code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
from django.urls import path from pridesport_work.pridesport_auth.views import login_user, logout_user, RegisterView, UserProfileView urlpatterns = ( # path('register/', register_user, name='register user'), path('register/', RegisterView.as_view(), name='register user'), path('login/', login_user, name='login user'), path('logout/', logout_user, name='logout user'), path('profile/<int:pk>', login_user, name='user profile'), path('profile/', UserProfileView.as_view() , name='user profile'), )
[ "pridesport_work.pridesport_auth.views.UserProfileView.as_view", "django.urls.path", "pridesport_work.pridesport_auth.views.RegisterView.as_view" ]
[((287, 332), 'django.urls.path', 'path', (['"""login/"""', 'login_user'], {'name': '"""login user"""'}), "('login/', login_user, name='login user')\n", (291, 332), False, 'from django.urls import path\n'), ((338, 386), 'django.urls.path', 'path', (['"""logout/"""', 'logout_user'], {'name': '"""logout user"""'}), "('logout/', logout_user, name='logout user')\n", (342, 386), False, 'from django.urls import path\n'), ((392, 449), 'django.urls.path', 'path', (['"""profile/<int:pk>"""', 'login_user'], {'name': '"""user profile"""'}), "('profile/<int:pk>', login_user, name='user profile')\n", (396, 449), False, 'from django.urls import path\n'), ((236, 258), 'pridesport_work.pridesport_auth.views.RegisterView.as_view', 'RegisterView.as_view', ([], {}), '()\n', (256, 258), False, 'from pridesport_work.pridesport_auth.views import login_user, logout_user, RegisterView, UserProfileView\n'), ((472, 497), 'pridesport_work.pridesport_auth.views.UserProfileView.as_view', 'UserProfileView.as_view', ([], {}), '()\n', (495, 497), False, 'from pridesport_work.pridesport_auth.views import login_user, logout_user, RegisterView, UserProfileView\n')]
# Generated by Django 3.1.6 on 2021-02-14 19:01 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('stock', '0013_auto_20210214_1854'), ] operations = [ migrations.RenameField( model_name='cashflow', old_name='common_stock_issurance', new_name='common_stock_issuance', ), ]
[ "django.db.migrations.RenameField" ]
[((225, 344), 'django.db.migrations.RenameField', 'migrations.RenameField', ([], {'model_name': '"""cashflow"""', 'old_name': '"""common_stock_issurance"""', 'new_name': '"""common_stock_issuance"""'}), "(model_name='cashflow', old_name=\n 'common_stock_issurance', new_name='common_stock_issuance')\n", (247, 344), False, 'from django.db import migrations\n')]
import pytest __author__ = "geyerbisschoff" __copyright__ = "geyerbisschoff" __license__ = "MIT" def test_tobit_model(): """API Tests""" import pandas as pd import numpy as np from sklearn.datasets import make_regression from statsmodels_tobit import TobitModel, TobitResults rs = np.random.RandomState(seed=10) ns = 1000 nf = 10 noise = 0 x, y_orig, coef = make_regression(n_samples=ns, n_features=nf, coef=True, noise=noise, random_state=rs) x = pd.DataFrame(x) y = pd.Series(y_orig) n_quantiles = 3 # two-thirds of the data is truncated quantile = 100 / float(n_quantiles) lower = np.percentile(y, quantile) upper = np.percentile(y, (n_quantiles - 1) * quantile) y = y.clip(upper=upper, lower=lower) tr = TobitModel(y, x, lower_bound=lower, upper_bound=upper).fit() assert isinstance(tr, TobitResults) assert np.all(np.round(tr.params[:-1], 4) == np.round(coef, 4)) assert np.round(np.exp(tr.params[-1]), 4) == noise assert isinstance(tr.predict(which='all'), pd.DataFrame)
[ "pandas.Series", "sklearn.datasets.make_regression", "numpy.round", "statsmodels_tobit.TobitModel", "numpy.exp", "pandas.DataFrame", "numpy.percentile", "numpy.random.RandomState" ]
[((309, 339), 'numpy.random.RandomState', 'np.random.RandomState', ([], {'seed': '(10)'}), '(seed=10)\n', (330, 339), True, 'import numpy as np\n'), ((402, 491), 'sklearn.datasets.make_regression', 'make_regression', ([], {'n_samples': 'ns', 'n_features': 'nf', 'coef': '(True)', 'noise': 'noise', 'random_state': 'rs'}), '(n_samples=ns, n_features=nf, coef=True, noise=noise,\n random_state=rs)\n', (417, 491), False, 'from sklearn.datasets import make_regression\n'), ((496, 511), 'pandas.DataFrame', 'pd.DataFrame', (['x'], {}), '(x)\n', (508, 511), True, 'import pandas as pd\n'), ((520, 537), 'pandas.Series', 'pd.Series', (['y_orig'], {}), '(y_orig)\n', (529, 537), True, 'import pandas as pd\n'), ((649, 675), 'numpy.percentile', 'np.percentile', (['y', 'quantile'], {}), '(y, quantile)\n', (662, 675), True, 'import numpy as np\n'), ((688, 734), 'numpy.percentile', 'np.percentile', (['y', '((n_quantiles - 1) * quantile)'], {}), '(y, (n_quantiles - 1) * quantile)\n', (701, 734), True, 'import numpy as np\n'), ((786, 840), 'statsmodels_tobit.TobitModel', 'TobitModel', (['y', 'x'], {'lower_bound': 'lower', 'upper_bound': 'upper'}), '(y, x, lower_bound=lower, upper_bound=upper)\n', (796, 840), False, 'from statsmodels_tobit import TobitModel, TobitResults\n'), ((905, 932), 'numpy.round', 'np.round', (['tr.params[:-1]', '(4)'], {}), '(tr.params[:-1], 4)\n', (913, 932), True, 'import numpy as np\n'), ((936, 953), 'numpy.round', 'np.round', (['coef', '(4)'], {}), '(coef, 4)\n', (944, 953), True, 'import numpy as np\n'), ((975, 996), 'numpy.exp', 'np.exp', (['tr.params[-1]'], {}), '(tr.params[-1])\n', (981, 996), True, 'import numpy as np\n')]
import os import sys import shutil import tempfile import subprocess as sp import requests from datetime import datetime from pathlib import Path import click from git import Repo, IndexFile from git.objects.commit import Commit from halo import Halo from colorama import init as colorama_init from colorama import Fore, Back, Style from ..utils.github_scanner import query_matching_repos, github_headers, get_github_endpoint_paged_list, query_matching_repos from ..config.github import config_github # The Pull request we made would fetch the first issue which has the same title # as patch_branch to be the content @click.command() @click.argument('hw-prefix') @click.argument('patch-branch') @click.option('--source-repo', default='', help="default to tmpl-{hw-prefix}-revise") @click.option('--token', default=config_github['personal_access_token'], help="github access token") @click.option('--org', default=config_github['organization'], show_default=True) @click.option('--only-repo', nargs=1, help="only repo to patch") def patch_project(hw_prefix, patch_branch, source_repo, token, org, only_repo): '''Patch to student homeworks''' # init colorama_init(autoreset=True) spinner = Halo(stream=sys.stderr) if source_repo == '': source_repo = f'tmpl-{hw_prefix}-revise' # Check if repo already contains the patched branch. Skip if so. # api : https://developer.github.com/v3/git/refs/#get-a-reference res = requests.get( f"https://api.github.com/repos/{org}/{source_repo}/git/refs/heads/{patch_branch}", headers=github_headers(token)) if res.status_code != 200: # this branch not exists on the remote spinner.fail(f"branch : `{patch_branch}` doesn't exist on repo:{org}/{source_repo} ") return cur = Path('.') for d in cur.glob("patch-*"): shutil.rmtree(d) spinner.info("delete dated folder") spinner.start( f"Fetch issue template {Fore.CYAN}{patch_branch} {Fore.RESET}from {Fore.CYAN}{source_repo}") # Fetch patch template on the source repo issues = get_github_endpoint_paged_list( endpoint=f"repos/{org}/{source_repo}/issues", github_token=token, verbose=False ) issue_tmpl_found = False for i in issues: if i['title'] == patch_branch: issue_tmpl_found = True issue_tmpl_body = i['body'] break if not issue_tmpl_found: raise Exception( f"cannot found issue tmpl `{patch_branch}` on `{source_repo}`") spinner.succeed() root_folder = Path(tempfile.mkdtemp( prefix="patch-{}-{}-".format(patch_branch, datetime.now().strftime("%b%d%H%M%S")), dir=".")) spinner.succeed(f"Create tmp folder {Fore.YELLOW}{root_folder}") spinner.info( f"Fetch source repo {Fore.CYAN}{source_repo}{Style.RESET_ALL} from GitHub") src_repo_path = root_folder / "source_repo" sp.run(['git', 'clone', f'https://github.com/{org}/{source_repo}.git', src_repo_path.name, ], cwd=root_folder) src_repo = Repo(src_repo_path) sp.run(['git', 'checkout', '--track', f'origin/{patch_branch}'], cwd=src_repo_path, stdout=sp.DEVNULL, stderr=sp.DEVNULL) spinner.succeed() # Pasting changed files into students repo src_repo_git = src_repo.git src_repo_git.checkout(patch_branch) changed_files, renamed_files = get_changed_files( master_commit=src_repo.heads['master'].commit, patch_commit=src_repo.heads[patch_branch].commit ) spinner.start("Fetch information for homework repo") spinner.succeed() if only_repo is not None: repos = [re for re in query_matching_repos(org, github_repo_prefix=only_repo, github_token=token, verbose=False) if re['name'] == only_repo] repo = next(iter(repos), None) if repo: spinner.info( f"Only patch to repo : {Fore.YELLOW}{repo['name']}{Style.RESET_ALL}") repos = [repo] else: repos = query_matching_repos(org, github_repo_prefix=hw_prefix, github_token=token, verbose=False) spinner.succeed() # Patch to student repos student_path = root_folder / "student_repos" student_path.mkdir() for repo_idx, r in enumerate(repos, start=1): pre_prompt_str = f"({repo_idx}/{len(repos)}) {Fore.YELLOW}{r['name']}{Fore.RESET}" spinner.start() # Check if repo already contains the patched branch. Skip if so. # api : https://developer.github.com/v3/git/refs/#get-a-reference res = requests.get( f"https://api.github.com/repos/{org}/{r['name']}/git/refs/heads/{patch_branch}", headers=github_headers(token)) if res.status_code == 200: # this branch exists in the remote spinner.text = pre_prompt_str + \ f" {Back.GREEN}{Fore.BLACK} Skip {Style.RESET_ALL} already patched" spinner.succeed() continue spinner.text = pre_prompt_str + \ f" {Fore.BLUE}cloning repo..{Fore.RESET}" sp.run(['git', 'clone', '--depth=1', r['html_url']], cwd=student_path, stdout=sp.DEVNULL, stderr=sp.DEVNULL) hw_repo_name = r['html_url'].rsplit("/")[-1] # open a new branch & checkout to that branch sp.run(['git', 'checkout', '-b', patch_branch], cwd=student_path/hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL) # copy file to student repo for f in changed_files.keys(): (student_path/hw_repo_name/f).parent.mkdir(parents=True, exist_ok=True) shutil.copyfile(src=src_repo_path/f, dst=student_path/hw_repo_name/f) for f in renamed_files.keys(): os.remove(student_path/hw_repo_name/f) # changed_files = get_changed_files( # master_commit = src_repo.heads['master'].commit, # patch_commit = src_repo.heads[patch_branch].commit # ) # push (publish) that branch to student repo sp.run(['git', 'add', '.'], cwd=student_path/hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL) # Pass if no changed student_repo = Repo(student_path/hw_repo_name) if len(student_repo.index.diff("HEAD")) == 0: spinner.text = pre_prompt_str + \ f" {Back.GREEN}{Fore.BLACK} Passed {Style.RESET_ALL} Repo no change" spinner.succeed() continue sp.run(['git', 'commit', '-m', f':construction_worker: Patch: {patch_branch}'], cwd=student_path/hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL) spinner.text = pre_prompt_str + \ f" {Fore.BLUE}publish patch to remote..{Fore.RESET}" res = sp.run(['git', 'push', '-u', 'origin', patch_branch], cwd=student_path/hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL) if res.returncode != 0: spinner.text = (pre_prompt_str + f" {Back.RED}{Fore.BLACK} Failed {Style.RESET_ALL}" + f" Cannot push branch {Fore.CYAN}{patch_branch}{Fore.RESET} to origin") spinner.fail() continue # open an pull-request on students repo # student_repo/patch-branch -> student_repo/master body = { "title": f"[PATCH] {patch_branch}", "body": issue_tmpl_body, "head": patch_branch, "base": "master" } res = requests.post(f"https://api.github.com/repos/{org}/{r['name']}/pulls", headers=github_headers(token), json=body) if res.status_code == 201: spinner.text = pre_prompt_str + \ f" {Fore.BLACK}{Back.GREEN} Patched {Style.RESET_ALL}" spinner.succeed() else: spinner.text = (pre_prompt_str + f" {Back.RED}{Fore.BLACK} Failed {Style.RESET_ALL}" + f" Cannot create PR {Fore.CYAN}{patch_branch}{Fore.RESET} to origin/master") spinner.fail() try: print(f" {Fore.RED}{res.json()['errors'][0]['message']}") except: pass continue # TODO : print summary after patch # how many success, skiped, failed pass def get_changed_files(master_commit: Commit, patch_commit: Commit): # TODO # git change type support: # A: addition of a file # C: copy of a file into a new one # D: deletion of a file # done M: modification of the contents or mode of a file # R: renaming of a file # T: change in the type of the file # U: file is unmerged (you must complete the merge before it can be committed) # X: "unknown" change type (most probably a bug, please report it) changed_files = {} renamed_files = {} for x in master_commit.diff(patch_commit): # Change type of x is not 'new' if x.a_blob != None and x.a_blob.path not in changed_files.keys(): if x.change_type == 'R': # file have been renamed, the dest file is include in the changed files # so we need to delete this file from dest repo # print(f'a remove(rename) :{x.a_blob.path}, type: {x.change_type}') renamed_files[x.a_blob.path] = {'type': x.change_type} else: # print(f'a change :{x.a_blob.path}, type: {x.change_type}') changed_files[x.a_blob.path] = {'type': x.change_type} # Change type of x is not 'delete' if x.b_blob is not None and x.b_blob.path not in changed_files.keys(): # print(f'b change :{x.b_blob.path}, type: {x.change_type}') changed_files[x.b_blob.path] = {'type': x.change_type} return changed_files, renamed_files if __name__ == "__main__": patch_project()
[ "click.argument", "halo.Halo", "pathlib.Path", "click.option", "subprocess.run", "shutil.rmtree", "datetime.datetime.now", "shutil.copyfile", "git.Repo", "click.command", "colorama.init", "os.remove" ]
[((628, 643), 'click.command', 'click.command', ([], {}), '()\n', (641, 643), False, 'import click\n'), ((645, 672), 'click.argument', 'click.argument', (['"""hw-prefix"""'], {}), "('hw-prefix')\n", (659, 672), False, 'import click\n'), ((674, 704), 'click.argument', 'click.argument', (['"""patch-branch"""'], {}), "('patch-branch')\n", (688, 704), False, 'import click\n'), ((706, 795), 'click.option', 'click.option', (['"""--source-repo"""'], {'default': '""""""', 'help': '"""default to tmpl-{hw-prefix}-revise"""'}), "('--source-repo', default='', help=\n 'default to tmpl-{hw-prefix}-revise')\n", (718, 795), False, 'import click\n'), ((792, 895), 'click.option', 'click.option', (['"""--token"""'], {'default': "config_github['personal_access_token']", 'help': '"""github access token"""'}), "('--token', default=config_github['personal_access_token'],\n help='github access token')\n", (804, 895), False, 'import click\n'), ((893, 972), 'click.option', 'click.option', (['"""--org"""'], {'default': "config_github['organization']", 'show_default': '(True)'}), "('--org', default=config_github['organization'], show_default=True)\n", (905, 972), False, 'import click\n'), ((974, 1037), 'click.option', 'click.option', (['"""--only-repo"""'], {'nargs': '(1)', 'help': '"""only repo to patch"""'}), "('--only-repo', nargs=1, help='only repo to patch')\n", (986, 1037), False, 'import click\n'), ((1170, 1199), 'colorama.init', 'colorama_init', ([], {'autoreset': '(True)'}), '(autoreset=True)\n', (1183, 1199), True, 'from colorama import init as colorama_init\n'), ((1214, 1237), 'halo.Halo', 'Halo', ([], {'stream': 'sys.stderr'}), '(stream=sys.stderr)\n', (1218, 1237), False, 'from halo import Halo\n'), ((1792, 1801), 'pathlib.Path', 'Path', (['"""."""'], {}), "('.')\n", (1796, 1801), False, 'from pathlib import Path\n'), ((2925, 3037), 'subprocess.run', 'sp.run', (["['git', 'clone', f'https://github.com/{org}/{source_repo}.git',\n src_repo_path.name]"], {'cwd': 'root_folder'}), "(['git', 'clone', f'https://github.com/{org}/{source_repo}.git',\n src_repo_path.name], cwd=root_folder)\n", (2931, 3037), True, 'import subprocess as sp\n'), ((3064, 3083), 'git.Repo', 'Repo', (['src_repo_path'], {}), '(src_repo_path)\n', (3068, 3083), False, 'from git import Repo, IndexFile\n'), ((3088, 3214), 'subprocess.run', 'sp.run', (["['git', 'checkout', '--track', f'origin/{patch_branch}']"], {'cwd': 'src_repo_path', 'stdout': 'sp.DEVNULL', 'stderr': 'sp.DEVNULL'}), "(['git', 'checkout', '--track', f'origin/{patch_branch}'], cwd=\n src_repo_path, stdout=sp.DEVNULL, stderr=sp.DEVNULL)\n", (3094, 3214), True, 'import subprocess as sp\n'), ((1844, 1860), 'shutil.rmtree', 'shutil.rmtree', (['d'], {}), '(d)\n', (1857, 1860), False, 'import shutil\n'), ((5315, 5427), 'subprocess.run', 'sp.run', (["['git', 'clone', '--depth=1', r['html_url']]"], {'cwd': 'student_path', 'stdout': 'sp.DEVNULL', 'stderr': 'sp.DEVNULL'}), "(['git', 'clone', '--depth=1', r['html_url']], cwd=student_path,\n stdout=sp.DEVNULL, stderr=sp.DEVNULL)\n", (5321, 5427), True, 'import subprocess as sp\n'), ((5556, 5678), 'subprocess.run', 'sp.run', (["['git', 'checkout', '-b', patch_branch]"], {'cwd': '(student_path / hw_repo_name)', 'stdout': 'sp.DEVNULL', 'stderr': 'sp.DEVNULL'}), "(['git', 'checkout', '-b', patch_branch], cwd=student_path /\n hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL)\n", (5562, 5678), True, 'import subprocess as sp\n'), ((6295, 6398), 'subprocess.run', 'sp.run', (["['git', 'add', '.']"], {'cwd': '(student_path / hw_repo_name)', 'stdout': 'sp.DEVNULL', 'stderr': 'sp.DEVNULL'}), "(['git', 'add', '.'], cwd=student_path / hw_repo_name, stdout=sp.\n DEVNULL, stderr=sp.DEVNULL)\n", (6301, 6398), True, 'import subprocess as sp\n'), ((6460, 6493), 'git.Repo', 'Repo', (['(student_path / hw_repo_name)'], {}), '(student_path / hw_repo_name)\n', (6464, 6493), False, 'from git import Repo, IndexFile\n'), ((6737, 6895), 'subprocess.run', 'sp.run', (["['git', 'commit', '-m', f':construction_worker: Patch: {patch_branch}']"], {'cwd': '(student_path / hw_repo_name)', 'stdout': 'sp.DEVNULL', 'stderr': 'sp.DEVNULL'}), "(['git', 'commit', '-m',\n f':construction_worker: Patch: {patch_branch}'], cwd=student_path /\n hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL)\n", (6743, 6895), True, 'import subprocess as sp\n'), ((7038, 7166), 'subprocess.run', 'sp.run', (["['git', 'push', '-u', 'origin', patch_branch]"], {'cwd': '(student_path / hw_repo_name)', 'stdout': 'sp.DEVNULL', 'stderr': 'sp.DEVNULL'}), "(['git', 'push', '-u', 'origin', patch_branch], cwd=student_path /\n hw_repo_name, stdout=sp.DEVNULL, stderr=sp.DEVNULL)\n", (7044, 7166), True, 'import subprocess as sp\n'), ((5860, 5935), 'shutil.copyfile', 'shutil.copyfile', ([], {'src': '(src_repo_path / f)', 'dst': '(student_path / hw_repo_name / f)'}), '(src=src_repo_path / f, dst=student_path / hw_repo_name / f)\n', (5875, 5935), False, 'import shutil\n'), ((6009, 6051), 'os.remove', 'os.remove', (['(student_path / hw_repo_name / f)'], {}), '(student_path / hw_repo_name / f)\n', (6018, 6051), False, 'import os\n'), ((2651, 2665), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2663, 2665), False, 'from datetime import datetime\n')]
#!/usr/bin/env python3 import json import re import socketserver import http.server def unique_id_sequence(): i = 0 while True: yield i i += 1 unique_id_sequence= unique_id_sequence() # don't try this at home class Handler(http.server.SimpleHTTPRequestHandler): def send_all_good(self): self.send_response(200) self.send_header('Content-type', 'application/json') self.end_headers() def do_GET(self): self.send_all_good() self.wfile.write( json.dumps( [ { 'id': next(unique_id_sequence), 'name': "cositas para la casa", 'items':[ { 'id': next(unique_id_sequence), 'name': '<NAME>', 'addedBy': { 'name': 'Moni', }, 'buyAt': [], 'bought': False, }, { 'id': next(unique_id_sequence), 'name': '<NAME>', 'addedBy': { 'name': 'Moni', }, # 'buyAt': [ 'Hofer', 'Billa' ], 'buyAt': [], 'bought': True, }, { 'id': next(unique_id_sequence), 'name': 'calabacín', 'addedBy': { 'name': 'Moni', }, # 'buyAt': [ 'Hofer', 'Billa' ], 'buyAt': [], 'bought': False, }, { 'id': next(unique_id_sequence), 'name': 'dulcítas', 'addedBy': { 'name': 'Moni', }, # 'buyAt': [ 'Hofer', 'Billa' ], 'buyAt': [], 'bought': True, }, ] }, { 'id': next(unique_id_sequence), 'name': "cositas para comer", 'items': [], } ], ).encode('utf-8') + b'\n' ) def do_POST(self): self.send_all_good() # assume query to add list content = self.read_json_content() print ("Post to path", self.path) add_item_match = re.match(r".*/list/(?P<list_id>\d+)/$", self.path) if add_item_match: print("Adding new item") list_id = add_item_match.group("list_id") self.wfile.write( json.dumps( { 'id': next(unique_id_sequence), 'name': content['name'], 'addedBy': { 'name': 'Moni', }, 'buyAt': [], 'bought': False, } ).encode('utf-8') + b'\n' ) else: print("Adding new list") self.wfile.write( json.dumps( { 'id': next(unique_id_sequence), 'name': content['name'], 'items': [], } ).encode('utf-8') + b'\n' ) def do_PATCH(self): self.send_all_good() content = self.read_json_content() self.wfile.write( json.dumps( { 'bought': content['bought'] }, ).encode('utf-8') + b'\n' ) def read_json_content(self): length = int(self.headers['Content-Length']) content_str = self.rfile.read(length) return json.loads(content_str) port = 8008 print(f'Server listening on port {port}...') socketserver.TCPServer.allow_reuse_address = True httpd = socketserver.TCPServer(('127.0.0.1', port), Handler) httpd.serve_forever()
[ "json.dumps", "json.loads", "socketserver.TCPServer", "re.match" ]
[((4565, 4617), 'socketserver.TCPServer', 'socketserver.TCPServer', (["('127.0.0.1', port)", 'Handler'], {}), "(('127.0.0.1', port), Handler)\n", (4587, 4617), False, 'import socketserver\n'), ((3023, 3073), 're.match', 're.match', (['""".*/list/(?P<list_id>\\\\d+)/$"""', 'self.path'], {}), "('.*/list/(?P<list_id>\\\\d+)/$', self.path)\n", (3031, 3073), False, 'import re\n'), ((4420, 4443), 'json.loads', 'json.loads', (['content_str'], {}), '(content_str)\n', (4430, 4443), False, 'import json\n'), ((4127, 4168), 'json.dumps', 'json.dumps', (["{'bought': content['bought']}"], {}), "({'bought': content['bought']})\n", (4137, 4168), False, 'import json\n')]
from django.db import models # Create your models here. #Reception Hall Package class class ReceptionHallPackage(models.Model): RH_packageID = models.IntegerField theme = models.CharField(max_length=20) price = models.FloatField(max_length=10) description = models.CharField(max_length=30) #Reception Hall reservation class class ReceptionHallBook(models.Model): RH_reserveID = models.IntegerField cusId = models.CharField(max_length=10) theme = models.CharField(max_length=20) date = models.DateField timeFrom = models.CharField timeTo = models.TimeField
[ "django.db.models.FloatField", "django.db.models.CharField" ]
[((201, 232), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (217, 232), False, 'from django.db import models\n'), ((256, 288), 'django.db.models.FloatField', 'models.FloatField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (273, 288), False, 'from django.db import models\n'), ((312, 343), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(30)'}), '(max_length=30)\n', (328, 343), False, 'from django.db import models\n'), ((493, 524), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(10)'}), '(max_length=10)\n', (509, 524), False, 'from django.db import models\n'), ((548, 579), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (564, 579), False, 'from django.db import models\n')]
import tempfile import unittest import mock from transformers import AutoTokenizer, PegasusForConditionalGeneration, PegasusConfig from test.test_loaders import create_test_loader from test.testing_common_utils import values_tensor from src.bayesian_summarization.bayesian import BayesianSummarizer class TestBayesianSummarizer(unittest.TestCase): @mock.patch("src.bayesian_summarization.bayesian.convert_bayesian_model") @mock.patch("src.summarization.sum_base.load_model") def setUp(self, mock_model_loader, mock_mc_model) -> None: self.batch_size = 2 self.num_beams = 3 self.sequence_length = 10 self.vocab_size = 99 self.bayesian_summarizer = BayesianSummarizer( model_name_or_path="test_path", tokenizer_name="google/pegasus-xsum", text_column="document", summary_column="summary", seed=111, max_source_length=self.sequence_length, num_beams=self.num_beams, ) dummy_config = PegasusConfig() model = PegasusForConditionalGeneration(config=dummy_config) tokenizer = AutoTokenizer.from_pretrained("google/pegasus-xsum") mock_model_loader.return_value = model, tokenizer mock_mc_model.return_value = model self.bayesian_summarizer.init_sum() def tearDown(self) -> None: del self.bayesian_summarizer @mock.patch("transformers.PegasusForConditionalGeneration.generate") def test_mc_dropout(self, mock_generation): input_text = "This is the first sentence. This is the second sentence. This is the third sentence." target_text = "This is a generated summary." mock_input_ids = [[182, 117, 109, 211, 5577, 107, 182, 117, 109, 1]] mock_input_ids_tensor = values_tensor(mock_input_ids) mock_gen_ids = [[182, 117, 114, 3943, 5627, 107, 1]] mock_gen_ids_tensor = values_tensor(mock_gen_ids) batch = { "document": input_text, } mock_generation.return_value = { "sequences": mock_gen_ids_tensor, } generations, input_ids = self.bayesian_summarizer.run_mc_dropout(batch, 3) self.assertEqual(generations[0][0], target_text) self.assertListEqual(input_ids[0].tolist(), mock_input_ids_tensor[0].tolist()) @mock.patch("transformers.PegasusForConditionalGeneration.generate") def test_mc_dropout_batch(self, mock_generation): input_text = "This is the first sentence. This is the second sentence. This is the third sentence." target_text = "This is a generated summary." mock_gen_ids = [[182, 117, 114, 3943, 5627, 107, 1]] mock_gen_ids_tensor = values_tensor(mock_gen_ids) batch = { "document": input_text, } mock_generation.return_value = { "sequences": mock_gen_ids_tensor, } generations, gen_ids = self.bayesian_summarizer.mc_dropout_batch( batch=batch, n=3, num_articles=0) self.assertEqual(generations[0][0], target_text) self.assertEqual(len(gen_ids), 1) @mock.patch("transformers.PegasusForConditionalGeneration.generate") def test_generate_bayesian(self, mock_generation): mock_gen_ids = [[182, 117, 114, 3943, 5627, 107, 1]] mock_gen_ids_tensor = values_tensor(mock_gen_ids) args = { "test_batch_size": 1, "dataset_name": None, "dataset_config_name": "", "max_test_samples": 4, } with tempfile.TemporaryDirectory() as tmp_dir: test_loader = create_test_loader(args=args, tmp_dir=tmp_dir) mock_generation.return_value = { "sequences": mock_gen_ids_tensor, } generated_sums, target_sums, article_ids, bleuvars = self.bayesian_summarizer.generate_bayesian_summaries( dataloader=test_loader, n=3) self.assertEqual(len(generated_sums), args["max_test_samples"]) self.assertEqual(len(target_sums), args["max_test_samples"]) self.assertEqual(len(article_ids), args["max_test_samples"]) self.assertEqual(len(bleuvars), args["max_test_samples"]) del test_loader @mock.patch("transformers.PegasusForConditionalGeneration.generate") def test_generate_mc_summaries(self, mock_generation): mock_gen_ids = [[182, 117, 114, 3943, 5627, 107, 1]] mock_gen_ids_tensor = values_tensor(mock_gen_ids) args = { "test_batch_size": 1, "dataset_name": None, "dataset_config_name": "", "max_test_samples": 4, } with tempfile.TemporaryDirectory() as tmp_dir: test_loader = create_test_loader(args=args, tmp_dir=tmp_dir) mock_generation.return_value = { "sequences": mock_gen_ids_tensor, } generated_sums = self.bayesian_summarizer.generate_mc_summaries(test_loader, n=3) self.assertEqual(len(generated_sums), args["max_test_samples"]) self.assertEqual(len(generated_sums[0]), 3) del test_loader
[ "tempfile.TemporaryDirectory", "mock.patch", "transformers.PegasusForConditionalGeneration", "test.testing_common_utils.values_tensor", "transformers.PegasusConfig", "src.bayesian_summarization.bayesian.BayesianSummarizer", "transformers.AutoTokenizer.from_pretrained", "test.test_loaders.create_test_loader" ]
[((357, 429), 'mock.patch', 'mock.patch', (['"""src.bayesian_summarization.bayesian.convert_bayesian_model"""'], {}), "('src.bayesian_summarization.bayesian.convert_bayesian_model')\n", (367, 429), False, 'import mock\n'), ((435, 486), 'mock.patch', 'mock.patch', (['"""src.summarization.sum_base.load_model"""'], {}), "('src.summarization.sum_base.load_model')\n", (445, 486), False, 'import mock\n'), ((1417, 1484), 'mock.patch', 'mock.patch', (['"""transformers.PegasusForConditionalGeneration.generate"""'], {}), "('transformers.PegasusForConditionalGeneration.generate')\n", (1427, 1484), False, 'import mock\n'), ((2349, 2416), 'mock.patch', 'mock.patch', (['"""transformers.PegasusForConditionalGeneration.generate"""'], {}), "('transformers.PegasusForConditionalGeneration.generate')\n", (2359, 2416), False, 'import mock\n'), ((3163, 3230), 'mock.patch', 'mock.patch', (['"""transformers.PegasusForConditionalGeneration.generate"""'], {}), "('transformers.PegasusForConditionalGeneration.generate')\n", (3173, 3230), False, 'import mock\n'), ((4304, 4371), 'mock.patch', 'mock.patch', (['"""transformers.PegasusForConditionalGeneration.generate"""'], {}), "('transformers.PegasusForConditionalGeneration.generate')\n", (4314, 4371), False, 'import mock\n'), ((703, 926), 'src.bayesian_summarization.bayesian.BayesianSummarizer', 'BayesianSummarizer', ([], {'model_name_or_path': '"""test_path"""', 'tokenizer_name': '"""google/pegasus-xsum"""', 'text_column': '"""document"""', 'summary_column': '"""summary"""', 'seed': '(111)', 'max_source_length': 'self.sequence_length', 'num_beams': 'self.num_beams'}), "(model_name_or_path='test_path', tokenizer_name=\n 'google/pegasus-xsum', text_column='document', summary_column='summary',\n seed=111, max_source_length=self.sequence_length, num_beams=self.num_beams)\n", (721, 926), False, 'from src.bayesian_summarization.bayesian import BayesianSummarizer\n'), ((1037, 1052), 'transformers.PegasusConfig', 'PegasusConfig', ([], {}), '()\n', (1050, 1052), False, 'from transformers import AutoTokenizer, PegasusForConditionalGeneration, PegasusConfig\n'), ((1069, 1121), 'transformers.PegasusForConditionalGeneration', 'PegasusForConditionalGeneration', ([], {'config': 'dummy_config'}), '(config=dummy_config)\n', (1100, 1121), False, 'from transformers import AutoTokenizer, PegasusForConditionalGeneration, PegasusConfig\n'), ((1142, 1194), 'transformers.AutoTokenizer.from_pretrained', 'AutoTokenizer.from_pretrained', (['"""google/pegasus-xsum"""'], {}), "('google/pegasus-xsum')\n", (1171, 1194), False, 'from transformers import AutoTokenizer, PegasusForConditionalGeneration, PegasusConfig\n'), ((1803, 1832), 'test.testing_common_utils.values_tensor', 'values_tensor', (['mock_input_ids'], {}), '(mock_input_ids)\n', (1816, 1832), False, 'from test.testing_common_utils import values_tensor\n'), ((1925, 1952), 'test.testing_common_utils.values_tensor', 'values_tensor', (['mock_gen_ids'], {}), '(mock_gen_ids)\n', (1938, 1952), False, 'from test.testing_common_utils import values_tensor\n'), ((2723, 2750), 'test.testing_common_utils.values_tensor', 'values_tensor', (['mock_gen_ids'], {}), '(mock_gen_ids)\n', (2736, 2750), False, 'from test.testing_common_utils import values_tensor\n'), ((3377, 3404), 'test.testing_common_utils.values_tensor', 'values_tensor', (['mock_gen_ids'], {}), '(mock_gen_ids)\n', (3390, 3404), False, 'from test.testing_common_utils import values_tensor\n'), ((4522, 4549), 'test.testing_common_utils.values_tensor', 'values_tensor', (['mock_gen_ids'], {}), '(mock_gen_ids)\n', (4535, 4549), False, 'from test.testing_common_utils import values_tensor\n'), ((3587, 3616), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (3614, 3616), False, 'import tempfile\n'), ((3655, 3701), 'test.test_loaders.create_test_loader', 'create_test_loader', ([], {'args': 'args', 'tmp_dir': 'tmp_dir'}), '(args=args, tmp_dir=tmp_dir)\n', (3673, 3701), False, 'from test.test_loaders import create_test_loader\n'), ((4732, 4761), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (4759, 4761), False, 'import tempfile\n'), ((4800, 4846), 'test.test_loaders.create_test_loader', 'create_test_loader', ([], {'args': 'args', 'tmp_dir': 'tmp_dir'}), '(args=args, tmp_dir=tmp_dir)\n', (4818, 4846), False, 'from test.test_loaders import create_test_loader\n')]
import math import uuid from unittest.mock import mock_open, patch from django.urls import reverse from ...test.director_test import DirectorTestCase from .utils import ( find_static_file, get_page_title, load_doc_page, rewrite_markdown_link, url_to_path, ) class DocsTestCase(DirectorTestCase): def test_doc_page_view(self): self.login() # We're going to patch the load_doc_page() call to get # the content I want header_magic_text = str(uuid.uuid4()) with patch( "director.apps.docs.views.load_doc_page", return_value=({}, f"<h1>{header_magic_text}</h1>"), ) as mock_obj: response = self.client.get( reverse("docs:doc_page", kwargs={"url": "index"}) + "/", follow=True ) mock_obj.assert_called() self.assertEqual(200, response.status_code) self.assertIn(header_magic_text, response.content.decode("UTF-8")) def test_search_view(self): self.login() # We're going to patch the load_doc_page() call to get # the content I want header_magic_text = str(uuid.uuid4()) with patch( "director.apps.docs.views.load_doc_page", return_value=({}, f"<h1>{header_magic_text}</h1>"), ) as mock_obj: with patch( "director.apps.docs.views.iter_page_names", return_value=["hello"] ) as mock_iter_obj: response = self.client.get( reverse("docs:search"), follow=True, data={"q": header_magic_text} ) self.assertIn(("hello", "Hello", 1), response.context["results"]) mock_obj.assert_called() mock_iter_obj.assert_called() class DocsUtilsTestCase(DirectorTestCase): def test_rewrite_markdown_link(self): self.assertEqual( "/check/", rewrite_markdown_link( link_url="check.md", base_page_name="check", add_docs_prefix=False ), ) self.assertEqual( "/check/", rewrite_markdown_link(link_url="check", base_page_name="check", add_docs_prefix=False), ) self.assertEqual( "/check/", rewrite_markdown_link(link_url="check", base_page_name="/check", add_docs_prefix=False), ) self.assertEqual( "/check/", rewrite_markdown_link( link_url="/check", base_page_name="/check", add_docs_prefix=False ), ) self.assertEqual( "/check.html", rewrite_markdown_link( link_url="check.html", base_page_name="check", add_docs_prefix=False ), ) self.assertEqual( "mailto:<EMAIL>", rewrite_markdown_link( link_url="mailto:<EMAIL>", base_page_name="", add_docs_prefix=True ), ) def test_url_to_path(self): self.assertIsNone(url_to_path("https://director.tjhsst.edu/../../../../etc/passwd")) self.assertIsNone(url_to_path("https://director.tjhsst.edu/etc/passwd/.git/")) self.assertIsNotNone(url_to_path("https://director.tjhsst.edu/etc/passwd/")) def test_load_doc_page(self): with patch("builtins.open", mock_open(read_data="# hello")): with patch("os.path.exists", return_value=True): with patch("os.path.getmtime", return_value=math.inf): html = load_doc_page("hello.md") self.assertIn("<h1", html[1]) self.assertIn(">hello", html[1]) def test_find_static_file(self): self.assertIsNone(find_static_file("/.././../../../../")) with self.settings(DIRECTOR_DOCS_DIR="/testing"): self.assertEqual("/testing/hello.html", find_static_file("hello.html")) def test_get_page_title(self): self.assertEqual( "hello this is a test", get_page_title( page_name="hello this is a test", metadata={"title": ["hello", "this", "is", "a", "test"]}, ), ) self.assertEqual( "Hello This Is A Test", get_page_title(page_name="hello this is a test", metadata={}) ) self.assertEqual("Howto", get_page_title(page_name="/custom-domains/howto", metadata={}))
[ "unittest.mock.mock_open", "django.urls.reverse", "unittest.mock.patch", "uuid.uuid4" ]
[((500, 512), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (510, 512), False, 'import uuid\n'), ((527, 630), 'unittest.mock.patch', 'patch', (['"""director.apps.docs.views.load_doc_page"""'], {'return_value': "({}, f'<h1>{header_magic_text}</h1>')"}), "('director.apps.docs.views.load_doc_page', return_value=({},\n f'<h1>{header_magic_text}</h1>'))\n", (532, 630), False, 'from unittest.mock import mock_open, patch\n'), ((1154, 1166), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1164, 1166), False, 'import uuid\n'), ((1181, 1284), 'unittest.mock.patch', 'patch', (['"""director.apps.docs.views.load_doc_page"""'], {'return_value': "({}, f'<h1>{header_magic_text}</h1>')"}), "('director.apps.docs.views.load_doc_page', return_value=({},\n f'<h1>{header_magic_text}</h1>'))\n", (1186, 1284), False, 'from unittest.mock import mock_open, patch\n'), ((1346, 1419), 'unittest.mock.patch', 'patch', (['"""director.apps.docs.views.iter_page_names"""'], {'return_value': "['hello']"}), "('director.apps.docs.views.iter_page_names', return_value=['hello'])\n", (1351, 1419), False, 'from unittest.mock import mock_open, patch\n'), ((3318, 3348), 'unittest.mock.mock_open', 'mock_open', ([], {'read_data': '"""# hello"""'}), "(read_data='# hello')\n", (3327, 3348), False, 'from unittest.mock import mock_open, patch\n'), ((3368, 3410), 'unittest.mock.patch', 'patch', (['"""os.path.exists"""'], {'return_value': '(True)'}), "('os.path.exists', return_value=True)\n", (3373, 3410), False, 'from unittest.mock import mock_open, patch\n'), ((731, 780), 'django.urls.reverse', 'reverse', (['"""docs:doc_page"""'], {'kwargs': "{'url': 'index'}"}), "('docs:doc_page', kwargs={'url': 'index'})\n", (738, 780), False, 'from django.urls import reverse\n'), ((1532, 1554), 'django.urls.reverse', 'reverse', (['"""docs:search"""'], {}), "('docs:search')\n", (1539, 1554), False, 'from django.urls import reverse\n'), ((3433, 3481), 'unittest.mock.patch', 'patch', (['"""os.path.getmtime"""'], {'return_value': 'math.inf'}), "('os.path.getmtime', return_value=math.inf)\n", (3438, 3481), False, 'from unittest.mock import mock_open, patch\n')]
# Handshake """ PSTR: String identifier of the Bittorrent protocol V1, 19 bytes. PSTR_LEN: PSTR length, 1 byte. RESERVED: 8 bytes, zeroes for example. PEER_ID_PREFIX: 8 bytes used as an unique ID for the client. "SL" is the peer_id chosen for this client. The full PEER_ID is 20 bytes, the rest of it is built using random numbers. The full handshake message consists of: <PSTR_LEN><PSTR><RESERVED><INFO_HASH><PEER_ID> The full handshake consists of 68 bytes. """ from stilio.crawler.bittorrent.bencoding import encode PSTR = "BitTorrent protocol" PSTR_LEN = chr(len(PSTR)) RESERVED = "\x00\x00\x00\x00\x00\x10\x00\x01" PEER_ID_PREFIX = "-SL0001-" BT_PROTOCOL_PREFIX = bytes(PSTR_LEN + PSTR + RESERVED, encoding="utf-8") # Extension ID_EXTENDED_MESSAGE = 20 ID_EXTENDED_HANDSHAKE = 0 EXTENDED_HANDSHAKE_MESSAGE = bytes( [ID_EXTENDED_MESSAGE, ID_EXTENDED_HANDSHAKE] ) + encode({b"m": {b"ut_metadata": 1}})
[ "stilio.crawler.bittorrent.bencoding.encode" ]
[((910, 945), 'stilio.crawler.bittorrent.bencoding.encode', 'encode', (["{b'm': {b'ut_metadata': 1}}"], {}), "({b'm': {b'ut_metadata': 1}})\n", (916, 945), False, 'from stilio.crawler.bittorrent.bencoding import encode\n')]
from rest_framework import routers from . import viewset router = routers.SimpleRouter() router.register('AcaUser', viewset.AcaUserViewSet) router.register('AcaEvent', viewset.AcaEventViewSet) router.register('AcaEventNoPage', viewset.AcaEventViewSetNopage) router.register('AcaResultset', viewset.AcaResultsetViewSet) router.register('AcaRacegroup', viewset.AcaRacegroupViewSet) router.register('AcaResult', viewset.AcaResultViewSet) router.register('AcaResultNoPage', viewset.AcaResultNoPageViewSet) router.register('AcaPointscompetition', viewset.AcaPointscompetitionViewSet) router.register('AcaPointscompetitionraceresult', viewset.AcaPointscompetitionraceresultViewSet) router.register('AcaPointscompetitionresult', viewset.AcaPointscompetitionresultViewSet)
[ "rest_framework.routers.SimpleRouter" ]
[((67, 89), 'rest_framework.routers.SimpleRouter', 'routers.SimpleRouter', ([], {}), '()\n', (87, 89), False, 'from rest_framework import routers\n')]
import numpy as np from dqn import * layers = [12, 64, 32, 4] model = LinearDQN(layers) input_arr = np.random.uniform(size=(3, 12)) print(model.forward(input_arr)) print(model.update(input_arr).shape)
[ "numpy.random.uniform" ]
[((103, 134), 'numpy.random.uniform', 'np.random.uniform', ([], {'size': '(3, 12)'}), '(size=(3, 12))\n', (120, 134), True, 'import numpy as np\n')]
import numpy as np import cv2 # number of corners VERT = 5 HORI = 7 ROWS = VERT + 1 COLS = HORI + 1 BLOCKSIZE = 100 MARGIN = 25 HEIGHT = ROWS*BLOCKSIZE + 2*MARGIN WIDTH = COLS*BLOCKSIZE + 2*MARGIN img = np.ones((HEIGHT, WIDTH), np.uint8)*255 for r in range(ROWS): for c in range(COLS): if (r+c) % 2 == 1: x = MARGIN + BLOCKSIZE*c y = MARGIN + BLOCKSIZE*r img[y:y+BLOCKSIZE, x:x+BLOCKSIZE] = 0 cv2.imwrite('chessboard_{0}x{1}.png'.format(VERT, HORI), img)
[ "numpy.ones" ]
[((207, 241), 'numpy.ones', 'np.ones', (['(HEIGHT, WIDTH)', 'np.uint8'], {}), '((HEIGHT, WIDTH), np.uint8)\n', (214, 241), True, 'import numpy as np\n')]
import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init from functools import reduce import math __all__ = ['skgrcnn55', 'skgrcnn109', 'grcnn109', 'grcnn55'] class SKConv(nn.Module): def __init__(self,in_channels,out_channels,stride=1,M=2,r=16,L=32, groups=32): super(SKConv,self).__init__() d=max(in_channels//r,L) self.M=M self.out_channels=out_channels self.conv=nn.ModuleList() for i in range(M): conv1 = nn.Conv2d(in_channels,out_channels,3,stride,padding=1+i,dilation=1+i,groups=groups,bias=False) init.kaiming_normal_(conv1.weight) self.conv.append(nn.Sequential(conv1, nn.BatchNorm2d(out_channels), nn.ReLU(inplace=True))) self.global_pool=nn.AdaptiveAvgPool2d(1) conv_fc = nn.Conv2d(out_channels,d,1,bias=False) init.normal_(conv_fc.weight, std=0.01) self.fc1=nn.Sequential(conv_fc, nn.BatchNorm2d(d), nn.ReLU(inplace=True)) self.fc2=nn.Conv2d(d,out_channels*M,1,1,bias=False) init.normal_(self.fc2.weight, std=0.01) self.softmax=nn.Softmax(dim=1) def forward(self, input): batch_size=input.size(0) output=[] for i,conv in enumerate(self.conv): output.append(conv(input)) U=reduce(lambda x,y:x+y,output) s=self.global_pool(U) z=self.fc1(s) a_b=self.fc2(z) a_b=a_b.reshape(batch_size,self.M,self.out_channels,-1) a_b=self.softmax(a_b) a_b=list(a_b.chunk(self.M,dim=1)) a_b=list(map(lambda x:x.reshape(batch_size,self.out_channels,1,1),a_b)) V=list(map(lambda x,y:x*y,output,a_b)) V=reduce(lambda x,y:x+y,V) return V class GRCL(nn.Module): def __init__(self, inplanes, planes, downsample=True, iter = 3, SKconv=True, expansion=2): super(GRCL, self).__init__() self.iter = iter self.expansion = expansion # feed-forward part self.add_module('bn_f', nn.BatchNorm2d(inplanes)) self.add_module('relu_f', nn.ReLU(inplace=True)) conv_f = nn.Conv2d(inplanes, int(planes* self.expansion), kernel_size=3, stride=1, padding=1, bias=False, groups=32) init.kaiming_normal_(conv_f.weight) self.add_module('conv_f', conv_f) self.add_module('bn_g_f', nn.BatchNorm2d(inplanes)) self.add_module('relu_g_f', nn.ReLU(inplace=True)) conv_g_f = nn.Conv2d(inplanes, int(planes* self.expansion), kernel_size=1, stride=1, padding=0, bias=True, groups=32) init.normal_(conv_g_f.weight, std=0.01) self.add_module('conv_g_f', conv_g_f) self.conv_g_r = nn.Conv2d(int(planes* self.expansion), int(planes* self.expansion), kernel_size=1, stride=1, padding=0, bias=False, groups=32) self.add_module('sig', nn.Sigmoid()) # recurrent part for i in range(0, self.iter): layers = [] layers_g_bn = [] layers.append(nn.BatchNorm2d(planes*self.expansion)) layers.append(nn.ReLU(inplace=True)) conv_1 = nn.Conv2d(int(planes*self.expansion), planes, kernel_size=1, stride=1, padding=0, bias=False) init.kaiming_normal_(conv_1.weight) layers.append(conv_1) layers.append(nn.BatchNorm2d(planes)) layers.append(nn.ReLU(inplace=True)) if SKconv: layers.append(SKConv(planes, planes)) else: layers.append(nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)) layers.append(nn.BatchNorm2d(planes)) layers.append(nn.ReLU(inplace=True)) conv_2 = nn.Conv2d(planes, int(planes*self.expansion), kernel_size=1, stride=1, padding=0, bias=False) init.kaiming_normal_(conv_2.weight) layers.append(conv_2) layers_g_bn.append(nn.BatchNorm2d(int(planes*self.expansion))) layers_g_bn.append(nn.ReLU(inplace=True)) self.add_module('iter_'+str(i+1), nn.Sequential(*layers)) self.add_module('iter_g_'+str(i+1), nn.Sequential(*layers_g_bn)) self.downsample = downsample if self.downsample: self.add_module('d_bn', nn.BatchNorm2d(planes * self.expansion)) self.add_module('d_relu', nn.ReLU(inplace=True)) d_conv = nn.Conv2d(int(planes* self.expansion), int(planes* self.expansion), kernel_size=1, stride=1, padding=0, bias=False) init.kaiming_normal_(d_conv.weight) self.add_module('d_conv', d_conv) self.add_module('d_ave', nn.AvgPool2d((2, 2), stride=2)) self.add_module('d_bn_1', nn.BatchNorm2d(planes * self.expansion)) self.add_module('d_relu_1', nn.ReLU(inplace=True)) d_conv_1 = nn.Conv2d(int(planes* self.expansion), planes, kernel_size=1, stride=1, padding=0, bias=False) init.kaiming_normal_(d_conv_1.weight) self.add_module('d_conv_1', d_conv_1) self.add_module('d_bn_3', nn.BatchNorm2d(planes)) self.add_module('d_relu_3', nn.ReLU(inplace=True)) if SKconv: d_conv_3 = SKConv(planes, planes, stride=2) self.add_module('d_conv_3', d_conv_3) else: d_conv_3 = nn.Conv2d(planes, planes, kernel_size=3, stride=2, padding=1, bias=False) init.kaiming_normal_(d_conv_3.weight) self.add_module('d_conv_3', d_conv_3) d_conv_1e = nn.Conv2d(planes, int(planes * self.expansion), kernel_size=1, stride=1, padding=0, bias=False) init.kaiming_normal_(d_conv_1e.weight) self.add_module('d_conv_1e', d_conv_1e) def forward(self, x): # feed-forward x_bn = self.bn_f(x) x_act = self.relu_f(x_bn) x_s = self.conv_f(x_act) x_g_bn = self.bn_g_f(x) x_g_act = self.relu_g_f(x_g_bn) x_g_s = self.conv_g_f(x_g_act) # recurrent for i in range(0, self.iter): x_g_r = self.conv_g_r(self.__dict__['_modules']["iter_g_%s" % str(i+1)](x_s)) x_s = self.__dict__['_modules']["iter_%s" % str(i+1)](x_s) * torch.sigmoid(x_g_r + x_g_s) + x_s if self.downsample: x_s_1 = self.d_conv(self.d_ave(self.d_relu(self.d_bn(x_s)))) x_s_2 = self.d_conv_1e(self.d_conv_3(self.d_relu_3(self.d_bn_3(self.d_conv_1(self.d_relu_1(self.d_bn_1(x_s))))))) x_s = x_s_1 + x_s_2 return x_s class GRCNN(nn.Module): def __init__(self, iters, maps, SKconv, expansion, num_classes): """ Args: iters:iterations. num_classes: number of classes """ super(GRCNN, self).__init__() self.iters = iters self.maps = maps self.num_classes = num_classes self.expansion = expansion self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) init.kaiming_normal_(self.conv1.weight) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False) init.kaiming_normal_(self.conv2.weight) self.layer1 = GRCL(64, self.maps[0], True, self.iters[0], SKconv, self.expansion) self.layer2 = GRCL(self.maps[0] * self.expansion, self.maps[1], True, self.iters[1], SKconv, self.expansion) self.layer3 = GRCL(self.maps[1] * self.expansion, self.maps[2], True, self.iters[2], SKconv, self.expansion) self.layer4 = GRCL(self.maps[2] * self.expansion, self.maps[3], False, self.iters[3], SKconv, self.expansion) self.lastact = nn.Sequential(nn.BatchNorm2d(self.maps[3]*self.expansion), nn.ReLU(inplace=True)) self.avgpool = nn.AvgPool2d(7) self.classifier = nn.Linear(self.maps[3] * self.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): if m.bias is not None: init.zeros_(m.bias) elif isinstance(m, nn.BatchNorm2d): init.ones_(m.weight) init.zeros_(m.bias) elif isinstance(m, nn.Linear): init.kaiming_normal_(m.weight) init.zeros_(m.bias) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.conv2(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.lastact(x) x = self.avgpool(x) x = x.view(x.size(0), -1) return self.classifier(x) def skgrcnn55(num_classes=1000): """ Args: num_classes (uint): number of classes """ model = GRCNN([3, 3, 4, 3], [128, 256, 512, 1024], SKconv=True, expansion=2, num_classes=num_classes) return model def skgrcnn109(num_classes=1000): """ Args: num_classes (uint): number of classes """ model = GRCNN([3, 3, 22, 3], [128, 256, 512, 1024], SKconv=True, expansion=2, num_classes=num_classes) return model def grcnn55(num_classes=1000): """ Args: num_classes (uint): number of classes """ model = GRCNN([3, 3, 4, 3], [64, 128, 256, 512], SKconv=False, expansion=4, num_classes=num_classes) return model def grcnn109(num_classes=1000): """ Args: num_classes (uint): number of classes """ model = GRCNN([3, 3, 22, 3], [64, 128, 256, 512], SKconv=False, expansion=4, num_classes=num_classes) return model
[ "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.Sigmoid", "torch.nn.Softmax", "torch.nn.init.ones_", "torch.nn.ModuleList", "functools.reduce", "torch.nn.Sequential", "torch.sigmoid", "torch.nn.init.kaiming_normal_", "torch.nn.init.zeros_", "torch.nn.Conv2d", "torch.nn.MaxPool2d", "torch.nn.AdaptiveAvgPool2d", "torch.nn.Linear", "torch.nn.AvgPool2d", "torch.nn.init.normal_" ]
[((453, 468), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (466, 468), True, 'import torch.nn as nn\n'), ((875, 898), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (895, 898), True, 'import torch.nn as nn\n'), ((918, 959), 'torch.nn.Conv2d', 'nn.Conv2d', (['out_channels', 'd', '(1)'], {'bias': '(False)'}), '(out_channels, d, 1, bias=False)\n', (927, 959), True, 'import torch.nn as nn\n'), ((965, 1003), 'torch.nn.init.normal_', 'init.normal_', (['conv_fc.weight'], {'std': '(0.01)'}), '(conv_fc.weight, std=0.01)\n', (977, 1003), False, 'from torch.nn import init\n'), ((1168, 1216), 'torch.nn.Conv2d', 'nn.Conv2d', (['d', '(out_channels * M)', '(1)', '(1)'], {'bias': '(False)'}), '(d, out_channels * M, 1, 1, bias=False)\n', (1177, 1216), True, 'import torch.nn as nn\n'), ((1219, 1258), 'torch.nn.init.normal_', 'init.normal_', (['self.fc2.weight'], {'std': '(0.01)'}), '(self.fc2.weight, std=0.01)\n', (1231, 1258), False, 'from torch.nn import init\n'), ((1280, 1297), 'torch.nn.Softmax', 'nn.Softmax', ([], {'dim': '(1)'}), '(dim=1)\n', (1290, 1297), True, 'import torch.nn as nn\n'), ((1474, 1508), 'functools.reduce', 'reduce', (['(lambda x, y: x + y)', 'output'], {}), '(lambda x, y: x + y, output)\n', (1480, 1508), False, 'from functools import reduce\n'), ((1860, 1889), 'functools.reduce', 'reduce', (['(lambda x, y: x + y)', 'V'], {}), '(lambda x, y: x + y, V)\n', (1866, 1889), False, 'from functools import reduce\n'), ((2362, 2397), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['conv_f.weight'], {}), '(conv_f.weight)\n', (2382, 2397), False, 'from torch.nn import init\n'), ((2678, 2717), 'torch.nn.init.normal_', 'init.normal_', (['conv_g_f.weight'], {'std': '(0.01)'}), '(conv_g_f.weight, std=0.01)\n', (2690, 2717), False, 'from torch.nn import init\n'), ((6626, 6690), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)'], {'kernel_size': '(7)', 'stride': '(2)', 'padding': '(3)', 'bias': '(False)'}), '(3, 64, kernel_size=7, stride=2, padding=3, bias=False)\n', (6635, 6690), True, 'import torch.nn as nn\n'), ((6727, 6766), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['self.conv1.weight'], {}), '(self.conv1.weight)\n', (6747, 6766), False, 'from torch.nn import init\n'), ((6783, 6801), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (6797, 6801), True, 'import torch.nn as nn\n'), ((6818, 6839), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (6825, 6839), True, 'import torch.nn as nn\n'), ((6859, 6907), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)'}), '(kernel_size=3, stride=2, padding=1)\n', (6871, 6907), True, 'import torch.nn as nn\n'), ((6926, 6991), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(64)'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': '(False)'}), '(64, 64, kernel_size=3, stride=1, padding=1, bias=False)\n', (6935, 6991), True, 'import torch.nn as nn\n'), ((7028, 7067), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['self.conv2.weight'], {}), '(self.conv2.weight)\n', (7048, 7067), False, 'from torch.nn import init\n'), ((7620, 7635), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', (['(7)'], {}), '(7)\n', (7632, 7635), True, 'import torch.nn as nn\n'), ((7658, 7711), 'torch.nn.Linear', 'nn.Linear', (['(self.maps[3] * self.expansion)', 'num_classes'], {}), '(self.maps[3] * self.expansion, num_classes)\n', (7667, 7711), True, 'import torch.nn as nn\n'), ((518, 627), 'torch.nn.Conv2d', 'nn.Conv2d', (['in_channels', 'out_channels', '(3)', 'stride'], {'padding': '(1 + i)', 'dilation': '(1 + i)', 'groups': 'groups', 'bias': '(False)'}), '(in_channels, out_channels, 3, stride, padding=1 + i, dilation=1 +\n i, groups=groups, bias=False)\n', (527, 627), True, 'import torch.nn as nn\n'), ((625, 659), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['conv1.weight'], {}), '(conv1.weight)\n', (645, 659), False, 'from torch.nn import init\n'), ((1075, 1092), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['d'], {}), '(d)\n', (1089, 1092), True, 'import torch.nn as nn\n'), ((1125, 1146), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1132, 1146), True, 'import torch.nn as nn\n'), ((2158, 2182), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['inplanes'], {}), '(inplanes)\n', (2172, 2182), True, 'import torch.nn as nn\n'), ((2214, 2235), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2221, 2235), True, 'import torch.nn as nn\n'), ((2471, 2495), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['inplanes'], {}), '(inplanes)\n', (2485, 2495), True, 'import torch.nn as nn\n'), ((2529, 2550), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2536, 2550), True, 'import torch.nn as nn\n'), ((2934, 2946), 'torch.nn.Sigmoid', 'nn.Sigmoid', ([], {}), '()\n', (2944, 2946), True, 'import torch.nn as nn\n'), ((3261, 3296), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['conv_1.weight'], {}), '(conv_1.weight)\n', (3281, 3296), False, 'from torch.nn import init\n'), ((3785, 3820), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['conv_2.weight'], {}), '(conv_2.weight)\n', (3805, 3820), False, 'from torch.nn import init\n'), ((4424, 4459), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['d_conv.weight'], {}), '(d_conv.weight)\n', (4444, 4459), False, 'from torch.nn import init\n'), ((4827, 4864), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['d_conv_1.weight'], {}), '(d_conv_1.weight)\n', (4847, 4864), False, 'from torch.nn import init\n'), ((5476, 5514), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['d_conv_1e.weight'], {}), '(d_conv_1e.weight)\n', (5496, 5514), False, 'from torch.nn import init\n'), ((7533, 7578), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(self.maps[3] * self.expansion)'], {}), '(self.maps[3] * self.expansion)\n', (7547, 7578), True, 'import torch.nn as nn\n'), ((7578, 7599), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (7585, 7599), True, 'import torch.nn as nn\n'), ((3067, 3106), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(planes * self.expansion)'], {}), '(planes * self.expansion)\n', (3081, 3106), True, 'import torch.nn as nn\n'), ((3125, 3146), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3132, 3146), True, 'import torch.nn as nn\n'), ((3344, 3366), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (3358, 3366), True, 'import torch.nn as nn\n'), ((3387, 3408), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3394, 3408), True, 'import torch.nn as nn\n'), ((3941, 3962), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3948, 3962), True, 'import torch.nn as nn\n'), ((4005, 4027), 'torch.nn.Sequential', 'nn.Sequential', (['*layers'], {}), '(*layers)\n', (4018, 4027), True, 'import torch.nn as nn\n'), ((4070, 4097), 'torch.nn.Sequential', 'nn.Sequential', (['*layers_g_bn'], {}), '(*layers_g_bn)\n', (4083, 4097), True, 'import torch.nn as nn\n'), ((4188, 4227), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(planes * self.expansion)'], {}), '(planes * self.expansion)\n', (4202, 4227), True, 'import torch.nn as nn\n'), ((4262, 4283), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4269, 4283), True, 'import torch.nn as nn\n'), ((4533, 4563), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', (['(2, 2)'], {'stride': '(2)'}), '((2, 2), stride=2)\n', (4545, 4563), True, 'import torch.nn as nn\n'), ((4601, 4640), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(planes * self.expansion)'], {}), '(planes * self.expansion)\n', (4615, 4640), True, 'import torch.nn as nn\n'), ((4677, 4698), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (4684, 4698), True, 'import torch.nn as nn\n'), ((4944, 4966), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (4958, 4966), True, 'import torch.nn as nn\n'), ((5003, 5024), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (5010, 5024), True, 'import torch.nn as nn\n'), ((5185, 5258), 'torch.nn.Conv2d', 'nn.Conv2d', (['planes', 'planes'], {'kernel_size': '(3)', 'stride': '(2)', 'padding': '(1)', 'bias': '(False)'}), '(planes, planes, kernel_size=3, stride=2, padding=1, bias=False)\n', (5194, 5258), True, 'import torch.nn as nn\n'), ((5268, 5305), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['d_conv_3.weight'], {}), '(d_conv_3.weight)\n', (5288, 5305), False, 'from torch.nn import init\n'), ((753, 781), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['out_channels'], {}), '(out_channels)\n', (767, 781), True, 'import torch.nn as nn\n'), ((826, 847), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (833, 847), True, 'import torch.nn as nn\n'), ((3504, 3577), 'torch.nn.Conv2d', 'nn.Conv2d', (['planes', 'planes'], {'kernel_size': '(3)', 'stride': '(1)', 'padding': '(1)', 'bias': '(False)'}), '(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)\n', (3513, 3577), True, 'import torch.nn as nn\n'), ((3600, 3622), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['planes'], {}), '(planes)\n', (3614, 3622), True, 'import torch.nn as nn\n'), ((3645, 3666), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (3652, 3666), True, 'import torch.nn as nn\n'), ((5998, 6026), 'torch.sigmoid', 'torch.sigmoid', (['(x_g_r + x_g_s)'], {}), '(x_g_r + x_g_s)\n', (6011, 6026), False, 'import torch\n'), ((7819, 7838), 'torch.nn.init.zeros_', 'init.zeros_', (['m.bias'], {}), '(m.bias)\n', (7830, 7838), False, 'from torch.nn import init\n'), ((7889, 7909), 'torch.nn.init.ones_', 'init.ones_', (['m.weight'], {}), '(m.weight)\n', (7899, 7909), False, 'from torch.nn import init\n'), ((7918, 7937), 'torch.nn.init.zeros_', 'init.zeros_', (['m.bias'], {}), '(m.bias)\n', (7929, 7937), False, 'from torch.nn import init\n'), ((7983, 8013), 'torch.nn.init.kaiming_normal_', 'init.kaiming_normal_', (['m.weight'], {}), '(m.weight)\n', (8003, 8013), False, 'from torch.nn import init\n'), ((8022, 8041), 'torch.nn.init.zeros_', 'init.zeros_', (['m.bias'], {}), '(m.bias)\n', (8033, 8041), False, 'from torch.nn import init\n')]
import re import time import requests from invoke import task from os import makedirs from os.path import basename, join from pprint import pprint from hoststats.client import HostStats from tasks.util.env import ( RESULTS_DIR, ) from tasks.util.faasm import ( get_knative_headers, get_faasm_worker_pods, get_faasm_invoke_host_port, ) from tasks.util.openmpi import ( NATIVE_HOSTFILE, get_native_mpi_namespace, get_native_mpi_pods, run_kubectl_cmd, ) from tasks.lammps.env import ( DOCKER_LAMMPS_BINARY, DOCKER_LAMMPS_DIR, LAMMPS_FAASM_USER, LAMMPS_FAASM_FUNC, get_faasm_benchmark, ) def _init_csv_file(csv_name): result_dir = join(RESULTS_DIR, "lammps") makedirs(result_dir, exist_ok=True) result_file = join(result_dir, csv_name) makedirs(RESULTS_DIR, exist_ok=True) with open(result_file, "w") as out_file: out_file.write("WorldSize,Run,Reported,Actual\n") return result_file def _process_lammps_result( lammps_output, result_file, num_procs, run_num, actual_time ): print("Processing lammps output: \n{}\n".format(lammps_output)) reported_time = re.findall("Total wall time: ([0-9:]*)", lammps_output) if len(reported_time) != 1: print( "Got {} matches for reported time, expected 1 from: \n{}".format( len(reported_time), lammps_output ) ) exit(1) reported_time = reported_time[0].split(":") reported_time = ( int(reported_time[0]) * 3600 + int(reported_time[1]) * 60 + int(reported_time[2]) ) with open(result_file, "a") as out_file: out_file.write( "{},{},{},{:.2f}\n".format( num_procs, run_num, reported_time, actual_time ) ) @task def faasm(ctx, bench, repeats=1, nprocs=None, procrange=None): """ Run LAMMPS experiment on Faasm """ _bench = get_faasm_benchmark(bench) result_file = _init_csv_file( "lammps_wasm_{}.csv".format(_bench["out_file"]) ) if nprocs: num_procs = [nprocs] elif procrange: num_procs = range(1, int(procrange) + 1) else: num_procs = NUM_PROCS host, port = get_faasm_invoke_host_port() pod_names = get_faasm_worker_pods() stats = HostStats( pod_names, kubectl=True, kubectl_container="user-container", kubectl_ns="faasm", ) for np in num_procs: print("Running on Faasm with {} MPI processes".format(np)) for run_num in range(repeats): stats_csv = join( RESULTS_DIR, "lammps", "hoststats_wasm_{}_{}_{}.csv".format( _bench["out_file"], np, run_num ), ) start = time.time() stats.start_collection() file_name = basename(_bench["data"][0]) cmdline = "-in faasm://lammps-data/{}".format(file_name) url = "http://{}:{}".format(host, port) msg = { "user": LAMMPS_FAASM_USER, "function": LAMMPS_FAASM_FUNC, "cmdline": cmdline, "mpi_world_size": int(np), "async": True, } print("Posting to {} msg:".format(msg, url)) pprint(msg) # Post asynch request knative_headers = get_knative_headers() response = requests.post( url, json=msg, headers=knative_headers, timeout=None ) # Get the async message id if response.status_code != 200: print( "Initial request failed: {}:\n{}".format( response.status_code, response.text ) ) print("Response: {}".format(response.text)) msg_id = int(response.text.strip()) # Start polling for the result print("Polling message {}".format(msg_id)) while True: interval = 2 time.sleep(interval) status_msg = { "user": LAMMPS_FAASM_USER, "function": LAMMPS_FAASM_FUNC, "status": True, "id": msg_id, } response = requests.post( url, json=status_msg, headers=knative_headers, ) print(response.text) if response.text.startswith("SUCCESS"): actual_time = time.time() - start break elif response.text.startswith("RUNNING"): continue elif response.text.startswith("FAILED"): raise RuntimeError("Call failed") elif not response.text: raise RuntimeError("Empty status response") else: raise RuntimeError( "Unexpected status response: {}".format(response.text) ) stats.stop_and_write_to_csv(stats_csv) _process_lammps_result( response.text, result_file, np, run_num, actual_time ) print("Results written to {}".format(result_file)) @task def native(ctx, bench, repeats=1, nprocs=None, procrange=None): """ Run LAMMPS experiment on OpenMPI """ _bench = get_faasm_benchmark(bench) result_file = _init_csv_file( "lammps_native_{}.csv".format(_bench["out_file"]) ) if nprocs: num_procs = [nprocs] elif procrange: num_procs = range(1, int(procrange) + 1) else: num_procs = NUM_PROCS namespace = get_native_mpi_namespace("lammps") pod_names, _ = get_native_mpi_pods("lammps") master_pod = pod_names[0] stats = HostStats(pod_names, kubectl=True, kubectl_ns=namespace) for np in num_procs: print("Running natively with {} MPI processes".format(np)) print("Chosen pod {} as master".format(master_pod)) for run_num in range(repeats): stats_csv = join( RESULTS_DIR, "lammps", "hoststats_native_{}_{}_{}.csv".format( _bench["out_file"], np, run_num ), ) start = time.time() stats.start_collection() native_cmdline = "-in {}/{}.faasm.native".format( DOCKER_LAMMPS_DIR, _bench["data"][0] ) mpirun_cmd = [ "mpirun", "-np {}".format(np), "-hostfile {}".format(NATIVE_HOSTFILE), DOCKER_LAMMPS_BINARY, native_cmdline, ] mpirun_cmd = " ".join(mpirun_cmd) exec_cmd = [ "exec", master_pod, "--", "su mpirun -c '{}'".format(mpirun_cmd), ] exec_output = run_kubectl_cmd("lammps", " ".join(exec_cmd)) print(exec_output) end = time.time() actual_time = end - start stats.stop_and_write_to_csv(stats_csv) _process_lammps_result( exec_output, result_file, np, run_num, actual_time )
[ "requests.post", "tasks.util.faasm.get_knative_headers", "os.makedirs", "tasks.lammps.env.get_faasm_benchmark", "tasks.util.faasm.get_faasm_invoke_host_port", "os.path.join", "time.sleep", "tasks.util.openmpi.get_native_mpi_pods", "tasks.util.faasm.get_faasm_worker_pods", "os.path.basename", "hoststats.client.HostStats", "re.findall", "tasks.util.openmpi.get_native_mpi_namespace", "time.time", "pprint.pprint" ]
[((687, 714), 'os.path.join', 'join', (['RESULTS_DIR', '"""lammps"""'], {}), "(RESULTS_DIR, 'lammps')\n", (691, 714), False, 'from os.path import basename, join\n'), ((719, 754), 'os.makedirs', 'makedirs', (['result_dir'], {'exist_ok': '(True)'}), '(result_dir, exist_ok=True)\n', (727, 754), False, 'from os import makedirs\n'), ((774, 800), 'os.path.join', 'join', (['result_dir', 'csv_name'], {}), '(result_dir, csv_name)\n', (778, 800), False, 'from os.path import basename, join\n'), ((805, 841), 'os.makedirs', 'makedirs', (['RESULTS_DIR'], {'exist_ok': '(True)'}), '(RESULTS_DIR, exist_ok=True)\n', (813, 841), False, 'from os import makedirs\n'), ((1155, 1210), 're.findall', 're.findall', (['"""Total wall time: ([0-9:]*)"""', 'lammps_output'], {}), "('Total wall time: ([0-9:]*)', lammps_output)\n", (1165, 1210), False, 'import re\n'), ((1942, 1968), 'tasks.lammps.env.get_faasm_benchmark', 'get_faasm_benchmark', (['bench'], {}), '(bench)\n', (1961, 1968), False, 'from tasks.lammps.env import DOCKER_LAMMPS_BINARY, DOCKER_LAMMPS_DIR, LAMMPS_FAASM_USER, LAMMPS_FAASM_FUNC, get_faasm_benchmark\n'), ((2238, 2266), 'tasks.util.faasm.get_faasm_invoke_host_port', 'get_faasm_invoke_host_port', ([], {}), '()\n', (2264, 2266), False, 'from tasks.util.faasm import get_knative_headers, get_faasm_worker_pods, get_faasm_invoke_host_port\n'), ((2284, 2307), 'tasks.util.faasm.get_faasm_worker_pods', 'get_faasm_worker_pods', ([], {}), '()\n', (2305, 2307), False, 'from tasks.util.faasm import get_knative_headers, get_faasm_worker_pods, get_faasm_invoke_host_port\n'), ((2320, 2414), 'hoststats.client.HostStats', 'HostStats', (['pod_names'], {'kubectl': '(True)', 'kubectl_container': '"""user-container"""', 'kubectl_ns': '"""faasm"""'}), "(pod_names, kubectl=True, kubectl_container='user-container',\n kubectl_ns='faasm')\n", (2329, 2414), False, 'from hoststats.client import HostStats\n'), ((5525, 5551), 'tasks.lammps.env.get_faasm_benchmark', 'get_faasm_benchmark', (['bench'], {}), '(bench)\n', (5544, 5551), False, 'from tasks.lammps.env import DOCKER_LAMMPS_BINARY, DOCKER_LAMMPS_DIR, LAMMPS_FAASM_USER, LAMMPS_FAASM_FUNC, get_faasm_benchmark\n'), ((5822, 5856), 'tasks.util.openmpi.get_native_mpi_namespace', 'get_native_mpi_namespace', (['"""lammps"""'], {}), "('lammps')\n", (5846, 5856), False, 'from tasks.util.openmpi import NATIVE_HOSTFILE, get_native_mpi_namespace, get_native_mpi_pods, run_kubectl_cmd\n'), ((5876, 5905), 'tasks.util.openmpi.get_native_mpi_pods', 'get_native_mpi_pods', (['"""lammps"""'], {}), "('lammps')\n", (5895, 5905), False, 'from tasks.util.openmpi import NATIVE_HOSTFILE, get_native_mpi_namespace, get_native_mpi_pods, run_kubectl_cmd\n'), ((5948, 6004), 'hoststats.client.HostStats', 'HostStats', (['pod_names'], {'kubectl': '(True)', 'kubectl_ns': 'namespace'}), '(pod_names, kubectl=True, kubectl_ns=namespace)\n', (5957, 6004), False, 'from hoststats.client import HostStats\n'), ((2828, 2839), 'time.time', 'time.time', ([], {}), '()\n', (2837, 2839), False, 'import time\n'), ((2902, 2929), 'os.path.basename', 'basename', (["_bench['data'][0]"], {}), "(_bench['data'][0])\n", (2910, 2929), False, 'from os.path import basename, join\n'), ((3354, 3365), 'pprint.pprint', 'pprint', (['msg'], {}), '(msg)\n', (3360, 3365), False, 'from pprint import pprint\n'), ((3431, 3452), 'tasks.util.faasm.get_knative_headers', 'get_knative_headers', ([], {}), '()\n', (3450, 3452), False, 'from tasks.util.faasm import get_knative_headers, get_faasm_worker_pods, get_faasm_invoke_host_port\n'), ((3476, 3543), 'requests.post', 'requests.post', (['url'], {'json': 'msg', 'headers': 'knative_headers', 'timeout': 'None'}), '(url, json=msg, headers=knative_headers, timeout=None)\n', (3489, 3543), False, 'import requests\n'), ((6445, 6456), 'time.time', 'time.time', ([], {}), '()\n', (6454, 6456), False, 'import time\n'), ((7192, 7203), 'time.time', 'time.time', ([], {}), '()\n', (7201, 7203), False, 'import time\n'), ((4114, 4134), 'time.sleep', 'time.sleep', (['interval'], {}), '(interval)\n', (4124, 4134), False, 'import time\n'), ((4380, 4440), 'requests.post', 'requests.post', (['url'], {'json': 'status_msg', 'headers': 'knative_headers'}), '(url, json=status_msg, headers=knative_headers)\n', (4393, 4440), False, 'import requests\n'), ((4648, 4659), 'time.time', 'time.time', ([], {}), '()\n', (4657, 4659), False, 'import time\n')]
# Generated by Django 3.1.4 on 2021-05-29 15:07 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('AppHome', '0002_auto_20210529_1957'), ] operations = [ migrations.AddField( model_name='amazeusersorders', name='orderId', field=models.IntegerField(default=0), ), ]
[ "django.db.models.IntegerField" ]
[((345, 375), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(0)'}), '(default=0)\n', (364, 375), False, 'from django.db import migrations, models\n')]
""" .. module:: ft_server.server """ import json import fastText import os from flask import Flask from flask import g from flask import jsonify from flask import request app = Flask(__name__) if os.environ.get('FT_SERVER_ENV') == "development": app.config.from_object('config.DevelopmentConfig') elif os.environ.get('FT_SERVER_ENV') == "test": app.config.from_object('config.TestConfig') else: app.config.from_object('config.Config') if os.environ.get('FT_SERVER_DOCKERIZED') == "True": app.config.from_object('config.DockerConfig') if os.environ.get('FT_SERVER_SETTINGS'): app.config.from_envvar('FT_SERVER_SETTINGS') @app.route("/") def index(): """Retrieve information about the deployed model.""" model_args = g.ft_model.f.getArgs() res = { "lr": model_args.lr, "lrUpdateRate": model_args.lrUpdateRate, "epoch": model_args.epoch, "dim": model_args.dim, "ws": model_args.ws, "model": str(model_args.model)[len("model_name."):], "loss": str(model_args.loss)[len("loss_name."):], "wordNgrams": model_args.wordNgrams, "minCountLabel": model_args.minCountLabel, "label": model_args.label, "thread": model_args.thread, "bucket": model_args.bucket, "cutoff": model_args.cutoff, "t": model_args.t, "minn": model_args.minn, "maxn": model_args.maxn, "isQuant": g.ft_model.f.isQuant() } return jsonify(res) @app.route("/words") def words(): """ Get dictionary used for model training. Query String: * freq (bool): Whether or not to return frequencies (default: False) Returns: A json array containing words and optionally their frequencies. """ freq = bool(request.args.get('freq')) if request.args.get('freq') == "True" else False words, counts = g.ft_model.get_words(freq) res = [{"word": w, "count": int(c)} for w, c in zip(words, counts)] return jsonify(res) @app.route("/predictions", methods=["GET"], endpoint="get_predictions") def predictions(): """ Retrieve predictions for a single word or sentence from the deployed model. Query String: * q (str): word or sentence to get a vector representation for. * k (int): Number of most likely classes returned (default: 1) * threshold (float): Filter classes with a probability below threshold (default: 0.0) Returns: A json containing the vector representations. """ k = int(request.args.get('k')) if request.args.get('k') else 1 threshold = float(request.args.get('threshold')) if request.args.get('threshold') else 0.0 query = request.args.get('q') res = make_prediction(query, k, threshold) return jsonify(res) @app.route("/predictions", methods=["POST"], endpoint="post_predictions") def predictions(): """ Retrieve predictions for words or sentences from the deployed model. Query String: * k (int): Number of most likely classes returned (default: 1) * threshold (float): Filter classes with a probability below threshold (default: 0.0) Body: A json array of strings to get classifications. Returns: A json array containing the vector representations. """ k = int(request.args.get('k')) if request.args.get('k') else 1 threshold = float(request.args.get('threshold')) if request.args.get('threshold') else 0.0 queries = json.loads(request.data) res = [make_prediction(el, k, threshold) for el in queries] return jsonify(res) @app.route("/representations", methods=["GET"], endpoint="get_representations") def representations(): """ Retrieve vector representations for a single word or sentence from the deployed model. Query String: q (str): word or sentence to get a vector representation for. Returns: A json containing the vector representation and it's dimensionality. """ query = request.args.get('q') res = retrieve_representation(query) return jsonify(res) @app.route("/representations", methods=["POST"], endpoint="post_representations") def representations(): """ Retrieve vector representations for a single word or sentence from the deployed model. Body: A json array of strings. Returns: A json array containing the vector representations. """ queries = json.loads(request.data) res = [retrieve_representation(el) for el in queries] return jsonify(res) @app.before_request def before_request(): g.ft_model = fastText.load_model(app.config["FT_SERVER_MODEL_PATH"]) def retrieve_representation(q): retrieval_method = g.ft_model.get_word_vector if len(q.split(" ")) > 1: retrieval_method = g.ft_model.get_sentence_vector res = { "q": q, "representation": retrieval_method(q).tolist(), "dim": len(retrieval_method(q)) } return res def make_prediction(q, k, threshold): labels, probas = g.ft_model.predict(q, k, threshold) return [{"label": l, "proba": p} for l, p in zip(labels, probas)] if __name__ == '__main__': app.run(host=app.config["HOST"], port=app.config["PORT"], debug=app.config["DEBUG"])
[ "flask.request.args.get", "json.loads", "flask.g.ft_model.get_words", "flask.Flask", "flask.jsonify", "fastText.load_model", "flask.g.ft_model.predict", "os.environ.get", "flask.g.ft_model.f.isQuant", "flask.g.ft_model.f.getArgs" ]
[((181, 196), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (186, 196), False, 'from flask import Flask\n'), ((560, 596), 'os.environ.get', 'os.environ.get', (['"""FT_SERVER_SETTINGS"""'], {}), "('FT_SERVER_SETTINGS')\n", (574, 596), False, 'import os\n'), ((201, 232), 'os.environ.get', 'os.environ.get', (['"""FT_SERVER_ENV"""'], {}), "('FT_SERVER_ENV')\n", (215, 232), False, 'import os\n'), ((456, 494), 'os.environ.get', 'os.environ.get', (['"""FT_SERVER_DOCKERIZED"""'], {}), "('FT_SERVER_DOCKERIZED')\n", (470, 494), False, 'import os\n'), ((752, 774), 'flask.g.ft_model.f.getArgs', 'g.ft_model.f.getArgs', ([], {}), '()\n', (772, 774), False, 'from flask import g\n'), ((1475, 1487), 'flask.jsonify', 'jsonify', (['res'], {}), '(res)\n', (1482, 1487), False, 'from flask import jsonify\n'), ((1888, 1914), 'flask.g.ft_model.get_words', 'g.ft_model.get_words', (['freq'], {}), '(freq)\n', (1908, 1914), False, 'from flask import g\n'), ((1999, 2011), 'flask.jsonify', 'jsonify', (['res'], {}), '(res)\n', (2006, 2011), False, 'from flask import jsonify\n'), ((2721, 2742), 'flask.request.args.get', 'request.args.get', (['"""q"""'], {}), "('q')\n", (2737, 2742), False, 'from flask import request\n'), ((2802, 2814), 'flask.jsonify', 'jsonify', (['res'], {}), '(res)\n', (2809, 2814), False, 'from flask import jsonify\n'), ((3525, 3549), 'json.loads', 'json.loads', (['request.data'], {}), '(request.data)\n', (3535, 3549), False, 'import json\n'), ((3626, 3638), 'flask.jsonify', 'jsonify', (['res'], {}), '(res)\n', (3633, 3638), False, 'from flask import jsonify\n'), ((4043, 4064), 'flask.request.args.get', 'request.args.get', (['"""q"""'], {}), "('q')\n", (4059, 4064), False, 'from flask import request\n'), ((4118, 4130), 'flask.jsonify', 'jsonify', (['res'], {}), '(res)\n', (4125, 4130), False, 'from flask import jsonify\n'), ((4494, 4518), 'json.loads', 'json.loads', (['request.data'], {}), '(request.data)\n', (4504, 4518), False, 'import json\n'), ((4589, 4601), 'flask.jsonify', 'jsonify', (['res'], {}), '(res)\n', (4596, 4601), False, 'from flask import jsonify\n'), ((4663, 4718), 'fastText.load_model', 'fastText.load_model', (["app.config['FT_SERVER_MODEL_PATH']"], {}), "(app.config['FT_SERVER_MODEL_PATH'])\n", (4682, 4718), False, 'import fastText\n'), ((5100, 5135), 'flask.g.ft_model.predict', 'g.ft_model.predict', (['q', 'k', 'threshold'], {}), '(q, k, threshold)\n', (5118, 5135), False, 'from flask import g\n'), ((311, 342), 'os.environ.get', 'os.environ.get', (['"""FT_SERVER_ENV"""'], {}), "('FT_SERVER_ENV')\n", (325, 342), False, 'import os\n'), ((1434, 1456), 'flask.g.ft_model.f.isQuant', 'g.ft_model.f.isQuant', ([], {}), '()\n', (1454, 1456), False, 'from flask import g\n'), ((2584, 2605), 'flask.request.args.get', 'request.args.get', (['"""k"""'], {}), "('k')\n", (2600, 2605), False, 'from flask import request\n'), ((2669, 2698), 'flask.request.args.get', 'request.args.get', (['"""threshold"""'], {}), "('threshold')\n", (2685, 2698), False, 'from flask import request\n'), ((3386, 3407), 'flask.request.args.get', 'request.args.get', (['"""k"""'], {}), "('k')\n", (3402, 3407), False, 'from flask import request\n'), ((3471, 3500), 'flask.request.args.get', 'request.args.get', (['"""threshold"""'], {}), "('threshold')\n", (3487, 3500), False, 'from flask import request\n'), ((1821, 1845), 'flask.request.args.get', 'request.args.get', (['"""freq"""'], {}), "('freq')\n", (1837, 1845), False, 'from flask import request\n'), ((1792, 1816), 'flask.request.args.get', 'request.args.get', (['"""freq"""'], {}), "('freq')\n", (1808, 1816), False, 'from flask import request\n'), ((2558, 2579), 'flask.request.args.get', 'request.args.get', (['"""k"""'], {}), "('k')\n", (2574, 2579), False, 'from flask import request\n'), ((2635, 2664), 'flask.request.args.get', 'request.args.get', (['"""threshold"""'], {}), "('threshold')\n", (2651, 2664), False, 'from flask import request\n'), ((3360, 3381), 'flask.request.args.get', 'request.args.get', (['"""k"""'], {}), "('k')\n", (3376, 3381), False, 'from flask import request\n'), ((3437, 3466), 'flask.request.args.get', 'request.args.get', (['"""threshold"""'], {}), "('threshold')\n", (3453, 3466), False, 'from flask import request\n')]
#!/usr/bin/env python import os import re import io import subprocess import sys import time import smtplib import glob import shutil import traceback import zipfile import platform import stat PLATFORMS = [ "x64-osx", "x86-ubuntu", "x64-ubuntu", "x64-debian", "x86-win", "x64-win" ] REQUIRE_ALL_PLATFORMS = True FSTAR_BIN_URL = "https://github.com/FStarLang/binaries.git" FSTAR_BIN_LOCAL = os.path.join("nightly", "fstar-binaries") FSTAR_BIN_SUBDIR = "z3-tested" FSTAR_BIN_RBRANCH = "origin/master" Z3_BIN_URL = "https://github.com/Z3Prover/bin.git" Z3_BIN_LOCAL = os.path.join("nightly", "z3-binaries") Z3_BIN_SUBDIR = "nightly" Z3_BIN_RBRANCH = "origin/master" Z3_PKG_NAME_PAT = re.compile("^z3-([0-9].[0-9].[0-9]).([a-z0-9]{12})-(x86|x64)-([a-zA-Z]*)-?([\.0-9]*).zip$") Z3_DIR = os.path.join("nightly", "z3") class Z3NightlyException(Exception): pass def get_platform(): z3bn = "z3" s = platform.system() a, fmt = platform.architecture() z3a = "x64" if a == "64bit" else "x86" if s == "Windows" or s.startswith("CYGWIN") or s.startswith("MSYS"): z3bn = "z3.exe" z3s = "win" elif s == "Linux": d, v, nn = platform.linux_distribution() if d == "Ubuntu": z3s = "ubuntu" elif d == "Debian": z3s = "debian" else: print("Warning: unknown linux distribution '%s', assuming Ubuntu." % d) z3s = "ubuntu" elif s == "Darwin": z3s = "osx" else: print("Warning: unknown system '%s', assuming Ubuntu." % s) return "ubuntu", "x64" return z3bn, z3s, z3a def mk_args(cmd): css = cmd.split(" ") in_string = False cs = [] cur = "" for i in css: if not in_string and i.startswith("\"") and i.endswith("\""): cs = cs + [i[1:-1]] elif not in_string and i.startswith("\""): in_string = True cur = i[1:] elif in_string and i.endswith("\""): in_string = False cur = cur + " " + i cs = cs + [cur[:-1]] elif in_string: cur = cur + " " + i elif i == "": pass else: cs = cs + [i] return cs def call_logged(cmd, log, checked=True): cs = mk_args(cmd) # log.write(">>>>> " + " ".join(cs) + " <<<<<\n") ec = subprocess.call(cs, stdin=None, stdout=log, stderr=log) log.flush() if (checked and ec != 0): log.write("Error code: %d\n" % ec) raise Z3NightlyException("Command failed.") def call_with_output(cmd): cs = mk_args(cmd) # log.write(">>>>> " + " ".join(cs) + " <<<<<\n") p = subprocess.Popen(cs, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = p.communicate() if err is None or err == "": return out else: return out + " " + err def update_git(url, branch, dir, subdir, log, quiet=False): q = "--quiet" if quiet else "" v = "--verbose" if not quiet else "" if not os.path.isdir(dir): call_logged("git clone %s %s %s" % (q, url, dir), log) else: prev_wd = os.getcwd() os.chdir(dir) call_logged("git reset %s --hard %s" % (q, branch), log) call_logged("git clean %s -f" % (q), log) call_logged("git pull %s -s recursive -Xtheirs" % (q), log) call_logged("git reset %s --hard %s" % (q, branch), log) os.chdir(prev_wd) sp = os.path.join(dir, subdir) if not os.path.isdir(sp): os.mkdir(sp) def find_latest_binary(dir, pattern, log): best_offer = None for f in os.listdir(dir): m = pattern.match(f) if m is not None: fp = os.path.join(dir, f) mt = call_with_output("git log -n 1 --date-order --date=raw --pretty=format:\"%cd\"").strip("\"").split(" ")[0] if best_offer == None or mt > best_offer[1]: version, git_hash, bitness, platform, pversion = m.groups() best_offer = (fp, mt, version, git_hash, bitness, platform, pversion) return best_offer def find_specific_binary(dir, pattern, version, git_hash, log): for f in os.listdir(dir): m = pattern.match(f) if m is not None: fp = os.path.join(dir, f) fversion, fgit_hash, bitness, platform, pversion = m.groups() if (version == None or fversion == version) and fgit_hash == git_hash: return (fp, None, version, git_hash, bitness, platform, pversion) return None def get_platform_files(from_path, version, git_hash, platforms): res = [] for pf in platforms: fnpat = "z3-" + version + "." + git_hash + "-" + pf + "*.zip" pp = os.path.join(from_path, fnpat) matching_files = glob.glob(pp) if REQUIRE_ALL_PLATFORMS == True and len(matching_files) == 0: raise Z3NightlyException("No platform files for '%s' with version=%s and git_hash=%s." % (pf, version, git_hash)) elif len(matching_files) > 0: res.append(matching_files[0]) return res def pick_better(old, new, from_path, pattern, platforms): if (old is None and new is not None) or (new[3] != old[3] and new[1] > old[1]): return get_platform_files(from_path, new[2], new[3], platforms) return None def wipe_old_pkgs(to_repo, to_subdir, pattern, log): prev_dir = os.getcwd() os.chdir(to_repo) for f in os.listdir(to_subdir): if pattern.match(f) is not None: call_logged('git rm "%s/%s"' % (to_subdir, f), log) os.chdir(prev_dir) def add_new_pkgs(files, to_repo, to_subdir, pattern, log): prev_dir = os.getcwd() os.chdir(to_repo) for f in files: f_to_path = os.path.join(to_subdir, os.path.basename(f)) shutil.copy2(os.path.join(prev_dir, f), f_to_path) call_logged('git add -v %s' % f_to_path, log) call_logged('git commit -v --amend -m "Automatic update of Z3 nightly packages."', log) call_logged('git gc --aggressive --auto --prune=all', log) call_logged('git push -v --force', log) os.chdir(prev_dir) def empty(d): if not os.path.isdir(d): os.mkdir(d) for old_file in os.listdir(d): ofp = os.path.join(d, old_file) if os.path.isdir(ofp): shutil.rmtree(ofp) else: os.remove(ofp) def push(version, git_hash, log): wd = os.getcwd() try: old_bin_path = os.path.join(FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR) new_bin_path = os.path.join(Z3_BIN_LOCAL, Z3_BIN_SUBDIR) update_git(FSTAR_BIN_URL, FSTAR_BIN_RBRANCH, FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR, log) if git_hash == None: update_git(Z3_BIN_URL, Z3_BIN_RBRANCH, Z3_BIN_LOCAL, Z3_BIN_SUBDIR, log) best_old = find_latest_binary(old_bin_path, Z3_PKG_NAME_PAT, log) best_new = find_latest_binary(new_bin_path, Z3_PKG_NAME_PAT, log) better = pick_better(best_old, best_new, new_bin_path, Z3_PKG_NAME_PAT, PLATFORMS) if better is not None: wipe_old_pkgs(FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR, Z3_PKG_NAME_PAT, log) add_new_pkgs(better, FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR, Z3_PKG_NAME_PAT, log) else: sb = find_specific_binary(new_bin_path, Z3_PKG_NAME_PAT, version, git_hash, log) if sb == None: raise Z3NightlyException("Z3 packages with git hash '%s' not found." % git_hash) else: pfiles = get_platform_files(new_bin_path, version, git_hash, PLATFORMS) wipe_old_pkgs(FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR, Z3_PKG_NAME_PAT, log) add_new_pkgs(pfiles, FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR, Z3_PKG_NAME_PAT, log) pass os.chdir(wd) return 0 except Exception as ex: os.chdir(wd) traceback.print_exc(log) log.close() return 1 def get(binary_name, platform, bitness, log, Tested=True): wd = os.getcwd() try: if Tested: bsdir = os.path.join(FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR) update_git(FSTAR_BIN_URL, FSTAR_BIN_RBRANCH, FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR, log, quiet=True) else: bsdir = os.path.join(Z3_BIN_LOCAL, Z3_BIN_SUBDIR) update_git(Z3_BIN_URL, Z3_BIN_RBRANCH, Z3_BIN_LOCAL, Z3_BIN_SUBDIR, log, quiet=True) empty(Z3_DIR) for f in os.listdir(bsdir): m = Z3_PKG_NAME_PAT.match(f) if m is not None: fp = os.path.join(bsdir, f) version, git_hash, fbitness, fplatform, pversion = m.groups() if fplatform == platform and fbitness == bitness: zfn = os.path.join(bsdir, f) # print("Extracting Z3 from %s" % zfn) with zipfile.ZipFile(zfn, "r") as zf: zf.extractall(Z3_DIR) break Z3_BINARY_PATH = "" for root, dirs, files in os.walk(Z3_DIR): for f in files: fp = os.path.join(root, f) if f == binary_name: Z3_BINARY_PATH = fp if f.endswith("dll"): os.chmod(fp, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) # Cygwin wants +x on dlls. if not os.path.isfile(Z3_BINARY_PATH): raise Z3NightlyException("Z3 not where it should be.") else: print("%s" % Z3_BINARY_PATH) os.chmod(Z3_BINARY_PATH, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) os.chdir(wd) return 0 except Exception as ex: os.chdir(wd) traceback.print_exc(log) log.close() return 1 def print_help(): print("Usage: %s (get-tested|get-latest|push)" % sys.argv[0]) if __name__ =='__main__': if len(sys.argv) < 2: print_help() sys.exit(1) else: r = 1 log = sys.stdout op = sys.argv[1] if op == "get-tested": bn, pfm, bits = get_platform() if len(sys.argv) >= 3: pfm = sys.argv[2] if len(sys.argv) >= 4: bits = sys.argv[3] r = get(bn, pfm, bits, log, Tested=True) elif op == "get-latest": bn, pfm, bits = get_platform() if len(sys.argv) >= 3: pfm = sys.argv[2] if len(sys.argv) >= 4: bits = sys.argv[3] r = get(bn, pfm, bits, log, Tested=False) elif op == "push": version = None git_hash = None if len(sys.argv) >= 3: version = sys.argv[2] if len(sys.argv) >= 4: git_hash = sys.argv[3] r = push(version, git_hash, log) else: print("Error: Unknown operation '" + op + "'") print_help() r = 1 sys.exit(r)
[ "zipfile.ZipFile", "re.compile", "sys.exit", "os.walk", "os.remove", "os.listdir", "subprocess.Popen", "os.chmod", "platform.system", "os.path.isdir", "subprocess.call", "os.mkdir", "traceback.print_exc", "glob.glob", "os.path.isfile", "platform.architecture", "os.path.join", "platform.linux_distribution", "os.getcwd", "os.chdir", "os.path.basename", "shutil.rmtree" ]
[((394, 435), 'os.path.join', 'os.path.join', (['"""nightly"""', '"""fstar-binaries"""'], {}), "('nightly', 'fstar-binaries')\n", (406, 435), False, 'import os\n'), ((570, 608), 'os.path.join', 'os.path.join', (['"""nightly"""', '"""z3-binaries"""'], {}), "('nightly', 'z3-binaries')\n", (582, 608), False, 'import os\n'), ((687, 789), 're.compile', 're.compile', (['"""^z3-([0-9].[0-9].[0-9]).([a-z0-9]{12})-(x86|x64)-([a-zA-Z]*)-?([\\\\.0-9]*).zip$"""'], {}), "(\n '^z3-([0-9].[0-9].[0-9]).([a-z0-9]{12})-(x86|x64)-([a-zA-Z]*)-?([\\\\.0-9]*).zip$'\n )\n", (697, 789), False, 'import re\n'), ((789, 818), 'os.path.join', 'os.path.join', (['"""nightly"""', '"""z3"""'], {}), "('nightly', 'z3')\n", (801, 818), False, 'import os\n'), ((911, 928), 'platform.system', 'platform.system', ([], {}), '()\n', (926, 928), False, 'import platform\n'), ((942, 965), 'platform.architecture', 'platform.architecture', ([], {}), '()\n', (963, 965), False, 'import platform\n'), ((2344, 2399), 'subprocess.call', 'subprocess.call', (['cs'], {'stdin': 'None', 'stdout': 'log', 'stderr': 'log'}), '(cs, stdin=None, stdout=log, stderr=log)\n', (2359, 2399), False, 'import subprocess\n'), ((2661, 2729), 'subprocess.Popen', 'subprocess.Popen', (['cs'], {'stdout': 'subprocess.PIPE', 'stderr': 'subprocess.PIPE'}), '(cs, stdout=subprocess.PIPE, stderr=subprocess.PIPE)\n', (2677, 2729), False, 'import subprocess\n'), ((3446, 3471), 'os.path.join', 'os.path.join', (['dir', 'subdir'], {}), '(dir, subdir)\n', (3458, 3471), False, 'import os\n'), ((3602, 3617), 'os.listdir', 'os.listdir', (['dir'], {}), '(dir)\n', (3612, 3617), False, 'import os\n'), ((4155, 4170), 'os.listdir', 'os.listdir', (['dir'], {}), '(dir)\n', (4165, 4170), False, 'import os\n'), ((5377, 5388), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5386, 5388), False, 'import os\n'), ((5393, 5410), 'os.chdir', 'os.chdir', (['to_repo'], {}), '(to_repo)\n', (5401, 5410), False, 'import os\n'), ((5424, 5445), 'os.listdir', 'os.listdir', (['to_subdir'], {}), '(to_subdir)\n', (5434, 5445), False, 'import os\n'), ((5556, 5574), 'os.chdir', 'os.chdir', (['prev_dir'], {}), '(prev_dir)\n', (5564, 5574), False, 'import os\n'), ((5650, 5661), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5659, 5661), False, 'import os\n'), ((5666, 5683), 'os.chdir', 'os.chdir', (['to_repo'], {}), '(to_repo)\n', (5674, 5683), False, 'import os\n'), ((6085, 6103), 'os.chdir', 'os.chdir', (['prev_dir'], {}), '(prev_dir)\n', (6093, 6103), False, 'import os\n'), ((6189, 6202), 'os.listdir', 'os.listdir', (['d'], {}), '(d)\n', (6199, 6202), False, 'import os\n'), ((6391, 6402), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (6400, 6402), False, 'import os\n'), ((7996, 8007), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (8005, 8007), False, 'import os\n'), ((3002, 3020), 'os.path.isdir', 'os.path.isdir', (['dir'], {}), '(dir)\n', (3015, 3020), False, 'import os\n'), ((3129, 3140), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (3138, 3140), False, 'import os\n'), ((3149, 3162), 'os.chdir', 'os.chdir', (['dir'], {}), '(dir)\n', (3157, 3162), False, 'import os\n'), ((3419, 3436), 'os.chdir', 'os.chdir', (['prev_wd'], {}), '(prev_wd)\n', (3427, 3436), False, 'import os\n'), ((3483, 3500), 'os.path.isdir', 'os.path.isdir', (['sp'], {}), '(sp)\n', (3496, 3500), False, 'import os\n'), ((3510, 3522), 'os.mkdir', 'os.mkdir', (['sp'], {}), '(sp)\n', (3518, 3522), False, 'import os\n'), ((4707, 4737), 'os.path.join', 'os.path.join', (['from_path', 'fnpat'], {}), '(from_path, fnpat)\n', (4719, 4737), False, 'import os\n'), ((4763, 4776), 'glob.glob', 'glob.glob', (['pp'], {}), '(pp)\n', (4772, 4776), False, 'import glob\n'), ((6130, 6146), 'os.path.isdir', 'os.path.isdir', (['d'], {}), '(d)\n', (6143, 6146), False, 'import os\n'), ((6156, 6167), 'os.mkdir', 'os.mkdir', (['d'], {}), '(d)\n', (6164, 6167), False, 'import os\n'), ((6218, 6243), 'os.path.join', 'os.path.join', (['d', 'old_file'], {}), '(d, old_file)\n', (6230, 6243), False, 'import os\n'), ((6255, 6273), 'os.path.isdir', 'os.path.isdir', (['ofp'], {}), '(ofp)\n', (6268, 6273), False, 'import os\n'), ((6435, 6482), 'os.path.join', 'os.path.join', (['FSTAR_BIN_LOCAL', 'FSTAR_BIN_SUBDIR'], {}), '(FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR)\n', (6447, 6482), False, 'import os\n'), ((6506, 6547), 'os.path.join', 'os.path.join', (['Z3_BIN_LOCAL', 'Z3_BIN_SUBDIR'], {}), '(Z3_BIN_LOCAL, Z3_BIN_SUBDIR)\n', (6518, 6547), False, 'import os\n'), ((7778, 7790), 'os.chdir', 'os.chdir', (['wd'], {}), '(wd)\n', (7786, 7790), False, 'import os\n'), ((8426, 8443), 'os.listdir', 'os.listdir', (['bsdir'], {}), '(bsdir)\n', (8436, 8443), False, 'import os\n'), ((9004, 9019), 'os.walk', 'os.walk', (['Z3_DIR'], {}), '(Z3_DIR)\n', (9011, 9019), False, 'import os\n'), ((9498, 9566), 'os.chmod', 'os.chmod', (['Z3_BINARY_PATH', '(stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)'], {}), '(Z3_BINARY_PATH, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)\n', (9506, 9566), False, 'import os\n'), ((9576, 9588), 'os.chdir', 'os.chdir', (['wd'], {}), '(wd)\n', (9584, 9588), False, 'import os\n'), ((9897, 9908), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (9905, 9908), False, 'import sys\n'), ((10916, 10927), 'sys.exit', 'sys.exit', (['r'], {}), '(r)\n', (10924, 10927), False, 'import sys\n'), ((1170, 1199), 'platform.linux_distribution', 'platform.linux_distribution', ([], {}), '()\n', (1197, 1199), False, 'import platform\n'), ((3691, 3711), 'os.path.join', 'os.path.join', (['dir', 'f'], {}), '(dir, f)\n', (3703, 3711), False, 'import os\n'), ((4244, 4264), 'os.path.join', 'os.path.join', (['dir', 'f'], {}), '(dir, f)\n', (4256, 4264), False, 'import os\n'), ((5748, 5767), 'os.path.basename', 'os.path.basename', (['f'], {}), '(f)\n', (5764, 5767), False, 'import os\n'), ((5790, 5815), 'os.path.join', 'os.path.join', (['prev_dir', 'f'], {}), '(prev_dir, f)\n', (5802, 5815), False, 'import os\n'), ((6287, 6305), 'shutil.rmtree', 'shutil.rmtree', (['ofp'], {}), '(ofp)\n', (6300, 6305), False, 'import shutil\n'), ((6332, 6346), 'os.remove', 'os.remove', (['ofp'], {}), '(ofp)\n', (6341, 6346), False, 'import os\n'), ((7844, 7856), 'os.chdir', 'os.chdir', (['wd'], {}), '(wd)\n', (7852, 7856), False, 'import os\n'), ((7865, 7889), 'traceback.print_exc', 'traceback.print_exc', (['log'], {}), '(log)\n', (7884, 7889), False, 'import traceback\n'), ((8056, 8103), 'os.path.join', 'os.path.join', (['FSTAR_BIN_LOCAL', 'FSTAR_BIN_SUBDIR'], {}), '(FSTAR_BIN_LOCAL, FSTAR_BIN_SUBDIR)\n', (8068, 8103), False, 'import os\n'), ((8247, 8288), 'os.path.join', 'os.path.join', (['Z3_BIN_LOCAL', 'Z3_BIN_SUBDIR'], {}), '(Z3_BIN_LOCAL, Z3_BIN_SUBDIR)\n', (8259, 8288), False, 'import os\n'), ((9335, 9365), 'os.path.isfile', 'os.path.isfile', (['Z3_BINARY_PATH'], {}), '(Z3_BINARY_PATH)\n', (9349, 9365), False, 'import os\n'), ((9642, 9654), 'os.chdir', 'os.chdir', (['wd'], {}), '(wd)\n', (9650, 9654), False, 'import os\n'), ((9663, 9687), 'traceback.print_exc', 'traceback.print_exc', (['log'], {}), '(log)\n', (9682, 9687), False, 'import traceback\n'), ((8537, 8559), 'os.path.join', 'os.path.join', (['bsdir', 'f'], {}), '(bsdir, f)\n', (8549, 8559), False, 'import os\n'), ((9070, 9091), 'os.path.join', 'os.path.join', (['root', 'f'], {}), '(root, f)\n', (9082, 9091), False, 'import os\n'), ((8730, 8752), 'os.path.join', 'os.path.join', (['bsdir', 'f'], {}), '(bsdir, f)\n', (8742, 8752), False, 'import os\n'), ((9227, 9283), 'os.chmod', 'os.chmod', (['fp', '(stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)'], {}), '(fp, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)\n', (9235, 9283), False, 'import os\n'), ((8837, 8862), 'zipfile.ZipFile', 'zipfile.ZipFile', (['zfn', '"""r"""'], {}), "(zfn, 'r')\n", (8852, 8862), False, 'import zipfile\n')]
import sacrebleu class BLEUScore: def __init__(self, trg_lang='en', lowercase=True): self.scorer = sacrebleu.BLEU(trg_lang=trg_lang, effective_order=True, lowercase=lowercase) def score(self, hyp: str, ref: str, src=None, normalize=True, *args, **kwargs): this_score = self.scorer.sentence_score(hyp, [ref]) return {'bleu_score': {'1gram_precision': this_score.precisions[0], '2gram_precision': this_score.precisions[1], '3gram_precision': this_score.precisions[2], '4gram_precision': this_score.precisions[3], 'brevity_penalty': this_score.bp, 'score': this_score.score }} class CHRFScore: def __init__(self, lowercase=True): self.scorer = sacrebleu.CHRF(lowercase=lowercase) def score(self, hyp: str, ref: str, src=None, *args, **kwargs): this_score = self.scorer.sentence_score(hyp, [ref]) return {'chrf_score': {this_score.name: this_score.score, 'score': this_score.score}} class TERScore: def __init__(self, lowercase=True): self.scorer = sacrebleu.TER() self.lowercase = lowercase def score(self, hyp: str, ref: str, src=None, *args, **kwargs): if self.lowercase: hyp, ref = hyp.lower(), ref.lower() this_score = self.scorer.sentence_score(hyp, [ref]) return {'ter_score': {'score': this_score.score}}
[ "sacrebleu.BLEU", "sacrebleu.CHRF", "sacrebleu.TER" ]
[((112, 188), 'sacrebleu.BLEU', 'sacrebleu.BLEU', ([], {'trg_lang': 'trg_lang', 'effective_order': '(True)', 'lowercase': 'lowercase'}), '(trg_lang=trg_lang, effective_order=True, lowercase=lowercase)\n', (126, 188), False, 'import sacrebleu\n'), ((773, 808), 'sacrebleu.CHRF', 'sacrebleu.CHRF', ([], {'lowercase': 'lowercase'}), '(lowercase=lowercase)\n', (787, 808), False, 'import sacrebleu\n'), ((1159, 1174), 'sacrebleu.TER', 'sacrebleu.TER', ([], {}), '()\n', (1172, 1174), False, 'import sacrebleu\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu May 7 07:57:40 2020 @author: usama """ import pandas as pd import numpy as np import matplotlib.pyplot as plt if __name__ =='__main__': plt.close('all') savePlot=False and True loadFile='./Dataset/MgO.xlsx' savePath='./MgO_Result/DataViz/' df = pd.read_excel (loadFile) data=df.loc[:, df.columns != 'QE'] label=df['QE'] plt.close('all') length=11 height=0.625*length d=np.matrix(data) p1=np.matmul(d.T,d) p1=p1.I p2=np.matmul(d,p1) H=np.matmul(p2,d.T) y=np.matrix(label) ypred=np.matmul(H,y.T) err=ypred.T - y err=np.array(err)[0] Hdiag=H.diagonal() Hdiag=np.array(Hdiag)[0] p=sum(Hdiag) n=len(Hdiag) H_star= 3 * (p+1)/n # H_star=0.3 l=np.where(Hdiag>H_star)[0] l=np.append(l,np.where(abs(err)>3)[0]) plt.figure(figsize=(length, height)) if list(l) : outX=Hdiag[l]; outY=err[l] err=np.delete(err,l) Hdiag=np.delete(Hdiag,l) plt.scatter(outX,outY,label='Outliers',marker='x',c='r') plt.scatter(Hdiag,err,label='Data points') plt.hlines(3,xmin=0,xmax=1.2*H_star,colors='r',linestyles='--',label='Outlier Upper Limit') plt.hlines(-3,xmin=0,xmax=1.2*H_star,colors='r',linestyles='-.',label='Outlier Lower Limit') plt.vlines(H_star,ymin=-3.2,ymax=3.2,colors='g',linestyles='-.',label='Leverage Limit ({0:.3f})'.format(H_star)) plt.ylim([-5,5]) plt.xlim([0,1.25*H_star]) plt.grid(True) plt.xlabel('Predicted Response',fontsize=16) plt.ylabel('Residuals',fontsize=16) plt.xticks(fontsize=14) plt.yticks(fontsize=14) plt.legend() if savePlot: plt.savefig(savePath+'HatLev.png',quality=95) plt.savefig(savePath+'HatLev.jpg',quality=95) plt.savefig(savePath+'HatLev.eps',quality=95)
[ "matplotlib.pyplot.grid", "matplotlib.pyplot.ylabel", "numpy.array", "pandas.read_excel", "numpy.where", "numpy.delete", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.close", "numpy.matmul", "matplotlib.pyplot.yticks", "matplotlib.pyplot.scatter", "matplotlib.pyplot.ylim", "matplotlib.pyplot.savefig", "matplotlib.pyplot.xticks", "matplotlib.pyplot.xlim", "matplotlib.pyplot.legend", "matplotlib.pyplot.hlines", "matplotlib.pyplot.figure", "numpy.matrix" ]
[((210, 226), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (219, 226), True, 'import matplotlib.pyplot as plt\n'), ((335, 358), 'pandas.read_excel', 'pd.read_excel', (['loadFile'], {}), '(loadFile)\n', (348, 358), True, 'import pandas as pd\n'), ((422, 438), 'matplotlib.pyplot.close', 'plt.close', (['"""all"""'], {}), "('all')\n", (431, 438), True, 'import matplotlib.pyplot as plt\n'), ((484, 499), 'numpy.matrix', 'np.matrix', (['data'], {}), '(data)\n', (493, 499), True, 'import numpy as np\n'), ((507, 524), 'numpy.matmul', 'np.matmul', (['d.T', 'd'], {}), '(d.T, d)\n', (516, 524), True, 'import numpy as np\n'), ((543, 559), 'numpy.matmul', 'np.matmul', (['d', 'p1'], {}), '(d, p1)\n', (552, 559), True, 'import numpy as np\n'), ((565, 583), 'numpy.matmul', 'np.matmul', (['p2', 'd.T'], {}), '(p2, d.T)\n', (574, 583), True, 'import numpy as np\n'), ((594, 610), 'numpy.matrix', 'np.matrix', (['label'], {}), '(label)\n', (603, 610), True, 'import numpy as np\n'), ((626, 643), 'numpy.matmul', 'np.matmul', (['H', 'y.T'], {}), '(H, y.T)\n', (635, 643), True, 'import numpy as np\n'), ((914, 950), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(length, height)'}), '(figsize=(length, height))\n', (924, 950), True, 'import matplotlib.pyplot as plt\n'), ((1156, 1200), 'matplotlib.pyplot.scatter', 'plt.scatter', (['Hdiag', 'err'], {'label': '"""Data points"""'}), "(Hdiag, err, label='Data points')\n", (1167, 1200), True, 'import matplotlib.pyplot as plt\n'), ((1203, 1306), 'matplotlib.pyplot.hlines', 'plt.hlines', (['(3)'], {'xmin': '(0)', 'xmax': '(1.2 * H_star)', 'colors': '"""r"""', 'linestyles': '"""--"""', 'label': '"""Outlier Upper Limit"""'}), "(3, xmin=0, xmax=1.2 * H_star, colors='r', linestyles='--', label\n ='Outlier Upper Limit')\n", (1213, 1306), True, 'import matplotlib.pyplot as plt\n'), ((1304, 1407), 'matplotlib.pyplot.hlines', 'plt.hlines', (['(-3)'], {'xmin': '(0)', 'xmax': '(1.2 * H_star)', 'colors': '"""r"""', 'linestyles': '"""-."""', 'label': '"""Outlier Lower Limit"""'}), "(-3, xmin=0, xmax=1.2 * H_star, colors='r', linestyles='-.',\n label='Outlier Lower Limit')\n", (1314, 1407), True, 'import matplotlib.pyplot as plt\n'), ((1518, 1535), 'matplotlib.pyplot.ylim', 'plt.ylim', (['[-5, 5]'], {}), '([-5, 5])\n', (1526, 1535), True, 'import matplotlib.pyplot as plt\n'), ((1539, 1567), 'matplotlib.pyplot.xlim', 'plt.xlim', (['[0, 1.25 * H_star]'], {}), '([0, 1.25 * H_star])\n', (1547, 1567), True, 'import matplotlib.pyplot as plt\n'), ((1569, 1583), 'matplotlib.pyplot.grid', 'plt.grid', (['(True)'], {}), '(True)\n', (1577, 1583), True, 'import matplotlib.pyplot as plt\n'), ((1588, 1633), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted Response"""'], {'fontsize': '(16)'}), "('Predicted Response', fontsize=16)\n", (1598, 1633), True, 'import matplotlib.pyplot as plt\n'), ((1637, 1673), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Residuals"""'], {'fontsize': '(16)'}), "('Residuals', fontsize=16)\n", (1647, 1673), True, 'import matplotlib.pyplot as plt\n'), ((1677, 1700), 'matplotlib.pyplot.xticks', 'plt.xticks', ([], {'fontsize': '(14)'}), '(fontsize=14)\n', (1687, 1700), True, 'import matplotlib.pyplot as plt\n'), ((1705, 1728), 'matplotlib.pyplot.yticks', 'plt.yticks', ([], {'fontsize': '(14)'}), '(fontsize=14)\n', (1715, 1728), True, 'import matplotlib.pyplot as plt\n'), ((1733, 1745), 'matplotlib.pyplot.legend', 'plt.legend', ([], {}), '()\n', (1743, 1745), True, 'import matplotlib.pyplot as plt\n'), ((676, 689), 'numpy.array', 'np.array', (['err'], {}), '(err)\n', (684, 689), True, 'import numpy as np\n'), ((731, 746), 'numpy.array', 'np.array', (['Hdiag'], {}), '(Hdiag)\n', (739, 746), True, 'import numpy as np\n'), ((840, 864), 'numpy.where', 'np.where', (['(Hdiag > H_star)'], {}), '(Hdiag > H_star)\n', (848, 864), True, 'import numpy as np\n'), ((1020, 1037), 'numpy.delete', 'np.delete', (['err', 'l'], {}), '(err, l)\n', (1029, 1037), True, 'import numpy as np\n'), ((1051, 1070), 'numpy.delete', 'np.delete', (['Hdiag', 'l'], {}), '(Hdiag, l)\n', (1060, 1070), True, 'import numpy as np\n'), ((1087, 1147), 'matplotlib.pyplot.scatter', 'plt.scatter', (['outX', 'outY'], {'label': '"""Outliers"""', 'marker': '"""x"""', 'c': '"""r"""'}), "(outX, outY, label='Outliers', marker='x', c='r')\n", (1098, 1147), True, 'import matplotlib.pyplot as plt\n'), ((1771, 1819), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savePath + 'HatLev.png')"], {'quality': '(95)'}), "(savePath + 'HatLev.png', quality=95)\n", (1782, 1819), True, 'import matplotlib.pyplot as plt\n'), ((1825, 1873), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savePath + 'HatLev.jpg')"], {'quality': '(95)'}), "(savePath + 'HatLev.jpg', quality=95)\n", (1836, 1873), True, 'import matplotlib.pyplot as plt\n'), ((1879, 1927), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(savePath + 'HatLev.eps')"], {'quality': '(95)'}), "(savePath + 'HatLev.eps', quality=95)\n", (1890, 1927), True, 'import matplotlib.pyplot as plt\n')]
import re from ..tokenization import FullTokenizer from ..utils import ( get_or_make_label_encoder, BOS_TOKEN, EOS_TOKEN) from ..create_generators import create_pretraining_generator, create_single_problem_generator from .ner_data import gold_horse_ent_type_process_fn, read_ner_data def weibo_fake_cls(params, mode): """Just a test problem to test multiproblem support Arguments: params {Params} -- params mode {mode} -- mode """ tokenizer = FullTokenizer(vocab_file=params.vocab_file) data = read_ner_data(file_pattern='data/ner/weiboNER*', proc_fn=gold_horse_ent_type_process_fn) if mode == 'train': data = data['train'] else: data = data['eval'] inputs_list = data['inputs'][:100] target_list = data['target'][:100] new_target_list = ['1' if len(set(t)) > 1 else '0' for t in target_list] label_encoder = get_or_make_label_encoder( params, 'weibo_fake_cls', mode, new_target_list, '0') return create_single_problem_generator('weibo_fake_cls', inputs_list, new_target_list, label_encoder, params, tokenizer, mode) def weibo_fake_seq2seq_tag(params, mode: str): tokenizer = FullTokenizer(vocab_file=params.vocab_file) data = read_ner_data(file_pattern='data/ner/weiboNER*', proc_fn=gold_horse_ent_type_process_fn) if mode == 'train': data = data['train'] else: data = data['eval'] inputs_list = data['inputs'][:100] target_list = data['target'][:100] new_target_list = [['1', '2'] for t in target_list] label_encoder = get_or_make_label_encoder( params, 'weibo_fake_seq2seq_tag', mode, [BOS_TOKEN, '1', '2', EOS_TOKEN], zero_class=BOS_TOKEN) return create_single_problem_generator( 'weibo_fake_seq2seq_tag', inputs_list, new_target_list, label_encoder, params, tokenizer, mode) def weibo_pretrain(params, mode): sentence_split = r'[.!?。?!]' tokenizer = FullTokenizer(vocab_file=params.vocab_file) data = read_ner_data(file_pattern='data/ner/weiboNER*', proc_fn=gold_horse_segment_process_fn) if mode == 'train': data = data['train'] else: data = data['eval'] inputs_list = data['inputs'] segmented_list = [] for document in inputs_list: segmented_list.append([]) doc_string = ''.join(document) splited_doc = re.split(sentence_split, doc_string) for sentence in splited_doc: if sentence: segmented_list[-1].append(list(sentence)) segmented_list = [doc for doc in segmented_list if doc] return create_pretraining_generator('weibo_pretrain', segmented_list, None, None, params, tokenizer, mode) def weibo_fake_seq_tag(params, mode): tokenizer = FullTokenizer(vocab_file=params.vocab_file) data = read_ner_data(file_pattern='data/ner/weiboNER*', proc_fn=gold_horse_ent_type_process_fn) if mode == 'train': data = data['train'] else: data = data['eval'] inputs_list = data['inputs'][:100] target_list = data['target'][:100] flat_label = [item for sublist in target_list for item in sublist] label_encoder = get_or_make_label_encoder( params, 'weibo_fake_seq_tag', mode, flat_label) return create_single_problem_generator('weibo_fake_seq_tag', inputs_list, target_list, label_encoder, params, tokenizer, mode)
[ "re.split" ]
[((2775, 2811), 're.split', 're.split', (['sentence_split', 'doc_string'], {}), '(sentence_split, doc_string)\n', (2783, 2811), False, 'import re\n')]
# coding: utf8 from __future__ import unicode_literals, print_function, division import pytest from csvw.metadata import Column from pylexibank.db import Database, ColSpec, schema def test_ColSpec(): col = ColSpec(name='c', csvw_type='float') assert col.convert(5) == '5' def test_schema(cldf_dataset): cldf_dataset['ParameterTable', 'Name'].name = 'thename' assert cldf_dataset['ParameterTable', 'http://cldf.clld.org/v1.0/terms.rdf#name'].header == 'thename' tables, reftables = schema(cldf_dataset) assert len(tables) == 4 assert len(reftables) == 2 for t in tables: ptschema = t.sql if 'ParameterTable' in ptschema: assert "`Name`" in ptschema break else: assert False def test_db(tmpdir, dataset, mocker, capsys): db = Database(str(tmpdir.join('lexibank.sqlite'))) db.load(dataset) db.create(exists_ok=True) with pytest.raises(ValueError): db.create() db.create(force=True) db.load(dataset) db.load_glottolog_data(dataset.glottolog) db.load_concepticon_data(mocker.Mock(conceptsets={})) for sql in db.sql: db.fetchall(sql) with db.connection() as conn: db.fetchall('select * from dataset', conn=conn, verbose=True) out, _ = capsys.readouterr() assert 'select' in out db.create(force=True) db.load(dataset) cols = dataset.cldf.wl['FormTable'].tableSchema.columns cols.append(Column(name='custom')) db.load(dataset) cols.pop() cols.append(Column(name='custom', datatype='integer')) with pytest.raises(ValueError): db.load(dataset) cols.pop() db.load(dataset) def test_db_multiple_datasets(tmpdir, dataset, dataset_cldf, capsys): db = Database(str(tmpdir.join('lexibank.sqlite'))) db.load(dataset) db.load(dataset_cldf, verbose=True) with db.connection() as conn: res = db.fetchall('select `id`, `name` from LanguageTable', conn=conn) assert len(res) == 3 assert ('1', 'Lang CLDF') in [(r[0], r[1]) for r in res] res = db.fetchall('select `id`, `value` from FormTable', conn=conn) assert ('1', 'abc') in [(r[0], r[1]) for r in res]
[ "pylexibank.db.schema", "csvw.metadata.Column", "pylexibank.db.ColSpec", "pytest.raises" ]
[((214, 250), 'pylexibank.db.ColSpec', 'ColSpec', ([], {'name': '"""c"""', 'csvw_type': '"""float"""'}), "(name='c', csvw_type='float')\n", (221, 250), False, 'from pylexibank.db import Database, ColSpec, schema\n'), ((507, 527), 'pylexibank.db.schema', 'schema', (['cldf_dataset'], {}), '(cldf_dataset)\n', (513, 527), False, 'from pylexibank.db import Database, ColSpec, schema\n'), ((926, 951), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (939, 951), False, 'import pytest\n'), ((1460, 1481), 'csvw.metadata.Column', 'Column', ([], {'name': '"""custom"""'}), "(name='custom')\n", (1466, 1481), False, 'from csvw.metadata import Column\n'), ((1535, 1576), 'csvw.metadata.Column', 'Column', ([], {'name': '"""custom"""', 'datatype': '"""integer"""'}), "(name='custom', datatype='integer')\n", (1541, 1576), False, 'from csvw.metadata import Column\n'), ((1587, 1612), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (1600, 1612), False, 'import pytest\n')]
import time import serial import os def startUp(): print("*****************************************************") print(" PUMP: StartUp ") print("*****************************************************\n") print("Please read the instructions before continuing") print("1. Make sure the ports are correctly input in the config file.") print("2. Initially, pump should be stopped (NOT TURNED OFF!). Read documentation if you do not understand") os.system('pause') print("Starting Process . . . ") time.sleep(1) def connectPump(port): # configure the serial connections (the parameters differs on the device you are connecting to) ser = serial.Serial( port=port, baudrate=9600, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS ) return ser def sendCommand(ser, command, waitForOutput=True, tries=3): # For debug # return "OK\r\n" # try sending the send three times. for _ in range(tries): # encode string commandEncoded = command.encode() # write ser.write(commandEncoded) # wait for the output to return if waitForOutput: time.sleep(0.1) output = '' while ser.inWaiting() > 0: output += ser.read(1).decode() if output != '': return output return None def setFlowRate(ser, flow_rate, waitForOutput=True, tries=2): try_count = 0 while try_count <= tries: # change . to , fowRateEURO = str(round(float(flow_rate), 1)).replace('.', ',') while len(fowRateEURO) != 5: fowRateEURO = '0' + fowRateEURO output = sendCommand(ser, "SMM=" + fowRateEURO + "!", waitForOutput=waitForOutput) valid = validate_output(output) if valid: return valid try_count += 1 if try_count > tries: return False def togglePump(ser, waitForOutput=True, tries=2): try_count = 0 while try_count <= tries: output = sendCommand(ser, "TA2!", waitForOutput=waitForOutput) valid = validate_output(output) if valid: return valid try_count += 1 if try_count > tries: return False def validate_output(output): if output is not None: print("Output from pump:", output.strip()) if output == "OK\r\n": print("Successfully send command\n") return True else: print("Failed to send command\n") return False else: print("Error: no output from pump. possibly the rs232 got disconnected.") def getDesiredFlowRate(elapsedTime, flowRates, timeList): indexTime = 0 if elapsedTime > timeList[-1]: indexTime = -1 else: for index, pointInTime in enumerate(timeList): if elapsedTime < pointInTime: indexTime = index - 1 break return flowRates[indexTime] def serialConsole(ser): #ser.open() print('Enter your commands below.\r\nInsert "exit" to leave the application.') userInput = 1 while 1: # get keyboard input # Python 2 users # input = raw_input(">> ") # Python 3 users userInput = input(">> ") # type exit to exit console if userInput == 'exit': ser.close() exit() else: # send the character to the device # (note that I dont happend a \r\n carriage return and line feed to the characters - this is not requested by my device) #convert to bytes userInputBytes = userInput.encode() ser.write(userInputBytes) out = '' # let's wait one second before reading output (let's give device time to answer) time.sleep(1) while ser.inWaiting() > 0: out += ser.read(1).decode() if out != '': print(">> " + out) if __name__ == '__main__': ser = connectPump('COM3') print(ser.port) # send one command print(sendCommand(ser, "DSP?", waitForOutput=True)) # start console serialConsole(ser)
[ "os.system", "serial.Serial", "time.sleep" ]
[((508, 526), 'os.system', 'os.system', (['"""pause"""'], {}), "('pause')\n", (517, 526), False, 'import os\n'), ((568, 581), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (578, 581), False, 'import time\n'), ((717, 845), 'serial.Serial', 'serial.Serial', ([], {'port': 'port', 'baudrate': '(9600)', 'parity': 'serial.PARITY_NONE', 'stopbits': 'serial.STOPBITS_ONE', 'bytesize': 'serial.EIGHTBITS'}), '(port=port, baudrate=9600, parity=serial.PARITY_NONE, stopbits\n =serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS)\n', (730, 845), False, 'import serial\n'), ((1262, 1277), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1272, 1277), False, 'import time\n'), ((3900, 3913), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (3910, 3913), False, 'import time\n')]
import RPi.GPIO as GPIO import serial import http.client import urllib import threading import string import imaplib import smtplib from datetime import datetime from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import time import email from time import strftime import requests from email.parser import Parser cntTemp = 0 cntOsv = 0 cntRaz = 0 i = 0 ii = 0 prosecnaTemp = 0 prosecnaOsv = 0 prosecnaRaz = 0 data=0 flagStart = 0 flagZelena = 0 flagPrviPodatak = 0 PodaciCnt = 0 proveraEnabled = 1 flagPeriodTemp = 0 flagPeriodOsv = 0 flagPeriodRaz = 0 prosecnaTemp = 0 prosecnaOsv = 0 prosecnaRaz = 0 #vremena za slanje izvestaja vremeTemperature = 0 vremeRazdaljina = 0 vremeOsvetljenosti = 0 # srednje vrednosti podataka temperaturaSrednja = 0 razdaljinaSrednja = 0 osvetljenostSrednja = 0 #brojac brojac = 0 # merenje vremena timerTemp = 0 timerRaz = 0 timerOsv = 0 #lsusb #cd /dev pa onda ls tty* pa ukljucim Arduino u USB pa opet ls tty* i vidim razl. ser = serial.Serial('/dev/ttyACM0',9600) LEDCrvena = 3 LEDZelena = 21 mail = imaplib.IMAP4_SSL('imap.gmail.com') mail.login("<EMAIL>", "password") GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(LEDCrvena, GPIO.OUT) GPIO.output(LEDCrvena, GPIO.LOW) GPIO.setup(LEDZelena, GPIO.OUT) GPIO.output(LEDZelena, GPIO.LOW) def ZelenaUgasi(): GPIO.output(LEDZelena, GPIO.LOW) def CrvenaUgasi(): global proveraEnabled GPIO.output(LEDCrvena, GPIO.LOW) proveraEnabled = 1 def izvestajTemperatura(): #funkcija za slanje izvestaja putem imejla fromaddr = "<EMAIL>" toaddr = "<EMAIL>" msg = MIMEMultipart() msg['From'] = fromaddr msg['To'] = toaddr msg['Subject'] = "Temperatura" #vremeTemperature uzimamo iz konf maila, a temperaturaKonfig je prosecna temp body = "Средња температура у последњих "+str(vremeTemperature) +" минута је " + str(temperaturaSrednja) + " степени С." msg.attach(MIMEText(body, 'plain')) server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(fromaddr, "password") text = msg.as_string() server.sendmail(fromaddr, toaddr, text) server.quit() def izvestajOsvetljenost(): #funkcija za slanje izvestaja putem imejla fromaddr = "<EMAIL>" toaddr = "<EMAIL>" msg = MIMEMultipart() msg['From'] = fromaddr msg['To'] = toaddr msg['Subject'] = "Osvetljenost" body = "Средња осветљеност у последњих "+str(vremeOsvetljenosti) +" минута је "+str(osvetljenostSrednja) + " lux." msg.attach(MIMEText(body, 'plain')) server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(fromaddr, "password") text = msg.as_string() server.sendmail(fromaddr, toaddr, text) server.quit() def izvestajRazdaljina(): #funkcija za slanje izvestaja putem imejla fromaddr = "<EMAIL>" toaddr = "<EMAIL>" msg = MIMEMultipart() msg['From'] = fromaddr msg['To'] = toaddr msg['Subject'] = "Razdaljina" body = "Средње растојање у последњих "+str(vremeRazdaljina) +" минута је "+str(razdaljinaSrednja) + " cm." msg.attach(MIMEText(body, 'plain')) server = smtplib.SMTP('smtp.gmail.com', 587) server.starttls() server.login(fromaddr, "password") text = msg.as_string() server.sendmail(fromaddr, toaddr, text) server.quit() def CheckMail(): global i, ii, vremeTemperature,vremeRazdaljina, vremeOsvetljenosti global osvetljenostSrednja, temperaturaSrednja, razdaljinaSrednja global prosecnaTemp, prosecnaOsv, prosecnaRaz global cntTemp, cntOsv, cntRaz, flagZelena global timerTemp, timerRaz, timerOsv global flagPeriodTemp, flagPeriodOsv, flagPeriodRaz mail.list() mail.select('inbox') result, podaci = mail.uid('search', None, '(SUBJECT "Posalji" UNSEEN)') result1, podaci1 = mail.uid('search', None, '(SUBJECT "Konfiguracija" UNSEEN)') i = len(podaci[0].split()) ii = len(podaci1[0].split()) for x in range(i): latest_email_uid = podaci[0].split()[x] #uzimanje mejla result, email_data = mail.uid('fetch', latest_email_uid, '(RFC822)') raw_email = email_data[0][1] raw_email_string = raw_email.decode('utf-8') email_message = email.message_from_string(raw_email_string) #prolazak kroz mejl for part in email_message.walk(): if part.get_content_type() == "text/plain": body = part.get_payload(decode=True) #telo mejla bodystr=str(body) prvi,drugi = bodystr.split("b'") split = drugi.split("\\r\\n") count = split.__len__() for z in range(count-1): word = split[z] if word=="Temperatura": if flagPeriodTemp==1: print("Температура у режиму периода") else: print("Температура послата") vremeTemperature = int(timerTemp/60) temperaturaSrednja = prosecnaTemp/cntTemp temperaturaSrednja = round(temperaturaSrednja,2) izvestajTemperatura() timerTemp = 0 temperaturaSrednja = 0 prosecnaTemp = 0 cntTemp = 0 if word=="Razdaljina": if flagPeriodRaz==1: print("Раздаљина у режиму периода") else: print("Растојање послато") vremeRazdaljina = int(timerRaz/60) razdaljinaSrednja = prosecnaRaz/cntRaz razdaljinaSrednja = round(razdaljinaSrednja,2) izvestajRazdaljina() timerRaz = 0 razdaljinaSrednja = 0 prosecnaRaz = 0 cntRaz = 0 if word=="Osvetljenost": if flagPeriodOsv==1: print("Осветљеност у режиму периода") else: print("Осветљеност послата") vremeOsvetljenosti = int(timerOsv/60) osvetljenostSrednja = prosecnaOsv/cntOsv osvetljenostSrednja = round(osvetljenostSrednja,2) izvestajOsvetljenost() timerOsv = 0 osvetljenostSrednja = 0 prosecnaOsv = 0 cntOsv = 0 for x in range(ii): latest_email_uid = podaci1[0].split()[x] #uzimanje mejla result, email_data = mail.uid('fetch', latest_email_uid, '(RFC822)') raw_email = email_data[0][1] raw_email_string = raw_email.decode('utf-8') email_message = email.message_from_string(raw_email_string) #prolazak kroz mejla for part in email_message.walk(): if part.get_content_type() == "text/plain": body = part.get_payload(decode=True) #telo mejla bodystr=str(body) prvi,drugi = bodystr.split("b'") split = drugi.split("\\r\\n") count = split.__len__() konftime = datetime.now().strftime("%H:%M:%S") ser.write(konftime.encode()) flagZelena = 1 for z in range(count-1): word = split[z] a,b = word.split(":") b,c = b.split(",") if a =="Temperatura": if b=="zahtev": vremeTemperature = 0 flagPeriodTemp = 0 prosecnaTemp = 0 cntTemp = 0 temperaturaSrednja = 0 timerTemp = 0 print("Температура [захтев]") elif b=="period": vremeTemperature = int(c) flagPeriodTemp = 1 timerTemp = 0 temperaturaSrednja = 0 prosecnaTemp = 0 cntTemp = 0 print("Температура [период]") if a =="Osvetljenost": if b=="zahtev": vremeOsvetljenosti = 0 flagPeriodOsv = 0 prosecnaOsv = 0 cntOsv = 0 osvetljenostSrednja = 0 timerOsv = 0 print("Осветљеност [захтев]") elif b=="period": flagPeriodOsv = 1 vremeOsvetljenosti = int(c) timerOsv = 0 osvetljenostSrednja = 0 prosecnaOsv = 0 cntOsv = 0 print("Оветљеност [период]") if a =="Razdaljina": if b=="zahtev": vremeRazdaljina = 0 flagPeriodRaz = 0 timerRaz = 0 razdaljinaSrednja = 0 prosecnaRaz = 0 cntRaz = 0 print("Раздаљина [захтев]") elif b=="period": vremeRazdaljina = int(c) flagPeriodRaz = 1 timerRaz = 0 razdaljinaSrednja = 0 prosecnaRaz = 0 cntRaz = 0 print("Раздаљина [период]") threading.Timer(5,CheckMail).start() CheckMail() while True: data = ser.readline() Podaci = str(data) #print(data) b,a = Podaci.split("b'") NoviPodaci,c = a.split("\\r\\n") if flagStart==1: PodaciCnt = PodaciCnt + 1 if PodaciCnt==1: prosecnaTemp = prosecnaTemp + float(NoviPodaci) #print((NoviPodaci)) cntTemp+=1 if PodaciCnt==2: prosecnaOsv = prosecnaOsv + int(NoviPodaci) cntOsv+= 1 if PodaciCnt==3: if proveraEnabled ==1: if (int(NoviPodaci) < 5): GPIO.output(LEDCrvena, GPIO.HIGH) proveraEnabled = 0 requests.post("https://maker.ifttt.com/trigger/RAZDALJINA/with/key/<KEY>") threading.Timer(15,CrvenaUgasi).start() prosecnaRaz = prosecnaRaz + int(NoviPodaci) print(int(NoviPodaci)) cntRaz+= 1 PodaciCnt=0 flagStart=0 flagPrviPodatak = 1 brojac += 0.5 timerTemp += 0.5 timerRaz += 0.5 timerOsv += 0.5 #print(brojac) if NoviPodaci =="Novi podaci: ": flagStart = 1 if flagZelena: GPIO.output(LEDZelena, GPIO.HIGH) threading.Timer(10,ZelenaUgasi).start() flagZelena = 0 if flagPeriodTemp==1: if (float(timerTemp) == int(vremeTemperature*60)): temperaturaSrednja = prosecnaTemp/cntTemp temperaturaSrednja = round(temperaturaSrednja,2) izvestajTemperatura() print("Слање температуре на",vremeTemperature,"минут/а") timerTemp = 0 temperaturaSrednja = 0 prosecnaTemp = 0 cntTemp = 0 if flagPeriodRaz==1: if (float(timerRaz) == int(vremeRazdaljina*60)): razdaljinaSrednja = prosecnaRaz/cntRaz razdaljinaSrednja = round(razdaljinaSrednja,2) izvestajRazdaljina() print("Слање раздаљине на",vremeRazdaljina,"минут/а") timerRaz = 0 razdaljinaSrednja = 0 prosecnaRaz = 0 cntRaz = 0 if flagPeriodOsv==1: if (float(timerOsv) == int(vremeOsvetljenosti*60)): osvetljenostSrednja = prosecnaOsv/cntOsv osvetljenostSrednja = round(osvetljenostSrednja,2) izvestajOsvetljenost() print("Слање осветљености на", vremeOsvetljenosti, "минут/а") timerOsv = 0 osvetljenostSrednja = 0 prosecnaOsv = 0 cntOsv = 0
[ "smtplib.SMTP", "requests.post", "imaplib.IMAP4_SSL", "RPi.GPIO.setup", "RPi.GPIO.output", "email.message_from_string", "RPi.GPIO.setwarnings", "threading.Timer", "datetime.datetime.now", "email.mime.multipart.MIMEMultipart", "serial.Serial", "RPi.GPIO.setmode", "email.mime.text.MIMEText" ]
[((1062, 1097), 'serial.Serial', 'serial.Serial', (['"""/dev/ttyACM0"""', '(9600)'], {}), "('/dev/ttyACM0', 9600)\n", (1075, 1097), False, 'import serial\n'), ((1135, 1170), 'imaplib.IMAP4_SSL', 'imaplib.IMAP4_SSL', (['"""imap.gmail.com"""'], {}), "('imap.gmail.com')\n", (1152, 1170), False, 'import imaplib\n'), ((1207, 1229), 'RPi.GPIO.setmode', 'GPIO.setmode', (['GPIO.BCM'], {}), '(GPIO.BCM)\n', (1219, 1229), True, 'import RPi.GPIO as GPIO\n'), ((1231, 1254), 'RPi.GPIO.setwarnings', 'GPIO.setwarnings', (['(False)'], {}), '(False)\n', (1247, 1254), True, 'import RPi.GPIO as GPIO\n'), ((1256, 1287), 'RPi.GPIO.setup', 'GPIO.setup', (['LEDCrvena', 'GPIO.OUT'], {}), '(LEDCrvena, GPIO.OUT)\n', (1266, 1287), True, 'import RPi.GPIO as GPIO\n'), ((1289, 1321), 'RPi.GPIO.output', 'GPIO.output', (['LEDCrvena', 'GPIO.LOW'], {}), '(LEDCrvena, GPIO.LOW)\n', (1300, 1321), True, 'import RPi.GPIO as GPIO\n'), ((1324, 1355), 'RPi.GPIO.setup', 'GPIO.setup', (['LEDZelena', 'GPIO.OUT'], {}), '(LEDZelena, GPIO.OUT)\n', (1334, 1355), True, 'import RPi.GPIO as GPIO\n'), ((1357, 1389), 'RPi.GPIO.output', 'GPIO.output', (['LEDZelena', 'GPIO.LOW'], {}), '(LEDZelena, GPIO.LOW)\n', (1368, 1389), True, 'import RPi.GPIO as GPIO\n'), ((1414, 1446), 'RPi.GPIO.output', 'GPIO.output', (['LEDZelena', 'GPIO.LOW'], {}), '(LEDZelena, GPIO.LOW)\n', (1425, 1446), True, 'import RPi.GPIO as GPIO\n'), ((1497, 1529), 'RPi.GPIO.output', 'GPIO.output', (['LEDCrvena', 'GPIO.LOW'], {}), '(LEDCrvena, GPIO.LOW)\n', (1508, 1529), True, 'import RPi.GPIO as GPIO\n'), ((1693, 1708), 'email.mime.multipart.MIMEMultipart', 'MIMEMultipart', ([], {}), '()\n', (1706, 1708), False, 'from email.mime.multipart import MIMEMultipart\n'), ((2076, 2111), 'smtplib.SMTP', 'smtplib.SMTP', (['"""smtp.gmail.com"""', '(587)'], {}), "('smtp.gmail.com', 587)\n", (2088, 2111), False, 'import smtplib\n'), ((2402, 2417), 'email.mime.multipart.MIMEMultipart', 'MIMEMultipart', ([], {}), '()\n', (2415, 2417), False, 'from email.mime.multipart import MIMEMultipart\n'), ((2694, 2729), 'smtplib.SMTP', 'smtplib.SMTP', (['"""smtp.gmail.com"""', '(587)'], {}), "('smtp.gmail.com', 587)\n", (2706, 2729), False, 'import smtplib\n'), ((3021, 3036), 'email.mime.multipart.MIMEMultipart', 'MIMEMultipart', ([], {}), '()\n', (3034, 3036), False, 'from email.mime.multipart import MIMEMultipart\n'), ((3306, 3341), 'smtplib.SMTP', 'smtplib.SMTP', (['"""smtp.gmail.com"""', '(587)'], {}), "('smtp.gmail.com', 587)\n", (3318, 3341), False, 'import smtplib\n'), ((2023, 2046), 'email.mime.text.MIMEText', 'MIMEText', (['body', '"""plain"""'], {}), "(body, 'plain')\n", (2031, 2046), False, 'from email.mime.text import MIMEText\n'), ((2650, 2673), 'email.mime.text.MIMEText', 'MIMEText', (['body', '"""plain"""'], {}), "(body, 'plain')\n", (2658, 2673), False, 'from email.mime.text import MIMEText\n'), ((3258, 3281), 'email.mime.text.MIMEText', 'MIMEText', (['body', '"""plain"""'], {}), "(body, 'plain')\n", (3266, 3281), False, 'from email.mime.text import MIMEText\n'), ((4410, 4453), 'email.message_from_string', 'email.message_from_string', (['raw_email_string'], {}), '(raw_email_string)\n', (4435, 4453), False, 'import email\n'), ((7272, 7315), 'email.message_from_string', 'email.message_from_string', (['raw_email_string'], {}), '(raw_email_string)\n', (7297, 7315), False, 'import email\n'), ((11811, 11844), 'RPi.GPIO.output', 'GPIO.output', (['LEDZelena', 'GPIO.HIGH'], {}), '(LEDZelena, GPIO.HIGH)\n', (11822, 11844), True, 'import RPi.GPIO as GPIO\n'), ((10464, 10493), 'threading.Timer', 'threading.Timer', (['(5)', 'CheckMail'], {}), '(5, CheckMail)\n', (10479, 10493), False, 'import threading\n'), ((11853, 11885), 'threading.Timer', 'threading.Timer', (['(10)', 'ZelenaUgasi'], {}), '(10, ZelenaUgasi)\n', (11868, 11885), False, 'import threading\n'), ((11103, 11136), 'RPi.GPIO.output', 'GPIO.output', (['LEDCrvena', 'GPIO.HIGH'], {}), '(LEDCrvena, GPIO.HIGH)\n', (11114, 11136), True, 'import RPi.GPIO as GPIO\n'), ((11196, 11270), 'requests.post', 'requests.post', (['"""https://maker.ifttt.com/trigger/RAZDALJINA/with/key/<KEY>"""'], {}), "('https://maker.ifttt.com/trigger/RAZDALJINA/with/key/<KEY>')\n", (11209, 11270), False, 'import requests\n'), ((7723, 7737), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (7735, 7737), False, 'from datetime import datetime\n'), ((11292, 11324), 'threading.Timer', 'threading.Timer', (['(15)', 'CrvenaUgasi'], {}), '(15, CrvenaUgasi)\n', (11307, 11324), False, 'import threading\n')]
import os APP_SECRET_KEY = os.environ.get('APP_SECRET_KEY', '1234') IMGUR_ID = os.environ.get('IMGUR_ID', '') IMGUR_SECRET = os.environ.get('IMGUR_SECRET', '') TWITTER_KEY = os.environ.get('TWITTER_KEY', '') TWITTER_SECRET = os.environ.get('TWITTER_SECRET', '') GOOGLE_ID = os.environ.get('GOOGLE_ID', '') GOOGLE_SECRET = os.environ.get('GOOGLE_SECRET', '')
[ "os.environ.get" ]
[((28, 68), 'os.environ.get', 'os.environ.get', (['"""APP_SECRET_KEY"""', '"""1234"""'], {}), "('APP_SECRET_KEY', '1234')\n", (42, 68), False, 'import os\n'), ((81, 111), 'os.environ.get', 'os.environ.get', (['"""IMGUR_ID"""', '""""""'], {}), "('IMGUR_ID', '')\n", (95, 111), False, 'import os\n'), ((127, 161), 'os.environ.get', 'os.environ.get', (['"""IMGUR_SECRET"""', '""""""'], {}), "('IMGUR_SECRET', '')\n", (141, 161), False, 'import os\n'), ((177, 210), 'os.environ.get', 'os.environ.get', (['"""TWITTER_KEY"""', '""""""'], {}), "('TWITTER_KEY', '')\n", (191, 210), False, 'import os\n'), ((228, 264), 'os.environ.get', 'os.environ.get', (['"""TWITTER_SECRET"""', '""""""'], {}), "('TWITTER_SECRET', '')\n", (242, 264), False, 'import os\n'), ((278, 309), 'os.environ.get', 'os.environ.get', (['"""GOOGLE_ID"""', '""""""'], {}), "('GOOGLE_ID', '')\n", (292, 309), False, 'import os\n'), ((326, 361), 'os.environ.get', 'os.environ.get', (['"""GOOGLE_SECRET"""', '""""""'], {}), "('GOOGLE_SECRET', '')\n", (340, 361), False, 'import os\n')]
from chalk import * from colour import Color grey = Color("#bbbbbb") papaya = Color("#ff9700") left_arrow = make_path([(0, 0), (1, 0)], True).reflect_x().line_width(0.03).center_xy() def box(t): return rectangle(1.5, 1).line_width(0.05).fill_color(papaya) + latex(t).scale(0.7) def label(text): return latex(text).scale(0.5).pad_b(0.4) def arrow(text, d=True): return label(text) // left_arrow # Autograd 1 d = hcat([arrow(r"$f'_x(g(x))$"), box("$f$"), arrow(r"$f'_{g(x)}(g(x))$"), box("$g$"), arrow("1")], 0.2) d.render_svg("examples/output/latex.svg", 100)
[ "colour.Color" ]
[((54, 70), 'colour.Color', 'Color', (['"""#bbbbbb"""'], {}), "('#bbbbbb')\n", (59, 70), False, 'from colour import Color\n'), ((80, 96), 'colour.Color', 'Color', (['"""#ff9700"""'], {}), "('#ff9700')\n", (85, 96), False, 'from colour import Color\n')]
""" Copyright (C) 2013 Intel Corporation ? Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at ? http://www.apache.org/licenses/LICENSE-2.0 ? Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ? SPDX-License-Identifier: Apache-2.0 """ from acs.UseCase.UseCaseBase import UseCaseBase as UCBase class UseCaseBase(UCBase): """ Base class for all use case implementation """ def __init__(self, tc_conf, global_config): """ Constructor """ UCBase.__init__(self, tc_conf, global_config)
[ "acs.UseCase.UseCaseBase.UseCaseBase.__init__" ]
[((859, 904), 'acs.UseCase.UseCaseBase.UseCaseBase.__init__', 'UCBase.__init__', (['self', 'tc_conf', 'global_config'], {}), '(self, tc_conf, global_config)\n', (874, 904), True, 'from acs.UseCase.UseCaseBase import UseCaseBase as UCBase\n')]
import os import secrets from flask import Flask, request, redirect, url_for, send_from_directory, send_file from werkzeug.utils import secure_filename import subprocess import Abbrv UPLOAD_FOLDER = '/home/mlcruz/mysite/uploads' DOWNLOAD_FOLDER ='/home/mlcruz/mysite/downloads' ALLOWED_EXTENSIONS = set(['tex', 'bib']) app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS @app.route('/download/<filename>') def download_file(filename): return send_from_directory('/home/mlcruz/mysite/downloads',filename = "new_"+filename, attachment_filename=("new_"+filename),as_attachment=True) @app.route('/', methods=['GET', 'POST']) def upload_file(): if request.method == 'POST': if request.form.get('uncited'): checked_uncited = 'y' else: checked_uncited = 'n' if request.form.get('abbreviate'): checked_abbreviate = 'y' else: checked_abbreviate = 'n' if request.form.get('check_format'): checked_format = 'y' else: checked_format = 'n' # check if the post request has the file part if ('file_tex' or 'file_bib') not in request.files: return redirect(request.url) file_tex = request.files['file_tex'] file_bib = request.files['file_bib'] # if user does not select file, browser also # submit a empty part without filename if (file_tex.filename or file_bib.filename) == '': return redirect(request.url) if (file_tex and file_bib) and allowed_file(file_tex.filename) and allowed_file(file_bib.filename): filename_tex = secure_filename(file_tex.filename) filename_bib = secure_filename(file_bib.filename) salt = "" #secrets.randbelow(99999999) tex_path_string = os.path.join(app.config['UPLOAD_FOLDER'], filename_tex) bib_path_string = os.path.join(app.config['UPLOAD_FOLDER'], filename_bib) tex_out_string = os.path.join(DOWNLOAD_FOLDER, (str(salt) + "new_" + filename_tex )) bib_out_string = os.path.join(DOWNLOAD_FOLDER, (str(salt) + "new_" + filename_bib)) log_out_string = tex_out_string + ".log" file_tex.save(tex_path_string) file_bib.save(bib_path_string) script_path = os.path.join(os.getcwd(),"mysite/TeXArticleFormater/articleformater/menu_unixa.py") command_string = ["{0}".format(script_path), "--tex_path",tex_path_string, "--bib_path",bib_path_string, "--tex_output_name",tex_out_string, "--bib_output_name",bib_out_string, "--log_file_path",log_out_string, "--remove_uncited",checked_uncited, "--abbreviate",checked_abbreviate, "--format_file",checked_format, ] #mysite/TeXArticleFormater/articleformater/menu_unix.py --tex_path "mysite/TeXArticleFormater/articleformater/comite.tex" --bib_path "mysite/TeXArticleFormater/articleformater/comite.bib" --tex_output #_name "mysite/uploads/new.tex" --bib_output_name "mysite/uploads/new.bib" --log_file_path "mysite/uploads/new.log" subprocess.run(command_string) # doesn't capture output log_stringer = "" log_file = None try: with open(log_out_string,"r",encoding="utf8") as tex_reader: log_file = tex_reader.readlines() for line in log_file: log_stringer = log_stringer + line +"<br>" except: log_stringer = "Error: Subprocess exited with error. Probably some weird character or some weird entry or unbalanced brackets in the bibliography is messing things up" #send_from_directory('/home/mlcruz/mysite/downloads',filename = "new_"+filename_bib , attachment_filename=("new_"+filename_bib),as_attachment=True) return (''' <!doctype html> <title>Download files</title> <h3>Done!</h3><br> <h2>Download Formated Files:</h2><br> <a target="_blank" href={0}><input type="button" value="Download TeX file"/></a> <a target="_blank" href={1}><input type="button" value="Download Bib file"/></a> <a target="_blank" href={2}><input type="button" value="Download Log file"/></a> <br> <br> <h2>LOG:</h2> </form>'''.format(request.url+"download/{0}".format(filename_tex),request.url+"download/{0}".format(filename_bib),request.url+"download/{0}".format(filename_tex+".log")) + log_stringer) return ''' <!doctype html> <title>Select tex and bib files</title> <h1>Select tex and bib files to be formated</h1> <form method=post enctype=multipart/form-data> <p>tex: <input type=file name=file_tex><br> bib: <input type=file name=file_bib><br><br> <input type="checkbox" name="check_format" value="true" checked>Format bibliography file<br> <input type="checkbox" name="uncited" value="true"> Remove unused bibliography entries - needs format enabled<br> <input type="checkbox" name="abbreviate" value="true"> Abbreviate serial titles<br> <br><br><input type=submit value=Format> </form><br><br><br><br><br><br><br><br><br><br><br><br><br><a href="https://github.com/mlcruz/TeXArticleFormater">Project page @ github</a>''' @app.route('/abbrv', methods=['GET', 'POST']) def abreviate(): if request.method == 'POST': abbreviator = Abbrv.abbrv("/home/mlcruz/mysite/TeXArticleFormater/articleformater/pickle.obj") abreviado = abbreviator.abbreviate(request.form['abbreviate']) return ''' <!doctype html> <title>Abbreviate</title> <h1>Abbreviate</h1> <form method=post enctype=multipart/form-data> Serial title: <input type=text name=abbreviate><br><br> Abbreviated title:<textarea disabled>{0}</textarea> <br><br><input type=submit value=Abbreviate> </form>'''.format(abreviado) return ''' <!doctype html> <title>Abbreviate</title> <h1>Abbreviate</h1> <form method=post enctype=multipart/form-data> Serial title: <input type=text name=abbreviate disable><br><br> Abbreviated title: <textarea disabled></textarea> <br><br><input type=submit value=Abbreviate> </form>'''
[ "Abbrv.abbrv", "flask.send_from_directory", "flask.Flask", "subprocess.run", "os.path.join", "flask.request.form.get", "flask.redirect", "os.getcwd", "werkzeug.utils.secure_filename" ]
[((328, 343), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (333, 343), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((601, 744), 'flask.send_from_directory', 'send_from_directory', (['"""/home/mlcruz/mysite/downloads"""'], {'filename': "('new_' + filename)", 'attachment_filename': "('new_' + filename)", 'as_attachment': '(True)'}), "('/home/mlcruz/mysite/downloads', filename='new_' +\n filename, attachment_filename='new_' + filename, as_attachment=True)\n", (620, 744), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((847, 874), 'flask.request.form.get', 'request.form.get', (['"""uncited"""'], {}), "('uncited')\n", (863, 874), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((969, 999), 'flask.request.form.get', 'request.form.get', (['"""abbreviate"""'], {}), "('abbreviate')\n", (985, 999), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((1101, 1133), 'flask.request.form.get', 'request.form.get', (['"""check_format"""'], {}), "('check_format')\n", (1117, 1133), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((5649, 5734), 'Abbrv.abbrv', 'Abbrv.abbrv', (['"""/home/mlcruz/mysite/TeXArticleFormater/articleformater/pickle.obj"""'], {}), "('/home/mlcruz/mysite/TeXArticleFormater/articleformater/pickle.obj'\n )\n", (5660, 5734), False, 'import Abbrv\n'), ((1349, 1370), 'flask.redirect', 'redirect', (['request.url'], {}), '(request.url)\n', (1357, 1370), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((1640, 1661), 'flask.redirect', 'redirect', (['request.url'], {}), '(request.url)\n', (1648, 1661), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, send_file\n'), ((1797, 1831), 'werkzeug.utils.secure_filename', 'secure_filename', (['file_tex.filename'], {}), '(file_tex.filename)\n', (1812, 1831), False, 'from werkzeug.utils import secure_filename\n'), ((1859, 1893), 'werkzeug.utils.secure_filename', 'secure_filename', (['file_bib.filename'], {}), '(file_bib.filename)\n', (1874, 1893), False, 'from werkzeug.utils import secure_filename\n'), ((1976, 2031), 'os.path.join', 'os.path.join', (["app.config['UPLOAD_FOLDER']", 'filename_tex'], {}), "(app.config['UPLOAD_FOLDER'], filename_tex)\n", (1988, 2031), False, 'import os\n'), ((2062, 2117), 'os.path.join', 'os.path.join', (["app.config['UPLOAD_FOLDER']", 'filename_bib'], {}), "(app.config['UPLOAD_FOLDER'], filename_bib)\n", (2074, 2117), False, 'import os\n'), ((3331, 3361), 'subprocess.run', 'subprocess.run', (['command_string'], {}), '(command_string)\n', (3345, 3361), False, 'import subprocess\n'), ((2493, 2504), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2502, 2504), False, 'import os\n')]
import yaml from redisbench_admin.run.tsbs_run_queries_redistimeseries.tsbs_run_queries_redistimeseries import ( prepare_tsbs_benchmark_command, ) def test_prepare_tsbs_benchmark_command(): with open("./tests/test_data/tsbs-scale100-cpu-max-all-1.yml", "r") as yml_file: benchmark_config = yaml.safe_load(yml_file) is_remote = False command_arr, command_str = prepare_tsbs_benchmark_command( "tsbs_load_redistimeseries", "localhost", 6379, benchmark_config, ".", "/tmp/result.json", "/tmp/data.json", is_remote, ) assert ( command_str == "tsbs_load_redistimeseries --host localhost:6379 --results-file /tmp/result.json" ) is_remote = True for k in benchmark_config["clientconfig"]: if "parameters" in k: command_arr, command_str = prepare_tsbs_benchmark_command( "tsbs_load_redistimeseries", "localhost", 6379, k, ".", "/tmp/result.json", "/tmp/data.json", is_remote, ) assert ( command_str == "tsbs_load_redistimeseries --host localhost:6379 --workers 64 --file /tmp/data.json --results-file /tmp/result.json" )
[ "yaml.safe_load", "redisbench_admin.run.tsbs_run_queries_redistimeseries.tsbs_run_queries_redistimeseries.prepare_tsbs_benchmark_command" ]
[((309, 333), 'yaml.safe_load', 'yaml.safe_load', (['yml_file'], {}), '(yml_file)\n', (323, 333), False, 'import yaml\n'), ((395, 554), 'redisbench_admin.run.tsbs_run_queries_redistimeseries.tsbs_run_queries_redistimeseries.prepare_tsbs_benchmark_command', 'prepare_tsbs_benchmark_command', (['"""tsbs_load_redistimeseries"""', '"""localhost"""', '(6379)', 'benchmark_config', '"""."""', '"""/tmp/result.json"""', '"""/tmp/data.json"""', 'is_remote'], {}), "('tsbs_load_redistimeseries', 'localhost', \n 6379, benchmark_config, '.', '/tmp/result.json', '/tmp/data.json',\n is_remote)\n", (425, 554), False, 'from redisbench_admin.run.tsbs_run_queries_redistimeseries.tsbs_run_queries_redistimeseries import prepare_tsbs_benchmark_command\n'), ((954, 1094), 'redisbench_admin.run.tsbs_run_queries_redistimeseries.tsbs_run_queries_redistimeseries.prepare_tsbs_benchmark_command', 'prepare_tsbs_benchmark_command', (['"""tsbs_load_redistimeseries"""', '"""localhost"""', '(6379)', 'k', '"""."""', '"""/tmp/result.json"""', '"""/tmp/data.json"""', 'is_remote'], {}), "('tsbs_load_redistimeseries', 'localhost', \n 6379, k, '.', '/tmp/result.json', '/tmp/data.json', is_remote)\n", (984, 1094), False, 'from redisbench_admin.run.tsbs_run_queries_redistimeseries.tsbs_run_queries_redistimeseries import prepare_tsbs_benchmark_command\n')]
import requests from .base_hub_connection import BaseHubConnection class AuthHubConnection(BaseHubConnection): def __init__(self, url, protocol, token, negotiate_headers): self.token = token self.negotiate_headers = negotiate_headers negotiate_url = "https" + url[3:] if url.startswith("wss") else "http" + url[2:] negotiate_url += "/negotiate" response = requests.post(negotiate_url, headers=self.negotiate_headers) data = response.json() url = url + "?id={0}&access_token={1}".format(data["connectionId"], self.token) super(AuthHubConnection, self).__init__(url, protocol)
[ "requests.post" ]
[((403, 463), 'requests.post', 'requests.post', (['negotiate_url'], {'headers': 'self.negotiate_headers'}), '(negotiate_url, headers=self.negotiate_headers)\n', (416, 463), False, 'import requests\n')]
import yaml, json def getConfig(type: str=None, mid: int=None) -> json or str: ''' 获取Config type: 获取类型 mid: 直播间号 ''' with open('config.yml', 'r', encoding='utf-8') as f: config = yaml.load(f,Loader=yaml.FullLoader) f.close() if type == None: config = { 'ffmpeg': { 'name': config['ffmpeg']['name'], 'outPath': config['ffmpeg']['outPath'], 'videoPath': config['ffmpeg']['videoPath'] }, 'liveList': { 'name': '['+config['liveList'][mid]['name']+']', 'mid': str(config['liveList'][mid]['mid']), 'rid': str(config['liveList'][mid]['rid']) } } elif type == 'SendMessage': config = { 'ServerChanSendKey': config['SendMessage']['ServerChanSendKey'], 'DingDing': { 'accessToken': config['SendMessage']['DingDing']['accessToken'], 'secret': config['SendMessage']['DingDing']['secret'] } } elif type == 'logs': config = config['logsPath'] return config
[ "yaml.load" ]
[((217, 253), 'yaml.load', 'yaml.load', (['f'], {'Loader': 'yaml.FullLoader'}), '(f, Loader=yaml.FullLoader)\n', (226, 253), False, 'import yaml, json\n')]
import subprocess import os import shlex import shutil import win32file import pywintypes def changeFileCreateTime(path, ctime): handle = win32file.CreateFile(path, win32file.GENERIC_WRITE , 0 , None , win32file.OPEN_EXISTING , 0 , 0) PyTime = pywintypes.Time(ctime) win32file.SetFileTime(handle,PyTime) path = "D:/Test" dir = os.path.join(path, '2022') def makeFiles(): """ ├── D:/ │ ├── Test/ │── file.txt 4/30/2022 │── file (1).txt 4/30/2021 │── 2022 │── file.txt 4/30/2022 """ os.mkdir(path) with open(os.path.join(path, 'file.txt'), mode='a'): pass with open(os.path.join(path, 'file (1).txt'), mode='a'): pass changeFileCreateTime(os.path.join(path, 'file.txt'), 1651320922) changeFileCreateTime(os.path.join(path, 'file (1).txt'), 1619784922) os.mkdir(dir) with open(os.path.join(dir, 'file.txt'), mode='a'): pass changeFileCreateTime(os.path.join(dir, 'file.txt'), 1651320922) def year(): cmd = "Categorize year --path D:/Test --verbose" cmdList=shlex.split(cmd) try: subprocess.run(cmdList, check=True, capture_output=True, text=True, shell=True) except subprocess.CalledProcessError as error: print(error.stdout) print(error.stderr) raise error def check_files(): """ expected ├── D:/ │ ├── Test/ │── 2022 │── file.txt 4/30/2022 │── file.txt (1) 4/30/2022 │── 2021 │── file (1).txt 4/30/2021 """ files = [] expected = ['2021', '2022'] for file in os.listdir(path): files.append(file) assert check_if_equal(files, expected) def check_if_equal(list_1, list_2): if len(list_1) != len(list_2): return False return sorted(list_1) == sorted(list_2) def test_main(): makeFiles() year() check_files() shutil.rmtree(path) if __name__ == "__main__": test_main() pass
[ "os.listdir", "win32file.CreateFile", "shlex.split", "subprocess.run", "os.path.join", "os.mkdir", "shutil.rmtree", "win32file.SetFileTime", "pywintypes.Time" ]
[((341, 367), 'os.path.join', 'os.path.join', (['path', '"""2022"""'], {}), "(path, '2022')\n", (353, 367), False, 'import os\n'), ((143, 239), 'win32file.CreateFile', 'win32file.CreateFile', (['path', 'win32file.GENERIC_WRITE', '(0)', 'None', 'win32file.OPEN_EXISTING', '(0)', '(0)'], {}), '(path, win32file.GENERIC_WRITE, 0, None, win32file.\n OPEN_EXISTING, 0, 0)\n', (163, 239), False, 'import win32file\n'), ((253, 275), 'pywintypes.Time', 'pywintypes.Time', (['ctime'], {}), '(ctime)\n', (268, 275), False, 'import pywintypes\n'), ((280, 317), 'win32file.SetFileTime', 'win32file.SetFileTime', (['handle', 'PyTime'], {}), '(handle, PyTime)\n', (301, 317), False, 'import win32file\n'), ((570, 584), 'os.mkdir', 'os.mkdir', (['path'], {}), '(path)\n', (578, 584), False, 'import os\n'), ((859, 872), 'os.mkdir', 'os.mkdir', (['dir'], {}), '(dir)\n', (867, 872), False, 'import os\n'), ((1080, 1096), 'shlex.split', 'shlex.split', (['cmd'], {}), '(cmd)\n', (1091, 1096), False, 'import shlex\n'), ((1630, 1646), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (1640, 1646), False, 'import os\n'), ((1922, 1941), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (1935, 1941), False, 'import shutil\n'), ((738, 768), 'os.path.join', 'os.path.join', (['path', '"""file.txt"""'], {}), "(path, 'file.txt')\n", (750, 768), False, 'import os\n'), ((807, 841), 'os.path.join', 'os.path.join', (['path', '"""file (1).txt"""'], {}), "(path, 'file (1).txt')\n", (819, 841), False, 'import os\n'), ((959, 988), 'os.path.join', 'os.path.join', (['dir', '"""file.txt"""'], {}), "(dir, 'file.txt')\n", (971, 988), False, 'import os\n'), ((1114, 1193), 'subprocess.run', 'subprocess.run', (['cmdList'], {'check': '(True)', 'capture_output': '(True)', 'text': '(True)', 'shell': '(True)'}), '(cmdList, check=True, capture_output=True, text=True, shell=True)\n', (1128, 1193), False, 'import subprocess\n'), ((599, 629), 'os.path.join', 'os.path.join', (['path', '"""file.txt"""'], {}), "(path, 'file.txt')\n", (611, 629), False, 'import os\n'), ((661, 695), 'os.path.join', 'os.path.join', (['path', '"""file (1).txt"""'], {}), "(path, 'file (1).txt')\n", (673, 695), False, 'import os\n'), ((887, 916), 'os.path.join', 'os.path.join', (['dir', '"""file.txt"""'], {}), "(dir, 'file.txt')\n", (899, 916), False, 'import os\n')]
"""Test Cases""" from dataStructures.data_types_bst import BinarySearchTree from dataStructures.bst_from_sorted_array import bst_from_sorted_array def test_bst_from_sorted_array(): l = [1, 2, 3, 4, 5, 6, 7, 8, 9] root = bst_from_sorted_array(l) tree = BinarySearchTree(root) assert [node.key for node in tree] == [1, 2, 3, 4, 5, 6, 7, 8, 9]
[ "dataStructures.bst_from_sorted_array.bst_from_sorted_array", "dataStructures.data_types_bst.BinarySearchTree" ]
[((232, 256), 'dataStructures.bst_from_sorted_array.bst_from_sorted_array', 'bst_from_sorted_array', (['l'], {}), '(l)\n', (253, 256), False, 'from dataStructures.bst_from_sorted_array import bst_from_sorted_array\n'), ((268, 290), 'dataStructures.data_types_bst.BinarySearchTree', 'BinarySearchTree', (['root'], {}), '(root)\n', (284, 290), False, 'from dataStructures.data_types_bst import BinarySearchTree\n')]
from context import HS from helpers import timedBoardSolve, timedBoardDiffSolve for diff in range(4): try: timedBoardSolve(HS(diff, 11), 10) except: print(f"Failed difficulty {diff}") # Times vary a lot w/in difficulty! for diff in range(4): try: timedBoardDiffSolve(HS, diff, 10) except: print(f"Failed difficulty {diff}")
[ "context.HS", "helpers.timedBoardDiffSolve" ]
[((285, 318), 'helpers.timedBoardDiffSolve', 'timedBoardDiffSolve', (['HS', 'diff', '(10)'], {}), '(HS, diff, 10)\n', (304, 318), False, 'from helpers import timedBoardSolve, timedBoardDiffSolve\n'), ((136, 148), 'context.HS', 'HS', (['diff', '(11)'], {}), '(diff, 11)\n', (138, 148), False, 'from context import HS\n')]
import numpy as np from rubin_sim.utils import Site, _approx_altAz2RaDec, _approx_altaz2pa, _approx_RaDec2AltAz from rubin_sim.scheduler.utils import smallest_signed_angle __all__ = ["Kinem_model"] TwoPi = 2.*np.pi class radec2altazpa(object): """Class to make it easy to swap in different alt/az conversion if wanted """ def __init__(self, location): self.location = location def __call__(self, ra, dec, mjd): alt, az, pa = _approx_RaDec2AltAz(ra, dec, self.location.lat_rad, self.location.lon_rad, mjd, return_pa=True) return alt, az, pa def _getRotSkyPos(paRad, rotTelRad): """ Paramteres ---------- paRad : float or array The parallactic angle """ return (rotTelRad - paRad) % TwoPi def _getRotTelPos(paRad, rotSkyRad): """Make it run from -180 to 180 """ result = (rotSkyRad + paRad) % TwoPi return result class Kinem_model(object): """ A Kinematic model of the telescope. Parameters ---------- location : `astropy.coordinates.EarthLocation` The location of the telescope. If None, defaults to rubin_sim.utils.Site info park_alt : `float` (86.5) The altitude the telescope gets parked at (degrees) park_az : `float` (0) The azimuth for telescope park position (degrees) start_filter : `str` ('r') The filter that gets loaded when the telescope is parked mjd0 : `float` (0) The MJD to assume we are starting from Note there are additional parameters in the methods setup_camera, setup_dome, setup_telescope, and setup_optics. Just breaking it up a bit to make it more readable. """ def __init__(self, location=None, park_alt=86.5, park_az=0., start_filter='r', mjd0=0): self.park_alt_rad = np.radians(park_alt) self.park_az_rad = np.radians(park_az) self.current_filter = start_filter if location is None: self.location = Site('LSST') self.location.lat_rad = np.radians(self.location.latitude) self.location.lon_rad = np.radians(self.location.longitude) # Our RA,Dec to Alt,Az converter self.radec2altaz = radec2altazpa(self.location) self.setup_camera() self.setup_dome() self.setup_telescope() self.setup_optics() # Park the telescope self.park() self.last_mjd = mjd0 def mount_filters(self, filter_list): """Change which filters are mounted Parameters ---------- filter_list : `list` [`str`] List of the mounted filters. """ self.mounted_filters = filter_list def setup_camera(self, readtime=2., shuttertime=1., filter_changetime=120., fov=3.5, rotator_min=-90, rotator_max=90, maxspeed=3.5, accel=1.0, decel=1.0): """ Parameters ---------- readtime : `float` (2) The readout time of the CCDs (seconds) shuttertime : `float` (1.) The time it takes the shutter to go from closed to fully open (seconds) filter_changetime : `float` (120) The time it takes to change filters (seconds) fov : `float` (3.5) The camera field of view (degrees) rotator_min : `float` (-90) The minimum angle the camera rotator can move to (degrees) rotator_max : `float` (90) The maximum angle the camera rotator can move to (degrees) maxspeed : `float` (3.5) The maximum speed of the rotator (degrees/s) accel : `float` (1.0) The acceleration of the rotator (degrees/s^2) """ self.readtime = readtime self.shuttertime = shuttertime self.filter_changetime = filter_changetime self.camera_fov = np.radians(fov) self.telrot_minpos_rad = np.radians(rotator_min) self.telrot_maxpos_rad = np.radians(rotator_max) self.telrot_maxspeed_rad = np.radians(maxspeed) self.telrot_accel_rad = np.radians(accel) self.telrot_decel_rad = np.radians(decel) self.mounted_filters = ['u', 'g', 'r', 'i', 'y'] def setup_dome(self, altitude_maxspeed=1.75, altitude_accel=0.875, altitude_decel=0.875, altitude_freerange=0., azimuth_maxspeed=1.5, azimuth_accel=0.75, azimuth_decel=0.75, azimuth_freerange=4.0, settle_time=1.0): """Parameters to define the DOME movement. Parameters ---------- altitude_maxspeed : `float` (1.75) Maximum speed for altitude movement (degrees/second) altitude_accel : `float` (0.875) Maximum acceleration for altitude movement (degrees/second**2) altitude_decel : `float` (0.875) Maximum deceleration for altitude movement (degrees/second**2) altitude_freerange : `float` (0) The range over which there is 0 delay azimuth_maxspeed : `float` (1.5) Maximum speed for azimuth movement (degrees/second) azimuth_accel : `float` (0.75) Maximum acceleration for azimuth movement (degrees/second**2) azimuth_decel : `float` (0.75) Maximum deceleration for azimuth movement (degrees/second**2) azimuth_freerange : `float` (4.0) The range in which there is 0 delay settle_time : `float` (1.0) Settle time after movement (seconds) """ self.domalt_maxspeed_rad = np.radians(altitude_maxspeed) self.domalt_accel_rad = np.radians(altitude_accel) self.domalt_decel_rad = np.radians(altitude_decel) self.domalt_free_range = np.radians(altitude_freerange) self.domaz_maxspeed_rad = np.radians(azimuth_maxspeed) self.domaz_accel_rad = np.radians(azimuth_accel) self.domaz_decel_rad = np.radians(azimuth_decel) self.domaz_free_range = np.radians(azimuth_freerange) self.domaz_settletime = settle_time def setup_telescope(self, altitude_minpos=20.0, altitude_maxpos=86.5, azimuth_minpos=-270.0, azimuth_maxpos=270.0, altitude_maxspeed=3.5, altitude_accel=3.5, altitude_decel=3.5, azimuth_maxspeed=7.0, azimuth_accel=7.0, azimuth_decel=7.0, settle_time=3.0): """Parameters to define the TELESCOPE movement and position. Parameters ---------- altitude_minpos : `float` (20.0) Minimum altitude for the telescope (degrees) altitude_maxpos : `float` (86.5) Maximum altitude for the telescope (degrees) azimuth_minpos : `float` (-270.0) Minimum azimuth position (degrees) azimuth_maxpos : `float` (270.0) Maximum azimuth position (degrees) altitude_maxspeed : `float` (3.5) Maximum speed for altitude movement (degrees/second) altitude_accel : `float` (3.5) Maximum acceleration for altitude movement (degrees/second**2) altitude_decel : `float` (3.5) Maximum deceleration for altitude movement (degrees/second**2) azimuth_maxspeed : `float` (7.0) Maximum speed for azimuth movement (degrees/second) azimuth_accel : `float` (7.0) Maximum acceleration for azimuth movement (degrees/second**2) azimuth_decel : `float` (7.0) Maximum deceleration for azimuth movement (degrees/second**2) settle_time : `float` (3.0) Settle time required for telescope after movement (seconds) """ self.telalt_minpos_rad = np.radians(altitude_minpos) self.telalt_maxpos_rad = np.radians(altitude_maxpos) self.telaz_minpos_rad = np.radians(azimuth_minpos) self.telaz_maxpos_rad = np.radians(azimuth_maxpos) self.telalt_maxspeed_rad = np.radians(altitude_maxspeed) self.telalt_accel_rad = np.radians(altitude_accel) self.telalt_decel_rad = np.radians(altitude_decel) self.telaz_maxspeed_rad = np.radians(azimuth_maxspeed) self.telaz_accel_rad = np.radians(azimuth_accel) self.telaz_decel_rad = np.radians(azimuth_decel) self.mount_settletime = settle_time def setup_optics(self, ol_slope=1.0/3.5, cl_delay=[0.0, 36.], cl_altlimit=[0.0, 9.0, 90.0]): """ Parameters ---------- ol_slope : `float` (1.0/3.5) seconds/degree in altitude slew. cl_delay : list ([0.0, 36]) The delays for closed optics loops (seconds) cl_altlimit : list ([0.0, 9.0, 90.0]) The altitude limits (degrees) for performing closed optice loops. Should be one element longer than cl_delay. A given movement in altitude will cover X degrees; if X > cl_altlimit[i] there is an additional delay of cl_delay[i] """ self.optics_ol_slope = ol_slope/np.radians(1.) # ah, 1./np.radians(1)=np.pi/180 self.optics_cl_delay = cl_delay self.optics_cl_altlimit = np.radians(cl_altlimit) def park(self): """Put the telescope in the park position. """ # I'm going to ignore that the old model had the dome altitude at 90 # and telescope altitude 86 for park. # We should usually be dome az limited anyway, so this should be a negligible approximation. self.parked = True # We have no current position we are tracking self.current_RA_rad = None self.current_dec_rad = None self.current_rotSkyPos_rad = None self.cumulative_azimuth_rad = 0 # The last position we were at (or the current if we are parked) self.last_az_rad = self.park_az_rad self.last_alt_rad = self.park_alt_rad self.last_rot_tel_pos_rad = 0 def current_alt_az(self, mjd): """return the current alt az position that we have tracked to. """ if self.parked: return self.last_alt_rad, self.last_az_rad, self.last_rot_tel_pos_rad else: alt_rad, az_rad, pa = self.radec2altaz(self.current_RA_rad, self.current_dec_rad, mjd) rotTelPos = _getRotTelPos(pa, self.last_rot_tel_pos_rad) return alt_rad, az_rad, rotTelPos def _uamSlewTime(self, distance, vmax, accel): """Compute slew time delay assuming uniform acceleration (for any component). If you accelerate uniformly to vmax, then slow down uniformly to zero, distance traveled is d = vmax**2 / accel To travel distance d while accelerating/decelerating at rate a, time required is t = 2 * sqrt(d / a) If hit vmax, then time to acceleration to/from vmax is 2*vmax/a and distance in those steps is vmax**2/a. The remaining distance is (d - vmax^2/a) and time needed is (d - vmax^2/a)/vmax This method accepts arrays of distance, and assumes acceleration == deceleration. Parameters ---------- distance : numpy.ndarray Distances to travel. Must be positive value. vmax : float Max velocity accel : float Acceleration (and deceleration) Returns ------- numpy.ndarray """ dm = vmax**2 / accel slewTime = np.where(distance < dm, 2 * np.sqrt(distance / accel), 2 * vmax / accel + (distance - dm) / vmax) return slewTime def slew_times(self, ra_rad, dec_rad, mjd, rotSkyPos=None, rotTelPos=None, filtername='r', lax_dome=True, alt_rad=None, az_rad=None, starting_alt_rad=None, starting_az_rad=None, starting_rotTelPos_rad=None, update_tracking=False, include_readtime=True): """Calculates ``slew'' time to a series of alt/az/filter positions from the current position (stored internally). Assumptions (currently): Assumes we have been tracking on ra,dec,rotSkyPos position. Ignores the motion of the sky while we are slewing (this approx should probably average out over time). No checks for if we have tracked beyond limits. (this assumes folks put telescope in park if there's a long gap.) Assumes the camera rotator never needs to (or can't) do a slew over 180 degrees. Calculates the ``slew'' time necessary to get from current state to alt2/az2/filter2. The time returned is actually the time between the end of an exposure at current location and the beginning of an exposure at alt2/az2, since it includes readout time in the ``slew'' time. Parameters ---------- ra_rad : `np.ndarray` The RA(s) of the location(s) we wish to slew to (radians) dec_rad : `np.ndarray` The declination(s) of the location(s) we wish to slew to (radians) mjd : `float` The current moodified julian date (days) rotSkyPos : `np.ndarray` The desired rotSkyPos(s) (radians). Angle between up on the chip and North. Note, it is possible to set a rotSkyPos outside the allowed camera rotator range, in which case the slewtime will be np.inf. If both rotSkyPos and rotTelPos are set, rotTelPos will be used. rotTelPos : `np.ndarray` The desired rotTelPos(s) (radians). filtername : `str` The filter(s) of the desired observations. Set to None to compute only telescope and dome motion times. alt_rad : `np.ndarray` The altitude(s) of the destination pointing(s) (radians). Will override ra_rad,dec_rad if provided. az_rad : `np.ndarray` The azimuth(s) of the destination pointing(s) (radians). Will override ra_rad,dec_rad if provided. lax_dome : `bool`, default True If True, allow the dome to creep, model a dome slit, and don't require the dome to settle in azimuth. If False, adhere to the way SOCS calculates slew times (as of June 21 2017) and do not allow dome creep. starting_alt_rad : `float` (None) The starting altitude for the slew (radians). If None, will use internally stored last pointing. starting_az_rad : `float` (None) The starting azimuth for the slew (radians). If None, will use internally stored last pointing. starting_rotTelPos_rad : `float` (None) The starting camera rotation for the slew (radians). If None, will use internally stored last pointing. update_tracking : `bool` (False) If True, update the internal attributes to say we are tracking the specified RA,Dec,RotSkyPos position. include_readtime : `bool` (True) Assume the camera must be read before opening the shutter, and include that readtime in the returned slewtime. Readtime will never be included if the telescope was parked before the slew. Returns ------- slewTime : `np.ndarray` The number of seconds between the two specified exposures. Will be np.nan or np.inf if slew is not possible. """ if filtername not in self.mounted_filters: return np.nan # Don't trust folks to do pa calculation correctly, if both rotations set, rotSkyPos wins if (rotTelPos is not None) & (rotSkyPos is not None): if np.isfinite(rotTelPos): rotSkyPos = None else: rotTelPos = None # alt,az not provided, calculate from RA,Dec if alt_rad is None: alt_rad, az_rad, pa = self.radec2altaz(ra_rad, dec_rad, mjd) else: pa = _approx_altaz2pa(alt_rad, az_rad, self.location.lat_rad) if update_tracking: ra_rad, dec_rad = _approx_altAz2RaDec(alt_rad, az_rad, self.location.lat_rad, self.location.lon_rad, mjd) if starting_alt_rad is None: if self.parked: starting_alt_rad = self.park_alt_rad starting_az_rad = self.park_az_rad else: starting_alt_rad, starting_az_rad, starting_pa = self.radec2altaz(self.current_RA_rad, self.current_dec_rad, mjd) deltaAlt = np.abs(alt_rad - starting_alt_rad) delta_az_short = smallest_signed_angle(starting_az_rad, az_rad) delta_az_long = delta_az_short - TwoPi daslz = np.where(delta_az_short < 0)[0] delta_az_long[daslz] = TwoPi + delta_az_short[daslz] azlz = np.where(delta_az_short < 0)[0] delta_az_long[azlz] = TwoPi + delta_az_short[azlz] # So, for every position, we can get there by slewing long or short way cummulative_az_short = delta_az_short + self.cumulative_azimuth_rad oob = np.where((cummulative_az_short < self.telaz_minpos_rad) | (cummulative_az_short > self.telaz_maxpos_rad))[0] # Set out of bounds azimuths to infinite distance delta_az_short[oob] = np.inf cummulative_az_long = delta_az_long + self.cumulative_azimuth_rad oob = np.where((cummulative_az_long < self.telaz_minpos_rad) | (cummulative_az_long > self.telaz_maxpos_rad))[0] delta_az_long[oob] = np.inf # Taking minimum of abs, so only possible azimuths slews should show up. # And deltaAz is signed properly. stacked_az = np.vstack([delta_az_short, delta_az_long]) indx = np.argmin(np.abs(stacked_az), axis=0) deltaAztel = np.take_along_axis(stacked_az, np.expand_dims(indx, axis=0), axis=0).squeeze(axis=0) # Calculate how long the telescope will take to slew to this position. telAltSlewTime = self._uamSlewTime(deltaAlt, self.telalt_maxspeed_rad, self.telalt_accel_rad) telAzSlewTime = self._uamSlewTime(np.abs(deltaAztel), self.telaz_maxspeed_rad, self.telaz_accel_rad) totTelTime = np.maximum(telAltSlewTime, telAzSlewTime) # Time for open loop optics correction olTime = deltaAlt / self.optics_ol_slope totTelTime += olTime # Add time for telescope settle. # note, this means we're going to have a settle time even for very small slews like dithering. settleAndOL = np.where(totTelTime > 0) totTelTime[settleAndOL] += np.maximum(0, self.mount_settletime - olTime[settleAndOL]) # And readout puts a floor on tel time if include_readtime: totTelTime = np.maximum(self.readtime, totTelTime) # now compute dome slew time # the dome can spin all the way around, so we will let it go the shortest angle, # even if the telescope has to unwind deltaAz = np.abs(smallest_signed_angle(starting_az_rad, az_rad)) if lax_dome: # model dome creep, dome slit, and no azimuth settle # if we can fit both exposures in the dome slit, do so sameDome = np.where(deltaAlt ** 2 + deltaAz ** 2 < self.camera_fov ** 2) # else, we take the minimum time from two options: # 1. assume we line up alt in the center of the dome slit so we # minimize distance we have to travel in azimuth. # 2. line up az in the center of the slit # also assume: # * that we start out going maxspeed for both alt and az # * that we only just barely have to get the new field in the # dome slit in one direction, but that we have to center the # field in the other (which depends which of the two options used) # * that we don't have to slow down until after the shutter # starts opening domDeltaAlt = deltaAlt # on each side, we can start out with the dome shifted away from # the center of the field by an amount domSlitRadius - fovRadius domSlitDiam = self.camera_fov / 2.0 domDeltaAz = deltaAz - 2 * (domSlitDiam / 2 - self.camera_fov / 2) domAltSlewTime = domDeltaAlt / self.domalt_maxspeed_rad domAzSlewTime = domDeltaAz / self.domaz_maxspeed_rad totDomTime1 = np.maximum(domAltSlewTime, domAzSlewTime) domDeltaAlt = deltaAlt - 2 * (domSlitDiam / 2 - self.camera_fov / 2) domDeltaAz = deltaAz domAltSlewTime = domDeltaAlt / self.domalt_maxspeed_rad domAzSlewTime = domDeltaAz / self.domaz_maxspeed_rad totDomTime2 = np.maximum(domAltSlewTime, domAzSlewTime) totDomTime = np.minimum(totDomTime1, totDomTime2) totDomTime[sameDome] = 0 else: # the above models a dome slit and dome creep. However, it appears that # SOCS requires the dome to slew exactly to each field and settle in az domAltSlewTime = self._uamSlewTime(deltaAlt, self.domalt_maxspeed_rad, self.domalt_accel_rad) domAzSlewTime = self._uamSlewTime(deltaAz, self.domaz_maxspeed_rad, self.domaz_accel_rad) # Dome takes 1 second to settle in az domAzSlewTime = np.where(domAzSlewTime > 0, domAzSlewTime + self.domaz_settletime, domAzSlewTime) totDomTime = np.maximum(domAltSlewTime, domAzSlewTime) # Find the max of the above for slew time. slewTime = np.maximum(totTelTime, totDomTime) # include filter change time if necessary filterChange = np.where(filtername != self.current_filter) slewTime[filterChange] = np.maximum(slewTime[filterChange], self.filter_changetime) # Add closed loop optics correction # Find the limit where we must add the delay cl_limit = self.optics_cl_altlimit[1] cl_delay = self.optics_cl_delay[1] closeLoop = np.where(deltaAlt >= cl_limit) slewTime[closeLoop] += cl_delay # Mask min/max altitude limits so slewtime = np.nan outsideLimits = np.where((alt_rad > self.telalt_maxpos_rad) | (alt_rad < self.telalt_minpos_rad))[0] slewTime[outsideLimits] = np.nan # If we want to include the camera rotation time if (rotSkyPos is not None) | (rotTelPos is not None): if rotTelPos is None: rotTelPos = _getRotTelPos(pa, rotSkyPos) if rotSkyPos is None: rotSkyPos = _getRotSkyPos(pa, rotTelPos) # If the new rotation angle would move us out of the limits, return nan rotTelPos_ranged = rotTelPos+0 over = np.where(rotTelPos > np.pi)[0] rotTelPos_ranged[over] -= TwoPi if (rotTelPos_ranged < self.telrot_minpos_rad) | (rotTelPos_ranged > self.telrot_maxpos_rad): return np.nan # If there was no kwarg for starting rotator position if starting_rotTelPos_rad is None: # If there is no current rotSkyPos, we were parked if self.current_rotSkyPos_rad is None: current_rotTelPos = self.last_rot_tel_pos_rad else: # We have been tracking, so rotTelPos needs to be updated current_rotTelPos = _getRotTelPos(pa, self.current_rotSkyPos_rad) else: # kwarg overrides if it was supplied current_rotTelPos = starting_rotTelPos_rad deltaRotation = np.abs(smallest_signed_angle(current_rotTelPos, rotTelPos)) rotator_time = self._uamSlewTime(deltaRotation, self.telrot_maxspeed_rad, self.telrot_accel_rad) slewTime = np.maximum(slewTime, rotator_time) # Update the internal attributes to note that we are now pointing and tracking # at the requested RA,Dec,rotSkyPos if update_tracking: self.current_RA_rad = ra_rad self.current_dec_rad = dec_rad self.current_rotSkyPos_rad = rotSkyPos self.parked = False # Handy to keep as reference, but not used for any calculations self.last_rot_tel_pos_rad = rotTelPos self.last_az_rad = az_rad self.last_alt_rad = alt_rad self.last_pa_rad = pa # Track the cumulative azimuth self.cumulative_azimuth_rad += deltaAztel self.current_filter = filtername self.last_mjd = mjd return slewTime def visit_time(self, observation): # How long does it take to make an observation. Assume final read can be done during next slew. visit_time = observation['exptime'] + \ observation['nexp'] * self.shuttertime + \ max(observation['nexp'] - 1, 0) * self.readtime return visit_time def observe(self, observation, mjd, rotTelPos=None, lax_dome=True): """observe a target, and return the slewtime and visit time for the action If slew is not allowed, returns np.nan and does not update state. """ slewtime = self.slew_times(observation['RA'], observation['dec'], mjd, rotSkyPos=observation['rotSkyPos'], rotTelPos=rotTelPos, filtername=observation['filter'], update_tracking=True, lax_dome=lax_dome) visit_time = self.visit_time(observation) return slewtime, visit_time
[ "numpy.radians", "numpy.abs", "rubin_sim.utils._approx_RaDec2AltAz", "numpy.sqrt", "numpy.minimum", "numpy.where", "rubin_sim.utils._approx_altaz2pa", "rubin_sim.utils.Site", "numpy.isfinite", "numpy.vstack", "numpy.expand_dims", "numpy.maximum", "rubin_sim.scheduler.utils.smallest_signed_angle", "rubin_sim.utils._approx_altAz2RaDec" ]
[((461, 560), 'rubin_sim.utils._approx_RaDec2AltAz', '_approx_RaDec2AltAz', (['ra', 'dec', 'self.location.lat_rad', 'self.location.lon_rad', 'mjd'], {'return_pa': '(True)'}), '(ra, dec, self.location.lat_rad, self.location.lon_rad,\n mjd, return_pa=True)\n', (480, 560), False, 'from rubin_sim.utils import Site, _approx_altAz2RaDec, _approx_altaz2pa, _approx_RaDec2AltAz\n'), ((1836, 1856), 'numpy.radians', 'np.radians', (['park_alt'], {}), '(park_alt)\n', (1846, 1856), True, 'import numpy as np\n'), ((1884, 1903), 'numpy.radians', 'np.radians', (['park_az'], {}), '(park_az)\n', (1894, 1903), True, 'import numpy as np\n'), ((3868, 3883), 'numpy.radians', 'np.radians', (['fov'], {}), '(fov)\n', (3878, 3883), True, 'import numpy as np\n'), ((3918, 3941), 'numpy.radians', 'np.radians', (['rotator_min'], {}), '(rotator_min)\n', (3928, 3941), True, 'import numpy as np\n'), ((3975, 3998), 'numpy.radians', 'np.radians', (['rotator_max'], {}), '(rotator_max)\n', (3985, 3998), True, 'import numpy as np\n'), ((4034, 4054), 'numpy.radians', 'np.radians', (['maxspeed'], {}), '(maxspeed)\n', (4044, 4054), True, 'import numpy as np\n'), ((4087, 4104), 'numpy.radians', 'np.radians', (['accel'], {}), '(accel)\n', (4097, 4104), True, 'import numpy as np\n'), ((4137, 4154), 'numpy.radians', 'np.radians', (['decel'], {}), '(decel)\n', (4147, 4154), True, 'import numpy as np\n'), ((5544, 5573), 'numpy.radians', 'np.radians', (['altitude_maxspeed'], {}), '(altitude_maxspeed)\n', (5554, 5573), True, 'import numpy as np\n'), ((5606, 5632), 'numpy.radians', 'np.radians', (['altitude_accel'], {}), '(altitude_accel)\n', (5616, 5632), True, 'import numpy as np\n'), ((5665, 5691), 'numpy.radians', 'np.radians', (['altitude_decel'], {}), '(altitude_decel)\n', (5675, 5691), True, 'import numpy as np\n'), ((5725, 5755), 'numpy.radians', 'np.radians', (['altitude_freerange'], {}), '(altitude_freerange)\n', (5735, 5755), True, 'import numpy as np\n'), ((5790, 5818), 'numpy.radians', 'np.radians', (['azimuth_maxspeed'], {}), '(azimuth_maxspeed)\n', (5800, 5818), True, 'import numpy as np\n'), ((5850, 5875), 'numpy.radians', 'np.radians', (['azimuth_accel'], {}), '(azimuth_accel)\n', (5860, 5875), True, 'import numpy as np\n'), ((5907, 5932), 'numpy.radians', 'np.radians', (['azimuth_decel'], {}), '(azimuth_decel)\n', (5917, 5932), True, 'import numpy as np\n'), ((5965, 5994), 'numpy.radians', 'np.radians', (['azimuth_freerange'], {}), '(azimuth_freerange)\n', (5975, 5994), True, 'import numpy as np\n'), ((7670, 7697), 'numpy.radians', 'np.radians', (['altitude_minpos'], {}), '(altitude_minpos)\n', (7680, 7697), True, 'import numpy as np\n'), ((7731, 7758), 'numpy.radians', 'np.radians', (['altitude_maxpos'], {}), '(altitude_maxpos)\n', (7741, 7758), True, 'import numpy as np\n'), ((7791, 7817), 'numpy.radians', 'np.radians', (['azimuth_minpos'], {}), '(azimuth_minpos)\n', (7801, 7817), True, 'import numpy as np\n'), ((7850, 7876), 'numpy.radians', 'np.radians', (['azimuth_maxpos'], {}), '(azimuth_maxpos)\n', (7860, 7876), True, 'import numpy as np\n'), ((7912, 7941), 'numpy.radians', 'np.radians', (['altitude_maxspeed'], {}), '(altitude_maxspeed)\n', (7922, 7941), True, 'import numpy as np\n'), ((7974, 8000), 'numpy.radians', 'np.radians', (['altitude_accel'], {}), '(altitude_accel)\n', (7984, 8000), True, 'import numpy as np\n'), ((8033, 8059), 'numpy.radians', 'np.radians', (['altitude_decel'], {}), '(altitude_decel)\n', (8043, 8059), True, 'import numpy as np\n'), ((8094, 8122), 'numpy.radians', 'np.radians', (['azimuth_maxspeed'], {}), '(azimuth_maxspeed)\n', (8104, 8122), True, 'import numpy as np\n'), ((8154, 8179), 'numpy.radians', 'np.radians', (['azimuth_accel'], {}), '(azimuth_accel)\n', (8164, 8179), True, 'import numpy as np\n'), ((8211, 8236), 'numpy.radians', 'np.radians', (['azimuth_decel'], {}), '(azimuth_decel)\n', (8221, 8236), True, 'import numpy as np\n'), ((9093, 9116), 'numpy.radians', 'np.radians', (['cl_altlimit'], {}), '(cl_altlimit)\n', (9103, 9116), True, 'import numpy as np\n'), ((16528, 16562), 'numpy.abs', 'np.abs', (['(alt_rad - starting_alt_rad)'], {}), '(alt_rad - starting_alt_rad)\n', (16534, 16562), True, 'import numpy as np\n'), ((16588, 16634), 'rubin_sim.scheduler.utils.smallest_signed_angle', 'smallest_signed_angle', (['starting_az_rad', 'az_rad'], {}), '(starting_az_rad, az_rad)\n', (16609, 16634), False, 'from rubin_sim.scheduler.utils import smallest_signed_angle\n'), ((17693, 17735), 'numpy.vstack', 'np.vstack', (['[delta_az_short, delta_az_long]'], {}), '([delta_az_short, delta_az_long])\n', (17702, 17735), True, 'import numpy as np\n'), ((18292, 18333), 'numpy.maximum', 'np.maximum', (['telAltSlewTime', 'telAzSlewTime'], {}), '(telAltSlewTime, telAzSlewTime)\n', (18302, 18333), True, 'import numpy as np\n'), ((18626, 18650), 'numpy.where', 'np.where', (['(totTelTime > 0)'], {}), '(totTelTime > 0)\n', (18634, 18650), True, 'import numpy as np\n'), ((18686, 18744), 'numpy.maximum', 'np.maximum', (['(0)', '(self.mount_settletime - olTime[settleAndOL])'], {}), '(0, self.mount_settletime - olTime[settleAndOL])\n', (18696, 18744), True, 'import numpy as np\n'), ((21844, 21878), 'numpy.maximum', 'np.maximum', (['totTelTime', 'totDomTime'], {}), '(totTelTime, totDomTime)\n', (21854, 21878), True, 'import numpy as np\n'), ((21952, 21995), 'numpy.where', 'np.where', (['(filtername != self.current_filter)'], {}), '(filtername != self.current_filter)\n', (21960, 21995), True, 'import numpy as np\n'), ((22029, 22087), 'numpy.maximum', 'np.maximum', (['slewTime[filterChange]', 'self.filter_changetime'], {}), '(slewTime[filterChange], self.filter_changetime)\n', (22039, 22087), True, 'import numpy as np\n'), ((22338, 22368), 'numpy.where', 'np.where', (['(deltaAlt >= cl_limit)'], {}), '(deltaAlt >= cl_limit)\n', (22346, 22368), True, 'import numpy as np\n'), ((2004, 2016), 'rubin_sim.utils.Site', 'Site', (['"""LSST"""'], {}), "('LSST')\n", (2008, 2016), False, 'from rubin_sim.utils import Site, _approx_altAz2RaDec, _approx_altaz2pa, _approx_RaDec2AltAz\n'), ((2053, 2087), 'numpy.radians', 'np.radians', (['self.location.latitude'], {}), '(self.location.latitude)\n', (2063, 2087), True, 'import numpy as np\n'), ((2124, 2159), 'numpy.radians', 'np.radians', (['self.location.longitude'], {}), '(self.location.longitude)\n', (2134, 2159), True, 'import numpy as np\n'), ((8970, 8985), 'numpy.radians', 'np.radians', (['(1.0)'], {}), '(1.0)\n', (8980, 8985), True, 'import numpy as np\n'), ((15549, 15571), 'numpy.isfinite', 'np.isfinite', (['rotTelPos'], {}), '(rotTelPos)\n', (15560, 15571), True, 'import numpy as np\n'), ((15843, 15899), 'rubin_sim.utils._approx_altaz2pa', '_approx_altaz2pa', (['alt_rad', 'az_rad', 'self.location.lat_rad'], {}), '(alt_rad, az_rad, self.location.lat_rad)\n', (15859, 15899), False, 'from rubin_sim.utils import Site, _approx_altAz2RaDec, _approx_altaz2pa, _approx_RaDec2AltAz\n'), ((16698, 16726), 'numpy.where', 'np.where', (['(delta_az_short < 0)'], {}), '(delta_az_short < 0)\n', (16706, 16726), True, 'import numpy as np\n'), ((16806, 16834), 'numpy.where', 'np.where', (['(delta_az_short < 0)'], {}), '(delta_az_short < 0)\n', (16814, 16834), True, 'import numpy as np\n'), ((17067, 17177), 'numpy.where', 'np.where', (['((cummulative_az_short < self.telaz_minpos_rad) | (cummulative_az_short >\n self.telaz_maxpos_rad))'], {}), '((cummulative_az_short < self.telaz_minpos_rad) | (\n cummulative_az_short > self.telaz_maxpos_rad))\n', (17075, 17177), True, 'import numpy as np\n'), ((17382, 17490), 'numpy.where', 'np.where', (['((cummulative_az_long < self.telaz_minpos_rad) | (cummulative_az_long >\n self.telaz_maxpos_rad))'], {}), '((cummulative_az_long < self.telaz_minpos_rad) | (\n cummulative_az_long > self.telaz_maxpos_rad))\n', (17390, 17490), True, 'import numpy as np\n'), ((17761, 17779), 'numpy.abs', 'np.abs', (['stacked_az'], {}), '(stacked_az)\n', (17767, 17779), True, 'import numpy as np\n'), ((18162, 18180), 'numpy.abs', 'np.abs', (['deltaAztel'], {}), '(deltaAztel)\n', (18168, 18180), True, 'import numpy as np\n'), ((18846, 18883), 'numpy.maximum', 'np.maximum', (['self.readtime', 'totTelTime'], {}), '(self.readtime, totTelTime)\n', (18856, 18883), True, 'import numpy as np\n'), ((19082, 19128), 'rubin_sim.scheduler.utils.smallest_signed_angle', 'smallest_signed_angle', (['starting_az_rad', 'az_rad'], {}), '(starting_az_rad, az_rad)\n', (19103, 19128), False, 'from rubin_sim.scheduler.utils import smallest_signed_angle\n'), ((19306, 19367), 'numpy.where', 'np.where', (['(deltaAlt ** 2 + deltaAz ** 2 < self.camera_fov ** 2)'], {}), '(deltaAlt ** 2 + deltaAz ** 2 < self.camera_fov ** 2)\n', (19314, 19367), True, 'import numpy as np\n'), ((20531, 20572), 'numpy.maximum', 'np.maximum', (['domAltSlewTime', 'domAzSlewTime'], {}), '(domAltSlewTime, domAzSlewTime)\n', (20541, 20572), True, 'import numpy as np\n'), ((20847, 20888), 'numpy.maximum', 'np.maximum', (['domAltSlewTime', 'domAzSlewTime'], {}), '(domAltSlewTime, domAzSlewTime)\n', (20857, 20888), True, 'import numpy as np\n'), ((20915, 20951), 'numpy.minimum', 'np.minimum', (['totDomTime1', 'totDomTime2'], {}), '(totDomTime1, totDomTime2)\n', (20925, 20951), True, 'import numpy as np\n'), ((21551, 21636), 'numpy.where', 'np.where', (['(domAzSlewTime > 0)', '(domAzSlewTime + self.domaz_settletime)', 'domAzSlewTime'], {}), '(domAzSlewTime > 0, domAzSlewTime + self.domaz_settletime,\n domAzSlewTime)\n', (21559, 21636), True, 'import numpy as np\n'), ((21732, 21773), 'numpy.maximum', 'np.maximum', (['domAltSlewTime', 'domAzSlewTime'], {}), '(domAltSlewTime, domAzSlewTime)\n', (21742, 21773), True, 'import numpy as np\n'), ((22494, 22580), 'numpy.where', 'np.where', (['((alt_rad > self.telalt_maxpos_rad) | (alt_rad < self.telalt_minpos_rad))'], {}), '((alt_rad > self.telalt_maxpos_rad) | (alt_rad < self.\n telalt_minpos_rad))\n', (22502, 22580), True, 'import numpy as np\n'), ((24149, 24183), 'numpy.maximum', 'np.maximum', (['slewTime', 'rotator_time'], {}), '(slewTime, rotator_time)\n', (24159, 24183), True, 'import numpy as np\n'), ((11368, 11393), 'numpy.sqrt', 'np.sqrt', (['(distance / accel)'], {}), '(distance / accel)\n', (11375, 11393), True, 'import numpy as np\n'), ((15966, 16058), 'rubin_sim.utils._approx_altAz2RaDec', '_approx_altAz2RaDec', (['alt_rad', 'az_rad', 'self.location.lat_rad', 'self.location.lon_rad', 'mjd'], {}), '(alt_rad, az_rad, self.location.lat_rad, self.location.\n lon_rad, mjd)\n', (15985, 16058), False, 'from rubin_sim.utils import Site, _approx_altAz2RaDec, _approx_altaz2pa, _approx_RaDec2AltAz\n'), ((23101, 23128), 'numpy.where', 'np.where', (['(rotTelPos > np.pi)'], {}), '(rotTelPos > np.pi)\n', (23109, 23128), True, 'import numpy as np\n'), ((23964, 24015), 'rubin_sim.scheduler.utils.smallest_signed_angle', 'smallest_signed_angle', (['current_rotTelPos', 'rotTelPos'], {}), '(current_rotTelPos, rotTelPos)\n', (23985, 24015), False, 'from rubin_sim.scheduler.utils import smallest_signed_angle\n'), ((17841, 17869), 'numpy.expand_dims', 'np.expand_dims', (['indx'], {'axis': '(0)'}), '(indx, axis=0)\n', (17855, 17869), True, 'import numpy as np\n')]
import pickle import numpy as np import tensorflow as tf from model import classifier # Churn Predictor class Predictor(): def __init__(self): self.device = "cuda" if tf.test.is_gpu_available() else "cpu" # load model weights self.predictor = classifier self.predictor.load_weights("models/model") # load scaler with open('scalers/scaler.pickle', 'rb') as handle: self.scaler = pickle.load(handle) # load encoders with open('encoders/encoder1.pickle', 'rb') as handle: self.encoder1 = pickle.load(handle) with open('encoders/encoder2.pickle', 'rb') as handle: self.encoder2 = pickle.load(handle) def predict(self, input_data): # classes classes = {True : "Customer will churn! :heavy_multiplication_x:", False: "Customer will not churn! :heavy_check_mark:"} # image name image_names = {True: "churn", False: "not_churn"} # encode data input_data[0][1] = self.encoder1.transform([input_data[0][1]])[0] input_data[0][2] = self.encoder2.transform([input_data[0][2]])[0] # scale data transformed_data = self.scaler.transform(input_data) # predict pred = classifier.predict(transformed_data) > 0.5 return classes[pred[0][0]], image_names[pred[0][0]]
[ "model.classifier.predict", "tensorflow.test.is_gpu_available", "pickle.load" ]
[((176, 202), 'tensorflow.test.is_gpu_available', 'tf.test.is_gpu_available', ([], {}), '()\n', (200, 202), True, 'import tensorflow as tf\n'), ((418, 437), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (429, 437), False, 'import pickle\n'), ((542, 561), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (553, 561), False, 'import pickle\n'), ((646, 665), 'pickle.load', 'pickle.load', (['handle'], {}), '(handle)\n', (657, 665), False, 'import pickle\n'), ((1167, 1203), 'model.classifier.predict', 'classifier.predict', (['transformed_data'], {}), '(transformed_data)\n', (1185, 1203), False, 'from model import classifier\n')]
import numpy as np def merge_quadrangle_n9(polys, thres=0.3, precision=10000): from ._C import merge_quadrangle_n9 as nms_impl if len(polys) == 0: return np.array([], dtype='float32') p = polys.copy() p[:,:8] *= precision ret = np.array(nms_impl(p, thres), dtype='float32') ret[:,:8] /= precision return ret
[ "numpy.array" ]
[((171, 200), 'numpy.array', 'np.array', (['[]'], {'dtype': '"""float32"""'}), "([], dtype='float32')\n", (179, 200), True, 'import numpy as np\n')]
#!/usr/bin/env python3 # Copyright (c) 2018 by <NAME> <<EMAIL>> # Licensed under the MIT license. See LICENSE for details. from lxml import etree import argparse if __name__ == '__main__': parser = argparse.ArgumentParser(description='Convert CineCanvas DCP subtitle XML to SRT.') parser.add_argument("infile", help="CineCanvas XML file to read") args = parser.parse_args() with open(args.infile, 'rb') as myfile: xml_bin = myfile.read() root = etree.fromstring(xml_bin) for e in root.findall('.//Subtitle'): print( e.get('SpotNumber')) time_in, time_out = e.get('TimeIn'), e.get('TimeOut') in_parts = time_in.split(':') out_parts = time_out.split(':') assert(len(in_parts) == 4) assert(len(out_parts) == 4) #print(time_in, ' --> ' , time_out) in_parts[-1] = '%03d' % (int(in_parts[3]) * 4) # convert 4 msec CineCanvas "ticks" to milliseconds out_parts[-1] = '%03d' % (int(out_parts[3]) * 4) print( ':'.join(in_parts[:3]) + ',' + in_parts[3] + ' --> ' + ':'.join(out_parts[:3]) + ',' + out_parts[3] ) for t in e.findall('.//Text'): if t.text is not None: print(t.text, end='') for f in t.findall('.//Font'): if f.text is not None: if f.get('Italic') == 'yes': print( '<i>' + f.text + '</i>', end='') else: print(f.text, end='') print('') # linefeed print('')
[ "lxml.etree.fromstring", "argparse.ArgumentParser" ]
[((206, 293), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Convert CineCanvas DCP subtitle XML to SRT."""'}), "(description=\n 'Convert CineCanvas DCP subtitle XML to SRT.')\n", (229, 293), False, 'import argparse\n'), ((482, 507), 'lxml.etree.fromstring', 'etree.fromstring', (['xml_bin'], {}), '(xml_bin)\n', (498, 507), False, 'from lxml import etree\n')]
import sys import warnings EXIT_CODE_SUCCESS = 0 EXIT_CODE_ALGORITHM_ERROR = 1 EXIT_CODE_CUSTOMER_ERROR = 2 EXIT_CODE_PLATFORM_ERROR = 3 def convert_to_algorithm_error(exception): """Converts the most recent exception to an AlgorithmError if not already a BaseSdkError. Returns: A BaseSdkError that represents the reason the algorithm failed. """ if isinstance(exception, BaseSdkError): return exception elif "(Platform Error)" in str(exception): return PlatformError( "An unexpected error has occurred. Please try again. If the problem persists, contact AWS support.", caused_by=exception) with warnings.catch_warnings(): warnings.simplefilter("ignore") # Suppress deprecation warning message = getattr(exception, 'message', str(exception)) return AlgorithmError(message, exception) def convert_to_customer_data_errors(exception, channel, content_type): """Convert exception from data iterators to customer errors. If exception is a BaseSdkError or not an input error, return the value of exception. :param exception: (Exception) exception instance :param channel: (str) data channel name :param content_type: (str) content type or None :return: (Exception) an instance of CustomerError or the value of exception parameter """ if isinstance(exception, BaseSdkError): return exception exception_text = str(exception) is_nan_error = "(Input Error) (NaN)" in exception_text is_inf_error = "(Input Error) (Inf)" in exception_text is_input_error = "(Input Error)" in exception_text if is_nan_error: return CustomerError( "Unable to read data channel '{}'. Found missing (NaN) values. " "Please remove any missing (NaN) values in the input data.".format(channel), caused_by=exception) if is_inf_error: return CustomerError( "Unable to read data channel '{}'. Found infinite floating point values. " "Please remove any infinite floating point values in the input data.".format(channel), caused_by=exception) if is_input_error and content_type: return CustomerError( "Unable to read data channel '{}'. Requested content-type is '{}'. " "Please verify the data matches the requested content-type.".format(channel, content_type), caused_by=exception) if is_input_error: return CustomerError( "Unable to read data channel '{}'. " "Please verify the correct data channel configuration is provided.".format(channel), caused_by=exception) return exception if sys.version_info < (3, 0): # `raise E, V, T` is a syntax error in Python 3, therefore using `exec` exec(""" def raise_with_traceback(exception, traceback=None): if traceback is None: traceback = sys.exc_info()[2] raise exception, None, traceback """) else: def raise_with_traceback(exception, traceback=None): if traceback is None: traceback = sys.exc_info()[2] raise exception.with_traceback(traceback) class BaseSdkError(Exception): """Abstract base for all errors that may cause an algorithm to exit/terminate unsuccessfully. All direct sub-classes should be kept/maintained in this file. These errors are grouped into three categories: 1. AlgorithmError: an unexpected or unknown failure that cannot be avoided by the customer and is due to a bug in the algorithm. 2. CustomerError: a failure which can be prevented/avoided by the customer (e.g. change mini_batch_size). 3. PlatformError: a failure due to an environmental requirement not being met (e.g. if the /opt/ml/training directory is missing). All other types of errors/exceptions should be converted by default to an AlgorithmError. These classes are also responsible for providing the exit behaviour/code, the failure reason to output for the training service, and the log messages that should be printed upon termination. Each type of error may have multiple subclasses that inherit from both that error type (e.g. CustomerError) and a standard exception type (e.g. ValueError) to make integration easier and allow these errors to be caught/handled with standard handlers (instead of having SDK-specific error code being distributed throughout the codebase). For example, the following works: try: ... if a > 5: raise CustomerValueError('a should be less than 5') ... except ValueError: print('CustomerValueError will get handled here!') Args: see `Attributes` below. Attributes: message (string): Description of why this exception was raised. caused_by (exception): The underlying exception that caused this exception to be raised. This should be a non-BaseSdkError. exit_code (int): The exit code that should be used if this exception makes it way to the top-level handler. failure_prefix (string): Prefix for the training job failure status if this exception is handled at the top-level. This will be seen by the user in the Console UI. """ def __init__(self, message=None, caused_by=None, exit_code=127, failure_prefix='Algorithm Error'): formatted_message = BaseSdkError._format_exception_message(message, caused_by) super(BaseSdkError, self).__init__(formatted_message) self.message = formatted_message self.caused_by = caused_by self.failure_prefix = failure_prefix self.exit_code = exit_code @staticmethod def _format_exception_message(message, caused_by): """Generates the exception message. If a message has been explicitly passed then we use that as the exception message. If we also know the underlying exception type we prepend that to the name. If there is no message but we have an underlying exception then we use that exceptions message and prepend the type of the exception. """ if message: formatted_message = message elif caused_by: with warnings.catch_warnings(): warnings.simplefilter("ignore") # Suppress deprecation warning formatted_message = getattr(caused_by, 'message', str(caused_by)) else: formatted_message = "unknown error occurred" if caused_by: formatted_message += " (caused by {})".format(caused_by.__class__.__name__) return formatted_message def get_error_summary(self): """Return a short error summary""" return "{}: {}".format(self.failure_prefix, self.message) def get_error_detail(self): """Return error details""" return "Caused by: {}".format(self.caused_by) if self.caused_by else "" def _format_failure_message(self): message = self.get_error_summary() error_detail = self.get_error_detail() if error_detail: message += "\n\n{}".format(error_detail) return message def failure_message(self): warnings.warn("deprecated", DeprecationWarning) return self._format_failure_message() def public_failure_message(self): """Message to print to stdout.""" return self._format_failure_message() def private_failure_message(self): """Message to print to the trusted error channel.""" return self._format_failure_message() class AlgorithmError(BaseSdkError): """Exception used to indicate a problem that occurred with the algorithm.""" def __init__(self, message=None, caused_by=None): super(AlgorithmError, self).__init__(message, caused_by, failure_prefix='Algorithm Error', exit_code=EXIT_CODE_ALGORITHM_ERROR) class CustomerError(BaseSdkError): """Exception used to indicate a problem caused by mis-configuration or other customer input.""" def __init__(self, message=None, caused_by=None): super(CustomerError, self).__init__(message, caused_by, failure_prefix='Customer Error', exit_code=EXIT_CODE_CUSTOMER_ERROR) class PlatformError(BaseSdkError): """Exception used to indicate a problem caused by the underlying platform (e.g. network time-outs).""" def __init__(self, message=None, caused_by=None): super(PlatformError, self).__init__(message, caused_by, failure_prefix='Platform Error', exit_code=EXIT_CODE_PLATFORM_ERROR) class CustomerValueError(CustomerError, ValueError): """Exception used to indicate a problem caused by mis-configuration or other customer input.""" def __init__(self, message=None, caused_by=None): super(CustomerValueError, self).__init__(message, caused_by) class CustomerKeyError(CustomerError, KeyError): """Exception used to indicate a problem caused by mis-configuration or other customer input.""" def __init__(self, message=None, caused_by=None): super(CustomerKeyError, self).__init__(message, caused_by) class PlatformValueError(PlatformError, ValueError): """Exception used to indicate a problem caused by the underlying platform (e.g. network time-outs).""" def __init__(self, message=None, caused_by=None): super(PlatformValueError, self).__init__(message, caused_by) class PlatformKeyError(PlatformError, KeyError): """Exception used to indicate a problem caused by the underlying platform (e.g. network time-outs).""" def __init__(self, message=None, caused_by=None): super(PlatformKeyError, self).__init__(message, caused_by)
[ "warnings.simplefilter", "sys.exc_info", "warnings.warn", "warnings.catch_warnings" ]
[((678, 703), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (701, 703), False, 'import warnings\n'), ((713, 744), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (734, 744), False, 'import warnings\n'), ((7459, 7506), 'warnings.warn', 'warnings.warn', (['"""deprecated"""', 'DeprecationWarning'], {}), "('deprecated', DeprecationWarning)\n", (7472, 7506), False, 'import warnings\n'), ((3094, 3108), 'sys.exc_info', 'sys.exc_info', ([], {}), '()\n', (3106, 3108), False, 'import sys\n'), ((6490, 6515), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (6513, 6515), False, 'import warnings\n'), ((6533, 6564), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (6554, 6564), False, 'import warnings\n')]
import pandas as pd from lc_classifier.features import ZTFLightcurvePreprocessor # Loading data detections = pd.read_csv( 'detections.csv', index_col='oid', na_values=['Infinity']) non_detections = pd.read_csv( 'non_detections.csv', index_col='oid', na_values=['Infinity']) labels = pd.read_csv( 'dfcrossmatches_prioritized_v5.1.csv', index_col='oid', na_values=['Infinity'] ) # Adapt classes for the paper unused_classes = ['TDE', 'ZZ'] rename_class_dictionary = { 'EA': 'EB', 'EB/EW': 'EB', 'RSCVn': 'Periodic-Other', 'SNIIb': 'SNII', 'SNIIn': 'SNII' } labels = labels[~labels.classALeRCE.isin(unused_classes)].copy() labels['classALeRCE'] = labels['classALeRCE'].map( rename_class_dictionary).fillna(labels['classALeRCE']) # Intersecting labels and detections valid_oids = detections.index.unique().intersection( labels.index.unique()) labeled_detections = detections.loc[valid_oids] labels = labels.loc[valid_oids].copy() valid_oids = valid_oids.intersection(non_detections.index.unique()) labeled_non_detections = non_detections.loc[valid_oids] # ZTF preprocessing preprocessor_ztf = ZTFLightcurvePreprocessor() labeled_detections = preprocessor_ztf.preprocess(labeled_detections) # Save data labeled_detections.to_pickle('dataset_detections.pkl') labeled_non_detections.to_pickle('dataset_non_detections.pkl') labels.to_pickle('dataset_labels.pkl')
[ "lc_classifier.features.ZTFLightcurvePreprocessor", "pandas.read_csv" ]
[((112, 182), 'pandas.read_csv', 'pd.read_csv', (['"""detections.csv"""'], {'index_col': '"""oid"""', 'na_values': "['Infinity']"}), "('detections.csv', index_col='oid', na_values=['Infinity'])\n", (123, 182), True, 'import pandas as pd\n'), ((214, 288), 'pandas.read_csv', 'pd.read_csv', (['"""non_detections.csv"""'], {'index_col': '"""oid"""', 'na_values': "['Infinity']"}), "('non_detections.csv', index_col='oid', na_values=['Infinity'])\n", (225, 288), True, 'import pandas as pd\n'), ((312, 407), 'pandas.read_csv', 'pd.read_csv', (['"""dfcrossmatches_prioritized_v5.1.csv"""'], {'index_col': '"""oid"""', 'na_values': "['Infinity']"}), "('dfcrossmatches_prioritized_v5.1.csv', index_col='oid',\n na_values=['Infinity'])\n", (323, 407), True, 'import pandas as pd\n'), ((1164, 1191), 'lc_classifier.features.ZTFLightcurvePreprocessor', 'ZTFLightcurvePreprocessor', ([], {}), '()\n', (1189, 1191), False, 'from lc_classifier.features import ZTFLightcurvePreprocessor\n')]
'''adampapercifar for CIFAR10. FC layers are removed. Paddings are adjusted. Modified by <NAME> and <NAME> (Winter 2019). Without BN, the start learning rate should be 0.01 (c) <NAME> ''' import torch.nn as nn import torch.nn.functional as F __all__ = ['mnistmlp'] class MnistMLP(nn.Module): def __init__(self, num_classes=10, dropout=False): super(MnistMLP, self).__init__() self.dropout = dropout if self.dropout: print('Using Dropout 0.5 for Model.') self.fc1 = nn.Linear(784, 1000) self.fc2 = nn.Linear(1000, 1000) self.fc3 = nn.Linear(1000, num_classes) def forward(self, x): x = x.view(-1, 28 * 28) x = F.relu(self.fc1(x)) if self.dropout: # just here x = F.dropout(x, p=0.5, training=self.training) x = F.relu(self.fc2(x)) x = self.fc3(x) return x def mnistmlp(**kwargs): model = MnistMLP(**kwargs) return model
[ "torch.nn.functional.dropout", "torch.nn.Linear" ]
[((538, 558), 'torch.nn.Linear', 'nn.Linear', (['(784)', '(1000)'], {}), '(784, 1000)\n', (547, 558), True, 'import torch.nn as nn\n'), ((578, 599), 'torch.nn.Linear', 'nn.Linear', (['(1000)', '(1000)'], {}), '(1000, 1000)\n', (587, 599), True, 'import torch.nn as nn\n'), ((619, 647), 'torch.nn.Linear', 'nn.Linear', (['(1000)', 'num_classes'], {}), '(1000, num_classes)\n', (628, 647), True, 'import torch.nn as nn\n'), ((818, 861), 'torch.nn.functional.dropout', 'F.dropout', (['x'], {'p': '(0.5)', 'training': 'self.training'}), '(x, p=0.5, training=self.training)\n', (827, 861), True, 'import torch.nn.functional as F\n')]
from django.urls import reverse from rest_framework import status from authors.apps.articles.tests import base_class from ..test_data import test_article_data class TestArticleAPIEndpoints(base_class.BaseTest): def setUp(self): super().setUp() self.user, self.article = self.create_article_and_authenticate_test_user() def test_user_can_undo_a_like(self): self.assertEqual(self.article.is_liked_by(self.user), False) response = self.client.post(self.like_article_url(self.article.slug)) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.article.is_liked_by(self.user), True) response = self.client.delete(self.like_article_url(self.article.slug)) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.article.is_liked_by(self.user), False) def test_user_can_undo_a_dislike(self): self.assertEqual(self.article.is_liked_by(self.user), False) response = self.client.post( self.dislike_article_url(self.article.slug)) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.article.is_disliked_by(self.user), True) response = self.client.delete( self.dislike_article_url(self.article.slug)) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.article.is_disliked_by(self.user), False) def test_like_then_dislike_undoes_the_like(self): self.article.liked_by.add(self.user) self.assertEqual(self.article.is_liked_by(self.user), True) self.assertEqual(self.article.is_disliked_by(self.user), False) response = self.client.post( self.dislike_article_url(self.article.slug)) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.article.is_liked_by(self.user), False) self.assertEqual(self.article.is_disliked_by(self.user), True) def test_dislike_then_like_undoes_the_dislike(self): self.article.disliked_by.add(self.user) self.assertEqual(self.article.is_disliked_by(self.user), True) self.assertEqual(self.article.is_liked_by(self.user), False) response = self.client.post(self.like_article_url(self.article.slug)) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.article.is_disliked_by(self.user), False) self.assertEqual(self.article.is_liked_by(self.user), True) def test_multiple_users_can_like_an_article(self): self.assertEqual(self.article.like_count, 0) # first like self.client.post(self.like_article_url(self.article.slug)) self.assertEqual(self.article.like_count, 1) user2 = self.create_article_and_authenticate_test_user_2() self.client.force_authenticate(user2) # second like self.client.post(self.like_article_url(self.article.slug)) self.assertEqual(self.article.like_count, 2) def test_user_can_the_number_of_people_that_liked_an_article(self): """a user can get an article's like count""" # first like self.client.post(self.like_article_url(self.article.slug)) user2 = self.create_article_and_authenticate_test_user_2() self.client.force_authenticate(user2) # second like self.client.post(self.like_article_url(self.article.slug)) response = self.client.get(self.article_url(self.article.slug)) self.assertEqual(response.data['like_count'], 2) def test_if_tags_are_in_response_object(self): user2 = self.create_article_and_authenticate_test_user_2() self.client.force_authenticate(user2) response = self.client.post(self.articles_url, data=test_article_data. valid_article_data, format='json') self.assertIn('tag_list', response.data) def test_get_all_tags(self): user2 = self.create_article_and_authenticate_test_user_2() self.client.force_authenticate(user2) self.client.post(self.articles_url, data=test_article_data. valid_article_data_with_tags, format='json') response = self.client.get(reverse('articles:tags')) # print(response.data) self.assertEqual(2, len(response.data['tags']))
[ "django.urls.reverse" ]
[((4393, 4417), 'django.urls.reverse', 'reverse', (['"""articles:tags"""'], {}), "('articles:tags')\n", (4400, 4417), False, 'from django.urls import reverse\n')]
from compas.artists import Artist class FakeArtist(Artist): def draw(self): pass class FakeSubArtist(Artist): def draw(self): pass class FakeItem(object): pass class FakeSubItem(FakeItem): pass def test_get_artist_cls_with_orderly_registration(): Artist.register(FakeItem, FakeArtist, context='fake') Artist.register(FakeSubItem, FakeSubArtist, context='fake') item = FakeItem() artist = Artist(item, context='fake') assert isinstance(artist, FakeArtist) item = FakeSubItem() artist = Artist(item, context='fake') assert isinstance(artist, FakeSubArtist) def test_get_artist_cls_with_out_of_order_registration(): Artist.register(FakeSubItem, FakeSubArtist, context='fake') Artist.register(FakeItem, FakeArtist, context='fake') item = FakeItem() artist = Artist(item, context='fake') assert isinstance(artist, FakeArtist) item = FakeSubItem() artist = Artist(item, context='fake') assert isinstance(artist, FakeSubArtist)
[ "compas.artists.Artist", "compas.artists.Artist.register" ]
[((293, 346), 'compas.artists.Artist.register', 'Artist.register', (['FakeItem', 'FakeArtist'], {'context': '"""fake"""'}), "(FakeItem, FakeArtist, context='fake')\n", (308, 346), False, 'from compas.artists import Artist\n'), ((351, 410), 'compas.artists.Artist.register', 'Artist.register', (['FakeSubItem', 'FakeSubArtist'], {'context': '"""fake"""'}), "(FakeSubItem, FakeSubArtist, context='fake')\n", (366, 410), False, 'from compas.artists import Artist\n'), ((446, 474), 'compas.artists.Artist', 'Artist', (['item'], {'context': '"""fake"""'}), "(item, context='fake')\n", (452, 474), False, 'from compas.artists import Artist\n'), ((556, 584), 'compas.artists.Artist', 'Artist', (['item'], {'context': '"""fake"""'}), "(item, context='fake')\n", (562, 584), False, 'from compas.artists import Artist\n'), ((694, 753), 'compas.artists.Artist.register', 'Artist.register', (['FakeSubItem', 'FakeSubArtist'], {'context': '"""fake"""'}), "(FakeSubItem, FakeSubArtist, context='fake')\n", (709, 753), False, 'from compas.artists import Artist\n'), ((758, 811), 'compas.artists.Artist.register', 'Artist.register', (['FakeItem', 'FakeArtist'], {'context': '"""fake"""'}), "(FakeItem, FakeArtist, context='fake')\n", (773, 811), False, 'from compas.artists import Artist\n'), ((847, 875), 'compas.artists.Artist', 'Artist', (['item'], {'context': '"""fake"""'}), "(item, context='fake')\n", (853, 875), False, 'from compas.artists import Artist\n'), ((957, 985), 'compas.artists.Artist', 'Artist', (['item'], {'context': '"""fake"""'}), "(item, context='fake')\n", (963, 985), False, 'from compas.artists import Artist\n')]
from fastapi import APIRouter router = APIRouter() @router.get("/") def working(): return {"music"}
[ "fastapi.APIRouter" ]
[((40, 51), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (49, 51), False, 'from fastapi import APIRouter\n')]
import logging import re from copy import copy from pathlib import PosixPath from typing import Dict, List, Tuple import pandas as pd from pandas import DataFrame, Series from omegaconf import DictConfig from .mortality_file_extractor import MortalityFileExtractor class MortalityXLSXExtractor(MortalityFileExtractor): """ Extracts mortality facts from Statistics Poland XLS files """ def __init__(self, file_path: PosixPath, cfg: DictConfig): self.file_path = file_path self.cfg = cfg self.mortality_facts = DataFrame() self.log = logging.getLogger(__name__) @property def reported_year(self) -> int: """ Returns the reported actuals year """ return int(self.file_path.stem.split('_')[-1]) @property def genders(self) -> Dict[str, int]: return self.cfg.raw_data.genders @property def fact_columns(self) -> List[str]: return self.cfg.raw_data.fact_columns @property def regions(self) -> Dict[str, int]: return self.cfg.raw_data.regions @property def age_groups(self) -> Dict[str, int]: return self.cfg.raw_data.age_groups @property def fact_year(self) -> int: return int(self.file_path.stem.split('_')[-1]) def extract_actuals(self) -> None: """ Extracts mortality data facts """ for gender_data in self.genders.items(): self._extract_gender_sheet(gender_data) if not self.mortality_facts.empty: self.log.info(f'Year: {self.fact_year} - {len(self.mortality_facts)} mortality facts extracted ({self.mortality_facts.deceased_actuals.sum():.0f} of deaths in total)') return self.mortality_facts def _extract_gender_sheet(self, gender_data: Tuple[str, int]) -> None: """ Exctracts mortality data facts from a given gender sheet """ gender_sheet = self._get_gender_sheet(gender_data) gender_sheet_facts = self._transform_gender_sheet_into_facts_table(gender_sheet) self.mortality_facts = pd.concat((self.mortality_facts, gender_sheet_facts)) def _get_gender_sheet(self, gender_data: Tuple[str, int]) -> DataFrame: """ Extracts gender sheet """ gender_sheet_name, gender_id = gender_data raw_annual_gender_mortality_facts = self._read_raw_xlsx_sheet(gender_sheet_name) gender_mortality_facts = self._map_gender(raw_annual_gender_mortality_facts, gender_id) region_gender_mortality_facts = self._map_regions(gender_mortality_facts) gender_sheet = self._map_age_groups(region_gender_mortality_facts) return gender_sheet def _read_raw_xlsx_sheet(self, gender_sheet_name: str) -> DataFrame: """ Reads a raw xlsx sheet """ raw_annual_mortality_facts = pd.read_excel(self.file_path, engine='openpyxl', header=6, sheet_name=gender_sheet_name) raw_annual_mortality_facts = raw_annual_mortality_facts[1:] # first row is blank, skipping row in pandas doesn't work correctly return raw_annual_mortality_facts def _map_gender(self, raw_annual_gender_mortality_facts: DataFrame, gender_id: int) -> DataFrame: """ Maps gender """ gender_mortality_facts = raw_annual_gender_mortality_facts.copy() gender_mortality_facts['gender'] = gender_id return gender_mortality_facts def _map_regions(self, raw_annual_gender_mortality_facts: DataFrame) -> DataFrame: """ Maps and filters regions """ region_column = raw_annual_gender_mortality_facts.columns[1] raw_annual_gender_mortality_facts.rename(columns={region_column: 'region'}, inplace=True) region_gender_mortality_facts = raw_annual_gender_mortality_facts[ raw_annual_gender_mortality_facts['region'].isin(self.regions.keys()) ].copy() region_gender_mortality_facts['region'].replace(self.regions, inplace=True) return region_gender_mortality_facts def _map_age_groups(self, region_gender_mortality_facts: DataFrame) -> DataFrame: """ Maps and filters age groups """ age_group_column = region_gender_mortality_facts.columns[0] region_gender_mortality_facts.rename(columns={age_group_column: 'age_group'}, inplace=True) gender_sheet_facts = region_gender_mortality_facts[ region_gender_mortality_facts['age_group'].isin(self.age_groups.keys()) ].copy() gender_sheet_facts['age_group'].replace(self.age_groups, inplace=True) return gender_sheet_facts def _transform_gender_sheet_into_facts_table(self, gender_sheet: DataFrame) -> DataFrame: """ Transforms extracted gender table into facts table """ new_rows = [] for _, row in gender_sheet.iterrows(): facts_from_row = self._get_facts_from_row(row) new_rows.append(facts_from_row) all_facts = sum(new_rows, []) gender_sheet_facts = DataFrame(all_facts) return gender_sheet_facts def _get_facts_from_row(self, row: Series) -> List[dict]: """ Returns all facts from the xls sheet row """ fact_base = self._get_fact_base(row) facts_from_row = [] for column_name in row.index: if not self.is_date_column(column_name): continue fact = self._get_fact(fact_base, column_name, row) if pd.isnull(fact['deceased_actuals']): continue facts_from_row.append(fact) return facts_from_row def _get_fact_base(self, row: Series) -> dict: """ Returns the fact base for the gender sheet row """ fact_base = {'year': self.reported_year} for column_name in row.index: if column_name not in self.fact_columns: continue fact_base[column_name] = row[column_name] return fact_base def _get_fact(self, fact_base: dict, date_column_name: str, row: Series) -> dict: """ Gets single fact dictionary """ fact = copy(fact_base) fact['week'] = self._get_week_number(date_column_name) fact['deceased_actuals'] = row[date_column_name] return fact @staticmethod def _get_week_number(date_column_name: str): """ Returns the week number from the column name """ return int(date_column_name[1:]) @staticmethod def is_date_column(column_name: str) -> bool: """ Checks if column name refers to a date column """ match = re.match('^[T][0-9][0-9]', column_name) return match is not None
[ "logging.getLogger", "pandas.isnull", "re.match", "pandas.read_excel", "pandas.DataFrame", "copy.copy", "pandas.concat" ]
[((555, 566), 'pandas.DataFrame', 'DataFrame', ([], {}), '()\n', (564, 566), False, 'from pandas import DataFrame, Series\n'), ((586, 613), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (603, 613), False, 'import logging\n'), ((2107, 2160), 'pandas.concat', 'pd.concat', (['(self.mortality_facts, gender_sheet_facts)'], {}), '((self.mortality_facts, gender_sheet_facts))\n', (2116, 2160), True, 'import pandas as pd\n'), ((2879, 2972), 'pandas.read_excel', 'pd.read_excel', (['self.file_path'], {'engine': '"""openpyxl"""', 'header': '(6)', 'sheet_name': 'gender_sheet_name'}), "(self.file_path, engine='openpyxl', header=6, sheet_name=\n gender_sheet_name)\n", (2892, 2972), True, 'import pandas as pd\n'), ((5153, 5173), 'pandas.DataFrame', 'DataFrame', (['all_facts'], {}), '(all_facts)\n', (5162, 5173), False, 'from pandas import DataFrame, Series\n'), ((6280, 6295), 'copy.copy', 'copy', (['fact_base'], {}), '(fact_base)\n', (6284, 6295), False, 'from copy import copy\n'), ((6789, 6828), 're.match', 're.match', (['"""^[T][0-9][0-9]"""', 'column_name'], {}), "('^[T][0-9][0-9]', column_name)\n", (6797, 6828), False, 'import re\n'), ((5611, 5646), 'pandas.isnull', 'pd.isnull', (["fact['deceased_actuals']"], {}), "(fact['deceased_actuals'])\n", (5620, 5646), True, 'import pandas as pd\n')]
#!/bin/python3 from flocking.server import server server.launch()
[ "flocking.server.server.launch" ]
[((52, 67), 'flocking.server.server.launch', 'server.launch', ([], {}), '()\n', (65, 67), False, 'from flocking.server import server\n')]
from django.urls import path from . import views app_name='product' urlpatterns = [ path('home/', views.home, name='home'), path('add/', views.product_add, name='add'), path('', views.product_all, name='all'), path('<slug:product_slug>', views.product_detail, name='detail'), path('<slug:product_slug>/update', views.product_update, name='update'), path('<slug:product_slug>/delete', views.product_delete, name='delete'), path('category/<slug:category_slug>', views.category_filter, name='category_filter'), ]
[ "django.urls.path" ]
[((91, 129), 'django.urls.path', 'path', (['"""home/"""', 'views.home'], {'name': '"""home"""'}), "('home/', views.home, name='home')\n", (95, 129), False, 'from django.urls import path\n'), ((135, 178), 'django.urls.path', 'path', (['"""add/"""', 'views.product_add'], {'name': '"""add"""'}), "('add/', views.product_add, name='add')\n", (139, 178), False, 'from django.urls import path\n'), ((184, 223), 'django.urls.path', 'path', (['""""""', 'views.product_all'], {'name': '"""all"""'}), "('', views.product_all, name='all')\n", (188, 223), False, 'from django.urls import path\n'), ((229, 293), 'django.urls.path', 'path', (['"""<slug:product_slug>"""', 'views.product_detail'], {'name': '"""detail"""'}), "('<slug:product_slug>', views.product_detail, name='detail')\n", (233, 293), False, 'from django.urls import path\n'), ((299, 370), 'django.urls.path', 'path', (['"""<slug:product_slug>/update"""', 'views.product_update'], {'name': '"""update"""'}), "('<slug:product_slug>/update', views.product_update, name='update')\n", (303, 370), False, 'from django.urls import path\n'), ((376, 447), 'django.urls.path', 'path', (['"""<slug:product_slug>/delete"""', 'views.product_delete'], {'name': '"""delete"""'}), "('<slug:product_slug>/delete', views.product_delete, name='delete')\n", (380, 447), False, 'from django.urls import path\n'), ((453, 542), 'django.urls.path', 'path', (['"""category/<slug:category_slug>"""', 'views.category_filter'], {'name': '"""category_filter"""'}), "('category/<slug:category_slug>', views.category_filter, name=\n 'category_filter')\n", (457, 542), False, 'from django.urls import path\n')]
import numpy as np import pandas as pd from sklearn.svm import SVC from sklearn import metrics import pickle import random random.seed(12345) raw = pd.read_csv('./tmp/vectorized_feature_w_ranks_norm.txt') X = raw.loc[:, 'bi_rank':'vowel_ratio'].as_matrix() Y = raw.loc[:, 'class'].as_matrix() domains = raw.ix[:, 'ip'].as_matrix() from sklearn import linear_model, decomposition, datasets n_samples, n_features = X.shape p = list(range(n_samples)) # Shuffle samples # random initialization classifier = SVC(kernel='linear', probability=True, random_state=0) from sklearn.metrics import accuracy_score from sklearn.metrics import precision_recall_curve from sklearn.metrics import auc precision_list = [] recall_list = [] area_list = [] fpr_list = [] tpr_list = [] roc_auc_list = [] accuracy_list = [] from sklearn.metrics import roc_curve, auc max_ac = 0 for i in range(10): # 10 fold cross-validation print('x-validation round %d' % i) random.seed(i) p = random.sample(p, int(n_samples / 10)) # random.shuffle(p) XX, yy = X[p], Y[p] cut_off = int(len(XX) / 5) * 4 probas_ = classifier.fit(XX[:cut_off], yy[:cut_off]).predict(XX[cut_off:]) # precision, recall, thresholds = precision_recall_curve(yy[cut_off:], probas_) # fpr, tpr, thresholds = roc_curve(yy[cut_off:], probas_) # roc_auc = auc(fpr, tpr) # area = auc(recall, precision) # precision_list.append(precision) # recall_list.append(recall) # area_list.append(area) # fpr_list.append(fpr) # tpr_list.append(tpr) # roc_auc_list.append(roc_auc) # pred = [int(i > 0.5) for i in probas_] # accuracy_list.append(accuracy_score(yy[cut_off:], pred, normalize=True)) ac_score = metrics.accuracy_score(yy[cut_off:], probas_) print(ac_score) if ac_score > max_ac: with open('./model/svm_738.pickle', 'wb') as fw: pickle.dump(classifier, fw) print("第%d次训练,保存模型" % i) max_ac = ac_score
[ "pickle.dump", "pandas.read_csv", "random.seed", "sklearn.metrics.accuracy_score", "sklearn.svm.SVC" ]
[((124, 142), 'random.seed', 'random.seed', (['(12345)'], {}), '(12345)\n', (135, 142), False, 'import random\n'), ((150, 206), 'pandas.read_csv', 'pd.read_csv', (['"""./tmp/vectorized_feature_w_ranks_norm.txt"""'], {}), "('./tmp/vectorized_feature_w_ranks_norm.txt')\n", (161, 206), True, 'import pandas as pd\n'), ((514, 568), 'sklearn.svm.SVC', 'SVC', ([], {'kernel': '"""linear"""', 'probability': '(True)', 'random_state': '(0)'}), "(kernel='linear', probability=True, random_state=0)\n", (517, 568), False, 'from sklearn.svm import SVC\n'), ((961, 975), 'random.seed', 'random.seed', (['i'], {}), '(i)\n', (972, 975), False, 'import random\n'), ((1725, 1770), 'sklearn.metrics.accuracy_score', 'metrics.accuracy_score', (['yy[cut_off:]', 'probas_'], {}), '(yy[cut_off:], probas_)\n', (1747, 1770), False, 'from sklearn import metrics\n'), ((1886, 1913), 'pickle.dump', 'pickle.dump', (['classifier', 'fw'], {}), '(classifier, fw)\n', (1897, 1913), False, 'import pickle\n')]
# See LICENSE file for full copyright and licensing details. from odoo import models, fields, api class SchoolTeacher(models.Model): ''' Defining a Teacher information ''' _name = 'school.teacher' _description = 'Teacher Information' employee_id = fields.Many2one('hr.employee', 'Employee ID', ondelete="cascade", delegate=True, required=True) standard_id = fields.Many2one('school.standard', "Responsibility of Academic Class", help="Standard for which the teacher\ responsible for.") stand_id = fields.Many2one('standard.standard', "Course", related="standard_id.standard_id", store=True) subject_id = fields.Many2many('subject.subject', 'subject_teacher_rel', 'teacher_id', 'subject_id', 'Course-Subjects') school_id = fields.Many2one('school.school', "Campus", related="standard_id.school_id", store=True) category_ids = fields.Many2many('hr.employee.category', 'employee_category_rel', 'emp_id', 'category_id', 'Tags') department_id = fields.Many2one('hr.department', 'Department') is_parent = fields.Boolean('Is Parent') stu_parent_id = fields.Many2one('school.parent', 'Related Parent') student_id = fields.Many2many('student.student', 'students_teachers_parent_rel', 'teacher_id', 'student_id', 'Children') phone_numbers = fields.Char("Phone Number") @api.onchange('is_parent') def _onchange_isparent(self): if self.is_parent: self.stu_parent_id = False self.student_id = [(6, 0, [])] @api.onchange('stu_parent_id') def _onchangestudent_parent(self): stud_list = [] if self.stu_parent_id and self.stu_parent_id.student_id: for student in self.stu_parent_id.student_id: stud_list.append(student.id) self.student_id = [(6, 0, stud_list)] @api.model def create(self, vals): teacher_id = super(SchoolTeacher, self).create(vals) user_obj = self.env['res.users'] user_vals = {'name': teacher_id.name, 'login': teacher_id.work_email, 'email': teacher_id.work_email, } ctx_vals = {'teacher_create': True, 'school_id': teacher_id.school_id.company_id.id} user_id = user_obj.with_context(ctx_vals).create(user_vals) teacher_id.employee_id.write({'user_id': user_id.id}) if vals.get('is_parent'): self.parent_crt(teacher_id) return teacher_id @api.multi def parent_crt(self, manager_id): stu_parent = [] if manager_id.stu_parent_id: stu_parent = manager_id.stu_parent_id if not stu_parent: emp_user = manager_id.employee_id students = [stu.id for stu in manager_id.student_id] parent_vals = {'name': manager_id.name, 'email': emp_user.work_email, 'parent_create_mng': 'parent', 'user_ids': [(6, 0, [emp_user.user_id.id])], 'partner_id': emp_user.user_id.partner_id.id, 'student_id': [(6, 0, students)]} stu_parent = self.env['school.parent'].create(parent_vals) manager_id.write({'stu_parent_id': stu_parent.id}) user = stu_parent.user_ids user_rec = user[0] parent_grp_id = self.env.ref('school.group_school_parent') groups = parent_grp_id if user_rec.groups_id: groups = user_rec.groups_id groups += parent_grp_id group_ids = [group.id for group in groups] user_rec.write({'groups_id': [(6, 0, group_ids)]}) @api.multi def write(self, vals): if vals.get('is_parent'): self.parent_crt(self) if vals.get('student_id'): self.stu_parent_id.write({'student_id': vals.get('student_id')}) if not vals.get('is_parent'): user_rec = self.employee_id.user_id ir_obj = self.env['ir.model.data'] parent_grp_id = ir_obj.get_object('school', 'group_school_parent') groups = parent_grp_id if user_rec.groups_id: groups = user_rec.groups_id groups -= parent_grp_id group_ids = [group.id for group in groups] user_rec.write({'groups_id': [(6, 0, group_ids)]}) return super(SchoolTeacher, self).write(vals) @api.onchange('address_id') def onchange_address_id(self): self.work_phone = False self.mobile_phone = False if self.address_id: self.work_phone = self.address_id.phone, self.mobile_phone = self.address_id.mobile @api.onchange('department_id') def onchange_department_id(self): if self.department_id: self.parent_id = (self.department_id and self.department_id.manager_id and self.department_id.manager_id.id) or False @api.onchange('user_id') def onchange_user(self): if self.user_id: self.name = self.name or self.user_id.name self.work_email = self.user_id.email self.image = self.image or self.user_id.image @api.onchange('school_id') def onchange_school(self): self.address_id = False self.mobile_phone = False self.work_location = False self.work_email = False self.work_phone = False if self.school_id: self.address_id = self.school_id.company_id.partner_id.id self.mobile_phone = self.school_id.company_id.partner_id.mobile self.work_location = self.school_id.company_id.partner_id.city self.work_email = self.school_id.company_id.partner_id.email phone = self.school_id.company_id.partner_id.phone self.work_phone = phone self.phone_numbers = phone phone = self.school_id.company_id.partner_id.phone
[ "odoo.fields.Many2one", "odoo.api.onchange", "odoo.fields.Many2many", "odoo.fields.Char", "odoo.fields.Boolean" ]
[((268, 368), 'odoo.fields.Many2one', 'fields.Many2one', (['"""hr.employee"""', '"""Employee ID"""'], {'ondelete': '"""cascade"""', 'delegate': '(True)', 'required': '(True)'}), "('hr.employee', 'Employee ID', ondelete='cascade', delegate=\n True, required=True)\n", (283, 368), False, 'from odoo import models, fields, api\n'), ((450, 624), 'odoo.fields.Many2one', 'fields.Many2one', (['"""school.standard"""', '"""Responsibility of Academic Class"""'], {'help': '"""Standard for which the teacher responsible for."""'}), "('school.standard', 'Responsibility of Academic Class', help\n =\n 'Standard for which the teacher responsible for.'\n )\n", (465, 624), False, 'from odoo import models, fields, api\n'), ((695, 793), 'odoo.fields.Many2one', 'fields.Many2one', (['"""standard.standard"""', '"""Course"""'], {'related': '"""standard_id.standard_id"""', 'store': '(True)'}), "('standard.standard', 'Course', related=\n 'standard_id.standard_id', store=True)\n", (710, 793), False, 'from odoo import models, fields, api\n'), ((837, 946), 'odoo.fields.Many2many', 'fields.Many2many', (['"""subject.subject"""', '"""subject_teacher_rel"""', '"""teacher_id"""', '"""subject_id"""', '"""Course-Subjects"""'], {}), "('subject.subject', 'subject_teacher_rel', 'teacher_id',\n 'subject_id', 'Course-Subjects')\n", (853, 946), False, 'from odoo import models, fields, api\n'), ((1027, 1118), 'odoo.fields.Many2one', 'fields.Many2one', (['"""school.school"""', '"""Campus"""'], {'related': '"""standard_id.school_id"""', 'store': '(True)'}), "('school.school', 'Campus', related='standard_id.school_id',\n store=True)\n", (1042, 1118), False, 'from odoo import models, fields, api\n'), ((1166, 1268), 'odoo.fields.Many2many', 'fields.Many2many', (['"""hr.employee.category"""', '"""employee_category_rel"""', '"""emp_id"""', '"""category_id"""', '"""Tags"""'], {}), "('hr.employee.category', 'employee_category_rel', 'emp_id',\n 'category_id', 'Tags')\n", (1182, 1268), False, 'from odoo import models, fields, api\n'), ((1357, 1403), 'odoo.fields.Many2one', 'fields.Many2one', (['"""hr.department"""', '"""Department"""'], {}), "('hr.department', 'Department')\n", (1372, 1403), False, 'from odoo import models, fields, api\n'), ((1420, 1447), 'odoo.fields.Boolean', 'fields.Boolean', (['"""Is Parent"""'], {}), "('Is Parent')\n", (1434, 1447), False, 'from odoo import models, fields, api\n'), ((1468, 1518), 'odoo.fields.Many2one', 'fields.Many2one', (['"""school.parent"""', '"""Related Parent"""'], {}), "('school.parent', 'Related Parent')\n", (1483, 1518), False, 'from odoo import models, fields, api\n'), ((1536, 1647), 'odoo.fields.Many2many', 'fields.Many2many', (['"""student.student"""', '"""students_teachers_parent_rel"""', '"""teacher_id"""', '"""student_id"""', '"""Children"""'], {}), "('student.student', 'students_teachers_parent_rel',\n 'teacher_id', 'student_id', 'Children')\n", (1552, 1647), False, 'from odoo import models, fields, api\n'), ((1766, 1793), 'odoo.fields.Char', 'fields.Char', (['"""Phone Number"""'], {}), "('Phone Number')\n", (1777, 1793), False, 'from odoo import models, fields, api\n'), ((1800, 1825), 'odoo.api.onchange', 'api.onchange', (['"""is_parent"""'], {}), "('is_parent')\n", (1812, 1825), False, 'from odoo import models, fields, api\n'), ((1975, 2004), 'odoo.api.onchange', 'api.onchange', (['"""stu_parent_id"""'], {}), "('stu_parent_id')\n", (1987, 2004), False, 'from odoo import models, fields, api\n'), ((4903, 4929), 'odoo.api.onchange', 'api.onchange', (['"""address_id"""'], {}), "('address_id')\n", (4915, 4929), False, 'from odoo import models, fields, api\n'), ((5173, 5202), 'odoo.api.onchange', 'api.onchange', (['"""department_id"""'], {}), "('department_id')\n", (5185, 5202), False, 'from odoo import models, fields, api\n'), ((5468, 5491), 'odoo.api.onchange', 'api.onchange', (['"""user_id"""'], {}), "('user_id')\n", (5480, 5491), False, 'from odoo import models, fields, api\n'), ((5714, 5739), 'odoo.api.onchange', 'api.onchange', (['"""school_id"""'], {}), "('school_id')\n", (5726, 5739), False, 'from odoo import models, fields, api\n')]
""" Abstract base class for a simple GA This GA will always seek to maximize fitness """ from abc import abstractmethod, ABC import os import pickle import random from totter.api.qwop import QwopEvaluator, QwopStrategy from totter.evolution.Individual import Individual from totter.evolution.Population import Population import totter.utils.storage as storage class GeneticAlgorithm(ABC): def __init__(self, eval_time_limit=240, pop_size=20, cx_prob=0.9, mt_prob=0.05, steady_state=True, population_seeding_pool=None, seeding_time_limit=60, skip_init=False): self.eval_time_limit = eval_time_limit self.total_evaluations = 0 self.qwop_evaluator = QwopEvaluator(time_limit=self.eval_time_limit) self.pop_size = pop_size self.cx_prob = cx_prob self.mt_prob = mt_prob self.steady_state = steady_state self.population_seeding_pool = population_seeding_pool self.seeding_time_limit = seeding_time_limit if not skip_init: if population_seeding_pool is None: # create a random population individuals = [Individual(self.generate_random_genome()) for i in range(0, self.pop_size)] for indv in individuals: self._evaluate(indv) self.population = Population(individuals) else: self.population = self.seed_population(population_seeding_pool, time_limit=seeding_time_limit) def get_configuration(self): return { 'eval_time_limit': self.eval_time_limit, 'pop_size': self.pop_size, 'cx_prob': self.cx_prob, 'mt_prob': self.mt_prob, 'steady_state': self.steady_state, 'population_seeding_pool': self.population_seeding_pool, 'seeding_time_limit': self.seeding_time_limit } def seed_population(self, pool_size, time_limit): """ Creates a Population using the best runners from a pool of randomly-generated runners This selects the best `self.pop_size` Individuals from a pool of randomly generated individuals, using distance achieved as the selection criterion. If the seeding procedure has already been run, then the individuals will instead be loaded from disk. Args: pool_size (int): the size of the randomly generated pool from which the initial population will be drawn time_limit (int): time limit (in seconds) for each evaluation in the pool Returns: totter.evolution.Population.Population: Population seeded with good runners """ population_filepath = storage.get(os.path.join(self.__class__.__name__, 'population_seeds')) population_file = os.path.join(population_filepath, f'seed_{pool_size}_{self.pop_size}.tsd') # if the population has not previously been seeded, then generate the seeded pop if not os.path.exists(population_file): # temporarily set time limit default_time_limit = self.qwop_evaluator.simulator.time_limit self.qwop_evaluator.simulator.time_limit = time_limit # generate pool of random individuals pool = [Individual(self.generate_random_genome()) for i in range(0, pool_size)] candidates = list() for indv in pool: # custom evaluation phenotype = self.genome_to_phenotype(indv.genome) strategy = QwopStrategy(execution_function=phenotype) distance, run_time = self.qwop_evaluator.evaluate(strategy)[0] indv.fitness = self.compute_fitness(distance, run_time) candidates.append((indv, distance)) # sort by descending distance run sorted_candidates = sorted(candidates, key=lambda c: -c[1]) avg = sum(map(lambda c: c[1], candidates)) / pool_size print(f'average fitness of pool: {avg}') # grab the ones who ran farthest best_indvs = sorted_candidates[:self.pop_size] print(f'Best indvs: \n {best_indvs}') avg = sum(map(lambda c: c[1], best_indvs)) / len(best_indvs) print(f'average fitness of selected pop: {avg}') best_indvs = list(map(lambda c: c[0], best_indvs)) # save the individuals found with open(population_file, 'wb') as data_file: pickle.dump(best_indvs, data_file) # reset time limit to its normal value self.qwop_evaluator.simulator.time_limit = default_time_limit # load best_individuals from a file with open(population_file, 'rb') as data_file: best_indvs = pickle.load(data_file) return Population(best_indvs) def advance(self): """ Advances the GA by one generation For generational GAs, a generation will replace the entire population. For a steady-state GA, a generation will only replace two members of the population. Returns: None """ # select parents if self.steady_state: parents = self.select_parents(self.population, 2) else: parents = self.select_parents(self.population, self.pop_size) # make children using crossover offspring = list() for parent1, parent2 in zip(parents[::2], parents[1::2]): if random.random() < self.cx_prob: child1_genome, child2_genome = self.crossover(parent1.genome, parent2.genome) offspring.append(child1_genome) offspring.append(child2_genome) else: offspring.append(parent1.genome) offspring.append(parent2.genome) # mutate then repair for idx in range(0, len(offspring)): child_genome = offspring[idx] if random.random() < self.mt_prob: child_genome = self.mutate(child_genome) child_genome = self.repair(child_genome) # even if the child wasn't mutated, his fitness needs to be re-evaluated child = Individual(genome=child_genome) self._evaluate(child) offspring[idx] = child # update population if self.steady_state: # replace selected parents with children for child in offspring: replacement_index = self.replace(self.population, child) if replacement_index is not None: self.population.replace(replacement_index, child) else: self.population = Population(offspring) def _evaluate(self, individual): """ Evaluates an indvidual using the QwopEvaluator and updates the individual's fitness Args: individual (Individual): the indvidual to evaluate Returns: None """ phenotype = self.genome_to_phenotype(individual.genome) strategy = QwopStrategy(execution_function=phenotype) distance, run_time = self.qwop_evaluator.evaluate(strategy)[0] individual.fitness = self.compute_fitness(distance, run_time) self.total_evaluations += 1 @abstractmethod def generate_random_genome(self): """ Generates a random genome Returns: object: randomly generated genome """ pass @abstractmethod def genome_to_phenotype(self, genome): """ Convert a genome to a function that plays QWOP For example, if the genome is [W, Q, P], then the phenotype might be a function that presses 'W', then presses 'Q', then presses 'P'. Returns: function: function that implements the strategy suggested by the genome """ pass @abstractmethod def compute_fitness(self, distance_run, run_time): """ Computes an individual's fitness from the distance run and the time it took Args: distance_run (float): distance run in the QWOP simulator run_time (float): time in seconds that it took to run to `distance` Returns: float: computed fitness """ pass @abstractmethod def select_parents(self, population, n): """ Selects `n` members for parenthood from `population` Args: population (totter.evolution.Population.Population): the current population n (int): the number of parents to select Returns: list<Individual>: the individuals selected for parenthood from the given population """ pass @abstractmethod def crossover(self, parent1, parent2): """ Crossover parent1 with parent2 and generate two offspring Args: parent1 (iterable): the genome of the first parent parent2 (iterable): the genome of the second parent Returns: iterable, iterable: genome of child 1, genome of child 2 """ pass @abstractmethod def mutate(self, genome): """ Perform mutation on the provided genome Args: genome (object): genome to mutate Returns: object: mutated genome """ pass @abstractmethod def repair(self, genome): """ Repair a genome after crossover or mutation Args: genome (object): genome to repair Returns: object: genome with repaired contents """ pass @abstractmethod def replace(self, population, candidate): """ Select a member of the population which will be replaced by `candidate` This method should return the index of the population member to replace. It may also return None, which indicates that `candidate` should be discarded instead of replacing a member of the population Args: population (list<Individual>: list of Individuals in the population. Each individual has a genome and a fitness. candidate (Individual): Individual which will replace the selected member Returns: int or None: index of population member to be replaced by `candidate`, or None if the replacement should not occur """ pass
[ "os.path.exists", "pickle.dump", "os.path.join", "pickle.load", "totter.evolution.Individual.Individual", "random.random", "totter.evolution.Population.Population", "totter.api.qwop.QwopStrategy", "totter.api.qwop.QwopEvaluator" ]
[((818, 864), 'totter.api.qwop.QwopEvaluator', 'QwopEvaluator', ([], {'time_limit': 'self.eval_time_limit'}), '(time_limit=self.eval_time_limit)\n', (831, 864), False, 'from totter.api.qwop import QwopEvaluator, QwopStrategy\n'), ((2908, 2982), 'os.path.join', 'os.path.join', (['population_filepath', 'f"""seed_{pool_size}_{self.pop_size}.tsd"""'], {}), "(population_filepath, f'seed_{pool_size}_{self.pop_size}.tsd')\n", (2920, 2982), False, 'import os\n'), ((4913, 4935), 'totter.evolution.Population.Population', 'Population', (['best_indvs'], {}), '(best_indvs)\n', (4923, 4935), False, 'from totter.evolution.Population import Population\n'), ((7127, 7169), 'totter.api.qwop.QwopStrategy', 'QwopStrategy', ([], {'execution_function': 'phenotype'}), '(execution_function=phenotype)\n', (7139, 7169), False, 'from totter.api.qwop import QwopEvaluator, QwopStrategy\n'), ((2823, 2880), 'os.path.join', 'os.path.join', (['self.__class__.__name__', '"""population_seeds"""'], {}), "(self.__class__.__name__, 'population_seeds')\n", (2835, 2880), False, 'import os\n'), ((3088, 3119), 'os.path.exists', 'os.path.exists', (['population_file'], {}), '(population_file)\n', (3102, 3119), False, 'import os\n'), ((4874, 4896), 'pickle.load', 'pickle.load', (['data_file'], {}), '(data_file)\n', (4885, 4896), False, 'import pickle\n'), ((6288, 6319), 'totter.evolution.Individual.Individual', 'Individual', ([], {'genome': 'child_genome'}), '(genome=child_genome)\n', (6298, 6319), False, 'from totter.evolution.Individual import Individual\n'), ((6774, 6795), 'totter.evolution.Population.Population', 'Population', (['offspring'], {}), '(offspring)\n', (6784, 6795), False, 'from totter.evolution.Population import Population\n'), ((1461, 1484), 'totter.evolution.Population.Population', 'Population', (['individuals'], {}), '(individuals)\n', (1471, 1484), False, 'from totter.evolution.Population import Population\n'), ((3636, 3678), 'totter.api.qwop.QwopStrategy', 'QwopStrategy', ([], {'execution_function': 'phenotype'}), '(execution_function=phenotype)\n', (3648, 3678), False, 'from totter.api.qwop import QwopEvaluator, QwopStrategy\n'), ((4588, 4622), 'pickle.dump', 'pickle.dump', (['best_indvs', 'data_file'], {}), '(best_indvs, data_file)\n', (4599, 4622), False, 'import pickle\n'), ((5569, 5584), 'random.random', 'random.random', ([], {}), '()\n', (5582, 5584), False, 'import random\n'), ((6039, 6054), 'random.random', 'random.random', ([], {}), '()\n', (6052, 6054), False, 'import random\n')]
#!/usr/bin/env python import setuptools with open('README.md', 'r') as fp: long_description = fp.read() setuptools.setup( name='predecon-exioreed', version='0.1.1', author='<NAME>', author_email='<EMAIL>', description='PreDeCon - An Implementation in Python, Compatible With Scikit-Learn', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/exioReed/PreDeCon.git', packages=setuptools.find_packages(), install_requires=[ 'joblib>=0.14.0', 'numpy>=1.15.4', 'scikit-learn>=0.22.1', ], classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Intended Audience :: Science/Research', 'Topic :: Scientific/Engineering', ], python_requires='>=3.6', )
[ "setuptools.find_packages" ]
[((472, 498), 'setuptools.find_packages', 'setuptools.find_packages', ([], {}), '()\n', (496, 498), False, 'import setuptools\n')]
#!/usr/bin/python3 __author__ = '<NAME>' __version__ = '2.0.0' __name__ = 'cli.py' __license__ = 'GPL2' __description__ = 'CLI interface for Simple Cypher.' import os # import sys import simple_cypher from cmd import Cmd #cipher = "F daFJeefn n LB-eheadty.AA1lta oiwyGW18 r a-8" # cipher = "iveghny ynxr" # if len(sys.argv) == 2: # cipher = sys.argv[1] # simp_ciph = simple_cipher.simple_cipher(cipher) # simp_ciph.decrypt() # cipher = "iveghny ynxr" ########################### ########################### ### Max Min Prompt Class class Cypher_Prompt(Cmd): prompt = "\U0001F63C > " _verbosity = 0 _cipher = '' _external = 0 def do_decode(self,args): 'Help text' cipher = self._cipher verbosity = self._verbosity if self._external: os.system('nohup xfce4-terminal -H -x python3 simple_cypher.py {:s} "{:s}" 2>/dev/null&' .format(" -v"*verbosity,cipher)) print(self.prompt) else: simp_ciph = simple_cypher.simple_cypher(cipher,verbosity) simp_ciph.decrypt() # def do_decode_external(self,args): # 'Help text' # cipher = "iveghny ynxr" # verbosity = self._verbosity # verbosity = 2 # # # os.system('xfce4-terminal -H -x python3 {:s}/simple_cypher.py -v -v -v -v "iveghny ynxr"'.format(os.getcwd()) # def do_setup(self,args): 'Help text' cipher = '' cipher = str(input('Cipher:')) if not cipher: self._cipher = '' else: self._cipher = cipher verb = 0 try: verb = int(input('Verbosity[1-4][0]: ')) if verb: self._verbosity = verb except ValueError: self._verbosity = 0 self._external = 0 external = str(input("Launch externally[n]: ")) if external.lower() == 'y': self._external = 1 print("Cipher: {}".format(self._cipher)) print("Vebose: {}".format(self._verbosity)) print("Extern: {}".format(self._external)) def do_exit(self, args): 'Help text' ## Clear screen print('\x1bc') print("Exiting...") exit() def do_bye(self, args): 'Help text' self.do_exit(args) return False ## Catch all def default(self, args): print("Bad command: %s" %args) ###################### ## PRIVATE FUNCTION ## ###################### def set_verbosity(self,verbosity): self._verbosity = verbosity def set_cipher(self,cipher): self._cipher = cipher def emptyline(self): pass cp = Cypher_Prompt() cp.cmdloop() # xfce-terminal -x nohup {cmd} # choose pop up external terminal # - xterm # - terminator # - xfce4-terminal # xfce4-terminal -H -x nmap -sn 192.168.1.1
[ "simple_cypher.simple_cypher" ]
[((1030, 1076), 'simple_cypher.simple_cypher', 'simple_cypher.simple_cypher', (['cipher', 'verbosity'], {}), '(cipher, verbosity)\n', (1057, 1076), False, 'import simple_cypher\n')]
# ++++++++++++++++++++++++++++++++++++++ # # Functions & classes for building model # # ++++++++++++++++++++++++++++++++++++++ # # Import libraries import argparse import numpy as np import json import os import time import torch import torch.nn.functional as F #from torchvision import datasets, transforms, models from torchvision import models #from torch.utils.data import DataLoader from torch import nn from torch import optim # Define class for model classifier class Classifier(nn.Module): ''' Creates deep learning model to use as classifier/fc in pre-trained PyTorch model ''' # Define network architechture def __init__(self, num_inputs, num_outputs, num_hidden): super().__init__() # Hidden layers if num_hidden is not None: self.hidden_layers = nn.ModuleList([nn.Linear(num_inputs, num_hidden[0])]) hidden_sizes = zip(num_hidden[:-1], num_hidden[1:]) self.hidden_layers.extend([nn.Linear(h1, h2) for h1, h2 in hidden_sizes]) # Output self.output = nn.Linear(num_hidden[-1], num_outputs) else: # Output self.output = nn.Linear(num_inputs, num_outputs) # Define forward pass def forward(self, x): try: for linear in self.hidden_layers: x = F.relu(linear(x)) x = self.output(x) except AttributeError: x = self.output(x) return F.log_softmax(x, dim = 1) # Create model from pre-trained architecture def load_architecture(architecture, num_outputs, num_hidden = None): ''' Loads model architecture of pre-trained PyTorch model and changes the models classifier/fc object based on classes in given data set and hidden layers ''' # Load model print('Loading architecture of pre-trained {:s} model ...'.format(architecture)) model = models.__dict__[architecture](pretrained = True) # Freeze parameters of pretrained model for param in model.parameters(): param.requires_grad = False # Get number of classifier input features & change classifier (start with default) if architecture.startswith('vgg'): num_inputs = model.classifier[0].in_features model.classifier = Classifier(num_inputs, num_outputs, num_hidden) elif architecture.startswith('alex'): num_inputs = model.classifier[1].in_features model.classifier = Classifier(num_inputs, num_outputs, num_hidden) elif architecture.startswith('dense'): num_inputs = model.classifier.in_features model.classifier = Classifier(num_inputs, num_outputs, num_hidden) elif architecture.startswith('incep') or architecture.startswith('res'): num_inputs = model.fc.in_features model.fc = Classifier(num_inputs, num_outputs, num_hidden) return model # Define optimizer def load_optimizer(model, architecture, learning_rate): ''' Loads optimizer for model training based on architecture of pre-trained model ''' if architecture.startswith('alex') or architecture.startswith('dense') or architecture.startswith('vgg'): optimizer = optim.Adam(model.classifier.parameters(), lr = learning_rate) else: optimizer = optim.Adam(model.fc.parameters(), lr = learning_rate) return optimizer # Define network training function def run_training(model, train_loader, valid_loader, criterion, optimizer, num_epochs, gpu = False): ''' Runs deep learning model training on training data and reports loss and accuracy on training as well as validation data ''' start_time = time.time() training_steps = 0 #num_epochs = int(num_epochs) # Change model to CUDA (if available) if gpu: torch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch_device.type == 'cpu': print('Warning: GPU training not available.') else: torch_device = torch.device("cpu") model.to(torch_device) # Run training print('Starting model training on {:s} ...'.format(torch_device.type.upper())) model.train() for e in range(num_epochs): running_loss = 0.0 running_corrects = 0 running_totals = 0 for ii, (images, labels) in enumerate(train_loader): training_steps += 1 # Change inputs/labels to CUDA (if available, see above) images, labels = images.to(torch_device), labels.to(torch_device) # Set gradients back to zero optimizer.zero_grad() # Forward and backward passes output = model.forward(images) loss = criterion(output, labels) loss.backward() optimizer.step() # Calculate training loss & accuracy on current batch running_loss += loss.item() _, preds = torch.max(output, 1) running_corrects += torch.sum(preds == labels.data).item() running_totals += labels.size(0) # Report progress every 50 iterations if training_steps % 25 == 0: # Set model to validation mode (done in validation method) & evaluate current performance valid_loss, valid_accuracy = run_validation(model, valid_loader, criterion, torch_device) # Print current performance print("Epoch: {}/{} ...".format( e + 1, num_epochs)) print(" Train Loss: {:.3f} Train Accuracy: {:.3f}".format( running_loss / 25, running_corrects / running_totals)) print(" Valid Loss: {:.3f} Valid Accuracy: {:.3f}\n".format( valid_loss, valid_accuracy)) # Set running variables of current iteration back to 0 running_loss = 0.0 running_corrects = 0 running_totals = 0 # Set model back to training mode (just to be sure, but is also done in "run_validation" method) model.train() # Training duration train_time = time.time() - start_time print('Training complete.\n Total training time: {:.0f}m {:.0f}s'.format( train_time // 60, train_time % 60)) # Return model return model # Define validation function for training def run_validation(model, valid_loader, criterion, torch_device): ''' Runs validation pass on full set of testing data and returns loss and accuracy ''' loss = 0 total = 0 correct = 0 # Change model to training device model.to(torch_device) # Set model to evaluation mode & turn off gradients for validation model.eval() with torch.no_grad(): for images, labels in valid_loader: # Change inputs/labels to CUDA (if available) images, labels = images.to(torch_device), labels.to(torch_device) # Forward pass output = model.forward(images) # Calculate loss on current batch loss += criterion(output, labels).item() # Calculate number of correctly predicted labels & batch size _, preds = torch.max(output.data, 1) #correct += (predicted == labels).sum().item() correct += torch.sum(preds == labels.data).item() total += labels.size(0) # Set model back to training mode model.train() return (loss / len(valid_loader)), (correct / total) # Save trained model as checkpoint def save_checkpoint(model, optimizer, epochs, class_to_idx, save_dir): ''' Saves checkpoint model and parameters necessary for rebuilding model in order to resume training or to use for inference ''' # Attach mapping of classes to indeces model.class_to_idx = class_to_idx # Save checkpoint checkpoint = { 'model' : model, 'model_state_dict': model.state_dict(), 'optimizer': optimizer, 'optimizer_state_dict': optimizer.state_dict(), 'class_to_idx': model.class_to_idx, 'epochs': epochs } save_dir = save_dir + '/model_checkpoint.pth' print('Saving model checkpoint at {:s} ...'.format(save_dir)) torch.save(checkpoint, save_dir) # Define function to loads a checkpoint and rebuild model def load_checkpoint(checkpoint_path): ''' Loads checkpoint model from file path and rebuilds model ''' # Load checkpoint checkpoint = torch.load(checkpoint_path, map_location = lambda storage, loc: storage) # Re-define model & freeze parameters model = checkpoint['model'] for param in model.parameters(): param.requires_grad = False model.class_to_idx = checkpoint['class_to_idx'] model.load_state_dict(checkpoint['model_state_dict']) # Load remaining information optimizer = checkpoint['optimizer'] optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epochs = checkpoint['epochs'] print('Loading model checkpoint from \'{:s}\' ...'.format(checkpoint_path)) return model, optimizer, epochs # Define function for predicting image class(es) def predict(image, model, topk = 1, category_names = None, gpu = False): ''' Predict the class (or classes) of a pre-pocessed image using a trained deep learning model. ''' # Pre-process image image = torch.from_numpy(image).float() image.unsqueeze_(0) # Change model to CUDA (if available) if gpu: torch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if torch_device.type == 'cpu': print('Warning: GPU prediction not available.') else: torch_device = torch.device("cpu") model.to(torch_device) image = image.to(torch_device) # Run class prediction with forward pass print('Starting prediction on {:s} ...'.format(torch_device.type.upper())) # Turn off gradients for validation, saves memory and computations model.eval() with torch.no_grad(): output = model.forward(image) # Get probabilities from log probabilities probs = torch.exp(output).cpu() # Extract top K probabilities and corresponding indeces probs, labels = probs.topk(int(topk)) #probs, labels = probs.numpy().tolist()[0], labels.numpy().tolist()[0] probs, labels = probs.numpy()[0], labels.numpy().tolist()[0] # Invert key value pairs from class_to_idx and save classes idx_to_class = {val: key for key, val in model.class_to_idx.items()} classes = [idx_to_class[key] for key in labels] # Return top K probabilites and corresponding classes # If mapping file is given return real names instead of classes if category_names is not None: # Get real names with open(category_names, 'r') as f: cat_to_name = json.load(f) flowers = [cat_to_name[c] for c in classes] # Return top K probabilites and corresponding names print('Probabilities:', *probs, sep = ', ') print('Flowers:', *flowers, sep = ', ') return probs, flowers else: # Return top K probabilites and corresponding classes print('Probabilities:', *probs, sep = ' ') print('Flowers:', *classes, sep = ' ') return probs, classes
[ "torch.load", "torch.max", "torch.from_numpy", "torch.exp", "json.load", "torch.cuda.is_available", "torch.sum", "torch.nn.functional.log_softmax", "torch.save", "torch.nn.Linear", "torch.no_grad", "time.time", "torch.device" ]
[((3714, 3725), 'time.time', 'time.time', ([], {}), '()\n', (3723, 3725), False, 'import time\n'), ((8449, 8481), 'torch.save', 'torch.save', (['checkpoint', 'save_dir'], {}), '(checkpoint, save_dir)\n', (8459, 8481), False, 'import torch\n'), ((8693, 8763), 'torch.load', 'torch.load', (['checkpoint_path'], {'map_location': '(lambda storage, loc: storage)'}), '(checkpoint_path, map_location=lambda storage, loc: storage)\n', (8703, 8763), False, 'import torch\n'), ((1501, 1524), 'torch.nn.functional.log_softmax', 'F.log_softmax', (['x'], {'dim': '(1)'}), '(x, dim=1)\n', (1514, 1524), True, 'import torch.nn.functional as F\n'), ((4058, 4077), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (4070, 4077), False, 'import torch\n'), ((6264, 6275), 'time.time', 'time.time', ([], {}), '()\n', (6273, 6275), False, 'import time\n'), ((6885, 6900), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (6898, 6900), False, 'import torch\n'), ((9937, 9956), 'torch.device', 'torch.device', (['"""cpu"""'], {}), "('cpu')\n", (9949, 9956), False, 'import torch\n'), ((10241, 10256), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (10254, 10256), False, 'import torch\n'), ((1095, 1133), 'torch.nn.Linear', 'nn.Linear', (['num_hidden[-1]', 'num_outputs'], {}), '(num_hidden[-1], num_outputs)\n', (1104, 1133), False, 'from torch import nn\n'), ((1195, 1229), 'torch.nn.Linear', 'nn.Linear', (['num_inputs', 'num_outputs'], {}), '(num_inputs, num_outputs)\n', (1204, 1229), False, 'from torch import nn\n'), ((5011, 5031), 'torch.max', 'torch.max', (['output', '(1)'], {}), '(output, 1)\n', (5020, 5031), False, 'import torch\n'), ((7400, 7425), 'torch.max', 'torch.max', (['output.data', '(1)'], {}), '(output.data, 1)\n', (7409, 7425), False, 'import torch\n'), ((9604, 9627), 'torch.from_numpy', 'torch.from_numpy', (['image'], {}), '(image)\n', (9620, 9627), False, 'import torch\n'), ((10360, 10377), 'torch.exp', 'torch.exp', (['output'], {}), '(output)\n', (10369, 10377), False, 'import torch\n'), ((11083, 11095), 'json.load', 'json.load', (['f'], {}), '(f)\n', (11092, 11095), False, 'import json\n'), ((3890, 3915), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3913, 3915), False, 'import torch\n'), ((9767, 9792), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (9790, 9792), False, 'import torch\n'), ((850, 886), 'torch.nn.Linear', 'nn.Linear', (['num_inputs', 'num_hidden[0]'], {}), '(num_inputs, num_hidden[0])\n', (859, 886), False, 'from torch import nn\n'), ((992, 1009), 'torch.nn.Linear', 'nn.Linear', (['h1', 'h2'], {}), '(h1, h2)\n', (1001, 1009), False, 'from torch import nn\n'), ((5064, 5095), 'torch.sum', 'torch.sum', (['(preds == labels.data)'], {}), '(preds == labels.data)\n', (5073, 5095), False, 'import torch\n'), ((7508, 7539), 'torch.sum', 'torch.sum', (['(preds == labels.data)'], {}), '(preds == labels.data)\n', (7517, 7539), False, 'import torch\n')]
import textwrap import click from . import __version__, wikipedia @click.command() @click.version_option(version=__version__) def main(): """The wikifun Python project.""" data = wikipedia.random_page() title = data["title"] extract = data["extract"] click.secho(title, fg="green") click.echo(textwrap.fill(extract))
[ "textwrap.fill", "click.command", "click.version_option", "click.secho" ]
[((71, 86), 'click.command', 'click.command', ([], {}), '()\n', (84, 86), False, 'import click\n'), ((88, 129), 'click.version_option', 'click.version_option', ([], {'version': '__version__'}), '(version=__version__)\n', (108, 129), False, 'import click\n'), ((277, 307), 'click.secho', 'click.secho', (['title'], {'fg': '"""green"""'}), "(title, fg='green')\n", (288, 307), False, 'import click\n'), ((323, 345), 'textwrap.fill', 'textwrap.fill', (['extract'], {}), '(extract)\n', (336, 345), False, 'import textwrap\n')]
import sys foreground={ 'black': '\033[30m', 'red': '\033[31m', 'green': '\033[32m', 'yellow': '\033[33m', 'blue': '\033[34m', 'magenta': '\033[35m', 'cyan': '\033[36m', 'white': '\033[37m' } background={ 'black': '\033[40m', 'red': '\033[41m', 'green': '\033[42m', 'yellow': '\033[43m', 'blue': '\033[44m', 'magenta': '\033[45m', 'cyan': '\033[46m', 'white': '\033[47m' } def set_colors(fg,bg,bold): cmd='' if fg in foreground: cmd=cmd+foreground.get(fg) #if bg in background: # cmd=cmd+background.get(bg) if bold: cmd=cmd+'\033[1m' else: cmd = cmd + '\033[22m' sys.stdout.write(cmd)
[ "sys.stdout.write" ]
[((719, 740), 'sys.stdout.write', 'sys.stdout.write', (['cmd'], {}), '(cmd)\n', (735, 740), False, 'import sys\n')]
import re from io import StringIO from html.parser import HTMLParser from feedparser_wrapper.html_entities import replace_html_escapes class MLStripper(HTMLParser): def __init__(self) -> None: super().__init__() self.reset() self.strict = False self.convert_charrefs = True self.text = StringIO() def handle_data(self, d) -> None: self.text.write(d) def get_data(self) -> str: return self.text.getvalue() def _strip_once(text: str) -> str: """ Internal tag stripping utility used by strip_tags. """ s = MLStripper() s.feed(text) s.close() return s.get_data() def strip_tags(text: str) -> str: """Return the given HTML with all tags stripped.""" # Note: in typical case this loop executes _strip_once once. Loop condition # is redundant, but helps to reduce number of executions of _strip_once. text = str(text) while '<' in text and '>' in text: new_value = _strip_once(text) if text.count('<') == new_value.count('<'): # _strip_once wasn't able to detect more tags. break text = new_value return text def replace_spaces_with_one_space(text: str) -> str: return re.sub(r'\s+', ' ', str(text)) def strip_spaces_between_tags(value: str) -> str: """Return the given HTML with spaces between tags removed.""" return re.sub(r'>\s+<', '><', str(value)) def sanitize(text: str) -> str: """Convert text to plain.""" text = strip_spaces_between_tags(text) text = strip_tags(text) text = replace_spaces_with_one_space(text) text = replace_html_escapes(text) return text
[ "io.StringIO", "feedparser_wrapper.html_entities.replace_html_escapes" ]
[((1636, 1662), 'feedparser_wrapper.html_entities.replace_html_escapes', 'replace_html_escapes', (['text'], {}), '(text)\n', (1656, 1662), False, 'from feedparser_wrapper.html_entities import replace_html_escapes\n'), ((333, 343), 'io.StringIO', 'StringIO', ([], {}), '()\n', (341, 343), False, 'from io import StringIO\n')]
from django.conf.urls.defaults import patterns, include, url urlpatterns = patterns('about.views', (r'^$', 'index'), )
[ "django.conf.urls.defaults.patterns" ]
[((76, 116), 'django.conf.urls.defaults.patterns', 'patterns', (['"""about.views"""', "('^$', 'index')"], {}), "('about.views', ('^$', 'index'))\n", (84, 116), False, 'from django.conf.urls.defaults import patterns, include, url\n')]
"""Tests for the fuzzy_penguin/fuzz_string_list.py file""" import os import pytest from fuzzy_penguin import fuzz_string_list @pytest.fixture def fuzz_string_object(): return fuzz_string_list.FuzzStringList() def test_set_fuzz_file_no_fuzz_file_specified(fuzz_string_object): fuzz_string_object._set_fuzz_file() assert 'default_fuzz_list.txt' in fuzz_string_object._file_to_load def test_set_fuzz_file_fuzz_file_specified_and_populated(fuzz_string_object): dir_path = os.path.dirname(os.path.realpath(__file__)) fuzz_string_object._set_fuzz_file(os.path.join(dir_path, 'simple_fuzz_file.txt')) assert 'simple_fuzz_file.txt' in fuzz_string_object._file_to_load def test_set_fuzz_file_fuzz_file_specified_but_empty(fuzz_string_object): dir_path = os.path.dirname(os.path.realpath(__file__)) with pytest.raises(EOFError): fuzz_string_object._set_fuzz_file(os.path.join(dir_path, 'blank_fuzz_file.txt')) def test_set_fuzz_file_file_does_not_exist(fuzz_string_object): with pytest.raises(FileNotFoundError): fuzz_string_object._set_fuzz_file('does_not_exist.txt') def test_load_fuzz_file_correct_number_strings_loaded(fuzz_string_object): dir_path = os.path.dirname(os.path.realpath(__file__)) fuzz_string_object._set_fuzz_file(os.path.join(dir_path, 'simple_fuzz_file.txt')) fuzz_string_object.load_fuzz_file() assert len(fuzz_string_object.string_list) == 3
[ "os.path.realpath", "os.path.join", "fuzzy_penguin.fuzz_string_list.FuzzStringList", "pytest.raises" ]
[((184, 217), 'fuzzy_penguin.fuzz_string_list.FuzzStringList', 'fuzz_string_list.FuzzStringList', ([], {}), '()\n', (215, 217), False, 'from fuzzy_penguin import fuzz_string_list\n'), ((509, 535), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (525, 535), False, 'import os\n'), ((575, 621), 'os.path.join', 'os.path.join', (['dir_path', '"""simple_fuzz_file.txt"""'], {}), "(dir_path, 'simple_fuzz_file.txt')\n", (587, 621), False, 'import os\n'), ((851, 877), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (867, 877), False, 'import os\n'), ((888, 911), 'pytest.raises', 'pytest.raises', (['EOFError'], {}), '(EOFError)\n', (901, 911), False, 'import pytest\n'), ((1132, 1164), 'pytest.raises', 'pytest.raises', (['FileNotFoundError'], {}), '(FileNotFoundError)\n', (1145, 1164), False, 'import pytest\n'), ((1338, 1364), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (1354, 1364), False, 'import os\n'), ((1404, 1450), 'os.path.join', 'os.path.join', (['dir_path', '"""simple_fuzz_file.txt"""'], {}), "(dir_path, 'simple_fuzz_file.txt')\n", (1416, 1450), False, 'import os\n'), ((955, 1000), 'os.path.join', 'os.path.join', (['dir_path', '"""blank_fuzz_file.txt"""'], {}), "(dir_path, 'blank_fuzz_file.txt')\n", (967, 1000), False, 'import os\n')]
import logging import torch import numpy as np import os.path as osp logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) class SiameseVgg3d(torch.nn.Module): """ TODO """ def __init__(self, input_size, input_fmaps=1, fmaps=32, fmaps_max=512, output_features=10, downsample_factors=[(2, 2, 2), (2, 2, 2), (2, 2, 2), (2, 2, 2)]): """ TODO Args: input_size: input_fmaps: fmaps: downsample_factors: """ super(SiameseVgg3d, self).__init__() downsample_factors = np.array(downsample_factors) current_fmaps = input_fmaps current_size = np.array(input_size) features = [] for i in range(len(downsample_factors)): features += [ torch.nn.Conv3d( in_channels=current_fmaps, out_channels=fmaps, kernel_size=3, padding=1), torch.nn.BatchNorm3d( num_features=fmaps), torch.nn.ReLU( inplace=True), torch.nn.Conv3d( in_channels=fmaps, out_channels=fmaps, kernel_size=3, padding=1), torch.nn.BatchNorm3d( num_features=fmaps), torch.nn.ReLU( inplace=True), torch.nn.MaxPool3d( kernel_size=tuple(downsample_factors[i])) ] current_fmaps = fmaps fmaps = min(fmaps_max, fmaps * 2) size = np.floor(current_size / downsample_factors[i]) # TODO come up with a better rule # assert np.all((size * downsample_factors[i]) == current_size), \ # "Can not downsample %s by chosen downsample factor" % current_size current_size = size logger.info( f'VGG level {i}: ({current_size}), {current_fmaps} fmaps') self.features = torch.nn.Sequential(*features) num_features = int( current_size[0] * current_size[1] * current_size[2] * current_fmaps) logger.info(f'inputs to fc: {num_features}') fc_size = [2048] fully_connected = [ torch.nn.Linear( num_features, fc_size[0]), torch.nn.ReLU(inplace=True), torch.nn.Dropout(), torch.nn.Linear( fc_size[0], output_features) ] logger.info(f'fc level 0: {fc_size[0]}') logger.info(f'output: {output_features}') self.fully_connected = torch.nn.Sequential(*fully_connected) def forward_once(self, x): output = self.features(x) output = output.view(output.size()[0], -1) output = self.fully_connected(output) return output def forward(self, input1, input2): output1 = self.forward_once(input1) output2 = self.forward_once(input2) return output1, output2 def train(self, mode=True): """ on top of pytorch's module mode, change the `requires_grad` attribute of all module parameters Args: mode (bool): True = train, False = eval Returns: """ ret = super().train(mode=mode) for param in self.parameters(): param.requires_grad = mode return ret
[ "logging.getLogger", "torch.nn.ReLU", "torch.nn.Dropout", "torch.nn.Sequential", "numpy.floor", "numpy.array", "torch.nn.Linear", "torch.nn.BatchNorm3d", "torch.nn.Conv3d" ]
[((79, 106), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (96, 106), False, 'import logging\n'), ((691, 719), 'numpy.array', 'np.array', (['downsample_factors'], {}), '(downsample_factors)\n', (699, 719), True, 'import numpy as np\n'), ((779, 799), 'numpy.array', 'np.array', (['input_size'], {}), '(input_size)\n', (787, 799), True, 'import numpy as np\n'), ((2182, 2212), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*features'], {}), '(*features)\n', (2201, 2212), False, 'import torch\n'), ((2823, 2860), 'torch.nn.Sequential', 'torch.nn.Sequential', (['*fully_connected'], {}), '(*fully_connected)\n', (2842, 2860), False, 'import torch\n'), ((1767, 1813), 'numpy.floor', 'np.floor', (['(current_size / downsample_factors[i])'], {}), '(current_size / downsample_factors[i])\n', (1775, 1813), True, 'import numpy as np\n'), ((2442, 2483), 'torch.nn.Linear', 'torch.nn.Linear', (['num_features', 'fc_size[0]'], {}), '(num_features, fc_size[0])\n', (2457, 2483), False, 'import torch\n'), ((2530, 2557), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2543, 2557), False, 'import torch\n'), ((2571, 2589), 'torch.nn.Dropout', 'torch.nn.Dropout', ([], {}), '()\n', (2587, 2589), False, 'import torch\n'), ((2603, 2647), 'torch.nn.Linear', 'torch.nn.Linear', (['fc_size[0]', 'output_features'], {}), '(fc_size[0], output_features)\n', (2618, 2647), False, 'import torch\n'), ((914, 1007), 'torch.nn.Conv3d', 'torch.nn.Conv3d', ([], {'in_channels': 'current_fmaps', 'out_channels': 'fmaps', 'kernel_size': '(3)', 'padding': '(1)'}), '(in_channels=current_fmaps, out_channels=fmaps, kernel_size=\n 3, padding=1)\n', (929, 1007), False, 'import torch\n'), ((1101, 1141), 'torch.nn.BatchNorm3d', 'torch.nn.BatchNorm3d', ([], {'num_features': 'fmaps'}), '(num_features=fmaps)\n', (1121, 1141), False, 'import torch\n'), ((1180, 1207), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1193, 1207), False, 'import torch\n'), ((1246, 1331), 'torch.nn.Conv3d', 'torch.nn.Conv3d', ([], {'in_channels': 'fmaps', 'out_channels': 'fmaps', 'kernel_size': '(3)', 'padding': '(1)'}), '(in_channels=fmaps, out_channels=fmaps, kernel_size=3, padding=1\n )\n', (1261, 1331), False, 'import torch\n'), ((1425, 1465), 'torch.nn.BatchNorm3d', 'torch.nn.BatchNorm3d', ([], {'num_features': 'fmaps'}), '(num_features=fmaps)\n', (1445, 1465), False, 'import torch\n'), ((1504, 1531), 'torch.nn.ReLU', 'torch.nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1517, 1531), False, 'import torch\n')]
from pyramid import testing from pyramid.response import Response from unittest import TestCase from pyramid_restful.views import APIView class MyView(APIView): def get(self, request, *args, **kwargs): return Response({'method': 'GET'}) def post(self, request, *args, **kwargs): return Response({'method': 'POST', 'data': request.body}) class InitKwargsView(APIView): def get(self, request, *args, **kwargs): return Response({'name': self.name}) class ExceptionView(APIView): def get(self, request, *args, **kwargs): raise Exception('test exception') class APIViewTests(TestCase): def setUp(self): self.test_view = MyView.as_view(name='MyView') self.request = testing.DummyRequest() def test_implemented_method_dispatch(self): response = self.test_view(self.request) expected = {'method': 'GET'} assert response.status_code == 200 assert response.body == expected def test_method_not_allowed(self): self.request.method = 'PUT' response = self.test_view(self.request) assert response.status_code == 405 def test_initkwargs(self): view = InitKwargsView.as_view(name='test') response = view(self.request) expected = {'name': 'test'} assert response.body == expected def test_raises_exception(self): view = ExceptionView.as_view() self.assertRaises(Exception, view, self.request) def test_invalid_method_exception(self): self.request.method = 'PUTZ' response = self.test_view(self.request) assert response.status_code == 405 def test_options_request(self): self.request.method = 'OPTIONS' response = self.test_view(self.request) assert response.headers.get('Allow') == "GET, POST, OPTIONS"
[ "pyramid.response.Response", "pyramid.testing.DummyRequest" ]
[((226, 253), 'pyramid.response.Response', 'Response', (["{'method': 'GET'}"], {}), "({'method': 'GET'})\n", (234, 253), False, 'from pyramid.response import Response\n'), ((316, 366), 'pyramid.response.Response', 'Response', (["{'method': 'POST', 'data': request.body}"], {}), "({'method': 'POST', 'data': request.body})\n", (324, 366), False, 'from pyramid.response import Response\n'), ((461, 490), 'pyramid.response.Response', 'Response', (["{'name': self.name}"], {}), "({'name': self.name})\n", (469, 490), False, 'from pyramid.response import Response\n'), ((743, 765), 'pyramid.testing.DummyRequest', 'testing.DummyRequest', ([], {}), '()\n', (763, 765), False, 'from pyramid import testing\n')]
#!/usr/bin/env python # Copyright 2020 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This application demonstrates how to create a topic with the Pub/Sub Lite API. For more information, see the root level README.md and the documentation at https://cloud.google.com/pubsub/lite/docs/topics. """ import argparse def create_lite_topic(project_number, cloud_region, zone_id, topic_id, num_partitions): # [START pubsublite_create_topic] from google.api_core.exceptions import AlreadyExists from google.cloud.pubsublite import AdminClient, Topic from google.cloud.pubsublite.types import CloudRegion, CloudZone, TopicPath from google.protobuf.duration_pb2 import Duration # TODO(developer): # project_number = 1122334455 # cloud_region = "us-central1" # zone_id = "a" # topic_id = "your-topic-id" # num_partitions = 1 cloud_region = CloudRegion(cloud_region) location = CloudZone(cloud_region, zone_id) topic_path = TopicPath(project_number, location, topic_id) topic = Topic( name=str(topic_path), partition_config=Topic.PartitionConfig( # A topic must have at least one partition. count=num_partitions, # Set throughput capacity per partition in MiB/s. capacity=Topic.PartitionConfig.Capacity( # Set publish throughput capacity per partition to 4 MiB/s. Must be >= 4 and <= 16. publish_mib_per_sec=4, # Set subscribe throughput capacity per partition to 4 MiB/s. Must be >= 4 and <= 32. subscribe_mib_per_sec=8, ), ), retention_config=Topic.RetentionConfig( # Set storage per partition to 30 GiB. This must be in the range 30 GiB-10TiB. # If the number of byptes stored in any of the topic's partitions grows beyond # this value, older messages will be dropped to make room for newer ones, # regardless of the value of `period`. per_partition_bytes=30 * 1024 * 1024 * 1024, # Allow messages to be retained for 7 days. period=Duration(seconds=60 * 60 * 24 * 7), ), ) client = AdminClient(cloud_region) try: response = client.create_topic(topic) print(f"{response.name} created successfully.") except AlreadyExists: print(f"{topic_path} already exists.") # [END pubsublite_create_topic] if __name__ == "__main__": parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter, ) parser.add_argument("project_number", help="Your Google Cloud Project Number") parser.add_argument("cloud_region", help="Your Cloud Region, e.g. 'us-central1'") parser.add_argument("zone_id", help="Your Zone ID, e.g. 'a'") parser.add_argument("topic_id", help="Your topic ID") parser.add_argument( "num_partitions", type=int, help="Number of partitions in the topic" ) args = parser.parse_args() create_lite_topic( args.project_number, args.cloud_region, args.zone_id, args.topic_id, args.num_partitions, )
[ "google.cloud.pubsublite.types.CloudZone", "google.protobuf.duration_pb2.Duration", "argparse.ArgumentParser", "google.cloud.pubsublite.AdminClient", "google.cloud.pubsublite.Topic.PartitionConfig.Capacity", "google.cloud.pubsublite.types.CloudRegion", "google.cloud.pubsublite.types.TopicPath" ]
[((1418, 1443), 'google.cloud.pubsublite.types.CloudRegion', 'CloudRegion', (['cloud_region'], {}), '(cloud_region)\n', (1429, 1443), False, 'from google.cloud.pubsublite.types import CloudRegion, CloudZone, TopicPath\n'), ((1459, 1491), 'google.cloud.pubsublite.types.CloudZone', 'CloudZone', (['cloud_region', 'zone_id'], {}), '(cloud_region, zone_id)\n', (1468, 1491), False, 'from google.cloud.pubsublite.types import CloudRegion, CloudZone, TopicPath\n'), ((1509, 1554), 'google.cloud.pubsublite.types.TopicPath', 'TopicPath', (['project_number', 'location', 'topic_id'], {}), '(project_number, location, topic_id)\n', (1518, 1554), False, 'from google.cloud.pubsublite.types import CloudRegion, CloudZone, TopicPath\n'), ((2731, 2756), 'google.cloud.pubsublite.AdminClient', 'AdminClient', (['cloud_region'], {}), '(cloud_region)\n', (2742, 2756), False, 'from google.cloud.pubsublite import AdminClient, Topic\n'), ((3019, 3122), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__doc__', 'formatter_class': 'argparse.RawDescriptionHelpFormatter'}), '(description=__doc__, formatter_class=argparse.\n RawDescriptionHelpFormatter)\n', (3042, 3122), False, 'import argparse\n'), ((1825, 1903), 'google.cloud.pubsublite.Topic.PartitionConfig.Capacity', 'Topic.PartitionConfig.Capacity', ([], {'publish_mib_per_sec': '(4)', 'subscribe_mib_per_sec': '(8)'}), '(publish_mib_per_sec=4, subscribe_mib_per_sec=8)\n', (1855, 1903), False, 'from google.cloud.pubsublite import AdminClient, Topic\n'), ((2664, 2698), 'google.protobuf.duration_pb2.Duration', 'Duration', ([], {'seconds': '(60 * 60 * 24 * 7)'}), '(seconds=60 * 60 * 24 * 7)\n', (2672, 2698), False, 'from google.protobuf.duration_pb2 import Duration\n')]
import logging logging.basicConfig(filename="./log.data", datefmt="%y/%m/%d", format="%(levelname)s: %(asctime)s : %(message)s") logging.info('Info only') logging.error('Oops, thats not good') logging.critical("Didn't think so")
[ "logging.basicConfig", "logging.info", "logging.error", "logging.critical" ]
[((15, 133), 'logging.basicConfig', 'logging.basicConfig', ([], {'filename': '"""./log.data"""', 'datefmt': '"""%y/%m/%d"""', 'format': '"""%(levelname)s: %(asctime)s : %(message)s"""'}), "(filename='./log.data', datefmt='%y/%m/%d', format=\n '%(levelname)s: %(asctime)s : %(message)s')\n", (34, 133), False, 'import logging\n'), ((149, 174), 'logging.info', 'logging.info', (['"""Info only"""'], {}), "('Info only')\n", (161, 174), False, 'import logging\n'), ((175, 212), 'logging.error', 'logging.error', (['"""Oops, thats not good"""'], {}), "('Oops, thats not good')\n", (188, 212), False, 'import logging\n'), ((213, 248), 'logging.critical', 'logging.critical', (['"""Didn\'t think so"""'], {}), '("Didn\'t think so")\n', (229, 248), False, 'import logging\n')]
import numpy as np import mxnet as mx import mxnet.ndarray as nd from utils.profiler_utils import timer @timer def nd_forward_backward_and_time(F, runs, *args, **kwargs): """Helper function to run a given NDArray operator (F) for 'runs' number of times with given args and kwargs. Executes both forward and backward pass. NOTE: This is a sync call and waits for all the operations execution to complete. :param F: NDArray operator (Function reference) to execute. Example: mx.nd.add :param runs: Number of times to execute the operation :param args: Arguments for the NDArray operator (F) being executed. :param kwargs: Key value arguments for the NDArray operator (F) being executed. :return: Tuple of (Total execution time in seconds, any results from NDArray operation execution) """ for _ in range(runs): with mx.autograd.record(): res = F(*args, **kwargs) res.backward() nd.waitall() @timer def nd_forward_and_time(F, runs, *args, **kwargs): """Helper function to run a given NDArray operator (F) for 'runs' number of times with given args and kwargs. Executes ONLY forward pass. NOTE: This is a sync call and waits for all the operations execution to complete. :param F: NDArray operator (Function feference) to execute. Example: mx.nd.add :param runs: Number of time to execute the operation :param args: Arguments for the NDArray operator (F) being executed. :param kwargs: Key value arguments for the NDArray operator (F) being executed. :return: Tuple(Total execution time in seconds, any results from NDArray operation execution) """ for _ in range(runs): F(*args, **kwargs) nd.waitall() def get_mx_ndarray(ctx, in_tensor, dtype, initializer, attach_grad=True): """Helper function to prepare a MXNet NDArray tensor in given Context (ctx) of type (dtype) with given initializer. You can get a new Tensor by providing only "Shape" or "Numpy NDArray" or another MXNet NDArray as "in_tensor". NOTE: This is a sync call and waits for the Tensor to be created. :param ctx: Context of the new MXNet NDArray Tensor. :param in_tensor: Can be a tuple of shape or Numpy NDArray or MXNet NDArray. :param dtype: Precision or Dtype of the expected Tensor. Ex: "float32", "Int64" :param initializer: Function reference to the initialize to use. Ex: mx.nd.random.normal, mx.nd.zeros :param attach_grad: To attach a gradient for the Tensor. Default is True. :return: MXNet NDArray Tensor. """ if isinstance(in_tensor, tuple): tensor = initializer(ctx=ctx, shape=in_tensor, dtype=dtype) elif isinstance(in_tensor, np.ndarray): tensor = nd.array(in_tensor, ctx=ctx, dtype=dtype) elif isinstance(in_tensor, mx.ndarray): tensor = in_tensor.as_in_context(ctx=ctx).astype(dtype=dtype) else: raise ValueError("Invalid input type for creating input tensor. Input can be tuple() of shape or Numpy Array or" " MXNet NDArray. Given - ", in_tensor) if attach_grad: tensor.attach_grad() tensor.wait_to_read() return tensor
[ "mxnet.autograd.record", "mxnet.ndarray.waitall", "mxnet.ndarray.array" ]
[((957, 969), 'mxnet.ndarray.waitall', 'nd.waitall', ([], {}), '()\n', (967, 969), True, 'import mxnet.ndarray as nd\n'), ((1727, 1739), 'mxnet.ndarray.waitall', 'nd.waitall', ([], {}), '()\n', (1737, 1739), True, 'import mxnet.ndarray as nd\n'), ((867, 887), 'mxnet.autograd.record', 'mx.autograd.record', ([], {}), '()\n', (885, 887), True, 'import mxnet as mx\n'), ((2742, 2783), 'mxnet.ndarray.array', 'nd.array', (['in_tensor'], {'ctx': 'ctx', 'dtype': 'dtype'}), '(in_tensor, ctx=ctx, dtype=dtype)\n', (2750, 2783), True, 'import mxnet.ndarray as nd\n')]
NUMBER_THRESHOLD = 256 import numpy as np import cv2 EPS = 0.00000000000000001 def evaluate_(resS, gt, precision, recall, tpr, fpr): gtFM = gt gtFM = cv2.compare(gtFM, 128, cv2.CMP_GT) gtBM = cv2.bitwise_not(gtFM) gtF = np.sum(gtFM) gtB = resS.shape[0] * resS.shape[1] * 255 - gtF mae = 0. for i in range(NUMBER_THRESHOLD): resM = np.zeros(resS.shape) tpM = np.zeros(resS.shape) fpM = np.zeros(resS.shape) resM = cv2.compare(resS, i, cv2.CMP_GT) tpM = cv2.bitwise_and(resM, gtFM) fpM = cv2.bitwise_and(resM, gtBM) tp = np.sum(tpM) fp = np.sum(fpM) recall[i] += tp / (gtF + EPS) total = EPS + tp + fp precision[i] += (tp + EPS) / total tpr[i] += (tp + EPS) / (gtF + EPS) fpr[i] += (fp + EPS) / (gtB + EPS) np.divide(gtFM, 255.0) np.divide(resS, 255.0) resS = cv2.absdiff(gtFM, resS) mae += np.sum(resS) / (gtFM.shape[0] * gtFM.shape[1]) print(mae) return mae def get_AUC(resS, gt): precision = np.zeros((NUMBER_THRESHOLD, 1)) recall = np.zeros((NUMBER_THRESHOLD, 1)) tpr = np.zeros((NUMBER_THRESHOLD, 1)) fpr = np.zeros((NUMBER_THRESHOLD, 1)) mea = evaluate_(resS, gt, precision, recall, tpr, fpr) print(recall) areaROC = 0. for i in range(NUMBER_THRESHOLD): areaROC += (tpr[i] + tpr[i - 1]) * (fpr[i - 1] - fpr[i]) / 2.0 print(areaROC) return areaROC if __name__ == "__main__": test2_path = "1036.png" test1_path = "temp.jpg" test1 = cv2.imread(test1_path) test2 = cv2.imread(test2_path) # gray1 = cv2.cvtColor(test1, cv2.COLOR_BGR2GRAY) # gray2 = cv2.cvtColor(test2, cv2.COLOR_BGR2GRAY) np.set_printoptions(threshold=np.inf) get_AUC(test1[:,:,0], test2[:,:,0])
[ "cv2.compare", "numpy.divide", "cv2.bitwise_and", "numpy.sum", "numpy.zeros", "cv2.bitwise_not", "cv2.imread", "cv2.absdiff", "numpy.set_printoptions" ]
[((160, 194), 'cv2.compare', 'cv2.compare', (['gtFM', '(128)', 'cv2.CMP_GT'], {}), '(gtFM, 128, cv2.CMP_GT)\n', (171, 194), False, 'import cv2\n'), ((206, 227), 'cv2.bitwise_not', 'cv2.bitwise_not', (['gtFM'], {}), '(gtFM)\n', (221, 227), False, 'import cv2\n'), ((238, 250), 'numpy.sum', 'np.sum', (['gtFM'], {}), '(gtFM)\n', (244, 250), True, 'import numpy as np\n'), ((844, 866), 'numpy.divide', 'np.divide', (['gtFM', '(255.0)'], {}), '(gtFM, 255.0)\n', (853, 866), True, 'import numpy as np\n'), ((871, 893), 'numpy.divide', 'np.divide', (['resS', '(255.0)'], {}), '(resS, 255.0)\n', (880, 893), True, 'import numpy as np\n'), ((905, 928), 'cv2.absdiff', 'cv2.absdiff', (['gtFM', 'resS'], {}), '(gtFM, resS)\n', (916, 928), False, 'import cv2\n'), ((1057, 1088), 'numpy.zeros', 'np.zeros', (['(NUMBER_THRESHOLD, 1)'], {}), '((NUMBER_THRESHOLD, 1))\n', (1065, 1088), True, 'import numpy as np\n'), ((1102, 1133), 'numpy.zeros', 'np.zeros', (['(NUMBER_THRESHOLD, 1)'], {}), '((NUMBER_THRESHOLD, 1))\n', (1110, 1133), True, 'import numpy as np\n'), ((1144, 1175), 'numpy.zeros', 'np.zeros', (['(NUMBER_THRESHOLD, 1)'], {}), '((NUMBER_THRESHOLD, 1))\n', (1152, 1175), True, 'import numpy as np\n'), ((1186, 1217), 'numpy.zeros', 'np.zeros', (['(NUMBER_THRESHOLD, 1)'], {}), '((NUMBER_THRESHOLD, 1))\n', (1194, 1217), True, 'import numpy as np\n'), ((1555, 1577), 'cv2.imread', 'cv2.imread', (['test1_path'], {}), '(test1_path)\n', (1565, 1577), False, 'import cv2\n'), ((1590, 1612), 'cv2.imread', 'cv2.imread', (['test2_path'], {}), '(test2_path)\n', (1600, 1612), False, 'import cv2\n'), ((1725, 1762), 'numpy.set_printoptions', 'np.set_printoptions', ([], {'threshold': 'np.inf'}), '(threshold=np.inf)\n', (1744, 1762), True, 'import numpy as np\n'), ((369, 389), 'numpy.zeros', 'np.zeros', (['resS.shape'], {}), '(resS.shape)\n', (377, 389), True, 'import numpy as np\n'), ((404, 424), 'numpy.zeros', 'np.zeros', (['resS.shape'], {}), '(resS.shape)\n', (412, 424), True, 'import numpy as np\n'), ((439, 459), 'numpy.zeros', 'np.zeros', (['resS.shape'], {}), '(resS.shape)\n', (447, 459), True, 'import numpy as np\n'), ((475, 507), 'cv2.compare', 'cv2.compare', (['resS', 'i', 'cv2.CMP_GT'], {}), '(resS, i, cv2.CMP_GT)\n', (486, 507), False, 'import cv2\n'), ((522, 549), 'cv2.bitwise_and', 'cv2.bitwise_and', (['resM', 'gtFM'], {}), '(resM, gtFM)\n', (537, 549), False, 'import cv2\n'), ((564, 591), 'cv2.bitwise_and', 'cv2.bitwise_and', (['resM', 'gtBM'], {}), '(resM, gtBM)\n', (579, 591), False, 'import cv2\n'), ((605, 616), 'numpy.sum', 'np.sum', (['tpM'], {}), '(tpM)\n', (611, 616), True, 'import numpy as np\n'), ((630, 641), 'numpy.sum', 'np.sum', (['fpM'], {}), '(fpM)\n', (636, 641), True, 'import numpy as np\n'), ((940, 952), 'numpy.sum', 'np.sum', (['resS'], {}), '(resS)\n', (946, 952), True, 'import numpy as np\n')]
import numpy as np import pandas as pd from scipy import stats, integrate import matplotlib.pyplot as plt import seaborn as sns sns.set(color_codes=True) df = pd.read_csv('cn.csv') sns.pairplot(df); plt.show()
[ "seaborn.set", "seaborn.pairplot", "pandas.read_csv", "matplotlib.pyplot.show" ]
[((128, 153), 'seaborn.set', 'sns.set', ([], {'color_codes': '(True)'}), '(color_codes=True)\n', (135, 153), True, 'import seaborn as sns\n'), ((159, 180), 'pandas.read_csv', 'pd.read_csv', (['"""cn.csv"""'], {}), "('cn.csv')\n", (170, 180), True, 'import pandas as pd\n'), ((181, 197), 'seaborn.pairplot', 'sns.pairplot', (['df'], {}), '(df)\n', (193, 197), True, 'import seaborn as sns\n'), ((199, 209), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (207, 209), True, 'import matplotlib.pyplot as plt\n')]
from matplotlib import pyplot from collections import Counter grades = [83, 95, 91, 87, 70, 0, 85, 82, 100, 67, 73, 77, 0] decile = lambda grade: grade // 10 * 10 histogram = Counter(decile(grade) for grade in grades) pyplot.bar([x for x in histogram.keys()], histogram.values(), 8) pyplot.axis([-5, 105, 0, 5]) pyplot.xticks([10 * i for i in range(11)]) pyplot.xlabel("Decil") pyplot.ylabel("# de Alunos") pyplot.title("Distribuição das Notas do Teste 1") pyplot.show()
[ "matplotlib.pyplot.title", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.axis", "matplotlib.pyplot.show" ]
[((287, 315), 'matplotlib.pyplot.axis', 'pyplot.axis', (['[-5, 105, 0, 5]'], {}), '([-5, 105, 0, 5])\n', (298, 315), False, 'from matplotlib import pyplot\n'), ((359, 381), 'matplotlib.pyplot.xlabel', 'pyplot.xlabel', (['"""Decil"""'], {}), "('Decil')\n", (372, 381), False, 'from matplotlib import pyplot\n'), ((382, 410), 'matplotlib.pyplot.ylabel', 'pyplot.ylabel', (['"""# de Alunos"""'], {}), "('# de Alunos')\n", (395, 410), False, 'from matplotlib import pyplot\n'), ((411, 460), 'matplotlib.pyplot.title', 'pyplot.title', (['"""Distribuição das Notas do Teste 1"""'], {}), "('Distribuição das Notas do Teste 1')\n", (423, 460), False, 'from matplotlib import pyplot\n'), ((462, 475), 'matplotlib.pyplot.show', 'pyplot.show', ([], {}), '()\n', (473, 475), False, 'from matplotlib import pyplot\n')]
from django.db import models from django.utils import timezone from cloudinary.models import CloudinaryField from django.contrib.auth.models import User # Create your models here. class Profile(models.Model): user= models.OneToOneField(User, on_delete=models.CASCADE, blank=True) profile_pic = models.ImageField(blank=True,null=True) bio = models.TextField(blank=True, null=True) # title field # title = models.CharField(max_length=100) #image field # image = CloudinaryField('image') class Post(models.Model): author = models.ForeignKey(User,on_delete=models.CASCADE) image = models.ImageField(blank=True,null=True) caption = models.TextField(blank=True, null=True) Created_date = models.DateField(default=timezone.now) comment = models.TextField(blank=True, null=True) like = models.ManyToManyField(User, blank=True,related_name='likes') def __str__(self) -> str: return self.caption
[ "django.db.models.OneToOneField", "django.db.models.DateField", "django.db.models.TextField", "django.db.models.ForeignKey", "django.db.models.ManyToManyField", "django.db.models.ImageField" ]
[((221, 285), 'django.db.models.OneToOneField', 'models.OneToOneField', (['User'], {'on_delete': 'models.CASCADE', 'blank': '(True)'}), '(User, on_delete=models.CASCADE, blank=True)\n', (241, 285), False, 'from django.db import models\n'), ((304, 344), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (321, 344), False, 'from django.db import models\n'), ((354, 393), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (370, 393), False, 'from django.db import models\n'), ((565, 614), 'django.db.models.ForeignKey', 'models.ForeignKey', (['User'], {'on_delete': 'models.CASCADE'}), '(User, on_delete=models.CASCADE)\n', (582, 614), False, 'from django.db import models\n'), ((630, 670), 'django.db.models.ImageField', 'models.ImageField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (647, 670), False, 'from django.db import models\n'), ((688, 727), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (704, 727), False, 'from django.db import models\n'), ((751, 789), 'django.db.models.DateField', 'models.DateField', ([], {'default': 'timezone.now'}), '(default=timezone.now)\n', (767, 789), False, 'from django.db import models\n'), ((808, 847), 'django.db.models.TextField', 'models.TextField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (824, 847), False, 'from django.db import models\n'), ((863, 925), 'django.db.models.ManyToManyField', 'models.ManyToManyField', (['User'], {'blank': '(True)', 'related_name': '"""likes"""'}), "(User, blank=True, related_name='likes')\n", (885, 925), False, 'from django.db import models\n')]
import numpy as np import pytest from tf_fastmri_data.datasets.noisy import NoisyFastMRIDatasetBuilder, ComplexNoisyFastMRIDatasetBuilder kspace_shape = [2, 640, 322, 1] file_contrast = 'CORPD_FBK' @pytest.mark.parametrize('contrast', [None, file_contrast]) @pytest.mark.parametrize('slice_random', [True, False]) @pytest.mark.parametrize('noise_input', [True, False]) @pytest.mark.parametrize('noise_power', [30, (0, 50)]) @pytest.mark.parametrize('noise_mode', ['uniform', 'gaussian']) @pytest.mark.parametrize('batch_size', [None, 2]) def test_noisy_dataset_train(create_full_fastmri_test_tmp_dataset, contrast, slice_random, noise_input, noise_power, noise_mode, batch_size): if not (noise_mode == 'gaussian' and isinstance(noise_power, tuple)) and not (batch_size and not slice_random): path = create_full_fastmri_test_tmp_dataset['fastmri_tmp_singlecoil_train'] ds = NoisyFastMRIDatasetBuilder( path=path, contrast=contrast, slice_random=slice_random, noise_input=noise_input, noise_power_spec=noise_power, noise_mode=noise_mode, batch_size=batch_size, ) if noise_input: (image_noisy, *_others), model_outputs = next(ds.preprocessed_ds.as_numpy_iterator()) else: image_noisy, model_outputs = next(ds.preprocessed_ds.as_numpy_iterator()) np.testing.assert_equal(model_outputs.shape[-3:], [320, 320, 1]) np.testing.assert_equal(image_noisy.shape[-3:], [320, 320, 1]) np.testing.assert_equal(image_noisy.ndim, 4) np.testing.assert_equal(model_outputs.ndim, 4) @pytest.mark.parametrize('contrast', [None, file_contrast]) @pytest.mark.parametrize('slice_random', [True, False]) @pytest.mark.parametrize('noise_input', [True, False]) @pytest.mark.parametrize('noise_power', [30, (0, 50)]) @pytest.mark.parametrize('noise_mode', ['uniform', 'gaussian']) @pytest.mark.parametrize('batch_size', [None, 2]) def test_complex_noisy_dataset_train(create_full_fastmri_test_tmp_dataset, contrast, slice_random, noise_input, noise_power, noise_mode, batch_size): if not (noise_mode == 'gaussian' and isinstance(noise_power, tuple)) and not (batch_size and not slice_random): path = create_full_fastmri_test_tmp_dataset['fastmri_tmp_singlecoil_train'] ds = ComplexNoisyFastMRIDatasetBuilder( path=path, contrast=contrast, slice_random=slice_random, noise_input=noise_input, noise_power_spec=noise_power, noise_mode=noise_mode, batch_size=batch_size, ) if noise_input: (image_noisy, *_others), model_outputs = next(ds.preprocessed_ds.as_numpy_iterator()) else: image_noisy, model_outputs = next(ds.preprocessed_ds.as_numpy_iterator()) if not (batch_size == 2 and slice_random): # NOTE: for now complex images can only be of size 320 x 320 np.testing.assert_equal(model_outputs.shape[-3:], (320, 320, 1)) np.testing.assert_equal(image_noisy.shape[-3:], (320, 320, 1)) else: assert model_outputs.shape[-2] == 320 assert image_noisy.shape[-2] == 320 np.testing.assert_equal(image_noisy.ndim, 4) assert image_noisy.dtype == np.complex64 np.testing.assert_equal(model_outputs.ndim, 4)
[ "pytest.mark.parametrize", "tf_fastmri_data.datasets.noisy.NoisyFastMRIDatasetBuilder", "tf_fastmri_data.datasets.noisy.ComplexNoisyFastMRIDatasetBuilder", "numpy.testing.assert_equal" ]
[((203, 261), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""contrast"""', '[None, file_contrast]'], {}), "('contrast', [None, file_contrast])\n", (226, 261), False, 'import pytest\n'), ((263, 317), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""slice_random"""', '[True, False]'], {}), "('slice_random', [True, False])\n", (286, 317), False, 'import pytest\n'), ((319, 372), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_input"""', '[True, False]'], {}), "('noise_input', [True, False])\n", (342, 372), False, 'import pytest\n'), ((374, 427), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_power"""', '[30, (0, 50)]'], {}), "('noise_power', [30, (0, 50)])\n", (397, 427), False, 'import pytest\n'), ((429, 491), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_mode"""', "['uniform', 'gaussian']"], {}), "('noise_mode', ['uniform', 'gaussian'])\n", (452, 491), False, 'import pytest\n'), ((493, 541), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""batch_size"""', '[None, 2]'], {}), "('batch_size', [None, 2])\n", (516, 541), False, 'import pytest\n'), ((1653, 1711), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""contrast"""', '[None, file_contrast]'], {}), "('contrast', [None, file_contrast])\n", (1676, 1711), False, 'import pytest\n'), ((1713, 1767), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""slice_random"""', '[True, False]'], {}), "('slice_random', [True, False])\n", (1736, 1767), False, 'import pytest\n'), ((1769, 1822), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_input"""', '[True, False]'], {}), "('noise_input', [True, False])\n", (1792, 1822), False, 'import pytest\n'), ((1824, 1877), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_power"""', '[30, (0, 50)]'], {}), "('noise_power', [30, (0, 50)])\n", (1847, 1877), False, 'import pytest\n'), ((1879, 1941), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""noise_mode"""', "['uniform', 'gaussian']"], {}), "('noise_mode', ['uniform', 'gaussian'])\n", (1902, 1941), False, 'import pytest\n'), ((1943, 1991), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""batch_size"""', '[None, 2]'], {}), "('batch_size', [None, 2])\n", (1966, 1991), False, 'import pytest\n'), ((897, 1090), 'tf_fastmri_data.datasets.noisy.NoisyFastMRIDatasetBuilder', 'NoisyFastMRIDatasetBuilder', ([], {'path': 'path', 'contrast': 'contrast', 'slice_random': 'slice_random', 'noise_input': 'noise_input', 'noise_power_spec': 'noise_power', 'noise_mode': 'noise_mode', 'batch_size': 'batch_size'}), '(path=path, contrast=contrast, slice_random=\n slice_random, noise_input=noise_input, noise_power_spec=noise_power,\n noise_mode=noise_mode, batch_size=batch_size)\n', (923, 1090), False, 'from tf_fastmri_data.datasets.noisy import NoisyFastMRIDatasetBuilder, ComplexNoisyFastMRIDatasetBuilder\n'), ((1407, 1471), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['model_outputs.shape[-3:]', '[320, 320, 1]'], {}), '(model_outputs.shape[-3:], [320, 320, 1])\n', (1430, 1471), True, 'import numpy as np\n'), ((1480, 1542), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['image_noisy.shape[-3:]', '[320, 320, 1]'], {}), '(image_noisy.shape[-3:], [320, 320, 1])\n', (1503, 1542), True, 'import numpy as np\n'), ((1551, 1595), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['image_noisy.ndim', '(4)'], {}), '(image_noisy.ndim, 4)\n', (1574, 1595), True, 'import numpy as np\n'), ((1604, 1650), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['model_outputs.ndim', '(4)'], {}), '(model_outputs.ndim, 4)\n', (1627, 1650), True, 'import numpy as np\n'), ((2355, 2555), 'tf_fastmri_data.datasets.noisy.ComplexNoisyFastMRIDatasetBuilder', 'ComplexNoisyFastMRIDatasetBuilder', ([], {'path': 'path', 'contrast': 'contrast', 'slice_random': 'slice_random', 'noise_input': 'noise_input', 'noise_power_spec': 'noise_power', 'noise_mode': 'noise_mode', 'batch_size': 'batch_size'}), '(path=path, contrast=contrast,\n slice_random=slice_random, noise_input=noise_input, noise_power_spec=\n noise_power, noise_mode=noise_mode, batch_size=batch_size)\n', (2388, 2555), False, 'from tf_fastmri_data.datasets.noisy import NoisyFastMRIDatasetBuilder, ComplexNoisyFastMRIDatasetBuilder\n'), ((3260, 3304), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['image_noisy.ndim', '(4)'], {}), '(image_noisy.ndim, 4)\n', (3283, 3304), True, 'import numpy as np\n'), ((3362, 3408), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['model_outputs.ndim', '(4)'], {}), '(model_outputs.ndim, 4)\n', (3385, 3408), True, 'import numpy as np\n'), ((3000, 3064), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['model_outputs.shape[-3:]', '(320, 320, 1)'], {}), '(model_outputs.shape[-3:], (320, 320, 1))\n', (3023, 3064), True, 'import numpy as np\n'), ((3077, 3139), 'numpy.testing.assert_equal', 'np.testing.assert_equal', (['image_noisy.shape[-3:]', '(320, 320, 1)'], {}), '(image_noisy.shape[-3:], (320, 320, 1))\n', (3100, 3139), True, 'import numpy as np\n')]
# Carl is free software; you can redistribute it and/or modify it # under the terms of the Revised BSD License; see LICENSE file for # more details. from numpy.testing import assert_array_equal from numpy.testing import assert_raises from sklearn.datasets import make_moons from sklearn.tree import DecisionTreeRegressor from carl.learning import as_classifier def test_as_classifier(): X, y = make_moons(n_samples=100, random_state=1) y = 2 * y - 1 # use -1/+1 labels clf = as_classifier(DecisionTreeRegressor()) clf.fit(X, y) probas = clf.predict_proba(X) predictions = clf.predict(X) assert_array_equal(probas.shape, (len(X), 2)) assert_array_equal(predictions, y) y[-1] = 2 clf = as_classifier(DecisionTreeRegressor()) assert_raises(ValueError, clf.fit, X, y)
[ "sklearn.datasets.make_moons", "numpy.testing.assert_raises", "sklearn.tree.DecisionTreeRegressor", "numpy.testing.assert_array_equal" ]
[((403, 444), 'sklearn.datasets.make_moons', 'make_moons', ([], {'n_samples': '(100)', 'random_state': '(1)'}), '(n_samples=100, random_state=1)\n', (413, 444), False, 'from sklearn.datasets import make_moons\n'), ((673, 707), 'numpy.testing.assert_array_equal', 'assert_array_equal', (['predictions', 'y'], {}), '(predictions, y)\n', (691, 707), False, 'from numpy.testing import assert_array_equal\n'), ((776, 816), 'numpy.testing.assert_raises', 'assert_raises', (['ValueError', 'clf.fit', 'X', 'y'], {}), '(ValueError, clf.fit, X, y)\n', (789, 816), False, 'from numpy.testing import assert_raises\n'), ((508, 531), 'sklearn.tree.DecisionTreeRegressor', 'DecisionTreeRegressor', ([], {}), '()\n', (529, 531), False, 'from sklearn.tree import DecisionTreeRegressor\n'), ((747, 770), 'sklearn.tree.DecisionTreeRegressor', 'DecisionTreeRegressor', ([], {}), '()\n', (768, 770), False, 'from sklearn.tree import DecisionTreeRegressor\n')]
from frolic import Vector2 import colorama GREEN = colorama.Fore.GREEN RED = colorama.Fore.RED BRIGHT = colorama.Style.BRIGHT RESET_ALL = colorama.Style.RESET_ALL print('\nVector2 Test\n') try: v1 = Vector2(2, 4) v2 = Vector2(x=3, y=5) v3 = Vector2(y=4, x=6) test = 'v1.x == 2' assert(eval(test)) test = 'v1.y == 4' assert(eval(test)) test = 'v2.x == 3' assert(eval(test)) test = 'v2.y == 5' assert(eval(test)) test = 'v3.x == 6' assert(eval(test)) test = 'v3.y == 4' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} assignment') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} assignment "{test}"') try: v1 = Vector2(x=3, y=4) v2 = v1.add(Vector2(x=2, y=3)) test = 'v2.x == 5' assert(eval(test)) test = 'v2.y == 7' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} add') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} add "{test}"') try: v1 = Vector2(x=3, y=4) v2 = v1.subtract(Vector2(x=2, y=1)) test = 'v2.x == 1' assert(eval(test)) test = 'v2.y == 3' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} subtract') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} subtract "{test}"') try: v1 = Vector2(x=3, y=4).scale(3) test = 'v1.x == 9' assert(eval(test)) test = 'v1.y == 12' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} scale') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} scale "{test}"') try: v1 = Vector2(5, 10.2).dot(Vector2(3, 2)) v2 = Vector2(2, 3).dot(Vector2(-3, -5)) v3 = Vector2(4, 4).dot(Vector2(-1, 1)) v4 = Vector2(1.1, 2.2).dot(Vector2(3.3, 4.4)) test = 'type(v1) is float' assert(eval(test)) test = 'type(v2) is int' assert(eval(test)) test = 'type(v3) is int' assert(eval(test)) test = 'type(v4) is float' assert(eval(test)) test = 'v1 == 35.4' assert(eval(test)) test = 'v2 == -21' assert(eval(test)) test = 'v3 == 0' assert(eval(test)) # floating point error makes v4 == 13.310000000000002 on 64 bit windows # Wolfram Alpha says it is exactly 13.31 # https://www.wolframalpha.com/input/? # i=dot+product+calculator # &assumption={"F","DotProduct","dotVector1"}->"{1.1,2.2}" # &assumption={"F","DotProduct","dotVector2"}->"{3.3,4.4}" test = '13.310000 < v4 < 13.3100001' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} dot') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} dot "{test}"') try: v1 = Vector2(x=3, y=4).magnitude() test = 'v1 == 5' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} magnitude') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} magnitude "{test}"') try: v1 = Vector2(x=5, y=10) v2 = Vector2(x=5, y=10) test = 'v1 == v2' assert(eval(test)) test = 'v1 is not v2' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} equality check') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} equality check "{test}"') try: v1 = Vector2(x=5, y=10) v2 = v1.clone() test = 'v1 == v2' assert(eval(test)) test = 'v1 is not v2' assert(eval(test)) print(f'{GREEN}{BRIGHT}PASSED:{RESET_ALL} clone') except: print(f'{RED}{BRIGHT}FAILED:{RESET_ALL} clone "{test}"') print('')
[ "frolic.Vector2" ]
[((205, 218), 'frolic.Vector2', 'Vector2', (['(2)', '(4)'], {}), '(2, 4)\n', (212, 218), False, 'from frolic import Vector2\n'), ((228, 245), 'frolic.Vector2', 'Vector2', ([], {'x': '(3)', 'y': '(5)'}), '(x=3, y=5)\n', (235, 245), False, 'from frolic import Vector2\n'), ((255, 272), 'frolic.Vector2', 'Vector2', ([], {'y': '(4)', 'x': '(6)'}), '(y=4, x=6)\n', (262, 272), False, 'from frolic import Vector2\n'), ((698, 715), 'frolic.Vector2', 'Vector2', ([], {'x': '(3)', 'y': '(4)'}), '(x=3, y=4)\n', (705, 715), False, 'from frolic import Vector2\n'), ((978, 995), 'frolic.Vector2', 'Vector2', ([], {'x': '(3)', 'y': '(4)'}), '(x=3, y=4)\n', (985, 995), False, 'from frolic import Vector2\n'), ((2801, 2819), 'frolic.Vector2', 'Vector2', ([], {'x': '(5)', 'y': '(10)'}), '(x=5, y=10)\n', (2808, 2819), False, 'from frolic import Vector2\n'), ((2829, 2847), 'frolic.Vector2', 'Vector2', ([], {'x': '(5)', 'y': '(10)'}), '(x=5, y=10)\n', (2836, 2847), False, 'from frolic import Vector2\n'), ((3099, 3117), 'frolic.Vector2', 'Vector2', ([], {'x': '(5)', 'y': '(10)'}), '(x=5, y=10)\n', (3106, 3117), False, 'from frolic import Vector2\n'), ((732, 749), 'frolic.Vector2', 'Vector2', ([], {'x': '(2)', 'y': '(3)'}), '(x=2, y=3)\n', (739, 749), False, 'from frolic import Vector2\n'), ((1017, 1034), 'frolic.Vector2', 'Vector2', ([], {'x': '(2)', 'y': '(1)'}), '(x=2, y=1)\n', (1024, 1034), False, 'from frolic import Vector2\n'), ((1553, 1566), 'frolic.Vector2', 'Vector2', (['(3)', '(2)'], {}), '(3, 2)\n', (1560, 1566), False, 'from frolic import Vector2\n'), ((1595, 1610), 'frolic.Vector2', 'Vector2', (['(-3)', '(-5)'], {}), '(-3, -5)\n', (1602, 1610), False, 'from frolic import Vector2\n'), ((1639, 1653), 'frolic.Vector2', 'Vector2', (['(-1)', '(1)'], {}), '(-1, 1)\n', (1646, 1653), False, 'from frolic import Vector2\n'), ((1686, 1703), 'frolic.Vector2', 'Vector2', (['(3.3)', '(4.4)'], {}), '(3.3, 4.4)\n', (1693, 1703), False, 'from frolic import Vector2\n'), ((1273, 1290), 'frolic.Vector2', 'Vector2', ([], {'x': '(3)', 'y': '(4)'}), '(x=3, y=4)\n', (1280, 1290), False, 'from frolic import Vector2\n'), ((1532, 1548), 'frolic.Vector2', 'Vector2', (['(5)', '(10.2)'], {}), '(5, 10.2)\n', (1539, 1548), False, 'from frolic import Vector2\n'), ((1577, 1590), 'frolic.Vector2', 'Vector2', (['(2)', '(3)'], {}), '(2, 3)\n', (1584, 1590), False, 'from frolic import Vector2\n'), ((1621, 1634), 'frolic.Vector2', 'Vector2', (['(4)', '(4)'], {}), '(4, 4)\n', (1628, 1634), False, 'from frolic import Vector2\n'), ((1664, 1681), 'frolic.Vector2', 'Vector2', (['(1.1)', '(2.2)'], {}), '(1.1, 2.2)\n', (1671, 1681), False, 'from frolic import Vector2\n'), ((2580, 2597), 'frolic.Vector2', 'Vector2', ([], {'x': '(3)', 'y': '(4)'}), '(x=3, y=4)\n', (2587, 2597), False, 'from frolic import Vector2\n')]
''' This is a sample Lambda function that sends an SMS on click of a button. It needs one permission sns:Publish. The following policy allows SNS publish to SMS but not topics or endpoints. { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sns:Publish" ], "Resource": [ "*" ] }, { "Effect": "Deny", "Action": [ "sns:Publish" ], "Resource": [ "arn:aws:sns:*:*:*" ] } ] } The following JSON template shows what is sent as the payload: { "serialNumber": "GXXXXXXXXXXXXXXXXX", "batteryVoltage": "xxmV", "clickType": "SINGLE" | "DOUBLE" | "LONG" } A "LONG" clickType is sent if the first press lasts longer than 1.5 seconds. "SINGLE" and "DOUBLE" clickType payloads are sent for short clicks. For more documentation, follow the link below. http://docs.aws.amazon.com/iot/latest/developerguide/iot-lambda-rule.html ''' from __future__ import print_function import boto3 import json import logging logger = logging.getLogger() logger.setLevel(logging.INFO) #phoneAngela = '18596281888' phoneSam = '18597508490' sns = boto3.client('sns') phone_number = phoneSam; def lambda_handler(event, context): logger.info('Received event: ' + json.dumps(event)) message = 'Henlo from your IoT Button %s. Here is the full event: %s' % (event['serialNumber'], json.dumps(event)) sns.publish(PhoneNumber=phone_number, Message=message) logger.info('SMS has been sent to ' + phone_number)
[ "logging.getLogger", "json.dumps", "boto3.client" ]
[((1172, 1191), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (1189, 1191), False, 'import logging\n'), ((1285, 1304), 'boto3.client', 'boto3.client', (['"""sns"""'], {}), "('sns')\n", (1297, 1304), False, 'import boto3\n'), ((1404, 1421), 'json.dumps', 'json.dumps', (['event'], {}), '(event)\n', (1414, 1421), False, 'import json\n'), ((1523, 1540), 'json.dumps', 'json.dumps', (['event'], {}), '(event)\n', (1533, 1540), False, 'import json\n')]
""" @author: <NAME> @since: 21/08/2016 @modified: How it works Depth = go deeper = stack (LIFO) - explore children as far as possible (keep going until you reach a dead end) - update current_node with something that has a path you haven't visited yet and do that 1. Start with an empty Stack 2. Initialize each node to have infinity distance 3. Add root node to the stack 4. While nodes in stack 5. current_node = pop stack 5.a if we haven't seen current_node before (distance="infi") - 'visit' it (distance=0) - add it to output 6. Loop for each destination node for each incident edge to current_node (for each adjacent node) - put the adjacent node on the stack repeat process B / eg: A \ S - C - D first push A, in the for each incident edge loop where A is the current node, we will push B and S then pop C note: if stalemate in picking node pick in alphabetical order Time complexity: O(v + e) - need to look at each node (v) - for a given current node, we look at all adjacent edges (eventually look at all edges) O(v + e) as we look at all edges and nodes O(e) wil at most be O(v^2) and at least O(1) note: used aggregate analysis as even though loop for all v loop for all e to v could be assumed to be O(ve), we know that when we execute we will only look at all edges in the graph overall and not at each iteration so O(v + e) but e can be at most v^2 leading to O(v^2) Space complexity: O(v) - output array - stack both are of the size of the number of nodes = O(2v) = O(v) for iterative version recursive version can have worst case space O(height) Can use to traverse trees or graphs """ from algorithms_datastructures.datastructures.linked_stack import LinkedStack def depth_first_search_rec_driver(graph, root, use_rep=False): nodes = graph.get_vertices() for node in nodes: node.distance = "Infinity" output = [] depth_first_search_recursive(graph, root, output, use_rep) return output def depth_first_search_recursive(graph, node, output, use_rep=False): node.distance = 0 # Mark node as discovered. output.append(node.rep if use_rep else node.name) for edge in graph.get_adjacent_edges(node): # Need check if un directed. destination_node = edge.destination if destination_node.distance == "Infinity": depth_first_search_recursive(graph, destination_node, output, use_rep) def depth_first_search_iterative(graph, root, use_rep=False): nodes = graph.get_vertices() for node in nodes: node.distance = "Infinity" stack = LinkedStack() stack.push(root) output = [] while not stack.is_empty(): current_node = stack.pop() # update current node if current_node.distance != 0: # current_node is not discovered current_node.distance = 0 # we have now discovered the current_node output.append(current_node.rep if use_rep else current_node.name) edges_incident = graph.get_adjacent_edges(current_node) for edge in edges_incident: destination_node = edge.destination stack.push(destination_node) # Implicit else for a node we have already seen print(output) return output # ---- Another implementation for practice ----- def dfs_2(graph, node, visited, output): # Output contains the nodes at the end in order of visitation. visited[node.index] = 1 output.append(node) for edge in graph.get_adjacent_edges(node): # Visit node depth first (go as far as possible) if not already visited. if visited[edge.destination.index] != 1: dfs_2(graph, edge.destination, visited, output) def test_dictionary_adj_map_output(): for i in range(5): from algorithms_datastructures.graphs.implementations.adjacency_map import AdjacencyMap # example from https://en.wikipedia.org/wiki/Depth-first_search # iterative version correct order: A, E, F, B, D, C, G # recursive version correct order: A, B, D, F, E, C, G (went to D first instead of F) # this is also a correct dfs ordering: A, B, F, E, D, C, G # each of them follow what dfs does which is exploring as far as possible along each branch before back tracking graph_map = AdjacencyMap() # set up adj map graph A = graph_map.add_vertex('A') B = graph_map.add_vertex('B') C = graph_map.add_vertex('C') D = graph_map.add_vertex('D') E = graph_map.add_vertex('E') F = graph_map.add_vertex('F') G = graph_map.add_vertex('G') graph_map.add_edge(A, B) graph_map.add_edge(A, C) graph_map.add_edge(A, E) graph_map.add_edge(B, D) graph_map.add_edge(B, F) graph_map.add_edge(C, G) graph_map.add_edge(E, F) source = A dfs1 = depth_first_search_iterative(graph_map, source) print("DFS on adj_map graph (iterative): " + str(dfs1)) # possible outputs: # example graph based on https://en.wikipedia.org/wiki/Depth-first_search # DFS on adj_map graph (iterative): ['A', 'B', 'D', 'F', 'E', 'C', 'G'], recursive correct form wiki # DFS on adj_map graph (iterative): ['A', 'E', 'F', 'B', 'D', 'C', 'G'], iterative correct fro wiki # DFS on adj_map graph (iterative): ['A', 'B', 'F', 'E', 'D', 'C', 'G'], correct # DFS on adj_map graph (iterative): ['A', 'C', 'G', 'E', 'F', 'B', 'D'], correct # due to randomness with {} sometimes we get a different order using a adj map if __name__ == "__main__": from algorithms_datastructures.graphs.implementations.adjacency_map import AdjacencyMap from algorithms_datastructures.graphs.implementations.adjacency_list import AdjacencyList # recursive version correct order: A, B, D, F, E, C, G (went to D first instead of F) # this is also a correct dfs ordering: A, B, F, E, D, C, G # each of them follow what dfs does which is exploring as far as possible along each branch before back tracking graph_map = AdjacencyMap() # set up adj map graph A = graph_map.add_vertex('A') B = graph_map.add_vertex('B') C = graph_map.add_vertex('C') D = graph_map.add_vertex('D') E = graph_map.add_vertex('E') F = graph_map.add_vertex('F') G = graph_map.add_vertex('G') graph_map.add_edge(A, B) graph_map.add_edge(A, C) graph_map.add_edge(A, E) graph_map.add_edge(B, D) graph_map.add_edge(B, F) graph_map.add_edge(C, G) graph_map.add_edge(E, F) source = A dfs1_itr = depth_first_search_iterative(graph_map, source) dfs1_rec = depth_first_search_rec_driver(graph_map, source) print("DFS on adjacent map, sometimes different order (all correct, check against 4 solns in test()") print("DFS on adj_map graph (iterative): " + str(dfs1_itr)) print("DFS on adj_map graph (recursive): " + str(dfs1_rec)) """ Note due to randomness with {} sometimes we get a different order using a adj map however they are all correct orderings by picking arbitrary adjacent nodes see the tests below """ print("Testing DSF on map graph.") test_dictionary_adj_map_output() print("\nTesting DFS on adjacent list") graph_list = AdjacencyList(7) # set up adj map graph, slightly different set up due to diff underlying structure a = graph_list.add_vertex(0,'A') b = graph_list.add_vertex(1,'B') c = graph_list.add_vertex(2,'C') d = graph_list.add_vertex(3,'D') e = graph_list.add_vertex(4,'E') f = graph_list.add_vertex(5,'F') g = graph_list.add_vertex(6, 'G') # Add edges both ways. graph_list.add_edge(a, b) graph_list.add_edge(a, c) graph_list.add_edge(a, e) graph_list.add_edge(b, f) graph_list.add_edge(b, d) graph_list.add_edge(c, g) graph_list.add_edge(e, f) graph_list.add_edge(b, a) graph_list.add_edge(c, a) graph_list.add_edge(e, a) graph_list.add_edge(f, b) graph_list.add_edge(d, b) graph_list.add_edge(g, c) graph_list.add_edge(f, e) source2 = a dfs2_itr = depth_first_search_iterative(graph_list, source2, use_rep=True) print("DFS on adj_list graph (iterative): " + str(dfs2_itr)) dfs2_rec = depth_first_search_rec_driver(graph_list, source2, use_rep=True) print("DFS on adj_list graph (recursive): " + str(dfs2_rec)) # ---- Another implementation for practice ----- visited = [0] * len(graph_list.get_all_vertices()) output = [] dfs2_rec2 = dfs_2(graph_list, source2, visited, output) node_representations = [node.rep for node in output] if node_representations == dfs2_rec: print("Yay dfs worked") else: print("Node reps might be wrong: " + str(node_representations)) # All correct :)
[ "algorithms_datastructures.graphs.implementations.adjacency_list.AdjacencyList", "algorithms_datastructures.datastructures.linked_stack.LinkedStack", "algorithms_datastructures.graphs.implementations.adjacency_map.AdjacencyMap" ]
[((2914, 2927), 'algorithms_datastructures.datastructures.linked_stack.LinkedStack', 'LinkedStack', ([], {}), '()\n', (2925, 2927), False, 'from algorithms_datastructures.datastructures.linked_stack import LinkedStack\n'), ((6456, 6470), 'algorithms_datastructures.graphs.implementations.adjacency_map.AdjacencyMap', 'AdjacencyMap', ([], {}), '()\n', (6468, 6470), False, 'from algorithms_datastructures.graphs.implementations.adjacency_map import AdjacencyMap\n'), ((7659, 7675), 'algorithms_datastructures.graphs.implementations.adjacency_list.AdjacencyList', 'AdjacencyList', (['(7)'], {}), '(7)\n', (7672, 7675), False, 'from algorithms_datastructures.graphs.implementations.adjacency_list import AdjacencyList\n'), ((4673, 4687), 'algorithms_datastructures.graphs.implementations.adjacency_map.AdjacencyMap', 'AdjacencyMap', ([], {}), '()\n', (4685, 4687), False, 'from algorithms_datastructures.graphs.implementations.adjacency_map import AdjacencyMap\n')]
import pytest import pyroute2 import struct from .namespaces import Namespace def int_to_mac(c): """Turn an int into a MAC address.""" return ":".join(('{:02x}',)*6).format( *struct.unpack('BBBBBB', c.to_bytes(6, byteorder='big'))) class LinksFactory(object): """A factory for veth pair of interfaces and other L2 stuff. Each veth interfaces will get named ethX with X strictly increasing at each call. """ def __init__(self): # We create all those links in a dedicated namespace to avoid # conflict with other namespaces. self.ns = Namespace('net') self.count = 0 def __call__(self, *args): return self.veth(*args) def veth(self, ns1, ns2): """Create a veth pair between two namespaces.""" with self.ns: # First, create a link first = 'eth{}'.format(self.count) second = 'eth{}'.format(self.count + 1) ipr = pyroute2.IPRoute() ipr.link_create(ifname=first, peer=second, kind='veth') idx = [ipr.link_lookup(ifname=x)[0] for x in (first, second)] # Set an easy to remember MAC address ipr.link('set', index=idx[0], address=int_to_mac(self.count + 1)) ipr.link('set', index=idx[1], address=int_to_mac(self.count + 2)) # Then, move each to the target namespace ipr.link('set', index=idx[0], net_ns_fd=ns1.fd('net')) ipr.link('set', index=idx[1], net_ns_fd=ns2.fd('net')) # And put them up with ns1: ipr = pyroute2.IPRoute() ipr.link('set', index=idx[0], state='up') with ns2: ipr = pyroute2.IPRoute() ipr.link('set', index=idx[1], state='up') self.count += 2 def bridge(self, name, *ifaces): """Create a bridge.""" ipr = pyroute2.IPRoute() # Create the bridge ipr.link_create(ifname=name, kind='bridge') idx = ipr.link_lookup(ifname=name)[0] # Attach interfaces for iface in ifaces: port = ipr.link_lookup(ifname=iface)[0] ipr.link('set', index=port, master=idx) # Put the bridge up ipr.link('set', index=idx, state='up') return idx def bond(self, name, *ifaces): """Create a bond.""" ipr = pyroute2.IPRoute() # Create the bond ipr.link_create(ifname=name, kind='bond') idx = ipr.link_lookup(ifname=name)[0] # Attach interfaces for iface in ifaces: slave = ipr.link_lookup(ifname=iface)[0] ipr.link('set', index=slave, state='down') ipr.link('set', index=slave, master=idx) # Put the bond up ipr.link('set', index=idx, state='up') return idx def vlan(self, name, id, iface): """Create a VLAN.""" ipr = pyroute2.IPRoute() idx = ipr.link_lookup(ifname=iface)[0] ipr.link_create(ifname=name, kind='vlan', vlan_id=id, link=idx) idx = ipr.link_lookup(ifname=name)[0] ipr.link('set', index=idx, state='up') return idx def up(self, name): ipr = pyroute2.IPRoute() idx = ipr.link_lookup(ifname=name)[0] ipr.link('set', index=idx, state='up') def down(self, name): ipr = pyroute2.IPRoute() idx = ipr.link_lookup(ifname=name)[0] ipr.link('set', index=idx, state='down') def remove(self, name): ipr = pyroute2.IPRoute() idx = ipr.link_lookup(ifname=name)[0] ipr.link_remove(idx) @pytest.fixture def links(): return LinksFactory()
[ "pyroute2.IPRoute" ]
[((2025, 2043), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (2041, 2043), False, 'import pyroute2\n'), ((2528, 2546), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (2544, 2546), False, 'import pyroute2\n'), ((3084, 3102), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (3100, 3102), False, 'import pyroute2\n'), ((3445, 3463), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (3461, 3463), False, 'import pyroute2\n'), ((3598, 3616), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (3614, 3616), False, 'import pyroute2\n'), ((3755, 3773), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (3771, 3773), False, 'import pyroute2\n'), ((966, 984), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (982, 984), False, 'import pyroute2\n'), ((1715, 1733), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (1731, 1733), False, 'import pyroute2\n'), ((1836, 1854), 'pyroute2.IPRoute', 'pyroute2.IPRoute', ([], {}), '()\n', (1852, 1854), False, 'import pyroute2\n')]
import contextlib import os from pymatgen.analysis.bond_valence import BVAnalyzer from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import SimplestChemenvStrategy from pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder import LocalGeometryFinder from pymatgen.analysis.chemenv.coordination_environments.structure_environments import LightStructureEnvironments from pymatgen.core.structure import Structure # The computations have to be downloaded from zenodo.org as they too large for a github repository current_path = os.getcwd() directory_results = os.path.join(current_path, "../Results") # First folder contains spin-polarized computation, second one the one without. # First folder contains spin-polarized computation, second one the one without. for directory in [ os.path.join(directory_results, "Yb14MnSb11/mp-568088/Spin_2/lobster_1"), os.path.join(directory_results, "Yb14MnSb11/mp-568088/Spin_mixed/lobster_1")]: for angle_cutoff in [0.3, 0.2]: with contextlib.redirect_stdout(None): with contextlib.redirect_stderr(None): struct = Structure.from_file(os.path.join(directory, "POSCAR.gz")) # get valences with Bond Valence analyser ana = BVAnalyzer() valences = ana.get_valences(struct) # Setup the local geometry finder lgf = LocalGeometryFinder() lgf.setup_structure(structure=struct) # Get the StructureEnvironments se = lgf.compute_structure_environments(only_cations=True, valences=valences) # compute light structure environments strategy = SimplestChemenvStrategy(distance_cutoff=1.4, angle_cutoff=angle_cutoff) lse = LightStructureEnvironments.from_structure_environments(strategy=strategy, structure_environments=se) print(directory.split("/")[-2]) print("Angle Cutoff: " + str(angle_cutoff)) for ienv, env in enumerate(lse.coordination_environments): if env is not None: print(str(struct[ienv].specie) + str(ienv + 1) + ': ' + str(env[0]["ce_symbol"])) print(" ")
[ "contextlib.redirect_stdout", "pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies.SimplestChemenvStrategy", "os.path.join", "os.getcwd", "pymatgen.analysis.chemenv.coordination_environments.structure_environments.LightStructureEnvironments.from_structure_environments", "contextlib.redirect_stderr", "pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder.LocalGeometryFinder", "pymatgen.analysis.bond_valence.BVAnalyzer" ]
[((578, 589), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (587, 589), False, 'import os\n'), ((610, 650), 'os.path.join', 'os.path.join', (['current_path', '"""../Results"""'], {}), "(current_path, '../Results')\n", (622, 650), False, 'import os\n'), ((837, 909), 'os.path.join', 'os.path.join', (['directory_results', '"""Yb14MnSb11/mp-568088/Spin_2/lobster_1"""'], {}), "(directory_results, 'Yb14MnSb11/mp-568088/Spin_2/lobster_1')\n", (849, 909), False, 'import os\n'), ((915, 991), 'os.path.join', 'os.path.join', (['directory_results', '"""Yb14MnSb11/mp-568088/Spin_mixed/lobster_1"""'], {}), "(directory_results, 'Yb14MnSb11/mp-568088/Spin_mixed/lobster_1')\n", (927, 991), False, 'import os\n'), ((1043, 1075), 'contextlib.redirect_stdout', 'contextlib.redirect_stdout', (['None'], {}), '(None)\n', (1069, 1075), False, 'import contextlib\n'), ((1284, 1296), 'pymatgen.analysis.bond_valence.BVAnalyzer', 'BVAnalyzer', ([], {}), '()\n', (1294, 1296), False, 'from pymatgen.analysis.bond_valence import BVAnalyzer\n'), ((1409, 1430), 'pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder.LocalGeometryFinder', 'LocalGeometryFinder', ([], {}), '()\n', (1428, 1430), False, 'from pymatgen.analysis.chemenv.coordination_environments.coordination_geometry_finder import LocalGeometryFinder\n'), ((1691, 1762), 'pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies.SimplestChemenvStrategy', 'SimplestChemenvStrategy', ([], {'distance_cutoff': '(1.4)', 'angle_cutoff': 'angle_cutoff'}), '(distance_cutoff=1.4, angle_cutoff=angle_cutoff)\n', (1714, 1762), False, 'from pymatgen.analysis.chemenv.coordination_environments.chemenv_strategies import SimplestChemenvStrategy\n'), ((1781, 1885), 'pymatgen.analysis.chemenv.coordination_environments.structure_environments.LightStructureEnvironments.from_structure_environments', 'LightStructureEnvironments.from_structure_environments', ([], {'strategy': 'strategy', 'structure_environments': 'se'}), '(strategy=strategy,\n structure_environments=se)\n', (1835, 1885), False, 'from pymatgen.analysis.chemenv.coordination_environments.structure_environments import LightStructureEnvironments\n'), ((1094, 1126), 'contextlib.redirect_stderr', 'contextlib.redirect_stderr', (['None'], {}), '(None)\n', (1120, 1126), False, 'import contextlib\n'), ((1173, 1209), 'os.path.join', 'os.path.join', (['directory', '"""POSCAR.gz"""'], {}), "(directory, 'POSCAR.gz')\n", (1185, 1209), False, 'import os\n')]
# -*- coding: utf-8 -*- """ Created on Wed Jun 12 13:50:06 2019 @author: KemyPeti """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import six import tensorflow as tf def _int64_feature(value): """Wrapper for inserting int64 features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(int64_list=tf.train.Int64List(value=value)) def _float_feature(value): """Wrapper for inserting float features into Example proto.""" if not isinstance(value, list): value = [value] return tf.train.Feature(float_list=tf.train.FloatList(value=value)) def _bytes_feature(value): """Wrapper for inserting bytes features into Example proto.""" if isinstance(value, six.string_types): value = six.binary_type(value, encoding='utf-8') return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value])) def AddFeatureToDict(feature_dict, data_to_add_key, data_to_add_value, type_ = "int"): ''' Args: \n\t feature_dict : input feature dict \n\t data_to_add_key : key of the data in dict \n\t data_to_add_value : new data \n\t type_ : "int" for int type / "byte" for bytes / "float" for float Returns: \n\t feature_dict : appended dict ''' if(type_ == "int"): feature_creator = _int64_feature elif(type_ == "byte"): feature_creator = _bytes_feature elif(type_ == "float"): feature_creator = _float_feature else: raise Exception("Incorrect arg: type_") try: feature_dict[data_to_add_key] = feature_creator(data_to_add_value) except: raise Exception("arg type_ and the type of arg data_to_add_value are not consistent") return feature_dict def FeatureDict2TfExample(feature_dict): example = tf.train.Example(features=tf.train.Features(feature=feature_dict)) return example
[ "six.binary_type", "tensorflow.train.Int64List", "tensorflow.train.BytesList", "tensorflow.train.Features", "tensorflow.train.FloatList" ]
[((864, 904), 'six.binary_type', 'six.binary_type', (['value'], {'encoding': '"""utf-8"""'}), "(value, encoding='utf-8')\n", (879, 904), False, 'import six\n'), ((426, 457), 'tensorflow.train.Int64List', 'tf.train.Int64List', ([], {'value': 'value'}), '(value=value)\n', (444, 457), True, 'import tensorflow as tf\n'), ((654, 685), 'tensorflow.train.FloatList', 'tf.train.FloatList', ([], {'value': 'value'}), '(value=value)\n', (672, 685), True, 'import tensorflow as tf\n'), ((945, 978), 'tensorflow.train.BytesList', 'tf.train.BytesList', ([], {'value': '[value]'}), '(value=[value])\n', (963, 978), True, 'import tensorflow as tf\n'), ((2006, 2045), 'tensorflow.train.Features', 'tf.train.Features', ([], {'feature': 'feature_dict'}), '(feature=feature_dict)\n', (2023, 2045), True, 'import tensorflow as tf\n')]
import os from base64 import b64encode import yaml flask_secret_key = b64encode(os.urandom(128)).decode('utf-8') jwt_secret_key = b64encode(os.urandom(128)).decode('utf-8') try: with open('secret_config.yaml') as f: parsed_config = yaml.load(f, yaml.BaseLoader) except FileNotFoundError: parsed_config = dict() parsed_config.update({ 'SECRET_KEY': flask_secret_key, 'JWT_SECRET_KEY': jwt_secret_key }) with open('secret_config.yaml', 'w+') as f: # yaml.dump(parsed_config, f, yaml.BaseDumper) yaml.safe_dump(parsed_config, f) print('Done')
[ "os.urandom", "yaml.safe_dump", "yaml.load" ]
[((531, 563), 'yaml.safe_dump', 'yaml.safe_dump', (['parsed_config', 'f'], {}), '(parsed_config, f)\n', (545, 563), False, 'import yaml\n'), ((247, 276), 'yaml.load', 'yaml.load', (['f', 'yaml.BaseLoader'], {}), '(f, yaml.BaseLoader)\n', (256, 276), False, 'import yaml\n'), ((82, 97), 'os.urandom', 'os.urandom', (['(128)'], {}), '(128)\n', (92, 97), False, 'import os\n'), ((142, 157), 'os.urandom', 'os.urandom', (['(128)'], {}), '(128)\n', (152, 157), False, 'import os\n')]
"""Utilities for sending rabbitmq messages""" import pika from services import logger_service import json import traceback from medaimodels import ModelOutput import services CLASSIFIER_QUEUE = 'classifier_results' EVAL_QUEUE = 'eval_results' LOG_QUEUE = 'log_results' def send_message(queue: str, message): try: rabbit_url = services.settings_service.get_rabbitmq_url() connection = pika.BlockingConnection(pika.URLParameters(rabbit_url)) channel = connection.channel() channel.queue_declare(queue) channel.basic_publish(exchange='', routing_key=queue, body=message) print(f'sent message to {queue}: {message}') connection.close() except: print(f'Failed sending message to {queue}, message: {message}', traceback.format_exc()) def send_notification(msg: str, notification_type: str): """Send notification to the message queue""" message = json.dumps({"message": msg, "type": notification_type}) send_message('notifications', message) def send_model_log(eval_id: str, line: str): message = json.dumps({"evalId": eval_id, "line": line}) send_message('model_log', message) def start_result_queue(): url = services.settings_service.get_rabbitmq_url() connection = pika.BlockingConnection(pika.URLParameters(url)) channel = connection.channel() channel.queue_declare(EVAL_QUEUE) channel.queue_declare(CLASSIFIER_QUEUE) def get_channel(): url = services.settings_service.get_rabbitmq_url() connection = pika.BlockingConnection(pika.URLParameters(url)) channel = connection.channel() return channel
[ "traceback.format_exc", "pika.URLParameters", "json.dumps", "services.settings_service.get_rabbitmq_url" ]
[((992, 1047), 'json.dumps', 'json.dumps', (["{'message': msg, 'type': notification_type}"], {}), "({'message': msg, 'type': notification_type})\n", (1002, 1047), False, 'import json\n'), ((1152, 1197), 'json.dumps', 'json.dumps', (["{'evalId': eval_id, 'line': line}"], {}), "({'evalId': eval_id, 'line': line})\n", (1162, 1197), False, 'import json\n'), ((1275, 1319), 'services.settings_service.get_rabbitmq_url', 'services.settings_service.get_rabbitmq_url', ([], {}), '()\n', (1317, 1319), False, 'import services\n'), ((1535, 1579), 'services.settings_service.get_rabbitmq_url', 'services.settings_service.get_rabbitmq_url', ([], {}), '()\n', (1577, 1579), False, 'import services\n'), ((342, 386), 'services.settings_service.get_rabbitmq_url', 'services.settings_service.get_rabbitmq_url', ([], {}), '()\n', (384, 386), False, 'import services\n'), ((1361, 1384), 'pika.URLParameters', 'pika.URLParameters', (['url'], {}), '(url)\n', (1379, 1384), False, 'import pika\n'), ((1621, 1644), 'pika.URLParameters', 'pika.URLParameters', (['url'], {}), '(url)\n', (1639, 1644), False, 'import pika\n'), ((432, 462), 'pika.URLParameters', 'pika.URLParameters', (['rabbit_url'], {}), '(rabbit_url)\n', (450, 462), False, 'import pika\n'), ((846, 868), 'traceback.format_exc', 'traceback.format_exc', ([], {}), '()\n', (866, 868), False, 'import traceback\n')]
import torch from torch.optim.optimizer import Optimizer import torch.distributed as dist class AdaHessian(Optimizer): """ Implements the AdaHessian algorithm from "ADAHESSIAN: An Adaptive Second OrderOptimizer for Machine Learning" Arguments: params (iterable) -- iterable of parameters to optimize or dicts defining parameter groups lr (float, optional) -- learning rate (default: 0.1) betas ((float, float), optional) -- coefficients used for computing running averages of gradient and the squared hessian trace (default: (0.9, 0.999)) eps (float, optional) -- term added to the denominator to improve numerical stability (default: 1e-8) warmup (int, optional): number of warmup steps (default: 0) init_lr (float, optional): initial learning rate for warmup (default: 0.0) weight_decay (float, optional) -- weight decay (L2 penalty) (default: 0.0) hessian_power (float, optional) -- exponent of the hessian trace (default: 1.0) update_each (int, optional) -- compute the hessian trace approximation only after *this* number of steps (to save time) (default: 1) num_threads (int, optional) -- number of threads for distributed training (default: 1) """ def __init__(self, params, lr=0.1, betas=(0.9, 0.999), eps=1e-4, weight_decay=0.0, warmup=0, init_lr=0.0, hessian_power=1.0, update_each=1, num_threads=1, average_conv_kernel=False): if not 0.0 <= lr: raise ValueError(f"Invalid learning rate: {lr}") if not 0.0 <= eps: raise ValueError(f"Invalid epsilon value: {eps}") if not 0.0 <= betas[0] < 1.0: raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}") if not 0.0 <= betas[1] < 1.0: raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}") if not 0.0 <= warmup: raise ValueError("Invalid warmup updates: {}".format(warmup)) if not 0.0 <= init_lr <= 1.0: raise ValueError("Invalid initial learning rate: {}".format(init_lr)) if not 0.0 <= hessian_power <= 1.0: raise ValueError(f"Invalid Hessian power value: {hessian_power}") self.update_each = update_each self.num_threads = num_threads self.average_conv_kernel = average_conv_kernel defaults = dict(lr=lr, betas=betas, eps=eps, warmup=warmup, init_lr=init_lr, base_lr=lr, weight_decay=weight_decay, hessian_power=hessian_power) super(AdaHessian, self).__init__(params, defaults) for p in self.get_params(): p.hess = 0.0 self.state[p]["hessian step"] = 0 def get_params(self): """ Gets all parameters in all param_groups with gradients """ return (p for group in self.param_groups for p in group['params'] if p.requires_grad) def zero_hessian(self): """ Zeros out the accumalated hessian traces. """ for p in self.get_params(): if not isinstance(p.hess, float) and self.state[p]["hessian step"] % self.update_each == 0: p.hess.zero_() def set_hessian(self): """ Computes the Hutchinson approximation of the hessian trace and accumulates it for each trainable parameter. """ params = [] for p in filter(lambda p: p.grad is not None, self.get_params()): if self.state[p]["hessian step"] % self.update_each == 0: # compute the trace only each `update_each` step params.append(p) self.state[p]["hessian step"] += 1 if len(params) == 0: return grads = [p.grad for p in params] # Rademacher distribution {-1.0, 1.0} zs = [torch.randint_like(p, high=2) * 2.0 - 1.0 for p in params] # sync zs for distributed setting if self.num_threads > 1: for z in zs: dist.broadcast(z, src=0) hzs = torch.autograd.grad(grads, params, grad_outputs=zs, only_inputs=True, retain_graph=True) for hz, z, p in zip(hzs, zs, params): hut_trace = (hz * z).contiguous() # approximate the expected values of z*(H@z) if self.num_threads > 1: dist.all_reduce(hut_trace) hut_trace.div_(self.num_threads) p.hess = hut_trace @torch.no_grad() def step(self, closure=None): """ Performs a single optimization step. Arguments: closure (callable, optional) -- a closure that reevaluates the model and returns the loss (default: None) """ loss = None if closure is not None: loss = closure() self.zero_hessian() self.set_hessian() for group in self.param_groups: for p in group['params']: if p.grad is None or p.hess is None: continue if self.average_conv_kernel and p.dim() == 4: p.hess = torch.abs(p.hess).mean(dim=[2, 3], keepdim=True).expand_as(p.hess).clone() state = self.state[p] # State initialization if len(state) == 1: state['step'] = 0 state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of gradient values state['exp_hessian_diag_sq'] = torch.zeros_like(p.data) # Exponential moving average of Hessian diagonal square values # Calculate current lr if state['step'] < group['warmup']: curr_lr = (group['base_lr'] - group['init_lr']) * state['step'] / group['warmup'] + group['init_lr'] else: curr_lr = group['lr'] # Perform correct stepweight decay as in AdamW p.mul_(1 - curr_lr * group['weight_decay']) exp_avg, exp_hessian_diag_sq = state['exp_avg'], state['exp_hessian_diag_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(p.grad, alpha=1 - beta1) exp_hessian_diag_sq.mul_(beta2).addcmul_(p.hess, p.hess, value=1 - beta2) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] k = group['hessian_power'] denom = (exp_hessian_diag_sq / bias_correction2).pow_(k / 2).add_(group['eps']) # make update step_size = curr_lr / bias_correction1 p.addcdiv_(exp_avg, denom, value=-step_size) return loss
[ "torch.abs", "torch.randint_like", "torch.distributed.all_reduce", "torch.distributed.broadcast", "torch.autograd.grad", "torch.no_grad", "torch.zeros_like" ]
[((4418, 4433), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (4431, 4433), False, 'import torch\n'), ((4024, 4116), 'torch.autograd.grad', 'torch.autograd.grad', (['grads', 'params'], {'grad_outputs': 'zs', 'only_inputs': '(True)', 'retain_graph': '(True)'}), '(grads, params, grad_outputs=zs, only_inputs=True,\n retain_graph=True)\n', (4043, 4116), False, 'import torch\n'), ((3984, 4008), 'torch.distributed.broadcast', 'dist.broadcast', (['z'], {'src': '(0)'}), '(z, src=0)\n', (3998, 4008), True, 'import torch.distributed as dist\n'), ((4305, 4331), 'torch.distributed.all_reduce', 'dist.all_reduce', (['hut_trace'], {}), '(hut_trace)\n', (4320, 4331), True, 'import torch.distributed as dist\n'), ((3809, 3838), 'torch.randint_like', 'torch.randint_like', (['p'], {'high': '(2)'}), '(p, high=2)\n', (3827, 3838), False, 'import torch\n'), ((5332, 5356), 'torch.zeros_like', 'torch.zeros_like', (['p.data'], {}), '(p.data)\n', (5348, 5356), False, 'import torch\n'), ((5457, 5481), 'torch.zeros_like', 'torch.zeros_like', (['p.data'], {}), '(p.data)\n', (5473, 5481), False, 'import torch\n'), ((5065, 5082), 'torch.abs', 'torch.abs', (['p.hess'], {}), '(p.hess)\n', (5074, 5082), False, 'import torch\n')]
import argparse import numpy as np import matplotlib.pyplot as plt from scipy import stats from utils import StateFactory def argmax(array): rows = range(array.shape[0]) cols = array.argmax(axis=1) return rows, cols def compute_prob(dim, mu, rho, sigma, tau, state_factory): state = state_factory() exclusive = state.randn(3 * dim) * (sigma ** 2 - rho) ** 0.5 shared = mu + state.randn() * rho ** 0.5 theta = shared + exclusive # making one observation per entry x0 = np.zeros(3 * dim) x0[:dim] = -1.0 / dim ** 0.5 x1 = np.zeros(3 * dim) x1[:dim] = -1.0 / dim ** 0.5 x1[dim:] = +1.0 / dim ** 0.5 # check whether x1 is the optimal arm x1_optimal = theta @ x1 > theta @ x0 and theta @ x1 > 0 # check whether x0 is the first choice sample = state.randn(3 * dim) x0_selected = sample @ x0 > 0 and sample @ x0 > sample @ x1 # the observation after the first round y = theta @ x0 + state.randn() * tau mean = (y * x0) / (1 + x0 @ x0) # computing the probability that x0 is pulled at t=2 mean0 = mean @ x0 var0 = (x0 @ x0) / (1 + x0 @ x0) ratio0 = mean0 / var0 ** 0.5 prob0 = stats.norm.cdf(ratio0) # computing the probability that x1 is pulled at t=2 mean1 = mean @ x1 var1 = x1 @ (x1 - x0 * (x0 @ x0) / (1 + x0 @ x0)) ratio1 = mean1 / var1 ** 0.5 prob1 = stats.norm.cdf(ratio1) # applying the union bound prob = prob0 + prob1 return np.array([x1_optimal, x0_selected, 1.0 / prob]) def run_experiment(n_iter, dim, mu, rho, sigma, tau, seed): state_factory = StateFactory(seed) results = np.stack( [compute_prob(dim, mu, rho, sigma, tau, state_factory) for _ in range(n_iter)] ) if rho > 0.5: print(results) exit(0) return results def __main__(): types = ["mu", "rho", "dim"] labels = { "mu": "$\\mu$", "rho": "$\\rho$", "dim": "$d$", } parser = argparse.ArgumentParser( description="Verify the Thompson sampling failures empirically." ) parser.add_argument("--n-iter", type=int, help="number of iterations", default=50) parser.add_argument( "--n-value", type=int, help="number of different values to try", default=21 ) parser.add_argument( "--dim", type=int, help="number of iterations", default=50 * 1000 ) parser.add_argument("--mu", type=float, help="prior mean", default=0.01) parser.add_argument("--rho", type=float, help="prior correlation", default=0.0) parser.add_argument("--sigma", type=float, help="prior sd", default=1.0) parser.add_argument("--tau", type=float, help="noise sd", default=1.0) parser.add_argument("--seed", type=int, help="initial random seed", default=1) parser.add_argument( "--change", type=str, help="varying parameter", choices=types, default="dim" ) args = parser.parse_args() xticks = None xrots = "0" if args.change == "mu": mus = np.linspace(0.0, args.mu, args.n_value) xticks = [f"{i:.2f}" for i in mus] xrots = "45" else: mus = np.repeat(args.mu, args.n_value) if args.change == "rho": rhos = np.linspace(0.0, args.rho, args.n_value) xticks = [f"{i:.2f}" for i in rhos] xrots = "45" else: rhos = np.repeat(args.rho, args.n_value) if args.change == "dim": dims = 2 ** np.arange(1, args.n_value + 1) args.dim = dims[-1] xticks = [f"$2^{{{i}}}$" for i in range(args.n_value)] else: dims = np.repeat(args.dim, args.n_value).astype(np.int) results = [] for mu, rho, dim in zip(mus, rhos, dims): print(f"Running experiment with mu = {mu:.3f} rho = {rho:.3f} dim = {dim}") results.append( run_experiment( n_iter=args.n_iter, dim=dim, mu=mu, rho=rho, sigma=args.sigma, tau=args.tau, seed=args.seed, ) ) results = np.array(results) # plotting the data y = results[:, :, 2].T plt.yscale('log') plt.boxplot(y, positions=range(args.n_value), showfliers=False) plt.xticks(range(args.n_value), xticks, rotation=xrots) plt.xlabel(labels[args.change]) plt.ylabel("Expected number of failures for LinTS") plt.tight_layout() plt.savefig( f"plots/example-2-{args.change}-{args.dim}-{args.mu}-{args.rho}-{args.seed}.pdf" ) print(f"Ratio of times x1 is optimal:") print(f"\t{results[:, :, 0].mean(axis=1)}") print(f"Ratio of times x0 is selected at t=0:") print(f"\t{results[:, :, 1].mean(axis=1)}") print("Experiment finished successfully.") if __name__ == "__main__": __main__()
[ "matplotlib.pyplot.savefig", "numpy.repeat", "argparse.ArgumentParser", "matplotlib.pyplot.ylabel", "utils.StateFactory", "matplotlib.pyplot.xlabel", "numpy.array", "numpy.zeros", "numpy.linspace", "matplotlib.pyplot.tight_layout", "scipy.stats.norm.cdf", "matplotlib.pyplot.yscale", "numpy.arange" ]
[((515, 532), 'numpy.zeros', 'np.zeros', (['(3 * dim)'], {}), '(3 * dim)\n', (523, 532), True, 'import numpy as np\n'), ((576, 593), 'numpy.zeros', 'np.zeros', (['(3 * dim)'], {}), '(3 * dim)\n', (584, 593), True, 'import numpy as np\n'), ((1189, 1211), 'scipy.stats.norm.cdf', 'stats.norm.cdf', (['ratio0'], {}), '(ratio0)\n', (1203, 1211), False, 'from scipy import stats\n'), ((1391, 1413), 'scipy.stats.norm.cdf', 'stats.norm.cdf', (['ratio1'], {}), '(ratio1)\n', (1405, 1413), False, 'from scipy import stats\n'), ((1483, 1530), 'numpy.array', 'np.array', (['[x1_optimal, x0_selected, 1.0 / prob]'], {}), '([x1_optimal, x0_selected, 1.0 / prob])\n', (1491, 1530), True, 'import numpy as np\n'), ((1613, 1631), 'utils.StateFactory', 'StateFactory', (['seed'], {}), '(seed)\n', (1625, 1631), False, 'from utils import StateFactory\n'), ((1986, 2080), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Verify the Thompson sampling failures empirically."""'}), "(description=\n 'Verify the Thompson sampling failures empirically.')\n", (2009, 2080), False, 'import argparse\n'), ((4079, 4096), 'numpy.array', 'np.array', (['results'], {}), '(results)\n', (4087, 4096), True, 'import numpy as np\n'), ((4153, 4170), 'matplotlib.pyplot.yscale', 'plt.yscale', (['"""log"""'], {}), "('log')\n", (4163, 4170), True, 'import matplotlib.pyplot as plt\n'), ((4304, 4335), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['labels[args.change]'], {}), '(labels[args.change])\n', (4314, 4335), True, 'import matplotlib.pyplot as plt\n'), ((4340, 4391), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Expected number of failures for LinTS"""'], {}), "('Expected number of failures for LinTS')\n", (4350, 4391), True, 'import matplotlib.pyplot as plt\n'), ((4396, 4414), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (4412, 4414), True, 'import matplotlib.pyplot as plt\n'), ((4420, 4523), 'matplotlib.pyplot.savefig', 'plt.savefig', (['f"""plots/example-2-{args.change}-{args.dim}-{args.mu}-{args.rho}-{args.seed}.pdf"""'], {}), "(\n f'plots/example-2-{args.change}-{args.dim}-{args.mu}-{args.rho}-{args.seed}.pdf'\n )\n", (4431, 4523), True, 'import matplotlib.pyplot as plt\n'), ((3019, 3058), 'numpy.linspace', 'np.linspace', (['(0.0)', 'args.mu', 'args.n_value'], {}), '(0.0, args.mu, args.n_value)\n', (3030, 3058), True, 'import numpy as np\n'), ((3147, 3179), 'numpy.repeat', 'np.repeat', (['args.mu', 'args.n_value'], {}), '(args.mu, args.n_value)\n', (3156, 3179), True, 'import numpy as np\n'), ((3225, 3265), 'numpy.linspace', 'np.linspace', (['(0.0)', 'args.rho', 'args.n_value'], {}), '(0.0, args.rho, args.n_value)\n', (3236, 3265), True, 'import numpy as np\n'), ((3356, 3389), 'numpy.repeat', 'np.repeat', (['args.rho', 'args.n_value'], {}), '(args.rho, args.n_value)\n', (3365, 3389), True, 'import numpy as np\n'), ((3440, 3470), 'numpy.arange', 'np.arange', (['(1)', '(args.n_value + 1)'], {}), '(1, args.n_value + 1)\n', (3449, 3470), True, 'import numpy as np\n'), ((3587, 3620), 'numpy.repeat', 'np.repeat', (['args.dim', 'args.n_value'], {}), '(args.dim, args.n_value)\n', (3596, 3620), True, 'import numpy as np\n')]
#!/usr/bin/env python import os import sys from ricecooker.utils import downloader, html_writer from ricecooker.chefs import SushiChef from ricecooker.classes import nodes, files, questions from ricecooker.config import LOGGER # Use LOGGER to print messages from ricecooker.exceptions import raise_for_invalid_channel from le_utils.constants import exercises, content_kinds, file_formats, format_presets, languages, licenses import cssutils import requests import youtube_dl from bs4 import BeautifulSoup from io import BytesIO from PIL import Image import logging cssutils.log.setLevel(logging.CRITICAL) # Run constants ################################################################################ CHANNEL_NAME = "Exploratorium" # Name of channel CHANNEL_SOURCE_ID = "sushi-chef-exploratorium" # Channel's unique id CHANNEL_DOMAIN = "www.exploratorium.edu" # Who is providing the content CHANNEL_LANGUAGE = "en" # Language of channel CHANNEL_DESCRIPTION = "Science tools and experiences helping " + \ "students become active explorers: hundreds of " + \ "explore-for-yourself exhibits, activities, " + \ "videos, and much more. Appropriate for all " + \ "ages of students, as supplementary, hands-on " + \ "demonstration of scientific principles." CHANNEL_THUMBNAIL = "http://wtxec.org/exploratorium_tm.jpg" # Local path or url to image file (optional) # Additional constants ################################################################################ COPYRIGHT_HOLDER = "Exploratorium Teacher Institute" LICENSE = licenses.CC_BY_NC_SA BASE_URL = "https://www.exploratorium.edu/{}" SNACK_URL = "https://www.exploratorium.edu/snacks/snacks-by-subject" VIDEO_URL = "https://www.exploratorium.edu/video/subjects" BRIGHTCOVE_URL = "http://players.brightcove.net/{account}/{player}_default/index.html?videoId={videoid}" IMAGE_EXTENSIONS = ['jpeg', 'jpg', 'gif', 'png', 'svg'] DOWNLOAD_ATTEMPTS = 25 # Directory to download snacks (html zips) into SNACK_DIRECTORY = "{}{}{}".format(os.path.dirname(os.path.realpath(__file__)), os.path.sep, "snacks") if not os.path.exists(SNACK_DIRECTORY): os.makedirs(SNACK_DIRECTORY) # Directory to download videos into VIDEO_DIRECTORY = "{}{}{}".format(os.path.dirname(os.path.realpath(__file__)), os.path.sep, "videos") if not os.path.exists(VIDEO_DIRECTORY): os.makedirs(VIDEO_DIRECTORY) # Directory to download shared assets (e.g. pngs, gifs, svgs) from stylesheets into SHARED_ASSET_DIRECTORY = os.path.sep.join([SNACK_DIRECTORY, "shared-assets"]) if not os.path.exists(SHARED_ASSET_DIRECTORY): os.makedirs(SHARED_ASSET_DIRECTORY) # The chef subclass ################################################################################ class MyChef(SushiChef): """ This class uploads the Exploratorium channel to Kolibri Studio. Your command line script should call the `main` method as the entry point, which performs the following steps: - Parse command line arguments and options (run `./sushichef.py -h` for details) - Call the `SushiChef.run` method which in turn calls `pre_run` (optional) and then the ricecooker function `uploadchannel` which in turn calls this class' `get_channel` method to get channel info, then `construct_channel` to build the contentnode tree. For more info, see https://github.com/learningequality/ricecooker/tree/master/docs """ channel_info = { # Channel Metadata 'CHANNEL_SOURCE_DOMAIN': CHANNEL_DOMAIN, # Who is providing the content 'CHANNEL_SOURCE_ID': CHANNEL_SOURCE_ID, # Channel's unique id 'CHANNEL_TITLE': CHANNEL_NAME, # Name of channel 'CHANNEL_LANGUAGE': CHANNEL_LANGUAGE, # Language of channel 'CHANNEL_THUMBNAIL': CHANNEL_THUMBNAIL, # Local path or url to image file (optional) 'CHANNEL_DESCRIPTION': CHANNEL_DESCRIPTION, # Description of the channel (optional) } # Your chef subclass can override/extend the following method: # get_channel: to create ChannelNode manually instead of using channel_info # pre_run: to perform preliminary tasks, e.g., crawling and scraping website # __init__: if need to customize functionality or add command line arguments def construct_channel(self, *args, **kwargs): """ Creates ChannelNode and build topic tree Args: - args: arguments passed in during upload_channel (currently None) - kwargs: extra argumens and options not handled by `uploadchannel`. For example, add the command line option lang="fr" and the string "fr" will be passed along to `construct_channel` as kwargs['lang']. Returns: ChannelNode Channel structure: Activities Subject Subdirectory (if any) Activity.zip Videos Subject Collection Video.mp4 """ channel = self.get_channel(*args, **kwargs) # Create ChannelNode from data in self.channel_info channel.add_child(scrape_snack_menu(SNACK_URL)) channel.add_child(scrape_video_menu(VIDEO_URL)) raise_for_invalid_channel(channel) # Check for errors in channel construction return channel def read(url): """ Read contents from url Args: url (str): url to read Returns contents from url """ return downloader.read(format_url(url)) def format_url(url): """ Format relative urls to be absolute urls Args: url (str): url to format Returns absolute url (str) """ if url.startswith('http'): return url return BASE_URL.format(url.lstrip('/')) def get_next_page_url(contents): """ Get link to next page Args: contents (BeautifulSoup): page contents to search for next page Returns link to next page (str) """ next_link = contents.find('li', {'class': 'pager-next'}) if next_link: return next_link.find('a')['href'] def get_thumbnail_url(url): """ Get thumbnail, converting gifs to pngs if necessary Args: url (str): thumbnail url Returns link to next page (str) """ url = url.split("?")[0].rstrip("%20") # Convert gifs to pngs if url.endswith('.gif'): imgfile = BytesIO(read(url)) url = os.path.sep.join([SNACK_DIRECTORY, url.split("/")[-1].replace('gif', 'png')]) with Image.open(imgfile) as img: img.save(url,'png', optimize=True, quality=70) return url or None def get_brightcove_mapping(contents, get_playlist=False): """ Scrape contents for brightcove videos Args: contents (BeautifulSoup): page contents get_playlist (bool): determines whether or not to scrape for playlists too Returns mapping of brightcove urls and data """ brightcove_mapping = {} account = "" # Store account number as it isn't stored on playlist video elements # Get main videos for video in contents.find_all('video', {'class': 'bc5player'}): account = video['data-account'] attribution = contents.find('div', {'class': 'attribution'}) brightcove_mapping.update({video['data-video-id']: { "original_el": video, "author": attribution and attribution.text, "url": BRIGHTCOVE_URL.format(account=video['data-account'], player=video['data-player'], videoid=video['data-video-id']) }}) # Add videos from brightcove playlists playlist = contents.find('div', {'id': 'media-collection-banner-playlist'}) if get_playlist and playlist: for video in playlist.find_all('div', {'class': 'playlist-item'}): brightcove_mapping.update({video['data-id']: { "title": video['data-title'], "append_to": playlist, "url": BRIGHTCOVE_URL.format(account=account, player=video['data-pid'], videoid=video['data-id']), }}) return brightcove_mapping # Video scraping functions ################################################################################ def scrape_video_menu(url): """ Scrape videos from url Args: url (str): url to scrape from (e.g. https://www.exploratorium.edu/video/subjects) Returns TopicNode containing all videos """ LOGGER.info("SCRAPING VIDEOS...") video_topic = nodes.TopicNode(title="Videos", source_id="main-topic-videos") contents = BeautifulSoup(read(url), 'html5lib') for subject in contents.find_all('div', {'class': 'subject'}): title = subject.find('div', {'class': 'name'}).text.strip().replace("’", "'") LOGGER.info(" {}".format(title)) topic = nodes.TopicNode( title=title, source_id="videos-{}".format(title), thumbnail=get_thumbnail_url(subject.find('img')['src']), ) video_topic.add_child(topic) scrape_video_subject(subject.find('a')['href'], topic) return video_topic def scrape_video_subject(url, topic): """ Scrape collections under video subject and add to the topic node Args: url (str): url to subject page (e.g. https://www.exploratorium.edu/search/video?f[0]=field_activity_subject%3A565) topic (TopicNode): topic to add collection nodes to """ contents = BeautifulSoup(read(url), 'html5lib') sidebar = contents.find("div", {"id": "filter_content"}).find("div", {"class": "content"}) for collection in sidebar.find_all("li"): title = collection.find('span').text.replace('filter', '').replace("Apply", "").strip().replace("’", "'") LOGGER.info(" {}".format(title)) collection_topic = nodes.TopicNode(title=title, source_id="videos-collection-{}".format(title)) topic.add_child(collection_topic) scrape_video_collection(collection.find('a')['href'], collection_topic) def scrape_video_collection(url, topic): """ Scrape videos under video collection and add to the topic node Args: url (str): url to video page (e.g. https://www.exploratorium.edu/video/inflatable-jimmy-kuehnle) topic (TopicNode): topic to add video nodes to """ try: collection_contents = BeautifulSoup(read(url), 'html5lib') for result in collection_contents.find_all('div', {'class': 'search-result'}): header = result.find('div', {'class': 'views-field-field-html-title'}) LOGGER.info(" {}".format(header.text.strip())) # Get video from given url description = result.find('div', {'class': 'search-description'}) video_contents = BeautifulSoup(read(header.find('a')['href']), 'html.parser') for k, v in get_brightcove_mapping(video_contents).items(): video_node = nodes.VideoNode( source_id = k, title = header.text.strip().replace("’", "'"), description = description.text.strip() if description else "", license = LICENSE, copyright_holder = COPYRIGHT_HOLDER, author = v.get('author') or "", files = [files.WebVideoFile(v['url'], high_resolution=False)], thumbnail = get_thumbnail_url(result.find('img')['src']), ) # If video doesn't already exist here, add to topic if not next((c for c in topic.children if c.source_id == video_node.source_id), None): topic.add_child(video_node) # Scrape next page (if any) next_page_url = get_next_page_url(collection_contents) if next_page_url: scrape_video_collection(next_page_url, topic) except requests.exceptions.HTTPError: LOGGER.error("Could not read collection at {}".format(url)) # Activity scraping functions ################################################################################ def scrape_snack_menu(url): """ Scrape snacks (activities) from url Args: url (str): url to scrape from (e.g. https://www.exploratorium.edu/snacks/snacks-by-subject) Returns TopicNode containing all snacks """ LOGGER.info("SCRAPING ACTIVITIES...") snack_topic = nodes.TopicNode(title="Activities", source_id="main-topic-activities") contents = BeautifulSoup(read(url), 'html5lib') # Get #main-content-container .field-items contents = contents.find('div', {'id': 'main-content-container'})\ .find('div', {'class': 'field-items'}) for column in contents.find_all('ul', {'class': 'menu'}): # Skip nested .menu list items (captured in subdirectory) if column.parent.name == 'li': continue # Go through top-level li elements for li in column.find_all('li', recursive=False): link = li.find('a') LOGGER.info(" {}".format(link['title'])) topic = nodes.TopicNode(title=link['title'].replace("’", "'"), source_id=link['href']) snack_topic.add_child(topic) # Scrape subcategories (if any) if li.find('ul'): for sublink in li.find('ul').find_all('a'): LOGGER.info(" > {}".format(sublink['title'])) subtopic = nodes.TopicNode(title=sublink['title'].replace("’", "'"), source_id=sublink['href']) topic.add_child(subtopic) scrape_snack_subject(sublink['href'], subtopic) else: scrape_snack_subject(link['href'], topic) return snack_topic def scrape_snack_subject(slug, topic): """ Scrape snack subject page Args: slug (str): url slug to scrape from (e.g. /subject/arts) topic (TopicNode): topic to add html nodes to """ contents = BeautifulSoup(read(slug), 'html5lib') for activity in contents.find_all('div', {'class': 'activity'}): LOGGER.info(" {}".format(activity.find('h5').text.strip())) # Scrape snack pages into zips write_to_path, tags = scrape_snack_page(activity.find('a')['href']) if not write_to_path: continue # Create html node description = activity.find('div', {'class': 'pod-description'}) topic.add_child(nodes.HTML5AppNode( source_id = activity.find('a')['href'], title = activity.find('h5').text.strip().replace("’", "'"), description = description.text.strip() if description else "", license = LICENSE, copyright_holder = COPYRIGHT_HOLDER, files = [files.HTMLZipFile(path=write_to_path)], thumbnail = get_thumbnail_url(activity.find('img')['src']), tags=tags, )) # Scrape next page (if any) next_page_url = get_next_page_url(contents) if next_page_url: scrape_snack_subject(next_page_url, topic) def scrape_snack_page(slug, attempts=5): """ Writes activity to a zipfile Args: slug (str): url slug (e.g. /snacks/drawing-board) attemps (int): number of times to attempt a download Returns write_to_path (str): path to generated zip tags ([str]): list of tags scraped from activity page """ tags = [] write_to_path = os.path.sep.join([SNACK_DIRECTORY, "{}.zip".format(slug.split('/')[-1])]) try: contents = BeautifulSoup(read(slug), 'html5lib') main_contents = contents.find('div', {'class': 'activity'}) # Gather keywords from page tags.extend(scrape_keywords(main_contents, 'field-name-field-activity-subject')) tags.extend(scrape_keywords(main_contents, 'field-name-field-activity-tags')) # Don't rezip activities that have already been zipped if os.path.isfile(write_to_path): return write_to_path, tags with html_writer.HTMLWriter(write_to_path) as zipper: write_contents = BeautifulSoup("", "html5lib") # Scrape stylesheets for stylesheet in contents.find_all('link', {'rel': 'stylesheet'}): # Don't scrape external style sheets (e.g. fontawesome, google fonts) if "exploratorium.edu" not in stylesheet['href']: continue style_contents = scrape_style(stylesheet['href'], zipper) filename = stylesheet['href'].split('/')[-1] stylesheet['href'] = zipper.write_contents(filename, style_contents, directory="css") write_contents.head.append(stylesheet) # Remove scripts and any unneeded sections cluster = main_contents.find('div', {'id': 'curated-cluster'}) cluster and cluster.decompose() service_links = main_contents.find('div', {'class': 'activity-service-links'}) service_links and service_links.decompose() for script in main_contents.find_all("script"): script.decompose() # Get rid of hardcoded height/width on slideshow element slideshow = main_contents.find('div', {'class': 'field-slideshow'}) if slideshow: del slideshow['style'] # Add images for img in main_contents.find_all('img'): img['src'] = zipper.write_url(format_url(img['src']), img['src'].split('/')[-1], directory="images") # Add videos embedded from youtube for video in main_contents.find_all('div', {'class': 'yt-player'}): yt_video_path = download_web_video(video['data-ytid'], "{}.mp4".format(video['data-ytid'])) video_tag = generate_video_tag(yt_video_path, zipper) video_tag['style'] = video.find('div', {'class': 'placeholder'}).get('style') video.replaceWith(video_tag) # Add videos embedded from brightcove and remove playlist element (if any) for k, v in get_brightcove_mapping(main_contents, get_playlist=True).items(): video_path = download_web_video(v['url'], "{}.mp4".format(k)) if v.get('original_el'): v['original_el'].replaceWith(generate_video_tag(video_path, zipper)) elif v.get('append_to'): if v.get('title'): p_tag = contents.new_tag("p") p_tag.string = v['title'] p_tag['style'] = "margin-top: 40px; margin-bottom: 10px" v['append_to'].parent.append(p_tag) v['append_to'].parent.append(generate_video_tag(video_path, zipper)) playlist = main_contents.find('div', {'id': 'media-collection-banner-playlist'}) if playlist: playlist.decompose() # Handle links (need to start with parent as beautifulsoup returns parent as None on links) for paragraph in main_contents.find_all('p') + main_contents.find_all('li'): for link in paragraph.find_all('a'): # Skip any previously parsed links if zipper.contains(link['href']): continue # Just bold activities and remove link elif "exploratorium.edu/snacks/" in link['href']: bold_tag = contents.new_tag("b") bold_tag.string = link.text link.replaceWith(bold_tag) # If it's an image, replace the tag with just the image elif link.find('img'): link.replaceWith(link.find('img')) # Get downloadable files and attach them to new pages elif "/sites/default/files/" in link['href']: link['href'] = generate_download_page(link['href'], zipper) # Get any referenced videos elif "exploratorium.edu" in link['href']: linked_page = BeautifulSoup(read(link['href']), 'html5lib') link.replaceWith(link.text.replace(link['href'], '')) for k, v in get_brightcove_mapping(linked_page).items(): video_path = download_web_video(v['url'], "{}.mp4".format(k)) paragraph.append(generate_video_tag(video_path, zipper)) # Scrape any images elif next((e for e in IMAGE_EXTENSIONS if link['href'].lower().endswith(e)), None): img_tag = contents.new_tag('img') img_tag['src'] = zipper.write_url(link['href'], link['href'].split('/')[-1], directory="images") img_tag['style'] = "max-width: 100%;" paragraph.append(img_tag) link.replaceWith(link.text) # Remove hyperlink from external links else: if link['href'] not in link.text and link.text not in link['href']: link.string += " ({}) ".format(link['href']) link.replaceWith(link.text) # Write contents and custom tags write_contents.body.append(main_contents) write_contents.head.append(generate_custom_style_tag()) # Add custom style tag write_contents.body.append(generate_custom_script_tag()) # Add custom script to handle slideshow # Write main index.html file zipper.write_index_contents(write_contents.prettify().encode('utf-8-sig')) except Exception as e: # Reattempt if there are attempts left if attempts > 0: return scrape_snack_page(slug, attempts=attempts-1) else: LOGGER.error("Could not scrape {} ({})".format(slug, str(e))) return write_to_path, tags def generate_download_page(url, zipper): """ Create a page for files that are meant to be downloaded (e.g. worksheets) Args: url (str): url to file that is meant to be downloaded zipper (html_writer): where to write download page to Returns path to page in zipfile (str) """ # Get template soup soup = BeautifulSoup("", "html.parser") with open('download.html', 'rb') as templatecode: newpage = BeautifulSoup(templatecode.read(), 'html5lib') # Determine if link is one of the recognized file types download_url = url.split("?")[0] filename = download_url.split("/")[-1] if download_url.endswith('pdf'): render_tag = soup.new_tag('embed') elif next((e for e in IMAGE_EXTENSIONS if download_url.lower().endswith(e)), None): render_tag = soup.new_tag('img') else: LOGGER.error("Unknown file type found at {}".format(download_url)) return "" # Add tag to new page and write page to zip render_tag['src'] = zipper.write_url(format_url(download_url), filename) newpage.body.append(render_tag) return zipper.write_contents(filename.split('.')[0] + ".html", newpage.prettify()) def generate_video_tag(filepath, zipper): """ Downloads video into zip and creates a corresponding <video> tag Args: filepath (str): path to video to zip zipper (html_writer): where to write video to Returns <video> tag """ soup = BeautifulSoup("", "html.parser") video_tag = soup.new_tag("video") source_tag = soup.new_tag("source") source_tag['src'] = zipper.write_file(filepath, directory="videos") source_tag['type'] = "video/mp4" video_tag['controls'] = 'true' video_tag['style'] = "width: 100%;" video_tag.append(source_tag) return video_tag def generate_custom_style_tag(): """ Creates a custom style tag with extra css rules to add to zips Returns <style> tag """ soup = BeautifulSoup("", "html.parser") style_tag = soup.new_tag('style') style_tag.string = "body { padding: 50px; }" style_tag.string += ".activity {max-width: 900; margin: auto;}" style_tag.string += ".underline { text-decoration: underline; }" style_tag.string += "b, strong, h1, h3 {font-weight: 700 !important;}" style_tag.string += "body, h1, h2, h3, h4, h5, h6, p, table, tr, td, th, ul, li, ol, dd, dl" style_tag.string += "{ font-family: \"Trebuchet MS\", Helvetica, sans-serif !important; }" style_tag.string += ".bcVideoWrapper:after {padding-top: 0 !important; }" style_tag.string += "#media-collection-banner-content-container {background-color: transparent !important}" style_tag.string += "#media-collection-banner-content-container #media-collection-video-container" style_tag.string += "{ float: none; width: 100%; }" return style_tag def generate_custom_script_tag(): """ Creates a custom script tag to handle slideshow elements Returns <script> tag """ soup = BeautifulSoup("", "html.parser") script_tag = soup.new_tag('script') script_tag["type"] = "text/javascript" script_tag.string = "var image = document.getElementsByClassName('field-slideshow-image-1')[0];" script_tag.string += "var tn = document.getElementsByClassName('field-slideshow-thumbnail');" script_tag.string += "function setImage(tn) {image.setAttribute('src', tn.getAttribute('src'));}" script_tag.string += "if(tn.length){setInterval(function() {setImage(tn[Math.floor(Math.random()*tn.length)]);}, 3000);" script_tag.string += "for (var i = 0; i < tn.length; i++)" script_tag.string += "tn[i].addEventListener('click', function(ev) {setImage(ev.target);}, false);}" return script_tag def download_web_video(url, filename): """ Downloads a web video to the video directory Args: url (str): url to video to download filename (str): name to save video under Returns local path to video (str) """ # Generate write to path and download if it doesn't exist yet write_to_path = os.path.sep.join([VIDEO_DIRECTORY, filename]) if not os.path.isfile(write_to_path): download(url, write_to_path) return write_to_path def download(url, write_to_path, attempts=DOWNLOAD_ATTEMPTS): """ Download the web video Args: url (str): url to video to download write_to_path (str): where to write video to attempts (int): how many times to reattempt a download """ try: video_format = "bestvideo[height<=480][ext=mp4]+bestaudio[ext=m4a]/best[height<=480][ext=mp4]" with youtube_dl.YoutubeDL({"format": video_format, "outtmpl": write_to_path}) as ydl: ydl.download([url]) except youtube_dl.utils.DownloadError as e: # If there are more attempts, try again. Otherwise, return error if attempts > 0: download(url, write_to_path, attempts=attempts-1) else: LOGGER.error("Could not download video {} ({})".format(url, str(e))) raise e def scrape_keywords(contents, el): """ Scrape page contents for keywords Args: contents (BeautifulSoup): contents to scrape el (str): element class to look for Returns list of tags ([str]) """ soup = BeautifulSoup("<div></div>", "html.parser") tags = [] keyword_section = contents.find('div', {'class': el}) if keyword_section: for related in keyword_section.find_all('a'): i_tag = soup.new_tag('span') i_tag.string = related.text i_tag['class'] = "underline" tags.append(related.text[:30]) related.replaceWith(i_tag) # Remove links to other pages return tags def scrape_style(url, zipper): """ Scrape any instances of url(...) Args: url (str): url to css file zipper (html_writer): zip to write to Returns str of css style rules """ sheet = cssutils.parseUrl(url) rules = sheet.cssText.decode('utf-8') # Parse urls in css for url in cssutils.getUrls(sheet): try: # Download any urls in css to the shared asset directory (if not already there) filename = url.split('?')[0].split('/')[-1] filepath = os.path.sep.join([SHARED_ASSET_DIRECTORY, filename]) if not os.path.isfile(filepath): with open(filepath, 'wb') as fobj: fobj.write(read(url)) # Replace text with new url new_url = zipper.write_file(filepath, filename, directory="assets") rules = rules.replace(url, "../" + new_url) except requests.exceptions.HTTPError: LOGGER.warning("Could not download css url {}".format(url)) return rules # CLI ################################################################################ if __name__ == '__main__': # This code runs when sushichef.py is called from the command line chef = MyChef() chef.main()
[ "os.path.exists", "ricecooker.classes.files.HTMLZipFile", "PIL.Image.open", "ricecooker.exceptions.raise_for_invalid_channel", "ricecooker.classes.files.WebVideoFile", "os.makedirs", "ricecooker.config.LOGGER.info", "ricecooker.classes.nodes.TopicNode", "cssutils.parseUrl", "cssutils.log.setLevel", "bs4.BeautifulSoup", "cssutils.getUrls", "os.path.sep.join", "os.path.realpath", "os.path.isfile", "youtube_dl.YoutubeDL", "ricecooker.utils.html_writer.HTMLWriter" ]
[((580, 619), 'cssutils.log.setLevel', 'cssutils.log.setLevel', (['logging.CRITICAL'], {}), '(logging.CRITICAL)\n', (601, 619), False, 'import cssutils\n'), ((2598, 2650), 'os.path.sep.join', 'os.path.sep.join', (["[SNACK_DIRECTORY, 'shared-assets']"], {}), "([SNACK_DIRECTORY, 'shared-assets'])\n", (2614, 2650), False, 'import os\n'), ((2210, 2241), 'os.path.exists', 'os.path.exists', (['SNACK_DIRECTORY'], {}), '(SNACK_DIRECTORY)\n', (2224, 2241), False, 'import os\n'), ((2247, 2275), 'os.makedirs', 'os.makedirs', (['SNACK_DIRECTORY'], {}), '(SNACK_DIRECTORY)\n', (2258, 2275), False, 'import os\n'), ((2422, 2453), 'os.path.exists', 'os.path.exists', (['VIDEO_DIRECTORY'], {}), '(VIDEO_DIRECTORY)\n', (2436, 2453), False, 'import os\n'), ((2459, 2487), 'os.makedirs', 'os.makedirs', (['VIDEO_DIRECTORY'], {}), '(VIDEO_DIRECTORY)\n', (2470, 2487), False, 'import os\n'), ((2658, 2696), 'os.path.exists', 'os.path.exists', (['SHARED_ASSET_DIRECTORY'], {}), '(SHARED_ASSET_DIRECTORY)\n', (2672, 2696), False, 'import os\n'), ((2702, 2737), 'os.makedirs', 'os.makedirs', (['SHARED_ASSET_DIRECTORY'], {}), '(SHARED_ASSET_DIRECTORY)\n', (2713, 2737), False, 'import os\n'), ((8782, 8815), 'ricecooker.config.LOGGER.info', 'LOGGER.info', (['"""SCRAPING VIDEOS..."""'], {}), "('SCRAPING VIDEOS...')\n", (8793, 8815), False, 'from ricecooker.config import LOGGER\n'), ((8834, 8896), 'ricecooker.classes.nodes.TopicNode', 'nodes.TopicNode', ([], {'title': '"""Videos"""', 'source_id': '"""main-topic-videos"""'}), "(title='Videos', source_id='main-topic-videos')\n", (8849, 8896), False, 'from ricecooker.classes import nodes, files, questions\n'), ((12703, 12740), 'ricecooker.config.LOGGER.info', 'LOGGER.info', (['"""SCRAPING ACTIVITIES..."""'], {}), "('SCRAPING ACTIVITIES...')\n", (12714, 12740), False, 'from ricecooker.config import LOGGER\n'), ((12759, 12829), 'ricecooker.classes.nodes.TopicNode', 'nodes.TopicNode', ([], {'title': '"""Activities"""', 'source_id': '"""main-topic-activities"""'}), "(title='Activities', source_id='main-topic-activities')\n", (12774, 12829), False, 'from ricecooker.classes import nodes, files, questions\n'), ((22825, 22857), 'bs4.BeautifulSoup', 'BeautifulSoup', (['""""""', '"""html.parser"""'], {}), "('', 'html.parser')\n", (22838, 22857), False, 'from bs4 import BeautifulSoup\n'), ((23964, 23996), 'bs4.BeautifulSoup', 'BeautifulSoup', (['""""""', '"""html.parser"""'], {}), "('', 'html.parser')\n", (23977, 23996), False, 'from bs4 import BeautifulSoup\n'), ((24466, 24498), 'bs4.BeautifulSoup', 'BeautifulSoup', (['""""""', '"""html.parser"""'], {}), "('', 'html.parser')\n", (24479, 24498), False, 'from bs4 import BeautifulSoup\n'), ((25509, 25541), 'bs4.BeautifulSoup', 'BeautifulSoup', (['""""""', '"""html.parser"""'], {}), "('', 'html.parser')\n", (25522, 25541), False, 'from bs4 import BeautifulSoup\n'), ((26586, 26631), 'os.path.sep.join', 'os.path.sep.join', (['[VIDEO_DIRECTORY, filename]'], {}), '([VIDEO_DIRECTORY, filename])\n', (26602, 26631), False, 'import os\n'), ((27840, 27883), 'bs4.BeautifulSoup', 'BeautifulSoup', (['"""<div></div>"""', '"""html.parser"""'], {}), "('<div></div>', 'html.parser')\n", (27853, 27883), False, 'from bs4 import BeautifulSoup\n'), ((28520, 28542), 'cssutils.parseUrl', 'cssutils.parseUrl', (['url'], {}), '(url)\n', (28537, 28542), False, 'import cssutils\n'), ((28625, 28648), 'cssutils.getUrls', 'cssutils.getUrls', (['sheet'], {}), '(sheet)\n', (28641, 28648), False, 'import cssutils\n'), ((2151, 2177), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2167, 2177), False, 'import os\n'), ((2363, 2389), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (2379, 2389), False, 'import os\n'), ((5397, 5431), 'ricecooker.exceptions.raise_for_invalid_channel', 'raise_for_invalid_channel', (['channel'], {}), '(channel)\n', (5422, 5431), False, 'from ricecooker.exceptions import raise_for_invalid_channel\n'), ((16342, 16371), 'os.path.isfile', 'os.path.isfile', (['write_to_path'], {}), '(write_to_path)\n', (16356, 16371), False, 'import os\n'), ((26643, 26672), 'os.path.isfile', 'os.path.isfile', (['write_to_path'], {}), '(write_to_path)\n', (26657, 26672), False, 'import os\n'), ((6697, 6716), 'PIL.Image.open', 'Image.open', (['imgfile'], {}), '(imgfile)\n', (6707, 6716), False, 'from PIL import Image\n'), ((16426, 16463), 'ricecooker.utils.html_writer.HTMLWriter', 'html_writer.HTMLWriter', (['write_to_path'], {}), '(write_to_path)\n', (16448, 16463), False, 'from ricecooker.utils import downloader, html_writer\n'), ((16504, 16533), 'bs4.BeautifulSoup', 'BeautifulSoup', (['""""""', '"""html5lib"""'], {}), "('', 'html5lib')\n", (16517, 16533), False, 'from bs4 import BeautifulSoup\n'), ((27150, 27222), 'youtube_dl.YoutubeDL', 'youtube_dl.YoutubeDL', (["{'format': video_format, 'outtmpl': write_to_path}"], {}), "({'format': video_format, 'outtmpl': write_to_path})\n", (27170, 27222), False, 'import youtube_dl\n'), ((28834, 28886), 'os.path.sep.join', 'os.path.sep.join', (['[SHARED_ASSET_DIRECTORY, filename]'], {}), '([SHARED_ASSET_DIRECTORY, filename])\n', (28850, 28886), False, 'import os\n'), ((28906, 28930), 'os.path.isfile', 'os.path.isfile', (['filepath'], {}), '(filepath)\n', (28920, 28930), False, 'import os\n'), ((15146, 15183), 'ricecooker.classes.files.HTMLZipFile', 'files.HTMLZipFile', ([], {'path': 'write_to_path'}), '(path=write_to_path)\n', (15163, 15183), False, 'from ricecooker.classes import nodes, files, questions\n'), ((11672, 11723), 'ricecooker.classes.files.WebVideoFile', 'files.WebVideoFile', (["v['url']"], {'high_resolution': '(False)'}), "(v['url'], high_resolution=False)\n", (11690, 11723), False, 'from ricecooker.classes import nodes, files, questions\n')]
# coding=utf-8 # project: GitHub Tools Shell # file: shell.py # author: MacWinLin Studio CGK Team # email: <EMAIL> # version: LTS(Long Term Support) 2.0 # Publish only on GitHub and MacWinLin Studio's GitLab. # Copyright 2022 MacWinLin Studio.All rights reserved. # Make unofficial GUI client please view core file. print('Github Tools Shell 2.0') from core.language_core import UpdateLanguage,cdatabase,rdatabase from core.githut_core import run from requests import get from platform import platform from json import loads from os import mkdir,rename,remove from shutil import rmtree import sqlite3,logging language = UpdateLanguage language.reload(self=language) class logClass: def __init__(): logging.basicConfig(level=logging.DEBUG,filemode='a+',filename='githut-log.log',format="%(asctime)s - %(name)s - %(levelname)-9s - %(filename)-8s : %(lineno)s line - %(message)s",datefmt="%Y-%m-%d %H:%M:%S") def debug(e): logging.debug(str(e)) def info(e): logging.info(str(e)) def warning(e): logging.warning(str(e)) def error(e): logging.error(str(e)) def critical(e): logging.critical(str(e)) def exception(e): logging.exception(e) log = logClass # Connect to database and config basic information con = sqlite3.connect('.mwl-githut-data.db') log.info('Connected to database') cur = con.cursor() cur.execute('select * from data') cache = cur.fetchone() ver = cache[6] auto = cache[7] updateServer = cache[12] cur.close() con.close() def main(state=0): if state == 0: while True: tml = input('>') if tml != 'update': run(tml) else: updateFunction() class Update(): def latest(self): try: cache = get(updateServer + '/latest.json') except Exception: log.warning('Could\'t get latest GitHub Tools version') return ['error'] else: cache = cache.text cache = loads(cache) self.latestVersion = cache['latest'] self.latestVersionLink = cache['link'] self.updateFile = cache['files'] return [self.latestVersion,self.latestVersionLink,self.updateFile] update = Update def haveField(cur,field): try: cur.execute('select {} from data where id=1'.format(field)) except sqlite3.OperationalError: log.warning('HaveFidle Check Program:Database didn\'t have \'{}\' field'.format(field)) return False return True # Update def updateFunction(): log.info('Finding latest version') latest = update.latest(self=update) if len(latest) == 3: if ver != latest[0]: tml = input(language.haveNew) if tml in ['y','Y','n','N']: if tml in ['y','Y']: fileCache = [] backupDatabaseId = rdatabase() for i in range(len(latest[2])): try: print('Geting {} file'.format(latest[2][i])) cache = get(latest[1] + latest[2][i]).text except Exception as e: print(language.downloadE) log.error('Could\'t get update') log.exception(e) else: print('Got {} file'.format(latest[2][i])) fileCache.append(cache) rename('core','core-backup') log.info('Renamed original core dir to backup core dir') mkdir('core') log.info('Made new core dir') if 'Windows' in platform(): for i in range(len(latest[2])): cache = 'core\\' + latest[2][i] file = open(cache,'w') file.write(fileCache[i]) file.close() log.info('Make new file \'{}\''.format(latest[2][i])) else: for i in range(len(latest[2])): cache = 'core/' + latest[2][i] file = open(cache,'w') file.write(fileCache[i]) file.close() log.info('Make new file \'{}\''.format(latest[2][i])) log.info('Wrote file okay') rmtree('core-backup') log.info('Deleted backup dir') con = sqlite3.connect('.mwl-githut-data.db') cur = con.cursor() cur.execute('select * from data') cache = cur.fetchone() backupDatabaseText = ['1',*list(cache[1:])] cur.close() con.close() remove('.mwl-githut-data.db') cdatabase() con = sqlite3.connect('.mwl-githut-data.db') cur = con.cursor() for i in range(len(backupDatabaseId)): if haveField(cur,backupDatabaseId[i]): cache = 'UPDATE data SET {}={} WHERE id=1'.format(backupDatabaseId[i],backupDatabaseText[i]) cur.execute(cache) con.commit() cur.close() con.close() log.info('Updated to {}'.format(latest[0])) print('Updated to {}'.format(latest[0])) else: log.info('This version is latest version now!') main() if auto == 1: updateFunction() main() else: main()
[ "logging.basicConfig", "json.loads", "sqlite3.connect", "core.language_core.cdatabase", "core.language_core.rdatabase", "os.rename", "platform.platform", "requests.get", "logging.exception", "core.githut_core.run", "os.mkdir", "shutil.rmtree", "os.remove" ]
[((1289, 1327), 'sqlite3.connect', 'sqlite3.connect', (['""".mwl-githut-data.db"""'], {}), "('.mwl-githut-data.db')\n", (1304, 1327), False, 'import sqlite3, logging\n'), ((710, 936), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.DEBUG', 'filemode': '"""a+"""', 'filename': '"""githut-log.log"""', 'format': '"""%(asctime)s - %(name)s - %(levelname)-9s - %(filename)-8s : %(lineno)s line - %(message)s"""', 'datefmt': '"""%Y-%m-%d %H:%M:%S"""'}), "(level=logging.DEBUG, filemode='a+', filename=\n 'githut-log.log', format=\n '%(asctime)s - %(name)s - %(levelname)-9s - %(filename)-8s : %(lineno)s line - %(message)s'\n , datefmt='%Y-%m-%d %H:%M:%S')\n", (729, 936), False, 'import sqlite3, logging\n'), ((1196, 1216), 'logging.exception', 'logging.exception', (['e'], {}), '(e)\n', (1213, 1216), False, 'import sqlite3, logging\n'), ((1784, 1818), 'requests.get', 'get', (["(updateServer + '/latest.json')"], {}), "(updateServer + '/latest.json')\n", (1787, 1818), False, 'from requests import get\n'), ((2007, 2019), 'json.loads', 'loads', (['cache'], {}), '(cache)\n', (2012, 2019), False, 'from json import loads\n'), ((1653, 1661), 'core.githut_core.run', 'run', (['tml'], {}), '(tml)\n', (1656, 1661), False, 'from core.githut_core import run\n'), ((2891, 2902), 'core.language_core.rdatabase', 'rdatabase', ([], {}), '()\n', (2900, 2902), False, 'from core.language_core import UpdateLanguage, cdatabase, rdatabase\n'), ((3507, 3536), 'os.rename', 'rename', (['"""core"""', '"""core-backup"""'], {}), "('core', 'core-backup')\n", (3513, 3536), False, 'from os import mkdir, rename, remove\n'), ((3633, 3646), 'os.mkdir', 'mkdir', (['"""core"""'], {}), "('core')\n", (3638, 3646), False, 'from os import mkdir, rename, remove\n'), ((4524, 4545), 'shutil.rmtree', 'rmtree', (['"""core-backup"""'], {}), "('core-backup')\n", (4530, 4545), False, 'from shutil import rmtree\n'), ((4623, 4661), 'sqlite3.connect', 'sqlite3.connect', (['""".mwl-githut-data.db"""'], {}), "('.mwl-githut-data.db')\n", (4638, 4661), False, 'import sqlite3, logging\n'), ((4946, 4975), 'os.remove', 'remove', (['""".mwl-githut-data.db"""'], {}), "('.mwl-githut-data.db')\n", (4952, 4975), False, 'from os import mkdir, rename, remove\n'), ((4996, 5007), 'core.language_core.cdatabase', 'cdatabase', ([], {}), '()\n', (5005, 5007), False, 'from core.language_core import UpdateLanguage, cdatabase, rdatabase\n'), ((5034, 5072), 'sqlite3.connect', 'sqlite3.connect', (['""".mwl-githut-data.db"""'], {}), "('.mwl-githut-data.db')\n", (5049, 5072), False, 'import sqlite3, logging\n'), ((3733, 3743), 'platform.platform', 'platform', ([], {}), '()\n', (3741, 3743), False, 'from platform import platform\n'), ((3093, 3122), 'requests.get', 'get', (['(latest[1] + latest[2][i])'], {}), '(latest[1] + latest[2][i])\n', (3096, 3122), False, 'from requests import get\n')]
from django.db import models from django_postgres_extensions.models.fields import HStoreField, JSONField, ArrayField from django_postgres_extensions.models.fields.related import ArrayManyToManyField from django import forms from django.contrib.postgres.forms import SplitArrayField from django_postgres_extensions.forms.fields import NestedFormField details_fields = ( ('Brand', NestedFormField(keys=('Name', 'Country'))), ('Type', forms.CharField(max_length=25, required=False)), ('Colours', SplitArrayField(base_field=forms.CharField(max_length=10, required=False), size=10)), ) class Buyer(models.Model): time = models.DateTimeField(auto_now_add=True) name = models.CharField(max_length=20) def __str__(self): return self.name class Product(models.Model): name = models.CharField(max_length=15) keywords = ArrayField(models.CharField(max_length=20), default=[], form_size=10, blank=True) sports = ArrayField(models.CharField(max_length=20),default=[], blank=True, choices=( ('football', 'Football'), ('tennis', 'Tennis'), ('golf', 'Golf'), ('basketball', 'Basketball'), ('hurling', 'Hurling'), ('baseball', 'Baseball'))) shipping = HStoreField(keys=('Address', 'City', 'Region', 'Country'), blank=True, default={}) details = JSONField(fields=details_fields, blank=True, default={}) buyers = ArrayManyToManyField(Buyer) def __str__(self): return self.name @property def country(self): return self.shipping.get('Country', '')
[ "django_postgres_extensions.forms.fields.NestedFormField", "django.forms.CharField", "django_postgres_extensions.models.fields.related.ArrayManyToManyField", "django_postgres_extensions.models.fields.HStoreField", "django_postgres_extensions.models.fields.JSONField", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((635, 674), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (655, 674), False, 'from django.db import models\n'), ((686, 717), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (702, 717), False, 'from django.db import models\n'), ((808, 839), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(15)'}), '(max_length=15)\n', (824, 839), False, 'from django.db import models\n'), ((1193, 1279), 'django_postgres_extensions.models.fields.HStoreField', 'HStoreField', ([], {'keys': "('Address', 'City', 'Region', 'Country')", 'blank': '(True)', 'default': '{}'}), "(keys=('Address', 'City', 'Region', 'Country'), blank=True,\n default={})\n", (1204, 1279), False, 'from django_postgres_extensions.models.fields import HStoreField, JSONField, ArrayField\n'), ((1290, 1346), 'django_postgres_extensions.models.fields.JSONField', 'JSONField', ([], {'fields': 'details_fields', 'blank': '(True)', 'default': '{}'}), '(fields=details_fields, blank=True, default={})\n', (1299, 1346), False, 'from django_postgres_extensions.models.fields import HStoreField, JSONField, ArrayField\n'), ((1361, 1388), 'django_postgres_extensions.models.fields.related.ArrayManyToManyField', 'ArrayManyToManyField', (['Buyer'], {}), '(Buyer)\n', (1381, 1388), False, 'from django_postgres_extensions.models.fields.related import ArrayManyToManyField\n'), ((384, 425), 'django_postgres_extensions.forms.fields.NestedFormField', 'NestedFormField', ([], {'keys': "('Name', 'Country')"}), "(keys=('Name', 'Country'))\n", (399, 425), False, 'from django_postgres_extensions.forms.fields import NestedFormField\n'), ((442, 488), 'django.forms.CharField', 'forms.CharField', ([], {'max_length': '(25)', 'required': '(False)'}), '(max_length=25, required=False)\n', (457, 488), False, 'from django import forms\n'), ((866, 897), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (882, 897), False, 'from django.db import models\n'), ((961, 992), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (977, 992), False, 'from django.db import models\n'), ((535, 581), 'django.forms.CharField', 'forms.CharField', ([], {'max_length': '(10)', 'required': '(False)'}), '(max_length=10, required=False)\n', (550, 581), False, 'from django import forms\n')]
import os from os.path import join import numpy as np from tqdm import trange import skimage as ski import skimage.data, skimage.transform data_dir = '/home/kivan/datasets/Cityscapes/orig/test' labels_dir = '/home/kivan/datasets/Cityscapes/orig/gtFine/test' #save_dir = '/home/kivan/datasets/Cityscapes/masked/croped/test' save_dir = '/home/kivan/datasets/Cityscapes/masked/mean/full/test' rgb_mean = [75, 85, 75] cities = next(os.walk(data_dir))[1] for city in cities: city_dir = join(data_dir, city) image_list = next(os.walk(city_dir))[2] print(city) os.makedirs(join(save_dir, city), exist_ok=True) for i in trange(len(image_list)): img = ski.data.load(join(city_dir, image_list[i])) img_prefix = image_list[i][:-16] mask_path = join(labels_dir, city, img_prefix + '_gtFine_labelIds.png') mask_img = ski.data.load(mask_path) #img[mask_img==1] = 0 #img[mask_img==2] = 0 #img[mask_img==3] = 0 img[mask_img==1] = rgb_mean height = img.shape[0] img[height-5:,...] = rgb_mean #img[mask_img==2] = rgb_mean ##img[mask_img==3] = rgb_mean #img = np.ascontiguousarray(img[:896,...]) save_path = join(save_dir, city, image_list[i]) ski.io.imsave(save_path, img)
[ "skimage.data.load", "os.path.join", "skimage.io.imsave", "os.walk" ]
[((488, 508), 'os.path.join', 'join', (['data_dir', 'city'], {}), '(data_dir, city)\n', (492, 508), False, 'from os.path import join\n'), ((433, 450), 'os.walk', 'os.walk', (['data_dir'], {}), '(data_dir)\n', (440, 450), False, 'import os\n'), ((579, 599), 'os.path.join', 'join', (['save_dir', 'city'], {}), '(save_dir, city)\n', (583, 599), False, 'from os.path import join\n'), ((760, 819), 'os.path.join', 'join', (['labels_dir', 'city', "(img_prefix + '_gtFine_labelIds.png')"], {}), "(labels_dir, city, img_prefix + '_gtFine_labelIds.png')\n", (764, 819), False, 'from os.path import join\n'), ((835, 859), 'skimage.data.load', 'ski.data.load', (['mask_path'], {}), '(mask_path)\n', (848, 859), True, 'import skimage as ski\n'), ((1162, 1197), 'os.path.join', 'join', (['save_dir', 'city', 'image_list[i]'], {}), '(save_dir, city, image_list[i])\n', (1166, 1197), False, 'from os.path import join\n'), ((1202, 1231), 'skimage.io.imsave', 'ski.io.imsave', (['save_path', 'img'], {}), '(save_path, img)\n', (1215, 1231), True, 'import skimage as ski\n'), ((529, 546), 'os.walk', 'os.walk', (['city_dir'], {}), '(city_dir)\n', (536, 546), False, 'import os\n'), ((676, 705), 'os.path.join', 'join', (['city_dir', 'image_list[i]'], {}), '(city_dir, image_list[i])\n', (680, 705), False, 'from os.path import join\n')]
from django.test import TestCase from django.contrib.auth import get_user_model from django.urls import reverse from rest_framework.test import APIClient from rest_framework import status USER_CREATE_URL = reverse('users:create') USER_DETAILS_URL = reverse('users:details_and_update') USER_TOKEN_URL = reverse('users:token') def create_user(**params): return get_user_model().objects.create_user(**params) class PublicUsersApiTests(TestCase): """Tests the users api public methods""" def setUp(self): self.client = APIClient() def test_create_valid_user_success(self): """Tests if creating a user with valid payload is successfull""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>', 'name': 'Big Docker Guy' } response = self.client.post(USER_CREATE_URL, payload) user = get_user_model().objects.get(**response.data) self.assertEqual(response.status_code, status.HTTP_201_CREATED) self.assertTrue(user.check_password(payload['password'])) self.assertNotIn('password', response.data) def test_user_exists(self): """Tests whether a user exists""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>' } create_user(**payload) response = self.client.post(USER_CREATE_URL, payload) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_password_too_short(self): """Tests if a given password is at least 6 characters long""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>', 'name': 'Big Docker Guy' } response = self.client.post(USER_CREATE_URL, payload) user_exists = get_user_model().objects.filter( email=payload['email'] ).exists() self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) self.assertFalse(user_exists) def test_create_user_token(self): """Tests if a token is successfully created""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>', } create_user(**payload) response = self.client.post(USER_TOKEN_URL, { 'email': payload['email'], 'password': payload['password'], }) self.assertIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_200_OK) def test_create_user_token_invalid_credentials(self): """Tests if token is not createad when invalid credentials are given""" email = '<EMAIL>' payload = { 'email': email, 'password': '<PASSWORD>', } create_user(email=email, password='<PASSWORD>') response = self.client.post(USER_TOKEN_URL, payload) self.assertNotIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_create_user_token_missing_field(self): """Tests if email and password are required""" payload_no_email = {'email': '', 'password': '<PASSWORD>'} response_no_email = self.client.post(USER_TOKEN_URL, payload_no_email) payload_no_password = {'email': '<EMAIL>', 'password': ''} response_no_password = self.client.post( USER_TOKEN_URL, payload_no_password ) self.assertNotIn('token', response_no_email.data) self.assertEqual( response_no_email.status_code, status.HTTP_400_BAD_REQUEST ) self.assertNotIn('token', response_no_password.data) self.assertEqual( response_no_password.status_code, status.HTTP_400_BAD_REQUEST ) def test_create_user_token_user_not_found(self): """Tests if token is not created to a non-existent user""" payload = { 'email': '<EMAIL>', 'password': '<PASSWORD>' } response = self.client.post(USER_TOKEN_URL, payload) self.assertNotIn('token', response.data) self.assertEqual(response.status_code, status.HTTP_400_BAD_REQUEST) def test_authentication_is_required_for_user_details(self): """Tests if authentication is required for fetching the user details""" response = self.client.get(USER_DETAILS_URL) self.assertEqual(response.status_code, status.HTTP_401_UNAUTHORIZED) class PrivateUsersApiTests(TestCase): """Tests the users api private methods""" def setUp(self): self.user = create_user( email='<EMAIL>', password='<PASSWORD>', name='Big Dock Guy' ) self.client = APIClient() self.client.force_authenticate(user=self.user) def test_access_user_details_successfull(self): """Tests fetching the logged in user's detail""" response = self.client.get(USER_DETAILS_URL) self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(response.data, { 'name': self.user.name, 'email': self.user.email }) def test_post_to_user_details_not_allowed(self): """Tests if the POST method is not allowed on the user details url""" response = self.client.post(USER_DETAILS_URL) self.assertEqual( response.status_code, status.HTTP_405_METHOD_NOT_ALLOWED ) def test_update_user_successfull(self): """Tests if updating the user is working""" payload = { 'name': 'New Big Dock Guy', 'password': '<PASSWORD>' } response = self.client.patch(USER_DETAILS_URL, payload) self.user.refresh_from_db() self.assertEqual(response.status_code, status.HTTP_200_OK) self.assertEqual(self.user.name, payload['name']) self.assertTrue(self.user.check_password(payload['password']))
[ "rest_framework.test.APIClient", "django.contrib.auth.get_user_model", "django.urls.reverse" ]
[((209, 232), 'django.urls.reverse', 'reverse', (['"""users:create"""'], {}), "('users:create')\n", (216, 232), False, 'from django.urls import reverse\n'), ((252, 287), 'django.urls.reverse', 'reverse', (['"""users:details_and_update"""'], {}), "('users:details_and_update')\n", (259, 287), False, 'from django.urls import reverse\n'), ((305, 327), 'django.urls.reverse', 'reverse', (['"""users:token"""'], {}), "('users:token')\n", (312, 327), False, 'from django.urls import reverse\n'), ((543, 554), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (552, 554), False, 'from rest_framework.test import APIClient\n'), ((4709, 4720), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (4718, 4720), False, 'from rest_framework.test import APIClient\n'), ((368, 384), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (382, 384), False, 'from django.contrib.auth import get_user_model\n'), ((890, 906), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (904, 906), False, 'from django.contrib.auth import get_user_model\n'), ((1804, 1820), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (1818, 1820), False, 'from django.contrib.auth import get_user_model\n')]
import numpy as np import os import pandas as pd import matplotlib.pyplot as plt # 16G, 16P # Premium = exp(c + a1 * I(distr_dir) + a2 * I(qpt<=3) + a3 * I(legal)) * (1 + plia_acc) * Insured_Amount_adj(IAs) # 29B, 29K # Premium = exp(c + a1 * I(distr_dir) + a2 * I(qpt<=3) + a3 * I(legal)) * Insured_Amount_adj(IAs) # 05N, 09@ # Premium = exp(c + a1 * I(distr_dir) + a2 * I4(year_label) + a3 * I32(thf_factor)) * IA3 * f(Coverage) # 20K # Premium = exp(c + a1 * I(distr_dir) + a2 * (I(legal)) # 18@ # Premium = exp(c + a1 * I(distr_dir)) * Insured_Amount_adj(IAs) # 04M, 05E(partially explained) # Premium = exp(c + a1 * I(distr_dir) + a2 * f(vehicle_code)) * (age_fac * sex_fac - pdmg_acc) * IA3 * f(Coverage) # Rest Not explained df_coverage = get_id_aggregated_coverage(df_policy) def get_id_aggregated_coverage(df_policy): ''' In: DataFrame(df_policy), Out: DataFrame(agg_coverage), Description: get acc adjusted premium ''' coverage_all = list(df_policy['Insurance_Coverage'].value_counts().index) # group 1: coverage_g1 = ['16G', '16P'] df_g1 = df_policy[df_policy['Insurance_Coverage'].isin(coverage_g1)] df_g1['premium_acc_adj'] = df_g1['Premium'] / (1 + df_g1['plia_acc']) def get_age_label_id(ibirth): if pd.isnull(ibirth): return 1 else: age = 2015 - int(ibirth[3:]); if age < 25: return 1.74 elif age < 30: return 1.15 elif age < 60: return 1 elif age < 70: return 1.07 else: return 1.07 # group 2: coverage_g2 = ['04M', '05E', '55J'] df_g2 = df_policy[df_policy['Insurance_Coverage'].isin(coverage_g2)] g2_age_fac = df_g2['ibirth'].map(get_age_label_id) g2_sex_fac = df_g2['fsex'].map(lambda x: 0.9 if x == '2' else 1) df_g2['premium_acc_adj'] = df_g2['Premium'] / (g2_age_fac * g2_sex_fac + df_g2['pdmg_acc']) # group 3: #coverage_g3 = ['29B', '29K', '5N', '20K', '18@', '09@', '12L', '15F'] coverage_g3 = [cov for cov in coverage_all if ((cov not in coverage_g1) & (cov not in coverage_g2))] df_g3 = df_policy[df_policy['Insurance_Coverage'].isin(coverage_g3)] df_g3['premium_acc_adj'] = df_g3['Premium'] df_coverage = pd.concat([df_g1, df_g2, df_g3]) # aggregate coverage map_agg_premium = {'車損': 'Dmg', '竊盜': 'Thf', '車責': 'Lia'} # 1. group premium by Main_Insurance_Coverage_Group agg_premium = df_coverage[['Main_Insurance_Coverage_Group', 'premium_acc_adj']] agg_premium['Main_Insurance_Coverage_Group'] = agg_premium['Main_Insurance_Coverage_Group'].map(map_agg_premium) agg_premium = agg_premium.set_index(['Main_Insurance_Coverage_Group'], append = True) agg_premium = agg_premium.groupby(level=[0,1]).agg({'premium_acc_adj': np.sum}) # 2. aggregate at policy level agg_premium = agg_premium.unstack(level=1) agg_premium.columns = ['cpremium_dmg_acc_adj', 'cpremium_lia_acc_adj', 'cpremium_acc_adj_thf'] return(agg_premium[['cpremium_dmg_acc_adj', 'cpremium_lia_acc_adj']])
[ "pandas.isnull", "pandas.concat" ]
[((2347, 2379), 'pandas.concat', 'pd.concat', (['[df_g1, df_g2, df_g3]'], {}), '([df_g1, df_g2, df_g3])\n', (2356, 2379), True, 'import pandas as pd\n'), ((1304, 1321), 'pandas.isnull', 'pd.isnull', (['ibirth'], {}), '(ibirth)\n', (1313, 1321), True, 'import pandas as pd\n')]
from abc import ABCMeta, abstractmethod import numpy as np from scipy.special import logsumexp from epidag.monitor import Monitor from epidag.fitting import BayesianModel from epidag.bayesnet import Chromosome __author__ = 'TimeWz667' __all__ = ['Fitter'] class Fitter(metaclass=ABCMeta): def __init__(self, name_logger, **kwargs): self.Monitor = Monitor(name_logger) self.Parameters = dict(kwargs) def needs_exact_likelihood(self): return False def is_updatable(self): return False def set_log_path(self, filename): self.Monitor.set_log_path(filename=filename) def info(self, msg): self.Monitor.info(msg) def error(self, msg): self.Monitor.info(msg) @abstractmethod def fit(self, model: BayesianModel, **kwargs): pass def update(self, res, **kwargs): if not self.is_updatable(): raise AttributeError('No update scheme available') class Fitter1(metaclass=ABCMeta): DefaultParameters = { 'n_population': 1000, 'm_prior_drop': 10, 'target': 'MLE' } def __init__(self, model: BayesianModel, **kwargs): self.Model = model self.Monitor = Monitor(model.BN.Name) self.Parameters = dict(self.DefaultParameters) self.update_parameters(**kwargs) self.Prior = list() self.Posterior = list() def __getitem__(self, item): return self.Parameters[item] def update_parameters(self, **kwargs): new = {k: v for k, v in kwargs.items() if k in self.Parameters} self.Parameters.update(new) def renew_parameters(self): self.Parameters = dict(self.DefaultParameters) def initialise_prior(self, n: int=0): self.Prior.clear() if n <= 0: n = self['n_population'] m = self['m_prior_drop'] * n drop = 0 while len(self.Prior) < n: p = self.Model.sample_prior() li = self.Model.evaluate_likelihood(p) if np.isfinite(li): self.Prior.append(p) else: drop += 1 if drop >= m: self.error('Too many infinite likelihood in the space') raise AttributeError('Parameter space might not well-defined') pr_drop = drop/(len(self.Prior) + drop) * 100 self.info('Prior parameters generated with {:.1f}% dropouts'.format(pr_drop)) def prior_to_df(self): return Chromosome.to_data_frame(self.Prior) def summarise_prior(self): print(self.prior_to_df().describe()) def prior_to_json(self, file): df = self.posterior_to_df() df.to_json(file, orient='records') def prior_to_csv(self, file): df = self.posterior_to_df() df.to_csv(file) def posterior_to_df(self): return Chromosome.to_data_frame(self.Posterior) def summarise_posterior(self): print(self.posterior_to_df().describe()) def posterior_to_json(self, file): df = self.posterior_to_df() df.to_json(file, orient='records') def posterior_to_csv(self, file): df = self.posterior_to_df() df.to_csv(file) class EvolutionaryFitter(Fitter, metaclass=ABCMeta): DefaultParameters = dict() DefaultParameters['max_generation'] = 30 DefaultParameters['n_update'] = 10 def __init__(self, model, **kwargs): Fitter.__init__(self, model, **kwargs) self.BestFit = self.Model.sample_prior() self.Generation = 0 self.Stay = 0 def find_best(self): if self.Parameters['target'] == 'MLE': key = lambda x: x.LogLikelihood x0 = self.BestFit.LogLikelihood else: key = lambda x: x.LogPosterior x0 = self.BestFit.LogPosterior if self.Posterior: self.BestFit = max(self.Posterior, key=key) else: self.error('No parameters found') if self.Parameters['target'] == 'MLE': x1 = self.BestFit.LogLikelihood else: x1 = self.BestFit.LogPosterior if x1 == x0: self.Stay += 1 else: self.Stay = 0 def fit(self, **kwargs): if kwargs: self.update_parameters(**kwargs) self.info('Parameters updated') mg = self.Parameters['max_generation'] self.genesis() for i in range(mg): self.Generation += 1 self.step() self.find_best() if self.termination(): self.info('Termination criteria reached') break if self.Generation <= mg: self.info('Max generation reached') break self.info('Fitting completed') @abstractmethod def step(self): pass def genesis(self): self.Generation = 0 self.Stay = 0 self.info('Genesis') self.initialise_prior() self.Posterior = list(self.Prior) self.find_best() @abstractmethod def termination(self): pass def keep_record(self): if self.Parameters['target'] == 'MLE': ma = self.BestFit.LogLikelihood vs = [p.LogLikelihood for p in self.Posterior] else: ma = self.BestFit.LogPosterior vs = [p.LogPosterior for p in self.Posterior] self.Monitor.keep( Max=ma, Mean=logsumexp(vs), Stay=self.Stay ) self.Monitor.step(self.Generation) def update(self, **kwargs): self.update_parameters(**kwargs) self.info('Parameters updated') n_update = self.Parameters['n_update'] gen = self.Generation + n_update for i in range(n_update): self.Generation += 1 self.step() self.find_best() if self.Generation <= gen: self.info('Max generation reached') break self.info('Update completed')
[ "epidag.bayesnet.Chromosome.to_data_frame", "numpy.isfinite", "scipy.special.logsumexp", "epidag.monitor.Monitor" ]
[((362, 382), 'epidag.monitor.Monitor', 'Monitor', (['name_logger'], {}), '(name_logger)\n', (369, 382), False, 'from epidag.monitor import Monitor\n'), ((1220, 1242), 'epidag.monitor.Monitor', 'Monitor', (['model.BN.Name'], {}), '(model.BN.Name)\n', (1227, 1242), False, 'from epidag.monitor import Monitor\n'), ((2507, 2543), 'epidag.bayesnet.Chromosome.to_data_frame', 'Chromosome.to_data_frame', (['self.Prior'], {}), '(self.Prior)\n', (2531, 2543), False, 'from epidag.bayesnet import Chromosome\n'), ((2878, 2918), 'epidag.bayesnet.Chromosome.to_data_frame', 'Chromosome.to_data_frame', (['self.Posterior'], {}), '(self.Posterior)\n', (2902, 2918), False, 'from epidag.bayesnet import Chromosome\n'), ((2036, 2051), 'numpy.isfinite', 'np.isfinite', (['li'], {}), '(li)\n', (2047, 2051), True, 'import numpy as np\n'), ((5489, 5502), 'scipy.special.logsumexp', 'logsumexp', (['vs'], {}), '(vs)\n', (5498, 5502), False, 'from scipy.special import logsumexp\n')]
import pygame from components import Btn, ImageBtn, Text, Line, Image, Stage from music import RenderedScore #This class plays out the game mode class GameScore(RenderedScore): """ [__init__ self note_imgs player key_input score] creates a new game mode using the specified [note_imgs] a NoteImgCache object [player] an AudioPlayer object [key_input] either a KeyboardInput / BtnInput [score] a Score object """ def __init__(self, note_imgs, player, key_input, score = None): super().__init__(note_imgs, player, score) #Leave previous notes as is self.mark_black = False #Don't play notes on advance self.play_notes = False #Various parameters #tolerance of 0.2 notes self.early_tolerance = 0.2 self.colors['green'] = (14, 230, 71) self.colors['red'] = (224, 9, 9) #Take in key inputs self.key_input = key_input self.playable_pitches = key_input.get_playable_pitches() #Set of currently played pitches self.played_pitches = set() #Various parameters self.early_notes = 0 self.wrong_notes = 0 self.frames_used = 0 #FSM State self.WAITING = 0 self.PLAYING = 1 self.fsm_state = self.WAITING self.quit = False #Construct buttons self.exit_btn = Btn("Exit", (40, 200), on_click = \ self.on_exit_btn_click) self.stage.add_btn(self.exit_btn) #[on_exit_btn_click self btn pos] is called when the exit #button is called def on_exit_btn_click(self, btn, pos): self.quit = True info = self.parent_screen.get_info() #Remove these information from info remove_elems = ["early_notes", "wrong_notes", "frames_used"] for elem in remove_elems: if elem in info: info.pop(elem) #[on_early_note_release self timing_jump] is triggered when a note is #released early by the player. [timing_jump] is the amount of crotchets #missed when we jump to the next note. def on_early_note_release(self, timing_jump): if timing_jump >= self.early_tolerance: #print("Early Note!!") self.early_notes += 1 #Stop all non playable notes #[on_note_stop self pitches treble] is called when we transition #between bars or between notes. [pitches] refer to the pitches which #are stopped and [treble] refers to the clef (Treble if True, Bass if False) def on_note_stop(self, pitches, treble): #Change to waiting state self.fsm_state = self.WAITING #print("Stopping") #Discard all played pitches for pitch in pitches: if pitch in self.played_pitches: self.played_pitches.remove(pitch) #Stop all non playable notes if pitch not in self.playable_pitches: self.player.stop_note([pitch]) #[advance_time self fps] steps through one frame at [fps] frames #per second. This causes the playback to advance according to #[self.advance_rate] def advance_time(self, fps): self.frames_used += 1 #Consume updates from input #Use input directly when paused #Get current pitches if self.has_quit(): return treble_pitches = self.get_curr_pitches(True) bass_pitches = self.get_curr_pitches(False) expected_pitches = treble_pitches + bass_pitches self.key_input.poll() updates = self.key_input.get_updates() for pitch, is_pressed in updates.items(): #print("Update: {}, {}".format(pitch, is_pressed)) if is_pressed: self.played_pitches.add(pitch) self.player.play_note([pitch]) if pitch not in expected_pitches: #print("Wrong Note!!") self.wrong_notes += 1 elif pitch in self.played_pitches: self.played_pitches.remove(pitch) self.player.stop_note([pitch]) else: self.player.stop_note([pitch]) corr_pitches = set() missing_pitches = set() extra_pitches = set() unplayable_pitches = set() for pitch in expected_pitches: if pitch not in self.playable_pitches: corr_pitches.add(pitch) unplayable_pitches.add(pitch) elif pitch in self.played_pitches: corr_pitches.add(pitch) else: missing_pitches.add(pitch) for pitch in self.played_pitches: if pitch not in expected_pitches: extra_pitches.add(pitch) #transition into playing state if every note is good self.change_curr_pitch_color(corr_pitches, self.colors['green']) self.change_curr_pitch_color(missing_pitches, self.colors['red']) if self.fsm_state == self.WAITING and len(missing_pitches) == 0 \ and len(extra_pitches) == 0: self.fsm_state = self.PLAYING #Play any non playable notes for pitch in unplayable_pitches: self.player.play_note([pitch]) elif self.fsm_state == self.PLAYING and len(missing_pitches) != 0: #print("Early Stop!!") self.early_notes += 1 self.fsm_state = self.WAITING #Stop unplayable pitches for pitch in unplayable_pitches: self.player.stop_note([pitch]) self.jump_to_next_timing() super().advance_time(fps) elif self.fsm_state == self.PLAYING: super().advance_time(fps) if super().has_quit(): info = self.parent_screen.get_info() info["early_notes"] = self.early_notes info["wrong_notes"] = self.wrong_notes info["frames_used"] = self.frames_used #[has_quit self] queries whether this score has quitted def has_quit(self): if super().has_quit(): return True else: return self.quit
[ "components.Btn" ]
[((1206, 1261), 'components.Btn', 'Btn', (['"""Exit"""', '(40, 200)'], {'on_click': 'self.on_exit_btn_click'}), "('Exit', (40, 200), on_click=self.on_exit_btn_click)\n", (1209, 1261), False, 'from components import Btn, ImageBtn, Text, Line, Image, Stage\n')]
""" PPA Step-2: mini_batch K-means on ending points Author: <NAME> (<EMAIL>) Last update: 2020-04-04 """ import numpy as np import os import sys import fnmatch from scipy.io import loadmat from sklearn.cluster import MiniBatchKMeans """ installed all the libraries above """ home_dir = './' input_dir = home_dir + 'ending_point' output_dir = home_dir + 'clustering' if not os.path.exists(output_dir): os.mkdir(output_dir) n_clusters = int(sys.argv[1]) # screen all fiber tracking files sub_id_list = np.loadtxt(home_dir + 'subjects_0.txt') n = len(sub_id_list) n_tracts = np.loadtxt(input_dir + '/' + 'n_tracts.txt') n_tract_all = int(np.sum(n_tracts)) # print(n_tract_all) end_points_all = np.zeros(shape=(n_tract_all, 6)) print('load the ending point file \n') idx_1 = 0 idx_2 = n_tracts[0] for k in range(n-1): file_list = fnmatch.filter(os.listdir(input_dir), str(int(sub_id_list[k])) + '*.mat') file_name = file_list[0] file_path = input_dir + '/' + file_name # sub_id = file_name[:-4] mat = loadmat(file_path) end_points = mat['end_points'] # print(end_points.shape) end_points_all[int(idx_1):int(idx_2), :] = end_points idx_1 = idx_1 + n_tracts[k] idx_2 = idx_2 + n_tracts[k + 1] del end_points kmeans = MiniBatchKMeans(n_clusters=n_clusters, batch_size=1000) # Fitting the input data kmeans = kmeans.fit(end_points_all) labels = kmeans.predict(end_points_all) cluster_means = kmeans.cluster_centers_ w = np.zeros(shape=(n, n_clusters)) idx_1 = 0 idx_2 = n_tracts[0] labels_i = labels[int(idx_1):int(idx_2)] for j in range(n_clusters): w[0, j] = np.mean(1*(labels_i == j)) for i in range(n-1): idx_1 = idx_1 + n_tracts[i] idx_2 = idx_2 + n_tracts[i + 1] labels_i = labels[int(idx_1):int(idx_2)] for j in range(n_clusters): w[i+1, j] = np.mean(1*(labels_i == j)) np.savetxt(output_dir + '/' + 'cluster_w_' + str(n_clusters) + '.txt', w) np.savetxt(output_dir + '/' + 'cluster_label_' + str(n_clusters) + '.txt', labels) np.savetxt(output_dir + '/' + 'cluster_means_' + str(n_clusters) + '.txt', cluster_means)
[ "os.path.exists", "numpy.mean", "os.listdir", "sklearn.cluster.MiniBatchKMeans", "scipy.io.loadmat", "numpy.sum", "numpy.zeros", "os.mkdir", "numpy.loadtxt" ]
[((509, 548), 'numpy.loadtxt', 'np.loadtxt', (["(home_dir + 'subjects_0.txt')"], {}), "(home_dir + 'subjects_0.txt')\n", (519, 548), True, 'import numpy as np\n'), ((582, 626), 'numpy.loadtxt', 'np.loadtxt', (["(input_dir + '/' + 'n_tracts.txt')"], {}), "(input_dir + '/' + 'n_tracts.txt')\n", (592, 626), True, 'import numpy as np\n'), ((701, 733), 'numpy.zeros', 'np.zeros', ([], {'shape': '(n_tract_all, 6)'}), '(shape=(n_tract_all, 6))\n', (709, 733), True, 'import numpy as np\n'), ((1268, 1323), 'sklearn.cluster.MiniBatchKMeans', 'MiniBatchKMeans', ([], {'n_clusters': 'n_clusters', 'batch_size': '(1000)'}), '(n_clusters=n_clusters, batch_size=1000)\n', (1283, 1323), False, 'from sklearn.cluster import MiniBatchKMeans\n'), ((1470, 1501), 'numpy.zeros', 'np.zeros', ([], {'shape': '(n, n_clusters)'}), '(shape=(n, n_clusters))\n', (1478, 1501), True, 'import numpy as np\n'), ((377, 403), 'os.path.exists', 'os.path.exists', (['output_dir'], {}), '(output_dir)\n', (391, 403), False, 'import os\n'), ((409, 429), 'os.mkdir', 'os.mkdir', (['output_dir'], {}), '(output_dir)\n', (417, 429), False, 'import os\n'), ((645, 661), 'numpy.sum', 'np.sum', (['n_tracts'], {}), '(n_tracts)\n', (651, 661), True, 'import numpy as np\n'), ((1029, 1047), 'scipy.io.loadmat', 'loadmat', (['file_path'], {}), '(file_path)\n', (1036, 1047), False, 'from scipy.io import loadmat\n'), ((1615, 1643), 'numpy.mean', 'np.mean', (['(1 * (labels_i == j))'], {}), '(1 * (labels_i == j))\n', (1622, 1643), True, 'import numpy as np\n'), ((856, 877), 'os.listdir', 'os.listdir', (['input_dir'], {}), '(input_dir)\n', (866, 877), False, 'import os\n'), ((1828, 1856), 'numpy.mean', 'np.mean', (['(1 * (labels_i == j))'], {}), '(1 * (labels_i == j))\n', (1835, 1856), True, 'import numpy as np\n')]
""" Break raw data into attributes """ import re from typing import Any from src.parse.parsers.header import HeaderParser from src.parse.parsers.charity import CharityParser from src.parse.parsers.income import IncomeParser from src.parse.parsers.asset import AssetParser from src.parse.parsers.ptr import PTRParser from src.parse.parsers.transaction import TransactionParser from src.parse.parsers.gift import GiftParser from src.parse.parsers.travel import TravelParser from src.parse.parsers.liability import LiabilityParser from src.parse.parsers.position import PositionParser from src.parse.parsers.agreement import AgreementParser from src.parse.parsers.compensation import CompensationParser from src.parse.parsers.comment import CommentParser RAW_DOCUMENT_EXPRESSION = r'view/(.*?)/(?:regular/)?(.*?)/".*?>(.*?)</a>' class Parse: # pylint: disable=too-many-instance-attributes """ Given text, produce attributes """ def __init__(self) -> None: self.re_document_link = None self.header_parser = HeaderParser() self.charity_parser = CharityParser() self.income_parser = IncomeParser() self.asset_parser = AssetParser() self.ptr_parser = PTRParser() self.transaction_parser = TransactionParser() self.gift_parser = GiftParser() self.travel_parser = TravelParser() self.liability_parser = LiabilityParser() self.position_parser = PositionParser() self.agreement_parser = AgreementParser() self.compensation_parser = CompensationParser() self.comment_parser = CommentParser() def parse_header(self, key: int, text: str): return self.header_parser.parse(key, text) def parse_charity(self, key: int, text: str): return self.charity_parser.parse(key, text) def parse_income(self, key: int, text: str): return self.income_parser.parse(key, text) def parse_asset(self, key: int, text: str): return self.asset_parser.parse(key, text) def parse_ptr(self, key: int, text: str): return self.ptr_parser.parse(key, text) def parse_transaction(self, key: int, text: str): return self.transaction_parser.parse(key, text) def parse_gift(self, key: int, text: str): return self.gift_parser.parse(key, text) def parse_travel(self, key: int, text: str): return self.travel_parser.parse(key, text) def parse_liability(self, key: int, text: str): return self.liability_parser.parse(key, text) def parse_position(self, key: int, text: str): return self.position_parser.parse(key, text) def parse_agreement(self, key: int, text: str): return self.agreement_parser.parse(key, text) def parse_compensation(self, key: int, text: str): return self.compensation_parser.parse(key, text) def parse_comment(self, key: int, text: str): return self.comment_parser.parse(key, text) def __document_link_regex(self): """ Produce a compiled regular expression """ if not self.re_document_link: self.re_document_link = re.compile(RAW_DOCUMENT_EXPRESSION) return self.re_document_link def document_link_parse(self, document_link: str) -> Any: """ Break document link into the underlying data Args: document_link: str - A web link with a title Returns: (document_type, document_id, document_name) """ pattern = self.__document_link_regex() match = pattern.search(document_link) return match.groups()
[ "src.parse.parsers.header.HeaderParser", "src.parse.parsers.comment.CommentParser", "src.parse.parsers.travel.TravelParser", "src.parse.parsers.liability.LiabilityParser", "src.parse.parsers.position.PositionParser", "src.parse.parsers.agreement.AgreementParser", "src.parse.parsers.compensation.CompensationParser", "re.compile", "src.parse.parsers.gift.GiftParser", "src.parse.parsers.income.IncomeParser", "src.parse.parsers.ptr.PTRParser", "src.parse.parsers.charity.CharityParser", "src.parse.parsers.transaction.TransactionParser", "src.parse.parsers.asset.AssetParser" ]
[((1033, 1047), 'src.parse.parsers.header.HeaderParser', 'HeaderParser', ([], {}), '()\n', (1045, 1047), False, 'from src.parse.parsers.header import HeaderParser\n'), ((1078, 1093), 'src.parse.parsers.charity.CharityParser', 'CharityParser', ([], {}), '()\n', (1091, 1093), False, 'from src.parse.parsers.charity import CharityParser\n'), ((1123, 1137), 'src.parse.parsers.income.IncomeParser', 'IncomeParser', ([], {}), '()\n', (1135, 1137), False, 'from src.parse.parsers.income import IncomeParser\n'), ((1166, 1179), 'src.parse.parsers.asset.AssetParser', 'AssetParser', ([], {}), '()\n', (1177, 1179), False, 'from src.parse.parsers.asset import AssetParser\n'), ((1206, 1217), 'src.parse.parsers.ptr.PTRParser', 'PTRParser', ([], {}), '()\n', (1215, 1217), False, 'from src.parse.parsers.ptr import PTRParser\n'), ((1252, 1271), 'src.parse.parsers.transaction.TransactionParser', 'TransactionParser', ([], {}), '()\n', (1269, 1271), False, 'from src.parse.parsers.transaction import TransactionParser\n'), ((1299, 1311), 'src.parse.parsers.gift.GiftParser', 'GiftParser', ([], {}), '()\n', (1309, 1311), False, 'from src.parse.parsers.gift import GiftParser\n'), ((1341, 1355), 'src.parse.parsers.travel.TravelParser', 'TravelParser', ([], {}), '()\n', (1353, 1355), False, 'from src.parse.parsers.travel import TravelParser\n'), ((1388, 1405), 'src.parse.parsers.liability.LiabilityParser', 'LiabilityParser', ([], {}), '()\n', (1403, 1405), False, 'from src.parse.parsers.liability import LiabilityParser\n'), ((1437, 1453), 'src.parse.parsers.position.PositionParser', 'PositionParser', ([], {}), '()\n', (1451, 1453), False, 'from src.parse.parsers.position import PositionParser\n'), ((1486, 1503), 'src.parse.parsers.agreement.AgreementParser', 'AgreementParser', ([], {}), '()\n', (1501, 1503), False, 'from src.parse.parsers.agreement import AgreementParser\n'), ((1539, 1559), 'src.parse.parsers.compensation.CompensationParser', 'CompensationParser', ([], {}), '()\n', (1557, 1559), False, 'from src.parse.parsers.compensation import CompensationParser\n'), ((1590, 1605), 'src.parse.parsers.comment.CommentParser', 'CommentParser', ([], {}), '()\n', (1603, 1605), False, 'from src.parse.parsers.comment import CommentParser\n'), ((3115, 3150), 're.compile', 're.compile', (['RAW_DOCUMENT_EXPRESSION'], {}), '(RAW_DOCUMENT_EXPRESSION)\n', (3125, 3150), False, 'import re\n')]
from __future__ import annotations from prettyqt import core, widgets from prettyqt.qt import QtWidgets class CollapsibleFrame(widgets.Frame): expanded = core.Signal() collapsed = core.Signal() def __init__(self, parent: QtWidgets.QWidget | None = None): super().__init__(parent) self.set_frame_shape("styled_panel") self.set_frame_shadow("plain") # layout self._layout = widgets.BoxLayout("vertical") self._layout.set_margin(0) self._layout.setSpacing(0) self.setLayout(self._layout) # button self._button = widgets.ToolButton(self) self._button.set_arrow_type("right") self._button.set_style("text_beside_icon") self._button.setAutoRaise(False) self._button.set_text("CollapsibleFrame") self.set_size_policy("minimum_expanding", "fixed") self._layout.addWidget(self._button, 0) self._button.setVisible(True) # group box self._panel = widgets.Widget(self) self._layout.addWidget(self._panel) self._panel.setVisible(False) self._panel_layout = widgets.BoxLayout("vertical") self._panel_layout.set_margin(1) self._panel_layout.setSpacing(2) self._panel.setLayout(self._panel_layout) # connect signals self._button.clicked.connect(self.on_button_click) # private state variables self._is_collapsed = True def set_title(self, title: str): self._button.set_text(title) def add_widget(self, widget: widgets.Widget): self._panel_layout.addWidget(widget) def remove_widget(self, widget: widgets.Widget): self._panel_layout.removeWidget(widget) def is_expanded(self) -> bool: return not self._is_collapsed def expand(self): self._button.set_arrow_type("down") self._panel.setVisible(True) self._is_collapsed = False self.set_size_policy("minimum_expanding", "minimum_expanding") def collapse(self): self._panel.setVisible(False) self._button.set_arrow_type("right") self._is_collapsed = True self.set_size_policy("preferred", "preferred") @core.Slot() def on_button_click(self): if self._is_collapsed: self.expand() self.expanded.emit() else: self.collapse() self.collapsed.emit() if __name__ == "__main__": app = widgets.app() widget = CollapsibleFrame() widget.add_widget(widgets.Label("test")) widget.show() app.main_loop()
[ "prettyqt.core.Signal", "prettyqt.widgets.Widget", "prettyqt.core.Slot", "prettyqt.widgets.BoxLayout", "prettyqt.widgets.app", "prettyqt.widgets.Label", "prettyqt.widgets.ToolButton" ]
[((162, 175), 'prettyqt.core.Signal', 'core.Signal', ([], {}), '()\n', (173, 175), False, 'from prettyqt import core, widgets\n'), ((192, 205), 'prettyqt.core.Signal', 'core.Signal', ([], {}), '()\n', (203, 205), False, 'from prettyqt import core, widgets\n'), ((2212, 2223), 'prettyqt.core.Slot', 'core.Slot', ([], {}), '()\n', (2221, 2223), False, 'from prettyqt import core, widgets\n'), ((2460, 2473), 'prettyqt.widgets.app', 'widgets.app', ([], {}), '()\n', (2471, 2473), False, 'from prettyqt import core, widgets\n'), ((429, 458), 'prettyqt.widgets.BoxLayout', 'widgets.BoxLayout', (['"""vertical"""'], {}), "('vertical')\n", (446, 458), False, 'from prettyqt import core, widgets\n'), ((606, 630), 'prettyqt.widgets.ToolButton', 'widgets.ToolButton', (['self'], {}), '(self)\n', (624, 630), False, 'from prettyqt import core, widgets\n'), ((1005, 1025), 'prettyqt.widgets.Widget', 'widgets.Widget', (['self'], {}), '(self)\n', (1019, 1025), False, 'from prettyqt import core, widgets\n'), ((1137, 1166), 'prettyqt.widgets.BoxLayout', 'widgets.BoxLayout', (['"""vertical"""'], {}), "('vertical')\n", (1154, 1166), False, 'from prettyqt import core, widgets\n'), ((2528, 2549), 'prettyqt.widgets.Label', 'widgets.Label', (['"""test"""'], {}), "('test')\n", (2541, 2549), False, 'from prettyqt import core, widgets\n')]
""" ------------------------------------------------------- verif_answers.py verifies questions and answers ------------------------------------------------------- Author: <NAME> ID: ######### Email: <EMAIL> __updated__ = "2016-04-15" ------------------------------------------------------- """ from Main import create_questions generated_questions = create_questions() run = True while run: question_cont = input('Question Text: ') for k in generated_questions: if question_cont in k.question_text: print(k) print("______End of Results_______") print() print("Next Question") print()
[ "Main.create_questions" ]
[((361, 379), 'Main.create_questions', 'create_questions', ([], {}), '()\n', (377, 379), False, 'from Main import create_questions\n')]
# Author: <NAME> from Tkinter import * import math import random ''' F = ma ''' SCREEN_SIZE = [1360,768] WINDOW_SIZE = [500,500] TICKER = 30 CIRCLE = 'circle' RECTANGLE = 'rectangle' MODE = RECTANGLE # circle | rectangle def centralize(): return '%dx%d+%d+%d' % (WINDOW_SIZE[0], WINDOW_SIZE[1], (SCREEN_SIZE[0]/2)-(WINDOW_SIZE[0]/2), (SCREEN_SIZE[1]/2)-(WINDOW_SIZE[1]/2)) def drawtext(canvas, text): canvas.create_text(5,5,anchor=NW,text=text,fill='dimgrey') def clear(canvas): canvas.delete('all') class VariableForce: def __init__(self, *args, **kws): self.value = kws.get('force', [0.0]) class Particle: def __init__(self, *args, **kws): self.mass = kws.get('mass', 1.0) self.pos = kws.get('pos', [0.0,0.0]) self.vel = kws.get('vel', [0.0,0.0]) self.restitution_coeficient = 0.7 # 1.0 = lossless def next(self): self.pos[0] = self.pos[0] + self.vel[0] self.pos[1] = self.pos[1] + self.vel[1] def applyforce(self, force): accel = [force[0]/self.mass, force[1]/self.mass] self.vel[0] += accel[0] self.vel[1] += accel[1] def applyimpulse(self, intensity, time=0.1): # i = ft forcex = intensity[0] / float(time) forcey = intensity[1] / float(time) self.applyforce([forcex, forcey]) def getmomentum(self): return [self.vel[0]*self.mass, self.vel[1]*self.mass] x = property(lambda self : self.pos[0], None, None, 'x') y = property(lambda self : self.pos[1], None, None, 'y') class Body(Particle): def __init__(self, *args, **kws): self.radius = kws.get('radius', 15.0) self.color = kws.get('color', '#00aacc') Particle.__init__(self, *args, **kws) def draw(self, canvas): if MODE == CIRCLE: self.__draw_circle(canvas) elif MODE == RECTANGLE: self.__draw_rectangle(canvas) def __draw_circle(self, canvas): canvas.create_oval( self.x-self.radius, self.y-self.radius, self.x+self.radius, self.y+self.radius, fill=self.color,outline=self.color ) def __draw_rectangle(self, canvas): canvas.create_rectangle( self.x-self.radius, self.y-self.radius, self.x+self.radius, self.y+self.radius, fill=self.color,outline=self.color ) def colliding(self, particle): return self.distance(particle) <= (self.radius + particle.radius) def distance(self, particle): ''' Return the distance between this and another particle ''' x = abs(self.x-particle.x) y = abs(self.y-particle.y) return math.sqrt(x**2 + y**2) def inverse(self): self.vel[0] *= -1 self.vel[1] *= -1 def next(self): Particle.next(self) n = False if (self.pos[0]-self.radius) < 0.0: self.vel[0] = self.vel[0] * -1 * self.restitution_coeficient n = True elif (self.pos[0]+self.radius) > WINDOW_SIZE[0]: self.vel[0] = self.vel[0] * -1 * self.restitution_coeficient n = True if (self.pos[1]-self.radius) < 0.0: self.vel[1] = self.vel[1] * -1 * self.restitution_coeficient n = True elif (self.pos[1]+self.radius) > WINDOW_SIZE[1]: self.vel[1] = self.vel[1] * -1 * self.restitution_coeficient n = True if n: Particle.next(self) # threshould if (self.pos[0]-self.radius) < 0.0: self.pos[0] = self.radius elif (self.pos[0]+self.radius) > WINDOW_SIZE[0]: self.pos[0] = WINDOW_SIZE[0] - self.radius if (self.pos[1]-self.radius) < 0.0: self.pos[1] = self.radius elif (self.pos[1]+self.radius) > WINDOW_SIZE[1]: self.pos[1] = WINDOW_SIZE[1] - self.radius class Environment: def __init__(self, *args, **kws): self.particles = [] self.forces = [] def next(self): for particle in self.particles: for force in self.forces: if type(force) == VariableForce: particle.applyforce(force.value) else: particle.applyforce(force) particle.next() def add(self, particle): self.particles.append(particle) env = Environment() def colliding_with(particle): '''Returns the objects that are colliding with it''' for _p in env.particles: if particle != _p: if particle.colliding(_p): # esse inversao nao pode ser feita no dois eixos particle.inverse() # [fixme] _p.inverse() particle.next() _p.next() window = Tk() window.resizable(0,0) window.bind('<Escape>', lambda e : window.destroy(), '+') canvas = Canvas(window, bd=0,bg='white',highlightthickness=0,width=WINDOW_SIZE[0],height=WINDOW_SIZE[1]) canvas.grid() window.geometry(centralize()) env.forces.append([0.0,10.0]) # gravity env.forces.append([0.0,0.0]) # wind NUM_PARTICLES = 6 for i in range(NUM_PARTICLES): kws = { 'pos' : [random.randint(0,WINDOW_SIZE[0]), random.randint(0,WINDOW_SIZE[1])], 'mass' : random.randint(1.0,10.0), 'vel' : [random.randint(-5,5),0], # 'color' : '#%02x%02x%02x' % (random.randint(0,255),random.randint(0,255),random.randint(0,255)) } env.add( Body(**kws) ) def _main(*args): clear(canvas) for p in env.particles: colliding_with(p) p.draw(canvas) env.next() txt = 'FORCES:\n' for force in env.forces: txt += ' ' + str(force) + '\n' drawtext(canvas, txt) ''' if env.particles[0].colliding(env.particles[1]): print "ok" env.particles[1].inverse() env.particles[0].inverse() env.particles[1].next() env.particles[0].next() ''' window.after(TICKER, _main) _main() window.mainloop()
[ "math.sqrt", "random.randint" ]
[((2406, 2432), 'math.sqrt', 'math.sqrt', (['(x ** 2 + y ** 2)'], {}), '(x ** 2 + y ** 2)\n', (2415, 2432), False, 'import math\n'), ((4572, 4597), 'random.randint', 'random.randint', (['(1.0)', '(10.0)'], {}), '(1.0, 10.0)\n', (4586, 4597), False, 'import random\n'), ((4492, 4525), 'random.randint', 'random.randint', (['(0)', 'WINDOW_SIZE[0]'], {}), '(0, WINDOW_SIZE[0])\n', (4506, 4525), False, 'import random\n'), ((4526, 4559), 'random.randint', 'random.randint', (['(0)', 'WINDOW_SIZE[1]'], {}), '(0, WINDOW_SIZE[1])\n', (4540, 4559), False, 'import random\n'), ((4609, 4630), 'random.randint', 'random.randint', (['(-5)', '(5)'], {}), '(-5, 5)\n', (4623, 4630), False, 'import random\n')]
''' Created on Jun 28, 2017 @author: <NAME> ''' from threading import Thread class ServerProcess(Thread): ''' classdocs ''' def __init__(self): Thread.__init__(self, name = "ServerProcess") def init(self, handler): self.handler = handler return True def run(self): Thread.run(self)
[ "threading.Thread.__init__", "threading.Thread.run" ]
[((173, 216), 'threading.Thread.__init__', 'Thread.__init__', (['self'], {'name': '"""ServerProcess"""'}), "(self, name='ServerProcess')\n", (188, 216), False, 'from threading import Thread\n'), ((362, 378), 'threading.Thread.run', 'Thread.run', (['self'], {}), '(self)\n', (372, 378), False, 'from threading import Thread\n')]
from flask import Flask, request, render_template, send_file from io import BytesIO import TrigGen from datetime import datetime app = Flask(__name__) @app.route('/', methods=['GET', 'POST']) def home(): return render_template('index.html') @app.route('/generated-quiz', methods=['GET', 'POST']) def generated(): ### Title is a string used to create worksheet title text. if "title" in request.form: title = request.form["title"] else: title = "Speed Trig Quiz" print(title) ### norm is a Boolean for whether the Normal Trig Functions option was selected. # True if selected # False if not selected norm = "norm" in request.form print(norm) ### reci is a Boolean for whether the Reciprocal Trig Functions option was selected. # True if selected # False if not selected reci = "reci" in request.form print(reci) ### invnorm is a Boolean for whether the Inverse Normal Trig Functions option was selected. # True if selected # False if not selected invnorm = "invnorm" in request.form print(invnorm) ### invreci is a Boolean for whether the Inverse Reciprocal Trig Functions option was selected. # True if selected # False if not selected invreci = "invreci" in request.form print(invreci) ### inc is a Boolean for whether the user wants values above 2π or below 0. # True if selected # False if not selected if "inc" in request.form: inc = True if request.form["inc"] == "yes" else False else: inc = False print(inc) timesNewRoman = "timesnewroman" in request.form ### override is a Boolean for whether the user wants exact number or percent chance. # True if % chance # False if exact number wanted if "override" in request.form: override = True if request.form["override"] == "yes" else False else: override = False print(override) if "num" in request.form and "chance" in request.form: num = int(request.form["chance"]) if override else int(request.form["num"]) elif "num" in request.form: num = int(request.form["num"]) override = False elif "chance" in request.form: num = int(request.form["chance"]) override = True else: num = 0 print(num) dl = "dl" in request.form if app.config['TESTING']: quiz = TrigGen.test_tex([norm, reci, invnorm, invreci], inc, num, timesNewRoman, override) if quiz == ('', 204): return ('', 204) return send_file(BytesIO(quiz), as_attachment=dl, mimetype="text/x-tex", attachment_filename="Speed Trig Quiz"+datetime.now().strftime(" %Y-%m-%d at %H.%M.%S.pdf")) quiz = TrigGen.create_tex(title, [norm, reci, invnorm, invreci], inc, num, timesNewRoman, override) if quiz == ('', 204): return ('', 204) return send_file(BytesIO(bytes(quiz)), mimetype="application/pdf", as_attachment=dl, attachment_filename="Speed Trig Quiz"+datetime.now().strftime(" %Y-%m-%d at %H.%M.%S.pdf")) if __name__ == '__main__': app.run(host='0.0.0.0', threaded=True, debug=True)
[ "flask.render_template", "flask.Flask", "TrigGen.test_tex", "io.BytesIO", "datetime.datetime.now", "TrigGen.create_tex" ]
[((136, 151), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (141, 151), False, 'from flask import Flask, request, render_template, send_file\n'), ((216, 245), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (231, 245), False, 'from flask import Flask, request, render_template, send_file\n'), ((2760, 2856), 'TrigGen.create_tex', 'TrigGen.create_tex', (['title', '[norm, reci, invnorm, invreci]', 'inc', 'num', 'timesNewRoman', 'override'], {}), '(title, [norm, reci, invnorm, invreci], inc, num,\n timesNewRoman, override)\n', (2778, 2856), False, 'import TrigGen\n'), ((2400, 2487), 'TrigGen.test_tex', 'TrigGen.test_tex', (['[norm, reci, invnorm, invreci]', 'inc', 'num', 'timesNewRoman', 'override'], {}), '([norm, reci, invnorm, invreci], inc, num, timesNewRoman,\n override)\n', (2416, 2487), False, 'import TrigGen\n'), ((2568, 2581), 'io.BytesIO', 'BytesIO', (['quiz'], {}), '(quiz)\n', (2575, 2581), False, 'from io import BytesIO\n'), ((3074, 3088), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3086, 3088), False, 'from datetime import datetime\n'), ((2695, 2709), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (2707, 2709), False, 'from datetime import datetime\n')]
# This file was generated by the Tkinter Designer by <NAME> # https://github.com/ParthJadhav/Tkinter-Designer from pathlib import Path # from tkinter import * # Explicit imports to satisfy Flake8 from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage from ip2geotools.databases.noncommercial import DbIpCity OUTPUT_PATH = Path(__file__).parent ASSETS_PATH = OUTPUT_PATH / Path("./assets") def relative_to_assets(path: str) -> Path: return ASSETS_PATH / Path(path) window = Tk() window.geometry("300x550") window.configure(bg = "#5DC1C7") window.title("IP2GEO") canvas = Canvas( window, bg = "#5DC1C7", height = 550, width = 300, bd = 0, highlightthickness = 0, relief = "ridge" ) canvas.place(x = 0, y = 0) canvas.create_text( 75.0, 26.0, anchor="nw", text="IP 2 GEO", fill="#FFFFFF", font=("Roboto", 36 * -1) ) entry_image_1 = PhotoImage( file=relative_to_assets("entry_1.png")) entry_bg_1 = canvas.create_image( 150.5, 173.0, image=entry_image_1 ) entry_1 = Entry( bd=0, bg="#E5E5E5", highlightthickness=0, fg="black" ) entry_1.place( x=52.0, y=145.0, width=197.0, height=54.0 ) canvas.create_text( 36.0, 125.0, anchor="nw", text="ENTER IP ADDRESS", fill="#FCFAFA", font=("Roboto", 12 * -1) ) def ip_check(): response = DbIpCity.get(entry_1.get(),api_key='free') ''' print("IP country:",response.country) print("IP city:",response.city) print("IP latitude:",response.latitude) print("IP longitude:",response.longitude) ''' co = "IP country: "+response.country ci = "IP city: " + response.city li = "IP latitude: "+ str(response.latitude) lo = "IP longitude: " + str(response.longitude) country = Label(text=co,bg="#5DC1C7",fg="white") country.place(x=30,y=350) city = Label(text=ci,bg="#5DC1C7",fg="white") city.place(x=30,y=400) lit = Label(text=li,bg="#5DC1C7",fg="white") lit.place(x=30,y=450) lon = Label(text=lo,bg="#5DC1C7",fg="white") lon.place(x=30,y=500) button_image_1 = PhotoImage( file=relative_to_assets("button_1.png")) button_1 = Button( image=button_image_1, borderwidth=0, highlightthickness=0, command=lambda: ip_check(), relief="flat", ) button_1.place( x=95.0, y=250.0, width=110.0, height=45.0 ) window.resizable(False, False) window.mainloop()
[ "tkinter.Entry", "pathlib.Path", "tkinter.Canvas", "tkinter.Tk", "tkinter.Label" ]
[((502, 506), 'tkinter.Tk', 'Tk', ([], {}), '()\n', (504, 506), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((601, 700), 'tkinter.Canvas', 'Canvas', (['window'], {'bg': '"""#5DC1C7"""', 'height': '(550)', 'width': '(300)', 'bd': '(0)', 'highlightthickness': '(0)', 'relief': '"""ridge"""'}), "(window, bg='#5DC1C7', height=550, width=300, bd=0,\n highlightthickness=0, relief='ridge')\n", (607, 700), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((1061, 1120), 'tkinter.Entry', 'Entry', ([], {'bd': '(0)', 'bg': '"""#E5E5E5"""', 'highlightthickness': '(0)', 'fg': '"""black"""'}), "(bd=0, bg='#E5E5E5', highlightthickness=0, fg='black')\n", (1066, 1120), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((343, 357), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (347, 357), False, 'from pathlib import Path\n'), ((393, 409), 'pathlib.Path', 'Path', (['"""./assets"""'], {}), "('./assets')\n", (397, 409), False, 'from pathlib import Path\n'), ((1808, 1848), 'tkinter.Label', 'Label', ([], {'text': 'co', 'bg': '"""#5DC1C7"""', 'fg': '"""white"""'}), "(text=co, bg='#5DC1C7', fg='white')\n", (1813, 1848), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((1888, 1928), 'tkinter.Label', 'Label', ([], {'text': 'ci', 'bg': '"""#5DC1C7"""', 'fg': '"""white"""'}), "(text=ci, bg='#5DC1C7', fg='white')\n", (1893, 1928), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((1964, 2004), 'tkinter.Label', 'Label', ([], {'text': 'li', 'bg': '"""#5DC1C7"""', 'fg': '"""white"""'}), "(text=li, bg='#5DC1C7', fg='white')\n", (1969, 2004), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((2039, 2079), 'tkinter.Label', 'Label', ([], {'text': 'lo', 'bg': '"""#5DC1C7"""', 'fg': '"""white"""'}), "(text=lo, bg='#5DC1C7', fg='white')\n", (2044, 2079), False, 'from tkinter import Label, Tk, Canvas, Entry, Text, Button, PhotoImage\n'), ((480, 490), 'pathlib.Path', 'Path', (['path'], {}), '(path)\n', (484, 490), False, 'from pathlib import Path\n')]
""" Tests around our XML modulestore, including importing well-formed and not-well-formed XML. """ import os.path from glob import glob from unittest.mock import Mock, patch import pytest from django.test import TestCase from opaque_keys.edx.keys import CourseKey from opaque_keys.edx.locator import CourseLocator from xmodule.modulestore import ModuleStoreEnum from xmodule.modulestore.tests.test_modulestore import check_has_course_method from xmodule.modulestore.tests.utils import TILDA_FILES_DICT, add_temp_files_from_dict, remove_temp_files_from_list from xmodule.modulestore.xml import XMLModuleStore from xmodule.tests import DATA_DIR from xmodule.x_module import XModuleMixin def glob_tildes_at_end(path): """ A wrapper for the `glob.glob` function, but it always returns files that end in a tilde (~) at the end of the list of results. """ result = glob(path) with_tildes = [f for f in result if f.endswith("~")] no_tildes = [f for f in result if not f.endswith("~")] return no_tildes + with_tildes class TestXMLModuleStore(TestCase): """ Test around the XML modulestore """ @patch('xmodule.tabs.CourseTabList.initialize_default', Mock()) def test_unicode_chars_in_xml_content(self): # edX/full/6.002_Spring_2012 has non-ASCII chars, and during # uniquification of names, would raise a UnicodeError. It no longer does. # Ensure that there really is a non-ASCII character in the course. with open(os.path.join(DATA_DIR, "toy/sequential/vertical_sequential.xml"), 'rb') as xmlf: xml = xmlf.read() with pytest.raises(UnicodeDecodeError): xml.decode('ascii') # Load the course, but don't make error modules. This will succeed, # but will record the errors. modulestore = XMLModuleStore( DATA_DIR, source_dirs=['toy'], xblock_mixins=(XModuleMixin,), load_error_modules=False) # Look up the errors during load. There should be none. errors = modulestore.get_course_errors(CourseKey.from_string("edX/toy/2012_Fall")) assert errors == [] def test_get_courses_for_wiki(self): """ Test the get_courses_for_wiki method """ store = XMLModuleStore(DATA_DIR, source_dirs=['toy', 'simple']) for course in store.get_courses(): course_locations = store.get_courses_for_wiki(course.wiki_slug) assert len(course_locations) == 1 assert course.location.course_key in course_locations course_locations = store.get_courses_for_wiki('no_such_wiki') assert len(course_locations) == 0 # now set toy course to share the wiki with simple course toy_course = store.get_course(CourseKey.from_string('edX/toy/2012_Fall')) toy_course.wiki_slug = 'simple' course_locations = store.get_courses_for_wiki('toy') assert len(course_locations) == 0 course_locations = store.get_courses_for_wiki('simple') assert len(course_locations) == 2 for course_number in ['toy', 'simple']: assert CourseKey.from_string('/'.join(['edX', course_number, '2012_Fall'])) in course_locations def test_has_course(self): """ Test the has_course method """ check_has_course_method( XMLModuleStore(DATA_DIR, source_dirs=['toy', 'simple']), CourseKey.from_string('edX/toy/2012_Fall'), locator_key_fields=CourseLocator.KEY_FIELDS ) def test_branch_setting(self): """ Test the branch setting context manager """ store = XMLModuleStore(DATA_DIR, source_dirs=['toy']) course = store.get_courses()[0] # XML store allows published_only branch setting with store.branch_setting(ModuleStoreEnum.Branch.published_only, course.id): store.get_item(course.location) # XML store does NOT allow draft_preferred branch setting with pytest.raises(ValueError): with store.branch_setting(ModuleStoreEnum.Branch.draft_preferred, course.id): # verify that the above context manager raises a ValueError pass # pragma: no cover @patch('xmodule.modulestore.xml.log') def test_dag_course(self, mock_logging): """ Test a course whose structure is not a tree. """ store = XMLModuleStore( DATA_DIR, source_dirs=['xml_dag'], xblock_mixins=(XModuleMixin,), ) course_key = store.get_courses()[0].id mock_logging.warning.assert_called_with( "%s has more than one definition", course_key.make_usage_key('discussion', 'duplicate_def') ) shared_item_loc = course_key.make_usage_key('html', 'toyhtml') shared_item = store.get_item(shared_item_loc) parent = shared_item.get_parent() assert parent is not None, 'get_parent failed to return a value' parent_loc = course_key.make_usage_key('vertical', 'vertical_test') assert parent.location == parent_loc assert shared_item.location in [x.location for x in parent.get_children()] # ensure it's still a child of the other parent even tho it doesn't claim the other parent as its parent other_parent_loc = course_key.make_usage_key('vertical', 'zeta') other_parent = store.get_item(other_parent_loc) # children rather than get_children b/c the instance returned by get_children != shared_item assert shared_item_loc in other_parent.children class TestModuleStoreIgnore(TestXMLModuleStore): # lint-amnesty, pylint: disable=missing-class-docstring, test-inherits-tests course_dir = DATA_DIR / "course_ignore" def setUp(self): super().setUp() self.addCleanup(remove_temp_files_from_list, list(TILDA_FILES_DICT.keys()), self.course_dir / "static") add_temp_files_from_dict(TILDA_FILES_DICT, self.course_dir / "static") @patch("xmodule.modulestore.xml.glob.glob", side_effect=glob_tildes_at_end) def test_tilde_files_ignored(self, _fake_glob): modulestore = XMLModuleStore(DATA_DIR, source_dirs=['course_ignore'], load_error_modules=False) about_location = CourseKey.from_string('edX/course_ignore/2014_Fall').make_usage_key( 'about', 'index', ) about_module = modulestore.get_item(about_location) assert 'GREEN' in about_module.data assert 'RED' not in about_module.data
[ "unittest.mock.Mock", "xmodule.modulestore.tests.utils.add_temp_files_from_dict", "xmodule.modulestore.tests.utils.TILDA_FILES_DICT.keys", "xmodule.modulestore.xml.XMLModuleStore", "pytest.raises", "opaque_keys.edx.keys.CourseKey.from_string", "unittest.mock.patch", "glob.glob" ]
[((885, 895), 'glob.glob', 'glob', (['path'], {}), '(path)\n', (889, 895), False, 'from glob import glob\n'), ((4288, 4324), 'unittest.mock.patch', 'patch', (['"""xmodule.modulestore.xml.log"""'], {}), "('xmodule.modulestore.xml.log')\n", (4293, 4324), False, 'from unittest.mock import Mock, patch\n'), ((6062, 6136), 'unittest.mock.patch', 'patch', (['"""xmodule.modulestore.xml.glob.glob"""'], {'side_effect': 'glob_tildes_at_end'}), "('xmodule.modulestore.xml.glob.glob', side_effect=glob_tildes_at_end)\n", (6067, 6136), False, 'from unittest.mock import Mock, patch\n'), ((1837, 1943), 'xmodule.modulestore.xml.XMLModuleStore', 'XMLModuleStore', (['DATA_DIR'], {'source_dirs': "['toy']", 'xblock_mixins': '(XModuleMixin,)', 'load_error_modules': '(False)'}), "(DATA_DIR, source_dirs=['toy'], xblock_mixins=(XModuleMixin,),\n load_error_modules=False)\n", (1851, 1943), False, 'from xmodule.modulestore.xml import XMLModuleStore\n'), ((1198, 1204), 'unittest.mock.Mock', 'Mock', ([], {}), '()\n', (1202, 1204), False, 'from unittest.mock import Mock, patch\n'), ((2300, 2355), 'xmodule.modulestore.xml.XMLModuleStore', 'XMLModuleStore', (['DATA_DIR'], {'source_dirs': "['toy', 'simple']"}), "(DATA_DIR, source_dirs=['toy', 'simple'])\n", (2314, 2355), False, 'from xmodule.modulestore.xml import XMLModuleStore\n'), ((3695, 3740), 'xmodule.modulestore.xml.XMLModuleStore', 'XMLModuleStore', (['DATA_DIR'], {'source_dirs': "['toy']"}), "(DATA_DIR, source_dirs=['toy'])\n", (3709, 3740), False, 'from xmodule.modulestore.xml import XMLModuleStore\n'), ((4463, 4548), 'xmodule.modulestore.xml.XMLModuleStore', 'XMLModuleStore', (['DATA_DIR'], {'source_dirs': "['xml_dag']", 'xblock_mixins': '(XModuleMixin,)'}), "(DATA_DIR, source_dirs=['xml_dag'], xblock_mixins=(XModuleMixin,)\n )\n", (4477, 4548), False, 'from xmodule.modulestore.xml import XMLModuleStore\n'), ((5985, 6055), 'xmodule.modulestore.tests.utils.add_temp_files_from_dict', 'add_temp_files_from_dict', (['TILDA_FILES_DICT', "(self.course_dir / 'static')"], {}), "(TILDA_FILES_DICT, self.course_dir / 'static')\n", (6009, 6055), False, 'from xmodule.modulestore.tests.utils import TILDA_FILES_DICT, add_temp_files_from_dict, remove_temp_files_from_list\n'), ((6211, 6297), 'xmodule.modulestore.xml.XMLModuleStore', 'XMLModuleStore', (['DATA_DIR'], {'source_dirs': "['course_ignore']", 'load_error_modules': '(False)'}), "(DATA_DIR, source_dirs=['course_ignore'], load_error_modules=\n False)\n", (6225, 6297), False, 'from xmodule.modulestore.xml import XMLModuleStore\n'), ((2101, 2143), 'opaque_keys.edx.keys.CourseKey.from_string', 'CourseKey.from_string', (['"""edX/toy/2012_Fall"""'], {}), "('edX/toy/2012_Fall')\n", (2122, 2143), False, 'from opaque_keys.edx.keys import CourseKey\n'), ((2805, 2847), 'opaque_keys.edx.keys.CourseKey.from_string', 'CourseKey.from_string', (['"""edX/toy/2012_Fall"""'], {}), "('edX/toy/2012_Fall')\n", (2826, 2847), False, 'from opaque_keys.edx.keys import CourseKey\n'), ((3392, 3447), 'xmodule.modulestore.xml.XMLModuleStore', 'XMLModuleStore', (['DATA_DIR'], {'source_dirs': "['toy', 'simple']"}), "(DATA_DIR, source_dirs=['toy', 'simple'])\n", (3406, 3447), False, 'from xmodule.modulestore.xml import XMLModuleStore\n'), ((3461, 3503), 'opaque_keys.edx.keys.CourseKey.from_string', 'CourseKey.from_string', (['"""edX/toy/2012_Fall"""'], {}), "('edX/toy/2012_Fall')\n", (3482, 3503), False, 'from opaque_keys.edx.keys import CourseKey\n'), ((4048, 4073), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (4061, 4073), False, 'import pytest\n'), ((1628, 1661), 'pytest.raises', 'pytest.raises', (['UnicodeDecodeError'], {}), '(UnicodeDecodeError)\n', (1641, 1661), False, 'import pytest\n'), ((5923, 5946), 'xmodule.modulestore.tests.utils.TILDA_FILES_DICT.keys', 'TILDA_FILES_DICT.keys', ([], {}), '()\n', (5944, 5946), False, 'from xmodule.modulestore.tests.utils import TILDA_FILES_DICT, add_temp_files_from_dict, remove_temp_files_from_list\n'), ((6318, 6370), 'opaque_keys.edx.keys.CourseKey.from_string', 'CourseKey.from_string', (['"""edX/course_ignore/2014_Fall"""'], {}), "('edX/course_ignore/2014_Fall')\n", (6339, 6370), False, 'from opaque_keys.edx.keys import CourseKey\n')]
""" Convenience classes for defining some sliders """ from math import radians import tkinter as tk class OffsetSlider(object): """ Sliders for changing the initial pose offsets """ def __init__(self, key, bounds, gui): """ @param key: 'x', 'y', or 'yaw' @param bounds: [min, max] -> bounds on the offset @param gui: reference to the TrackBuilderGUI instance """ self.gui = gui self.key = key self.offset_var = tk.DoubleVar() self.offset_var.set(gui.initial_pose_offset[key]) self.offset_var.trace( "w", lambda name, index, mode, sv=self.offset_var: self._offset_cb(self.offset_var) ) resolution = 1 if key == 'yaw' else 0.1 offset_scale = tk.Scale( gui.top_frame3, from_=bounds[0], to=bounds[1], resolution=resolution, orient=tk.HORIZONTAL, variable=self.offset_var) offset_scale.pack(side=tk.LEFT) def _offset_cb(self, var): value = self.offset_var.get() if self.key == 'yaw': value = radians(value) self.gui.initial_pose_offset[self.key] = value self.gui.update_window() class BasicSlider(object): """ Basic slider storing one double value """ def __init__(self, default_value, bounds, resolution, gui, frame): """ @param default_value: default value of the slider @param bounds: [min, max] -> bounds on the offset @param resolution: resolution of the slider @param gui: reference to the TrackBuilderGUI instance @param frame: tk frame in which add the slider """ self.gui = gui self.var = tk.DoubleVar() self.var.set(default_value) self.var.trace( "w", lambda name, index, mode, sv=self.var: self._callback(self.var) ) scale = tk.Scale( frame, from_=bounds[0], to=bounds[1], resolution=resolution, orient=tk.HORIZONTAL, variable=self.var) scale.pack(side=tk.LEFT) def _callback(self, var): self.gui.update_window() def get_value(self): return self.var.get()
[ "tkinter.Scale", "math.radians", "tkinter.DoubleVar" ]
[((495, 509), 'tkinter.DoubleVar', 'tk.DoubleVar', ([], {}), '()\n', (507, 509), True, 'import tkinter as tk\n'), ((804, 935), 'tkinter.Scale', 'tk.Scale', (['gui.top_frame3'], {'from_': 'bounds[0]', 'to': 'bounds[1]', 'resolution': 'resolution', 'orient': 'tk.HORIZONTAL', 'variable': 'self.offset_var'}), '(gui.top_frame3, from_=bounds[0], to=bounds[1], resolution=\n resolution, orient=tk.HORIZONTAL, variable=self.offset_var)\n', (812, 935), True, 'import tkinter as tk\n'), ((1733, 1747), 'tkinter.DoubleVar', 'tk.DoubleVar', ([], {}), '()\n', (1745, 1747), True, 'import tkinter as tk\n'), ((1928, 2042), 'tkinter.Scale', 'tk.Scale', (['frame'], {'from_': 'bounds[0]', 'to': 'bounds[1]', 'resolution': 'resolution', 'orient': 'tk.HORIZONTAL', 'variable': 'self.var'}), '(frame, from_=bounds[0], to=bounds[1], resolution=resolution,\n orient=tk.HORIZONTAL, variable=self.var)\n', (1936, 2042), True, 'import tkinter as tk\n'), ((1116, 1130), 'math.radians', 'radians', (['value'], {}), '(value)\n', (1123, 1130), False, 'from math import radians\n')]
import tensorflow as tf import numpy as np from visualize import Visualize import scipy.misc image = "image.jpg" def to_label(label): text_label = "" for single_label in label: number = np.argmax(single_label) if number == 10: return text_label else: text_label += str(number) return text_label with tf.Session() as sess: saver = tf.train.import_meta_graph('SVHN_recognition/checkpoints/SVHN/SVHN-30000.meta') saver.restore(sess, 'SVHN_recognition/checkpoints/SVHN/SVHN-30000') graph = tf.get_default_graph() inputs = graph.get_tensor_by_name("inputs:0") label = graph.get_tensor_by_name("inference/stack:0") position = graph.get_tensor_by_name("inference/fc_5/MatMul:0") input = scipy.misc.imresize(scipy.misc.imread(image), (128, 256)) feed_dict = {inputs: [input]} label, position = sess.run([label, position], feed_dict) visualize = Visualize() visualize.visualize_inference(input, to_label(label[0]), position[0])
[ "tensorflow.Session", "numpy.argmax", "visualize.Visualize", "tensorflow.train.import_meta_graph", "tensorflow.get_default_graph" ]
[((365, 377), 'tensorflow.Session', 'tf.Session', ([], {}), '()\n', (375, 377), True, 'import tensorflow as tf\n'), ((399, 478), 'tensorflow.train.import_meta_graph', 'tf.train.import_meta_graph', (['"""SVHN_recognition/checkpoints/SVHN/SVHN-30000.meta"""'], {}), "('SVHN_recognition/checkpoints/SVHN/SVHN-30000.meta')\n", (425, 478), True, 'import tensorflow as tf\n'), ((563, 585), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (583, 585), True, 'import tensorflow as tf\n'), ((944, 955), 'visualize.Visualize', 'Visualize', ([], {}), '()\n', (953, 955), False, 'from visualize import Visualize\n'), ((205, 228), 'numpy.argmax', 'np.argmax', (['single_label'], {}), '(single_label)\n', (214, 228), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- """ Created on Fri Apr 20 14:28:04 2018 @author: <NAME> """ from QChemTool.Development.defect import Defect,initialize_defect_database,defects_database from QChemTool import position_units from QChemTool import Structure from QChemTool.QuantumChem.read_mine import read_TrEsp_charges from QChemTool.QuantumChem.Fluorographene.fluorographene import constrainsFG import numpy as np coor,tr_charge,at_type = read_TrEsp_charges("Perylene_transition_TDDFT_fitted_charges_NoH.out") coor,gr_charge,at_type = read_TrEsp_charges("Perylene_ground_TDDFT_fitted_charges_NoH.out") coor,ex_charge,at_type = read_TrEsp_charges("Perylene_excited_TDDFT_fitted_charges_NoH.out") with position_units("Angstrom"): struc = {"coor": coor, "at_type": at_type} charges = {"ground": gr_charge, "excited": ex_charge,"transition": tr_charge} def1 = Defect(struc=struc, charges=charges) system = Structure() system.load_xyz("FGrph_1perylene_2dist_ser_TDDFT-wB97XD_geom_BLYP-landl2dz_symm.xyz") # Get set of defects from structure indx_FG = constrainsFG(system,border=False,defect=True) indx_FG = np.array(indx_FG,dtype="i8") coor = system.coor.value[indx_FG] at_type = [] for ii in indx_FG: at_type.append( system.at_type[ii] ) FGdefects = Structure() FGdefects.add_coor(coor,at_type) indx_def = FGdefects.count_fragments() Ndef = len(indx_def) defects = [] for ii in range(Ndef): at_type = [] for jj in indx_def[ii]: at_type.append( FGdefects.at_type[jj] ) struc = {"coor": FGdefects.coor.value[indx_def[ii]], "at_type": at_type} index = list(indx_FG[ indx_def[ii] ]) defct = Defect(struc=struc, index=index) defects.append(defct) print(defects[0].index) # identify defect def2 = defects[0] #index_corr,RSMD = def2.identify_defect(def1) #def1.output_to_pdb("def1.pdb") #def2.coor.value = def2.coor.value[index_corr] #def2.output_to_pdb("def2_reord.pdb") def2.load_charges_from_defect(def1) coor,tr_charge,at_type = read_TrEsp_charges("Perylene_transition_TDDFT_fitted_charges_NoH.out") coor,gr_charge,at_type = read_TrEsp_charges("Perylene_ground_TDDFT_fitted_charges_NoH.out") coor,ex_charge,at_type = read_TrEsp_charges("Perylene_excited_TDDFT_fitted_charges_NoH.out") with position_units("Angstrom"): struc = {"coor": coor, "at_type": at_type} charges = {"ground": gr_charge, "excited": ex_charge,"transition": tr_charge} def1 = Defect(struc=struc, charges=charges) def1.coor.value defects_database = initialize_defect_database("QC") print(defects_database.keys()) # FG system automaticaly identify defects - parameters: transition energy type # Then manually call function assign defects to allow some changes in the database
[ "QChemTool.QuantumChem.read_mine.read_TrEsp_charges", "QChemTool.position_units", "QChemTool.Development.defect.Defect", "numpy.array", "QChemTool.QuantumChem.Fluorographene.fluorographene.constrainsFG", "QChemTool.Development.defect.defects_database.keys", "QChemTool.Structure", "QChemTool.Development.defect.initialize_defect_database" ]
[((448, 518), 'QChemTool.QuantumChem.read_mine.read_TrEsp_charges', 'read_TrEsp_charges', (['"""Perylene_transition_TDDFT_fitted_charges_NoH.out"""'], {}), "('Perylene_transition_TDDFT_fitted_charges_NoH.out')\n", (466, 518), False, 'from QChemTool.QuantumChem.read_mine import read_TrEsp_charges\n'), ((545, 611), 'QChemTool.QuantumChem.read_mine.read_TrEsp_charges', 'read_TrEsp_charges', (['"""Perylene_ground_TDDFT_fitted_charges_NoH.out"""'], {}), "('Perylene_ground_TDDFT_fitted_charges_NoH.out')\n", (563, 611), False, 'from QChemTool.QuantumChem.read_mine import read_TrEsp_charges\n'), ((638, 705), 'QChemTool.QuantumChem.read_mine.read_TrEsp_charges', 'read_TrEsp_charges', (['"""Perylene_excited_TDDFT_fitted_charges_NoH.out"""'], {}), "('Perylene_excited_TDDFT_fitted_charges_NoH.out')\n", (656, 705), False, 'from QChemTool.QuantumChem.read_mine import read_TrEsp_charges\n'), ((937, 948), 'QChemTool.Structure', 'Structure', ([], {}), '()\n', (946, 948), False, 'from QChemTool import Structure\n'), ((1086, 1133), 'QChemTool.QuantumChem.Fluorographene.fluorographene.constrainsFG', 'constrainsFG', (['system'], {'border': '(False)', 'defect': '(True)'}), '(system, border=False, defect=True)\n', (1098, 1133), False, 'from QChemTool.QuantumChem.Fluorographene.fluorographene import constrainsFG\n'), ((1143, 1172), 'numpy.array', 'np.array', (['indx_FG'], {'dtype': '"""i8"""'}), "(indx_FG, dtype='i8')\n", (1151, 1172), True, 'import numpy as np\n'), ((1298, 1309), 'QChemTool.Structure', 'Structure', ([], {}), '()\n', (1307, 1309), False, 'from QChemTool import Structure\n'), ((2037, 2107), 'QChemTool.QuantumChem.read_mine.read_TrEsp_charges', 'read_TrEsp_charges', (['"""Perylene_transition_TDDFT_fitted_charges_NoH.out"""'], {}), "('Perylene_transition_TDDFT_fitted_charges_NoH.out')\n", (2055, 2107), False, 'from QChemTool.QuantumChem.read_mine import read_TrEsp_charges\n'), ((2134, 2200), 'QChemTool.QuantumChem.read_mine.read_TrEsp_charges', 'read_TrEsp_charges', (['"""Perylene_ground_TDDFT_fitted_charges_NoH.out"""'], {}), "('Perylene_ground_TDDFT_fitted_charges_NoH.out')\n", (2152, 2200), False, 'from QChemTool.QuantumChem.read_mine import read_TrEsp_charges\n'), ((2227, 2294), 'QChemTool.QuantumChem.read_mine.read_TrEsp_charges', 'read_TrEsp_charges', (['"""Perylene_excited_TDDFT_fitted_charges_NoH.out"""'], {}), "('Perylene_excited_TDDFT_fitted_charges_NoH.out')\n", (2245, 2294), False, 'from QChemTool.QuantumChem.read_mine import read_TrEsp_charges\n'), ((2557, 2589), 'QChemTool.Development.defect.initialize_defect_database', 'initialize_defect_database', (['"""QC"""'], {}), "('QC')\n", (2583, 2589), False, 'from QChemTool.Development.defect import Defect, initialize_defect_database, defects_database\n'), ((714, 740), 'QChemTool.position_units', 'position_units', (['"""Angstrom"""'], {}), "('Angstrom')\n", (728, 740), False, 'from QChemTool import position_units\n'), ((886, 922), 'QChemTool.Development.defect.Defect', 'Defect', ([], {'struc': 'struc', 'charges': 'charges'}), '(struc=struc, charges=charges)\n', (892, 922), False, 'from QChemTool.Development.defect import Defect, initialize_defect_database, defects_database\n'), ((1674, 1706), 'QChemTool.Development.defect.Defect', 'Defect', ([], {'struc': 'struc', 'index': 'index'}), '(struc=struc, index=index)\n', (1680, 1706), False, 'from QChemTool.Development.defect import Defect, initialize_defect_database, defects_database\n'), ((2301, 2327), 'QChemTool.position_units', 'position_units', (['"""Angstrom"""'], {}), "('Angstrom')\n", (2315, 2327), False, 'from QChemTool import position_units\n'), ((2473, 2509), 'QChemTool.Development.defect.Defect', 'Defect', ([], {'struc': 'struc', 'charges': 'charges'}), '(struc=struc, charges=charges)\n', (2479, 2509), False, 'from QChemTool.Development.defect import Defect, initialize_defect_database, defects_database\n'), ((2597, 2620), 'QChemTool.Development.defect.defects_database.keys', 'defects_database.keys', ([], {}), '()\n', (2618, 2620), False, 'from QChemTool.Development.defect import Defect, initialize_defect_database, defects_database\n')]
#!/usr/bin/python3 import os import pygit2 import subprocess import sys import time import robodoge # Script to mass evaluate remaining pull requests, and raise them against Dogecoin # where feasible. def build_pr_body(pr_titles, pr_ids): contents = [] for pr_id in pr_ids: contents.append(pr_titles[pr_id]) return "Contains:\n\n* " + "\n* ".join(contents) def mark_commits_merged(conn, merger, new_pr, pr_ids): cursor = conn.cursor() try: # Mark the new PR to the database robodoge.write_pr(cursor, new_pr, 'dogecoin/dogecoin') # Mark component PRs done for pr_id in pr_ids: cursor.execute("UPDATE pull_request_commit SET merged='t', raised_pr_id=%(raised_pr)s WHERE pr_id=%(pr_id)s", { 'pr_id': pr_id, 'raised_pr': new_pr['id'] }) conn.commit() finally: cursor.close() def raise_pull_request(conn, merger, pr_titles, pr_ids): repo = merger.repo title = '[Auto] Bitcoin PR batch %s' % time.asctime() body = build_pr_body(pr_titles, pr_ids) # Create new branch branch_name = 'bitcoin-batch-%d' % int(time.time()) batch_branch = merger.create_branch(branch_name) repo.checkout(batch_branch) merger.apply_pull_requests(conn, batch_branch, pr_ids) # Push branch upstream and raise PR branch_ref = repo.lookup_reference('refs/heads/' + batch_branch.branch_name) print('Pushing branch %s to origin' % batch_branch.branch_name) remote = repo.remotes["origin"] remote.credentials = pygit2.UserPass(merger.private_token, 'x-oauth-basic') remote.push([branch_ref.name]) # Raise a PR from the new branch new_pr = merger.raise_pr('dogecoin/dogecoin', title, body, batch_branch.branch_name) mark_commits_merged(conn, merger, new_pr, pr_ids) def test_pr_merge(conn, merger, pr_id): """ Test if a pull request can be cleanly merged against the current development branch. Returns true/false """ path = merger.config['dogecoin_repo']['path'] repo = merger.repo # Test if the branch exists already, create it if not head_branch = merger.create_branch('bitcoin-pr-%d' % pr_id) if not head_branch: return False try: repo.checkout(head_branch) if not merger.apply_pull_requests(conn, head_branch, [pr_id]): return False # Make sure it's a viable build too print('Attempting compilation of PR %d' % pr_id) try: robodoge.compile_dogecoin(path) except robodoge.BuildError: return False finally: repo.checkout(merger.safe_branch) repo.lookup_branch(head_branch.branch_name, pygit2.GIT_BRANCH_LOCAL).delete() return True config = robodoge.load_configuration('config.yml') try: merger = robodoge.Robodoge(config) except robodoge.ConfigurationError as err: print(err.msg) sys.exit(1) conn = merger.get_connection() try: pr_titles = {} ordered_pr_ids = [] cursor = conn.cursor() try: # Find pull requests to evaluate cursor.execute( """SELECT pr.id, pr.title FROM pull_request pr JOIN pull_request_commit commit ON commit.pr_id=pr.id WHERE commit.to_merge='t' AND commit.merged='f' ORDER BY pr.merged_at, pr.id ASC""") for record in cursor: pr_id = record[0] if pr_id not in ordered_pr_ids: ordered_pr_ids.append(pr_id) pr_titles[pr_id] = record[1] finally: cursor.close() viable_pr_ids = [] for pr_id in ordered_pr_ids: if test_pr_merge(conn, merger, pr_id): viable_pr_ids.append(pr_id) if len(viable_pr_ids) == 4: try: raise_pull_request(conn, merger, pr_titles, viable_pr_ids) except robodoge.BranchCollisionError as err: print(err.msg) viable_pr_ids = [] time.sleep(60*60) # Give the server a break if len(viable_pr_ids) > 0: try: raise_pull_request(conn, merger, pr_titles, viable_pr_ids) except robodoge.BranchCollisionError as err: print(err.msg) finally: conn.close() merger.repo.checkout(merger.safe_branch)
[ "time.asctime", "robodoge.compile_dogecoin", "pygit2.UserPass", "robodoge.Robodoge", "time.sleep", "robodoge.load_configuration", "robodoge.write_pr", "sys.exit", "time.time" ]
[((2779, 2820), 'robodoge.load_configuration', 'robodoge.load_configuration', (['"""config.yml"""'], {}), "('config.yml')\n", (2806, 2820), False, 'import robodoge\n'), ((1572, 1626), 'pygit2.UserPass', 'pygit2.UserPass', (['merger.private_token', '"""x-oauth-basic"""'], {}), "(merger.private_token, 'x-oauth-basic')\n", (1587, 1626), False, 'import pygit2\n'), ((2839, 2864), 'robodoge.Robodoge', 'robodoge.Robodoge', (['config'], {}), '(config)\n', (2856, 2864), False, 'import robodoge\n'), ((522, 576), 'robodoge.write_pr', 'robodoge.write_pr', (['cursor', 'new_pr', '"""dogecoin/dogecoin"""'], {}), "(cursor, new_pr, 'dogecoin/dogecoin')\n", (539, 576), False, 'import robodoge\n'), ((1036, 1050), 'time.asctime', 'time.asctime', ([], {}), '()\n', (1048, 1050), False, 'import time\n'), ((2931, 2942), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (2939, 2942), False, 'import sys\n'), ((1163, 1174), 'time.time', 'time.time', ([], {}), '()\n', (1172, 1174), False, 'import time\n'), ((2518, 2549), 'robodoge.compile_dogecoin', 'robodoge.compile_dogecoin', (['path'], {}), '(path)\n', (2543, 2549), False, 'import robodoge\n'), ((4023, 4042), 'time.sleep', 'time.sleep', (['(60 * 60)'], {}), '(60 * 60)\n', (4033, 4042), False, 'import time\n')]
# -*- coding: utf-8 -*- from distutils.core import setup setup(name="SetupPyUTF8", author="<NAME>", )
[ "distutils.core.setup" ]
[((59, 101), 'distutils.core.setup', 'setup', ([], {'name': '"""SetupPyUTF8"""', 'author': '"""<NAME>"""'}), "(name='SetupPyUTF8', author='<NAME>')\n", (64, 101), False, 'from distutils.core import setup\n')]