poly2', (['ann_file'], {}), '(ann_file)\n', (4606, 4616), False, 'from DOTA_devkit import dota_utils\n'), ((4817, 4834), 'numpy.array', 'np.array', (['targets'], {}), '(targets)\n', (4825, 4834), True, 'import numpy as np\n'), ((4854, 4879), 'numpy.array', 'np.array', (['[height, width]'], {}), '([height, width])\n', (4862, 4879), True, 'import numpy as np\n'), ((6384, 6471), 'cv2.copyMakeBorder', 'cv2.copyMakeBorder', (['img', 'top', 'bottom', 'left', 'right', 'cv2.BORDER_CONSTANT'], {'value': 'color'}), '(img, top, bottom, left, right, cv2.BORDER_CONSTANT,\n value=color)\n', (6402, 6471), False, 'import cv2\n'), ((1424, 1437), 'numpy.array', 'np.array', (['img'], {}), '(img)\n', (1432, 1437), True, 'import numpy as np\n'), ((1457, 1473), 'numpy.vstack', 'np.vstack', (['label'], {}), '(label)\n', (1466, 1473), True, 'import numpy as np\n'), ((2958, 2993), 'os.path.join', 'os.path.join', (['self.labels_dir', 'file'], {}), '(self.labels_dir, file)\n', (2970, 2993), False, 'import os\n'), ((4952, 4967), 'numpy.array', 'np.array', (['[id_]'], {}), '([id_])\n', (4960, 4967), True, 'import numpy as np\n'), ((6181, 6239), 'cv2.resize', 'cv2.resize', (['img', 'new_unpad'], {'interpolation': 'cv2.INTER_LINEAR'}), '(img, new_unpad, interpolation=cv2.INTER_LINEAR)\n', (6191, 6239), False, 'import cv2\n'), ((6622, 6646), 'yolox.data.data_augment.OrientedTrainTransform', 'OrientedTrainTransform', ([], {}), '()\n', (6644, 6646), False, 'from yolox.data.data_augment import OrientedValTransform, OrientedTrainTransform\n'), ((2904, 2928), 'os.walk', 'os.walk', (['self.labels_dir'], {}), '(self.labels_dir)\n', (2911, 2928), False, 'import os\n'), ((5882, 5900), 'numpy.mod', 'np.mod', (['dh', 'stride'], {}), '(dh, stride)\n', (5888, 5900), True, 'import numpy as np\n'), ((5902, 5920), 'numpy.mod', 'np.mod', (['dw', 'stride'], {}), '(dw, stride)\n', (5908, 5920), True, 'import numpy as np\n')]
from django.contrib.auth.forms import UserCreationForm from django.http import HttpResponse from django.views.generic import CreateView from django.contrib.auth.models import User from django.core import serializers from rest_framework.views import APIView from user.forms import FormRegister from user.serializers import UserSerializer from django.urls import reverse_lazy import json def userListed(request): list = serializers.serialize('json', User.objects.all(), fields=['username', 'first_name']) return HttpResponse(list, content_type='application/json') class UserRegister(CreateView): model = User template_name = 'user/register.html' form_class = FormRegister success_url = reverse_lazy('pet:pet_list') #print(form_class.errors) class UserAPI(APIView): serializer = UserSerializer def get(self, request, format=None): list = User.objects.all() response = self.serializer(list, many=True) return HttpResponse(json.dumps(response.data), content_type='application/json')
[ "django.http.HttpResponse", "django.contrib.auth.models.User.objects.all", "json.dumps", "django.urls.reverse_lazy" ]
[((519, 570), 'django.http.HttpResponse', 'HttpResponse', (['list'], {'content_type': '"""application/json"""'}), "(list, content_type='application/json')\n", (531, 570), False, 'from django.http import HttpResponse\n'), ((710, 738), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""pet:pet_list"""'], {}), "('pet:pet_list')\n", (722, 738), False, 'from django.urls import reverse_lazy\n'), ((453, 471), 'django.contrib.auth.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (469, 471), False, 'from django.contrib.auth.models import User\n'), ((887, 905), 'django.contrib.auth.models.User.objects.all', 'User.objects.all', ([], {}), '()\n', (903, 905), False, 'from django.contrib.auth.models import User\n'), ((986, 1011), 'json.dumps', 'json.dumps', (['response.data'], {}), '(response.data)\n', (996, 1011), False, 'import json\n')]
from pathlib import Path from matplotlib import pyplot from apppath import ensure_existence from draugr import PROJECT_APP_PATH from draugr.tensorboard_utilities import TensorboardEventExporter from draugr.writers import TrainingScalars if __name__ == "__main__": save = False event_files = list(PROJECT_APP_PATH.user_log.rglob("events.out.tfevents.*")) if len(event_files) > 0: for _path_to_events_file in event_files: print(f"Event file: {_path_to_events_file}") _out_dir = Path.cwd() / "exclude" / "results" ensure_existence(_out_dir) tee = TensorboardEventExporter( _path_to_events_file.parent, save_to_disk=save ) print(f"Available tags: {tee.tags_available}") tee.export_line_plot(TrainingScalars.training_loss.value, out_dir=_out_dir) if not save: pyplot.show() else: print("No events found")
[ "draugr.PROJECT_APP_PATH.user_log.rglob", "apppath.ensure_existence", "pathlib.Path.cwd", "draugr.tensorboard_utilities.TensorboardEventExporter", "matplotlib.pyplot.show" ]
[((307, 363), 'draugr.PROJECT_APP_PATH.user_log.rglob', 'PROJECT_APP_PATH.user_log.rglob', (['"""events.out.tfevents.*"""'], {}), "('events.out.tfevents.*')\n", (338, 363), False, 'from draugr import PROJECT_APP_PATH\n'), ((570, 596), 'apppath.ensure_existence', 'ensure_existence', (['_out_dir'], {}), '(_out_dir)\n', (586, 596), False, 'from apppath import ensure_existence\n'), ((615, 687), 'draugr.tensorboard_utilities.TensorboardEventExporter', 'TensorboardEventExporter', (['_path_to_events_file.parent'], {'save_to_disk': 'save'}), '(_path_to_events_file.parent, save_to_disk=save)\n', (639, 687), False, 'from draugr.tensorboard_utilities import TensorboardEventExporter\n'), ((906, 919), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (917, 919), False, 'from matplotlib import pyplot\n'), ((523, 533), 'pathlib.Path.cwd', 'Path.cwd', ([], {}), '()\n', (531, 533), False, 'from pathlib import Path\n')]
from __future__ import print_function, division import sys import numpy as np import csv import os import glob import plotly import plotly.graph_objs as go def parse_stats(statsfn): stats = { 'tp': [], 'fp': [], 'fn': [], 'num_input_sv': [], 'num_bp_away_from_sv_and_cents_and_telos': [], 'num_bp_away_from_cents_and_telos': [], 'numbp': [], 'num_sv_away_from_cents_and_telos': [], 'datasets': [], } labels = {} with open(statsfn) as F: reader = csv.DictReader(F, delimiter='\t') for row in reader: stats['tp'].append(float(row['num_bp_replaced_by_sv'])) stats['fp'].append(float(row['num_non_sv'])) stats['fn'].append(float(row['num_lone_sv'])) stats['num_sv_away_from_cents_and_telos'].append(float(row['num_bp_replaced_by_sv']) + float(row['num_lone_sv'])) stats['datasets'].append(row['dataset']) for K in ('tp', 'fp', 'fn', 'num_input_sv', 'num_bp_away_from_sv_and_cents_and_telos', 'num_bp_away_from_cents_and_telos', 'num_sv_away_from_cents_and_telos'): stats[K] = np.array(stats[K], dtype=np.float) stats['numbp'] = stats['tp'] + stats['fp'] labels['numbp'] = stats['datasets'] stats['precision'] = stats['tp'] / (stats['tp'] + stats['fp']) stats['recall'] = stats['tp'] / (stats['tp'] + stats['fn']) labels['precision'] = labels['recall'] = stats['datasets'] oldlen = len(stats['precision']) assert oldlen == len(stats['recall']) notnan_idxs = np.logical_not(np.logical_or(np.isnan(stats['precision']), np.isnan(stats['recall']))) stats['precision'] = stats['precision'][notnan_idxs] stats['recall'] = stats['recall'][notnan_idxs] assert len(stats['precision']) == len(stats['recall']) #print(statsfn, 'has', oldlen - len(stats['precision']), 'nan') stats['nonsv_ratio'] = (stats['fp'] + 1) / (stats['num_sv_away_from_cents_and_telos'] + 1) assert np.count_nonzero(np.isnan(stats['nonsv_ratio'])) == 0 assert np.count_nonzero(stats['nonsv_ratio'] == 0) == 0 stats['nonsv_ratio'] = np.log2(stats['nonsv_ratio']) labels['nonsv_ratio'] = ['%s (nonsv = %s, sv = %s)' % (stats['datasets'][idx], stats['fp'][idx], stats['num_sv_away_from_cents_and_telos'][idx]) for idx in range(len(stats['datasets']))] return (stats, labels) def scatter(traces, title, xtitle, ytitle, outfn, logx = False, xmin = None, xmax = None,): xaxis = { 'title': xtitle, 'type': logx and 'log' or 'linear', 'range': [xmin, xmax], } layout = go.Layout( title = title, hovermode = 'closest', xaxis = xaxis, yaxis = { 'title': ytitle, }, ) fig = go.Figure(data=traces, layout=layout) plotly.offline.plot(fig, filename=outfn) def cdf(arr, labels=None): sorted_idxs = np.argsort(arr) ret = [ arr[sorted_idxs], np.linspace(0, 1, len(arr), endpoint=False), ] if labels is not None: ret.append([labels[idx] for idx in sorted_idxs]) return tuple(ret) def plot_method_combos(statsfns): xvals, yvals, xerrors, yerrors = [], [], [], [] runs = [] for statsfn in statsfns: run = os.path.basename(statsfn).split('.')[1] runs.append(run) stats, _ = parse_stats(statsfn) xvals.append(np.mean(stats['recall'])) yvals.append(np.mean(stats['precision'])) xerrors.append(np.std(stats['recall'])) yerrors.append(np.std(stats['precision'])) show_error_bars = False method_combo_trace = go.Scatter( mode = 'markers', x = xvals, y = yvals, text = runs, error_x = { 'type': 'data', 'array': xerrors, 'visible': show_error_bars, }, error_y = { 'type': 'data', 'array': yerrors, 'visible': show_error_bars, }, ) scatter( [method_combo_trace], 'Performance of different combinations of (broad, dkfz, jabba, mustonen095, peifer, vanloo_wedge)', 'Recall', 'Precision', 'method_combos_perf.html', ) def plot_ecdfs(run_label, statsfns): traces = { 'precision': [], 'recall': [], 'numbp': [], 'nonsv_ratio': [], } vals = { 'precision': {}, 'recall': {}, 'numbp': {}, 'nonsv_ratio': {}, } for statsfn in statsfns: run = os.path.basename(statsfn).split('.')[1] print(statsfn, run) stats, labels = parse_stats(statsfn) for plot in traces.keys(): # Record vals so that we can examine them in IPython if we wish. vals[plot][run] = stats[plot] X, Y, L = cdf(stats[plot], labels[plot]) if True or run_label == 'consensus_methods': line = {'width': 4} else: line = {'dash': 'dot', 'width': 4} traces[plot].append(go.Scatter( mode='lines', x = X, y = Y, text = L, name = '%s (%s values)' % (run, len(L)), line = line, # Comma corresponds to "Y_dkfz,jabba", which uses both (along with SVs). #visible = (('any' in run or ',' in run) and True or 'legendonly'), )) #for T in traces['numbp']: # if T['name'].startswith('any'): # T['visible'] = False scatter( traces['precision'], 'Precision ECDF', 'Precision', 'ECDF(x)', 'precision_ecdf.%s.html' % run_label, ) scatter( traces['recall'], 'Recall ECDF', 'Recall', 'ECDF(x)', 'recall_ecdf.%s.html' % run_label, ) scatter( traces['numbp'], '# BPs ECDF', '# BPs', 'ECDF(x)', 'numbp_ecdf.%s.html' % run_label, logx = True, #xmin = 1.9, #xmax = 4, ) scatter( traces['nonsv_ratio'], 'Non-SV ratio ECDF', 'log2((# non-SV BPs + 1) / (# SVs + 1))', 'ECDF(x)', 'nonsv_ratio_ecdf.%s.html' % run_label, xmin = -10, xmax = 10, ) def main(): run_label = sys.argv[1] assert run_label in ('consensus_methods', 'indiv_methods') plot_method_combos(sys.argv[2:]) plot_ecdfs(run_label, sys.argv[2:]) main()
[ "numpy.mean", "csv.DictReader", "plotly.offline.plot", "numpy.std", "plotly.graph_objs.Scatter", "numpy.argsort", "numpy.array", "numpy.count_nonzero", "numpy.isnan", "os.path.basename", "plotly.graph_objs.Layout", "plotly.graph_objs.Figure", "numpy.log2" ]
[((2018, 2047), 'numpy.log2', 'np.log2', (["stats['nonsv_ratio']"], {}), "(stats['nonsv_ratio'])\n", (2025, 2047), True, 'import numpy as np\n'), ((2472, 2557), 'plotly.graph_objs.Layout', 'go.Layout', ([], {'title': 'title', 'hovermode': '"""closest"""', 'xaxis': 'xaxis', 'yaxis': "{'title': ytitle}"}), "(title=title, hovermode='closest', xaxis=xaxis, yaxis={'title':\n ytitle})\n", (2481, 2557), True, 'import plotly.graph_objs as go\n'), ((2604, 2641), 'plotly.graph_objs.Figure', 'go.Figure', ([], {'data': 'traces', 'layout': 'layout'}), '(data=traces, layout=layout)\n', (2613, 2641), True, 'import plotly.graph_objs as go\n'), ((2644, 2684), 'plotly.offline.plot', 'plotly.offline.plot', (['fig'], {'filename': 'outfn'}), '(fig, filename=outfn)\n', (2663, 2684), False, 'import plotly\n'), ((2729, 2744), 'numpy.argsort', 'np.argsort', (['arr'], {}), '(arr)\n', (2739, 2744), True, 'import numpy as np\n'), ((3391, 3598), 'plotly.graph_objs.Scatter', 'go.Scatter', ([], {'mode': '"""markers"""', 'x': 'xvals', 'y': 'yvals', 'text': 'runs', 'error_x': "{'type': 'data', 'array': xerrors, 'visible': show_error_bars}", 'error_y': "{'type': 'data', 'array': yerrors, 'visible': show_error_bars}"}), "(mode='markers', x=xvals, y=yvals, text=runs, error_x={'type':\n 'data', 'array': xerrors, 'visible': show_error_bars}, error_y={'type':\n 'data', 'array': yerrors, 'visible': show_error_bars})\n", (3401, 3598), True, 'import plotly.graph_objs as go\n'), ((497, 530), 'csv.DictReader', 'csv.DictReader', (['F'], {'delimiter': '"""\t"""'}), "(F, delimiter='\\t')\n", (511, 530), False, 'import csv\n'), ((1064, 1098), 'numpy.array', 'np.array', (['stats[K]'], {'dtype': 'np.float'}), '(stats[K], dtype=np.float)\n', (1072, 1098), True, 'import numpy as np\n'), ((1944, 1987), 'numpy.count_nonzero', 'np.count_nonzero', (["(stats['nonsv_ratio'] == 0)"], {}), "(stats['nonsv_ratio'] == 0)\n", (1960, 1987), True, 'import numpy as np\n'), ((1493, 1521), 'numpy.isnan', 'np.isnan', (["stats['precision']"], {}), "(stats['precision'])\n", (1501, 1521), True, 'import numpy as np\n'), ((1523, 1548), 'numpy.isnan', 'np.isnan', (["stats['recall']"], {}), "(stats['recall'])\n", (1531, 1548), True, 'import numpy as np\n'), ((1898, 1928), 'numpy.isnan', 'np.isnan', (["stats['nonsv_ratio']"], {}), "(stats['nonsv_ratio'])\n", (1906, 1928), True, 'import numpy as np\n'), ((3178, 3202), 'numpy.mean', 'np.mean', (["stats['recall']"], {}), "(stats['recall'])\n", (3185, 3202), True, 'import numpy as np\n'), ((3221, 3248), 'numpy.mean', 'np.mean', (["stats['precision']"], {}), "(stats['precision'])\n", (3228, 3248), True, 'import numpy as np\n'), ((3269, 3292), 'numpy.std', 'np.std', (["stats['recall']"], {}), "(stats['recall'])\n", (3275, 3292), True, 'import numpy as np\n'), ((3313, 3339), 'numpy.std', 'np.std', (["stats['precision']"], {}), "(stats['precision'])\n", (3319, 3339), True, 'import numpy as np\n'), ((3063, 3088), 'os.path.basename', 'os.path.basename', (['statsfn'], {}), '(statsfn)\n', (3079, 3088), False, 'import os\n'), ((4156, 4181), 'os.path.basename', 'os.path.basename', (['statsfn'], {}), '(statsfn)\n', (4172, 4181), False, 'import os\n')]
"""The mypy command execution script. This is used by the deploying job mainly. Command example: $ python run_mypy.py """ from logging import Logger import command_util from apply_lints_and_build_docs import MYPY_COMMAND from apysc._console import loggers logger: Logger = loggers.get_info_logger() def _main() -> None: """ Run the mypy command. Raises ------ Exception If there are any mypy errors. """ logger.info('mypy command started.') stdout: str = command_util.run_command(command=MYPY_COMMAND) if 'Success' not in stdout: raise Exception('There are mypy errors.') if __name__ == '__main__': _main()
[ "command_util.run_command", "apysc._console.loggers.get_info_logger" ]
[((290, 315), 'apysc._console.loggers.get_info_logger', 'loggers.get_info_logger', ([], {}), '()\n', (313, 315), False, 'from apysc._console import loggers\n'), ((528, 574), 'command_util.run_command', 'command_util.run_command', ([], {'command': 'MYPY_COMMAND'}), '(command=MYPY_COMMAND)\n', (552, 574), False, 'import command_util\n')]
''' @package: pyAudioLex @author: <NAME> @module: uh_freq #uh = interjection frequency ''' from nltk.tokenize import word_tokenize from nltk.tag import pos_tag, map_tag from collections import Counter def uh_freq(importtext): text=word_tokenize(importtext) tokens=nltk.pos_tag(text) c=Counter(token for word, token in tokens) return ['UH']/len(text)
[ "collections.Counter", "nltk.tokenize.word_tokenize" ]
[((239, 264), 'nltk.tokenize.word_tokenize', 'word_tokenize', (['importtext'], {}), '(importtext)\n', (252, 264), False, 'from nltk.tokenize import word_tokenize\n'), ((301, 341), 'collections.Counter', 'Counter', (['(token for word, token in tokens)'], {}), '(token for word, token in tokens)\n', (308, 341), False, 'from collections import Counter\n')]
import argparse import numpy as np import pandas as pd import plotly.express as px import plotly.io as pio import plotly.graph_objects as go import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..', 'lib')) import util import resultserializer def _calc_depth(parents): K = len(parents) + 1 depth = np.nan + np.zeros(K, dtype=np.int) depth[0] = 0 stack = [0] while len(stack) > 0: node = stack.pop() children = np.flatnonzero(parents == node) + 1 depth[children] = depth[node] + 1 stack += children.tolist() assert not np.any(np.isnan(depth)) return depth[1:].astype(np.int) def _calc_num_pops(parents): # Calculate number of populations in each subclone. adj = util.convert_parents_to_adjmatrix(parents) K = len(adj) assert adj.shape == (K,K) anc = util.make_ancestral_from_adj(adj) C = np.sum(anc, axis=1) assert C[0] == K return C[1:].astype(np.int) def _calc_tree_stats(truth_fn): truth = resultserializer.Results(truth_fn) eta = truth.get('eta') phi = truth.get('phi') struct = truth.get('structure') phi_std = np.std(phi, axis=1) phi_mean = np.mean(phi, axis=1) depth = _calc_depth(struct) num_pops = _calc_num_pops(struct) df = pd.DataFrame({ 'phi_std': phi_std[1:], 'phi_mean': phi_mean[1:], 'largest_eta': np.max(eta, axis=1)[1:], 'depth': depth, 'num_pops': num_pops, }) polyprimary = np.sum(struct == 0) > 1 return (df, polyprimary) def _process(truth_fns): tree_stats = pd.DataFrame() polyprimary, monoprimary = 0, 0 for T in truth_fns: ts, is_pp = _calc_tree_stats(T) tree_stats = tree_stats.append(ts) if is_pp: polyprimary += 1 else: monoprimary += 1 return (tree_stats, polyprimary, monoprimary) def to_html(fig): return pio.to_html( fig, full_html = False, include_plotlyjs = 'cdn', include_mathjax = 'cdn', config = { 'showLink': True, 'toImageButtonOptions': { 'format': 'svg', 'width': 750, 'height': 450, }, }, ) def count_num_pops(df): counts = df['num_pops'].to_numpy() assert 0 not in counts vals = list(range(1, np.max(counts) + 1)) cnt = [np.sum(counts == val) for val in vals] return (vals, cnt) def make_box(df, x, y, title, xtitle, ytitle): # Similar to px.box(), but with categorical axis that's properly ordered. # px.box() seems to place categorical labels in random order. rng = list(range(df[x].min(), df[x].max() + 1)) boxes = [go.Box(y=df[df[x] == N][y], name=N, boxmean=True, marker_color='#6773fa') for N in rng] fig = go.Figure( data=boxes, layout={ 'xaxis': {'title': xtitle, 'type': 'category'}, 'yaxis': {'title': ytitle}, 'title': title, 'template': 'plotly_white', }, ) return fig def plot_tree_stats(df, alpha, K): figs = [] figs.append(make_box( df, x='num_pops', y='phi_std', title = f'φ standard deviation for {K} populations ({len(df):,} samples)', xtitle='Number of populations in subclone', ytitle='φ standard deviation', )) figs.append(make_box( df, x='num_pops', y='phi_mean', title = f'Mean φ for {K} populations ({len(df):,} samples)', xtitle='Number of populations in subclone', ytitle='φ mean', )) for F in figs: F.update_layout(showlegend = False) F.update_xaxes(type = 'category') K += 1 C = np.arange(1, K) sum_var = np.sqrt( (C/K) * (1 - C/K) / (K*alpha + 1) ) sum_mean = C/K analytical = pd.DataFrame({'C': C, 'sum_var': sum_var, 'sum_mean': sum_mean}) figs[0].add_scatter(x=analytical.C, y=analytical.sum_var, mode='markers', marker={'size': 22, 'opacity': 0.8, 'color': '#ff483b'}) figs[1].add_scatter(x=analytical.C, y=analytical.sum_mean, mode='markers', marker={'size': 22, 'opacity': 0.8, 'color': '#ff483b'}) subclone_sizes = count_num_pops(df) figs.append({ 'data': go.Bar(x=subclone_sizes[0], y=subclone_sizes[1]), 'layout': { 'xaxis': {'title': 'Number of populations in subclone', 'type': 'category'}, 'yaxis': {'title': 'Count'}, } }) figs.append(px.histogram( df, x = 'largest_eta', labels = { 'largest_eta': 'Largest η for subpopulation across cancer samples', }, )) figs[-1].update_xaxes(range = (0, 1)) figs[-1].update_yaxes(title = 'Count') html = '' for idx, F in enumerate(figs): html += to_html(F) return html def plot_polyprimary(polyprimary, monoprimary): fig = { 'data': go.Pie(labels=['Monoprimary', 'Polyprimary'], values=[monoprimary, polyprimary], sort=False), 'layout': { }, } return to_html(fig) def main(): parser = argparse.ArgumentParser( description='LOL HI THERE', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--alpha', type=float, default=0.1) parser.add_argument('-K', type=int, required=True) parser.add_argument('plot_fn') parser.add_argument('truth_fns', nargs='+') args = parser.parse_args() tree_stats, polyprimary, monoprimary = _process(args.truth_fns) ts = plot_tree_stats(tree_stats, args.alpha, args.K) pp = plot_polyprimary(polyprimary, monoprimary) with open(args.plot_fn, 'w') as F: print(ts, file=F) print(pp, file=F) if __name__ == '__main__': main()
[ "numpy.sqrt", "plotly.io.to_html", "numpy.arange", "plotly.graph_objects.Bar", "numpy.mean", "argparse.ArgumentParser", "plotly.graph_objects.Pie", "numpy.flatnonzero", "numpy.max", "pandas.DataFrame", "resultserializer.Results", "plotly.express.histogram", "os.path.dirname", "numpy.isnan", "numpy.std", "plotly.graph_objects.Box", "util.convert_parents_to_adjmatrix", "util.make_ancestral_from_adj", "numpy.sum", "plotly.graph_objects.Figure", "numpy.zeros" ]
[((731, 773), 'util.convert_parents_to_adjmatrix', 'util.convert_parents_to_adjmatrix', (['parents'], {}), '(parents)\n', (764, 773), False, 'import util\n'), ((825, 858), 'util.make_ancestral_from_adj', 'util.make_ancestral_from_adj', (['adj'], {}), '(adj)\n', (853, 858), False, 'import util\n'), ((865, 884), 'numpy.sum', 'np.sum', (['anc'], {'axis': '(1)'}), '(anc, axis=1)\n', (871, 884), True, 'import numpy as np\n'), ((977, 1011), 'resultserializer.Results', 'resultserializer.Results', (['truth_fn'], {}), '(truth_fn)\n', (1001, 1011), False, 'import resultserializer\n'), ((1109, 1128), 'numpy.std', 'np.std', (['phi'], {'axis': '(1)'}), '(phi, axis=1)\n', (1115, 1128), True, 'import numpy as np\n'), ((1142, 1162), 'numpy.mean', 'np.mean', (['phi'], {'axis': '(1)'}), '(phi, axis=1)\n', (1149, 1162), True, 'import numpy as np\n'), ((1513, 1527), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1525, 1527), True, 'import pandas as pd\n'), ((1805, 1993), 'plotly.io.to_html', 'pio.to_html', (['fig'], {'full_html': '(False)', 'include_plotlyjs': '"""cdn"""', 'include_mathjax': '"""cdn"""', 'config': "{'showLink': True, 'toImageButtonOptions': {'format': 'svg', 'width': 750,\n 'height': 450}}"}), "(fig, full_html=False, include_plotlyjs='cdn', include_mathjax=\n 'cdn', config={'showLink': True, 'toImageButtonOptions': {'format':\n 'svg', 'width': 750, 'height': 450}})\n", (1816, 1993), True, 'import plotly.io as pio\n'), ((2615, 2770), 'plotly.graph_objects.Figure', 'go.Figure', ([], {'data': 'boxes', 'layout': "{'xaxis': {'title': xtitle, 'type': 'category'}, 'yaxis': {'title': ytitle},\n 'title': title, 'template': 'plotly_white'}"}), "(data=boxes, layout={'xaxis': {'title': xtitle, 'type': 'category'\n }, 'yaxis': {'title': ytitle}, 'title': title, 'template': 'plotly_white'})\n", (2624, 2770), True, 'import plotly.graph_objects as go\n'), ((3423, 3438), 'numpy.arange', 'np.arange', (['(1)', 'K'], {}), '(1, K)\n', (3432, 3438), True, 'import numpy as np\n'), ((3451, 3497), 'numpy.sqrt', 'np.sqrt', (['(C / K * (1 - C / K) / (K * alpha + 1))'], {}), '(C / K * (1 - C / K) / (K * alpha + 1))\n', (3458, 3497), True, 'import numpy as np\n'), ((3528, 3592), 'pandas.DataFrame', 'pd.DataFrame', (["{'C': C, 'sum_var': sum_var, 'sum_mean': sum_mean}"], {}), "({'C': C, 'sum_var': sum_var, 'sum_mean': sum_mean})\n", (3540, 3592), True, 'import pandas as pd\n'), ((4681, 4793), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""LOL HI THERE"""', 'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter'}), "(description='LOL HI THERE', formatter_class=\n argparse.ArgumentDefaultsHelpFormatter)\n", (4704, 4793), False, 'import argparse\n'), ((192, 217), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (207, 217), False, 'import os\n'), ((344, 369), 'numpy.zeros', 'np.zeros', (['K'], {'dtype': 'np.int'}), '(K, dtype=np.int)\n', (352, 369), True, 'import numpy as np\n'), ((1421, 1440), 'numpy.sum', 'np.sum', (['(struct == 0)'], {}), '(struct == 0)\n', (1427, 1440), True, 'import numpy as np\n'), ((2210, 2231), 'numpy.sum', 'np.sum', (['(counts == val)'], {}), '(counts == val)\n', (2216, 2231), True, 'import numpy as np\n'), ((2519, 2592), 'plotly.graph_objects.Box', 'go.Box', ([], {'y': 'df[df[x] == N][y]', 'name': 'N', 'boxmean': '(True)', 'marker_color': '"""#6773fa"""'}), "(y=df[df[x] == N][y], name=N, boxmean=True, marker_color='#6773fa')\n", (2525, 2592), True, 'import plotly.graph_objects as go\n'), ((4137, 4251), 'plotly.express.histogram', 'px.histogram', (['df'], {'x': '"""largest_eta"""', 'labels': "{'largest_eta': 'Largest η for subpopulation across cancer samples'}"}), "(df, x='largest_eta', labels={'largest_eta':\n 'Largest η for subpopulation across cancer samples'})\n", (4149, 4251), True, 'import plotly.express as px\n'), ((4518, 4614), 'plotly.graph_objects.Pie', 'go.Pie', ([], {'labels': "['Monoprimary', 'Polyprimary']", 'values': '[monoprimary, polyprimary]', 'sort': '(False)'}), "(labels=['Monoprimary', 'Polyprimary'], values=[monoprimary,\n polyprimary], sort=False)\n", (4524, 4614), True, 'import plotly.graph_objects as go\n'), ((462, 493), 'numpy.flatnonzero', 'np.flatnonzero', (['(parents == node)'], {}), '(parents == node)\n', (476, 493), True, 'import numpy as np\n'), ((588, 603), 'numpy.isnan', 'np.isnan', (['depth'], {}), '(depth)\n', (596, 603), True, 'import numpy as np\n'), ((3928, 3976), 'plotly.graph_objects.Bar', 'go.Bar', ([], {'x': 'subclone_sizes[0]', 'y': 'subclone_sizes[1]'}), '(x=subclone_sizes[0], y=subclone_sizes[1])\n', (3934, 3976), True, 'import plotly.graph_objects as go\n'), ((1329, 1348), 'numpy.max', 'np.max', (['eta'], {'axis': '(1)'}), '(eta, axis=1)\n', (1335, 1348), True, 'import numpy as np\n'), ((2180, 2194), 'numpy.max', 'np.max', (['counts'], {}), '(counts)\n', (2186, 2194), True, 'import numpy as np\n')]
from setuptools import setup, find_packages version = '0.2.3' print(find_packages()) setup( name='automatia', packages=find_packages(), version=version, description='CLI swiss knife for all kinds of archive sites', author='<NAME>', author_email='<EMAIL>', url='https://github.com/ShadowJonathan/automatia.py', # download_url='https://github.com/ShadowJonathan/automatia.py/archive/{}.tar.gz'.format(version), # keywords=['testing', 'logging', 'example'], # arbitrary keywords # classifiers=[], license="MIT", requires=['six'], python_requires='>=2.7', entry_points={ 'console_scripts': ['automatia=automatia.cli:main'], }, )
[ "setuptools.find_packages" ]
[((70, 85), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (83, 85), False, 'from setuptools import setup, find_packages\n'), ((130, 145), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (143, 145), False, 'from setuptools import setup, find_packages\n')]
import os import yaml PROJECT_CONFIG_PATH = os.path.join(os.curdir, 'erde.yml') USER_CONFIG_PATH = os.path.join(os.path.expanduser("~"), '.erde.yml') # to override this config, put .erde.yml into your home folder CONFIG = { 'routers': { 'local': 'http://localhost:5000' } } # code by Schlomo https://stackoverflow.com/a/15836901/171278 class MergeError(Exception): pass def data_merge(a, b): """merges b into a and return merged result NOTE: tuples and arbitrary objects are not handled as it is totally ambiguous what should happen""" key = None try: if a is None or isinstance(a, (str, int, float)): a = b elif isinstance(a, list): if isinstance(b, list): a.extend(b) else: a.append(b) elif isinstance(a, dict): if isinstance(b, dict): for key in b: a[key] = data_merge(a.get(key, None), b[key]) else: raise MergeError('Cannot merge non-dict "%s" into dict "%s"' % (b, a)) else: raise MergeError('NOT IMPLEMENTED "%s" into "%s"' % (b, a)) except TypeError as e: raise MergeError('TypeError "%s" in key "%s" when merging "%s" into "%s"' % (e, key, b, a)) return a for p in (USER_CONFIG_PATH, PROJECT_CONFIG_PATH): if not os.path.exists(p): continue with open(p) as f: CONFIG = data_merge(CONFIG, yaml.load(f, Loader=yaml.FullLoader))
[ "os.path.exists", "os.path.join", "yaml.load", "os.path.expanduser" ]
[((45, 80), 'os.path.join', 'os.path.join', (['os.curdir', '"""erde.yml"""'], {}), "(os.curdir, 'erde.yml')\n", (57, 80), False, 'import os\n'), ((113, 136), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (131, 136), False, 'import os\n'), ((1191, 1208), 'os.path.exists', 'os.path.exists', (['p'], {}), '(p)\n', (1205, 1208), False, 'import os\n'), ((1271, 1307), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (1280, 1307), False, 'import yaml\n')]
import numpy as np def all_stuff(): X = np.array([ [0, 0], [0, 1], [1, 0], [1, 1]]) Y = np.array([[0], [1], [1], [0]]) def sigmoid(x): return 1 / (1 + np.exp(-x)) def sigmoid_derivative(x): return x * (1 - x) # variable initialization epoch = 10000 learning_rate = 0.1 input_layer_neurons = X.shape[1] hidden_layer_neurons = 2 output_layer_neurons = 1 # weights and bias initialization weights = np.random.uniform(size=(input_layer_neurons, hidden_layer_neurons)) bias = np.random.uniform(size=(1, hidden_layer_neurons)) weights_out = np.random.uniform(size=(hidden_layer_neurons, output_layer_neurons)) bias_out = np.random.uniform(size=(1, output_layer_neurons)) for i in range(epoch): # forward propagation hidden_layer_input = np.dot(X, weights) hidden_layer_input_biased = hidden_layer_input + bias hidden_layer_activations = sigmoid(hidden_layer_input_biased) output_layer_input = np.dot(hidden_layer_activations, weights_out) output_layer_input_biased = output_layer_input + bias_out output = sigmoid(output_layer_input_biased) # back propagation E = Y - output slope_output_layer = sigmoid_derivative(output) slope_hidden_layer = sigmoid_derivative(hidden_layer_activations) d_output = E * slope_output_layer E_at_hidden_layer = d_output.dot(weights_out.T) d_hidden_layer = E_at_hidden_layer * slope_hidden_layer weights_out += hidden_layer_activations.T.dot(d_output) * learning_rate bias_out += np.sum(d_output, axis=0, keepdims=True) * learning_rate weights += X.T.dot(d_hidden_layer) * learning_rate bias += np.sum(d_hidden_layer, axis=0, keepdims=True) * learning_rate if i % 1000 == 0: print("Output\n",output) print("Error\n", E) print("Weights\n", weights) if __name__ == '__main__': all_stuff()
[ "numpy.exp", "numpy.array", "numpy.dot", "numpy.sum", "numpy.random.uniform" ]
[((45, 87), 'numpy.array', 'np.array', (['[[0, 0], [0, 1], [1, 0], [1, 1]]'], {}), '([[0, 0], [0, 1], [1, 0], [1, 1]])\n', (53, 87), True, 'import numpy as np\n'), ((134, 164), 'numpy.array', 'np.array', (['[[0], [1], [1], [0]]'], {}), '([[0], [1], [1], [0]])\n', (142, 164), True, 'import numpy as np\n'), ((518, 585), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(input_layer_neurons, hidden_layer_neurons)'}), '(size=(input_layer_neurons, hidden_layer_neurons))\n', (535, 585), True, 'import numpy as np\n'), ((597, 646), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(1, hidden_layer_neurons)'}), '(size=(1, hidden_layer_neurons))\n', (614, 646), True, 'import numpy as np\n'), ((665, 733), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(hidden_layer_neurons, output_layer_neurons)'}), '(size=(hidden_layer_neurons, output_layer_neurons))\n', (682, 733), True, 'import numpy as np\n'), ((749, 798), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(1, output_layer_neurons)'}), '(size=(1, output_layer_neurons))\n', (766, 798), True, 'import numpy as np\n'), ((890, 908), 'numpy.dot', 'np.dot', (['X', 'weights'], {}), '(X, weights)\n', (896, 908), True, 'import numpy as np\n'), ((1070, 1115), 'numpy.dot', 'np.dot', (['hidden_layer_activations', 'weights_out'], {}), '(hidden_layer_activations, weights_out)\n', (1076, 1115), True, 'import numpy as np\n'), ((1685, 1724), 'numpy.sum', 'np.sum', (['d_output'], {'axis': '(0)', 'keepdims': '(True)'}), '(d_output, axis=0, keepdims=True)\n', (1691, 1724), True, 'import numpy as np\n'), ((1816, 1861), 'numpy.sum', 'np.sum', (['d_hidden_layer'], {'axis': '(0)', 'keepdims': '(True)'}), '(d_hidden_layer, axis=0, keepdims=True)\n', (1822, 1861), True, 'import numpy as np\n'), ((214, 224), 'numpy.exp', 'np.exp', (['(-x)'], {}), '(-x)\n', (220, 224), True, 'import numpy as np\n')]
import pandas as pd import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt import seaborn as sns import os import sys import datetime from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans import numpy as np class FeatureDecomposer: def __init__(self): pass def decompose_features(self,config,input_df): config = config["decomposer"] decomposer = config["type"] if config["engine"] == "training": if decomposer == "PCA": pca = PCA(n_components=2) principalComponents = pca.fit_transform(input_df) principalDf = pd.DataFrame(data = principalComponents, columns = ['pc1', 'pc2']) else: ## Here the saved pca model will be loaded for inerence pass return principalDf # dc = FeatureDecomposer() # decomposed_features = dc.decompose_features(config,scaled_df)
[ "sklearn.decomposition.PCA", "warnings.filterwarnings", "pandas.DataFrame" ]
[((36, 69), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (59, 69), False, 'import warnings\n'), ((632, 651), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(2)'}), '(n_components=2)\n', (635, 651), False, 'from sklearn.decomposition import PCA\n'), ((748, 810), 'pandas.DataFrame', 'pd.DataFrame', ([], {'data': 'principalComponents', 'columns': "['pc1', 'pc2']"}), "(data=principalComponents, columns=['pc1', 'pc2'])\n", (760, 810), True, 'import pandas as pd\n')]
from torch import Tensor, relu, tanh import torch.nn as nn from typing import Any, Optional from torch.nn.functional import softplus import torch from torch.distributions import Independent, Normal, TransformedDistribution from torch.distributions.transforms import TanhTransform from numpy import ndarray device = torch.device("cuda" if torch.cuda.is_available() else "cpu") LOG_SIG_MAX = 2 LOG_SIG_MIN = -20 class Policy(nn.Module): """ Gaussian policy For each action in the action space, output a scalar in [-1, 1] """ def __init__( self, state_dim: int, action_dim: int, hidden_dim: int, max_action: float, adam_kwargs: dict[str, Any], log_sigmas_post: str, ): """ :param state_dim: Dimension of the observation space :param action_dim: Dimension of the action space :param hidden_dim: Hidden dimension size in 2-layer NN :param max_action: Max action scaling (after tanh) :param adam_kwargs: keyword arguments for adam optimizer :param log_sigmas_post: post-processing of log_sigmas (clipping/clamping or softplus) """ super(Policy, self).__init__() self.l1 = nn.Linear(state_dim, hidden_dim) self.l2 = nn.Linear(hidden_dim, hidden_dim) # hidden_dim -> mu0, mu1, ..., sig0, sig1, ... self.l3 = nn.Linear(hidden_dim, action_dim * 2) self.action_dim = action_dim self.max_action = max_action self.optimizer = torch.optim.Adam(self.parameters(), **adam_kwargs) assert log_sigmas_post in ["softplus", "clamp"] self.log_sigmas_post = log_sigmas_post def forward( self, state: Tensor, deterministic: bool ) -> tuple[Tensor, Optional[tuple[Tensor, Tensor, Tensor]]]: """ Returns (action, (log_prob(action), mus, log_sigmas)). mus and log_sigmas are passed along for regularization. """ h = relu(self.l1(state)) h = relu(self.l2(h)) h = self.l3(h) mus = h[:, : self.action_dim] log_sigmas = h[:, self.action_dim :] # apply softplus and add epsilon # https://github.com/rail-berkeley/softlearning/blob/master/softlearning/policies/gaussian_policy.py line 276 if self.log_sigmas_post == "softplus": log_sigmas = softplus(log_sigmas) + 1e-5 elif self.log_sigmas_post == "clamp": log_sigmas = torch.clamp(log_sigmas, min=LOG_SIG_MIN, max=LOG_SIG_MAX) else: raise Exception(f"bad option for log sigma post processing: {self.log_sigmas_post=}") normal = TransformedDistribution( Independent(Normal(mus, torch.exp(log_sigmas)), 1), [TanhTransform(cache_size=1)] ) if deterministic: return self.max_action * tanh(normal.base_dist.mean), None else: # reparametrization trick, sampling closely following the original implementation actions = normal.rsample() # (b, action space dim) log_probs = normal.log_prob(actions).unsqueeze(-1) # (b, 1) if self.max_action == 0.0: # only for debugging log_probs *= 0.0 return self.max_action * actions, (log_probs, mus, log_sigmas) def get_action(self, state: ndarray): """ Get action for evaluation of policy """ with torch.no_grad(): action, _ = self.forward( torch.tensor(state, dtype=torch.float32, device=device).unsqueeze(0), deterministic=True, ) return action.cpu().numpy() class Value(nn.Module): """ Value funtion network gets the state, outputs a single scalar (soft value) """ def __init__(self, state_dim: int, hidden_dim: int, adam_kwargs: dict[str, Any]): super(Value, self).__init__() self.l1 = nn.Linear(state_dim, hidden_dim) self.l2 = nn.Linear(hidden_dim, hidden_dim) self.l3 = nn.Linear(hidden_dim, 1) self.optimizer = torch.optim.Adam(self.parameters(), **adam_kwargs) def forward(self, state: Tensor) -> Tensor: h = relu(self.l1(state)) h = relu(self.l2(h)) return self.l3(h) class Q(nn.Module): """ Q function network gets the state and action, outputs a single scalar (state-action value) """ def __init__( self, state_dim: int, action_dim: int, hidden_dim: int, adam_kwargs: dict[str, Any] ): super(Q, self).__init__() self.l1 = nn.Linear(state_dim + action_dim, hidden_dim) self.l2 = nn.Linear(hidden_dim, hidden_dim) self.l3 = nn.Linear(hidden_dim, 1) self.optimizer = torch.optim.Adam(self.parameters(), **adam_kwargs) def forward(self, state: Tensor, action: Tensor) -> Tensor: h = relu(self.l1(torch.cat((state, action), dim=1))) h = relu(self.l2(h)) return self.l3(h)
[ "torch.tanh", "torch.exp", "torch.nn.functional.softplus", "torch.cat", "torch.cuda.is_available", "torch.tensor", "torch.nn.Linear", "torch.no_grad", "torch.distributions.transforms.TanhTransform", "torch.clamp" ]
[((339, 364), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (362, 364), False, 'import torch\n'), ((1232, 1264), 'torch.nn.Linear', 'nn.Linear', (['state_dim', 'hidden_dim'], {}), '(state_dim, hidden_dim)\n', (1241, 1264), True, 'import torch.nn as nn\n'), ((1283, 1316), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (1292, 1316), True, 'import torch.nn as nn\n'), ((1390, 1427), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', '(action_dim * 2)'], {}), '(hidden_dim, action_dim * 2)\n', (1399, 1427), True, 'import torch.nn as nn\n'), ((3912, 3944), 'torch.nn.Linear', 'nn.Linear', (['state_dim', 'hidden_dim'], {}), '(state_dim, hidden_dim)\n', (3921, 3944), True, 'import torch.nn as nn\n'), ((3963, 3996), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (3972, 3996), True, 'import torch.nn as nn\n'), ((4015, 4039), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', '(1)'], {}), '(hidden_dim, 1)\n', (4024, 4039), True, 'import torch.nn as nn\n'), ((4558, 4603), 'torch.nn.Linear', 'nn.Linear', (['(state_dim + action_dim)', 'hidden_dim'], {}), '(state_dim + action_dim, hidden_dim)\n', (4567, 4603), True, 'import torch.nn as nn\n'), ((4622, 4655), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', 'hidden_dim'], {}), '(hidden_dim, hidden_dim)\n', (4631, 4655), True, 'import torch.nn as nn\n'), ((4674, 4698), 'torch.nn.Linear', 'nn.Linear', (['hidden_dim', '(1)'], {}), '(hidden_dim, 1)\n', (4683, 4698), True, 'import torch.nn as nn\n'), ((3420, 3435), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (3433, 3435), False, 'import torch\n'), ((2368, 2388), 'torch.nn.functional.softplus', 'softplus', (['log_sigmas'], {}), '(log_sigmas)\n', (2376, 2388), False, 'from torch.nn.functional import softplus\n'), ((2467, 2524), 'torch.clamp', 'torch.clamp', (['log_sigmas'], {'min': 'LOG_SIG_MIN', 'max': 'LOG_SIG_MAX'}), '(log_sigmas, min=LOG_SIG_MIN, max=LOG_SIG_MAX)\n', (2478, 2524), False, 'import torch\n'), ((2745, 2772), 'torch.distributions.transforms.TanhTransform', 'TanhTransform', ([], {'cache_size': '(1)'}), '(cache_size=1)\n', (2758, 2772), False, 'from torch.distributions.transforms import TanhTransform\n'), ((4866, 4899), 'torch.cat', 'torch.cat', (['(state, action)'], {'dim': '(1)'}), '((state, action), dim=1)\n', (4875, 4899), False, 'import torch\n'), ((2716, 2737), 'torch.exp', 'torch.exp', (['log_sigmas'], {}), '(log_sigmas)\n', (2725, 2737), False, 'import torch\n'), ((2847, 2874), 'torch.tanh', 'tanh', (['normal.base_dist.mean'], {}), '(normal.base_dist.mean)\n', (2851, 2874), False, 'from torch import Tensor, relu, tanh\n'), ((3491, 3546), 'torch.tensor', 'torch.tensor', (['state'], {'dtype': 'torch.float32', 'device': 'device'}), '(state, dtype=torch.float32, device=device)\n', (3503, 3546), False, 'import torch\n')]
from pygears import gear @gear(outnames=['dout', 'pred_out']) def release_after_eot(din: 'w_din', pred: 'w_pred') -> ('w_din', 'w_pred'): pass
[ "pygears.gear" ]
[((28, 63), 'pygears.gear', 'gear', ([], {'outnames': "['dout', 'pred_out']"}), "(outnames=['dout', 'pred_out'])\n", (32, 63), False, 'from pygears import gear\n')]
# Copyright (C) 2011-2012 <NAME> and The Pepper Developers # Released under the MIT License. See the file COPYING.txt for details. from nose.tools import * from libpepper import builtins from libpepper.environment import PepEnvironment from libpepper.cpp.cppvalues import * from libpepper.cpp.cpprenderer import PepCppRenderer def test_Int_evaluated_type(): env = PepEnvironment( None ) assert_equal( PepInt( '3' ).evaluated_type( env ), PepType( PepInt ) ) def test_Float_evaluated_type(): env = PepEnvironment( None ) assert_equal( PepFloat( '3.0' ).evaluated_type( env ), PepType( PepFloat ) ) def test_Bool_evaluated_type(): env = PepEnvironment( None ) assert_equal( PepBool( True ).evaluated_type( env ), PepType( PepBool ) ) def test_Variable_evaluated_type(): env = PepEnvironment( None ) assert_equal( PepVariable( PepType( PepString ), "x" ).evaluated_type( env ), PepType( PepString ) ) def test_Plus_evaluated_type(): env = PepEnvironment( None ) plus = PepPlus( PepInt( "1" ), PepInt( "2" ) ) assert_equal( plus.evaluated_type( env ), PepType( PepInt ) ) def test_Times_evaluated_type(): env = PepEnvironment( None ) times = PepTimes( PepInt( "1" ), PepInt( "2" ) ) assert_equal( times.evaluated_type( env ), PepType( PepInt ) ) def test_Known_Symbol_evaluated_type(): env = PepEnvironment( None ) init = PepInit( PepType( PepBool ), PepSymbol( "x" ), PepBool( True ) ) init.evaluate( env ) assert_equal( PepSymbol( "x" ).evaluated_type( env ), PepType( PepBool ) ) def test_Unknown_Symbol_evaluated_type(): env = PepEnvironment( None ) init = PepInit( PepType( PepString ), PepSymbol( "x" ), PepVariable( PepType( PepString ), "x" ) ) init.evaluate( env ) assert_equal( PepSymbol( "x" ).evaluated_type( env ), PepType( PepString ) ) def test_FunctionCall_evaluated_type(): env = PepEnvironment( None ) func = PepUserFunction( "myfunc", PepType( PepBool ), (), ( PepPass(), ) ) assert_equal( PepFunctionCall( func, () ).evaluated_type( env ), PepType( PepBool ) ) def test_GreaterThan_evaluated_type(): env = PepEnvironment( None ) value = PepGreaterThan( PepInt( "4" ), PepInt( "5" ) ) assert_equal( value.evaluated_type( env ), PepType( PepBool ) ) def GreaterThan_is_true_if_larger__test(): env = PepEnvironment( None ) assert_true( PepGreaterThan( PepInt( "6" ), PepInt( "4" ) ).evaluate( env ).value ) assert_true( PepGreaterThan( PepFloat( "6.1" ), PepFloat( "6.0" ) ).evaluate( env ).value ) def GreaterThan_is_false_if_equal__test(): env = PepEnvironment( None ) assert_false( PepGreaterThan( PepInt( "4" ), PepInt( "4" ) ).evaluate( env ).value ) assert_false( PepGreaterThan( PepFloat( "4.3" ), PepFloat( "4.3" ) ).evaluate( env ).value ) def GreaterThan_is_false_if_smaller__test(): env = PepEnvironment( None ) assert_false( PepGreaterThan( PepInt( "2" ), PepInt( "4" ) ).evaluate( env ).value ) assert_false( PepGreaterThan( PepFloat( "2.2" ), PepFloat( "4.4" ) ).evaluate( env ).value ) def test_LessThan_evaluated_type(): env = PepEnvironment( None ) value = PepLessThan( PepInt( "4" ), PepInt( "5" ) ) assert_equal( value.evaluated_type( env ), PepType( PepBool ) ) def LessThan_is_true_if_smaller__test(): env = PepEnvironment( None ) assert_true( PepLessThan( PepInt( "3" ), PepInt( "4" ) ).evaluate( env ).value ) assert_true( PepLessThan( PepFloat( "3.3" ), PepFloat( "3.4" ) ).evaluate( env ).value ) def LessThan_is_false_if_equal__test(): env = PepEnvironment( None ) assert_false( PepLessThan( PepFloat( "4.8" ), PepFloat( "4.8" ) ).evaluate( env ).value ) assert_false( PepLessThan( PepInt( "4" ), PepInt( "4" ) ).evaluate( env ).value ) def LessThan_is_false_if_larger__test(): env = PepEnvironment( None ) assert_false( PepLessThan( PepInt( "10" ), PepInt( "8" ) ).evaluate( env ).value ) assert_false( PepLessThan( PepFloat( "10.0" ), PepFloat( "8.1" ) ).evaluate( env ).value )
[ "libpepper.environment.PepEnvironment" ]
[((373, 393), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (387, 393), False, 'from libpepper.environment import PepEnvironment\n'), ((515, 535), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (529, 535), False, 'from libpepper.environment import PepEnvironment\n'), ((662, 682), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (676, 682), False, 'from libpepper.environment import PepEnvironment\n'), ((810, 830), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (824, 830), False, 'from libpepper.environment import PepEnvironment\n'), ((1002, 1022), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (1016, 1022), False, 'from libpepper.environment import PepEnvironment\n'), ((1187, 1207), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (1201, 1207), False, 'from libpepper.environment import PepEnvironment\n'), ((1383, 1403), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (1397, 1403), False, 'from libpepper.environment import PepEnvironment\n'), ((1641, 1661), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (1655, 1661), False, 'from libpepper.environment import PepEnvironment\n'), ((1935, 1955), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (1949, 1955), False, 'from libpepper.environment import PepEnvironment\n'), ((2199, 2219), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (2213, 2219), False, 'from libpepper.environment import PepEnvironment\n'), ((2403, 2423), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (2417, 2423), False, 'from libpepper.environment import PepEnvironment\n'), ((2728, 2748), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (2742, 2748), False, 'from libpepper.environment import PepEnvironment\n'), ((3057, 3077), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (3071, 3077), False, 'from libpepper.environment import PepEnvironment\n'), ((3377, 3397), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (3391, 3397), False, 'from libpepper.environment import PepEnvironment\n'), ((3577, 3597), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (3591, 3597), False, 'from libpepper.environment import PepEnvironment\n'), ((3893, 3913), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (3907, 3913), False, 'from libpepper.environment import PepEnvironment\n'), ((4212, 4232), 'libpepper.environment.PepEnvironment', 'PepEnvironment', (['None'], {}), '(None)\n', (4226, 4232), False, 'from libpepper.environment import PepEnvironment\n')]
#! /usr/bin/env python import nmrglue.fileio.pipe as pipe import nmrglue.process.pipe_proc as p d,a = pipe.read("1D_time.fid") d,a = p.ha(d,a) pipe.write("ha1.glue",d,a,overwrite=True) d,a = pipe.read("1D_time.fid") d,a = p.ha(d,a,inv=True) pipe.write("ha2.glue",d,a,overwrite=True)
[ "nmrglue.fileio.pipe.write", "nmrglue.process.pipe_proc.ha", "nmrglue.fileio.pipe.read" ]
[((104, 128), 'nmrglue.fileio.pipe.read', 'pipe.read', (['"""1D_time.fid"""'], {}), "('1D_time.fid')\n", (113, 128), True, 'import nmrglue.fileio.pipe as pipe\n'), ((135, 145), 'nmrglue.process.pipe_proc.ha', 'p.ha', (['d', 'a'], {}), '(d, a)\n', (139, 145), True, 'import nmrglue.process.pipe_proc as p\n'), ((145, 189), 'nmrglue.fileio.pipe.write', 'pipe.write', (['"""ha1.glue"""', 'd', 'a'], {'overwrite': '(True)'}), "('ha1.glue', d, a, overwrite=True)\n", (155, 189), True, 'import nmrglue.fileio.pipe as pipe\n'), ((194, 218), 'nmrglue.fileio.pipe.read', 'pipe.read', (['"""1D_time.fid"""'], {}), "('1D_time.fid')\n", (203, 218), True, 'import nmrglue.fileio.pipe as pipe\n'), ((225, 245), 'nmrglue.process.pipe_proc.ha', 'p.ha', (['d', 'a'], {'inv': '(True)'}), '(d, a, inv=True)\n', (229, 245), True, 'import nmrglue.process.pipe_proc as p\n'), ((244, 288), 'nmrglue.fileio.pipe.write', 'pipe.write', (['"""ha2.glue"""', 'd', 'a'], {'overwrite': '(True)'}), "('ha2.glue', d, a, overwrite=True)\n", (254, 288), True, 'import nmrglue.fileio.pipe as pipe\n')]
import io import logging from typing import IO from google.cloud import storage from audiobot import settings GOOGLE = settings.Google() logger = logging.getLogger('storage') logger.setLevel(logging.INFO) def _blob(key: str) -> object: return storage.Client()\ .bucket(GOOGLE.bucket)\ .blob(key) def download(key: str) -> IO: logger.info('Downloading: %s', key) data = io.BytesIO() _blob(key).download_to_file(data) data.seek(0) logger.info('Downloaded: %s', key) return data def upload(data: IO, key: str) -> str: logger.info('Uploading: %s', key) data.seek(0) _blob(key).upload_from_file(data) data.seek(0) logger.info('Uploaded: %s', key) return f'gs://{GOOGLE.bucket}/{key}' def exists(key: str) -> bool: logger.info('Checking for: %s', key) result = _blob(key).exists() logger.info('Checking for: %s', key) return result
[ "logging.getLogger", "google.cloud.storage.Client", "io.BytesIO", "audiobot.settings.Google" ]
[((122, 139), 'audiobot.settings.Google', 'settings.Google', ([], {}), '()\n', (137, 139), False, 'from audiobot import settings\n'), ((150, 178), 'logging.getLogger', 'logging.getLogger', (['"""storage"""'], {}), "('storage')\n", (167, 178), False, 'import logging\n'), ((405, 417), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (415, 417), False, 'import io\n'), ((253, 269), 'google.cloud.storage.Client', 'storage.Client', ([], {}), '()\n', (267, 269), False, 'from google.cloud import storage\n')]
import hashlib from time import time from requests import Session from lib.const import response_codes, debug, fetch_time class FacebookBrowser(object): account_exists = None API_SECRET = "<KEY>" def __init__(self, username, password, proxy): self.proxy = proxy self.is_found = False self.is_active = True self.is_locked = False self.start_time = None self.browser = self.br() self.username = username self.password = password self.is_attempted = False def br(self): session = Session() session.proxies.update(self.proxy.addr if self.proxy else []) return session def check_exists(self, response): pass # TODO def check_response(self, response): ok_error_codes = ['', None, 405] # TODO? if 'error_code' in response and response['error_code'] not in ok_error_codes: return response_codes['failed'] else: return response_codes['succeed'] def authenicate(self): response = self.post_data() resp = {'attempted': False, 'accessed': False, 'locked': False} if debug: print('pass: {} => {}'.format(self.password, response)) if response: resp['attempted'] = True resp_code = self.check_response(response) if resp_code == response_codes['locked']: resp['locked'] = True if resp_code == response_codes['succeed']: resp['accessed'] = True if FacebookBrowser.account_exists is None: self.check_exists(response) return resp def attempt(self): # the only one public func self.start_time = time() resp = self.authenicate() if resp['attempted']: self.is_attempted = True if not resp['locked']: if resp['accessed']: self.is_found = True else: self.is_locked = True self.close() def close(self): self.is_active = False def post_data(self): sig = "api_key=882a8490361da98702bf97a021ddc14dcredentials_type=passwordemail={}format=JSONgenerate_machine_id=1generate_session_cookies=1locale=en_USmethod=auth.loginpassword={}return_ssl_resources=0v=1.0{}"\ .format(self.username, self.password, FacebookBrowser.API_SECRET) xx = hashlib.md5(sig.encode()).hexdigest() data = "api_key=882a8490361da98702bf97a021ddc14d&credentials_type=password&email={}&format=JSON&generate_machine_id=1&generate_session_cookies=1&locale=en_US&method=auth.login&password={}&return_ssl_resources=0&v=1.0&sig={}"\ .format(self.username, self.password, xx) response = None try: response = self.browser.get("https://api.facebook.com/restserver.php?{}".format(data), timeout=fetch_time).json() except: pass finally: return response
[ "time.time", "requests.Session" ]
[((577, 586), 'requests.Session', 'Session', ([], {}), '()\n', (584, 586), False, 'from requests import Session\n'), ((1744, 1750), 'time.time', 'time', ([], {}), '()\n', (1748, 1750), False, 'from time import time\n')]
# Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the LICENSE file in # the root directory of this source tree. import os import sys import urlparse from find_lldb import get_lldb from handler import HandlerDomain, UndefinedHandlerError, handler from logging_helper import log_debug import file_manager class DebuggerDomain(HandlerDomain): '''Implement Chrome debugger domain protocol and convert into lldb python API. ''' def __init__(self, runtimeDomain, **kwargs): HandlerDomain.__init__(self, **kwargs) self.runtimeDomain = runtimeDomain self.exceptionBreakpointId = None @property def name(self): return 'Debugger' @handler() def canSetScriptSource(self, params): # Return False, becuase we don't support # changing source at runtime. return {"result": False} @handler() def continueToLocation(self, params): filelike = self.debugger_store.file_manager.get_by_client_url(params['location']['scriptId']) if not filelike or not isinstance(filelike, file_manager.File): # Only support setting breakpoints in real files. return {} lldb = get_lldb() path = str(params['location']['scriptId']) thread = self.debugger_store.debugger.GetSelectedTarget().GetProcess().GetSelectedThread() frame = thread.GetSelectedFrame() # atom line numbers a 0-based, while lldb is 1-based line = int(params['location']['lineNumber']) + 1 thread.StepOverUntil(frame, filelike.server_obj, line) return {} @handler() def disable(self, params): # Not exactly the same as disable. Detach() might be closer to # what Chrome Dev Tools is trying to do. self.debugger_store.debugger.GetSelectedTarget().DisableAllBreakpoints() return {} @handler() def enable(self, params): formatter_path = os.path.join(os.path.dirname(__file__), 'data_formatter.py') self.debugger_store.debugger.HandleCommand('command script import %s' % formatter_path) self.debugger_store.chrome_channel.enable() return {} @handler() def evaluateOnCallFrame(self, params): frameId = params['callFrameId'] thread, frame = frameId.split('.') # TODO: These return booleans to indicate success. Throw something if False. process = self.debugger_store.debugger.GetSelectedTarget().process process.SetSelectedThreadByIndexID(int(thread)) process.GetSelectedThread().SetSelectedFrame(int(frame)) return self.runtimeDomain.evaluate(params) @handler() def pause(self, params): self.debugger_store.debugger.GetSelectedTarget().process.Stop() return {} @handler() def removeBreakpoint(self, params): self.debugger_store.debugger.GetSelectedTarget().BreakpointDelete(int(params['breakpointId'])) return {} @handler() def resume(self, params): self.debugger_store.debugger.GetSelectedTarget().process.Continue() return {} @handler() def selectThread(self, params): threadId = params['threadId'] self.debugger_store.debugger.GetSelectedTarget().process.SetSelectedThreadByID(threadId) return {} @handler() def getThreadStack(self, params): threadId = params['threadId'] thread = self.debugger_store.debugger.GetSelectedTarget().process.GetThreadByID(threadId) params = { "callFrames": [] } if not thread == None: params["callFrames"] = self.debugger_store.thread_manager.get_thread_stack(thread) return params @handler() def searchInContent(self, params): raise UndefinedHandlerError('searchInContent not implemented') @handler() def setBreakpoint(self, params): filelike = self.debugger_store.file_manager.get_by_script_id(params['location']['scriptId']) if not filelike or not isinstance(filelike, file_manager.File): # Only support setting breakpoints in real files. return {} return self._set_breakpoint_by_filespec( filelike.server_obj, int(params['location']['lineNumber']) + 1) @handler() def setBreakpointByUrl(self, params): # Use source file name to set breakpoint. parsed_url = urlparse.urlparse(params['url']) return self._set_breakpoint_by_source_path( str(os.path.basename(parsed_url.path)), int(params['lineNumber']) + 1, str(params['condition'])) @handler() def setBreakpointsActive(self, params): if params['active']: self.debugger_store.debugger.GetSelectedTarget().EnableAllBreakpoints() else: self.debugger_store.debugger.GetSelectedTarget().DisableAllBreakpoints() return {} @handler() def setPauseOnExceptions(self, params): # First, unhook the old breakpoint exceptions. if self.exceptionBreakpointId is not None: self.debugger_store.debugger.GetSelectedTarget().BreakpointDelete( self.exceptionBreakpointId) self.exceptionBreakpointId = None # Next, we've been asked to do one of 'none' or 'uncaught' or 'all'. # But we'll treat none+uncaught as no-op since that's all LLDB can do. if params['state'] == 'all': breakpoint = self.debugger_store.debugger.GetSelectedTarget( ).BreakpointCreateForException(get_lldb().eLanguageTypeC_plus_plus, False, # don't pause on catch True # do pause on throw ) self.exceptionBreakpointId = breakpoint.id return {} @handler() def setScriptSource(self, params): raise UndefinedHandlerError('setScriptSource not supported for LLDB') @handler() def stepInto(self, params): thread = self.debugger_store.debugger.GetSelectedTarget().GetProcess().GetSelectedThread() flag = self._getSteppingFlag() thread.StepInto(flag) return {} @handler() def stepOut(self, params): self.debugger_store.debugger.GetSelectedTarget().GetProcess().GetSelectedThread().StepOut() return {} @handler() def stepOver(self, params): thread = self.debugger_store.debugger.GetSelectedTarget().GetProcess().GetSelectedThread() flag = self._getSteppingFlag() thread.StepOver(flag) return {} @handler() def setDebuggerSettings(self, params): self.debugger_store.setDebuggerSettings(params) return {} def _set_breakpoint_by_filespec(self, filespec, line): breakpoint = self.debugger_store.debugger.GetSelectedTarget().BreakpointCreateByLocation(filespec, line) return { 'breakpointId': str(breakpoint.id), 'locations': self.debugger_store.location_serializer.get_breakpoint_locations(breakpoint), } def _getSteppingFlag(self): lldb = get_lldb() if self.debugger_store.getDebuggerSettings()['singleThreadStepping']: return lldb.eOnlyThisThread return lldb.eOnlyDuringStepping def _set_breakpoint_by_source_path(self, source_path, line, condition): breakpoint = self.debugger_store.debugger.GetSelectedTarget().BreakpointCreateByLocation( source_path, line) if condition: # empty string is falsy. breakpoint.SetCondition(condition) return { 'breakpointId': str(breakpoint.id), 'locations': self.debugger_store.location_serializer.get_breakpoint_locations(breakpoint), }
[ "handler.UndefinedHandlerError", "handler.handler", "find_lldb.get_lldb", "os.path.dirname", "os.path.basename", "handler.HandlerDomain.__init__", "urlparse.urlparse" ]
[((764, 773), 'handler.handler', 'handler', ([], {}), '()\n', (771, 773), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((942, 951), 'handler.handler', 'handler', ([], {}), '()\n', (949, 951), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((1676, 1685), 'handler.handler', 'handler', ([], {}), '()\n', (1683, 1685), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((1942, 1951), 'handler.handler', 'handler', ([], {}), '()\n', (1949, 1951), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((2240, 2249), 'handler.handler', 'handler', ([], {}), '()\n', (2247, 2249), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((2716, 2725), 'handler.handler', 'handler', ([], {}), '()\n', (2723, 2725), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((2851, 2860), 'handler.handler', 'handler', ([], {}), '()\n', (2858, 2860), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((3028, 3037), 'handler.handler', 'handler', ([], {}), '()\n', (3035, 3037), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((3168, 3177), 'handler.handler', 'handler', ([], {}), '()\n', (3175, 3177), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((3373, 3382), 'handler.handler', 'handler', ([], {}), '()\n', (3380, 3382), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((3749, 3758), 'handler.handler', 'handler', ([], {}), '()\n', (3756, 3758), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((3875, 3884), 'handler.handler', 'handler', ([], {}), '()\n', (3882, 3884), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((4322, 4331), 'handler.handler', 'handler', ([], {}), '()\n', (4329, 4331), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((4669, 4678), 'handler.handler', 'handler', ([], {}), '()\n', (4676, 4678), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((4959, 4968), 'handler.handler', 'handler', ([], {}), '()\n', (4966, 4968), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((5971, 5980), 'handler.handler', 'handler', ([], {}), '()\n', (5978, 5980), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((6104, 6113), 'handler.handler', 'handler', ([], {}), '()\n', (6111, 6113), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((6338, 6347), 'handler.handler', 'handler', ([], {}), '()\n', (6345, 6347), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((6503, 6512), 'handler.handler', 'handler', ([], {}), '()\n', (6510, 6512), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((6737, 6746), 'handler.handler', 'handler', ([], {}), '()\n', (6744, 6746), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((573, 611), 'handler.HandlerDomain.__init__', 'HandlerDomain.__init__', (['self'], {}), '(self, **kwargs)\n', (595, 611), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((1268, 1278), 'find_lldb.get_lldb', 'get_lldb', ([], {}), '()\n', (1276, 1278), False, 'from find_lldb import get_lldb\n'), ((3812, 3868), 'handler.UndefinedHandlerError', 'UndefinedHandlerError', (['"""searchInContent not implemented"""'], {}), "('searchInContent not implemented')\n", (3833, 3868), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((4445, 4477), 'urlparse.urlparse', 'urlparse.urlparse', (["params['url']"], {}), "(params['url'])\n", (4462, 4477), False, 'import urlparse\n'), ((6034, 6097), 'handler.UndefinedHandlerError', 'UndefinedHandlerError', (['"""setScriptSource not supported for LLDB"""'], {}), "('setScriptSource not supported for LLDB')\n", (6055, 6097), False, 'from handler import HandlerDomain, UndefinedHandlerError, handler\n'), ((7279, 7289), 'find_lldb.get_lldb', 'get_lldb', ([], {}), '()\n', (7287, 7289), False, 'from find_lldb import get_lldb\n'), ((2020, 2045), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (2035, 2045), False, 'import os\n'), ((4546, 4579), 'os.path.basename', 'os.path.basename', (['parsed_url.path'], {}), '(parsed_url.path)\n', (4562, 4579), False, 'import os\n'), ((5641, 5651), 'find_lldb.get_lldb', 'get_lldb', ([], {}), '()\n', (5649, 5651), False, 'from find_lldb import get_lldb\n')]
from pathlib import Path __all__ = ["elements_data"] main_path = Path(__file__).parent elements_data = (main_path / Path(r"elements.txt")).resolve()
[ "pathlib.Path" ]
[((67, 81), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (71, 81), False, 'from pathlib import Path\n'), ((118, 138), 'pathlib.Path', 'Path', (['"""elements.txt"""'], {}), "('elements.txt')\n", (122, 138), False, 'from pathlib import Path\n')]
from yacs.config import CfgNode as CN _C = CN() # Data _C.DATA = CN() _C.DATA.KITS19_DIR = '/data/kits19/data' _C.DATA.TRAIN_CASES = list(range(0, 210)) _C.DATA.TEST_CASES = list(range(210, 300)) _C.DATA.CASES_TO_EXCLUDE = [15, 23, 37, 68, 125, 133] # see 'An attempt at beating the 3D U-Net' paper _C.DATA.KITS19_RESAMPLED_DIR = '/data/kits19_resampled' _C.DATA.SPACING = [3.22, 1.62, 1.62] # XXX: axis along the vertical slice comes the first _C.DATA.FOLD_NUM = 5 _C.DATA.FOLD_SEED = 777 _C.DATA.FOLD_ID = 0 # DataLoader _C.DATALOADER = CN() _C.DATALOADER.TRAIN_BATCH_SIZE = 1 # 2 in 'An attempt at beating the 3D U-Net' paper _C.DATALOADER.TRAIN_NUM_WORKERS = 1 _C.DATALOADER.VAL_BATCH_SIZE = 1 # 2 in 'An attempt at beating the 3D U-Net' paper _C.DATALOADER.VAL_NUM_WORKERS = 1 _C.DATALOADER.SHUFFLE_SEED = 777 # Transform _C.TRANSFORM = CN() # intensity normalization intensity_min = -79.0 intensity_max = 304.0 intensity_mean = 101.0 intensity_std = 76.9 _C.TRANSFORM.INTENSITY_MIN = intensity_min _C.TRANSFORM.INTENSITY_MAX = intensity_max _C.TRANSFORM.INTENSITY_MEAN = intensity_mean _C.TRANSFORM.INTENSITY_STD = intensity_std # padding and (random) cropping _C.TRANSFORM.TRAIN_RANDOM_CROP_SIZE = [ 160, 160, 80 ] # RANDOM crop size BEFORE spatial augmentations for train set. axis along the vertical slice comes the last _C.TRANSFORM.TRAIN_CROP_SIZE = [ 160, 160, 80 ] # CENTER crop size AFTER spatial augmentations for train set. axis along the vertical slice comes the last _C.TRANSFORM.VAL_CROP_SIZE = [ 256, 256, 128 ] # center crop size for val set (augmentations are not applied). axis along the vertical slice comes the last _C.TRANSFORM.IMAGE_PAD_MODE = 'constant' # ['constant', 'edge'] _C.TRANSFORM.IMAGE_PAD_VALUE = (intensity_min - intensity_mean) / intensity_std # only valid when mode='constant' _C.TRANSFORM.LABEL_PAD_VALUE = 0 # only used for train label (val label is padded with IGNORE_LABEL value) # random elastic deformation _C.TRANSFORM.ENABLE_ELASTIC = False _C.TRANSFORM.ELASTIC_SCALE = (0, 0.25) _C.TRANSFORM.ELASTIC_PROB = 0.2 # random rotation _C.TRANSFORM.ENABLE_ROTATION = True _C.TRANSFORM.ROTATION_X = 15.0 # in deg _C.TRANSFORM.ROTATION_Y = 15.0 # in deg _C.TRANSFORM.ROTATION_Z = 15.0 # in deg _C.TRANSFORM.ROTATION_PROB = 0.2 # random scale _C.TRANSFORM.ENABLE_SCALE = True _C.TRANSFORM.SCALE_RANGE = (0.85, 1.25) _C.TRANSFORM.SCALE_PROB = 0.2 # random noises _C.TRANSFORM.ENABLE_GAUSSIAN = True _C.TRANSFORM.GAUSSIAN_VARIANCE = (0, 0.1) _C.TRANSFORM.GAUSSIAN_PROB = 0.1 # random brightness _C.TRANSFORM.ENABLE_BRIGHTNESS = True _C.TRANSFORM.BRIGHTNESS_RANGE = (0.75, 1.25) _C.TRANSFORM.BRIGHTNESS_PROB = 0.15 # random contrast _C.TRANSFORM.ENABLE_CONTRAST = True _C.TRANSFORM.CONTRAST_RANGE = (0.75, 1.25) _C.TRANSFORM.CONTRAST_PROB = 0.15 # random gamma _C.TRANSFORM.ENABLE_GAMMA = True _C.TRANSFORM.GAMMA_RANGE = (0.7, 1.5) _C.TRANSFORM.GAMMA_RETAIN_STATS = True _C.TRANSFORM.GAMMA_INVERT_IMAGE = True _C.TRANSFORM.GAMMA_PROB = 0.1 # random seed _C.TRANSFORM.AUGMENTATION_SEED = 777 # Model _C.MODEL = CN() _C.MODEL.NAME = 'plane_unet_3d' # ['plane_unet_3d'] _C.MODEL.INPUT_CHANNELS = 1 _C.MODEL.OUTPUT_CHANNELS = 3 _C.MODEL.BASE_FEATURE_CHANNELS = 30 _C.MODEL.MAX_FEATURE_CHANNELS = 320 _C.MODEL.BASE_MODULE = 'double_conv' # ['double_conv'] _C.MODEL.NUM_LEVELS = 6 _C.MODEL.NORMALIZATION = 'instance_norm' # ['instance_norm', 'batch_norm'] _C.MODEL.NON_LINEARITY = 'leaky_relu' # ['leaky_relu', 'relu'] _C.MODEL.CONV_KERNEL_SIZE = (3, 3, 3) _C.MODEL.PADDING_WIDTH = (1, 1, 1) _C.MODEL.FIRST_DOWNSAMPLE_STRIDE = (2, 2, 1) _C.MODEL.ACTIVATION = 'softmax' # ['softmax', 'sigmoid'] _C.MODEL.INITIALIZER = 'kaiming_normal' _C.MODEL.DEVICE = 'cuda' _C.MODEL.WEIGHT = 'none' # Training _C.TRAIN = CN() _C.TRAIN.EPOCHS = 1000 _C.TRAIN.LR = 1e-2 _C.TRAIN.LR_SCHEDULER = 'poly' # ['poly'] _C.TRAIN.LR_POLY_EXPONENT = 0.9 _C.TRAIN.OPTIMIZER = 'sgd' # ['sgd', 'adam'] _C.TRAIN.OPTIMIZER_SGD_MOMENTUM = 0.99 _C.TRAIN.OPTIMIZER_SGD_NESTEROV = True _C.TRAIN.LOSSES = ['ce', 'dice'] # ['ce', 'dice'] _C.TRAIN.LOSS_WEIGHTS = [1.0, 1.0] _C.TRAIN.WEIGHT_DECAY = 3e-5 _C.TRAIN.MAIN_VAL_METRIC = 'val/kits19/dice' _C.TRAIN.VAL_INTERVAL = 2 _C.TRAIN.IGNORE_LABEL = -1 _C.TRAIN.CHECKPOINT_PATH = 'none' _C.TRAIN.SEED = 777 # Inference _C.TEST = CN() _C.TEST.THRESHOLD_KIDNEY = 0.5 _C.TEST.THRESHOLD_TUMOR = 0.5 # Misc _C.OUTPUT_DIR = './outputs' def get_default_config(): """Get default config. Returns: YACS CfgNode: default config. """ return _C.clone()
[ "yacs.config.CfgNode" ]
[((44, 48), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (46, 48), True, 'from yacs.config import CfgNode as CN\n'), ((67, 71), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (69, 71), True, 'from yacs.config import CfgNode as CN\n'), ((544, 548), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (546, 548), True, 'from yacs.config import CfgNode as CN\n'), ((850, 854), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (852, 854), True, 'from yacs.config import CfgNode as CN\n'), ((3078, 3082), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (3080, 3082), True, 'from yacs.config import CfgNode as CN\n'), ((3774, 3778), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (3776, 3778), True, 'from yacs.config import CfgNode as CN\n'), ((4310, 4314), 'yacs.config.CfgNode', 'CN', ([], {}), '()\n', (4312, 4314), True, 'from yacs.config import CfgNode as CN\n')]
#!/usr/bin/env python # coding: utf-8 import os import sys import requests import regex import time import pytz from datetime import datetime, timedelta import pandas as pd from multiprocessing.pool import ThreadPool import json import logging from configparser import ConfigParser from optparse import OptionParser import warnings warnings.filterwarnings('ignore') ''' This script gets performance metric data from Nagios API and ingests it into an IF metric project ''' def set_logger_config(): ''' Configure logger object ''' ISO8601 = ['%Y-%m-%dT%H:%M:%SZ', '%Y-%m-%dT%H:%M:%S', '%Y%m%dT%H%M%SZ', 'epoch'] logger = logging.getLogger() logger.setLevel(logging.INFO) logging_format = logging.Formatter( '{ts} [pid {pid}] {lvl} {mod}.{func}():{line} {msg}'.format( ts='%(asctime)s', pid='%(process)d', lvl='%(levelname)-8s', mod='%(module)s', func='%(funcName)s', line='%(lineno)d', msg='%(message)s'), ISO8601[0]) logging_handler_out = logging.StreamHandler(sys.stdout) logging_handler_out.setFormatter(logging_format) logger.addHandler(logging_handler_out) return logger def get_config_vars(config_path): ''' Get config variables from the config file ''' if not os.path.exists(config_path): message = "No config file found. Exiting." logger.info(message) sys.exit(1) config = ConfigParser() config.read(config_path) if_vars = {} if_vars['host_url'] = config.get('insightFinder_vars', 'host_url') if_vars['http_proxy'] = config.get('insightFinder_vars', 'http_proxy') if_vars['https_proxy'] = config.get('insightFinder_vars', 'https_proxy') if_vars['licenseKey'] = config.get('insightFinder_vars', 'licenseKey') if_vars['project_name'] = config.get('insightFinder_vars', 'project_name') if_vars['username'] = config.get('insightFinder_vars', 'username') if_vars['retries'] = config.getint('insightFinder_vars', 'retries') if_vars['sleep_seconds'] = config.getint('insightFinder_vars', 'sleep_seconds') nagios_vars = {} nagios_vars['host_url'] = config.get('nagios_vars', 'host_url') nagios_vars['http_proxy'] = config.get('nagios_vars', 'http_proxy') nagios_vars['https_proxy'] = config.get('nagios_vars', 'https_proxy') nagios_vars['api_key'] = config.get('nagios_vars', 'api_key') nagios_vars['host_names_list'] = config.get('nagios_vars', 'host_names_list') nagios_vars['host_names_regex'] = config.get('nagios_vars', 'host_names_regex') nagios_vars['service_descriptors_list'] = config.get('nagios_vars', 'service_descriptors_list') nagios_vars['service_descriptors_regex'] = config.get('nagios_vars', 'service_descriptors_regex') nagios_vars['retries'] = config.getint('nagios_vars', 'retries') nagios_vars['sleep_seconds'] = config.getint('nagios_vars', 'sleep_seconds') agent_vars = {} agent_vars['query_interval'] = config.getint('agent_vars', 'query_interval') agent_vars['sampling_interval'] = config.getint('agent_vars', 'sampling_interval') agent_vars['thread_pool'] = config.getint('agent_vars', 'thread_pool') agent_vars['chunk_size'] = config.getint('agent_vars', 'chunk_size_kb') * 1024 parser = OptionParser() parser.add_option('-t', '--testing', action='store_true', dest='testing', default=False, help='Set to testing mode (do not send data).') (options, args) = parser.parse_args() return if_vars, nagios_vars, agent_vars, options def collect_performance_data(): ''' Collect performance metric data from Nagios ''' logger.info("Collecting host and service descriptor lists.") hosts = get_hosts() if len(hosts) == 0: logger.error('Host list is empty.') sys.exit(1) pool_map = ThreadPool(agent_vars['thread_pool']) services = pool_map.map(get_services, hosts) services = {service[0]: service[1] for service in services} pool_map = ThreadPool(agent_vars['thread_pool']) params = [(host, service) for host in hosts for service in services[host]] if len(params) == 0: logger.warn('No valid combinations of filters found. Exiting.') sys.exit(1) logger.info("Collecting the performance data.") metric_data = pool_map.map(query_nagiosAPI, params) metric_data = pd.concat(metric_data, axis=1, sort=True) if len(metric_data) == 0: logger.warning("No metric data found for the given parameters.") sys.exit(1) metric_data.index.name = 'timestamp' metric_data = metric_data.reset_index() metric_data = metric_data.astype(str).replace('nan','') logger.info("Received {} rows from nagios API.".format(len(metric_data))) #metric_data.to_csv('sample data.csv') return metric_data def get_hosts(): ''' Retrieve host names for all hosts being monitored ''' api = "/nagiosxi/api/v1/objects/hoststatus" url = nagios_vars['host_url'] + api params = { "apikey": nagios_vars['api_key'] } proxies = {} if len(nagios_vars['http_proxy']) > 0: proxies['http'] = nagios_vars['http_proxy'] if len(nagios_vars['https_proxy']) > 0: proxies['https'] = nagios_vars['https_proxy'] attempts = 1 response = requests.get(url, params=params, proxies=proxies, verify=False) while response.status_code != 200 and attempts < nagios_vars['retries']: logger.info("Failed to get host names. Retrying in {} seconds.".format( nagios_vars['sleep_seconds'])) time.sleep(nagios_vars['sleep_seconds']) response = requests.get(url, params=params, proxies=proxies, verify=False) attempts += 1 if response.status_code != 200: logger.warning("Failed to get host names in {} attempts.".format( nagios_vars['retries'])) logger.info('Response Code: {}\nTEXT: {}'.format( response.status_code, response.text)) sys.exit(1) result = response.json() if "error" in result: logger.warning("Could not retrieve hosts from the API. Error message: {}".format(result['error'])) sys.exit(1) all_hosts = [] for host in result['hoststatus']: all_hosts.append(host['host_name']) if nagios_vars['host_names_list']: hosts = nagios_vars['host_names_list'].split(',') hosts = [host.strip() for host in hosts if host.strip() in all_hosts] elif nagios_vars['host_names_regex']: re = regex.compile(nagios_vars['host_names_regex']) hosts = list(filter(re.match, all_hosts)) else: hosts = [] return hosts def get_services(host): ''' Retrieve service descriptions for all services being monitored for a host ''' api = "/nagiosxi/api/v1/objects/servicestatus" url = nagios_vars['host_url'] + api params = { "apikey": nagios_vars['api_key'], "host_name": host } proxies = {} if len(nagios_vars['http_proxy']) > 0: proxies['http'] = nagios_vars['http_proxy'] if len(nagios_vars['https_proxy']) > 0: proxies['https'] = nagios_vars['https_proxy'] attempts = 1 response = requests.get(url, params=params, proxies=proxies, verify=False) while response.status_code != 200 and attempts < nagios_vars['retries']: logger.info("Failed to get services for the host '{}'. Retrying in {} seconds.".format( host, nagios_vars['sleep_seconds'])) time.sleep(nagios_vars['sleep_seconds']) response = requests.get(url, params=params, proxies=proxies, verify=False) attempts += 1 if response.status_code != 200: logger.warning("Failed to get services for the host '{}' in {} attempts.".format( host, nagios_vars['retries'])) logger.info('Response Code: {}\nTEXT: {}'.format( response.status_code, response.text)) sys.exit(1) result = response.json() if "error" in result: logger.warning("Could not retrieve services for the host '{}'. Error message: {}".format(host, result['error'])) return host, [] all_services = [] for service in result['servicestatus']: all_services.append(service['service_description']) if nagios_vars['service_descriptors_list']: services = nagios_vars['service_descriptors_list'].split(',') services = [service.strip() for service in services if service.strip() in all_services] elif nagios_vars['service_descriptors_regex']: re = regex.compile(nagios_vars['service_descriptors_regex']) services = list(filter(re.match, all_services)) else: services = [] return host, services def query_nagiosAPI(args): ''' Query Nagios API for a host name and service description ''' #print(args) host, service = args api = "/nagiosxi/api/v1/objects/rrdexport" url = nagios_vars['host_url'] + api params = { "apikey": nagios_vars['api_key'], "host_name": host, "service_description": service, "start": (execution_time - timedelta(minutes=agent_vars['query_interval'])).timestamp(), "end": execution_time.timestamp(), "step": agent_vars['sampling_interval'] * 60, "maxrows": 2**31-1 } proxies = {} if len(nagios_vars['http_proxy']) > 0: proxies['http'] = nagios_vars['http_proxy'] if len(nagios_vars['https_proxy']) > 0: proxies['https'] = nagios_vars['https_proxy'] attempts = 1 response = requests.get(url, params=params, proxies=proxies, verify=False) while response.status_code != 200 and attempts < nagios_vars['retries']: logger.info("Failed to get data for host '{}' and service '{}'. Retrying in {} seconds.".format( host, service, nagios_vars['sleep_seconds'])) time.sleep(nagios_vars['sleep_seconds']) response = requests.get(url, params=params, proxies=proxies, verify=False) attempts += 1 if response.status_code != 200: logger.warning("Failed to get data for host '{}' and service '{}' in {} attempts.".format( host, service, nagios_vars['retries'])) logger.info('Response Code: {}\nTEXT: {}'.format( response.status_code, response.text)) sys.exit(1) result = response.json() if "error" in result: logger.warning("Could not get data for host '{}' and service '{}'. Error message: {}".format(host, service, result['error'])) return pd.DataFrame() data = [row['v'] for row in result['data']['row']] index = [int(row['t']) * 1000 for row in result['data']['row']] columns = result['meta']['legend']['entry'] if type(columns) == list: columns = [service.replace(' ', '') + '_' + col for col in columns] else: columns = [service.replace(' ', '')] columns= ['{}[{}]'.format(col, host) for col in columns] df = pd.DataFrame(data, index=index, columns=columns).astype(float).dropna() return df def send_performance_data(metric_data): ''' Send the collected metric data to InsightFinder ''' logger.info("Sending the performance metrics to InsightFinder.") data_chunk = [] count = 0 for _, row in metric_data.iterrows(): entry = dict(list(zip(row.index, row))) data_chunk.append(entry) count += 1 if len(bytearray(json.dumps(data_chunk), 'utf8')) >= agent_vars['chunk_size']: logger.debug("Sending a data chunk.") send_data_chunk(data_chunk) data_chunk = [] if len(data_chunk) != 0: logger.debug("Sending last data chunk.") send_data_chunk(data_chunk) logger.info("Sent a total of {} metric rows to IF.".format(count)) def send_data_chunk(data_chunk): ''' Send a single data chunk to IF ''' start_time = time.time() url = if_vars['host_url'] + '/customprojectrawdata' data = { 'metricData': json.dumps(data_chunk), 'licenseKey': if_vars['licenseKey'], 'projectName': if_vars['project_name'], 'userName': if_vars['username'], 'agentType': 'CUSTOM' } proxies = {} if len(if_vars['http_proxy']) > 0: proxies['http'] = if_vars['http_proxy'] if len(if_vars['https_proxy']) > 0: proxies['https'] = if_vars['https_proxy'] attempts = 1 response = requests.post(url, data=data, proxies=proxies, verify=False) while response.status_code != 200 and attempts < if_vars['retries']: logger.info("Failed to send data. Retrying in {} seconds.".format( if_vars['sleep_seconds'])) time.sleep(if_vars['sleep_seconds']) response = requests.post(url, data=data, proxies=proxies, verify=False) attempts += 1 if response.status_code == 200: logger.info("Successfully sent {} metric rows in {} seconds.".format( len(data_chunk), time.time() - start_time)) else: logger.warning("Failed to send metric data in {} attempts.".format( if_vars['retries'])) logger.info('Response Code: {}\nTEXT: {}'.format( response.status_code, response.text)) sys.exit(1) if __name__ == '__main__': execution_time = datetime.now(pytz.timezone('UTC')) logger = set_logger_config() config_path = 'config.ini' if_vars, nagios_vars, agent_vars, options = get_config_vars(config_path) try: metric_data = collect_performance_data() if not options.testing: send_performance_data(metric_data) except Exception as e: logger.error(e, exc_info=True)
[ "logging.getLogger", "os.path.exists", "pytz.timezone", "logging.StreamHandler", "requests.post", "configparser.ConfigParser", "sys.exit", "json.dumps", "optparse.OptionParser", "requests.get", "time.sleep", "multiprocessing.pool.ThreadPool", "time.time", "pandas.DataFrame", "datetime.timedelta", "pandas.concat", "warnings.filterwarnings", "regex.compile" ]
[((336, 369), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""'], {}), "('ignore')\n", (359, 369), False, 'import warnings\n'), ((650, 669), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (667, 669), False, 'import logging\n'), ((1081, 1114), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (1102, 1114), False, 'import logging\n'), ((1485, 1499), 'configparser.ConfigParser', 'ConfigParser', ([], {}), '()\n', (1497, 1499), False, 'from configparser import ConfigParser\n'), ((3336, 3350), 'optparse.OptionParser', 'OptionParser', ([], {}), '()\n', (3348, 3350), False, 'from optparse import OptionParser\n'), ((3903, 3940), 'multiprocessing.pool.ThreadPool', 'ThreadPool', (["agent_vars['thread_pool']"], {}), "(agent_vars['thread_pool'])\n", (3913, 3940), False, 'from multiprocessing.pool import ThreadPool\n'), ((4070, 4107), 'multiprocessing.pool.ThreadPool', 'ThreadPool', (["agent_vars['thread_pool']"], {}), "(agent_vars['thread_pool'])\n", (4080, 4107), False, 'from multiprocessing.pool import ThreadPool\n'), ((4436, 4477), 'pandas.concat', 'pd.concat', (['metric_data'], {'axis': '(1)', 'sort': '(True)'}), '(metric_data, axis=1, sort=True)\n', (4445, 4477), True, 'import pandas as pd\n'), ((5383, 5446), 'requests.get', 'requests.get', (['url'], {'params': 'params', 'proxies': 'proxies', 'verify': '(False)'}), '(url, params=params, proxies=proxies, verify=False)\n', (5395, 5446), False, 'import requests\n'), ((7293, 7356), 'requests.get', 'requests.get', (['url'], {'params': 'params', 'proxies': 'proxies', 'verify': '(False)'}), '(url, params=params, proxies=proxies, verify=False)\n', (7305, 7356), False, 'import requests\n'), ((9655, 9718), 'requests.get', 'requests.get', (['url'], {'params': 'params', 'proxies': 'proxies', 'verify': '(False)'}), '(url, params=params, proxies=proxies, verify=False)\n', (9667, 9718), False, 'import requests\n'), ((12007, 12018), 'time.time', 'time.time', ([], {}), '()\n', (12016, 12018), False, 'import time\n'), ((12532, 12592), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'proxies': 'proxies', 'verify': '(False)'}), '(url, data=data, proxies=proxies, verify=False)\n', (12545, 12592), False, 'import requests\n'), ((1342, 1369), 'os.path.exists', 'os.path.exists', (['config_path'], {}), '(config_path)\n', (1356, 1369), False, 'import os\n'), ((1459, 1470), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (1467, 1470), False, 'import sys\n'), ((3875, 3886), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (3883, 3886), False, 'import sys\n'), ((4292, 4303), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4300, 4303), False, 'import sys\n'), ((4589, 4600), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (4597, 4600), False, 'import sys\n'), ((5655, 5695), 'time.sleep', 'time.sleep', (["nagios_vars['sleep_seconds']"], {}), "(nagios_vars['sleep_seconds'])\n", (5665, 5695), False, 'import time\n'), ((5715, 5778), 'requests.get', 'requests.get', (['url'], {'params': 'params', 'proxies': 'proxies', 'verify': '(False)'}), '(url, params=params, proxies=proxies, verify=False)\n', (5727, 5778), False, 'import requests\n'), ((6073, 6084), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6081, 6084), False, 'import sys\n'), ((6256, 6267), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (6264, 6267), False, 'import sys\n'), ((7587, 7627), 'time.sleep', 'time.sleep', (["nagios_vars['sleep_seconds']"], {}), "(nagios_vars['sleep_seconds'])\n", (7597, 7627), False, 'import time\n'), ((7647, 7710), 'requests.get', 'requests.get', (['url'], {'params': 'params', 'proxies': 'proxies', 'verify': '(False)'}), '(url, params=params, proxies=proxies, verify=False)\n', (7659, 7710), False, 'import requests\n'), ((8027, 8038), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (8035, 8038), False, 'import sys\n'), ((9967, 10007), 'time.sleep', 'time.sleep', (["nagios_vars['sleep_seconds']"], {}), "(nagios_vars['sleep_seconds'])\n", (9977, 10007), False, 'import time\n'), ((10027, 10090), 'requests.get', 'requests.get', (['url'], {'params': 'params', 'proxies': 'proxies', 'verify': '(False)'}), '(url, params=params, proxies=proxies, verify=False)\n', (10039, 10090), False, 'import requests\n'), ((10425, 10436), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (10433, 10436), False, 'import sys\n'), ((10642, 10656), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (10654, 10656), True, 'import pandas as pd\n'), ((12110, 12132), 'json.dumps', 'json.dumps', (['data_chunk'], {}), '(data_chunk)\n', (12120, 12132), False, 'import json\n'), ((12788, 12824), 'time.sleep', 'time.sleep', (["if_vars['sleep_seconds']"], {}), "(if_vars['sleep_seconds'])\n", (12798, 12824), False, 'import time\n'), ((12844, 12904), 'requests.post', 'requests.post', (['url'], {'data': 'data', 'proxies': 'proxies', 'verify': '(False)'}), '(url, data=data, proxies=proxies, verify=False)\n', (12857, 12904), False, 'import requests\n'), ((13337, 13348), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (13345, 13348), False, 'import sys\n'), ((13411, 13431), 'pytz.timezone', 'pytz.timezone', (['"""UTC"""'], {}), "('UTC')\n", (13424, 13431), False, 'import pytz\n'), ((6601, 6647), 'regex.compile', 'regex.compile', (["nagios_vars['host_names_regex']"], {}), "(nagios_vars['host_names_regex'])\n", (6614, 6647), False, 'import regex\n'), ((8646, 8701), 'regex.compile', 'regex.compile', (["nagios_vars['service_descriptors_regex']"], {}), "(nagios_vars['service_descriptors_regex'])\n", (8659, 8701), False, 'import regex\n'), ((9219, 9266), 'datetime.timedelta', 'timedelta', ([], {'minutes': "agent_vars['query_interval']"}), "(minutes=agent_vars['query_interval'])\n", (9228, 9266), False, 'from datetime import datetime, timedelta\n'), ((11062, 11110), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {'index': 'index', 'columns': 'columns'}), '(data, index=index, columns=columns)\n', (11074, 11110), True, 'import pandas as pd\n'), ((11538, 11560), 'json.dumps', 'json.dumps', (['data_chunk'], {}), '(data_chunk)\n', (11548, 11560), False, 'import json\n'), ((13071, 13082), 'time.time', 'time.time', ([], {}), '()\n', (13080, 13082), False, 'import time\n')]
#!/usr/bin/env python # coding: utf-8 # *********************************************************************** # # V2W-BERT: A Python library for vulnerability classification # <NAME> (<EMAIL>) : Purdue University # <NAME> (<EMAIL>): Pacific Northwest National Laboratory # # *********************************************************************** # # # Copyright © 2022, Battelle Memorial Institute # All rights reserved. # # # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # # 1. Redistributions of source code must retain the above copyright notice, this # # list of conditions and the following disclaimer. # # # # 2. Redistributions in binary form must reproduce the above copyright notice, # # this list of conditions and the following disclaimer in the documentation # # and/or other materials provided with the distribution. # # # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ## Download and Preprocess Latest Dataset # # In this script we first download all CVEs to-date. Use the NVD and Mitre hierarchy documents to prepare a train test validation set. # ## Import libraries # In[199]: import os import requests, zipfile, io import pickle import pandas as pd import numpy as np # Here, I have disabled a false alarm that would otherwise trip later in the project. pd.options.mode.chained_assignment = None # The datetime library will let me filter the data by reporting date. from datetime import datetime, timedelta # Since the NVD data is housed in JavaScript Object Notation (JSON) format, I will need the json_normalize function to access and manipulate the information. from pandas.io.json import json_normalize import sys import torch import re from ipynb.fs.full.Dataset import Data # In[200]: # Expanding view area to facilitate data manipulation. pd.set_option('display.max_rows', 20) pd.set_option('display.max_columns', 100) # In[201]: import argparse from argparse import ArgumentParser def get_configuration(): parser = ArgumentParser() parser.add_argument('--dir', type=str, default='Dataset') parser.add_argument('--from_year', type=int, default=2020) parser.add_argument('--to_year', type=int, default=2022) parser.add_argument('--from_train_year', type=int, default=1990) parser.add_argument('--to_train_year', type=int, default=2020) parser.add_argument('--from_test_year', type=int, default=2021) parser.add_argument('--to_test_year', type=int, default=2021) parser.add_argument('--from_val_year', type=int, default=2022) parser.add_argument('--to_val_year', type=int, default=2022) parser.add_argument('-f') ##dummy for jupyternotebook args = parser.parse_args() dict_args = vars(args) return args, dict_args args, dict_args=get_configuration() print(dict_args) print(args.dir) # In[ ]: # ### Configuration # In[202]: class DataPath(): def __init__(self, args, dataset_dir='',results_dir=''): #File locations self.PATH_TO_DATASETS_DIRECTORY = dataset_dir+'/NVD/raw/' self.PATH_TO_RESULTS_DIRECTORY = results_dir+'/NVD/processed/' self.NVD_CVE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CVE_data.csv' self.Graph_FILE=self.PATH_TO_RESULTS_DIRECTORY+'GRAPH_data' self.GRAPHVIZ_HIERARCHY=self.PATH_TO_RESULTS_DIRECTORY+'Hierarchy' self.MITRE_CWE_FILE=self.PATH_TO_DATASETS_DIRECTORY+'CWE_RC_1000.csv' self.NVD_CWE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CWE_data.csv' self.MASK_FILE = self.PATH_TO_RESULTS_DIRECTORY+'NVD_data' self.MERGED_NVD_CVE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CVE.csv' self.FILTERED_NVD_CWE_FILE=self.PATH_TO_RESULTS_DIRECTORY+'NVD_CWE.csv' self.YEARS=list(range(args.from_year,args.to_year+1)) self.TRAIN_YEARS=list(range(args.from_train_year,args.to_train_year+1)) self.VAL_YEARS=list(range(args.from_val_year,args.to_val_year+1)) self.TEST_YEARS=list(range(args.from_test_year,args.to_test_year+1)) if not os.path.exists(self.PATH_TO_DATASETS_DIRECTORY): print("Creating directory: ",self.PATH_TO_DATASETS_DIRECTORY) os.makedirs(self.PATH_TO_DATASETS_DIRECTORY) if not os.path.exists(self.PATH_TO_RESULTS_DIRECTORY): print("Creating directory: ",self.PATH_TO_RESULTS_DIRECTORY) os.makedirs(self.PATH_TO_RESULTS_DIRECTORY) class Config(DataPath): def __init__(self,args, dataset_dir='',results_dir=''): super(Config, self).__init__(args, dataset_dir, results_dir) self.CLUSTER_LABEL=0 self.download() def download(self): for year in self.YEARS: if not os.path.exists(self.PATH_TO_DATASETS_DIRECTORY+'nvdcve-1.1-'+str(year)+'.json'): url = 'https://nvd.nist.gov/feeds/json/cve/1.1/nvdcve-1.1-'+str(year)+'.json.zip' print("Downloading: ",url) r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(self.PATH_TO_DATASETS_DIRECTORY) print("CVEs downloaded") if not os.path.exists(self.MITRE_CWE_FILE): url = 'https://drive.google.com/uc?export=download&id=1-phSamb4RbxyoBc3AQ2xxKMSsK2DwPyn' print("Downloading: ",url) r = requests.get(url) z = zipfile.ZipFile(io.BytesIO(r.content)) z.extractall(self.PATH_TO_DATASETS_DIRECTORY) print("CWEs downloaded") config=Config(args,dataset_dir=args.dir,results_dir=args.dir) # ### ProfecessCVES # In[203]: def getDataFrame(config): df = [] counter=0 for year in config.YEARS: yearly_data = pd.read_json(config.PATH_TO_DATASETS_DIRECTORY+'nvdcve-1.1-'+str(year)+'.json') if counter == 0: df = yearly_data else: df = df.append(yearly_data) counter+=1 return df # In[204]: def removeREJECT(description): series=[] for x in description: try: if "REJECT" in (json_normalize(x)["value"])[0]: series.append(False) else: series.append(True) except: series.append(False) return pd.Series(series,index=description.index) # In[205]: def removeUnknownCWE(description): series=[] for x in description: try: if x == "UNKNOWN" or x == "NONE": series.append(False) else: series.append(True) except: series.append(False) return pd.Series(series,index=description.index) # In[206]: def getCVEDescription(df): CVE_entry = [] CVE_index = df["cve.description.description_data"].index for x in df["cve.description.description_data"]: try: raw_CVE_entry = json_normalize(x)["value"][0] clean_CVE_entry = str(raw_CVE_entry) CVE_entry.append(clean_CVE_entry) except: CVE_entry.append("NONE") CVE_entry = pd.Series(CVE_entry, index = CVE_index) return CVE_entry # In[207]: # Defining a function which I will use below def consolidate_unknowns(x): if x == "NVD-CWE-Other" or x == "NVD-CWE-noinfo": return "UNKNOWN" else: return x # In[208]: def getCWEs(df): CWE_entry = [] CWE_index = df["cve.problemtype.problemtype_data"].index for x in df["cve.problemtype.problemtype_data"]: try: CWE_normalized_json_step_1 = json_normalize(x) CWE_normalized_json_step_2 = CWE_normalized_json_step_1["description"][0] CWEs=[] #print(json_normalize(CWE_normalized_json_step_2)["value"]) for CWE in json_normalize(CWE_normalized_json_step_2)["value"]: #CWEs.append(consolidate_unknowns(str(CWE))) CWEs.append(str(CWE)) CWE_entry.append(CWEs) except: CWE_entry.append(['NONE']) CWE_entry = pd.Series(CWE_entry, index = CWE_index) return CWE_entry # In[209]: def ProcessDataset(config): print("Loading data from file---") df=getDataFrame(config) CVE_Items = json_normalize(df["CVE_Items"]) df = pd.concat([df.reset_index(), CVE_Items], axis=1) df = df.drop(["index", "CVE_Items"], axis=1) df = df.rename(columns={"cve.CVE_data_meta.ID": "CVE ID"}) CVE_ID = df["CVE ID"] df.drop(labels=["CVE ID"], axis=1,inplace = True) df.insert(0, "CVE ID", CVE_ID) ##remove description with REJECT print("Removing REJECTs---") df=df[removeREJECT(df["cve.description.description_data"])] ##Extract CVE description CVE_description=getCVEDescription(df) df.insert(1, "CVE Description", CVE_description) ##Extract CWEs print("Extracting CWEs---") CWE_entry=getCWEs(df) df.insert(2, "CWE Code", CWE_entry) # ##Remove CWEs we don't know true label # print("Removing Unknown CWEs---") # df=df[removeUnknownCWE(df["CWE Code 1"])] # Converting the data to pandas date-time format df["publishedDate"] = pd.to_datetime(df["publishedDate"]) return df # ### ProcessCWEs # In[210]: def processAndSaveCVE(config, LOAD_SAVED=True): if not os.path.exists(config.NVD_CVE_FILE) or LOAD_SAVED==False: df=ProcessDataset(config) df=df[['publishedDate', 'CVE ID', 'CVE Description', 'CWE Code']] df.to_csv(config.NVD_CVE_FILE,index=False) else: df=pd.read_csv(config.NVD_CVE_FILE) return df # In[211]: def ProcessCWE_NVD(config): # Importing BeautifulSoup and an xml parser to scrape the CWE definitions from the NVD web site from bs4 import BeautifulSoup import lxml.etree # loading the NVD CWE Definitions page and scraping it for the first table that appears NVD_CWE_description_url = requests.get("https://nvd.nist.gov/vuln/categories") CWE_definitions_page_soup = BeautifulSoup(NVD_CWE_description_url.content, "html.parser") table = CWE_definitions_page_soup.find_all('table')[0] df_CWE_definitions = pd.read_html(str(table))[0] return df_CWE_definitions # In[212]: def ProcessCWE_MITRE(config): print('Loading CWE file : {0}'.format(config.MITRE_CWE_FILE)) #df_CWE_definitions = pd.read_csv(config.MITRE_CWE_FILE, quotechar='"',delimiter=',', encoding='latin1',index_col=False) df_CWE_definitions = pd.read_csv(config.MITRE_CWE_FILE, delimiter=',', encoding='latin1',index_col=False) return df_CWE_definitions # In[213]: def processAndSaveCWE(config, LOAD_SAVED=True): if not os.path.exists(config.MITRE_CWE_FILE) or LOAD_SAVED==False: df_CWE_MITRE=ProcessCWE_MITRE(config) df_CWE_MITRE.to_csv(config.MITRE_CWE_FILE,index=False) else: df_CWE_MITRE=pd.read_csv(config.MITRE_CWE_FILE, index_col=False) if not os.path.exists(config.NVD_CWE_FILE) or LOAD_SAVED==False: df_CWE_NVD=ProcessCWE_NVD(config) df_CWE_NVD.to_csv(config.NVD_CWE_FILE,index=False) else: df_CWE_NVD=pd.read_csv(config.NVD_CWE_FILE,index_col=False) return df_CWE_MITRE, df_CWE_NVD # In[214]: #df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, True) # In[215]: #df_CWE_MITRE #df_CWE_NVD # In[216]: def load_preprocessed(config, LOAD_SAVED=True): df_CVE=processAndSaveCVE(config, LOAD_SAVED) df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, LOAD_SAVED=True) index1= np.argwhere(df_CWE_NVD['Name'].values == 'NVD-CWE-Other')[0][0] index2= np.argwhere(df_CWE_NVD['Name'].values == 'NVD-CWE-noinfo')[0][0] df_CWE_NVD.drop(index=[index1,index2], inplace = True) return df_CVE, df_CWE_NVD, df_CWE_MITRE # In[217]: #load_preprocessed(config, LOAD_SAVED=False) # ### Create Training and Test Dataset # In[218]: def getMask(config,df_CVE,df_CWE): n = len(df_CWE) m = len(df_CVE) #get date range train_start_date = pd.to_datetime(str(config.TRAIN_YEARS[0])+'-01-01').tz_localize('US/Eastern') train_end_date = pd.to_datetime(str(config.TRAIN_YEARS[-1])+'-01-01').tz_localize('US/Eastern') + timedelta(days=365) val_start_date = pd.to_datetime(str(config.VAL_YEARS[0])+'-01-01').tz_localize('US/Eastern') val_end_date = pd.to_datetime(str(config.VAL_YEARS[-1])+'-01-01').tz_localize('US/Eastern') + timedelta(days=365) test_start_date = pd.to_datetime(str(config.TEST_YEARS[0])+'-01-01').tz_localize('US/Eastern') test_end_date = pd.to_datetime(str(config.TEST_YEARS[-1])+'-01-01').tz_localize('US/Eastern') + timedelta(days=365) cwe_ids=df_CWE['Name'] cwe_map=dict(zip(cwe_ids, list(range(n)))) index_cwe_map = dict(zip(list(range(n)),cwe_ids)) #creating y and finding labeled y=torch.zeros((m,n),dtype=torch.long) labeled_mask= torch.zeros(m, dtype=torch.bool) train_index = torch.zeros(m, dtype=torch.bool) test_index = torch.zeros(m, dtype=torch.bool) val_index = torch.zeros(m, dtype=torch.bool) CWEs=df_CVE['CWE Code'] Dates=df_CVE['publishedDate'] for i,row in enumerate(zip(CWEs,Dates)): cwes=row[0] date=row[1] if(type(cwes) == str): cwes=[cwe for cwe in cwes.strip('[]').split("'") if not (cwe==',' or cwe==', ' or cwe=='''''')] if(type(date) == str): date=pd.to_datetime(date) for cwe in cwes: if cwe in cwe_map: y[i][cwe_map[cwe]]=1 if torch.sum(y[i])>0: labeled_mask[i]=True if(train_start_date<date and date<train_end_date): train_index[i]=True elif(val_start_date<date and date<val_end_date): val_index[i]=True elif(test_start_date<date and date<test_end_date): test_index[i]=True else: print(date,'-> not covered') ##convert to tensors data=Data(train_mask=train_index, val_mask=val_index, test_mask=test_index, y=y, num_nodes=m) return data # In[219]: def getPercent(data,df_CVE,df_CWE, max_data_inaclass=500): CWEs=df_CVE['CWE Code'] train_mask= (data.train_mask == True).nonzero().flatten().numpy() CWEs_train={} for key in train_mask: cwes=CWEs[key] if(type(cwes) == str): cwes=[cwe.strip() for cwe in cwes.strip('[]').split("'") if not (cwe==',' or cwe==', ' or cwe=='''''')] for cwe in cwes: if cwe in CWEs_train: CWEs_train[cwe].append(key) else: CWEs_train[cwe]=[key] required_train_mask = torch.zeros(len(data.train_mask), dtype=torch.bool) for key, values in CWEs_train.items(): if(len(values)<max_data_inaclass): required_train_mask[values]=True else: np.random.shuffle(values) takeamnt=max_data_inaclass required_train_mask[values[:takeamnt]]=True data.train_mask=required_train_mask return data # In[ ]: # In[220]: from collections import OrderedDict def CWE_description(row): return str(row['Name'])+" "+str(row['Description'])+" "+str(row['Extended Description'])+" "+str(row['Common Consequences']) def CWE_description_NVD(row,df_CWE_Mitre): cwe=row['Name'] cwe_id = int(re.findall("\d+", cwe)[0]) description = df_CWE_Mitre[df_CWE_Mitre['CWE-ID'].values==cwe_id]['CVE Description'].values if len(description)>0: return description[0] else: return '' def UpdateData(data, df_CVE, df_CWE_NVD, df_CWE_MITRE): df_CWE_MITRE['CVE Description']= df_CWE_MITRE.apply(lambda row: CWE_description(row), axis=1) for i, row in df_CWE_NVD.iterrows(): description=CWE_description_NVD(row, df_CWE_MITRE) #df_CWE_NVD.set_value(i,'CVE Description',description) df_CWE_NVD.at[i,'CVE Description']=description df_CWE_NVD['CWE Code']= df_CWE_NVD.apply(lambda row: [str(row['Name'])], axis=1) df_CWE_NVD=df_CWE_NVD[['CVE Description','CWE Code','Name']] df_CVE_updated = pd.concat([df_CVE,df_CWE_NVD],ignore_index=True, sort=False) n = len(df_CWE_NVD) cwe_ids=df_CWE_NVD['Name'] cwe_map=dict(zip(cwe_ids, list(range(n)))) index_cwe_map = dict(zip(list(range(n)),cwe_ids)) class_labels=torch.zeros((n,n),dtype=torch.long) CWElist=df_CWE_NVD['Name'].tolist() for i,cwe in enumerate(CWElist): cwe_value=cwe class_labels[i][cwe_map[cwe_value]]=1 data.y=torch.cat((data.y,class_labels),dim=0) class_mask=torch.cat((torch.zeros(len(data.train_mask),dtype=bool),torch.ones(len(class_labels),dtype=bool)),dim=0) data.class_mask=class_mask data.train_mask=torch.cat((data.train_mask,torch.zeros(len(class_labels),dtype=bool)),dim=0) data.val_mask=torch.cat((data.val_mask,torch.zeros(len(class_labels),dtype=bool)),dim=0) data.test_mask=torch.cat((data.test_mask,torch.zeros(len(class_labels),dtype=bool)),dim=0) return data, df_CVE_updated, df_CWE_NVD # ### CWE hierarchy # In[221]: def cwe_child(row): item = str(row['Related Weaknesses']) cve_p = re.compile('ChildOf:CWE ID:\\d+') results = cve_p.findall(item) item=''.join(results) cve_p = re.compile('\\d+') results = cve_p.findall(item) results = list(map(int, results)) results=list(OrderedDict.fromkeys(results)) #preserve order #results=list(set(results)) #order not preserve # print(str(row['CWE-ID'])+'->', end="") # print(results) if(len(results)>0): return results else: return [-1] def depth_node(child_parent,node): if -1 in child_parent[node]: return [0] depths=[] for parent_node in child_parent[node]: parent_depth=depth_node(child_parent, parent_node) depths.extend([x+1 for x in parent_depth]) return depths def create_group(nodes,parents): child_parent=dict(zip(nodes,parents)) depth={} for node, level in child_parent.items(): depth[node]=depth_node(child_parent, node) return child_parent, depth def save_hierarchy(config, nodes, names, child_parent): from graphviz import Digraph,Graph #save hierarchy graph dot = Digraph(comment='NVD Research Concepts Hierarchy',engine='dot',node_attr={'shape': 'box'}) dot.graph_attr['rankdir'] = 'LR' #dot=Graph(format='png') root=1003 dot.node(str(root), "CWE-ID " + str(root) + ":" + 'Root Node') for i in range(len(nodes)): dot.node(str(nodes[i]), "CWE-ID " + str(nodes[i]) + ":" + names[i]) for cwe in nodes: parents=child_parent[cwe] if(parents[0]==-1): dot.edge(str(cwe),str(root)) continue for p in parents: dot.edge(str(cwe),str(p)) #print(dot.source) dot.format='pdf' dot.render(config.GRAPHVIZ_HIERARCHY, view=False) def cluster_cwes(config, cwe_c,df_CWE_NVD): valid_cwes=[] for cwe in df_CWE_NVD['Name']: if cwe in ['NVD-CWE-Other','NVD-CWE-noinfo']: continue cwe_id = int(re.findall("\d+", cwe)[0]) valid_cwes.append(cwe_id) delete_indexs=[] for i, row in cwe_c.iterrows(): cwe=int(row['CWE-ID']) if(cwe not in valid_cwes): delete_indexs.append(i) cwe_c.drop(delete_indexs,inplace=True) parent_columns=[] for i, row in cwe_c.iterrows(): parents=cwe_child(row) valid_parents=[] for x in parents: if x in valid_cwes: valid_parents.append(x) if(len(valid_parents)==0): valid_parents.append(-1) parent_columns.append(valid_parents) cwe_c['parent']=parent_columns nodes=cwe_c['CWE-ID'].tolist() parents=cwe_c['parent'].tolist() child_parent, depth = create_group(nodes, parents) save_hierarchy(config, nodes, cwe_c['Name'].tolist(),child_parent) return child_parent, depth # df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, LOAD_SAVED=True) # child_parent, depth = cluster_cwes(config, df_CWE_MITRE,df_CWE_NVD) # In[222]: def set_heirarchy(data,df_CWE_NVD): from ipynb.fs.full.NVD_cwe_hierarchy import get_nvd_hierarchy org_child_parent, org_parent_child, org_depth = get_nvd_hierarchy() data.org_child_parent=org_child_parent data.org_parent_child=org_parent_child data.org_depth=org_depth n = len(df_CWE_NVD) cwe_ids=df_CWE_NVD['Name'].tolist() if 'NVD-CWE-noinfo' in cwe_ids: cwe_ids.remove('NVD-CWE-noinfo') if 'NVD-CWE-Other' in cwe_ids: cwe_ids.remove('NVD-CWE-Other') cwe_ids=[int(re.findall("\d+", cwe)[0]) for cwe in cwe_ids] cwe_map=dict(zip(cwe_ids, list(range(n)))) index_cwe_map = dict(zip(list(range(n)),cwe_ids)) child_parent={} for c,p in org_child_parent.items(): if -1 in p: child_parent[cwe_map[c]]=[-1 for px in p] else: child_parent[cwe_map[c]]=[cwe_map[px] for px in p] parent_child={} for p,c in org_parent_child.items(): if p==-1: parent_child[-1]=[cwe_map[cx] for cx in c] else: parent_child[cwe_map[p]]=[cwe_map[cx] for cx in c] depth={} for i,d in org_depth.items(): depth[cwe_map[i]]=d data.child_parent=child_parent data.parent_child=parent_child data.depth=depth return data # df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, LOAD_SAVED=True) # set_heirarchy(Data(),df_CWE_NVD) # In[223]: def set_mitre_heirarchy(config, data, df_CWE_MITRE, df_CWE_NVD): org_child_parent, org_depth = cluster_cwes(config, df_CWE_MITRE,df_CWE_NVD) org_parent_child={} for c,p in org_child_parent.items(): for px in p: if px in org_parent_child: org_parent_child[px].append(c) else: org_parent_child[px]=[c] data.org_child_parent=org_child_parent data.org_parent_child=org_parent_child data.org_depth=org_depth n = len(df_CWE_NVD) cwe_ids=df_CWE_NVD['Name'].tolist() if 'NVD-CWE-noinfo' in cwe_ids: cwe_ids.remove('NVD-CWE-noinfo') if 'NVD-CWE-Other' in cwe_ids: cwe_ids.remove('NVD-CWE-Other') cwe_ids=[int(re.findall("\d+", cwe)[0]) for cwe in cwe_ids] cwe_map=dict(zip(cwe_ids, list(range(n)))) index_cwe_map = dict(zip(list(range(n)),cwe_ids)) child_parent={} for c,p in org_child_parent.items(): if -1 in p: child_parent[cwe_map[c]]=[-1 for px in p] else: child_parent[cwe_map[c]]=[cwe_map[px] for px in p] parent_child={} for p,c in org_parent_child.items(): if p==-1: parent_child[-1]=[cwe_map[cx] for cx in c] else: parent_child[cwe_map[p]]=[cwe_map[cx] for cx in c] depth={} for i,d in org_depth.items(): depth[cwe_map[i]]=d data.child_parent=child_parent data.parent_child=parent_child data.depth=depth return data # if os.uname()[0].find('Darwin')==-1: ##if not darwin(mac/locallaptop) # DIR='/scratch/gilbreth/das90/Dataset' # else: # DIR='/Users/siddharthashankardas/Purdue/Dataset' # config=Config(dataset_dir=DIR,results_dir=DIR) # df_CWE_MITRE, df_CWE_NVD = processAndSaveCWE(config, LOAD_SAVED=True) # set_mitre_heirarchy(config, Data(),df_CWE_MITRE, df_CWE_NVD) # ### Dataset function # In[224]: def get_labeled_only(config,df_CVE,df_CWE): n = len(df_CWE) m = len(df_CVE) cwe_ids=df_CWE['Name'] cwe_map=dict(zip(cwe_ids, list(range(n)))) labeled_mask= torch.zeros(m, dtype=torch.bool) CWEs=df_CVE['CWE Code'] Dates=df_CVE['publishedDate'] for i,row in enumerate(zip(CWEs,Dates)): cwes=row[0] date=row[1] if(type(cwes) == str): cwes=[cwe for cwe in cwes.strip('[]').split("'") if not (cwe==',' or cwe==', ' or cwe=='''''')] for cwe in cwes: if cwe in cwe_map: labeled_mask[i]=True break print(sum(labeled_mask)) labeled_indexs= (labeled_mask == True).nonzero().flatten().numpy() df_CVE=df_CVE.iloc[labeled_indexs,:] return df_CVE def take_subset(config,df_CVE,df_CWE_NVD,take=100): df_CVE=get_labeled_only(config,df_CVE,df_CWE_NVD) df_CVE=df_CVE.sample(n = take, replace = False) return df_CVE # In[225]: def ExtractFeature(config, max_data_inaclass=-1, RECOMPUTE=False, LOAD_SAVED=True, take=-1, hierarchy=''): save_filename=config.MASK_FILE nvd_filename=config.MERGED_NVD_CVE_FILE cwe_filename=config.FILTERED_NVD_CWE_FILE if RECOMPUTE==True or not os.path.exists(save_filename) or not os.path.exists(nvd_filename) or not os.path.exists(cwe_filename): df_CVE, df_CWE_NVD, df_CWE_MITRE =load_preprocessed(config, LOAD_SAVED) if take>-1: print('Selecting a subset') df_CVE=take_subset(config,df_CVE,df_CWE_NVD,take) print('Done...') data=getMask(config,df_CVE,df_CWE_NVD) if(max_data_inaclass!=-1): data=getPercent(data,df_CVE,df_CWE_NVD,max_data_inaclass) data, df_CVE_merged, df_CWE = UpdateData(data, df_CVE, df_CWE_NVD, df_CWE_MITRE) if hierarchy=='nvd': print('Using nvd hierarchy') data=set_heirarchy(data,df_CWE_NVD) else: print('using mitre hierarchy') data=set_mitre_heirarchy(config, data, df_CWE_MITRE, df_CWE_NVD) pickle.dump(data,open(save_filename, "wb" )) df_CVE_merged.to_csv(nvd_filename,index=False) df_CWE.to_csv(cwe_filename,index=False) else: data= pickle.load(open(save_filename, "rb" )) df_CVE_merged=pd.read_csv(nvd_filename,low_memory=False) df_CWE=pd.read_csv(cwe_filename,low_memory=False) return data, df_CVE_merged, df_CWE # In[226]: # df_CVE, df_CWE_NVD, df_CWE_MITRE = load_preprocessed(config, True) # data=getMask(config,df_CVE,df_CWE_NVD) # data, df_CVE_merged, df_CWE = UpdateData(data, df_CVE, df_CWE_NVD, df_CWE_MITRE) # ## Scratch # In[227]: # if os.uname()[0].find('Darwin')==-1: ##if not darwin(mac/locallaptop) # DIR='/scratch/gilbreth/das90/Dataset' # else: # DIR='/Users/siddharthashankardas/Purdue/Dataset' #config=Config(dataset_dir=DIR,results_dir=DIR) data, df_CVE, df_CWE=ExtractFeature(config,max_data_inaclass=-1, RECOMPUTE=True, LOAD_SAVED=False, take=-1, hierarchy='mitre') # In[228]: print("Train size:", sum(data.train_mask)) print("Val size:", sum(data.val_mask)) print("Test size:", sum(data.test_mask)) print("Class size:",sum(data.class_mask)) # In[229]: print(len(data.train_mask)) # In[230]: # df_CVE, df_CWE_NVD, df_CWE_MITRE =load_preprocessed(config, LOAD_SAVED=True) # take_subset(config,df_CVE,df_CWE_NVD, take=10000) # ## Main # In[231]: # if __name__ == '__main__': # if os.uname()[0].find('Darwin')==-1: ##if not darwin(mac/locallaptop) # DIR='/scratch/gilbreth/das90/Dataset' # else: # DIR='/Users/siddharthashankardas/Purdue/Dataset' # config=Config(dataset_dir=DIR,results_dir=DIR) # data, df_CVE, df_CWE = ExtractFeature(config,max_data_inaclass=-1, RECOMPUTE=True, LOAD_SAVED=True) # print("Train size:", sum(data.train_mask)) # print("Val size:", sum(data.val_mask)) # print("Test size:", sum(data.test_mask)) # print("Class size:",sum(data.class_mask)) # print("Total: ",sum(data.train_mask)+sum(data.val_mask)+sum(data.test_mask)) # In[ ]:
[ "pandas.read_csv", "re.compile", "io.BytesIO", "torch.sum", "datetime.timedelta", "pandas.to_datetime", "os.path.exists", "ipynb.fs.full.Dataset.Data", "collections.OrderedDict.fromkeys", "argparse.ArgumentParser", "pandas.set_option", "requests.get", "graphviz.Digraph", "re.findall", "torch.cat", "pandas.Series", "os.makedirs", "bs4.BeautifulSoup", "numpy.argwhere", "ipynb.fs.full.NVD_cwe_hierarchy.get_nvd_hierarchy", "pandas.concat", "torch.zeros", "pandas.io.json.json_normalize", "numpy.random.shuffle" ]
[((2725, 2762), 'pandas.set_option', 'pd.set_option', (['"""display.max_rows"""', '(20)'], {}), "('display.max_rows', 20)\n", (2738, 2762), True, 'import pandas as pd\n'), ((2763, 2804), 'pandas.set_option', 'pd.set_option', (['"""display.max_columns"""', '(100)'], {}), "('display.max_columns', 100)\n", (2776, 2804), True, 'import pandas as pd\n'), ((2911, 2927), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (2925, 2927), False, 'from argparse import ArgumentParser\n'), ((7363, 7405), 'pandas.Series', 'pd.Series', (['series'], {'index': 'description.index'}), '(series, index=description.index)\n', (7372, 7405), True, 'import pandas as pd\n'), ((7734, 7776), 'pandas.Series', 'pd.Series', (['series'], {'index': 'description.index'}), '(series, index=description.index)\n', (7743, 7776), True, 'import pandas as pd\n'), ((8187, 8224), 'pandas.Series', 'pd.Series', (['CVE_entry'], {'index': 'CVE_index'}), '(CVE_entry, index=CVE_index)\n', (8196, 8224), True, 'import pandas as pd\n'), ((9146, 9183), 'pandas.Series', 'pd.Series', (['CWE_entry'], {'index': 'CWE_index'}), '(CWE_entry, index=CWE_index)\n', (9155, 9183), True, 'import pandas as pd\n'), ((9339, 9370), 'pandas.io.json.json_normalize', 'json_normalize', (["df['CVE_Items']"], {}), "(df['CVE_Items'])\n", (9353, 9370), False, 'from pandas.io.json import json_normalize\n'), ((10278, 10313), 'pandas.to_datetime', 'pd.to_datetime', (["df['publishedDate']"], {}), "(df['publishedDate'])\n", (10292, 10313), True, 'import pandas as pd\n'), ((11075, 11127), 'requests.get', 'requests.get', (['"""https://nvd.nist.gov/vuln/categories"""'], {}), "('https://nvd.nist.gov/vuln/categories')\n", (11087, 11127), False, 'import requests, zipfile, io\n'), ((11161, 11222), 'bs4.BeautifulSoup', 'BeautifulSoup', (['NVD_CWE_description_url.content', '"""html.parser"""'], {}), "(NVD_CWE_description_url.content, 'html.parser')\n", (11174, 11222), False, 'from bs4 import BeautifulSoup\n'), ((11641, 11730), 'pandas.read_csv', 'pd.read_csv', (['config.MITRE_CWE_FILE'], {'delimiter': '""","""', 'encoding': '"""latin1"""', 'index_col': '(False)'}), "(config.MITRE_CWE_FILE, delimiter=',', encoding='latin1',\n index_col=False)\n", (11652, 11730), True, 'import pandas as pd\n'), ((14048, 14085), 'torch.zeros', 'torch.zeros', (['(m, n)'], {'dtype': 'torch.long'}), '((m, n), dtype=torch.long)\n', (14059, 14085), False, 'import torch\n'), ((14106, 14138), 'torch.zeros', 'torch.zeros', (['m'], {'dtype': 'torch.bool'}), '(m, dtype=torch.bool)\n', (14117, 14138), False, 'import torch\n'), ((14157, 14189), 'torch.zeros', 'torch.zeros', (['m'], {'dtype': 'torch.bool'}), '(m, dtype=torch.bool)\n', (14168, 14189), False, 'import torch\n'), ((14207, 14239), 'torch.zeros', 'torch.zeros', (['m'], {'dtype': 'torch.bool'}), '(m, dtype=torch.bool)\n', (14218, 14239), False, 'import torch\n'), ((14256, 14288), 'torch.zeros', 'torch.zeros', (['m'], {'dtype': 'torch.bool'}), '(m, dtype=torch.bool)\n', (14267, 14288), False, 'import torch\n'), ((15345, 15437), 'ipynb.fs.full.Dataset.Data', 'Data', ([], {'train_mask': 'train_index', 'val_mask': 'val_index', 'test_mask': 'test_index', 'y': 'y', 'num_nodes': 'm'}), '(train_mask=train_index, val_mask=val_index, test_mask=test_index, y=y,\n num_nodes=m)\n', (15349, 15437), False, 'from ipynb.fs.full.Dataset import Data\n'), ((17593, 17655), 'pandas.concat', 'pd.concat', (['[df_CVE, df_CWE_NVD]'], {'ignore_index': '(True)', 'sort': '(False)'}), '([df_CVE, df_CWE_NVD], ignore_index=True, sort=False)\n', (17602, 17655), True, 'import pandas as pd\n'), ((17835, 17872), 'torch.zeros', 'torch.zeros', (['(n, n)'], {'dtype': 'torch.long'}), '((n, n), dtype=torch.long)\n', (17846, 17872), False, 'import torch\n'), ((18037, 18077), 'torch.cat', 'torch.cat', (['(data.y, class_labels)'], {'dim': '(0)'}), '((data.y, class_labels), dim=0)\n', (18046, 18077), False, 'import torch\n'), ((18669, 18702), 're.compile', 're.compile', (['"""ChildOf:CWE ID:\\\\d+"""'], {}), "('ChildOf:CWE ID:\\\\d+')\n", (18679, 18702), False, 'import re\n'), ((18775, 18793), 're.compile', 're.compile', (['"""\\\\d+"""'], {}), "('\\\\d+')\n", (18785, 18793), False, 'import re\n'), ((19814, 19911), 'graphviz.Digraph', 'Digraph', ([], {'comment': '"""NVD Research Concepts Hierarchy"""', 'engine': '"""dot"""', 'node_attr': "{'shape': 'box'}"}), "(comment='NVD Research Concepts Hierarchy', engine='dot', node_attr=\n {'shape': 'box'})\n", (19821, 19911), False, 'from graphviz import Digraph, Graph\n'), ((21917, 21936), 'ipynb.fs.full.NVD_cwe_hierarchy.get_nvd_hierarchy', 'get_nvd_hierarchy', ([], {}), '()\n', (21934, 21936), False, 'from ipynb.fs.full.NVD_cwe_hierarchy import get_nvd_hierarchy\n'), ((25381, 25413), 'torch.zeros', 'torch.zeros', (['m'], {'dtype': 'torch.bool'}), '(m, dtype=torch.bool)\n', (25392, 25413), False, 'import torch\n'), ((10689, 10721), 'pandas.read_csv', 'pd.read_csv', (['config.NVD_CVE_FILE'], {}), '(config.NVD_CVE_FILE)\n', (10700, 10721), True, 'import pandas as pd\n'), ((12048, 12099), 'pandas.read_csv', 'pd.read_csv', (['config.MITRE_CWE_FILE'], {'index_col': '(False)'}), '(config.MITRE_CWE_FILE, index_col=False)\n', (12059, 12099), True, 'import pandas as pd\n'), ((12317, 12366), 'pandas.read_csv', 'pd.read_csv', (['config.NVD_CWE_FILE'], {'index_col': '(False)'}), '(config.NVD_CWE_FILE, index_col=False)\n', (12328, 12366), True, 'import pandas as pd\n'), ((13413, 13432), 'datetime.timedelta', 'timedelta', ([], {'days': '(365)'}), '(days=365)\n', (13422, 13432), False, 'from datetime import datetime, timedelta\n'), ((13628, 13647), 'datetime.timedelta', 'timedelta', ([], {'days': '(365)'}), '(days=365)\n', (13637, 13647), False, 'from datetime import datetime, timedelta\n'), ((13847, 13866), 'datetime.timedelta', 'timedelta', ([], {'days': '(365)'}), '(days=365)\n', (13856, 13866), False, 'from datetime import datetime, timedelta\n'), ((18883, 18912), 'collections.OrderedDict.fromkeys', 'OrderedDict.fromkeys', (['results'], {}), '(results)\n', (18903, 18912), False, 'from collections import OrderedDict\n'), ((27730, 27773), 'pandas.read_csv', 'pd.read_csv', (['nvd_filename'], {'low_memory': '(False)'}), '(nvd_filename, low_memory=False)\n', (27741, 27773), True, 'import pandas as pd\n'), ((27788, 27831), 'pandas.read_csv', 'pd.read_csv', (['cwe_filename'], {'low_memory': '(False)'}), '(cwe_filename, low_memory=False)\n', (27799, 27831), True, 'import pandas as pd\n'), ((5044, 5091), 'os.path.exists', 'os.path.exists', (['self.PATH_TO_DATASETS_DIRECTORY'], {}), '(self.PATH_TO_DATASETS_DIRECTORY)\n', (5058, 5091), False, 'import os\n'), ((5179, 5223), 'os.makedirs', 'os.makedirs', (['self.PATH_TO_DATASETS_DIRECTORY'], {}), '(self.PATH_TO_DATASETS_DIRECTORY)\n', (5190, 5223), False, 'import os\n'), ((5239, 5285), 'os.path.exists', 'os.path.exists', (['self.PATH_TO_RESULTS_DIRECTORY'], {}), '(self.PATH_TO_RESULTS_DIRECTORY)\n', (5253, 5285), False, 'import os\n'), ((5372, 5415), 'os.makedirs', 'os.makedirs', (['self.PATH_TO_RESULTS_DIRECTORY'], {}), '(self.PATH_TO_RESULTS_DIRECTORY)\n', (5383, 5415), False, 'import os\n'), ((6180, 6215), 'os.path.exists', 'os.path.exists', (['self.MITRE_CWE_FILE'], {}), '(self.MITRE_CWE_FILE)\n', (6194, 6215), False, 'import os\n'), ((6373, 6390), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (6385, 6390), False, 'import requests, zipfile, io\n'), ((8669, 8686), 'pandas.io.json.json_normalize', 'json_normalize', (['x'], {}), '(x)\n', (8683, 8686), False, 'from pandas.io.json import json_normalize\n'), ((10435, 10470), 'os.path.exists', 'os.path.exists', (['config.NVD_CVE_FILE'], {}), '(config.NVD_CVE_FILE)\n', (10449, 10470), False, 'import os\n'), ((11840, 11877), 'os.path.exists', 'os.path.exists', (['config.MITRE_CWE_FILE'], {}), '(config.MITRE_CWE_FILE)\n', (11854, 11877), False, 'import os\n'), ((12121, 12156), 'os.path.exists', 'os.path.exists', (['config.NVD_CWE_FILE'], {}), '(config.NVD_CWE_FILE)\n', (12135, 12156), False, 'import os\n'), ((12736, 12793), 'numpy.argwhere', 'np.argwhere', (["(df_CWE_NVD['Name'].values == 'NVD-CWE-Other')"], {}), "(df_CWE_NVD['Name'].values == 'NVD-CWE-Other')\n", (12747, 12793), True, 'import numpy as np\n'), ((12812, 12870), 'numpy.argwhere', 'np.argwhere', (["(df_CWE_NVD['Name'].values == 'NVD-CWE-noinfo')"], {}), "(df_CWE_NVD['Name'].values == 'NVD-CWE-noinfo')\n", (12823, 12870), True, 'import numpy as np\n'), ((14667, 14687), 'pandas.to_datetime', 'pd.to_datetime', (['date'], {}), '(date)\n', (14681, 14687), True, 'import pandas as pd\n'), ((14842, 14857), 'torch.sum', 'torch.sum', (['y[i]'], {}), '(y[i])\n', (14851, 14857), False, 'import torch\n'), ((16308, 16333), 'numpy.random.shuffle', 'np.random.shuffle', (['values'], {}), '(values)\n', (16325, 16333), True, 'import numpy as np\n'), ((16817, 16840), 're.findall', 're.findall', (['"""\\\\d+"""', 'cwe'], {}), "('\\\\d+', cwe)\n", (16827, 16840), False, 'import re\n'), ((26541, 26570), 'os.path.exists', 'os.path.exists', (['save_filename'], {}), '(save_filename)\n', (26555, 26570), False, 'import os\n'), ((26578, 26606), 'os.path.exists', 'os.path.exists', (['nvd_filename'], {}), '(nvd_filename)\n', (26592, 26606), False, 'import os\n'), ((26614, 26642), 'os.path.exists', 'os.path.exists', (['cwe_filename'], {}), '(cwe_filename)\n', (26628, 26642), False, 'import os\n'), ((5975, 5992), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (5987, 5992), False, 'import requests, zipfile, io\n'), ((6423, 6444), 'io.BytesIO', 'io.BytesIO', (['r.content'], {}), '(r.content)\n', (6433, 6444), False, 'import requests, zipfile, io\n'), ((8888, 8930), 'pandas.io.json.json_normalize', 'json_normalize', (['CWE_normalized_json_step_2'], {}), '(CWE_normalized_json_step_2)\n', (8902, 8930), False, 'from pandas.io.json import json_normalize\n'), ((20694, 20717), 're.findall', 're.findall', (['"""\\\\d+"""', 'cwe'], {}), "('\\\\d+', cwe)\n", (20704, 20717), False, 'import re\n'), ((22284, 22307), 're.findall', 're.findall', (['"""\\\\d+"""', 'cwe'], {}), "('\\\\d+', cwe)\n", (22294, 22307), False, 'import re\n'), ((23974, 23997), 're.findall', 're.findall', (['"""\\\\d+"""', 'cwe'], {}), "('\\\\d+', cwe)\n", (23984, 23997), False, 'import re\n'), ((6029, 6050), 'io.BytesIO', 'io.BytesIO', (['r.content'], {}), '(r.content)\n', (6039, 6050), False, 'import requests, zipfile, io\n'), ((7993, 8010), 'pandas.io.json.json_normalize', 'json_normalize', (['x'], {}), '(x)\n', (8007, 8010), False, 'from pandas.io.json import json_normalize\n'), ((7143, 7160), 'pandas.io.json.json_normalize', 'json_normalize', (['x'], {}), '(x)\n', (7157, 7160), False, 'from pandas.io.json import json_normalize\n')]
from setuptools import setup, find_packages import numpy as np setup(name='tssb', version='0.1', url='https://github.com/ermshaua/time-series-segmentation-benchmark', license='BSD 3-Clause License', author='<NAME>', description='This repository contains a time series segmentation benchmark.', packages=find_packages(exclude=['tests', 'examples']), package_data={'': ['LICENSE']}, include_package_data=True, install_requires=np.loadtxt(fname='requirements.txt', delimiter='\n', dtype=np.str).tolist(), long_description=open('README.md').read(), long_description_content_type="text/markdown", zip_safe=False)
[ "numpy.loadtxt", "setuptools.find_packages" ]
[((341, 385), 'setuptools.find_packages', 'find_packages', ([], {'exclude': "['tests', 'examples']"}), "(exclude=['tests', 'examples'])\n", (354, 385), False, 'from setuptools import setup, find_packages\n'), ((481, 547), 'numpy.loadtxt', 'np.loadtxt', ([], {'fname': '"""requirements.txt"""', 'delimiter': '"""\n"""', 'dtype': 'np.str'}), "(fname='requirements.txt', delimiter='\\n', dtype=np.str)\n", (491, 547), True, 'import numpy as np\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import os.path as op import sys import logging import numpy as np import pandas as pd from subprocess import Popen, PIPE, run from jinja2 import Template from jcvi.apps.base import sh, mkdir from jcvi.formats.base import must_open def read_samplelist(fs): assert op.isfile(fs), "samplelist not found: %s" % fs cvts = dict(SampleID=str,Tissue=str,Genotype=str) sl = pd.read_csv(fs, sep="\t", header=0, converters=cvts, true_values=['1','Y','Yes','T','True'], false_values=['0','N','No','F','False']) return sl def check_fastq_0(args, yid): fi = "%s/%s.tsv" % (args.metadir, yid) sl = read_samplelist(fi) cdic = dict(single=0, pair=0) for i in range(len(sl)): sid, paired = sl['SampleID'][i], sl['paired'][i] if paired: f1 = "%s/%s/%s_1.fq.gz" % (args.seqdir, yid, sid) f1b = "%s/%s/%s_R1.fq.gz" % (args.seqdir, yid, sid) f2 = "%s/%s/%s_2.fq.gz" % (args.seqdir, yid, sid) f2b = "%s/%s/%s_R2.fq.gz" % (args.seqdir, yid, sid) assert op.isfile(f1) or op.isfile(f1b), "fastq not found: %s" % f1 assert op.isfile(f2) or op.isfile(f2b), "fastq not found: %s" % f2 cdic["pair"] += 1 else: f1 = "%s/%s/%s.fq.gz" % (args.seqdir, yid, sid) f1b = "%s/%s/%s_R0.fq.gz" % (args.seqdir, yid, sid) assert op.isfile(f1) or op.isfile(f1b), "fastq not found: %s" % f1 cdic["single"] += 1 fcdic = { k: v for k, v in cdic.items() if v > 0} single_end = False if len(fcdic) > 1: print("mixed library: %d single + %d paired" % (fcdir['single'], fcdir['pair'])) else: if list(fcdic.keys())[0] == 'single': single_end = True return single_end def check_fastq(design, paired, source): sl = read_samplelist(design) cdic = dict(SE=0, PE=0) if source == 'mixed': assert 'source' in sl if paired == 'mixed': assert 'paired' in sl for i in range(len(sl)): sid, r0, r1, r2 = sl['SampleID'][i], sl['r0'][i], sl['r1'][i], sl['r2'][i] source1 = source if 'source' in sl: if source == 'mixed': source1 = sl['source'][i] else: assert sl['source'][i] == source paired1 = paired if 'paired' in sl: if paired == 'mixed': paired1 = sl['paired'][i] else: assert sl['paired'][i] == paired if paired1 == 'SE': if source1 == 'local': assert op.isfile(r0) elif source1 == 'sra': assert r0.startswith("SRR") or r0.startswith("DRR") elif source1 == 's3': assert r0.startswith("s3://") else: if source1 == 'local': assert op.isfile(r1) assert op.isfile(r2) elif source1 == 'sra': assert r0.startswith("SRR") elif source1 == 's3': assert r1.startswith("s3://") assert r2.startswith("s3://") def nf_start(args): yid = args.yid barn, genome = args.metadir, args.genome design = "design.tsv" ft = "%s/%s.config" % (args.cfgdir, args.lib) fht = must_open(ft, 'r') tmp = Template(fht.read()) aligner_map = dict(rnaseq='hisat2',chipseq='bwa',methylseq='bismark_hisat2') aligner = aligner_map[args.lib] if args.aligner == 'auto' else args.aligner msg = tmp.render(yid = yid, design = design, source = args.source, read_type = args.read_type, paired = args.paired, interleaved = str(args.interleaved).lower(), save_fastq = str(args.save_fastq).lower(), trimmer = args.trimmer, save_trimmed = str(args.save_trimmed).lower(), aligner = aligner, saveBAM = str(args.saveBAM).lower(), genome = args.genome, skip_preseq = str(not args.preseq).lower(), skip_markdup = str(not args.markdup).lower(), stranded = args.stranded, count_multi = str(args.multi).lower(), ase = str(args.ase).lower(), ril = str(args.ril).lower(), cage = str(args.cage).lower(), salmon = str(args.salmon).lower(), stringtie = str(args.stringtie).lower(), narrow_peak = str(args.narrow_peak).lower() ) rundir = op.join(args.projdir, args.lib, 'nf', yid) workdir = op.join(args.workdir, args.lib, yid) rawdir = op.join(args.rawdir, args.lib, yid) mkdir(rundir, overwrite=True) mkdir(workdir, overwrite=True) mkdir(rawdir, overwrite=True) os.chdir(rundir) # metadir = op.join(barn, genome, '05_excel') # xls = "%s/%s.xlsx" % (metadir, yid) # assert op.isfile(xls) sh(f"nf.barn.py {yid} -o design.tsv") #check_fastq(design, args.paired, args.source) fc = "nextflow.config" fhc = must_open(fc, 'w') fhc.write(msg) fhc.close() sh("ln -sf %s/ work" % workdir) sh("ln -sf %s/ raw" % rawdir) def cpnf(args): tags = args.tags.split(",") print("will copy %d project results: %s" % (len(tags), ' '.join(tags))) for tag in tags: ds = op.join(args.srcdir, tag) dd = op.join(args.destdir, tag) if op.isdir(ds): print("%s : copying" % tag) sh("find %s -not \\( -name \"*.bam\" -o -name \"*.bigwig\" \\) | cpio -pdm %s" % (ds, dd)) else: print("%s : not exist - skipped") if __name__ == "__main__": import argparse ps = argparse.ArgumentParser( formatter_class = argparse.ArgumentDefaultsHelpFormatter, description = "initiate a nextflow project (creating design and config files)" ) libs = ['rnaseq','smrnaseq','chipseq','dapseq','atacseq','methylseq','dnaseq'] allowed_sources = ['sra','local','s3','mixed'] ps.add_argument('lib', choices = libs, help = 'library type') ps.add_argument('yid', help = 'study/project id') ps.add_argument('--projdir', default=os.environ['proj'], help = 'project dir') ps.add_argument('--cfgdir', default="%s/configs/templates" % os.environ['nf'], help = 'nextflow template config dir') ps.add_argument('--workdir', default=os.environ['NXF_WORK'], help = 'nextflow work dir') ps.add_argument('--rawdir', default="%s/raw" % os.environ['NXF_CACHE'], help = 'nextflow raw output dir') ps.add_argument('--source', default='local', choices=allowed_sources, help='sequence source') ps.add_argument('--read_type', default='illumina', choices=['illumina','nanopore'], help='read type') ps.add_argument('--paired', default='SE', choices=['SE','PE','mixed'], help='single end, paired end or mixed') ps.add_argument('--interleaved', action='store_true', help='interleaved format?') ps.add_argument('--metadir', default=os.environ['ba'], help = 'meta table directory') ps.add_argument('--genome', default='Zmays_B73v5', help = 'reference genome') ps.add_argument('--keep', action='store_true', help='keep previous results?') ps.add_argument('--save_fastq', action='store_true', help='save fastq files?') ps.add_argument('--trimmer', default='trim_galore', choices=['no','trim_galore'], help='trimming software') ps.add_argument('--save_trimmed', action='store_true', help='save trimmed fastq files?') ps.add_argument('--aligner', default='auto', help='aligning software') ps.add_argument('--saveBAM', action='store_true', help='save bam files?') ps.add_argument('--preseq', action='store_true', help='run preseq?') ps.add_argument('--markdup', action='store_true', help='mark PCR duplicates?') g1 = ps.add_argument_group('rnaseq', 'RNA-Seq specific arguments') g1.add_argument('--stranded', default='no', choices=['no','forward','reverse'], help = 'read strandedness') g1.add_argument('--multi', action='store_true', help='count multi-mapping reads?') g1.add_argument('--ase', action='store_true', help='allele specific expression?') g1.add_argument('--ril', action='store_true', help='genotype (ril) samples?') g1.add_argument('--cage', action='store_true', help='run CAGE pipeline?') g1.add_argument('--salmon', action='store_true', help='run salmon?') g1.add_argument('--stringtie', action='store_true', help='run stringtie?') g2 = ps.add_argument_group('chipseq', 'chip-seq specific arguments') g2.add_argument('--narrow_peak', action='store_true', help = 'turn off broad peak calling mode in MACS2') args = ps.parse_args() nf_start(args)
[ "pandas.read_csv", "argparse.ArgumentParser", "jcvi.formats.base.must_open", "os.path.join", "os.path.isfile", "os.chdir", "jcvi.apps.base.sh", "jcvi.apps.base.mkdir", "os.path.isdir" ]
[((326, 339), 'os.path.isfile', 'op.isfile', (['fs'], {}), '(fs)\n', (335, 339), True, 'import os.path as op\n'), ((436, 581), 'pandas.read_csv', 'pd.read_csv', (['fs'], {'sep': '"""\t"""', 'header': '(0)', 'converters': 'cvts', 'true_values': "['1', 'Y', 'Yes', 'T', 'True']", 'false_values': "['0', 'N', 'No', 'F', 'False']"}), "(fs, sep='\\t', header=0, converters=cvts, true_values=['1', 'Y',\n 'Yes', 'T', 'True'], false_values=['0', 'N', 'No', 'F', 'False'])\n", (447, 581), True, 'import pandas as pd\n'), ((3326, 3344), 'jcvi.formats.base.must_open', 'must_open', (['ft', '"""r"""'], {}), "(ft, 'r')\n", (3335, 3344), False, 'from jcvi.formats.base import must_open\n'), ((4723, 4765), 'os.path.join', 'op.join', (['args.projdir', 'args.lib', '"""nf"""', 'yid'], {}), "(args.projdir, args.lib, 'nf', yid)\n", (4730, 4765), True, 'import os.path as op\n'), ((4780, 4816), 'os.path.join', 'op.join', (['args.workdir', 'args.lib', 'yid'], {}), '(args.workdir, args.lib, yid)\n', (4787, 4816), True, 'import os.path as op\n'), ((4830, 4865), 'os.path.join', 'op.join', (['args.rawdir', 'args.lib', 'yid'], {}), '(args.rawdir, args.lib, yid)\n', (4837, 4865), True, 'import os.path as op\n'), ((4870, 4899), 'jcvi.apps.base.mkdir', 'mkdir', (['rundir'], {'overwrite': '(True)'}), '(rundir, overwrite=True)\n', (4875, 4899), False, 'from jcvi.apps.base import sh, mkdir\n'), ((4904, 4934), 'jcvi.apps.base.mkdir', 'mkdir', (['workdir'], {'overwrite': '(True)'}), '(workdir, overwrite=True)\n', (4909, 4934), False, 'from jcvi.apps.base import sh, mkdir\n'), ((4939, 4968), 'jcvi.apps.base.mkdir', 'mkdir', (['rawdir'], {'overwrite': '(True)'}), '(rawdir, overwrite=True)\n', (4944, 4968), False, 'from jcvi.apps.base import sh, mkdir\n'), ((4973, 4989), 'os.chdir', 'os.chdir', (['rundir'], {}), '(rundir)\n', (4981, 4989), False, 'import os\n'), ((5115, 5152), 'jcvi.apps.base.sh', 'sh', (['f"""nf.barn.py {yid} -o design.tsv"""'], {}), "(f'nf.barn.py {yid} -o design.tsv')\n", (5117, 5152), False, 'from jcvi.apps.base import sh, mkdir\n'), ((5242, 5260), 'jcvi.formats.base.must_open', 'must_open', (['fc', '"""w"""'], {}), "(fc, 'w')\n", (5251, 5260), False, 'from jcvi.formats.base import must_open\n'), ((5301, 5332), 'jcvi.apps.base.sh', 'sh', (["('ln -sf %s/ work' % workdir)"], {}), "('ln -sf %s/ work' % workdir)\n", (5303, 5332), False, 'from jcvi.apps.base import sh, mkdir\n'), ((5337, 5366), 'jcvi.apps.base.sh', 'sh', (["('ln -sf %s/ raw' % rawdir)"], {}), "('ln -sf %s/ raw' % rawdir)\n", (5339, 5366), False, 'from jcvi.apps.base import sh, mkdir\n'), ((5877, 6044), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.ArgumentDefaultsHelpFormatter', 'description': '"""initiate a nextflow project (creating design and config files)"""'}), "(formatter_class=argparse.\n ArgumentDefaultsHelpFormatter, description=\n 'initiate a nextflow project (creating design and config files)')\n", (5900, 6044), False, 'import argparse\n'), ((5526, 5551), 'os.path.join', 'op.join', (['args.srcdir', 'tag'], {}), '(args.srcdir, tag)\n', (5533, 5551), True, 'import os.path as op\n'), ((5565, 5591), 'os.path.join', 'op.join', (['args.destdir', 'tag'], {}), '(args.destdir, tag)\n', (5572, 5591), True, 'import os.path as op\n'), ((5603, 5615), 'os.path.isdir', 'op.isdir', (['ds'], {}), '(ds)\n', (5611, 5615), True, 'import os.path as op\n'), ((5669, 5759), 'jcvi.apps.base.sh', 'sh', (['(\'find %s -not \\\\( -name "*.bam" -o -name "*.bigwig" \\\\) | cpio -pdm %s\' %\n (ds, dd))'], {}), '(\'find %s -not \\\\( -name "*.bam" -o -name "*.bigwig" \\\\) | cpio -pdm %s\' %\n (ds, dd))\n', (5671, 5759), False, 'from jcvi.apps.base import sh, mkdir\n'), ((1139, 1152), 'os.path.isfile', 'op.isfile', (['f1'], {}), '(f1)\n', (1148, 1152), True, 'import os.path as op\n'), ((1156, 1170), 'os.path.isfile', 'op.isfile', (['f1b'], {}), '(f1b)\n', (1165, 1170), True, 'import os.path as op\n'), ((1218, 1231), 'os.path.isfile', 'op.isfile', (['f2'], {}), '(f2)\n', (1227, 1231), True, 'import os.path as op\n'), ((1235, 1249), 'os.path.isfile', 'op.isfile', (['f2b'], {}), '(f2b)\n', (1244, 1249), True, 'import os.path as op\n'), ((1465, 1478), 'os.path.isfile', 'op.isfile', (['f1'], {}), '(f1)\n', (1474, 1478), True, 'import os.path as op\n'), ((1482, 1496), 'os.path.isfile', 'op.isfile', (['f1b'], {}), '(f1b)\n', (1491, 1496), True, 'import os.path as op\n'), ((2629, 2642), 'os.path.isfile', 'op.isfile', (['r0'], {}), '(r0)\n', (2638, 2642), True, 'import os.path as op\n'), ((2898, 2911), 'os.path.isfile', 'op.isfile', (['r1'], {}), '(r1)\n', (2907, 2911), True, 'import os.path as op\n'), ((2935, 2948), 'os.path.isfile', 'op.isfile', (['r2'], {}), '(r2)\n', (2944, 2948), True, 'import os.path as op\n')]
''' testimages.py Jusa test program to test the librarys Author: <NAME> ''' import tkinter, tkinter.filedialog from GIF import GIF root = tkinter.Tk() root.withdraw() file_path = tkinter.filedialog.askopenfilename() f = open(file_path,"rb") myImage = GIF() myImage.loadGIF(f) #for p in myImage.getImage(0).pixels: # print(p) images = myImage.getImages() _i = 0 #see the image in cmd line for img in images: print("Image #"+str(_i)) img.showImage() _i+=1 myImage.save("C:\\test.gif")
[ "GIF.GIF", "tkinter.Tk", "tkinter.filedialog.askopenfilename" ]
[((142, 154), 'tkinter.Tk', 'tkinter.Tk', ([], {}), '()\n', (152, 154), False, 'import tkinter, tkinter.filedialog\n'), ((184, 220), 'tkinter.filedialog.askopenfilename', 'tkinter.filedialog.askopenfilename', ([], {}), '()\n', (218, 220), False, 'import tkinter, tkinter.filedialog\n'), ((258, 263), 'GIF.GIF', 'GIF', ([], {}), '()\n', (261, 263), False, 'from GIF import GIF\n')]
import tweepy import secrets_keys as sk def api_authentication(): '''Connection to the twitter API Args: none Returns: api: api connection ''' # Twitter API connection/authentication auth = tweepy.OAuthHandler(sk.consumer_token, sk.consumer_secret) try: redirect_url = auth.get_authorization_url() except tweepy.TweepError: print("Error! Failed to get request token.") auth.set_access_token(sk.key, sk.secret) api = tweepy.API(auth) try: api.verify_credentials() except: print("Twitter Authentication Error") return api def get_tweets_url_tx(api, twitter_username: str, num_tweets: int): '''Get the tx URLs from the last tweets Args: api : twitter api object twitter_username (str): Twitter username to get the urls num_tweets (str): Number of tweets to get the urls Returns: tweets_urls (list): a list with the tx urls ''' tweets = api.user_timeline( screen_name=twitter_username, count=num_tweets) tweets_urls = [] for tweet in tweets: expanded_url = tweet._json["entities"]["urls"][1][ "expanded_url"] tweets_urls.append(expanded_url) return tweets_urls def post_tweet_wiht_media(api, image_path: str, tweet_text: str): '''Post a tweet wiht media attached to it (image) Args: api : twitter api object image_path (str): Path to the image to attach tweet_text (str): Text to attach to the twwet Returns: res_status (json): status of the tweet posted ''' # Post the message in your Twitter Bot account # with the image of the sold NFT attached media = api.media_upload(image_path) res_status = api.update_status( status=tweet_text, media_ids=[media.media_id]) return res_status
[ "tweepy.API", "tweepy.OAuthHandler" ]
[((234, 292), 'tweepy.OAuthHandler', 'tweepy.OAuthHandler', (['sk.consumer_token', 'sk.consumer_secret'], {}), '(sk.consumer_token, sk.consumer_secret)\n', (253, 292), False, 'import tweepy\n'), ((494, 510), 'tweepy.API', 'tweepy.API', (['auth'], {}), '(auth)\n', (504, 510), False, 'import tweepy\n')]
# -------------------------------------------------# # EXERCICIO 17 # # -------------------------------------------------# # crie um programa que leia o comprimento do cateto oposto # e do cateto adjacente de um triangulo retangulo, calcule # e mostre o comprimento da hipotenusa # codigo usando calculo simples do teorema de pitagoras ''' co = float(input('Cateto oposto: ')) ca = float(input('Cateto adjacente: ')) hi = (co ** 2 + ca ** 2) **(1/2) print('Hipotenusa = {:.2f}'.format(hi)) ''' # calculo usando a importacão do modulo math, função hypot (calculo da hipotenusa) from math import hypot co = float(input('Cateto oposto: ')) ca = float(input('Cateto adjacente: ')) #hi = hypot(co, ca) print('Hipotenusa: {:.2f}'.format(hypot(co,ca)))
[ "math.hypot" ]
[((768, 781), 'math.hypot', 'hypot', (['co', 'ca'], {}), '(co, ca)\n', (773, 781), False, 'from math import hypot\n')]
import unittest import numpy as np import tensorflow as tf import tensorflow_probability import mvg_distributions.covariance_representations as cov_rep from mvg_distributions.cholesky_wishart import CholeskyWishart from mvg_distributions.test.test_losses_base import LossesTestBase from mvg_distributions.sqrt_gamma_gaussian import SqrtGammaGaussian, SparseSqrtGammaGaussian tfd = tensorflow_probability.distributions tfb = tensorflow_probability.bijectors class TestCholeskyWishart(LossesTestBase): def setUp(self): super().setUp() self.x, self.x_cov_obj, self.sqrt_w_tfd, self.sqrt_w = self._create_single_sqrt_wishart_pair() def _create_single_sqrt_wishart_pair(self, add_sparsity_correction=False): # Create a random scale matrix for the Wishart distribution diag_precision_prior = np.abs(np.random.normal(size=(self.batch_size, self.features_size))) diag_precision_prior = diag_precision_prior.astype(self.dtype.as_numpy_dtype) precision_prior = np.zeros(shape=(self.batch_size, self.features_size, self.features_size), dtype=self.dtype.as_numpy_dtype) for i in range(self.batch_size): precision_prior[i][np.diag_indices_from(precision_prior[i])] = diag_precision_prior[i] log_diag_precision_prior = np.log(diag_precision_prior) # Create a random vector of degrees of freedom, whose values must be larger than features_size df = np.random.uniform(low=self.features_size, high=self.features_size * 10, size=self.batch_size) df = df.astype(self.dtype.as_numpy_dtype) # Create a square root Wishart distribution using bijectors wishart = tfd.Wishart(scale=precision_prior, df=df) cholesky_bijector = tfb.Invert(tfb.CholeskyOuterProduct()) sqrt_wishart_tfd = tfd.TransformedDistribution(distribution=wishart, bijector=cholesky_bijector) # Create our custom square root Wishart distribution with the same parameters sqrt_wishart = CholeskyWishart(df=df, log_diag_scale=log_diag_precision_prior, add_sparsity_correction=add_sparsity_correction) # Create a random Cholesky matrix to test the probability density functions _, __, x_covariance, x_weights, x_basis, log_diag = self._random_normal_params(cov_rep.PrecisionConvCholFilters) x = np.linalg.cholesky(np.linalg.inv(x_covariance)) # Our custom square root Wishart is optimized to work with PrecisionConvCholFilters, it will measure # the pdf of the Cholesky of the Precision img_w = int(np.sqrt(self.features_size)) sample_shape = tf.TensorShape((self.batch_size, img_w, img_w, 1)) x_cov_obj = cov_rep.PrecisionConvCholFilters(weights_precision=tf.constant(x_weights), filters_precision=tf.constant(x_basis), sample_shape=sample_shape) x_cov_obj.log_diag_chol_precision = log_diag return x, x_cov_obj, sqrt_wishart_tfd, sqrt_wishart def test_log_prob(self): log_prob1 = self.sqrt_w_tfd.log_prob(self.x) log_prob2 = self.sqrt_w.log_prob(self.x) log_prob3 = self.sqrt_w.log_prob(self.x_cov_obj) log_prob4 = self.sqrt_w.log_prob(self.x_cov_obj.chol_precision) self._asset_allclose_tf_feed(log_prob1, log_prob2) self._asset_allclose_tf_feed(log_prob1, log_prob3) self._asset_allclose_tf_feed(log_prob1, log_prob4) def test_sample(self): x1 = self.sqrt_w_tfd.sample(seed=0) x2 = self.sqrt_w.sample(seed=0) self._asset_allclose_tf_feed(x1, x2) def test_sample_sparse(self): x1_dense = self.sqrt_w_tfd.sample(seed=0) x2_sparse = self.sqrt_w.sample_sparse(kw=3, seed=0) x2_sparse = x2_sparse.chol_precision # Ignore the values in x1_dense that are zero in x2_sparse valid_mask = tf.equal(x2_sparse, tf.zeros(tf.shape(x2_sparse))) valid_mask = tf.logical_not(valid_mask) x1_sparse = x1_dense * tf.cast(valid_mask, x1_dense.dtype) # FIXME # This test fails because internally the random normal distributions have # different sizes so the draw for the off-diagonal elements do not match # self._asset_allclose_tf_feed(x1_sparse, x2_sparse) # Checking that at least the diagonal part of the matrices do match self._asset_allclose_tf_feed(tf.matrix_diag_part(x1_sparse), tf.matrix_diag_part(x2_sparse)) def test_gamma_gaussian_equivalent(self): # Check that the Cholesky-Wishart distribution is equivalent to a SquareRootGamma-Gaussian distribution sqrt_gamma_gaussian = SqrtGammaGaussian(df=self.sqrt_w.df, log_diag_scale=self.sqrt_w.log_diag_scale) x_with_log_diag = tf.matrix_set_diag(self.x, self.x_cov_obj.log_diag_chol_precision) log_prob_gg1 = sqrt_gamma_gaussian.log_prob(x_with_log_diag) x_with_log_diag = tf.matrix_set_diag(self.x_cov_obj.chol_precision, self.x_cov_obj.log_diag_chol_precision) log_prob_gg2 = sqrt_gamma_gaussian.log_prob(x_with_log_diag) log_prob_wishart = self.sqrt_w.log_prob(self.x_cov_obj) self._asset_allclose_tf_feed(log_prob_gg1, log_prob_wishart) self._asset_allclose_tf_feed(log_prob_gg2, log_prob_wishart) class TestCholeskyWishartConv(TestCholeskyWishart): def _create_single_sqrt_wishart_pair(self, add_sparsity_correction=True): return super()._create_single_sqrt_wishart_pair(add_sparsity_correction=add_sparsity_correction) def test_log_prob(self): # The log prob contains the sparsity correction factor, thus it won't match the one from # the tensorflow Wishart distribution pass def test_gamma_gaussian_equivalent(self): # Check that the Cholesky-Wishart distribution with the sparsity correction factor is equivalent to a # SquareRootGamma-Gaussian distribution after removing the log probability of the zero terms in the off diagonal sqrt_gamma_gaussian = SqrtGammaGaussian(df=self.sqrt_w.df, log_diag_scale=self.sqrt_w.log_diag_scale) x_with_log_diag = tf.matrix_set_diag(self.x, self.x_cov_obj.log_diag_chol_precision) log_prob1_gamma = sqrt_gamma_gaussian._log_prob_sqrt_gamma(x_with_log_diag) log_prob1_normal = sqrt_gamma_gaussian.normal_dist.log_prob(self.x) off_diag_mask = self.x_cov_obj.np_off_diag_mask() log_prob1_normal = tf.reduce_sum(log_prob1_normal * off_diag_mask, axis=[1, 2]) log_prob_gg = log_prob1_gamma + log_prob1_normal log_prob_wishart = self.sqrt_w.log_prob(self.x_cov_obj) self._asset_allclose_tf_feed(log_prob_gg, log_prob_wishart) def test_gamma_gaussian_equivalent_sparse(self): # Check that the sparse Cholesky-Wishart distribution is equivalent to a # SparseSquareRootGamma-Gaussian distribution sqrt_gamma_gaussian = SparseSqrtGammaGaussian(df=self.sqrt_w.df, log_diag_scale=self.sqrt_w.log_diag_scale) log_prob_gg = sqrt_gamma_gaussian.log_prob(self.x_cov_obj) log_prob_wishart = self.sqrt_w.log_prob(self.x_cov_obj) self._asset_allclose_tf_feed(log_prob_gg, log_prob_wishart) if __name__ == '__main__': unittest.main()
[ "numpy.sqrt", "tensorflow.matrix_diag_part", "tensorflow.shape", "tensorflow.logical_not", "tensorflow.reduce_sum", "numpy.log", "unittest.main", "tensorflow.cast", "numpy.diag_indices_from", "mvg_distributions.sqrt_gamma_gaussian.SparseSqrtGammaGaussian", "numpy.random.normal", "tensorflow.matrix_set_diag", "mvg_distributions.sqrt_gamma_gaussian.SqrtGammaGaussian", "mvg_distributions.cholesky_wishart.CholeskyWishart", "numpy.zeros", "numpy.linalg.inv", "tensorflow.constant", "numpy.random.uniform", "tensorflow.TensorShape" ]
[((7338, 7353), 'unittest.main', 'unittest.main', ([], {}), '()\n', (7351, 7353), False, 'import unittest\n'), ((1011, 1121), 'numpy.zeros', 'np.zeros', ([], {'shape': '(self.batch_size, self.features_size, self.features_size)', 'dtype': 'self.dtype.as_numpy_dtype'}), '(shape=(self.batch_size, self.features_size, self.features_size),\n dtype=self.dtype.as_numpy_dtype)\n', (1019, 1121), True, 'import numpy as np\n'), ((1328, 1356), 'numpy.log', 'np.log', (['diag_precision_prior'], {}), '(diag_precision_prior)\n', (1334, 1356), True, 'import numpy as np\n'), ((1474, 1571), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': 'self.features_size', 'high': '(self.features_size * 10)', 'size': 'self.batch_size'}), '(low=self.features_size, high=self.features_size * 10,\n size=self.batch_size)\n', (1491, 1571), True, 'import numpy as np\n'), ((2029, 2145), 'mvg_distributions.cholesky_wishart.CholeskyWishart', 'CholeskyWishart', ([], {'df': 'df', 'log_diag_scale': 'log_diag_precision_prior', 'add_sparsity_correction': 'add_sparsity_correction'}), '(df=df, log_diag_scale=log_diag_precision_prior,\n add_sparsity_correction=add_sparsity_correction)\n', (2044, 2145), False, 'from mvg_distributions.cholesky_wishart import CholeskyWishart\n'), ((2680, 2730), 'tensorflow.TensorShape', 'tf.TensorShape', (['(self.batch_size, img_w, img_w, 1)'], {}), '((self.batch_size, img_w, img_w, 1))\n', (2694, 2730), True, 'import tensorflow as tf\n'), ((4061, 4087), 'tensorflow.logical_not', 'tf.logical_not', (['valid_mask'], {}), '(valid_mask)\n', (4075, 4087), True, 'import tensorflow as tf\n'), ((4763, 4842), 'mvg_distributions.sqrt_gamma_gaussian.SqrtGammaGaussian', 'SqrtGammaGaussian', ([], {'df': 'self.sqrt_w.df', 'log_diag_scale': 'self.sqrt_w.log_diag_scale'}), '(df=self.sqrt_w.df, log_diag_scale=self.sqrt_w.log_diag_scale)\n', (4780, 4842), False, 'from mvg_distributions.sqrt_gamma_gaussian import SqrtGammaGaussian, SparseSqrtGammaGaussian\n'), ((4870, 4936), 'tensorflow.matrix_set_diag', 'tf.matrix_set_diag', (['self.x', 'self.x_cov_obj.log_diag_chol_precision'], {}), '(self.x, self.x_cov_obj.log_diag_chol_precision)\n', (4888, 4936), True, 'import tensorflow as tf\n'), ((5033, 5127), 'tensorflow.matrix_set_diag', 'tf.matrix_set_diag', (['self.x_cov_obj.chol_precision', 'self.x_cov_obj.log_diag_chol_precision'], {}), '(self.x_cov_obj.chol_precision, self.x_cov_obj.\n log_diag_chol_precision)\n', (5051, 5127), True, 'import tensorflow as tf\n'), ((6127, 6206), 'mvg_distributions.sqrt_gamma_gaussian.SqrtGammaGaussian', 'SqrtGammaGaussian', ([], {'df': 'self.sqrt_w.df', 'log_diag_scale': 'self.sqrt_w.log_diag_scale'}), '(df=self.sqrt_w.df, log_diag_scale=self.sqrt_w.log_diag_scale)\n', (6144, 6206), False, 'from mvg_distributions.sqrt_gamma_gaussian import SqrtGammaGaussian, SparseSqrtGammaGaussian\n'), ((6233, 6299), 'tensorflow.matrix_set_diag', 'tf.matrix_set_diag', (['self.x', 'self.x_cov_obj.log_diag_chol_precision'], {}), '(self.x, self.x_cov_obj.log_diag_chol_precision)\n', (6251, 6299), True, 'import tensorflow as tf\n'), ((6546, 6606), 'tensorflow.reduce_sum', 'tf.reduce_sum', (['(log_prob1_normal * off_diag_mask)'], {'axis': '[1, 2]'}), '(log_prob1_normal * off_diag_mask, axis=[1, 2])\n', (6559, 6606), True, 'import tensorflow as tf\n'), ((7018, 7108), 'mvg_distributions.sqrt_gamma_gaussian.SparseSqrtGammaGaussian', 'SparseSqrtGammaGaussian', ([], {'df': 'self.sqrt_w.df', 'log_diag_scale': 'self.sqrt_w.log_diag_scale'}), '(df=self.sqrt_w.df, log_diag_scale=self.sqrt_w.\n log_diag_scale)\n', (7041, 7108), False, 'from mvg_distributions.sqrt_gamma_gaussian import SqrtGammaGaussian, SparseSqrtGammaGaussian\n'), ((837, 897), 'numpy.random.normal', 'np.random.normal', ([], {'size': '(self.batch_size, self.features_size)'}), '(size=(self.batch_size, self.features_size))\n', (853, 897), True, 'import numpy as np\n'), ((2418, 2445), 'numpy.linalg.inv', 'np.linalg.inv', (['x_covariance'], {}), '(x_covariance)\n', (2431, 2445), True, 'import numpy as np\n'), ((2628, 2655), 'numpy.sqrt', 'np.sqrt', (['self.features_size'], {}), '(self.features_size)\n', (2635, 2655), True, 'import numpy as np\n'), ((4119, 4154), 'tensorflow.cast', 'tf.cast', (['valid_mask', 'x1_dense.dtype'], {}), '(valid_mask, x1_dense.dtype)\n', (4126, 4154), True, 'import tensorflow as tf\n'), ((4510, 4540), 'tensorflow.matrix_diag_part', 'tf.matrix_diag_part', (['x1_sparse'], {}), '(x1_sparse)\n', (4529, 4540), True, 'import tensorflow as tf\n'), ((4542, 4572), 'tensorflow.matrix_diag_part', 'tf.matrix_diag_part', (['x2_sparse'], {}), '(x2_sparse)\n', (4561, 4572), True, 'import tensorflow as tf\n'), ((1225, 1265), 'numpy.diag_indices_from', 'np.diag_indices_from', (['precision_prior[i]'], {}), '(precision_prior[i])\n', (1245, 1265), True, 'import numpy as np\n'), ((2802, 2824), 'tensorflow.constant', 'tf.constant', (['x_weights'], {}), '(x_weights)\n', (2813, 2824), True, 'import tensorflow as tf\n'), ((2897, 2917), 'tensorflow.constant', 'tf.constant', (['x_basis'], {}), '(x_basis)\n', (2908, 2917), True, 'import tensorflow as tf\n'), ((4018, 4037), 'tensorflow.shape', 'tf.shape', (['x2_sparse'], {}), '(x2_sparse)\n', (4026, 4037), True, 'import tensorflow as tf\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.9.12 on 2016-12-30 10:35 from __future__ import unicode_literals import _1327.documents.models from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('documents', '0004_auto_20161213_2203'), ] operations = [ migrations.AddField( model_name='attachment', name='hash_value', field=models.CharField(default=_1327.documents.models.Attachment.get_hash, max_length=40, unique=True, verbose_name='Hash value'), ), ]
[ "django.db.models.CharField" ]
[((439, 566), 'django.db.models.CharField', 'models.CharField', ([], {'default': '_1327.documents.models.Attachment.get_hash', 'max_length': '(40)', 'unique': '(True)', 'verbose_name': '"""Hash value"""'}), "(default=_1327.documents.models.Attachment.get_hash,\n max_length=40, unique=True, verbose_name='Hash value')\n", (455, 566), False, 'from django.db import migrations, models\n')]
from django.conf.urls import patterns, include, url from django.views.generic.simple import direct_to_template from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^$', direct_to_template, {'template': 'index.html'}, name='index', ), url(r'^submissao/', include('submission.urls', namespace='submission')), url(r'^emails/', include('emails.urls', namespace='emails')), url(r'^resultado/$', 'core.views.results', name='resultado'), url(r'^admin/', include(admin.site.urls)), )
[ "django.conf.urls.include", "django.conf.urls.url", "django.contrib.admin.autodiscover" ]
[((145, 165), 'django.contrib.admin.autodiscover', 'admin.autodiscover', ([], {}), '()\n', (163, 165), False, 'from django.contrib import admin\n'), ((197, 268), 'django.conf.urls.url', 'url', (['"""^$"""', 'direct_to_template', "{'template': 'index.html'}"], {'name': '"""index"""'}), "('^$', direct_to_template, {'template': 'index.html'}, name='index')\n", (200, 268), False, 'from django.conf.urls import patterns, include, url\n'), ((438, 497), 'django.conf.urls.url', 'url', (['"""^resultado/$"""', '"""core.views.results"""'], {'name': '"""resultado"""'}), "('^resultado/$', 'core.views.results', name='resultado')\n", (441, 497), False, 'from django.conf.urls import patterns, include, url\n'), ((315, 365), 'django.conf.urls.include', 'include', (['"""submission.urls"""'], {'namespace': '"""submission"""'}), "('submission.urls', namespace='submission')\n", (322, 365), False, 'from django.conf.urls import patterns, include, url\n'), ((389, 431), 'django.conf.urls.include', 'include', (['"""emails.urls"""'], {'namespace': '"""emails"""'}), "('emails.urls', namespace='emails')\n", (396, 431), False, 'from django.conf.urls import patterns, include, url\n'), ((520, 544), 'django.conf.urls.include', 'include', (['admin.site.urls'], {}), '(admin.site.urls)\n', (527, 544), False, 'from django.conf.urls import patterns, include, url\n')]
# ms_mint/io.py import pandas as pd import numpy as np import io import pymzml from pathlib import Path as P from datetime import date from pyteomics import mzxml, mzml def ms_file_to_df(fn): fn = str(fn) if fn.lower().endswith('.mzxml'): df = mzxml_to_df(fn) elif fn.lower().endswith('.mzml'): df = mzml_to_df(fn) elif fn.lower().endswith('hdf'): df = pd.read_hdf(fn) elif fn.lower().endswith('feather'): df = pd.read_feather(fn) # Compatibility with old schema df = df.rename(columns={ 'retentionTime': 'scan_time_min', 'intensity array': 'intensity', 'm/z array': 'mz'}) return df def mzxml_to_df(fn): ''' Reads mzXML file and returns a pandas.DataFrame. ''' slices = [] with mzxml.MzXML( fn ) as ms_data: while True: try: data = ms_data.next() df = pd.DataFrame(data) # Fix byteorder issue df.loc[:,:] = df.values.byteswap().newbyteorder() df = df[['num', 'msLevel', 'polarity', 'retentionTime', 'm/z array', 'intensity array']] slices.append( df ) except StopIteration as e: break df = pd.concat(slices) df['retentionTime'] = df['retentionTime'].astype(np.float32) df['m/z array'] = df['m/z array'].astype(np.float32) df['intensity array'] = df['intensity array'].astype(int) df = df.rename(columns={'num': 'scan_id', 'msLevel': 'ms_level', 'retentionTime': 'scan_time_min', 'm/z array': 'mz', 'intensity array': 'intensity'}) df = df.reset_index(drop=True) cols = ['scan_id', 'ms_level', 'polarity', 'scan_time_min', 'mz', 'intensity'] df = df[cols] return df def mzml_to_pandas_df_pyteomics(fn): ''' Reads mzML file and returns a pandas.DataFrame. ''' cols = ['retentionTime', 'm/z array', 'intensity array'] slices = [] with mzml.MzML(fn) as ms_data: while True: try: data = ms_data.next() data['retentionTime'] = data['scanList']['scan'][0]['scan time'] / 60 del data['scanList'] slices.append( pd.DataFrame(data) ) except: break df = pd.concat(slices)[cols] df_to_numeric(df) df['intensity array'] = df['intensity array'].astype(int) df = df.reset_index(drop=True) return df def mzml_to_df(fn, assume_time_unit='seconds', remove_noise=False): with pymzml.run.Reader(fn) as ms_data: data = [] for spectrum in ms_data: # Try to convert time units with build-in method # some files have no time unit set. Then convert # to minutes assuming the time unit is as set # by assume_time_unit argument. try: RT = spectrum.scan_time_in_minutes() except: if assume_time_unit == 'seconds': RT = spectrum.scan_time[0] / 60. elif assume_time_unit == 'minutes': RT = spectrum.scan_time[0] if remove_noise: spectrum = spectrum.remove_noise() peaks = spectrum.peaks("centroided") data.append((spectrum.index, spectrum.ms_level, '+' if spectrum["positive scan"] else '-', RT, peaks)) ndx_explode = 4 df = pd.DataFrame(data).explode(ndx_explode) df['mz'] = df[ndx_explode].apply(lambda x: x[0]) df['intensity'] = df[ndx_explode].apply(lambda x: x[1]).astype(int) del df[ndx_explode] df = df.rename(columns={0: 'scan_id', 1: 'ms_level', 2: 'polarity', 3: 'scan_time_min' }) df = df.reset_index(drop=True) return df def df_to_numeric(df): ''' Converts dataframe to numeric types if possible. ''' for col in df.columns: df.loc[:, col] = pd.to_numeric(df[col], errors='ignore') def export_to_excel(mint, fn=None): date_string = str(date.today()) if fn is None: file_buffer = io.BytesIO() writer = pd.ExcelWriter(file_buffer) else: writer = pd.ExcelWriter(fn) # Write into file mint.peaklist.to_excel(writer, 'Peaklist', index=False) mint.results.to_excel(writer, 'Results', index=False) meta = pd.DataFrame({'MINT_version': [mint.version], 'Date': [date_string]}).T[0] meta.to_excel(writer, 'Metadata', index=True, header=False) # Close writer and maybe return file buffer writer.close() if fn is None: return file_buffer.seek(0) def convert_ms_file_to_feather(fn, fn_out=None): fn = P(fn) if fn_out is None: fn_out = fn.with_suffix('.feather') df = ms_file_to_df(fn).reset_index(drop=True) df.to_feather(fn_out) return fn_out
[ "pymzml.run.Reader", "pyteomics.mzml.MzML", "pandas.ExcelWriter", "pyteomics.mzxml.MzXML", "pandas.read_feather", "pathlib.Path", "io.BytesIO", "pandas.to_numeric", "pandas.DataFrame", "datetime.date.today", "pandas.concat", "pandas.read_hdf" ]
[((1284, 1301), 'pandas.concat', 'pd.concat', (['slices'], {}), '(slices)\n', (1293, 1301), True, 'import pandas as pd\n'), ((4782, 4787), 'pathlib.Path', 'P', (['fn'], {}), '(fn)\n', (4783, 4787), True, 'from pathlib import Path as P\n'), ((811, 826), 'pyteomics.mzxml.MzXML', 'mzxml.MzXML', (['fn'], {}), '(fn)\n', (822, 826), False, 'from pyteomics import mzxml, mzml\n'), ((2115, 2128), 'pyteomics.mzml.MzML', 'mzml.MzML', (['fn'], {}), '(fn)\n', (2124, 2128), False, 'from pyteomics import mzxml, mzml\n'), ((2443, 2460), 'pandas.concat', 'pd.concat', (['slices'], {}), '(slices)\n', (2452, 2460), True, 'import pandas as pd\n'), ((2684, 2705), 'pymzml.run.Reader', 'pymzml.run.Reader', (['fn'], {}), '(fn)\n', (2701, 2705), False, 'import pymzml\n'), ((4026, 4065), 'pandas.to_numeric', 'pd.to_numeric', (['df[col]'], {'errors': '"""ignore"""'}), "(df[col], errors='ignore')\n", (4039, 4065), True, 'import pandas as pd\n'), ((4126, 4138), 'datetime.date.today', 'date.today', ([], {}), '()\n', (4136, 4138), False, 'from datetime import date\n'), ((4181, 4193), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (4191, 4193), False, 'import io\n'), ((4211, 4238), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['file_buffer'], {}), '(file_buffer)\n', (4225, 4238), True, 'import pandas as pd\n'), ((4266, 4284), 'pandas.ExcelWriter', 'pd.ExcelWriter', (['fn'], {}), '(fn)\n', (4280, 4284), True, 'import pandas as pd\n'), ((3544, 3562), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (3556, 3562), True, 'import pandas as pd\n'), ((4436, 4505), 'pandas.DataFrame', 'pd.DataFrame', (["{'MINT_version': [mint.version], 'Date': [date_string]}"], {}), "({'MINT_version': [mint.version], 'Date': [date_string]})\n", (4448, 4505), True, 'import pandas as pd\n'), ((397, 412), 'pandas.read_hdf', 'pd.read_hdf', (['fn'], {}), '(fn)\n', (408, 412), True, 'import pandas as pd\n'), ((937, 955), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (949, 955), True, 'import pandas as pd\n'), ((467, 486), 'pandas.read_feather', 'pd.read_feather', (['fn'], {}), '(fn)\n', (482, 486), True, 'import pandas as pd\n'), ((2370, 2388), 'pandas.DataFrame', 'pd.DataFrame', (['data'], {}), '(data)\n', (2382, 2388), True, 'import pandas as pd\n')]
# (C) British Crown Copyright 2018, Met Office # # This file is part of cartopy. # # cartopy is free software: you can redistribute it and/or modify it under # the terms of the GNU Lesser General Public License as published by the # Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # cartopy is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with cartopy. If not, see <https://www.gnu.org/licenses/>. """ Tests for the Gnomonic coordinate system. """ from __future__ import (absolute_import, division, print_function) import numpy as np from numpy.testing import assert_almost_equal import pytest import cartopy.crs as ccrs def check_proj4_params(crs, other_args): expected = other_args | {'proj=gnom', 'no_defs'} pro4_params = set(crs.proj4_init.lstrip('+').split(' +')) assert expected == pro4_params def test_default(): gnom = ccrs.Gnomonic() other_args = {'ellps=WGS84', 'lon_0=0.0', 'lat_0=0.0'} check_proj4_params(gnom, other_args) assert_almost_equal(np.array(gnom.x_limits), [-5e7, 5e7]) assert_almost_equal(np.array(gnom.y_limits), [-5e7, 5e7]) @pytest.mark.parametrize('lat', [-10, 0, 10]) @pytest.mark.parametrize('lon', [-10, 0, 10]) def test_central_params(lat, lon): gnom = ccrs.Gnomonic(central_latitude=lat, central_longitude=lon) other_args = {'lat_0={}'.format(lat), 'lon_0={}'.format(lon), 'ellps=WGS84'} check_proj4_params(gnom, other_args) assert_almost_equal(np.array(gnom.x_limits), [-5e7, 5e7]) assert_almost_equal(np.array(gnom.y_limits), [-5e7, 5e7]) def test_grid(): # USGS Professional Paper 1395, pg 168, Table 26 globe = ccrs.Globe(ellipse=None, semimajor_axis=1.0, semiminor_axis=1.0) gnom = ccrs.Gnomonic(globe=globe) geodetic = gnom.as_geodetic() other_args = {'a=1.0', 'b=1.0', 'lon_0=0.0', 'lat_0=0.0'} check_proj4_params(gnom, other_args) assert_almost_equal(np.array(gnom.x_limits), [-5e7, 5e7]) assert_almost_equal(np.array(gnom.y_limits), [-5e7, 5e7]) lats, lons = np.mgrid[0:90:10, 0:90:10].reshape((2, -1)) expected_x = np.tile( [0.0000, 0.1763, 0.3640, 0.5774, 0.8391, 1.1918, 1.7321, 2.7475, 5.6713], 9) expected_y = np.array([ [5.6713, 2.7475, 1.7321, 1.1918, 0.8391, 0.5774, 0.3640, 0.1763, 0], [5.7588, 2.7899, 1.7588, 1.2101, 0.8520, 0.5863, 0.3696, 0.1790, 0], [6.0353, 2.9238, 1.8432, 1.2682, 0.8930, 0.6144, 0.3873, 0.1876, 0], [6.5486, 3.1725, 2.0000, 1.3761, 0.9689, 0.6667, 0.4203, 0.2036, 0], [7.4033, 3.5866, 2.2610, 1.5557, 1.0954, 0.7537, 0.4751, 0.2302, 0], [8.8229, 4.2743, 2.6946, 1.8540, 1.3054, 0.8982, 0.5662, 0.2743, 0], [11.3426, 5.4950, 3.4641, 2.3835, 1.6782, 1.1547, 0.7279, 0.3527, 0], [16.5817, 8.0331, 5.0642, 3.4845, 2.4534, 1.6881, 1.0642, 0.5155, 0], [32.6596, 15.8221, 9.9745, 6.8630, 4.8322, 3.3248, 2.0960, 1.0154, 0], ])[:, ::-1].T.ravel() # Test all quadrants; they are symmetrical. for lon_sign in [1, -1]: for lat_sign in [1, -1]: result = gnom.transform_points(geodetic, lon_sign * lons, lat_sign * lats) assert_almost_equal(result[:, 0], lon_sign * expected_x, decimal=4) assert_almost_equal(result[:, 1], lat_sign * expected_y, decimal=4) def test_sphere_transform(): # USGS Professional Paper 1395, pp 319 - 320 globe = ccrs.Globe(semimajor_axis=1.0, semiminor_axis=1.0, ellipse=None) gnom = ccrs.Gnomonic(central_latitude=40.0, central_longitude=-100.0, globe=globe) geodetic = gnom.as_geodetic() other_args = {'a=1.0', 'b=1.0', 'lon_0=-100.0', 'lat_0=40.0'} check_proj4_params(gnom, other_args) assert_almost_equal(np.array(gnom.x_limits), [-5e7, 5e7]) assert_almost_equal(np.array(gnom.y_limits), [-5e7, 5e7]) result = gnom.transform_point(-110.0, 30.0, geodetic) assert_almost_equal(result, np.array([-0.1542826, -0.1694739])) inverse_result = geodetic.transform_point(result[0], result[1], gnom) assert_almost_equal(inverse_result, [-110.0, 30.0])
[ "numpy.tile", "pytest.mark.parametrize", "numpy.testing.assert_almost_equal", "numpy.array", "cartopy.crs.Gnomonic", "cartopy.crs.Globe" ]
[((1469, 1513), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""lat"""', '[-10, 0, 10]'], {}), "('lat', [-10, 0, 10])\n", (1492, 1513), False, 'import pytest\n'), ((1515, 1559), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""lon"""', '[-10, 0, 10]'], {}), "('lon', [-10, 0, 10])\n", (1538, 1559), False, 'import pytest\n'), ((1177, 1192), 'cartopy.crs.Gnomonic', 'ccrs.Gnomonic', ([], {}), '()\n', (1190, 1192), True, 'import cartopy.crs as ccrs\n'), ((1606, 1664), 'cartopy.crs.Gnomonic', 'ccrs.Gnomonic', ([], {'central_latitude': 'lat', 'central_longitude': 'lon'}), '(central_latitude=lat, central_longitude=lon)\n', (1619, 1664), True, 'import cartopy.crs as ccrs\n'), ((2062, 2126), 'cartopy.crs.Globe', 'ccrs.Globe', ([], {'ellipse': 'None', 'semimajor_axis': '(1.0)', 'semiminor_axis': '(1.0)'}), '(ellipse=None, semimajor_axis=1.0, semiminor_axis=1.0)\n', (2072, 2126), True, 'import cartopy.crs as ccrs\n'), ((2161, 2187), 'cartopy.crs.Gnomonic', 'ccrs.Gnomonic', ([], {'globe': 'globe'}), '(globe=globe)\n', (2174, 2187), True, 'import cartopy.crs as ccrs\n'), ((2578, 2663), 'numpy.tile', 'np.tile', (['[0.0, 0.1763, 0.364, 0.5774, 0.8391, 1.1918, 1.7321, 2.7475, 5.6713]', '(9)'], {}), '([0.0, 0.1763, 0.364, 0.5774, 0.8391, 1.1918, 1.7321, 2.7475, 5.6713], 9\n )\n', (2585, 2663), True, 'import numpy as np\n'), ((3933, 3997), 'cartopy.crs.Globe', 'ccrs.Globe', ([], {'semimajor_axis': '(1.0)', 'semiminor_axis': '(1.0)', 'ellipse': 'None'}), '(semimajor_axis=1.0, semiminor_axis=1.0, ellipse=None)\n', (3943, 3997), True, 'import cartopy.crs as ccrs\n'), ((4032, 4107), 'cartopy.crs.Gnomonic', 'ccrs.Gnomonic', ([], {'central_latitude': '(40.0)', 'central_longitude': '(-100.0)', 'globe': 'globe'}), '(central_latitude=40.0, central_longitude=-100.0, globe=globe)\n', (4045, 4107), True, 'import cartopy.crs as ccrs\n'), ((4654, 4705), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['inverse_result', '[-110.0, 30.0]'], {}), '(inverse_result, [-110.0, 30.0])\n', (4673, 4705), False, 'from numpy.testing import assert_almost_equal\n'), ((1318, 1341), 'numpy.array', 'np.array', (['gnom.x_limits'], {}), '(gnom.x_limits)\n', (1326, 1341), True, 'import numpy as np\n'), ((1404, 1427), 'numpy.array', 'np.array', (['gnom.y_limits'], {}), '(gnom.y_limits)\n', (1412, 1427), True, 'import numpy as np\n'), ((1830, 1853), 'numpy.array', 'np.array', (['gnom.x_limits'], {}), '(gnom.x_limits)\n', (1838, 1853), True, 'import numpy as np\n'), ((1916, 1939), 'numpy.array', 'np.array', (['gnom.y_limits'], {}), '(gnom.y_limits)\n', (1924, 1939), True, 'import numpy as np\n'), ((2351, 2374), 'numpy.array', 'np.array', (['gnom.x_limits'], {}), '(gnom.x_limits)\n', (2359, 2374), True, 'import numpy as np\n'), ((2437, 2460), 'numpy.array', 'np.array', (['gnom.y_limits'], {}), '(gnom.y_limits)\n', (2445, 2460), True, 'import numpy as np\n'), ((4300, 4323), 'numpy.array', 'np.array', (['gnom.x_limits'], {}), '(gnom.x_limits)\n', (4308, 4323), True, 'import numpy as np\n'), ((4386, 4409), 'numpy.array', 'np.array', (['gnom.y_limits'], {}), '(gnom.y_limits)\n', (4394, 4409), True, 'import numpy as np\n'), ((4539, 4573), 'numpy.array', 'np.array', (['[-0.1542826, -0.1694739]'], {}), '([-0.1542826, -0.1694739])\n', (4547, 4573), True, 'import numpy as np\n'), ((3693, 3760), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['result[:, 0]', '(lon_sign * expected_x)'], {'decimal': '(4)'}), '(result[:, 0], lon_sign * expected_x, decimal=4)\n', (3712, 3760), False, 'from numpy.testing import assert_almost_equal\n'), ((3773, 3840), 'numpy.testing.assert_almost_equal', 'assert_almost_equal', (['result[:, 1]', '(lat_sign * expected_y)'], {'decimal': '(4)'}), '(result[:, 1], lat_sign * expected_y, decimal=4)\n', (3792, 3840), False, 'from numpy.testing import assert_almost_equal\n'), ((2706, 3369), 'numpy.array', 'np.array', (['[[5.6713, 2.7475, 1.7321, 1.1918, 0.8391, 0.5774, 0.364, 0.1763, 0], [\n 5.7588, 2.7899, 1.7588, 1.2101, 0.852, 0.5863, 0.3696, 0.179, 0], [\n 6.0353, 2.9238, 1.8432, 1.2682, 0.893, 0.6144, 0.3873, 0.1876, 0], [\n 6.5486, 3.1725, 2.0, 1.3761, 0.9689, 0.6667, 0.4203, 0.2036, 0], [\n 7.4033, 3.5866, 2.261, 1.5557, 1.0954, 0.7537, 0.4751, 0.2302, 0], [\n 8.8229, 4.2743, 2.6946, 1.854, 1.3054, 0.8982, 0.5662, 0.2743, 0], [\n 11.3426, 5.495, 3.4641, 2.3835, 1.6782, 1.1547, 0.7279, 0.3527, 0], [\n 16.5817, 8.0331, 5.0642, 3.4845, 2.4534, 1.6881, 1.0642, 0.5155, 0], [\n 32.6596, 15.8221, 9.9745, 6.863, 4.8322, 3.3248, 2.096, 1.0154, 0]]'], {}), '([[5.6713, 2.7475, 1.7321, 1.1918, 0.8391, 0.5774, 0.364, 0.1763, 0\n ], [5.7588, 2.7899, 1.7588, 1.2101, 0.852, 0.5863, 0.3696, 0.179, 0], [\n 6.0353, 2.9238, 1.8432, 1.2682, 0.893, 0.6144, 0.3873, 0.1876, 0], [\n 6.5486, 3.1725, 2.0, 1.3761, 0.9689, 0.6667, 0.4203, 0.2036, 0], [\n 7.4033, 3.5866, 2.261, 1.5557, 1.0954, 0.7537, 0.4751, 0.2302, 0], [\n 8.8229, 4.2743, 2.6946, 1.854, 1.3054, 0.8982, 0.5662, 0.2743, 0], [\n 11.3426, 5.495, 3.4641, 2.3835, 1.6782, 1.1547, 0.7279, 0.3527, 0], [\n 16.5817, 8.0331, 5.0642, 3.4845, 2.4534, 1.6881, 1.0642, 0.5155, 0], [\n 32.6596, 15.8221, 9.9745, 6.863, 4.8322, 3.3248, 2.096, 1.0154, 0]])\n', (2714, 3369), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """An output module that doesn't output anything.""" from plaso.output import interface from plaso.output import manager # We don't need to implement any functionality here, so the methods in # the interface don't need to be overwritten. # pylint: disable=abstract-method class NullOutputModule(interface.OutputModule): """An output module that doesn't output anything.""" NAME = u'null' DESCRIPTION = u'An output module that doesn\'t output anything.' manager.OutputManager.RegisterOutput(NullOutputModule)
[ "plaso.output.manager.OutputManager.RegisterOutput" ]
[((488, 542), 'plaso.output.manager.OutputManager.RegisterOutput', 'manager.OutputManager.RegisterOutput', (['NullOutputModule'], {}), '(NullOutputModule)\n', (524, 542), False, 'from plaso.output import manager\n')]
import time import os import hashlib from collections import Counter def profiler(method): def wrapper_method(*arg, **kw): t = time.time() method(*arg, **kw) print('Method ' + method.__name__ + ' took : ' + "{:2.5f}".format(time.time()-t) + ' sec') return wrapper_method @profiler def part1(): inp = 'abbhdwsy' code = [] inc = 1 while len(code) < 8: tmp = inp + str(inc) hash = hashlib.md5(bytes(tmp, 'utf-8')).hexdigest() if hash[0] == hash[1] == hash[2] == hash[3] == hash[4] == '0': code.append(hash[5]) inc += 1 print(''.join(code)) @profiler def part2(): inp = 'abbhdwsy' code = ['-'] * 8 inc = 1 while code.count('-') > 0: tmp = inp + str(inc) hash = hashlib.md5(bytes(tmp, 'utf-8')).hexdigest() if hash[0] == hash[1] == hash[2] == hash[3] == hash[4] == '0': if int(hash[5],16) < 8: if code[int(hash[5],16)] == '-': code[int(hash[5],16)] = hash[6] inc += 1 print(''.join(code)) if __name__ == "__main__": part1() part2()
[ "time.time" ]
[((141, 152), 'time.time', 'time.time', ([], {}), '()\n', (150, 152), False, 'import time\n'), ((268, 279), 'time.time', 'time.time', ([], {}), '()\n', (277, 279), False, 'import time\n')]
from sanic import Blueprint from server.api.app import app_api from server.api.device import device_api api = Blueprint.group( app_api, device_api )
[ "sanic.Blueprint.group" ]
[((111, 147), 'sanic.Blueprint.group', 'Blueprint.group', (['app_api', 'device_api'], {}), '(app_api, device_api)\n', (126, 147), False, 'from sanic import Blueprint\n')]
"""Test accuracy of the level 4 mixture modules. This module provides tests of the accuracy of the level 4 mixture modules. The prefixes of these modules list the substances in equilibrium; ``liqvap4`` is for pure liquid water and pure water vapour, whereas ``iceair4b`` is for ice and humid air. It also includes one level 5 module, ``iceflu5``. This module can also be called from the command line as:: python testmix.py arg1 arg2 ... The arguments can be module names, parts of module names, or substance prefixes. This will run all available tests for modules that contain the arguments in their name. For example, ``iceair4`` will test the three modules ``iceair4a``, ``iceair4b``, ``iceair4c``; ``sea`` will test all modules for which seawater is a component. If no arguments are given, all available tests are run. The functions provided by this module generate the tests for the mixture module of the same name. Each function returns a tuple of :class:`~teospy.tests.tester.Tester` instances which include the functions checked, values of the arguments, and tables of reference values. Use the ``run`` method of a Tester to run the test, and ``printresults`` to print a summary. :Available modules to test: * :mod:`~teospy.liqvap4` * :mod:`~teospy.iceliq4` * :mod:`~teospy.icevap4` * :mod:`~teospy.iceair4a` * :mod:`~teospy.iceair4b` * :mod:`~teospy.iceair4c` * :mod:`~teospy.liqair4a` * :mod:`~teospy.liqair4b` * :mod:`~teospy.liqair4c` * :mod:`~teospy.liqiceair4` * :mod:`~teospy.sealiq4` * :mod:`~teospy.seavap4` * :mod:`~teospy.seaice4` * :mod:`~teospy.seaicevap4` * :mod:`~teospy.seaair4` * :mod:`~teospy.iceflu5` """ __all__ = ['genliqvap4','geniceliq4','genicevap4','geniceair4a','geniceair4b', 'geniceair4c','genliqair4a','genliqair4b','genliqair4c','genliqiceair4', 'gensealiq4','genseavap4','genseaice4','genseaicevap4','genseaair4', 'geniceflu5'] import warnings from teospy.tests.tester import Tester, _DERS3 ## Generating Tester instances def genliqvap4(): """Generate liqvap4 Testers. """ from teospy import liqvap4 funs = [liqvap4.pressure,liqvap4.densityvap,liqvap4.densityliq, liqvap4.chempot,liqvap4.entropyliq,liqvap4.entropyvap, liqvap4.enthalpyliq,liqvap4.enthalpyvap,liqvap4.volumeevap, liqvap4.entropyevap,liqvap4.enthalpyevap] fargs = tuple() fkwargs = {'temp': 300.} refs = [3536.80675227,2.55896736829e-2,996.513027468,-5361.84908682, 393.089029801,8517.38650061,112564.859854,2549854.10109,39.0772595686, 8124.29747080,2437289.24124] fnames = ['pressure','densityvap','densityliq','chempot','entropyliq', 'entropyvap','enthalpyliq','enthalpyvap','volumeevap','entropyevap', 'enthalpyevap'] argfmt = '({0:s}={1:3g})' header = 'Liquid-vapour equilibrium at temp' eqfun = liqvap4.eq_tp eqargs = fargs eqkwargs = fkwargs eqkeys = ['temp','pres','<KEY>'] test_t = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys) funs = [liqvap4.temperature,liqvap4.densityvap,liqvap4.densityliq, liqvap4.chempot,liqvap4.entropyliq,liqvap4.entropyvap, liqvap4.enthalpyliq,liqvap4.enthalpyvap,liqvap4.volumeevap, liqvap4.entropyevap,liqvap4.enthalpyevap] fargs = tuple() fkwargs = {'pres': 1e4} refs = [318.956328924,6.81657223094e-2,989.833275365,-15259.1024273, 649.195605196,8148.82019425,191805.944559,2583858.67179,14.6691196141, 7499.62458905,2392052.72723] fnames = ['temperature','densityvap','densityliq','chempot','entropyliq', 'entropyvap','enthalpyliq','enthalpyvap','volumeevap','entropyevap', 'enthalpyevap'] argfmt = '({0:s}={1:5g})' header = 'Liquid-vapour equilibrium at pres' eqfun = liqvap4.eq_tp eqargs = fargs eqkwargs = fkwargs eqkeys = ['temp','pres','dvap','dliq'] test_p = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys) return (test_t, test_p) def geniceliq4(): """Generate iceliq4 Testers. """ from teospy import iceliq4 funs = [iceliq4.pressure,iceliq4.densityliq,iceliq4.chempot, iceliq4.densityice,iceliq4.enthalpyice,iceliq4.enthalpyliq, iceliq4.enthalpymelt,iceliq4.entropyice,iceliq4.entropyliq, iceliq4.entropymelt,iceliq4.volumemelt] fargs = tuple() fkwargs = {'temp': 270.} refs = [39313338.8825,1019.05568894,38870.0605192,921.359428514, -299055.938629,26110.7481094,325166.686739,-1251.57777462, -47.2567126291,1204.32106199,-1.04052121182e-4] fnames = ['pressure','densityliq','chempot','densityice','enthalpyice', 'enthalpyliq','enthalpymelt','entropyice','entropyliq','entropymelt', 'volumemelt'] argfmt = '({0:s}={1:3g})' header = 'Ice-liquid equilibrium at temp' eqfun = iceliq4.eq_tp eqargs = fargs eqkwargs = fkwargs eqkeys = ['temp','pres','dliq'] test_t = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys) funs = [iceliq4.temperature,iceliq4.densityliq,iceliq4.chempot, iceliq4.densityice,iceliq4.enthalpyice,iceliq4.enthalpyliq, iceliq4.enthalpymelt,iceliq4.entropyice,iceliq4.entropyliq, iceliq4.entropymelt,iceliq4.volumemelt] fargs = tuple() fkwargs = {'pres': 1e7} refs = [272.401648869,1004.79353660,9972.88171381,917.896690831, -324602.983812,6945.92700483,331548.910817,-1228.24464139, -11.1121012723,1217.13254011,-9.42178903288e-5] fnames = ['temperature','densityliq','chempot','densityice','enthalpyice', 'enthalpyliq','enthalpymelt','entropyice','entropyliq','entropymelt', 'volumemelt'] argfmt = '({0:s}={1:5g})' header = 'Ice-liquid equilibrium at pres' eqfun = iceliq4.eq_tp eqargs = fargs eqkwargs = fkwargs eqkeys = ['temp','pres','dliq'] test_p = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys) return (test_t,test_p) def genicevap4(): """Generate icevap4 Testers. """ from teospy import icevap4 funs = [icevap4.pressure,icevap4.densityvap,icevap4.chempot, icevap4.densityice,icevap4.enthalpyice,icevap4.enthalpyvap, icevap4.entropyice,icevap4.entropyvap,icevap4.volumesubl, icevap4.entropysubl,icevap4.enthalpysubl] fargs = tuple() fkwargs = {'temp': 270.} refs = [470.059067981,3.77406140772e-3,-3895.26747392,917.170465733, -340033.434649,2495132.21977,-1244.95617472,9255.65736018,264.965451558, 10500.6135349,2835165.65442] fnames = ['pressure','densityvap','chempot','densityice','enthalpyice', 'enthalpyvap','entropyice','entropyvap','volumesubl','entropysubl', 'enthalpysubl'] argfmt = '({0:s}={1:3g})' header = 'Ice-vapour equilibrium at temp' eqfun = icevap4.eq_tp eqargs = fargs eqkwargs = fkwargs eqkeys = ['temp','pres','dvap'] test_t = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys) funs = [icevap4.temperature,icevap4.densityvap,icevap4.chempot, icevap4.densityice,icevap4.enthalpyice,icevap4.enthalpyvap, icevap4.entropyice,icevap4.entropyvap,icevap4.volumesubl, icevap4.entropysubl,icevap4.enthalpysubl] fargs = tuple() fkwargs = {'pres': 100.} refs = [252.817910215,8.57185487853e-4,-26421.2820403,919.600269745, -374576.247867,2463525.19629,-1377.09771247,9848.77406912,1166.60755699, 11225.8717816,2838101.44416] fnames = ['temperature','densityvap','chempot','densityice','enthalpyice', 'enthalpyvap','entropyice','entropyvap','volumesubl','entropysubl', 'enthalpysubl'] argfmt = '({0:s}={1:3g})' header = 'Ice-vapour equilibrium at pres' eqfun = icevap4.eq_tp eqargs = fargs eqkwargs = fkwargs eqkeys = ['temp','pres','dvap'] test_p = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys) return (test_t, test_p) def geniceair4a(): """Generate iceair4a Testers. """ from teospy import iceair4a funs = [iceair4a.enthalpysubl,iceair4a.densityair,iceair4a.densityvap, iceair4a.densityice] fargs = tuple() fkwargs = {'temp': 270., 'pres': 1e5} refs = [2833397.47158,1.28880078014,3.79055033080e-3,917.181167192] refs_alt = [2833359.27614,None,None,None] fnames = ['enthalpysubl','densityair','densityvap','densityice'] argfmt = '({0:s}={1:3g},{2:s}={3:6g})' header = 'Icy air at temp and pres' eqfun = iceair4a.eq_atpe eqargs = fargs eqkwargs = fkwargs eqkeys = ['airf','temp','pres','dhum'] test_tp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [iceair4a.pressure,iceair4a.enthalpysubl,iceair4a.densityair, iceair4a.densityvap,iceair4a.densityice] fkwargs = {'airf': 0.997, 'temp': 270.} refs = [98034.4511233,2833421.40560,1.26340801028,3.79022403085e-3, 917.180955861] refs_alt = [None,2833386.54980,None,None,None] fnames = ['pressure','enthalpysubl','densityair','densityvap','densityice'] argfmt = '({0:s}={1:5.3f},{2:s}={3:3g})' header = 'Icy air at airf and temp' eqkwargs = fkwargs test_at = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [iceair4a.temperature,iceair4a.enthalpysubl,iceair4a.densityair, iceair4a.densityvap,iceair4a.densityice] fkwargs = {'airf': 0.997, 'pres': 1e5} refs = [270.234816126,2833334.55263,1.28763121402,3.86289364206e-3, 917.147060527] refs_alt = [270.232024746,2833296.51317,None,None,None] fnames = ['temperature','enthalpysubl','densityair','densityvap', 'densityice'] argfmt = '({0:s}={1:5.3f},{2:s}={3:6g})' header = 'Icy air at airf and temp' eqkwargs = fkwargs test_ap = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [iceair4a.enthalpysubl,iceair4a.densityair,iceair4a.densityvap, iceair4a.pressure,iceair4a.temperature,iceair4a.densityice] fkwargs = {'airf': 0.997, 'entr': 100.} refs = [2834605.61524,0.949325026119,2.84797507836e-3,72721.4579415, 266.514349350,917.681749114] refs_alt = [2834612.42351,None,None,None,None,None] fnames = ['enthalpysubl','densityair','densityvap','pressure','temperature', 'densityice'] argfmt = '({0:s}={1:5.3f},{2:s}={3:3g})' header = 'Icy air at airf and entr' eqkwargs = fkwargs test_ae = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = iceair4a.condensationpressure fargs = (0.997,270.) refs = 98034.4511233 fnames = 'condensationpressure' argfmt = '({0:5.3f},{1:3g})' header = 'Condensation pressure' test_cp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = iceair4a.frostpoint fargs = (0.997,1e5) refs = 270.234816126 fnames = 'frostpoint' argfmt = '({0:5.3f},{1:6g})' header = 'Frost point' test_fp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = iceair4a.massfractionair fargs = (270.,1e5) refs = 0.997058854720 fnames = 'massfractionair' argfmt = '({0:3g},{1:6g})' header = 'Dry fraction' test_mf = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = iceair4a.sublimationpressure fargs = (270.,1e5) refs = 472.041823975 fnames = 'sublimationpressure' argfmt = '({0:3g},{1:6g})' header = 'Sublimation pressure' test_sp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [iceair4a.ict,iceair4a.icl] fargs = (0.997,300.,1e5) refs = [265.224998411,64988.3931838] fnames = ['ict','icl'] argfmt = '({0:5.3f},{1:3g},{2:6g})' header = 'ICL functions' eqfun = iceair4a.eq_icl eqargs = fargs eqkeys = ['dhum','ticl','picl','dhicl'] test_icl = Tester(funs,fargs,refs,fnames,argfmt,header=header, eqfun=eqfun,eqargs=eqargs,eqkeys=eqkeys) funs = [iceair4a.rhfromairf_cct,iceair4a.rhfromairf_wmo] fargs = (0.998,270.,1e5) refs = [0.680395740553,0.679365943331] fnames = ['rhfromairf_cct','rhfromairf_wmo'] argfmt = '({0:5.3f},{1:3g},{2:6g})' header = 'RH from airf' test_rh1 = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [iceair4a.airffromrh_cct,iceair4a.airffromrh_wmo] fargs = (0.8,270.,1e5) refs = [0.997647924743,0.997645698908] fnames = ['airffromrh_cct','airffromrh_wmo'] argfmt = '({0:3.1f},{1:3g},{2:6g})' header = 'airf from RH' test_rh2 = Tester(funs,fargs,refs,fnames,argfmt,header=header) return (test_tp,test_at,test_ap,test_ae,test_cp,test_fp,test_mf,test_sp, test_icl,test_rh1,test_rh2) def geniceair4b(): """Generate iceair4b Testers. """ from teospy import iceair4b funs = iceair4b.iceair_g args1 = (0.5,270.,1e5) fargs = [(der+args1) for der in _DERS3] refs = [-2595.57166634,2382.35592988,610.264516719,0.389645501224,0.0, -1269.41767669,0.777110408175,-7.01196501618,1.60141530565e-3, -3.91183988658e-6] refs_alt = [-2595.57166634,None,610.264515318,None,None,-1269.41767949,None, -7.00810930740,1.60095965101e-3,-3.91178603885e-6] fnames = 'iceair_g' argfmt = '({0:1d},{1:1d},{2:1d},{3:3.1f},{4:3g},{5:6g})' header = 'Icy air Gibbs derivatives' eqfun = iceair4b._eq_atpe eqargs = tuple() eqkwargs = {'temp': 270., 'pres': 1e5} eqkeys = ['airf','temp','pres','dhum'] keepkeys = ['airf','dhum'] test_ders = Tester(funs,fargs,refs,fnames,argfmt,header=header, eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs,eqkeys=eqkeys, keepkeys=keepkeys,refs_alt=refs_alt) funs = [iceair4b.solidfraction,iceair4b.vapourfraction,iceair4b.cp, iceair4b.density,iceair4b.enthalpy,iceair4b.entropy,iceair4b.expansion, iceair4b.kappa_t,iceair4b.lapserate] fargs = args1 refs = [0.498525089434,1.47491056602e-3,1893.23055437,2.5664353800, -167366.990802,-610.264515318,4.10992890025e-3,1.00394842901e-5, 2.28383245895e-4] refs_alt = [None,None,1892.18951300,None,None,None,4.10875949031e-3, 1.00393460891e-5,2.28443875629e-4] fnames = ['solidfraction','vapourfraction','cp','density','enthalpy', 'entropy','expansion','kappa_t','lapserate'] argfmt = '({0:3.1f},{1:3g},{2:6g})' header = 'Icy air Gibbs functions' test_funs = Tester(funs,fargs,refs,fnames,argfmt,header=header, eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs,eqkeys=eqkeys, keepkeys=keepkeys,refs_alt=refs_alt) return (test_ders, test_funs) def geniceair4c(): """Generate iceair4c Testers. """ from teospy import iceair4c funs = iceair4c.iceair_h args1 = (0.5,1e5) fargs = [(der+args1) for der in _DERS3] fkwargs = {'entr': -600.} refs = [-164588.106002,543.016647638,271.449994437,0.391981878510, 224806.061923,-177.336808301,0.494222328196,0.139890994527, 2.26840108532e-4,-3.56982287084e-6] refs_alt = [None,543.016638396,None,None,224958.525864,-177.457078495, 0.781782661019,0.139985868894,2.26912930199e-4,-3.56976697603e-6] fnames = 'iceair_h' argfmt = '({0:1d},{1:1d},{2:1d},{3:3g},{4:6g},{5:s}={6:4g})' header = 'Icy air enthalpy derivatives' eqfun = iceair4c.eq_wpte eqargs = args1 eqkwargs = fkwargs eqkeys = ['airf','temp','dhum'] test_der = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [iceair4c.temperature,iceair4c.lapserate,iceair4c.cp, iceair4c.kappa_s,iceair4c.density] fargs = (0.9,1e5) fkwargs = {'entr': -100.} refs = [270.383680133,4.42092568190e-4,1768.51439675,8.23141751514e-6, 1.42531895986] refs_alt = [270.383680119,4.42457786755e-4,1766.52051488,8.23031581047e-6, 1.42531895993] fnames = ['temperature','lapserate','cp','kappa_s','density'] argfmt = '({0:3g},{1:6g},{2:s}={3:4g})' header = 'Icy air enthalpy functions' eqargs = fargs eqkwargs = fkwargs test_fun = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [iceair4c.pottemp,iceair4c.potdensity,iceair4c.potenthalpy] fargs = (0.9,230.,5e4,1e5) refs = [266.105208871,1.45048110422,-35781.2564451] fnames = ['pottemp','potdensity','potenthalpy'] argfmt = '({0:3g},{1:3g},{2:5g},{3:6g})' header = 'Icy air potential functions' eqfun = iceair4c.eq_pot eqargs = fargs eqkeys = ['airf','dhum','apot','tpot','dhpot'] test_pot = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=eqargs,eqkeys=eqkeys) return (test_der, test_fun, test_pot) def genliqair4a(): """Generate liqair4a Testers. """ from teospy import liqair4a funs = [liqair4a.enthalpyevap,liqair4a.entropy,liqair4a.densityair, liqair4a.densityvap,liqair4a.densityliq] fargs = tuple() fkwargs = {'temp': 300., 'pres': 1e5} refs = [2434606.28954,296.711483507,1.14614215827,2.56669393257e-2, 996.556340389] refs_alt = [2434585.53919,None,None,None,None] fnames = ['enthalpyevap','entropy','densityair','densityvap','densityliq'] argfmt = '({0:s}={1:3g},{2:s}={3:6g})' header = 'Wet air at temp and pres' eqfun = liqair4a.eq_atpe eqargs = fargs eqkwargs = fkwargs eqkeys = ['airf','temp','pres','dhum','dliq'] test_tp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = [liqair4a.enthalpyevap,liqair4a.entropy,liqair4a.temperature, liqair4a.densityair,liqair4a.densityvap,liqair4a.densityliq] fkwargs = {'airf': 0.99, 'pres': 1e5} refs = [2465683.43515,145.863545194,287.078299795,1.20675806022, 0.0120675806022,999.256685197] refs_alt = [2465656.38630,None,None,None,None,None] fnames = ['enthalpyevap','entropy','temperature','densityair','densityvap', 'densityliq'] argfmt = '({0:s}={1:4g},{2:s}={3:6g})' header = 'Wet air at airf and pres' test_ap = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = [liqair4a.enthalpyevap,liqair4a.entropy,liqair4a.pressure, liqair4a.densityair,liqair4a.densityvap,liqair4a.densityliq] fkwargs = {'airf': 0.99, 'temp': 300.} refs = [2433303.92095,-41.9991507402,223057.741750,2.57657653270, 2.57657653270e-2,996.611581662] refs_alt = [2433111.29696,None,None,None,None,None] fnames = ['enthalpyevap','entropy','pressure','densityair','densityvap' ,'densityliq'] argfmt = '({0:s}={1:4g},{2:s}={3:3g})' header = 'Wet air at airf and temp' test_at = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = [liqair4a.enthalpyevap,liqair4a.temperature,liqair4a.pressure, liqair4a.densityair,liqair4a.densityvap,liqair4a.densityliq] fkwargs = {'airf': 0.99, 'entr': 100.} refs = [2458179.89837,290.107386673,121546.373652,1.45154665083, 1.45154665083e-2,998.794738784] refs_alt = [2458121.74961,None,None,None,None,None] fnames = ['enthalpyevap','temperature','pressure','densityair','densityvap', 'densityliq'] argfmt = '({0:s}={1:4g},{2:s}={3:3g})' header = 'Wet air at airf and entr' test_ae = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = liqair4a.condensationpressure fargs = (0.9,300.) refs = 23381.2332935 fnames = 'condensationpressure' argfmt = '({0:3g},{1:3g})' header = 'Wet air condensation pressure' test_cp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = liqair4a.massfractionair fargs = (300.,1e5) refs = 0.977605797727 fnames = 'massfractionair' argfmt = '({0:3g},{1:6g})' header = 'Wet air dry fraction' test_mf = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = liqair4a.dewpoint fargs = (0.99,1e5) refs = 287.078299795 fnames = 'dewpoint' argfmt = '({0:4g},{1:6g})' header = 'Wet air dew point' test_dp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [liqair4a.ict,liqair4a.icl] fargs = (0.99,300.,1e5) refs = [284.200207629,82723.6047631] fnames = ['ict','icl'] argfmt = '({0:4g},{1:3g},{2:6g})' header = 'Wet air ICL functions' eqfun = liqair4a.eq_icl eqkeys = ['dhum','ticl','dhicl','dlicl'] test_icl = Tester(funs,fargs,refs,fnames,argfmt,header=header, eqfun=eqfun,eqargs=fargs,eqkeys=eqkeys) funs = [liqair4a.rhfromairf_cct,liqair4a.rhfromairf_wmo] fargs = (0.99,300.,1e5) refs = [0.449887886959,0.440953686019] fnames = ['rhfromairf_cct','rhfromairf_wmo'] argfmt = '({0:4g},{1:3g},{2:6g})' header = 'Wet air RH from airf' test_rh1 = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [liqair4a.airffromrh_cct,liqair4a.airffromrh_wmo] fargs = (0.8,300.,1e5) refs = [0.982133277948,0.982004037135] fnames = ['airffromrh_cct','airffromrh_wmo'] argfmt = '({0:3g},{1:3g},{2:6g})' header = 'Wet air airf from RH' test_rh2 = Tester(funs,fargs,refs,fnames,argfmt,header=header) return (test_tp,test_ap,test_at,test_ae,test_cp,test_mf,test_dp,test_icl, test_rh1,test_rh2) def genliqair4b(): """Generate liqair4b Testers. """ from teospy import liqair4b funs = liqair4b.liqair_g args1 = (0.5,300.,1e5) fargs = [(der+args1) for der in _DERS3] refs = [-5396.77820137,-263.455491203,-343.783393872,0.446729465555,0., 98.5580798842,0.891452019991,-14.2265223683,2.45335972867e-3, -4.62725155875e-6] refs_alt = [None,None,None,None,None,None,None,-14.0995955397, 2.43183979422e-3,-4.62360294023e-6] fnames = 'liqair_g' argfmt = '({0:1d},{1:1d},{2:1d},{3:3g},{4:3g},{5:6g})' header = 'Wet air Gibbs derivatives' eqfun = liqair4b._eq_atpe eqargs = tuple() eqkwargs = {'temp': 300., 'pres': 1e5} eqkeys = ['airf','temp','pres','dhum','dliq'] keepkeys = ['airf','dhum','dliq'] test_der = Tester(funs,fargs,refs,fnames,argfmt,header=header, eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs,eqkeys=eqkeys, keepkeys=keepkeys,refs_alt=refs_alt) funs = [liqair4b.cp,liqair4b.density,liqair4b.enthalpy,liqair4b.entropy, liqair4b.expansion,liqair4b.kappa_t,liqair4b.lapserate, liqair4b.liquidfraction,liqair4b.vapourfraction] fargs = args1 refs = [4267.95671050,2.23849125053,97738.2399604,343.783393872, 5.49182428703e-3,1.03580621283e-5,1.72449715057e-4,0.488546404734, 1.14535952655e-2] refs_alt = [4229.87866191,None,None,None,5.44365210207e-3,1.03498947276e-5, 1.72475854884e-4,None,None] fnames = ['cp','density','enthalpy','entropy','expansion','kappa_t', 'lapserate','liquidfraction','vapourfraction'] argfmt = '({0:3g},{1:3g},{2:6g})' header = 'Wet air Gibbs functions' test_fun = Tester(funs,fargs,refs,fnames,argfmt,header=header, eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs,eqkeys=eqkeys, keepkeys=keepkeys,refs_alt=refs_alt) return (test_der, test_fun) def genliqair4c(): """Generate liqair4c Testers. """ from teospy import liqair4c funs = liqair4c.liqair_h args1 = (0.5,1e5) fargs = [der+args1 for der in _DERS3] fkwargs = {'entr': 100.} refs = [26898.5215492,-1681.79366113,280.393544899,0.406872930019, 35.7288882498,1.78399786454,0.814851029626,0.0890777333582, 1.550566407026e-4,-3.83770233859e-6] refs_alt = [None,None,None,None,35.7689708915,1.78599925196,0.811745643965, 8.91776656830e-2,1.55067379031e-4,-3.83770118470e-6] fnames = 'liqair_h' argfmt = '({0:1d},{1:1d},{2:1d},{3:3g},{4:6g},{5:s}={6:3g})' header = 'Wet air enthalpy derivatives' eqfun = liqair4c.eq_wpte eqargs = args1 eqkwargs = fkwargs eqkeys = ['airf','temp','dhum','dliq'] test_der = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [liqair4c.temperature,liqair4c.lapserate,liqair4c.cp, liqair4c.kappa_s,liqair4c.density] fargs = args1 refs = [280.393544899,1.55056640703e-4,3147.74000558,9.43218891071e-6, 2.45776980040] refs_alt = [None,1.55067379031e-4,3144.21265404,9.43218607469e-6,None] fnames = ['temperature','lapserate','cp','kappa_s','density'] argfmt = '({0:3g},{1:6g},{2:s}={3:3g})' header = 'Wet air enthalpy functions' test_fun = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=eqargs,eqkwargs=eqkwargs, eqkeys=eqkeys,refs_alt=refs_alt) funs = [liqair4c.pottemp,liqair4c.potdensity,liqair4c.potenthalpy] fargs = (0.5,300.,1e4,1e5) refs = [348.222379217,1.22550664945,655155.797982] fnames = ['pottemp','potdensity','potenthalpy'] argfmt = '({0:3g},{1:3g},{2:5g},{3:6g})' header = 'Wet air potential functions' eqfun = liqair4c.eq_pot eqargs = fargs eqkeys = ['airf','dhum','dliq','apot','tpot','dhpot','dlpot'] test_pot = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=eqargs,eqkeys=eqkeys) return (test_der, test_fun, test_pot) def genliqiceair4(): """Generate liqiceair4 Testers. """ from teospy import liqiceair4 funs = [liqiceair4.pressure,liqiceair4.temperature] fargs = tuple() fkwargs = {'airf': 0.99} refs = [38338.9622424,273.157198087] fnames = ['pressure','temperature'] argfmt = '({0:s}={1:4g})' header = 'Wet-icy air at airf' eqfun = liqiceair4.eq_atp eqkeys = ['airf','temp','pres','<KEY>'] test_a = Tester(funs,fargs,refs,fnames,argfmt,header=header,fkwargs=fkwargs, eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [liqiceair4.pressure,liqiceair4.airfraction] fkwargs = {'temp': 273.155} refs = [67931.6010764,0.994366063923] fnames = ['pressure','airfraction'] argfmt = '({0:s}={1:7.3f})' header = 'Wet-icy air at temp' test_t = Tester(funs,fargs,refs,fnames,argfmt,header=header,fkwargs=fkwargs, eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [liqiceair4.airfraction,liqiceair4.temperature] fkwargs = {'pres': 1e4} refs = [0.961024307544,273.159302793] fnames = ['airfraction','temperature'] argfmt = '({0:s}={1:5g})' header = 'Wet-icy air at pres' test_p = Tester(funs,fargs,refs,fnames,argfmt,header=header,fkwargs=fkwargs, eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [liqiceair4.entropy,liqiceair4.enthalpy,liqiceair4.density, liqiceair4.pressure,liqiceair4.temperature] fargs = (0.1,) fkwargs = {'wliq': 0.2, 'wice': 0.3} refs = [3496.16306903,900361.135280,0.012136403756794166,706.817425301, 273.159992933] refs_alt = [None,None,474.974398769,None,None] fnames = ['entropy','enthalpy','density','pressure','temperature'] argfmt = '({0:3g},{1:s}={2:3g},{3:s}={4:3g})' header = 'Wet-icy air at (wair,wliq,wice)' eqfun = liqiceair4.eq_wefli test_wli = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [liqiceair4.enthalpy,liqiceair4.density,liqiceair4.pressure, liqiceair4.airfraction,liqiceair4.solidfraction, liqiceair4.liquidfraction,liqiceair4.vapourfraction, liqiceair4.temperature] fargs = (0.99,) fkwargs = {'entr': 0., 'wetf': 0.5} refs = [7356.12943724,1.436115286795335,112016.075795,0.996583352944, 3.30296152581e-3,3.30296152581e-3,3.39407694837e-3,273.151724970] refs_alt = [None,7.74757979404,None,None,None,None,None,None] fnames = ['enthalpy','density','pressure','airfraction','solidfraction', 'liquidfraction','vapourfraction','temperature'] argfmt = '({0:4g},{1:s}={2:2g},{3:s}={4:3g})' header = 'Wet-icy air at (wair,entr,wetf)' test_wef = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [liqiceair4.ifl,liqiceair4.iml] fargs = (.99,100.) refs = [83234.7314360,81605.5557728] fnames = ['ifl','iml'] argfmt = '({0:3g},{1:3g})' header = 'Wet-icy air isentropic levels' test_ifml = Tester(funs,fargs,refs,fnames,argfmt,header=header) return (test_a, test_t, test_p, test_wli, test_wef, test_ifml) def gensealiq4(): """Generate sealiq4 Testers. """ from teospy import sealiq4 funs = sealiq4.osmoticpressure fargs = (0.035,300.,1e5) refs = 2594603.20968 fnames = 'osmoticpressure' argfmt = '({0:5.3f},{1:3g},{2:6g})' header = 'Seawater-pure liquid equilibrium' test = Tester(funs,fargs,refs,fnames,argfmt,header=header) return (test,) def genseavap4(): """Generate seavap4 Testers. """ from teospy import seavap4 funs = seavap4.boilingtemperature fargs = (0.035,640.) refs = 274.042416829 fnames = 'boilingtemperature' argfmt = '({0:5.3f},{1:3g})' header = 'Seawater-vapour boiling temperature' test_bt = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = seavap4.vapourpressure fargs = (0.035,274.) refs = 638.044692615 fnames = 'vapourpressure' argfmt = '({0:5.3f},{1:3g})' header = 'Seawater-vapour vapour pressure' test_vp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = seavap4.brinesalinity fargs = (274.,640.) refs = 2.94396298294e-2 fnames = 'brinesalinity' argfmt = '({0:3g},{1:3g})' header = 'Seawater-vapour brine salinity' test_bs = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [seavap4.densitysea,seavap4.densityvap,seavap4.enthalpyevap, seavap4.enthalpysea,seavap4.enthalpyvap,seavap4.entropysea, seavap4.entropyvap,seavap4.volumeevap] fargs = tuple() fkwargs = {'salt': 0.035, 'pres': 640.} refs = [1027.87349556,5.06324890264e-3,2498295.32187,3465.122066144071, 2502546.89358,13.061700450797833,9140.56256065,197.500648110] refs_alt = [None,None,None,3465.11896144,None,13.0616891215,None,None] fnames = ['densitysea','densityvap','enthalpyevap','enthalpysea', 'enthalpyvap','entropysea','entropyvap','volumeevap'] argfmt = '({0:s}={1:5.3f},{2:s}={3:g})' header = 'Seawater-vapour at salinity and pressure' eqfun = seavap4.eq_stp eqkeys = ['salt','temp','pres','dliq','dvap'] test_sp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = [seavap4.densitysea,seavap4.densityvap,seavap4.enthalpyevap, seavap4.enthalpysea,seavap4.enthalpyvap,seavap4.entropysea, seavap4.entropyvap,seavap4.volumeevap] fargs = tuple() fkwargs = {'salt': 0.035, 'temp': 274.} refs = [1027.87626132,5.04855547811e-3,2498395.40101,3295.96629299, 2502469.07187,12.4443983378,9141.68990452,198.075461154] fnames = ['densitysea','densityvap','enthalpyevap','enthalpysea', 'enthalpyvap','entropysea','entropyvap','volumeevap'] argfmt = '({0:s}={1:5.3f},{2:s}={3:g})' header = 'Seawater-vapour at salinity and temperature' test_st = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [seavap4.densitysea,seavap4.densityvap,seavap4.enthalpyevap, seavap4.enthalpysea,seavap4.enthalpyvap,seavap4.entropysea, seavap4.entropyvap,seavap4.volumeevap] fargs = tuple() fkwargs = {'temp': 274., 'pres': 640.} refs = [1023.42713047,5.06403699513e-3,2498551.19875,3405.93353730, 2502466.96633,14.0256815112,9140.27087793,197.469911653] fnames = ['densitysea','densityvap','enthalpyevap','enthalpysea', 'enthalpyvap','entropysea','entropyvap','volumeevap'] argfmt = '({0:s}={1:3g},{2:s}={3:g})' header = 'Seawater-vapour at temperature and pressure' test_tp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = seavap4.seavap_g args1 = (0.035,274.,610.) fargs = [(der+args1) for der in _DERS3] refs = [-2748.82963245,151028.257424,-6072.50817709,137.534028399,0., 88286.38618253275,-1990.1384855543138,-2760.11106421,63.1093348229, -1.65027885871] refs_alt = [None,None,None,None,None,14965.0677011,-321.591932572,None,None, None] fnames = 'seavap_g' argfmt = '({0:5.3f},{1:3g},{2:3g})' header = 'Seawater-vapour parcel Gibbs function' eqfun = seavap4.eq_seavap eqkeys = ['salt','dliq','dvap'] test_der = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=args1,eqkeys=eqkeys,refs_alt=refs_alt) funs = [seavap4.cp,seavap4.density,seavap4.enthalpy,seavap4.entropy, seavap4.expansion,seavap4.kappa_t] fargs = (0.035,274.,610.) refs = [756270.431593,7.27092786882e-3,1661118.41089,6072.50817709, 0.458863421347,1.19990585451e-2] fnames = ['cp','density','enthalpy','entropy','expansion','kappa_t'] argfmt = '({0:5.3f},{1:3g},{2:3g})' header = 'Seawater-vapour parcel functions' test_fun = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=fargs,eqkeys=eqkeys) funs = seavap4.brinefraction fargs = (0.0035,274.,640.) refs = 0.118887364425 fnames = 'brinefraction' argfmt = '({0:6.4f},{1:3g},{2:3g})' header = 'Seawater-vapour parcel brine fraction' test_bf = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=fargs,eqkeys=eqkeys) return (test_bt,test_vp,test_bs,test_sp,test_st,test_tp,test_der,test_fun, test_bf) def genseaice4(): """Generate seaice4 Testers. """ from teospy import seaice4 funs = seaice4.brinesalinity fargs = (270.,1e5) refs = 0.0560264150322 fnames = 'brinesalinity' argfmt = '({0:3g},{1:6g})' header = 'Sea-ice brine salinity' test_bs = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = seaice4.meltingpressure fargs = (0.035,270.) refs = 16132047.4385 fnames = 'meltingpressure' argfmt = '({0:5.3f},{1:3g})' header = 'Sea-ice melting pressure' test_mp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [seaice4.freezingtemperature,seaice4.dtfdp,seaice4.dtfds] fargs = (0.035,1e5) refs = [271.240373585,7.48210942879e-8,-56.8751336296] fnames = ['freezingtemperature','dtfdp','dtfds'] argfmt = '({0:5.3f},{1:6g})' header = 'Sea-ice freezing temperature' test_ft = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = [seaice4.densityice,seaice4.densitysea,seaice4.enthalpymelt, seaice4.volumemelt,seaice4.enthalpyice,seaice4.enthalpysea, seaice4.entropyice,seaice4.entropysea] fargs = tuple() fkwargs = {'temp': 270., 'pres': 1e5} refs = [917.181167192,1045.16805918,328249.119579,-9.181869179e-5, -339929.555499,-12742.8664892,-1244.97335506,-53.1667911144] fnames = ['densityice','densitysea','enthalpymelt','volumemelt', 'enthalpyice','enthalpysea','entropyice','entropysea'] argfmt = '({0:s}={1:3g},{2:s}={3:6g})' header = 'Sea-ice at temperature and pressure' eqfun = seaice4.eq_stp eqkeys = ['salt','temp','pres','dliq'] test_tp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) fkwargs = {'salt': 0.035, 'temp': 270.} refs = [918.898527655,1035.73670169,326829.393605,-9.67135426848e-5, -323205.968289,2832.94910407,-1247.71314646,-46.7361169560] argfmt = '({0:s}={1:5.3f},{2:s}={3:3g})' header = 'Sea-ice at salinity and temperature' test_st = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) fkwargs = {'salt': 0.035, 'pres': 1e5} refs = [917.000739687,1028.05199645,329942.976285,-9.10140854473e-5, -337351.999358,-7613.19337919,-1235.44872812,-27.9264598103] argfmt = '({0:s}={1:5.3f},{2:s}={3:6g})' header = 'Sea-ice at salinity and pressure' test_sp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = seaice4.seaice_g args1 = (0.035,270.,1e5) fargs = [(der+args1) for der in _DERS3] refs = [-414.017574547,96363.7730495,500.445444181,1.00689072300e-3,0., -21272.226025171047,-0.002383040378214491,-232.847783380, 1.19590706917e-7,-1.57591932118e-12] refs_alt = [None,None,None,None,None,-1144.02883419,-8.62856321467e-4,None, -1.65866446694e-5,None] fnames = 'seaice_g' argfmt = '({0:5.3f},{1:3g},{2:6g})' header = 'Sea-ice parcel Gibbs function' eqfun = seaice4.eq_seaice eqkeys = ['salt','dliq'] test_der = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=args1,eqkeys=eqkeys,refs_alt=refs_alt) funs = [seaice4.brinefraction,seaice4.cp,seaice4.density,seaice4.enthalpy, seaice4.entropy,seaice4.expansion,seaice4.kappa_t] fargs = args1 refs = [0.6247053283,62868.9015126,993.156434117,-135534.287503, -500.445444181,1.18772280035e-4,1.56513441348e-9] refs_alt = [None,None,None,None,None,-1.64731328738e-2,None] fnames = ['brinefraction','cp','density','enthalpy','entropy','expansion', 'kappa_t'] header = 'Sea-ice parcel functions' test_fun = Tester(funs,fargs,refs,fnames,argfmt,header=header,eqfun=eqfun, eqargs=fargs,eqkeys=eqkeys,refs_alt=refs_alt) return (test_bs,test_mp,test_ft,test_tp,test_st,test_sp,test_der,test_fun) def genseaicevap4(): """Generate seaicevap4 Testers. """ from teospy import seaicevap4 funs = [seaicevap4.densityvap,seaicevap4.temperature,seaicevap4.pressure] fargs = tuple() fkwargs = {'salt': 0.035} refs = [4.17156419318e-3,271.247815057,521.950349225] fnames = ['densityvap','temperature','pressure'] argfmt = '({0:s}={1:5.3f})' header = 'Sea-ice-vap at salinity' eqfun = seaicevap4.eq_stp eqkeys = ['salt','temp','pres','dliq','dvap'] test_s = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [seaicevap4.densityvap,seaicevap4.salinity,seaicevap4.pressure] fkwargs = {'temp': 270.} refs = [3.77406140772e-3,5.61489288506e-2,470.059067981] fnames = ['densityvap','salinity','pressure'] argfmt = '({0:s}={1:3g})' header = 'Sea-ice-vap at temperature' test_t = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys) funs = [seaicevap4.densityvap,seaicevap4.salinity,seaicevap4.temperature] fkwargs = {'pres': 500.} refs = [4.00364833230e-3,4.38955766482e-2,270.734430917] refs_alt = [None,4.38955878828e-2,None] fnames = ['densityvap','salinity','temperature'] argfmt = '({0:s}={1:3g})' header = 'Sea-ice-vap at pressure' test_p = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) return (test_s, test_t, test_p) def genseaair4(): """Generate seaair4 Testers. """ from teospy import seaair4 funs = [seaair4.massfractionair,seaair4.vapourpressure] fargs = (0.035,300.,1e5) refs = [0.978029483888,3485.92986681] fnames = ['massfractionair','vapourpressure'] argfmt = '({0:5.3f},{1:3g},{2:6g})' header = 'Sea-air dry fraction and vap pressure' test_ma = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = seaair4.condensetemp fargs = (0.035,0.99,1e5) refs = 287.367451766 refs_alt = 287.367456468 fnames = 'condensetemp' argfmt = '({0:5.3f},{1:4.2f},{2:6g})' header = 'Sea-air condense temp' test_ct = Tester(funs,fargs,refs,fnames,argfmt,header=header, refs_alt=refs_alt) funs = [seaair4.entropyair,seaair4.enthalpyevap,seaair4.densityair, seaair4.densityvap] fargs = tuple() fkwargs = {'salt': 0.035, 'temp': 300., 'pres': 1e5} refs = [293.150672957,2434570.55229,1.14642944448,2.51876465812e-2] refs_alt = [None,2434549.89770,None,None] fnames = ['entropyair','enthalpyevap','densityair','densityvap'] argfmt = '({0:s}={1:5.3f},{2:s}={3:3g},{4:s}={5:6g})' header = 'Sea-air at salt, temp, and pres' eqfun = seaair4.eq_satp eqkeys = ['salt','airf','temp','pres','dhum','dliq'] test_stp = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = [seaair4.enthalpyevap,seaair4.densityair,seaair4.densityvap] fkwargs = {'salt': 0.035, 'airf': 0.99, 'pres': 1e5} refs = [2464765.77588,1.20553990576,1.20553990576e-2] refs_alt = [2464738.79136,1.20553988598,1.20553988598e-2] fnames = ['enthalpyevap','densityair','densityvap'] argfmt = '({0:s}={1:5.3f},{2:s}={3:3g},{4:s}={5:6g})' header = 'Sea-air at salt, airf, and pres' test_sap = Tester(funs,fargs,refs,fnames,argfmt,header=header, fkwargs=fkwargs,eqfun=eqfun,eqargs=fargs,eqkwargs=fkwargs,eqkeys=eqkeys, refs_alt=refs_alt) funs = seaair4.chempotevap fargs = (0.9,0.035,300.,1e5) refs = 1.45584069071 fnames = 'chempotevap' argfmt = '({0:3.1f},{1:5.3f},{2:3g},{3:6g})' header = 'Sea-air potential difference' test_pd = Tester(funs,fargs,refs,fnames,argfmt,header=header) return (test_ma,test_ct,test_stp,test_sap,test_pd) def geniceflu5(): """Generate iceflu5 Testers. """ from teospy import iceflu5 funs = iceflu5.liqpressure fargs = (272.4,) refs = 1.00213724736e7 fnames = 'liqpressure' argfmt = '({0:5.1f})' header = 'Approximate melting pressure of ice' test_lp = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = iceflu5.liqtemperature fargs = (1e7,) refs = 272.401569225 fnames = 'liqtemperature' argfmt = '({0:4g})' header = 'Approximate melting temperature of ice' test_lt = Tester(funs,fargs,refs,fnames,argfmt,header=header) funs = iceflu5.vappressure fargs = (270.,) refs = 470.061877574 fnames = 'vappressure' argfmt = '({0:3g})' header = 'Approximate vapour pressure over ice' test_vp = Tester(funs,fargs,refs,fnames,argfmt,header=header) return (test_lp, test_lt, test_vp) ## Dictionary relating modules to functions _GENDICT = {'liqvap4': genliqvap4, 'iceliq4': geniceliq4, 'icevap4': genicevap4, 'iceair4a': geniceair4a, 'iceair4b': geniceair4b, 'iceair4c': geniceair4c, 'liqair4a': genliqair4a, 'liqair4b': genliqair4b, 'liqair4c': genliqair4c, 'liqiceair4': genliqiceair4, 'sealiq4': gensealiq4, 'seavap4': genseavap4, 'seaice4': genseaice4, 'seaicevap4': genseaicevap4, 'seaair4': genseaair4, 'iceflu5': geniceflu5} ## See if all values fall within the given tolerances if __name__ == "__main__": # Figure out which dictionaries to include import sys if len(sys.argv) == 1: testlist = list() for (modname,genfun) in _GENDICT.items(): testlist += list(genfun()) else: modlist = list() testlist = list() for arg in sys.argv[1:]: for (modname,genfun) in _GENDICT.items(): if arg in modname and modname not in modlist: modlist.append(modname) testlist += list(genfun()) # Run tests with warnings.catch_warnings(): warnstart = 'Step sizes are smaller than accepted tolerance.' warnings.filterwarnings('ignore',warnstart,RuntimeWarning) for test in testlist: test.run() test.printresults()
[ "teospy.tests.tester.Tester", "warnings.catch_warnings", "warnings.filterwarnings" ]
[((2938, 3077), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys)\n', (2944, 3077), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((3958, 4097), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys)\n', (3964, 4097), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((5080, 5219), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys)\n', (5086, 5219), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((6093, 6232), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys)\n', (6099, 6232), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((7213, 7352), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys)\n', (7219, 7352), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((8226, 8365), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys)\n', (8232, 8365), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((9056, 9219), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (9062, 9219), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((9737, 9900), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (9743, 9900), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((10441, 10604), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (10447, 10604), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((11186, 11349), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (11192, 11349), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((11564, 11620), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (11570, 11620), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((11801, 11857), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (11807, 11857), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((12047, 12103), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (12053, 12103), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((12308, 12364), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (12314, 12364), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((12676, 12779), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkeys=eqkeys)\n', (12682, 12779), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((13047, 13103), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (13053, 13103), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((13367, 13423), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (13373, 13423), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((14349, 14513), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'keepkeys': 'keepkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, keepkeys=keepkeys,\n refs_alt=refs_alt)\n', (14355, 14513), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((15242, 15406), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'keepkeys': 'keepkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, keepkeys=keepkeys,\n refs_alt=refs_alt)\n', (15248, 15406), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((16246, 16409), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (16252, 16409), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((16982, 17145), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (16988, 17145), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((17560, 17663), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkeys=eqkeys)\n', (17566, 17663), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((18423, 18584), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (18429, 18584), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((19135, 19296), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (19141, 19296), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((19844, 20005), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (19850, 20005), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((20560, 20721), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (20566, 20721), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((20940, 20996), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (20946, 20996), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((21194, 21250), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (21200, 21250), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((21430, 21486), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (21436, 21486), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((21785, 21887), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=fargs, eqkeys=eqkeys)\n', (21791, 21887), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((22160, 22216), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (22166, 22216), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((22486, 22542), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (22492, 22542), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((23442, 23606), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'keepkeys': 'keepkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, keepkeys=keepkeys,\n refs_alt=refs_alt)\n', (23448, 23606), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((24333, 24497), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'keepkeys': 'keepkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, keepkeys=keepkeys,\n refs_alt=refs_alt)\n', (24339, 24497), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((25332, 25495), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (25338, 25495), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((25965, 26128), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkwargs': 'eqkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=eqargs, eqkwargs=eqkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (25971, 26128), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((26557, 26660), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'eqargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=eqargs, eqkeys=eqkeys)\n', (26563, 26660), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((27138, 27275), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (27144, 27275), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((27526, 27663), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (27532, 27663), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((27914, 28051), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (27920, 28051), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((28600, 28737), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (28606, 28737), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((29480, 29617), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (29486, 29617), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((29844, 29900), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (29850, 29900), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((30273, 30329), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (30279, 30329), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((30655, 30711), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (30661, 30711), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((30920, 30976), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (30926, 30976), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((31182, 31238), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (31188, 31238), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((32034, 32195), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (32040, 32195), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((32836, 32973), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (32842, 32973), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((33608, 33745), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (33614, 33745), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((34315, 34436), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'args1', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=args1, eqkeys=eqkeys, refs_alt=refs_alt)\n', (34321, 34436), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((34873, 34975), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=fargs, eqkeys=eqkeys)\n', (34879, 34975), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((35204, 35306), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=fargs, eqkeys=eqkeys)\n', (35210, 35306), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((35686, 35742), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (35692, 35742), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((35946, 36002), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (35952, 36002), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((36299, 36355), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (36305, 36355), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((37055, 37192), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (37061, 37192), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((37488, 37625), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (37494, 37625), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((37918, 38055), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (37924, 38055), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((38639, 38760), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'args1', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=args1, eqkeys=eqkeys, refs_alt=refs_alt)\n', (38645, 38760), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((39263, 39384), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, eqfun=eqfun,\n eqargs=fargs, eqkeys=eqkeys, refs_alt=refs_alt)\n', (39269, 39384), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((39963, 40100), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (39969, 40100), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((40401, 40538), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys)\n', (40407, 40538), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((40886, 41047), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (40892, 41047), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((41461, 41517), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (41467, 41517), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((41754, 41829), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, refs_alt=refs_alt)\n', (41760, 41829), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((42407, 42568), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (42413, 42568), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((42997, 43158), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header', 'fkwargs': 'fkwargs', 'eqfun': 'eqfun', 'eqargs': 'fargs', 'eqkwargs': 'fkwargs', 'eqkeys': 'eqkeys', 'refs_alt': 'refs_alt'}), '(funs, fargs, refs, fnames, argfmt, header=header, fkwargs=fkwargs,\n eqfun=eqfun, eqargs=fargs, eqkwargs=fkwargs, eqkeys=eqkeys, refs_alt=\n refs_alt)\n', (43003, 43158), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((43381, 43437), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (43387, 43437), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((43776, 43832), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (43782, 43832), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((44033, 44089), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (44039, 44089), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((44283, 44339), 'teospy.tests.tester.Tester', 'Tester', (['funs', 'fargs', 'refs', 'fnames', 'argfmt'], {'header': 'header'}), '(funs, fargs, refs, fnames, argfmt, header=header)\n', (44289, 44339), False, 'from teospy.tests.tester import Tester, _DERS3\n'), ((45462, 45487), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (45485, 45487), False, 'import warnings\n'), ((45567, 45627), 'warnings.filterwarnings', 'warnings.filterwarnings', (['"""ignore"""', 'warnstart', 'RuntimeWarning'], {}), "('ignore', warnstart, RuntimeWarning)\n", (45590, 45627), False, 'import warnings\n')]
import keras import keras.backend as K from keras import layers from keras.layers import * from keras.models import * def identity_block(input_tensor, kernel_size, filters, stage, block): filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size,padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(name=bn_name_base + '2c')(x) x = layers.add([x, input_tensor]) x = Activation('relu')(x) return x def conv_block(input_tensor, kernel_size, filters, stage, block, strides=(2, 2)): filters1, filters2, filters3 = filters conv_name_base = 'res' + str(stage) + block + '_branch' bn_name_base = 'bn' + str(stage) + block + '_branch' x = Conv2D(filters1, (1, 1), strides=strides, name=conv_name_base + '2a')(input_tensor) x = BatchNormalization(name=bn_name_base + '2a')(x) x = Activation('relu')(x) x = Conv2D(filters2, kernel_size, padding='same', name=conv_name_base + '2b')(x) x = BatchNormalization(name=bn_name_base + '2b')(x) x = Activation('relu')(x) x = Conv2D(filters3, (1, 1), name=conv_name_base + '2c')(x) x = BatchNormalization(name=bn_name_base + '2c')(x) shortcut = Conv2D(filters3, (1, 1), strides=strides, name=conv_name_base + '1')(input_tensor) shortcut = BatchNormalization(name=bn_name_base + '1')(shortcut) x = layers.add([x, shortcut]) x = Activation('relu')(x) return x def get_resnet50_encoder(input_height=224, input_width=224): img_input = Input([input_height, input_width, 3]) # 416,416,3 -> 208,208,64 x = ZeroPadding2D((3, 3))(img_input) x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x) x = BatchNormalization(name='bn_conv1')(x) x = Activation('relu')(x) f1 = x # 208,208,64 -> 104,104,64 -> 104,104,256 x = MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1)) x = identity_block(x, 3, [64, 64, 256], stage=2, block='b') x = identity_block(x, 3, [64, 64, 256], stage=2, block='c') # f2是hw方向压缩两次的结果 f2 = x # 104,104,256 -> 52,52,512 x = conv_block(x, 3, [128, 128, 512], stage=3, block='a') x = identity_block(x, 3, [128, 128, 512], stage=3, block='b') x = identity_block(x, 3, [128, 128, 512], stage=3, block='c') x = identity_block(x, 3, [128, 128, 512], stage=3, block='d') # f3是hw方向压缩三次的结果 f3 = x # 52,52,512 -> 26,26,1024 x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e') x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f') # f4是hw方向压缩四次的结果 f4 = x # 26,26,1024 -> 13,13,2048 x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b') x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c') # f5是hw方向压缩五次的结果 f5 = x return img_input, [f1 , f2 , f3 , f4 , f5]
[ "keras.layers.add" ]
[((838, 867), 'keras.layers.add', 'layers.add', (['[x, input_tensor]'], {}), '([x, input_tensor])\n', (848, 867), False, 'from keras import layers\n'), ((1887, 1912), 'keras.layers.add', 'layers.add', (['[x, shortcut]'], {}), '([x, shortcut])\n', (1897, 1912), False, 'from keras import layers\n')]
#! /usr/bin/env python3 import re import sys import time from collections import defaultdict from fractions import Fraction from typing import Generator, Iterable, List, Match, Optional, Tuple test = True debug = False stdin = False INFILENAME = "inputs/05.txt" TESTFILENAME = "inputs/05.test.txt" for arg in sys.argv: if arg == "--notest": test = False if arg == "--debug": debug = True if arg == "--stdin": stdin = True class bcolors: HEADER = "\033[95m" OKBLUE = "\033[94m" OKCYAN = "\033[96m" OKGREEN = "\033[92m" WARNING = "\033[93m" FAIL = "\033[91m" ENDC = "\033[0m" BOLD = "\033[1m" UNDERLINE = "\033[4m" # Modified range functions def irange(start, end=None, step=1) -> Generator[int, None, None]: """Inclusive range function.""" if end is None: start, end = 0, start yield from range(start, end + 1, step=step) def dirange(start, end=None, step=1) -> Generator[int, None, None]: """ Directional, inclusive range. This range function is an inclusive version of :class:`range` that figures out the correct step direction to make sure that it goes from `start` to `end`, even if `end` is before `start`. >>> dirange(2, -2) [2, 1, 0, -1, -2] >>> dirange(-2) [0, -1, -2] >>> dirange(2) [0, 1, 2] """ assert step > 0 if end is None: start, end = 0, start if end >= start: yield from irange(start, end, step) else: yield from range(start, end - 1, step=-step) # Utilities def int_points_between( start: Tuple[int, int], end: Tuple[int, int] ) -> Generator[Tuple[int, int], None, None]: """ Return a generator of all of the integer points between two given points. Note that you are *not* guaranteed that the points will be given from `start` to `end`, but all points will be included. """ x1, y1 = start x2, y2 = end if x1 == x2: yield from ((x1, y) for y in dirange(y1, y2)) elif y1 == y2: yield from ((x, y1) for x in dirange(x1, x2)) else: # If `x1 > x2`, that means that `start` is to the right of `end`, so we need to # switch the points around so iteration always goes in the positive `x` # direction. if x1 > x2: x1, x2, y1, y2 = x2, x1, y2, y1 dy = y2 - y1 dx = x2 - x1 slope = Fraction(dy, dx) for i in irange(dy // slope.numerator): yield (x1 + (i * slope.denominator), y1 + (i * slope.numerator)) def rematch(pattern: str, s: str) -> Optional[Match]: return re.fullmatch(pattern, s) print(f"\n{'=' * 30}\n") # Read the input if stdin: input_lines: List[str] = [l.strip() for l in sys.stdin.readlines()] else: with open(INFILENAME) as f: input_lines: List[str] = [l.strip() for l in f.readlines()] # Try and read in the test file. try: with open(TESTFILENAME) as f: test_lines: List[str] = [l.strip() for l in f.readlines()] except Exception: test_lines = [] # Shared ######################################################################################## def parselines(lines: List[str]) -> Iterable[Tuple[Tuple[int, int], Tuple[int, int]]]: for line in lines: x1, y1, x2, y2 = map(int, rematch(r"(\d+),(\d+) -> (\d+),(\d+)", line).groups()) yield (x1, y1), (x2, y2) # Part 1 ######################################################################################## print("Part 1:") def part1(lines: List[str]) -> int: """ For part 1, you only have to consider horizontal and vertical lines. That is, lines where either x1 = x2 or y1 = y2. """ G = defaultdict(int) for (x1, y1), (x2, y2) in parselines(lines): if x1 != x2 and y1 != y2: # This technique works for part 1 because x1 = x2 or y1 = y2 so sorting will # actually do what we want (which is to put the one that is smaller first, # making the range based for loop work better later). continue for x, y in int_points_between((x1, y1), (x2, y2)): G[(x, y)] += 1 return sum([1 for x in G.values() if x > 1]) # Run test on part 1 if test: print("Running test... ", end="") if not test_lines: print(f"{bcolors.FAIL}No test configured!{bcolors.ENDC}") else: test_ans_part1 = part1(test_lines) expected = 5 if expected is None: print(f"{bcolors.FAIL}No test configured!{bcolors.ENDC}") elif test_ans_part1 == expected: print(f"{bcolors.OKGREEN}PASS{bcolors.ENDC}") else: print(f"{bcolors.FAIL}FAIL{bcolors.ENDC}") assert False print("Result:", test_ans_part1) print() part1_start = time.time() print("Running input...") ans_part1 = part1(input_lines) part1_end = time.time() print("Result:", ans_part1) tries = [ # Store the attempts that failed here. ] if tries: print("Tries Part 1:", tries) assert ans_part1 not in tries, "Same as an incorrect answer!" # Regression Test expected = 4826 if expected is not None: assert ans_part1 == expected # Part 2 ######################################################################################## print("\nPart 2:") def part2(lines: List[str]) -> int: G = defaultdict(int) for p1, p2 in parselines(lines): for x, y in int_points_between(p1, p2): G[(x, y)] += 1 return sum([1 for x in G.values() if x > 1]) # Run test on part 2 if test: print("Running test... ", end="") if not test_lines: print(f"{bcolors.FAIL}No test configured!{bcolors.ENDC}") else: test_ans_part2 = part2(test_lines) expected = 12 if expected is None: print(f"{bcolors.FAIL}No test configured!{bcolors.ENDC}") elif test_ans_part2 == expected: print(f"{bcolors.OKGREEN}PASS{bcolors.ENDC}") else: print(f"{bcolors.FAIL}FAIL{bcolors.ENDC}") print(f"{bcolors.FAIL}Result: {test_ans_part2}{bcolors.ENDC}") assert False print("Result:", test_ans_part2) print() part2_start = time.time() print("Running input...") ans_part2 = part2(input_lines) part2_end = time.time() print("Result:", ans_part2) tries2 = [ 12730, # Store the attempts that failed here. ] if tries2: print("Tries Part 2:", tries2) assert ans_part2 not in tries2, "Same as an incorrect answer!" # Regression Test expected = 16793 if expected is not None: assert ans_part2 == expected if debug: part1_time = part1_end - part1_start part2_time = part2_end - part2_start print() print("DEBUG:") print(f"Part 1: {part1_time * 1000}ms") print(f"Part 2: {part2_time * 1000}ms") print(f"TOTAL: {(part1_time + part2_time) * 1000}ms")
[ "fractions.Fraction", "sys.stdin.readlines", "re.fullmatch", "collections.defaultdict", "time.time" ]
[((4787, 4798), 'time.time', 'time.time', ([], {}), '()\n', (4796, 4798), False, 'import time\n'), ((4868, 4879), 'time.time', 'time.time', ([], {}), '()\n', (4877, 4879), False, 'import time\n'), ((6185, 6196), 'time.time', 'time.time', ([], {}), '()\n', (6194, 6196), False, 'import time\n'), ((6266, 6277), 'time.time', 'time.time', ([], {}), '()\n', (6275, 6277), False, 'import time\n'), ((2614, 2638), 're.fullmatch', 're.fullmatch', (['pattern', 's'], {}), '(pattern, s)\n', (2626, 2638), False, 'import re\n'), ((3688, 3704), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (3699, 3704), False, 'from collections import defaultdict\n'), ((5332, 5348), 'collections.defaultdict', 'defaultdict', (['int'], {}), '(int)\n', (5343, 5348), False, 'from collections import defaultdict\n'), ((2405, 2421), 'fractions.Fraction', 'Fraction', (['dy', 'dx'], {}), '(dy, dx)\n', (2413, 2421), False, 'from fractions import Fraction\n'), ((2743, 2764), 'sys.stdin.readlines', 'sys.stdin.readlines', ([], {}), '()\n', (2762, 2764), False, 'import sys\n')]
import os import unittest import test_data.test_static from jivago.wsgi.routing.serving.static_file_routing_table import StaticFileRoutingTable FILENAME = "foobar.html" class StaticFileRoutingTableTest(unittest.TestCase): def setUp(self): self.routing_table = StaticFileRoutingTable(os.path.dirname(test_data.test_static.__file__)) def test_whenGettingRouteRegistrations_thenReturnAnHttpGetRouteWhenItMatchesAFile(self): registrations = self.routing_table.get_route_registrations(FILENAME) self.assertEqual(1, len(registrations)) def test_givenInexistentFile_whenGettingRouteRegistrations_thenReturnEmptyList(self): routes = self.routing_table.get_route_registrations("inexistent.html") self.assertEqual(0, len(routes)) def test_givenDisallowedFileExtension_whenGettingRouteRegistrations_thenReturnEmptyList(self): self.routing_table = StaticFileRoutingTable(os.path.dirname(test_data.test_static.__file__), allowed_extensions=[".txt"]) routes = self.routing_table.get_route_registrations(FILENAME) self.assertEqual(0, len(routes)) def test_givenDirectory_whenGettingRouteRegistrations_thenReturnEmptyList(self): routes = self.routing_table.get_route_registrations("") self.assertEqual(0, len(routes))
[ "os.path.dirname" ]
[((300, 347), 'os.path.dirname', 'os.path.dirname', (['test_data.test_static.__file__'], {}), '(test_data.test_static.__file__)\n', (315, 347), False, 'import os\n'), ((933, 980), 'os.path.dirname', 'os.path.dirname', (['test_data.test_static.__file__'], {}), '(test_data.test_static.__file__)\n', (948, 980), False, 'import os\n')]
import datetime import email import os from dateutil.tz import tzlocal from django.test import SimpleTestCase from corehq.util.bounced_email_manager import BouncedEmailManager from corehq.util.models import AwsMeta from corehq.util.test_utils import TestFileMixin class TestBouncedEmailManager(SimpleTestCase, TestFileMixin): file_path = ('data', 'email') root = os.path.dirname(__file__) def setUp(self): self.manager = BouncedEmailManager() def _get_message(self, filename): bounce_file = self.get_path(filename, 'txt') with open(bounce_file, "r") as f: bounce_email = f.read() message = email.message_from_string(bounce_email) return message def test_recipients_standard_aws_bounce(self): aws_bounce = self._get_message('standard_aws_bounce') self.assertEqual( self.manager._get_raw_bounce_recipients(aws_bounce), [ '<EMAIL>', '<EMAIL>' ] ) def test_recipients_email_delivery_failure(self): delivery_failure = self._get_message('email_delivery_failure') self.assertEqual( self.manager._get_raw_bounce_recipients(delivery_failure), ['<EMAIL>'] ) def test_recipients_yahoo_qmail(self): yahoo_qmail = self._get_message('yahoo_qmail_failure') self.assertEqual( self.manager._get_raw_bounce_recipients(yahoo_qmail), ['<EMAIL>'] ) def test_recipients_forwarded_bounce(self): forwarded_bounce = self._get_message('forwarded_bounce') self.assertEqual( self.manager._get_raw_bounce_recipients(forwarded_bounce), ['<EMAIL>'] ) def test_recipients_exchange_bounce(self): exchange_bounce = self._get_message('exchange_bounce') self.assertEqual( self.manager._get_raw_bounce_recipients(exchange_bounce), ['<EMAIL>'] ) def test_recipients_auto_reply(self): out_of_office = self._get_message('out_of_office') self.assertEqual( self.manager._get_raw_bounce_recipients(out_of_office), None ) def test_sns_bounce_suppressed(self): sns_bounce_suppressed = self._get_message('sns_bounce_suppressed') self.assertEqual( self.manager._get_aws_info(sns_bounce_suppressed, 333), [ AwsMeta( notification_type='Bounce', main_type='Permanent', sub_type='Suppressed', email='<EMAIL>', reason='Amazon SES has suppressed sending to this address ' 'because it has a recent history of bouncing as an ' 'invalid address. For more information about how ' 'to remove an address from the suppression list, ' 'see the Amazon SES Developer Guide: ' 'http://docs.aws.amazon.com/ses/latest/' 'DeveloperGuide/remove-from-suppressionlist.html ', headers={ 'from': ['<EMAIL>'], 'date': 'Tue, 28 Jan 2020 10:40:04 -0000', 'to': ['<EMAIL>'], 'messageId': '<redacted>', 'subject': 'Late' }, timestamp=datetime.datetime( 2020, 1, 28, 10, 40, 4, 931000, tzinfo=tzlocal() ), destination=['<EMAIL>'] ) ] ) def test_sns_bounce_general(self): sns_bounce_general = self._get_message('sns_bounce_general') self.assertEqual( self.manager._get_aws_info(sns_bounce_general, 333), [ AwsMeta( notification_type='Bounce', main_type='Permanent', sub_type='General', email='<EMAIL>', reason="smtp; 550-5.1.1 The email account that you tried " "to reach does not exist. Please try\n550-5.1.1 " "double-checking the recipient's email address for " "typos or\n550-5.1.1 unnecessary spaces. Learn more" " at\n550 5.1.1 https://support.google.com/mail/?p=" "NoSuchUser h6si12061056qtp.98 - gsmtp", headers={ 'returnPath': '<EMAIL>', 'from': ['<EMAIL>'], 'date': 'Tue, 28 Jan 2020 09:29:02 -0000', 'to': ['<EMAIL>'], 'messageId': '<redacted>', 'subject': 'Activate your CommCare project' }, timestamp=datetime.datetime( 2020, 1, 28, 9, 29, 3, 30000, tzinfo=tzlocal() ), destination=['<EMAIL>'] ) ] ) def test_sns_bounce_transient(self): sns_bounce_transient = self._get_message('sns_bounce_transient') self.assertEqual( self.manager._get_aws_info(sns_bounce_transient, 333), [ AwsMeta( notification_type='Bounce', main_type='Transient', sub_type='General', email='<EMAIL>', reason=None, headers={ 'returnPath': '<EMAIL>', 'from': ['<EMAIL>'], 'date': 'Tue, 28 Jan 2020 13:00:27 -0000', 'to': ['<EMAIL>'], 'messageId': '<redacted>', 'subject': 'Scheduled report from CommCare HQ' }, timestamp=datetime.datetime( 2020, 1, 28, 13, 0, 35, tzinfo=tzlocal() ), destination=['<EMAIL>'] ) ] ) def test_sns_bounce_complaint(self): sns_complaint = self._get_message('sns_complaint') self.assertEqual( self.manager._get_aws_info(sns_complaint, 333), [ AwsMeta( notification_type='Complaint', main_type=None, sub_type='', email='<EMAIL>', reason=None, headers={}, timestamp=datetime.datetime( 2020, 1, 8, 8, 6, 45, tzinfo=tzlocal() ), destination=['<EMAIL>'] ) ] )
[ "corehq.util.bounced_email_manager.BouncedEmailManager", "os.path.dirname", "email.message_from_string", "dateutil.tz.tzlocal" ]
[((375, 400), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (390, 400), False, 'import os\n'), ((446, 467), 'corehq.util.bounced_email_manager.BouncedEmailManager', 'BouncedEmailManager', ([], {}), '()\n', (465, 467), False, 'from corehq.util.bounced_email_manager import BouncedEmailManager\n'), ((660, 699), 'email.message_from_string', 'email.message_from_string', (['bounce_email'], {}), '(bounce_email)\n', (685, 699), False, 'import email\n'), ((3606, 3615), 'dateutil.tz.tzlocal', 'tzlocal', ([], {}), '()\n', (3613, 3615), False, 'from dateutil.tz import tzlocal\n'), ((5107, 5116), 'dateutil.tz.tzlocal', 'tzlocal', ([], {}), '()\n', (5114, 5116), False, 'from dateutil.tz import tzlocal\n'), ((6181, 6190), 'dateutil.tz.tzlocal', 'tzlocal', ([], {}), '()\n', (6188, 6190), False, 'from dateutil.tz import tzlocal\n'), ((6854, 6863), 'dateutil.tz.tzlocal', 'tzlocal', ([], {}), '()\n', (6861, 6863), False, 'from dateutil.tz import tzlocal\n')]
import numpy as np def sqrt_gain_db(gain_db): return gain_db / 2 def design_low_shelving_filter(g_db, f, q, fs): k = np.tan((np.pi * f) / fs); v0 = np.power(10.0, g_db / 20.0); root2 = 1.0 / q if v0 < 1: v0 = 1 / v0 if g_db > 0: b0 = (1 + np.sqrt(v0) * root2 * k + v0 * k * k) / (1 + root2 * k + k * k) b1 = (2 * (v0 * k * k - 1)) / (1 + root2 * k + k * k) b2 = (1 - np.sqrt(v0) * root2 * k + v0 * k * k) / (1 + root2 * k + k * k) a0 = 1 a1 = (2 * (k * k - 1)) / (1 + root2 * k + k * k) a2 = (1 - root2 * k + k * k) / (1 + root2 * k + k * k) elif g_db < 0: b0 = (1 + root2 * k + k * k) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) b1 = (2 * (k * k - 1)) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) b2 = (1 - root2 * k + k * k) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) a0 = 1 a1 = (2 * (v0 * k * k - 1)) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) a2 = (1 - root2 * np.sqrt(v0) * k + v0 * k * k) / (1 + root2 * np.sqrt(v0) * k + v0 * k * k) else: b0 = 1 b1 = 0 b2 = 0 a0 = 1 a1 = 0 a2 = 0 return np.array([b0, b1, b2, a0, a1, a2]) def design_high_shelving_filter(g_db, f, q, fs): k = np.tan(np.pi * f / fs) v0 = np.power(10, g_db / 20) root2 = 1 / q if v0 < 1: v0 = 1 / v0 if g_db > 0: b0 = (v0 + root2 * np.sqrt(v0) * k + k * k) / (1 + root2 * k + k * k) b1 = (2 * (k * k - v0)) / (1 + root2 * k + k * k) b2 = (v0 - root2 * np.sqrt(v0) * k + k * k) / (1 + root2 * k + k * k) a0 = 1 a1 = (2 * (k * k - 1)) / (1 + root2 * k + k * k) a2 = (1 - root2 * k + k * k) / (1 + root2 * k + k * k) elif g_db < 0: b0 = (1 + root2 * k + k * k) / (v0 + root2 * np.sqrt(v0) * k + k * k) b1 = (2 * (k * k - 1)) / (v0 + root2 * np.sqrt(v0) * k + k * k) b2 = (1 - root2 * k + k * k) / (v0 + root2 * np.sqrt(v0) * k + k * k) a0 = 1 a1 = (2 * ((k * k) / v0 - 1)) / (1 + root2 / np.sqrt(v0) * k + (k * k) / v0) a2 = (1 - root2 / np.sqrt(v0) * k + (k * k) / v0) / (1 + root2 / np.sqrt(v0) * k + (k * k) / v0) else: b0 = 1 b1 = 0 b2 = 0 a0 = 1 a1 = 0 a2 = 0 return np.array([b0, b1, b2, a0, a1, a2]) def design_peak_filter(g_db, f, q, fs): w_c = (2 * np.pi * f / fs); mu = np.power(10, g_db / 20) k_q = 4 / (1 + mu) * np.tan(w_c / (2 * q)) c_pk = (1 + k_q * mu) / (1 + k_q) b0 = c_pk b1 = c_pk * (-2 * np.cos(w_c) / (1 + k_q * mu)) b2 = c_pk * (1 - k_q * mu) / (1 + k_q * mu) a0 = 1 a1 = -2 * np.cos(w_c) / (1 + k_q) a2 = (1 - k_q) / (1 + k_q) return np.array([b0, b1, b2, a0, a1, a2]) def iir_comb(x, gain, delay): # BL = 1, FB = gain, FF = 0 y = np.zeros(delay + x.shape[0]) for i in range(x.shape[0]): y[i + delay] = x[i] + gain * y[i] y = y[delay:] return y def feedback_comb(x, gain, delay): # BL = 0, FB = gain, FF = 1 y = np.zeros(delay + x.shape[0]) for i in range(x.shape[0]): y[i + delay] = x[i] + gain * y[i] y = y[:x.shape[0]] return y def all_pass_comb(x, gain, delay): # BL = gain, FB = -gain, FF = 1 delayed_s = np.zeros(delay + x.shape[0]) y = np.zeros_like(x) for i in range(x.shape[0]): delayed_s[i + delay] = x[i] + -gain * delayed_s[i] y[i] = gain * delayed_s[i + delay] + delayed_s[i] return y
[ "numpy.sqrt", "numpy.tan", "numpy.power", "numpy.array", "numpy.zeros", "numpy.cos", "numpy.zeros_like" ]
[((129, 151), 'numpy.tan', 'np.tan', (['(np.pi * f / fs)'], {}), '(np.pi * f / fs)\n', (135, 151), True, 'import numpy as np\n'), ((164, 191), 'numpy.power', 'np.power', (['(10.0)', '(g_db / 20.0)'], {}), '(10.0, g_db / 20.0)\n', (172, 191), True, 'import numpy as np\n'), ((1196, 1230), 'numpy.array', 'np.array', (['[b0, b1, b2, a0, a1, a2]'], {}), '([b0, b1, b2, a0, a1, a2])\n', (1204, 1230), True, 'import numpy as np\n'), ((1290, 1312), 'numpy.tan', 'np.tan', (['(np.pi * f / fs)'], {}), '(np.pi * f / fs)\n', (1296, 1312), True, 'import numpy as np\n'), ((1322, 1345), 'numpy.power', 'np.power', (['(10)', '(g_db / 20)'], {}), '(10, g_db / 20)\n', (1330, 1345), True, 'import numpy as np\n'), ((2331, 2365), 'numpy.array', 'np.array', (['[b0, b1, b2, a0, a1, a2]'], {}), '([b0, b1, b2, a0, a1, a2])\n', (2339, 2365), True, 'import numpy as np\n'), ((2449, 2472), 'numpy.power', 'np.power', (['(10)', '(g_db / 20)'], {}), '(10, g_db / 20)\n', (2457, 2472), True, 'import numpy as np\n'), ((2765, 2799), 'numpy.array', 'np.array', (['[b0, b1, b2, a0, a1, a2]'], {}), '([b0, b1, b2, a0, a1, a2])\n', (2773, 2799), True, 'import numpy as np\n'), ((2872, 2900), 'numpy.zeros', 'np.zeros', (['(delay + x.shape[0])'], {}), '(delay + x.shape[0])\n', (2880, 2900), True, 'import numpy as np\n'), ((3086, 3114), 'numpy.zeros', 'np.zeros', (['(delay + x.shape[0])'], {}), '(delay + x.shape[0])\n', (3094, 3114), True, 'import numpy as np\n'), ((3317, 3345), 'numpy.zeros', 'np.zeros', (['(delay + x.shape[0])'], {}), '(delay + x.shape[0])\n', (3325, 3345), True, 'import numpy as np\n'), ((3354, 3370), 'numpy.zeros_like', 'np.zeros_like', (['x'], {}), '(x)\n', (3367, 3370), True, 'import numpy as np\n'), ((2498, 2519), 'numpy.tan', 'np.tan', (['(w_c / (2 * q))'], {}), '(w_c / (2 * q))\n', (2504, 2519), True, 'import numpy as np\n'), ((2698, 2709), 'numpy.cos', 'np.cos', (['w_c'], {}), '(w_c)\n', (2704, 2709), True, 'import numpy as np\n'), ((2595, 2606), 'numpy.cos', 'np.cos', (['w_c'], {}), '(w_c)\n', (2601, 2606), True, 'import numpy as np\n'), ((285, 296), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (292, 296), True, 'import numpy as np\n'), ((429, 440), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (436, 440), True, 'import numpy as np\n'), ((1445, 1456), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1452, 1456), True, 'import numpy as np\n'), ((1581, 1592), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1588, 1592), True, 'import numpy as np\n'), ((699, 710), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (706, 710), True, 'import numpy as np\n'), ((775, 786), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (782, 786), True, 'import numpy as np\n'), ((857, 868), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (864, 868), True, 'import numpy as np\n'), ((953, 964), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (960, 964), True, 'import numpy as np\n'), ((1009, 1020), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1016, 1020), True, 'import numpy as np\n'), ((1054, 1065), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1061, 1065), True, 'import numpy as np\n'), ((1839, 1850), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1846, 1850), True, 'import numpy as np\n'), ((1911, 1922), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1918, 1922), True, 'import numpy as np\n'), ((1989, 2000), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (1996, 2000), True, 'import numpy as np\n'), ((2082, 2093), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (2089, 2093), True, 'import numpy as np\n'), ((2140, 2151), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (2147, 2151), True, 'import numpy as np\n'), ((2187, 2198), 'numpy.sqrt', 'np.sqrt', (['v0'], {}), '(v0)\n', (2194, 2198), True, 'import numpy as np\n')]
"""MIT - CSAIL - Gifford Lab - seqgra PyTorch DataSet class @author: <NAME> """ from collections import deque import random from typing import Any, Deque, List, Tuple import torch import numpy as np from seqgra.learner import Learner class MultiClassDataSet(torch.utils.data.Dataset): def __init__(self, x, y=None): self.x = x self.y = y self.x = np.array(self.x).astype(np.float32) if self.y is not None: if not isinstance(self.y, np.ndarray): self.y = np.array(self.y) if self.y.dtype == np.bool: self.y = np.argmax(self.y.astype(np.int64), axis=1) def __len__(self): return len(self.x) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() if self.y is None: return self.x[idx] else: return self.x[idx], self.y[idx] class MultiLabelDataSet(torch.utils.data.Dataset): def __init__(self, x, y=None): self.x = x self.y = y self.x = np.array(self.x).astype(np.float32) if self.y is not None: if not isinstance(self.y, np.ndarray): self.y = np.array(self.y) if self.y.dtype == np.bool: self.y = self.y.astype(np.float32) def __len__(self): return len(self.x) def __getitem__(self, idx): if torch.is_tensor(idx): idx = idx.tolist() if self.y is None: return self.x[idx] else: return self.x[idx], self.y[idx] class IterableMultiClassDataSet(torch.utils.data.IterableDataset): def __init__(self, file_name: str, learner: Learner, shuffle: bool = False, contains_y: bool = True, cache_size: int = 10000): self.file_name: str = file_name self.learner: Learner = learner self.shuffle: bool = shuffle self.contains_y: bool = contains_y self.cache_size: int = cache_size self.x_cache = None self.y_cache = None self.cache_index: int = cache_size def __iter__(self): with open(self.file_name, "r") as f: # skip header next(f) x, y = self._get_next_example(f) while x is not None: if self.contains_y: yield x, y else: yield x x, y = self._get_next_example(f) def _get_next_example(self, file_handle) -> Tuple[Any, Any]: if self.x_cache is None or self.cache_index >= self.x_cache.shape[0]: # read next chunk in memory x_vec: List[str] = list() y_vec: List[str] = list() line: str = file_handle.readline() i = 1 while line and i <= self.cache_size: cells: List[str] = line.split("\t") if len(cells) == 2 or (len(cells) == 1 and not self.contains_y): x_vec.append(cells[0].strip()) if self.contains_y: y_vec.append(cells[1].strip()) else: raise Exception("invalid example: " + line) line = file_handle.readline() i += 1 if x_vec: # validate data if self.learner.validate_data: self.learner.check_sequence(x_vec) if self.contains_y: self.learner.check_labels(y_vec) # shuffle if self.shuffle: if self.contains_y: temp = list(zip(x_vec, y_vec)) random.shuffle(temp) x_vec, y_vec = zip(*temp) else: random.shuffle(x_vec) # process chunk in memory encoded_x_vec = self.learner.encode_x(x_vec) if not isinstance(encoded_x_vec, np.ndarray): encoded_x_vec = np.array(encoded_x_vec) self.x_cache = encoded_x_vec.astype(np.float32) if self.contains_y: encoded_y_vec = self.learner.encode_y(y_vec) if not isinstance(encoded_y_vec, np.ndarray): encoded_y_vec = np.array(encoded_y_vec) self.y_cache = np.argmax(encoded_y_vec.astype(np.int64), axis=1) self.cache_index = 0 if self.x_cache is not None and self.cache_index < self.x_cache.shape[0]: if self.contains_y: example = (self.x_cache[self.cache_index, ...], self.y_cache[self.cache_index]) else: example = (self.x_cache[self.cache_index, ...], None) self.cache_index += 1 return example else: return (None, None) class IterableMultiLabelDataSet(torch.utils.data.IterableDataset): def __init__(self, file_name: str, learner: Learner, shuffle: bool = False, contains_y: bool = True, cache_size: int = 10000): self.file_name: str = file_name self.learner: Learner = learner self.shuffle: bool = shuffle self.contains_y: bool = contains_y self.cache_size: int = cache_size self.x_cache = None self.y_cache = None self.cache_index: int = cache_size def __iter__(self): with open(self.file_name, "r") as f: # skip header next(f) x, y = self._get_next_example(f) while x is not None: if self.contains_y: yield x, y else: yield x x, y = self._get_next_example(f) def _get_next_example(self, file_handle) -> Tuple[Any, Any]: if self.x_cache is None or self.cache_index >= self.x_cache.shape[0]: # read next chunk in memory x_vec: List[str] = list() y_vec: List[str] = list() line: str = file_handle.readline() i = 1 while line and i <= self.cache_size: cells: List[str] = line.split("\t") if len(cells) == 2 or (len(cells) == 1 and not self.contains_y): x_vec.append(cells[0].strip()) if self.contains_y: y_vec.append(cells[1].strip()) else: raise Exception("invalid example: " + line) line = file_handle.readline() i += 1 if x_vec: # validate data if self.learner.validate_data: self.learner.check_sequence(x_vec) if self.contains_y: self.learner.check_labels(y_vec) # shuffle if self.shuffle: if self.contains_y: temp = list(zip(x_vec, y_vec)) random.shuffle(temp) x_vec, y_vec = zip(*temp) else: random.shuffle(x_vec) # process chunk in memory encoded_x_vec = self.learner.encode_x(x_vec) if not isinstance(encoded_x_vec, np.ndarray): encoded_x_vec = np.array(encoded_x_vec) self.x_cache = encoded_x_vec.astype(np.float32) if self.contains_y: encoded_y_vec = self.learner.encode_y(y_vec) if not isinstance(encoded_y_vec, np.ndarray): encoded_y_vec = np.array(encoded_y_vec) self.y_cache = encoded_y_vec.astype(np.float32) self.cache_index = 0 if self.x_cache is not None and self.cache_index < self.x_cache.shape[0]: if self.contains_y: example = (self.x_cache[self.cache_index, ...], self.y_cache[self.cache_index]) else: example = (self.x_cache[self.cache_index, ...], None) self.cache_index += 1 return example else: return (None, None)
[ "torch.is_tensor", "numpy.array", "random.shuffle" ]
[((747, 767), 'torch.is_tensor', 'torch.is_tensor', (['idx'], {}), '(idx)\n', (762, 767), False, 'import torch\n'), ((1409, 1429), 'torch.is_tensor', 'torch.is_tensor', (['idx'], {}), '(idx)\n', (1424, 1429), False, 'import torch\n'), ((382, 398), 'numpy.array', 'np.array', (['self.x'], {}), '(self.x)\n', (390, 398), True, 'import numpy as np\n'), ((526, 542), 'numpy.array', 'np.array', (['self.y'], {}), '(self.y)\n', (534, 542), True, 'import numpy as np\n'), ((1061, 1077), 'numpy.array', 'np.array', (['self.x'], {}), '(self.x)\n', (1069, 1077), True, 'import numpy as np\n'), ((1205, 1221), 'numpy.array', 'np.array', (['self.y'], {}), '(self.y)\n', (1213, 1221), True, 'import numpy as np\n'), ((4049, 4072), 'numpy.array', 'np.array', (['encoded_x_vec'], {}), '(encoded_x_vec)\n', (4057, 4072), True, 'import numpy as np\n'), ((7439, 7462), 'numpy.array', 'np.array', (['encoded_x_vec'], {}), '(encoded_x_vec)\n', (7447, 7462), True, 'import numpy as np\n'), ((3704, 3724), 'random.shuffle', 'random.shuffle', (['temp'], {}), '(temp)\n', (3718, 3724), False, 'import random\n'), ((3825, 3846), 'random.shuffle', 'random.shuffle', (['x_vec'], {}), '(x_vec)\n', (3839, 3846), False, 'import random\n'), ((4345, 4368), 'numpy.array', 'np.array', (['encoded_y_vec'], {}), '(encoded_y_vec)\n', (4353, 4368), True, 'import numpy as np\n'), ((7094, 7114), 'random.shuffle', 'random.shuffle', (['temp'], {}), '(temp)\n', (7108, 7114), False, 'import random\n'), ((7215, 7236), 'random.shuffle', 'random.shuffle', (['x_vec'], {}), '(x_vec)\n', (7229, 7236), False, 'import random\n'), ((7735, 7758), 'numpy.array', 'np.array', (['encoded_y_vec'], {}), '(encoded_y_vec)\n', (7743, 7758), True, 'import numpy as np\n')]
from __future__ import absolute_import from datetime import timedelta, time, date from django.conf import settings from django.core.urlresolvers import reverse from django.test import TestCase from django.utils.timezone import now, localtime from base.models import User, UserProfile, ProfileRequest from farnsworth import pre_fill from managers.models import Manager from utils.variables import MESSAGES from workshift.fill import REGULAR_WORKSHIFTS, WEEK_LONG, HUMOR_WORKSHIFTS, \ BATHROOM_WORKSHIFTS from workshift.models import * from workshift.forms import * from workshift.fields import DAY_CHOICES from workshift.cron import CollectBlownCronJob, UpdateWeeklyStandings from workshift import utils, signals class TestStart(TestCase): """ Tests the behavior of the workshift website before any semester has been initialized. Also tests that initializing a semester works correctly. """ def setUp(self): self.u = User.objects.create_user(username="u", password="<PASSWORD>") self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.wu.first_name, self.wu.last_name = "Cooperative", "User" self.wu.save() self.wm = Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.wu), workshift_manager=True, ) self.assertTrue(self.client.login(username="wu", password="<PASSWORD>")) def test_unauthenticated(self): self.client.logout() url = reverse("workshift:view_semester") response = self.client.get(url, follow=True) self.assertRedirects(response, reverse("login") + "?next=" + url) def test_before(self): url = reverse("workshift:view_semester") response = self.client.get(url, follow=True) self.assertRedirects(response, reverse("workshift:start_semester")) self.client.logout() self.assertTrue(self.client.login(username="u", password="pwd")) response = self.client.get(url, follow=True) self.assertRedirects(response, reverse("homepage")) def test_start(self): url = reverse("workshift:start_semester") response = self.client.post(url, { "semester-season": Semester.SUMMER, "semester-year": 2014, "semester-rate": 13.30, "semester-policy": "http://bsc.coop", "semester-start_date": date(2014, 5, 22), "semester-end_date": date(2014, 8, 15), }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) self.assertEqual( 1, Semester.objects.filter(year=2014).filter(season=Semester.SUMMER).count(), ) semester = Semester.objects.get(year=2014, season=Semester.SUMMER) self.assertEqual( 2, WorkshiftProfile.objects.filter(semester=semester).count(), ) self.assertEqual( 1, WorkshiftPool.objects.filter(semester=semester).count(), ) pool = WorkshiftPool.objects.get(semester=semester) self.assertEqual(PoolHours.objects.filter(pool=pool).count(), 2) pool_hours = PoolHours.objects.filter(pool=pool) for profile in WorkshiftProfile.objects.filter(semester=semester): self.assertEqual(1, profile.pool_hours.count()) self.assertIn(profile.pool_hours.all()[0], pool_hours) self.assertEqual(1, profile.pool_hours.filter(pool=pool).count()) class TestAssignment(TestCase): """ Test the functionality of workshift.utils.auto_assign_shifts. This should include respecting member's shift preferences and schedules. """ def setUp(self): self.u = User.objects.create_user(username="u0") today = localtime(now()).date() self.semester = Semester.objects.create( year=today.year, start_date=today, end_date=today + timedelta(days=6), ) self.profile = WorkshiftProfile.objects.get( user=self.u, semester=self.semester, ) self.p1 = WorkshiftPool.objects.get( is_primary=True, semester=self.semester, ) self.p2 = WorkshiftPool.objects.create( title="Alternate Workshift", semester=self.semester, ) self.wtype1 = WorkshiftType.objects.create( title="Like Type", ) self.wtype2 = WorkshiftType.objects.create( title="Indifferent Type", ) self.wtype3 = WorkshiftType.objects.create( title="Dislike Type", ) preference1 = WorkshiftRating.objects.create( rating=WorkshiftRating.LIKE, workshift_type=self.wtype1, ) preference2 = WorkshiftRating.objects.create( rating=WorkshiftRating.INDIFFERENT, workshift_type=self.wtype2, ) preference3 = WorkshiftRating.objects.create( rating=WorkshiftRating.DISLIKE, workshift_type=self.wtype3, ) self.profile.ratings = [preference1, preference2, preference3] self.profile.save() utils.make_workshift_pool_hours(semester=self.semester) def test_auto_assign_one(self): """ Assign one shift to a member. """ shift1 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=5, ) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([], unfinished) self.assertIn(self.profile, shift1.current_assignees.all()) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift1) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == self.profile for instance in instances )) pool_hours = self.profile.pool_hours.get(pool=self.p1) self.assertEqual( pool_hours.assigned_hours, pool_hours.hours, ) def test_pre_assigned(self): """ Test that assignment behaves correctly when members are already assigned to other workshifts. """ shift1 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=5, ) shift2 = RegularWorkshift.objects.create( workshift_type=self.wtype3, pool=self.p1, hours=1, ) shift2.current_assignees = [self.profile] unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([self.profile], unfinished) self.assertNotIn(self.profile, shift1.current_assignees.all()) pool_hours = self.profile.pool_hours.get(pool=self.p1) self.assertEqual( pool_hours.assigned_hours, 1, ) def test_auto_assign_one_overflow(self): """ Don't assign one shift to a member because it pushes them over their weekly requirement. """ shift1 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=6, ) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([self.profile], unfinished) self.assertNotIn(self.profile, shift1.current_assignees.all()) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift1) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == None for instance in instances )) pool_hours = self.profile.pool_hours.get(pool=self.p1) self.assertEqual( pool_hours.assigned_hours, 0, ) def test_auto_assign_two(self): """ Assign two shifts to a member. """ shift1 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=2, ) shift2 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=3, ) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([], unfinished) self.assertIn(self.profile, shift1.current_assignees.all()) self.assertIn(self.profile, shift2.current_assignees.all()) for shift in [shift1, shift2]: instances = WorkshiftInstance.objects.filter(weekly_workshift=shift) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == self.profile for instance in instances )) pool_hours = self.profile.pool_hours.get(pool=self.p1) self.assertEqual( pool_hours.assigned_hours, pool_hours.hours, ) def test_auto_assign_two_preferred(self): """ Assign one of two shifts to a member. """ shift1 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=5, ) shift2 = RegularWorkshift.objects.create( workshift_type=self.wtype2, pool=self.p1, hours=5, ) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([], unfinished) self.assertIn(self.profile, shift1.current_assignees.all()) self.assertNotIn(self.profile, shift2.current_assignees.all()) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift1) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == self.profile for instance in instances )) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift2) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == None for instance in instances )) pool_hours = self.profile.pool_hours.get(pool=self.p1) self.assertEqual( pool_hours.assigned_hours, pool_hours.hours, ) def test_auto_assign_two_overflow(self): """ Assign a preferred shift to a member, but don't assign the other because it pushes them over their weekly requirement. """ shift1 = RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=3, ) shift2 = RegularWorkshift.objects.create( workshift_type=self.wtype2, pool=self.p1, hours=3, ) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([self.profile], unfinished) self.assertIn(self.profile, shift1.current_assignees.all()) self.assertNotIn(self.profile, shift2.current_assignees.all()) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift1) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == self.profile for instance in instances )) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift2) self.assertGreater(instances.count(), 0) self.assertTrue(all( instance.workshifter == None for instance in instances )) pool_hours = self.profile.pool_hours.get(pool=self.p1) self.assertEqual( pool_hours.assigned_hours, 3, ) def _test_auto_assign_fifty(self): """ Assign fifty members to fifty shifts, with each shift providing 5 hours of workshift. Ensures that the assignments don't mysteriously break or run for an extremely long time for medium-sized houses. """ shifts = [] for i in range(50): shifts.append( RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=5, ) ) for i in range(1, 50): user = User.objects.create_user(username="u{0}".format(i)) utils.make_workshift_pool_hours(semester=self.semester) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([], unfinished) for shift in shifts: self.assertEqual(1, shift.current_assignees.count()) def _test_auto_assign_one_hundred_and_fifty(self): """ Assign 150 members to 150 shifts, with each shift providing 5 hours of workshift. Ensures that the assignments don't mysteriously break or run for an extremely long time for large houses. """ shifts = [] for i in range(150): shifts.append( RegularWorkshift.objects.create( workshift_type=self.wtype1, pool=self.p1, hours=5, ) ) for i in range(1, 150): user = User.objects.create_user(username="u{0}".format(i)) utils.make_workshift_pool_hours(semester=self.semester) unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([], unfinished) for shift in shifts: self.assertEqual(1, shift.current_assignees.count()) def test_pre_fill_and_assign(self): """ Tests that shifts can be correctly assigned after farnsworth/pre_fill.py is run. This is a good test of how the assignment code functions "in the wild," rather than with many duplicates of the same shift. """ users = [] for i in range(1, 50): users.append(User.objects.create_user(username="u{0}".format(i))) pre_fill.main(["--managers", "--workshift"]) utils.make_workshift_pool_hours(semester=self.semester) # Assign manager shifts beforehand for user, manager in zip(users, Manager.objects.all()): manager.incumbent = UserProfile.objects.get(user=user) manager.save() unfinished = utils.auto_assign_shifts(self.semester) self.assertEqual([], unfinished) def _test_pre_fill_and_assign_humor(self): """ Tests that humor shifts can be correctly assigned after farnsworth/pre_fill.py is run. """ for i in range(1, 50): user = User.objects.create_user(username="u{0}".format(i)) pre_fill.main(["--managers", "--workshift"]) utils.make_workshift_pool_hours(semester=self.semester) # Assign manager shifts beforehand manager_shifts = RegularWorkshift.objects.filter( pool=self.p1, workshift_type__auto_assign=False, ) profiles = WorkshiftProfile.objects.all() for profile, shift in zip(profiles, manager_shifts): shift.current_assignees.add(profile) shift.save() unfinished = utils.auto_assign_shifts( self.semester, pool=WorkshiftPool.objects.get(title="Humor Shift") ) self.assertEqual([], unfinished) class TestUtils(TestCase): """ Tests most of the various functions within workshift.utils. """ def setUp(self): self.u = User.objects.create_user(username="u", first_name="N", last_name="M") today = localtime(now()).date() self.semester = Semester.objects.create( year=today.year, season=Semester.SUMMER, start_date=today, end_date=today + timedelta(weeks=18), ) self.profile = WorkshiftProfile.objects.get(user=self.u) self.p1 = WorkshiftPool.objects.get( is_primary=True, semester=self.semester, ) self.p1.sign_out_cutoff = 24 self.p1.verify_cutoff = 2 self.p1.save() self.p2 = WorkshiftPool.objects.create( title="Alternate Workshift", semester=self.semester, ) def test_cron_blown(self): CollectBlownCronJob().do() def test_cron_standings(self): UpdateWeeklyStandings().do() def test_get_year_season(self): year, season = utils.get_year_season() self.assertLess(abs(year - localtime(now()).date().year), 2) self.assertIn(season, [Semester.SPRING, Semester.SUMMER, Semester.FALL]) def test_starting_month(self): # Starting in Summer, Fall, and Spring self.assertEqual( (2015, Semester.SPRING), utils.get_year_season(day=date(2014, 12, 20)), ) self.assertEqual( (2015, Semester.SPRING), utils.get_year_season(day=date(2015, 3, 20)), ) self.assertEqual( (2014, Semester.SUMMER), utils.get_year_season(day=date(2014, 4, 1)), ) self.assertEqual( (2014, Semester.SUMMER), utils.get_year_season(day=date(2014, 7, 20)), ) self.assertEqual( (2014, Semester.FALL), utils.get_year_season(day=date(2014, 8, 1)), ) self.assertEqual( (2014, Semester.FALL), utils.get_year_season(day=date(2014, 10, 20)), ) def test_start_end(self): self.assertEqual( (date(2014, 1, 20), date(2014, 5, 17)), utils.get_semester_start_end(2014, Semester.SPRING), ) self.assertEqual( (date(2014, 5, 25), date(2014, 8, 16)), utils.get_semester_start_end(2014, Semester.SUMMER), ) self.assertEqual( (date(2014, 8, 24), date(2014, 12, 20)), utils.get_semester_start_end(2014, Semester.FALL), ) def test_make_pool_hours_all(self): PoolHours.objects.all().delete() utils.make_workshift_pool_hours() self.assertEqual(2, PoolHours.objects.count()) self.assertEqual(2, self.profile.pool_hours.count()) def test_make_pool_hours_profile(self): PoolHours.objects.all().delete() utils.make_workshift_pool_hours( semester=self.semester, profiles=[], ) self.assertEqual(0, PoolHours.objects.count()) self.assertEqual(0, self.profile.pool_hours.count()) utils.make_workshift_pool_hours( semester=self.semester, profiles=[self.profile], ) self.assertEqual(2, PoolHours.objects.count()) self.assertEqual(2, self.profile.pool_hours.count()) def test_make_pool_hours_pools(self): PoolHours.objects.all().delete() utils.make_workshift_pool_hours( semester=self.semester, pools=[self.p1], ) self.assertEqual(1, PoolHours.objects.count()) self.assertEqual(1, self.profile.pool_hours.count()) utils.make_workshift_pool_hours( semester=self.semester, pools=[self.p2], ) self.assertEqual(2, PoolHours.objects.count()) self.assertEqual(2, self.profile.pool_hours.count()) def test_make_pool_hours_primary(self): PoolHours.objects.all().delete() utils.make_workshift_pool_hours( semester=self.semester, primary_hours=6, ) self.assertEqual(6, PoolHours.objects.get(pool=self.p1).hours) self.assertEqual(self.p2.hours, PoolHours.objects.get(pool=self.p2).hours) def test_can_manage(self): pass def test_is_available(self): pass def test_make_instances(self): wtype = WorkshiftType.objects.create( title="Test Make Instances", ) # Disconnect the handler and run make_instances ourselves models.signals.post_save.disconnect( signals.create_workshift_instances, sender=RegularWorkshift ) shift = RegularWorkshift.objects.create( workshift_type=wtype, pool=self.p1, day=4, hours=7, ) shift.current_assignees = [self.profile] today = localtime(now()).date() WorkshiftInstance.objects.create( weekly_workshift=shift, date=today - timedelta(today.weekday()), ) instances = utils.make_instances( semester=self.semester, shifts=[shift], ) models.signals.post_save.connect( signals.create_workshift_instances, sender=RegularWorkshift ) for instance in instances: self.assertEqual(wtype.title, instance.title) self.assertEqual(shift, instance.weekly_workshift) self.assertEqual(shift.hours, instance.hours) self.assertEqual(shift.hours, instance.intended_hours) self.assertEqual(1, instance.logs.count()) self.assertEqual( set([shift.day]), set(i.date.weekday() for i in instances), ) def test_collect_blown(self): utils.make_workshift_pool_hours() self.assertEqual( ([], [], []), utils.collect_blown(), ) self.assertEqual( ([], [], []), utils.collect_blown(semester=self.semester), ) moment = localtime(now().replace(hour=20, minute=0, second=0, microsecond=0)) past = moment - timedelta(days=1) WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Closed", pool=self.p1, ), closed=True, date=past.date(), semester=self.semester, ) to_close = WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="To be closed", pool=self.p1, ), date=past.date(), semester=self.semester, ) WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Not Blown", pool=self.p1, ), date=moment.date(), semester=self.semester, ) blown = WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Blown", pool=self.p1, ), date=past.date(), workshifter=self.profile, semester=self.semester, ) WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Edge Case 1: Not Closed", end_time=moment.time(), pool=self.p1, ), date=moment.date(), semester=self.semester, ) edge_datetime = moment - timedelta(hours=self.p1.verify_cutoff, minutes=1) edge_case_2 = WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Edge Case 2: Closed", end_time=edge_datetime.time(), pool=self.p1, ), date=edge_datetime.date(), ) signed_out_1 = WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Workshifter signed out early enough", pool=self.p1, ), date=past.date(), semester=self.semester, ) signed_out_2 = WorkshiftInstance.objects.create( info=InstanceInfo.objects.create( title="Workshifter signed out too late", pool=self.p1, ), liable=self.profile, date=past.date(), semester=self.semester, ) self.assertEqual( ([to_close, edge_case_2, signed_out_1], [], [blown, signed_out_2]), utils.collect_blown(moment=moment), ) class TestViews(TestCase): """ Tests a few basic things about the application: That all the pages can load correctly, and that they contain the content that is expected. """ def setUp(self): moment = localtime(now()) today = moment.date() self.sem = Semester.objects.create( year=today.year, start_date=today, end_date=today + timedelta(days=6), ) self.u = User.objects.create_user(username="u", password="<PASSWORD>") self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.wu.first_name, self.wu.last_name = "Cooperative", "User" self.wu.save() self.wm = Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.wu), workshift_manager=True, ) self.pool = WorkshiftPool.objects.get( semester=self.sem, is_primary=True, ) self.wprofile = WorkshiftProfile.objects.get(user=self.wu) self.wtype = WorkshiftType.objects.create( title="Test Posts", description="Test WorkshiftType Description", quick_tips="Test Quick Tips", ) self.shift = RegularWorkshift.objects.create( workshift_type=self.wtype, pool=self.pool, day=today.weekday(), start_time=moment, end_time=moment + timedelta(hours=2), ) self.shift.current_assignees = [self.wprofile] self.instance = WorkshiftInstance.objects.get( weekly_workshift=self.shift, ) info = InstanceInfo.objects.create( title="Test One Time Shift", pool=self.pool, description="One Time Description", ) self.once = WorkshiftInstance.objects.create( info=info, date=today + timedelta(days=7), workshifter=self.wprofile, ) self.sle0 = ShiftLogEntry.objects.create( person=self.wprofile, note="Test Shift Log #0", entry_type=ShiftLogEntry.ASSIGNED, ) self.sle1 = ShiftLogEntry.objects.create( person=self.wprofile, note="Test Shift Log #1", entry_type=ShiftLogEntry.SIGNOUT, ) self.sle2 = ShiftLogEntry.objects.create( person=self.wprofile, note="Test Shift Log #2", entry_type=ShiftLogEntry.SIGNIN, ) self.sle3 = ShiftLogEntry.objects.create( person=self.wprofile, note="Test Shift Log #3", entry_type=ShiftLogEntry.VERIFY, ) self.sle4 = ShiftLogEntry.objects.create( person=self.wprofile, note="Test Shift Log #4", entry_type=ShiftLogEntry.BLOWN, ) self.once.logs = [self.sle0, self.sle1, self.sle2, self.sle3, self.sle4] self.instance.logs = [self.sle0, self.sle1, self.sle2, self.sle3, self.sle4] hours = self.wprofile.pool_hours.get(pool=self.pool) hours.first_fine_date = 13.00 hours.save() self.assertTrue(self.client.login(username="wu", password="<PASSWORD>")) def test_no_profile(self): self.client.logout() self.client.login(username='u', password='<PASSWORD>') urls = [ reverse("workshift:list_types"), reverse("workshift:view_type", kwargs={"pk": self.wtype.pk}), reverse("workshift:view_semester"), reverse("workshift:profile", kwargs={"targetUsername": self.wprofile.user.username}), reverse("workshift:view_shift", kwargs={"pk": self.shift.pk}), reverse("workshift:view_instance", kwargs={"pk": self.instance.pk}), reverse("workshift:view_instance", kwargs={"pk": self.once.pk}), reverse("workshift:view_open"), reverse("workshift:semester_info"), reverse("workshift:profiles"), ] for url in urls: response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_views_load(self): urls = [ reverse("workshift:start_semester"), reverse("workshift:list_types"), reverse("workshift:view_type", kwargs={"pk": self.wtype.pk}), reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk}), ] for url in urls: response = self.client.get(url) self.assertEqual(response.status_code, 200) urls = [ ("workshift:view_semester", {}), ("workshift:semester_info", {}), ("workshift:profile", {"targetUsername": self.wprofile.user.username}), ("workshift:edit_profile", {"targetUsername": self.wprofile.user.username}), ("workshift:preferences", {"targetUsername": self.wprofile.user.username}), ("workshift:manage", {}), ("workshift:fill_shifts", {}), ("workshift:assign_shifts", {}), ("workshift:add_shift", {}), ("workshift:adjust_hours", {}), ("workshift:add_workshifter", {}), ("workshift:view_shift", {"pk": self.shift.pk}), ("workshift:edit_shift", {"pk": self.shift.pk}), ("workshift:view_instance", {"pk": self.instance.pk}), ("workshift:edit_instance", {"pk": self.instance.pk}), ("workshift:view_instance", {"pk": self.once.pk}), ("workshift:edit_instance", {"pk": self.once.pk}), ("workshift:view_open", {}), ("workshift:profiles", {}), ("workshift:add_pool", {}), ("workshift:view_pool", {"pk": self.pool.pk}), ("workshift:edit_pool", {"pk": self.pool.pk}), ] for name, kwargs in urls: url = reverse(name, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) kwargs["sem_url"] = "{0}{1}".format(self.sem.season, self.sem.year) url = reverse(name, kwargs=kwargs) response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_type_list(self): url = reverse("workshift:list_types") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.wtype.title) self.assertContains(response, "Week long") self.assertNotContains(response, self.wtype.quick_tips) self.assertNotContains(response, self.wtype.description) def test_type(self): url = reverse("workshift:view_type", kwargs={"pk": self.wtype.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.wtype.title) self.assertContains(response, self.wtype.quick_tips) self.assertContains(response, self.wtype.description) def test_type_edit(self): url = reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.wtype.title) self.assertContains(response, self.wtype.quick_tips) self.assertContains(response, self.wtype.description) def test_shift(self): url = reverse("workshift:view_shift", kwargs={"pk": self.shift.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.wtype.title) self.assertContains(response, str(self.shift.hours)) self.assertContains(response, self.shift.workshift_type.quick_tips) self.assertContains(response, self.shift.workshift_type.description) for assignee in self.shift.current_assignees.all(): self.assertContains(response, assignee.user.get_full_name()) def test_edit_shift(self): url = reverse("workshift:edit_shift", kwargs={"pk": self.shift.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.wtype.title) self.assertContains(response, str(self.shift.hours)) for assignee in self.shift.current_assignees.all(): self.assertContains(response, assignee.user.get_full_name()) def test_instance(self): url = reverse("workshift:view_instance", kwargs={"pk": self.instance.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains( response, self.instance.weekly_workshift.workshift_type.title, ) self.assertContains( response, self.instance.weekly_workshift.pool.title, ) self.assertContains(response, self.instance.workshifter.user.get_full_name()) self.assertContains(response, str(self.instance.hours)) self.assertContains(response, self.sle0.note) self.assertContains(response, self.sle1.note) self.assertContains(response, self.sle2.note) self.assertContains(response, self.sle3.note) self.assertContains(response, self.sle4.note) def test_edit_instance(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.instance.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains( response, self.instance.weekly_workshift.workshift_type.title, ) self.assertContains( response, self.instance.weekly_workshift.pool.title, ) self.assertContains( response, str(self.instance.date), ) self.assertContains( response, self.instance.workshifter.user.get_full_name(), ) self.assertContains( response, str(self.instance.hours), ) def test_one_time(self): url = reverse("workshift:view_instance", kwargs={"pk": self.once.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.once.title) self.assertContains(response, self.once.pool.title) self.assertContains(response, self.once.description) self.assertContains(response, str(self.once.hours)) self.assertContains(response, self.once.workshifter.user.get_full_name()) self.assertContains(response, self.sle0.note) self.assertContains(response, self.sle1.note) self.assertContains(response, self.sle2.note) self.assertContains(response, self.sle3.note) self.assertContains(response, self.sle4.note) def test_edit_one_time(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.once.pk}) response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.once.title) self.assertContains(response, self.once.pool.title) self.assertContains(response, self.once.description) self.assertContains(response, self.once.hours) self.assertContains( response, self.once.workshifter.user.get_full_name(), ) def test_semester_view(self): url = reverse("workshift:view_semester") response = self.client.get(url) self.assertEqual(response.status_code, 200) def test_semester_no_prev(self): today = self.sem.start_date yesterday = today - timedelta(days=1) tomorrow = today + timedelta(days=1) url = reverse("workshift:view_semester") response = self.client.get(url + "?day=" + today.strftime("%F")) self.assertEqual(response.status_code, 200) self.assertContains(response, today.strftime("%A, %B")) self.assertContains(response, today.strftime("%d, %Y")) self.assertNotContains(response, "?day=" + yesterday.strftime("%F")) self.assertContains(response, "?day=" + tomorrow.strftime("%F")) def test_semester_no_next(self): today = self.sem.end_date yesterday = today - timedelta(days=1) tomorrow = today + timedelta(days=1) url = reverse("workshift:view_semester") response = self.client.get(url + "?day=" + today.strftime("%F")) self.assertEqual(response.status_code, 200) self.assertContains(response, today.strftime("%A, %B")) self.assertContains(response, today.strftime("%d, %Y")) self.assertContains(response, "?day=" + yesterday.strftime("%F")) self.assertNotContains(response, "?day=" + tomorrow.strftime("%F")) def test_semester_bad_day(self): url = reverse("workshift:view_semester") response = self.client.get(url + "?day=2014") self.assertEqual(response.status_code, 200) response = self.client.get(url + "?day=abcd") self.assertEqual(response.status_code, 200) response = self.client.get(url + "?day=2014-20") self.assertEqual(response.status_code, 200) response = self.client.get(url + "?day=2014-100-100") self.assertEqual(response.status_code, 200) def test_auto_assign(self): self.test_clear_assignees() url = reverse("workshift:assign_shifts") response = self.client.post(url, { "pool": self.pool.pk, "auto_assign_shifts": "", }) self.assertRedirects(response, url) uprofile = WorkshiftProfile.objects.get(user=self.u) self.assertEqual( RegularWorkshift.objects.get(pk=self.shift.pk), RegularWorkshift.objects.get(current_assignees=uprofile) ) def test_random_assign(self): for instance in WorkshiftInstance.objects.all(): instance.workshifter = None instance.save() WorkshiftProfile.objects.exclude(pk=self.wprofile.pk).delete() url = reverse("workshift:assign_shifts") response = self.client.post(url, { "pool": self.pool.pk, "random_assign_instances": "", }) self.assertRedirects(response, url) self.assertEqual( 1, WorkshiftInstance.objects.filter(workshifter=self.wprofile).count() ) def test_clear_assignees(self): url = reverse("workshift:assign_shifts") response = self.client.post(url, { "pool": self.pool.pk, "clear_assignments": "", }) self.assertRedirects(response, url) self.assertEqual( 1, RegularWorkshift.objects.filter(current_assignees=self.wprofile).count() ) self.assertEqual( 2, # self.instance, Workshift Manager WorkshiftInstance.objects.filter(workshifter=self.wprofile).count(), ) def test_fine_date(self): url = reverse("workshift:fine_date") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains( response, "workshifters_table", ) self.assertContains( response, self.pool.title, ) class TestPreferences(TestCase): """ Tests the various elements of the workshift preferences page. """ def setUp(self): self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.wu.first_name, self.wu.last_name = "Cooperative", "User" self.wu.save() self.wm = Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.wu), workshift_manager=True, ) today = localtime(now()).date() self.sem = Semester.objects.create( year=today.year, start_date=today, end_date=today + timedelta(days=7), ) self.pool = WorkshiftPool.objects.get( semester=self.sem, ) self.wprofile = WorkshiftProfile.objects.get(user=self.wu) self.w1 = WorkshiftType.objects.create( title="Clean Pots", description="Clean and sanitize all cooking materials in the dish room", quick_tips="Use 6 tablets of quartz!", ) self.w2 = WorkshiftType.objects.create( title="Clean Dishes", description="Clean and santize all eating materials in the dish room", quick_tips="Make sure there is liquid for the sanitizer!", ) self.w3 = WorkshiftType.objects.create( title="Trash", description="Take out the trash, everyone has to do this one.", rateable=False, ) self.assertTrue(self.client.login(username="wu", password="<PASSWORD>")) self.url = reverse("workshift:preferences", kwargs={"targetUsername": self.wprofile.user.username}) def test_preferences_get(self): response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertContains(response, self.w1.title) self.assertContains(response, self.w2.title) self.assertContains(response, self.w1.description) self.assertContains(response, self.w2.description) self.assertContains( response, 'name="time-TOTAL_FORMS" type="hidden" value="1"', ) self.assertContains( response, 'name="time-INITIAL_FORMS" type="hidden" value="0"', ) self.assertContains( response, 'name="time-MAX_NUM_FORMS" type="hidden" value="50"', ) self.assertEqual(self.wprofile.ratings.count(), 0) def test_preferences_post(self): response = self.client.post(self.url, { "rating-{}-rating".format(self.w1.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w2.pk): WorkshiftRating.DISLIKE, "time-0-preference": TimeBlock.BUSY, "time-0-day": DAY_CHOICES[0][0], # Monday "time-0-start_time": "8:00 AM", "time-0-end_time": "5:00 PM", "time-1-preference": TimeBlock.BUSY, "time-1-day": DAY_CHOICES[-1][0], # Sunday "time-1-start_time": "4:00 PM", "time-1-end_time": "9:00 PM", "time-2-preference": TimeBlock.PREFERRED, "time-2-day": DAY_CHOICES[1][0], # Tuesday "time-2-start_time": "6:00 PM", "time-2-end_time": "10:00 PM", "time-TOTAL_FORMS": 3, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, "note-note": "Dishes are fun, pots are cathartic.", }, follow=True) self.assertRedirects(response, self.url) self.assertContains(response, "Preferences saved.") self.assertEqual(self.wprofile.ratings.count(), 2) for rating, wtype, liked in zip( self.wprofile.ratings.all(), [self.w1, self.w2], [WorkshiftRating.LIKE, WorkshiftRating.DISLIKE], ): self.assertEqual(rating.workshift_type, wtype) self.assertEqual(rating.rating, liked) self.assertEqual(self.wprofile.time_blocks.count(), 3) for block, preference, day, start, end, in zip( self.wprofile.time_blocks.all(), [TimeBlock.BUSY, TimeBlock.BUSY, TimeBlock.PREFERRED], [DAY_CHOICES[0][0], DAY_CHOICES[-1][0], DAY_CHOICES[1][0]], [time(8, 0, 0), time(16, 0, 0), time(18, 0, 0)], [time(17, 0, 0), time(21, 0, 0), time(22, 0, 0)], ): self.assertEqual(block.preference, preference) self.assertEqual(block.day, day) self.assertEqual(block.start_time, start) self.assertEqual(block.end_time, end) self.assertEqual( "Dishes are fun, pots are cathartic.", WorkshiftProfile.objects.get(user=self.wu).note, ) def test_no_note(self): response = self.client.post(self.url, { "rating-{}-rating".format(self.w1.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w2.pk): WorkshiftRating.DISLIKE, "time-TOTAL_FORMS": 0, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, }, follow=True) self.assertRedirects(response, self.url) self.assertContains(response, "Preferences saved.") def test_preferences_after_add(self): self.test_no_note() self.assertEqual(self.wprofile.ratings.count(), 2) w4 = WorkshiftType.objects.create( title="Added late", description="Workshift added after preferences entered", ) response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertContains(response, w4.title) response = self.client.post(self.url, { "rating-{}-rating".format(self.w1.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w2.pk): WorkshiftRating.DISLIKE, "rating-{}-rating".format(w4.pk): WorkshiftRating.LIKE, "time-TOTAL_FORMS": 0, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, }, follow=True) self.assertRedirects(response, self.url) self.assertContains(response, "Preferences saved.") self.assertEqual(self.wprofile.ratings.count(), 3) rating = self.wprofile.ratings.get(workshift_type=w4) self.assertEqual(rating.rating, WorkshiftRating.LIKE) def test_delete_rating(self): """ Ensure that users cannot delete their rating preferences. """ response = self.client.post(self.url, { "rating-{}-rating".format(self.w1.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w2.pk): WorkshiftRating.LIKE, "time-TOTAL_FORMS": 0, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, }, follow=True) self.assertRedirects(response, self.url) response = self.client.post(self.url, { "rating-1-rating": WorkshiftRating.LIKE, "time-TOTAL_FORMS": 0, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, }) self.assertEqual(response.status_code, 200) self.assertEqual(self.wprofile.ratings.count(), 2) def test_add_rating(self): """ Ensure that users cannot add extra rating preferences. """ self.client.post(self.url, { "rating-{}-rating".format(self.w1.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w2.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w3.pk + 1): WorkshiftRating.LIKE, "time-TOTAL_FORMS": 0, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, }) self.assertEqual(self.wprofile.ratings.count(), 2) def test_unrateable(self): """ Ensure that users cannot rate unrateable shifts. """ self.client.post(self.url, { "rating-{}-rating".format(self.w1.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w2.pk): WorkshiftRating.LIKE, "rating-{}-rating".format(self.w3.pk): WorkshiftRating.LIKE, "time-TOTAL_FORMS": 0, "time-INITIAL_FORMS": 0, "time-MAX_NUM_FORMS": 50, }) self.assertEqual(self.wprofile.ratings.count(), 2) class TestInteractForms(TestCase): """ Tests the functionality of the buttons for marking shifts as blown, verifying shifts, signing in and out of shifts at appropriate times, etc. """ def setUp(self): self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.u = User.objects.create_user(username="u", password="<PASSWORD>") self.ou = User.objects.create_user(username="ou", password="<PASSWORD>") self.wm = Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.wu), workshift_manager=True, ) today = localtime(now()).date() self.sem = Semester.objects.create( year=today.year, start_date=today, end_date=today + timedelta(days=7), ) self.pool = WorkshiftPool.objects.get( semester=self.sem, ) self.pool.any_blown = True self.pool.save() self.wp = WorkshiftProfile.objects.get(user=self.wu) self.up = WorkshiftProfile.objects.get(user=self.u) self.op = WorkshiftProfile.objects.get(user=self.ou) self.wtype = WorkshiftType.objects.create( title="Test Posts", description="Test WorkshiftType Description", quick_tips="Test Quick Tips", ) self.shift = RegularWorkshift.objects.create( workshift_type=self.wtype, pool=self.pool, day=DAY_CHOICES[0][0], start_time=localtime(now()), end_time=time(23, 59, 59), ) self.instance = WorkshiftInstance.objects.create( weekly_workshift=self.shift, date=today, workshifter=self.up, verify=OTHER_VERIFY, ) info = InstanceInfo.objects.create( title="Test One Time Shift", pool=self.pool, ) self.once = WorkshiftInstance.objects.create( info=info, date=today, ) self.sle0 = ShiftLogEntry.objects.create( person=self.wp, entry_type=ShiftLogEntry.ASSIGNED, ) self.instance.logs = [self.sle0] self.once.logs = [self.sle0] self.instance.save() self.once.save() def test_verify(self): self.assertTrue(self.client.login(username="u", password="<PASSWORD>")) form = VerifyShiftForm({"pk": self.instance.pk}, profile=self.wp) form.is_valid() self.assertTrue(form.is_valid()) self.assertIsInstance(form.save(), WorkshiftInstance) log = self.instance.logs.filter(entry_type=ShiftLogEntry.VERIFY) self.assertEqual(1, log.count()) self.assertEqual(log[0].person, self.wp) form = VerifyShiftForm({"pk": self.once.pk}, profile=self.wp) self.assertFalse(form.is_valid()) self.assertIn("Workshift is not filled.", form.errors["pk"]) def test_no_self_verify(self): self.pool.save() self.assertTrue(self.client.login(username="u", password="<PASSWORD>")) form = VerifyShiftForm({"pk": self.instance.pk}, profile=self.up) self.assertFalse(form.is_valid()) self.assertIn("Workshifter cannot verify self.", form.errors["pk"]) self.assertTrue(self.client.login(username="ou", password="<PASSWORD>")) form = VerifyShiftForm({"pk": self.instance.pk}, profile=self.op) form.is_valid() self.assertTrue(form.is_valid()) self.assertIsInstance(form.save(), WorkshiftInstance) log = self.instance.logs.filter(entry_type=ShiftLogEntry.VERIFY) self.assertEqual(1, log.count()) self.assertEqual(log[0].person, self.op) def test_blown(self): self.assertTrue(self.client.login(username="ou", password="<PASSWORD>")) form = BlownShiftForm({"pk": self.instance.pk}, profile=self.op) self.assertTrue(form.is_valid()) self.assertIsInstance(form.save(), WorkshiftInstance) log = self.instance.logs.filter(entry_type=ShiftLogEntry.BLOWN) self.assertEqual(1, log.count()) self.assertEqual(log[0].person, self.op) form = BlownShiftForm({"pk": self.once.pk}, profile=self.op) self.assertFalse(form.is_valid()) self.assertIn("Workshift is not filled.", form.errors["pk"]) def test_manager_blown(self): self.pool.any_blown = False self.pool.save() self.assertTrue(self.client.login(username="ou", password="<PASSWORD>")) form = BlownShiftForm({"pk": self.instance.pk}, profile=self.op) self.assertFalse(form.is_valid()) self.assertIn("You are not a workshift manager.", form.errors["pk"]) self.client.logout() self.assertTrue(self.client.login(username="wu", password="<PASSWORD>")) form = BlownShiftForm({"pk": self.instance.pk}, profile=self.wp) self.assertTrue(form.is_valid()) self.assertIsInstance(form.save(), WorkshiftInstance) log = self.instance.logs.filter(entry_type=ShiftLogEntry.BLOWN) self.assertEqual(1, log.count()) self.assertEqual(log[0].person, self.wp) def test_sign_in(self): self.assertTrue(self.client.login(username="u", password="<PASSWORD>")) form = SignInForm({"pk": self.once.pk}, profile=self.up) self.assertTrue(form.is_valid()) self.assertIsInstance(form.save(), WorkshiftInstance) log = self.once.logs.filter(entry_type=ShiftLogEntry.SIGNIN) self.assertEqual(1, log.count()) self.assertEqual(log[0].person, self.up) form = SignInForm({"pk": self.instance.pk}, profile=self.up) self.assertFalse(form.is_valid()) self.assertIn("Workshift is currently filled.", form.errors["pk"]) def test_sign_out(self): self.assertTrue(self.client.login(username="u", password="<PASSWORD>")) form = SignOutForm({"pk": self.instance.pk}, profile=self.up) self.assertTrue(form.is_valid()) self.assertIsInstance(form.save(), WorkshiftInstance) log = self.instance.logs.filter(entry_type=ShiftLogEntry.SIGNOUT) self.assertEqual(1, log.count()) self.assertEqual(log[0].person, self.up) form = SignOutForm({"pk": self.once.pk}, profile=self.up) self.assertFalse(form.is_valid()) self.assertEqual(["Not signed into workshift."], form.errors["pk"]) def test_missing_shift(self): self.assertTrue(self.client.login(username="u", password="<PASSWORD>")) form = SignOutForm({"pk": -1}, profile=self.up) self.assertFalse(form.is_valid()) form = SignOutForm({"pk": 100}, profile=self.up) self.assertFalse(form.is_valid()) form = SignOutForm({"pk": "a"}, profile=self.up) self.assertFalse(form.is_valid()) def test_closed_shift(self): self.once.closed = True self.once.save() form = SignOutForm({"pk": self.once.pk}, profile=self.up) self.assertFalse(form.is_valid()) class TestPermissions(TestCase): """ Tests that different levels of users and management are only able to access the pages they are expected to have permission to. """ def setUp(self): self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.mu = User.objects.create_user(username="mu", password="<PASSWORD>") self.u = User.objects.create_user(username="u", password="<PASSWORD>") self.ou = User.objects.create_user(username="ou", password="<PASSWORD>") self.wm = Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.wu), workshift_manager=True, ) self.mm = Manager.objects.create( title="Maintenance Manager", incumbent=UserProfile.objects.get(user=self.mu), ) moment = localtime(now()) today = moment.date() self.sem = Semester.objects.create( year=today.year, start_date=today, end_date=today + timedelta(days=7), ) self.pool = WorkshiftPool.objects.get( semester=self.sem, ) self.hi_pool = WorkshiftPool.objects.create( semester=self.sem, title="HI Hours", hours=4, weeks_per_period=0, ) self.wp = WorkshiftProfile.objects.get(user=self.wu) self.mp = WorkshiftProfile.objects.get(user=self.mu) self.up = WorkshiftProfile.objects.get(user=self.u) self.op = WorkshiftProfile.objects.get(user=self.ou) self.wtype = WorkshiftType.objects.create( title="Test Posts", ) self.mtype = WorkshiftType.objects.create( title="Maintenance Cleaning", ) self.wshift = RegularWorkshift.objects.create( workshift_type=self.wtype, pool=self.pool, day=DAY_CHOICES[0][0], start_time=moment, end_time=moment + timedelta(hours=2), ) self.mshift = RegularWorkshift.objects.create( workshift_type=self.mtype, pool=self.hi_pool, day=DAY_CHOICES[0][0], start_time=moment, end_time=moment + timedelta(hours=2), ) self.winstance = WorkshiftInstance.objects.create( weekly_workshift=self.wshift, date=today, workshifter=self.up, ) self.minstance = WorkshiftInstance.objects.create( weekly_workshift=self.mshift, date=today, workshifter=self.up, ) info = InstanceInfo.objects.create( title="Clean The Deck", pool=self.pool, description="Make sure to sing sailor tunes.", ) self.wonce = WorkshiftInstance.objects.create( info=info, date=today, workshifter=self.up, ) info = InstanceInfo.objects.create( title="Build A Deck", pool=self.hi_pool, description="Preferably in the shape of a pirate ship.", ) self.monce = WorkshiftInstance.objects.create( info=info, date=today, workshifter=self.up, ) def test_workshift_manager(self): self.assertTrue(self.client.login(username="wu", password="<PASSWORD>")) urls = [ reverse("workshift:start_semester"), reverse("workshift:view_semester"), reverse("workshift:semester_info"), reverse("workshift:profile", kwargs={"targetUsername": self.up.user.username}), reverse("workshift:edit_profile", kwargs={"targetUsername": self.up.user.username}), reverse("workshift:preferences", kwargs={"targetUsername": self.up.user.username}), reverse("workshift:manage"), reverse("workshift:fill_shifts"), reverse("workshift:assign_shifts"), reverse("workshift:adjust_hours"), reverse("workshift:add_workshifter"), reverse("workshift:fine_date"), reverse("workshift:add_shift"), reverse("workshift:edit_shift", kwargs={"pk": self.wshift.pk}), reverse("workshift:edit_instance", kwargs={"pk": self.winstance.pk}), reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk}), reverse("workshift:edit_shift", kwargs={"pk": self.mshift.pk}), reverse("workshift:edit_instance", kwargs={"pk": self.minstance.pk}), reverse("workshift:edit_type", kwargs={"pk": self.mtype.pk}), ] for url in urls: response = self.client.get(url, follow=True) self.assertEqual(response.status_code, 200) def test_maintenance_manager(self): self.assertTrue(self.client.login(username="mu", password="<PASSWORD>")) urls = [ (False, reverse("workshift:start_semester")), (True, reverse("workshift:view_semester")), (True, reverse("workshift:semester_info")), (True, reverse("workshift:profile", kwargs={"targetUsername": self.up.user.username})), (False, reverse("workshift:preferences", kwargs={"targetUsername": self.up.user.username})), (True, reverse("workshift:manage")), (True, reverse("workshift:fill_shifts")), (True, reverse("workshift:assign_shifts")), (False, reverse("workshift:adjust_hours")), (False, reverse("workshift:add_workshifter")), (True, reverse("workshift:add_shift")), (True, reverse("workshift:fine_date")), (False, reverse("workshift:edit_shift", kwargs={"pk": self.wshift.pk})), (False, reverse("workshift:edit_instance", kwargs={"pk": self.winstance.pk})), (False, reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk})), (True, reverse("workshift:edit_shift", kwargs={"pk": self.mshift.pk})), (True, reverse("workshift:edit_instance", kwargs={"pk": self.minstance.pk})), (True, reverse("workshift:edit_type", kwargs={"pk": self.mtype.pk})), ] for okay, url in urls: response = self.client.get(url, follow=True) if okay: self.assertEqual(response.status_code, 200) else: self.assertRedirects(response, reverse("workshift:view_semester")) self.assertContains(response, MESSAGES["ADMINS_ONLY"]) def test_user(self): self.assertTrue(self.client.login(username="u", password="<PASSWORD>")) urls = [ (False, reverse("workshift:start_semester")), (True, reverse("workshift:view_semester")), (True, reverse("workshift:semester_info")), (True, reverse("workshift:profile", kwargs={"targetUsername": self.up.user.username})), (False, reverse("workshift:edit_profile", kwargs={"targetUsername": self.up.user.username})), (True, reverse("workshift:preferences", kwargs={"targetUsername": self.up.user.username})), (False, reverse("workshift:manage")), (False, reverse("workshift:fill_shifts")), (False, reverse("workshift:assign_shifts")), (False, reverse("workshift:adjust_hours")), (False, reverse("workshift:add_workshifter")), (False, reverse("workshift:add_shift")), (False, reverse("workshift:fine_date")), (False, reverse("workshift:edit_shift", kwargs={"pk": self.wshift.pk})), (False, reverse("workshift:edit_instance", kwargs={"pk": self.winstance.pk})), (False, reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk})), (False, reverse("workshift:edit_shift", kwargs={"pk": self.mshift.pk})), (False, reverse("workshift:edit_instance", kwargs={"pk": self.minstance.pk})), (False, reverse("workshift:edit_type", kwargs={"pk": self.mtype.pk})), ] for okay, url in urls: response = self.client.get(url, follow=True) if okay: self.assertEqual(response.status_code, 200) else: self.assertRedirects(response, reverse("workshift:view_semester")) self.assertContains(response, MESSAGES["ADMINS_ONLY"]) def test_other_user(self): self.assertTrue(self.client.login(username="ou", password="<PASSWORD>")) urls = [ (False, reverse("workshift:start_semester")), (True, reverse("workshift:view_semester")), (True, reverse("workshift:semester_info")), (True, reverse("workshift:profile", kwargs={"targetUsername": self.up.user.username})), (False, reverse("workshift:edit_profile", kwargs={"targetUsername": self.up.user.username})), (False, reverse("workshift:preferences", kwargs={"targetUsername": self.up.user.username})), (False, reverse("workshift:manage")), (False, reverse("workshift:fill_shifts")), (False, reverse("workshift:assign_shifts")), (False, reverse("workshift:adjust_hours")), (False, reverse("workshift:add_workshifter")), (False, reverse("workshift:add_shift")), (False, reverse("workshift:fine_date")), (False, reverse("workshift:edit_shift", kwargs={"pk": self.wshift.pk})), (False, reverse("workshift:edit_instance", kwargs={"pk": self.winstance.pk})), (False, reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk})), (False, reverse("workshift:edit_shift", kwargs={"pk": self.mshift.pk})), (False, reverse("workshift:edit_instance", kwargs={"pk": self.minstance.pk})), (False, reverse("workshift:edit_type", kwargs={"pk": self.mtype.pk})), ] for okay, url in urls: response = self.client.get(url, follow=True) if okay: self.assertEqual(response.status_code, 200) else: self.assertRedirects(response, reverse("workshift:view_semester")) self.assertContains(response, MESSAGES["ADMINS_ONLY"]) class TestWorkshifters(TestCase): """ Tests that workshift profiles are created correctly for different types of members. """ def setUp(self): self.ru = User.objects.create_user(username="ru", password="<PASSWORD>") self.bu = User.objects.create_user(username="bu", password="<PASSWORD>") self.au = User.objects.create_user(username="au", password="<PASSWORD>") self.ru.is_superuser = True self.ru.save() self.rp = UserProfile.objects.get(user=self.ru) self.bp = UserProfile.objects.get(user=self.bu) self.ap = UserProfile.objects.get(user=self.au) self.rp.status = UserProfile.RESIDENT self.bp.status = UserProfile.BOARDER self.ap.status = UserProfile.ALUMNUS self.rp.save() self.bp.save() self.ap.save() Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.ru), workshift_manager=True, ) self.assertTrue(self.client.login(username="ru", password="<PASSWORD>")) url = reverse("workshift:start_semester") today = localtime(now()).date() response = self.client.post(url, { "semester-season": Semester.SUMMER, "semester-year": today.year, "semester-rate": 13.30, "semester-policy": "http://bsc.coop", "semester-start_date": today, "semester-end_date": today + timedelta(weeks=18), }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) def test_no_alumni(self): """ Tests that WorkshiftProfiles are not created for alumni. """ self.assertEqual( 1, WorkshiftProfile.objects.filter(user=self.ru).count(), ) self.assertEqual( 0, WorkshiftProfile.objects.filter(user=self.bu).count(), ) self.assertEqual( 0, WorkshiftProfile.objects.filter(user=self.au).count(), ) def test_add_user_resident(self): """ Test that adding a resident creates a workshift profile. """ pr = ProfileRequest.objects.create( username="request", first_name="first", last_name="last", email="<EMAIL>", affiliation=UserProfile.RESIDENT, password="<PASSWORD>", ) url = reverse("modify_profile_request", kwargs={"request_pk": pr.pk}) response = self.client.post(url, { "username": pr.username, "first_name": pr.first_name, "last_name": pr.last_name, "email": pr.email, "affiliation": pr.affiliation, "former_houses": "", "is_active": True, "add_user": "", }, follow=True) self.assertRedirects(response, reverse("manage_profile_requests")) self.assertContains( response, "User {0} was successfully added".format(pr.username), ) self.assertEqual( 1, WorkshiftProfile.objects.filter(user__username=pr.username).count(), ) def test_add_user_boarder(self): """ Test that adding a boarder creates a workshift profile. """ pr = ProfileRequest.objects.create( username="request", first_name="first", last_name="last", email="<EMAIL>", affiliation=UserProfile.BOARDER, password="<PASSWORD>", ) url = reverse("modify_profile_request", kwargs={"request_pk": pr.pk}) response = self.client.post(url, { "username": pr.username, "first_name": pr.first_name, "last_name": pr.last_name, "email": pr.email, "affiliation": pr.affiliation, "former_houses": "", "is_active": True, "add_user": "", }, follow=True) self.assertRedirects(response, reverse("manage_profile_requests")) self.assertContains( response, "User {0} was successfully added".format(pr.username), ) self.assertEqual( 0, WorkshiftProfile.objects.filter(user__username=pr.username).count(), ) def test_add_user_alumni(self): """ Test that adding an alumni does not create a workshift profile. """ pr = ProfileRequest.objects.create( username="request", first_name="first", last_name="last", email="<EMAIL>", affiliation=UserProfile.ALUMNUS, password="<PASSWORD>", ) url = reverse("modify_profile_request", kwargs={"request_pk": pr.pk}) response = self.client.post(url, { "username": pr.username, "first_name": pr.first_name, "last_name": pr.last_name, "email": pr.email, "affiliation": pr.affiliation, "former_houses": "", "is_active": True, "add_user": "", }, follow=True) self.assertRedirects(response, reverse("manage_profile_requests")) self.assertContains( response, "User {0} was successfully added".format(pr.username), ) self.assertEqual( 0, WorkshiftProfile.objects.filter(user__username=pr.username).count(), ) def test_add_workshifter(self): url = reverse("workshift:add_workshifter") response = self.client.post(url, { "user-{0}-add_profile".format(self.bu.pk): True, "user-{0}-hours".format(self.bu.pk): 3, "user-{0}-hours".format(self.au.pk): 3, }) self.assertRedirects(response, reverse("workshift:manage")) self.assertEqual( 1, WorkshiftProfile.objects.filter(user=self.bu).count() ) self.assertEqual( 0, WorkshiftProfile.objects.filter(user=self.au).count() ) profile = WorkshiftProfile.objects.get(user=self.bu) self.assertEqual( profile.pool_hours.get( pool=WorkshiftPool.objects.get(is_primary=True), ).hours, 3, ) class TestWorkshifts(TestCase): """ Tests the pages for adding and modifying workshift types, regular shifts, and instances of shifts. """ def setUp(self): self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.u = User.objects.create_user(username="u", password="<PASSWORD>") self.wm = Manager.objects.create( title="Workshift Manager", incumbent=UserProfile.objects.get(user=self.wu), workshift_manager=True, ) today = localtime(now()).date() self.sem = Semester.objects.create( year=2014, start_date=today, end_date=today + timedelta(days=6), ) self.pool = WorkshiftPool.objects.get( semester=self.sem, ) self.wp = WorkshiftProfile.objects.get(user=self.wu) self.up = WorkshiftProfile.objects.get(user=self.u) self.wtype = WorkshiftType.objects.create( title="Test Posts", description="Test Description", ) self.shift = RegularWorkshift.objects.create( workshift_type=self.wtype, pool=self.pool, day=today.weekday(), start_time=time(16), end_time=time(18), ) self.instance = WorkshiftInstance.objects.get( weekly_workshift=self.shift, ) info = InstanceInfo.objects.create( title="Clean The Deck", pool=self.pool, description="Make sure to sing sailor tunes.", ) self.once = WorkshiftInstance.objects.create( info=info, date=today, workshifter=self.wp, ) self.client.login(username="wu", password="<PASSWORD>") def test_add_instance(self): url = reverse("workshift:add_shift") response = self.client.post(url, { "add_instance": "", "weekly_workshift": self.shift.pk, "date": date(2014, 5, 27), "workshifter": self.wp.pk, "closed": False, "hours": 2, }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) instance = WorkshiftInstance.objects.get(pk=self.once.pk + 1) self.assertEqual(self.shift, instance.weekly_workshift) self.assertEqual(None, instance.info) self.assertEqual(date(2014, 5, 27), instance.date) self.assertEqual(self.wp, instance.workshifter) self.assertEqual(False, instance.closed) self.assertEqual(2, instance.hours) self.assertEqual(self.shift.verify, instance.verify) self.assertEqual(False, instance.week_long) def test_edit_instance(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.instance.pk}) response = self.client.post(url, { "edit": "", "weekly_workshift": self.instance.weekly_workshift.pk, "title": self.instance.title, "description": self.instance.description, "pool": self.instance.pool.pk, "start_time": self.instance.start_time.strftime("%I:%M %p"), "end_time": self.instance.end_time.strftime("%I:%M %p"), "date": date(2014, 5, 27), "workshifter": self.wp.pk, "closed": False, "verify": self.instance.verify, "week_long": self.instance.week_long, }, follow=True) url = reverse("workshift:view_instance", kwargs={"pk": self.instance.pk}) self.assertRedirects(response, url) self.assertEqual(1, InstanceInfo.objects.count()) instance = WorkshiftInstance.objects.get(pk=self.instance.pk) self.assertEqual(self.instance.weekly_workshift, instance.weekly_workshift) self.assertEqual(self.instance.title, instance.title) self.assertEqual(self.instance.description, instance.description) self.assertEqual(self.pool, instance.pool) self.assertEqual(self.instance.start_time, instance.start_time) self.assertEqual(self.instance.end_time, instance.end_time) self.assertEqual(date(2014, 5, 27), instance.date) self.assertEqual(self.wp, instance.workshifter) self.assertEqual(False, instance.closed) self.assertEqual(self.instance.verify, instance.verify) self.assertEqual(self.instance.week_long, instance.week_long) def test_edit_instance_full(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.instance.pk}) response = self.client.post(url, { "edit": "", "title": "Edit Instance Title", "description": "I once was from a long line of workshifts", "pool": self.instance.pool.pk, "start_time": "2:00 PM", "end_time": "4:00 PM", "date": date(2014, 5, 27), "workshifter": self.wp.pk, "closed": False, "verify": SELF_VERIFY, "week_long": False, }, follow=True) url = reverse("workshift:view_instance", kwargs={"pk": self.instance.pk}) self.assertRedirects(response, url) self.assertEqual(InstanceInfo.objects.count(), 2) instance = WorkshiftInstance.objects.get(pk=self.instance.pk) self.assertEqual(instance.weekly_workshift, None) self.assertEqual(instance.title, "Edit Instance Title") self.assertEqual( "I once was from a long line of workshifts", instance.description, ) self.assertEqual(instance.pool, self.pool) self.assertEqual(instance.start_time, time(14, 0, 0)) self.assertEqual(instance.end_time, time(16, 0, 0)) self.assertEqual(instance.date, date(2014, 5, 27)) self.assertEqual(instance.workshifter, self.wp) self.assertEqual(instance.closed, False) self.assertEqual(SELF_VERIFY, instance.verify) self.assertEqual(instance.week_long, False) def test_delete_instance(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.instance.pk}) response = self.client.post(url, { "delete": "", }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) self.assertEqual( 1, WorkshiftType.objects.filter(pk=self.wtype.pk).count(), ) self.assertEqual( 1, RegularWorkshift.objects.filter(pk=self.shift.pk).count(), ) self.assertEqual( 0, WorkshiftInstance.objects.filter(pk=self.instance.pk).count(), ) self.assertEqual( 1, WorkshiftInstance.objects.filter(pk=self.once.pk).count(), ) def test_add_once(self): url = reverse("workshift:add_shift") response = self.client.post(url, { "add_instance": "", "title": "Add Instance Title", "description": "Add Instance Description", "pool": self.pool.pk, "start_time": "6:00 PM", "end_time": "8:00 PM", "date": date(2014, 5, 27), "workshifter": self.wp.pk, "closed": False, "hours": 2, "verify": WORKSHIFT_MANAGER_VERIFY, "week_long": False, }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) instance = WorkshiftInstance.objects.get(pk=self.once.pk + 1) self.assertEqual("Add Instance Title", instance.title) self.assertEqual("Add Instance Description", instance.description) self.assertEqual(self.pool, instance.pool) self.assertEqual(time(18, 0, 0), instance.start_time) self.assertEqual(time(20, 0, 0), instance.end_time) self.assertEqual(date(2014, 5, 27), instance.date) self.assertEqual(self.wp, instance.workshifter) self.assertEqual(False, instance.closed) self.assertEqual(2, instance.hours) self.assertEqual(WORKSHIFT_MANAGER_VERIFY, instance.verify) self.assertEqual(False, instance.week_long) def test_edit_once(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.once.pk}) response = self.client.post(url, { "edit": "", "title": "Edit Instance Title", "description": "I once was from a long line of workshifts", "pool": self.instance.pool.pk, "start_time": "2:00 PM", "end_time": "4:00 PM", "date": date(2014, 5, 27), "workshifter": self.wp.pk, "closed": False, "verify": OTHER_VERIFY, "week_long": False, }, follow=True) url = reverse("workshift:view_instance", kwargs={"pk": self.once.pk}) self.assertRedirects(response, url) self.assertEqual(1, InstanceInfo.objects.count()) instance = WorkshiftInstance.objects.get(pk=self.once.pk) self.assertEqual(None, instance.weekly_workshift) self.assertEqual("Edit Instance Title", instance.title) self.assertEqual( "I once was from a long line of workshifts", instance.description, ) self.assertEqual(self.pool, instance.pool) self.assertEqual(time(14, 0, 0), instance.start_time) self.assertEqual(time(16, 0, 0), instance.end_time) self.assertEqual(date(2014, 5, 27), instance.date) self.assertEqual(self.wp, instance.workshifter) self.assertEqual(False, instance.closed) self.assertEqual(OTHER_VERIFY, instance.verify) self.assertEqual(False, instance.week_long) def test_delete_once(self): url = reverse("workshift:edit_instance", kwargs={"pk": self.once.pk}) response = self.client.post(url, { "delete": "", }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) self.assertEqual( 1, WorkshiftType.objects.filter(pk=self.wtype.pk).count(), ) self.assertEqual( 1, RegularWorkshift.objects.filter(pk=self.shift.pk).count(), ) self.assertEqual( WorkshiftInstance.objects.filter(pk=self.instance.pk).count(), 1, ) self.assertEqual( 0, WorkshiftInstance.objects.filter(pk=self.once.pk).count(), ) def test_edit_shift(self): url = reverse("workshift:edit_shift", kwargs={"pk": self.shift.pk}) response = self.client.post(url, { "edit": "", "workshift_type": self.wtype.pk, "pool": self.pool.pk, "hours": 42, "count": 4, "day": DAY_CHOICES[0][0], "active": True, "current_assignees": [self.up.pk], "start_time": "4:00 PM", "end_time": "6:00 PM", "verify": AUTO_VERIFY, "addendum": "Edited addendum", }, follow=True) url = reverse("workshift:view_shift", kwargs={"pk": self.shift.pk}) self.assertRedirects(response, url) shift = RegularWorkshift.objects.get(pk=self.shift.pk) self.assertEqual(self.wtype, shift.workshift_type) self.assertEqual(self.pool, shift.pool) self.assertEqual(shift.hours, 42) self.assertEqual(4, shift.count) self.assertEqual(True, shift.active) self.assertEqual( [self.up], list(shift.current_assignees.all()), ) instances = WorkshiftInstance.objects.filter(weekly_workshift=shift) self.assertGreater(instances.count(), 0) self.assertTrue(all(i.workshifter == self.up for i in instances)) self.assertEqual(time(16), shift.start_time) self.assertEqual(time(18), shift.end_time) self.assertEqual(AUTO_VERIFY, shift.verify) self.assertEqual(DAY_CHOICES[0][0], shift.day) self.assertEqual(False, shift.week_long) self.assertEqual("Edited addendum", shift.addendum) def test_delete_shift(self): url = reverse("workshift:edit_shift", kwargs={"pk": self.shift.pk}) response = self.client.post(url, { "delete": "", }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) self.assertEqual( 1, WorkshiftType.objects.filter(pk=self.wtype.pk).count(), ) self.assertEqual( 0, RegularWorkshift.objects.filter(pk=self.shift.pk).count(), ) self.assertEqual( 0, WorkshiftInstance.objects.filter(pk=self.instance.pk).count(), ) self.assertEqual( 1, WorkshiftInstance.objects.filter(pk=self.once.pk).count(), ) def test_add_type(self): url = reverse("workshift:add_shift") response = self.client.post(url, { "add_type": "", "type-title": "Added Title", "type-description": "Added Description", "type-quick_tips": "Added Quick Tips", "type-rateable": True, "type-assignment": WorkshiftType.AUTO_ASSIGN, "shifts-TOTAL_FORMS": 0, "shifts-INITIAL_FORMS": 0, "shifts-MAX_NUM_FORMS": 50, }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) shift_type = WorkshiftType.objects.get(title="Added Title") self.assertEqual(shift_type.title, "Added Title") self.assertEqual(shift_type.description, "Added Description") self.assertEqual(shift_type.quick_tips, "Added Quick Tips") self.assertEqual(shift_type.rateable, True) self.assertEqual(shift_type.assignment, WorkshiftType.AUTO_ASSIGN) def test_edit_type(self): url = reverse("workshift:edit_type", kwargs={"pk": self.wtype.pk}) response = self.client.post(url, { "edit": "", "edit-title": "Edited Title", "edit-description": "Edited Description", "edit-quick_tips": "Edited Quick Tips", "edit-rateable": False, "edit-assignment": WorkshiftType.MANUAL_ASSIGN, "shifts-TOTAL_FORMS": 0, "shifts-INITIAL_FORMS": 0, "shifts-MAX_NUM_FORMS": 50, }, follow=True) url = reverse("workshift:view_type", kwargs={"pk": self.wtype.pk}) self.assertRedirects(response, url) shift_type = WorkshiftType.objects.get(pk=self.wtype.pk) self.assertEqual(shift_type.title, "Edited Title") self.assertEqual(shift_type.description, "Edited Description") self.assertEqual(shift_type.quick_tips, "Edited Quick Tips") self.assertEqual(shift_type.rateable, False) self.assertEqual(shift_type.assignment, WorkshiftType.MANUAL_ASSIGN) class TestSemester(TestCase): """ Tests for correct behavior when multiple semesters exist, including when there exist multiple "current" semesters. """ def setUp(self): self.wu = User.objects.create_user(username="wu", password="<PASSWORD>") self.wu.first_name = "Workshift" self.wu.last_name = "User" self.wu.save() self.wp = UserProfile.objects.get(user=self.wu) self.wm = Manager.objects.create( title="Workshift Manager", incumbent=self.wp, workshift_manager=True, ) today = localtime(now()).date() last_year = today - timedelta(days=365) self.s2 = Semester.objects.create( year=last_year.year, start_date=last_year, end_date=last_year + timedelta(days=7), ) self.s1 = Semester.objects.create( year=today.year, start_date=today, end_date=today + timedelta(days=7), ) self.assertEqual( RegularWorkshift.objects.count(), 2, ) self.wprofile = WorkshiftProfile.objects.get(user=self.wu, semester=self.s1) self.client.login(username="wu", password="<PASSWORD>") def test_fill_shifts(self): url = reverse("workshift:fill_shifts") response = self.client.post(url, { }, follow=True) self.assertEqual(response.status_code, 200) self.assertEqual( RegularWorkshift.objects.count(), 2, # 2x Workshift Manager ) names = [ "fill_regular_shifts", "fill_humor_shifts", "fill_bathroom_shifts", "fill_social_shifts", "fill_HI_shifts", ] for name in names: response = self.client.post(url, { name: "", }, follow=True) self.assertRedirects(response, reverse("workshift:fill_shifts")) # Check we created the correct number of shifts (no duplicates across semesters) self.assertEqual( RegularWorkshift.objects.count(), sum(len(i[2]) for i in REGULAR_WORKSHIFTS) + len(WEEK_LONG) + sum(len(i[2]) for i in HUMOR_WORKSHIFTS) + sum(len(i[2]) for i in BATHROOM_WORKSHIFTS) + Manager.objects.count() * 2, ) response = self.client.post(url, { "reset_all_shifts": "", }, follow=True) self.assertRedirects(response, reverse("workshift:fill_shifts")) self.assertEqual( RegularWorkshift.objects.count(), 2, # 2x Workshift Manager ) def test_clear_semester(self): self.s1.delete() self.assertEqual( Semester.objects.count(), 1, ) self.s2.delete() self.assertEqual( Semester.objects.count(), 0, ) def test_new_semester(self): url = reverse("workshift:start_semester") today = localtime(now()).date() response = self.client.post(url, { "semester-year": today.year, "semester-season": Semester.FALL, "semester-rate": 14.00, "semester-policy": "http://bsc.coop", "semester-start_date": today, "semester-end_date": today + timedelta(weeks=18) - timedelta(days=today.weekday()), }, follow=True) self.assertRedirects(response, reverse("workshift:manage")) self.assertEqual( Semester.objects.filter(current=True).count(), 1, ) s = Semester.objects.get(current=True) self.assertEqual( s.year, today.year, ) self.assertEqual( s.season, Semester.FALL, ) self.assertEqual( WorkshiftProfile.objects.filter(semester=s).count(), 1, ) self.assertEqual( RegularWorkshift.objects.filter(pool__semester=s).count(), 1, ) self.assertEqual( WorkshiftProfile.objects.filter(user=self.wu, semester=s).count(), 1, ) shift = RegularWorkshift.objects.get(pool__semester=s) self.assertEqual( [i.pk for i in shift.current_assignees.all()], [i.pk for i in WorkshiftProfile.objects.filter(user=self.wu, semester=s)], ) self.assertEqual( WorkshiftInstance.objects.filter(weekly_workshift=shift).count(), 18, # 18 instances of Workshift Manager shift ) def test_no_current(self): self.s1.current = False self.s1.save() url = reverse("workshift:view_semester") response = self.client.get(url, follow=True) self.assertRedirects(response, reverse("workshift:start_semester")) def test_multiple_current(self): self.s2.current = True self.s2.save() workshift_emails_str = "" url = reverse("workshift:view_semester") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains( response, MESSAGES['MULTIPLE_CURRENT_SEMESTERS'].format( admin_email=settings.ADMINS[0][1], workshift_emails=workshift_emails_str, )) def test_multiple_current_workshift_email(self): self.s2.current = True self.s2.save() self.wm.email = "<EMAIL>" self.wm.save() workshift_emails_str = ' (<a href="mailto:{0}">{0}</a>)'.format(self.wm.email) url = reverse("workshift:view_semester") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains( response, MESSAGES['MULTIPLE_CURRENT_SEMESTERS'].format( admin_email=settings.ADMINS[0][1], workshift_emails=workshift_emails_str, )) def test_multiple_current_user_email(self): self.s2.current = True self.s2.save() self.wu.email = "<EMAIL>" self.wp.email_visible = True self.wu.save() self.wp.save() workshift_emails_str = ' (<a href="mailto:{0}">{0}</a>)'.format(self.wu.email) url = reverse("workshift:view_semester") response = self.client.get(url) self.assertEqual(response.status_code, 200) self.assertContains( response, MESSAGES['MULTIPLE_CURRENT_SEMESTERS'].format( admin_email=settings.ADMINS[0][1], workshift_emails=workshift_emails_str, ))
[ "workshift.utils.collect_blown", "django.core.urlresolvers.reverse", "workshift.cron.CollectBlownCronJob", "base.models.ProfileRequest.objects.create", "datetime.timedelta", "workshift.utils.auto_assign_shifts", "datetime.time", "managers.models.Manager.objects.all", "django.utils.timezone.now", "datetime.date", "workshift.utils.get_year_season", "managers.models.Manager.objects.create", "base.models.User.objects.create_user", "workshift.cron.UpdateWeeklyStandings", "workshift.utils.make_workshift_pool_hours", "workshift.utils.get_semester_start_end", "base.models.UserProfile.objects.get", "managers.models.Manager.objects.count", "workshift.utils.make_instances", "farnsworth.pre_fill.main" ]
[((953, 1014), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u"""', 'password': '"""<PASSWORD>"""'}), "(username='u', password='<PASSWORD>')\n", (977, 1014), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((1033, 1095), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (1057, 1095), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((1545, 1579), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (1552, 1579), False, 'from django.core.urlresolvers import reverse\n'), ((1749, 1783), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (1756, 1783), False, 'from django.core.urlresolvers import reverse\n'), ((2171, 2206), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (2178, 2206), False, 'from django.core.urlresolvers import reverse\n'), ((3793, 3832), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u0"""'}), "(username='u0')\n", (3817, 3832), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((5259, 5314), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester'}), '(semester=self.semester)\n', (5290, 5314), False, 'from workshift import utils, signals\n'), ((5582, 5621), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (5606, 5621), False, 'from workshift import utils, signals\n'), ((6689, 6728), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (6713, 6728), False, 'from workshift import utils, signals\n'), ((7350, 7389), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (7374, 7389), False, 'from workshift import utils, signals\n'), ((8331, 8370), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (8355, 8370), False, 'from workshift import utils, signals\n'), ((9466, 9505), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (9490, 9505), False, 'from workshift import utils, signals\n'), ((10878, 10917), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (10902, 10917), False, 'from workshift import utils, signals\n'), ((12439, 12494), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester'}), '(semester=self.semester)\n', (12470, 12494), False, 'from workshift import utils, signals\n'), ((12516, 12555), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (12540, 12555), False, 'from workshift import utils, signals\n'), ((13371, 13426), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester'}), '(semester=self.semester)\n', (13402, 13426), False, 'from workshift import utils, signals\n'), ((13448, 13487), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (13472, 13487), False, 'from workshift import utils, signals\n'), ((14053, 14097), 'farnsworth.pre_fill.main', 'pre_fill.main', (["['--managers', '--workshift']"], {}), "(['--managers', '--workshift'])\n", (14066, 14097), False, 'from farnsworth import pre_fill\n'), ((14106, 14161), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester'}), '(semester=self.semester)\n', (14137, 14161), False, 'from workshift import utils, signals\n'), ((14384, 14423), 'workshift.utils.auto_assign_shifts', 'utils.auto_assign_shifts', (['self.semester'], {}), '(self.semester)\n', (14408, 14423), False, 'from workshift import utils, signals\n'), ((14750, 14794), 'farnsworth.pre_fill.main', 'pre_fill.main', (["['--managers', '--workshift']"], {}), "(['--managers', '--workshift'])\n", (14763, 14794), False, 'from farnsworth import pre_fill\n'), ((14803, 14858), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester'}), '(semester=self.semester)\n', (14834, 14858), False, 'from workshift import utils, signals\n'), ((15539, 15608), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u"""', 'first_name': '"""N"""', 'last_name': '"""M"""'}), "(username='u', first_name='N', last_name='M')\n", (15563, 15608), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((16469, 16492), 'workshift.utils.get_year_season', 'utils.get_year_season', ([], {}), '()\n', (16490, 16492), False, 'from workshift import utils, signals\n'), ((18123, 18156), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {}), '()\n', (18154, 18156), False, 'from workshift import utils, signals\n'), ((18367, 18435), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester', 'profiles': '[]'}), '(semester=self.semester, profiles=[])\n', (18398, 18435), False, 'from workshift import utils, signals\n'), ((18600, 18685), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester', 'profiles': '[self.profile]'}), '(semester=self.semester, profiles=[self.profile]\n )\n', (18631, 18685), False, 'from workshift import utils, signals\n'), ((18928, 19000), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester', 'pools': '[self.p1]'}), '(semester=self.semester, pools=[self.p1])\n', (18959, 19000), False, 'from workshift import utils, signals\n'), ((19165, 19237), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester', 'pools': '[self.p2]'}), '(semester=self.semester, pools=[self.p2])\n', (19196, 19237), False, 'from workshift import utils, signals\n'), ((19487, 19559), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {'semester': 'self.semester', 'primary_hours': '(6)'}), '(semester=self.semester, primary_hours=6)\n', (19518, 19559), False, 'from workshift import utils, signals\n'), ((20587, 20647), 'workshift.utils.make_instances', 'utils.make_instances', ([], {'semester': 'self.semester', 'shifts': '[shift]'}), '(semester=self.semester, shifts=[shift])\n', (20607, 20647), False, 'from workshift import utils, signals\n'), ((21309, 21342), 'workshift.utils.make_workshift_pool_hours', 'utils.make_workshift_pool_hours', ([], {}), '()\n', (21340, 21342), False, 'from workshift import utils, signals\n'), ((24647, 24708), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u"""', 'password': '"""<PASSWORD>"""'}), "(username='u', password='<PASSWORD>')\n", (24671, 24708), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((24727, 24789), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (24751, 24789), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((30513, 30544), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:list_types"""'], {}), "('workshift:list_types')\n", (30520, 30544), False, 'from django.core.urlresolvers import reverse\n'), ((30913, 30973), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:view_type', kwargs={'pk': self.wtype.pk})\n", (30920, 30973), False, 'from django.core.urlresolvers import reverse\n'), ((31290, 31350), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (31297, 31350), False, 'from django.core.urlresolvers import reverse\n'), ((31663, 31724), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_shift"""'], {'kwargs': "{'pk': self.shift.pk}"}), "('workshift:view_shift', kwargs={'pk': self.shift.pk})\n", (31670, 31724), False, 'from django.core.urlresolvers import reverse\n'), ((32266, 32327), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.shift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.shift.pk})\n", (32273, 32327), False, 'from django.core.urlresolvers import reverse\n'), ((32714, 32781), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:view_instance', kwargs={'pk': self.instance.pk})\n", (32721, 32781), False, 'from django.core.urlresolvers import reverse\n'), ((33593, 33660), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.instance.pk})\n", (33600, 33660), False, 'from django.core.urlresolvers import reverse\n'), ((34377, 34440), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.once.pk}"}), "('workshift:view_instance', kwargs={'pk': self.once.pk})\n", (34384, 34440), False, 'from django.core.urlresolvers import reverse\n'), ((35170, 35233), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.once.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.once.pk})\n", (35177, 35233), False, 'from django.core.urlresolvers import reverse\n'), ((35727, 35761), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (35734, 35761), False, 'from django.core.urlresolvers import reverse\n'), ((36033, 36067), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (36040, 36067), False, 'from django.core.urlresolvers import reverse\n'), ((36648, 36682), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (36655, 36682), False, 'from django.core.urlresolvers import reverse\n'), ((37138, 37172), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (37145, 37172), False, 'from django.core.urlresolvers import reverse\n'), ((37696, 37730), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (37703, 37730), False, 'from django.core.urlresolvers import reverse\n'), ((38381, 38415), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (38388, 38415), False, 'from django.core.urlresolvers import reverse\n'), ((38781, 38815), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (38788, 38815), False, 'from django.core.urlresolvers import reverse\n'), ((39337, 39367), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fine_date"""'], {}), "('workshift:fine_date')\n", (39344, 39367), False, 'from django.core.urlresolvers import reverse\n'), ((39808, 39870), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (39832, 39870), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((41265, 41358), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:preferences"""'], {'kwargs': "{'targetUsername': self.wprofile.user.username}"}), "('workshift:preferences', kwargs={'targetUsername': self.wprofile.\n user.username})\n", (41272, 41358), False, 'from django.core.urlresolvers import reverse\n'), ((48261, 48323), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (48285, 48323), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((48341, 48402), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u"""', 'password': '"""<PASSWORD>"""'}), "(username='u', password='<PASSWORD>')\n", (48365, 48402), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((48421, 48483), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""ou"""', 'password': '"""<PASSWORD>"""'}), "(username='ou', password='<PASSWORD>')\n", (48445, 48483), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((55323, 55385), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (55347, 55385), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((55404, 55466), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""mu"""', 'password': '"""<PASSWORD>"""'}), "(username='mu', password='<PASSWORD>')\n", (55428, 55466), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((55484, 55545), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u"""', 'password': '"""<PASSWORD>"""'}), "(username='u', password='<PASSWORD>')\n", (55508, 55545), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((55564, 55626), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""ou"""', 'password': '"""<PASSWORD>"""'}), "(username='ou', password='<PASSWORD>')\n", (55588, 55626), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((65553, 65615), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""ru"""', 'password': '"""<PASSWORD>"""'}), "(username='ru', password='<PASSWORD>')\n", (65577, 65615), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((65634, 65696), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""bu"""', 'password': '"""<PASSWORD>"""'}), "(username='bu', password='<PASSWORD>')\n", (65658, 65696), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((65715, 65777), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""au"""', 'password': '"""<PASSWORD>"""'}), "(username='au', password='<PASSWORD>')\n", (65739, 65777), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((65857, 65894), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.ru'}), '(user=self.ru)\n', (65880, 65894), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((65913, 65950), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.bu'}), '(user=self.bu)\n', (65936, 65950), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((65969, 66006), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.au'}), '(user=self.au)\n', (65992, 66006), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((66490, 66525), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (66497, 66525), False, 'from django.core.urlresolvers import reverse\n'), ((67596, 67765), 'base.models.ProfileRequest.objects.create', 'ProfileRequest.objects.create', ([], {'username': '"""request"""', 'first_name': '"""first"""', 'last_name': '"""last"""', 'email': '"""<EMAIL>"""', 'affiliation': 'UserProfile.RESIDENT', 'password': '"""<PASSWORD>"""'}), "(username='request', first_name='first',\n last_name='last', email='<EMAIL>', affiliation=UserProfile.RESIDENT,\n password='<PASSWORD>')\n", (67625, 67765), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((67856, 67919), 'django.core.urlresolvers.reverse', 'reverse', (['"""modify_profile_request"""'], {'kwargs': "{'request_pk': pr.pk}"}), "('modify_profile_request', kwargs={'request_pk': pr.pk})\n", (67863, 67919), False, 'from django.core.urlresolvers import reverse\n'), ((68746, 68914), 'base.models.ProfileRequest.objects.create', 'ProfileRequest.objects.create', ([], {'username': '"""request"""', 'first_name': '"""first"""', 'last_name': '"""last"""', 'email': '"""<EMAIL>"""', 'affiliation': 'UserProfile.BOARDER', 'password': '"""<PASSWORD>"""'}), "(username='request', first_name='first',\n last_name='last', email='<EMAIL>', affiliation=UserProfile.BOARDER,\n password='<PASSWORD>')\n", (68775, 68914), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((69005, 69068), 'django.core.urlresolvers.reverse', 'reverse', (['"""modify_profile_request"""'], {'kwargs': "{'request_pk': pr.pk}"}), "('modify_profile_request', kwargs={'request_pk': pr.pk})\n", (69012, 69068), False, 'from django.core.urlresolvers import reverse\n'), ((69902, 70070), 'base.models.ProfileRequest.objects.create', 'ProfileRequest.objects.create', ([], {'username': '"""request"""', 'first_name': '"""first"""', 'last_name': '"""last"""', 'email': '"""<EMAIL>"""', 'affiliation': 'UserProfile.ALUMNUS', 'password': '"""<PASSWORD>"""'}), "(username='request', first_name='first',\n last_name='last', email='<EMAIL>', affiliation=UserProfile.ALUMNUS,\n password='<PASSWORD>')\n", (69931, 70070), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((70161, 70224), 'django.core.urlresolvers.reverse', 'reverse', (['"""modify_profile_request"""'], {'kwargs': "{'request_pk': pr.pk}"}), "('modify_profile_request', kwargs={'request_pk': pr.pk})\n", (70168, 70224), False, 'from django.core.urlresolvers import reverse\n'), ((70963, 70999), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_workshifter"""'], {}), "('workshift:add_workshifter')\n", (70970, 70999), False, 'from django.core.urlresolvers import reverse\n'), ((71955, 72017), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (71979, 72017), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((72035, 72096), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""u"""', 'password': '"""<PASSWORD>"""'}), "(username='u', password='<PASSWORD>')\n", (72059, 72096), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((73602, 73632), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (73609, 73632), False, 'from django.core.urlresolvers import reverse\n'), ((74533, 74600), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.instance.pk})\n", (74540, 74600), False, 'from django.core.urlresolvers import reverse\n'), ((75260, 75327), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:view_instance', kwargs={'pk': self.instance.pk})\n", (75267, 75327), False, 'from django.core.urlresolvers import reverse\n'), ((76263, 76330), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.instance.pk})\n", (76270, 76330), False, 'from django.core.urlresolvers import reverse\n'), ((76846, 76913), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:view_instance', kwargs={'pk': self.instance.pk})\n", (76853, 76913), False, 'from django.core.urlresolvers import reverse\n'), ((77834, 77901), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.instance.pk})\n", (77841, 77901), False, 'from django.core.urlresolvers import reverse\n'), ((78617, 78647), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (78624, 78647), False, 'from django.core.urlresolvers import reverse\n'), ((79989, 80052), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.once.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.once.pk})\n", (79996, 80052), False, 'from django.core.urlresolvers import reverse\n'), ((80569, 80632), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.once.pk}"}), "('workshift:view_instance', kwargs={'pk': self.once.pk})\n", (80576, 80632), False, 'from django.core.urlresolvers import reverse\n'), ((81546, 81609), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.once.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.once.pk})\n", (81553, 81609), False, 'from django.core.urlresolvers import reverse\n'), ((82327, 82388), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.shift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.shift.pk})\n", (82334, 82388), False, 'from django.core.urlresolvers import reverse\n'), ((82886, 82947), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_shift"""'], {'kwargs': "{'pk': self.shift.pk}"}), "('workshift:view_shift', kwargs={'pk': self.shift.pk})\n", (82893, 82947), False, 'from django.core.urlresolvers import reverse\n'), ((83967, 84028), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.shift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.shift.pk})\n", (83974, 84028), False, 'from django.core.urlresolvers import reverse\n'), ((84744, 84774), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (84751, 84774), False, 'from django.core.urlresolvers import reverse\n'), ((85732, 85792), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (85739, 85792), False, 'from django.core.urlresolvers import reverse\n'), ((86263, 86323), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:view_type', kwargs={'pk': self.wtype.pk})\n", (86270, 86323), False, 'from django.core.urlresolvers import reverse\n'), ((86971, 87033), 'base.models.User.objects.create_user', 'User.objects.create_user', ([], {'username': '"""wu"""', 'password': '"""<PASSWORD>"""'}), "(username='wu', password='<PASSWORD>')\n", (86995, 87033), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((87151, 87188), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (87174, 87188), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((87208, 87304), 'managers.models.Manager.objects.create', 'Manager.objects.create', ([], {'title': '"""Workshift Manager"""', 'incumbent': 'self.wp', 'workshift_manager': '(True)'}), "(title='Workshift Manager', incumbent=self.wp,\n workshift_manager=True)\n", (87230, 87304), False, 'from managers.models import Manager\n'), ((88054, 88086), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (88061, 88086), False, 'from django.core.urlresolvers import reverse\n'), ((89743, 89778), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (89750, 89778), False, 'from django.core.urlresolvers import reverse\n'), ((91475, 91509), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (91482, 91509), False, 'from django.core.urlresolvers import reverse\n'), ((91781, 91815), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (91788, 91815), False, 'from django.core.urlresolvers import reverse\n'), ((92412, 92446), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (92419, 92446), False, 'from django.core.urlresolvers import reverse\n'), ((93098, 93132), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (93105, 93132), False, 'from django.core.urlresolvers import reverse\n'), ((1876, 1911), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (1883, 1911), False, 'from django.core.urlresolvers import reverse\n'), ((2109, 2128), 'django.core.urlresolvers.reverse', 'reverse', (['"""homepage"""'], {}), "('homepage')\n", (2116, 2128), False, 'from django.core.urlresolvers import reverse\n'), ((2589, 2616), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (2596, 2616), False, 'from django.core.urlresolvers import reverse\n'), ((14245, 14266), 'managers.models.Manager.objects.all', 'Manager.objects.all', ([], {}), '()\n', (14264, 14266), False, 'from managers.models import Manager\n'), ((14301, 14335), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'user'}), '(user=user)\n', (14324, 14335), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((17653, 17704), 'workshift.utils.get_semester_start_end', 'utils.get_semester_start_end', (['(2014)', 'Semester.SPRING'], {}), '(2014, Semester.SPRING)\n', (17681, 17704), False, 'from workshift import utils, signals\n'), ((17810, 17861), 'workshift.utils.get_semester_start_end', 'utils.get_semester_start_end', (['(2014)', 'Semester.SUMMER'], {}), '(2014, Semester.SUMMER)\n', (17838, 17861), False, 'from workshift import utils, signals\n'), ((17968, 18017), 'workshift.utils.get_semester_start_end', 'utils.get_semester_start_end', (['(2014)', 'Semester.FALL'], {}), '(2014, Semester.FALL)\n', (17996, 18017), False, 'from workshift import utils, signals\n'), ((21407, 21428), 'workshift.utils.collect_blown', 'utils.collect_blown', ([], {}), '()\n', (21426, 21428), False, 'from workshift import utils, signals\n'), ((21509, 21552), 'workshift.utils.collect_blown', 'utils.collect_blown', ([], {'semester': 'self.semester'}), '(semester=self.semester)\n', (21528, 21552), False, 'from workshift import utils, signals\n'), ((21679, 21696), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (21688, 21696), False, 'from datetime import timedelta, time, date\n'), ((23091, 23140), 'datetime.timedelta', 'timedelta', ([], {'hours': 'self.p1.verify_cutoff', 'minutes': '(1)'}), '(hours=self.p1.verify_cutoff, minutes=1)\n', (23100, 23140), False, 'from datetime import timedelta, time, date\n'), ((24146, 24180), 'workshift.utils.collect_blown', 'utils.collect_blown', ([], {'moment': 'moment'}), '(moment=moment)\n', (24165, 24180), False, 'from workshift import utils, signals\n'), ((24431, 24436), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (24434, 24436), False, 'from django.utils.timezone import now, localtime\n'), ((27619, 27650), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:list_types"""'], {}), "('workshift:list_types')\n", (27626, 27650), False, 'from django.core.urlresolvers import reverse\n'), ((27664, 27724), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:view_type', kwargs={'pk': self.wtype.pk})\n", (27671, 27724), False, 'from django.core.urlresolvers import reverse\n'), ((27738, 27772), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (27745, 27772), False, 'from django.core.urlresolvers import reverse\n'), ((27786, 27875), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:profile"""'], {'kwargs': "{'targetUsername': self.wprofile.user.username}"}), "('workshift:profile', kwargs={'targetUsername': self.wprofile.user.\n username})\n", (27793, 27875), False, 'from django.core.urlresolvers import reverse\n'), ((27884, 27945), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_shift"""'], {'kwargs': "{'pk': self.shift.pk}"}), "('workshift:view_shift', kwargs={'pk': self.shift.pk})\n", (27891, 27945), False, 'from django.core.urlresolvers import reverse\n'), ((27959, 28026), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.instance.pk}"}), "('workshift:view_instance', kwargs={'pk': self.instance.pk})\n", (27966, 28026), False, 'from django.core.urlresolvers import reverse\n'), ((28040, 28103), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_instance"""'], {'kwargs': "{'pk': self.once.pk}"}), "('workshift:view_instance', kwargs={'pk': self.once.pk})\n", (28047, 28103), False, 'from django.core.urlresolvers import reverse\n'), ((28117, 28147), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_open"""'], {}), "('workshift:view_open')\n", (28124, 28147), False, 'from django.core.urlresolvers import reverse\n'), ((28161, 28195), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:semester_info"""'], {}), "('workshift:semester_info')\n", (28168, 28195), False, 'from django.core.urlresolvers import reverse\n'), ((28209, 28238), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:profiles"""'], {}), "('workshift:profiles')\n", (28216, 28238), False, 'from django.core.urlresolvers import reverse\n'), ((28436, 28471), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (28443, 28471), False, 'from django.core.urlresolvers import reverse\n'), ((28485, 28516), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:list_types"""'], {}), "('workshift:list_types')\n", (28492, 28516), False, 'from django.core.urlresolvers import reverse\n'), ((28530, 28590), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:view_type', kwargs={'pk': self.wtype.pk})\n", (28537, 28590), False, 'from django.core.urlresolvers import reverse\n'), ((28604, 28664), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (28611, 28664), False, 'from django.core.urlresolvers import reverse\n'), ((30111, 30139), 'django.core.urlresolvers.reverse', 'reverse', (['name'], {'kwargs': 'kwargs'}), '(name, kwargs=kwargs)\n', (30118, 30139), False, 'from django.core.urlresolvers import reverse\n'), ((30339, 30367), 'django.core.urlresolvers.reverse', 'reverse', (['name'], {'kwargs': 'kwargs'}), '(name, kwargs=kwargs)\n', (30346, 30367), False, 'from django.core.urlresolvers import reverse\n'), ((35956, 35973), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (35965, 35973), False, 'from datetime import timedelta, time, date\n'), ((36001, 36018), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (36010, 36018), False, 'from datetime import timedelta, time, date\n'), ((36571, 36588), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (36580, 36588), False, 'from datetime import timedelta, time, date\n'), ((36616, 36633), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (36625, 36633), False, 'from datetime import timedelta, time, date\n'), ((55999, 56004), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (56002, 56004), False, 'from django.utils.timezone import now, localtime\n'), ((58541, 58576), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (58548, 58576), False, 'from django.core.urlresolvers import reverse\n'), ((58590, 58624), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (58597, 58624), False, 'from django.core.urlresolvers import reverse\n'), ((58638, 58672), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:semester_info"""'], {}), "('workshift:semester_info')\n", (58645, 58672), False, 'from django.core.urlresolvers import reverse\n'), ((58686, 58764), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:profile', kwargs={'targetUsername': self.up.user.username})\n", (58693, 58764), False, 'from django.core.urlresolvers import reverse\n'), ((58778, 58866), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:edit_profile', kwargs={'targetUsername': self.up.user.\n username})\n", (58785, 58866), False, 'from django.core.urlresolvers import reverse\n'), ((58875, 58962), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:preferences"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:preferences', kwargs={'targetUsername': self.up.user.\n username})\n", (58882, 58962), False, 'from django.core.urlresolvers import reverse\n'), ((58971, 58998), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (58978, 58998), False, 'from django.core.urlresolvers import reverse\n'), ((59012, 59044), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (59019, 59044), False, 'from django.core.urlresolvers import reverse\n'), ((59058, 59092), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (59065, 59092), False, 'from django.core.urlresolvers import reverse\n'), ((59106, 59139), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:adjust_hours"""'], {}), "('workshift:adjust_hours')\n", (59113, 59139), False, 'from django.core.urlresolvers import reverse\n'), ((59153, 59189), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_workshifter"""'], {}), "('workshift:add_workshifter')\n", (59160, 59189), False, 'from django.core.urlresolvers import reverse\n'), ((59203, 59233), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fine_date"""'], {}), "('workshift:fine_date')\n", (59210, 59233), False, 'from django.core.urlresolvers import reverse\n'), ((59247, 59277), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (59254, 59277), False, 'from django.core.urlresolvers import reverse\n'), ((59291, 59353), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.wshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.wshift.pk})\n", (59298, 59353), False, 'from django.core.urlresolvers import reverse\n'), ((59367, 59435), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.winstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.winstance.pk})\n", (59374, 59435), False, 'from django.core.urlresolvers import reverse\n'), ((59449, 59509), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (59456, 59509), False, 'from django.core.urlresolvers import reverse\n'), ((59523, 59585), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.mshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.mshift.pk})\n", (59530, 59585), False, 'from django.core.urlresolvers import reverse\n'), ((59599, 59667), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.minstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.minstance.pk})\n", (59606, 59667), False, 'from django.core.urlresolvers import reverse\n'), ((59681, 59741), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.mtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.mtype.pk})\n", (59688, 59741), False, 'from django.core.urlresolvers import reverse\n'), ((66952, 66979), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (66959, 66979), False, 'from django.core.urlresolvers import reverse\n'), ((68310, 68344), 'django.core.urlresolvers.reverse', 'reverse', (['"""manage_profile_requests"""'], {}), "('manage_profile_requests')\n", (68317, 68344), False, 'from django.core.urlresolvers import reverse\n'), ((69459, 69493), 'django.core.urlresolvers.reverse', 'reverse', (['"""manage_profile_requests"""'], {}), "('manage_profile_requests')\n", (69466, 69493), False, 'from django.core.urlresolvers import reverse\n'), ((70615, 70649), 'django.core.urlresolvers.reverse', 'reverse', (['"""manage_profile_requests"""'], {}), "('manage_profile_requests')\n", (70622, 70649), False, 'from django.core.urlresolvers import reverse\n'), ((71259, 71286), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (71266, 71286), False, 'from django.core.urlresolvers import reverse\n'), ((73954, 73981), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (73961, 73981), False, 'from django.core.urlresolvers import reverse\n'), ((74188, 74205), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (74192, 74205), False, 'from datetime import timedelta, time, date\n'), ((75936, 75953), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (75940, 75953), False, 'from datetime import timedelta, time, date\n'), ((77436, 77450), 'datetime.time', 'time', (['(14)', '(0)', '(0)'], {}), '(14, 0, 0)\n', (77440, 77450), False, 'from datetime import timedelta, time, date\n'), ((77496, 77510), 'datetime.time', 'time', (['(16)', '(0)', '(0)'], {}), '(16, 0, 0)\n', (77500, 77510), False, 'from datetime import timedelta, time, date\n'), ((77552, 77569), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (77556, 77569), False, 'from datetime import timedelta, time, date\n'), ((78039, 78066), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (78046, 78066), False, 'from django.core.urlresolvers import reverse\n'), ((79206, 79233), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (79213, 79233), False, 'from django.core.urlresolvers import reverse\n'), ((79519, 79533), 'datetime.time', 'time', (['(18)', '(0)', '(0)'], {}), '(18, 0, 0)\n', (79523, 79533), False, 'from datetime import timedelta, time, date\n'), ((79581, 79595), 'datetime.time', 'time', (['(20)', '(0)', '(0)'], {}), '(20, 0, 0)\n', (79585, 79595), False, 'from datetime import timedelta, time, date\n'), ((79641, 79658), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (79645, 79658), False, 'from datetime import timedelta, time, date\n'), ((81130, 81144), 'datetime.time', 'time', (['(14)', '(0)', '(0)'], {}), '(14, 0, 0)\n', (81134, 81144), False, 'from datetime import timedelta, time, date\n'), ((81192, 81206), 'datetime.time', 'time', (['(16)', '(0)', '(0)'], {}), '(16, 0, 0)\n', (81196, 81206), False, 'from datetime import timedelta, time, date\n'), ((81252, 81269), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (81256, 81269), False, 'from datetime import timedelta, time, date\n'), ((81747, 81774), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (81754, 81774), False, 'from django.core.urlresolvers import reverse\n'), ((83624, 83632), 'datetime.time', 'time', (['(16)'], {}), '(16)\n', (83628, 83632), False, 'from datetime import timedelta, time, date\n'), ((83677, 83685), 'datetime.time', 'time', (['(18)'], {}), '(18)\n', (83681, 83685), False, 'from datetime import timedelta, time, date\n'), ((84166, 84193), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (84173, 84193), False, 'from django.core.urlresolvers import reverse\n'), ((85267, 85294), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (85274, 85294), False, 'from django.core.urlresolvers import reverse\n'), ((87417, 87436), 'datetime.timedelta', 'timedelta', ([], {'days': '(365)'}), '(days=365)\n', (87426, 87436), False, 'from datetime import timedelta, time, date\n'), ((89275, 89307), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (89282, 89307), False, 'from django.core.urlresolvers import reverse\n'), ((90237, 90264), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (90244, 90264), False, 'from django.core.urlresolvers import reverse\n'), ((91602, 91637), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (91609, 91637), False, 'from django.core.urlresolvers import reverse\n'), ((1294, 1331), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (1317, 1331), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((2454, 2471), 'datetime.date', 'date', (['(2014)', '(5)', '(22)'], {}), '(2014, 5, 22)\n', (2458, 2471), False, 'from datetime import timedelta, time, date\n'), ((2506, 2523), 'datetime.date', 'date', (['(2014)', '(8)', '(15)'], {}), '(2014, 8, 15)\n', (2510, 2523), False, 'from datetime import timedelta, time, date\n'), ((16309, 16330), 'workshift.cron.CollectBlownCronJob', 'CollectBlownCronJob', ([], {}), '()\n', (16328, 16330), False, 'from workshift.cron import CollectBlownCronJob, UpdateWeeklyStandings\n'), ((16380, 16403), 'workshift.cron.UpdateWeeklyStandings', 'UpdateWeeklyStandings', ([], {}), '()\n', (16401, 16403), False, 'from workshift.cron import CollectBlownCronJob, UpdateWeeklyStandings\n'), ((17602, 17619), 'datetime.date', 'date', (['(2014)', '(1)', '(20)'], {}), '(2014, 1, 20)\n', (17606, 17619), False, 'from datetime import timedelta, time, date\n'), ((17621, 17638), 'datetime.date', 'date', (['(2014)', '(5)', '(17)'], {}), '(2014, 5, 17)\n', (17625, 17638), False, 'from datetime import timedelta, time, date\n'), ((17759, 17776), 'datetime.date', 'date', (['(2014)', '(5)', '(25)'], {}), '(2014, 5, 25)\n', (17763, 17776), False, 'from datetime import timedelta, time, date\n'), ((17778, 17795), 'datetime.date', 'date', (['(2014)', '(8)', '(16)'], {}), '(2014, 8, 16)\n', (17782, 17795), False, 'from datetime import timedelta, time, date\n'), ((17916, 17933), 'datetime.date', 'date', (['(2014)', '(8)', '(24)'], {}), '(2014, 8, 24)\n', (17920, 17933), False, 'from datetime import timedelta, time, date\n'), ((17935, 17953), 'datetime.date', 'date', (['(2014)', '(12)', '(20)'], {}), '(2014, 12, 20)\n', (17939, 17953), False, 'from datetime import timedelta, time, date\n'), ((24987, 25024), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (25010, 25024), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((40068, 40105), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (40091, 40105), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((43975, 43988), 'datetime.time', 'time', (['(8)', '(0)', '(0)'], {}), '(8, 0, 0)\n', (43979, 43988), False, 'from datetime import timedelta, time, date\n'), ((43990, 44004), 'datetime.time', 'time', (['(16)', '(0)', '(0)'], {}), '(16, 0, 0)\n', (43994, 44004), False, 'from datetime import timedelta, time, date\n'), ((44006, 44020), 'datetime.time', 'time', (['(18)', '(0)', '(0)'], {}), '(18, 0, 0)\n', (44010, 44020), False, 'from datetime import timedelta, time, date\n'), ((44040, 44054), 'datetime.time', 'time', (['(17)', '(0)', '(0)'], {}), '(17, 0, 0)\n', (44044, 44054), False, 'from datetime import timedelta, time, date\n'), ((44056, 44070), 'datetime.time', 'time', (['(21)', '(0)', '(0)'], {}), '(21, 0, 0)\n', (44060, 44070), False, 'from datetime import timedelta, time, date\n'), ((44072, 44086), 'datetime.time', 'time', (['(22)', '(0)', '(0)'], {}), '(22, 0, 0)\n', (44076, 44086), False, 'from datetime import timedelta, time, date\n'), ((48588, 48625), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (48611, 48625), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((49608, 49624), 'datetime.time', 'time', (['(23)', '(59)', '(59)'], {}), '(23, 59, 59)\n', (49612, 49624), False, 'from datetime import timedelta, time, date\n'), ((55731, 55768), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (55754, 55768), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((55922, 55959), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.mu'}), '(user=self.mu)\n', (55945, 55959), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((60051, 60086), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (60058, 60086), False, 'from django.core.urlresolvers import reverse\n'), ((60108, 60142), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (60115, 60142), False, 'from django.core.urlresolvers import reverse\n'), ((60164, 60198), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:semester_info"""'], {}), "('workshift:semester_info')\n", (60171, 60198), False, 'from django.core.urlresolvers import reverse\n'), ((60220, 60298), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:profile', kwargs={'targetUsername': self.up.user.username})\n", (60227, 60298), False, 'from django.core.urlresolvers import reverse\n'), ((60321, 60408), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:preferences"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:preferences', kwargs={'targetUsername': self.up.user.\n username})\n", (60328, 60408), False, 'from django.core.urlresolvers import reverse\n'), ((60425, 60452), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (60432, 60452), False, 'from django.core.urlresolvers import reverse\n'), ((60474, 60506), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (60481, 60506), False, 'from django.core.urlresolvers import reverse\n'), ((60528, 60562), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (60535, 60562), False, 'from django.core.urlresolvers import reverse\n'), ((60585, 60618), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:adjust_hours"""'], {}), "('workshift:adjust_hours')\n", (60592, 60618), False, 'from django.core.urlresolvers import reverse\n'), ((60641, 60677), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_workshifter"""'], {}), "('workshift:add_workshifter')\n", (60648, 60677), False, 'from django.core.urlresolvers import reverse\n'), ((60699, 60729), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (60706, 60729), False, 'from django.core.urlresolvers import reverse\n'), ((60751, 60781), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fine_date"""'], {}), "('workshift:fine_date')\n", (60758, 60781), False, 'from django.core.urlresolvers import reverse\n'), ((60804, 60866), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.wshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.wshift.pk})\n", (60811, 60866), False, 'from django.core.urlresolvers import reverse\n'), ((60889, 60957), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.winstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.winstance.pk})\n", (60896, 60957), False, 'from django.core.urlresolvers import reverse\n'), ((60980, 61040), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (60987, 61040), False, 'from django.core.urlresolvers import reverse\n'), ((61062, 61124), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.mshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.mshift.pk})\n", (61069, 61124), False, 'from django.core.urlresolvers import reverse\n'), ((61146, 61214), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.minstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.minstance.pk})\n", (61153, 61214), False, 'from django.core.urlresolvers import reverse\n'), ((61236, 61296), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.mtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.mtype.pk})\n", (61243, 61296), False, 'from django.core.urlresolvers import reverse\n'), ((61794, 61829), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (61801, 61829), False, 'from django.core.urlresolvers import reverse\n'), ((61851, 61885), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (61858, 61885), False, 'from django.core.urlresolvers import reverse\n'), ((61907, 61941), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:semester_info"""'], {}), "('workshift:semester_info')\n", (61914, 61941), False, 'from django.core.urlresolvers import reverse\n'), ((61963, 62041), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:profile', kwargs={'targetUsername': self.up.user.username})\n", (61970, 62041), False, 'from django.core.urlresolvers import reverse\n'), ((62064, 62152), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:edit_profile', kwargs={'targetUsername': self.up.user.\n username})\n", (62071, 62152), False, 'from django.core.urlresolvers import reverse\n'), ((62169, 62256), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:preferences"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:preferences', kwargs={'targetUsername': self.up.user.\n username})\n", (62176, 62256), False, 'from django.core.urlresolvers import reverse\n'), ((62274, 62301), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (62281, 62301), False, 'from django.core.urlresolvers import reverse\n'), ((62324, 62356), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (62331, 62356), False, 'from django.core.urlresolvers import reverse\n'), ((62379, 62413), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (62386, 62413), False, 'from django.core.urlresolvers import reverse\n'), ((62436, 62469), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:adjust_hours"""'], {}), "('workshift:adjust_hours')\n", (62443, 62469), False, 'from django.core.urlresolvers import reverse\n'), ((62492, 62528), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_workshifter"""'], {}), "('workshift:add_workshifter')\n", (62499, 62528), False, 'from django.core.urlresolvers import reverse\n'), ((62551, 62581), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (62558, 62581), False, 'from django.core.urlresolvers import reverse\n'), ((62604, 62634), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fine_date"""'], {}), "('workshift:fine_date')\n", (62611, 62634), False, 'from django.core.urlresolvers import reverse\n'), ((62657, 62719), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.wshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.wshift.pk})\n", (62664, 62719), False, 'from django.core.urlresolvers import reverse\n'), ((62742, 62810), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.winstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.winstance.pk})\n", (62749, 62810), False, 'from django.core.urlresolvers import reverse\n'), ((62833, 62893), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (62840, 62893), False, 'from django.core.urlresolvers import reverse\n'), ((62916, 62978), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.mshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.mshift.pk})\n", (62923, 62978), False, 'from django.core.urlresolvers import reverse\n'), ((63001, 63069), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.minstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.minstance.pk})\n", (63008, 63069), False, 'from django.core.urlresolvers import reverse\n'), ((63092, 63152), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.mtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.mtype.pk})\n", (63099, 63152), False, 'from django.core.urlresolvers import reverse\n'), ((63657, 63692), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:start_semester"""'], {}), "('workshift:start_semester')\n", (63664, 63692), False, 'from django.core.urlresolvers import reverse\n'), ((63714, 63748), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (63721, 63748), False, 'from django.core.urlresolvers import reverse\n'), ((63770, 63804), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:semester_info"""'], {}), "('workshift:semester_info')\n", (63777, 63804), False, 'from django.core.urlresolvers import reverse\n'), ((63826, 63904), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:profile', kwargs={'targetUsername': self.up.user.username})\n", (63833, 63904), False, 'from django.core.urlresolvers import reverse\n'), ((63927, 64015), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_profile"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:edit_profile', kwargs={'targetUsername': self.up.user.\n username})\n", (63934, 64015), False, 'from django.core.urlresolvers import reverse\n'), ((64033, 64120), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:preferences"""'], {'kwargs': "{'targetUsername': self.up.user.username}"}), "('workshift:preferences', kwargs={'targetUsername': self.up.user.\n username})\n", (64040, 64120), False, 'from django.core.urlresolvers import reverse\n'), ((64138, 64165), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:manage"""'], {}), "('workshift:manage')\n", (64145, 64165), False, 'from django.core.urlresolvers import reverse\n'), ((64188, 64220), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (64195, 64220), False, 'from django.core.urlresolvers import reverse\n'), ((64243, 64277), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:assign_shifts"""'], {}), "('workshift:assign_shifts')\n", (64250, 64277), False, 'from django.core.urlresolvers import reverse\n'), ((64300, 64333), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:adjust_hours"""'], {}), "('workshift:adjust_hours')\n", (64307, 64333), False, 'from django.core.urlresolvers import reverse\n'), ((64356, 64392), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_workshifter"""'], {}), "('workshift:add_workshifter')\n", (64363, 64392), False, 'from django.core.urlresolvers import reverse\n'), ((64415, 64445), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:add_shift"""'], {}), "('workshift:add_shift')\n", (64422, 64445), False, 'from django.core.urlresolvers import reverse\n'), ((64468, 64498), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fine_date"""'], {}), "('workshift:fine_date')\n", (64475, 64498), False, 'from django.core.urlresolvers import reverse\n'), ((64521, 64583), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.wshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.wshift.pk})\n", (64528, 64583), False, 'from django.core.urlresolvers import reverse\n'), ((64606, 64674), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.winstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.winstance.pk})\n", (64613, 64674), False, 'from django.core.urlresolvers import reverse\n'), ((64697, 64757), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.wtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.wtype.pk})\n", (64704, 64757), False, 'from django.core.urlresolvers import reverse\n'), ((64780, 64842), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_shift"""'], {'kwargs': "{'pk': self.mshift.pk}"}), "('workshift:edit_shift', kwargs={'pk': self.mshift.pk})\n", (64787, 64842), False, 'from django.core.urlresolvers import reverse\n'), ((64865, 64933), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_instance"""'], {'kwargs': "{'pk': self.minstance.pk}"}), "('workshift:edit_instance', kwargs={'pk': self.minstance.pk})\n", (64872, 64933), False, 'from django.core.urlresolvers import reverse\n'), ((64956, 65016), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:edit_type"""'], {'kwargs': "{'pk': self.mtype.pk}"}), "('workshift:edit_type', kwargs={'pk': self.mtype.pk})\n", (64963, 65016), False, 'from django.core.urlresolvers import reverse\n'), ((66308, 66345), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.ru'}), '(user=self.ru)\n', (66331, 66345), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((72201, 72238), 'base.models.UserProfile.objects.get', 'UserProfile.objects.get', ([], {'user': 'self.wu'}), '(user=self.wu)\n', (72224, 72238), False, 'from base.models import User, UserProfile, ProfileRequest\n'), ((73008, 73016), 'datetime.time', 'time', (['(16)'], {}), '(16)\n', (73012, 73016), False, 'from datetime import timedelta, time, date\n'), ((73039, 73047), 'datetime.time', 'time', (['(18)'], {}), '(18)\n', (73043, 73047), False, 'from datetime import timedelta, time, date\n'), ((73775, 73792), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (73779, 73792), False, 'from datetime import timedelta, time, date\n'), ((75036, 75053), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (75040, 75053), False, 'from datetime import timedelta, time, date\n'), ((76649, 76666), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (76653, 76666), False, 'from datetime import timedelta, time, date\n'), ((78947, 78964), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (78951, 78964), False, 'from datetime import timedelta, time, date\n'), ((80371, 80388), 'datetime.date', 'date', (['(2014)', '(5)', '(27)'], {}), '(2014, 5, 27)\n', (80375, 80388), False, 'from datetime import timedelta, time, date\n'), ((88697, 88729), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:fill_shifts"""'], {}), "('workshift:fill_shifts')\n", (88704, 88729), False, 'from django.core.urlresolvers import reverse\n'), ((1672, 1688), 'django.core.urlresolvers.reverse', 'reverse', (['"""login"""'], {}), "('login')\n", (1679, 1688), False, 'from django.core.urlresolvers import reverse\n'), ((3859, 3864), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (3862, 3864), False, 'from django.utils.timezone import now, localtime\n'), ((4010, 4027), 'datetime.timedelta', 'timedelta', ([], {'days': '(6)'}), '(days=6)\n', (4019, 4027), False, 'from datetime import timedelta, time, date\n'), ((15636, 15641), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (15639, 15641), False, 'from django.utils.timezone import now, localtime\n'), ((15823, 15842), 'datetime.timedelta', 'timedelta', ([], {'weeks': '(18)'}), '(weeks=18)\n', (15832, 15842), False, 'from datetime import timedelta, time, date\n'), ((16827, 16845), 'datetime.date', 'date', (['(2014)', '(12)', '(20)'], {}), '(2014, 12, 20)\n', (16831, 16845), False, 'from datetime import timedelta, time, date\n'), ((16963, 16980), 'datetime.date', 'date', (['(2015)', '(3)', '(20)'], {}), '(2015, 3, 20)\n', (16967, 16980), False, 'from datetime import timedelta, time, date\n'), ((17098, 17114), 'datetime.date', 'date', (['(2014)', '(4)', '(1)'], {}), '(2014, 4, 1)\n', (17102, 17114), False, 'from datetime import timedelta, time, date\n'), ((17232, 17249), 'datetime.date', 'date', (['(2014)', '(7)', '(20)'], {}), '(2014, 7, 20)\n', (17236, 17249), False, 'from datetime import timedelta, time, date\n'), ((17365, 17381), 'datetime.date', 'date', (['(2014)', '(8)', '(1)'], {}), '(2014, 8, 1)\n', (17369, 17381), False, 'from datetime import timedelta, time, date\n'), ((17497, 17515), 'datetime.date', 'date', (['(2014)', '(10)', '(20)'], {}), '(2014, 10, 20)\n', (17501, 17515), False, 'from datetime import timedelta, time, date\n'), ((20412, 20417), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (20415, 20417), False, 'from django.utils.timezone import now, localtime\n'), ((21596, 21601), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (21599, 21601), False, 'from django.utils.timezone import now, localtime\n'), ((24600, 24617), 'datetime.timedelta', 'timedelta', ([], {'days': '(6)'}), '(days=6)\n', (24609, 24617), False, 'from datetime import timedelta, time, date\n'), ((25668, 25686), 'datetime.timedelta', 'timedelta', ([], {'hours': '(2)'}), '(hours=2)\n', (25677, 25686), False, 'from datetime import timedelta, time, date\n'), ((26135, 26152), 'datetime.timedelta', 'timedelta', ([], {'days': '(7)'}), '(days=7)\n', (26144, 26152), False, 'from datetime import timedelta, time, date\n'), ((40180, 40185), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (40183, 40185), False, 'from django.utils.timezone import now, localtime\n'), ((40314, 40331), 'datetime.timedelta', 'timedelta', ([], {'days': '(7)'}), '(days=7)\n', (40323, 40331), False, 'from datetime import timedelta, time, date\n'), ((48700, 48705), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (48703, 48705), False, 'from django.utils.timezone import now, localtime\n'), ((48834, 48851), 'datetime.timedelta', 'timedelta', ([], {'days': '(7)'}), '(days=7)\n', (48843, 48851), False, 'from datetime import timedelta, time, date\n'), ((49579, 49584), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (49582, 49584), False, 'from django.utils.timezone import now, localtime\n'), ((56156, 56173), 'datetime.timedelta', 'timedelta', ([], {'days': '(7)'}), '(days=7)\n', (56165, 56173), False, 'from datetime import timedelta, time, date\n'), ((57112, 57130), 'datetime.timedelta', 'timedelta', ([], {'hours': '(2)'}), '(hours=2)\n', (57121, 57130), False, 'from datetime import timedelta, time, date\n'), ((57364, 57382), 'datetime.timedelta', 'timedelta', ([], {'hours': '(2)'}), '(hours=2)\n', (57373, 57382), False, 'from datetime import timedelta, time, date\n'), ((61543, 61577), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (61550, 61577), False, 'from django.core.urlresolvers import reverse\n'), ((63399, 63433), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (63406, 63433), False, 'from django.core.urlresolvers import reverse\n'), ((65264, 65298), 'django.core.urlresolvers.reverse', 'reverse', (['"""workshift:view_semester"""'], {}), "('workshift:view_semester')\n", (65271, 65298), False, 'from django.core.urlresolvers import reverse\n'), ((66552, 66557), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (66555, 66557), False, 'from django.utils.timezone import now, localtime\n'), ((66867, 66886), 'datetime.timedelta', 'timedelta', ([], {'weeks': '(18)'}), '(weeks=18)\n', (66876, 66886), False, 'from datetime import timedelta, time, date\n'), ((72313, 72318), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (72316, 72318), False, 'from django.utils.timezone import now, localtime\n'), ((72453, 72470), 'datetime.timedelta', 'timedelta', ([], {'days': '(6)'}), '(days=6)\n', (72462, 72470), False, 'from datetime import timedelta, time, date\n'), ((87375, 87380), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (87378, 87380), False, 'from django.utils.timezone import now, localtime\n'), ((87580, 87597), 'datetime.timedelta', 'timedelta', ([], {'days': '(7)'}), '(days=7)\n', (87589, 87597), False, 'from datetime import timedelta, time, date\n'), ((87729, 87746), 'datetime.timedelta', 'timedelta', ([], {'days': '(7)'}), '(days=7)\n', (87738, 87746), False, 'from datetime import timedelta, time, date\n'), ((89092, 89115), 'managers.models.Manager.objects.count', 'Manager.objects.count', ([], {}), '()\n', (89113, 89115), False, 'from managers.models import Manager\n'), ((89805, 89810), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (89808, 89810), False, 'from django.utils.timezone import now, localtime\n'), ((90118, 90137), 'datetime.timedelta', 'timedelta', ([], {'weeks': '(18)'}), '(weeks=18)\n', (90127, 90137), False, 'from datetime import timedelta, time, date\n'), ((16538, 16543), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (16541, 16543), False, 'from django.utils.timezone import now, localtime\n')]
import json from packlib.base import ProxmoxAction class ClusterCephFlagsSetFlagsAction(ProxmoxAction): """ Set/Unset multiple ceph flags at once. """ def run( self, nobackfill=None, nodeep_scrub=None, nodown=None, noin=None, noout=None, norebalance=None, norecover=None, noscrub=None, notieragent=None, noup=None, pause=None, profile_name=None, ): super().run(profile_name) # Only include non None arguments to pass through to proxmox api. proxmox_kwargs = {} for api_arg in [ ["nobackfill", nobackfill, "boolean"], ["nodeep-scrub", nodeep_scrub, "boolean"], ["nodown", nodown, "boolean"], ["noin", noin, "boolean"], ["noout", noout, "boolean"], ["norebalance", norebalance, "boolean"], ["norecover", norecover, "boolean"], ["noscrub", noscrub, "boolean"], ["notieragent", notieragent, "boolean"], ["noup", noup, "boolean"], ["pause", pause, "boolean"], ]: if api_arg[1] is None: continue if "[n]" in api_arg[0]: unit_list = json.loads(api_arg[1]) for i, v in enumerate(unit_list): proxmox_kwargs[api_arg[0].replace("[n]", str(i))] = v else: if api_arg[2] == "boolean": api_arg[1] = int(api_arg[1]) proxmox_kwargs[api_arg[0]] = api_arg[1] return self.proxmox.put(f"cluster/ceph/flags", **proxmox_kwargs)
[ "json.loads" ]
[((1282, 1304), 'json.loads', 'json.loads', (['api_arg[1]'], {}), '(api_arg[1])\n', (1292, 1304), False, 'import json\n')]
import json import os import pickledb import requests TRACKING_NUMBER = os.getenv("TRACKING_NUMBER") TELEGRAM_BOT_TOKEN = os.getenv("TELEGRAM_BOT_TOKEN") TELEGRAM_CHAT_ID = os.getenv("TELEGRAM_CHAT_ID") USER_AGENT = os.getenv("USER_AGENT") def main(): db = pickledb.load("state.db", auto_dump=True) cainiao_response = requests.get( f"https://slw16.global.cainiao.com/trackRefreshRpc/refresh.json?mailNo={TRACKING_NUMBER}", headers={ "User-Agent": USER_AGENT, }, ) data = json.loads(cainiao_response.text[1:-1]) db_data = db.get(TRACKING_NUMBER) if db_data and db_data.get("status") == data.get("status"): # nothing changed, exit return # status changed, store and notify db.set(TRACKING_NUMBER, data) requests.post( f"https://api.telegram.org/bot{TELEGRAM_BOT_TOKEN}/sendMessage", json={"chat_id": TELEGRAM_CHAT_ID, "text": f"{TRACKING_NUMBER}: {data.get('status')}"}, ) if __name__ == "__main__": main()
[ "pickledb.load", "json.loads", "os.getenv", "requests.get" ]
[((74, 102), 'os.getenv', 'os.getenv', (['"""TRACKING_NUMBER"""'], {}), "('TRACKING_NUMBER')\n", (83, 102), False, 'import os\n'), ((124, 155), 'os.getenv', 'os.getenv', (['"""TELEGRAM_BOT_TOKEN"""'], {}), "('TELEGRAM_BOT_TOKEN')\n", (133, 155), False, 'import os\n'), ((175, 204), 'os.getenv', 'os.getenv', (['"""TELEGRAM_CHAT_ID"""'], {}), "('TELEGRAM_CHAT_ID')\n", (184, 204), False, 'import os\n'), ((218, 241), 'os.getenv', 'os.getenv', (['"""USER_AGENT"""'], {}), "('USER_AGENT')\n", (227, 241), False, 'import os\n'), ((265, 306), 'pickledb.load', 'pickledb.load', (['"""state.db"""'], {'auto_dump': '(True)'}), "('state.db', auto_dump=True)\n", (278, 306), False, 'import pickledb\n'), ((330, 479), 'requests.get', 'requests.get', (['f"""https://slw16.global.cainiao.com/trackRefreshRpc/refresh.json?mailNo={TRACKING_NUMBER}"""'], {'headers': "{'User-Agent': USER_AGENT}"}), "(\n f'https://slw16.global.cainiao.com/trackRefreshRpc/refresh.json?mailNo={TRACKING_NUMBER}'\n , headers={'User-Agent': USER_AGENT})\n", (342, 479), False, 'import requests\n'), ((527, 566), 'json.loads', 'json.loads', (['cainiao_response.text[1:-1]'], {}), '(cainiao_response.text[1:-1])\n', (537, 566), False, 'import json\n')]
from cartoon.cli import main as main_func import sys if __name__ == "__main__": main_func(sys.kwargs)
[ "cartoon.cli.main" ]
[((85, 106), 'cartoon.cli.main', 'main_func', (['sys.kwargs'], {}), '(sys.kwargs)\n', (94, 106), True, 'from cartoon.cli import main as main_func\n')]
import numpy as np class ActivationFunction(object): @staticmethod def activation(input_data, activation_name = 'relu'): """ activation function Parameters ---------- input_data : {array-like, tensor(3-dim)} of shape (in_data_col, in_data_row, in_data_depth) if activation is softmax, the input data is vector activation_name : {string-like, scalar} value of {'sigmoid', 'tanh', 'relu'(default), 'softmax', 'none'} Returns ------- input_data : {array-like, tensor(3-dim)} of shape (in_data_col, in_data_row, in_data_depth) after activation (origin data shape) """ if activation_name == 'sigmoid': return 1.0/(1.0 + np.exp(-input_data)) elif activation_name == 'tanh': return np.tanh(input_data) elif activation_name == 'relu': return (np.abs(input_data) + input_data)/2 elif activation_name == 'softmax': # input data is vector input_data = input_data - np.max(input_data) exp_input_data = np.exp(input_data) return exp_input_data / np.sum(exp_input_data) elif activation_name == 'none': # not use any activation return input_data else: raise AttributeError("activation name wrong") @staticmethod def activation_prime(input_data, activation_name = 'relu'): """ activation function derivative Parameters ---------- input_data : {array-like, tensor(3-dim)} of shape (in_data_col, in_data_row, in_data_depth) activation_name : {string-like, scalar} value of {'sigmoid', 'tanh', 'relu'(default), 'softmax', 'none'} Returns ------- result : {array-like, tensor(3-dim)} of shape (in_data_col, in_data_row, in_data_depth) activation derivative """ if activation_name == 'sigmoid': return ActivationFunction.activation(activation_name=activation_name, input_data=input_data) * (1 - ActivationFunction.activation( activation_name=activation_name, input_data=input_data)) elif activation_name == 'tanh': return 1 - np.square( ActivationFunction.activation(activation_name=activation_name, input_data = input_data)) elif activation_name == 'relu': return np.where( input_data > 0, 1, 0) elif activation_name == 'softmax': input_data = np.squeeze(input_data) length = len(input_data) result = np.zeros((length, length)) for i in range(length): for j in range(length): result[i, j] = ActivationFunction.__softmax(i = i, j = j, a = input_data) return result elif activation_name == 'none': return 1 else: raise AttributeError("activation name wrong") @staticmethod def __softmax(i, j, a): if i == j: return a[i] * (1 - a[i]) else: return -a[i] * a[j] # input_data_test = np.array( # [ # [ # [1, 3, 5, 4, 7], # [2, 3, 2, 1, 0], # [7, 8, 1, 2, 3], # [3, 2, 9, 8, 7], # [2, 3, -4, 0, 2] # ] # ] # ) # print(ActivationFunction.activation_prime(activation_name='tanh', input_data=input_data_test))
[ "numpy.abs", "numpy.where", "numpy.tanh", "numpy.squeeze", "numpy.exp", "numpy.max", "numpy.zeros", "numpy.sum" ]
[((875, 894), 'numpy.tanh', 'np.tanh', (['input_data'], {}), '(input_data)\n', (882, 894), True, 'import numpy as np\n'), ((786, 805), 'numpy.exp', 'np.exp', (['(-input_data)'], {}), '(-input_data)\n', (792, 805), True, 'import numpy as np\n'), ((2447, 2477), 'numpy.where', 'np.where', (['(input_data > 0)', '(1)', '(0)'], {}), '(input_data > 0, 1, 0)\n', (2455, 2477), True, 'import numpy as np\n'), ((1144, 1162), 'numpy.exp', 'np.exp', (['input_data'], {}), '(input_data)\n', (1150, 1162), True, 'import numpy as np\n'), ((2556, 2578), 'numpy.squeeze', 'np.squeeze', (['input_data'], {}), '(input_data)\n', (2566, 2578), True, 'import numpy as np\n'), ((2650, 2676), 'numpy.zeros', 'np.zeros', (['(length, length)'], {}), '((length, length))\n', (2658, 2676), True, 'import numpy as np\n'), ((956, 974), 'numpy.abs', 'np.abs', (['input_data'], {}), '(input_data)\n', (962, 974), True, 'import numpy as np\n'), ((1096, 1114), 'numpy.max', 'np.max', (['input_data'], {}), '(input_data)\n', (1102, 1114), True, 'import numpy as np\n'), ((1199, 1221), 'numpy.sum', 'np.sum', (['exp_input_data'], {}), '(exp_input_data)\n', (1205, 1221), True, 'import numpy as np\n')]
from typing import TypeVar, Union from uuid import uuid4, UUID from citrine._session import Session from citrine._utils.functions import migrate_deprecated_argument from citrine.informatics.workflows import PredictorEvaluationWorkflow, DesignWorkflow from citrine.resources.predictor_evaluation_workflow import PredictorEvaluationWorkflowCollection from citrine.resources.design_workflow import DesignWorkflowCollection from tests.utils.fakes import FakeCollection, FakePredictorEvaluationWorkflow WorkflowType = TypeVar('WorkflowType', bound='Workflow') class FakeWorkflowCollection(FakeCollection[WorkflowType]): def __init__(self, project_id, session: Session): FakeCollection.__init__(self) self.project_id = project_id self.session = session def register(self, workflow: WorkflowType) -> WorkflowType: workflow = FakeCollection.register(self, workflow) workflow.project_id = self.project_id return workflow def archive(self, uid: Union[UUID, str] = None, workflow_id: Union[UUID, str] = None): # Search for workflow via UID to ensure exists # If found, flip archived=True with no return uid = migrate_deprecated_argument(uid, "uid", workflow_id, "workflow_id") workflow = self.get(uid) workflow.archived = True self.update(workflow) class FakeDesignWorkflowCollection(FakeWorkflowCollection[DesignWorkflow], DesignWorkflowCollection): pass class FakePredictorEvaluationWorkflowCollection(FakeWorkflowCollection[PredictorEvaluationWorkflow], PredictorEvaluationWorkflowCollection): def create_default(self, *, predictor_id: UUID) -> PredictorEvaluationWorkflow: pew = FakePredictorEvaluationWorkflow( name=f"Default predictor evaluation workflow", description="", evaluators=[] ) pew.project_id = self.project_id pew.uid = uuid4() pew._session = self.session return pew
[ "tests.utils.fakes.FakeCollection.__init__", "tests.utils.fakes.FakeCollection.register", "tests.utils.fakes.FakePredictorEvaluationWorkflow", "citrine._utils.functions.migrate_deprecated_argument", "uuid.uuid4", "typing.TypeVar" ]
[((516, 557), 'typing.TypeVar', 'TypeVar', (['"""WorkflowType"""'], {'bound': '"""Workflow"""'}), "('WorkflowType', bound='Workflow')\n", (523, 557), False, 'from typing import TypeVar, Union\n'), ((683, 712), 'tests.utils.fakes.FakeCollection.__init__', 'FakeCollection.__init__', (['self'], {}), '(self)\n', (706, 712), False, 'from tests.utils.fakes import FakeCollection, FakePredictorEvaluationWorkflow\n'), ((865, 904), 'tests.utils.fakes.FakeCollection.register', 'FakeCollection.register', (['self', 'workflow'], {}), '(self, workflow)\n', (888, 904), False, 'from tests.utils.fakes import FakeCollection, FakePredictorEvaluationWorkflow\n'), ((1190, 1257), 'citrine._utils.functions.migrate_deprecated_argument', 'migrate_deprecated_argument', (['uid', '"""uid"""', 'workflow_id', '"""workflow_id"""'], {}), "(uid, 'uid', workflow_id, 'workflow_id')\n", (1217, 1257), False, 'from citrine._utils.functions import migrate_deprecated_argument\n'), ((1709, 1823), 'tests.utils.fakes.FakePredictorEvaluationWorkflow', 'FakePredictorEvaluationWorkflow', ([], {'name': 'f"""Default predictor evaluation workflow"""', 'description': '""""""', 'evaluators': '[]'}), "(name=\n f'Default predictor evaluation workflow', description='', evaluators=[])\n", (1740, 1823), False, 'from tests.utils.fakes import FakeCollection, FakePredictorEvaluationWorkflow\n'), ((1924, 1931), 'uuid.uuid4', 'uuid4', ([], {}), '()\n', (1929, 1931), False, 'from uuid import uuid4, UUID\n')]
from abc import abstractmethod from typing import Sequence, Tuple, Union from .card import Card import random class Deck(Tuple[Card]): """Represents a Deck. Decks are immutable.""" def __new__(cls, *args: Union[Card, Tuple[int, Card]]): """ Creates a new deck from the given cards. :param args: A sequence of Card objects and/or 2-tuples where the first element is the count and the second the card. :raises ValueError: :raises TypeError: """ values = [] def is_a_tuple(c): return isinstance(c, tuple) def is_a_card(c): return isinstance(c, Card) for a in args: if is_a_card(a): values.append(a) elif is_a_tuple(a): if len(a) != 2: raise ValueError("tuple must have a size of 2.") count, card = a count = int(count) if not is_a_card(card): raise ValueError("the card in a tuple must be an instance of Card") if count < 0: raise ValueError("count cannot be negative.") values.extend([card] * count) else: raise ValueError("An item of cards was not of a Card type nor a tuple.") return super(Deck, cls).__new__(cls, tuple(values)) @property def empty(self) -> bool: return len(self) == 0 def tally(deck: Deck) -> Sequence[Tuple[Card, int]]: """Tallies a Deck: counts each instance of a card. This is a very basic and useful operation. :raises ValueError: deck is not a Deck. :param deck: The deck to tally. :return: A sequence of tuples, where the first member is the card and the second the count. """ if not isinstance(deck, Deck): raise ValueError("Expected a Deck.") counts = {} for card in deck: if card in counts: counts[card] = counts[card] + 1 else: counts[card] = 1 return tuple((card, count) for card, count in counts.items()) def opening_hand(deck: Deck, count: int = 7) -> Union[Tuple, Tuple[Card]]: """Draws an opening hand from the given deck. :param deck: the deck to draw from, if it is empty, opening_hand always returns the empty tuple. :param count: how many cards to draw, may not be negative. If zero, returns the empty tuple. default is 7 per the rules of standard Magic. may not be less than len(deck). :raise ValueError: count is negative. either parameter was of the wrong type. """ if not isinstance(deck, Deck): raise ValueError("Expected deck to be a Deck.") if not isinstance(count, int) or count < 0: raise ValueError("count must be an integer >= 0.") if len(deck) < count: raise ValueError("count cannot be less than the number of cards in the deck.") if count == 0: return () if len(deck) == 0: return () return tuple(random.sample(deck, count))
[ "random.sample" ]
[((3042, 3068), 'random.sample', 'random.sample', (['deck', 'count'], {}), '(deck, count)\n', (3055, 3068), False, 'import random\n')]
import os import requests import gzip import shutil def extract(input_path, output_path): if os.path.exists(output_path): return False with gzip.open(input_path, 'rb') as f_in: with open(output_path, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) return True def download(url, output_path): if os.path.exists(output_path): return False r = requests.get(url, stream=True) with open(output_path, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): f.write(chunk) r.close() return True def get_paths(base_path): if not os.path.exists(base_path): os.makedirs(base_path) cache_path = os.path.join(base_path, 'downloads') if not os.path.exists(cache_path): os.makedirs(cache_path) data_path = os.path.join(base_path, 'ticks') if not os.path.exists(data_path): os.makedirs(data_path) return (cache_path + '/{0}.csv.gz', data_path + '/{0}.csv') def download_list(base_path, base_url, targets): cache_format, data_format = get_paths(base_path) for target in targets: url = base_url.format(target) cache_file = cache_format.format(target) data_file = data_format.format(target) print('Downloading {0}...'.format(target), end='', flush=True) if download(url, cache_file): print('done.') else: print('skipped.') print('Extracting {0}...'.format(target), end='', flush=True) if extract(cache_file, data_file): print('done.') else: print('skipped.') if __name__ == "__main__": targets = ['bitfinexUSD', 'bitflyerJPY', 'bitstampUSD', 'coinbaseUSD', 'korbitKRW', 'zaifJPY'] base_url = 'https://api.bitcoincharts.com/v1/csv/{0}.csv.gz' base_path = 'e:/datasets/' download_list(base_path, base_url, targets)
[ "os.path.exists", "shutil.copyfileobj", "os.makedirs", "gzip.open", "os.path.join", "requests.get" ]
[((98, 125), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (112, 125), False, 'import os\n'), ((341, 368), 'os.path.exists', 'os.path.exists', (['output_path'], {}), '(output_path)\n', (355, 368), False, 'import os\n'), ((399, 429), 'requests.get', 'requests.get', (['url'], {'stream': '(True)'}), '(url, stream=True)\n', (411, 429), False, 'import requests\n'), ((694, 730), 'os.path.join', 'os.path.join', (['base_path', '"""downloads"""'], {}), "(base_path, 'downloads')\n", (706, 730), False, 'import os\n'), ((818, 850), 'os.path.join', 'os.path.join', (['base_path', '"""ticks"""'], {}), "(base_path, 'ticks')\n", (830, 850), False, 'import os\n'), ((157, 184), 'gzip.open', 'gzip.open', (['input_path', '"""rb"""'], {}), "(input_path, 'rb')\n", (166, 184), False, 'import gzip\n'), ((619, 644), 'os.path.exists', 'os.path.exists', (['base_path'], {}), '(base_path)\n', (633, 644), False, 'import os\n'), ((654, 676), 'os.makedirs', 'os.makedirs', (['base_path'], {}), '(base_path)\n', (665, 676), False, 'import os\n'), ((742, 768), 'os.path.exists', 'os.path.exists', (['cache_path'], {}), '(cache_path)\n', (756, 768), False, 'import os\n'), ((778, 801), 'os.makedirs', 'os.makedirs', (['cache_path'], {}), '(cache_path)\n', (789, 801), False, 'import os\n'), ((862, 887), 'os.path.exists', 'os.path.exists', (['data_path'], {}), '(data_path)\n', (876, 887), False, 'import os\n'), ((897, 919), 'os.makedirs', 'os.makedirs', (['data_path'], {}), '(data_path)\n', (908, 919), False, 'import os\n'), ((253, 284), 'shutil.copyfileobj', 'shutil.copyfileobj', (['f_in', 'f_out'], {}), '(f_in, f_out)\n', (271, 284), False, 'import shutil\n')]
from sustainlektor.cli import main main()
[ "sustainlektor.cli.main" ]
[((36, 42), 'sustainlektor.cli.main', 'main', ([], {}), '()\n', (40, 42), False, 'from sustainlektor.cli import main\n')]
#!/usr/bin/env python3 import networkx as nx import logging from multiprocessing import Pool from typing import List, Callable, Any from ci.model.stage import Stage StageVisitor = Callable[[str, Any], None] class StageGraph: graph: nx.DiGraph stages: List[Stage] def __init__(self, graph: nx.DiGraph) -> None: self.graph = graph def graph(self) -> nx.DiGraph: return self.graph def walk_groups(self, visitor: StageVisitor, **kwargs) -> None: """Calls the visitor for every node that has 0 outgoing edges. Afterwards the edges are removed and the visitor is called for the next group.""" pool = Pool() # ThreadPool() graph_copy = nx.DiGraph.copy(self.graph) logging.debug("Nodes in graph: %d", len(graph_copy)) while len(graph_copy): nodes = [n for n in graph_copy if graph_copy.out_degree(n) == 0] logging.debug("Queueing %s", nodes) args = [(graph_copy.nodes[node]["stage"], kwargs) for node in nodes] pool.starmap(visitor, args) for node in nodes: logging.debug("Removing node %s", node) graph_copy.remove_node(node) pool.close() pool.join()
[ "logging.debug", "multiprocessing.Pool", "networkx.DiGraph.copy" ]
[((662, 668), 'multiprocessing.Pool', 'Pool', ([], {}), '()\n', (666, 668), False, 'from multiprocessing import Pool\n'), ((706, 733), 'networkx.DiGraph.copy', 'nx.DiGraph.copy', (['self.graph'], {}), '(self.graph)\n', (721, 733), True, 'import networkx as nx\n'), ((917, 952), 'logging.debug', 'logging.debug', (['"""Queueing %s"""', 'nodes'], {}), "('Queueing %s', nodes)\n", (930, 952), False, 'import logging\n'), ((1123, 1162), 'logging.debug', 'logging.debug', (['"""Removing node %s"""', 'node'], {}), "('Removing node %s', node)\n", (1136, 1162), False, 'import logging\n')]
#!/usr/bin/env python3 ''' $ subcommands.py # returncode=2 stderr=True usage: subcommands.py [-h] {pairs,kwargs,auto} subcommands.py: error: the following arguments are required: subcommand $ subcommands.py --help > usage: subcommands.py {pairs,kwargs,auto} > > positional arguments: > {pairs,kwargs,auto} $ subcommands.py auto --help > usage: subcommands.py auto {one,two,on1,tw2} > > positional arguments: > {one,two,on1,tw2} $ subcommands.py pairs --help > usage: subcommands.py pairs {one,two,on1,tw2} > > positional arguments: > {one,two,on1,tw2} $ subcommands.py kwargs --help # glob=True > usage: subcommands.py kwargs {*} > > positional arguments: > {*} $ subcommands.py auto one 123 456 789 subcommand1 arg='123' remaining=('456', '789') flag1=False $ subcommands.py auto two 345 678 9 subcommand2 arg='345' remaining=('678', '9') flag2=False $ subcommands.py <TAB> pairs\x0bkwargs\x0bauto $ subcommands.py au<TAB> auto $ subcommands.py auto <TAB> one\x0btwo\x0bon1\x0btw2 $ subcommands.py auto o<TAB> one\x0bon1 ''' from hashbang import command, subcommands, Argument, NoMatchingDelegate import sys @command def subcommand1(arg, *remaining, flag1=False): print( 'subcommand1 arg={} remaining={} flag1={}' .format(*map(repr, (arg, remaining, flag1)))) @command def subcommand2(arg, *remaining, flag2=False): print( 'subcommand2 arg={} remaining={} flag2={}' .format(*map(repr, (arg, remaining, flag2)))) # Using pairs preserves the insertion order pairs = subcommands( ('one', subcommand1), ('two', subcommand2), ('on1', subcommand1), ('tw2', subcommand2)) # Using keyword arguments preserve insertion order in python 3.6 or above, # and sorts by key on lower versions kwargs = subcommands( one=subcommand1, two=subcommand2, on1=subcommand1, tw2=subcommand2) @command.delegator def main( subcommand: Argument(choices=('pairs', 'kwargs', 'auto')), *_REMAINDER_): if subcommand == 'auto': if sys.version_info >= (3, 6): return kwargs.execute(_REMAINDER_) else: return pairs.execute(_REMAINDER_) elif subcommand == 'pairs': return pairs.execute(_REMAINDER_) elif subcommand == 'kwargs': return kwargs.execute(_REMAINDER_) else: raise NoMatchingDelegate() if __name__ == '__main__': main.execute()
[ "hashbang.subcommands", "hashbang.Argument", "hashbang.NoMatchingDelegate" ]
[((1550, 1654), 'hashbang.subcommands', 'subcommands', (["('one', subcommand1)", "('two', subcommand2)", "('on1', subcommand1)", "('tw2', subcommand2)"], {}), "(('one', subcommand1), ('two', subcommand2), ('on1', subcommand1\n ), ('tw2', subcommand2))\n", (1561, 1654), False, 'from hashbang import command, subcommands, Argument, NoMatchingDelegate\n'), ((1805, 1884), 'hashbang.subcommands', 'subcommands', ([], {'one': 'subcommand1', 'two': 'subcommand2', 'on1': 'subcommand1', 'tw2': 'subcommand2'}), '(one=subcommand1, two=subcommand2, on1=subcommand1, tw2=subcommand2)\n', (1816, 1884), False, 'from hashbang import command, subcommands, Argument, NoMatchingDelegate\n'), ((1969, 2014), 'hashbang.Argument', 'Argument', ([], {'choices': "('pairs', 'kwargs', 'auto')"}), "(choices=('pairs', 'kwargs', 'auto'))\n", (1977, 2014), False, 'from hashbang import command, subcommands, Argument, NoMatchingDelegate\n'), ((2388, 2408), 'hashbang.NoMatchingDelegate', 'NoMatchingDelegate', ([], {}), '()\n', (2406, 2408), False, 'from hashbang import command, subcommands, Argument, NoMatchingDelegate\n')]
from unittest import TestCase, mock from unittest.mock import MagicMock from ornitho import Field from ornitho.api_exception import APIException class TestField(TestCase): def setUp(self): self.field_json = { "id": "1", "group": "OBS", "name": "RESTING_HABITAT", "text": "(Rast)Habitat", "default": "0", "mandatory": "0", "empty_choice": "1", } self.field = Field.create_from_ornitho_json(self.field_json) def test_get(self): Field.list_all = MagicMock( return_value=[ Field.create_from_ornitho_json( { "id": "1", "group": "OBS", "name": "RESTING_HABITAT", "text": "(Rast)Habitat", "default": "0", "mandatory": "0", "empty_choice": "1", } ), Field.create_from_ornitho_json( { "id": "2", "group": "OBS", "name": "ACCURACY_OF_LOCATION", "text": "Genauigkeit der Ortsangabe", "default": "0", "mandatory": "0", "empty_choice": "1", } ), ] ) field = Field.get(1) self.assertEqual(1, field.id_) # Test Exception self.assertRaises( APIException, lambda: Field.get(4), ) def test_refresh(self): self.assertRaises( NotImplementedError, lambda: self.field.refresh(), ) def test_group(self): self.assertEqual(self.field_json["group"], self.field.group) def test_name(self): self.assertEqual(self.field_json["name"], self.field.name) def test_text(self): self.assertEqual(self.field_json["text"], self.field.text) def test_default(self): self.assertEqual(int(self.field_json["default"]), self.field.default) def test_mandatory(self): self.assertEqual( False if self.field_json["mandatory"] == "0" else True, self.field.mandatory ) def test_empty_choice(self): self.assertEqual( False if self.field_json["empty_choice"] == "0" else True, self.field.empty_choice, ) @mock.patch("ornitho.model.field.APIRequester") @mock.patch("ornitho.model.field.FieldOption") def test_options(self, mock_field_option, mock_requester): class MockRequesterClass: def request(self, method, url): return ["option1", "option2"], "pk" def enter_requester(requester): return MockRequesterClass() mock_requester.return_value.__enter__ = enter_requester mock_field_option.create_from_ornitho_json.return_value = ["Created!"] self.assertEqual( [ mock_field_option.create_from_ornitho_json.return_value, mock_field_option.create_from_ornitho_json.return_value, ], self.field.options, )
[ "ornitho.Field.get", "ornitho.Field.create_from_ornitho_json", "unittest.mock.patch" ]
[((2538, 2584), 'unittest.mock.patch', 'mock.patch', (['"""ornitho.model.field.APIRequester"""'], {}), "('ornitho.model.field.APIRequester')\n", (2548, 2584), False, 'from unittest import TestCase, mock\n'), ((2590, 2635), 'unittest.mock.patch', 'mock.patch', (['"""ornitho.model.field.FieldOption"""'], {}), "('ornitho.model.field.FieldOption')\n", (2600, 2635), False, 'from unittest import TestCase, mock\n'), ((473, 520), 'ornitho.Field.create_from_ornitho_json', 'Field.create_from_ornitho_json', (['self.field_json'], {}), '(self.field_json)\n', (503, 520), False, 'from ornitho import Field\n'), ((1493, 1505), 'ornitho.Field.get', 'Field.get', (['(1)'], {}), '(1)\n', (1502, 1505), False, 'from ornitho import Field\n'), ((1644, 1656), 'ornitho.Field.get', 'Field.get', (['(4)'], {}), '(4)\n', (1653, 1656), False, 'from ornitho import Field\n'), ((625, 799), 'ornitho.Field.create_from_ornitho_json', 'Field.create_from_ornitho_json', (["{'id': '1', 'group': 'OBS', 'name': 'RESTING_HABITAT', 'text':\n '(Rast)Habitat', 'default': '0', 'mandatory': '0', 'empty_choice': '1'}"], {}), "({'id': '1', 'group': 'OBS', 'name':\n 'RESTING_HABITAT', 'text': '(Rast)Habitat', 'default': '0', 'mandatory':\n '0', 'empty_choice': '1'})\n", (655, 799), False, 'from ornitho import Field\n'), ((1038, 1230), 'ornitho.Field.create_from_ornitho_json', 'Field.create_from_ornitho_json', (["{'id': '2', 'group': 'OBS', 'name': 'ACCURACY_OF_LOCATION', 'text':\n 'Genauigkeit der Ortsangabe', 'default': '0', 'mandatory': '0',\n 'empty_choice': '1'}"], {}), "({'id': '2', 'group': 'OBS', 'name':\n 'ACCURACY_OF_LOCATION', 'text': 'Genauigkeit der Ortsangabe', 'default':\n '0', 'mandatory': '0', 'empty_choice': '1'})\n", (1068, 1230), False, 'from ornitho import Field\n')]
from flask import Flask, render_template, request from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np app = Flask(__name__) dic = {0 : 'No DR', 1 : 'Mild', 2 : 'Moderate', 3 : 'Severe', 4 : 'Proliferative DR'} model = load_model('model.h5') model.make_predict_function() def predict_label(img_path): i = image.load_img(img_path, target_size=(700,700)) i = image.img_to_array(i)/255.0 i = i.reshape(1, 700, 700, 3) p = model.predict(i) p = np.argmax(p, axis=1) return dic[p[0]] # routes @app.route("/", methods=['GET', 'POST']) def main(): return render_template("index.html") @app.route("/about") def about_page(): return "DR Classification App" @app.route("/submit", methods = ['GET', 'POST']) def get_output(): if request.method == 'POST': img = request.files['my_image'] img_path = "static/" + img.filename img.save(img_path) p = predict_label(img_path) return render_template("index.html", prediction = p, img_path = img_path) if __name__ =='__main__': #app.debug = True app.run(debug = True)
[ "tensorflow.keras.preprocessing.image.load_img", "flask.render_template", "flask.Flask", "numpy.argmax", "tensorflow.keras.models.load_model", "tensorflow.keras.preprocessing.image.img_to_array" ]
[((177, 192), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (182, 192), False, 'from flask import Flask, render_template, request\n'), ((293, 315), 'tensorflow.keras.models.load_model', 'load_model', (['"""model.h5"""'], {}), "('model.h5')\n", (303, 315), False, 'from tensorflow.keras.models import load_model\n'), ((390, 438), 'tensorflow.keras.preprocessing.image.load_img', 'image.load_img', (['img_path'], {'target_size': '(700, 700)'}), '(img_path, target_size=(700, 700))\n', (404, 438), False, 'from tensorflow.keras.preprocessing import image\n'), ((545, 565), 'numpy.argmax', 'np.argmax', (['p'], {'axis': '(1)'}), '(p, axis=1)\n', (554, 565), True, 'import numpy as np\n'), ((668, 697), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (683, 697), False, 'from flask import Flask, render_template, request\n'), ((1019, 1081), 'flask.render_template', 'render_template', (['"""index.html"""'], {'prediction': 'p', 'img_path': 'img_path'}), "('index.html', prediction=p, img_path=img_path)\n", (1034, 1081), False, 'from flask import Flask, render_template, request\n'), ((447, 468), 'tensorflow.keras.preprocessing.image.img_to_array', 'image.img_to_array', (['i'], {}), '(i)\n', (465, 468), False, 'from tensorflow.keras.preprocessing import image\n')]
import media from fresh_tomatoes import open_movies_page # Let's define an empty list to keep the movies movies = [] # Append the movies one by one movies.append(media.Movie(title="Wonder Park (2018)", poster_image_url="https://goo.gl/uXzuFk", trailer_youtube_url="https://www.youtube.com/watch?v=vYm7mYd0SgE")) # NOQA movies.append(media.Movie(title="Bumblebee (2018)", poster_image_url="https://goo.gl/H4mMG5", trailer_youtube_url="https://www.youtube.com/watch?v=fAIX12F6958")) # NOQA movies.append(media.Movie(title="Mission: Impossible - Fallout (2018)", poster_image_url="https://goo.gl/jW8WSw", trailer_youtube_url="https://www.youtube.com/watch?v=wb49-oV0F78")) # NOQA movies.append(media.Movie(title="Ralph Breaks the Internet: " "Wreck-It Ralph 2 (2018)", poster_image_url="https://goo.gl/DLWJEs", trailer_youtube_url="https://www.youtube.com/watch?v=lX71_Jcm4po")) # NOQA # Render a web page and open it open_movies_page(movies)
[ "fresh_tomatoes.open_movies_page", "media.Movie" ]
[((1066, 1090), 'fresh_tomatoes.open_movies_page', 'open_movies_page', (['movies'], {}), '(movies)\n', (1082, 1090), False, 'from fresh_tomatoes import open_movies_page\n'), ((164, 322), 'media.Movie', 'media.Movie', ([], {'title': '"""Wonder Park (2018)"""', 'poster_image_url': '"""https://goo.gl/uXzuFk"""', 'trailer_youtube_url': '"""https://www.youtube.com/watch?v=vYm7mYd0SgE"""'}), "(title='Wonder Park (2018)', poster_image_url=\n 'https://goo.gl/uXzuFk', trailer_youtube_url=\n 'https://www.youtube.com/watch?v=vYm7mYd0SgE')\n", (175, 322), False, 'import media\n'), ((364, 520), 'media.Movie', 'media.Movie', ([], {'title': '"""Bumblebee (2018)"""', 'poster_image_url': '"""https://goo.gl/H4mMG5"""', 'trailer_youtube_url': '"""https://www.youtube.com/watch?v=fAIX12F6958"""'}), "(title='Bumblebee (2018)', poster_image_url=\n 'https://goo.gl/H4mMG5', trailer_youtube_url=\n 'https://www.youtube.com/watch?v=fAIX12F6958')\n", (375, 520), False, 'import media\n'), ((562, 738), 'media.Movie', 'media.Movie', ([], {'title': '"""Mission: Impossible - Fallout (2018)"""', 'poster_image_url': '"""https://goo.gl/jW8WSw"""', 'trailer_youtube_url': '"""https://www.youtube.com/watch?v=wb49-oV0F78"""'}), "(title='Mission: Impossible - Fallout (2018)', poster_image_url=\n 'https://goo.gl/jW8WSw', trailer_youtube_url=\n 'https://www.youtube.com/watch?v=wb49-oV0F78')\n", (573, 738), False, 'import media\n'), ((780, 969), 'media.Movie', 'media.Movie', ([], {'title': '"""Ralph Breaks the Internet: Wreck-It Ralph 2 (2018)"""', 'poster_image_url': '"""https://goo.gl/DLWJEs"""', 'trailer_youtube_url': '"""https://www.youtube.com/watch?v=lX71_Jcm4po"""'}), "(title='Ralph Breaks the Internet: Wreck-It Ralph 2 (2018)',\n poster_image_url='https://goo.gl/DLWJEs', trailer_youtube_url=\n 'https://www.youtube.com/watch?v=lX71_Jcm4po')\n", (791, 969), False, 'import media\n')]
import click import pytest from json import loads from tests.environment import DNA_CENTER_VERSION from tests.models.schema_validator import json_schema_validate from dnacentersdk import mydict_data_factory from tests.environment import ( DNA_CENTER_USERNAME, DNA_CENTER_PASSWORD, DNA_CENTER_ENCODED_AUTH ) pytestmark = pytest.mark.skipif(DNA_CENTER_VERSION != '1.2.10', reason='version does not match') # @pytest.mark.authentication # def test_authentication_api(runner, cli, auth_options): # result = runner.invoke(cli, ['v1-2-10', *auth_options, 'authentication', 'authentication-api', '''--username=DNA_CENTER_USERNAME''', '''--password=<PASSWORD>''', '''--encoded_auth=DNA_CENTER_ENCODED_AUTH''']) # assert not result.exception # if result.output.strip(): # obj = loads(result.output) # assert json_schema_validate('jsd_ac8ae94c4e69a09d_v1_2_10').validate(obj) is None
[ "pytest.mark.skipif" ]
[((330, 418), 'pytest.mark.skipif', 'pytest.mark.skipif', (["(DNA_CENTER_VERSION != '1.2.10')"], {'reason': '"""version does not match"""'}), "(DNA_CENTER_VERSION != '1.2.10', reason=\n 'version does not match')\n", (348, 418), False, 'import pytest\n')]
# Copyright 2016-present Facebook. All Rights Reserved. # # protocol: logic for a server providing fastannotate support # # This software may be used and distributed according to the terms of the # GNU General Public License version 2 or any later version. from __future__ import absolute_import import contextlib import os from mercurial.i18n import _ from mercurial.pycompat import open from mercurial import ( error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server, ) from . import context # common def _getmaster(ui): """get the mainbranch, and enforce it is set""" master = ui.config(b'fastannotate', b'mainbranch') if not master: raise error.Abort( _( b'fastannotate.mainbranch is required ' b'for both the client and the server' ) ) return master # server-side def _capabilities(orig, repo, proto): result = orig(repo, proto) result.append(b'getannotate') return result def _getannotate(repo, proto, path, lastnode): # output: # FILE := vfspath + '\0' + str(size) + '\0' + content # OUTPUT := '' | FILE + OUTPUT result = b'' buildondemand = repo.ui.configbool( b'fastannotate', b'serverbuildondemand', True ) with context.annotatecontext(repo, path) as actx: if buildondemand: # update before responding to the client master = _getmaster(repo.ui) try: if not actx.isuptodate(master): actx.annotate(master, master) except Exception: # non-fast-forward move or corrupted. rebuild automically. actx.rebuild() try: actx.annotate(master, master) except Exception: actx.rebuild() # delete files finally: # although the "with" context will also do a close/flush, we # need to do it early so we can send the correct respond to # client. actx.close() # send back the full content of revmap and linelog, in the future we # may want to do some rsync-like fancy updating. # the lastnode check is not necessary if the client and the server # agree where the main branch is. if actx.lastnode != lastnode: for p in [actx.revmappath, actx.linelogpath]: if not os.path.exists(p): continue with open(p, b'rb') as f: content = f.read() vfsbaselen = len(repo.vfs.base + b'/') relpath = p[vfsbaselen:] result += b'%s\0%d\0%s' % (relpath, len(content), content) return result def _registerwireprotocommand(): if b'getannotate' in wireprotov1server.commands: return wireprotov1server.wireprotocommand(b'getannotate', b'path lastnode')( _getannotate ) def serveruisetup(ui): _registerwireprotocommand() extensions.wrapfunction(wireprotov1server, b'_capabilities', _capabilities) # client-side def _parseresponse(payload): result = {} i = 0 l = len(payload) - 1 state = 0 # 0: vfspath, 1: size vfspath = size = b'' while i < l: ch = payload[i : i + 1] if ch == b'\0': if state == 1: result[vfspath] = payload[i + 1 : i + 1 + int(size)] i += int(size) state = 0 vfspath = size = b'' elif state == 0: state = 1 else: if state == 1: size += ch elif state == 0: vfspath += ch i += 1 return result def peersetup(ui, peer): class fastannotatepeer(peer.__class__): @wireprotov1peer.batchable def getannotate(self, path, lastnode=None): if not self.capable(b'getannotate'): ui.warn(_(b'remote peer cannot provide annotate cache\n')) yield None, None else: args = {b'path': path, b'lastnode': lastnode or b''} f = wireprotov1peer.future() yield args, f yield _parseresponse(f.value) peer.__class__ = fastannotatepeer @contextlib.contextmanager def annotatepeer(repo): ui = repo.ui remotepath = ui.expandpath( ui.config(b'fastannotate', b'remotepath', b'default') ) peer = hg.peer(ui, {}, remotepath) try: yield peer finally: peer.close() def clientfetch(repo, paths, lastnodemap=None, peer=None): """download annotate cache from the server for paths""" if not paths: return if peer is None: with annotatepeer(repo) as peer: return clientfetch(repo, paths, lastnodemap, peer) if lastnodemap is None: lastnodemap = {} ui = repo.ui results = [] with peer.commandexecutor() as batcher: ui.debug(b'fastannotate: requesting %d files\n' % len(paths)) for p in paths: results.append( batcher.callcommand( b'getannotate', {b'path': p, b'lastnode': lastnodemap.get(p)}, ) ) for result in results: r = result.result() # TODO: pconvert these paths on the server? r = {util.pconvert(p): v for p, v in pycompat.iteritems(r)} for path in sorted(r): # ignore malicious paths if not path.startswith(b'fastannotate/') or b'/../' in ( path + b'/' ): ui.debug( b'fastannotate: ignored malicious path %s\n' % path ) continue content = r[path] if ui.debugflag: ui.debug( b'fastannotate: writing %d bytes to %s\n' % (len(content), path) ) repo.vfs.makedirs(os.path.dirname(path)) with repo.vfs(path, b'wb') as f: f.write(content) def _filterfetchpaths(repo, paths): """return a subset of paths whose history is long and need to fetch linelog from the server. works with remotefilelog and non-remotefilelog repos. """ threshold = repo.ui.configint(b'fastannotate', b'clientfetchthreshold', 10) if threshold <= 0: return paths result = [] for path in paths: try: if len(repo.file(path)) >= threshold: result.append(path) except Exception: # file not found etc. result.append(path) return result def localreposetup(ui, repo): class fastannotaterepo(repo.__class__): def prefetchfastannotate(self, paths, peer=None): master = _getmaster(self.ui) needupdatepaths = [] lastnodemap = {} try: for path in _filterfetchpaths(self, paths): with context.annotatecontext(self, path) as actx: if not actx.isuptodate(master, strict=False): needupdatepaths.append(path) lastnodemap[path] = actx.lastnode if needupdatepaths: clientfetch(self, needupdatepaths, lastnodemap, peer) except Exception as ex: # could be directory not writable or so, not fatal self.ui.debug(b'fastannotate: prefetch failed: %r\n' % ex) repo.__class__ = fastannotaterepo def clientreposetup(ui, repo): _registerwireprotocommand() if repo.local(): localreposetup(ui, repo) # TODO: this mutates global state, but only if at least one repo # has the extension enabled. This is probably bad for hgweb. if peersetup not in hg.wirepeersetupfuncs: hg.wirepeersetupfuncs.append(peersetup)
[ "os.path.exists", "mercurial.extensions.wrapfunction", "mercurial.wireprotov1server.wireprotocommand", "mercurial.i18n._", "mercurial.hg.wirepeersetupfuncs.append", "mercurial.pycompat.open", "os.path.dirname", "mercurial.wireprotov1peer.future", "mercurial.hg.peer", "mercurial.pycompat.iteritems", "mercurial.util.pconvert" ]
[((3073, 3148), 'mercurial.extensions.wrapfunction', 'extensions.wrapfunction', (['wireprotov1server', "b'_capabilities'", '_capabilities'], {}), "(wireprotov1server, b'_capabilities', _capabilities)\n", (3096, 3148), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((4531, 4558), 'mercurial.hg.peer', 'hg.peer', (['ui', '{}', 'remotepath'], {}), '(ui, {}, remotepath)\n', (4538, 4558), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((2915, 2983), 'mercurial.wireprotov1server.wireprotocommand', 'wireprotov1server.wireprotocommand', (["b'getannotate'", "b'path lastnode'"], {}), "(b'getannotate', b'path lastnode')\n", (2949, 2983), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((8025, 8064), 'mercurial.hg.wirepeersetupfuncs.append', 'hg.wirepeersetupfuncs.append', (['peersetup'], {}), '(peersetup)\n', (8053, 8064), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((739, 815), 'mercurial.i18n._', '_', (["b'fastannotate.mainbranch is required for both the client and the server'"], {}), "(b'fastannotate.mainbranch is required for both the client and the server')\n", (740, 815), False, 'from mercurial.i18n import _\n'), ((4209, 4233), 'mercurial.wireprotov1peer.future', 'wireprotov1peer.future', ([], {}), '()\n', (4231, 4233), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((5466, 5482), 'mercurial.util.pconvert', 'util.pconvert', (['p'], {}), '(p)\n', (5479, 5482), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((2490, 2507), 'os.path.exists', 'os.path.exists', (['p'], {}), '(p)\n', (2504, 2507), False, 'import os\n'), ((2559, 2573), 'mercurial.pycompat.open', 'open', (['p', "b'rb'"], {}), "(p, b'rb')\n", (2563, 2573), False, 'from mercurial.pycompat import open\n'), ((4018, 4067), 'mercurial.i18n._', '_', (["b'remote peer cannot provide annotate cache\\n'"], {}), "(b'remote peer cannot provide annotate cache\\n')\n", (4019, 4067), False, 'from mercurial.i18n import _\n'), ((5498, 5519), 'mercurial.pycompat.iteritems', 'pycompat.iteritems', (['r'], {}), '(r)\n', (5516, 5519), False, 'from mercurial import error, extensions, hg, pycompat, util, wireprotov1peer, wireprotov1server\n'), ((6144, 6165), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (6159, 6165), False, 'import os\n')]
import SeeThru_Feeds.Core.Exceptions.Config as ConfigExceptions class Meta: Script_Name: str Script_Output_Path: str Script_Object_Path: str def __init__(self, name: str, output_path: str, object_path: str): self.Script_Name = name self.Script_Output_Path = output_path self.Script_Object_Path = object_path @staticmethod def new(name: str) -> "Meta": """ Creates a new script meta, with attributes derived from the name Args: name (str): The name of the script Returns: ScriptMeta: The new script meta """ output_path = f"Outputs/{name}" object_path = f"Scripts.{name}@{name}" return Meta(name, output_path, object_path) @staticmethod def load(data: dict, script_name: str) -> "Meta": """ Parses the given data into a script meta Args: data: The data to parse script_name: The name of the script ot which this belongs Returns: Meta: The new script meta """ if "Script_Name" not in data: raise ConfigExceptions.ScriptMetaException("A script meta has no name", script_name) if "Script_Output_Path" not in data: raise ConfigExceptions.ScriptMetaException("A script meta has no output path", script_name) if "Script_Object_Path" not in data: raise ConfigExceptions.ScriptMetaException("A script meta has no script module", script_name) return Meta( data["Script_Name"], data["Script_Output_Path"], data["Script_Object_Path"] ) def dump(self) -> dict: """ Dumps the meta into a dictionary Returns: dict: The dumped data """ return { "Script_Name": self.Script_Name, "Script_Output_Path": self.Script_Output_Path, "Script_Object_Path": self.Script_Object_Path }
[ "SeeThru_Feeds.Core.Exceptions.Config.ScriptMetaException" ]
[((1143, 1221), 'SeeThru_Feeds.Core.Exceptions.Config.ScriptMetaException', 'ConfigExceptions.ScriptMetaException', (['"""A script meta has no name"""', 'script_name'], {}), "('A script meta has no name', script_name)\n", (1179, 1221), True, 'import SeeThru_Feeds.Core.Exceptions.Config as ConfigExceptions\n'), ((1285, 1374), 'SeeThru_Feeds.Core.Exceptions.Config.ScriptMetaException', 'ConfigExceptions.ScriptMetaException', (['"""A script meta has no output path"""', 'script_name'], {}), "('A script meta has no output path',\n script_name)\n", (1321, 1374), True, 'import SeeThru_Feeds.Core.Exceptions.Config as ConfigExceptions\n'), ((1434, 1525), 'SeeThru_Feeds.Core.Exceptions.Config.ScriptMetaException', 'ConfigExceptions.ScriptMetaException', (['"""A script meta has no script module"""', 'script_name'], {}), "('A script meta has no script module',\n script_name)\n", (1470, 1525), True, 'import SeeThru_Feeds.Core.Exceptions.Config as ConfigExceptions\n')]
""" Provides a HouseCanaryObject class which encapsulates an object and its associated data. Currently, only the Property subclass is implemented. """ from builtins import str from builtins import next from builtins import object import housecanary.constants as constants def _create_component_results(json_data, result_key): """ Returns a list of ComponentResult from the json_data""" component_results = [] for key, value in list(json_data.items()): if key not in [result_key, "meta"]: component_result = ComponentResult( key, value["result"], value["api_code"], value["api_code_description"] ) component_results.append(component_result) return component_results class HouseCanaryObject(object): """Base class for returned API objects.""" def __init__(self): """ Args: data - Json data returned from the API for this object. api_code - The HouseCanary business logic error code. api_code_description - The HouseCanary business logic error description. """ self.component_results = [] def has_error(self): """Returns whether there was a business logic error when fetching data for any components for this property. Returns: boolean """ return next( (True for cr in self.component_results if cr.has_error()), False ) def get_errors(self): """If there were any business errors fetching data for this property, returns the error messages. Returns: string - the error message, or None if there was no error. """ return [{cr.component_name: cr.get_error()} for cr in self.component_results if cr.has_error()] def __str__(self): return "HouseCanaryObject" class Property(HouseCanaryObject): """A single address""" def __init__(self, address=None, zipcode=None): """ Args: address (required) -- Building number, street name and unit number. zipcode (required) -- Zipcode that matches the address. data (optional) -- The data returned from the API for this property. api_code (optional) -- The HouseCanary business logic error code reflecting any error with this property. api_code_description (optional) -- The HouseCanary business logic error description. """ super(Property, self).__init__() self.address = str(address) self.zipcode = str(zipcode) self.block_id = None self.zipcode_plus4 = None self.address_full = None self.city = None self.county_fips = None self.geo_precision = None self.lat = None self.lng = None self.slug = None self.state = None self.unit = None self.meta = None @classmethod def create_from_json(cls, json_data): """Deserialize property json data into a Property object Args: json_data (dict): The json data for this property Returns: Property object """ prop = Property() address_info = json_data["address_info"] prop.address = address_info["address"] prop.block_id = address_info["block_id"] prop.zipcode = address_info["zipcode"] prop.zipcode_plus4 = address_info["zipcode_plus4"] prop.address_full = address_info["address_full"] prop.city = address_info["city"] prop.county_fips = address_info["county_fips"] prop.geo_precision = address_info["geo_precision"] prop.lat = address_info["lat"] prop.lng = address_info["lng"] prop.slug = address_info["slug"] prop.state = address_info["state"] prop.unit = address_info["unit"] prop.meta = None if "meta" in json_data: prop.meta = json_data["meta"] prop.component_results = _create_component_results(json_data, "address_info") return prop def __str__(self): return self.address or self.meta or "PropertyObject" class Block(HouseCanaryObject): """A single block""" def __init__(self, block_id=None): """ Args: block_id (required) -- Block ID. data (optional) -- The data returned from the API for this block. api_code (optional) -- The HouseCanary business logic error code reflecting any error with this block. api_code_description (optional) -- The HouseCanary business logic error description. """ super(Block, self).__init__() self.block_id = str(block_id) self.num_bins = None self.property_type = None self.meta = None @classmethod def create_from_json(cls, json_data): """Deserialize block json data into a Block object Args: json_data (dict): The json data for this block Returns: Block object """ block = Block() block_info = json_data["block_info"] block.block_id = block_info["block_id"] block.num_bins = block_info["num_bins"] if "num_bins" in block_info else None block.property_type = block_info["property_type"] if "property_type" in block_info else None block.meta = json_data["meta"] if "meta" in json_data else None block.component_results = _create_component_results(json_data, "block_info") return block def __str__(self): return self.block_id or self.meta or "BlockObject" class ZipCode(HouseCanaryObject): """A single zipcode""" def __init__(self, zipcode=None): """ Args: zipcode (required) -- Zipcode. data (optional) -- The data returned from the API for this zipcode. api_code (optional) -- The HouseCanary business logic error code reflecting any error with this zipcode. api_code_description (optional) -- The HouseCanary business logic error description. """ super(ZipCode, self).__init__() self.zipcode = str(zipcode) self.meta = None @classmethod def create_from_json(cls, json_data): """Deserialize zipcode json data into a ZipCode object Args: json_data (dict): The json data for this zipcode Returns: Zip object """ zipcode = ZipCode() zipcode.zipcode = json_data["zipcode_info"]["zipcode"] zipcode.meta = json_data["meta"] if "meta" in json_data else None zipcode.component_results = _create_component_results(json_data, "zipcode_info") return zipcode def __str__(self): return self.zipcode or self.meta or "ZipCodeObject" class Msa(HouseCanaryObject): """A single MSA""" def __init__(self, msa=None): """ Args: msa (required) -- MSA. data (optional) -- The data returned from the API for this MSA. api_code (optional) -- The HouseCanary business logic error code reflecting any error with this MSA. api_code_description (optional) -- The HouseCanary business logic error description. """ super(Msa, self).__init__() self.msa = str(msa) self.meta = None @classmethod def create_from_json(cls, json_data): """Deserialize msa json data into a Msa object Args: json_data (dict): The json data for this msa Returns: Msa object """ msa = Msa() msa.msa = json_data["msa_info"]["msa"] msa.meta = json_data["meta"] if "meta" in json_data else None msa.component_results = _create_component_results(json_data, "msa_info") return msa def __str__(self): return self.msa or self.meta or "MsaObject" class ComponentResult(object): """The results of a single component""" def __init__(self, component_name, json_data, api_code, api_code_description): """ Args: component_name - string name of the component. json_data - Json data returned from the API for this object. api_code - The HouseCanary business logic error code. api_code_description - The HouseCanary business logic error description. """ self.component_name = component_name self.json_data = json_data self.api_code = api_code self.api_code_description = api_code_description def has_error(self): """Returns whether this component had a business logic error""" return self.api_code > constants.BIZ_CODE_OK def get_error(self): """Gets the error of this component, if any""" return self.api_code_description
[ "builtins.str" ]
[((2646, 2658), 'builtins.str', 'str', (['address'], {}), '(address)\n', (2649, 2658), False, 'from builtins import str\n'), ((2682, 2694), 'builtins.str', 'str', (['zipcode'], {}), '(zipcode)\n', (2685, 2694), False, 'from builtins import str\n'), ((4828, 4841), 'builtins.str', 'str', (['block_id'], {}), '(block_id)\n', (4831, 4841), False, 'from builtins import str\n'), ((6303, 6315), 'builtins.str', 'str', (['zipcode'], {}), '(zipcode)\n', (6306, 6315), False, 'from builtins import str\n'), ((7478, 7486), 'builtins.str', 'str', (['msa'], {}), '(msa)\n', (7481, 7486), False, 'from builtins import str\n')]
# Author: <NAME> # Email: <EMAIL> from ImportParamFromFile import ImportParamFromFile from scipy.integrate import odeint from ColDetModel import ColDetModel from RunModel import RunModel import multiprocessing import math import numpy as np import sys import pickle import time def ParamAdjust(itKey, parameters, y0, t0, t, baselineLeakage, scale, sampleTiming, ModelName=ColDetModel): #Run the model with the appropriate changes parameters[itKey] = parameters[itKey] * scale model = ModelName() sol = odeint(model.DifEqs, y0, t, args = (parameters,), full_output = 0, atol = 1.0e-1, hmax = t0[2]) while (model.tSwitch > (t[-1] - (sampleTiming*3.5))): t = np.arange(t0[0],(t[-1]*1.5)+t0[2],t0[2]) sol = odeint(model.DifEqs, y0, t, args = (parameters,), full_output = 0, atol = 1.0e-1, hmax = t0[2]) switchIndex = math.ceil(model.tSwitch / t0[2]) indexArray = -1 gain = np.array([((sol[indexArray,19]-baselineLeakage)/baselineLeakage)/(scale-1)]) #gain is percent change in leakage over percent change in parameter return [itKey, gain] def RunTask(inQueue, outQueue): #Function run by the child processes to handle tasks and report results while(1): func,args = inQueue.get() outQueue.put(func(*args)) inQueue.task_done() if __name__ == '__main__': #initialization numCPUs = multiprocessing.cpu_count() inputSource='ColDet-model-parameters.csv' scales = (1.05, 1.04, 1.03, 1.02, 1.01, 0.99, 0.98, 0.97, 0.96, 0.95) #scales = (1.05,0.95) #Depreciated sampleTiming = 365 y0, t0, parameters = ImportParamFromFile(inputSource, ColDetModel) #Runbase case t = np.arange(t0[0],t0[1]+t0[2],t0[2]) model = ColDetModel() sol = odeint(model.DifEqs, y0, t, args = (parameters,), full_output = 0, atol = 1.0e-1, hmax = t0[2]) indexArray = -1 baselineLeakage = np.array(sol[indexArray,19]) #reinit parameters to revert changes that may have occured calculation of the model y0, t0, parameters = ImportParamFromFile(inputSource, ColDetModel) #initializing multiprocessing processes = [] resultsArrays= [] finishQueues = [] multiprocessing.freeze_support() runQueue = multiprocessing.JoinableQueue() #Set up results Queues and Processes for i in range(numCPUs): finishQueues.append(multiprocessing.Queue()) print('Made result Queue #' + repr(i+1)) processes.append(multiprocessing.Process(target = RunTask, args=(runQueue,finishQueues[i]))) processes[i].start() print('Made process #' + repr(i+1)) #Run sensativity analysis for each scale factor paramKeys = list(parameters.keys()) for j in range(len(scales)): keyArray = np.empty(0) gainArray = np.empty(0) #Set up and push tasks to queue tasks = [(ParamAdjust, (key, parameters, y0, t0, t, baselineLeakage, scales[j], sampleTiming)) for key in paramKeys] for task in tasks: runQueue.put_nowait(task) runQueue.join() #Pull results and append them to a list defined in an outer scope results = [] for i in range(len(finishQueues)): while(not finishQueues[i].empty()): results.append(finishQueues[i].get()) for i in range(len(results)): keyArray = np.append(keyArray, results[i][0]) gainArray = np.append(gainArray, results[i][1]) #Combine keyArray and gainArray into one array compositeArray = np.append(np.transpose(np.atleast_2d(keyArray)), np.transpose(np.atleast_2d(gainArray)), axis=1) resultsArrays.append(compositeArray) for i in range(len(processes)): processes[i].terminate() #Dump results file = open('LocalSensitivity.p', 'wb') pickle.dump(resultsArrays, file) file.close() #Organize results into a spreadsheet resultsOutput = np.empty((len(keyArray)+1, 0)) dType1 = np.dtype([('param', '<U32'), ('100 Days', '<U32')]) dType2 = np.dtype('<U32') for i in range(len(scales)): resultsArrays[i].dtype = dType1 resultsArrays[i] = np.sort(resultsArrays[i], axis = 0, order='param') resultsArrays[i].dtype = dType2 dummyArray1 = np.array([['scale', scales[i], '']]) dummyArray2 = np.full((len(keyArray), 1), '', dtype = '<U5') dummyArray2 = np.append(dummyArray2, resultsArrays[i], axis = 1) dummyArray3 = np.append(dummyArray1, dummyArray2, axis=0) resultsOutput = np.append(resultsOutput, dummyArray3, axis = 1) np.savetxt('SensativityAnalysis.csv', resultsOutput, fmt = '%s', delimiter = ',')
[ "numpy.atleast_2d", "math.ceil", "ImportParamFromFile.ImportParamFromFile", "multiprocessing.JoinableQueue", "pickle.dump", "scipy.integrate.odeint", "numpy.sort", "multiprocessing.Process", "multiprocessing.cpu_count", "numpy.append", "numpy.array", "multiprocessing.freeze_support", "ColDetModel.ColDetModel", "numpy.empty", "numpy.savetxt", "numpy.dtype", "multiprocessing.Queue", "numpy.arange" ]
[((526, 614), 'scipy.integrate.odeint', 'odeint', (['model.DifEqs', 'y0', 't'], {'args': '(parameters,)', 'full_output': '(0)', 'atol': '(0.1)', 'hmax': 't0[2]'}), '(model.DifEqs, y0, t, args=(parameters,), full_output=0, atol=0.1,\n hmax=t0[2])\n', (532, 614), False, 'from scipy.integrate import odeint\n'), ((876, 908), 'math.ceil', 'math.ceil', (['(model.tSwitch / t0[2])'], {}), '(model.tSwitch / t0[2])\n', (885, 908), False, 'import math\n'), ((946, 1034), 'numpy.array', 'np.array', (['[(sol[indexArray, 19] - baselineLeakage) / baselineLeakage / (scale - 1)]'], {}), '([(sol[indexArray, 19] - baselineLeakage) / baselineLeakage / (\n scale - 1)])\n', (954, 1034), True, 'import numpy as np\n'), ((1447, 1474), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (1472, 1474), False, 'import multiprocessing\n'), ((1703, 1748), 'ImportParamFromFile.ImportParamFromFile', 'ImportParamFromFile', (['inputSource', 'ColDetModel'], {}), '(inputSource, ColDetModel)\n', (1722, 1748), False, 'from ImportParamFromFile import ImportParamFromFile\n'), ((1776, 1814), 'numpy.arange', 'np.arange', (['t0[0]', '(t0[1] + t0[2])', 't0[2]'], {}), '(t0[0], t0[1] + t0[2], t0[2])\n', (1785, 1814), True, 'import numpy as np\n'), ((1831, 1844), 'ColDetModel.ColDetModel', 'ColDetModel', ([], {}), '()\n', (1842, 1844), False, 'from ColDetModel import ColDetModel\n'), ((1855, 1943), 'scipy.integrate.odeint', 'odeint', (['model.DifEqs', 'y0', 't'], {'args': '(parameters,)', 'full_output': '(0)', 'atol': '(0.1)', 'hmax': 't0[2]'}), '(model.DifEqs, y0, t, args=(parameters,), full_output=0, atol=0.1,\n hmax=t0[2])\n', (1861, 1943), False, 'from scipy.integrate import odeint\n'), ((2002, 2031), 'numpy.array', 'np.array', (['sol[indexArray, 19]'], {}), '(sol[indexArray, 19])\n', (2010, 2031), True, 'import numpy as np\n'), ((2149, 2194), 'ImportParamFromFile.ImportParamFromFile', 'ImportParamFromFile', (['inputSource', 'ColDetModel'], {}), '(inputSource, ColDetModel)\n', (2168, 2194), False, 'from ImportParamFromFile import ImportParamFromFile\n'), ((2305, 2337), 'multiprocessing.freeze_support', 'multiprocessing.freeze_support', ([], {}), '()\n', (2335, 2337), False, 'import multiprocessing\n'), ((2357, 2388), 'multiprocessing.JoinableQueue', 'multiprocessing.JoinableQueue', ([], {}), '()\n', (2386, 2388), False, 'import multiprocessing\n'), ((4065, 4097), 'pickle.dump', 'pickle.dump', (['resultsArrays', 'file'], {}), '(resultsArrays, file)\n', (4076, 4097), False, 'import pickle\n'), ((4233, 4284), 'numpy.dtype', 'np.dtype', (["[('param', '<U32'), ('100 Days', '<U32')]"], {}), "([('param', '<U32'), ('100 Days', '<U32')])\n", (4241, 4284), True, 'import numpy as np\n'), ((4298, 4314), 'numpy.dtype', 'np.dtype', (['"""<U32"""'], {}), "('<U32')\n", (4306, 4314), True, 'import numpy as np\n'), ((4881, 4958), 'numpy.savetxt', 'np.savetxt', (['"""SensativityAnalysis.csv"""', 'resultsOutput'], {'fmt': '"""%s"""', 'delimiter': '""","""'}), "('SensativityAnalysis.csv', resultsOutput, fmt='%s', delimiter=',')\n", (4891, 4958), True, 'import numpy as np\n'), ((697, 741), 'numpy.arange', 'np.arange', (['t0[0]', '(t[-1] * 1.5 + t0[2])', 't0[2]'], {}), '(t0[0], t[-1] * 1.5 + t0[2], t0[2])\n', (706, 741), True, 'import numpy as np\n'), ((752, 840), 'scipy.integrate.odeint', 'odeint', (['model.DifEqs', 'y0', 't'], {'args': '(parameters,)', 'full_output': '(0)', 'atol': '(0.1)', 'hmax': 't0[2]'}), '(model.DifEqs, y0, t, args=(parameters,), full_output=0, atol=0.1,\n hmax=t0[2])\n', (758, 840), False, 'from scipy.integrate import odeint\n'), ((2917, 2928), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (2925, 2928), True, 'import numpy as np\n'), ((2949, 2960), 'numpy.empty', 'np.empty', (['(0)'], {}), '(0)\n', (2957, 2960), True, 'import numpy as np\n'), ((4429, 4477), 'numpy.sort', 'np.sort', (['resultsArrays[i]'], {'axis': '(0)', 'order': '"""param"""'}), "(resultsArrays[i], axis=0, order='param')\n", (4436, 4477), True, 'import numpy as np\n'), ((4554, 4590), 'numpy.array', 'np.array', (["[['scale', scales[i], '']]"], {}), "([['scale', scales[i], '']])\n", (4562, 4590), True, 'import numpy as np\n'), ((4683, 4731), 'numpy.append', 'np.append', (['dummyArray2', 'resultsArrays[i]'], {'axis': '(1)'}), '(dummyArray2, resultsArrays[i], axis=1)\n', (4692, 4731), True, 'import numpy as np\n'), ((4756, 4799), 'numpy.append', 'np.append', (['dummyArray1', 'dummyArray2'], {'axis': '(0)'}), '(dummyArray1, dummyArray2, axis=0)\n', (4765, 4799), True, 'import numpy as np\n'), ((4824, 4869), 'numpy.append', 'np.append', (['resultsOutput', 'dummyArray3'], {'axis': '(1)'}), '(resultsOutput, dummyArray3, axis=1)\n', (4833, 4869), True, 'import numpy as np\n'), ((2494, 2517), 'multiprocessing.Queue', 'multiprocessing.Queue', ([], {}), '()\n', (2515, 2517), False, 'import multiprocessing\n'), ((2593, 2666), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'RunTask', 'args': '(runQueue, finishQueues[i])'}), '(target=RunTask, args=(runQueue, finishQueues[i]))\n', (2616, 2666), False, 'import multiprocessing\n'), ((3564, 3598), 'numpy.append', 'np.append', (['keyArray', 'results[i][0]'], {}), '(keyArray, results[i][0])\n', (3573, 3598), True, 'import numpy as np\n'), ((3623, 3658), 'numpy.append', 'np.append', (['gainArray', 'results[i][1]'], {}), '(gainArray, results[i][1])\n', (3632, 3658), True, 'import numpy as np\n'), ((3771, 3794), 'numpy.atleast_2d', 'np.atleast_2d', (['keyArray'], {}), '(keyArray)\n', (3784, 3794), True, 'import numpy as np\n'), ((3810, 3834), 'numpy.atleast_2d', 'np.atleast_2d', (['gainArray'], {}), '(gainArray)\n', (3823, 3834), True, 'import numpy as np\n')]
from flask import jsonify from flask_restplus import Resource from flask_jwt_extended import jwt_required from application import cache from application.tasks.main import simple_task from . import api @api.route("/") class Main(Resource): @jwt_required @cache.cached() def get(self): result = simple_task.delay() return jsonify({"message": result.get(timeout=1)})
[ "application.tasks.main.simple_task.delay", "application.cache.cached" ]
[((264, 278), 'application.cache.cached', 'cache.cached', ([], {}), '()\n', (276, 278), False, 'from application import cache\n'), ((315, 334), 'application.tasks.main.simple_task.delay', 'simple_task.delay', ([], {}), '()\n', (332, 334), False, 'from application.tasks.main import simple_task\n')]
import pyautogui as p import time import os # Find Ordered Item # Location: 'items/ordered_item/<item> CONF = 0.95 MOUSE_SPEED = 0.13 COFFEE_LOCATIONS = [(337, 717), (406, 726), (480, 733)] MS_LOCATIONS = [(637, 688), (678, 602), (702, 523)] OVEN_LOCATIONS = [(1462, 591), (1437, 707), (1417, 816), (1393, 941)] ORDER_REGIONS = [ (280, 130, 160, 300), (630, 130, 160, 300), (970, 130, 160, 300), (1320, 130, 160, 300), ] PAN_LOCATIONS = [ # (846, 688), # (866, 582), # (1046, 586), (1058, 690) ] MENU = [ 'vanilla', 'chocolate', 'custard', 'strawberry_vanilla', # 'strawberry_chocolate', 'strawberry_custard', 'peach_vanilla', 'peach_chocolate', 'peach_custard', 'blueberry_vanilla', # 'blueberry_chocolate', 'blueberry_custard', 'coffee', 'milkshake', 'strawberry_blueberry_vanilla', ] ORDER = [] CAKE_QUEUE = [] MONEY_REGIONS = [ (450, 380, 90, 90), (790, 380, 90, 90), (1130, 380, 90, 90), (1480, 380, 90, 90) ] MONEY = [ (500, 430), (830, 430), (1180, 430), (1530, 430) ] class Cake: def __init__(self, flavor, location, oven): self.frosting = None self.topping = None self.flavor = flavor self.delivery_location = location self.oven_location = oven self.countdown = 29 self.set_topping() self.make_cake() self.baking() def update(self, val): self.countdown -= val return self.countdown def set_topping(self): if self.flavor == 'vanilla': self.frosting = (1240, 623) if self.flavor == 'strawberry_vanilla': self.frosting = (1240, 623) self.topping = [(960, 801)] if self.flavor == 'peach_vanilla': self.frosting = (1240, 623) self.topping = [(860, 800)] if self.flavor == 'blueberry_vanilla': self.frosting = (1240, 623) self.topping = [(1090, 800)] if self.flavor == 'chocolate': self.frosting = (1275, 716) if self.flavor == 'peach_chocolate': self.frosting = (1275, 716) self.topping = [(860, 800)] if self.flavor == 'custard': self.frosting = (1216, 533) if self.flavor == 'peach_custard': self.frosting = (1216, 533) self.topping = [(860, 800)] if self.flavor == 'blueberry_custard': self.frosting = (1216, 533) self.topping = [(1090, 800)] if self.flavor == 'strawberry_custard': self.frosting = (1216, 533) self.topping = [(960, 801)] if self.flavor == 'strawberry_blueberry_vanilla': self.frosting = (1240, 623) self.topping = [(960, 801), (1090, 800)] def make_cake(self): addMold = click((953, 917)) serve_item(self.frosting, PAN_LOCATIONS[0]) if self.topping: for topping in self.topping: serve_item(topping, PAN_LOCATIONS[0]) def baking(self): if len(CAKE_QUEUE) == 4: remaining_time = 21 for cake in CAKE_QUEUE: if cake.countdown < remaining_time: remaining_time = cake.countdown time.sleep(remaining_time * 0.15) update_queue(remaining_time) serve_item(PAN_LOCATIONS[0], self.oven_location) CAKE_QUEUE.append(self) def serve_cake(self): serve_item(self.oven_location, self.delivery_location) def restart(location): time.sleep(6) prepare.coffee_count = 0 prepare.mscounter = 0 p.click(1360, 941) time.sleep(6) p.click(626, 834) def store_data(): """This will be used to capture images of a particular region to test a machine learning algorithm if the tests are successful""" pass def click(loc): # Takes 0.2 secs to execute p.moveTo(loc[0], loc[1], MOUSE_SPEED) p.click() update_queue(1) def serve_item(start, stop): """ This function moves to a location and drags an object from that location to another. input: start -> tuple containing the coordinates for the start point. stop -> tuple containing the coordinates for the end point. output: None """ # Takes 0.4 secs to execute. p.moveTo(start[0], start[1], MOUSE_SPEED) p.dragTo(stop[0], stop[1], MOUSE_SPEED, button='left') update_queue(2) def update_queue(val): if len(CAKE_QUEUE) > 0: rem = 5 for i in range(len(CAKE_QUEUE)): re = CAKE_QUEUE[i].update(val) if re <= 0: rem = i if rem < 5: CAKE_QUEUE.pop(rem).serve_cake() def find_order(): """ This function searches a particular region to determine if a menu item exists in that location """ for item in MENU: for rgn in ORDER_REGIONS: # p.screenshot("images/data/{}.png".format(rgn[0]), region=rgn) searchFor = 'images/menu/{}.png'.format(item) locateItem = p.locateCenterOnScreen( searchFor, region=rgn, confidence=CONF) if locateItem: data = {'item': item, 'location': locateItem} ORDER.append(data) def prepare(): while len(ORDER) > 0: a = ORDER.pop(0) item = a['item'] if item == 'coffee': coffeeLocation = COFFEE_LOCATIONS[prepare.coffee_count % 3] prepare.coffee_count += 1 serve_item(coffeeLocation, a['location']) elif item == 'milkshake': msLocation = MS_LOCATIONS[prepare.mscounter % 3] if prepare.mscounter % 3 == 0: click((626, 834)) serve_item(msLocation, a['location']) prepare.mscounter += 1 else: prepare.mscounter += 1 serve_item(msLocation, a['location']) else: Cake(item, a['location'], OVEN_LOCATIONS[prepare.cakecount % 4]) prepare.cakecount += 1 collect_money() while len(CAKE_QUEUE) > 0: time.sleep(MOUSE_SPEED) update_queue(1) collect_money() def collect_money(): for rgn in MONEY: p.click(rgn) # Main Control def main(): delay = 6 prepare.coffee_count = 0 prepare.mscounter = 0 prepare.cakecount = 0 print("Starting CFBot...") time.sleep(delay) click((626, 834)) prepare.mscounter += 1 while True: find_order() prepare() restart_button = p.locateCenterOnScreen( 'images/ref/restart.png') if restart_button: # break restart(restart_button) main()
[ "pyautogui.locateCenterOnScreen", "pyautogui.moveTo", "time.sleep", "pyautogui.click", "pyautogui.dragTo" ]
[((3665, 3678), 'time.sleep', 'time.sleep', (['(6)'], {}), '(6)\n', (3675, 3678), False, 'import time\n'), ((3741, 3759), 'pyautogui.click', 'p.click', (['(1360)', '(941)'], {}), '(1360, 941)\n', (3748, 3759), True, 'import pyautogui as p\n'), ((3765, 3778), 'time.sleep', 'time.sleep', (['(6)'], {}), '(6)\n', (3775, 3778), False, 'import time\n'), ((3784, 3801), 'pyautogui.click', 'p.click', (['(626)', '(834)'], {}), '(626, 834)\n', (3791, 3801), True, 'import pyautogui as p\n'), ((4034, 4071), 'pyautogui.moveTo', 'p.moveTo', (['loc[0]', 'loc[1]', 'MOUSE_SPEED'], {}), '(loc[0], loc[1], MOUSE_SPEED)\n', (4042, 4071), True, 'import pyautogui as p\n'), ((4077, 4086), 'pyautogui.click', 'p.click', ([], {}), '()\n', (4084, 4086), True, 'import pyautogui as p\n'), ((4456, 4497), 'pyautogui.moveTo', 'p.moveTo', (['start[0]', 'start[1]', 'MOUSE_SPEED'], {}), '(start[0], start[1], MOUSE_SPEED)\n', (4464, 4497), True, 'import pyautogui as p\n'), ((4503, 4557), 'pyautogui.dragTo', 'p.dragTo', (['stop[0]', 'stop[1]', 'MOUSE_SPEED'], {'button': '"""left"""'}), "(stop[0], stop[1], MOUSE_SPEED, button='left')\n", (4511, 4557), True, 'import pyautogui as p\n'), ((6607, 6624), 'time.sleep', 'time.sleep', (['delay'], {}), '(delay)\n', (6617, 6624), False, 'import time\n'), ((6297, 6320), 'time.sleep', 'time.sleep', (['MOUSE_SPEED'], {}), '(MOUSE_SPEED)\n', (6307, 6320), False, 'import time\n'), ((6425, 6437), 'pyautogui.click', 'p.click', (['rgn'], {}), '(rgn)\n', (6432, 6437), True, 'import pyautogui as p\n'), ((6760, 6808), 'pyautogui.locateCenterOnScreen', 'p.locateCenterOnScreen', (['"""images/ref/restart.png"""'], {}), "('images/ref/restart.png')\n", (6782, 6808), True, 'import pyautogui as p\n'), ((3372, 3405), 'time.sleep', 'time.sleep', (['(remaining_time * 0.15)'], {}), '(remaining_time * 0.15)\n', (3382, 3405), False, 'import time\n'), ((5217, 5279), 'pyautogui.locateCenterOnScreen', 'p.locateCenterOnScreen', (['searchFor'], {'region': 'rgn', 'confidence': 'CONF'}), '(searchFor, region=rgn, confidence=CONF)\n', (5239, 5279), True, 'import pyautogui as p\n')]
from django.utils.timezone import now from django.db import models from django.utils.translation import ugettext_lazy as _ from cms.models import CMSPlugin from .utils import get_additional_styles class Quote(CMSPlugin): """ A quote or testimonial """ STANDARD = 'standard' STYLE_CHOICES = [ (STANDARD, _('Standard')), ] style = models.CharField( _('Style'), choices=STYLE_CHOICES + get_additional_styles(), default=STANDARD, max_length=50 ) created_at = models.DateTimeField(_('Created at'), default=now) content = models.TextField(_('Quote'), default='') footer = models.TextField(_('Footer'), blank=True) url = models.URLField(_('Link'), blank=True) target = models.CharField( _('Target'), max_length=50, blank=True, default='_blank', choices=(('_blank', _('New window')),) ) def __unicode__(self): return self.content[:50]
[ "django.utils.translation.ugettext_lazy" ]
[((397, 407), 'django.utils.translation.ugettext_lazy', '_', (['"""Style"""'], {}), "('Style')\n", (398, 407), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((534, 549), 'django.utils.translation.ugettext_lazy', '_', (['"""Created at"""'], {}), "('Created at')\n", (535, 549), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((595, 605), 'django.utils.translation.ugettext_lazy', '_', (['"""Quote"""'], {}), "('Quote')\n", (596, 605), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((649, 660), 'django.utils.translation.ugettext_lazy', '_', (['"""Footer"""'], {}), "('Footer')\n", (650, 660), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((700, 709), 'django.utils.translation.ugettext_lazy', '_', (['"""Link"""'], {}), "('Link')\n", (701, 709), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((762, 773), 'django.utils.translation.ugettext_lazy', '_', (['"""Target"""'], {}), "('Target')\n", (763, 773), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((336, 349), 'django.utils.translation.ugettext_lazy', '_', (['"""Standard"""'], {}), "('Standard')\n", (337, 349), True, 'from django.utils.translation import ugettext_lazy as _\n'), ((840, 855), 'django.utils.translation.ugettext_lazy', '_', (['"""New window"""'], {}), "('New window')\n", (841, 855), True, 'from django.utils.translation import ugettext_lazy as _\n')]