code
stringlengths
20
1.05M
apis
sequence
extract_api
stringlengths
75
5.24M
from flask import Flask, render_template, Response from camera_pi import Camera import subprocess import os import datetime import time app = Flask(__name__) @app.route("/") def hello(): now = datetime.datetime.now() timeString = now.strftime("%Y-%m-%d %H:%M") templateData = { 'title' : 'HELLO!', 'time': timeString } return render_template('index.html', **templateData) @app.route("/l1/") def l1(): subprocess.call(['./l1.py'], shell=True) return render_template('index.html') @app.route("/r1/") def r1(): subprocess.call(['./r1.py'], shell=True) return render_template('index.html') @app.route("/d1/") def d1(): subprocess.call(['./d1.py'], shell=True) return render_template('index.html') @app.route("/u1/") def u1(): subprocess.call(['./u1.py'], shell=True) return render_template('index.html') @app.route('/') def index(): """Video streaming home page.""" return render_template('index.html') def gen(camera): """Video streaming generator function.""" while True: frame = camera.get_frame() yield (b'--frame\r\n' b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n') @app.route('/video_feed') def video_feed(): """Video streaming route. Put this in the src attribute of an img tag.""" return Response(gen(Camera()), mimetype='multipart/x-mixed-replace; boundary=frame') if __name__ == "__main__": app.run(host='0.0.0.0', threaded='true')
[ "flask.render_template", "flask.Flask", "camera_pi.Camera", "datetime.datetime.now", "subprocess.call" ]
[((144, 159), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (149, 159), False, 'from flask import Flask, render_template, Response\n'), ((199, 222), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (220, 222), False, 'import datetime\n'), ((359, 404), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html', **templateData)\n", (374, 404), False, 'from flask import Flask, render_template, Response\n'), ((438, 478), 'subprocess.call', 'subprocess.call', (["['./l1.py']"], {'shell': '(True)'}), "(['./l1.py'], shell=True)\n", (453, 478), False, 'import subprocess\n'), ((489, 518), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (504, 518), False, 'from flask import Flask, render_template, Response\n'), ((552, 592), 'subprocess.call', 'subprocess.call', (["['./r1.py']"], {'shell': '(True)'}), "(['./r1.py'], shell=True)\n", (567, 592), False, 'import subprocess\n'), ((603, 632), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (618, 632), False, 'from flask import Flask, render_template, Response\n'), ((666, 706), 'subprocess.call', 'subprocess.call', (["['./d1.py']"], {'shell': '(True)'}), "(['./d1.py'], shell=True)\n", (681, 706), False, 'import subprocess\n'), ((717, 746), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (732, 746), False, 'from flask import Flask, render_template, Response\n'), ((780, 820), 'subprocess.call', 'subprocess.call', (["['./u1.py']"], {'shell': '(True)'}), "(['./u1.py'], shell=True)\n", (795, 820), False, 'import subprocess\n'), ((831, 860), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (846, 860), False, 'from flask import Flask, render_template, Response\n'), ((940, 969), 'flask.render_template', 'render_template', (['"""index.html"""'], {}), "('index.html')\n", (955, 969), False, 'from flask import Flask, render_template, Response\n'), ((1334, 1342), 'camera_pi.Camera', 'Camera', ([], {}), '()\n', (1340, 1342), False, 'from camera_pi import Camera\n')]
import os from flask import Flask, request, redirect, url_for, send_from_directory, render_template import time from datetime import date from werkzeug.utils import secure_filename import mimetypes ALLOWED_EXTENSIONS = set(['csv', 'xlsx', 'xls', 'txt']) UPLOAD_FOLDER = os.path.abspath(os.path.dirname(__name__)) UPLOAD_FOLDER_PATH="/com/medicom/health/diabetes/data/upload/" app = Flask(__name__) app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER+UPLOAD_FOLDER_PATH def allowed_file(filename): return '.' in filename and \ filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS class FileHandler: def __init__(self): print("File handler init") def save(self, request): print("File uploading is started") if 'file' not in request.files: print("No file found") return "No file found" file = request.files['file'] completeFileName = "" if file and allowed_file(file.filename): filename = secure_filename(file.filename) #today = date().today().isoformat(timespec='microseconds') completeFileName=(os.path.join(app.config['UPLOAD_FOLDER'],filename)) print("filename >>>>>>>>>>>> ",completeFileName) file.save(completeFileName) return completeFileName
[ "os.path.dirname", "os.path.join", "werkzeug.utils.secure_filename", "flask.Flask" ]
[((386, 401), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (391, 401), False, 'from flask import Flask, request, redirect, url_for, send_from_directory, render_template\n'), ((289, 314), 'os.path.dirname', 'os.path.dirname', (['__name__'], {}), '(__name__)\n', (304, 314), False, 'import os\n'), ((990, 1020), 'werkzeug.utils.secure_filename', 'secure_filename', (['file.filename'], {}), '(file.filename)\n', (1005, 1020), False, 'from werkzeug.utils import secure_filename\n'), ((1122, 1173), 'os.path.join', 'os.path.join', (["app.config['UPLOAD_FOLDER']", 'filename'], {}), "(app.config['UPLOAD_FOLDER'], filename)\n", (1134, 1173), False, 'import os\n')]
""" RenderPipeline Copyright (c) 2014-2016 tobspr <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from panda3d.core import SamplerState from rpcore.globals import Globals from rpcore.render_stage import RenderStage from rpcore.stages.ambient_stage import AmbientStage class SSRStage(RenderStage): """ This stage does the SSR pass """ required_inputs = [] required_pipes = ["ShadedScene", "CombinedVelocity", "GBuffer", "DownscaledDepth", "PreviousFrame::PostAmbientScene", "PreviousFrame::SSRSpecular", "PreviousFrame::SceneDepth"] @property def produced_pipes(self): return {"SSRSpecular": self.target_resolve.color_tex} def create(self): x_size, y_size = Globals.resolution.x, Globals.resolution.y self.target = self.create_target("ComputeSSR") self.target.size = -2 self.target.add_color_attachment(bits=(16, 16, 0, 0)) self.target.prepare_buffer() self.target.color_tex.set_minfilter(SamplerState.FT_nearest) self.target.color_tex.set_magfilter(SamplerState.FT_nearest) self.target_velocity = self.create_target("ReflectionVelocity") self.target_velocity.add_color_attachment(bits=(16, 16, 0, 0)) self.target_velocity.prepare_buffer() self.target_velocity.set_shader_input("TraceResult", self.target.color_tex) self.target_reproject_lighting = self.create_target("CopyLighting") self.target_reproject_lighting.add_color_attachment(bits=16, alpha=True) self.target_reproject_lighting.prepare_buffer() self.target_upscale = self.create_target("UpscaleSSR") self.target_upscale.add_color_attachment(bits=16, alpha=True) self.target_upscale.prepare_buffer() self.target_upscale.set_shader_input("SourceTex", self.target.color_tex) self.target_upscale.set_shader_input( "LastFrameColor", self.target_reproject_lighting.color_tex) self.target_resolve = self.create_target("ResolveSSR") self.target_resolve.add_color_attachment(bits=16, alpha=True) self.target_resolve.prepare_buffer() self.target_resolve.set_shader_input("CurrentTex", self.target_upscale.color_tex) self.target_resolve.set_shader_input("VelocityTex", self.target_velocity.color_tex) AmbientStage.required_pipes.append("SSRSpecular") def reload_shaders(self): self.target.shader = self.load_plugin_shader("ssr_trace.frag.glsl") self.target_velocity.shader = self.load_plugin_shader("reflection_velocity.frag.glsl") self.target_reproject_lighting.shader = self.load_plugin_shader("reproject_lighting.frag.glsl") self.target_upscale.shader = self.load_plugin_shader("upscale_bilateral_brdf.frag.glsl") self.target_resolve.shader = self.load_plugin_shader("resolve_ssr.frag.glsl")
[ "rpcore.stages.ambient_stage.AmbientStage.required_pipes.append" ]
[((3422, 3471), 'rpcore.stages.ambient_stage.AmbientStage.required_pipes.append', 'AmbientStage.required_pipes.append', (['"""SSRSpecular"""'], {}), "('SSRSpecular')\n", (3456, 3471), False, 'from rpcore.stages.ambient_stage import AmbientStage\n')]
""" https://www.codewars.com/kata/60790e04cc9178003077db43/train/python """ from typing import Optional from math import comb from functools import lru_cache @lru_cache def balanced_paren_num(par_amt: int) -> int: assert par_amt >= 0 # formula from https://en.wikipedia.org/wiki/Catalan_number return comb(2 * par_amt, par_amt) // (par_amt + 1) def balanced_parens(par_amt: int, ind: int) -> Optional[str]: assert par_amt >= 0 total = balanced_paren_num(par_amt) # total number of balanced parenthesis # simple bounds checking if not 0 <= ind < total or par_amt < 0: return None if par_amt in [0, 1]: # idk if my function can handle these cases return '' if par_amt == 0 else '()' # this[o][c] = ways to complete given o opening parenthesis & c closing parenthesis complete_ways = [[0 for _ in range(par_amt + 1)] for _ in range(par_amt + 1)] complete_ways[par_amt][par_amt] = 1 for o in range(par_amt, -1, -1): for c in range(o, -1, -1): if o + 1 <= par_amt: complete_ways[o][c] += complete_ways[o + 1][c] if c + 1 <= par_amt: complete_ways[o][c] += complete_ways[o][c + 1] def actual_calc(curr_str: str, o_amt: int, c_amt: int, rel_ind: int) -> str: if o_amt == par_amt: return curr_str + ')' * (par_amt - c_amt) # adding the o comes before adding the c add_o = complete_ways[o_amt + 1][c_amt] if rel_ind < add_o: return actual_calc(curr_str + '(', o_amt + 1, c_amt, rel_ind) return actual_calc(curr_str + ')', o_amt, c_amt + 1, rel_ind - add_o) return actual_calc('', 0, 0, ind) print(balanced_parens(2, 0)) # should output (()) print(balanced_parens(2, 1)) # should output ()() print(balanced_parens(3, 3)) # should output ()(()) print(balanced_parens(3, 5)) # should output None
[ "math.comb" ]
[((315, 341), 'math.comb', 'comb', (['(2 * par_amt)', 'par_amt'], {}), '(2 * par_amt, par_amt)\n', (319, 341), False, 'from math import comb\n')]
# Imports import sys, getopt import json from tango import DeviceProxy, DevFailed def cm_configure_attributes(): configure_success_count = 0 configure_fail_count = 0 already_configured_count = 0 total_attrib_count = 0 with open(attr_list_file, "r") as attrib_list_file: attribute_list = json.load(attrib_list_file) for attribute in attribute_list: total_attrib_count += 1 ## Set appropriate CM attributes try: # SetAttributeName conf_manager_proxy.write_attribute("SetAttributeName", attribute) # SetArchiver conf_manager_proxy.write_attribute( "SetArchiver", evt_subscriber_device_fqdn ) # SetStrategy conf_manager_proxy.write_attribute("SetStrategy", "ALWAYS") # SetPollingPeriod conf_manager_proxy.write_attribute("SetPollingPeriod", 1000) # SetEventPeriod conf_manager_proxy.write_attribute("SetPeriodEvent", 3000) except Exception as except_occured: print( "Exception while setting configuration manager arrtibutes: ", except_occured, ) configure_fail_count += 1 continue ## Add Attribute for archiving try: conf_manager_proxy.command_inout("AttributeAdd") except DevFailed as df: str_df = str(df) if "reason = Already archived" in str_df: start_archiving(attribute) else: already_configured_count += 1 continue configure_success_count += 1 return ( configure_success_count, configure_fail_count, already_configured_count, total_attrib_count, ) def start_archiving(str_attribute): try: conf_manager_proxy.command_inout("AttributeStart", str_attribute) except Exception as except_occured: print("start_archiving except_occured: ", except_occured) # Main entrypoint of the script. conf_manager_device_fqdn = "" evt_subscriber_device_fqdn = "" attr_list_file = "" ## parse arguments try: opts, args = getopt.getopt(sys.argv[1:], "c:e:a:", ["cm=", "es=", "attrfile="]) except getopt.GetoptError: print("Please provide proper arguments.") print( "Usage: $python configure_hdbpp.py --cm=<FQDN> --es=<FQDN> --attrfile=<filepath> OR" ) print(" $python configure_hdbpp.py -cm <FQDN> -e <FQDN> -a <filepath>") print(" cm: FQDN of HDB++ Configuration Manager") print(" es: FQDN of HDB++ Event subscriber") print(" infile: File containing FQDNs of attributes to archive") sys.exit(2) for opt, arg in opts: if opt in ("-c", "--cm"): conf_manager_device_fqdn = arg elif opt in ("-e", "--es"): evt_subscriber_device_fqdn = arg elif opt in ("-a", "--attrfile"): attr_list_file = arg try: # create device proxies conf_manager_proxy = DeviceProxy(conf_manager_device_fqdn) evt_subscriber_proxy = DeviceProxy(evt_subscriber_device_fqdn) # configure attribute ( configure_success_count, configure_fail_count, already_configured_count, total_attrib_count, ) = cm_configure_attributes() print( "Configured successfully: ", configure_success_count, "Failed: ", configure_fail_count, "Already configured: ", already_configured_count, "Total attributes: ", total_attrib_count, ) except Exception as exception: print("Exception: ", exception)
[ "tango.DeviceProxy", "json.load", "getopt.getopt", "sys.exit" ]
[((2342, 2408), 'getopt.getopt', 'getopt.getopt', (['sys.argv[1:]', '"""c:e:a:"""', "['cm=', 'es=', 'attrfile=']"], {}), "(sys.argv[1:], 'c:e:a:', ['cm=', 'es=', 'attrfile='])\n", (2355, 2408), False, 'import sys, getopt\n'), ((3171, 3208), 'tango.DeviceProxy', 'DeviceProxy', (['conf_manager_device_fqdn'], {}), '(conf_manager_device_fqdn)\n', (3182, 3208), False, 'from tango import DeviceProxy, DevFailed\n'), ((3236, 3275), 'tango.DeviceProxy', 'DeviceProxy', (['evt_subscriber_device_fqdn'], {}), '(evt_subscriber_device_fqdn)\n', (3247, 3275), False, 'from tango import DeviceProxy, DevFailed\n'), ((318, 345), 'json.load', 'json.load', (['attrib_list_file'], {}), '(attrib_list_file)\n', (327, 345), False, 'import json\n'), ((2868, 2879), 'sys.exit', 'sys.exit', (['(2)'], {}), '(2)\n', (2876, 2879), False, 'import sys, getopt\n')]
import numpy as np from genetic_algo import Population from numpy.polynomial.polynomial import polyval import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.patches import Rectangle TARGET = np.random.rand(16) TARGET_2 = np.random.rand(16) test_range = np.linspace(0, 1, 10_000) target_poly = polyval(test_range, TARGET, tensor=False) """ This script is not technically part of the project, it just generates the animations we use in our presentation. As a result, its documentation and pair programming is not up to the standards of the project, and should not be considered beholden to those standards. It is outside the scope of the project as outlined in the proposal and is explicitly referenced as a piece of code that would be written but not considered part of the project in the proposal. It's included in the repository because it's cool, and because it allows anyone to see the algorithm in action with their own modifications, fitness functions, SEX_PARAMS, etc. While running this script is a good way to verify that the code in the project is working properly, it's not intended to be a test. That is the job of the unittests in test_project. """ def dummy_func_1(input_array): """ a sample fitness function that uses the closeness of fit to a polynomial with random coefficients to calculate fitness (loss) Args: input_array(array): iterable of 16 floats between 0 and 1 Returns: loss(float): an approximation of how close the polynomial with coefficients determined by input is to the target polynomial (Ben) """ n_samples = 10_000 output = polyval(test_range, input_array, tensor=False) loss = np.sum(abs(target_poly - output)) / n_samples return -1 * loss def dummy_func_2(input_array): """ a sample fitness function that uses the closeness of fit to a linear equation to calculate fitness (loss) Args: input_array(array): iterable of 16 floats between 0 and 1 Returns: loss(float): an approximation of how close the polynomial with coefficients determined by input is to the target linear equation (Ben) """ output = np.array(input_array) loss = np.sum(abs(TARGET - output)) return -1 * loss goal = -0.010 p = Population(goal, dummy_func_1) print(p.main()) nbins = 50 ymax = 10 xmin = -1 bins = np.linspace(xmin, 0, nbins + 1) fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(20, 12)) ax1 = axes[0][0] ax2 = axes[0][1] ax4 = axes[1][0] ax3 = axes[1][1] def generation_fit(gen): return [x.fitness for x in gen.individuals] def animate(i): ax1.cla() ax1.set(xlim=(xmin, 0), ylim=(0, ymax)) ax2.cla() ax2.set(xlim=(0, 1), ylim=(0, 9)) ax3.cla() ax3.set(xlim=(0, 1), ylim=(-2, 2)) ax4.cla() ax4.set(xlim=(0, 15), ylim=(-.5, .5)) mean_fit = p.generations[i].mean_fitness() best_fit = p.generations[i].top_fitness().fitness n_individuals = len(p.generations[i].individuals) best_new_fit = max([x.fitness for x in p.generations[i].individuals[1:]]) best_new_fit_indiv = max(p.generations[i].individuals[1:], key=lambda x: x.fitness) best_new_fit_poly = polyval(test_range, best_new_fit_indiv.genes, tensor=False) best_fit_poly = polyval(test_range, p.generations[i].individuals[0].genes, tensor=False) ax1.set_title('Histogram of fitness for individuals of each generation') ax1.hist(generation_fit(p.generations[i]), bins, range=(xmin, 0), density=True, color='c') generations = ax1.add_artist(Rectangle((0, 0), 1, 1, fc="w", fill=False, edgecolor='none', linewidth=0, label=f'Generation: {i}')) mean = ax1.vlines([mean_fit], 0, ymax, linestyles='dashed', colors='k', label="Mean Fitness: {mean:.4f}".format( mean=mean_fit)) goal_line = ax1.vlines([goal], 0, ymax, linestyles='dashed', colors='g', label="Goal: {goal:.4f}".format(goal=goal)) best = ax1.vlines([best_fit], 0, ymax, linestyles='dashed', colors='r', label="Top Fitness: {top:.4f}".format( top=best_fit)) best_new = ax1.vlines([best_new_fit], 0, ymax, linestyles='dashed', colors='m', label="Top Fitness (born this gen.):" " {top:.4f}".format(top=best_fit)) ax1.legend([generations, mean, goal_line, best, best_new], (f'Generation: {i} ({n_individuals} indiv.)', "Mean Fitness: {mean:.4f}".format(mean=mean_fit), "Goal: {goal:.4f}".format(goal=goal), "Top Fitness (all time): {top:.4f}".format( top=best_fit), "Top Fitness (born this gen.):{top:.4f}".format( top=best_new_fit)), loc='upper left') ax2.set_title('Comparison between target curve and fittest individuals') ax2.plot(test_range, best_fit_poly, color='r', label='Fittest (all time)') ax2.plot(test_range, best_new_fit_poly, color='m', label='Fittest (born this gen.)') ax2.plot(test_range, target_poly, color='k', lw=.75, label="Target Curve") ax2.legend(loc='upper left') ax3.set_title(r'$\Delta$ between target curve and fittest individuals') ax3.plot(test_range, best_fit_poly - target_poly, color='r', label='Fittest (all time)') ax3.plot(test_range, best_new_fit_poly - target_poly, color='m', label='Fittest (born this gen.)') ax3.plot(test_range, np.zeros(test_range.shape), ls='--', lw=.75, color='k', label="Target Curve") ax3.legend(loc='upper left') ax4.set_title('Comparison between genes of target and fittest individuals') ax4.bar(np.arange(0, 16), best_new_fit_indiv.genes - TARGET, color='m', align='edge', width=.4, label='Fittest (born this gen.)') ax4.bar(np.arange(0., 16.)+.4, p.generations[i].individuals[0].genes - TARGET, color='r', align='edge', width=.4, label='Fittest (all time)') ax4.plot(np.arange(0, 16), np.zeros(16), ls='--', lw=.75, color='k') ax4.legend(loc='upper left') animate(0) anim = animation.FuncAnimation(fig, animate, interval=100, frames=len(p.generations) - 1) # only uncomment the below line if you have ffmpeg installed and are willing to wait for a while each time it runs with # more than 100 generations. # anim.save("fitness_histo_4x_2.mp4") plt.draw() plt.show()
[ "matplotlib.patches.Rectangle", "numpy.random.rand", "numpy.array", "numpy.linspace", "numpy.zeros", "matplotlib.pyplot.draw", "numpy.polynomial.polynomial.polyval", "genetic_algo.Population", "matplotlib.pyplot.subplots", "numpy.arange", "matplotlib.pyplot.show" ]
[((227, 245), 'numpy.random.rand', 'np.random.rand', (['(16)'], {}), '(16)\n', (241, 245), True, 'import numpy as np\n'), ((257, 275), 'numpy.random.rand', 'np.random.rand', (['(16)'], {}), '(16)\n', (271, 275), True, 'import numpy as np\n'), ((289, 313), 'numpy.linspace', 'np.linspace', (['(0)', '(1)', '(10000)'], {}), '(0, 1, 10000)\n', (300, 313), True, 'import numpy as np\n'), ((329, 370), 'numpy.polynomial.polynomial.polyval', 'polyval', (['test_range', 'TARGET'], {'tensor': '(False)'}), '(test_range, TARGET, tensor=False)\n', (336, 370), False, 'from numpy.polynomial.polynomial import polyval\n'), ((2313, 2343), 'genetic_algo.Population', 'Population', (['goal', 'dummy_func_1'], {}), '(goal, dummy_func_1)\n', (2323, 2343), False, 'from genetic_algo import Population\n'), ((2399, 2430), 'numpy.linspace', 'np.linspace', (['xmin', '(0)', '(nbins + 1)'], {}), '(xmin, 0, nbins + 1)\n', (2410, 2430), True, 'import numpy as np\n'), ((2443, 2491), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'nrows': '(2)', 'ncols': '(2)', 'figsize': '(20, 12)'}), '(nrows=2, ncols=2, figsize=(20, 12))\n', (2455, 2491), True, 'import matplotlib.pyplot as plt\n'), ((6642, 6652), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (6650, 6652), True, 'import matplotlib.pyplot as plt\n'), ((6653, 6663), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6661, 6663), True, 'import matplotlib.pyplot as plt\n'), ((1666, 1712), 'numpy.polynomial.polynomial.polyval', 'polyval', (['test_range', 'input_array'], {'tensor': '(False)'}), '(test_range, input_array, tensor=False)\n', (1673, 1712), False, 'from numpy.polynomial.polynomial import polyval\n'), ((2210, 2231), 'numpy.array', 'np.array', (['input_array'], {}), '(input_array)\n', (2218, 2231), True, 'import numpy as np\n'), ((3221, 3280), 'numpy.polynomial.polynomial.polyval', 'polyval', (['test_range', 'best_new_fit_indiv.genes'], {'tensor': '(False)'}), '(test_range, best_new_fit_indiv.genes, tensor=False)\n', (3228, 3280), False, 'from numpy.polynomial.polynomial import polyval\n'), ((3301, 3373), 'numpy.polynomial.polynomial.polyval', 'polyval', (['test_range', 'p.generations[i].individuals[0].genes'], {'tensor': '(False)'}), '(test_range, p.generations[i].individuals[0].genes, tensor=False)\n', (3308, 3373), False, 'from numpy.polynomial.polynomial import polyval\n'), ((3580, 3684), 'matplotlib.patches.Rectangle', 'Rectangle', (['(0, 0)', '(1)', '(1)'], {'fc': '"""w"""', 'fill': '(False)', 'edgecolor': '"""none"""', 'linewidth': '(0)', 'label': 'f"""Generation: {i}"""'}), "((0, 0), 1, 1, fc='w', fill=False, edgecolor='none', linewidth=0,\n label=f'Generation: {i}')\n", (3589, 3684), False, 'from matplotlib.patches import Rectangle\n'), ((5747, 5773), 'numpy.zeros', 'np.zeros', (['test_range.shape'], {}), '(test_range.shape)\n', (5755, 5773), True, 'import numpy as np\n'), ((5951, 5967), 'numpy.arange', 'np.arange', (['(0)', '(16)'], {}), '(0, 16)\n', (5960, 5967), True, 'import numpy as np\n'), ((6256, 6272), 'numpy.arange', 'np.arange', (['(0)', '(16)'], {}), '(0, 16)\n', (6265, 6272), True, 'import numpy as np\n'), ((6274, 6286), 'numpy.zeros', 'np.zeros', (['(16)'], {}), '(16)\n', (6282, 6286), True, 'import numpy as np\n'), ((6097, 6117), 'numpy.arange', 'np.arange', (['(0.0)', '(16.0)'], {}), '(0.0, 16.0)\n', (6106, 6117), True, 'import numpy as np\n')]
import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers # print(tf.__version__) tf.get_logger().setLevel('ERROR') # Given 90-d non-reference video data, output video quality score 0-100 def build_model(): model = keras.Sequential([ layers.Dense(90, activation='relu', input_shape=[90]), # layers.Dense(90, activation='relu', input_shape=[90]), layers.Dense(90, activation='relu'), layers.Dense(1) ]) optimizer = tf.keras.optimizers.Adam(0.001) model.compile(loss='mae', optimizer=optimizer, metrics=['mae', 'mse']) # model.compile(loss='mean_absolute_error', optimizer='adam', metrics=['mean_absolute_error']) return model def load_model(): NN_model = build_model() # NN_model.summary() wights_file = 'Weights-494--5.61865.hdf5' # choose the best checkpoint NN_model.load_weights(wights_file) # load it return NN_model
[ "tensorflow.keras.optimizers.Adam", "tensorflow.keras.layers.Dense", "tensorflow.get_logger" ]
[((493, 524), 'tensorflow.keras.optimizers.Adam', 'tf.keras.optimizers.Adam', (['(0.001)'], {}), '(0.001)\n', (517, 524), True, 'import tensorflow as tf\n'), ((133, 148), 'tensorflow.get_logger', 'tf.get_logger', ([], {}), '()\n', (146, 148), True, 'import tensorflow as tf\n'), ((294, 347), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(90)'], {'activation': '"""relu"""', 'input_shape': '[90]'}), "(90, activation='relu', input_shape=[90])\n", (306, 347), False, 'from tensorflow.keras import layers\n'), ((414, 449), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(90)'], {'activation': '"""relu"""'}), "(90, activation='relu')\n", (426, 449), False, 'from tensorflow.keras import layers\n'), ((455, 470), 'tensorflow.keras.layers.Dense', 'layers.Dense', (['(1)'], {}), '(1)\n', (467, 470), False, 'from tensorflow.keras import layers\n')]
# -*- coding: utf-8 -*- # Copyright 2019 the HERA Project # Licensed under the MIT License import pytest import os import shutil import numpy as np import sys from collections import OrderedDict as odict import copy import glob from pyuvdata import UVData from pyuvdata import utils as uvutils import unittest from scipy import stats from scipy import constants from pyuvdata import UVFlag from .. import datacontainer, io, frf from ..data import DATA_PATH @pytest.mark.filterwarnings("ignore:The default for the `center` keyword has changed") def test_timeavg_waterfall(): fname = os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA") uvd = UVData() uvd.read_miriad(fname) d = uvd.get_data(24, 25) f = uvd.get_flags(24, 25) n = uvd.get_nsamples(24, 25) t = np.unique(uvd.time_array) fr = uvd.freq_array.squeeze() lsts = [] for _l in uvd.lst_array: if _l not in lsts: lsts.append(_l) lsts = np.array(lsts) antpos, ants = uvd.get_ENU_antpos() blv = antpos[ants.tolist().index(24)] - antpos[ants.tolist().index(25)] # test basic execution ad, af, an, al, aea = frf.timeavg_waterfall(d, 25, verbose=False) assert ad.shape == (3, 64) assert af.shape == (3, 64) assert an.shape == (3, 64) assert not np.any(af) assert np.allclose(an[1, 0], 25.0) assert np.allclose(an[2, 0], 10.0) # test rephase ad, af, an, al, aea = frf.timeavg_waterfall(d, 25, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (3, 64) assert af.shape == (3, 64) assert an.shape == (3, 64) assert np.any(af) assert len(al) == 3 assert len(aea['avg_times']) == 3 assert np.allclose(an.max(), 25.0) # test various Navgs ad, af, an, al, aea = frf.timeavg_waterfall(d, 1, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (60, 64) ad, af, an, al, aea = frf.timeavg_waterfall(d, 60, flags=f, rephase=True, lsts=lsts, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (1, 64) # wrap lst ad2, af2, an2, al2, aea2 = frf.timeavg_waterfall(d, 60, flags=f, rephase=True, lsts=lsts + 1.52917804, freqs=fr, bl_vec=blv, nsamples=n, extra_arrays=dict(times=t), verbose=False) assert ad.shape == (1, 64) assert np.allclose(ad, ad2) assert np.allclose(al, al2 - 1.52917804) # Test Error with pytest.raises(ValueError): frf.timeavg_waterfall(d, 25, verbose=False, wgt_by_nsample=True, wgt_by_favg_nsample=True) # test weightings d = np.ones((4, 10)) d[0, :] *= 2 n = np.ones((4, 10)) n[0, 0:5] *= 2 ad, _, _, _, _ = frf.timeavg_waterfall(d, 2, rephase=False, nsamples=n, wgt_by_nsample=True) np.testing.assert_array_equal(ad[1, :], 1.0) np.testing.assert_array_equal(ad[0, 0:5], 5. / 3) np.testing.assert_array_equal(ad[0, 5:10], 1.5) ad, _, _, _, _ = frf.timeavg_waterfall(d, 2, rephase=False, nsamples=n, wgt_by_nsample=False, wgt_by_favg_nsample=True) np.testing.assert_array_equal(ad[1, :], 1.0) np.testing.assert_array_equal(ad[0, :], 1.6) def test_fir_filtering(): # convert a high-pass frprofile to an FIR filter frbins = np.linspace(-40e-3, 40e-3, 1024) frp = np.ones(1024) frp[512 - 9:512 + 10] = 0.0 fir, tbins = frf.frp_to_fir(frp, delta_bin=np.diff(frbins)[0]) # confirm its purely real assert not np.any(np.isclose(np.abs(fir.real), 0.0)) assert np.allclose(np.abs(fir.imag), 0.0) # convert back _frp, _frbins = frf.frp_to_fir(fir, delta_bin=np.diff(tbins)[0], undo=True) np.testing.assert_array_almost_equal(frp, _frp.real) np.testing.assert_array_almost_equal(np.diff(frbins), np.diff(_frbins)) assert np.allclose(np.abs(_frp.imag), 0.0) # test noise averaging properties frp = np.zeros(1024) frp[512] = 1.0 t_ratio = frf.fr_tavg(frp) assert np.allclose(t_ratio, 1024) @pytest.mark.filterwarnings("ignore:The default for the `center` keyword has changed") class Test_FRFilter(object): def setup_method(self): self.fname = os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA") self.F = frf.FRFilter(self.fname, filetype='miriad') self.F.read() def test_timeavg_data(self): # test basic time average self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 35, rephase=True, keys=[(24, 25, 'ee')]) assert self.F.Navg == 3 assert len(self.F.avg_data) == 1 assert self.F.avg_data[(24, 25, 'ee')].shape == (20, 64) # test full time average and overwrite self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 1e10, rephase=True, verbose=False, overwrite=False) assert self.F.Navg == 60 assert len(self.F.avg_data) == 28 assert self.F.avg_data[(24, 25, 'ee')].shape == (20, 64) assert self.F.avg_data[(24, 37, 'ee')].shape == (1, 64) # test weight by nsample F = copy.deepcopy(self.F) k = (24, 25, 'ee') F.nsamples[k][:3] = 0.0 F.timeavg_data(F.data, F.times, F.lsts, 35, nsamples=F.nsamples, keys=[k], overwrite=True, wgt_by_nsample=True) assert np.all(np.isclose(F.avg_data[k][0], 0.0)) # assert data is zero b/c I zeroed nsample assert np.all(np.isclose(F.avg_nsamples[k][0], 0.0)) # assert avg_nsample is also zero assert np.all(np.isclose(F.avg_nsamples[k][1:], 3.0)) # assert non-zeroed nsample is 3 # repeat without nsample wgt F.timeavg_data(F.data, F.times, F.lsts, 35, nsamples=F.nsamples, keys=[k], overwrite=True, wgt_by_nsample=False) assert not np.any(np.isclose(F.avg_data[k][0, 5:-5], 0.0)) # assert non-edge data is now not zero assert np.all(np.isclose(F.avg_nsamples[k][0], 0.0)) # avg_nsample should still be zero # exceptions pytest.raises(AssertionError, self.F.timeavg_data, self.F.data, self.F.times, self.F.lsts, 1.0) def test_filter_data(self): # construct high-pass filter frates = np.fft.fftshift(np.fft.fftfreq(self.F.Ntimes, self.F.dtime)) * 1e3 w = np.ones((self.F.Ntimes, self.F.Nfreqs), dtype=np.float) w[np.abs(frates) < 20] = 0.0 frps = datacontainer.DataContainer(dict([(k, w) for k in self.F.data])) # make gaussian random noise bl = (24, 25, 'ee') window = 'blackmanharris' ec = 0 np.random.seed(0) self.F.data[bl] = np.reshape(stats.norm.rvs(0, 1, self.F.Ntimes * self.F.Nfreqs) + 1j * stats.norm.rvs(0, 1, self.F.Ntimes * self.F.Nfreqs), (self.F.Ntimes, self.F.Nfreqs)) # fr filter noise self.F.filter_data(self.F.data, frps, overwrite=True, verbose=False, axis=0, keys=[bl]) # check key continue w/ ridiculous edgecut self.F.filter_data(self.F.data, frps, overwrite=False, verbose=False, keys=[bl], edgecut_low=100, axis=0) # fft self.F.fft_data(data=self.F.data, assign='dfft', ax='freq', window=window, edgecut_low=ec, edgecut_hi=ec, overwrite=True) self.F.fft_data(data=self.F.filt_data, assign='rfft', ax='freq', window=window, edgecut_low=ec, edgecut_hi=ec, overwrite=True) # ensure drop in noise power is reflective of frf_nsamples dfft = np.mean(np.abs(self.F.dfft[bl]), axis=0) rfft = np.mean(np.abs(self.F.rfft[bl]), axis=0) r = np.mean(dfft / rfft) assert np.allclose(r, np.sqrt(np.mean(self.F.filt_nsamples[bl])), atol=1e-1) def test_write_data(self): self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 35, rephase=False, verbose=False) self.F.write_data(self.F.avg_data, "./out.uv", filetype='miriad', overwrite=True, add_to_history='testing', times=self.F.avg_times, lsts=self.F.avg_lsts) assert os.path.exists("./out.uv") hd = io.HERAData('./out.uv', filetype='miriad') hd.read() assert 'testing' in hd.history.replace('\n', '').replace(' ', '') assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') shutil.rmtree("./out.uv") pytest.raises(AssertionError, self.F.write_data, self.F.avg_data, "./out.uv", times=self.F.avg_times) pytest.raises(ValueError, self.F.write_data, self.F.data, "hi", filetype='foo') def test_time_avg_data_and_write(self, tmpdir): # time-averaged data written too file will be compared to this. tmp_path = tmpdir.strpath output = tmp_path + '/test_output.miriad' flag_output = tmp_path + '/test_output.flags.h5' self.F.timeavg_data(self.F.data, self.F.times, self.F.lsts, 35., rephase=True, overwrite=True, wgt_by_nsample=True, flags=self.F.flags, nsamples=self.F.nsamples) frf.time_avg_data_and_write(self.fname, output, t_avg=35., rephase=True, wgt_by_nsample=True, flag_output=flag_output, filetype='miriad') data_out = frf.FRFilter(output, filetype='miriad') data_out.read() for k in data_out.data: assert np.allclose(data_out.data[k], self.F.avg_data[k]) assert np.allclose(data_out.flags[k], self.F.avg_flags[k]) assert np.allclose(data_out.nsamples[k], self.F.avg_nsamples[k]) def test_time_avg_data_and_write_baseline_list(self, tmpdir): # compare time averaging over baseline list versus time averaging # without baseline list. tmp_path = tmpdir.strpath uvh5s = sorted(glob.glob(DATA_PATH + '/zen.2458045.*.uvh5')) output_files = [] for file in uvh5s: baseline_list = io.baselines_from_filelist_position(file, uvh5s) output = tmp_path + '/' + file.split('/')[-1] output_files.append(output) output_flags = tmp_path + '/' + file.split('/')[-1].replace('.uvh5', '.flags.h5') with pytest.warns(RuntimeWarning): frf.time_avg_data_and_write(baseline_list=[], flag_output=output_flags, input_data_list=uvh5s, rephase=True, output_data=output, t_avg=35., wgt_by_nsample=True) frf.time_avg_data_and_write(baseline_list=baseline_list, flag_output=output_flags, input_data_list=uvh5s, rephase=True, output_data=output, t_avg=35., wgt_by_nsample=True) # now do everything at once: output = tmp_path + '/combined.uvh5' frf.time_avg_data_and_write(uvh5s, output, t_avg=35., rephase=True, wgt_by_nsample=True) data_out = frf.FRFilter(output) data_out_bls = frf.FRFilter(output_files) data_out.read() data_out_bls.read() # check that data, flags, nsamples are all close. for k in data_out.data: assert np.all(np.isclose(data_out.data[k], data_out_bls.data[k])) assert np.all(np.isclose(data_out.flags[k], data_out_bls.flags[k])) assert np.all(np.isclose(data_out.nsamples[k], data_out_bls.nsamples[k])) def test_time_average_argparser_multifile(self): sys.argv = [sys.argv[0], "first.uvh5", "second.uvh5", "output.uvh5", "--cornerturnfile", "input.uvh5", "--t_avg", "35.", "--rephase"] ap = frf.time_average_argparser() args = ap.parse_args() assert args.cornerturnfile == "input.uvh5" assert args.output_data == "output.uvh5" assert args.input_data_list == ['first.uvh5', 'second.uvh5'] assert args.t_avg == 35. assert not args.clobber assert not args.verbose assert args.flag_output is None assert args.filetype == "uvh5" def test_tophat_frfilter(self): fname = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") k = (24, 25, 'ee') frfil = frf.FRFilter(fname, filetype='miriad') frfil.read(bls=[k]) bl = np.linalg.norm(frfil.antpos[24] - frfil.antpos[25]) / constants.c * 1e9 sdf = (frfil.freqs[1] - frfil.freqs[0]) / 1e9 frfil.tophat_frfilter(tol=1e-2, output_prefix='frfiltered') for k in frfil.data.keys(): assert frfil.frfiltered_resid[k].shape == (60, 64) assert frfil.frfiltered_model[k].shape == (60, 64) assert k in frfil.frfiltered_info # test skip_wgt imposition of flags fname = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") k = (24, 25, 'ee') # check successful run when avg_red_bllens is True and when False. for avg_red_bllens in [True, False]: frfil = frf.FRFilter(fname, filetype='miriad') frfil.read(bls=[k]) if avg_red_bllens: frfil.avg_red_baseline_vectors() wgts = {k: np.ones_like(frfil.flags[k], dtype=np.float)} wgts[k][:, 0] = 0.0 frfil.tophat_frfilter(keys=[k], wgts=wgts, tol=1e-5, window='blackman-harris', skip_wgt=0.1, maxiter=100) assert frfil.clean_info[k][(0, frfil.Nfreqs)]['status']['axis_0'][0] == 'skipped' np.testing.assert_array_equal(frfil.clean_flags[k][:, 0], np.ones_like(frfil.flags[k][:, 0])) np.testing.assert_array_equal(frfil.clean_model[k][:, 0], np.zeros_like(frfil.clean_resid[k][:, 0])) np.testing.assert_array_equal(frfil.clean_resid[k][:, 0], np.zeros_like(frfil.clean_resid[k][:, 0])) def test_load_tophat_frfilter_and_write_baseline_list(self, tmpdir): tmp_path = tmpdir.strpath uvh5 = [os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.first.uvh5"), os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.second.uvh5")] cals = [os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part1"), os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part2")] outfilename = os.path.join(tmp_path, 'temp.h5') cdir = os.path.join(tmp_path, 'cache_temp') # make a cache directory if os.path.isdir(cdir): shutil.rmtree(cdir) os.mkdir(cdir) # test graceful exit with baseline list length of zero. with pytest.warns(RuntimeWarning): frf.load_tophat_frfilter_and_write(datafile_list=uvh5, baseline_list=[], calfile_list=cals, spw_range=[100, 200], cache_dir=cdir, read_cache=True, write_cache=True, avg_red_bllens=True, res_outfilename=outfilename, clobber=True, mode='dayenu') for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(datafile_list=uvh5, baseline_list=[(53, 54)], polarizations=['ee'], calfile_list=cals, spw_range=[100, 200], cache_dir=cdir, read_cache=True, write_cache=True, avg_red_bllens=avg_bl, res_outfilename=outfilename, clobber=True, mode='dayenu') hd = io.HERAData(outfilename) d, f, n = hd.read() assert len(list(d.keys())) == 1 assert d[(53, 54, 'ee')].shape[1] == 100 assert d[(53, 54, 'ee')].shape[0] == 60 # now do no spw range and no cal files just to cover those lines. frf.load_tophat_frfilter_and_write(datafile_list=uvh5, baseline_list=[(53, 54)], polarizations=['ee'], cache_dir=cdir, read_cache=True, write_cache=True, avg_red_bllens=avg_bl, res_outfilename=outfilename, clobber=True, mode='dayenu') hd = io.HERAData(outfilename) d, f, n = hd.read() assert len(list(d.keys())) == 1 assert d[(53, 54, 'ee')].shape[1] == 1024 assert d[(53, 54, 'ee')].shape[0] == 60 # now test flag factorization and time thresholding. # prepare an input files for broadcasting flags uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") input_file = os.path.join(tmp_path, 'temp_special_flags.h5') shutil.copy(uvh5, input_file) hd = io.HERAData(input_file) _, flags, _ = hd.read() ntimes_before = hd.Ntimes nfreqs_before = hd.Nfreqs freqs_before = hd.freqs times_before = hd.times for bl in flags: flags[bl][:] = False flags[bl][0, :hd.Nfreqs // 2] = True # first time has 50% flagged flags[bl][-3:, -1] = True # last channel has flags for three integrations hd.update(flags=flags) hd.write_uvh5(input_file, clobber=True) # this time_threshold will result in # entire first integration begin flagged # and entire final channel being flagged # when flags are broadcasted. time_thresh = 2. / hd.Ntimes for blnum, bl in enumerate(flags.keys()): outfilename = os.path.join(tmp_path, 'bl_chunk_%d.h5' % blnum) frf.load_tophat_frfilter_and_write(datafile_list=[input_file], res_outfilename=outfilename, tol=1e-4, baseline_list=[bl[:2]], polarizations=[bl[-1]], cache_dir=cdir, factorize_flags=True, time_thresh=time_thresh, clobber=True) # now load all of the outputs in output_files = glob.glob(tmp_path + '/bl_chunk_*.h5') hd = io.HERAData(output_files) d, f, n = hd.read() hd_original = io.HERAData(uvh5) for bl in hd_original.bls: assert bl in d.keys() for bl in f: assert np.all(f[bl][:, -1]) assert np.all(f[bl][0, :]) # test apriori flags and flag_yaml flag_yaml = os.path.join(DATA_PATH, 'test_input/a_priori_flags_sample.yaml') uvf = UVFlag(hd, mode='flag', copy_flags=True) uvf.to_waterfall(keep_pol=False, method='and') uvf.flag_array[:] = False flagfile = os.path.join(tmp_path, 'test_flag.h5') uvf.write(flagfile, clobber=True) frf.load_tophat_frfilter_and_write(datafile_list=[input_file], res_outfilename=outfilename, tol=1e-4, baseline_list=[bl[:2]], polarizations=[bl[-1]], clobber=True, mode='dayenu', external_flags=flagfile, overwrite_flags=True) # test that all flags are False hd = io.HERAData(outfilename) d, f, n = hd.read() for k in f: assert np.all(~f[k]) # now do the external yaml frf.load_tophat_frfilter_and_write(datafile_list=[input_file], res_outfilename=outfilename, tol=1e-4, baseline_list=[bl[:2]], polarizations=[bl[-1]], clobber=True, mode='dayenu', external_flags=flagfile, overwrite_flags=True, flag_yaml=flag_yaml) # test that all flags are af yaml flags hd = io.HERAData(outfilename) d, f, n = hd.read() for k in f: assert np.all(f[k][:, 0]) assert np.all(f[k][:, 1]) assert np.all(f[k][:, 10:20]) assert np.all(f[k][:, 60]) os.remove(outfilename) shutil.rmtree(cdir) def test_load_tophat_frfilter_and_write_multifile(self, tmpdir): # cover line where baseline-list is None and multiple files are provided. uvh5s = sorted(glob.glob(DATA_PATH + '/zen.2458045.*.uvh5')) tmp_path = tmpdir.strpath outfilename = os.path.join(tmp_path, 'temp_output.uvh5') frf.load_tophat_frfilter_and_write(uvh5s, filled_outfilename=outfilename, tol=1e-4, clobber=True) hd = io.HERAData(uvh5s) d, f, n = hd.read() hdoutput = io.HERAData(outfilename) doutput, foutput, nouput = hdoutput.read() for k in doutput: assert doutput[k].shape == d[k].shape def test_load_tophat_frfilter_and_write(self, tmpdir): tmp_path = tmpdir.strpath uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") outfilename = os.path.join(tmp_path, 'temp.h5') CLEAN_outfilename = os.path.join(tmp_path, 'temp_clean.h5') filled_outfilename = os.path.join(tmp_path, 'temp_filled.h5') frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, tol=1e-4, clobber=True, Nbls_per_load=1) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in d: assert not np.all(np.isclose(d[bl], 0.)) frfil = frf.FRFilter(uvh5, filetype='uvh5') frfil.read(bls=[(53, 54, 'ee')]) frfil.tophat_frfilter(keys=[(53, 54, 'ee')], tol=1e-4, verbose=True) np.testing.assert_almost_equal(d[(53, 54, 'ee')], frfil.clean_resid[(53, 54, 'ee')], decimal=5) np.testing.assert_array_equal(f[(53, 54, 'ee')], frfil.flags[(53, 54, 'ee')]) # test NotImplementedError pytest.raises(NotImplementedError, frf.load_tophat_frfilter_and_write, uvh5, res_outfilename=outfilename, tol=1e-4, clobber=True, Nbls_per_load=1, avg_red_bllens=True, baseline_list=[(54, 54)], polarizations=['ee']) # test loading and writing all baselines at once. uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") outfilename = os.path.join(tmp_path, 'temp.h5') for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, tol=1e-4, clobber=True, Nbls_per_load=None, avg_red_bllens=avg_bl) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in d: assert not np.all(np.isclose(d[bl], 0.)) frfil = frf.FRFilter(uvh5, filetype='uvh5') frfil.read(bls=[(53, 54, 'ee')]) frfil.tophat_frfilter(keys=[(53, 54, 'ee')], tol=1e-4, verbose=True) np.testing.assert_almost_equal(d[(53, 54, 'ee')], frfil.clean_resid[(53, 54, 'ee')], decimal=5) np.testing.assert_array_equal(f[(53, 54, 'ee')], frfil.flags[(53, 54, 'ee')]) cal = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only") outfilename = os.path.join(tmp_path, 'temp.h5') os.remove(outfilename) for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(uvh5, calfile_list=cal, tol=1e-4, res_outfilename=outfilename, Nbls_per_load=2, clobber=True, avg_red_bllens=avg_bl) hd = io.HERAData(outfilename) assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') d, f, n = hd.read() for bl in d: if not np.all(f[bl]): assert not np.all(np.isclose(d[bl], 0.)) np.testing.assert_array_equal(f[(53, 54, 'ee')], True) os.remove(outfilename) # test skip_autos frf.load_tophat_frfilter_and_write(uvh5, calfile_list=None, tol=1e-4, res_outfilename=outfilename, filled_outfilename=filled_outfilename, CLEAN_outfilename=CLEAN_outfilename, Nbls_per_load=2, clobber=True, avg_red_bllens=avg_bl, skip_autos=True) hd = io.HERAData(outfilename) d, f, n = hd.read() hd_original = io.HERAData(uvh5) do, fo, no = hd_original.read() chd = io.HERAData(CLEAN_outfilename) cd, cf, cn = chd.read() fhd = io.HERAData(filled_outfilename) fd, ff, fn = fhd.read() # test that the resids are are equal to original data. for bl in do: if bl[0] == bl[1]: assert np.allclose(do[bl], d[bl]) # check that resid equals original data. assert np.allclose(fo[bl], f[bl]) assert np.allclose(no[bl], n[bl]) assert np.allclose(cd[bl], np.zeros_like(cd[bl])) # check that all model values are zero. assert np.allclose(fd[bl][~f[bl]], d[bl][~f[bl]]) # check that filled data equals original data. else: assert not np.allclose(do[bl], d[bl]) assert np.allclose(no[bl], n[bl]) # prepare an input file for broadcasting flags input_file = os.path.join(tmp_path, 'temp_special_flags.h5') shutil.copy(uvh5, input_file) hd = io.HERAData(input_file) _, flags, _ = hd.read() ntimes_before = hd.Ntimes nfreqs_before = hd.Nfreqs freqs_before = hd.freqs times_before = hd.times for bl in flags: flags[bl][:] = False flags[bl][0, :hd.Nfreqs // 2] = True # first time has 50% flagged flags[bl][-3:, -1] = True # last channel has flags for three integrations hd.update(flags=flags) hd.write_uvh5(input_file, clobber=True) # this time_threshold will result in # entire first integration begin flagged # and entire final channel being flagged # when flags are broadcasted. time_thresh = 2. / hd.Ntimes frf.load_tophat_frfilter_and_write(input_file, res_outfilename=outfilename, tol=1e-4, factorize_flags=True, time_thresh=time_thresh, clobber=True) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in f: assert np.any(f[bl][:, :-1]) assert np.all(f[bl][0, :]) # test delay filtering and writing with factorized flags and partial i/o frf.load_tophat_frfilter_and_write(input_file, res_outfilename=outfilename, tol=1e-4, factorize_flags=True, time_thresh=time_thresh, clobber=True) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in f: # check that flags were broadcasted. assert np.all(f[bl][0, :]) assert np.all(f[bl][:, -1]) assert not np.all(np.isclose(d[bl], 0.)) frf.load_tophat_frfilter_and_write(input_file, res_outfilename=outfilename, tol=1e-4, Nbls_per_load=1, factorize_flags=True, time_thresh=time_thresh, clobber=True) hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for bl in f: # check that flags were broadcasted. assert np.all(f[bl][0, :]) assert np.all(f[bl][:, -1]) assert not np.all(np.isclose(d[bl], 0.)) # test apriori flags and flag_yaml hd = io.HERAData(uvh5) hd.read() flag_yaml = os.path.join(DATA_PATH, 'test_input/a_priori_flags_sample.yaml') uvf = UVFlag(hd, mode='flag', copy_flags=True) uvf.to_waterfall(keep_pol=False, method='and') uvf.flag_array[:] = False flagfile = os.path.join(tmp_path, 'test_flag.h5') uvf.write(flagfile, clobber=True) frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, Nbls_per_load=1, clobber=True, mode='dayenu', external_flags=flagfile, overwrite_flags=True) # test that all flags are False hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for k in f: assert np.all(~f[k]) # now without parital io. frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, clobber=True, mode='dayenu', external_flags=flagfile, overwrite_flags=True) # test that all flags are False hd = io.HERAData(outfilename) d, f, n = hd.read(bls=[(53, 54, 'ee')]) for k in f: assert np.all(~f[k]) def test_sky_frates_minfrate_and_to_filter(self): # test edge frates V = frf.FRFilter(os.path.join(DATA_PATH, "PyGSM_Jy_downselect.uvh5")) V.read() for to_filter in [None, list(V.data.keys())[:1]]: cfrates, wfrates = frf.sky_frates(uvd=V.hd, min_frate_half_width=1000, keys=to_filter) # to_filter set to None -> all keys should be present. if to_filter is None: for k in V.data: assert k in cfrates assert k in wfrates # min_frate = 1000 should set all wfrates to 1000 for k in cfrates: assert wfrates[k] == 1000. def test_load_dayenu_filter_and_write(self, tmpdir): tmp_path = tmpdir.strpath uvh5 = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5") cdir = os.path.join(tmp_path, 'cache_temp') # make a cache directory if os.path.isdir(cdir): shutil.rmtree(cdir) os.mkdir(cdir) outfilename = os.path.join(tmp_path, 'temp.h5') # run dayenu filter avg_bl = True frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, cache_dir=cdir, mode='dayenu', Nbls_per_load=1, clobber=True, avg_red_bllens=avg_bl, spw_range=(0, 32), write_cache=True) # generate duplicate cache files to test duplicate key handle for cache load. frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, cache_dir=cdir, mode='dayenu', avg_red_bllens=avg_bl, Nbls_per_load=1, clobber=True, read_cache=False, spw_range=(0, 32), write_cache=True) # there should now be six cache files (one per i/o/filter). There are three baselines. assert len(glob.glob(cdir + '/*')) == 6 hd = io.HERAData(outfilename) assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') d, f, n = hd.read(bls=[(53, 54, 'ee')]) np.testing.assert_array_equal(f[(53, 54, 'ee')], True) os.remove(outfilename) shutil.rmtree(cdir) os.mkdir(cdir) # now do all the baselines at once. for avg_bl in [True, False]: frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, cache_dir=cdir, mode='dayenu', avg_red_bllens=avg_bl, Nbls_per_load=None, clobber=True, spw_range=(0, 32), write_cache=True) if avg_bl: assert len(glob.glob(cdir + '/*')) == 1 hd = io.HERAData(outfilename) assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') d, f, n = hd.read(bls=[(53, 54, 'ee')]) np.testing.assert_array_equal(f[(53, 54, 'ee')], True) os.remove(outfilename) shutil.rmtree(cdir) os.mkdir(cdir) # run again using computed cache. calfile = os.path.join(DATA_PATH, "test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only") frf.load_tophat_frfilter_and_write(uvh5, res_outfilename=outfilename, max_frate_coeffs=[0.0, 0.025], cache_dir=cdir, calfile_list=calfile, read_cache=True, Nbls_per_load=1, clobber=True, mode='dayenu', spw_range=(0, 32), write_cache=True) # no new cache files should be generated. assert len(glob.glob(cdir + '/*')) == 1 hd = io.HERAData(outfilename) assert 'Thisfilewasproducedbythefunction' in hd.history.replace('\n', '').replace(' ', '') d, f, n = hd.read(bls=[(53, 54, 'ee')]) np.testing.assert_array_equal(f[(53, 54, 'ee')], True) os.remove(outfilename) shutil.rmtree(cdir) def test_tophat_clean_argparser(self): sys.argv = [sys.argv[0], 'a', '--clobber', '--window', 'blackmanharris', '--max_frate_coeffs', '0.024', '-0.229'] parser = frf.tophat_frfilter_argparser() a = parser.parse_args() assert a.datafilelist == ['a'] assert a.clobber is True assert a.window == 'blackmanharris' assert a.max_frate_coeffs[0] == 0.024 assert a.max_frate_coeffs[1] == -0.229 assert a.time_thresh == 0.05 assert not a.factorize_flags def test_tophat_linear_argparser(self): sys.argv = [sys.argv[0], 'a', '--clobber', '--write_cache', '--cache_dir', '/blah/', '--max_frate_coeffs', '0.024', '-0.229', '--mode', 'dayenu'] parser = frf.tophat_frfilter_argparser() a = parser.parse_args() assert a.datafilelist == ['a'] assert a.clobber is True assert a.write_cache is True assert a.cache_dir == '/blah/' assert a.max_frate_coeffs[0] == 0.024 assert a.max_frate_coeffs[1] == -0.229 assert a.time_thresh == 0.05 assert not a.factorize_flags parser = frf.tophat_frfilter_argparser() a = parser.parse_args() assert a.datafilelist == ['a'] assert a.clobber is True assert a.write_cache is True assert a.cache_dir == '/blah/' assert a.max_frate_coeffs[0] == 0.024 assert a.max_frate_coeffs[1] == -0.229 assert a.time_thresh == 0.05 assert not a.factorize_flags
[ "pytest.mark.filterwarnings", "scipy.stats.norm.rvs", "numpy.array", "copy.deepcopy", "numpy.linalg.norm", "pyuvdata.UVData", "os.remove", "numpy.mean", "os.path.exists", "numpy.testing.assert_array_almost_equal", "numpy.diff", "pyuvdata.UVFlag", "numpy.linspace", "os.path.isdir", "numpy.testing.assert_almost_equal", "numpy.random.seed", "os.mkdir", "numpy.testing.assert_array_equal", "glob.glob", "numpy.abs", "numpy.allclose", "numpy.ones", "numpy.any", "pytest.raises", "shutil.copy", "numpy.ones_like", "numpy.isclose", "numpy.unique", "numpy.fft.fftfreq", "os.path.join", "numpy.zeros", "shutil.rmtree", "numpy.all", "numpy.zeros_like", "pytest.warns" ]
[((463, 553), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore:The default for the `center` keyword has changed"""'], {}), "(\n 'ignore:The default for the `center` keyword has changed')\n", (489, 553), False, 'import pytest\n'), ((4274, 4364), 'pytest.mark.filterwarnings', 'pytest.mark.filterwarnings', (['"""ignore:The default for the `center` keyword has changed"""'], {}), "(\n 'ignore:The default for the `center` keyword has changed')\n", (4300, 4364), False, 'import pytest\n'), ((591, 646), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""zen.2458042.12552.xx.HH.uvXA"""'], {}), "(DATA_PATH, 'zen.2458042.12552.xx.HH.uvXA')\n", (603, 646), False, 'import os\n'), ((658, 666), 'pyuvdata.UVData', 'UVData', ([], {}), '()\n', (664, 666), False, 'from pyuvdata import UVData\n'), ((795, 820), 'numpy.unique', 'np.unique', (['uvd.time_array'], {}), '(uvd.time_array)\n', (804, 820), True, 'import numpy as np\n'), ((964, 978), 'numpy.array', 'np.array', (['lsts'], {}), '(lsts)\n', (972, 978), True, 'import numpy as np\n'), ((1323, 1350), 'numpy.allclose', 'np.allclose', (['an[1, 0]', '(25.0)'], {}), '(an[1, 0], 25.0)\n', (1334, 1350), True, 'import numpy as np\n'), ((1362, 1389), 'numpy.allclose', 'np.allclose', (['an[2, 0]', '(10.0)'], {}), '(an[2, 0], 10.0)\n', (1373, 1389), True, 'import numpy as np\n'), ((1729, 1739), 'numpy.any', 'np.any', (['af'], {}), '(af)\n', (1735, 1739), True, 'import numpy as np\n'), ((2654, 2674), 'numpy.allclose', 'np.allclose', (['ad', 'ad2'], {}), '(ad, ad2)\n', (2665, 2674), True, 'import numpy as np\n'), ((2686, 2719), 'numpy.allclose', 'np.allclose', (['al', '(al2 - 1.52917804)'], {}), '(al, al2 - 1.52917804)\n', (2697, 2719), True, 'import numpy as np\n'), ((2904, 2920), 'numpy.ones', 'np.ones', (['(4, 10)'], {}), '((4, 10))\n', (2911, 2920), True, 'import numpy as np\n'), ((2946, 2962), 'numpy.ones', 'np.ones', (['(4, 10)'], {}), '((4, 10))\n', (2953, 2962), True, 'import numpy as np\n'), ((3083, 3127), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ad[1, :]', '(1.0)'], {}), '(ad[1, :], 1.0)\n', (3112, 3127), True, 'import numpy as np\n'), ((3132, 3182), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ad[0, 0:5]', '(5.0 / 3)'], {}), '(ad[0, 0:5], 5.0 / 3)\n', (3161, 3182), True, 'import numpy as np\n'), ((3186, 3233), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ad[0, 5:10]', '(1.5)'], {}), '(ad[0, 5:10], 1.5)\n', (3215, 3233), True, 'import numpy as np\n'), ((3362, 3406), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ad[1, :]', '(1.0)'], {}), '(ad[1, :], 1.0)\n', (3391, 3406), True, 'import numpy as np\n'), ((3411, 3455), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (['ad[0, :]', '(1.6)'], {}), '(ad[0, :], 1.6)\n', (3440, 3455), True, 'import numpy as np\n'), ((3550, 3580), 'numpy.linspace', 'np.linspace', (['(-0.04)', '(0.04)', '(1024)'], {}), '(-0.04, 0.04, 1024)\n', (3561, 3580), True, 'import numpy as np\n'), ((3593, 3606), 'numpy.ones', 'np.ones', (['(1024)'], {}), '(1024)\n', (3600, 3606), True, 'import numpy as np\n'), ((3943, 3995), 'numpy.testing.assert_array_almost_equal', 'np.testing.assert_array_almost_equal', (['frp', '_frp.real'], {}), '(frp, _frp.real)\n', (3979, 3995), True, 'import numpy as np\n'), ((4168, 4182), 'numpy.zeros', 'np.zeros', (['(1024)'], {}), '(1024)\n', (4176, 4182), True, 'import numpy as np\n'), ((4244, 4270), 'numpy.allclose', 'np.allclose', (['t_ratio', '(1024)'], {}), '(t_ratio, 1024)\n', (4255, 4270), True, 'import numpy as np\n'), ((1301, 1311), 'numpy.any', 'np.any', (['af'], {}), '(af)\n', (1307, 1311), True, 'import numpy as np\n'), ((2747, 2772), 'pytest.raises', 'pytest.raises', (['ValueError'], {}), '(ValueError)\n', (2760, 2772), False, 'import pytest\n'), ((3816, 3832), 'numpy.abs', 'np.abs', (['fir.imag'], {}), '(fir.imag)\n', (3822, 3832), True, 'import numpy as np\n'), ((4037, 4052), 'numpy.diff', 'np.diff', (['frbins'], {}), '(frbins)\n', (4044, 4052), True, 'import numpy as np\n'), ((4054, 4070), 'numpy.diff', 'np.diff', (['_frbins'], {}), '(_frbins)\n', (4061, 4070), True, 'import numpy as np\n'), ((4095, 4112), 'numpy.abs', 'np.abs', (['_frp.imag'], {}), '(_frp.imag)\n', (4101, 4112), True, 'import numpy as np\n'), ((4438, 4493), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""zen.2458042.12552.xx.HH.uvXA"""'], {}), "(DATA_PATH, 'zen.2458042.12552.xx.HH.uvXA')\n", (4450, 4493), False, 'import os\n'), ((5310, 5331), 'copy.deepcopy', 'copy.deepcopy', (['self.F'], {}), '(self.F)\n', (5323, 5331), False, 'import copy\n'), ((6243, 6343), 'pytest.raises', 'pytest.raises', (['AssertionError', 'self.F.timeavg_data', 'self.F.data', 'self.F.times', 'self.F.lsts', '(1.0)'], {}), '(AssertionError, self.F.timeavg_data, self.F.data, self.F.\n times, self.F.lsts, 1.0)\n', (6256, 6343), False, 'import pytest\n'), ((6505, 6560), 'numpy.ones', 'np.ones', (['(self.F.Ntimes, self.F.Nfreqs)'], {'dtype': 'np.float'}), '((self.F.Ntimes, self.F.Nfreqs), dtype=np.float)\n', (6512, 6560), True, 'import numpy as np\n'), ((6801, 6818), 'numpy.random.seed', 'np.random.seed', (['(0)'], {}), '(0)\n', (6815, 6818), True, 'import numpy as np\n'), ((7797, 7817), 'numpy.mean', 'np.mean', (['(dfft / rfft)'], {}), '(dfft / rfft)\n', (7804, 7817), True, 'import numpy as np\n'), ((8240, 8266), 'os.path.exists', 'os.path.exists', (['"""./out.uv"""'], {}), "('./out.uv')\n", (8254, 8266), False, 'import os\n'), ((8522, 8547), 'shutil.rmtree', 'shutil.rmtree', (['"""./out.uv"""'], {}), "('./out.uv')\n", (8535, 8547), False, 'import shutil\n'), ((8557, 8662), 'pytest.raises', 'pytest.raises', (['AssertionError', 'self.F.write_data', 'self.F.avg_data', '"""./out.uv"""'], {'times': 'self.F.avg_times'}), "(AssertionError, self.F.write_data, self.F.avg_data,\n './out.uv', times=self.F.avg_times)\n", (8570, 8662), False, 'import pytest\n'), ((8667, 8746), 'pytest.raises', 'pytest.raises', (['ValueError', 'self.F.write_data', 'self.F.data', '"""hi"""'], {'filetype': '"""foo"""'}), "(ValueError, self.F.write_data, self.F.data, 'hi', filetype='foo')\n", (8680, 8746), False, 'import pytest\n'), ((12186, 12242), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""zen.2458043.12552.xx.HH.uvORA"""'], {}), "(DATA_PATH, 'zen.2458043.12552.xx.HH.uvORA')\n", (12198, 12242), False, 'import os\n'), ((12830, 12886), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""zen.2458043.12552.xx.HH.uvORA"""'], {}), "(DATA_PATH, 'zen.2458043.12552.xx.HH.uvORA')\n", (12842, 12886), False, 'import os\n'), ((14413, 14446), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp.h5"""'], {}), "(tmp_path, 'temp.h5')\n", (14425, 14446), False, 'import os\n'), ((14462, 14498), 'os.path.join', 'os.path.join', (['tmp_path', '"""cache_temp"""'], {}), "(tmp_path, 'cache_temp')\n", (14474, 14498), False, 'import os\n'), ((14543, 14562), 'os.path.isdir', 'os.path.isdir', (['cdir'], {}), '(cdir)\n', (14556, 14562), False, 'import os\n'), ((14604, 14618), 'os.mkdir', 'os.mkdir', (['cdir'], {}), '(cdir)\n', (14612, 14618), False, 'import os\n'), ((16775, 16862), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5')\n", (16787, 16862), False, 'import os\n'), ((16880, 16927), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp_special_flags.h5"""'], {}), "(tmp_path, 'temp_special_flags.h5')\n", (16892, 16927), False, 'import os\n'), ((16936, 16965), 'shutil.copy', 'shutil.copy', (['uvh5', 'input_file'], {}), '(uvh5, input_file)\n', (16947, 16965), False, 'import shutil\n'), ((18304, 18342), 'glob.glob', 'glob.glob', (["(tmp_path + '/bl_chunk_*.h5')"], {}), "(tmp_path + '/bl_chunk_*.h5')\n", (18313, 18342), False, 'import glob\n'), ((18684, 18748), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/a_priori_flags_sample.yaml"""'], {}), "(DATA_PATH, 'test_input/a_priori_flags_sample.yaml')\n", (18696, 18748), False, 'import os\n'), ((18763, 18803), 'pyuvdata.UVFlag', 'UVFlag', (['hd'], {'mode': '"""flag"""', 'copy_flags': '(True)'}), "(hd, mode='flag', copy_flags=True)\n", (18769, 18803), False, 'from pyuvdata import UVFlag\n'), ((18912, 18950), 'os.path.join', 'os.path.join', (['tmp_path', '"""test_flag.h5"""'], {}), "(tmp_path, 'test_flag.h5')\n", (18924, 18950), False, 'import os\n'), ((20276, 20298), 'os.remove', 'os.remove', (['outfilename'], {}), '(outfilename)\n', (20285, 20298), False, 'import os\n'), ((20307, 20326), 'shutil.rmtree', 'shutil.rmtree', (['cdir'], {}), '(cdir)\n', (20320, 20326), False, 'import shutil\n'), ((20604, 20646), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp_output.uvh5"""'], {}), "(tmp_path, 'temp_output.uvh5')\n", (20616, 20646), False, 'import os\n'), ((21093, 21180), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5')\n", (21105, 21180), False, 'import os\n'), ((21199, 21232), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp.h5"""'], {}), "(tmp_path, 'temp.h5')\n", (21211, 21232), False, 'import os\n'), ((21261, 21300), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp_clean.h5"""'], {}), "(tmp_path, 'temp_clean.h5')\n", (21273, 21300), False, 'import os\n'), ((21330, 21370), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp_filled.h5"""'], {}), "(tmp_path, 'temp_filled.h5')\n", (21342, 21370), False, 'import os\n'), ((21829, 21924), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (["d[53, 54, 'ee']", "frfil.clean_resid[53, 54, 'ee']"], {'decimal': '(5)'}), "(d[53, 54, 'ee'], frfil.clean_resid[53, 54,\n 'ee'], decimal=5)\n", (21859, 21924), True, 'import numpy as np\n'), ((21933, 22006), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["f[53, 54, 'ee']", "frfil.flags[53, 54, 'ee']"], {}), "(f[53, 54, 'ee'], frfil.flags[53, 54, 'ee'])\n", (21962, 22006), True, 'import numpy as np\n'), ((22054, 22279), 'pytest.raises', 'pytest.raises', (['NotImplementedError', 'frf.load_tophat_frfilter_and_write', 'uvh5'], {'res_outfilename': 'outfilename', 'tol': '(0.0001)', 'clobber': '(True)', 'Nbls_per_load': '(1)', 'avg_red_bllens': '(True)', 'baseline_list': '[(54, 54)]', 'polarizations': "['ee']"}), "(NotImplementedError, frf.load_tophat_frfilter_and_write, uvh5,\n res_outfilename=outfilename, tol=0.0001, clobber=True, Nbls_per_load=1,\n avg_red_bllens=True, baseline_list=[(54, 54)], polarizations=['ee'])\n", (22067, 22279), False, 'import pytest\n'), ((22366, 22453), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5')\n", (22378, 22453), False, 'import os\n'), ((22472, 22505), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp.h5"""'], {}), "(tmp_path, 'temp.h5')\n", (22484, 22505), False, 'import os\n'), ((23094, 23189), 'numpy.testing.assert_almost_equal', 'np.testing.assert_almost_equal', (["d[53, 54, 'ee']", "frfil.clean_resid[53, 54, 'ee']"], {'decimal': '(5)'}), "(d[53, 54, 'ee'], frfil.clean_resid[53, 54,\n 'ee'], decimal=5)\n", (23124, 23189), True, 'import numpy as np\n'), ((23198, 23271), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["f[53, 54, 'ee']", "frfil.flags[53, 54, 'ee']"], {}), "(f[53, 54, 'ee'], frfil.flags[53, 54, 'ee'])\n", (23227, 23271), True, 'import numpy as np\n'), ((23291, 23380), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only')\n", (23303, 23380), False, 'import os\n'), ((23399, 23432), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp.h5"""'], {}), "(tmp_path, 'temp.h5')\n", (23411, 23432), False, 'import os\n'), ((23441, 23463), 'os.remove', 'os.remove', (['outfilename'], {}), '(outfilename)\n', (23450, 23463), False, 'import os\n'), ((25510, 25557), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp_special_flags.h5"""'], {}), "(tmp_path, 'temp_special_flags.h5')\n", (25522, 25557), False, 'import os\n'), ((25566, 25595), 'shutil.copy', 'shutil.copy', (['uvh5', 'input_file'], {}), '(uvh5, input_file)\n', (25577, 25595), False, 'import shutil\n'), ((27888, 27952), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/a_priori_flags_sample.yaml"""'], {}), "(DATA_PATH, 'test_input/a_priori_flags_sample.yaml')\n", (27900, 27952), False, 'import os\n'), ((27967, 28007), 'pyuvdata.UVFlag', 'UVFlag', (['hd'], {'mode': '"""flag"""', 'copy_flags': '(True)'}), "(hd, mode='flag', copy_flags=True)\n", (27973, 28007), False, 'from pyuvdata import UVFlag\n'), ((28116, 28154), 'os.path.join', 'os.path.join', (['tmp_path', '"""test_flag.h5"""'], {}), "(tmp_path, 'test_flag.h5')\n", (28128, 28154), False, 'import os\n'), ((29962, 30049), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.uvh5')\n", (29974, 30049), False, 'import os\n'), ((30061, 30097), 'os.path.join', 'os.path.join', (['tmp_path', '"""cache_temp"""'], {}), "(tmp_path, 'cache_temp')\n", (30073, 30097), False, 'import os\n'), ((30142, 30161), 'os.path.isdir', 'os.path.isdir', (['cdir'], {}), '(cdir)\n', (30155, 30161), False, 'import os\n'), ((30203, 30217), 'os.mkdir', 'os.mkdir', (['cdir'], {}), '(cdir)\n', (30211, 30217), False, 'import os\n'), ((30240, 30273), 'os.path.join', 'os.path.join', (['tmp_path', '"""temp.h5"""'], {}), "(tmp_path, 'temp.h5')\n", (30252, 30273), False, 'import os\n'), ((31422, 31474), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["f[53, 54, 'ee']", '(True)'], {}), "(f[53, 54, 'ee'], True)\n", (31451, 31474), True, 'import numpy as np\n'), ((31485, 31507), 'os.remove', 'os.remove', (['outfilename'], {}), '(outfilename)\n', (31494, 31507), False, 'import os\n'), ((31516, 31535), 'shutil.rmtree', 'shutil.rmtree', (['cdir'], {}), '(cdir)\n', (31529, 31535), False, 'import shutil\n'), ((31544, 31558), 'os.mkdir', 'os.mkdir', (['cdir'], {}), '(cdir)\n', (31552, 31558), False, 'import os\n'), ((32374, 32393), 'shutil.rmtree', 'shutil.rmtree', (['cdir'], {}), '(cdir)\n', (32387, 32393), False, 'import shutil\n'), ((32402, 32416), 'os.mkdir', 'os.mkdir', (['cdir'], {}), '(cdir)\n', (32410, 32416), False, 'import os\n'), ((32477, 32566), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only')\n", (32489, 32566), False, 'import os\n'), ((33230, 33282), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["f[53, 54, 'ee']", '(True)'], {}), "(f[53, 54, 'ee'], True)\n", (33259, 33282), True, 'import numpy as np\n'), ((33293, 33315), 'os.remove', 'os.remove', (['outfilename'], {}), '(outfilename)\n', (33302, 33315), False, 'import os\n'), ((33324, 33343), 'shutil.rmtree', 'shutil.rmtree', (['cdir'], {}), '(cdir)\n', (33337, 33343), False, 'import shutil\n'), ((5556, 5589), 'numpy.isclose', 'np.isclose', (['F.avg_data[k][0]', '(0.0)'], {}), '(F.avg_data[k][0], 0.0)\n', (5566, 5589), True, 'import numpy as np\n'), ((5657, 5694), 'numpy.isclose', 'np.isclose', (['F.avg_nsamples[k][0]', '(0.0)'], {}), '(F.avg_nsamples[k][0], 0.0)\n', (5667, 5694), True, 'import numpy as np\n'), ((5753, 5791), 'numpy.isclose', 'np.isclose', (['F.avg_nsamples[k][1:]', '(3.0)'], {}), '(F.avg_nsamples[k][1:], 3.0)\n', (5763, 5791), True, 'import numpy as np\n'), ((6138, 6175), 'numpy.isclose', 'np.isclose', (['F.avg_nsamples[k][0]', '(0.0)'], {}), '(F.avg_nsamples[k][0], 0.0)\n', (6148, 6175), True, 'import numpy as np\n'), ((7696, 7719), 'numpy.abs', 'np.abs', (['self.F.dfft[bl]'], {}), '(self.F.dfft[bl])\n', (7702, 7719), True, 'import numpy as np\n'), ((7752, 7775), 'numpy.abs', 'np.abs', (['self.F.rfft[bl]'], {}), '(self.F.rfft[bl])\n', (7758, 7775), True, 'import numpy as np\n'), ((9491, 9540), 'numpy.allclose', 'np.allclose', (['data_out.data[k]', 'self.F.avg_data[k]'], {}), '(data_out.data[k], self.F.avg_data[k])\n', (9502, 9540), True, 'import numpy as np\n'), ((9560, 9611), 'numpy.allclose', 'np.allclose', (['data_out.flags[k]', 'self.F.avg_flags[k]'], {}), '(data_out.flags[k], self.F.avg_flags[k])\n', (9571, 9611), True, 'import numpy as np\n'), ((9631, 9688), 'numpy.allclose', 'np.allclose', (['data_out.nsamples[k]', 'self.F.avg_nsamples[k]'], {}), '(data_out.nsamples[k], self.F.avg_nsamples[k])\n', (9642, 9688), True, 'import numpy as np\n'), ((9920, 9964), 'glob.glob', 'glob.glob', (["(DATA_PATH + '/zen.2458045.*.uvh5')"], {}), "(DATA_PATH + '/zen.2458045.*.uvh5')\n", (9929, 9964), False, 'import glob\n'), ((13974, 14067), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.first.uvh5"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.first.uvh5')\n", (13986, 14067), False, 'import os\n'), ((14081, 14175), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.second.uvh5"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.OCR_53x_54x_only.second.uvh5')\n", (14093, 14175), False, 'import os\n'), ((14189, 14284), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part1"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part1')\n", (14201, 14284), False, 'import os\n'), ((14298, 14393), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part2"""'], {}), "(DATA_PATH,\n 'test_input/zen.2458101.46106.xx.HH.uv.abs.calfits_54x_only.part2')\n", (14310, 14393), False, 'import os\n'), ((14576, 14595), 'shutil.rmtree', 'shutil.rmtree', (['cdir'], {}), '(cdir)\n', (14589, 14595), False, 'import shutil\n'), ((14696, 14724), 'pytest.warns', 'pytest.warns', (['RuntimeWarning'], {}), '(RuntimeWarning)\n', (14708, 14724), False, 'import pytest\n'), ((17764, 17812), 'os.path.join', 'os.path.join', (['tmp_path', "('bl_chunk_%d.h5' % blnum)"], {}), "(tmp_path, 'bl_chunk_%d.h5' % blnum)\n", (17776, 17812), False, 'import os\n'), ((18560, 18580), 'numpy.all', 'np.all', (['f[bl][:, -1]'], {}), '(f[bl][:, -1])\n', (18566, 18580), True, 'import numpy as np\n'), ((18600, 18619), 'numpy.all', 'np.all', (['f[bl][0, :]'], {}), '(f[bl][0, :])\n', (18606, 18619), True, 'import numpy as np\n'), ((19501, 19514), 'numpy.all', 'np.all', (['(~f[k])'], {}), '(~f[k])\n', (19507, 19514), True, 'import numpy as np\n'), ((20130, 20148), 'numpy.all', 'np.all', (['f[k][:, 0]'], {}), '(f[k][:, 0])\n', (20136, 20148), True, 'import numpy as np\n'), ((20168, 20186), 'numpy.all', 'np.all', (['f[k][:, 1]'], {}), '(f[k][:, 1])\n', (20174, 20186), True, 'import numpy as np\n'), ((20206, 20228), 'numpy.all', 'np.all', (['f[k][:, 10:20]'], {}), '(f[k][:, 10:20])\n', (20212, 20228), True, 'import numpy as np\n'), ((20248, 20267), 'numpy.all', 'np.all', (['f[k][:, 60]'], {}), '(f[k][:, 60])\n', (20254, 20267), True, 'import numpy as np\n'), ((20502, 20546), 'glob.glob', 'glob.glob', (["(DATA_PATH + '/zen.2458045.*.uvh5')"], {}), "(DATA_PATH + '/zen.2458045.*.uvh5')\n", (20511, 20546), False, 'import glob\n'), ((24025, 24077), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["f[53, 54, 'ee']", '(True)'], {}), "(f[53, 54, 'ee'], True)\n", (24054, 24077), True, 'import numpy as np\n'), ((24092, 24114), 'os.remove', 'os.remove', (['outfilename'], {}), '(outfilename)\n', (24101, 24114), False, 'import os\n'), ((26642, 26663), 'numpy.any', 'np.any', (['f[bl][:, :-1]'], {}), '(f[bl][:, :-1])\n', (26648, 26663), True, 'import numpy as np\n'), ((26683, 26702), 'numpy.all', 'np.all', (['f[bl][0, :]'], {}), '(f[bl][0, :])\n', (26689, 26702), True, 'import numpy as np\n'), ((27158, 27177), 'numpy.all', 'np.all', (['f[bl][0, :]'], {}), '(f[bl][0, :])\n', (27164, 27177), True, 'import numpy as np\n'), ((27197, 27217), 'numpy.all', 'np.all', (['f[bl][:, -1]'], {}), '(f[bl][:, -1])\n', (27203, 27217), True, 'import numpy as np\n'), ((27662, 27681), 'numpy.all', 'np.all', (['f[bl][0, :]'], {}), '(f[bl][0, :])\n', (27668, 27681), True, 'import numpy as np\n'), ((27701, 27721), 'numpy.all', 'np.all', (['f[bl][:, -1]'], {}), '(f[bl][:, -1])\n', (27707, 27721), True, 'import numpy as np\n'), ((28662, 28675), 'numpy.all', 'np.all', (['(~f[k])'], {}), '(~f[k])\n', (28668, 28675), True, 'import numpy as np\n'), ((29158, 29171), 'numpy.all', 'np.all', (['(~f[k])'], {}), '(~f[k])\n', (29164, 29171), True, 'import numpy as np\n'), ((29279, 29330), 'os.path.join', 'os.path.join', (['DATA_PATH', '"""PyGSM_Jy_downselect.uvh5"""'], {}), "(DATA_PATH, 'PyGSM_Jy_downselect.uvh5')\n", (29291, 29330), False, 'import os\n'), ((30175, 30194), 'shutil.rmtree', 'shutil.rmtree', (['cdir'], {}), '(cdir)\n', (30188, 30194), False, 'import shutil\n'), ((32276, 32328), 'numpy.testing.assert_array_equal', 'np.testing.assert_array_equal', (["f[53, 54, 'ee']", '(True)'], {}), "(f[53, 54, 'ee'], True)\n", (32305, 32328), True, 'import numpy as np\n'), ((32343, 32365), 'os.remove', 'os.remove', (['outfilename'], {}), '(outfilename)\n', (32352, 32365), False, 'import os\n'), ((3686, 3701), 'numpy.diff', 'np.diff', (['frbins'], {}), '(frbins)\n', (3693, 3701), True, 'import numpy as np\n'), ((3769, 3785), 'numpy.abs', 'np.abs', (['fir.real'], {}), '(fir.real)\n', (3775, 3785), True, 'import numpy as np\n'), ((3909, 3923), 'numpy.diff', 'np.diff', (['tbins'], {}), '(tbins)\n', (3916, 3923), True, 'import numpy as np\n'), ((6035, 6074), 'numpy.isclose', 'np.isclose', (['F.avg_data[k][0, 5:-5]', '(0.0)'], {}), '(F.avg_data[k][0, 5:-5], 0.0)\n', (6045, 6074), True, 'import numpy as np\n'), ((6442, 6485), 'numpy.fft.fftfreq', 'np.fft.fftfreq', (['self.F.Ntimes', 'self.F.dtime'], {}), '(self.F.Ntimes, self.F.dtime)\n', (6456, 6485), True, 'import numpy as np\n'), ((6571, 6585), 'numpy.abs', 'np.abs', (['frates'], {}), '(frates)\n', (6577, 6585), True, 'import numpy as np\n'), ((6856, 6907), 'scipy.stats.norm.rvs', 'stats.norm.rvs', (['(0)', '(1)', '(self.F.Ntimes * self.F.Nfreqs)'], {}), '(0, 1, self.F.Ntimes * self.F.Nfreqs)\n', (6870, 6907), False, 'from scipy import stats\n'), ((7856, 7889), 'numpy.mean', 'np.mean', (['self.F.filt_nsamples[bl]'], {}), '(self.F.filt_nsamples[bl])\n', (7863, 7889), True, 'import numpy as np\n'), ((10305, 10333), 'pytest.warns', 'pytest.warns', (['RuntimeWarning'], {}), '(RuntimeWarning)\n', (10317, 10333), False, 'import pytest\n'), ((11301, 11351), 'numpy.isclose', 'np.isclose', (['data_out.data[k]', 'data_out_bls.data[k]'], {}), '(data_out.data[k], data_out_bls.data[k])\n', (11311, 11351), True, 'import numpy as np\n'), ((11379, 11431), 'numpy.isclose', 'np.isclose', (['data_out.flags[k]', 'data_out_bls.flags[k]'], {}), '(data_out.flags[k], data_out_bls.flags[k])\n', (11389, 11431), True, 'import numpy as np\n'), ((11459, 11517), 'numpy.isclose', 'np.isclose', (['data_out.nsamples[k]', 'data_out_bls.nsamples[k]'], {}), '(data_out.nsamples[k], data_out_bls.nsamples[k])\n', (11469, 11517), True, 'import numpy as np\n'), ((12366, 12417), 'numpy.linalg.norm', 'np.linalg.norm', (['(frfil.antpos[24] - frfil.antpos[25])'], {}), '(frfil.antpos[24] - frfil.antpos[25])\n', (12380, 12417), True, 'import numpy as np\n'), ((13228, 13272), 'numpy.ones_like', 'np.ones_like', (['frfil.flags[k]'], {'dtype': 'np.float'}), '(frfil.flags[k], dtype=np.float)\n', (13240, 13272), True, 'import numpy as np\n'), ((13588, 13622), 'numpy.ones_like', 'np.ones_like', (['frfil.flags[k][:, 0]'], {}), '(frfil.flags[k][:, 0])\n', (13600, 13622), True, 'import numpy as np\n'), ((13694, 13735), 'numpy.zeros_like', 'np.zeros_like', (['frfil.clean_resid[k][:, 0]'], {}), '(frfil.clean_resid[k][:, 0])\n', (13707, 13735), True, 'import numpy as np\n'), ((13807, 13848), 'numpy.zeros_like', 'np.zeros_like', (['frfil.clean_resid[k][:, 0]'], {}), '(frfil.clean_resid[k][:, 0])\n', (13820, 13848), True, 'import numpy as np\n'), ((24921, 24947), 'numpy.allclose', 'np.allclose', (['do[bl]', 'd[bl]'], {}), '(do[bl], d[bl])\n', (24932, 24947), True, 'import numpy as np\n'), ((25013, 25039), 'numpy.allclose', 'np.allclose', (['fo[bl]', 'f[bl]'], {}), '(fo[bl], f[bl])\n', (25024, 25039), True, 'import numpy as np\n'), ((25063, 25089), 'numpy.allclose', 'np.allclose', (['no[bl]', 'n[bl]'], {}), '(no[bl], n[bl])\n', (25074, 25089), True, 'import numpy as np\n'), ((25220, 25262), 'numpy.allclose', 'np.allclose', (['fd[bl][~f[bl]]', 'd[bl][~f[bl]]'], {}), '(fd[bl][~f[bl]], d[bl][~f[bl]])\n', (25231, 25262), True, 'import numpy as np\n'), ((25406, 25432), 'numpy.allclose', 'np.allclose', (['no[bl]', 'n[bl]'], {}), '(no[bl], n[bl])\n', (25417, 25432), True, 'import numpy as np\n'), ((31200, 31222), 'glob.glob', 'glob.glob', (["(cdir + '/*')"], {}), "(cdir + '/*')\n", (31209, 31222), False, 'import glob\n'), ((33008, 33030), 'glob.glob', 'glob.glob', (["(cdir + '/*')"], {}), "(cdir + '/*')\n", (33017, 33030), False, 'import glob\n'), ((6952, 7003), 'scipy.stats.norm.rvs', 'stats.norm.rvs', (['(0)', '(1)', '(self.F.Ntimes * self.F.Nfreqs)'], {}), '(0, 1, self.F.Ntimes * self.F.Nfreqs)\n', (6966, 7003), False, 'from scipy import stats\n'), ((21627, 21649), 'numpy.isclose', 'np.isclose', (['d[bl]', '(0.0)'], {}), '(d[bl], 0.0)\n', (21637, 21649), True, 'import numpy as np\n'), ((23937, 23950), 'numpy.all', 'np.all', (['f[bl]'], {}), '(f[bl])\n', (23943, 23950), True, 'import numpy as np\n'), ((25133, 25154), 'numpy.zeros_like', 'np.zeros_like', (['cd[bl]'], {}), '(cd[bl])\n', (25146, 25154), True, 'import numpy as np\n'), ((25356, 25382), 'numpy.allclose', 'np.allclose', (['do[bl]', 'd[bl]'], {}), '(do[bl], d[bl])\n', (25367, 25382), True, 'import numpy as np\n'), ((27248, 27270), 'numpy.isclose', 'np.isclose', (['d[bl]', '(0.0)'], {}), '(d[bl], 0.0)\n', (27258, 27270), True, 'import numpy as np\n'), ((27752, 27774), 'numpy.isclose', 'np.isclose', (['d[bl]', '(0.0)'], {}), '(d[bl], 0.0)\n', (27762, 27774), True, 'import numpy as np\n'), ((22892, 22914), 'numpy.isclose', 'np.isclose', (['d[bl]', '(0.0)'], {}), '(d[bl], 0.0)\n', (22902, 22914), True, 'import numpy as np\n'), ((32038, 32060), 'glob.glob', 'glob.glob', (["(cdir + '/*')"], {}), "(cdir + '/*')\n", (32047, 32060), False, 'import glob\n'), ((23990, 24012), 'numpy.isclose', 'np.isclose', (['d[bl]', '(0.0)'], {}), '(d[bl], 0.0)\n', (24000, 24012), True, 'import numpy as np\n')]
from dash import Dash, dcc, html, Input, Output import plotly.express as px import numpy as np app = Dash(__name__) app.layout = html.Div( [ html.H4("Interactive normal distribution"), dcc.Graph(id="histograms-x-graph"), html.P("Mean:"), dcc.Slider( id="histograms-x-mean", min=-3, max=3, value=0, marks={-3: "-3", 3: "3"} ), html.P("Standard Deviation:"), dcc.Slider( id="histograms-x-std", min=1, max=3, value=1, marks={1: "1", 3: "3"} ), ] ) @app.callback( Output("histograms-x-graph", "figure"), Input("histograms-x-mean", "value"), Input("histograms-x-std", "value"), ) def display_color(mean, std): data = np.random.normal(mean, std, size=500) # replace with your own data source fig = px.histogram(data, range_x=[-10, 10]) return fig if __name__ == "__main__": app.run_server(debug=True)
[ "numpy.random.normal", "plotly.express.histogram", "dash.html.H4", "dash.Input", "dash.Output", "dash.dcc.Slider", "dash.dcc.Graph", "dash.html.P", "dash.Dash" ]
[((102, 116), 'dash.Dash', 'Dash', (['__name__'], {}), '(__name__)\n', (106, 116), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((729, 766), 'numpy.random.normal', 'np.random.normal', (['mean', 'std'], {'size': '(500)'}), '(mean, std, size=500)\n', (745, 766), True, 'import numpy as np\n'), ((814, 851), 'plotly.express.histogram', 'px.histogram', (['data'], {'range_x': '[-10, 10]'}), '(data, range_x=[-10, 10])\n', (826, 851), True, 'import plotly.express as px\n'), ((565, 603), 'dash.Output', 'Output', (['"""histograms-x-graph"""', '"""figure"""'], {}), "('histograms-x-graph', 'figure')\n", (571, 603), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((609, 644), 'dash.Input', 'Input', (['"""histograms-x-mean"""', '"""value"""'], {}), "('histograms-x-mean', 'value')\n", (614, 644), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((650, 684), 'dash.Input', 'Input', (['"""histograms-x-std"""', '"""value"""'], {}), "('histograms-x-std', 'value')\n", (655, 684), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((156, 198), 'dash.html.H4', 'html.H4', (['"""Interactive normal distribution"""'], {}), "('Interactive normal distribution')\n", (163, 198), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((208, 242), 'dash.dcc.Graph', 'dcc.Graph', ([], {'id': '"""histograms-x-graph"""'}), "(id='histograms-x-graph')\n", (217, 242), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((252, 267), 'dash.html.P', 'html.P', (['"""Mean:"""'], {}), "('Mean:')\n", (258, 267), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((277, 369), 'dash.dcc.Slider', 'dcc.Slider', ([], {'id': '"""histograms-x-mean"""', 'min': '(-3)', 'max': '(3)', 'value': '(0)', 'marks': "{(-3): '-3', (3): '3'}"}), "(id='histograms-x-mean', min=-3, max=3, value=0, marks={(-3):\n '-3', (3): '3'})\n", (287, 369), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((393, 422), 'dash.html.P', 'html.P', (['"""Standard Deviation:"""'], {}), "('Standard Deviation:')\n", (399, 422), False, 'from dash import Dash, dcc, html, Input, Output\n'), ((432, 521), 'dash.dcc.Slider', 'dcc.Slider', ([], {'id': '"""histograms-x-std"""', 'min': '(1)', 'max': '(3)', 'value': '(1)', 'marks': "{(1): '1', (3): '3'}"}), "(id='histograms-x-std', min=1, max=3, value=1, marks={(1): '1', (\n 3): '3'})\n", (442, 521), False, 'from dash import Dash, dcc, html, Input, Output\n')]
from django.contrib.contenttypes.models import ContentType from django.core.exceptions import ImproperlyConfigured from django.db.models.base import ModelBase from django.http import (Http404, HttpResponse, HttpResponseForbidden, HttpResponseRedirect) from django.template import loader from secretballot.utils import get_vote_model Vote = get_vote_model() def vote( request, content_type, object_id, vote, can_vote_test=None, redirect_url=None, template_name=None, template_loader=loader, extra_context=None, context_processors=None, mimetype=None, ): # get the token from a SecretBallotMiddleware if not hasattr(request, "secretballot_token"): raise ImproperlyConfigured( "To use secretballot a SecretBallotMiddleware must be installed. (see secretballot/middleware.py)" ) token = request.secretballot_token if isinstance(content_type, ContentType): pass elif isinstance(content_type, ModelBase): content_type = ContentType.objects.get_for_model(content_type) elif isinstance(content_type, str) and "." in content_type: app, modelname = content_type.split(".") content_type = ContentType.objects.get(app_label=app, model__iexact=modelname) else: raise ValueError("content_type must be an instance of ContentType, a model, or \"app.modelname\" string") # do the action if vote: # 404 if object to be voted upon doesn't exist if content_type.model_class().objects.filter(pk=object_id).count() == 0: raise Http404 # if there is a can_vote_test func specified, test then 403 if needed if can_vote_test: if not can_vote_test(request, content_type, object_id, vote): return HttpResponseForbidden("vote was forbidden") vobj, new = Vote.objects.get_or_create( content_type=content_type, object_id=object_id, token=token, defaults={"vote": vote} ) if not new: vobj.vote = vote vobj.save() else: Vote.objects.filter(content_type=content_type, object_id=object_id, token=token).delete() # build the response if redirect_url: return HttpResponseRedirect(redirect_url) elif template_name: # get_object_for_this_type uses _base_manager, but we only set # _default_manager. Drop to lower level API. content_obj = content_type.model_class()._default_manager.using(content_type._state.db).get(pk=object_id) c = {"content_obj": content_obj} # copy extra_context into context, calling any callables if extra_context: for k, v in extra_context.items(): if callable(v): c[k] = v() else: c[k] = v t = template_loader.get_template(template_name) body = t.render(c, request) else: votes = Vote.objects.filter(content_type=content_type, object_id=object_id).count() body = '{"num_votes":%d}' % votes return HttpResponse(body, content_type=mimetype)
[ "django.http.HttpResponseRedirect", "django.contrib.contenttypes.models.ContentType.objects.get_for_model", "secretballot.utils.get_vote_model", "django.contrib.contenttypes.models.ContentType.objects.get", "django.http.HttpResponse", "django.http.HttpResponseForbidden", "django.core.exceptions.ImproperlyConfigured" ]
[((367, 383), 'secretballot.utils.get_vote_model', 'get_vote_model', ([], {}), '()\n', (381, 383), False, 'from secretballot.utils import get_vote_model\n'), ((3106, 3147), 'django.http.HttpResponse', 'HttpResponse', (['body'], {'content_type': 'mimetype'}), '(body, content_type=mimetype)\n', (3118, 3147), False, 'from django.http import Http404, HttpResponse, HttpResponseForbidden, HttpResponseRedirect\n'), ((742, 872), 'django.core.exceptions.ImproperlyConfigured', 'ImproperlyConfigured', (['"""To use secretballot a SecretBallotMiddleware must be installed. (see secretballot/middleware.py)"""'], {}), "(\n 'To use secretballot a SecretBallotMiddleware must be installed. (see secretballot/middleware.py)'\n )\n", (762, 872), False, 'from django.core.exceptions import ImproperlyConfigured\n'), ((2266, 2300), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['redirect_url'], {}), '(redirect_url)\n', (2286, 2300), False, 'from django.http import Http404, HttpResponse, HttpResponseForbidden, HttpResponseRedirect\n'), ((1053, 1100), 'django.contrib.contenttypes.models.ContentType.objects.get_for_model', 'ContentType.objects.get_for_model', (['content_type'], {}), '(content_type)\n', (1086, 1100), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((1237, 1300), 'django.contrib.contenttypes.models.ContentType.objects.get', 'ContentType.objects.get', ([], {'app_label': 'app', 'model__iexact': 'modelname'}), '(app_label=app, model__iexact=modelname)\n', (1260, 1300), False, 'from django.contrib.contenttypes.models import ContentType\n'), ((1823, 1866), 'django.http.HttpResponseForbidden', 'HttpResponseForbidden', (['"""vote was forbidden"""'], {}), "('vote was forbidden')\n", (1844, 1866), False, 'from django.http import Http404, HttpResponse, HttpResponseForbidden, HttpResponseRedirect\n')]
# Created by <NAME> on 2021/8/28, 23:59 from common.tools.utils import check_state from node.tagTreeNote.utils.utils import verify_folder, DEFAULT_PATH_SEPARATOR, common_heading_sub_array import json class Path: # Object should be immutable after init def __init__(self, path="", validate_folder_name=True): # "/" is reserved for the default separator. self.separator = DEFAULT_PATH_SEPARATOR # a string in the format of "a/b/c" to represent a path # "" can be used self.path = path.strip().strip(self.separator).strip() if validate_folder_name and self.separator in self.path: self._strip_folder_name() if validate_folder_name: for folder in self.split(): check_state(verify_folder(folder)) def _strip_folder_name(self): all_folder_in_order = self.path.split(self.separator) result = "" for folder_name in all_folder_in_order: folder_name = folder_name.strip() check_state(len(folder_name) > 0, self.path + "is invalid") result += folder_name + self.separator self.path = result[:-1] def get_path(self): return self.path def common_path(self, other): self_folders = self.split() other_folders = other.split() shared_parent = common_heading_sub_array(self_folders, other_folders) return Path(self.separator.join(shared_parent)) # turn the path into a list of folder name def split(self) -> list: return self.path.split(self.separator) if len(self.path) > 0 else [] # return depth of the path (number of folders along the way) def depth(self) -> int: return self.path.count(self.separator) + 1 if len(self.path) > 0 else 0 def parent(self): if self.depth() <= 1: return Path() else: return Path(self.path[: self.path.rindex(self.separator)], validate_folder_name=False) def parent_(self, level=1): result = self for i in range(level): result = result.parent() return result def copy(self): return Path(self.path, validate_folder_name=False) def parent_or_self(self): if self.depth() <= 1: return self.copy() else: return Path(self.path[: self.path.rindex(self.separator)], validate_folder_name=False) def child(self, child_name: str): child_name = child_name.strip().strip(self.separator).strip() check_state(len(child_name) > 0, child_name + "is invalid") if len(self.path) == 0: return Path(child_name) return Path(self.path + self.separator + child_name) def sibling(self, sibling_name: str): sibling_name = sibling_name.strip().strip(self.separator).strip() if self.depth() <= 1: return Path(sibling_name) else: return Path(self.path[: self.path.rindex(self.separator)] + self.separator + sibling_name) def get_leaf(self) -> str: if self.separator in self.path: return self.path[self.path.rindex(self.separator) + len(self.separator)] else: return self.path def is_child_of(self, other_path) -> bool: check_state(self.separator == other_path.separator, "The separator used in two path are not the same") return self.path.startswith(other_path.path) def is_parent_of(self, other_path) -> bool: return other_path.is_child_of(self) def to_map(self) -> dict: all_folder = self.split() child = {} for i in range(len(all_folder) - 1, -1, -1): current = {all_folder[i]: child} child = current return child def __repr__(self): return self.path def __str__(self): return self.path def __lt__(self, other): a = self.split() b = other.split() l = min(self.depth(), other.depth()) for i in range(l): if a[i] != b[i]: return a[i] < b[i] return self.depth() < other.depth() def __gt__(self, other): a = self.split() b = other.split() l = min(self.depth(), other.depth()) for i in range(l): if a[i] != b[i]: return a[i] > b[i] return self.depth() > other.depth() def __eq__(self, other): return self.path == other.path def toJson(self): return json.dumps(self, default=lambda o: o.__dict__) if __name__ == '__main__': path1 = Path("a/b/c") path2 = Path("b/c") path3 = Path("a/") path4 = Path(" / a/b") print(path1.is_child_of(path2)) print(path1.is_child_of(path3)) print(path1.is_child_of(path4)) print(path1 > path4) t = path4.get_path() t = "a/c" print(path4) print(path4.to_map()) print(",".join([]))
[ "common.tools.utils.check_state", "json.dumps", "node.tagTreeNote.utils.utils.common_heading_sub_array", "node.tagTreeNote.utils.utils.verify_folder" ]
[((1347, 1400), 'node.tagTreeNote.utils.utils.common_heading_sub_array', 'common_heading_sub_array', (['self_folders', 'other_folders'], {}), '(self_folders, other_folders)\n', (1371, 1400), False, 'from node.tagTreeNote.utils.utils import verify_folder, DEFAULT_PATH_SEPARATOR, common_heading_sub_array\n'), ((3271, 3377), 'common.tools.utils.check_state', 'check_state', (['(self.separator == other_path.separator)', '"""The separator used in two path are not the same"""'], {}), "(self.separator == other_path.separator,\n 'The separator used in two path are not the same')\n", (3282, 3377), False, 'from common.tools.utils import check_state\n'), ((4479, 4525), 'json.dumps', 'json.dumps', (['self'], {'default': '(lambda o: o.__dict__)'}), '(self, default=lambda o: o.__dict__)\n', (4489, 4525), False, 'import json\n'), ((775, 796), 'node.tagTreeNote.utils.utils.verify_folder', 'verify_folder', (['folder'], {}), '(folder)\n', (788, 796), False, 'from node.tagTreeNote.utils.utils import verify_folder, DEFAULT_PATH_SEPARATOR, common_heading_sub_array\n')]
import json import logging from pathlib import Path, WindowsPath from modules.steam_utils import SteamApps from shared_modules import Condition, Gate, Process, Profile, Task from shared_modules.migrate import Session class ProfileImportExport: _count = 0 _import_models = (Profile, Task, Condition, Gate, Process) auto_detected_msg_ls = list() steam_apps: SteamApps = None known_app_executables = dict() @staticmethod def export(profile: Profile, path: Path): try: data = profile.to_dict() with open(path.as_posix(), 'w') as f: json.dump(data, f, indent=4, sort_keys=True) except Exception as e: logging.error('Error exporting profile: %s', e) @classmethod def _prepare_known_apps(cls, use_known_apps: bool): cls.auto_detected_msg_ls = list() if not use_known_apps: return if cls.steam_apps is None: cls.steam_apps = SteamApps() for app_id, manifest in cls.steam_apps.known_apps.items(): cls.known_app_executables[manifest.get('executable')] = manifest @classmethod def _update_process_locations_known_apps(cls, entry): """ Update path locations """ if not isinstance(entry, Process): return # Do not alter entries that already have a valid path exe_path = Path(Path(entry.path) / entry.executable) if exe_path.is_file() and exe_path.exists(): return if entry.executable in cls.known_app_executables: manifest = cls.known_app_executables.get(entry.executable) path = Path(manifest.get('path') or '') if path.exists(): win_path = str(WindowsPath(path)) entry.path = win_path cls.auto_detected_msg_ls.append(manifest.get('name')) logging.info('Updated Process Entry #%s with auto-detected location: %s', entry.id or -1, win_path) @classmethod def _get_single_foreign_attributes(cls, entry, data, use_known_apps): for k, v in data.items(): if k in entry.json_foreign_attributes: cls._get_single_relationship(k, entry, v, use_known_apps) @classmethod def _get_single_relationship(cls, table_name, parent_entry, data, use_known_apps): for Model in cls._import_models: if Model.__tablename__ == table_name: entry = Model() entry.from_dict(data) if use_known_apps: cls._update_process_locations_known_apps(entry) Session.add(entry) setattr(parent_entry, table_name, entry) @classmethod def _get_child_relations(cls, parent_entry, data, use_known_apps: bool): # -- Update Process entries based on KnownApps if use_known_apps: cls._update_process_locations_known_apps(parent_entry) # -- Get Children eg. profile.processes as dictionary child_relationships = parent_entry.get_children_lists(data) # -- Collect One to One Relationships # eg. task.process cls._get_single_foreign_attributes(parent_entry, data, use_known_apps) # -- Collect One to Many Relationships # eg. task.conditions for Model in cls._import_models: if Model.json_list_name not in child_relationships: continue children = list() for child_data_entry in child_relationships[Model.json_list_name]: child = Model() child.from_dict(child_data_entry) cls._get_child_relations(child, child_data_entry, use_known_apps) Session.add(child) Session.flush() # generate id's children.append(child) # Add entries to parent setattr(parent_entry, Model.json_list_name, children) @classmethod def import_profile(cls, file: Path, use_known_apps: bool = False) -> bool: try: with open(file.as_posix(), 'r') as f: data = json.load(f) except Exception as e: logging.error('Error opening file for profile import: %s', e) return False # -- Read out known Apps and Steam library cls._prepare_known_apps(use_known_apps) try: profile_names = {p.name for p in Session.query(Profile).all()} while data['name'] in profile_names: if data['name'][-2:].isdigit(): cls._count += 1 data['name'] = f"{data['name'][:-2]}{cls._count:02d}" else: data['name'] = f"{data.get('name')}_{cls._count:02d}" profile = Profile() profile.from_dict(data) Session.add(profile) Session.flush() # Generate Id's cls._get_child_relations(profile, data, use_known_apps) Session.commit() except Exception as e: logging.error('Error importing profile: %s', e) Session.rollback() return False return True
[ "shared_modules.migrate.Session.add", "shared_modules.migrate.Session.commit", "shared_modules.migrate.Session.rollback", "shared_modules.migrate.Session.flush", "pathlib.Path", "json.dump", "logging.info", "pathlib.WindowsPath", "shared_modules.migrate.Session.query", "modules.steam_utils.SteamApps", "json.load", "logging.error", "shared_modules.Profile" ]
[((977, 988), 'modules.steam_utils.SteamApps', 'SteamApps', ([], {}), '()\n', (986, 988), False, 'from modules.steam_utils import SteamApps\n'), ((4798, 4807), 'shared_modules.Profile', 'Profile', ([], {}), '()\n', (4805, 4807), False, 'from shared_modules import Condition, Gate, Process, Profile, Task\n'), ((4856, 4876), 'shared_modules.migrate.Session.add', 'Session.add', (['profile'], {}), '(profile)\n', (4867, 4876), False, 'from shared_modules.migrate import Session\n'), ((4889, 4904), 'shared_modules.migrate.Session.flush', 'Session.flush', ([], {}), '()\n', (4902, 4904), False, 'from shared_modules.migrate import Session\n'), ((5004, 5020), 'shared_modules.migrate.Session.commit', 'Session.commit', ([], {}), '()\n', (5018, 5020), False, 'from shared_modules.migrate import Session\n'), ((609, 653), 'json.dump', 'json.dump', (['data', 'f'], {'indent': '(4)', 'sort_keys': '(True)'}), '(data, f, indent=4, sort_keys=True)\n', (618, 653), False, 'import json\n'), ((697, 744), 'logging.error', 'logging.error', (['"""Error exporting profile: %s"""', 'e'], {}), "('Error exporting profile: %s', e)\n", (710, 744), False, 'import logging\n'), ((1405, 1421), 'pathlib.Path', 'Path', (['entry.path'], {}), '(entry.path)\n', (1409, 1421), False, 'from pathlib import Path, WindowsPath\n'), ((1901, 2005), 'logging.info', 'logging.info', (['"""Updated Process Entry #%s with auto-detected location: %s"""', '(entry.id or -1)', 'win_path'], {}), "('Updated Process Entry #%s with auto-detected location: %s', \n entry.id or -1, win_path)\n", (1913, 2005), False, 'import logging\n'), ((2637, 2655), 'shared_modules.migrate.Session.add', 'Session.add', (['entry'], {}), '(entry)\n', (2648, 2655), False, 'from shared_modules.migrate import Session\n'), ((3747, 3765), 'shared_modules.migrate.Session.add', 'Session.add', (['child'], {}), '(child)\n', (3758, 3765), False, 'from shared_modules.migrate import Session\n'), ((3782, 3797), 'shared_modules.migrate.Session.flush', 'Session.flush', ([], {}), '()\n', (3795, 3797), False, 'from shared_modules.migrate import Session\n'), ((4140, 4152), 'json.load', 'json.load', (['f'], {}), '(f)\n', (4149, 4152), False, 'import json\n'), ((4196, 4257), 'logging.error', 'logging.error', (['"""Error opening file for profile import: %s"""', 'e'], {}), "('Error opening file for profile import: %s', e)\n", (4209, 4257), False, 'import logging\n'), ((5064, 5111), 'logging.error', 'logging.error', (['"""Error importing profile: %s"""', 'e'], {}), "('Error importing profile: %s', e)\n", (5077, 5111), False, 'import logging\n'), ((5124, 5142), 'shared_modules.migrate.Session.rollback', 'Session.rollback', ([], {}), '()\n', (5140, 5142), False, 'from shared_modules.migrate import Session\n'), ((1758, 1775), 'pathlib.WindowsPath', 'WindowsPath', (['path'], {}), '(path)\n', (1769, 1775), False, 'from pathlib import Path, WindowsPath\n'), ((4442, 4464), 'shared_modules.migrate.Session.query', 'Session.query', (['Profile'], {}), '(Profile)\n', (4455, 4464), False, 'from shared_modules.migrate import Session\n')]
from model.contact import Contact from random import randrange import random def test_modify_contact_firstname(app,db,check_ui): #contact = json_contacts if len(db.get_contact_list()) == 0: app.contact.create(Contact(firstname ="firstname")) old_contacts = db.get_contact_list() contact = random.choice(old_contacts) id = contact.id old_contacts.remove(contact) new_contact = Contact(firstname="<NAME>") old_contacts.append(new_contact) app.contact.modify_contact_by_id(id,new_contact) new_contact.id = contact.id new_contact.lastname = contact.lastname new_contacts = db.get_contact_list() assert len(old_contacts) == len(new_contacts) assert sorted(old_contacts, key=Contact.id_or_max) == sorted(new_contacts, key=Contact.id_or_max) if check_ui: assert sorted(new_contacts, key = Contact.id_or_max) == sorted(app.group.get_contact_list(),key = Contact.id_or_max) #def test_modify_contact_middlename(app): #if app.contact.count() == 0: #app.contact.create(Contact(middlename="middlename")) #app.contact.modify_first_contact(Contact(middlename="New middlename"))
[ "random.choice", "model.contact.Contact" ]
[((314, 341), 'random.choice', 'random.choice', (['old_contacts'], {}), '(old_contacts)\n', (327, 341), False, 'import random\n'), ((413, 440), 'model.contact.Contact', 'Contact', ([], {'firstname': '"""<NAME>"""'}), "(firstname='<NAME>')\n", (420, 440), False, 'from model.contact import Contact\n'), ((226, 256), 'model.contact.Contact', 'Contact', ([], {'firstname': '"""firstname"""'}), "(firstname='firstname')\n", (233, 256), False, 'from model.contact import Contact\n')]
import wandb import torch import torch.optim as optim import torch.nn.functional as F import torch.nn as nn from torchvision import datasets, transforms device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def train(config=None): # Initialize a new wandb run with wandb.init(config=config): # If called by wandb.agent, as below, # this config will be set by Sweep Controller config = wandb.config loader = build_dataset(config.batch_size) network = build_network(config.fc_layer_size, config.dropout) optimizer = build_optimizer(network, config.optimizer, config.learning_rate) for epoch in range(config.epochs): avg_loss = train_epoch(network, loader, optimizer) wandb.log({"loss": avg_loss, "epoch": epoch}) def build_dataset(batch_size): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # download MNIST training dataset dataset = datasets.MNIST(".", train=True, download=True, transform=transform) sub_dataset = torch.utils.data.Subset( dataset, indices=range(0, len(dataset), 5)) loader = torch.utils.data.DataLoader(sub_dataset, batch_size=batch_size) return loader def build_network(fc_layer_size, dropout): network = nn.Sequential( # fully-connected, single hidden layer nn.Flatten(), nn.Linear(784, fc_layer_size), nn.ReLU(), nn.Dropout(dropout), nn.Linear(fc_layer_size, 10), nn.LogSoftmax(dim=1)) return network.to(device) def build_optimizer(network, optimizer, learning_rate): if optimizer == "sgd": optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=0.9) elif optimizer == "adam": optimizer = optim.Adam(network.parameters(), lr=learning_rate) return optimizer def train_epoch(network, loader, optimizer): cumu_loss = 0 for _, (data, target) in enumerate(loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() # ➡ Forward pass loss = F.nll_loss(network(data), target) cumu_loss += loss.item() # ⬅ Backward pass + weight update loss.backward() optimizer.step() wandb.log({"batch loss": loss.item()}) return cumu_loss / len(loader) if __name__ == '__main__': train()
[ "torch.nn.ReLU", "torch.nn.Dropout", "wandb.log", "torch.nn.Flatten", "wandb.init", "torch.cuda.is_available", "torchvision.datasets.MNIST", "torch.utils.data.DataLoader", "torch.nn.Linear", "torch.nn.LogSoftmax", "torchvision.transforms.ToTensor", "torchvision.transforms.Normalize" ]
[((1030, 1097), 'torchvision.datasets.MNIST', 'datasets.MNIST', (['"""."""'], {'train': '(True)', 'download': '(True)', 'transform': 'transform'}), "('.', train=True, download=True, transform=transform)\n", (1044, 1097), False, 'from torchvision import datasets, transforms\n'), ((1235, 1298), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['sub_dataset'], {'batch_size': 'batch_size'}), '(sub_dataset, batch_size=batch_size)\n', (1262, 1298), False, 'import torch\n'), ((186, 211), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (209, 211), False, 'import torch\n'), ((292, 317), 'wandb.init', 'wandb.init', ([], {'config': 'config'}), '(config=config)\n', (302, 317), False, 'import wandb\n'), ((1440, 1452), 'torch.nn.Flatten', 'nn.Flatten', ([], {}), '()\n', (1450, 1452), True, 'import torch.nn as nn\n'), ((1462, 1491), 'torch.nn.Linear', 'nn.Linear', (['(784)', 'fc_layer_size'], {}), '(784, fc_layer_size)\n', (1471, 1491), True, 'import torch.nn as nn\n'), ((1493, 1502), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (1500, 1502), True, 'import torch.nn as nn\n'), ((1512, 1531), 'torch.nn.Dropout', 'nn.Dropout', (['dropout'], {}), '(dropout)\n', (1522, 1531), True, 'import torch.nn as nn\n'), ((1541, 1569), 'torch.nn.Linear', 'nn.Linear', (['fc_layer_size', '(10)'], {}), '(fc_layer_size, 10)\n', (1550, 1569), True, 'import torch.nn as nn\n'), ((1579, 1599), 'torch.nn.LogSoftmax', 'nn.LogSoftmax', ([], {'dim': '(1)'}), '(dim=1)\n', (1592, 1599), True, 'import torch.nn as nn\n'), ((774, 819), 'wandb.log', 'wandb.log', (["{'loss': avg_loss, 'epoch': epoch}"], {}), "({'loss': avg_loss, 'epoch': epoch})\n", (783, 819), False, 'import wandb\n'), ((901, 922), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (920, 922), False, 'from torchvision import datasets, transforms\n'), ((933, 975), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['(0.1307,)', '(0.3081,)'], {}), '((0.1307,), (0.3081,))\n', (953, 975), False, 'from torchvision import datasets, transforms\n')]
from django.conf.urls import include, url from django.contrib import admin from HMBBF.views import home_information as information from HMBBF.views import home_seacher_keyword from HMBBF.views import home_seacher,assembly_days,theme_day,live,load_guests urlpatterns = [ #首页数据 url(r"index/$",information), #首页搜索热词 url(r"get_keywords/$",home_seacher_keyword), #搜索 url(r"search_result/$",home_seacher), # url(r"assembly/$",assembly_days,name="assembly_days"), url(r"theme/$",theme_day,name="theme_day"), url(r"guests/$",load_guests,name="guests_data"), url(r"live/$",live,name="theme_live"), ]
[ "django.conf.urls.url" ]
[((285, 312), 'django.conf.urls.url', 'url', (['"""index/$"""', 'information'], {}), "('index/$', information)\n", (288, 312), False, 'from django.conf.urls import include, url\n'), ((330, 373), 'django.conf.urls.url', 'url', (['"""get_keywords/$"""', 'home_seacher_keyword'], {}), "('get_keywords/$', home_seacher_keyword)\n", (333, 373), False, 'from django.conf.urls import include, url\n'), ((387, 423), 'django.conf.urls.url', 'url', (['"""search_result/$"""', 'home_seacher'], {}), "('search_result/$', home_seacher)\n", (390, 423), False, 'from django.conf.urls import include, url\n'), ((435, 489), 'django.conf.urls.url', 'url', (['"""assembly/$"""', 'assembly_days'], {'name': '"""assembly_days"""'}), "('assembly/$', assembly_days, name='assembly_days')\n", (438, 489), False, 'from django.conf.urls import include, url\n'), ((494, 537), 'django.conf.urls.url', 'url', (['"""theme/$"""', 'theme_day'], {'name': '"""theme_day"""'}), "('theme/$', theme_day, name='theme_day')\n", (497, 537), False, 'from django.conf.urls import include, url\n'), ((542, 590), 'django.conf.urls.url', 'url', (['"""guests/$"""', 'load_guests'], {'name': '"""guests_data"""'}), "('guests/$', load_guests, name='guests_data')\n", (545, 590), False, 'from django.conf.urls import include, url\n'), ((596, 634), 'django.conf.urls.url', 'url', (['"""live/$"""', 'live'], {'name': '"""theme_live"""'}), "('live/$', live, name='theme_live')\n", (599, 634), False, 'from django.conf.urls import include, url\n')]
from monero.wallet import Wallet from targets.fields import Fields from targets.lineitem import LineItem import csv import time # print(jsonRPC.raw_request('get_attribute', 'wallet2.description')) #What's the key??? ATTRIBUTE_DESCRIPTION???? class target(object): min_height = 0 mywallet = None currency = None def __init__(self, mywallet, min_height=0, currency='XMR'): self.mywallet = mywallet self.min_height = min_height self.currency = currency self.etl() def extract(self): return "extract functionality unavailable at this time" def load(self, stagedData): return "load functionality unavailable at this time" def transform(self, stagedData): return "transform functionality unavailable at this time" def etl(self): stagedData = self.extract() stagedData = self.transform(stagedData) self.load(stagedData) class csvfile(target): def extract(self): lineitems = [] incoming = self.mywallet.incoming(min_height=self.min_height) outgoing = self.mywallet.outgoing(min_height=self.min_height) for payment in incoming: lineitem = LineItem(payment) lineitems.append(lineitem) multiDestPayment = None for payment in outgoing: while True: lineitem = LineItem(payment) lineitems.append(lineitem) if not payment.destinations: # don't add any more line items if there are no more destinations break return lineitems def transform(self, lineitems): # sort list of incoming and outgoing payments(lineitem objects) by timestamp lineitems = sorted(lineitems, key=lambda lineitem: lineitem.timestamp) # set initial balance value balance = 0 # calculate balance for each line item after debit or credit i = 0 lines = len(lineitems) for lineitem in lineitems: i += 1 finalBalance = True if lines == i else False balance = lineitem.calcBalance(balance, self.currency, finalBalance) # most recent tx should be on top with most recent balance lineitems = sorted(lineitems, key=lambda lineitem: lineitem.timestamp, reverse=True) return lineitems def load(self, lineitems): with open('Monero-ETL-'+time.strftime("%d-%m-%Y") + '_'+self.currency+'.csv', 'w') as csvfile: writer = csv.writer(csvfile) fieldnames = [] for field in Fields.values: fieldnames.append(field) # write the field headers first writer.writerow(fieldnames) # load line item variables into row for lineitem in lineitems: row = [] # using if statements to allow for fields to be rearranged # adding fields requires an additional if statement for field in fieldnames: if field == "Timestamp": row.append(lineitem.timestamp) if field == "Transaction Id": row.append(lineitem.transaction_id) if field == "Payment ID": row.append(lineitem.payment_id) if field == "Note": row.append(lineitem.note) if field == "Receive/Send Address": row.append(lineitem.address) if field == "Debit": row.append(lineitem.debit) if field == "Credit": row.append(lineitem.credit) if field == "Network Fee": row.append(lineitem.transaction_fee) if field == "Balance": row.append(str(lineitem.balance)) if field == "Currency": row.append(self.currency) # write the line item into csv writer.writerow(row) class SQL(target): def __init__(self, mywallet, min_height=0): target.__init__(self, mywallet, min_height=0) class beanCounter(target): def __init__(self, mywallet, min_height=0): target.__init__(self, mywallet, min_height=0)
[ "csv.writer", "targets.lineitem.LineItem", "time.strftime" ]
[((1197, 1214), 'targets.lineitem.LineItem', 'LineItem', (['payment'], {}), '(payment)\n', (1205, 1214), False, 'from targets.lineitem import LineItem\n'), ((2502, 2521), 'csv.writer', 'csv.writer', (['csvfile'], {}), '(csvfile)\n', (2512, 2521), False, 'import csv\n'), ((1370, 1387), 'targets.lineitem.LineItem', 'LineItem', (['payment'], {}), '(payment)\n', (1378, 1387), False, 'from targets.lineitem import LineItem\n'), ((2410, 2435), 'time.strftime', 'time.strftime', (['"""%d-%m-%Y"""'], {}), "('%d-%m-%Y')\n", (2423, 2435), False, 'import time\n')]
import time alarm_time = input('What time do you want to have an alarm? format HH24:MI ') while True: current_time = time.localtime() hour_string = str(current_time.tm_hour) minute_string = str(current_time.tm_min) second_string = str(current_time.tm_sec) time_string = hour_string+':'+minute_string+':'+second_string time_string_minute = hour_string+':'+minute_string print(time_string) if alarm_time == time_string_minute: print('ALARM!!!!!!!!!!!!!') time.sleep(1)
[ "time.localtime", "time.sleep" ]
[((124, 140), 'time.localtime', 'time.localtime', ([], {}), '()\n', (138, 140), False, 'import time\n'), ((503, 516), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (513, 516), False, 'import time\n')]
#!/bin/python3 # -*- coding: utf-8 -*- from Utils import Utils from Dataset import Dataset class NNDatasetContainer: def deployScaler(self): self.dataset.normalization_method=Dataset.Normalization.NORMALIZE_WITH_EXTERNAL_MAXES self.dataset.normalization_params=self.scaler+tuple() def importScaler(self): self.scaler=self.dataset.normalization_params+tuple() def getNormalizationMethod(self): norm_method=Dataset.Normalization.DONT_NORMALIZE norm_param=None if self.normalize: if len(self.scaler)>0: norm_param=self.scaler norm_method=Dataset.Normalization.NORMALIZE_WITH_EXTERNAL_MAXES else: norm_method=Dataset.Normalization.NORMALIZE_WITH_GAP return norm_method,norm_param def generateNNArrays(self): if not self.dataset.converted: self.dataset.convertToTemporalValues(self.back_samples,self.forward_samples) norm_method,norm_param=self.getNormalizationMethod() start_index,dataset_x,dataset_y=self.dataset.getNeuralNetworkArrays(include_test_data=True,normalization=norm_method,external_maxes=norm_param) if len(self.scaler)==0: self.importScaler() if self.train_percent==0: self.train_x=None self.train_y=None self.val_x=None self.val_y=None self.test_x=dataset_x self.test_y=dataset_y self.train_start_idx=None self.val_start_idx=None self.test_start_idx=start_index if self.verbose: print() print('test_x',self.test_x.shape) print('test_y',self.test_y.shape) print() else: test_index,train_x,test_x=Dataset.splitNeuralNetworkArray(dataset_x,self.train_percent) _,train_y,test_y=Dataset.splitNeuralNetworkArray(dataset_y,part2_index=test_index) val_index,train_x,val_x=Dataset.splitNeuralNetworkArray(train_x,1-self.val_percent) _,train_y,val_y=Dataset.splitNeuralNetworkArray(train_y,part2_index=val_index) self.train_x=train_x self.train_y=train_y self.val_x=val_x self.val_y=val_y self.test_x=test_x self.test_y=test_y self.train_start_idx=start_index self.val_start_idx=start_index+val_index self.test_start_idx=start_index+test_index if self.verbose: print() print('train_x',self.train_x.shape) print('train_y',self.train_y.shape) print() print('val_x',self.val_x.shape) print('val_y',self.val_y.shape) print() print('test_x',self.test_x.shape) print('test_y',self.test_y.shape) print() def getValuesSplittedByFeature(self): norm_method,norm_param=self.getNormalizationMethod() normalize=self.dataset.setNormalizationMethod(normalization=norm_method,external_maxes=norm_param) return self.dataset.getValuesSplittedByFeature(normalize=normalize) def __init__(self,dataset,scaler,train_percent,val_percent,back_samples,forward_samples,normalize,verbose): self.dataset=dataset self.scaler=scaler self.train_percent=train_percent self.val_percent=val_percent self.back_samples=back_samples self.forward_samples=forward_samples self.normalize=normalize self.train_x=None self.train_y=None self.val_x=None self.val_y=None self.test_x=None self.test_y=None self.train_start_idx=None self.val_start_idx=None self.test_start_idx=None self.verbose=verbose
[ "Dataset.Dataset.splitNeuralNetworkArray" ]
[((1572, 1634), 'Dataset.Dataset.splitNeuralNetworkArray', 'Dataset.splitNeuralNetworkArray', (['dataset_x', 'self.train_percent'], {}), '(dataset_x, self.train_percent)\n', (1603, 1634), False, 'from Dataset import Dataset\n'), ((1655, 1721), 'Dataset.Dataset.splitNeuralNetworkArray', 'Dataset.splitNeuralNetworkArray', (['dataset_y'], {'part2_index': 'test_index'}), '(dataset_y, part2_index=test_index)\n', (1686, 1721), False, 'from Dataset import Dataset\n'), ((1749, 1811), 'Dataset.Dataset.splitNeuralNetworkArray', 'Dataset.splitNeuralNetworkArray', (['train_x', '(1 - self.val_percent)'], {}), '(train_x, 1 - self.val_percent)\n', (1780, 1811), False, 'from Dataset import Dataset\n'), ((1829, 1892), 'Dataset.Dataset.splitNeuralNetworkArray', 'Dataset.splitNeuralNetworkArray', (['train_y'], {'part2_index': 'val_index'}), '(train_y, part2_index=val_index)\n', (1860, 1892), False, 'from Dataset import Dataset\n')]
""" Unit tests for third_party_auth SAML auth providers """ from unittest import mock from common.djangoapps.third_party_auth.saml import EdXSAMLIdentityProvider, get_saml_idp_class from common.djangoapps.third_party_auth.tests.data.saml_identity_provider_mock_data import ( expected_user_details, mock_attributes, mock_conf ) from common.djangoapps.third_party_auth.tests.testutil import SAMLTestCase class TestEdXSAMLIdentityProvider(SAMLTestCase): """ Test EdXSAMLIdentityProvider. """ @mock.patch('common.djangoapps.third_party_auth.saml.log') def test_get_saml_idp_class_with_fake_identifier(self, log_mock): error_mock = log_mock.error idp_class = get_saml_idp_class('fake_idp_class_option') error_mock.assert_called_once_with( '[THIRD_PARTY_AUTH] Invalid EdXSAMLIdentityProvider subclass--' 'using EdXSAMLIdentityProvider base class. Provider: {provider}'.format(provider='fake_idp_class_option') ) assert idp_class is EdXSAMLIdentityProvider def test_get_user_details(self): """ test get_attr and get_user_details of EdXSAMLIdentityProvider""" edx_saml_identity_provider = EdXSAMLIdentityProvider('demo', **mock_conf) assert edx_saml_identity_provider.get_user_details(mock_attributes) == expected_user_details
[ "common.djangoapps.third_party_auth.saml.EdXSAMLIdentityProvider", "unittest.mock.patch", "common.djangoapps.third_party_auth.saml.get_saml_idp_class" ]
[((527, 584), 'unittest.mock.patch', 'mock.patch', (['"""common.djangoapps.third_party_auth.saml.log"""'], {}), "('common.djangoapps.third_party_auth.saml.log')\n", (537, 584), False, 'from unittest import mock\n'), ((711, 754), 'common.djangoapps.third_party_auth.saml.get_saml_idp_class', 'get_saml_idp_class', (['"""fake_idp_class_option"""'], {}), "('fake_idp_class_option')\n", (729, 754), False, 'from common.djangoapps.third_party_auth.saml import EdXSAMLIdentityProvider, get_saml_idp_class\n'), ((1207, 1251), 'common.djangoapps.third_party_auth.saml.EdXSAMLIdentityProvider', 'EdXSAMLIdentityProvider', (['"""demo"""'], {}), "('demo', **mock_conf)\n", (1230, 1251), False, 'from common.djangoapps.third_party_auth.saml import EdXSAMLIdentityProvider, get_saml_idp_class\n')]
import datetime from datetime import datetime import cv2 import face_recognition import numpy as np import openpyxl def addInExcel(d): fp = "Attendance.xlsx" wb = openpyxl.load_workbook(fp) sheet = wb.get_active_sheet() max_row = sheet.max_row max_column = sheet.max_column now = datetime.now() # print("Data Acquired :", d) sheet.cell(row=1, column=max_column + 1).value = now.strftime("%m/%d/%Y, %H:%M:%S") for index in range(1, max_row): sheet.cell(row=index + 1, column=max_column + 1).value = d[sheet.cell(row=index + 1, column=2).value] wb.save(fp) video_capture = cv2.VideoCapture(0) obama_image = face_recognition.load_image_file("images/obama.jpg") obama_face_encoding = face_recognition.face_encodings(obama_image)[0] gates_image = face_recognition.load_image_file("images/gates.jpg") gates_face_encoding = face_recognition.face_encodings(gates_image)[0] known_face_encodings = [ obama_face_encoding, gates_face_encoding ] known_face_names = [ "<NAME>", "<NAME>" ] attendance_list = {"<NAME>": "Absent", "<NAME>": "Absent", " ": " "} face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # # If a match was found in known_face_encodings, just use the first one. # if True in matches: # first_match_index = matches.index(True) # name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = known_face_names[best_match_index] if name != "Unknown": face_names.append(name) attendance_list[name] = "Present" process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.imshow('Video', frame) # Hit 'esc' on the keyboard to quit! k = cv2.waitKey(30) & 0xff if k == 27: present = 0 absent = 0 print("------------------------------------------") print("Attendance as per", datetime.now()) print("Name Absent/Present") for i in attendance_list: print(i, ":", attendance_list[i]) if attendance_list[i] == "Present": present += 1 elif attendance_list[i] == "Absent": absent += 1 print("Total Present :", present) print("Total Absent :", absent) print("------------------------------------------") attendance_list['Total Present'] = present attendance_list['Total Absent'] = absent # print(attendance_list) addInExcel(attendance_list) break cv2.destroyAllWindows() video_capture.release() """ ------------------------------------------ Attendance as per 2020-05-06 09:48:11.096916 Name Absent/Present <NAME> : Present <NAME> : Absent : Total Present : 1 Total Absent : 1 ------------------------------------------ """
[ "cv2.rectangle", "face_recognition.face_locations", "openpyxl.load_workbook", "cv2.imshow", "cv2.putText", "datetime.datetime.now", "face_recognition.face_distance", "cv2.destroyAllWindows", "cv2.VideoCapture", "face_recognition.load_image_file", "face_recognition.face_encodings", "face_recognition.compare_faces", "numpy.argmin", "cv2.resize", "cv2.waitKey" ]
[((651, 670), 'cv2.VideoCapture', 'cv2.VideoCapture', (['(0)'], {}), '(0)\n', (667, 670), False, 'import cv2\n'), ((688, 740), 'face_recognition.load_image_file', 'face_recognition.load_image_file', (['"""images/obama.jpg"""'], {}), "('images/obama.jpg')\n", (720, 740), False, 'import face_recognition\n'), ((827, 879), 'face_recognition.load_image_file', 'face_recognition.load_image_file', (['"""images/gates.jpg"""'], {}), "('images/gates.jpg')\n", (859, 879), False, 'import face_recognition\n'), ((3917, 3940), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (3938, 3940), False, 'import cv2\n'), ((185, 211), 'openpyxl.load_workbook', 'openpyxl.load_workbook', (['fp'], {}), '(fp)\n', (207, 211), False, 'import openpyxl\n'), ((326, 340), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (338, 340), False, 'from datetime import datetime\n'), ((764, 808), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['obama_image'], {}), '(obama_image)\n', (795, 808), False, 'import face_recognition\n'), ((903, 947), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['gates_image'], {}), '(gates_image)\n', (934, 947), False, 'import face_recognition\n'), ((1316, 1359), 'cv2.resize', 'cv2.resize', (['frame', '(0, 0)'], {'fx': '(0.25)', 'fy': '(0.25)'}), '(frame, (0, 0), fx=0.25, fy=0.25)\n', (1326, 1359), False, 'import cv2\n'), ((3024, 3050), 'cv2.imshow', 'cv2.imshow', (['"""Video"""', 'frame'], {}), "('Video', frame)\n", (3034, 3050), False, 'import cv2\n'), ((1463, 1511), 'face_recognition.face_locations', 'face_recognition.face_locations', (['rgb_small_frame'], {}), '(rgb_small_frame)\n', (1494, 1511), False, 'import face_recognition\n'), ((1538, 1602), 'face_recognition.face_encodings', 'face_recognition.face_encodings', (['rgb_small_frame', 'face_locations'], {}), '(rgb_small_frame, face_locations)\n', (1569, 1602), False, 'import face_recognition\n'), ((2728, 2794), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(left, top)', '(right, bottom)', '(0, 0, 255)', '(2)'], {}), '(frame, (left, top), (right, bottom), (0, 0, 255), 2)\n', (2741, 2794), False, 'import cv2\n'), ((2804, 2892), 'cv2.rectangle', 'cv2.rectangle', (['frame', '(left, bottom - 35)', '(right, bottom)', '(0, 0, 255)', 'cv2.FILLED'], {}), '(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2\n .FILLED)\n', (2817, 2892), False, 'import cv2\n'), ((2937, 3016), 'cv2.putText', 'cv2.putText', (['frame', 'name', '(left + 6, bottom - 6)', 'font', '(1.0)', '(255, 255, 255)', '(1)'], {}), '(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)\n', (2948, 3016), False, 'import cv2\n'), ((3104, 3119), 'cv2.waitKey', 'cv2.waitKey', (['(30)'], {}), '(30)\n', (3115, 3119), False, 'import cv2\n'), ((1697, 1764), 'face_recognition.compare_faces', 'face_recognition.compare_faces', (['known_face_encodings', 'face_encoding'], {}), '(known_face_encodings, face_encoding)\n', (1727, 1764), False, 'import face_recognition\n'), ((2157, 2224), 'face_recognition.face_distance', 'face_recognition.face_distance', (['known_face_encodings', 'face_encoding'], {}), '(known_face_encodings, face_encoding)\n', (2187, 2224), False, 'import face_recognition\n'), ((2257, 2282), 'numpy.argmin', 'np.argmin', (['face_distances'], {}), '(face_distances)\n', (2266, 2282), True, 'import numpy as np\n'), ((3282, 3296), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (3294, 3296), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- # ---------------------------------------------------------------------------- # Copyright © 2016, Continuum Analytics, Inc. All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. # ---------------------------------------------------------------------------- import os from conda_kapsel.internal.test.tmpfile_utils import with_directory_contents from conda_kapsel.conda_meta_file import (CondaMetaFile, META_DIRECTORY, DEFAULT_RELATIVE_META_PATH, possible_meta_file_names) def _use_existing_meta_file(relative_name): def check_file(dirname): filename = os.path.join(dirname, relative_name) assert os.path.exists(filename) meta_file = CondaMetaFile.load_for_directory(dirname) assert 'foo' == meta_file.name sample_content = "package:\n name: foo\n" with_directory_contents({relative_name: sample_content}, check_file) def test_use_existing_meta_file_default_name(): _use_existing_meta_file(DEFAULT_RELATIVE_META_PATH) def test_use_existing_meta_file_all_names(): for name in possible_meta_file_names: _use_existing_meta_file(os.path.join(META_DIRECTORY, name))
[ "os.path.exists", "conda_kapsel.conda_meta_file.CondaMetaFile.load_for_directory", "conda_kapsel.internal.test.tmpfile_utils.with_directory_contents", "os.path.join" ]
[((911, 979), 'conda_kapsel.internal.test.tmpfile_utils.with_directory_contents', 'with_directory_contents', (['{relative_name: sample_content}', 'check_file'], {}), '({relative_name: sample_content}, check_file)\n', (934, 979), False, 'from conda_kapsel.internal.test.tmpfile_utils import with_directory_contents\n'), ((681, 717), 'os.path.join', 'os.path.join', (['dirname', 'relative_name'], {}), '(dirname, relative_name)\n', (693, 717), False, 'import os\n'), ((733, 757), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (747, 757), False, 'import os\n'), ((778, 819), 'conda_kapsel.conda_meta_file.CondaMetaFile.load_for_directory', 'CondaMetaFile.load_for_directory', (['dirname'], {}), '(dirname)\n', (810, 819), False, 'from conda_kapsel.conda_meta_file import CondaMetaFile, META_DIRECTORY, DEFAULT_RELATIVE_META_PATH, possible_meta_file_names\n'), ((1207, 1241), 'os.path.join', 'os.path.join', (['META_DIRECTORY', 'name'], {}), '(META_DIRECTORY, name)\n', (1219, 1241), False, 'import os\n')]
# ============================================================================== # Copyright (C) [2022] by Cambricon, Inc. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ============================================================================== """Sample utilities This module defines SSD postproc, Yolov3MM postproc APIs. """ import cnis def clip(x): """Limit the number in range [0, 1]. if x < 0, x = 0 x > 1, x = 1 otherwise x = x """ return max(0, min(1, x)) def ssd_postproc(model_outputs, model_info, threshold): """SSD postproc""" data = model_outputs.buffers[0].data(model_info.output_shape(0), model_info.output_layout(0)) data = data.reshape(model_info.output_shape(0)[3]) box_num = int(data[0]) objs = [] for i in range(box_num): obj = cnis.DetectObject() if data[64 + i * 7 + 1] == 0: continue obj.label = int(data[64 + i * 7 + 1] - 1) obj.score = data[64 + i * 7 + 2] if threshold > 0 and obj.score < threshold: continue # clip to 0-1 obj.bbox.x = clip(data[64 + i * 7 + 3]) obj.bbox.y = clip(data[64 + i * 7 + 4]) obj.bbox.w = clip(data[64 + i * 7 + 5]) - obj.bbox.x obj.bbox.h = clip(data[64 + i * 7 + 6]) - obj.bbox.y objs.append(obj) return objs def yolov3mm_postproc(model_outputs, model_info, image_size, threshold): """Yolov3mm postproc""" image_w = int(image_size["image_width"]) image_h = int(image_size["image_height"]) model_input_w = model_info.input_shape(0)[2] model_input_h = model_info.input_shape(0)[1] if model_info.input_layout(0).order == cnis.DimOrder.NCHW: model_input_w = model_info.input_shape(0)[3] model_input_h = model_info.input_shape(0)[2] scaling_factors = min(1.0 * model_input_w / image_w, 1.0 * model_input_h / image_h) scaled_w = scaling_factors * image_w scaled_h = scaling_factors * image_h box_num = model_outputs.buffers[1].data(dtype=cnis.DataType.INT32)[0] data = model_outputs.buffers[0].data(dtype=cnis.DataType.FLOAT32) objs = [] box_step = 7 for i in range(box_num): left = clip(data[i * box_step + 3]) right = clip(data[i * box_step + 5]) top = clip(data[i * box_step + 4]) bottom = clip(data[i * box_step + 6]) # rectify left = (left * model_input_w - (model_input_w - scaled_w) / 2) / scaled_w right = (right * model_input_w - (model_input_w - scaled_w) //2) / scaled_w top = (top * model_input_h - (model_input_h - scaled_h) / 2) / scaled_h bottom = (bottom * model_input_h - (model_input_h - scaled_h) / 2) / scaled_h left = max(0, left) right = max(0, right) top = max(0, top) bottom = max(0, bottom) obj = cnis.DetectObject() obj.label = int(data[i * box_step + 1]) obj.score = data[i * box_step + 2] obj.bbox.x = left obj.bbox.y = top obj.bbox.w = min(1 - obj.bbox.x, right - left) obj.bbox.h = min(1 - obj.bbox.y, bottom - top) if (threshold > 0 and obj.score < threshold) or obj.bbox.w <= 0 or obj.bbox.h <= 0: continue objs.append(obj) return objs def print_objs(objs): if len(objs) == 0: print("[EasyDK PyAPISamples] @@@@@@@@@@@ No objects detected in frame ") return print("[EasyDK PyAPISamples] objects number: ", len(objs)) for obj in objs: print("[EasyDK PyAPISamples] obj label: {} score: {:.4f} bbox : {:.4f}, {:.4f}, {:.4f}, {:.4f}".format( obj.label, obj.score, obj.bbox.x, obj.bbox.y, obj.bbox.w, obj.bbox.h))
[ "cnis.DetectObject" ]
[((1605, 1624), 'cnis.DetectObject', 'cnis.DetectObject', ([], {}), '()\n', (1622, 1624), False, 'import cnis\n'), ((3482, 3501), 'cnis.DetectObject', 'cnis.DetectObject', ([], {}), '()\n', (3499, 3501), False, 'import cnis\n')]
# myTeam.py # --------- # Licensing Information: You are free to use or extend these projects for # educational purposes provided that (1) you do not distribute or publish # solutions, (2) you retain this notice, and (3) you provide clear # attribution to UC Berkeley, including a link to http://ai.berkeley.edu. # # Attribution Information: The Pacman AI projects were developed at UC Berkeley. # The core projects and autograders were primarily created by <NAME> # (<EMAIL>) and <NAME> (<EMAIL>). # Student side autograding was added by <NAME>, <NAME>, and # <NAME> (<EMAIL>). from captureAgents import CaptureAgent import random, time, util from game import Directions, Actions import game from util import nearestPoint ################# # Team creation # ################# NUM_TRAINING = 0 TRAINING = False def createTeam(firstIndex, secondIndex, isRed, first = 'ApproxQLearningOffense', second = 'DefensiveReflexAgent', numTraining = 0, **args): """ This function should return a list of two agents that will form the team, initialized using firstIndex and secondIndex as their agent index numbers. isRed is True if the red team is being created, and will be False if the blue team is being created. As a potentially helpful development aid, this function can take additional string-valued keyword arguments ("first" and "second" are such arguments in the case of this function), which will come from the --redOpts and --blueOpts command-line arguments to capture.py. For the nightly contest, however, your team will be created without any extra arguments, so you should make sure that the default behavior is what you want for the nightly contest. """ # The following line is an example only; feel free to change it. NUM_TRAINING = numTraining return [eval(first)(firstIndex), eval(second)(secondIndex)] class ApproxQLearningOffense(CaptureAgent): def registerInitialState(self, gameState): self.epsilon = 0.1 self.alpha = 0.2 self.discount = 0.9 self.numTraining = NUM_TRAINING self.episodesSoFar = 0 self.weights = {'closest-food': -3.099192562140742, 'bias': -9.280875042529367, '#-of-ghosts-1-step-away': -16.6612110039328, 'eats-food': 11.127808437648863} self.start = gameState.getAgentPosition(self.index) self.featuresExtractor = FeaturesExtractor(self) CaptureAgent.registerInitialState(self, gameState) def chooseAction(self, gameState): """ Picks among the actions with the highest Q(s,a). """ legalActions = gameState.getLegalActions(self.index) if len(legalActions) == 0: return None foodLeft = len(self.getFood(gameState).asList()) if foodLeft <= 2: bestDist = 9999 for action in legalActions: successor = self.getSuccessor(gameState, action) pos2 = successor.getAgentPosition(self.index) dist = self.getMazeDistance(self.start, pos2) if dist < bestDist: bestAction = action bestDist = dist return bestAction action = None if TRAINING: for action in legalActions: self.updateWeights(gameState, action) if not util.flipCoin(self.epsilon): # exploit action = self.getPolicy(gameState) else: # explore action = random.choice(legalActions) return action def getWeights(self): return self.weights def getQValue(self, gameState, action): """ Should return Q(state,action) = w * featureVector where * is the dotProduct operator """ # features vector features = self.featuresExtractor.getFeatures(gameState, action) return features * self.weights def update(self, gameState, action, nextState, reward): """ Should update your weights based on transition """ features = self.featuresExtractor.getFeatures(gameState, action) oldValue = self.getQValue(gameState, action) futureQValue = self.getValue(nextState) difference = (reward + self.discount * futureQValue) - oldValue # for each feature i for feature in features: newWeight = self.alpha * difference * features[feature] self.weights[feature] += newWeight # print(self.weights) def updateWeights(self, gameState, action): nextState = self.getSuccessor(gameState, action) reward = self.getReward(gameState, nextState) self.update(gameState, action, nextState, reward) def getReward(self, gameState, nextState): reward = 0 agentPosition = gameState.getAgentPosition(self.index) # check if I have updated the score if self.getScore(nextState) > self.getScore(gameState): diff = self.getScore(nextState) - self.getScore(gameState) reward = diff * 10 # check if food eaten in nextState myFoods = self.getFood(gameState).asList() distToFood = min([self.getMazeDistance(agentPosition, food) for food in myFoods]) # I am 1 step away, will I be able to eat it? if distToFood == 1: nextFoods = self.getFood(nextState).asList() if len(myFoods) - len(nextFoods) == 1: reward = 10 # check if I am eaten enemies = [gameState.getAgentState(i) for i in self.getOpponents(gameState)] ghosts = [a for a in enemies if not a.isPacman and a.getPosition() != None] if len(ghosts) > 0: minDistGhost = min([self.getMazeDistance(agentPosition, g.getPosition()) for g in ghosts]) if minDistGhost == 1: nextPos = nextState.getAgentState(self.index).getPosition() if nextPos == self.start: # I die in the next state reward = -100 return reward def final(self, state): "Called at the end of each game." # call the super-class final method CaptureAgent.final(self, state) # print(self.weights) # did we finish training? def getSuccessor(self, gameState, action): """ Finds the next successor which is a grid position (location tuple). """ successor = gameState.generateSuccessor(self.index, action) pos = successor.getAgentState(self.index).getPosition() if pos != nearestPoint(pos): # Only half a grid position was covered return successor.generateSuccessor(self.index, action) else: return successor def computeValueFromQValues(self, gameState): """ Returns max_action Q(state,action) where the max is over legal actions. Note that if there are no legal actions, which is the case at the terminal state, you should return a value of 0.0. """ allowedActions = gameState.getLegalActions(self.index) if len(allowedActions) == 0: return 0.0 bestAction = self.getPolicy(gameState) return self.getQValue(gameState, bestAction) def computeActionFromQValues(self, gameState): """ Compute the best action to take in a state. Note that if there are no legal actions, which is the case at the terminal state, you should return None. """ legalActions = gameState.getLegalActions(self.index) if len(legalActions) == 0: return None actionVals = {} bestQValue = float('-inf') for action in legalActions: targetQValue = self.getQValue(gameState, action) actionVals[action] = targetQValue if targetQValue > bestQValue: bestQValue = targetQValue bestActions = [k for k, v in actionVals.items() if v == bestQValue] # random tie-breaking return random.choice(bestActions) def getPolicy(self, gameState): return self.computeActionFromQValues(gameState) def getValue(self, gameState): return self.computeValueFromQValues(gameState) class FeaturesExtractor: def __init__(self, agentInstance): self.agentInstance = agentInstance def getFeatures(self, gameState, action): # extract the grid of food and wall locations and get the ghost locations food = self.agentInstance.getFood(gameState) walls = gameState.getWalls() enemies = [gameState.getAgentState(i) for i in self.agentInstance.getOpponents(gameState)] ghosts = [a.getPosition() for a in enemies if not a.isPacman and a.getPosition() != None] # ghosts = state.getGhostPositions() features = util.Counter() features["bias"] = 1.0 # compute the location of pacman after he takes the action agentPosition = gameState.getAgentPosition(self.agentInstance.index) x, y = agentPosition dx, dy = Actions.directionToVector(action) next_x, next_y = int(x + dx), int(y + dy) # count the number of ghosts 1-step away features["#-of-ghosts-1-step-away"] = sum((next_x, next_y) in Actions.getLegalNeighbors(g, walls) for g in ghosts) # if len(ghosts) > 0: # minGhostDistance = min([self.agentInstance.getMazeDistance(agentPosition, g) for g in ghosts]) # if minGhostDistance < 3: # features["minGhostDistance"] = minGhostDistance # successor = self.agentInstance.getSuccessor(gameState, action) # features['successorScore'] = self.agentInstance.getScore(successor) # if there is no danger of ghosts then add the food feature if not features["#-of-ghosts-1-step-away"] and food[next_x][next_y]: features["eats-food"] = 1.0 # capsules = self.agentInstance.getCapsules(gameState) # if len(capsules) > 0: # closestCap = min([self.agentInstance.getMazeDistance(agentPosition, cap) for cap in self.agentInstance.getCapsules(gameState)]) # features["closestCapsule"] = closestCap dist = self.closestFood((next_x, next_y), food, walls) if dist is not None: # make the distance a number less than one otherwise the update # will diverge wildly features["closest-food"] = float(dist) / (walls.width * walls.height) features.divideAll(10.0) # print(features) return features def closestFood(self, pos, food, walls): """ closestFood -- this is similar to the function that we have worked on in the search project; here its all in one place """ fringe = [(pos[0], pos[1], 0)] expanded = set() while fringe: pos_x, pos_y, dist = fringe.pop(0) if (pos_x, pos_y) in expanded: continue expanded.add((pos_x, pos_y)) # if we find a food at this location then exit if food[pos_x][pos_y]: return dist # otherwise spread out from the location to its neighbours nbrs = Actions.getLegalNeighbors((pos_x, pos_y), walls) for nbr_x, nbr_y in nbrs: fringe.append((nbr_x, nbr_y, dist + 1)) # no food found return None ########## # Agents # ########## class ReflexCaptureAgent(CaptureAgent): """ A base class for reflex agents that chooses score-maximizing actions """ def registerInitialState(self, gameState): self.start = gameState.getAgentPosition(self.index) CaptureAgent.registerInitialState(self, gameState) def chooseAction(self, gameState): """ Picks among the actions with the highest Q(s,a). """ actions = gameState.getLegalActions(self.index) # You can profile your evaluation time by uncommenting these lines # start = time.time() values = [self.evaluate(gameState, a) for a in actions] # print 'eval time for agent %d: %.4f' % (self.index, time.time() - start) maxValue = max(values) bestActions = [a for a, v in zip(actions, values) if v == maxValue] foodLeft = len(self.getFood(gameState).asList()) if foodLeft <= 2: bestDist = 9999 for action in actions: successor = self.getSuccessor(gameState, action) pos2 = successor.getAgentPosition(self.index) dist = self.getMazeDistance(self.start, pos2) if dist < bestDist: bestAction = action bestDist = dist return bestAction return random.choice(bestActions) def getSuccessor(self, gameState, action): """ Finds the next successor which is a grid position (location tuple). """ successor = gameState.generateSuccessor(self.index, action) pos = successor.getAgentState(self.index).getPosition() if pos != nearestPoint(pos): # Only half a grid position was covered return successor.generateSuccessor(self.index, action) else: return successor def evaluate(self, gameState, action): """ Computes a linear combination of features and feature weights """ features = self.getFeatures(gameState, action) weights = self.getWeights(gameState, action) return features * weights def getFeatures(self, gameState, action): """ Returns a counter of features for the state """ features = util.Counter() successor = self.getSuccessor(gameState, action) features['successorScore'] = self.getScore(successor) return features def getWeights(self, gameState, action): """ Normally, weights do not depend on the gamestate. They can be either a counter or a dictionary. """ return {'successorScore': 1.0} class DefensiveReflexAgent(ReflexCaptureAgent): """ A reflex agent that keeps its side Pacman-free. Again, this is to give you an idea of what a defensive agent could be like. It is not the best or only way to make such an agent. """ def getFeatures(self, gameState, action): features = util.Counter() successor = self.getSuccessor(gameState, action) myState = successor.getAgentState(self.index) myPos = myState.getPosition() # Computes whether we're on defense (1) or offense (0) features['onDefense'] = 1 if myState.isPacman: features['onDefense'] = 0 # Computes distance to invaders we can see enemies = [successor.getAgentState(i) for i in self.getOpponents(successor)] invaders = [a for a in enemies if a.isPacman and a.getPosition() != None] features['numInvaders'] = len(invaders) if len(invaders) > 0: dists = [self.getMazeDistance(myPos, a.getPosition()) for a in invaders] features['invaderDistance'] = min(dists) if action == Directions.STOP: features['stop'] = 1 rev = Directions.REVERSE[gameState.getAgentState(self.index).configuration.direction] if action == rev: features['reverse'] = 1 return features def getWeights(self, gameState, action): return {'numInvaders': -1000, 'onDefense': 100, 'invaderDistance': -10, 'stop': -100, 'reverse': -2}
[ "util.flipCoin", "random.choice", "util.nearestPoint", "game.Actions.getLegalNeighbors", "game.Actions.directionToVector", "captureAgents.CaptureAgent.registerInitialState", "util.Counter", "captureAgents.CaptureAgent.final" ]
[((2426, 2476), 'captureAgents.CaptureAgent.registerInitialState', 'CaptureAgent.registerInitialState', (['self', 'gameState'], {}), '(self, gameState)\n', (2459, 2476), False, 'from captureAgents import CaptureAgent\n'), ((5778, 5809), 'captureAgents.CaptureAgent.final', 'CaptureAgent.final', (['self', 'state'], {}), '(self, state)\n', (5796, 5809), False, 'from captureAgents import CaptureAgent\n'), ((7474, 7500), 'random.choice', 'random.choice', (['bestActions'], {}), '(bestActions)\n', (7487, 7500), False, 'import random, time, util\n'), ((8227, 8241), 'util.Counter', 'util.Counter', ([], {}), '()\n', (8239, 8241), False, 'import random, time, util\n'), ((8445, 8478), 'game.Actions.directionToVector', 'Actions.directionToVector', (['action'], {}), '(action)\n', (8470, 8478), False, 'from game import Directions, Actions\n'), ((10830, 10880), 'captureAgents.CaptureAgent.registerInitialState', 'CaptureAgent.registerInitialState', (['self', 'gameState'], {}), '(self, gameState)\n', (10863, 10880), False, 'from captureAgents import CaptureAgent\n'), ((11790, 11816), 'random.choice', 'random.choice', (['bestActions'], {}), '(bestActions)\n', (11803, 11816), False, 'import random, time, util\n'), ((12626, 12640), 'util.Counter', 'util.Counter', ([], {}), '()\n', (12638, 12640), False, 'import random, time, util\n'), ((13280, 13294), 'util.Counter', 'util.Counter', ([], {}), '()\n', (13292, 13294), False, 'import random, time, util\n'), ((3227, 3254), 'util.flipCoin', 'util.flipCoin', (['self.epsilon'], {}), '(self.epsilon)\n', (3240, 3254), False, 'import random, time, util\n'), ((3354, 3381), 'random.choice', 'random.choice', (['legalActions'], {}), '(legalActions)\n', (3367, 3381), False, 'import random, time, util\n'), ((6138, 6155), 'util.nearestPoint', 'nearestPoint', (['pos'], {}), '(pos)\n', (6150, 6155), False, 'from util import nearestPoint\n'), ((10400, 10448), 'game.Actions.getLegalNeighbors', 'Actions.getLegalNeighbors', (['(pos_x, pos_y)', 'walls'], {}), '((pos_x, pos_y), walls)\n', (10425, 10448), False, 'from game import Directions, Actions\n'), ((12089, 12106), 'util.nearestPoint', 'nearestPoint', (['pos'], {}), '(pos)\n', (12101, 12106), False, 'from util import nearestPoint\n'), ((8637, 8672), 'game.Actions.getLegalNeighbors', 'Actions.getLegalNeighbors', (['g', 'walls'], {}), '(g, walls)\n', (8662, 8672), False, 'from game import Directions, Actions\n')]
import core import sub_menu import perc_finder def menu(): print("--------------------------------------------------------") print("!!!Welcome to Sparks Multipurpose Calculator!!!") print("--------------------------------------------------------") print("Please select a option: \n 1) Add\n 2) Subtract\n 3) Multiply\n 4) Divide\n 5) Page 2\n 0) Quit") user_input_A = 100 #so it won't default to quit if no input is entered user_input_A = int(input(": ")) if user_input_A == 1: core.add() elif user_input_A == 2: core.subtract() elif user_input_A == 3: core.multi() elif user_input_A == 4: core.main.divide() elif user_input_A == 5: sub_menu.page_2() elif user_input_A == 0: sub_menu.sure() elif user_input_A == 1114: print("MEOW!") menu() else: print("Invalid option!") menu()
[ "sub_menu.sure", "core.multi", "core.add", "core.subtract", "sub_menu.page_2", "core.main.divide" ]
[((537, 547), 'core.add', 'core.add', ([], {}), '()\n', (545, 547), False, 'import core\n'), ((584, 599), 'core.subtract', 'core.subtract', ([], {}), '()\n', (597, 599), False, 'import core\n'), ((636, 648), 'core.multi', 'core.multi', ([], {}), '()\n', (646, 648), False, 'import core\n'), ((685, 703), 'core.main.divide', 'core.main.divide', ([], {}), '()\n', (701, 703), False, 'import core\n'), ((740, 757), 'sub_menu.page_2', 'sub_menu.page_2', ([], {}), '()\n', (755, 757), False, 'import sub_menu\n'), ((794, 809), 'sub_menu.sure', 'sub_menu.sure', ([], {}), '()\n', (807, 809), False, 'import sub_menu\n')]
import time import asyncio import aiosmtplib import yagmail class AIOSMTP(yagmail.SMTP): async def login(self): # aiosmtplib implementation specific use_tls = str(self.port) == "465" self.smtp_starttls = not use_tls if self.oauth2_file is not None: await self._login_oauth2(self.credentials, use_tls) else: await self._login(self.credentials, use_tls=use_tls) async def _login_oauth2(self, oauth2_info, use_tls): if "email_address" in oauth2_info: oauth2_info.pop("email_address") self.smtp = self.connection(self.host, self.port, use_tls=use_tls, **self.kwargs) await self.smtp.connect() auth_string = self.get_oauth_string(self.user, oauth2_info) await self.smtp.ehlo(oauth2_info["google_client_id"]) if self.starttls is True: await self.smtp.starttls() await self.smtp.execute_command(b"AUTH", b"XOAUTH2", bytes(auth_string, "ascii")) @property def connection(self): return aiosmtplib.SMTP async def send( self, to=None, subject=None, contents=None, attachments=None, cc=None, bcc=None, preview_only=False, headers=None, ): """ Use this to send an email with gmail""" recipients, msg_string = self.prepare_send( to, subject, contents, attachments, cc, bcc, headers ) if preview_only: return (recipients, msg_string) return await self._attempt_send(recipients, msg_string) async def _attempt_send(self, recipients, msg_string): attempts = 0 while attempts < 3: try: result = await self.smtp.sendmail(self.user, recipients, msg_string) self.log.info("Message sent to %s", recipients) self.num_mail_sent += 1 return result except aiosmtplib.SMTPServerDisconnected as e: self.log.error(e) attempts += 1 time.sleep(attempts * 3) self.unsent.append((recipients, msg_string)) return False async def send_unsent(self): """ Emails that were not being able to send will be stored in :attr:`self.unsent`. Use this function to attempt to send these again """ await asyncio.gather([self._attempt_send(*x) for x in self.unsent]) while self.unsent: futures = [self._attempt_send(*self.unsent.pop()) for x in self.unsent] await asyncio.gather(*futures) async def close(self): raise ValueError("Should be `async with`") async def __aenter__(self): await self.login() return self async def __exit(self): if not self.is_closed: await self.aclose() return False async def __aexit__(self, exc_type, exc_val, exc_tb): if not self.is_closed: await self.aclose() return False async def aclose(self): """ Close the connection to the SMTP server """ self.is_closed = True try: await self.smtp.quit() except (TypeError, AttributeError, aiosmtplib.SMTPServerDisconnected): pass async def _login(self, password, use_tls): """ Login to the SMTP server using password. `login` only needs to be manually run when the connection to the SMTP server was closed by the user. """ self.smtp = self.connection(self.host, self.port) await self.smtp.connect(port=self.port, use_tls=use_tls) if self.starttls: await self.smtp.starttls() if not self.smtp_skip_login: password = self.handle_password(self.user, password) await self.smtp.login(self.user, password) self.is_closed = False def __del__(self): """ Not required in async"""
[ "time.sleep", "asyncio.gather" ]
[((2584, 2608), 'asyncio.gather', 'asyncio.gather', (['*futures'], {}), '(*futures)\n', (2598, 2608), False, 'import asyncio\n'), ((2078, 2102), 'time.sleep', 'time.sleep', (['(attempts * 3)'], {}), '(attempts * 3)\n', (2088, 2102), False, 'import time\n')]
from random import randint import time import pdb def do_random_screen(): result = 1 while(True): result += 1 line = '' for i in range(0, 128): line = line + chr(7)#chr(randint(65,127)) time.sleep(randint(1,10000)*.001); print(line) if(result == 30): break; return result if(__name__=='__main__'): x = do_random_screen() print(x) _
[ "random.randint" ]
[((263, 280), 'random.randint', 'randint', (['(1)', '(10000)'], {}), '(1, 10000)\n', (270, 280), False, 'from random import randint\n')]
#!/usr/local/bin/python3 import re _INITIAL_STATE_RE = re.compile(r"initial state: ([#.]+)") pattern_map = {} with open("input.txt") as f: initial_state_line = f.readline().strip() state = _INITIAL_STATE_RE.match(initial_state_line).group(1) assert not f.readline().strip() for rule_line in f.readlines(): [input_pattern, output] = rule_line.strip().split(" => ") pattern_map[input_pattern] = output start_pot_offset = 0 for generation in range(20): next_state = "" state = ".." + state + ".." start_pot_offset -= 2 for i in range(len(state)): pattern = "" for j in range(i-2, i+3): if j < 0 or j >= len(state): pattern += "." else: pattern += state[j] next_state += pattern_map.get(pattern, ".") state = next_state result = 0 for i, value in enumerate(state): if value == "#": result += i + start_pot_offset print(result)
[ "re.compile" ]
[((57, 93), 're.compile', 're.compile', (['"""initial state: ([#.]+)"""'], {}), "('initial state: ([#.]+)')\n", (67, 93), False, 'import re\n')]
import os, re from ... import ValidateError, FailPage, ServerError from ... import skilift from ....skilift import editfolder, fromjson from ....ski.project_class_definition import SectionData # a search for anything none-alphanumeric, not a dot and not a underscore and not an hyphen _ANDH = re.compile('[^\w\.\-]') def _get_folder_info(project, folder): "Given a folder ident string such as number or 'project,number' or 'project_number' return FolderInfo, folder_url" try: foldernumber = skilift.get_itemnumber(project, folder) if foldernumber is None: raise FailPage(message="Parent folder not recognised") folder_info = skilift.folder_info(project, foldernumber) folder_url = skilift.page_path(project, foldernumber) except ServerError as e: raise FailPage(message=e.message) return folder_info, folder_url def retrieve_add_folder(skicall): "Fill in the add a folder page" call_data = skicall.call_data pd = call_data['pagedata'] project = call_data['editedprojname'] # parent is the folder a new folder is to be added to # the value in call_data is the string ident submitted by the ftree add_folder button # or by a value in session_data if 'parent' in call_data: parent_info, parent_url = _get_folder_info(project, call_data['parent']) elif 'add_to_foldernumber' in call_data: parent_info, parent_url = _get_folder_info(project, call_data['add_to_foldernumber']) else: raise FailPage(message = "Parent folder missing") sd_adminhead = SectionData("adminhead") sd_adminhead["page_head","large_text"] = "Add folder to : %s" % (parent_url,) pd.update(sd_adminhead) pd['staticpath','input_text'] = os.path.join(project, 'static') pd['newfolderform','parent'] = project+","+str(parent_info.number) call_data['add_to_foldernumber'] = parent_info.number # st1: new folder name if 'new_folder' in call_data: pd['foldername','new_folder'] = call_data['new_folder'] # cb1: restricted checkbox if ('checkbox' in call_data) and call_data['checkbox']: pd['cb1','checked'] = True else: pd['cb1','checked'] = False if parent_info.restricted: pd['cb1','show_restricted'] = False else: pd['cb1','show_restricted'] = True # it1: text input for folder brief if ('folder_brief' in call_data) and call_data['folder_brief']: pd['it1','folder_brief'] = call_data['folder_brief'] # it2: folder ident number if 'folder_ident_number' in call_data: pd['it2','folder_ident_number'] = str(call_data['folder_ident_number']) else: pd['it2','folder_ident_number'] = str(skilift.next_ident_number(project)) def submit_addfolder(skicall): """ Creates a folder by making a dictionary similar to: { "name":"folder_name", "ident":999, "brief":"brief description of the folder", "restricted":False } And then calling editfolder.make_new_folder. Also calls _make_static_folder if folderpath is in call data """ call_data = skicall.call_data project = call_data['editedprojname'] folder_dict = {} if 'parent' not in call_data: raise FailPage(message = "Parent folder missing") # the parent value in call_data is the string ident submitted by the button parentinfo, parent_url = _get_folder_info(project, call_data['parent']) # parentinfo is a named tuple with members # 'name', 'number', 'restricted', 'brief', 'contains_pages', 'contains_folders' if ('new_folder' not in call_data) or ('checkbox' not in call_data) or ('folder_brief' not in call_data) or ('folder_ident_number' not in call_data): raise FailPage("New folder information missing") try: folder_ident_number = int(call_data['folder_ident_number']) except Exception: raise FailPage("The Folder Ident number must be an integer") if folder_ident_number<1: raise FailPage("The Folder Ident number must be a positive integer greater than zero") folder_dict["ident"] = folder_ident_number folder_dict["brief"] = call_data['folder_brief'] folder_dict["restricted"] = call_data['checkbox'] new_folder_name = call_data['new_folder'] # check name is alphanumric or underscore or dot or hyphen only if _ANDH.search(new_folder_name): raise FailPage(message = "Folder names must be alphanumric and may also have dots or underscores or hyphens") folder_dict["name"] = new_folder_name if 'folderpath' in call_data and call_data['folderpath']: folderpath = call_data['folderpath'].strip() folderpath = folderpath.strip('/') folderpath = folderpath.strip('\\') if not folderpath: raise FailPage("Sorry, the given static folder is invalid.") fullpath = os.path.join(skilift.get_projectfiles_dir(project), folderpath) if not os.path.isdir(fullpath): raise FailPage("Sorry, the given static folder location cannot be found.") if not call_data['folder_brief']: folder_dict["brief"] = "Link to %s" % folderpath else: folderpath = None fullpath = None # folderpath is the server folder path relative to projectfiles # fullpath is the absolute server folder path try: # create the folder editfolder.make_new_folder(project, parentinfo.number, folder_dict) except ServerError as e: raise FailPage(message = e.message) if fullpath: # add subfolders and file pages _make_static_folder(project, folder_dict, fullpath, folderpath) call_data['status'] = 'Static folder tree added' return call_data['status'] = 'New folder %s added.' % (parent_url + folder_dict["name"] + '/',) def _make_static_folder(project, folder_dict, fullpath, folderpath): """Creates containing sub folders and Filepages pointing to static server files folderpath is the server folder path relative to projectfiles fullpath is the absolute server folder path """ try: # loads everything under folderpath as Folders and FilePages # ident_dict maps folderpath to newly created folder ident numbers ident_dict = {} ident_dict[folderpath] = folder_dict["ident"] ident = folder_dict["ident"] ident_number_list = skilift.ident_numbers(project) for root, dirs, files in os.walk(fullpath): #fpath = root[len(skilift.get_projectdir(project))+1:] fpath = root[len(skilift.get_projectfiles_dir(project))+1:] parent_ident = ident_dict[fpath] if files: # create files for filename in files: new_filepath=os.path.join(fpath, filename) new_page_dict = {"name":filename, "brief":"Link to %s" % (new_filepath,), "FilePage": { "filepath": new_filepath, } } if ident: ident +=1 if ident not in ident_number_list: new_page_dict["ident"] = ident editfolder.make_new_page(project, parent_ident, new_page_dict) if dirs: # create folders for foldername in dirs: new_folderpath=os.path.join(fpath, foldername) new_folder_dict = {"name":foldername, "brief":"Link to %s" % (new_folderpath,), "restricted":False } if ident: ident +=1 if ident not in ident_number_list: new_folder_dict["ident"] = ident ident_dict[new_folderpath] = editfolder.make_new_folder(project, parent_ident, new_folder_dict) except ServerError as e: raise FailPage(e.message) def submit_upload_folder(skicall): "Copy a folder from uploaded file" call_data = skicall.call_data project = call_data['editedprojname'] # add_to_foldernumber is the folder a new folder is to be added to if 'add_to_foldernumber' not in call_data: raise FailPage(message = "Parent folder missing") # get submitted data for new folder try: addident = int(call_data['addident']) except Exception: raise FailPage(message = "Addition integer is invalid") importname = call_data['importname'] uploadfile = call_data['uploadfile'] json_string = uploadfile.decode(encoding='utf-8') # create the folder try: # note: restricted is set to False fromjson.create_folder(project, call_data['add_to_foldernumber'], addident, importname, False, json_string) except ServerError as e: raise FailPage(message = e.message, widget='import_folder') del call_data['add_to_foldernumber'] call_data['status'] = 'New folder and contents added'
[ "os.path.isdir", "os.path.join", "os.walk", "re.compile" ]
[((300, 326), 're.compile', 're.compile', (['"""[^\\\\w\\\\.\\\\-]"""'], {}), "('[^\\\\w\\\\.\\\\-]')\n", (310, 326), False, 'import os, re\n'), ((1766, 1797), 'os.path.join', 'os.path.join', (['project', '"""static"""'], {}), "(project, 'static')\n", (1778, 1797), False, 'import os, re\n'), ((6482, 6499), 'os.walk', 'os.walk', (['fullpath'], {}), '(fullpath)\n', (6489, 6499), False, 'import os, re\n'), ((4971, 4994), 'os.path.isdir', 'os.path.isdir', (['fullpath'], {}), '(fullpath)\n', (4984, 4994), False, 'import os, re\n'), ((6810, 6839), 'os.path.join', 'os.path.join', (['fpath', 'filename'], {}), '(fpath, filename)\n', (6822, 6839), False, 'import os, re\n'), ((7565, 7596), 'os.path.join', 'os.path.join', (['fpath', 'foldername'], {}), '(fpath, foldername)\n', (7577, 7596), False, 'import os, re\n')]
from functools import wraps from pprint import pprint import requests from django_simple_slack_app import slack_commands from papago_slack.font import make_art def authorized(func): @wraps(func) def wrapper(*args, **kwargs): event_data = args[0] if 'user' not in event_data: send_response(event_data, "You need to _authorize_ *Papago* to use auto translation! :smirk: \n" + "Visit <https://yangpago.com/slack/install|Authorize Page> to accept Papago :rocket:\n\n" "양파고를 이용하시려면 *양파고*를 _권한 인증_ 해주셔야 합니다! :smirk: \n" + "인증하시려면 <https://yangpago.com/slack/install|인증 페이지>를 방문해주세요! :rocket:") return return func(*args, **kwargs) return wrapper def send_response(event_data, text, response_type="ephemeral"): requests.post(event_data['response_url'], json={ "text": text, "response_type": response_type }) @slack_commands.on("error") @authorized def on_command_error(error): pprint(error) @slack_commands.on("/papago") @slack_commands.on("/papago.usage") @slack_commands.on("/papago.on") @slack_commands.on("/papago.off") @slack_commands.on("/papago.saysorry") @slack_commands.on("/papago.blaming") @slack_commands.on("/papago.pepe") def papago_help(event_data): send_response(event_data, ":sob: My name is changed, friend! Please use `/yangpago` instead of `/papago`") @slack_commands.on("/yangpago") @authorized def papago_command(event_data): if event_data['text']: return status = "ON" if event_data['channel_id'] in event_data['user'].papago.channels else "OFF" status_kr = "켜져" if event_data['channel_id'] in event_data['user'].papago.channels else "꺼져" send_response(event_data, "You can turn on/off Papago for you in this channel using `/yangpago on`, `/yangpago off`.\n" + f"Papago is turned *{status}* in this channel for you\n\n" + "`/yangpago on`과 `/yangpago off` 명령으로 이 채널의 양파고 동작를 개인 설정을 켜고 끌 수 있습니다..\n" + f"현재 이 채널에서 양파고 동작은 *{status_kr}*있습니다.\n") @slack_commands.on("/yangpago.usage") @authorized def papago_command_team(event_data): user = event_data['user'] count, letters = user.team.papago.monthly_usage() send_response(event_data, f"Your team use {count} requests for {letters} letters in this month\n" + f"이 팀의 이번달 양파고 사용 횟수는 {count}번이고 총 {letters}글자를 번역 했습니다.") @slack_commands.on("/yangpago.on") @authorized def papago_command_on(event_data): if 'user' not in event_data: return user = event_data['user'] user.papago.channels.append(event_data['channel_id']) user.papago.save() send_response(event_data, "Papago will translate on this channel for you!\n" + "이제부터 이 채널에 포스팅 하시는 내용을 양파고가 번역 하겠습니다!") print("PAPAGO ON", event_data['user'].id, "in", event_data['channel_id']) @slack_commands.on("/yangpago.off") @authorized def papago_command_off(event_data): if 'user' not in event_data: return user = event_data['user'] user.papago.channels.remove(event_data['channel_id']) user.papago.save() send_response(event_data, "Papago translation is off!\n" + "이 채널에서 양파고 번역을 정지합니다! 안되잖아... 안되...") print("PAPAGO OFF", event_data['user'].id, "in", event_data['channel_id']) @slack_commands.on("/yangpago.saysorry") @authorized def papago_saysorry(event_data): if 'user' not in event_data: return send_response(event_data, "죄송합니다... 앞으로 제대로 하겠습니다... :sob:", response_type="in_channel") @slack_commands.on("/yangpago.blaming") @authorized def papago_blaming(event_data): if 'user' not in event_data: return send_response(event_data, "아.. 이런 시부렁 못해먹겠네... :expressionless:", response_type="in_channel") @slack_commands.on("/yangpago.pepe") @authorized def papago_blaming(event_data): if 'user' not in event_data: return pepe_art = make_art(event_data['text'][5:]) send_response(event_data, pepe_art, response_type="in_channel")
[ "django_simple_slack_app.slack_commands.on", "requests.post", "papago_slack.font.make_art", "functools.wraps", "pprint.pprint" ]
[((1000, 1026), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""error"""'], {}), "('error')\n", (1017, 1026), False, 'from django_simple_slack_app import slack_commands\n'), ((1089, 1117), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago"""'], {}), "('/papago')\n", (1106, 1117), False, 'from django_simple_slack_app import slack_commands\n'), ((1119, 1153), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago.usage"""'], {}), "('/papago.usage')\n", (1136, 1153), False, 'from django_simple_slack_app import slack_commands\n'), ((1155, 1186), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago.on"""'], {}), "('/papago.on')\n", (1172, 1186), False, 'from django_simple_slack_app import slack_commands\n'), ((1188, 1220), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago.off"""'], {}), "('/papago.off')\n", (1205, 1220), False, 'from django_simple_slack_app import slack_commands\n'), ((1222, 1259), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago.saysorry"""'], {}), "('/papago.saysorry')\n", (1239, 1259), False, 'from django_simple_slack_app import slack_commands\n'), ((1261, 1297), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago.blaming"""'], {}), "('/papago.blaming')\n", (1278, 1297), False, 'from django_simple_slack_app import slack_commands\n'), ((1299, 1332), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/papago.pepe"""'], {}), "('/papago.pepe')\n", (1316, 1332), False, 'from django_simple_slack_app import slack_commands\n'), ((1494, 1524), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago"""'], {}), "('/yangpago')\n", (1511, 1524), False, 'from django_simple_slack_app import slack_commands\n'), ((2188, 2224), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago.usage"""'], {}), "('/yangpago.usage')\n", (2205, 2224), False, 'from django_simple_slack_app import slack_commands\n'), ((2561, 2594), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago.on"""'], {}), "('/yangpago.on')\n", (2578, 2594), False, 'from django_simple_slack_app import slack_commands\n'), ((3044, 3078), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago.off"""'], {}), "('/yangpago.off')\n", (3061, 3078), False, 'from django_simple_slack_app import slack_commands\n'), ((3490, 3529), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago.saysorry"""'], {}), "('/yangpago.saysorry')\n", (3507, 3529), False, 'from django_simple_slack_app import slack_commands\n'), ((3720, 3758), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago.blaming"""'], {}), "('/yangpago.blaming')\n", (3737, 3758), False, 'from django_simple_slack_app import slack_commands\n'), ((3953, 3988), 'django_simple_slack_app.slack_commands.on', 'slack_commands.on', (['"""/yangpago.pepe"""'], {}), "('/yangpago.pepe')\n", (3970, 3988), False, 'from django_simple_slack_app import slack_commands\n'), ((191, 202), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (196, 202), False, 'from functools import wraps\n'), ((880, 978), 'requests.post', 'requests.post', (["event_data['response_url']"], {'json': "{'text': text, 'response_type': response_type}"}), "(event_data['response_url'], json={'text': text,\n 'response_type': response_type})\n", (893, 978), False, 'import requests\n'), ((1072, 1085), 'pprint.pprint', 'pprint', (['error'], {}), '(error)\n', (1078, 1085), False, 'from pprint import pprint\n'), ((4097, 4129), 'papago_slack.font.make_art', 'make_art', (["event_data['text'][5:]"], {}), "(event_data['text'][5:])\n", (4105, 4129), False, 'from papago_slack.font import make_art\n')]
from guizero import App, Text from tkinter import Spinbox from tkinter.ttk import Progressbar a = App(title="Using tk widgets") Text(a, text="Spinbox") sp = Spinbox(from_=0, to=10) a.add_tk_widget(sp) Text(a, text="and Progressbar") pb = Progressbar() a.add_tk_widget(pb) pb.start() Text(a, text="in guizero") a.display()
[ "tkinter.Spinbox", "tkinter.ttk.Progressbar", "guizero.Text", "guizero.App" ]
[((99, 128), 'guizero.App', 'App', ([], {'title': '"""Using tk widgets"""'}), "(title='Using tk widgets')\n", (102, 128), False, 'from guizero import App, Text\n'), ((130, 153), 'guizero.Text', 'Text', (['a'], {'text': '"""Spinbox"""'}), "(a, text='Spinbox')\n", (134, 153), False, 'from guizero import App, Text\n'), ((160, 183), 'tkinter.Spinbox', 'Spinbox', ([], {'from_': '(0)', 'to': '(10)'}), '(from_=0, to=10)\n', (167, 183), False, 'from tkinter import Spinbox\n'), ((205, 236), 'guizero.Text', 'Text', (['a'], {'text': '"""and Progressbar"""'}), "(a, text='and Progressbar')\n", (209, 236), False, 'from guizero import App, Text\n'), ((243, 256), 'tkinter.ttk.Progressbar', 'Progressbar', ([], {}), '()\n', (254, 256), False, 'from tkinter.ttk import Progressbar\n'), ((289, 315), 'guizero.Text', 'Text', (['a'], {'text': '"""in guizero"""'}), "(a, text='in guizero')\n", (293, 315), False, 'from guizero import App, Text\n')]
import cv2 import numpy as np from darty.gui import GUI from darty.image_tools import Image_Tools print(cv2.__version__) class Dartboard_Detector: ENV = { 'DARTBOARD_SHAPE' : (1000,1000), 'DETECTION_BLUR' : (5,5), 'DETECTION_GREEN_LOW' : 90, 'DETECTION_GREEN_HIGH' : 95, 'DETECTION_RED_LOW' : 0, 'DETECTION_RED_HIGH' : 20, 'DETECTION_STRUCTURING_ELEMENT' : (100,100), 'DETECTION_BINARY_THRESHOLD_MIN' : 127, 'DETECTION_BINARY_THRESHOLD_MAX' : 255, 'DETECTION_OFFSET' : 200, 'ORIENTATION_BLUR' : (5,5), 'ORIENTATION_COLOR_LOW' : 45, 'ORIENTATION_COLOR_HIGH': 60, 'ORIENTATION_KERNEL' : (100,100), 'ORIENTATION_ELEMENT_SIZE_MIN' : 350, 'ORIENTATION_ELEMENT_SIZE_MAX' : 600, 'ORIENTATION_TEMPLATES' : ['shape_top.png','shape_bottom.png','shape_left.png','shape_right.png'] } def scaleROI(self,IM): if(IM.ndim == 3): IM_normal = np.zeros((self.ENV['DARTBOARD_SHAPE'][0],self.ENV['DARTBOARD_SHAPE'][1],IM.shape[2]),"uint8") else: IM_normal = np.zeros((self.ENV['DARTBOARD_SHAPE'][0],self.ENV['DARTBOARD_SHAPE'][1]),"uint8") scale = 1 if IM.shape[0] > IM.shape[1]: #higher than width scale = IM_normal.shape[0] / IM.shape[0] else: #widther than high scale = IM_normal.shape[1] / IM.shape[1] new_y = int(IM.shape[0] * scale) new_x = int(IM.shape[1] * scale) offset_y = int((IM_normal.shape[0] - new_y)/2) offset_x = int((IM_normal.shape[1] - new_x)/2) IM_resized = cv2.resize(IM, (new_x,new_y),cv2.INTER_AREA) if(IM.ndim == 3): IM_normal[offset_y:offset_y+new_y,offset_x:offset_x+new_x,:] = IM_resized else: IM_normal[offset_y:offset_y+new_y,offset_x:offset_x+new_x] = IM_resized return IM_normal def detectDartboard(self,IM): IM_blur = cv2.blur(IM,Dartboard_Detector.ENV['DETECTION_BLUR']) #convert to HSV base_frame_hsv = cv2.cvtColor(IM_blur, cv2.COLOR_BGR2HSV) # Extract Green green_thres_low = int(Dartboard_Detector.ENV['DETECTION_GREEN_LOW'] /255. * 180) green_thres_high = int(Dartboard_Detector.ENV['DETECTION_GREEN_HIGH'] /255. * 180) green_min = np.array([green_thres_low, 100, 100],np.uint8) green_max = np.array([green_thres_high, 255, 255],np.uint8) frame_threshed_green = cv2.inRange(base_frame_hsv, green_min, green_max) #Extract Red red_thres_low = int(Dartboard_Detector.ENV['DETECTION_RED_LOW'] /255. * 180) red_thres_high = int(Dartboard_Detector.ENV['DETECTION_RED_HIGH'] /255. * 180) red_min = np.array([red_thres_low, 100, 100],np.uint8) red_max = np.array([red_thres_high, 255, 255],np.uint8) frame_threshed_red = cv2.inRange(base_frame_hsv, red_min, red_max) #Combine combined = frame_threshed_red + frame_threshed_green #Close kernel = np.ones(Dartboard_Detector.ENV['DETECTION_STRUCTURING_ELEMENT'],np.uint8) closing = cv2.morphologyEx(combined, cv2.MORPH_CLOSE, kernel) #GUI.show(closing, "Dart_Detector") #find contours ret,thresh = cv2.threshold(combined,Dartboard_Detector.ENV['DETECTION_BINARY_THRESHOLD_MIN'],Dartboard_Detector.ENV['DETECTION_BINARY_THRESHOLD_MAX'],0) im2, contours, hierarchy = cv2.findContours(closing.copy(),cv2.RETR_LIST,cv2.CHAIN_APPROX_SIMPLE) max_cont = -1 max_idx = 0 for i in range(len(contours)): length = cv2.arcLength(contours[i], True) if length > max_cont: max_idx = i max_cont = length x,y,w,h = cv2.boundingRect(contours[max_idx]) x = x-Dartboard_Detector.ENV['DETECTION_OFFSET'] y = y-Dartboard_Detector.ENV['DETECTION_OFFSET'] w = w+int(2*Dartboard_Detector.ENV['DETECTION_OFFSET']) h = h+int(2*Dartboard_Detector.ENV['DETECTION_OFFSET']) return x,y,w,h,closing,frame_threshed_green,frame_threshed_red def getOrientation(self,IM_ROI,IM_ROI_board): kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE,Dartboard_Detector.ENV['ORIENTATION_KERNEL']) #Segment zones IM_ROI_blur = cv2.blur(IM_ROI,Dartboard_Detector.ENV['ORIENTATION_BLUR']) #convert to HSV IM_ROI_HSV = cv2.cvtColor(IM_ROI_blur, cv2.COLOR_BGR2HSV) purple_thres_low = int(Dartboard_Detector.ENV['ORIENTATION_COLOR_LOW'] /255. * 180) purple_thres_high = int(Dartboard_Detector.ENV['ORIENTATION_COLOR_HIGH'] /255. * 180) purple_min = np.array([purple_thres_low, 100, 100],np.uint8) purple_max = np.array([purple_thres_high, 255, 255],np.uint8) frame_thres_color = cv2.inRange(IM_ROI_HSV, purple_min, purple_max) #Mask frame_thres_color = cv2.subtract(frame_thres_color,IM_ROI_board) frame_thres_color_closed = cv2.morphologyEx(frame_thres_color, cv2.MORPH_CLOSE, kernel) #Compute contours im2, contours, hierarchy = cv2.findContours(frame_thres_color_closed.copy(),cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) contour_lengths = [] contours_structure = [] for i in range(len(contours)): length = cv2.arcLength(contours[i],True) contour_lengths.append(length) if length > Dartboard_Detector.ENV['ORIENTATION_ELEMENT_SIZE_MIN'] and length < Dartboard_Detector.ENV['ORIENTATION_ELEMENT_SIZE_MAX']: contours_structure.append(contours[i]) #debug histogramm #print(len(point_contours)) #plt.hist(contour_lengths, bins=20, range=(50,1000), normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, hold=None, data=None) #plt.show() return frame_thres_color,frame_thres_color_closed,contours_structure def getOrientationCorr(self,IM_ROI,base_dir): kernel_l = cv2.imread(base_dir + self.ENV['ORIENTATION_TEMPLATES'][2]) kernel_r = cv2.imread(base_dir + self.ENV['ORIENTATION_TEMPLATES'][3]) kernel_t = cv2.imread(base_dir + self.ENV['ORIENTATION_TEMPLATES'][0]) kernel_b = cv2.imread(base_dir + self.ENV['ORIENTATION_TEMPLATES'][1]) h = kernel_l.shape[0] w = kernel_l.shape[1] #right res = cv2.matchTemplate(IM_ROI,kernel_r,cv2.TM_CCORR_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) right_top_left = max_loc right = (right_top_left[0] + w, right_top_left[1] + h//2) #GUI.imShow(kernel_r) #left res = cv2.matchTemplate(IM_ROI,kernel_l,cv2.TM_CCORR_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) left_top_left = max_loc left = (left_top_left[0], left_top_left[1] + h//2) #GUI.imShow(kernel_l) h = kernel_t.shape[0] w = kernel_t.shape[1] #top res = cv2.matchTemplate(IM_ROI,kernel_t,cv2.TM_CCORR_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) top_top_left = max_loc top = (top_top_left[0] + w//2, top_top_left[1]) #GUI.imShow(kernel_t) #GUI.imShow(res) #print(max_loc) #bottom res = cv2.matchTemplate(IM_ROI,kernel_b,cv2.TM_CCORR_NORMED) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) bottom_top_left = max_loc bottom = (bottom_top_left[0] + w//2, bottom_top_left[1] + h) #GUI.imShow(kernel_b) return top_top_left,bottom_top_left,left_top_left,right_top_left,top,bottom,left,right
[ "cv2.imread", "numpy.ones", "cv2.threshold", "cv2.inRange", "cv2.arcLength", "cv2.minMaxLoc", "numpy.array", "cv2.morphologyEx", "numpy.zeros", "cv2.cvtColor", "cv2.matchTemplate", "cv2.resize", "cv2.subtract", "cv2.getStructuringElement", "cv2.blur", "cv2.boundingRect" ]
[((1676, 1722), 'cv2.resize', 'cv2.resize', (['IM', '(new_x, new_y)', 'cv2.INTER_AREA'], {}), '(IM, (new_x, new_y), cv2.INTER_AREA)\n', (1686, 1722), False, 'import cv2\n'), ((2009, 2063), 'cv2.blur', 'cv2.blur', (['IM', "Dartboard_Detector.ENV['DETECTION_BLUR']"], {}), "(IM, Dartboard_Detector.ENV['DETECTION_BLUR'])\n", (2017, 2063), False, 'import cv2\n'), ((2112, 2152), 'cv2.cvtColor', 'cv2.cvtColor', (['IM_blur', 'cv2.COLOR_BGR2HSV'], {}), '(IM_blur, cv2.COLOR_BGR2HSV)\n', (2124, 2152), False, 'import cv2\n'), ((2377, 2424), 'numpy.array', 'np.array', (['[green_thres_low, 100, 100]', 'np.uint8'], {}), '([green_thres_low, 100, 100], np.uint8)\n', (2385, 2424), True, 'import numpy as np\n'), ((2444, 2492), 'numpy.array', 'np.array', (['[green_thres_high, 255, 255]', 'np.uint8'], {}), '([green_thres_high, 255, 255], np.uint8)\n', (2452, 2492), True, 'import numpy as np\n'), ((2523, 2572), 'cv2.inRange', 'cv2.inRange', (['base_frame_hsv', 'green_min', 'green_max'], {}), '(base_frame_hsv, green_min, green_max)\n', (2534, 2572), False, 'import cv2\n'), ((2784, 2829), 'numpy.array', 'np.array', (['[red_thres_low, 100, 100]', 'np.uint8'], {}), '([red_thres_low, 100, 100], np.uint8)\n', (2792, 2829), True, 'import numpy as np\n'), ((2847, 2893), 'numpy.array', 'np.array', (['[red_thres_high, 255, 255]', 'np.uint8'], {}), '([red_thres_high, 255, 255], np.uint8)\n', (2855, 2893), True, 'import numpy as np\n'), ((2922, 2967), 'cv2.inRange', 'cv2.inRange', (['base_frame_hsv', 'red_min', 'red_max'], {}), '(base_frame_hsv, red_min, red_max)\n', (2933, 2967), False, 'import cv2\n'), ((3078, 3152), 'numpy.ones', 'np.ones', (["Dartboard_Detector.ENV['DETECTION_STRUCTURING_ELEMENT']", 'np.uint8'], {}), "(Dartboard_Detector.ENV['DETECTION_STRUCTURING_ELEMENT'], np.uint8)\n", (3085, 3152), True, 'import numpy as np\n'), ((3170, 3221), 'cv2.morphologyEx', 'cv2.morphologyEx', (['combined', 'cv2.MORPH_CLOSE', 'kernel'], {}), '(combined, cv2.MORPH_CLOSE, kernel)\n', (3186, 3221), False, 'import cv2\n'), ((3310, 3462), 'cv2.threshold', 'cv2.threshold', (['combined', "Dartboard_Detector.ENV['DETECTION_BINARY_THRESHOLD_MIN']", "Dartboard_Detector.ENV['DETECTION_BINARY_THRESHOLD_MAX']", '(0)'], {}), "(combined, Dartboard_Detector.ENV[\n 'DETECTION_BINARY_THRESHOLD_MIN'], Dartboard_Detector.ENV[\n 'DETECTION_BINARY_THRESHOLD_MAX'], 0)\n", (3323, 3462), False, 'import cv2\n'), ((3809, 3844), 'cv2.boundingRect', 'cv2.boundingRect', (['contours[max_idx]'], {}), '(contours[max_idx])\n', (3825, 3844), False, 'import cv2\n'), ((4227, 4322), 'cv2.getStructuringElement', 'cv2.getStructuringElement', (['cv2.MORPH_ELLIPSE', "Dartboard_Detector.ENV['ORIENTATION_KERNEL']"], {}), "(cv2.MORPH_ELLIPSE, Dartboard_Detector.ENV[\n 'ORIENTATION_KERNEL'])\n", (4252, 4322), False, 'import cv2\n'), ((4362, 4422), 'cv2.blur', 'cv2.blur', (['IM_ROI', "Dartboard_Detector.ENV['ORIENTATION_BLUR']"], {}), "(IM_ROI, Dartboard_Detector.ENV['ORIENTATION_BLUR'])\n", (4370, 4422), False, 'import cv2\n'), ((4467, 4511), 'cv2.cvtColor', 'cv2.cvtColor', (['IM_ROI_blur', 'cv2.COLOR_BGR2HSV'], {}), '(IM_ROI_blur, cv2.COLOR_BGR2HSV)\n', (4479, 4511), False, 'import cv2\n'), ((4719, 4767), 'numpy.array', 'np.array', (['[purple_thres_low, 100, 100]', 'np.uint8'], {}), '([purple_thres_low, 100, 100], np.uint8)\n', (4727, 4767), True, 'import numpy as np\n'), ((4788, 4837), 'numpy.array', 'np.array', (['[purple_thres_high, 255, 255]', 'np.uint8'], {}), '([purple_thres_high, 255, 255], np.uint8)\n', (4796, 4837), True, 'import numpy as np\n'), ((4865, 4912), 'cv2.inRange', 'cv2.inRange', (['IM_ROI_HSV', 'purple_min', 'purple_max'], {}), '(IM_ROI_HSV, purple_min, purple_max)\n', (4876, 4912), False, 'import cv2\n'), ((4955, 5000), 'cv2.subtract', 'cv2.subtract', (['frame_thres_color', 'IM_ROI_board'], {}), '(frame_thres_color, IM_ROI_board)\n', (4967, 5000), False, 'import cv2\n'), ((5035, 5095), 'cv2.morphologyEx', 'cv2.morphologyEx', (['frame_thres_color', 'cv2.MORPH_CLOSE', 'kernel'], {}), '(frame_thres_color, cv2.MORPH_CLOSE, kernel)\n', (5051, 5095), False, 'import cv2\n'), ((6141, 6200), 'cv2.imread', 'cv2.imread', (["(base_dir + self.ENV['ORIENTATION_TEMPLATES'][2])"], {}), "(base_dir + self.ENV['ORIENTATION_TEMPLATES'][2])\n", (6151, 6200), False, 'import cv2\n'), ((6220, 6279), 'cv2.imread', 'cv2.imread', (["(base_dir + self.ENV['ORIENTATION_TEMPLATES'][3])"], {}), "(base_dir + self.ENV['ORIENTATION_TEMPLATES'][3])\n", (6230, 6279), False, 'import cv2\n'), ((6299, 6358), 'cv2.imread', 'cv2.imread', (["(base_dir + self.ENV['ORIENTATION_TEMPLATES'][0])"], {}), "(base_dir + self.ENV['ORIENTATION_TEMPLATES'][0])\n", (6309, 6358), False, 'import cv2\n'), ((6378, 6437), 'cv2.imread', 'cv2.imread', (["(base_dir + self.ENV['ORIENTATION_TEMPLATES'][1])"], {}), "(base_dir + self.ENV['ORIENTATION_TEMPLATES'][1])\n", (6388, 6437), False, 'import cv2\n'), ((6535, 6591), 'cv2.matchTemplate', 'cv2.matchTemplate', (['IM_ROI', 'kernel_r', 'cv2.TM_CCORR_NORMED'], {}), '(IM_ROI, kernel_r, cv2.TM_CCORR_NORMED)\n', (6552, 6591), False, 'import cv2\n'), ((6635, 6653), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['res'], {}), '(res)\n', (6648, 6653), False, 'import cv2\n'), ((6821, 6877), 'cv2.matchTemplate', 'cv2.matchTemplate', (['IM_ROI', 'kernel_l', 'cv2.TM_CCORR_NORMED'], {}), '(IM_ROI, kernel_l, cv2.TM_CCORR_NORMED)\n', (6838, 6877), False, 'import cv2\n'), ((6921, 6939), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['res'], {}), '(res)\n', (6934, 6939), False, 'import cv2\n'), ((7157, 7213), 'cv2.matchTemplate', 'cv2.matchTemplate', (['IM_ROI', 'kernel_t', 'cv2.TM_CCORR_NORMED'], {}), '(IM_ROI, kernel_t, cv2.TM_CCORR_NORMED)\n', (7174, 7213), False, 'import cv2\n'), ((7257, 7275), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['res'], {}), '(res)\n', (7270, 7275), False, 'import cv2\n'), ((7473, 7529), 'cv2.matchTemplate', 'cv2.matchTemplate', (['IM_ROI', 'kernel_b', 'cv2.TM_CCORR_NORMED'], {}), '(IM_ROI, kernel_b, cv2.TM_CCORR_NORMED)\n', (7490, 7529), False, 'import cv2\n'), ((7573, 7591), 'cv2.minMaxLoc', 'cv2.minMaxLoc', (['res'], {}), '(res)\n', (7586, 7591), False, 'import cv2\n'), ((1008, 1108), 'numpy.zeros', 'np.zeros', (["(self.ENV['DARTBOARD_SHAPE'][0], self.ENV['DARTBOARD_SHAPE'][1], IM.shape[2])", '"""uint8"""'], {}), "((self.ENV['DARTBOARD_SHAPE'][0], self.ENV['DARTBOARD_SHAPE'][1],\n IM.shape[2]), 'uint8')\n", (1016, 1108), True, 'import numpy as np\n'), ((1140, 1227), 'numpy.zeros', 'np.zeros', (["(self.ENV['DARTBOARD_SHAPE'][0], self.ENV['DARTBOARD_SHAPE'][1])", '"""uint8"""'], {}), "((self.ENV['DARTBOARD_SHAPE'][0], self.ENV['DARTBOARD_SHAPE'][1]),\n 'uint8')\n", (1148, 1227), True, 'import numpy as np\n'), ((3661, 3693), 'cv2.arcLength', 'cv2.arcLength', (['contours[i]', '(True)'], {}), '(contours[i], True)\n', (3674, 3693), False, 'import cv2\n'), ((5375, 5407), 'cv2.arcLength', 'cv2.arcLength', (['contours[i]', '(True)'], {}), '(contours[i], True)\n', (5388, 5407), False, 'import cv2\n')]
import json import os from aws import aws_current_account, aws_discover_org_accounts, current_region from carve import get_deploy_key, load_graph, unique_node_values def lambda_handler(event, context): ''' Prepare to clean up carve managed stacks from all accounts that are not in the graph - get a list of all accounts - create a list of stacks to protect that are used by the deployed graph - return the list to the step function ''' deploy_key = get_deploy_key() G = load_graph(deploy_key, local=False) # remove external beacons from the graph external = [node for node in G.nodes() if G.nodes().data()[node]['Type'] == 'external'] G.remove_nodes_from(external) print(f'cleaning up after graph deploy: {deploy_key}') accounts = aws_discover_org_accounts() # create a list for carve stacks to not delete safe_stacks = [] # add the s3 bucket stacks for active regions to safe stacks deploy_region_list = set(sorted(unique_node_values(G, 'Region'))) deploy_region_list.add(current_region) for region in deploy_region_list: s3_stack = f"{os.environ['Prefix']}carve-managed-bucket-{region}" safe_stacks.append({ 'StackName': s3_stack, 'Account': context.invoked_function_arn.split(":")[4], 'Region': region }) # add all VPC stacks in the graph to safe stacks vpcs = [] for subnet in list(G.nodes): vpc = G.nodes().data()[subnet]['VpcId'] if vpc not in vpcs: vpcs.append(vpc) safe_stacks.append({ 'StackName': f"{os.environ['Prefix']}carve-managed-beacons-{vpc}", 'Account': G.nodes().data()[subnet]['Account'], 'Region': G.nodes().data()[subnet]['Region'] }) # add all private link stacks from the current account to safe stacks for region in sorted(unique_node_values(G, 'Region')): safe_stacks.append({ 'StackName': f"{os.environ['Prefix']}carve-managed-privatelink-{region}", 'Account': aws_current_account(), 'Region': region }) print(f'all safe stacks: {safe_stacks}') # create discovery list of all accounts for step function discover_stacks = [] for account_id, account_name in accounts.items(): cleanup = {} cleanup['Account'] = account_id cleanup['SafeStacks'] = [] for stack in safe_stacks: if stack['Account'] == account_id: # cleanup['SafeStacks'] = safe_stacks cleanup['SafeStacks'].append(stack['StackName']) discover_stacks.append(cleanup) # returns to a step function iterator # return json.dumps(discover_stacks, default=str) return discover_stacks
[ "carve.get_deploy_key", "carve.load_graph", "carve.unique_node_values", "aws.aws_discover_org_accounts", "aws.aws_current_account" ]
[((481, 497), 'carve.get_deploy_key', 'get_deploy_key', ([], {}), '()\n', (495, 497), False, 'from carve import get_deploy_key, load_graph, unique_node_values\n'), ((506, 541), 'carve.load_graph', 'load_graph', (['deploy_key'], {'local': '(False)'}), '(deploy_key, local=False)\n', (516, 541), False, 'from carve import get_deploy_key, load_graph, unique_node_values\n'), ((790, 817), 'aws.aws_discover_org_accounts', 'aws_discover_org_accounts', ([], {}), '()\n', (815, 817), False, 'from aws import aws_current_account, aws_discover_org_accounts, current_region\n'), ((1923, 1954), 'carve.unique_node_values', 'unique_node_values', (['G', '"""Region"""'], {}), "(G, 'Region')\n", (1941, 1954), False, 'from carve import get_deploy_key, load_graph, unique_node_values\n'), ((993, 1024), 'carve.unique_node_values', 'unique_node_values', (['G', '"""Region"""'], {}), "(G, 'Region')\n", (1011, 1024), False, 'from carve import get_deploy_key, load_graph, unique_node_values\n'), ((2095, 2116), 'aws.aws_current_account', 'aws_current_account', ([], {}), '()\n', (2114, 2116), False, 'from aws import aws_current_account, aws_discover_org_accounts, current_region\n')]
import logging from requests.exceptions import HTTPError from rest_framework import status from rest_framework.decorators import api_view from rest_framework.response import Response from api.serializers import (SchemaLedgerSerializer, TransformationLedgerSerializer) from core.models import SchemaLedger, TransformationLedger logger = logging.getLogger('dict_config_logger') @api_view(['GET']) def schemaledger_requests(request): """Handles fetching and returning requested schemas""" # all requests must provide the schema name messages = [] name = request.GET.get('name') version = request.GET.get('version') errorMsg = { "message": messages } if not name: messages.append("Error; query parameter 'name' is required") if len(messages) == 0: # look for a model with the provided name querySet = SchemaLedger.objects.all()\ .filter(schema_name=name) if not querySet: messages.append("Error; no schema found with the name '" + name + "'") errorMsg = { "message": messages } return Response(errorMsg, status.HTTP_400_BAD_REQUEST) # if the schema name is found, filter for the version. If no version is # provided, we fetch the latest version if not version: querySet = querySet.order_by('-major_version', '-minor_version', '-patch_version') else: querySet = querySet.filter(version=version) if not querySet: messages.append("Error; no schema found for version '" + version + "'") errorMsg = { "message": messages } return Response(errorMsg, status.HTTP_400_BAD_REQUEST) try: serializer_class = SchemaLedgerSerializer(querySet.first()) logger.info(querySet.first().metadata) # only way messages gets sent is if there was an error serializing # or in the response process. messages.append("Error fetching records please check the logs.") except HTTPError as http_err: logger.error(http_err) return Response(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR) except Exception as err: logger.error(err) return Response(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR) else: return Response(serializer_class.data, status.HTTP_200_OK) else: logger.error(messages) return Response(errorMsg, status.HTTP_400_BAD_REQUEST) @api_view(['GET']) def transformationledger_requests(request): """Handles fetching and returning requested schema mappings""" # all requests must provide the source and target schema names and versions messages = [] source_name = request.GET.get('sourceName') target_name = request.GET.get('targetName') source_version = request.GET.get('sourceVersion') target_version = request.GET.get('targetVersion') errorMsg = { "message": messages } if not source_name: messages.append("Error; query parameter 'sourceName' is required") if not source_version: messages.append("Error; query parameter 'sourceVersion' is required") if not target_name: messages.append("Error; query parameter 'targetName' is required") if not target_version: messages.append("Error; query parameter 'targetVersion' is required") if len(messages) == 0: # look for a model with the provided name querySet = TransformationLedger.objects.all()\ .filter(source_schema_name=source_name, target_schema_name=target_name, source_schema_version=source_version, target_schema_version=target_version) if not querySet: messages.append("Error; no schema mapping found with the " "sourceName '" + source_name + "', targetName '" + target_name + "', sourceVersion '" + source_version + "', targetVersion '" + target_version + "'.") errorMsg = { "message": messages } return Response(errorMsg, status.HTTP_400_BAD_REQUEST) try: serializer_class = TransformationLedgerSerializer(querySet.first()) messages.append("Error fetching records please check the logs.") except HTTPError as http_err: logger.error(http_err) return Response(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR) except Exception as err: logger.error(err) return Response(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR) else: return Response(serializer_class.data, status.HTTP_200_OK) else: logger.error(messages) return Response(errorMsg, status.HTTP_400_BAD_REQUEST)
[ "logging.getLogger", "core.models.SchemaLedger.objects.all", "rest_framework.response.Response", "core.models.TransformationLedger.objects.all", "rest_framework.decorators.api_view" ]
[((368, 407), 'logging.getLogger', 'logging.getLogger', (['"""dict_config_logger"""'], {}), "('dict_config_logger')\n", (385, 407), False, 'import logging\n'), ((411, 428), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (419, 428), False, 'from rest_framework.decorators import api_view\n'), ((2702, 2719), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (2710, 2719), False, 'from rest_framework.decorators import api_view\n'), ((2651, 2698), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_400_BAD_REQUEST'], {}), '(errorMsg, status.HTTP_400_BAD_REQUEST)\n', (2659, 2698), False, 'from rest_framework.response import Response\n'), ((5053, 5100), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_400_BAD_REQUEST'], {}), '(errorMsg, status.HTTP_400_BAD_REQUEST)\n', (5061, 5100), False, 'from rest_framework.response import Response\n'), ((1198, 1245), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_400_BAD_REQUEST'], {}), '(errorMsg, status.HTTP_400_BAD_REQUEST)\n', (1206, 1245), False, 'from rest_framework.response import Response\n'), ((1837, 1884), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_400_BAD_REQUEST'], {}), '(errorMsg, status.HTTP_400_BAD_REQUEST)\n', (1845, 1884), False, 'from rest_framework.response import Response\n'), ((2543, 2594), 'rest_framework.response.Response', 'Response', (['serializer_class.data', 'status.HTTP_200_OK'], {}), '(serializer_class.data, status.HTTP_200_OK)\n', (2551, 2594), False, 'from rest_framework.response import Response\n'), ((4403, 4450), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_400_BAD_REQUEST'], {}), '(errorMsg, status.HTTP_400_BAD_REQUEST)\n', (4411, 4450), False, 'from rest_framework.response import Response\n'), ((4945, 4996), 'rest_framework.response.Response', 'Response', (['serializer_class.data', 'status.HTTP_200_OK'], {}), '(serializer_class.data, status.HTTP_200_OK)\n', (4953, 4996), False, 'from rest_framework.response import Response\n'), ((901, 927), 'core.models.SchemaLedger.objects.all', 'SchemaLedger.objects.all', ([], {}), '()\n', (925, 927), False, 'from core.models import SchemaLedger, TransformationLedger\n'), ((2312, 2369), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_500_INTERNAL_SERVER_ERROR'], {}), '(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR)\n', (2320, 2369), False, 'from rest_framework.response import Response\n'), ((2452, 2509), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_500_INTERNAL_SERVER_ERROR'], {}), '(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR)\n', (2460, 2509), False, 'from rest_framework.response import Response\n'), ((3693, 3727), 'core.models.TransformationLedger.objects.all', 'TransformationLedger.objects.all', ([], {}), '()\n', (3725, 3727), False, 'from core.models import SchemaLedger, TransformationLedger\n'), ((4714, 4771), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_500_INTERNAL_SERVER_ERROR'], {}), '(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR)\n', (4722, 4771), False, 'from rest_framework.response import Response\n'), ((4854, 4911), 'rest_framework.response.Response', 'Response', (['errorMsg', 'status.HTTP_500_INTERNAL_SERVER_ERROR'], {}), '(errorMsg, status.HTTP_500_INTERNAL_SERVER_ERROR)\n', (4862, 4911), False, 'from rest_framework.response import Response\n')]
# Copyright (C) 2016 The Android Open Source Project # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. '''This file contains utility functions used by both the test suite and the single test executor.''' from __future__ import absolute_import import os import importlib import sys def load_py_module(path): '''Load a python file from disk. Args: path: String path to python file. Returns: python module if success, None otherwise. ''' assert isinstance(path, str) try: if not os.path.exists(path): print('Path does not exist: ' + path) return None path = os.path.abspath(path) module_dir, module_file = os.path.split(path) module_name, _ = os.path.splitext(module_file) # adjust sys.path, runtime counterpart of PYTHONPATH, to temporarily # include the folder containing the user configuration module sys.path.append(module_dir) module_obj = importlib.import_module(module_name) sys.path.pop(0) return module_obj except ImportError as err: print(str(err)) print("Looking in directory ") print(module_dir) return None
[ "os.path.exists", "importlib.import_module", "os.path.splitext", "os.path.split", "sys.path.pop", "os.path.abspath", "sys.path.append" ]
[((1139, 1160), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (1154, 1160), False, 'import os\n'), ((1195, 1214), 'os.path.split', 'os.path.split', (['path'], {}), '(path)\n', (1208, 1214), False, 'import os\n'), ((1240, 1269), 'os.path.splitext', 'os.path.splitext', (['module_file'], {}), '(module_file)\n', (1256, 1269), False, 'import os\n'), ((1425, 1452), 'sys.path.append', 'sys.path.append', (['module_dir'], {}), '(module_dir)\n', (1440, 1452), False, 'import sys\n'), ((1474, 1510), 'importlib.import_module', 'importlib.import_module', (['module_name'], {}), '(module_name)\n', (1497, 1510), False, 'import importlib\n'), ((1519, 1534), 'sys.path.pop', 'sys.path.pop', (['(0)'], {}), '(0)\n', (1531, 1534), False, 'import sys\n'), ((1028, 1048), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1042, 1048), False, 'import os\n')]
import logging from dataclasses import dataclass, replace from typing import Tuple, Any, Optional import numpy as np from numpy import ndarray logger = logging.getLogger(__name__) @dataclass class COOData: indices: ndarray data: ndarray shape: Tuple[int, ...] local_shape: Optional[Tuple[int, ...]] @staticmethod def _assemble_scipy_csr( indices: ndarray, data: ndarray, shape: Tuple[int, ...], local_shape: Optional[Tuple[int, ...]] ): from scipy.sparse import coo_matrix K = coo_matrix((data, (indices[0], indices[1])), shape=shape) K.eliminate_zeros() return K.tocsr() def __radd__(self, other): return self.__add__(other) def tolocal(self, basis=None): """Return an array of local finite element matrices. Parameters ---------- basis Optionally, sum local facet matrices to form elemental matrices if the corresponding :class:`skfem.assembly.FacetBasis` is provided. """ if self.local_shape is None: raise NotImplementedError("Cannot build local matrices if " "local_shape is not specified.") assert len(self.local_shape) == 2 local = np.moveaxis(self.data.reshape(self.local_shape + (-1,), order='C'), -1, 0) if basis is not None: out = np.zeros((basis.mesh.nfacets,) + local.shape[1:]) out[basis.find] = local local = np.sum(out[basis.mesh.t2f], axis=0) return local def fromlocal(self, local): """Reverse of :meth:`COOData.tolocal`.""" return replace( self, data=np.moveaxis(local, 0, -1).flatten('C'), ) def inverse(self): """Invert each elemental matrix.""" return self.fromlocal(np.linalg.inv(self.tolocal())) def __add__(self, other): if isinstance(other, int): return self return replace( self, indices=np.hstack((self.indices, other.indices)), data=np.hstack((self.data, other.data)), shape=tuple(max(self.shape[i], other.shape[i]) for i in range(len(self.shape))), local_shape=None, ) def tocsr(self): """Return a sparse SciPy CSR matrix.""" return self._assemble_scipy_csr( self.indices, self.data, self.shape, self.local_shape, ) def toarray(self) -> ndarray: """Return a dense numpy array.""" if len(self.shape) == 1: from scipy.sparse import coo_matrix return coo_matrix( (self.data, (self.indices[0], np.zeros_like(self.indices[0]))), shape=self.shape + (1,), ).toarray().T[0] elif len(self.shape) == 2: return self.tocsr().toarray() # slow implementation for testing N-tensors out = np.zeros(self.shape) for itr in range(self.indices.shape[1]): out[tuple(self.indices[:, itr])] += self.data[itr] return out def astuple(self): return self.indices, self.data, self.shape def todefault(self) -> Any: """Return the default data type. Scalar for 0-tensor, numpy array for 1-tensor, scipy csr matrix for 2-tensor, self otherwise. """ if len(self.shape) == 0: return np.sum(self.data, axis=0) elif len(self.shape) == 1: return self.toarray() elif len(self.shape) == 2: return self.tocsr() return self def dot(self, x, D=None): """Matrix-vector product. Parameters ---------- x The vector to multiply with. D Optionally, keep some DOFs unchanged. An array of DOF indices. """ y = self.data * x[self.indices[1]] z = np.zeros_like(x) np.add.at(z, self.indices[0], y) if D is not None: z[D] = x[D] return z def solve(self, b, D=None, tol=1e-10, maxiters=500): """Solve linear system using the conjugate gradient method. Parameters ---------- b The right-hand side vector. D An optional array of Dirichlet DOF indices for which the fixed value is taken from ``b``. tol A tolerance for terminating the conjugate gradient method. maxiters The maximum number of iterations before forced termination. """ x = b r = b - self.dot(x, D=D) p = r rsold = np.dot(r, r) for k in range(maxiters): Ap = self.dot(p, D=D) alpha = rsold / np.dot(p, Ap) x = x + alpha * p r = r - alpha * Ap rsnew = np.dot(r, r) if np.sqrt(rsnew) < tol: break p = r + (rsnew / rsold) * p rsold = rsnew if k == maxiters: logger.warning("Iterative solver did not converge.") return x
[ "logging.getLogger", "numpy.sqrt", "numpy.hstack", "numpy.sum", "numpy.zeros", "numpy.dot", "numpy.moveaxis", "scipy.sparse.coo_matrix", "numpy.add.at", "numpy.zeros_like" ]
[((156, 183), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (173, 183), False, 'import logging\n'), ((577, 634), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(data, (indices[0], indices[1]))'], {'shape': 'shape'}), '((data, (indices[0], indices[1])), shape=shape)\n', (587, 634), False, 'from scipy.sparse import coo_matrix\n'), ((3085, 3105), 'numpy.zeros', 'np.zeros', (['self.shape'], {}), '(self.shape)\n', (3093, 3105), True, 'import numpy as np\n'), ((4053, 4069), 'numpy.zeros_like', 'np.zeros_like', (['x'], {}), '(x)\n', (4066, 4069), True, 'import numpy as np\n'), ((4078, 4110), 'numpy.add.at', 'np.add.at', (['z', 'self.indices[0]', 'y'], {}), '(z, self.indices[0], y)\n', (4087, 4110), True, 'import numpy as np\n'), ((4779, 4791), 'numpy.dot', 'np.dot', (['r', 'r'], {}), '(r, r)\n', (4785, 4791), True, 'import numpy as np\n'), ((1483, 1532), 'numpy.zeros', 'np.zeros', (['((basis.mesh.nfacets,) + local.shape[1:])'], {}), '((basis.mesh.nfacets,) + local.shape[1:])\n', (1491, 1532), True, 'import numpy as np\n'), ((1589, 1624), 'numpy.sum', 'np.sum', (['out[basis.mesh.t2f]'], {'axis': '(0)'}), '(out[basis.mesh.t2f], axis=0)\n', (1595, 1624), True, 'import numpy as np\n'), ((3562, 3587), 'numpy.sum', 'np.sum', (['self.data'], {'axis': '(0)'}), '(self.data, axis=0)\n', (3568, 3587), True, 'import numpy as np\n'), ((4983, 4995), 'numpy.dot', 'np.dot', (['r', 'r'], {}), '(r, r)\n', (4989, 4995), True, 'import numpy as np\n'), ((2122, 2162), 'numpy.hstack', 'np.hstack', (['(self.indices, other.indices)'], {}), '((self.indices, other.indices))\n', (2131, 2162), True, 'import numpy as np\n'), ((2181, 2215), 'numpy.hstack', 'np.hstack', (['(self.data, other.data)'], {}), '((self.data, other.data))\n', (2190, 2215), True, 'import numpy as np\n'), ((4888, 4901), 'numpy.dot', 'np.dot', (['p', 'Ap'], {}), '(p, Ap)\n', (4894, 4901), True, 'import numpy as np\n'), ((5011, 5025), 'numpy.sqrt', 'np.sqrt', (['rsnew'], {}), '(rsnew)\n', (5018, 5025), True, 'import numpy as np\n'), ((1789, 1814), 'numpy.moveaxis', 'np.moveaxis', (['local', '(0)', '(-1)'], {}), '(local, 0, -1)\n', (1800, 1814), True, 'import numpy as np\n'), ((2837, 2867), 'numpy.zeros_like', 'np.zeros_like', (['self.indices[0]'], {}), '(self.indices[0])\n', (2850, 2867), True, 'import numpy as np\n')]
#!/usr/bin/env python # coding: utf-8 # # Pneumonia Diagnosis # The task is to predict if a person has pneumonia or not using Chest X-Ray. # # We will train a Convolutional Neural Network (CNN) that is able to detect whether a patient has pneumonia, both bacterial and viral, based on an X-ray image of their chest. We need to classify a patient as either having pneumonia or not having pneumonia. This is a binary classification problem. # **Credits**: Kaggle (https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia) # First, we will create a CNN from scratch and check the test accuracy. And then, we will use transfer learning (using a DenseNet-169 pre-trained model) to create a CNN that will greatly improve the test accuracy. # In[1]: get_ipython().system(' wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate \'https://docs.google.com/uc?export=download&id=1li6ctqAvGFgIGMSt-mYrLoM_tbYkzqdO\' -O- | sed -rn \'s/.*confirm=([0-9A-Za-z_]+).*/\\1\\n/p\')&id=1li6ctqAvGFgIGMSt-mYrLoM_tbYkzqdO" -O chest_xray.zip && rm -rf /tmp/cookies.txt') # In[2]: get_ipython().system('unzip -qq chest_xray.zip') # In[3]: # importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from collections import Counter from datetime import datetime import torch import torch.nn.functional as F from torchvision import transforms, datasets, models from torch import nn, optim # In[4]: # specify the data directory path data_dir = './chest_xray' train_dir = data_dir + '/train' valid_dir = data_dir + '/val' test_dir = data_dir + '/test' # In[5]: # check if CUDA support is available use_cuda = torch.cuda.is_available() print('Cuda support available? - {}'.format(use_cuda)) # In[6]: # normalization supported by transfer learning models normalize = transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # transform the data train_transforms = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ]) valid_transforms = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize ]) test_transforms = transforms.Compose([ transforms.Resize(size=(224, 224)), transforms.ToTensor(), normalize ]) # I have applied the RandomResizedCrop and RandomHorizontalFlip to the training data. This will allow me to have more images using image augmentation techniques. It will generate more resized and flipped images. It will improve the performance of model and also helps to prevent overfitting of the data. For validation data, I have only applied the Resize and center crop transformations. And, for test data, I have only applied image resize. # In[7]: # specify the image folders train_data = datasets.ImageFolder(train_dir, transform=train_transforms) valid_data = datasets.ImageFolder(valid_dir, transform=valid_transforms) test_data = datasets.ImageFolder(test_dir, transform=test_transforms) # In[8]: batch_size = 32 # samples per batch num_workers = 0 # number of subprocesses # data loaders trainloader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=num_workers) validloader = torch.utils.data.DataLoader(valid_data, batch_size=batch_size, shuffle=True, num_workers=num_workers) testloader = torch.utils.data.DataLoader(test_data, batch_size=batch_size, num_workers=num_workers) # In[48]: # select a batch from training data images, labels = next(iter(trainloader)) # In[10]: # shape of an image images[0].shape # rgb image of 244 x 244 # In[11]: # output classes print(train_data.classes) print(train_data.class_to_idx) # We will now have a look at the distribution of samples in the training, validation and testing dataset. # In[12]: # distribution of train dataset cnt = Counter() for target in train_data.targets: cnt[target] += 1 normal_count = cnt[0] pneumonia_count = cnt[1] sns.barplot(x=['Pneumonia Cases', 'Normal Cases'], y=[pneumonia_count, normal_count], palette='magma') plt.title('Train Dataset Label Count') plt.show() pneumonia_count, normal_count # In[13]: # distribution of validation dataset cnt = Counter() for target in valid_data.targets: cnt[target] += 1 normal_count = cnt[0] pneumonia_count = cnt[1] sns.barplot(x=['Pneumonia Cases', 'Normal Cases'], y=[pneumonia_count, normal_count], palette='magma') plt.title('Validation Dataset Label Count') plt.show() pneumonia_count, normal_count # In[14]: # distribution of test dataset cnt = Counter() for target in test_data.targets: cnt[target] += 1 normal_count = cnt[0] pneumonia_count = cnt[1] sns.barplot(x=['Pneumonia Cases', 'Normal Cases'], y=[pneumonia_count, normal_count], palette='magma') plt.title('Test Dataset Label Count') plt.show() pneumonia_count, normal_count # We will have a look at the normal and pneumonia images of chest x-rays. # In[51]: num_classes = 2 # total classes of diagnosis (Normal, Pneumonia) classes = ['NORMAL', 'PNEUMONIA'] # In[16]: # un-normalize and display an image def imshow(inp): """Imshow for Tensor.""" inp = inp.numpy().transpose((1, 2, 0)) mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) inp = std * inp + mean inp = np.clip(inp, 0, 1) plt.imshow(inp) # In[53]: # plot the images in the batch, along with predicted and true labels fig = plt.figure(figsize=(25, 8)) for idx in np.arange(10): ax = fig.add_subplot(2, 10/2, idx+1, xticks=[], yticks=[]) imshow(images.cpu()[idx]) ax.set_title(classes[labels[idx]]) # Let's create a CNN from scratch and check the test accuracy. Then we will try to improve the accuracy using transfer learning. # In[18]: # CNN architecture class Net(nn.Module): def __init__(self): super(Net, self).__init__() ## cnn layers self.conv1 = nn.Conv2d(3, 32, 3, stride=2, padding=1) self.conv2 = nn.Conv2d(32, 64, 3, stride=2, padding=1) self.conv3 = nn.Conv2d(64, 128, 3, padding=1) # max-pool self.pool = nn.MaxPool2d(2, 2) # fully-connected self.fc1 = nn.Linear(7 * 7 * 128, 512) self.fc2 = nn.Linear(512, 512) self.fc3 = nn.Linear(512, num_classes) # drop-out self.dropout = nn.Dropout(0.3) def forward(self, x): x = F.relu(self.conv1(x)) x = self.pool(x) x = F.relu(self.conv2(x)) x = self.pool(x) x = F.relu(self.conv3(x)) x = self.pool(x) # flatten the images with batch x = x.view(-1, 7 * 7 * 128) x = self.dropout(x) x = F.relu(self.fc1(x)) x = self.dropout(x) x = F.relu(self.fc2(x)) x = self.dropout(x) x = self.fc3(x) return x # In[19]: # instantiate the CNN model_init = Net() print(model_init) # move tensors to GPU if CUDA is available if use_cuda: model_init.cuda() # The first convolution layer will have a kernel size of 3 and stride 2, this will decrease the input image size by half. The second convolution layer will also have a kernel size of 3 and stride 2, which will decrease the input image size by half. The third convolution layer will have a kernel size of 3. # # I have applied the max-pooling of stride 2 after each convolution layer to reduce the image size by half. I have also applied Relu activation for each of the convolution layers. # # Then, I have flattened the inputs and applied a dropout layer with probability as 0.3. Three fully connected layers are applied with Relu activation and dropout 0.3 to produce the final output that will predict the classes of a chest x-ray. # In[20]: # define loss function criteria and optimizer criterion_init = nn.CrossEntropyLoss() optimizer_init = optim.Adam(model_init.parameters(), lr=0.03) # Let's define a function to train the model and save the final model parameters as 'model_init.pt' # In[21]: def train(n_epochs, train_loader, valid_loader, model, optimizer, criterion, use_cuda, save_path): valid_loss_min = np.Inf # initialize inital loss to infinity train_loss_list = [] valid_loss_list = [] for epoch in range(1, n_epochs+1): epoch_start = datetime.utcnow() # initialize variables to monitor training and validation loss train_loss = 0.0 valid_loss = 0.0 # train the model model.train() for data, target in train_loader: # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() # initialize weights to zero optimizer.zero_grad() # predict the output output = model(data) # calculate loss loss = criterion(output, target) # backpropogation loss.backward() # update gradients optimizer.step() train_loss += loss.item() * data.size(0) # validate the model model.eval() for data, target in valid_loader: if use_cuda: data, target = data.cuda(), target.cuda() output = model(data) loss = criterion(output, target) valid_loss = loss.item() * data.size(0) # calculate average losses train_loss = train_loss/len(train_loader.sampler) valid_loss = valid_loss/len(valid_loader.sampler) train_loss_list.append(train_loss) valid_loss_list.append(valid_loss) print('Epoch training time: {}'.format(datetime.utcnow() - epoch_start)) print('Epoch: {} \tTraining Loss: {:.6f} \tValidation Loss: {:.6f}'.format( epoch, train_loss, valid_loss)) # save the model if validation loss has decreased if valid_loss < valid_loss_min: torch.save(model.state_dict(), save_path) print('Model saved!\t\tValidation loss decreased ({:.6f} -> {:.6f})'.format( valid_loss_min, valid_loss)) valid_loss_min = valid_loss # plot the training and validation loss plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(range(len(train_loss_list)), train_loss_list, label='Training Loss') plt.plot(range(len(valid_loss_list)), valid_loss_list, label='Validation Loss') plt.legend(loc='upper right') plt.xlabel('Number of epochs') plt.ylabel('Accuracy') plt.title('Training and Validation Loss') # return the trained model return model # In[22]: # train the model start = datetime.utcnow() model_init = train(10, trainloader, validloader, model_init, optimizer_init, criterion_init, use_cuda, 'model_init.pt') print("model_init training time: {}".format(datetime.utcnow() - start)) # In[23]: # load the model that got the best validation accuracy model_init.load_state_dict(torch.load('model_init.pt')) # In[24]: def test(test_loader, model, criterion, use_cuda): test_loss = 0. correct = 0. total = 0. for data, target in test_loader: # move to GPU if use_cuda: data, target = data.cuda(), target.cuda() # predict output output = model(data) # calculate the loss loss = criterion(output, target) # update average test loss test_loss += loss.item() * data.size(0) # convert output probabilities to predicted class pred = output.data.max(1, keepdim=True)[1] # compare predictions to true label correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy()) total += data.size(0) print('Test Loss: {:.6f}\n'.format(test_loss/len(testloader.sampler))) print('\nTest Accuracy: %2d%% (%2d/%2d)' % (100. * correct / total, correct, total)) # In[25]: # test the model test(testloader, model_init, criterion_init, use_cuda) # In[26]: # visualize the confusion matrix def plot_confusion_matrix(C): plt.figure(figsize=(20, 4)) labels = [0, 1] cmap=sns.light_palette("blue") plt.subplot(1, 3, 1) sns.heatmap(C, annot=True, cmap=cmap, fmt=".0f", xticklabels=labels, yticklabels=labels) plt.xlabel('Predicted Class') plt.ylabel('Original Class') plt.title("Confusion matrix") # In[58]: # generate confustion matrix confusion_matrix = torch.zeros(num_classes, num_classes) with torch.no_grad(): for i, (inputs, labels) in enumerate(testloader): if use_cuda: inputs = inputs.cuda() labels = labels.cuda() outputs = model_init(inputs) _, preds = torch.max(outputs, 1) for t, p in zip(labels.view(-1), preds.view(-1)): confusion_matrix[t.long(), p.long()] += 1 print(confusion_matrix) # In[59]: # get the per-class accuracy print(confusion_matrix.diag()/confusion_matrix.sum(1)) # In[60]: # plot the confustion matrix plot_confusion_matrix(confusion_matrix) # Now, we will use transfer learning to create a CNN that can diagnose pneumonia from images. # # We will use DenseNet-169 model as it has good performance on Image classification. The main idea of this model is called "identity shortcut connection" that skips one or more layers. This allows us to prevent overfitting while training. I have eventually added a final fully connected layer that will output the probabilities of 2 classes of normal or pneumonia. # In[30]: # download the pretraibed DenseNet-169 model model = models.densenet169(pretrained=True) # In[31]: # freeze the model parameters for param in model.parameters(): param.requires_grad = False # In[32]: # check the number of input and output features model.classifier # We will keep the number of input features same, however we will change the number of output features to 2 as we want to predict only two classes i.e. Normal and Pneumonia. # In[33]: # update the out_features for model model.classifier = nn.Linear(model.classifier.in_features, num_classes) # In[34]: fc_parameters = model.classifier.parameters() # In[35]: for param in fc_parameters: param.requires_grad = True # In[36]: # move model to gpu if use_cuda: model = model.cuda() # In[37]: # DenseNet-169 model architecture model # In[38]: # define the loss function and optimizer criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.classifier.parameters(), lr=0.001) # We will use the same function to train the model and save the final model parameters as 'model.pt' # In[39]: # train the model start = datetime.utcnow() model = train(30, trainloader, validloader, model, optimizer, criterion, use_cuda, 'model.pt') print("model training time: {}".format(datetime.utcnow() - start)) # In[40]: # load the model that got the best validation accuracy model.load_state_dict(torch.load('model.pt')) # In[41]: # test the model test(testloader, model, criterion, use_cuda) # Let's try to visualize the predict the final output of few a few xray images. # In[42]: dataiter = iter(testloader) images, labels = dataiter.next() images.numpy() if use_cuda: images = images.cuda() # get sample outputs output = model(images) # convert output probabilities to predicted class _, preds_tensor = torch.max(output, 1) if use_cuda: preds = np.squeeze(preds_tensor.cpu().numpy()) else: preds = np.squeeze(preds_tensor.numpy()) # plot the images in the batch, along with predicted and true labels fig = plt.figure(figsize=(25, 8)) for idx in np.arange(10): ax = fig.add_subplot(2, 10/2, idx+1, xticks=[], yticks=[]) imshow(images.cpu()[idx]) ax.set_title("{} ({})".format(classes[preds[idx]], classes[labels[idx]]), color=("green" if preds[idx] == labels[idx].item() else "red")) # In[61]: # generate confustion matrix confusion_matrix = torch.zeros(num_classes, num_classes) with torch.no_grad(): for i, (inputs, labels) in enumerate(testloader): if use_cuda: inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) _, preds = torch.max(outputs, 1) for t, p in zip(labels.view(-1), preds.view(-1)): confusion_matrix[t.long(), p.long()] += 1 print(confusion_matrix) # In[62]: # get the per-class accuracy print(confusion_matrix.diag()/confusion_matrix.sum(1)) # In[63]: # plot the confusion matrix plot_confusion_matrix(confusion_matrix) # In[43]:
[ "numpy.clip", "torch.nn.Dropout", "torch.nn.CrossEntropyLoss", "matplotlib.pyplot.ylabel", "torch.max", "numpy.array", "torch.cuda.is_available", "numpy.arange", "matplotlib.pyplot.imshow", "matplotlib.pyplot.xlabel", "torchvision.datasets.ImageFolder", "torchvision.transforms.ToTensor", "torchvision.transforms.RandomResizedCrop", "seaborn.light_palette", "torchvision.transforms.RandomHorizontalFlip", "seaborn.heatmap", "torchvision.transforms.Normalize", "torchvision.transforms.Resize", "matplotlib.pyplot.title", "matplotlib.pyplot.legend", "matplotlib.pyplot.show", "torchvision.transforms.CenterCrop", "datetime.datetime.utcnow", "torch.load", "torch.nn.Conv2d", "collections.Counter", "matplotlib.pyplot.figure", "torch.nn.MaxPool2d", "torchvision.models.densenet169", "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.no_grad", "seaborn.barplot", "matplotlib.pyplot.subplot", "torch.zeros" ]
[((1791, 1816), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1814, 1816), False, 'import torch\n'), ((1951, 2017), 'torchvision.transforms.Normalize', 'transforms.Normalize', (['[0.485, 0.456, 0.406]', '[0.229, 0.224, 0.225]'], {}), '([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])\n', (1971, 2017), False, 'from torchvision import transforms, datasets, models\n'), ((3001, 3060), 'torchvision.datasets.ImageFolder', 'datasets.ImageFolder', (['train_dir'], {'transform': 'train_transforms'}), '(train_dir, transform=train_transforms)\n', (3021, 3060), False, 'from torchvision import transforms, datasets, models\n'), ((3074, 3133), 'torchvision.datasets.ImageFolder', 'datasets.ImageFolder', (['valid_dir'], {'transform': 'valid_transforms'}), '(valid_dir, transform=valid_transforms)\n', (3094, 3133), False, 'from torchvision import transforms, datasets, models\n'), ((3146, 3203), 'torchvision.datasets.ImageFolder', 'datasets.ImageFolder', (['test_dir'], {'transform': 'test_transforms'}), '(test_dir, transform=test_transforms)\n', (3166, 3203), False, 'from torchvision import transforms, datasets, models\n'), ((3326, 3431), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['train_data'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': 'num_workers'}), '(train_data, batch_size=batch_size, shuffle=True,\n num_workers=num_workers)\n', (3353, 3431), False, 'import torch\n'), ((3485, 3590), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['valid_data'], {'batch_size': 'batch_size', 'shuffle': '(True)', 'num_workers': 'num_workers'}), '(valid_data, batch_size=batch_size, shuffle=True,\n num_workers=num_workers)\n', (3512, 3590), False, 'import torch\n'), ((3643, 3734), 'torch.utils.data.DataLoader', 'torch.utils.data.DataLoader', (['test_data'], {'batch_size': 'batch_size', 'num_workers': 'num_workers'}), '(test_data, batch_size=batch_size, num_workers=\n num_workers)\n', (3670, 3734), False, 'import torch\n'), ((4186, 4195), 'collections.Counter', 'Counter', ([], {}), '()\n', (4193, 4195), False, 'from collections import Counter\n'), ((4300, 4406), 'seaborn.barplot', 'sns.barplot', ([], {'x': "['Pneumonia Cases', 'Normal Cases']", 'y': '[pneumonia_count, normal_count]', 'palette': '"""magma"""'}), "(x=['Pneumonia Cases', 'Normal Cases'], y=[pneumonia_count,\n normal_count], palette='magma')\n", (4311, 4406), True, 'import seaborn as sns\n'), ((4416, 4454), 'matplotlib.pyplot.title', 'plt.title', (['"""Train Dataset Label Count"""'], {}), "('Train Dataset Label Count')\n", (4425, 4454), True, 'import matplotlib.pyplot as plt\n'), ((4455, 4465), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4463, 4465), True, 'import matplotlib.pyplot as plt\n'), ((4553, 4562), 'collections.Counter', 'Counter', ([], {}), '()\n', (4560, 4562), False, 'from collections import Counter\n'), ((4667, 4773), 'seaborn.barplot', 'sns.barplot', ([], {'x': "['Pneumonia Cases', 'Normal Cases']", 'y': '[pneumonia_count, normal_count]', 'palette': '"""magma"""'}), "(x=['Pneumonia Cases', 'Normal Cases'], y=[pneumonia_count,\n normal_count], palette='magma')\n", (4678, 4773), True, 'import seaborn as sns\n'), ((4783, 4826), 'matplotlib.pyplot.title', 'plt.title', (['"""Validation Dataset Label Count"""'], {}), "('Validation Dataset Label Count')\n", (4792, 4826), True, 'import matplotlib.pyplot as plt\n'), ((4827, 4837), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4835, 4837), True, 'import matplotlib.pyplot as plt\n'), ((4919, 4928), 'collections.Counter', 'Counter', ([], {}), '()\n', (4926, 4928), False, 'from collections import Counter\n'), ((5032, 5138), 'seaborn.barplot', 'sns.barplot', ([], {'x': "['Pneumonia Cases', 'Normal Cases']", 'y': '[pneumonia_count, normal_count]', 'palette': '"""magma"""'}), "(x=['Pneumonia Cases', 'Normal Cases'], y=[pneumonia_count,\n normal_count], palette='magma')\n", (5043, 5138), True, 'import seaborn as sns\n'), ((5148, 5185), 'matplotlib.pyplot.title', 'plt.title', (['"""Test Dataset Label Count"""'], {}), "('Test Dataset Label Count')\n", (5157, 5185), True, 'import matplotlib.pyplot as plt\n'), ((5186, 5196), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (5194, 5196), True, 'import matplotlib.pyplot as plt\n'), ((5804, 5831), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(25, 8)'}), '(figsize=(25, 8))\n', (5814, 5831), True, 'import matplotlib.pyplot as plt\n'), ((5843, 5856), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (5852, 5856), True, 'import numpy as np\n'), ((8203, 8224), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (8222, 8224), False, 'from torch import nn, optim\n'), ((11065, 11082), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (11080, 11082), False, 'from datetime import datetime\n'), ((12875, 12912), 'torch.zeros', 'torch.zeros', (['num_classes', 'num_classes'], {}), '(num_classes, num_classes)\n', (12886, 12912), False, 'import torch\n'), ((14010, 14045), 'torchvision.models.densenet169', 'models.densenet169', ([], {'pretrained': '(True)'}), '(pretrained=True)\n', (14028, 14045), False, 'from torchvision import transforms, datasets, models\n'), ((14478, 14530), 'torch.nn.Linear', 'nn.Linear', (['model.classifier.in_features', 'num_classes'], {}), '(model.classifier.in_features, num_classes)\n', (14487, 14530), False, 'from torch import nn, optim\n'), ((14857, 14878), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (14876, 14878), False, 'from torch import nn, optim\n'), ((15085, 15102), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (15100, 15102), False, 'from datetime import datetime\n'), ((15801, 15821), 'torch.max', 'torch.max', (['output', '(1)'], {}), '(output, 1)\n', (15810, 15821), False, 'import torch\n'), ((16014, 16041), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(25, 8)'}), '(figsize=(25, 8))\n', (16024, 16041), True, 'import matplotlib.pyplot as plt\n'), ((16053, 16066), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (16062, 16066), True, 'import numpy as np\n'), ((16383, 16420), 'torch.zeros', 'torch.zeros', (['num_classes', 'num_classes'], {}), '(num_classes, num_classes)\n', (16394, 16420), False, 'import torch\n'), ((5565, 5596), 'numpy.array', 'np.array', (['[0.485, 0.456, 0.406]'], {}), '([0.485, 0.456, 0.406])\n', (5573, 5596), True, 'import numpy as np\n'), ((5607, 5638), 'numpy.array', 'np.array', (['[0.229, 0.224, 0.225]'], {}), '([0.229, 0.224, 0.225])\n', (5615, 5638), True, 'import numpy as np\n'), ((5676, 5694), 'numpy.clip', 'np.clip', (['inp', '(0)', '(1)'], {}), '(inp, 0, 1)\n', (5683, 5694), True, 'import numpy as np\n'), ((5699, 5714), 'matplotlib.pyplot.imshow', 'plt.imshow', (['inp'], {}), '(inp)\n', (5709, 5714), True, 'import matplotlib.pyplot as plt\n'), ((10582, 10608), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (10592, 10608), True, 'import matplotlib.pyplot as plt\n'), ((10613, 10633), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (10624, 10633), True, 'import matplotlib.pyplot as plt\n'), ((10838, 10867), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (10848, 10867), True, 'import matplotlib.pyplot as plt\n'), ((10872, 10902), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of epochs"""'], {}), "('Number of epochs')\n", (10882, 10902), True, 'import matplotlib.pyplot as plt\n'), ((10907, 10929), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Accuracy"""'], {}), "('Accuracy')\n", (10917, 10929), True, 'import matplotlib.pyplot as plt\n'), ((10934, 10975), 'matplotlib.pyplot.title', 'plt.title', (['"""Training and Validation Loss"""'], {}), "('Training and Validation Loss')\n", (10943, 10975), True, 'import matplotlib.pyplot as plt\n'), ((11390, 11417), 'torch.load', 'torch.load', (['"""model_init.pt"""'], {}), "('model_init.pt')\n", (11400, 11417), False, 'import torch\n'), ((12490, 12517), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(20, 4)'}), '(figsize=(20, 4))\n', (12500, 12517), True, 'import matplotlib.pyplot as plt\n'), ((12551, 12576), 'seaborn.light_palette', 'sns.light_palette', (['"""blue"""'], {}), "('blue')\n", (12568, 12576), True, 'import seaborn as sns\n'), ((12581, 12601), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(3)', '(1)'], {}), '(1, 3, 1)\n', (12592, 12601), True, 'import matplotlib.pyplot as plt\n'), ((12606, 12698), 'seaborn.heatmap', 'sns.heatmap', (['C'], {'annot': '(True)', 'cmap': 'cmap', 'fmt': '""".0f"""', 'xticklabels': 'labels', 'yticklabels': 'labels'}), "(C, annot=True, cmap=cmap, fmt='.0f', xticklabels=labels,\n yticklabels=labels)\n", (12617, 12698), True, 'import seaborn as sns\n'), ((12716, 12745), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Predicted Class"""'], {}), "('Predicted Class')\n", (12726, 12745), True, 'import matplotlib.pyplot as plt\n'), ((12750, 12778), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Original Class"""'], {}), "('Original Class')\n", (12760, 12778), True, 'import matplotlib.pyplot as plt\n'), ((12783, 12812), 'matplotlib.pyplot.title', 'plt.title', (['"""Confusion matrix"""'], {}), "('Confusion matrix')\n", (12792, 12812), True, 'import matplotlib.pyplot as plt\n'), ((12918, 12933), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12931, 12933), False, 'import torch\n'), ((15376, 15398), 'torch.load', 'torch.load', (['"""model.pt"""'], {}), "('model.pt')\n", (15386, 15398), False, 'import torch\n'), ((16426, 16441), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (16439, 16441), False, 'import torch\n'), ((2118, 2151), 'torchvision.transforms.RandomResizedCrop', 'transforms.RandomResizedCrop', (['(224)'], {}), '(224)\n', (2146, 2151), False, 'from torchvision import transforms, datasets, models\n'), ((2157, 2190), 'torchvision.transforms.RandomHorizontalFlip', 'transforms.RandomHorizontalFlip', ([], {}), '()\n', (2188, 2190), False, 'from torchvision import transforms, datasets, models\n'), ((2196, 2217), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2215, 2217), False, 'from torchvision import transforms, datasets, models\n'), ((2280, 2302), 'torchvision.transforms.Resize', 'transforms.Resize', (['(256)'], {}), '(256)\n', (2297, 2302), False, 'from torchvision import transforms, datasets, models\n'), ((2308, 2334), 'torchvision.transforms.CenterCrop', 'transforms.CenterCrop', (['(224)'], {}), '(224)\n', (2329, 2334), False, 'from torchvision import transforms, datasets, models\n'), ((2340, 2361), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2359, 2361), False, 'from torchvision import transforms, datasets, models\n'), ((2423, 2457), 'torchvision.transforms.Resize', 'transforms.Resize', ([], {'size': '(224, 224)'}), '(size=(224, 224))\n', (2440, 2457), False, 'from torchvision import transforms, datasets, models\n'), ((2463, 2484), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (2482, 2484), False, 'from torchvision import transforms, datasets, models\n'), ((6280, 6320), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(32)', '(3)'], {'stride': '(2)', 'padding': '(1)'}), '(3, 32, 3, stride=2, padding=1)\n', (6289, 6320), False, 'from torch import nn, optim\n'), ((6342, 6383), 'torch.nn.Conv2d', 'nn.Conv2d', (['(32)', '(64)', '(3)'], {'stride': '(2)', 'padding': '(1)'}), '(32, 64, 3, stride=2, padding=1)\n', (6351, 6383), False, 'from torch import nn, optim\n'), ((6405, 6437), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(128)', '(3)'], {'padding': '(1)'}), '(64, 128, 3, padding=1)\n', (6414, 6437), False, 'from torch import nn, optim\n'), ((6478, 6496), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(2)', '(2)'], {}), '(2, 2)\n', (6490, 6496), False, 'from torch import nn, optim\n'), ((6551, 6578), 'torch.nn.Linear', 'nn.Linear', (['(7 * 7 * 128)', '(512)'], {}), '(7 * 7 * 128, 512)\n', (6560, 6578), False, 'from torch import nn, optim\n'), ((6598, 6617), 'torch.nn.Linear', 'nn.Linear', (['(512)', '(512)'], {}), '(512, 512)\n', (6607, 6617), False, 'from torch import nn, optim\n'), ((6638, 6665), 'torch.nn.Linear', 'nn.Linear', (['(512)', 'num_classes'], {}), '(512, num_classes)\n', (6647, 6665), False, 'from torch import nn, optim\n'), ((6718, 6733), 'torch.nn.Dropout', 'nn.Dropout', (['(0.3)'], {}), '(0.3)\n', (6728, 6733), False, 'from torch import nn, optim\n'), ((8691, 8708), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (8706, 8708), False, 'from datetime import datetime\n'), ((13136, 13157), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (13145, 13157), False, 'import torch\n'), ((16639, 16660), 'torch.max', 'torch.max', (['outputs', '(1)'], {}), '(outputs, 1)\n', (16648, 16660), False, 'import torch\n'), ((11266, 11283), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (11281, 11283), False, 'from datetime import datetime\n'), ((15257, 15274), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (15272, 15274), False, 'from datetime import datetime\n'), ((10044, 10061), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (10059, 10061), False, 'from datetime import datetime\n')]
from gym_minigrid.minigrid import * from gym_minigrid.register import register class FetchObjEnv(MiniGridEnv): """ Environment in which the agent has to fetch either a yellow key or a blue ball named using English text strings """ def __init__( self, size=8, numObjs=3, ): self.numObjs = numObjs super().__init__( grid_size=size, max_steps=5*size**2, # Set this to True for maximum speed see_through_walls=True ) def _gen_grid(self, width, height): self.grid = Grid(width, height) # Generate the surrounding walls self.grid.horz_wall(0, 0) self.grid.horz_wall(0, height-1) self.grid.vert_wall(0, 0) self.grid.vert_wall(width-1, 0) types = ['key', 'ball','box', 'goal','door'] objs = [] # For each object to be generated objType = self._rand_elem(types[0:3]) if objType == 'key': obj = Key('yellow') elif objType == 'ball': obj = Ball('yellow') elif objType == 'box': obj = Box('yellow') self.place_obj(obj) objs.append(obj) while len(objs) < self.numObjs: objType = self._rand_elem(types) #objColor = self._rand_elem(COLOR_NAMES) if objType == 'key': obj = Key('yellow') elif objType == 'ball': obj = Ball('yellow') elif objType == 'goal': obj = Goal('yellow') elif objType == 'box': obj = Box('yellow') elif objType == 'door': obj = Door('yellow') self.place_obj(obj) objs.append(obj) # Randomize the player start position and orientation self.place_agent() # Choose a random object to be picked up target = objs[0] self.targetType = target.type self.targetColor = target.color descStr = '%s %s' % (self.targetColor, self.targetType) # Generate the mission string idx = self._rand_int(0, 5) if idx == 0: self.mission = 'get a %s' % descStr elif idx == 1: self.mission = 'go get a %s' % descStr elif idx == 2: self.mission = 'fetch a %s' % descStr elif idx == 3: self.mission = 'go fetch a %s' % descStr elif idx == 4: self.mission = 'you must fetch a %s' % descStr assert hasattr(self, 'mission') def step(self, action): obs, reward, done, info = MiniGridEnv.step(self, action) if self.carrying: if self.carrying.color == self.targetColor and \ self.carrying.type == self.targetType: reward = self._reward() done = True else: reward = 0 done = True return obs, reward, done, info class FetchObjEnv5x5N2(FetchObjEnv): def __init__(self): super().__init__(size=5, numObjs=2) class FetchObjEnv6x6N2(FetchObjEnv): def __init__(self): super().__init__(size=6, numObjs=2) class FetchObjEnv8x8N2(FetchObjEnv): def __init__(self): super().__init__(size=8, numObjs=2) class FetchObjEnv16x16N2(FetchObjEnv): def __init__(self): super().__init__(size=16, numObjs=2) register( id='MiniGrid-FetchObj-5x5-N2-v0', entry_point='gym_minigrid.envs:FetchObjEnv5x5N2' ) register( id='MiniGrid-FetchObj-6x6-N2-v0', entry_point='gym_minigrid.envs:FetchObjEnv6x6N2' ) register( id='MiniGrid-FetchObj-8x8-N2-v0', entry_point='gym_minigrid.envs:FetchObjEnv8x8N2' ) register( id='MiniGrid-FetchObj-16x16-N2-v0', entry_point='gym_minigrid.envs:FetchObjEnv16x16N2' ) ########################################################################## class FetchObjEnv5x5N3(FetchObjEnv): def __init__(self): super().__init__(size=5, numObjs=3) class FetchObjEnv6x6N3(FetchObjEnv): def __init__(self): super().__init__(size=6, numObjs=3) class FetchObjEnv8x8N3(FetchObjEnv): def __init__(self): super().__init__(size=8, numObjs=3) class FetchObjEnv16x16N3(FetchObjEnv): def __init__(self): super().__init__(size=16, numObjs=3) register( id='MiniGrid-FetchObj-5x5-N3-v0', entry_point='gym_minigrid.envs:FetchObjEnv5x5N3' ) register( id='MiniGrid-FetchObj-6x6-N3-v0', entry_point='gym_minigrid.envs:FetchObjEnv6x6N3' ) register( id='MiniGrid-FetchObj-8x8-N3-v0', entry_point='gym_minigrid.envs:FetchObjEnv8x8N3' ) register( id='MiniGrid-FetchObj-16x16-N3-v0', entry_point='gym_minigrid.envs:FetchObjEnv16x16N3' )
[ "gym_minigrid.register.register" ]
[((3419, 3516), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-5x5-N2-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv5x5N2"""'}), "(id='MiniGrid-FetchObj-5x5-N2-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv5x5N2')\n", (3427, 3516), False, 'from gym_minigrid.register import register\n'), ((3523, 3620), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-6x6-N2-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv6x6N2"""'}), "(id='MiniGrid-FetchObj-6x6-N2-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv6x6N2')\n", (3531, 3620), False, 'from gym_minigrid.register import register\n'), ((3627, 3724), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-8x8-N2-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv8x8N2"""'}), "(id='MiniGrid-FetchObj-8x8-N2-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv8x8N2')\n", (3635, 3724), False, 'from gym_minigrid.register import register\n'), ((3731, 3832), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-16x16-N2-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv16x16N2"""'}), "(id='MiniGrid-FetchObj-16x16-N2-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv16x16N2')\n", (3739, 3832), False, 'from gym_minigrid.register import register\n'), ((4346, 4443), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-5x5-N3-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv5x5N3"""'}), "(id='MiniGrid-FetchObj-5x5-N3-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv5x5N3')\n", (4354, 4443), False, 'from gym_minigrid.register import register\n'), ((4450, 4547), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-6x6-N3-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv6x6N3"""'}), "(id='MiniGrid-FetchObj-6x6-N3-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv6x6N3')\n", (4458, 4547), False, 'from gym_minigrid.register import register\n'), ((4554, 4651), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-8x8-N3-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv8x8N3"""'}), "(id='MiniGrid-FetchObj-8x8-N3-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv8x8N3')\n", (4562, 4651), False, 'from gym_minigrid.register import register\n'), ((4658, 4759), 'gym_minigrid.register.register', 'register', ([], {'id': '"""MiniGrid-FetchObj-16x16-N3-v0"""', 'entry_point': '"""gym_minigrid.envs:FetchObjEnv16x16N3"""'}), "(id='MiniGrid-FetchObj-16x16-N3-v0', entry_point=\n 'gym_minigrid.envs:FetchObjEnv16x16N3')\n", (4666, 4759), False, 'from gym_minigrid.register import register\n')]
import heterocl as hcl import heterocl.tvm as tvm import numpy as np def test_two_stages(): hcl.init() A = hcl.placeholder((10,), "A") B = hcl.placeholder((10,), "B") C = hcl.placeholder((10,), "C") def kernel(A, B, C): @hcl.def_([A.shape, B.shape]) def M1(A, B): with hcl.for_(0, 10) as i: B[i] = A[i] + 1 @hcl.def_([B.shape, C.shape]) def M2(B, C): with hcl.for_(0, 10) as i: C[i] = B[i] + 1 M1(A, B) M2(B, C) s = hcl.create_schedule([A, B, C], kernel) s.to(B, s[kernel.M2], s[kernel.M1], depth=1) f = hcl.build(s) a = np.random.randint(100, size=(10,)) b = np.random.randint(100, size=(10,)) c = np.random.randint(100, size=(10,)) hcl_A = hcl.asarray(a) hcl_B = hcl.asarray(b) hcl_C = hcl.asarray(c) f(hcl_A, hcl_B, hcl_C) np.testing.assert_array_equal(hcl_C.asnumpy(), a + 2) def test_three_stages(): hcl.init() A = hcl.placeholder((10,), "A") B = hcl.placeholder((10,), "B") C = hcl.placeholder((10,), "C") D = hcl.placeholder((10,), "D") def kernel(A, B, C, D): @hcl.def_([A.shape, B.shape]) def M1(A, B): with hcl.for_(0, 10) as i: B[i] = A[i] + 1 @hcl.def_([B.shape, C.shape]) def M2(B, C): with hcl.for_(0, 10) as i: C[i] = B[i] + 1 @hcl.def_([C.shape, D.shape]) def M3(C, D): with hcl.for_(0, 10) as i: D[i] = C[i] + 1 M1(A, B) M2(B, C) M3(C, D) s = hcl.create_schedule([A, B, C, D], kernel) s.to(B, s[kernel.M2], s[kernel.M1], depth=1) s.to(C, s[kernel.M3], s[kernel.M2], depth=1) f = hcl.build(s) a = np.random.randint(100, size=(10,)) b = np.random.randint(100, size=(10,)) c = np.random.randint(100, size=(10,)) d = np.random.randint(100, size=(10,)) hcl_A = hcl.asarray(a) hcl_B = hcl.asarray(b) hcl_C = hcl.asarray(c) hcl_D = hcl.asarray(d) f(hcl_A, hcl_B, hcl_C, hcl_D) np.testing.assert_array_equal(hcl_D.asnumpy(), a + 3) def test_internal_stages(): hcl.init() A = hcl.placeholder((10,), "A") B = hcl.placeholder((10,), "B") C = hcl.placeholder((10,), "C") D = hcl.placeholder((10,), "D") def kernel(A, B, C, D): @hcl.def_([A.shape, B.shape, C.shape, D.shape]) def M1(A, B, C, D): with hcl.for_(0, 10) as i: B[i] = A[i] + 1 D[i] = C[i] + 1 @hcl.def_([B.shape, C.shape]) def M2(B, C): with hcl.for_(0, 10) as i: C[i] = B[i] + 1 M1(A, B, C, D) M2(B, C) s = hcl.create_schedule([A, B, C, D], kernel) s.to(B, s[kernel.M2], s[kernel.M1], depth=1) s.to(C, s[kernel.M1], s[kernel.M2], depth=1) f = hcl.build(s) a = np.random.randint(100, size=(10,)) b = np.random.randint(100, size=(10,)) c = np.random.randint(100, size=(10,)) d = np.random.randint(100, size=(10,)) hcl_A = hcl.asarray(a) hcl_B = hcl.asarray(b) hcl_C = hcl.asarray(c) hcl_D = hcl.asarray(d) f(hcl_A, hcl_B, hcl_C, hcl_D) np.testing.assert_array_equal(hcl_D.asnumpy(), a + 3) def test_fork_stages(): hcl.init() A = hcl.placeholder((10,), "A") B = hcl.placeholder((10,), "B") C = hcl.placeholder((10,), "C") D = hcl.placeholder((10,), "D") E = hcl.placeholder((10,), "E") def kernel(A, B, C, D, E): @hcl.def_([A.shape, B.shape, C.shape]) def M1(A, B, C): with hcl.for_(0, 10) as i: B[i] = A[i] + 1 C[i] = A[i] - 1 @hcl.def_([B.shape, D.shape]) def M2(B, D): with hcl.for_(0, 10) as i: D[i] = B[i] + 1 @hcl.def_([C.shape, E.shape]) def M3(C, E): with hcl.for_(0, 10) as i: E[i] = C[i] - 1 M1(A, B, C) M2(B, D) M3(C, E) hcl.init() s1 = hcl.create_schedule([A, B, C, D, E], kernel) s1.to(B, s1[kernel.M2], s1[kernel.M1], depth=1) hcl.init() s2 = hcl.create_schedule([A, B, C, D, E], kernel) s2.to(C, s2[kernel.M3], s2[kernel.M1], depth=1) hcl.init() s3 = hcl.create_schedule([A, B, C, D, E], kernel) s3.to(B, s3[kernel.M2], s3[kernel.M1], depth=1) s3.to(C, s3[kernel.M3], s3[kernel.M1], depth=1) a = np.random.randint(100, size=(10,)) b = np.random.randint(100, size=(10,)) c = np.random.randint(100, size=(10,)) d = np.random.randint(100, size=(10,)) e = np.random.randint(100, size=(10,)) def _test_stream(s): f = hcl.build(s) hcl_A = hcl.asarray(a) hcl_B = hcl.asarray(b) hcl_C = hcl.asarray(c) hcl_D = hcl.asarray(d) hcl_E = hcl.asarray(e) f(hcl_A, hcl_B, hcl_C, hcl_D, hcl_E) np.testing.assert_array_equal(hcl_D.asnumpy(), a + 2) _test_stream(s1) _test_stream(s2) _test_stream(s3) def test_merge_stages(): hcl.init() A = hcl.placeholder((10,), "A") B = hcl.placeholder((10,), "B") C = hcl.placeholder((10,), "C") D = hcl.placeholder((10,), "D") E = hcl.placeholder((10,), "E") def kernel(A, B, C, D, E): @hcl.def_([A.shape, B.shape]) def M1(A, B): with hcl.for_(0, 10) as i: B[i] = A[i] + 1 @hcl.def_([C.shape, D.shape]) def M2(C, D): with hcl.for_(0, 10) as i: D[i] = C[i] - 1 @hcl.def_([B.shape, D.shape, E.shape]) def M3(B, D, E): with hcl.for_(0, 10) as i: E[i] = B[i] + D[i] M1(A, B) M2(C, D) M3(B, D, E) hcl.init() s1 = hcl.create_schedule([A, B, C, D, E], kernel) s1.to(B, s1[kernel.M3], s1[kernel.M1], depth=1) hcl.init() s2 = hcl.create_schedule([A, B, C, D, E], kernel) s2.to(D, s2[kernel.M3], s2[kernel.M2], depth=1) hcl.init() s3 = hcl.create_schedule([A, B, C, D, E], kernel) s3.to(B, s3[kernel.M3], s3[kernel.M1], depth=1) s3.to(D, s3[kernel.M3], s3[kernel.M2], depth=1) print(hcl.lower(s3)) a = np.random.randint(100, size=(10,)) b = np.random.randint(100, size=(10,)) c = np.random.randint(100, size=(10,)) d = np.random.randint(100, size=(10,)) e = np.random.randint(100, size=(10,)) def _test_stream(s): f = hcl.build(s) hcl_A = hcl.asarray(a) hcl_B = hcl.asarray(b) hcl_C = hcl.asarray(c) hcl_D = hcl.asarray(d) hcl_E = hcl.asarray(e) f(hcl_A, hcl_B, hcl_C, hcl_D, hcl_E) np.testing.assert_array_equal(hcl_E.asnumpy(), a + c) _test_stream(s1) _test_stream(s2) _test_stream(s3) def test_loop_stages(): hcl.init() A = hcl.placeholder((10,), "A") B = hcl.placeholder((10,), "B") C = hcl.placeholder((10,), "C") def kernel(A, B, C): @hcl.def_([A.shape, B.shape, C.shape]) def M1(A, B, C): with hcl.for_(0, 10) as i: with hcl.for_(0, 10) as j: with hcl.if_(i == 0): B[j] = A[j] with hcl.elif_(i < 9): B[j] = B[j] + 1 with hcl.else_(): C[j] = B[j] M1(A, B, C) s = hcl.create_schedule([A, B, C], kernel) s.to(B, s[kernel.M1], s[kernel.M1], depth=10) f = hcl.build(s) a = np.random.randint(100, size=(10,)) b = np.random.randint(100, size=(10,)) c = np.random.randint(100, size=(10,)) hcl_A = hcl.asarray(a) hcl_B = hcl.asarray(b) hcl_C = hcl.asarray(c) f(hcl_A, hcl_B, hcl_C) np.testing.assert_array_equal(hcl_C.asnumpy(), a + 8)
[ "heterocl.for_", "heterocl.placeholder", "heterocl.def_", "heterocl.if_", "heterocl.create_schedule", "heterocl.build", "numpy.random.randint", "heterocl.init", "heterocl.elif_", "heterocl.asarray", "heterocl.lower", "heterocl.else_" ]
[((97, 107), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (105, 107), True, 'import heterocl as hcl\n'), ((116, 143), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""A"""'], {}), "((10,), 'A')\n", (131, 143), True, 'import heterocl as hcl\n'), ((152, 179), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""B"""'], {}), "((10,), 'B')\n", (167, 179), True, 'import heterocl as hcl\n'), ((188, 215), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""C"""'], {}), "((10,), 'C')\n", (203, 215), True, 'import heterocl as hcl\n'), ((550, 588), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C]', 'kernel'], {}), '([A, B, C], kernel)\n', (569, 588), True, 'import heterocl as hcl\n'), ((646, 658), 'heterocl.build', 'hcl.build', (['s'], {}), '(s)\n', (655, 658), True, 'import heterocl as hcl\n'), ((668, 702), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (685, 702), True, 'import numpy as np\n'), ((711, 745), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (728, 745), True, 'import numpy as np\n'), ((754, 788), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (771, 788), True, 'import numpy as np\n'), ((801, 815), 'heterocl.asarray', 'hcl.asarray', (['a'], {}), '(a)\n', (812, 815), True, 'import heterocl as hcl\n'), ((828, 842), 'heterocl.asarray', 'hcl.asarray', (['b'], {}), '(b)\n', (839, 842), True, 'import heterocl as hcl\n'), ((855, 869), 'heterocl.asarray', 'hcl.asarray', (['c'], {}), '(c)\n', (866, 869), True, 'import heterocl as hcl\n'), ((986, 996), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (994, 996), True, 'import heterocl as hcl\n'), ((1005, 1032), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""A"""'], {}), "((10,), 'A')\n", (1020, 1032), True, 'import heterocl as hcl\n'), ((1041, 1068), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""B"""'], {}), "((10,), 'B')\n", (1056, 1068), True, 'import heterocl as hcl\n'), ((1077, 1104), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""C"""'], {}), "((10,), 'C')\n", (1092, 1104), True, 'import heterocl as hcl\n'), ((1113, 1140), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""D"""'], {}), "((10,), 'D')\n", (1128, 1140), True, 'import heterocl as hcl\n'), ((1627, 1668), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D]', 'kernel'], {}), '([A, B, C, D], kernel)\n', (1646, 1668), True, 'import heterocl as hcl\n'), ((1775, 1787), 'heterocl.build', 'hcl.build', (['s'], {}), '(s)\n', (1784, 1787), True, 'import heterocl as hcl\n'), ((1797, 1831), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (1814, 1831), True, 'import numpy as np\n'), ((1840, 1874), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (1857, 1874), True, 'import numpy as np\n'), ((1883, 1917), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (1900, 1917), True, 'import numpy as np\n'), ((1926, 1960), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (1943, 1960), True, 'import numpy as np\n'), ((1973, 1987), 'heterocl.asarray', 'hcl.asarray', (['a'], {}), '(a)\n', (1984, 1987), True, 'import heterocl as hcl\n'), ((2000, 2014), 'heterocl.asarray', 'hcl.asarray', (['b'], {}), '(b)\n', (2011, 2014), True, 'import heterocl as hcl\n'), ((2027, 2041), 'heterocl.asarray', 'hcl.asarray', (['c'], {}), '(c)\n', (2038, 2041), True, 'import heterocl as hcl\n'), ((2054, 2068), 'heterocl.asarray', 'hcl.asarray', (['d'], {}), '(d)\n', (2065, 2068), True, 'import heterocl as hcl\n'), ((2195, 2205), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (2203, 2205), True, 'import heterocl as hcl\n'), ((2214, 2241), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""A"""'], {}), "((10,), 'A')\n", (2229, 2241), True, 'import heterocl as hcl\n'), ((2250, 2277), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""B"""'], {}), "((10,), 'B')\n", (2265, 2277), True, 'import heterocl as hcl\n'), ((2286, 2313), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""C"""'], {}), "((10,), 'C')\n", (2301, 2313), True, 'import heterocl as hcl\n'), ((2322, 2349), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""D"""'], {}), "((10,), 'D')\n", (2337, 2349), True, 'import heterocl as hcl\n'), ((2749, 2790), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D]', 'kernel'], {}), '([A, B, C, D], kernel)\n', (2768, 2790), True, 'import heterocl as hcl\n'), ((2897, 2909), 'heterocl.build', 'hcl.build', (['s'], {}), '(s)\n', (2906, 2909), True, 'import heterocl as hcl\n'), ((2919, 2953), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (2936, 2953), True, 'import numpy as np\n'), ((2962, 2996), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (2979, 2996), True, 'import numpy as np\n'), ((3005, 3039), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (3022, 3039), True, 'import numpy as np\n'), ((3048, 3082), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (3065, 3082), True, 'import numpy as np\n'), ((3095, 3109), 'heterocl.asarray', 'hcl.asarray', (['a'], {}), '(a)\n', (3106, 3109), True, 'import heterocl as hcl\n'), ((3122, 3136), 'heterocl.asarray', 'hcl.asarray', (['b'], {}), '(b)\n', (3133, 3136), True, 'import heterocl as hcl\n'), ((3149, 3163), 'heterocl.asarray', 'hcl.asarray', (['c'], {}), '(c)\n', (3160, 3163), True, 'import heterocl as hcl\n'), ((3176, 3190), 'heterocl.asarray', 'hcl.asarray', (['d'], {}), '(d)\n', (3187, 3190), True, 'import heterocl as hcl\n'), ((3313, 3323), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (3321, 3323), True, 'import heterocl as hcl\n'), ((3332, 3359), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""A"""'], {}), "((10,), 'A')\n", (3347, 3359), True, 'import heterocl as hcl\n'), ((3368, 3395), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""B"""'], {}), "((10,), 'B')\n", (3383, 3395), True, 'import heterocl as hcl\n'), ((3404, 3431), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""C"""'], {}), "((10,), 'C')\n", (3419, 3431), True, 'import heterocl as hcl\n'), ((3440, 3467), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""D"""'], {}), "((10,), 'D')\n", (3455, 3467), True, 'import heterocl as hcl\n'), ((3476, 3503), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""E"""'], {}), "((10,), 'E')\n", (3491, 3503), True, 'import heterocl as hcl\n'), ((4036, 4046), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (4044, 4046), True, 'import heterocl as hcl\n'), ((4056, 4100), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D, E]', 'kernel'], {}), '([A, B, C, D, E], kernel)\n', (4075, 4100), True, 'import heterocl as hcl\n'), ((4158, 4168), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (4166, 4168), True, 'import heterocl as hcl\n'), ((4178, 4222), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D, E]', 'kernel'], {}), '([A, B, C, D, E], kernel)\n', (4197, 4222), True, 'import heterocl as hcl\n'), ((4280, 4290), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (4288, 4290), True, 'import heterocl as hcl\n'), ((4300, 4344), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D, E]', 'kernel'], {}), '([A, B, C, D, E], kernel)\n', (4319, 4344), True, 'import heterocl as hcl\n'), ((4458, 4492), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (4475, 4492), True, 'import numpy as np\n'), ((4501, 4535), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (4518, 4535), True, 'import numpy as np\n'), ((4544, 4578), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (4561, 4578), True, 'import numpy as np\n'), ((4587, 4621), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (4604, 4621), True, 'import numpy as np\n'), ((4630, 4664), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (4647, 4664), True, 'import numpy as np\n'), ((5074, 5084), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (5082, 5084), True, 'import heterocl as hcl\n'), ((5093, 5120), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""A"""'], {}), "((10,), 'A')\n", (5108, 5120), True, 'import heterocl as hcl\n'), ((5129, 5156), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""B"""'], {}), "((10,), 'B')\n", (5144, 5156), True, 'import heterocl as hcl\n'), ((5165, 5192), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""C"""'], {}), "((10,), 'C')\n", (5180, 5192), True, 'import heterocl as hcl\n'), ((5201, 5228), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""D"""'], {}), "((10,), 'D')\n", (5216, 5228), True, 'import heterocl as hcl\n'), ((5237, 5264), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""E"""'], {}), "((10,), 'E')\n", (5252, 5264), True, 'import heterocl as hcl\n'), ((5768, 5778), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (5776, 5778), True, 'import heterocl as hcl\n'), ((5788, 5832), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D, E]', 'kernel'], {}), '([A, B, C, D, E], kernel)\n', (5807, 5832), True, 'import heterocl as hcl\n'), ((5890, 5900), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (5898, 5900), True, 'import heterocl as hcl\n'), ((5910, 5954), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D, E]', 'kernel'], {}), '([A, B, C, D, E], kernel)\n', (5929, 5954), True, 'import heterocl as hcl\n'), ((6012, 6022), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (6020, 6022), True, 'import heterocl as hcl\n'), ((6032, 6076), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C, D, E]', 'kernel'], {}), '([A, B, C, D, E], kernel)\n', (6051, 6076), True, 'import heterocl as hcl\n'), ((6215, 6249), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (6232, 6249), True, 'import numpy as np\n'), ((6258, 6292), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (6275, 6292), True, 'import numpy as np\n'), ((6301, 6335), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (6318, 6335), True, 'import numpy as np\n'), ((6344, 6378), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (6361, 6378), True, 'import numpy as np\n'), ((6387, 6421), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (6404, 6421), True, 'import numpy as np\n'), ((6830, 6840), 'heterocl.init', 'hcl.init', ([], {}), '()\n', (6838, 6840), True, 'import heterocl as hcl\n'), ((6849, 6876), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""A"""'], {}), "((10,), 'A')\n", (6864, 6876), True, 'import heterocl as hcl\n'), ((6885, 6912), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""B"""'], {}), "((10,), 'B')\n", (6900, 6912), True, 'import heterocl as hcl\n'), ((6921, 6948), 'heterocl.placeholder', 'hcl.placeholder', (['(10,)', '"""C"""'], {}), "((10,), 'C')\n", (6936, 6948), True, 'import heterocl as hcl\n'), ((7395, 7433), 'heterocl.create_schedule', 'hcl.create_schedule', (['[A, B, C]', 'kernel'], {}), '([A, B, C], kernel)\n', (7414, 7433), True, 'import heterocl as hcl\n'), ((7492, 7504), 'heterocl.build', 'hcl.build', (['s'], {}), '(s)\n', (7501, 7504), True, 'import heterocl as hcl\n'), ((7514, 7548), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (7531, 7548), True, 'import numpy as np\n'), ((7557, 7591), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (7574, 7591), True, 'import numpy as np\n'), ((7600, 7634), 'numpy.random.randint', 'np.random.randint', (['(100)'], {'size': '(10,)'}), '(100, size=(10,))\n', (7617, 7634), True, 'import numpy as np\n'), ((7647, 7661), 'heterocl.asarray', 'hcl.asarray', (['a'], {}), '(a)\n', (7658, 7661), True, 'import heterocl as hcl\n'), ((7674, 7688), 'heterocl.asarray', 'hcl.asarray', (['b'], {}), '(b)\n', (7685, 7688), True, 'import heterocl as hcl\n'), ((7701, 7715), 'heterocl.asarray', 'hcl.asarray', (['c'], {}), '(c)\n', (7712, 7715), True, 'import heterocl as hcl\n'), ((252, 280), 'heterocl.def_', 'hcl.def_', (['[A.shape, B.shape]'], {}), '([A.shape, B.shape])\n', (260, 280), True, 'import heterocl as hcl\n'), ((384, 412), 'heterocl.def_', 'hcl.def_', (['[B.shape, C.shape]'], {}), '([B.shape, C.shape])\n', (392, 412), True, 'import heterocl as hcl\n'), ((1180, 1208), 'heterocl.def_', 'hcl.def_', (['[A.shape, B.shape]'], {}), '([A.shape, B.shape])\n', (1188, 1208), True, 'import heterocl as hcl\n'), ((1312, 1340), 'heterocl.def_', 'hcl.def_', (['[B.shape, C.shape]'], {}), '([B.shape, C.shape])\n', (1320, 1340), True, 'import heterocl as hcl\n'), ((1444, 1472), 'heterocl.def_', 'hcl.def_', (['[C.shape, D.shape]'], {}), '([C.shape, D.shape])\n', (1452, 1472), True, 'import heterocl as hcl\n'), ((2389, 2435), 'heterocl.def_', 'hcl.def_', (['[A.shape, B.shape, C.shape, D.shape]'], {}), '([A.shape, B.shape, C.shape, D.shape])\n', (2397, 2435), True, 'import heterocl as hcl\n'), ((2577, 2605), 'heterocl.def_', 'hcl.def_', (['[B.shape, C.shape]'], {}), '([B.shape, C.shape])\n', (2585, 2605), True, 'import heterocl as hcl\n'), ((3546, 3583), 'heterocl.def_', 'hcl.def_', (['[A.shape, B.shape, C.shape]'], {}), '([A.shape, B.shape, C.shape])\n', (3554, 3583), True, 'import heterocl as hcl\n'), ((3722, 3750), 'heterocl.def_', 'hcl.def_', (['[B.shape, D.shape]'], {}), '([B.shape, D.shape])\n', (3730, 3750), True, 'import heterocl as hcl\n'), ((3854, 3882), 'heterocl.def_', 'hcl.def_', (['[C.shape, E.shape]'], {}), '([C.shape, E.shape])\n', (3862, 3882), True, 'import heterocl as hcl\n'), ((4703, 4715), 'heterocl.build', 'hcl.build', (['s'], {}), '(s)\n', (4712, 4715), True, 'import heterocl as hcl\n'), ((4733, 4747), 'heterocl.asarray', 'hcl.asarray', (['a'], {}), '(a)\n', (4744, 4747), True, 'import heterocl as hcl\n'), ((4764, 4778), 'heterocl.asarray', 'hcl.asarray', (['b'], {}), '(b)\n', (4775, 4778), True, 'import heterocl as hcl\n'), ((4795, 4809), 'heterocl.asarray', 'hcl.asarray', (['c'], {}), '(c)\n', (4806, 4809), True, 'import heterocl as hcl\n'), ((4826, 4840), 'heterocl.asarray', 'hcl.asarray', (['d'], {}), '(d)\n', (4837, 4840), True, 'import heterocl as hcl\n'), ((4857, 4871), 'heterocl.asarray', 'hcl.asarray', (['e'], {}), '(e)\n', (4868, 4871), True, 'import heterocl as hcl\n'), ((5307, 5335), 'heterocl.def_', 'hcl.def_', (['[A.shape, B.shape]'], {}), '([A.shape, B.shape])\n', (5315, 5335), True, 'import heterocl as hcl\n'), ((5439, 5467), 'heterocl.def_', 'hcl.def_', (['[C.shape, D.shape]'], {}), '([C.shape, D.shape])\n', (5447, 5467), True, 'import heterocl as hcl\n'), ((5571, 5608), 'heterocl.def_', 'hcl.def_', (['[B.shape, D.shape, E.shape]'], {}), '([B.shape, D.shape, E.shape])\n', (5579, 5608), True, 'import heterocl as hcl\n'), ((6191, 6204), 'heterocl.lower', 'hcl.lower', (['s3'], {}), '(s3)\n', (6200, 6204), True, 'import heterocl as hcl\n'), ((6460, 6472), 'heterocl.build', 'hcl.build', (['s'], {}), '(s)\n', (6469, 6472), True, 'import heterocl as hcl\n'), ((6490, 6504), 'heterocl.asarray', 'hcl.asarray', (['a'], {}), '(a)\n', (6501, 6504), True, 'import heterocl as hcl\n'), ((6521, 6535), 'heterocl.asarray', 'hcl.asarray', (['b'], {}), '(b)\n', (6532, 6535), True, 'import heterocl as hcl\n'), ((6552, 6566), 'heterocl.asarray', 'hcl.asarray', (['c'], {}), '(c)\n', (6563, 6566), True, 'import heterocl as hcl\n'), ((6583, 6597), 'heterocl.asarray', 'hcl.asarray', (['d'], {}), '(d)\n', (6594, 6597), True, 'import heterocl as hcl\n'), ((6614, 6628), 'heterocl.asarray', 'hcl.asarray', (['e'], {}), '(e)\n', (6625, 6628), True, 'import heterocl as hcl\n'), ((6985, 7022), 'heterocl.def_', 'hcl.def_', (['[A.shape, B.shape, C.shape]'], {}), '([A.shape, B.shape, C.shape])\n', (6993, 7022), True, 'import heterocl as hcl\n'), ((320, 335), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (328, 335), True, 'import heterocl as hcl\n'), ((452, 467), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (460, 467), True, 'import heterocl as hcl\n'), ((1248, 1263), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (1256, 1263), True, 'import heterocl as hcl\n'), ((1380, 1395), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (1388, 1395), True, 'import heterocl as hcl\n'), ((1512, 1527), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (1520, 1527), True, 'import heterocl as hcl\n'), ((2481, 2496), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (2489, 2496), True, 'import heterocl as hcl\n'), ((2645, 2660), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (2653, 2660), True, 'import heterocl as hcl\n'), ((3626, 3641), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (3634, 3641), True, 'import heterocl as hcl\n'), ((3790, 3805), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (3798, 3805), True, 'import heterocl as hcl\n'), ((3922, 3937), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (3930, 3937), True, 'import heterocl as hcl\n'), ((5375, 5390), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (5383, 5390), True, 'import heterocl as hcl\n'), ((5507, 5522), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (5515, 5522), True, 'import heterocl as hcl\n'), ((5651, 5666), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (5659, 5666), True, 'import heterocl as hcl\n'), ((7065, 7080), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (7073, 7080), True, 'import heterocl as hcl\n'), ((7108, 7123), 'heterocl.for_', 'hcl.for_', (['(0)', '(10)'], {}), '(0, 10)\n', (7116, 7123), True, 'import heterocl as hcl\n'), ((7155, 7170), 'heterocl.if_', 'hcl.if_', (['(i == 0)'], {}), '(i == 0)\n', (7162, 7170), True, 'import heterocl as hcl\n'), ((7233, 7249), 'heterocl.elif_', 'hcl.elif_', (['(i < 9)'], {}), '(i < 9)\n', (7242, 7249), True, 'import heterocl as hcl\n'), ((7316, 7327), 'heterocl.else_', 'hcl.else_', ([], {}), '()\n', (7325, 7327), True, 'import heterocl as hcl\n')]
#!/usr/bin/env python import cv2 import glob num=0 image_list = [] for filename in glob.glob('amazontest10/*.jpg'): #assuming gif img = cv2.imread(filename) #crop_img = img[260:649, 477:1023] # Crop from x, y, w, h -> 100, 200, 300, 400 crop_img = img[68:313, 448:810] #for book #[y1:y2, x1:x2] # NOTE: its img[y: y + h, x: x + w] and *not* img[x: x + w, y: y + h] #cv2.imshow("cropped", crop_img) #cv2.waitKey(0) cv2.imwrite('amazontest10/pic'+str(num)+'.jpg', crop_img) num=num+1
[ "cv2.imread", "glob.glob" ]
[((83, 114), 'glob.glob', 'glob.glob', (['"""amazontest10/*.jpg"""'], {}), "('amazontest10/*.jpg')\n", (92, 114), False, 'import glob\n'), ((145, 165), 'cv2.imread', 'cv2.imread', (['filename'], {}), '(filename)\n', (155, 165), False, 'import cv2\n')]
# -*- coding: utf-8 -*- """02-insurance-linear.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1j3SczKlApjIG0N7ajJjQR8dm1p29boTw # Insurance cost prediction using linear regression In this project we're going to use information like a person's age, sex, BMI, no. of children and smoking habit to predict the price of yearly medical bills. This kind of model is useful for insurance companies to determine the yearly insurance premium for a person. The dataset for this project is taken from [Kaggle](https://www.kaggle.com/mirichoi0218/insurance). We will create a model with the following steps: 1. Download and explore the dataset 2. Prepare the dataset for training 3. Create a linear regression model 4. Train the model to fit the data 5. Make predictions using the trained model """ # Uncomment and run the appropriate command for your operating system, if required # Linux / Binder # !pip install numpy matplotlib pandas torch==1.7.0+cpu torchvision==0.8.1+cpu torchaudio==0.7.0 -f https://download.pytorch.org/whl/torch_stable.html # Windows # !pip install numpy matplotlib pandas torch==1.7.0+cpu torchvision==0.8.1+cpu torchaudio==0.7.0 -f https://download.pytorch.org/whl/torch_stable.html # MacOS # !pip install numpy matplotlib pandas torch torchvision torchaudio # Import all the necessary libraries import torch import torchvision import torch.nn as nn import pandas as pd import matplotlib.pyplot as plt import torch.nn.functional as F from torchvision.datasets.utils import download_url from torch.utils.data import DataLoader, TensorDataset, random_split # Commented out IPython magic to ensure Python compatibility. import matplotlib.pyplot as plt # %matplotlib inline import seaborn as sns import matplotlib import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot import plotly.express as px import plotly.graph_objects as go import numpy as np """## Step 1: Download and explore the data Let us begin by downloading the data. We'll use the `download_url` function from PyTorch to get the data as a CSV (comma-separated values) file. """ DATASET_URL = "https://hub.jovian.ml/wp-content/uploads/2020/05/insurance.csv" DATA_FILENAME = "insurance.csv" download_url(DATASET_URL, '.') # read csv we downloaded dataframe_raw = pd.read_csv(DATA_FILENAME) dataframe_raw.head() def customize_dataset(dataframe_raw, rand_str): dataframe = dataframe_raw.copy(deep=True) # drop some rows dataframe = dataframe.sample(int(0.95*len(dataframe)), random_state=int(ord(rand_str[0]))) # scale input dataframe.bmi = dataframe.bmi * ord(rand_str[1])/100. # scale target dataframe.charges = dataframe.charges * ord(rand_str[2])/100. # drop column if ord(rand_str[3]) % 2 == 1: dataframe = dataframe.drop(['region'], axis=1) return dataframe dataframe = customize_dataset(dataframe_raw, 'vrajesh') dataframe.head() num_rows = dataframe.shape[0] num_cols = dataframe.shape[1] print("num_rows",num_rows,"num_cols",num_cols) print("Shape of the DataFrame",dataframe.shape) # input variables input_cols = dataframe.drop('charges',axis=1).columns # input non-numeric or categorial variables categorical_cols = [x for x in dataframe.columns if type(dataframe[x][1])==str] # output/target variable(s) output_cols = [dataframe["charges"].name] """**Get the minimum, maximum and average value of the `charges` column and display it on a graph.**""" #We sore the dataframe using the values in the charges column and store it in a different variable data = dataframe.sort_values('charges') maximum = data.tail(1) minimum = data.head(1) average = data.mean(axis=0) average = average[3] #We use plotly.express library to represent the data graphically #We here use the sns library to set the style of the background of the graph sns.set_style('darkgrid') fig = px.scatter(dataframe, x=dataframe.index, y=dataframe['charges'], hover_data=[dataframe['charges']]) fig.show() data2 = dataframe.sort_values('age') uniq = data2['age'].unique().tolist() data3 = [data2['age'].loc[data2.age == x].mean() for x in uniq] #fig1 = plt.plot(x=[data2['age'].loc[data2.age == x]for x in uniq], y = [data2['age'].loc[data2.age == x].mean()for x in uniq]) #fig1.show() """## Step 2: Prepare the dataset for training We need to convert the data from the Pandas dataframe into a PyTorch tensors for training. To do this, the first step is to convert it numpy arrays. If you've filled out `input_cols`, `categorial_cols` and `output_cols` correctly, this following function will perform the conversion to numpy arrays. """ def dataframe_to_arrays(dataframe): # Make a copy of the original dataframe dataframe1 = dataframe.copy(deep=True) # Convert non-numeric categorical columns to numbers for col in categorical_cols: dataframe1[col] = dataframe1[col].astype('category').cat.codes # Extract input & outupts as numpy arrays inputs_array = dataframe1[input_cols].to_numpy() targets_array = dataframe1[output_cols].to_numpy() return inputs_array, targets_array inputs_array, targets_array = dataframe_to_arrays(dataframe) inputs_array, targets_array # Convert values to torch.float before we start manupulating the data inputs = torch.from_numpy(inputs_array).type(torch.float32) targets = torch.from_numpy(targets_array).type(torch.float32) inputs.dtype, targets.dtype # Create a tensor dataset of inputs and targets dataset = TensorDataset(inputs, targets) # Splitting our data val_percent = 0.1756 # between 0.1 and 0.2 val_size = int(num_rows * val_percent) train_size = num_rows - val_size train_ds, val_ds = torch.utils.data.random_split(dataset,[train_size,val_size]) # Use the random_split function to split dataset into 2 parts of the desired length # Fix a batch size to distribute data batch_size = 128 train_loader = DataLoader(train_ds, batch_size, shuffle=True) val_loader = DataLoader(val_ds, batch_size) for xb, yb in train_loader: print("inputs:", xb) print("targets:", yb) break """## Step 3: Create a Linear Regression Model Our model itself is a fairly straightforward linear regression (we'll build more complex models in the next assignment). """ input_size = len(input_cols) output_size = len(output_cols) input_size,output_size # Main Model for Linear Regression # We use nn.Module class and initialize it using super().__init__() # We calculate loss using F.l1_loss() class InsuranceModel(nn.Module): def __init__(self): super().__init__() self.linear = nn.Linear(input_size,output_size) # fill this (hint: use input_size & output_size defined above) def forward(self, xb): out = self.linear(xb) # fill this return out def training_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calcuate loss loss = F.l1_loss(out,targets) # fill this return loss def validation_step(self, batch): inputs, targets = batch # Generate predictions out = self(inputs) # Calculate loss loss = F.l1_loss(out,targets) # fill this return {'val_loss': loss.detach()} def validation_epoch_end(self, outputs): batch_losses = [x['val_loss'] for x in outputs] epoch_loss = torch.stack(batch_losses).mean() # Combine losses return {'val_loss': epoch_loss.item()} def epoch_end(self, epoch, result, num_epochs): # Print result every 20th epoch if (epoch+1) % 20 == 0 or epoch == num_epochs-1: print("Epoch [{}], val_loss: {:.4f}".format(epoch+1, result['val_loss'])) model = InsuranceModel() list(model.parameters()) """## Step 4: Train the model to fit the data To train our model, we'll use the same `fit` function explained in the lecture. That's the benefit of defining a generic training loop - you can use it for any problem. """ def evaluate(model, val_loader): outputs = [model.validation_step(batch) for batch in val_loader] return model.validation_epoch_end(outputs) def fit(epochs, lr, model, train_loader, val_loader, opt_func=torch.optim.SGD): history = [] optimizer = opt_func(model.parameters(), lr) for epoch in range(epochs): # Training Phase for batch in train_loader: loss = model.training_step(batch) loss.backward() optimizer.step() optimizer.zero_grad() # Validation phase result = evaluate(model, val_loader) model.epoch_end(epoch, result, epochs) history.append(result) return history result = evaluate(model,val_loader) # Use the the evaluate function print(result) """# Lets Train the Model""" epochs = 1000 lr = 0.18 history1 = fit(epochs, lr, model, train_loader, val_loader) epochs = 1000 lr = 1 history2 = fit(epochs, lr, model, train_loader, val_loader) epochs = 2000 lr = 1e-3 history3 = fit(epochs, lr, model, train_loader, val_loader) epochs = 1000 lr = 3 history4 = fit(epochs, lr, model, train_loader, val_loader) epochs = 1000 lr = 2.5 history5 = fit(epochs, lr, model, train_loader, val_loader) import itertools def seq(start, end, step): if step == 0: raise ValueError("step must not be 0") sample_count = int(abs(end - start) / step) return itertools.islice(itertools.count(start, step), sample_count) lrs = seq(1.0, 0.001, 0.01) for x in lrs: epochs = 1000 lr = x history5 = fit(epochs, lr, model, train_loader, val_loader) for x in lrs: print(x) """**final validation loss of our model?**""" val_loss = 8066 """## Step 5: Make predictions using the trained model """ def predict_single(input, target, model): inputs = input.unsqueeze(0) predictions = model(input) prediction = predictions[0].detach() print("Input:", input) print("Target:", target) print("Prediction:", prediction) input, target = val_ds[0] predict_single(input, target, model) input, target = val_ds[10] predict_single(input, target, model) input, target = val_ds[23] predict_single(input, target, model)
[ "plotly.express.scatter", "torch.nn.functional.l1_loss", "pandas.read_csv", "torch.utils.data.random_split", "torch.stack", "torch.utils.data.TensorDataset", "torchvision.datasets.utils.download_url", "seaborn.set_style", "torch.from_numpy", "itertools.count", "torch.nn.Linear", "torch.utils.data.DataLoader" ]
[((2310, 2340), 'torchvision.datasets.utils.download_url', 'download_url', (['DATASET_URL', '"""."""'], {}), "(DATASET_URL, '.')\n", (2322, 2340), False, 'from torchvision.datasets.utils import download_url\n'), ((2383, 2409), 'pandas.read_csv', 'pd.read_csv', (['DATA_FILENAME'], {}), '(DATA_FILENAME)\n', (2394, 2409), True, 'import pandas as pd\n'), ((3918, 3943), 'seaborn.set_style', 'sns.set_style', (['"""darkgrid"""'], {}), "('darkgrid')\n", (3931, 3943), True, 'import seaborn as sns\n'), ((3950, 4054), 'plotly.express.scatter', 'px.scatter', (['dataframe'], {'x': 'dataframe.index', 'y': "dataframe['charges']", 'hover_data': "[dataframe['charges']]"}), "(dataframe, x=dataframe.index, y=dataframe['charges'], hover_data\n =[dataframe['charges']])\n", (3960, 4054), True, 'import plotly.express as px\n'), ((5562, 5592), 'torch.utils.data.TensorDataset', 'TensorDataset', (['inputs', 'targets'], {}), '(inputs, targets)\n', (5575, 5592), False, 'from torch.utils.data import DataLoader, TensorDataset, random_split\n'), ((5752, 5814), 'torch.utils.data.random_split', 'torch.utils.data.random_split', (['dataset', '[train_size, val_size]'], {}), '(dataset, [train_size, val_size])\n', (5781, 5814), False, 'import torch\n'), ((5970, 6016), 'torch.utils.data.DataLoader', 'DataLoader', (['train_ds', 'batch_size'], {'shuffle': '(True)'}), '(train_ds, batch_size, shuffle=True)\n', (5980, 6016), False, 'from torch.utils.data import DataLoader, TensorDataset, random_split\n'), ((6030, 6060), 'torch.utils.data.DataLoader', 'DataLoader', (['val_ds', 'batch_size'], {}), '(val_ds, batch_size)\n', (6040, 6060), False, 'from torch.utils.data import DataLoader, TensorDataset, random_split\n'), ((5361, 5391), 'torch.from_numpy', 'torch.from_numpy', (['inputs_array'], {}), '(inputs_array)\n', (5377, 5391), False, 'import torch\n'), ((5422, 5453), 'torch.from_numpy', 'torch.from_numpy', (['targets_array'], {}), '(targets_array)\n', (5438, 5453), False, 'import torch\n'), ((6661, 6695), 'torch.nn.Linear', 'nn.Linear', (['input_size', 'output_size'], {}), '(input_size, output_size)\n', (6670, 6695), True, 'import torch.nn as nn\n'), ((7078, 7101), 'torch.nn.functional.l1_loss', 'F.l1_loss', (['out', 'targets'], {}), '(out, targets)\n', (7087, 7101), True, 'import torch.nn.functional as F\n'), ((7331, 7354), 'torch.nn.functional.l1_loss', 'F.l1_loss', (['out', 'targets'], {}), '(out, targets)\n', (7340, 7354), True, 'import torch.nn.functional as F\n'), ((9595, 9623), 'itertools.count', 'itertools.count', (['start', 'step'], {}), '(start, step)\n', (9610, 9623), False, 'import itertools\n'), ((7569, 7594), 'torch.stack', 'torch.stack', (['batch_losses'], {}), '(batch_losses)\n', (7580, 7594), False, 'import torch\n')]
# -*- encoding: utf-8 -*- import numpy as np import copy from scipy.ndimage.filters import gaussian_filter import cv2 def im_to_double(im): """ """ min_val = np.min(im.ravel()) max_val = np.max(im.ravel()) return (im.astype('float') - min_val) / (max_val - min_val) def im_to_int(im): """ """ return (im.astype('int') * 255) def ridge_segmentation(normalised_im, blksize, thresh): """ """ rows, cols = normalised_im.shape segmented_im = np.zeros((rows, cols)) rows_block = int((rows / blksize) * blksize) cols_block = int((cols / blksize) * blksize) for i in range(0, rows_block, blksize): for j in range(0, cols_block, blksize): if (normalised_im[i:i + blksize, j: j + blksize].var() >= thresh): segmented_im[i:i + blksize, j:j + blksize] = 1 im1 = normalised_im - np.mean(normalised_im[np.where(segmented_im > 0)]) stdh = np.std(im1[np.where(segmented_im > 0)]) normalised_im = im1 / stdh return normalised_im, segmented_im def ridge_orientation(im, orient_smooth_sigma): """ """ sobelx = cv2.Sobel(im, cv2.CV_64F, 1, 0, ksize=3) sobely = cv2.Sobel(im, cv2.CV_64F, 0, 1, ksize=3) orient = np.arctan2((sobely), (sobelx)) Ox = np.cos(2 * orient) Oy = np.sin(2 * orient) sin2theta = gaussian_filter(Oy, orient_smooth_sigma, 0) cos2theta = gaussian_filter(Ox, orient_smooth_sigma, 0) return (np.arctan2(sin2theta, cos2theta) / 2)
[ "scipy.ndimage.filters.gaussian_filter", "numpy.where", "numpy.zeros", "numpy.arctan2", "numpy.cos", "numpy.sin", "cv2.Sobel" ]
[((496, 518), 'numpy.zeros', 'np.zeros', (['(rows, cols)'], {}), '((rows, cols))\n', (504, 518), True, 'import numpy as np\n'), ((1162, 1202), 'cv2.Sobel', 'cv2.Sobel', (['im', 'cv2.CV_64F', '(1)', '(0)'], {'ksize': '(3)'}), '(im, cv2.CV_64F, 1, 0, ksize=3)\n', (1171, 1202), False, 'import cv2\n'), ((1216, 1256), 'cv2.Sobel', 'cv2.Sobel', (['im', 'cv2.CV_64F', '(0)', '(1)'], {'ksize': '(3)'}), '(im, cv2.CV_64F, 0, 1, ksize=3)\n', (1225, 1256), False, 'import cv2\n'), ((1275, 1301), 'numpy.arctan2', 'np.arctan2', (['sobely', 'sobelx'], {}), '(sobely, sobelx)\n', (1285, 1301), True, 'import numpy as np\n'), ((1320, 1338), 'numpy.cos', 'np.cos', (['(2 * orient)'], {}), '(2 * orient)\n', (1326, 1338), True, 'import numpy as np\n'), ((1348, 1366), 'numpy.sin', 'np.sin', (['(2 * orient)'], {}), '(2 * orient)\n', (1354, 1366), True, 'import numpy as np\n'), ((1388, 1431), 'scipy.ndimage.filters.gaussian_filter', 'gaussian_filter', (['Oy', 'orient_smooth_sigma', '(0)'], {}), '(Oy, orient_smooth_sigma, 0)\n', (1403, 1431), False, 'from scipy.ndimage.filters import gaussian_filter\n'), ((1448, 1491), 'scipy.ndimage.filters.gaussian_filter', 'gaussian_filter', (['Ox', 'orient_smooth_sigma', '(0)'], {}), '(Ox, orient_smooth_sigma, 0)\n', (1463, 1491), False, 'from scipy.ndimage.filters import gaussian_filter\n'), ((1509, 1541), 'numpy.arctan2', 'np.arctan2', (['sin2theta', 'cos2theta'], {}), '(sin2theta, cos2theta)\n', (1519, 1541), True, 'import numpy as np\n'), ((982, 1008), 'numpy.where', 'np.where', (['(segmented_im > 0)'], {}), '(segmented_im > 0)\n', (990, 1008), True, 'import numpy as np\n'), ((931, 957), 'numpy.where', 'np.where', (['(segmented_im > 0)'], {}), '(segmented_im > 0)\n', (939, 957), True, 'import numpy as np\n')]
import os from django.http import JsonResponse from django.http import HttpResponse from django.shortcuts import get_object_or_404 from rest_framework import permissions from rest_framework.parsers import JSONParser from rest_framework.decorators import api_view, permission_classes from rest_framework.response import Response from fedex_wrapper import tracking as fedex_tracking from estafeta_wrapper import tracking as estafeta_tracking from tosp_auth.permissions import IsAuthenticatedWithSecret from .models import Shipment, PostalCode from .serializers import AddressSerializer, ShipmentSerializer, \ InitialShipmentSerializer, FillInformationSerializer, \ ExternalShipmentSerializer, PostalCodeSerializer @api_view(['POST']) @permission_classes((permissions.IsAuthenticated, )) def create_address(request): """ List all code snippets, or create a new snippet. """ if request.method == 'POST': data = JSONParser().parse(request) serializer = AddressSerializer(data=data) if serializer.is_valid(): serializer.save() return JsonResponse({'Message': 'Address created successfully'}, status=201) return JsonResponse(serializer.errors, status=400) @api_view(['POST']) @permission_classes((permissions.IsAuthenticated, )) def create_waybill(request): """ Allows you to create an entirely new waybill """ if request.method == 'POST': data = JSONParser().parse(request) serializer = ShipmentSerializer(data=data, context={'request': request}) if serializer.is_valid(): waybill = serializer.save() if waybill.create_waybill(): return JsonResponse({'carrier': waybill.carrier.name, 'tracking_number': waybill.tracking_number, 'waybill_link': waybill.waybill_link}, status=201) else: return JsonResponse({'error': 'Impossible to generate waybill'}, status=500) return JsonResponse(serializer.errors, status=400) @api_view(['POST']) @permission_classes((IsAuthenticatedWithSecret, )) def create_shipment_token(request): """ Gets the minimum information required for creating a new shipment and returns its uuid. """ if request.method == 'POST': data = JSONParser().parse(request) serializer = InitialShipmentSerializer(data=data, context={'request': request}) if serializer.is_valid(): shipment = serializer.save() return JsonResponse({'shipment_token': shipment.unique_id}, status=201) return JsonResponse(serializer.errors, status=400) @api_view(['POST']) @permission_classes((permissions.IsAuthenticated, )) def fill_shipment_information(request, shipment_token): """ Fills the rest of the missing information for a package """ if request.method == 'POST': shipment_data = JSONParser().parse(request) shipment = Shipment.objects.filter(unique_id=shipment_token).get() serializer = FillInformationSerializer(instance=shipment, data=shipment_data) if serializer.is_valid(): shipment = serializer.save() return JsonResponse({'confirmation_token': shipment.unique_id}, status=201) return JsonResponse(serializer.errors, status=400) @api_view(['POST']) @permission_classes((IsAuthenticatedWithSecret, )) def generate_waybill(request, shipment_token): """ Generates the waybill for a pedido. """ if request.method == 'POST': shipment = Shipment.objects.filter(unique_id=shipment_token).get() if shipment.waybill_link or shipment.create_waybill(): return JsonResponse({'carrier': shipment.carrier.name, 'tracking_number': shipment.tracking_number, 'waybill_link': shipment.waybill_link}, status=201) return JsonResponse({'error': 'Impossible to generate waybill'}, status=500) @api_view(['GET']) @permission_classes((permissions.IsAuthenticated, )) def track_shipment(request): if request.method == 'GET': data = request.query_params carrier = data['carrier'] tracking_number = data['tracking_number'] if os.environ['DJANGO_SETTINGS_MODULE'] == 'iupick.settings.production': production = True else: production = False if carrier == 'Fedex': track_info = fedex_tracking.track( production=production, key=os.environ['FEDEX_KEY'], password=os.environ['FEDEX_PASSWORD'], account_number=os.environ['FEDEX_ACCOUNT_NUMBER'], meter_number=os.environ['FEDEX_METER_NUMBER'], tracking_number=tracking_number ) status_detail = track_info.CompletedTrackDetails[0].TrackDetails[0].StatusDetail street_line_dict = dict(enumerate(status_detail.Location.StreetLines)) response = {'description': status_detail.Description, 'address': {'line_one': street_line_dict.get(0, None), 'line_two': street_line_dict.get(1, None), 'city': status_detail.Location.City, 'state_code': status_detail.Location.StateOrProvinceCode, 'postal_code': status_detail.Location.PostalCode, 'country_name': status_detail.Location.CountryName}} return JsonResponse(response, status=200) if carrier == 'Estafeta': track_info = estafeta_tracking.track( production=production, login=os.environ['ESTAFETA_TRACK_LOGIN'], password=os.environ['<PASSWORD>PASSWORD'], subscriber_id=os.environ['ESTAFETA_TRACK_SUBSCRIBER'], waybill=tracking_number ) history_last_event = track_info.trackingData.TrackingData[0].history.History[-1] response = {'status': track_info.trackingData.TrackingData[0].statusSPA, 'description': history_last_event.eventDescriptionSPA, 'dateTime': history_last_event.eventDateTime, 'address': history_last_event.eventPlaceName} return JsonResponse(response, status=200) return JsonResponse({'Message': 'Datos invalidos'}, status=400) @api_view(['POST']) @permission_classes((IsAuthenticatedWithSecret, )) def confirm_waypoint_shipment(request): """ Creates an external shipment associated to the user of the secret token and the waypoint they are sending.. """ if request.method == 'POST': data = JSONParser().parse(request) serializer = ExternalShipmentSerializer(data=data, context={'request': request}) if serializer.is_valid(): external_shipment = serializer.save() return JsonResponse({'shipment_token': external_shipment.unique_id}, status=201) return JsonResponse(serializer.errors, status=400) @api_view(['GET']) @permission_classes((permissions.IsAuthenticated, )) def postal_code_info(request, code): if request.method == 'GET': print(code) postal_code = get_object_or_404(PostalCode, code=code) serializer = PostalCodeSerializer(postal_code) return Response(serializer.data)
[ "rest_framework.decorators.permission_classes", "django.http.JsonResponse", "django.shortcuts.get_object_or_404", "fedex_wrapper.tracking.track", "rest_framework.response.Response", "estafeta_wrapper.tracking.track", "rest_framework.parsers.JSONParser", "rest_framework.decorators.api_view" ]
[((765, 783), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (773, 783), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((785, 835), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(permissions.IsAuthenticated,)'], {}), '((permissions.IsAuthenticated,))\n', (803, 835), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((1276, 1294), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (1284, 1294), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((1296, 1346), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(permissions.IsAuthenticated,)'], {}), '((permissions.IsAuthenticated,))\n', (1314, 1346), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((2198, 2216), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (2206, 2216), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((2218, 2266), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAuthenticatedWithSecret,)'], {}), '((IsAuthenticatedWithSecret,))\n', (2236, 2266), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((2884, 2902), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (2892, 2902), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((2904, 2954), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(permissions.IsAuthenticated,)'], {}), '((permissions.IsAuthenticated,))\n', (2922, 2954), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((3609, 3627), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (3617, 3627), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((3629, 3677), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAuthenticatedWithSecret,)'], {}), '((IsAuthenticatedWithSecret,))\n', (3647, 3677), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((4271, 4288), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (4279, 4288), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((4290, 4340), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(permissions.IsAuthenticated,)'], {}), '((permissions.IsAuthenticated,))\n', (4308, 4340), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((6779, 6797), 'rest_framework.decorators.api_view', 'api_view', (["['POST']"], {}), "(['POST'])\n", (6787, 6797), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((6799, 6847), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(IsAuthenticatedWithSecret,)'], {}), '((IsAuthenticatedWithSecret,))\n', (6817, 6847), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((7505, 7522), 'rest_framework.decorators.api_view', 'api_view', (["['GET']"], {}), "(['GET'])\n", (7513, 7522), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((7524, 7574), 'rest_framework.decorators.permission_classes', 'permission_classes', (['(permissions.IsAuthenticated,)'], {}), '((permissions.IsAuthenticated,))\n', (7542, 7574), False, 'from rest_framework.decorators import api_view, permission_classes\n'), ((1229, 1272), 'django.http.JsonResponse', 'JsonResponse', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (1241, 1272), False, 'from django.http import JsonResponse\n'), ((2151, 2194), 'django.http.JsonResponse', 'JsonResponse', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (2163, 2194), False, 'from django.http import JsonResponse\n'), ((2837, 2880), 'django.http.JsonResponse', 'JsonResponse', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (2849, 2880), False, 'from django.http import JsonResponse\n'), ((3562, 3605), 'django.http.JsonResponse', 'JsonResponse', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (3574, 3605), False, 'from django.http import JsonResponse\n'), ((4198, 4267), 'django.http.JsonResponse', 'JsonResponse', (["{'error': 'Impossible to generate waybill'}"], {'status': '(500)'}), "({'error': 'Impossible to generate waybill'}, status=500)\n", (4210, 4267), False, 'from django.http import JsonResponse\n'), ((6719, 6775), 'django.http.JsonResponse', 'JsonResponse', (["{'Message': 'Datos invalidos'}"], {'status': '(400)'}), "({'Message': 'Datos invalidos'}, status=400)\n", (6731, 6775), False, 'from django.http import JsonResponse\n'), ((7458, 7501), 'django.http.JsonResponse', 'JsonResponse', (['serializer.errors'], {'status': '(400)'}), '(serializer.errors, status=400)\n', (7470, 7501), False, 'from django.http import JsonResponse\n'), ((7687, 7727), 'django.shortcuts.get_object_or_404', 'get_object_or_404', (['PostalCode'], {'code': 'code'}), '(PostalCode, code=code)\n', (7704, 7727), False, 'from django.shortcuts import get_object_or_404\n'), ((7798, 7823), 'rest_framework.response.Response', 'Response', (['serializer.data'], {}), '(serializer.data)\n', (7806, 7823), False, 'from rest_framework.response import Response\n'), ((1144, 1213), 'django.http.JsonResponse', 'JsonResponse', (["{'Message': 'Address created successfully'}"], {'status': '(201)'}), "({'Message': 'Address created successfully'}, status=201)\n", (1156, 1213), False, 'from django.http import JsonResponse\n'), ((2725, 2789), 'django.http.JsonResponse', 'JsonResponse', (["{'shipment_token': shipment.unique_id}"], {'status': '(201)'}), "({'shipment_token': shipment.unique_id}, status=201)\n", (2737, 2789), False, 'from django.http import JsonResponse\n'), ((3446, 3514), 'django.http.JsonResponse', 'JsonResponse', (["{'confirmation_token': shipment.unique_id}"], {'status': '(201)'}), "({'confirmation_token': shipment.unique_id}, status=201)\n", (3458, 3514), False, 'from django.http import JsonResponse\n'), ((3972, 4121), 'django.http.JsonResponse', 'JsonResponse', (["{'carrier': shipment.carrier.name, 'tracking_number': shipment.\n tracking_number, 'waybill_link': shipment.waybill_link}"], {'status': '(201)'}), "({'carrier': shipment.carrier.name, 'tracking_number': shipment\n .tracking_number, 'waybill_link': shipment.waybill_link}, status=201)\n", (3984, 4121), False, 'from django.http import JsonResponse\n'), ((4737, 4992), 'fedex_wrapper.tracking.track', 'fedex_tracking.track', ([], {'production': 'production', 'key': "os.environ['FEDEX_KEY']", 'password': "os.environ['FEDEX_PASSWORD']", 'account_number': "os.environ['FEDEX_ACCOUNT_NUMBER']", 'meter_number': "os.environ['FEDEX_METER_NUMBER']", 'tracking_number': 'tracking_number'}), "(production=production, key=os.environ['FEDEX_KEY'],\n password=os.environ['FEDEX_PASSWORD'], account_number=os.environ[\n 'FEDEX_ACCOUNT_NUMBER'], meter_number=os.environ['FEDEX_METER_NUMBER'],\n tracking_number=tracking_number)\n", (4757, 4992), True, 'from fedex_wrapper import tracking as fedex_tracking\n'), ((5852, 5886), 'django.http.JsonResponse', 'JsonResponse', (['response'], {'status': '(200)'}), '(response, status=200)\n', (5864, 5886), False, 'from django.http import JsonResponse\n'), ((5946, 6171), 'estafeta_wrapper.tracking.track', 'estafeta_tracking.track', ([], {'production': 'production', 'login': "os.environ['ESTAFETA_TRACK_LOGIN']", 'password': "os.environ['<PASSWORD>PASSWORD']", 'subscriber_id': "os.environ['ESTAFETA_TRACK_SUBSCRIBER']", 'waybill': 'tracking_number'}), "(production=production, login=os.environ[\n 'ESTAFETA_TRACK_LOGIN'], password=os.environ['<PASSWORD>PASSWORD'],\n subscriber_id=os.environ['ESTAFETA_TRACK_SUBSCRIBER'], waybill=\n tracking_number)\n", (5969, 6171), True, 'from estafeta_wrapper import tracking as estafeta_tracking\n'), ((6669, 6703), 'django.http.JsonResponse', 'JsonResponse', (['response'], {'status': '(200)'}), '(response, status=200)\n', (6681, 6703), False, 'from django.http import JsonResponse\n'), ((7337, 7410), 'django.http.JsonResponse', 'JsonResponse', (["{'shipment_token': external_shipment.unique_id}"], {'status': '(201)'}), "({'shipment_token': external_shipment.unique_id}, status=201)\n", (7349, 7410), False, 'from django.http import JsonResponse\n'), ((983, 995), 'rest_framework.parsers.JSONParser', 'JSONParser', ([], {}), '()\n', (993, 995), False, 'from rest_framework.parsers import JSONParser\n'), ((1490, 1502), 'rest_framework.parsers.JSONParser', 'JSONParser', ([], {}), '()\n', (1500, 1502), False, 'from rest_framework.parsers import JSONParser\n'), ((1737, 1883), 'django.http.JsonResponse', 'JsonResponse', (["{'carrier': waybill.carrier.name, 'tracking_number': waybill.\n tracking_number, 'waybill_link': waybill.waybill_link}"], {'status': '(201)'}), "({'carrier': waybill.carrier.name, 'tracking_number': waybill.\n tracking_number, 'waybill_link': waybill.waybill_link}, status=201)\n", (1749, 1883), False, 'from django.http import JsonResponse\n'), ((2030, 2099), 'django.http.JsonResponse', 'JsonResponse', (["{'error': 'Impossible to generate waybill'}"], {'status': '(500)'}), "({'error': 'Impossible to generate waybill'}, status=500)\n", (2042, 2099), False, 'from django.http import JsonResponse\n'), ((2468, 2480), 'rest_framework.parsers.JSONParser', 'JSONParser', ([], {}), '()\n', (2478, 2480), False, 'from rest_framework.parsers import JSONParser\n'), ((3145, 3157), 'rest_framework.parsers.JSONParser', 'JSONParser', ([], {}), '()\n', (3155, 3157), False, 'from rest_framework.parsers import JSONParser\n'), ((7069, 7081), 'rest_framework.parsers.JSONParser', 'JSONParser', ([], {}), '()\n', (7079, 7081), False, 'from rest_framework.parsers import JSONParser\n')]
import configparser class AppConf(object): def __init__(self, config_path='config/init.ini'): try: self.conf_file = config_path config = configparser.ConfigParser() config.read(self.conf_file) self.log_level = config['app']['log_level'] self.nuclio_url = config['nuclio']['url'] except Exception as ex: print(ex)
[ "configparser.ConfigParser" ]
[((175, 202), 'configparser.ConfigParser', 'configparser.ConfigParser', ([], {}), '()\n', (200, 202), False, 'import configparser\n')]
import re from typing import List from operator import xor tag_re = re.compile( r"""^(?!<[xX][mM][lL]) (<\s*([a-zA-Z_][-a-zA-Z_.\d]*) ((\s*[a-zA-Z_][-a-zA-Z_.\d]*=(['\"]).*\5)*) \s*(/)?>|</\s*([a-zA-Z_][-a-zA-Z_.\d]*)\s*>)""", re.X) open_tag_re = re.compile( r"""^(?!<[xX][mM][lL]) <\s*(?P<name>[a-zA-Z_][-a-zA-Z_.\d]*) (?P<attrs>(\s*[a-zA-Z_][-a-zA-Z_.\d]*=(['\"]).*\4)*)\s*>""", re.X) close_tag_re = re.compile( r"""^(?!<[xX][mM][lL])</(?P<name>[a-zA-Z_][-a-zA-Z_.\d]*)\s*>""", re.X) self_closed_tag_re = re.compile(r"""^(?!<[xX][mM][lL]) <\s*(?P<name>[a-zA-Z_][-a-zA-Z_.\d]*) (?P<attrs>(\s*[a-zA-Z_][-a-zA-Z_.\d]*=(['\"]).*\4)*)\s*/>""", re.X) data_re = re.compile(r'\s*(?P<data>\S[^<>]+)') attribute_re = re.compile( r"""[a-zA-Z_][-a-zA-Z_.\d]*=(["']).*\1""") decl_re = re.compile( r"""<\?xml\s+ version=['"](?P<ver>\d\.\d)['"] (?:\s+encoding=['"](?P<enc>[-a-zA-Z\d]+)['"])? (?:\s+standalone=['"](?P<stand>yes|no)['"])? \s*\?>""", re.X) class XmlLexerError(Exception): pass def read_xml_file(f) -> str: s = f.read().replace('\n', '').lstrip().rstrip() return s def get_tokens(f) -> List[str]: tokens: List[str] = [] s = read_xml_file(f) tmp_p = 0 for p in range(len(s)): c = s[p] if c == '<': pros_data_match = data_re.match(s[tmp_p:p]) if pros_data_match and pros_data_match.group('data'): tokens.append(pros_data_match.group('data')) tmp_p = p elif c == '>': pros_tag_match = tag_re.match(s[tmp_p:p + 1]) pros_decl_match = decl_re.match(s[tmp_p:p + 1]) if xor(bool(pros_tag_match), bool(pros_decl_match)): match = pros_tag_match or pros_decl_match tokens.append( match.group(0)) else: raise XmlLexerError( 'Invalid tag: {}'.format(s[tmp_p:p + 1])) tmp_p = p + 1 return tokens
[ "re.compile" ]
[((69, 263), 're.compile', 're.compile', (['"""^(?!<[xX][mM][lL])\n (<\\\\s*([a-zA-Z_][-a-zA-Z_.\\\\d]*)\n ((\\\\s*[a-zA-Z_][-a-zA-Z_.\\\\d]*=([\'\\\\"]).*\\\\5)*)\n \\\\s*(/)?>|</\\\\s*([a-zA-Z_][-a-zA-Z_.\\\\d]*)\\\\s*>)"""', 're.X'], {}), '(\n """^(?!<[xX][mM][lL])\n (<\\\\s*([a-zA-Z_][-a-zA-Z_.\\\\d]*)\n ((\\\\s*[a-zA-Z_][-a-zA-Z_.\\\\d]*=([\'\\\\"]).*\\\\5)*)\n \\\\s*(/)?>|</\\\\s*([a-zA-Z_][-a-zA-Z_.\\\\d]*)\\\\s*>)"""\n , re.X)\n', (79, 263), False, 'import re\n'), ((269, 431), 're.compile', 're.compile', (['"""^(?!<[xX][mM][lL])\n <\\\\s*(?P<name>[a-zA-Z_][-a-zA-Z_.\\\\d]*)\n (?P<attrs>(\\\\s*[a-zA-Z_][-a-zA-Z_.\\\\d]*=([\'\\\\"]).*\\\\4)*)\\\\s*>"""', 're.X'], {}), '(\n """^(?!<[xX][mM][lL])\n <\\\\s*(?P<name>[a-zA-Z_][-a-zA-Z_.\\\\d]*)\n (?P<attrs>(\\\\s*[a-zA-Z_][-a-zA-Z_.\\\\d]*=([\'\\\\"]).*\\\\4)*)\\\\s*>"""\n , re.X)\n', (279, 431), False, 'import re\n'), ((441, 520), 're.compile', 're.compile', (['"""^(?!<[xX][mM][lL])</(?P<name>[a-zA-Z_][-a-zA-Z_.\\\\d]*)\\\\s*>"""', 're.X'], {}), "('^(?!<[xX][mM][lL])</(?P<name>[a-zA-Z_][-a-zA-Z_.\\\\d]*)\\\\s*>', re.X)\n", (451, 520), False, 'import re\n'), ((555, 710), 're.compile', 're.compile', (['"""^(?!<[xX][mM][lL])\n<\\\\s*(?P<name>[a-zA-Z_][-a-zA-Z_.\\\\d]*)\n(?P<attrs>(\\\\s*[a-zA-Z_][-a-zA-Z_.\\\\d]*=([\'\\\\"]).*\\\\4)*)\\\\s*/>"""', 're.X'], {}), '(\n """^(?!<[xX][mM][lL])\n<\\\\s*(?P<name>[a-zA-Z_][-a-zA-Z_.\\\\d]*)\n(?P<attrs>(\\\\s*[a-zA-Z_][-a-zA-Z_.\\\\d]*=([\'\\\\"]).*\\\\4)*)\\\\s*/>"""\n , re.X)\n', (565, 710), False, 'import re\n'), ((738, 775), 're.compile', 're.compile', (['"""\\\\s*(?P<data>\\\\S[^<>]+)"""'], {}), "('\\\\s*(?P<data>\\\\S[^<>]+)')\n", (748, 775), False, 'import re\n'), ((791, 842), 're.compile', 're.compile', (['"""[a-zA-Z_][-a-zA-Z_.\\\\d]*=(["\']).*\\\\1"""'], {}), '(\'[a-zA-Z_][-a-zA-Z_.\\\\d]*=(["\\\']).*\\\\1\')\n', (801, 842), False, 'import re\n'), ((861, 1061), 're.compile', 're.compile', (['"""<\\\\?xml\\\\s+\n version=[\'"](?P<ver>\\\\d\\\\.\\\\d)[\'"]\n (?:\\\\s+encoding=[\'"](?P<enc>[-a-zA-Z\\\\d]+)[\'"])?\n (?:\\\\s+standalone=[\'"](?P<stand>yes|no)[\'"])?\n \\\\s*\\\\?>"""', 're.X'], {}), '(\n """<\\\\?xml\\\\s+\n version=[\'"](?P<ver>\\\\d\\\\.\\\\d)[\'"]\n (?:\\\\s+encoding=[\'"](?P<enc>[-a-zA-Z\\\\d]+)[\'"])?\n (?:\\\\s+standalone=[\'"](?P<stand>yes|no)[\'"])?\n \\\\s*\\\\?>"""\n , re.X)\n', (871, 1061), False, 'import re\n')]
import cv2 import zmq import json import base64 import numpy as np context = zmq.Context() footage_socket = context.socket(zmq.SUB) try: with open('_config.json') as config_file: cfg = json.load(config_file) footage_socket.bind('tcp://{ip}:{port}'.format( ip=str(cfg['ip']), port=str(cfg['port']) )) except: ip = input('IP your camera [* = localhost]: ') port = input('Port your camera [default: 5555]: ') footage_socket.bind('tcp://{ip}:{port}'.format( ip=str(ip), port=str(port) )) finally: footage_socket.setsockopt_string(zmq.SUBSCRIBE, np.unicode('')) while True: try: frame = footage_socket.recv_string() img = base64.b64decode(frame) npimg = np.fromstring(img, dtype=np.uint8) source = cv2.imdecode(npimg, 1) cv2.imshow("Stream", source) cv2.waitKey(1) except KeyboardInterrupt: cv2.destroyAllWindows() break
[ "base64.b64decode", "numpy.unicode", "cv2.imshow", "cv2.waitKey", "cv2.destroyAllWindows", "cv2.imdecode", "json.load", "numpy.fromstring", "zmq.Context" ]
[((78, 91), 'zmq.Context', 'zmq.Context', ([], {}), '()\n', (89, 91), False, 'import zmq\n'), ((200, 222), 'json.load', 'json.load', (['config_file'], {}), '(config_file)\n', (209, 222), False, 'import json\n'), ((622, 636), 'numpy.unicode', 'np.unicode', (['""""""'], {}), "('')\n", (632, 636), True, 'import numpy as np\n'), ((736, 759), 'base64.b64decode', 'base64.b64decode', (['frame'], {}), '(frame)\n', (752, 759), False, 'import base64\n'), ((780, 814), 'numpy.fromstring', 'np.fromstring', (['img'], {'dtype': 'np.uint8'}), '(img, dtype=np.uint8)\n', (793, 814), True, 'import numpy as np\n'), ((837, 859), 'cv2.imdecode', 'cv2.imdecode', (['npimg', '(1)'], {}), '(npimg, 1)\n', (849, 859), False, 'import cv2\n'), ((873, 901), 'cv2.imshow', 'cv2.imshow', (['"""Stream"""', 'source'], {}), "('Stream', source)\n", (883, 901), False, 'import cv2\n'), ((914, 928), 'cv2.waitKey', 'cv2.waitKey', (['(1)'], {}), '(1)\n', (925, 928), False, 'import cv2\n'), ((976, 999), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (997, 999), False, 'import cv2\n')]
import numpy as np import numba import math def dtft(x, omegas): """ Exact evaluation the DTFT at the indicated points omega for the signal x Note this is incredibly slow Note x runs from 0 to N-1 """ N = len(x) ns = np.arange(N) W = np.zeros((len(omegas), N), dtype=np.complex128) for wi, w in enumerate(omegas): W[wi, :] = np.exp(-1.0j * w * ns) return np.dot(W, x) @numba.jit(nopython=True) def nextpow2(n): """ Return the smallest power of two greater than or equal to n. """ return int(math.ceil(math.log(n)/math.log(2))) # now try ourselves a chirp-z transform @numba.jit def chirpz(x, M, A, W): """ chirp z transform per Rabiner derivation pp1256 x is our (complex) signal of length N """ N = len(x) L = 2**(nextpow2(N + M -1)) # or nearest power of two yn = np.zeros(L, dtype=np.complex128) for n in range(N): yn_scale = A**(-n) * W**((n**2.0)/2.0) yn[n] = x[n] * yn_scale Yr = np.fft.fft(yn) vn = np.zeros(L, dtype=np.complex128) for n in range(M): vn[n] = W**((-n**2.0)/2.0) for n in range(L-N+1, L): vn[n] = W**(-((L-n)**2.0)/2.0) Vr = np.fft.fft(vn) Gr = Yr * Vr gk = np.fft.ifft(Gr) #gk = np.convolve(yn, vn) Xk = np.zeros(M, dtype=np.complex128) for k in range(M): g_scale = W**((k**2.0)/2.0) Xk[k] = g_scale * gk[k] return Xk @numba.jit def chirpz2d(x, M, A, W): N = len(x) x = x.T out = np.zeros((N, M), dtype=np.complex128) for i in range(N): out[i] = chirpz(x[i], M, A, W) out2d = np.zeros((M, M), dtype=np.complex128) for i in range(M): out2d[i] = chirpz(out[:, i], M, A, W) return out2d @numba.jit def fchirpz2d(x, M, A, W): """ chirp z transform per Rabiner derivation pp1256 x is our (complex) signal of length N assume x is square, output M will be square, dims are the same on all sides """ N = len(x) L = 2**(nextpow2(N + M -1)) # or nearest power of two yn = np.zeros((L, L), dtype=np.complex128) ns = np.arange(N) ms = np.arange(M) yn_scale = A**(-ns) * W**((ns**2.0)/2.0) a = np.outer(yn_scale, yn_scale) yn[:N, :N] = x * np.outer(yn_scale, yn_scale) Yr = np.fft.fft2(yn) vn = np.zeros(L, dtype=np.complex128) for n in range(M): vn[n] = W**((-n**2.0)/2.0) for n in range(L-N+1, L): vn[n] = W**(-((L-n)**2.0)/2.0) Vr = np.fft.fft2(np.outer(vn, vn)) Gr = Yr * Vr gk = np.fft.ifft2(Gr) Xk = W**((ms**2.0)/2.0) return gk[:M, :M] * np.outer(Xk, Xk) def zoom_fft(x, theta_start, step_size, M): """ "zoomed" version of the fft, produces M step_sized samples around the unit circle starting at theta_start """ A = np.exp(1j * theta_start) W = np.exp(-1j * step_size) return chirpz(x, M, A, W) def zoom_fft2(x, theta_start, step_size, M): """ "zoomed" version of the fft2, produces M step_sized samples around the unit circle starting at theta_start """ A = np.exp(1j * theta_start) W = np.exp(-1j * step_size) return fchirpz2d(x, M, A, W)
[ "numpy.fft.ifft2", "numpy.fft.fft", "numpy.fft.fft2", "numpy.exp", "math.log", "numpy.dot", "numba.jit", "numpy.zeros", "numpy.outer", "numpy.fft.ifft", "numpy.arange" ]
[((434, 458), 'numba.jit', 'numba.jit', ([], {'nopython': '(True)'}), '(nopython=True)\n', (443, 458), False, 'import numba\n'), ((252, 264), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (261, 264), True, 'import numpy as np\n'), ((419, 431), 'numpy.dot', 'np.dot', (['W', 'x'], {}), '(W, x)\n', (425, 431), True, 'import numpy as np\n'), ((888, 920), 'numpy.zeros', 'np.zeros', (['L'], {'dtype': 'np.complex128'}), '(L, dtype=np.complex128)\n', (896, 920), True, 'import numpy as np\n'), ((1033, 1047), 'numpy.fft.fft', 'np.fft.fft', (['yn'], {}), '(yn)\n', (1043, 1047), True, 'import numpy as np\n'), ((1062, 1094), 'numpy.zeros', 'np.zeros', (['L'], {'dtype': 'np.complex128'}), '(L, dtype=np.complex128)\n', (1070, 1094), True, 'import numpy as np\n'), ((1249, 1263), 'numpy.fft.fft', 'np.fft.fft', (['vn'], {}), '(vn)\n', (1259, 1263), True, 'import numpy as np\n'), ((1300, 1315), 'numpy.fft.ifft', 'np.fft.ifft', (['Gr'], {}), '(Gr)\n', (1311, 1315), True, 'import numpy as np\n'), ((1360, 1392), 'numpy.zeros', 'np.zeros', (['M'], {'dtype': 'np.complex128'}), '(M, dtype=np.complex128)\n', (1368, 1392), True, 'import numpy as np\n'), ((1583, 1620), 'numpy.zeros', 'np.zeros', (['(N, M)'], {'dtype': 'np.complex128'}), '((N, M), dtype=np.complex128)\n', (1591, 1620), True, 'import numpy as np\n'), ((1695, 1732), 'numpy.zeros', 'np.zeros', (['(M, M)'], {'dtype': 'np.complex128'}), '((M, M), dtype=np.complex128)\n', (1703, 1732), True, 'import numpy as np\n'), ((2142, 2179), 'numpy.zeros', 'np.zeros', (['(L, L)'], {'dtype': 'np.complex128'}), '((L, L), dtype=np.complex128)\n', (2150, 2179), True, 'import numpy as np\n'), ((2189, 2201), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (2198, 2201), True, 'import numpy as np\n'), ((2211, 2223), 'numpy.arange', 'np.arange', (['M'], {}), '(M)\n', (2220, 2223), True, 'import numpy as np\n'), ((2288, 2316), 'numpy.outer', 'np.outer', (['yn_scale', 'yn_scale'], {}), '(yn_scale, yn_scale)\n', (2296, 2316), True, 'import numpy as np\n'), ((2378, 2393), 'numpy.fft.fft2', 'np.fft.fft2', (['yn'], {}), '(yn)\n', (2389, 2393), True, 'import numpy as np\n'), ((2408, 2440), 'numpy.zeros', 'np.zeros', (['L'], {'dtype': 'np.complex128'}), '(L, dtype=np.complex128)\n', (2416, 2440), True, 'import numpy as np\n'), ((2661, 2677), 'numpy.fft.ifft2', 'np.fft.ifft2', (['Gr'], {}), '(Gr)\n', (2673, 2677), True, 'import numpy as np\n'), ((2954, 2980), 'numpy.exp', 'np.exp', (['(1.0j * theta_start)'], {}), '(1.0j * theta_start)\n', (2960, 2980), True, 'import numpy as np\n'), ((2987, 3012), 'numpy.exp', 'np.exp', (['(-1.0j * step_size)'], {}), '(-1.0j * step_size)\n', (2993, 3012), True, 'import numpy as np\n'), ((3236, 3262), 'numpy.exp', 'np.exp', (['(1.0j * theta_start)'], {}), '(1.0j * theta_start)\n', (3242, 3262), True, 'import numpy as np\n'), ((3269, 3294), 'numpy.exp', 'np.exp', (['(-1.0j * step_size)'], {}), '(-1.0j * step_size)\n', (3275, 3294), True, 'import numpy as np\n'), ((376, 398), 'numpy.exp', 'np.exp', (['(-1.0j * w * ns)'], {}), '(-1.0j * w * ns)\n', (382, 398), True, 'import numpy as np\n'), ((2339, 2367), 'numpy.outer', 'np.outer', (['yn_scale', 'yn_scale'], {}), '(yn_scale, yn_scale)\n', (2347, 2367), True, 'import numpy as np\n'), ((2607, 2623), 'numpy.outer', 'np.outer', (['vn', 'vn'], {}), '(vn, vn)\n', (2615, 2623), True, 'import numpy as np\n'), ((2749, 2765), 'numpy.outer', 'np.outer', (['Xk', 'Xk'], {}), '(Xk, Xk)\n', (2757, 2765), True, 'import numpy as np\n'), ((582, 593), 'math.log', 'math.log', (['n'], {}), '(n)\n', (590, 593), False, 'import math\n'), ((594, 605), 'math.log', 'math.log', (['(2)'], {}), '(2)\n', (602, 605), False, 'import math\n')]
import sys import pytest from hypothesis import strategies as st from hypothesis import given, settings, example from unicodedata import normalize # For every (n1, n2, n3) triple, applying n1 then n2 must be the same # as applying n3. # Reference: http://unicode.org/reports/tr15/#Design_Goals compositions = [ ('NFC', 'NFC', 'NFC'), ('NFC', 'NFD', 'NFD'), ('NFC', 'NFKC', 'NFKC'), ('NFC', 'NFKD', 'NFKD'), ('NFD', 'NFC', 'NFC'), ('NFD', 'NFD', 'NFD'), ('NFD', 'NFKC', 'NFKC'), ('NFD', 'NFKD', 'NFKD'), ('NFKC', 'NFC', 'NFKC'), ('NFKC', 'NFD', 'NFKD'), ('NFKC', 'NFKC', 'NFKC'), ('NFKC', 'NFKD', 'NFKD'), ('NFKD', 'NFC', 'NFKC'), ('NFKD', 'NFD', 'NFKD'), ('NFKD', 'NFKC', 'NFKC'), ('NFKD', 'NFKD', 'NFKD'), ] @pytest.mark.parametrize('norm1, norm2, norm3', compositions) @settings(max_examples=1000) @example(s=u'---\uafb8\u11a7---') # issue 2289 @given(s=st.text()) def test_composition(s, norm1, norm2, norm3): assert normalize(norm2, normalize(norm1, s)) == normalize(norm3, s) @given(st.text(), st.text(), st.text()) def test_find(u, prefix, suffix): s = prefix + u + suffix assert 0 <= s.find(u) <= len(prefix) assert s.find(u, len(prefix), len(s) - len(suffix)) == len(prefix) @given(st.text(), st.text(), st.text()) def test_index(u, prefix, suffix): s = prefix + u + suffix assert 0 <= s.index(u) <= len(prefix) assert s.index(u, len(prefix), len(s) - len(suffix)) == len(prefix) @given(st.text(), st.text(), st.text()) def test_rfind(u, prefix, suffix): s = prefix + u + suffix assert s.rfind(u) >= len(prefix) assert s.rfind(u, len(prefix), len(s) - len(suffix)) == len(prefix) @given(st.text(), st.text(), st.text()) def test_rindex(u, prefix, suffix): s = prefix + u + suffix assert s.rindex(u) >= len(prefix) assert s.rindex(u, len(prefix), len(s) - len(suffix)) == len(prefix) def adjust_indices(u, start, end): if end < 0: end = max(end + len(u), 0) else: end = min(end, len(u)) if start < 0: start = max(start + len(u), 0) return start, end @given(st.text(), st.text()) def test_startswith_basic(u, v): assert u.startswith(v) is (u[:len(v)] == v) @example(u'x', u'', 1) @example(u'x', u'', 2) @given(st.text(), st.text(), st.integers()) def test_startswith_2(u, v, start): if v or sys.version_info[0] == 2: expected = u[start:].startswith(v) else: # CPython leaks implementation details in this case expected = start <= len(u) assert u.startswith(v, start) is expected @example(u'x', u'', 1, 0) @example(u'xx', u'', -1, 0) @given(st.text(), st.text(), st.integers(), st.integers()) def test_startswith_3(u, v, start, end): if v or sys.version_info[0] == 2: expected = u[start:end].startswith(v) else: # CPython leaks implementation details in this case start0, end0 = adjust_indices(u, start, end) expected = start0 <= len(u) and start0 <= end0 assert u.startswith(v, start, end) is expected @given(st.text(), st.text()) def test_endswith_basic(u, v): if len(v) > len(u): assert u.endswith(v) is False else: assert u.endswith(v) is (u[len(u) - len(v):] == v) @example(u'x', u'', 1) @example(u'x', u'', 2) @given(st.text(), st.text(), st.integers()) def test_endswith_2(u, v, start): if v or sys.version_info[0] == 2: expected = u[start:].endswith(v) else: # CPython leaks implementation details in this case expected = start <= len(u) assert u.endswith(v, start) is expected @example(u'x', u'', 1, 0) @example(u'xx', u'', -1, 0) @given(st.text(), st.text(), st.integers(), st.integers()) def test_endswith_3(u, v, start, end): if v or sys.version_info[0] == 2: expected = u[start:end].endswith(v) else: # CPython leaks implementation details in this case start0, end0 = adjust_indices(u, start, end) expected = start0 <= len(u) and start0 <= end0 assert u.endswith(v, start, end) is expected
[ "hypothesis.strategies.text", "hypothesis.example", "hypothesis.strategies.integers", "pytest.mark.parametrize", "hypothesis.settings", "unicodedata.normalize" ]
[((777, 837), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""norm1, norm2, norm3"""', 'compositions'], {}), "('norm1, norm2, norm3', compositions)\n", (800, 837), False, 'import pytest\n'), ((839, 866), 'hypothesis.settings', 'settings', ([], {'max_examples': '(1000)'}), '(max_examples=1000)\n', (847, 866), False, 'from hypothesis import given, settings, example\n'), ((868, 890), 'hypothesis.example', 'example', ([], {'s': 'u"""---꾸ᆧ---"""'}), "(s=u'---꾸ᆧ---')\n", (875, 890), False, 'from hypothesis import given, settings, example\n'), ((2235, 2256), 'hypothesis.example', 'example', (['u"""x"""', 'u""""""', '(1)'], {}), "(u'x', u'', 1)\n", (2242, 2256), False, 'from hypothesis import given, settings, example\n'), ((2258, 2279), 'hypothesis.example', 'example', (['u"""x"""', 'u""""""', '(2)'], {}), "(u'x', u'', 2)\n", (2265, 2279), False, 'from hypothesis import given, settings, example\n'), ((2587, 2611), 'hypothesis.example', 'example', (['u"""x"""', 'u""""""', '(1)', '(0)'], {}), "(u'x', u'', 1, 0)\n", (2594, 2611), False, 'from hypothesis import given, settings, example\n'), ((2613, 2639), 'hypothesis.example', 'example', (['u"""xx"""', 'u""""""', '(-1)', '(0)'], {}), "(u'xx', u'', -1, 0)\n", (2620, 2639), False, 'from hypothesis import given, settings, example\n'), ((3240, 3261), 'hypothesis.example', 'example', (['u"""x"""', 'u""""""', '(1)'], {}), "(u'x', u'', 1)\n", (3247, 3261), False, 'from hypothesis import given, settings, example\n'), ((3263, 3284), 'hypothesis.example', 'example', (['u"""x"""', 'u""""""', '(2)'], {}), "(u'x', u'', 2)\n", (3270, 3284), False, 'from hypothesis import given, settings, example\n'), ((3586, 3610), 'hypothesis.example', 'example', (['u"""x"""', 'u""""""', '(1)', '(0)'], {}), "(u'x', u'', 1, 0)\n", (3593, 3610), False, 'from hypothesis import given, settings, example\n'), ((3612, 3638), 'hypothesis.example', 'example', (['u"""xx"""', 'u""""""', '(-1)', '(0)'], {}), "(u'xx', u'', -1, 0)\n", (3619, 3638), False, 'from hypothesis import given, settings, example\n'), ((1061, 1070), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1068, 1070), True, 'from hypothesis import strategies as st\n'), ((1072, 1081), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1079, 1081), True, 'from hypothesis import strategies as st\n'), ((1083, 1092), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1090, 1092), True, 'from hypothesis import strategies as st\n'), ((1276, 1285), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1283, 1285), True, 'from hypothesis import strategies as st\n'), ((1287, 1296), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1294, 1296), True, 'from hypothesis import strategies as st\n'), ((1298, 1307), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1305, 1307), True, 'from hypothesis import strategies as st\n'), ((1494, 1503), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1501, 1503), True, 'from hypothesis import strategies as st\n'), ((1505, 1514), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1512, 1514), True, 'from hypothesis import strategies as st\n'), ((1516, 1525), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1523, 1525), True, 'from hypothesis import strategies as st\n'), ((1707, 1716), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1714, 1716), True, 'from hypothesis import strategies as st\n'), ((1718, 1727), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1725, 1727), True, 'from hypothesis import strategies as st\n'), ((1729, 1738), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (1736, 1738), True, 'from hypothesis import strategies as st\n'), ((2130, 2139), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (2137, 2139), True, 'from hypothesis import strategies as st\n'), ((2141, 2150), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (2148, 2150), True, 'from hypothesis import strategies as st\n'), ((2287, 2296), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (2294, 2296), True, 'from hypothesis import strategies as st\n'), ((2298, 2307), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (2305, 2307), True, 'from hypothesis import strategies as st\n'), ((2309, 2322), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (2320, 2322), True, 'from hypothesis import strategies as st\n'), ((2647, 2656), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (2654, 2656), True, 'from hypothesis import strategies as st\n'), ((2658, 2667), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (2665, 2667), True, 'from hypothesis import strategies as st\n'), ((2669, 2682), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (2680, 2682), True, 'from hypothesis import strategies as st\n'), ((2684, 2697), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (2695, 2697), True, 'from hypothesis import strategies as st\n'), ((3054, 3063), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (3061, 3063), True, 'from hypothesis import strategies as st\n'), ((3065, 3074), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (3072, 3074), True, 'from hypothesis import strategies as st\n'), ((3292, 3301), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (3299, 3301), True, 'from hypothesis import strategies as st\n'), ((3303, 3312), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (3310, 3312), True, 'from hypothesis import strategies as st\n'), ((3314, 3327), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (3325, 3327), True, 'from hypothesis import strategies as st\n'), ((3646, 3655), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (3653, 3655), True, 'from hypothesis import strategies as st\n'), ((3657, 3666), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (3664, 3666), True, 'from hypothesis import strategies as st\n'), ((3668, 3681), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (3679, 3681), True, 'from hypothesis import strategies as st\n'), ((3683, 3696), 'hypothesis.strategies.integers', 'st.integers', ([], {}), '()\n', (3694, 3696), True, 'from hypothesis import strategies as st\n'), ((1033, 1052), 'unicodedata.normalize', 'normalize', (['norm3', 's'], {}), '(norm3, s)\n', (1042, 1052), False, 'from unicodedata import normalize\n'), ((924, 933), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (931, 933), True, 'from hypothesis import strategies as st\n'), ((1009, 1028), 'unicodedata.normalize', 'normalize', (['norm1', 's'], {}), '(norm1, s)\n', (1018, 1028), False, 'from unicodedata import normalize\n')]
from reader import Reader,TRAIN,TEST,DEV import matplotlib.pyplot as plt from preprocess import preprocess from gensim.models.word2vec import Word2Vec from gensim.models.phrases import Phrases from progressbar import AnimatedMarker, Bar, BouncingBar, Counter, ETA, \ AdaptiveETA, FileTransferSpeed, FormatLabel, Percentage, \ ProgressBar, ReverseBar, RotatingMarker, \ SimpleProgress, Timer from scipy import stats class Anaysis: def __init__(self): reader = Reader() print('loading data') self.X_train=reader.getData(TRAIN) print('train data has been loaded!') self.X_valid=reader.getData(DEV) print('valid data has been loaded!') self.X_test=reader.getData(TEST) print('test data has been loaded!') self.c_title=[] self.c_body=[] self.bigram=Phrases.load('./data/bigram.dat') self.trigram=Phrases.load('./data/trigram.dat') def count(self, ori_q, rel_q): ori_q[0]=preprocess(ori_q[0],bigram=self.bigram,trigram=self.trigram) rel_q[0]=preprocess(rel_q[0],bigram=self.bigram,trigram=self.trigram) ori_q[1]=preprocess(ori_q[1],bigram=self.bigram,trigram=self.trigram) rel_q[1]=preprocess(rel_q[1],bigram=self.bigram,trigram=self.trigram) self.c_title.append(len(ori_q[0].split())) self.c_title.append(len(rel_q[0].split())) self.c_body.append(len(ori_q[1].split())) self.c_body.append(len(rel_q[1].split())) def lenDistribution(self, data): pbar = ProgressBar(widgets=[Percentage(), Bar(), ETA()], maxval=len(data)).start() for i in range(len(data)): samples = data[i] ori_q_id=samples[0]['ORGQ_ID'] ori_q=samples[1] for j in range(2,len(samples),2): rel_q=samples[j+1] self.count(ori_q,rel_q) pbar.update(i) def show(self): print(stats.scoreatpercentile(self.c_title, 95)) plt.hist(self.c_title) plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() print(stats.scoreatpercentile(self.c_body, 95)) plt.hist(self.c_body) plt.title("Gaussian Histogram") plt.xlabel("Value") plt.ylabel("Frequency") plt.show() a=Anaysis() a.lenDistribution(a.X_train) a.lenDistribution(a.X_valid) a.lenDistribution(a.X_test) a.show()
[ "progressbar.Bar", "matplotlib.pyplot.hist", "scipy.stats.scoreatpercentile", "gensim.models.phrases.Phrases.load", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.xlabel", "preprocess.preprocess", "progressbar.Percentage", "progressbar.ETA", "reader.Reader", "matplotlib.pyplot.title", "matplotlib.pyplot.show" ]
[((484, 492), 'reader.Reader', 'Reader', ([], {}), '()\n', (490, 492), False, 'from reader import Reader, TRAIN, TEST, DEV\n'), ((849, 882), 'gensim.models.phrases.Phrases.load', 'Phrases.load', (['"""./data/bigram.dat"""'], {}), "('./data/bigram.dat')\n", (861, 882), False, 'from gensim.models.phrases import Phrases\n'), ((904, 938), 'gensim.models.phrases.Phrases.load', 'Phrases.load', (['"""./data/trigram.dat"""'], {}), "('./data/trigram.dat')\n", (916, 938), False, 'from gensim.models.phrases import Phrases\n'), ((992, 1054), 'preprocess.preprocess', 'preprocess', (['ori_q[0]'], {'bigram': 'self.bigram', 'trigram': 'self.trigram'}), '(ori_q[0], bigram=self.bigram, trigram=self.trigram)\n', (1002, 1054), False, 'from preprocess import preprocess\n'), ((1070, 1132), 'preprocess.preprocess', 'preprocess', (['rel_q[0]'], {'bigram': 'self.bigram', 'trigram': 'self.trigram'}), '(rel_q[0], bigram=self.bigram, trigram=self.trigram)\n', (1080, 1132), False, 'from preprocess import preprocess\n'), ((1148, 1210), 'preprocess.preprocess', 'preprocess', (['ori_q[1]'], {'bigram': 'self.bigram', 'trigram': 'self.trigram'}), '(ori_q[1], bigram=self.bigram, trigram=self.trigram)\n', (1158, 1210), False, 'from preprocess import preprocess\n'), ((1226, 1288), 'preprocess.preprocess', 'preprocess', (['rel_q[1]'], {'bigram': 'self.bigram', 'trigram': 'self.trigram'}), '(rel_q[1], bigram=self.bigram, trigram=self.trigram)\n', (1236, 1288), False, 'from preprocess import preprocess\n'), ((1993, 2015), 'matplotlib.pyplot.hist', 'plt.hist', (['self.c_title'], {}), '(self.c_title)\n', (2001, 2015), True, 'import matplotlib.pyplot as plt\n'), ((2024, 2055), 'matplotlib.pyplot.title', 'plt.title', (['"""Gaussian Histogram"""'], {}), "('Gaussian Histogram')\n", (2033, 2055), True, 'import matplotlib.pyplot as plt\n'), ((2064, 2083), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Value"""'], {}), "('Value')\n", (2074, 2083), True, 'import matplotlib.pyplot as plt\n'), ((2092, 2115), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency"""'], {}), "('Frequency')\n", (2102, 2115), True, 'import matplotlib.pyplot as plt\n'), ((2124, 2134), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2132, 2134), True, 'import matplotlib.pyplot as plt\n'), ((2199, 2220), 'matplotlib.pyplot.hist', 'plt.hist', (['self.c_body'], {}), '(self.c_body)\n', (2207, 2220), True, 'import matplotlib.pyplot as plt\n'), ((2229, 2260), 'matplotlib.pyplot.title', 'plt.title', (['"""Gaussian Histogram"""'], {}), "('Gaussian Histogram')\n", (2238, 2260), True, 'import matplotlib.pyplot as plt\n'), ((2269, 2288), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Value"""'], {}), "('Value')\n", (2279, 2288), True, 'import matplotlib.pyplot as plt\n'), ((2297, 2320), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Frequency"""'], {}), "('Frequency')\n", (2307, 2320), True, 'import matplotlib.pyplot as plt\n'), ((2329, 2339), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2337, 2339), True, 'import matplotlib.pyplot as plt\n'), ((1942, 1983), 'scipy.stats.scoreatpercentile', 'stats.scoreatpercentile', (['self.c_title', '(95)'], {}), '(self.c_title, 95)\n', (1965, 1983), False, 'from scipy import stats\n'), ((2149, 2189), 'scipy.stats.scoreatpercentile', 'stats.scoreatpercentile', (['self.c_body', '(95)'], {}), '(self.c_body, 95)\n', (2172, 2189), False, 'from scipy import stats\n'), ((1563, 1575), 'progressbar.Percentage', 'Percentage', ([], {}), '()\n', (1573, 1575), False, 'from progressbar import AnimatedMarker, Bar, BouncingBar, Counter, ETA, AdaptiveETA, FileTransferSpeed, FormatLabel, Percentage, ProgressBar, ReverseBar, RotatingMarker, SimpleProgress, Timer\n'), ((1577, 1582), 'progressbar.Bar', 'Bar', ([], {}), '()\n', (1580, 1582), False, 'from progressbar import AnimatedMarker, Bar, BouncingBar, Counter, ETA, AdaptiveETA, FileTransferSpeed, FormatLabel, Percentage, ProgressBar, ReverseBar, RotatingMarker, SimpleProgress, Timer\n'), ((1584, 1589), 'progressbar.ETA', 'ETA', ([], {}), '()\n', (1587, 1589), False, 'from progressbar import AnimatedMarker, Bar, BouncingBar, Counter, ETA, AdaptiveETA, FileTransferSpeed, FormatLabel, Percentage, ProgressBar, ReverseBar, RotatingMarker, SimpleProgress, Timer\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['RuleGroupNamespaceArgs', 'RuleGroupNamespace'] @pulumi.input_type class RuleGroupNamespaceArgs: def __init__(__self__, *, data: pulumi.Input[str], workspace_id: pulumi.Input[str], name: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a RuleGroupNamespace resource. :param pulumi.Input[str] data: the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). :param pulumi.Input[str] workspace_id: The id of the prometheus workspace the rule group namespace should be linked to :param pulumi.Input[str] name: The name of the rule group namespace """ pulumi.set(__self__, "data", data) pulumi.set(__self__, "workspace_id", workspace_id) if name is not None: pulumi.set(__self__, "name", name) @property @pulumi.getter def data(self) -> pulumi.Input[str]: """ the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). """ return pulumi.get(self, "data") @data.setter def data(self, value: pulumi.Input[str]): pulumi.set(self, "data", value) @property @pulumi.getter(name="workspaceId") def workspace_id(self) -> pulumi.Input[str]: """ The id of the prometheus workspace the rule group namespace should be linked to """ return pulumi.get(self, "workspace_id") @workspace_id.setter def workspace_id(self, value: pulumi.Input[str]): pulumi.set(self, "workspace_id", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the rule group namespace """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @pulumi.input_type class _RuleGroupNamespaceState: def __init__(__self__, *, data: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, workspace_id: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering RuleGroupNamespace resources. :param pulumi.Input[str] data: the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). :param pulumi.Input[str] name: The name of the rule group namespace :param pulumi.Input[str] workspace_id: The id of the prometheus workspace the rule group namespace should be linked to """ if data is not None: pulumi.set(__self__, "data", data) if name is not None: pulumi.set(__self__, "name", name) if workspace_id is not None: pulumi.set(__self__, "workspace_id", workspace_id) @property @pulumi.getter def data(self) -> Optional[pulumi.Input[str]]: """ the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). """ return pulumi.get(self, "data") @data.setter def data(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "data", value) @property @pulumi.getter def name(self) -> Optional[pulumi.Input[str]]: """ The name of the rule group namespace """ return pulumi.get(self, "name") @name.setter def name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "name", value) @property @pulumi.getter(name="workspaceId") def workspace_id(self) -> Optional[pulumi.Input[str]]: """ The id of the prometheus workspace the rule group namespace should be linked to """ return pulumi.get(self, "workspace_id") @workspace_id.setter def workspace_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "workspace_id", value) class RuleGroupNamespace(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, data: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, workspace_id: Optional[pulumi.Input[str]] = None, __props__=None): """ Manages an Amazon Managed Service for Prometheus (AMP) Rule Group Namespace ## Example Usage ```python import pulumi import pulumi_aws as aws demo_workspace = aws.amp.Workspace("demoWorkspace") demo_rule_group_namespace = aws.amp.RuleGroupNamespace("demoRuleGroupNamespace", workspace_id=demo_workspace.id, data=\"\"\"groups: - name: test rules: - record: metric:recording_rule expr: avg(rate(container_cpu_usage_seconds_total[5m])) \"\"\") ``` ## Import The prometheus rule group namespace can be imported using the arn, e.g., ```sh $ pulumi import aws:amp/ruleGroupNamespace:RuleGroupNamespace demo arn:aws:aps:us-west-2:123456789012:rulegroupsnamespace/IDstring/namespace_name ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] data: the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). :param pulumi.Input[str] name: The name of the rule group namespace :param pulumi.Input[str] workspace_id: The id of the prometheus workspace the rule group namespace should be linked to """ ... @overload def __init__(__self__, resource_name: str, args: RuleGroupNamespaceArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Manages an Amazon Managed Service for Prometheus (AMP) Rule Group Namespace ## Example Usage ```python import pulumi import pulumi_aws as aws demo_workspace = aws.amp.Workspace("demoWorkspace") demo_rule_group_namespace = aws.amp.RuleGroupNamespace("demoRuleGroupNamespace", workspace_id=demo_workspace.id, data=\"\"\"groups: - name: test rules: - record: metric:recording_rule expr: avg(rate(container_cpu_usage_seconds_total[5m])) \"\"\") ``` ## Import The prometheus rule group namespace can be imported using the arn, e.g., ```sh $ pulumi import aws:amp/ruleGroupNamespace:RuleGroupNamespace demo arn:aws:aps:us-west-2:123456789012:rulegroupsnamespace/IDstring/namespace_name ``` :param str resource_name: The name of the resource. :param RuleGroupNamespaceArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(RuleGroupNamespaceArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, data: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, workspace_id: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = RuleGroupNamespaceArgs.__new__(RuleGroupNamespaceArgs) if data is None and not opts.urn: raise TypeError("Missing required property 'data'") __props__.__dict__["data"] = data __props__.__dict__["name"] = name if workspace_id is None and not opts.urn: raise TypeError("Missing required property 'workspace_id'") __props__.__dict__["workspace_id"] = workspace_id super(RuleGroupNamespace, __self__).__init__( 'aws:amp/ruleGroupNamespace:RuleGroupNamespace', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, data: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, workspace_id: Optional[pulumi.Input[str]] = None) -> 'RuleGroupNamespace': """ Get an existing RuleGroupNamespace resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] data: the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). :param pulumi.Input[str] name: The name of the rule group namespace :param pulumi.Input[str] workspace_id: The id of the prometheus workspace the rule group namespace should be linked to """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _RuleGroupNamespaceState.__new__(_RuleGroupNamespaceState) __props__.__dict__["data"] = data __props__.__dict__["name"] = name __props__.__dict__["workspace_id"] = workspace_id return RuleGroupNamespace(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def data(self) -> pulumi.Output[str]: """ the rule group namespace data that you want to be applied. See more [in AWS Docs](https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-Ruler.html). """ return pulumi.get(self, "data") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ The name of the rule group namespace """ return pulumi.get(self, "name") @property @pulumi.getter(name="workspaceId") def workspace_id(self) -> pulumi.Output[str]: """ The id of the prometheus workspace the rule group namespace should be linked to """ return pulumi.get(self, "workspace_id")
[ "pulumi.getter", "pulumi.set", "pulumi.ResourceOptions", "pulumi.get" ]
[((1726, 1759), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""workspaceId"""'}), "(name='workspaceId')\n", (1739, 1759), False, 'import pulumi\n'), ((4190, 4223), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""workspaceId"""'}), "(name='workspaceId')\n", (4203, 4223), False, 'import pulumi\n'), ((11723, 11756), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""workspaceId"""'}), "(name='workspaceId')\n", (11736, 11756), False, 'import pulumi\n'), ((1130, 1164), 'pulumi.set', 'pulumi.set', (['__self__', '"""data"""', 'data'], {}), "(__self__, 'data', data)\n", (1140, 1164), False, 'import pulumi\n'), ((1173, 1223), 'pulumi.set', 'pulumi.set', (['__self__', '"""workspace_id"""', 'workspace_id'], {}), "(__self__, 'workspace_id', workspace_id)\n", (1183, 1223), False, 'import pulumi\n'), ((1577, 1601), 'pulumi.get', 'pulumi.get', (['self', '"""data"""'], {}), "(self, 'data')\n", (1587, 1601), False, 'import pulumi\n'), ((1674, 1705), 'pulumi.set', 'pulumi.set', (['self', '"""data"""', 'value'], {}), "(self, 'data', value)\n", (1684, 1705), False, 'import pulumi\n'), ((1936, 1968), 'pulumi.get', 'pulumi.get', (['self', '"""workspace_id"""'], {}), "(self, 'workspace_id')\n", (1946, 1968), False, 'import pulumi\n'), ((2057, 2096), 'pulumi.set', 'pulumi.set', (['self', '"""workspace_id"""', 'value'], {}), "(self, 'workspace_id', value)\n", (2067, 2096), False, 'import pulumi\n'), ((2266, 2290), 'pulumi.get', 'pulumi.get', (['self', '"""name"""'], {}), "(self, 'name')\n", (2276, 2290), False, 'import pulumi\n'), ((2373, 2404), 'pulumi.set', 'pulumi.set', (['self', '"""name"""', 'value'], {}), "(self, 'name', value)\n", (2383, 2404), False, 'import pulumi\n'), ((3723, 3747), 'pulumi.get', 'pulumi.get', (['self', '"""data"""'], {}), "(self, 'data')\n", (3733, 3747), False, 'import pulumi\n'), ((3830, 3861), 'pulumi.set', 'pulumi.set', (['self', '"""data"""', 'value'], {}), "(self, 'data', value)\n", (3840, 3861), False, 'import pulumi\n'), ((4031, 4055), 'pulumi.get', 'pulumi.get', (['self', '"""name"""'], {}), "(self, 'name')\n", (4041, 4055), False, 'import pulumi\n'), ((4138, 4169), 'pulumi.set', 'pulumi.set', (['self', '"""name"""', 'value'], {}), "(self, 'name', value)\n", (4148, 4169), False, 'import pulumi\n'), ((4410, 4442), 'pulumi.get', 'pulumi.get', (['self', '"""workspace_id"""'], {}), "(self, 'workspace_id')\n", (4420, 4442), False, 'import pulumi\n'), ((4541, 4580), 'pulumi.set', 'pulumi.set', (['self', '"""workspace_id"""', 'value'], {}), "(self, 'workspace_id', value)\n", (4551, 4580), False, 'import pulumi\n'), ((11493, 11517), 'pulumi.get', 'pulumi.get', (['self', '"""data"""'], {}), "(self, 'data')\n", (11503, 11517), False, 'import pulumi\n'), ((11678, 11702), 'pulumi.get', 'pulumi.get', (['self', '"""name"""'], {}), "(self, 'name')\n", (11688, 11702), False, 'import pulumi\n'), ((11934, 11966), 'pulumi.get', 'pulumi.get', (['self', '"""workspace_id"""'], {}), "(self, 'workspace_id')\n", (11944, 11966), False, 'import pulumi\n'), ((1265, 1299), 'pulumi.set', 'pulumi.set', (['__self__', '"""name"""', 'name'], {}), "(__self__, 'name', name)\n", (1275, 1299), False, 'import pulumi\n'), ((3225, 3259), 'pulumi.set', 'pulumi.set', (['__self__', '"""data"""', 'data'], {}), "(__self__, 'data', data)\n", (3235, 3259), False, 'import pulumi\n'), ((3301, 3335), 'pulumi.set', 'pulumi.set', (['__self__', '"""name"""', 'name'], {}), "(__self__, 'name', name)\n", (3311, 3335), False, 'import pulumi\n'), ((3385, 3435), 'pulumi.set', 'pulumi.set', (['__self__', '"""workspace_id"""', 'workspace_id'], {}), "(__self__, 'workspace_id', workspace_id)\n", (3395, 3435), False, 'import pulumi\n'), ((8564, 8588), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {}), '()\n', (8586, 8588), False, 'import pulumi\n'), ((10880, 10909), 'pulumi.ResourceOptions', 'pulumi.ResourceOptions', ([], {'id': 'id'}), '(id=id)\n', (10902, 10909), False, 'import pulumi\n')]
import numpy as np import tensorflow as tf from baselines.common import tf_util as U def shift_up(x): return x-np.min(x) class MMD_Critic(object): def __init__(self, ob_size, ac_size, expert_data, reward_scale=1): self.expert_data = expert_data self.b1 = np.median(self._l2_distance(expert_data)) self.expert_tensor = tf.convert_to_tensor(expert_data, tf.float32) self.ob = tf.placeholder(tf.float32, shape=[None, expert_data.shape[1]]) self.b2 = None self.b2_tf = tf.placeholder(tf.float32) self.reward_scale = reward_scale ob_tf = tf.placeholder(tf.float32, shape=[None, ob_size]) ac_tf = tf.placeholder(tf.float32, shape=[None, ac_size]) in_tf = tf.concat([ob_tf, ac_tf], axis=1) reward = self.build_reward_op(in_tf, self.b2_tf) self.reward_func = U.function([ob_tf, ac_tf, self.b2_tf], reward) def set_b2(self, obs, acs): if self.b2 is None: rl_data = np.concatenate([obs, acs], axis=1) self.b2 = np.median(self._l2_distance(rl_data, base=self.expert_data)) def _l2_distance(self, data, base=None): if base is None: base = data n = data.shape[0] a = np.expand_dims(data, axis=1) #nx1xk b = np.expand_dims(base, axis=0) #1xmxk l2_dist = np.sum(np.square(a-b), axis=-1) return l2_dist def _l2_distance_tf(self, data, base=None): if base is None: base = data n = data.shape[0] a = tf.expand_dims(data, axis=1) #nx1xk b = tf.expand_dims(base, axis=0) #1xmxk l2_dist = tf.reduce_sum(tf.square(a-b), axis=-1) return l2_dist def get_reward(self, obs, acs, verbose=False): if obs.ndim == 1: return 0 #a shortcut to single reward as shift_up would make it zero anyway # obs = np.expand_dims(obs, axis=0) # acs = np.expand_dims(acs, axis=0) if self.b2 is not None: reward = self.reward_func(obs, acs, self.b2) return np.squeeze(shift_up(reward)) else: return 0 def build_reward_op(self, ob, mmd_b2): expert_l2 = self._l2_distance_tf(ob, self.expert_tensor) rl_l2 = self._l2_distance_tf(ob) expert_exp = tf.exp(-expert_l2 / self.b1) + tf.exp(-expert_l2 / mmd_b2) rl_exp = tf.exp(-rl_l2 / mmd_b2) + tf.exp(-rl_l2 / self.b1) reward = tf.reduce_mean(expert_exp, axis=-1) - tf.reduce_mean(rl_exp, axis=-1) return reward*self.reward_scale
[ "tensorflow.placeholder", "numpy.square", "tensorflow.concat", "tensorflow.exp", "numpy.expand_dims", "numpy.min", "tensorflow.convert_to_tensor", "tensorflow.expand_dims", "numpy.concatenate", "tensorflow.reduce_mean", "tensorflow.square", "baselines.common.tf_util.function" ]
[((118, 127), 'numpy.min', 'np.min', (['x'], {}), '(x)\n', (124, 127), True, 'import numpy as np\n'), ((355, 400), 'tensorflow.convert_to_tensor', 'tf.convert_to_tensor', (['expert_data', 'tf.float32'], {}), '(expert_data, tf.float32)\n', (375, 400), True, 'import tensorflow as tf\n'), ((419, 481), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, expert_data.shape[1]]'}), '(tf.float32, shape=[None, expert_data.shape[1]])\n', (433, 481), True, 'import tensorflow as tf\n'), ((526, 552), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {}), '(tf.float32)\n', (540, 552), True, 'import tensorflow as tf\n'), ((611, 660), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, ob_size]'}), '(tf.float32, shape=[None, ob_size])\n', (625, 660), True, 'import tensorflow as tf\n'), ((677, 726), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'shape': '[None, ac_size]'}), '(tf.float32, shape=[None, ac_size])\n', (691, 726), True, 'import tensorflow as tf\n'), ((743, 776), 'tensorflow.concat', 'tf.concat', (['[ob_tf, ac_tf]'], {'axis': '(1)'}), '([ob_tf, ac_tf], axis=1)\n', (752, 776), True, 'import tensorflow as tf\n'), ((862, 908), 'baselines.common.tf_util.function', 'U.function', (['[ob_tf, ac_tf, self.b2_tf]', 'reward'], {}), '([ob_tf, ac_tf, self.b2_tf], reward)\n', (872, 908), True, 'from baselines.common import tf_util as U\n'), ((1245, 1273), 'numpy.expand_dims', 'np.expand_dims', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (1259, 1273), True, 'import numpy as np\n'), ((1293, 1321), 'numpy.expand_dims', 'np.expand_dims', (['base'], {'axis': '(0)'}), '(base, axis=0)\n', (1307, 1321), True, 'import numpy as np\n'), ((1538, 1566), 'tensorflow.expand_dims', 'tf.expand_dims', (['data'], {'axis': '(1)'}), '(data, axis=1)\n', (1552, 1566), True, 'import tensorflow as tf\n'), ((1586, 1614), 'tensorflow.expand_dims', 'tf.expand_dims', (['base'], {'axis': '(0)'}), '(base, axis=0)\n', (1600, 1614), True, 'import tensorflow as tf\n'), ((993, 1027), 'numpy.concatenate', 'np.concatenate', (['[obs, acs]'], {'axis': '(1)'}), '([obs, acs], axis=1)\n', (1007, 1027), True, 'import numpy as np\n'), ((1354, 1370), 'numpy.square', 'np.square', (['(a - b)'], {}), '(a - b)\n', (1363, 1370), True, 'import numpy as np\n'), ((1654, 1670), 'tensorflow.square', 'tf.square', (['(a - b)'], {}), '(a - b)\n', (1663, 1670), True, 'import tensorflow as tf\n'), ((2307, 2335), 'tensorflow.exp', 'tf.exp', (['(-expert_l2 / self.b1)'], {}), '(-expert_l2 / self.b1)\n', (2313, 2335), True, 'import tensorflow as tf\n'), ((2338, 2365), 'tensorflow.exp', 'tf.exp', (['(-expert_l2 / mmd_b2)'], {}), '(-expert_l2 / mmd_b2)\n', (2344, 2365), True, 'import tensorflow as tf\n'), ((2383, 2406), 'tensorflow.exp', 'tf.exp', (['(-rl_l2 / mmd_b2)'], {}), '(-rl_l2 / mmd_b2)\n', (2389, 2406), True, 'import tensorflow as tf\n'), ((2409, 2433), 'tensorflow.exp', 'tf.exp', (['(-rl_l2 / self.b1)'], {}), '(-rl_l2 / self.b1)\n', (2415, 2433), True, 'import tensorflow as tf\n'), ((2451, 2486), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['expert_exp'], {'axis': '(-1)'}), '(expert_exp, axis=-1)\n', (2465, 2486), True, 'import tensorflow as tf\n'), ((2489, 2520), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['rl_exp'], {'axis': '(-1)'}), '(rl_exp, axis=-1)\n', (2503, 2520), True, 'import tensorflow as tf\n')]
from collections import namedtuple import os import re from typing import Iterator import sqlite3 from tqdm import tqdm # A 'transaction' that was proposed by c-lightning and that needs saving to the # backup. `version` is the `data_version` of the database **after** `transaction` # has been applied. A 'snapshot' represents a complete copy of the database. # This is used by the plugin from time to time to allow the backend to compress # the changelog and forms a new basis for the backup. # If `Change` contains a snapshot and a transaction, they apply in that order. Change = namedtuple('Change', ['version', 'snapshot', 'transaction']) class Backend(object): def __init__(self, destination: str): """Read the metadata from the destination and prepare any necessary resources. After this call the following members must be initialized: - backend.version: the last data version we wrote to the backend - backend.prev_version: the previous data version in case we need to roll back the last one """ self.version = None self.prev_version = None raise NotImplementedError def add_change(self, change: Change) -> bool: """Add a single change to the backend. This call should always make sure that the change has been correctly written and flushed before returning. """ raise NotImplementedError def initialize(self) -> bool: """Set up any resources needed by this backend. """ raise NotImplementedError def stream_changes(self) -> Iterator[Change]: """Retrieve changes from the backend in order to perform a restore. """ raise NotImplementedError def rewind(self) -> bool: """Remove the last change that was added to the backup Because the transaction is reported to the backup plugin before it is being committed to the database it can happen that we get notified about a transaction but then `lightningd` is stopped and the transaction is not committed. This means the backup includes an extraneous transaction which needs to be removed. A backend must allow a single rewind operation, and should fail additional calls to rewind (we may have at most one pending transaction not being committed at any time). """ raise NotImplementedError def compact(self): """Apply some incremental changes to the snapshot to reduce our size. """ raise NotImplementedError def _db_open(self, dest: str) -> sqlite3.Connection: db = sqlite3.connect(dest) db.execute("PRAGMA foreign_keys = 1") return db def _restore_snapshot(self, snapshot: bytes, dest: str): if os.path.exists(dest): os.unlink(dest) with open(dest, 'wb') as f: f.write(snapshot) self.db = self._db_open(dest) def _rewrite_stmt(self, stmt: str) -> str: """We had a stmt expansion bug in c-lightning, this replicates the fix. We were expanding statements incorrectly, missing some whitespace between a param and the `WHERE` keyword. This re-inserts the space. """ stmt = re.sub(r'reserved_til=([0-9]+)WHERE', r'reserved_til=\1 WHERE', stmt) stmt = re.sub(r'peer_id=([0-9]+)WHERE channels.id=', r'peer_id=\1 WHERE channels.id=', stmt) return stmt def _restore_transaction(self, tx: Iterator[str]): assert(self.db) cur = self.db.cursor() for q in tx: q = self._rewrite_stmt(q) cur.execute(q) def restore(self, dest: str, remove_existing: bool = False): """Restore the backup in this backend to its former glory. If `dest` is a directory, we assume the default database filename: lightningd.sqlite3 """ if os.path.isdir(dest): dest = os.path.join(dest, "lightningd.sqlite3") if os.path.exists(dest): if not remove_existing: raise ValueError( "Destination for backup restore exists: {dest}".format( dest=dest ) ) os.unlink(dest) self.db = self._db_open(dest) for c in tqdm(self.stream_changes(), total=self.version_count): if c.snapshot is not None: self._restore_snapshot(c.snapshot, dest) if c.transaction is not None: self._restore_transaction(c.transaction) self.db.commit()
[ "os.path.exists", "collections.namedtuple", "sqlite3.connect", "os.path.join", "os.path.isdir", "os.unlink", "re.sub" ]
[((583, 643), 'collections.namedtuple', 'namedtuple', (['"""Change"""', "['version', 'snapshot', 'transaction']"], {}), "('Change', ['version', 'snapshot', 'transaction'])\n", (593, 643), False, 'from collections import namedtuple\n'), ((2646, 2667), 'sqlite3.connect', 'sqlite3.connect', (['dest'], {}), '(dest)\n', (2661, 2667), False, 'import sqlite3\n'), ((2805, 2825), 'os.path.exists', 'os.path.exists', (['dest'], {}), '(dest)\n', (2819, 2825), False, 'import os\n'), ((3274, 3342), 're.sub', 're.sub', (['"""reserved_til=([0-9]+)WHERE"""', '"""reserved_til=\\\\1 WHERE"""', 'stmt'], {}), "('reserved_til=([0-9]+)WHERE', 'reserved_til=\\\\1 WHERE', stmt)\n", (3280, 3342), False, 'import re\n'), ((3359, 3447), 're.sub', 're.sub', (['"""peer_id=([0-9]+)WHERE channels.id="""', '"""peer_id=\\\\1 WHERE channels.id="""', 'stmt'], {}), "('peer_id=([0-9]+)WHERE channels.id=',\n 'peer_id=\\\\1 WHERE channels.id=', stmt)\n", (3365, 3447), False, 'import re\n'), ((3921, 3940), 'os.path.isdir', 'os.path.isdir', (['dest'], {}), '(dest)\n', (3934, 3940), False, 'import os\n'), ((4013, 4033), 'os.path.exists', 'os.path.exists', (['dest'], {}), '(dest)\n', (4027, 4033), False, 'import os\n'), ((2839, 2854), 'os.unlink', 'os.unlink', (['dest'], {}), '(dest)\n', (2848, 2854), False, 'import os\n'), ((3961, 4001), 'os.path.join', 'os.path.join', (['dest', '"""lightningd.sqlite3"""'], {}), "(dest, 'lightningd.sqlite3')\n", (3973, 4001), False, 'import os\n'), ((4267, 4282), 'os.unlink', 'os.unlink', (['dest'], {}), '(dest)\n', (4276, 4282), False, 'import os\n')]
import pendulum ics_files = ( '_site/courses/web-dev-1/calendar-feed-010.ics', '_site/courses/web-dev-1/calendar-feed-020.ics', '_site/courses/web-dev-1/calendar-feed-030.ics', '_site/courses/web-dev-1/calendar-feed-040.ics', '_site/courses/web-dev-2/calendar-feed-010.ics', '_site/courses/web-dev-2/calendar-feed-020.ics', '_site/courses/web-dev-2/calendar-feed-030.ics', '_site/courses/web-dev-2/calendar-feed-040.ics', '_site/courses/web-dev-3/calendar-feed-010.ics', '_site/courses/web-dev-3/calendar-feed-020.ics', '_site/courses/web-dev-3/calendar-feed-030.ics', '_site/courses/web-dev-4/calendar-feed-010.ics', '_site/courses/web-dev-4/calendar-feed-020.ics', '_site/courses/web-dev-4/calendar-feed-030.ics', '_site/courses/web-dev-5/calendar-feed-010.ics', '_site/courses/web-dev-5/calendar-feed-020.ics', '_site/courses/web-dev-6/calendar-feed-010.ics', '_site/courses/web-dev-6/calendar-feed-020.ics', ) def fix_line_dt(line): for pref in ('DTSTART', 'DTEND'): dt_prefix = f'{pref};TZID=America/Toronto:' if dt_prefix in line: dt = line.replace(f'{pref};TZID=America/Toronto:', '').strip() if dt: dtstart = pendulum.parse(dt, tz='America/Toronto') line = dt_prefix + dtstart.format('YYYYMMDD[T]HHmmss') return line for ics_file in ics_files: lines = [] with open(ics_file, mode='r', encoding='utf-8') as file: for line in file: line = line.strip() if line: lines.append(fix_line_dt(line)) with open(ics_file, mode='w', encoding='utf-8') as file: file.write('\n'.join(lines) + '\n')
[ "pendulum.parse" ]
[((1220, 1260), 'pendulum.parse', 'pendulum.parse', (['dt'], {'tz': '"""America/Toronto"""'}), "(dt, tz='America/Toronto')\n", (1234, 1260), False, 'import pendulum\n')]
#!/usr/bin/python # # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from google.datacatalog_connectors.commons import utils class RegionTagHelperTestCase(unittest.TestCase): def test_extract_tag_content_should_return_correct_content(self): region_tag_helper = utils.RegionTagHelper() expected_tag_content = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() content_string = \ '[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_START] \n' + \ expected_tag_content + \ '\n[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_END] \n' extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertEqual(extracted_tag_content, expected_tag_content) def test_extract_multiple_tag_content_should_return_correct_content(self): region_tag_helper = utils.RegionTagHelper() expected_tag_content = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() tags_with_content = \ '[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_START] \n' + \ expected_tag_content + \ '\n[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_END] \n' expected_tag_content_2 = ''' metadata_definition: - name: 'sp_other_cloud' purpose: 'This stored procedure run in another cloud.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() tags_with_content_2 = \ '[OTHER_CLOUD_DATA_CATALOG_METADATA_DEFINITION_START] \n' + \ expected_tag_content_2 + \ '\n[OTHER_CLOUD_DATA_CATALOG_METADATA_DEFINITION_END] \n' content_string = tags_with_content + '\n' + tags_with_content_2 extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertEqual(extracted_tag_content, expected_tag_content) extracted_tag_content_2 = region_tag_helper.extract_content( 'OTHER_CLOUD_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertEqual(extracted_tag_content_2, expected_tag_content_2) def test_extract_repeated_tag_should_return_last_content(self): region_tag_helper = utils.RegionTagHelper() expected_tag_content = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() tags_with_content = \ '[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_START] \n' + \ expected_tag_content + \ '\n[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_END] \n' expected_tag_content_2 = ''' metadata_definition: - name: 'sp_other_cloud' purpose: 'This stored procedure run in another cloud.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() tags_with_content_2 = \ '[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_START] \n' + \ expected_tag_content_2 + \ '\n[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_END] \n' content_string = tags_with_content + '\n' + tags_with_content_2 extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertEqual(extracted_tag_content, expected_tag_content_2) def test_extract_tag_content_no_end_region_tag_should_return_none(self): region_tag_helper = utils.RegionTagHelper() expected_tag_content = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() content_string = \ '[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_START] \n' + \ expected_tag_content + '\n' extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertIsNone(extracted_tag_content) def test_extract_tag_content_no_start_region_tag_should_return_none(self): region_tag_helper = utils.RegionTagHelper() expected_tag_content = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() content_string = expected_tag_content + \ '\n[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_END] \n' extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertIsNone(extracted_tag_content) def test_extract_tag_content_no_region_tags_should_return_none(self): region_tag_helper = utils.RegionTagHelper() content_string = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertIsNone(extracted_tag_content) def test_extract_tag_content_invalid_region_tags_should_return_none(self): region_tag_helper = utils.RegionTagHelper() expected_tag_content = ''' metadata_definition: - name: 'sp_calculateOrder' purpose: 'This stored procedure will calculate orders.' inputs: - name: 'in1' type: 'string' outputs: - name: 'out1' type: 'int' '''.strip() content_string = \ '[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_STARX] \n' + \ expected_tag_content + \ '\n[GOOGLE_DATA_CATALOG_METADATA_DEFINITION_ENX] \n' extracted_tag_content = region_tag_helper.extract_content( 'GOOGLE_DATA_CATALOG_METADATA_DEFINITION', content_string) self.assertIsNone(extracted_tag_content)
[ "google.datacatalog_connectors.commons.utils.RegionTagHelper" ]
[((820, 843), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (841, 843), False, 'from google.datacatalog_connectors.commons import utils\n'), ((1709, 1732), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (1730, 1732), False, 'from google.datacatalog_connectors.commons import utils\n'), ((3446, 3469), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (3467, 3469), False, 'from google.datacatalog_connectors.commons import utils\n'), ((4963, 4986), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (4984, 4986), False, 'from google.datacatalog_connectors.commons import utils\n'), ((5769, 5792), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (5790, 5792), False, 'from google.datacatalog_connectors.commons import utils\n'), ((6549, 6572), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (6570, 6572), False, 'from google.datacatalog_connectors.commons import utils\n'), ((7212, 7235), 'google.datacatalog_connectors.commons.utils.RegionTagHelper', 'utils.RegionTagHelper', ([], {}), '()\n', (7233, 7235), False, 'from google.datacatalog_connectors.commons import utils\n')]
from typing import Callable, List import numpy as np from decimal import Decimal MAX_NEWTON_ITERATIONS = 7 phiType = Callable[[float, np.ndarray, float], np.ndarray] fType = Callable[[float, np.ndarray], np.ndarray] jacobianType = List[List[Callable[[float, float, np.ndarray], float]]] matrixType = np.ndarray class Function: def __init__(self, fArray: List[fType]): self.fArray = fArray for i in range(len(fArray)): print(fArray[i](0, np.array([1, 1, 1, -1]))) def __call__(self, time: float, U: np.ndarray) -> np.ndarray: result = np.empty(len(self.fArray)) for i in range(len(self.fArray)): result[i] = self.fArray[i](time, U) return result def solveEDO(u0: np.ndarray, phi: phiType, interval: np.ndarray, discretization: int): U = np.empty((discretization + 1, len(u0))) U[0] = u0 step = (interval[1] - interval[0]) / discretization for iterations in range(discretization): U[iterations + 1] = U[iterations] + \ step * phi(interval[0] + step * iterations, U[iterations], step) return U def getSolution(exactF: fType, interval: np.ndarray, discretization: int): X = np.empty((discretization + 1, len(exactF))) step = (interval[1] - interval[0]) / discretization for iterations in range(discretization + 1): for i in range(len(exactF)): X[iterations, i] = exactF[i](interval[0] + iterations * step) return X def generateRK44Phi(f: Function) -> phiType: def phi(time: float, currentU: np.ndarray, step: float) -> np.ndarray: kappa1 = f(time, currentU) kappa2 = f(time + step / 2, currentU + step * kappa1 / 2) kappa3 = f(time + step / 2, currentU + step * kappa2 / 2) kappa4 = f(time + step, currentU + step * kappa3) return (kappa1 + 2 * kappa2 + 2 * kappa3 + kappa4) / 6 return phi def generateImplicitEulerPhi(f: Function, J: jacobianType) -> phiType: def phi(time: float, currentU: np.ndarray, step: float) -> np.ndarray: def generateG(currentU: np.ndarray) -> Function: def g(time: float, nextU: np.ndarray): return nextU - step * f(time, nextU) - currentU return g def generateJacobian(time: float, nextU: np.ndarray, currentU: np.ndarray) -> matrixType: jacobian = np.empty((len(J), len(J))) for i in range(len(J)): line = np.empty(len(J[i])) for j in range(len(J[i])): line[j] = J[i][j](time, step, *nextU) jacobian[i] = line return jacobian def inverseJacobian(time: float, nextU: np.ndarray, currentU: np.ndarray) -> matrixType: return np.linalg.inv(generateJacobian(time, nextU, currentU)) def newtonIteration(currentNextUAproximation: np.ndarray, previousNextUAproximation: np.ndarray): g = generateG(previousNextUAproximation) return currentNextUAproximation - inverseJacobian(time, currentNextUAproximation, previousNextUAproximation) * g(time + step, currentNextUAproximation) nextU = previousNextUAproximation = currentNextUAproximation = currentU for dummyIterationCounter in range(MAX_NEWTON_ITERATIONS): previousNextUAproximation = currentNextUAproximation currentNextUAproximation = nextU nextU = newtonIteration(currentNextUAproximation, previousNextUAproximation) return nextU return phi
[ "numpy.array" ]
[((472, 495), 'numpy.array', 'np.array', (['[1, 1, 1, -1]'], {}), '([1, 1, 1, -1])\n', (480, 495), True, 'import numpy as np\n')]
import datetime import pandas as pd import numpy as np def make_date_map(df, last_day_column) -> dict: '''return a dictionary ''' # 'DAY' 1 == 2004-03-23 day1 = datetime.datetime(2004, 3, 23) # as derived in transactions notebook; datetime for 'DAY' == 1 ineedthismany = df[last_day_column].max() last = day1 + datetime.timedelta(days=int(ineedthismany)- 1) date_range = pd.date_range(day1, last) # date range for our data # map datetime index to DAY; enumerate() indexes from 0, so we add 1 date_map = {i+1:x for i, x in enumerate(date_range)} output = df[last_day_column].map(date_map) output = pd.to_datetime(output) return date_map
[ "datetime.datetime", "pandas.to_datetime", "pandas.date_range" ]
[((174, 204), 'datetime.datetime', 'datetime.datetime', (['(2004)', '(3)', '(23)'], {}), '(2004, 3, 23)\n', (191, 204), False, 'import datetime\n'), ((399, 424), 'pandas.date_range', 'pd.date_range', (['day1', 'last'], {}), '(day1, last)\n', (412, 424), True, 'import pandas as pd\n'), ((642, 664), 'pandas.to_datetime', 'pd.to_datetime', (['output'], {}), '(output)\n', (656, 664), True, 'import pandas as pd\n')]
from django.contrib import admin from .models import SessionLog admin.site.register(SessionLog)
[ "django.contrib.admin.site.register" ]
[((66, 97), 'django.contrib.admin.site.register', 'admin.site.register', (['SessionLog'], {}), '(SessionLog)\n', (85, 97), False, 'from django.contrib import admin\n')]
import numpy as np from scipy.special import gamma import bisect def vTmv(vec, mat=None, vec2=None): """Multiply a vector transpose times a matrix times a vector. @param vec The first vector (will be transposed). @param mat The matrix in the middle. Identity by default. @param vec2 The second vector (will not be transposed.) By default, the same as the vec. @returns Product. Could be a scalar or a matrix depending on whether vec is a row or column vector. """ if len(vec.shape) == 1: vec = np.reshape(vec, [vec.shape[0], 1]) if mat is None: mat = np.eye(len(vec)) if vec2 is None: vec2 = vec return np.dot(vec.T, np.dot(mat, vec2)) def gammad(d, nu_over_2): """D-dimensional gamma function.""" nu = 2.0 * nu_over_2 return np.pi**(d*(d-1.)/4)*np.multiply.reduce([gamma(0.5*(nu+1-i)) for i in range(d)]) def random_wish(dof, S, size=None): dim = S.shape[0] if size is None: x = np.random.multivariate_normal(np.zeros(dim), S, size=dof) return np.dot(x.T, x) else: if isinstance(size, int): size = (size,) out = np.empty(size+(dim, dim), dtype=np.float64) for ind in np.ndindex(size): x = np.random.multivariate_normal(np.zeros(dim), S, size=dof) out[ind] = np.dot(x.T, x) return out def random_invwish(dof, invS, size=None): return np.linalg.inv(random_wish(dof, invS, size=size)) def pick_discrete(p): """Pick a discrete integer between 0 and len(p) - 1 with probability given by (normalized) p array. Note that p array will be normalized here.""" c = np.cumsum(p) c /= c[-1] # Normalize u = np.random.uniform() return bisect.bisect(c, u) # Modified code from http://stackoverflow.com/questions/9081553/python-scatter-plot-size-and-style-of-the-marker/24567352#24567352 def ellipses(x, y, s, q, pa, c='b', ax=None, vmin=None, vmax=None, **kwargs): """Scatter plot of ellipses. (x, y) duh. s size. q minor-to-major axes ratio b/a pa position angle in deg, CCW from +y. """ from matplotlib.patches import Ellipse from matplotlib.collections import PatchCollection import matplotlib.pyplot as plt if ax is None: ax = plt.gca() if isinstance(c, basestring): color = c # ie. use colors.colorConverter.to_rgba_array(c) else: color = None # use cmap, norm after collection is created kwargs.update(color=color) w, h = s*np.sqrt(q), s/np.sqrt(q) if np.isscalar(x): patches = [Ellipse((x, y), w, h, pa), ] else: patches = [Ellipse((x_, y_), w_, h_, pa_) for x_, y_, w_, h_, pa_ in zip(x, y, w, h, pa)] collection = PatchCollection(patches, **kwargs) if color is None: collection.set_array(np.asarray(c)) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) ax.add_collection(collection) ax.autoscale_view() return collection def plot_ellipse(mu, Sig, ax=None, **kwargs): import matplotlib.pyplot as plt if ax is None: ax = plt.gca() val, vec = np.linalg.eigh(Sig) # 5.991 gives 95% ellipses s = np.sqrt(np.sqrt(5.991*val[0]*val[1])) q = np.sqrt(val[0]/val[1]) pa = np.arctan2(vec[0, 1], vec[0, 0])*180/np.pi ellipses(mu[0], mu[1], s, q, pa, ax=ax, **kwargs)
[ "numpy.sqrt", "numpy.isscalar", "numpy.reshape", "matplotlib.pyplot.gca", "numpy.asarray", "numpy.ndindex", "matplotlib.collections.PatchCollection", "bisect.bisect", "numpy.dot", "numpy.zeros", "numpy.empty", "numpy.arctan2", "scipy.special.gamma", "numpy.random.uniform", "numpy.linalg.eigh", "numpy.cumsum", "matplotlib.patches.Ellipse" ]
[((1679, 1691), 'numpy.cumsum', 'np.cumsum', (['p'], {}), '(p)\n', (1688, 1691), True, 'import numpy as np\n'), ((1727, 1746), 'numpy.random.uniform', 'np.random.uniform', ([], {}), '()\n', (1744, 1746), True, 'import numpy as np\n'), ((1758, 1777), 'bisect.bisect', 'bisect.bisect', (['c', 'u'], {}), '(c, u)\n', (1771, 1777), False, 'import bisect\n'), ((2591, 2605), 'numpy.isscalar', 'np.isscalar', (['x'], {}), '(x)\n', (2602, 2605), True, 'import numpy as np\n'), ((2780, 2814), 'matplotlib.collections.PatchCollection', 'PatchCollection', (['patches'], {}), '(patches, **kwargs)\n', (2795, 2814), False, 'from matplotlib.collections import PatchCollection\n'), ((3197, 3216), 'numpy.linalg.eigh', 'np.linalg.eigh', (['Sig'], {}), '(Sig)\n', (3211, 3216), True, 'import numpy as np\n'), ((3302, 3326), 'numpy.sqrt', 'np.sqrt', (['(val[0] / val[1])'], {}), '(val[0] / val[1])\n', (3309, 3326), True, 'import numpy as np\n'), ((557, 591), 'numpy.reshape', 'np.reshape', (['vec', '[vec.shape[0], 1]'], {}), '(vec, [vec.shape[0], 1])\n', (567, 591), True, 'import numpy as np\n'), ((708, 725), 'numpy.dot', 'np.dot', (['mat', 'vec2'], {}), '(mat, vec2)\n', (714, 725), True, 'import numpy as np\n'), ((1076, 1090), 'numpy.dot', 'np.dot', (['x.T', 'x'], {}), '(x.T, x)\n', (1082, 1090), True, 'import numpy as np\n'), ((1176, 1221), 'numpy.empty', 'np.empty', (['(size + (dim, dim))'], {'dtype': 'np.float64'}), '(size + (dim, dim), dtype=np.float64)\n', (1184, 1221), True, 'import numpy as np\n'), ((1239, 1255), 'numpy.ndindex', 'np.ndindex', (['size'], {}), '(size)\n', (1249, 1255), True, 'import numpy as np\n'), ((2320, 2329), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2327, 2329), True, 'import matplotlib.pyplot as plt\n'), ((3172, 3181), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3179, 3181), True, 'import matplotlib.pyplot as plt\n'), ((3264, 3296), 'numpy.sqrt', 'np.sqrt', (['(5.991 * val[0] * val[1])'], {}), '(5.991 * val[0] * val[1])\n', (3271, 3296), True, 'import numpy as np\n'), ((1033, 1046), 'numpy.zeros', 'np.zeros', (['dim'], {}), '(dim)\n', (1041, 1046), True, 'import numpy as np\n'), ((1354, 1368), 'numpy.dot', 'np.dot', (['x.T', 'x'], {}), '(x.T, x)\n', (1360, 1368), True, 'import numpy as np\n'), ((2558, 2568), 'numpy.sqrt', 'np.sqrt', (['q'], {}), '(q)\n', (2565, 2568), True, 'import numpy as np\n'), ((2572, 2582), 'numpy.sqrt', 'np.sqrt', (['q'], {}), '(q)\n', (2579, 2582), True, 'import numpy as np\n'), ((2626, 2651), 'matplotlib.patches.Ellipse', 'Ellipse', (['(x, y)', 'w', 'h', 'pa'], {}), '((x, y), w, h, pa)\n', (2633, 2651), False, 'from matplotlib.patches import Ellipse\n'), ((2684, 2714), 'matplotlib.patches.Ellipse', 'Ellipse', (['(x_, y_)', 'w_', 'h_', 'pa_'], {}), '((x_, y_), w_, h_, pa_)\n', (2691, 2714), False, 'from matplotlib.patches import Ellipse\n'), ((2867, 2880), 'numpy.asarray', 'np.asarray', (['c'], {}), '(c)\n', (2877, 2880), True, 'import numpy as np\n'), ((3334, 3366), 'numpy.arctan2', 'np.arctan2', (['vec[0, 1]', 'vec[0, 0]'], {}), '(vec[0, 1], vec[0, 0])\n', (3344, 3366), True, 'import numpy as np\n'), ((871, 896), 'scipy.special.gamma', 'gamma', (['(0.5 * (nu + 1 - i))'], {}), '(0.5 * (nu + 1 - i))\n', (876, 896), False, 'from scipy.special import gamma\n'), ((1303, 1316), 'numpy.zeros', 'np.zeros', (['dim'], {}), '(dim)\n', (1311, 1316), True, 'import numpy as np\n')]
""" Viewer for optical flow data. """ import sys import cv2 import keyboard import numpy as np import os.path as osp import matplotlib.pyplot as plt from glob import glob from viflow.utils import load_config, to_filename, load_optical_flow def flow2image(flow): flow = np.float32(flow) mag, ang = cv2.cartToPolar(flow[..., 0], flow[..., 1]) h, w, _ = flow.shape hsv = np.zeros((h, w, 3), dtype=np.float32) hsv[..., 1] = 255 hsv[..., 0] = ang * 180 / np.pi / 2 hsv[..., 2] = cv2.normalize(mag, None, 0, 255, cv2.NORM_MINMAX) return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) def view_optical_flow(filepath, cfg): flows = load_optical_flow(filepath) ds = cfg.view_downsample plt.ion() fig = plt.figure(figsize=(6, 8)) ax = fig.add_subplot(111) ax.set_axis_off() ax.set_title(to_filename(filepath)) fig.show() for i in range(flows.shape[0]): flow = flows[i][::ds, ::ds, :] r, c, _ = flow.shape X, Y = np.arange(0, c, 1), np.arange(r, 0, -1) U, V = flow[:, :, 0], flow[:, :, 1] if cfg.view_mode == 'arrow': plot = ax.quiver(X, Y, U, V, scale=100, color=(0, 0, 0, 0.5)) else: plot = ax.imshow(flow2image(flow), alpha=1) plt.draw() plt.pause(cfg.view_pause) plot.remove() if keyboard.is_pressed('q'): return False return True def main(cfg_filepath): cfg = load_config(cfg_filepath) inpath = osp.join(cfg.outdir, '*.npz') for filepath in glob(inpath): if not view_optical_flow(filepath, cfg): break if __name__ == '__main__': args = sys.argv cfg_filepath = '../config.json' if len(args) == 1 else args[1] main(cfg_filepath)
[ "matplotlib.pyplot.draw", "cv2.normalize", "numpy.arange", "cv2.cartToPolar", "viflow.utils.load_optical_flow", "os.path.join", "keyboard.is_pressed", "numpy.zeros", "matplotlib.pyplot.figure", "cv2.cvtColor", "matplotlib.pyplot.ion", "viflow.utils.to_filename", "viflow.utils.load_config", "matplotlib.pyplot.pause", "numpy.float32", "glob.glob" ]
[((278, 294), 'numpy.float32', 'np.float32', (['flow'], {}), '(flow)\n', (288, 294), True, 'import numpy as np\n'), ((310, 353), 'cv2.cartToPolar', 'cv2.cartToPolar', (['flow[..., 0]', 'flow[..., 1]'], {}), '(flow[..., 0], flow[..., 1])\n', (325, 353), False, 'import cv2\n'), ((389, 426), 'numpy.zeros', 'np.zeros', (['(h, w, 3)'], {'dtype': 'np.float32'}), '((h, w, 3), dtype=np.float32)\n', (397, 426), True, 'import numpy as np\n'), ((507, 556), 'cv2.normalize', 'cv2.normalize', (['mag', 'None', '(0)', '(255)', 'cv2.NORM_MINMAX'], {}), '(mag, None, 0, 255, cv2.NORM_MINMAX)\n', (520, 556), False, 'import cv2\n'), ((568, 604), 'cv2.cvtColor', 'cv2.cvtColor', (['hsv', 'cv2.COLOR_HSV2BGR'], {}), '(hsv, cv2.COLOR_HSV2BGR)\n', (580, 604), False, 'import cv2\n'), ((657, 684), 'viflow.utils.load_optical_flow', 'load_optical_flow', (['filepath'], {}), '(filepath)\n', (674, 684), False, 'from viflow.utils import load_config, to_filename, load_optical_flow\n'), ((719, 728), 'matplotlib.pyplot.ion', 'plt.ion', ([], {}), '()\n', (726, 728), True, 'import matplotlib.pyplot as plt\n'), ((739, 765), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(6, 8)'}), '(figsize=(6, 8))\n', (749, 765), True, 'import matplotlib.pyplot as plt\n'), ((1452, 1477), 'viflow.utils.load_config', 'load_config', (['cfg_filepath'], {}), '(cfg_filepath)\n', (1463, 1477), False, 'from viflow.utils import load_config, to_filename, load_optical_flow\n'), ((1491, 1520), 'os.path.join', 'osp.join', (['cfg.outdir', '"""*.npz"""'], {}), "(cfg.outdir, '*.npz')\n", (1499, 1520), True, 'import os.path as osp\n'), ((1541, 1553), 'glob.glob', 'glob', (['inpath'], {}), '(inpath)\n', (1545, 1553), False, 'from glob import glob\n'), ((835, 856), 'viflow.utils.to_filename', 'to_filename', (['filepath'], {}), '(filepath)\n', (846, 856), False, 'from viflow.utils import load_config, to_filename, load_optical_flow\n'), ((1268, 1278), 'matplotlib.pyplot.draw', 'plt.draw', ([], {}), '()\n', (1276, 1278), True, 'import matplotlib.pyplot as plt\n'), ((1287, 1312), 'matplotlib.pyplot.pause', 'plt.pause', (['cfg.view_pause'], {}), '(cfg.view_pause)\n', (1296, 1312), True, 'import matplotlib.pyplot as plt\n'), ((1348, 1372), 'keyboard.is_pressed', 'keyboard.is_pressed', (['"""q"""'], {}), "('q')\n", (1367, 1372), False, 'import keyboard\n'), ((993, 1011), 'numpy.arange', 'np.arange', (['(0)', 'c', '(1)'], {}), '(0, c, 1)\n', (1002, 1011), True, 'import numpy as np\n'), ((1013, 1032), 'numpy.arange', 'np.arange', (['r', '(0)', '(-1)'], {}), '(r, 0, -1)\n', (1022, 1032), True, 'import numpy as np\n')]
# coding=utf-8 from ovs.utils import execute from ovs.utils import decorator class IFace(): @decorator.check_cmd(['ip -V']) def __init__(self, netns = None): self.netns = netns if netns else '' @decorator.check_arg def add_if(self, if_name, if_type = None, mtu = 1500, args = None): if if_name: if_type = ' type ' + if_type if if_type else '' _, error = execute.exec_cmd('{0} ip link add name {1} mtu {2} {3} {4}'.format(self.netns, if_name, mtu, if_type, args if args else '')) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def add_veth_peer_if(self, local_if, guest_if, mtu = 1500): return self.add_if(local_if, 'veth', mtu, 'peer name {0} mtu {1}'.format(guest_if, mtu)) @decorator.check_arg def del_if(self, if_name): if if_name: _, error = execute.exec_cmd('{0} ip link delete {1}'.format(self.netns, if_name)) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def exist_if(self, if_name): if if_name: _, error = execute.exec_cmd('{0} ip link show {1}'.format(self.netns, if_name)) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def set_if(self, if_name, key, value): if if_name: if not key or not value: raise ValueError('Key or Value is None') _, error = execute.exec_cmd('{0} ip link set {1} {2} {3}'.format(self.netns, if_name, key, value)) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def startup(self, if_name): if if_name: _, error = execute.exec_cmd('{0} ip link set {1} up'.format(self.netns, if_name)) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def shutdown(self, if_name): if if_name: _, error = execute.exec_cmd('{0} ip link set {1} down'.format(self.netns, if_name)) return False if error else True else: raise ValueError('Interface name is None') class Address(): @decorator.check_cmd(['ip -V']) def __init__(self, netns = None): self.netns = netns if netns else '' @decorator.check_arg def add_addr(self, if_name, ip_addr): if if_name: if not ip_addr: raise ValueError('Ip Address is None') _, error = execute.exec_cmd('{0} ip addr add {1} dev {2}'.format(self.netns, ip_addr, if_name)) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def del_addr(self, if_name, ip_addr): if if_name: if not ip_addr: raise ValueError('Ip Address is None') _, error = execute.exec_cmd('{0} ip addr del {1} dev {2}'.format(self.netns, ip_addr, if_name)) return False if error else True else: raise ValueError('Interface name is None') @decorator.check_arg def flush(self, if_name): if if_name: _, error = execute.exec_cmd('{0} ip addr flush dev {1}'.format(self.netns, if_name)) return False if error else True else: raise ValueError('Interface name is None') class Route(): @decorator.check_cmd(['ip -V']) def __init__(self, netns = None): self.netns = netns if netns else '' @decorator.check_arg def add_route(self, gw, dst_ip = None, if_name = None): if gw: dst_ip = 'default' if not dst_ip else dst_ip if_name = 'dev ' + if_name if if_name else '' _, error = execute.exec_cmd('{0} ip route replace {1} via {2} {3}'.format(self.netns, dst_ip, gw, if_name)) return False if error else True else: raise ValueError('Gateway is None') @decorator.check_arg def del_route(self, gw, dst_ip = None, if_name = None): if gw: dst_ip = 'default' if not dst_ip else dst_ip if_name = 'dev ' + if_name if if_name else '' if gw: _, error = execute.exec_cmd('{0} ip route del {1} via {2} {3}'.format(self.netns, dst_ip, gw, if_name)) else: _, error = execute.exec_cmd('{0} ip route del {1}'.format(self.netns, dst_ip)) return False if error else True else: raise ValueError('Gateway is None') @decorator.check_arg def flush(self): _, error = execute.exec_cmd('{0} ip route flush cache') return False if error else True class Netns(): def __init__(self): pass def add_ns(self, ns_name): if ns_name: _, error = execute.exec_cmd('ip netns add {0}'.format(ns_name)) return False if error else True else: raise ValueError('Naamespace name is None') def del_ns(self, ns_name): if ns_name: _, error = execute.exec_cmd('ip netns del {0}'.format(ns_name)) return False if error else True else: raise ValueError('Naamespace name is None') def get_exec(self, pid): return 'ip netns exec {0}'.format(pid) if pid else None def exec_ns(self, pid, cmd): return execute.exec_cmd('ip netns exec {0} {1}'.format(pid, cmd)) if pid and cmd else None
[ "ovs.utils.decorator.check_cmd", "ovs.utils.execute.exec_cmd" ]
[((104, 134), 'ovs.utils.decorator.check_cmd', 'decorator.check_cmd', (["['ip -V']"], {}), "(['ip -V'])\n", (123, 134), False, 'from ovs.utils import decorator\n'), ((2447, 2477), 'ovs.utils.decorator.check_cmd', 'decorator.check_cmd', (["['ip -V']"], {}), "(['ip -V'])\n", (2466, 2477), False, 'from ovs.utils import decorator\n'), ((3676, 3706), 'ovs.utils.decorator.check_cmd', 'decorator.check_cmd', (["['ip -V']"], {}), "(['ip -V'])\n", (3695, 3706), False, 'from ovs.utils import decorator\n'), ((4883, 4927), 'ovs.utils.execute.exec_cmd', 'execute.exec_cmd', (['"""{0} ip route flush cache"""'], {}), "('{0} ip route flush cache')\n", (4899, 4927), False, 'from ovs.utils import execute\n')]
""" Closes a session intelligently, for vim/zsh """ import os import re import sys from tmux_session_utils import tmux_utils class Closer: """ Class with logic to close session """ def __init__(self, session: str = None): """ . """ self.tmux_session = session if session else get_session(session) self.pane_count_by_window = {} self.__get_pane_counts() self.close_commands = [] self.analyze() def __get_pane_counts(self): """ Gets number of panes in each window """ windows = tmux_utils.get_window_list(self.tmux_session) for window in windows.split("\n"): win_num_match = re.match(r"^([0-9]+):", window) pane_match = re.match(r".*([0-9]+) panes?", window) self.pane_count_by_window[win_num_match.group(1)] = int(pane_match.group(1)) def analyze(self): """ Identifies windows and panes, and figures out what commands to use to close them """ for window, pane_count in self.pane_count_by_window.items(): for pane in range(pane_count): pane_command = tmux_utils.get_pane_command( self.tmux_session, window, pane ) for run_command in close_program(pane_command): self.close_commands.append( 'tmux send-keys -t {0}:{1}.{2} {3} "C-m"'.format( self.tmux_session, window, pane, run_command ) ) def close(self): """ Actually close the session """ for command in self.close_commands: os.system(command) def close_program(program: str) -> list: """ Returns commands needed to close a pane with a given command """ commands = [] if program.startswith("vi"): commands.append(":q!") commands.append("exit") # pylint: disable=bad-continuation elif ( any([program.startswith(shell) for shell in ["zsh", "sh", "bash"]]) or not program ): commands.append("exit") else: print("Unknown command! '{0}'".format(program)) return commands def get_session(session: str = None) -> str: """ Gets session name from command line, with injectable option """ return session if session else sys.argv[1] if __name__ == "__main__": Closer(get_session()).close()
[ "os.system", "re.match", "tmux_session_utils.tmux_utils.get_window_list", "tmux_session_utils.tmux_utils.get_pane_command" ]
[((597, 642), 'tmux_session_utils.tmux_utils.get_window_list', 'tmux_utils.get_window_list', (['self.tmux_session'], {}), '(self.tmux_session)\n', (623, 642), False, 'from tmux_session_utils import tmux_utils\n'), ((714, 744), 're.match', 're.match', (['"""^([0-9]+):"""', 'window'], {}), "('^([0-9]+):', window)\n", (722, 744), False, 'import re\n'), ((771, 808), 're.match', 're.match', (['""".*([0-9]+) panes?"""', 'window'], {}), "('.*([0-9]+) panes?', window)\n", (779, 808), False, 'import re\n'), ((1723, 1741), 'os.system', 'os.system', (['command'], {}), '(command)\n', (1732, 1741), False, 'import os\n'), ((1179, 1239), 'tmux_session_utils.tmux_utils.get_pane_command', 'tmux_utils.get_pane_command', (['self.tmux_session', 'window', 'pane'], {}), '(self.tmux_session, window, pane)\n', (1206, 1239), False, 'from tmux_session_utils import tmux_utils\n')]
""" This module contains utilities for testing event schemas. """ from datetime import timedelta from hypothesis import strategies as st __all__ = [ "VALID_PRIORITIES", "VALID_MISSION_TIMES", "INVALID_PRIORITIES", "EVENT_VALID_MAP", "EVENT_INVALID_MAP", ] VALID_PRIORITIES = st.integers(min_value=1, max_value=5) VALID_MISSION_TIMES = st.timedeltas(min_value=timedelta(0)) INVALID_PRIORITIES = st.one_of(st.integers(max_value=0), st.integers(min_value=6)) EVENT_VALID_MAP = { "name": st.text(), "priority": VALID_PRIORITIES, "mission_time": VALID_MISSION_TIMES, "type": st.text(), } EVENT_INVALID_MAP = { "priority": INVALID_PRIORITIES, }
[ "hypothesis.strategies.text", "datetime.timedelta", "hypothesis.strategies.integers" ]
[((297, 334), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(1)', 'max_value': '(5)'}), '(min_value=1, max_value=5)\n', (308, 334), True, 'from hypothesis import strategies as st\n'), ((426, 450), 'hypothesis.strategies.integers', 'st.integers', ([], {'max_value': '(0)'}), '(max_value=0)\n', (437, 450), True, 'from hypothesis import strategies as st\n'), ((452, 476), 'hypothesis.strategies.integers', 'st.integers', ([], {'min_value': '(6)'}), '(min_value=6)\n', (463, 476), True, 'from hypothesis import strategies as st\n'), ((512, 521), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (519, 521), True, 'from hypothesis import strategies as st\n'), ((610, 619), 'hypothesis.strategies.text', 'st.text', ([], {}), '()\n', (617, 619), True, 'from hypothesis import strategies as st\n'), ((381, 393), 'datetime.timedelta', 'timedelta', (['(0)'], {}), '(0)\n', (390, 393), False, 'from datetime import timedelta\n')]
# -*- encoding: utf-8 -*- from __future__ import division try: import cPickle as pickle except ImportError: import pickle import sys import random import os import re import datetime # TODO memorization previous tweet corpus class MarkovChain(object): def __init__(self, db_file_path=None): self.db_file_path = db_file_path if not db_file_path: directory = "db" filename = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") if not os.path.exists(directory): os.makedirs(directory) self.db_file_path = os.path.join(directory, filename) try: with open(self.db_file_path, 'rb') as dbfile: self.db = pickle.load(dbfile) except IOError: sys.stdout.write('Database file not found, using empty database') self.db = {} except ValueError: sys.stdout.write('Database corrupt or unreadable, using empty database') self.db = {} def generate_database(self, text_sample, sentence_sep='[.!?\n]'): """Generate word probability database from raw content string.""" # Get an iterator for the 'sentences' text_sample = self._word_iter(text_sample, sentence_sep) # We're using '' as special symbol for the beginning # of a sentence self.db = {"": {"": 0.0}} for line in text_sample: words = line.strip().split() # split words in line if len(words) == 0: continue # first word follows a sentence end if words[0] in self.db[""]: self.db[""][words[0]] += 1 else: self.db[""][words[0]] = 1.0 for i in range(len(words) - 1): if words[i] in self.db: # the current word has been found at least once # increment parametrized wordcounts if words[i + 1] in self.db[words[i]]: self.db[words[i]][words[i + 1]] += 1 else: self.db[words[i]][words[i + 1]] = 1.0 else: # word has been found for the first time self.db[words[i]] = {words[i + 1]: 1.0} # last word precedes a sentence end if words[len(words) - 1] in self.db: if "" in self.db[words[len(words) - 1]]: self.db[words[len(words) - 1]][""] += 1 else: self.db[words[len(words) - 1]][""] = 1.0 else: self.db[words[len(words) - 1]] = {"": 1.0} # We've now got the db filled with parametrized word counts # We still need to normalize this to represent probabilities for word in self.db: wordsum = 0 for nextword in self.db[word]: wordsum += self.db[word][nextword] if wordsum != 0: for nextword in self.db[word]: self.db[word][nextword] /= wordsum # Now we dump the db to disk return self.dumpdb() def dumpdb(self): try: with open(self.db_file_path, 'wb') as dbfile: pickle.dump(self.db, dbfile) # It looks like db was written successfully return True except IOError: sys.stderr.write('Database file could not be written') return False def generate_string(self): """.Generate a "sentence" with the database of known text.""" return self._accumulate_with_seed('') def generate_string_with_seed(self, seed): """Generate a "sentence" with the database and a given word.""" # using str.split here means we're contructing the list in memory # but as the generated sentence only depends on the last word of the seed # I'm assuming seeds tend to be rather short. words = seed.split() if len(words) > 0 and words[len(words) - 1] in self.db: sen = '' if len(words) > 1: sen = words[0] for i in range(1, len(words) - 1): sen = sen + ' ' + words[i] sen += ' ' return sen + self._accumulate_with_seed(words[len(words) - 1]) # Just pretend we've managed to generate a sentence. sep = ' ' if seed == '': sep = '' return seed + sep + self.generate_string() @staticmethod def _word_iter(text, separator='.'): """ An iterator over the "words" in the given text, as defined by the regular expression given as separator. """ exp = re.compile(separator) pos = 0 for occ in exp.finditer(text): sub = text[pos:occ.start()].strip() if sub: yield sub pos = occ.start() + 1 if pos < len(text): # take case of the last part sub = text[pos:].strip() if sub: yield sub def _accumulate_with_seed(self, seed): """ Accumulate the generated sentence with a given single word as a seed. """ next_word = self._next_word(seed) sentence = [seed] if seed else [] while next_word: sentence.append(next_word) next_word = self._next_word(next_word) return ' '.join(sentence) def _next_word(self, lastword): probmap = self.db[lastword] sample = random.random() # since rounding errors might make us miss out on some words maxprob = 0.0 maxprobword = "" for candidate in probmap: # remember which word had the highest probability # this is the word we'll default to if we can't find anythin else if probmap[candidate] > maxprob: maxprob = probmap[candidate] maxprobword = candidate if sample > probmap[candidate]: sample -= probmap[candidate] else: return candidate return maxprobword
[ "os.path.exists", "pickle.dump", "os.makedirs", "re.compile", "os.path.join", "pickle.load", "sys.stderr.write", "datetime.datetime.now", "random.random", "sys.stdout.write" ]
[((4728, 4749), 're.compile', 're.compile', (['separator'], {}), '(separator)\n', (4738, 4749), False, 'import re\n'), ((5554, 5569), 'random.random', 'random.random', ([], {}), '()\n', (5567, 5569), False, 'import random\n'), ((595, 628), 'os.path.join', 'os.path.join', (['directory', 'filename'], {}), '(directory, filename)\n', (607, 628), False, 'import os\n'), ((497, 522), 'os.path.exists', 'os.path.exists', (['directory'], {}), '(directory)\n', (511, 522), False, 'import os\n'), ((540, 562), 'os.makedirs', 'os.makedirs', (['directory'], {}), '(directory)\n', (551, 562), False, 'import os\n'), ((726, 745), 'pickle.load', 'pickle.load', (['dbfile'], {}), '(dbfile)\n', (737, 745), False, 'import pickle\n'), ((782, 847), 'sys.stdout.write', 'sys.stdout.write', (['"""Database file not found, using empty database"""'], {}), "('Database file not found, using empty database')\n", (798, 847), False, 'import sys\n'), ((912, 984), 'sys.stdout.write', 'sys.stdout.write', (['"""Database corrupt or unreadable, using empty database"""'], {}), "('Database corrupt or unreadable, using empty database')\n", (928, 984), False, 'import sys\n'), ((3256, 3284), 'pickle.dump', 'pickle.dump', (['self.db', 'dbfile'], {}), '(self.db, dbfile)\n', (3267, 3284), False, 'import pickle\n'), ((3401, 3455), 'sys.stderr.write', 'sys.stderr.write', (['"""Database file could not be written"""'], {}), "('Database file could not be written')\n", (3417, 3455), False, 'import sys\n'), ((428, 451), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (449, 451), False, 'import datetime\n')]
import os; import sys; import socket import jinja2; backend_nodes = [] existing_entries = [] localhost = socket.gethostbyname(socket.gethostname()) try: service_name = os.environ['HAPROXY_SERVICE_NAME_TO_PROXY'] except: sys.exit("Could not find service name to proxy. Make sure you set HAPROXY_SERVICE_NAMES_TO_PROXY in ENV.") try: hosts = open("/etc/hosts") except: sys.exit("Could not open /etc/hosts to check dynamic hosts.") for host in hosts: host_entry = host.split() if len(host_entry) > 2: (host_ip, host_name) = host_entry[0:2] if (host_ip not in existing_entries) and (host_name.startswith(service_name)) and (host_ip not in ["0.0.0.0", "127.0.0.1", localhost]): existing_entries.append(host_ip) backend_nodes.append({'name' : host_name, 'ip' : host_ip}) view_vars = { 'backend_nodes' : backend_nodes } sys.stdout.write(jinja2.Template(sys.stdin.read()).render(view_vars, env=os.environ))
[ "sys.stdin.read", "socket.gethostname", "sys.exit" ]
[((127, 147), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (145, 147), False, 'import socket\n'), ((226, 342), 'sys.exit', 'sys.exit', (['"""Could not find service name to proxy. Make sure you set HAPROXY_SERVICE_NAMES_TO_PROXY in ENV."""'], {}), "(\n 'Could not find service name to proxy. Make sure you set HAPROXY_SERVICE_NAMES_TO_PROXY in ENV.'\n )\n", (234, 342), False, 'import sys\n'), ((378, 439), 'sys.exit', 'sys.exit', (['"""Could not open /etc/hosts to check dynamic hosts."""'], {}), "('Could not open /etc/hosts to check dynamic hosts.')\n", (386, 439), False, 'import sys\n'), ((886, 902), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (900, 902), False, 'import sys\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # Part of the PsychoPy library # Copyright (C) 2002-2018 <NAME> (C) 2019-2021 Open Science Tools Ltd. # Distributed under the terms of the GNU General Public License (GPL). from __future__ import absolute_import, print_function from builtins import str from os import path from pathlib import Path from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate from psychopy import logging from psychopy.localization import _localized as __localized _localized = __localized.copy() # only use _localized values for label values, nothing functional: _localized.update({'lineWidth': _translate('Brush Size'), 'lineColor': _translate('Brush Color'), 'lineColorSpace': _translate('Brush Color Space'), 'buttonRequired':_translate('Press Button')}) class BrushComponent(BaseVisualComponent): """A class for drawing freehand responses""" categories = ['Responses'] targets = ['PsychoPy', 'PsychoJS'] iconFile = Path(__file__).parent / 'brush.png' tooltip = _translate('Brush: a drawing tool') def __init__(self, exp, parentName, name='brush', lineColor='$[1,1,1]', lineColorSpace='rgb', lineWidth=1.5, opacity=1, buttonRequired=True, startType='time (s)', startVal=0.0, stopType='duration (s)', stopVal=1.0, startEstim='', durationEstim=''): super(BrushComponent, self).__init__( exp, parentName, name=name, startType=startType, startVal=startVal, stopType=stopType, stopVal=stopVal, startEstim=startEstim, durationEstim=durationEstim) self.type = 'Brush' self.url = "https://www.psychopy.org/builder/components/brush.html" self.exp.requirePsychopyLibs(['visual']) self.order.remove("opacity") # Move opacity to the end self.order += [ "lineWidth", "lineColor", "lineColorSpace", "opacity" # Appearance tab ] # params msg = _translate("Fill color of this brush") self.params['lineColor'] = Param( lineColor, valType='color', inputType="color", allowedTypes=[], categ='Appearance', updates='constant', allowedUpdates=['constant', 'set every repeat'], hint=msg, label=_localized['lineColor']) msg = _translate("Width of the brush's line (always in pixels and limited to 10px max width)") self.params['lineWidth'] = Param( lineWidth, valType='num', inputType="spin", allowedTypes=[], categ='Appearance', updates='constant', allowedUpdates=['constant', 'set every repeat'], hint=msg, label=_localized['lineWidth']) self.params['lineColorSpace'] = self.params['colorSpace'] del self.params['colorSpace'] msg = _translate("The line opacity") self.params['opacity'].hint=msg msg = _translate("Whether a button needs to be pressed to draw (True/False)") self.params['buttonRequired'] = Param( buttonRequired, valType='bool', inputType="bool", allowedTypes=[], categ='Basic', updates='constant', allowedUpdates=['constant', 'set every repeat'], hint=msg, label=_localized['buttonRequired']) # Remove BaseVisual params which are not needed del self.params['color'] # because color is defined by lineColor del self.params['fillColor'] del self.params['borderColor'] del self.params['size'] # because size determined by lineWidth del self.params['ori'] del self.params['pos'] del self.params['units'] # always in pix def writeInitCode(self, buff): params = getInitVals(self.params) code = ("{name} = visual.Brush(win=win, name='{name}',\n" " lineWidth={lineWidth},\n" " lineColor={lineColor},\n" " lineColorSpace={lineColorSpace},\n" " opacity={opacity},\n" " buttonRequired={buttonRequired})").format(name=params['name'], lineWidth=params['lineWidth'], lineColor=params['lineColor'], lineColorSpace=params['lineColorSpace'], opacity=params['opacity'], buttonRequired=params['buttonRequired']) buff.writeIndentedLines(code) def writeInitCodeJS(self, buff): # JS code does not use Brush class params = getInitVals(self.params) code = ("{name} = {{}};\n" "get{name} = function() {{\n" " return ( new visual.ShapeStim({{\n" " win: psychoJS.window,\n" " vertices: [[0, 0]],\n" " lineWidth: {lineWidth},\n" " lineColor: new util.Color({lineColor}),\n" " opacity: {opacity},\n" " closeShape: false,\n" " autoLog: false\n" " }}))\n" "}}\n\n").format(name=params['name'], lineWidth=params['lineWidth'], lineColor=params['lineColor'], opacity=params['opacity']) buff.writeIndentedLines(code) # add reset function code = ("{name}Reset = {name}.reset = function() {{\n" " if ({name}Shapes.length > 0) {{\n" " for (let shape of {name}Shapes) {{\n" " shape.setAutoDraw(false);\n" " }}\n" " }}\n" " {name}AtStartPoint = false;\n" " {name}Shapes = [];\n" " {name}CurrentShape = -1;\n" "}}\n\n").format(name=params['name']) buff.writeIndentedLines(code) # Define vars for drawing code = ("{name}CurrentShape = -1;\n" "{name}BrushPos = [];\n" "{name}Pointer = new core.Mouse({{win: psychoJS.window}});\n" "{name}AtStartPoint = false;\n" "{name}Shapes = [];\n").format(name=params['name']) buff.writeIndentedLines(code) def writeRoutineStartCode(self, buff): # Write update code super(BrushComponent, self).writeRoutineStartCode(buff) # Reset shapes for each trial buff.writeIndented("{}.reset()\n".format(self.params['name'])) def writeRoutineStartCodeJS(self, buff): # Write update code # super(BrushComponent, self).writeRoutineStartCodeJS(buff) # Reset shapes for each trial buff.writeIndented("{}Reset();\n".format(self.params['name'])) def writeFrameCodeJS(self, buff): code = ("if ({name}Pointer.getPressed()[0] === 1 && {name}AtStartPoint != true) {{\n" " {name}AtStartPoint = true;\n" " {name}BrushPos = [];\n" " {name}Shapes.push(get{name}());\n" " {name}CurrentShape += 1;\n" " {name}Shapes[{name}CurrentShape].setAutoDraw(true);\n" "}}\n" "if ({name}Pointer.getPressed()[0] === 1) {{\n" " {name}BrushPos.push({name}Pointer.getPos());\n" " {name}Shapes[{name}CurrentShape].setVertices({name}BrushPos);\n" "}} else {{\n" " {name}AtStartPoint = false;\n" "}}\n".format(name=self.params['name'])) buff.writeIndentedLines(code)
[ "pathlib.Path", "psychopy.experiment.components.Param", "psychopy.experiment.components.getInitVals", "psychopy.localization._localized.copy", "psychopy.experiment.components._translate" ]
[((544, 562), 'psychopy.localization._localized.copy', '__localized.copy', ([], {}), '()\n', (560, 562), True, 'from psychopy.localization import _localized as __localized\n'), ((1112, 1147), 'psychopy.experiment.components._translate', '_translate', (['"""Brush: a drawing tool"""'], {}), "('Brush: a drawing tool')\n", (1122, 1147), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((663, 687), 'psychopy.experiment.components._translate', '_translate', (['"""Brush Size"""'], {}), "('Brush Size')\n", (673, 687), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((721, 746), 'psychopy.experiment.components._translate', '_translate', (['"""Brush Color"""'], {}), "('Brush Color')\n", (731, 746), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((785, 816), 'psychopy.experiment.components._translate', '_translate', (['"""Brush Color Space"""'], {}), "('Brush Color Space')\n", (795, 816), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((854, 880), 'psychopy.experiment.components._translate', '_translate', (['"""Press Button"""'], {}), "('Press Button')\n", (864, 880), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((2122, 2160), 'psychopy.experiment.components._translate', '_translate', (['"""Fill color of this brush"""'], {}), "('Fill color of this brush')\n", (2132, 2160), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((2196, 2404), 'psychopy.experiment.components.Param', 'Param', (['lineColor'], {'valType': '"""color"""', 'inputType': '"""color"""', 'allowedTypes': '[]', 'categ': '"""Appearance"""', 'updates': '"""constant"""', 'allowedUpdates': "['constant', 'set every repeat']", 'hint': 'msg', 'label': "_localized['lineColor']"}), "(lineColor, valType='color', inputType='color', allowedTypes=[], categ\n ='Appearance', updates='constant', allowedUpdates=['constant',\n 'set every repeat'], hint=msg, label=_localized['lineColor'])\n", (2201, 2404), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((2472, 2570), 'psychopy.experiment.components._translate', '_translate', (['"""Width of the brush\'s line (always in pixels and limited to 10px max width)"""'], {}), '(\n "Width of the brush\'s line (always in pixels and limited to 10px max width)"\n )\n', (2482, 2570), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((2596, 2801), 'psychopy.experiment.components.Param', 'Param', (['lineWidth'], {'valType': '"""num"""', 'inputType': '"""spin"""', 'allowedTypes': '[]', 'categ': '"""Appearance"""', 'updates': '"""constant"""', 'allowedUpdates': "['constant', 'set every repeat']", 'hint': 'msg', 'label': "_localized['lineWidth']"}), "(lineWidth, valType='num', inputType='spin', allowedTypes=[], categ=\n 'Appearance', updates='constant', allowedUpdates=['constant',\n 'set every repeat'], hint=msg, label=_localized['lineWidth'])\n", (2601, 2801), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((2974, 3004), 'psychopy.experiment.components._translate', '_translate', (['"""The line opacity"""'], {}), "('The line opacity')\n", (2984, 3004), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((3060, 3131), 'psychopy.experiment.components._translate', '_translate', (['"""Whether a button needs to be pressed to draw (True/False)"""'], {}), "('Whether a button needs to be pressed to draw (True/False)')\n", (3070, 3131), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((3172, 3382), 'psychopy.experiment.components.Param', 'Param', (['buttonRequired'], {'valType': '"""bool"""', 'inputType': '"""bool"""', 'allowedTypes': '[]', 'categ': '"""Basic"""', 'updates': '"""constant"""', 'allowedUpdates': "['constant', 'set every repeat']", 'hint': 'msg', 'label': "_localized['buttonRequired']"}), "(buttonRequired, valType='bool', inputType='bool', allowedTypes=[],\n categ='Basic', updates='constant', allowedUpdates=['constant',\n 'set every repeat'], hint=msg, label=_localized['buttonRequired'])\n", (3177, 3382), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((3880, 3904), 'psychopy.experiment.components.getInitVals', 'getInitVals', (['self.params'], {}), '(self.params)\n', (3891, 3904), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((4791, 4815), 'psychopy.experiment.components.getInitVals', 'getInitVals', (['self.params'], {}), '(self.params)\n', (4802, 4815), False, 'from psychopy.experiment.components import BaseVisualComponent, Param, getInitVals, _translate\n'), ((1062, 1076), 'pathlib.Path', 'Path', (['__file__'], {}), '(__file__)\n', (1066, 1076), False, 'from pathlib import Path\n')]
import tensorflow as tf import time from train_monitor import latet_parameters, generate_and_save_images import numpy as np # This annotation causes the function to be "compiled". @tf.function def train_step(images, epoch,BATCH_SIZE, noise_dim,generator,discriminator,generator_loss,discriminator_loss,generator_optimizer,discriminator_optimizer): """ This is the fundemental training step for a generatove advisarial network decorated with an @tf.function to compile the function for parrallel processing """ # define noise vector to be fed into generator noise = tf.random.normal([BATCH_SIZE, noise_dim]) lat_params = latet_parameters(BATCH_SIZE) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: # generate fake images from latent vector and random cosmological # parameters in the same range as that of the simulation data generated_images = generator(noise, lat_params, training=True) # get discriminator predictions on both the fake images and a batch # of real images from the dataset fake_output = discriminator((generated_images, lat_params), training=True) real_output = discriminator(images, training=True) # calculate the losses based off the chosen loss function for both # the discriminator and generator gen_loss = generator_loss(fake_output) disc_loss, real_loss, fake_loss= discriminator_loss(real_output, fake_output) # Calculate the gradient steps for the models from the losses calculated # previously. gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) # Apply the gradient steps to the generator and discriminator generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) # returning these parameters purly for the loss history return disc_loss, gen_loss, real_loss, fake_loss def train(dataset, epochs,BATCH_SIZE, noise_dim,generator,discriminator, generator_loss,discriminator_loss,generator_optimizer,discriminator_optimizer, seed,comparison,checkpoint,checkpoint_prefix, img_save_freq, ckpt_save_freq): """ This is the high level training function and loops the training step (defined above). It saves images to a directory every img_save_freq and saves checkpoints every ckpt_save_freq. Note save freq are in batches not epochs! This is because the training datasets can be enormous and epochs too long. seed is a random distribution dimension [num_examples_to_generate, noise_dim] """ for epoch in range(epochs): #start timer for each epoch start1 = time.time() i =0 # do one training step for each image batch for batch in dataset: disc_loss, gen_loss, real_loss, fake_loss = train_step(batch, epoch,BATCH_SIZE, noise_dim,generator,discriminator, generator_loss,discriminator_loss,generator_optimizer, discriminator_optimizer) i+=1 if i % img_save_freq ==0: generate_and_save_images(generator,epoch,i,seed,comparison) print(f"batch: {i}") # print the losses for the final image batch in this epoch print(f"d total: {disc_loss.numpy()}") print(f"d real: {real_loss.numpy()}") print(f"d fake: {fake_loss.numpy()}") print(f"g loss: {gen_loss.numpy()}") # collect and save losses for future reference losses = disc_loss, gen_loss, real_loss, fake_loss np.save("losses/loss at end of epoch_"+str(epoch+1)+"_step_"+str(i),losses) if i % ckpt_save_freq == 0: print("saving checkpoint") checkpoint.save(file_prefix = checkpoint_prefix) print("checkpoint saved") print ('Time for epoch {} is {} sec'.format(epoch + 1, time.time()-start))
[ "tensorflow.random.normal", "train_monitor.generate_and_save_images", "train_monitor.latet_parameters", "tensorflow.GradientTape", "time.time" ]
[((618, 659), 'tensorflow.random.normal', 'tf.random.normal', (['[BATCH_SIZE, noise_dim]'], {}), '([BATCH_SIZE, noise_dim])\n', (634, 659), True, 'import tensorflow as tf\n'), ((678, 706), 'train_monitor.latet_parameters', 'latet_parameters', (['BATCH_SIZE'], {}), '(BATCH_SIZE)\n', (694, 706), False, 'from train_monitor import latet_parameters, generate_and_save_images\n'), ((735, 752), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (750, 752), True, 'import tensorflow as tf\n'), ((766, 783), 'tensorflow.GradientTape', 'tf.GradientTape', ([], {}), '()\n', (781, 783), True, 'import tensorflow as tf\n'), ((3300, 3311), 'time.time', 'time.time', ([], {}), '()\n', (3309, 3311), False, 'import time\n'), ((3806, 3869), 'train_monitor.generate_and_save_images', 'generate_and_save_images', (['generator', 'epoch', 'i', 'seed', 'comparison'], {}), '(generator, epoch, i, seed, comparison)\n', (3830, 3869), False, 'from train_monitor import latet_parameters, generate_and_save_images\n'), ((4769, 4780), 'time.time', 'time.time', ([], {}), '()\n', (4778, 4780), False, 'import time\n')]
"""Add event state and timestamp Revision ID: 90f8444d5ab7 Revises: 2<PASSWORD> Create Date: 2017-11-20 23:16:44.079911 """ # revision identifiers, used by Alembic. revision = '90f8444d5ab7' down_revision = '2<PASSWORD>' from alembic import op import sqlalchemy as sa from freshmaker.models import Event from freshmaker.types import EventState def upgrade(): with op.batch_alter_table('events', schema=None) as batch_op: batch_op.add_column(sa.Column('state', sa.Integer(), server_default=str(EventState.INITIALIZED.value), nullable=False)) batch_op.add_column(sa.Column('state_reason', sa.String(), nullable=True)) batch_op.add_column(sa.Column('time_created', sa.DateTime(), nullable=True)) # update state to 'COMPLETE' for historical events op.execute( sa.update(Event).values({ 'state': op.inline_literal(EventState.COMPLETE.value) }) ) def downgrade(): with op.batch_alter_table('events', schema=None) as batch_op: batch_op.drop_column('state') batch_op.drop_column('state_reason') batch_op.drop_column('time_created')
[ "sqlalchemy.DateTime", "alembic.op.batch_alter_table", "sqlalchemy.Integer", "sqlalchemy.String", "alembic.op.inline_literal", "sqlalchemy.update" ]
[((375, 418), 'alembic.op.batch_alter_table', 'op.batch_alter_table', (['"""events"""'], {'schema': 'None'}), "('events', schema=None)\n", (395, 418), False, 'from alembic import op\n'), ((945, 988), 'alembic.op.batch_alter_table', 'op.batch_alter_table', (['"""events"""'], {'schema': 'None'}), "('events', schema=None)\n", (965, 988), False, 'from alembic import op\n'), ((479, 491), 'sqlalchemy.Integer', 'sa.Integer', ([], {}), '()\n', (489, 491), True, 'import sqlalchemy as sa\n'), ((614, 625), 'sqlalchemy.String', 'sa.String', ([], {}), '()\n', (623, 625), True, 'import sqlalchemy as sa\n'), ((697, 710), 'sqlalchemy.DateTime', 'sa.DateTime', ([], {}), '()\n', (708, 710), True, 'import sqlalchemy as sa\n'), ((808, 824), 'sqlalchemy.update', 'sa.update', (['Event'], {}), '(Event)\n', (817, 824), True, 'import sqlalchemy as sa\n'), ((855, 899), 'alembic.op.inline_literal', 'op.inline_literal', (['EventState.COMPLETE.value'], {}), '(EventState.COMPLETE.value)\n', (872, 899), False, 'from alembic import op\n')]
import argparse import json import multiprocessing import sys import traceback from concurrent.futures._base import as_completed from concurrent.futures.process import ProcessPoolExecutor from pathlib import Path import chainer from tqdm import tqdm from analysis.analyzer import is_image, Analyzer def init_process(model_path, needs_patches, device): global analyzer current_process = multiprocessing.current_process() process_name = current_process.name if device == "@numpy": device_id = -1 else: device_id = int(process_name.split('-')[-1]) - 1 analyzer = Analyzer(model_path, device_id, needs_patches=needs_patches) def consumer(image_path, file_name): return analyzer.analyse_path(image_path, file_name) def main(args, device, num_available_devices): model_path = Path(args.model) root_dir = Path(args.root_dir) image_paths = [file_name for file_name in root_dir.glob('**/*') if is_image(file_name)] analyzed_images = [] ctx = multiprocessing.get_context('forkserver') executor = ProcessPoolExecutor(max_workers=num_available_devices, mp_context=ctx, initializer=init_process, initargs=(model_path, not args.no_split, device)) try: with executor: current_jobs = [] for i, image_path in enumerate(image_paths): submitted_job = executor.submit(consumer, image_path, str(image_path.relative_to(root_dir))) current_jobs.append(submitted_job) for job in tqdm(as_completed(current_jobs), total=len(current_jobs)): try: result = job.result() analyzed_images.append(result) except Exception as e: print(f"Could not process {str(image_path)}, reason: {e}") traceback.print_exc(file=sys.stdout) except KeyboardInterrupt: pass with (root_dir / 'handwriting_analysis.json').open('w') as f: json.dump(analyzed_images, f, indent='\t') num_has_handwriting = len([im for im in analyzed_images if im['has_handwriting']]) print(f"Handwriting to no handwriting ratio: {num_has_handwriting / len(analyzed_images)}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Provided a dir with images, create a json with info if an image contains handwriting or not") parser.add_argument("root_dir", help="path to dir to analyse") parser.add_argument('model', help="model to load") parser.add_argument("--max-size", type=int, default=2000, help="max size of input before splitting into patches") parser.add_argument("--no-split", action='store_true', default=False, help="do not split input image into individual patches") num_available_devices = chainer.backends.cuda.cupy.cuda.runtime.getDeviceCount() if num_available_devices == 0: num_available_devices = 1 device = "@numpy" else: device = "@cuda" main(parser.parse_args(), device, num_available_devices)
[ "argparse.ArgumentParser", "pathlib.Path", "json.dump", "multiprocessing.get_context", "concurrent.futures.process.ProcessPoolExecutor", "concurrent.futures._base.as_completed", "analysis.analyzer.Analyzer", "analysis.analyzer.is_image", "chainer.backends.cuda.cupy.cuda.runtime.getDeviceCount", "traceback.print_exc", "multiprocessing.current_process" ]
[((398, 431), 'multiprocessing.current_process', 'multiprocessing.current_process', ([], {}), '()\n', (429, 431), False, 'import multiprocessing\n'), ((604, 664), 'analysis.analyzer.Analyzer', 'Analyzer', (['model_path', 'device_id'], {'needs_patches': 'needs_patches'}), '(model_path, device_id, needs_patches=needs_patches)\n', (612, 664), False, 'from analysis.analyzer import is_image, Analyzer\n'), ((826, 842), 'pathlib.Path', 'Path', (['args.model'], {}), '(args.model)\n', (830, 842), False, 'from pathlib import Path\n'), ((858, 877), 'pathlib.Path', 'Path', (['args.root_dir'], {}), '(args.root_dir)\n', (862, 877), False, 'from pathlib import Path\n'), ((1007, 1048), 'multiprocessing.get_context', 'multiprocessing.get_context', (['"""forkserver"""'], {}), "('forkserver')\n", (1034, 1048), False, 'import multiprocessing\n'), ((1064, 1214), 'concurrent.futures.process.ProcessPoolExecutor', 'ProcessPoolExecutor', ([], {'max_workers': 'num_available_devices', 'mp_context': 'ctx', 'initializer': 'init_process', 'initargs': '(model_path, not args.no_split, device)'}), '(max_workers=num_available_devices, mp_context=ctx,\n initializer=init_process, initargs=(model_path, not args.no_split, device))\n', (1083, 1214), False, 'from concurrent.futures.process import ProcessPoolExecutor\n'), ((2250, 2390), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Provided a dir with images, create a json with info if an image contains handwriting or not"""'}), "(description=\n 'Provided a dir with images, create a json with info if an image contains handwriting or not'\n )\n", (2273, 2390), False, 'import argparse\n'), ((2781, 2837), 'chainer.backends.cuda.cupy.cuda.runtime.getDeviceCount', 'chainer.backends.cuda.cupy.cuda.runtime.getDeviceCount', ([], {}), '()\n', (2835, 2837), False, 'import chainer\n'), ((1981, 2023), 'json.dump', 'json.dump', (['analyzed_images', 'f'], {'indent': '"""\t"""'}), "(analyzed_images, f, indent='\\t')\n", (1990, 2023), False, 'import json\n'), ((950, 969), 'analysis.analyzer.is_image', 'is_image', (['file_name'], {}), '(file_name)\n', (958, 969), False, 'from analysis.analyzer import is_image, Analyzer\n'), ((1520, 1546), 'concurrent.futures._base.as_completed', 'as_completed', (['current_jobs'], {}), '(current_jobs)\n', (1532, 1546), False, 'from concurrent.futures._base import as_completed\n'), ((1826, 1862), 'traceback.print_exc', 'traceback.print_exc', ([], {'file': 'sys.stdout'}), '(file=sys.stdout)\n', (1845, 1862), False, 'import traceback\n')]
# @filename: ancensored_downloder.py # @usage: python ancensored_downloader.py *url to image gallery* # @author: YedaAnna # @description: Downloads images from ancensored.com # @version: 1.0 # @date: Wednesday 3rd November 2015 import os from bs4 import BeautifulSoup import urllib.request import urllib.parse import time import sys import re import random import datetime global base_link, site_link, url start = time.time() site_link = "http://ancensored.com/" url = newurl = [] if len(sys.argv) > 2: base_link = sys.argv[1] folder_name = sys.argv[2] subfolder_name = str(datetime.date.today()) else: base_link = sys.argv[1] parsed = urllib.parse.urlparse(sys.argv[1]) folder_name = parsed.path.split('/')[3] subfolder_name = parsed.path.split('/')[2] def list_images(): global name, url, img, nextpage_link, newlist, newurl, thumbnail base_contents = urllib.request.urlopen(base_link).read() parsed_html = BeautifulSoup(base_contents) img = parsed_html.find_all(src=re.compile("jpg")) url = [] newurl = [] for link in img: url.append(link.get('src')) avoidthumbnails() def avoidthumbnails(): global size, newurl for i in range(len(url)): try: size = urllib.request.urlopen(url[i]).info()['Content-Length'] except ValueError as e: print(e) if int(size) < 50000: # if size is <50kb it is a thumbnail fullimages() else: newurl = url download_images() def fullimages(): global newurl newurl = [] for i in range(len(url)): thumbnaail_url_split = urllib.parse.urlparse(url[i]) if "vthumbs" in thumbnaail_url_split.path.split('/'): thumbnail = os.path.splitext(url[i])[0] newurl.append(thumbnail + '_full.jpg') elif "gallery_thumb" in thumbnaail_url_split.path.split('/'): thumbnail_split_array = [] thumbnail_split_array = thumbnaail_url_split.path.split('/') thumbnail_split_array.pop(4) thumbnail_split_array.pop(4) thumbnail = '/'.join(thumbnail_split_array) newurl.append(site_link + thumbnail) else: continue download_images() def download_images(): for i in range(len(newurl)): try: urllib.request.urlretrieve( newurl[i], folder_name + str(random.randrange(1000)) + ".jpg") except urllib.error.URLError as e: print(e.reason) if not os.path.exists(os.getcwd() + '/' + folder_name + '/' + subfolder_name): os.makedirs(os.getcwd() + '/' + folder_name + '/' + subfolder_name) os.chdir(os.getcwd() + '/' + folder_name + '/' + subfolder_name) list_images() print("End of Program :)") print("Time taken: " + str(time.time() - start) + " seconds")
[ "re.compile", "random.randrange", "os.path.splitext", "os.getcwd", "bs4.BeautifulSoup", "datetime.date.today", "time.time" ]
[((415, 426), 'time.time', 'time.time', ([], {}), '()\n', (424, 426), False, 'import time\n'), ((953, 981), 'bs4.BeautifulSoup', 'BeautifulSoup', (['base_contents'], {}), '(base_contents)\n', (966, 981), False, 'from bs4 import BeautifulSoup\n'), ((588, 609), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (607, 609), False, 'import datetime\n'), ((1017, 1034), 're.compile', 're.compile', (['"""jpg"""'], {}), "('jpg')\n", (1027, 1034), False, 'import re\n'), ((1737, 1761), 'os.path.splitext', 'os.path.splitext', (['url[i]'], {}), '(url[i])\n', (1753, 1761), False, 'import os\n'), ((2664, 2675), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2673, 2675), False, 'import os\n'), ((2788, 2799), 'time.time', 'time.time', ([], {}), '()\n', (2797, 2799), False, 'import time\n'), ((2526, 2537), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2535, 2537), False, 'import os\n'), ((2599, 2610), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (2608, 2610), False, 'import os\n'), ((2398, 2420), 'random.randrange', 'random.randrange', (['(1000)'], {}), '(1000)\n', (2414, 2420), False, 'import random\n')]
#!/usr/bin/env python # -*- encoding: utf-8 -*- from __future__ import (absolute_import, division, print_function, unicode_literals) import os DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = ["*"] TIME_ZONE = 'Europe/Prague' LANGUAGE_CODE = 'en-us' DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', } } INSTALLED_APPS = ( 'activeview', ) ROOT_URLCONF = 'urls' SECRET_KEY = '42' # - - - - - - - - - - - - - - - - - - - # TEMPLATES settings for older Django # - - - - - - - - - - - - - - - - - - - TEMPLATE_DIRS = ( os.path.join(os.path.dirname(__file__), "templates"), ) TEMPLATE_CONTEXT_PROCESSORS = ( 'django.core.context_processors.request', ) # - - - - - - - - - - - - - - - - - # TEMPLATES settings for new Django # - - - - - - - - - - - - - - - - - TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ os.path.join(os.path.dirname(__file__), "templates"), ], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.request' ], }, }, ]
[ "os.path.dirname" ]
[((607, 632), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (622, 632), False, 'import os\n'), ((973, 998), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (988, 998), False, 'import os\n')]
# -*- coding: utf-8 -*- __author__ = "苦叶子" from time import sleep from selenium import webdriver from selenium.webdriver import ActionChains from selenium.webdriver.support.select import Select if __name__ == "__main__": driver = webdriver.Chrome() action_chains = ActionChains(driver) driver.get("file:///Users/lyy/Documents/project/DevAuto/selenium_python/4/demo.html") ele = driver.find_element_by_id("select_id") # 通过索引选中第一个 Select(ele).select_by_index(0) sleep(2) # 通过value选中第2个 Select(ele).select_by_value("value_2") sleep(2) # 通过文本选中第3个 Select(ele).select_by_visible_text("测试数据3") sleep(2) driver.quit()
[ "selenium.webdriver.Chrome", "time.sleep", "selenium.webdriver.support.select.Select", "selenium.webdriver.ActionChains" ]
[((240, 258), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {}), '()\n', (256, 258), False, 'from selenium import webdriver\n'), ((279, 299), 'selenium.webdriver.ActionChains', 'ActionChains', (['driver'], {}), '(driver)\n', (291, 299), False, 'from selenium.webdriver import ActionChains\n'), ((496, 504), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (501, 504), False, 'from time import sleep\n'), ((572, 580), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (577, 580), False, 'from time import sleep\n'), ((650, 658), 'time.sleep', 'sleep', (['(2)'], {}), '(2)\n', (655, 658), False, 'from time import sleep\n'), ((461, 472), 'selenium.webdriver.support.select.Select', 'Select', (['ele'], {}), '(ele)\n', (467, 472), False, 'from selenium.webdriver.support.select import Select\n'), ((529, 540), 'selenium.webdriver.support.select.Select', 'Select', (['ele'], {}), '(ele)\n', (535, 540), False, 'from selenium.webdriver.support.select import Select\n'), ((602, 613), 'selenium.webdriver.support.select.Select', 'Select', (['ele'], {}), '(ele)\n', (608, 613), False, 'from selenium.webdriver.support.select import Select\n')]
import logging log = logging.getLogger(__name__) if __name__ == '__main__': print('this is just a tribute')
[ "logging.getLogger" ]
[((22, 49), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (39, 49), False, 'import logging\n')]
# Generated by Django 3.2.3 on 2021-05-20 10:13 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('travello', '0002_destination_subs'), ] operations = [ migrations.RemoveField( model_name='destination', name='name', ), migrations.RemoveField( model_name='destination', name='subs', ), ]
[ "django.db.migrations.RemoveField" ]
[((226, 287), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""destination"""', 'name': '"""name"""'}), "(model_name='destination', name='name')\n", (248, 287), False, 'from django.db import migrations\n'), ((332, 393), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""destination"""', 'name': '"""subs"""'}), "(model_name='destination', name='subs')\n", (354, 393), False, 'from django.db import migrations\n')]
# # This source file is part of the EdgeDB open source project. # # Copyright 2018-present MagicStack Inc. and the EdgeDB authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import annotations import asyncio import itertools from . import taskgroup class Supervisor: def __init__(self, *, _name, _loop, _private): if _name is None: self._name = f'sup#{_name_counter()}' else: self._name = str(_name) self._loop = _loop self._unfinished_tasks = 0 self._cancelled = False self._tasks = set() self._errors = [] self._base_error = None self._on_completed_fut = None @classmethod async def create(cls, *, name: str=None): loop = asyncio.get_running_loop() return cls(_loop=loop, _name=name, _private=True) def __repr__(self): msg = f'<Supervisor {self._name!r}' if self._tasks: msg += f' tasks:{len(self._tasks)}' if self._unfinished_tasks: msg += f' unfinished:{self._unfinished_tasks}' if self._errors: msg += f' errors:{len(self._errors)}' if self._cancelled: msg += ' cancelling' msg += '>' return msg def create_task(self, coro): if self._cancelled: raise RuntimeError( f'supervisor {self!r} has already been cancelled') task = self._loop.create_task(coro) task.add_done_callback(self._on_task_done) self._unfinished_tasks += 1 self._tasks.add(task) return task async def cancel(self): self._cancel() if self._unfinished_tasks: was_cancelled = await self._wait() if was_cancelled: raise asyncio.CancelledError() async def wait(self): if self._unfinished_tasks: was_cancelled = await self._wait() if was_cancelled: raise asyncio.CancelledError() if self._base_error is not None: raise self._base_error if self._errors: # Exceptions are heavy objects that can have object # cycles (bad for GC); let's not keep a reference to # a bunch of them. errors = self._errors self._errors = None me = taskgroup.TaskGroupError('unhandled errors in a Supervisor', errors=errors) raise me from None async def _wait(self): was_cancelled = False # We use while-loop here because "self._on_completed_fut" # can be cancelled multiple times if our parent task # is being cancelled repeatedly (or even once, when # our own cancellation is already in progress) while self._unfinished_tasks: if self._on_completed_fut is None: self._on_completed_fut = self._loop.create_future() try: await self._on_completed_fut except asyncio.CancelledError: was_cancelled = True self._cancel() self._on_completed_fut = None assert self._unfinished_tasks == 0 self._on_completed_fut = None # no longer needed return was_cancelled def _on_task_done(self, task): self._unfinished_tasks -= 1 assert self._unfinished_tasks >= 0 if self._on_completed_fut is not None and not self._unfinished_tasks: if not self._on_completed_fut.done(): self._on_completed_fut.set_result(True) if task.cancelled(): return exc = task.exception() if exc is None: return self._errors.append(exc) if self._is_base_error(exc) and self._base_error is None: self._base_error = exc self._cancel() def _cancel(self): self._cancelled = True for t in self._tasks: if not t.done(): t.cancel() def _is_base_error(self, exc): assert isinstance(exc, BaseException) return not isinstance(exc, Exception) _name_counter = itertools.count(1).__next__
[ "asyncio.CancelledError", "itertools.count", "asyncio.get_running_loop" ]
[((4678, 4696), 'itertools.count', 'itertools.count', (['(1)'], {}), '(1)\n', (4693, 4696), False, 'import itertools\n'), ((1270, 1296), 'asyncio.get_running_loop', 'asyncio.get_running_loop', ([], {}), '()\n', (1294, 1296), False, 'import asyncio\n'), ((2296, 2320), 'asyncio.CancelledError', 'asyncio.CancelledError', ([], {}), '()\n', (2318, 2320), False, 'import asyncio\n'), ((2482, 2506), 'asyncio.CancelledError', 'asyncio.CancelledError', ([], {}), '()\n', (2504, 2506), False, 'import asyncio\n')]
import smtplib import ssl from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from api.models import SubmissionAssignmentOne, SubmissionAssignmentTwo, SubmissionAssignmentThree def send_mail(submission_id, assignment_no): print(" In send_mail ") if assignment_no == 1: sub = SubmissionAssignmentOne.objects.get(id=submission_id) if assignment_no == 2: sub = SubmissionAssignmentTwo.objects.get(id=submission_id) if assignment_no == 3: sub = SubmissionAssignmentThree.objects.get(id=submission_id) team = sub.team message = MIMEMultipart("alternative") message["Subject"] = "Big Data Assignment Result" message["From"] = "<EMAIL>" html = "Hi \n Your bigdata submission with submission id " + str(submission_id) + " has been evaluated \n" \ "<html> " \ "<body> " \ "<h3> Scores </h3> " \ "<p> Task 1: " + str(sub.score_1) + "</p>" + "<p> Task 2: " + str(sub.score_2) + "</p>" \ "<h3> Remarks </h3> " + str(sub.remarks) + "<br>" \ "</body> " \ "</html>" part = MIMEText(html, "html") message.attach(part) emails = [team.member_1, team.member_2, team.member_3, team.member_4] for email in emails: if email != 'nan': _send(email, message) def _send(receiver_email, message): print(" Sending mail ") port = 465 # For SSL smtp_server = "smtp.gmail.com" sender_email = "<EMAIL>" # Enter your address password = "<PASSWORD>" # Enter correct password context = ssl.create_default_context() with smtplib.SMTP_SSL(smtp_server, port, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email, message.as_string())
[ "smtplib.SMTP_SSL", "ssl.create_default_context", "api.models.SubmissionAssignmentTwo.objects.get", "api.models.SubmissionAssignmentOne.objects.get", "email.mime.multipart.MIMEMultipart", "api.models.SubmissionAssignmentThree.objects.get", "email.mime.text.MIMEText" ]
[((605, 633), 'email.mime.multipart.MIMEMultipart', 'MIMEMultipart', (['"""alternative"""'], {}), "('alternative')\n", (618, 633), False, 'from email.mime.multipart import MIMEMultipart\n'), ((1116, 1138), 'email.mime.text.MIMEText', 'MIMEText', (['html', '"""html"""'], {}), "(html, 'html')\n", (1124, 1138), False, 'from email.mime.text import MIMEText\n'), ((1572, 1600), 'ssl.create_default_context', 'ssl.create_default_context', ([], {}), '()\n', (1598, 1600), False, 'import ssl\n'), ((325, 378), 'api.models.SubmissionAssignmentOne.objects.get', 'SubmissionAssignmentOne.objects.get', ([], {'id': 'submission_id'}), '(id=submission_id)\n', (360, 378), False, 'from api.models import SubmissionAssignmentOne, SubmissionAssignmentTwo, SubmissionAssignmentThree\n'), ((420, 473), 'api.models.SubmissionAssignmentTwo.objects.get', 'SubmissionAssignmentTwo.objects.get', ([], {'id': 'submission_id'}), '(id=submission_id)\n', (455, 473), False, 'from api.models import SubmissionAssignmentOne, SubmissionAssignmentTwo, SubmissionAssignmentThree\n'), ((515, 570), 'api.models.SubmissionAssignmentThree.objects.get', 'SubmissionAssignmentThree.objects.get', ([], {'id': 'submission_id'}), '(id=submission_id)\n', (552, 570), False, 'from api.models import SubmissionAssignmentOne, SubmissionAssignmentTwo, SubmissionAssignmentThree\n'), ((1610, 1662), 'smtplib.SMTP_SSL', 'smtplib.SMTP_SSL', (['smtp_server', 'port'], {'context': 'context'}), '(smtp_server, port, context=context)\n', (1626, 1662), False, 'import smtplib\n')]
from django.views.generic import dates from scrivo.models import Post from scrivo.settings import DEFAULT_PAGINATE_BY, INDEX_POST_COUNT class PostArchiveMixin(object): """ Mixin to add common archive view attributes """ date_field = "published" queryset = Post.objects.public() paginate_by = DEFAULT_PAGINATE_BY class PostArchive(PostArchiveMixin, dates.ArchiveIndexView): paginate_by = INDEX_POST_COUNT class PostYearArchive(PostArchiveMixin, dates.YearArchiveView): make_object_list = True class PostMonthArchive(PostArchiveMixin, dates.MonthArchiveView): pass class PostDayArchive(PostArchiveMixin, dates.DayArchiveView): pass class PostDetail(PostArchiveMixin, dates.DateDetailView): pass
[ "scrivo.models.Post.objects.public" ]
[((277, 298), 'scrivo.models.Post.objects.public', 'Post.objects.public', ([], {}), '()\n', (296, 298), False, 'from scrivo.models import Post\n')]
from typing import Tuple import torch import torch.nn as nn from torch.nn.functional import conv2d def _get_box_filter(kernel_size: Tuple[int, int]) -> torch.Tensor: r"""Utility function that returns a box filter.""" kx: float = float(kernel_size[0]) ky: float = float(kernel_size[1]) scale: torch.Tensor = torch.tensor(1.) / torch.tensor([kx * ky]) tmp_kernel: torch.Tensor = torch.ones(1, 1, kernel_size[0], kernel_size[1]) return scale.to(tmp_kernel.dtype) * tmp_kernel def _compute_zero_padding(kernel_size: Tuple[int, int]) -> Tuple[int, int]: r"""Utility function that computes zero padding tuple.""" computed: Tuple[int, ...] = tuple([(k - 1) // 2 for k in kernel_size]) return computed[0], computed[1] class BoxBlur(nn.Module): r"""Blurs an image using the box filter. The function smooths an image using the kernel: .. math:: K = \frac{1}{\text{kernel_size}_x * \text{kernel_size}_y} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix} Args: kernel_size (Tuple[int, int]): the blurring kernel size. Returns: torch.Tensor: the blurred input tensor. Shape: - Input: :math:`(B, C, H, W)` - Output: :math:`(B, C, H, W)` Example: >>> input = torch.rand(2, 4, 5, 7) >>> blur = kornia.filters.BoxBlur((3, 3)) >>> output = blur(input) # 2x4x5x7 """ def __init__(self, kernel_size: Tuple[int, int]) -> None: super(BoxBlur, self).__init__() self.kernel: torch.Tensor = _get_box_filter(kernel_size) self.padding: Tuple[int, int] = _compute_zero_padding(kernel_size) def forward(self, input: torch.Tensor): # type: ignore if not torch.is_tensor(input): raise TypeError("Input type is not a torch.Tensor. Got {}" .format(type(input))) if not len(input.shape) == 4: raise ValueError("Invalid input shape, we expect BxCxHxW. Got: {}" .format(input.shape)) # prepare kernel b, c, h, w = input.shape tmp_kernel: torch.Tensor = self.kernel.to(input.device).to(input.dtype) kernel: torch.Tensor = tmp_kernel.repeat(c, 1, 1, 1) return conv2d(input, kernel, padding=self.padding, stride=1, groups=c) # functiona api def box_blur(input: torch.Tensor, kernel_size: Tuple[int, int]) -> torch.Tensor: r"""Blurs an image using the box filter. See :class:`~kornia.filters.BoxBlur` for details. """ return BoxBlur(kernel_size)(input)
[ "torch.tensor", "torch.nn.functional.conv2d", "torch.is_tensor", "torch.ones" ]
[((400, 448), 'torch.ones', 'torch.ones', (['(1)', '(1)', 'kernel_size[0]', 'kernel_size[1]'], {}), '(1, 1, kernel_size[0], kernel_size[1])\n', (410, 448), False, 'import torch\n'), ((326, 343), 'torch.tensor', 'torch.tensor', (['(1.0)'], {}), '(1.0)\n', (338, 343), False, 'import torch\n'), ((345, 368), 'torch.tensor', 'torch.tensor', (['[kx * ky]'], {}), '([kx * ky])\n', (357, 368), False, 'import torch\n'), ((2430, 2493), 'torch.nn.functional.conv2d', 'conv2d', (['input', 'kernel'], {'padding': 'self.padding', 'stride': '(1)', 'groups': 'c'}), '(input, kernel, padding=self.padding, stride=1, groups=c)\n', (2436, 2493), False, 'from torch.nn.functional import conv2d\n'), ((1902, 1924), 'torch.is_tensor', 'torch.is_tensor', (['input'], {}), '(input)\n', (1917, 1924), False, 'import torch\n')]
from Jumpscale import j def load_wiki(**kwargs): wiki = j.tools.markdowndocs.load(path=kwargs["url"], name=kwargs["repo"]) wiki.write() class Package(j.baseclasses.threebot_package): def _init(self, **kwargs): if "branch" in kwargs.keys(): self.branch = kwargs["branch"] else: self.branch = "master" @property def bcdb(self): return j.data.bcdb.system def load(self): # TODO: load only relevant wikis j.servers.myjobs.schedule( load_wiki, repo="tokens", url="https://github.com/threefoldfoundation/info_tokens/tree/%s/docs" % self.branch, ) j.servers.myjobs.schedule( load_wiki, repo="foundation", url="https://github.com/threefoldfoundation/info_foundation/tree/%s/docs" % self.branch, ) j.servers.myjobs.schedule( load_wiki, repo="grid", url="https://github.com/threefoldfoundation/info_grid/tree/%s/docs" % self.branch ) def prepare(self): j.threebot.package.wikis.install() j.servers.myjobs.workers_tmux_start() self.load()
[ "Jumpscale.j.servers.myjobs.workers_tmux_start", "Jumpscale.j.threebot.package.wikis.install", "Jumpscale.j.servers.myjobs.schedule", "Jumpscale.j.tools.markdowndocs.load" ]
[((62, 128), 'Jumpscale.j.tools.markdowndocs.load', 'j.tools.markdowndocs.load', ([], {'path': "kwargs['url']", 'name': "kwargs['repo']"}), "(path=kwargs['url'], name=kwargs['repo'])\n", (87, 128), False, 'from Jumpscale import j\n'), ((496, 641), 'Jumpscale.j.servers.myjobs.schedule', 'j.servers.myjobs.schedule', (['load_wiki'], {'repo': '"""tokens"""', 'url': "('https://github.com/threefoldfoundation/info_tokens/tree/%s/docs' % self.\n branch)"}), "(load_wiki, repo='tokens', url=\n 'https://github.com/threefoldfoundation/info_tokens/tree/%s/docs' %\n self.branch)\n", (521, 641), False, 'from Jumpscale import j\n'), ((688, 841), 'Jumpscale.j.servers.myjobs.schedule', 'j.servers.myjobs.schedule', (['load_wiki'], {'repo': '"""foundation"""', 'url': "('https://github.com/threefoldfoundation/info_foundation/tree/%s/docs' %\n self.branch)"}), "(load_wiki, repo='foundation', url=\n 'https://github.com/threefoldfoundation/info_foundation/tree/%s/docs' %\n self.branch)\n", (713, 841), False, 'from Jumpscale import j\n'), ((888, 1030), 'Jumpscale.j.servers.myjobs.schedule', 'j.servers.myjobs.schedule', (['load_wiki'], {'repo': '"""grid"""', 'url': "('https://github.com/threefoldfoundation/info_grid/tree/%s/docs' % self.branch)"}), "(load_wiki, repo='grid', url=\n 'https://github.com/threefoldfoundation/info_grid/tree/%s/docs' % self.\n branch)\n", (913, 1030), False, 'from Jumpscale import j\n'), ((1075, 1109), 'Jumpscale.j.threebot.package.wikis.install', 'j.threebot.package.wikis.install', ([], {}), '()\n', (1107, 1109), False, 'from Jumpscale import j\n'), ((1118, 1155), 'Jumpscale.j.servers.myjobs.workers_tmux_start', 'j.servers.myjobs.workers_tmux_start', ([], {}), '()\n', (1153, 1155), False, 'from Jumpscale import j\n')]
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME>, <NAME> # *****************************************************************************/ from __future__ import absolute_import, division, print_function, unicode_literals # , nested_scopes, generators, generator_stop, with_statement, annotations # General Python module imports import sys from collections import deque class tokenList(object): """ Token list handler """ DELIMITER_TOKEN = 0 # Chars such as the following ; () [] :: OPERATOR_TOKEN = 1 # Numerical Operator + - / * IDENTIFIER_TOKEN = 2 # Other bucket ML_COMMENT_TOKEN = 3 # Multi-lines such as /* */ SL_COMMENT_TOKEN = 4 # Single line such as // STRING_TOKEN = 5 # Following a comment token or follow a quote ("") ('') WHITESPACE_TOKEN = 6 # Space EOL_TOKEN = 7 # New line \n def __init__(self): self.tokenList = [] self.currentTokenIndex = 0 pass def clear(self): del self.tokenList[0:] self.currentTokenIndex = 0 def resetTokenPull(self): self.currentTokenIndex = 0 def addToken(self, tokenType, tokenValue): self.tokenList.append((tokenType, tokenValue)) def getNextToken(self): """ Read the next token from the list of tokens generated by the input stream """ if (self.currentTokenIndex < len(self.tokenList)): tokenType, token = self.tokenList[self.currentTokenIndex] self.currentTokenIndex += 1 else: token = "" tokenType = tokenList.EOL_TOKEN return tokenType, token def getPreviewToken(self): """ Read the next token from the list of tokens generated by the input stream without moving index. """ if (self.currentTokenIndex < len(self.tokenList)): tokenType, token = self.tokenList[self.currentTokenIndex] else: token = "" tokenType = tokenList.EOL_TOKEN return tokenType, token def putToken(self): """ Adjust the token list pointer back one token """ if (self.currentTokenIndex > 0): self.currentTokenIndex -= 1 def isEndofList(self): """ Check if we have reached the end of the token list """ if (self.currentTokenIndex < len(self.tokenList)): return False else: return True class fileTokenizer(tokenList): """ Tokenize structure definition file on a character-by-character level """ def resetTokenizer(self): self.nextChar = None self.currentToken = None self.currentTokenType = tokenList.IDENTIFIER_TOKEN del self.tokenList[0:] self.resetTokenPull() self.mlStartToken = "" self.startofLine = True def __init__(self, operatorList = None, delimiterList = None, stringOpList = None, slCommentStartList = None, mlCommentStartList = None, mlCommentEnd = None, continuationCharacter = '\\', stripWhite = True): self.inputStream = None self.operatorList = operatorList self.linebreakList = ['\n', '\l', '\r', '\f'] self.whiteList = [' ', '\t'] self.escapeList = ['\0', '\a'] self.stripWhite = stripWhite self.continuationCharacter = continuationCharacter self.delimiterList = delimiterList self.stringOperatorList = stringOpList if (mlCommentStartList is not None): self.mlCommentStartList = mlCommentStartList self.mlCommentEndToken = mlCommentEnd self.mlCommentEnabled = True else: self.mlCommentStartList = [] self.mlCommentEndToken = None self.mlCommentEnabled = False if (slCommentStartList is not None): self.slCommentStartList = slCommentStartList self.slCommentEnabled = True else: self.slCommentStartList = [] self.slCommentEnabled = False self.nextChar = None self.currentToken = None self.currentTokenType = tokenList.IDENTIFIER_TOKEN self.tokenList = [] self.resetTokenizer() #================================================================ #================================================================ # Character operations #================================================================ #================================================================ def __isDelimiter(self): if(self.nextChar is not None): if (self.nextChar in self.delimiterList or self.nextChar in self.stringOperatorList): return True else: return False else: return False def __isWhiteSpace(self): if(self.nextChar is not None): if (self.nextChar in self.whiteList): return True else: return False else: return False def __isEscapeChar(self): if(self.nextChar is not None): if (self.nextChar in self.escapeList): return True else: return False else: return False def __isLineBreak(self): if(self.nextChar is not None): if (self.nextChar in self.linebreakList): return True else: return False else: return False def __isOperator(self): if(self.nextChar is not None): # String Operator should not be grouped with isOperator #if ((self.nextChar in self.operatorList) or (self.nextChar in self.stringOperatorList)): return True if ((self.nextChar in self.operatorList)): return True else: return False else: return False def __isIdentifier(self): if(self.nextChar is not None): if ((self.nextChar in self.operatorList) or \ (self.nextChar in self.stringOperatorList) or \ (self.nextChar in self.whiteList) or \ (self.nextChar in self.linebreakList) or \ (self.nextChar in self.delimiterList)): return False else: return True else: return False def __getNextChar(self): self.nextChar = self.inputStream.read(1) if (self.nextChar == ''): self.nextChar = None def __putChar(self): self.inputStream.seek(self.inputStream.tell()-1, 0) #================================================================ #================================================================ # Stream operations #================================================================ #================================================================ def __stripWitespace(self): token = "" # strip white space while ((self.nextChar is not None) and (self.__isWhiteSpace())): token += self.nextChar self.__getNextChar() # if the first whitespace on the line and not an empty line and strip is false if ((self.startofLine) and (False == self.stripWhite) and (False == self.__isLineBreak())): # First white space on the line, add it to the token and clear the start of line flag self.currentToken = token self.startofLine = False def __stripContinuation(self): # strip to the end of the line, then strip leading while space while ((self.nextChar is not None) and (False == self.__isLineBreak())): self.__getNextChar() while ((self.nextChar is not None) and (self.__isWhiteSpace())): self.__getNextChar() def __pullToken(self): if (self.nextChar is not None): if (self.nextChar == self.continuationCharacter): self.__stripContinuation() # Get the next charater for the token if(self.currentToken is None): self.currentToken = self.nextChar else: self.currentToken += self.nextChar self.__getNextChar() if (self.__isLineBreak()): self.startofLine = True #================================================================ #================================================================ # Token operations #================================================================ #================================================================ def __pullOperator(self): """ Pull an operator token from the input stream """ self.currentTokenType = fileTokenizer.OPERATOR_TOKEN while ((self.nextChar is not None) and (True == self.__isOperator())): self.__pullToken() def __pullIdentifier(self): """ Pull an identifier token from the input stream """ self.currentTokenType = fileTokenizer.IDENTIFIER_TOKEN while ((self.nextChar is not None) and (True == self.__isIdentifier())): self.__pullToken() def __isMultiCommentStartDelimiter(self, token): comment = False self.mlStartToken = "" if(self.mlCommentEnabled): for commentStart in self.mlCommentStartList: cmpLength = len(commentStart) if (len(token) >= cmpLength): if (token[:cmpLength] == commentStart): comment = True self.mlStartToken = token[:cmpLength] break return comment def __isSingleCommentStartDelimiter(self, token): comment = False if(self.slCommentEnabled): for commentStart in self.slCommentStartList: cmpLength = len(commentStart) if (len(token) >= cmpLength): if (token[:cmpLength] == commentStart): comment = True break return comment def __pullMultiLineComment(self): """ Pull a multiline comment token from the input stream """ self.currentTokenType = tokenList.ML_COMMENT_TOKEN foundEnd = False if (self.mlCommentEndToken is None): mlCommentEndToken = self.mlStartToken mlCommentEndTokenLen = len(mlCommentEndToken) mlCommentMinLen = mlCommentEndTokenLen * 2 else: mlCommentEndToken = self.mlCommentEnd mlCommentEndTokenLen = len(self.mlCommentEnd) mlCommentMinLen = mlCommentEndTokenLen + len(self.currentToken) tokencmpIndex = 0 - mlCommentEndTokenLen while ((self.nextChar is not None) and (False == foundEnd)): self.__pullToken() if (len(self.currentToken) >= mlCommentMinLen): if (self.currentToken[tokencmpIndex:] == mlCommentEndToken): foundEnd = True def __pullSingleLineComment(self): """ Pull a single line comment token from the input stream """ self.currentTokenType = tokenList.SL_COMMENT_TOKEN while ((self.nextChar is not None) and (False == self.__isLineBreak())): self.__pullToken() def __pullString(self): """ Pull a string token from the input stream """ self.currentTokenType = tokenList.STRING_TOKEN self.currentToken = self.nextChar endChar = self.nextChar # Ensure not looking at same char twice self.__getNextChar() # While not end of string. Ignore the continuation char and let the parser deal with it while ((self.nextChar is not None) and (self.nextChar != endChar) and (False == self.__isLineBreak())): self.currentToken += self.nextChar self.__getNextChar() # put the closing token onto the string if(False == self.__isLineBreak()): self.currentToken += self.nextChar self.__getNextChar() #================================================================ #================================================================ # Token generation #================================================================ #================================================================ def __tokenize(self): """ Generate a token from the input stream """ self.currentToken = None # strip white space and put the first non-whitespace charater into the token self.__stripWitespace() if(self.nextChar is not None): # get the token and ending delimiter if (self.__isLineBreak()): self.startofLine = True self.__getNextChar() elif (self.__isDelimiter()): self.currentToken = self.nextChar self.currentTokenType = tokenList.DELIMITER_TOKEN # Check for string delimiter if (self.currentToken in self.stringOperatorList): self.__pullString() else: self.__getNextChar() elif (self.__isOperator()): # get the full operator self.__pullOperator() if (self.__isMultiCommentStartDelimiter(self.currentToken)): self.__pullMultiLineComment() elif (self.__isSingleCommentStartDelimiter(self.currentToken)): self.__pullSingleLineComment() else: # get identifier self.__pullIdentifier() def parseStream(self, inputStream): """ Generate the token list from the input file """ self.resetTokenizer() self.inputStream = inputStream self.__getNextChar() while (self.nextChar is not None): self.__tokenize() if (self.currentToken is not None): self.addToken(self.currentTokenType, self.currentToken) self.tokenCount = len(self.tokenList) class numericParser(object): """ Parse and validate numeric token """ DigitList = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] OctalDigitList = ['0', '1', '2', '3', '4', '5', '6', '7'] BinDigitList = ['0', '1'] HexDigitList = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'A', 'B', 'C', 'D', 'E', 'F'] def __init__(self): self.tokenNumericValue = 0 return super(numericParser, self).__init__() #================================================================ #================================================================ # Token operations #================================================================ #================================================================ def __validateAndConvertNumber(self, number, digitList, radix): isNumber = True self.tokenNumericValue = 0 for c in number: if(c not in digitList): isNumber = False break # convert the data if(isNumber): self.tokenNumericValue = int(number, radix) #if radix == 16: print("%s\n"%self.tokenNumericValue) #@remove return isNumber def isNumber(self, token): if (token is None): isNumericValue = False elif (token[0] in numericParser.DigitList): isNumericValue = True number = token.upper() # Determine radix if ((len(number) > 2) and (number[0] == '0')): if (number[1].lower() in ['x', 'o', 'b', 'd']): base = number[1].lower() number = number[2:] elif (number[-1:].lower() in ['o', 'b', 'd']): # check last character base = number[-1:].lower() number = number[0:-1] else: # assume decimal number for now base = 'd' isNumericValue = True # validate and convert if(isNumericValue): if(base == 'x'): #print ("is number! %s\n"% number) #@remove isNumericValue = self.__validateAndConvertNumber(number, numericParser.HexDigitList, 16) elif (base == 'o'): isNumericValue = self.__validateAndConvertNumber(number, numericParser.OctalDigitList, 8) elif (base == 'b'): isNumericValue = self.__validateAndConvertNumber(number, numericParser.BinDigitList, 2) elif (base == 'd'): isNumericValue = self.__validateAndConvertNumber(number, numericParser.DigitList, 10) else: isNumericValue = False else: # First character must be digit isNumericValue = False return isNumericValue def getValue(self, token): if (self.isNumber(token)): return self.tokenNumericValue else: return 0 class parserHelper(numericParser): """ File parser helper """ DEFAULT_TOKEN = 0 # IDENTIFIER_TOKEN = 1 # KEYWORD_TOKEN = 2 # OPERATOR_TOKEN = 3 # PREPROCESSOR_TOKEN = 4 # COMMENT_TOKEN = 5 # NUMERIC_TOKEN = 6 # STRING_TOKEN = 7 # DELIMITER_TOKEN = 8 # END_OF_LIST = 9 # def __init__(self, tokenizer, keywordList = None, preprocessorKey = None): self.errorCount = 0 self.errorAbortCount = 1 self.deferredNodeQueue = deque() self.previousToken = "" self.currentToken = "" self.endOfListFound = False self.tokenType = parserHelper.DEFAULT_TOKEN self.tokenizer = tokenizer self.keyWordList = keywordList self.preprocessorKey = preprocessorKey self.printWarning = False return super(parserHelper, self).__init__() def resetParser(self): self.errorCount = 0 self.errorAbortCount = 1 self.previousToken = "" self.currentToken = "" self.endOfListFound = False self.tokenType = parserHelper.DEFAULT_TOKEN def parseError(self, formatStr, args = None): self.errorCount += 1 if (self.tokenizer.isEndofList()): sys.stderr.write("Unexpected end of token list reached\n") errorStr = format(formatStr % args) sys.stderr.write(errorStr) sys.stderr.write("\n") def parseWarning(self, formatStr, args = None): warningStr = format(formatStr % args) if (self.printWarning): sys.stdout.write(warningStr) sys.stdout.write("\n") def parseInformation(self, formatStr, args = None): informationStr = format(formatStr % args) sys.stdout.write(informationStr) sys.stdout.write("\n") def continueParse(self): if ((self.errorCount < self.errorAbortCount) and (False == self.tokenizer.isEndofList())): return True else: return False #================================================================ #================================================================ # Token operations #================================================================ #================================================================ def __isKeyWord(self): # Compare identifier against keyword list if (self.keyWordList is not None): if (self.currentToken in self.keyWordList): return True else: return False else: return False def __isPreprocessorKey(self): # Compare identifier against operator list if (self.preprocessorKey is not None): if (self.currentToken[0] == self.preprocessorKey): return True else: return False else: return False def isValidIdentifier(self): return True def putToken(self): self.tokenizer.putToken() def getNextToken(self): # get the next token from the tokenizer self.previousToken = self.currentToken tokenType, self.currentToken = self.tokenizer.getNextToken() # Determine the token type if (tokenType == fileTokenizer.DELIMITER_TOKEN): self.tokenType = parserHelper.DELIMITER_TOKEN elif (tokenType == fileTokenizer.IDENTIFIER_TOKEN): if (self.__isKeyWord()): self.tokenType = parserHelper.KEYWORD_TOKEN elif (self.currentToken[0] in numericParser.DigitList): self.tokenType = parserHelper.NUMERIC_TOKEN elif (self.isValidIdentifier()): self.tokenType = parserHelper.IDENTIFIER_TOKEN else: self.tokenType = parserHelper.DEFAULT_TOKEN elif ((tokenType == fileTokenizer.ML_COMMENT_TOKEN) or (tokenType == fileTokenizer.SL_COMMENT_TOKEN)): self.tokenType = parserHelper.COMMENT_TOKEN elif (tokenType == fileTokenizer.OPERATOR_TOKEN): if (self.__isPreprocessorKey()): self.tokenType = parserHelper.PREPROCESSOR_TOKEN else: self.tokenType = parserHelper.OPERATOR_TOKEN elif (tokenType == fileTokenizer.STRING_TOKEN): self.tokenType = parserHelper.STRING_TOKEN elif (tokenType == fileTokenizer.EOL_TOKEN): self.tokenType = parserHelper.END_OF_LIST else: self.tokenType = parserHelper.DEFAULT_TOKEN def getIgnoreToken(self): # get the next token from the tokenizer and dont update variables used for function pointers! tokenType, currentToken = self.tokenizer.getNextToken() return tokenType, currentToken def getPreviewToken(self): # get the next token from the tokenizer without change tokenType, currentToken = self.tokenizer.getPreviewToken() # Dont move the index! return tokenType, currentToken def createNode(self): newNode = tokenList() self.deferredNodeQueue.append(newNode) return newNode def getNextNode(self): try: node = self.deferredNodeQueue.popleft() except: node = None return node
[ "sys.stderr.write", "collections.deque", "sys.stdout.write" ]
[((17842, 17849), 'collections.deque', 'deque', ([], {}), '()\n', (17847, 17849), False, 'from collections import deque\n'), ((18730, 18756), 'sys.stderr.write', 'sys.stderr.write', (['errorStr'], {}), '(errorStr)\n', (18746, 18756), False, 'import sys\n'), ((18766, 18788), 'sys.stderr.write', 'sys.stderr.write', (['"""\n"""'], {}), "('\\n')\n", (18782, 18788), False, 'import sys\n'), ((19121, 19153), 'sys.stdout.write', 'sys.stdout.write', (['informationStr'], {}), '(informationStr)\n', (19137, 19153), False, 'import sys\n'), ((19163, 19185), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (19179, 19185), False, 'import sys\n'), ((18615, 18673), 'sys.stderr.write', 'sys.stderr.write', (['"""Unexpected end of token list reached\n"""'], {}), "('Unexpected end of token list reached\\n')\n", (18631, 18673), False, 'import sys\n'), ((18937, 18965), 'sys.stdout.write', 'sys.stdout.write', (['warningStr'], {}), '(warningStr)\n', (18953, 18965), False, 'import sys\n'), ((18979, 19001), 'sys.stdout.write', 'sys.stdout.write', (['"""\n"""'], {}), "('\\n')\n", (18995, 19001), False, 'import sys\n')]
#! /usr/bin/python import numpy as np import cv2 import toml import click from fitter.pcl_result_2d_image_writer import PCLResult2DImageWriter from merged_wdr_manager import MergedWDRImageManager #from fitter.pcl_visualizer import PCLVisualizer from fitter.pcl_fitter import PCLFitter from fitter.cameraparam import CameraParam WINDOW_NAME = "gRPC Test" IMAGE_WIDTH = 640 IMAGE_HEIGHT = 480 options = [('grpc.max_send_message_length', 10 * 1024 * 1024), ('grpc.max_receive_message_length', 10 * 1024 * 1024) ] NAMESPACE = 'single_zense_fitter' UPDATE_FREQ = 10. # Hz SCALE = 1e-3 class SingleZenseFitter(object): def __init__(self, toml_path, eps_default=0.016, min_point_default=10): self.toml_path = toml_path self._load_toml(toml_path) self.pub_setting_string() self.zense_mng = MergedWDRImageManager(options) self.eps_default = eps_default self.min_point_default = min_point_default self.result_img_writer = PCLResult2DImageWriter() def _load_toml(self, toml_file_path): sensor_toml = toml.load(open(toml_file_path)) self.sensor_toml_path = sensor_toml selection_keys = ['pcl_cutoff_dist', 'target_max_dist', 'target_min_dist', 'target_max_len', 'target_min_len', 'target_max_tilt'] if not all([k in sensor_toml['Selection'] for k in selection_keys]): print('Missing parameter in "[Selection]" section of TOML') print('Expected: {}, Specified: {}'.format( selection_keys, sensor_toml['Selection'].keys()) ) self.camera_param = self.setup_camera_param(sensor_toml) self.pcl_fitter = self.setup_pcl_fitter(sensor_toml) def setup_camera_param(self, dict_toml): camera_param = {} key = 'Camera0' height = int(dict_toml[key]['height']) width = int(dict_toml[key]['width']) fx = float(dict_toml[key]['fx']) fy = float(dict_toml[key]['fy']) cx = float(dict_toml[key]['cx']) cy = float(dict_toml[key]['cy']) roll = float(dict_toml[key]['rot_angle_roll']) pitch = float(dict_toml[key]['rot_angle_pitch']) yaw = float(dict_toml[key]['rot_angle_yaw']) tx = float(dict_toml[key]['translation_x']) ty = float(dict_toml[key]['translation_y']) tz = float(dict_toml[key]['translation_z']) K = (fx, 0., cx, 0., fy, cy, 0., 0., 1.) R = (1., 0., 0., 0., 1., 0., 0., 0., 1.) P = (fx, 0., cx, 0., 0., fy, cy, 0., 0., 0., 1., 0.) size = (height, width) camera_param = CameraParam() camera_param.set_camera_param(K, R, P, size) camera_param.set_tf_rot_and_trans( [roll, pitch, yaw], [tx, ty, tz]) return camera_param def setup_pcl_fitter(self, dict_toml): set_roll = float(dict_toml['General']['set_roll']) set_pitch = float(dict_toml['General']['set_pitch']) set_yaw = float(dict_toml['General']['set_yaw']) camera_set_param = CameraParam() camera_set_param.set_tf_rot_and_trans( [set_roll, set_pitch, set_yaw], [0., 0., 0.]) pcl_fitter = PCLFitter(camera_set_param) pcl_fitter.pcl_cutoff_dist = float( dict_toml['Selection']['pcl_cutoff_dist']) pcl_fitter.target_max_dist = float( dict_toml['Selection']['target_max_dist']) pcl_fitter.target_min_dist = float( dict_toml['Selection']['target_min_dist']) pcl_fitter.target_max_len = float( dict_toml['Selection']['target_max_len']) pcl_fitter.target_min_len = float( dict_toml['Selection']['target_min_len']) pcl_fitter.target_max_tilt = float( dict_toml['Selection']['target_max_tilt']) return pcl_fitter def pub_setting_string(self): cutoff_dist = self.pcl_fitter.pcl_cutoff_dist * 100.0 # [cm] min_len = self.pcl_fitter.target_min_len * 100.0 # [cm] max_len = self.pcl_fitter.target_max_len * 100.0 # [cm] min_dist = self.pcl_fitter.target_min_dist * 100.0 # [cm] max_dist = self.pcl_fitter.target_max_dist * 100.0 # [cm] max_tilt = self.pcl_fitter.target_max_tilt # [deg] setting_str = "cutoff: {:.0f} | len: {:.0f} - {:.0f} | dist: {:.0f} - {:.0f} | tilt: {:.0f}".format( cutoff_dist, min_len, max_len, min_dist, max_dist, max_tilt ) print(setting_str) def terminate(self): pass def run(self): self.fused_depth_image = self.zense_mng.filtered_fused_depth * SCALE pcd = self.pcl_fitter.get_pcd_from_depth_img( self.fused_depth_image, self.camera_param) eps = self.eps_default min_point = self.min_point_default line_list, pcd_list, fitgeom_list = [], [], [] line_list, pcd_list, fitgeom_list, all_points_ary, ground_points_ary = self.pcl_fitter.fit_pcd( pcd, eps, min_point) res_img = self.result_img_writer.draw_img_with_fit_result( self.fused_depth_image, line_list) return res_img @click.command() @click.option("--toml-path", "-t", default="../cfg/camera.toml") def main(toml_path): fitter = SingleZenseFitter(toml_path) image_scale = 0.5 key = cv2.waitKey(10) while key & 0xFF != 27: res_img = fitter.run() res_img = cv2.resize(res_img, (int(image_scale * res_img.shape[1]), int(image_scale * res_img.shape[0]))) cv2.imshow("result", res_img) key = cv2.waitKey(10) cv2.destroyAllWindows() if __name__ == "__main__": main()
[ "click.option", "fitter.pcl_fitter.PCLFitter", "cv2.imshow", "cv2.destroyAllWindows", "fitter.cameraparam.CameraParam", "click.command", "cv2.waitKey", "merged_wdr_manager.MergedWDRImageManager", "fitter.pcl_result_2d_image_writer.PCLResult2DImageWriter" ]
[((5256, 5271), 'click.command', 'click.command', ([], {}), '()\n', (5269, 5271), False, 'import click\n'), ((5273, 5336), 'click.option', 'click.option', (['"""--toml-path"""', '"""-t"""'], {'default': '"""../cfg/camera.toml"""'}), "('--toml-path', '-t', default='../cfg/camera.toml')\n", (5285, 5336), False, 'import click\n'), ((5432, 5447), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (5443, 5447), False, 'import cv2\n'), ((5732, 5755), 'cv2.destroyAllWindows', 'cv2.destroyAllWindows', ([], {}), '()\n', (5753, 5755), False, 'import cv2\n'), ((849, 879), 'merged_wdr_manager.MergedWDRImageManager', 'MergedWDRImageManager', (['options'], {}), '(options)\n', (870, 879), False, 'from merged_wdr_manager import MergedWDRImageManager\n'), ((1004, 1028), 'fitter.pcl_result_2d_image_writer.PCLResult2DImageWriter', 'PCLResult2DImageWriter', ([], {}), '()\n', (1026, 1028), False, 'from fitter.pcl_result_2d_image_writer import PCLResult2DImageWriter\n'), ((2738, 2751), 'fitter.cameraparam.CameraParam', 'CameraParam', ([], {}), '()\n', (2749, 2751), False, 'from fitter.cameraparam import CameraParam\n'), ((3171, 3184), 'fitter.cameraparam.CameraParam', 'CameraParam', ([], {}), '()\n', (3182, 3184), False, 'from fitter.cameraparam import CameraParam\n'), ((3311, 3338), 'fitter.pcl_fitter.PCLFitter', 'PCLFitter', (['camera_set_param'], {}), '(camera_set_param)\n', (3320, 3338), False, 'from fitter.pcl_fitter import PCLFitter\n'), ((5668, 5697), 'cv2.imshow', 'cv2.imshow', (['"""result"""', 'res_img'], {}), "('result', res_img)\n", (5678, 5697), False, 'import cv2\n'), ((5712, 5727), 'cv2.waitKey', 'cv2.waitKey', (['(10)'], {}), '(10)\n', (5723, 5727), False, 'import cv2\n')]
''' CNN MNIST digits classification Project: https://github.com/roatienza/dl-keras Dependencies: keras Usage: python3 <this file> ''' # numpy import numpy as np from keras.models import Sequential from keras.layers import Activation, Dense, Dropout from keras.layers import Conv2D, MaxPooling2D, Flatten from keras.datasets import mnist from keras.utils import to_categorical # load mnist dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() # compute the number of labels num_labels = np.amax(y_train) + 1 y_train = to_categorical(y_train) y_test = to_categorical(y_test) # input image dimensions image_size = x_train.shape[1] x_train = np.reshape(x_train,[-1, image_size, image_size, 1]) x_test = np.reshape(x_test,[-1, image_size, image_size, 1]) # we train our network using float data x_train = x_train.astype('float32') / 255 x_test = x_test.astype('float32') / 255 # image is processed as is (square grayscale) input_shape = (image_size, image_size, 1) batch_size = 128 kernel_size = 3 pool_size = 2 filters = 64 dropout = 0.2 # model is a stack of CNN-ReLU-MaxPooling model = Sequential() model.add(Conv2D(filters=filters, kernel_size=kernel_size, activation='relu', input_shape=input_shape)) model.add(MaxPooling2D(pool_size)) model.add(Conv2D(filters=filters, kernel_size=kernel_size, activation='relu')) model.add(MaxPooling2D(pool_size)) model.add(Conv2D(filters=filters, kernel_size=kernel_size, activation='relu')) model.add(Flatten()) # dropout added as regularizer model.add(Dropout(dropout)) # output layer is 10-dim one-hot vector model.add(Dense(num_labels)) model.add(Activation('softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(x_train, y_train, epochs=10, batch_size=batch_size) score = model.evaluate(x_test, y_test, batch_size=batch_size) print("\nTest accuracy: %.1f%%" % (100.0 * score[1]))
[ "keras.layers.Conv2D", "numpy.reshape", "keras.layers.Flatten", "keras.datasets.mnist.load_data", "keras.layers.MaxPooling2D", "keras.models.Sequential", "keras.utils.to_categorical", "keras.layers.Dropout", "keras.layers.Activation", "keras.layers.Dense", "numpy.amax" ]
[((440, 457), 'keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (455, 457), False, 'from keras.datasets import mnist\n'), ((534, 557), 'keras.utils.to_categorical', 'to_categorical', (['y_train'], {}), '(y_train)\n', (548, 557), False, 'from keras.utils import to_categorical\n'), ((567, 589), 'keras.utils.to_categorical', 'to_categorical', (['y_test'], {}), '(y_test)\n', (581, 589), False, 'from keras.utils import to_categorical\n'), ((656, 708), 'numpy.reshape', 'np.reshape', (['x_train', '[-1, image_size, image_size, 1]'], {}), '(x_train, [-1, image_size, image_size, 1])\n', (666, 708), True, 'import numpy as np\n'), ((717, 768), 'numpy.reshape', 'np.reshape', (['x_test', '[-1, image_size, image_size, 1]'], {}), '(x_test, [-1, image_size, image_size, 1])\n', (727, 768), True, 'import numpy as np\n'), ((1104, 1116), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1114, 1116), False, 'from keras.models import Sequential\n'), ((503, 519), 'numpy.amax', 'np.amax', (['y_train'], {}), '(y_train)\n', (510, 519), True, 'import numpy as np\n'), ((1127, 1223), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters', 'kernel_size': 'kernel_size', 'activation': '"""relu"""', 'input_shape': 'input_shape'}), "(filters=filters, kernel_size=kernel_size, activation='relu',\n input_shape=input_shape)\n", (1133, 1223), False, 'from keras.layers import Conv2D, MaxPooling2D, Flatten\n'), ((1265, 1288), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['pool_size'], {}), '(pool_size)\n', (1277, 1288), False, 'from keras.layers import Conv2D, MaxPooling2D, Flatten\n'), ((1300, 1367), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters', 'kernel_size': 'kernel_size', 'activation': '"""relu"""'}), "(filters=filters, kernel_size=kernel_size, activation='relu')\n", (1306, 1367), False, 'from keras.layers import Conv2D, MaxPooling2D, Flatten\n'), ((1396, 1419), 'keras.layers.MaxPooling2D', 'MaxPooling2D', (['pool_size'], {}), '(pool_size)\n', (1408, 1419), False, 'from keras.layers import Conv2D, MaxPooling2D, Flatten\n'), ((1431, 1498), 'keras.layers.Conv2D', 'Conv2D', ([], {'filters': 'filters', 'kernel_size': 'kernel_size', 'activation': '"""relu"""'}), "(filters=filters, kernel_size=kernel_size, activation='relu')\n", (1437, 1498), False, 'from keras.layers import Conv2D, MaxPooling2D, Flatten\n'), ((1527, 1536), 'keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (1534, 1536), False, 'from keras.layers import Conv2D, MaxPooling2D, Flatten\n'), ((1579, 1595), 'keras.layers.Dropout', 'Dropout', (['dropout'], {}), '(dropout)\n', (1586, 1595), False, 'from keras.layers import Activation, Dense, Dropout\n'), ((1647, 1664), 'keras.layers.Dense', 'Dense', (['num_labels'], {}), '(num_labels)\n', (1652, 1664), False, 'from keras.layers import Activation, Dense, Dropout\n'), ((1676, 1697), 'keras.layers.Activation', 'Activation', (['"""softmax"""'], {}), "('softmax')\n", (1686, 1697), False, 'from keras.layers import Activation, Dense, Dropout\n')]
import crashstatsutils import jydoop import json cutoff = 50 * 2**20 setupjob = crashstatsutils.dosetupjob([('meta_data', 'json'), ('processed_data', 'json')]) def map(k, meta_data, processed_data, context): if processed_data is None: return meta = json.loads(meta_data) processed = json.loads(processed_data) def writeOOM(): tvm = meta.get("TotalVirtualMemory", None) if tvm is None: wintype = "Unknown" else: tvm = int(tvm) if tvm > 3.5 * 2**30: wintype = "win64" else: wintype = "win32" context.write(("OOM", wintype), 1) if processed.get('signature').startswith('EMPTY'): if 'TotalVirtualMemory' in meta: writeOOM() else: context.write("notwindows", 1) return if processed.get('os_name', None) != 'Windows NT': context.write("notwindows", 1) return if 'OOMAllocationSize' in meta: writeOOM() return if meta.get('Notes', '').find("ABORT: OOM") != -1: writeOOM() return if 'json_dump' not in processed: context.write("unknown", 1) return blocksize = processed['json_dump'].get('largest_free_vm_block', None) if blocksize is None: context.write("unknown", 1) return blocksize = int(blocksize[2:], 16) if blocksize < cutoff: writeOOM() return context.write("probably-not-OOM", 1) combine = jydoop.sumreducer reduce = jydoop.sumreducer
[ "crashstatsutils.dosetupjob", "json.loads" ]
[((82, 161), 'crashstatsutils.dosetupjob', 'crashstatsutils.dosetupjob', (["[('meta_data', 'json'), ('processed_data', 'json')]"], {}), "([('meta_data', 'json'), ('processed_data', 'json')])\n", (108, 161), False, 'import crashstatsutils\n'), ((269, 290), 'json.loads', 'json.loads', (['meta_data'], {}), '(meta_data)\n', (279, 290), False, 'import json\n'), ((307, 333), 'json.loads', 'json.loads', (['processed_data'], {}), '(processed_data)\n', (317, 333), False, 'import json\n')]
import sqlalchemy from sqlalchemy.ext.declarative import declarative_base md = sqlalchemy.MetaData() Base = declarative_base(metadata=md) from LanguageDeck.models import associations from LanguageDeck.models import Cards from LanguageDeck.models import decks
[ "sqlalchemy.MetaData", "sqlalchemy.ext.declarative.declarative_base" ]
[((80, 101), 'sqlalchemy.MetaData', 'sqlalchemy.MetaData', ([], {}), '()\n', (99, 101), False, 'import sqlalchemy\n'), ((109, 138), 'sqlalchemy.ext.declarative.declarative_base', 'declarative_base', ([], {'metadata': 'md'}), '(metadata=md)\n', (125, 138), False, 'from sqlalchemy.ext.declarative import declarative_base\n')]
import argparse import yaml import sys import os import argparse def get_config_file(): dir = os.path.dirname(__file__) config_file = os.path.join(dir, 'configs/warehourse_environment.yaml') # parser.add_argument('--config', default=config_file, help='config file') # args, _ = parser.parse_known_args() # config_file = args.config return config_file def read_parameters(scope): config_file = get_config_file() with open(config_file) as file: parameters = yaml.load(file, Loader=yaml.FullLoader) return parameters[scope] def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('--n_rows', type=int, default=25, help='number of rows in the warehouse') parser.add_argument('--n_columns', type=int, default=25, help='number of columns in the warehouse') parser.add_argument('--n_robots_row', type=int, default=6, help='number of robots per row') parser.add_argument('--n_robots_column', type=int, default=6, help='number of robots per column') parser.add_argument('--distance_between_shelves', type=int, default=4, help='distance between two contiguous shelves') parser.add_argument('--robot_domain_size', type=list, default=[5, 5], help='size of the robots domain') parser.add_argument('--prob_item_appears', type=int, default=0.025, help='probability of an item appearing at each location') parser.add_argument('--learning_robot_id', type=int, default=20, help='learning robot id') parser.add_argument('--obs_type', type=str, default='image', help='observation type: image or vector') parser.add_argument('--n_steps_episode', type=int, default=100, help='number of steps per episode') parser.add_argument('--log_obs', type=bool, default=True, help='wether or not to log the observations') parser.add_argument('--log_file', type=str, default='./obs_data.csv', help='path to the log file') args = parser.parse_args() return args
[ "os.path.dirname", "os.path.join", "yaml.load", "argparse.ArgumentParser" ]
[((99, 124), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (114, 124), False, 'import os\n'), ((143, 199), 'os.path.join', 'os.path.join', (['dir', '"""configs/warehourse_environment.yaml"""'], {}), "(dir, 'configs/warehourse_environment.yaml')\n", (155, 199), False, 'import os\n'), ((604, 629), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (627, 629), False, 'import argparse\n'), ((498, 537), 'yaml.load', 'yaml.load', (['file'], {'Loader': 'yaml.FullLoader'}), '(file, Loader=yaml.FullLoader)\n', (507, 537), False, 'import yaml\n')]
#!/usr/bin/env python3 import sys import json class Benchmark(object): def __init__(self, name): self.name = name self.mean = 0 self.median = 0 self.stddev = 0 self.iterations = [] def parse(self, obj): value = obj['cpu_time'] if obj['run_type'] == 'iteration': self.iterations.append(value) else: self.__dict__[obj['aggregate_name']] = round(value, 2) def __repr__(self): return str(self.__dict__) def get_benchmarks(bench_data): benchmarks = {} current_name = None current_benchmark = None for entry in bench_data['benchmarks']: name = entry['run_name'] if current_name is None or not name == current_name: current_name = name current_benchmark = Benchmark(name) benchmarks[name] = current_benchmark current_benchmark.parse(entry) return benchmarks def get_chartjs_bar_chart(benchmarks): labels = [] data = [] for b in benchmarks.values(): labels.append(b.name) data.append(b.median) obj = { 'labels': labels, 'datasets': [{ 'label': 'Benchmark', 'data': data }], } return json.dumps(obj, indent=2) if __name__ == '__main__': filename = sys.argv[1] with open(filename) as f: bench_data = json.load(f) benchmarks = get_benchmarks(bench_data) print(get_chartjs_bar_chart(benchmarks))
[ "json.load", "json.dumps" ]
[((1122, 1147), 'json.dumps', 'json.dumps', (['obj'], {'indent': '(2)'}), '(obj, indent=2)\n', (1132, 1147), False, 'import json\n'), ((1246, 1258), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1255, 1258), False, 'import json\n')]
# -*- coding: utf-8 -*- import logging from datetime import datetime from ipware import get_client_ip from django.conf.urls import url, include from django.conf import settings from django.contrib.auth.models import Group from django.contrib.auth import authenticate, login, logout from django.db import connection # Used for django tenants. from django.http import Http404 from django.utils import timezone from oauthlib.common import generate_token from oauth2_provider.models import Application, AbstractApplication, AbstractAccessToken, AccessToken, RefreshToken from oauth2_provider.contrib.rest_framework import OAuth2Authentication from rest_framework.views import APIView from rest_framework import generics from rest_framework import mixins # See: http://www.django-rest-framework.org/api-guide/generic-views/#mixins from rest_framework import authentication, viewsets, permissions, status, parsers, renderers from rest_framework.decorators import detail_route, list_route # See: http://www.django-rest-framework.org/api-guide/viewsets/#marking-extra-actions-for-routing from rest_framework.response import Response from account.serializers import ActivateSerializer, ProfileInfoRetrieveUpdateSerializer class ActivateAPIView(APIView): """ API endpoint takes the `pr_code` inputted and validates it to see if this code (1) did not expire (2) and code exists. Once validated this API endpoint acts like the "login" API by providing all the necessary items. """ throttle_classes = () permission_classes = () def post(self, request): # Serializer to get our login details. serializer = ActivateSerializer(data=request.data, context={ 'request': request, }) serializer.is_valid(raise_exception=True) authenticated_user = serializer.save() authenticated_user.refresh_from_db() # Get our web application authorization. application = Application.objects.filter(name=settings.MIKAPONICS_RESOURCE_SERVER_NAME).first() # Generate our "NEW" access token which does not have a time limit. # We want to generate a new token every time because the user may be # logging in from multiple locations and may log out from multiple # locations so we don't want the user using the same token every time. aware_dt = timezone.now() expires_dt = aware_dt + timezone.timedelta(days=1) access_token = AccessToken.objects.create( application=application, user=authenticated_user, expires=expires_dt, token=generate_token(), scope='read,write,introspection' ) refresh_token = RefreshToken.objects.create( application = application, user = authenticated_user, access_token=access_token, token=generate_token() ) serializer = ProfileInfoRetrieveUpdateSerializer(authenticated_user, many=False, context={ 'authenticated_by': authenticated_user, 'authenticated_from': request.client_ip, 'authenticated_from_is_public': request.client_ip_is_routable, 'access_token': access_token, 'refresh_token': refresh_token }) return Response(serializer.data, status=status.HTTP_200_OK)
[ "account.serializers.ProfileInfoRetrieveUpdateSerializer", "account.serializers.ActivateSerializer", "django.utils.timezone.now", "rest_framework.response.Response", "django.utils.timezone.timedelta", "oauth2_provider.models.Application.objects.filter", "oauthlib.common.generate_token" ]
[((1645, 1712), 'account.serializers.ActivateSerializer', 'ActivateSerializer', ([], {'data': 'request.data', 'context': "{'request': request}"}), "(data=request.data, context={'request': request})\n", (1663, 1712), False, 'from account.serializers import ActivateSerializer, ProfileInfoRetrieveUpdateSerializer\n'), ((2359, 2373), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (2371, 2373), False, 'from django.utils import timezone\n'), ((2919, 3221), 'account.serializers.ProfileInfoRetrieveUpdateSerializer', 'ProfileInfoRetrieveUpdateSerializer', (['authenticated_user'], {'many': '(False)', 'context': "{'authenticated_by': authenticated_user, 'authenticated_from': request.\n client_ip, 'authenticated_from_is_public': request.\n client_ip_is_routable, 'access_token': access_token, 'refresh_token':\n refresh_token}"}), "(authenticated_user, many=False, context\n ={'authenticated_by': authenticated_user, 'authenticated_from': request\n .client_ip, 'authenticated_from_is_public': request.\n client_ip_is_routable, 'access_token': access_token, 'refresh_token':\n refresh_token})\n", (2954, 3221), False, 'from account.serializers import ActivateSerializer, ProfileInfoRetrieveUpdateSerializer\n'), ((3288, 3340), 'rest_framework.response.Response', 'Response', (['serializer.data'], {'status': 'status.HTTP_200_OK'}), '(serializer.data, status=status.HTTP_200_OK)\n', (3296, 3340), False, 'from rest_framework.response import Response\n'), ((2406, 2432), 'django.utils.timezone.timedelta', 'timezone.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (2424, 2432), False, 'from django.utils import timezone\n'), ((1950, 2023), 'oauth2_provider.models.Application.objects.filter', 'Application.objects.filter', ([], {'name': 'settings.MIKAPONICS_RESOURCE_SERVER_NAME'}), '(name=settings.MIKAPONICS_RESOURCE_SERVER_NAME)\n', (1976, 2023), False, 'from oauth2_provider.models import Application, AbstractApplication, AbstractAccessToken, AccessToken, RefreshToken\n'), ((2608, 2624), 'oauthlib.common.generate_token', 'generate_token', ([], {}), '()\n', (2622, 2624), False, 'from oauthlib.common import generate_token\n'), ((2870, 2886), 'oauthlib.common.generate_token', 'generate_token', ([], {}), '()\n', (2884, 2886), False, 'from oauthlib.common import generate_token\n')]
"""add github field to user table Revision ID: 6<PASSWORD> Revises: <PASSWORD> Create Date: 2020-10-28 17:42:52.455994 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '<PASSWORD>' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('user', schema=None) as batch_op: batch_op.add_column(sa.Column('github', sa.String(length=128), nullable=True)) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### with op.batch_alter_table('user', schema=None) as batch_op: batch_op.drop_column('github') # ### end Alembic commands ###
[ "sqlalchemy.String", "alembic.op.batch_alter_table" ]
[((399, 440), 'alembic.op.batch_alter_table', 'op.batch_alter_table', (['"""user"""'], {'schema': 'None'}), "('user', schema=None)\n", (419, 440), False, 'from alembic import op\n'), ((671, 712), 'alembic.op.batch_alter_table', 'op.batch_alter_table', (['"""user"""'], {'schema': 'None'}), "('user', schema=None)\n", (691, 712), False, 'from alembic import op\n'), ((502, 523), 'sqlalchemy.String', 'sa.String', ([], {'length': '(128)'}), '(length=128)\n', (511, 523), True, 'import sqlalchemy as sa\n')]
import os import pandas as pd import models import data import generator as gen import json from tensorflow.keras.optimizers import Adam from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint import multiprocessing from _common import utils from _common import callbacks as cbs import argparse argparser = argparse.ArgumentParser(description='train and evaluate YOLOv3 model on any dataset') argparser.add_argument('-c', '--conf', help='path to configuration file') argparser.add_argument('-w', '--weights', help='path to trained model', default=None) args = argparser.parse_args() import neptune neptune.init('kail4ek/sandbox') def main(): config_path = args.conf initial_weights = args.weights with open(config_path) as config_buffer: config = json.loads(config_buffer.read()) train_set, valid_set, classes = data.create_training_instances(config['train']['train_folder'], None, config['train']['cache_name'], config['model']['labels']) num_classes = len(classes) print('Readed {} classes: {}'.format(num_classes, classes)) train_generator = gen.BatchGenerator( instances=train_set, labels=classes, batch_size=config['train']['batch_size'], input_sz=config['model']['infer_shape'], shuffle=True, norm=data.normalize ) valid_generator = gen.BatchGenerator( instances=valid_set, labels=classes, batch_size=config['train']['batch_size'], input_sz=config['model']['infer_shape'], norm=data.normalize, infer=True ) early_stop = EarlyStopping( monitor='val_loss', min_delta=0, patience=20, mode='min', verbose=1 ) reduce_on_plateau = ReduceLROnPlateau( monitor='val_loss', factor=0.5, patience=5, verbose=1, mode='min', min_delta=0.01, cooldown=0, min_lr=0 ) net_input_shape = (config['model']['infer_shape'][0], config['model']['infer_shape'][1], 3) train_model = models.create( base_name=config['model']['base'], num_classes=num_classes, input_shape=net_input_shape) if initial_weights: train_model.load_weights(initial_weights) print(train_model.summary()) # plot_model(train_model, to_file='images/MobileNetv2.png', show_shapes=True) optimizer = Adam(lr=config['train']['learning_rate'], clipnorm=0.001) train_model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) checkpoint_name = utils.get_checkpoint_name(config) utils.makedirs_4_file(checkpoint_name) static_chk_name = utils.get_static_checkpoint_name(config) utils.makedirs_4_file(static_chk_name) checkpoint_vloss = cbs.CustomModelCheckpoint( model_to_save=train_model, filepath=checkpoint_name, monitor='val_loss', verbose=1, save_best_only=True, mode='min', period=1 ) neptune_mon = cbs.NeptuneMonitor( monitoring=['loss', 'val_loss', 'accuracy', 'val_accuracy'], neptune=neptune ) chk_static = ModelCheckpoint( filepath=static_chk_name, monitor='val_loss', verbose=1, save_best_only=True, mode='min', period=1 ) callbacks = [early_stop, reduce_on_plateau, checkpoint_vloss, neptune_mon, chk_static] ### NEPTUNE ### sources_to_upload = [ 'models.py', 'config.json' ] params = { 'infer_size': "H{}xW{}".format(*config['model']['infer_shape']), 'classes': config['model']['labels'], } neptune.create_experiment( name=utils.get_neptune_name(config), upload_stdout=False, upload_source_files=sources_to_upload, params=params ) ### NEPTUNE ### hist = train_model.fit_generator( generator=train_generator, steps_per_epoch=len(train_generator) * config['train']['train_times'], validation_data=valid_generator, validation_steps=len(valid_generator) * config['valid']['valid_times'], epochs=config['train']['nb_epochs'], verbose=2 if config['train']['debug'] else 1, callbacks=callbacks, workers=multiprocessing.cpu_count(), max_queue_size=100 ) neptune.send_artifact(static_chk_name) neptune.send_artifact('config.json') # Hand-made history # if not os.path.exists('model'): # os.makedirs('model') # df = pd.DataFrame.from_dict(hist.history) # df.to_csv('model/hist.csv', encoding='utf-8', index=False) if __name__ == '__main__': main()
[ "_common.callbacks.NeptuneMonitor", "argparse.ArgumentParser", "tensorflow.keras.callbacks.ReduceLROnPlateau", "_common.utils.get_static_checkpoint_name", "generator.BatchGenerator", "models.create", "data.create_training_instances", "tensorflow.keras.optimizers.Adam", "tensorflow.keras.callbacks.EarlyStopping", "_common.callbacks.CustomModelCheckpoint", "multiprocessing.cpu_count", "_common.utils.get_checkpoint_name", "neptune.send_artifact", "tensorflow.keras.callbacks.ModelCheckpoint", "neptune.init", "_common.utils.get_neptune_name", "_common.utils.makedirs_4_file" ]
[((345, 435), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""train and evaluate YOLOv3 model on any dataset"""'}), "(description=\n 'train and evaluate YOLOv3 model on any dataset')\n", (368, 435), False, 'import argparse\n'), ((638, 669), 'neptune.init', 'neptune.init', (['"""kail4ek/sandbox"""'], {}), "('kail4ek/sandbox')\n", (650, 669), False, 'import neptune\n'), ((879, 1010), 'data.create_training_instances', 'data.create_training_instances', (["config['train']['train_folder']", 'None', "config['train']['cache_name']", "config['model']['labels']"], {}), "(config['train']['train_folder'], None,\n config['train']['cache_name'], config['model']['labels'])\n", (909, 1010), False, 'import data\n'), ((1327, 1509), 'generator.BatchGenerator', 'gen.BatchGenerator', ([], {'instances': 'train_set', 'labels': 'classes', 'batch_size': "config['train']['batch_size']", 'input_sz': "config['model']['infer_shape']", 'shuffle': '(True)', 'norm': 'data.normalize'}), "(instances=train_set, labels=classes, batch_size=config[\n 'train']['batch_size'], input_sz=config['model']['infer_shape'],\n shuffle=True, norm=data.normalize)\n", (1345, 1509), True, 'import generator as gen\n'), ((1578, 1759), 'generator.BatchGenerator', 'gen.BatchGenerator', ([], {'instances': 'valid_set', 'labels': 'classes', 'batch_size': "config['train']['batch_size']", 'input_sz': "config['model']['infer_shape']", 'norm': 'data.normalize', 'infer': '(True)'}), "(instances=valid_set, labels=classes, batch_size=config[\n 'train']['batch_size'], input_sz=config['model']['infer_shape'], norm=\n data.normalize, infer=True)\n", (1596, 1759), True, 'import generator as gen\n'), ((1822, 1908), 'tensorflow.keras.callbacks.EarlyStopping', 'EarlyStopping', ([], {'monitor': '"""val_loss"""', 'min_delta': '(0)', 'patience': '(20)', 'mode': '"""min"""', 'verbose': '(1)'}), "(monitor='val_loss', min_delta=0, patience=20, mode='min',\n verbose=1)\n", (1835, 1908), False, 'from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint\n'), ((1976, 2102), 'tensorflow.keras.callbacks.ReduceLROnPlateau', 'ReduceLROnPlateau', ([], {'monitor': '"""val_loss"""', 'factor': '(0.5)', 'patience': '(5)', 'verbose': '(1)', 'mode': '"""min"""', 'min_delta': '(0.01)', 'cooldown': '(0)', 'min_lr': '(0)'}), "(monitor='val_loss', factor=0.5, patience=5, verbose=1,\n mode='min', min_delta=0.01, cooldown=0, min_lr=0)\n", (1993, 2102), False, 'from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint\n'), ((2331, 2437), 'models.create', 'models.create', ([], {'base_name': "config['model']['base']", 'num_classes': 'num_classes', 'input_shape': 'net_input_shape'}), "(base_name=config['model']['base'], num_classes=num_classes,\n input_shape=net_input_shape)\n", (2344, 2437), False, 'import models\n'), ((2667, 2724), 'tensorflow.keras.optimizers.Adam', 'Adam', ([], {'lr': "config['train']['learning_rate']", 'clipnorm': '(0.001)'}), "(lr=config['train']['learning_rate'], clipnorm=0.001)\n", (2671, 2724), False, 'from tensorflow.keras.optimizers import Adam\n'), ((2849, 2882), '_common.utils.get_checkpoint_name', 'utils.get_checkpoint_name', (['config'], {}), '(config)\n', (2874, 2882), False, 'from _common import utils\n'), ((2887, 2925), '_common.utils.makedirs_4_file', 'utils.makedirs_4_file', (['checkpoint_name'], {}), '(checkpoint_name)\n', (2908, 2925), False, 'from _common import utils\n'), ((2949, 2989), '_common.utils.get_static_checkpoint_name', 'utils.get_static_checkpoint_name', (['config'], {}), '(config)\n', (2981, 2989), False, 'from _common import utils\n'), ((2994, 3032), '_common.utils.makedirs_4_file', 'utils.makedirs_4_file', (['static_chk_name'], {}), '(static_chk_name)\n', (3015, 3032), False, 'from _common import utils\n'), ((3057, 3218), '_common.callbacks.CustomModelCheckpoint', 'cbs.CustomModelCheckpoint', ([], {'model_to_save': 'train_model', 'filepath': 'checkpoint_name', 'monitor': '"""val_loss"""', 'verbose': '(1)', 'save_best_only': '(True)', 'mode': '"""min"""', 'period': '(1)'}), "(model_to_save=train_model, filepath=\n checkpoint_name, monitor='val_loss', verbose=1, save_best_only=True,\n mode='min', period=1)\n", (3082, 3218), True, 'from _common import callbacks as cbs\n'), ((3295, 3395), '_common.callbacks.NeptuneMonitor', 'cbs.NeptuneMonitor', ([], {'monitoring': "['loss', 'val_loss', 'accuracy', 'val_accuracy']", 'neptune': 'neptune'}), "(monitoring=['loss', 'val_loss', 'accuracy',\n 'val_accuracy'], neptune=neptune)\n", (3313, 3395), True, 'from _common import callbacks as cbs\n'), ((3432, 3551), 'tensorflow.keras.callbacks.ModelCheckpoint', 'ModelCheckpoint', ([], {'filepath': 'static_chk_name', 'monitor': '"""val_loss"""', 'verbose': '(1)', 'save_best_only': '(True)', 'mode': '"""min"""', 'period': '(1)'}), "(filepath=static_chk_name, monitor='val_loss', verbose=1,\n save_best_only=True, mode='min', period=1)\n", (3447, 3551), False, 'from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau, ModelCheckpoint\n'), ((4627, 4665), 'neptune.send_artifact', 'neptune.send_artifact', (['static_chk_name'], {}), '(static_chk_name)\n', (4648, 4665), False, 'import neptune\n'), ((4670, 4706), 'neptune.send_artifact', 'neptune.send_artifact', (['"""config.json"""'], {}), "('config.json')\n", (4691, 4706), False, 'import neptune\n'), ((3976, 4006), '_common.utils.get_neptune_name', 'utils.get_neptune_name', (['config'], {}), '(config)\n', (3998, 4006), False, 'from _common import utils\n'), ((4556, 4583), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (4581, 4583), False, 'import multiprocessing\n')]
from unittest.mock import patch from django.urls import reverse_lazy from django.contrib.auth import get_user_model from rest_framework.test import APIClient from rest_framework.status import ( HTTP_200_OK, HTTP_201_CREATED, HTTP_405_METHOD_NOT_ALLOWED, HTTP_400_BAD_REQUEST, ) from model_mommy import mommy import pytest from django_cryptolock.models import Address, Challenge from .helpers import ( VALID_BITCOIN_ADDRESS, VALID_MONERO_ADDRESS, gen_challenge, set_bitcoin_settings, set_monero_settings, ) User = get_user_model() pytestmark = pytest.mark.django_db @pytest.fixture def api_client(): return APIClient() @pytest.mark.parametrize("method", ["put", "patch", "delete", "head", "options"]) def test_methods_not_allowed_for_token_login(api_client, method): func = getattr(api_client, method) response = func(reverse_lazy("api_token_login")) assert response.status_code == HTTP_405_METHOD_NOT_ALLOWED def test_generate_new_token_login_challenge(api_client): response = api_client.get(reverse_lazy("api_token_login")) assert response.status_code == HTTP_200_OK assert "challenge" in response.json().keys() assert "expires" in response.json().keys() @pytest.mark.parametrize( "addr,set_backend,network", [ (VALID_MONERO_ADDRESS, set_monero_settings, "monero"), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings, "bitcoin"), ], ) def test_token_login_fails_invalid_data( api_client, settings, addr, set_backend, network ): settings.DJCL_MONERO_NETWORK = "mainnet" set_backend(settings) net = Address.NETWORK_BITCOIN if network == "bitcoin" else Address.NETWORK_MONERO user = mommy.make(User) mommy.make(Address, user=user, address=addr, network=net) challenge = gen_challenge() with patch(f"django_cryptolock.backends.verify_{network}_signature") as sig_mock: sig_mock.return_value = False response = api_client.post( reverse_lazy("api_token_login"), {"challenge": challenge, "address": addr, "signature": "something"}, ) assert response.status_code == HTTP_400_BAD_REQUEST errors = response.json() assert "Please enter a correct address or signature." in errors["__all__"] @pytest.mark.parametrize( "addr,set_backend,network", [ (VALID_MONERO_ADDRESS, set_monero_settings, "monero"), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings, "bitcoin"), ], ) def test_token_login_succeeds(api_client, settings, addr, set_backend, network): settings.DJCL_MONERO_NETWORK = "mainnet" set_backend(settings) net = Address.NETWORK_BITCOIN if network == "bitcoin" else Address.NETWORK_MONERO user = mommy.make(User) mommy.make(Address, user=user, address=addr, network=net) challenge = gen_challenge() with patch(f"django_cryptolock.backends.verify_{network}_signature") as sig_mock: sig_mock.return_value = True response = api_client.post( reverse_lazy("api_token_login"), {"challenge": challenge, "address": addr, "signature": "something"}, ) assert response.status_code == HTTP_200_OK assert "token" in response.json().keys() @pytest.mark.parametrize("method", ["put", "patch", "delete", "head", "options"]) def test_methods_not_allowed_for_sign_up(api_client, method): func = getattr(api_client, method) response = func(reverse_lazy("api_signup")) assert response.status_code == HTTP_405_METHOD_NOT_ALLOWED def test_generate_new_sign_up_challenge(api_client): response = api_client.get(reverse_lazy("api_signup")) assert response.status_code == HTTP_200_OK assert "challenge" in response.json().keys() assert "expires" in response.json().keys() def test_sign_up_fails_no_input(api_client): response = api_client.post(reverse_lazy("api_signup")) errors = response.json() assert response.status_code == HTTP_400_BAD_REQUEST assert "This field is required." in errors["challenge"] assert "This field is required." in errors["address"] assert "This field is required." in errors["signature"] assert "This field is required." in errors["username"] @pytest.mark.parametrize( "addr,set_backend", [ (VALID_MONERO_ADDRESS, set_monero_settings), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings), ], ) def test_sign_up_fails_duplicate_address(api_client, settings, addr, set_backend): settings.DJCL_MONERO_NETWORK = "mainnet" set_backend(settings) challenge = gen_challenge() mommy.make(Address, address=addr) response = api_client.post( reverse_lazy("api_signup"), { "challenge": challenge, "address": addr, "signature": "something", "username": "user", }, ) assert response.status_code == HTTP_400_BAD_REQUEST errors = response.json() assert "This address already exists" in errors["address"] @pytest.mark.parametrize( "addr,set_backend", [ (VALID_MONERO_ADDRESS, set_monero_settings), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings), ], ) def test_sign_up_fails_invalid_signature(api_client, settings, addr, set_backend): settings.DJCL_MONERO_NETWORK = "mainnet" set_backend(settings) challenge = gen_challenge() with patch("django_cryptolock.api_views.verify_signature") as sig_mock: sig_mock.return_value = False response = api_client.post( reverse_lazy("api_signup"), { "challenge": challenge, "address": addr, "signature": "something", "username": "user", }, ) assert response.status_code == HTTP_400_BAD_REQUEST errors = response.json() assert "Invalid signature" in errors["signature"] @pytest.mark.parametrize( "addr,set_backend", [ (VALID_MONERO_ADDRESS, set_monero_settings), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings), ], ) def test_sign_up_succeeds(api_client, settings, addr, set_backend): settings.DJCL_MONERO_NETWORK = "mainnet" set_backend(settings) challenge = gen_challenge() with patch("django_cryptolock.api_views.verify_signature") as sig_mock: sig_mock.return_value = True response = api_client.post( reverse_lazy("api_signup"), { "challenge": challenge, "address": addr, "signature": "something", "username": "user", }, ) assert response.status_code == HTTP_201_CREATED
[ "django.contrib.auth.get_user_model", "model_mommy.mommy.make", "rest_framework.test.APIClient", "pytest.mark.parametrize", "django.urls.reverse_lazy", "unittest.mock.patch" ]
[((553, 569), 'django.contrib.auth.get_user_model', 'get_user_model', ([], {}), '()\n', (567, 569), False, 'from django.contrib.auth import get_user_model\n'), ((667, 752), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""method"""', "['put', 'patch', 'delete', 'head', 'options']"], {}), "('method', ['put', 'patch', 'delete', 'head', 'options']\n )\n", (690, 752), False, 'import pytest\n'), ((1237, 1411), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""addr,set_backend,network"""', "[(VALID_MONERO_ADDRESS, set_monero_settings, 'monero'), (\n VALID_BITCOIN_ADDRESS, set_bitcoin_settings, 'bitcoin')]"], {}), "('addr,set_backend,network', [(VALID_MONERO_ADDRESS,\n set_monero_settings, 'monero'), (VALID_BITCOIN_ADDRESS,\n set_bitcoin_settings, 'bitcoin')])\n", (1260, 1411), False, 'import pytest\n'), ((2280, 2454), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""addr,set_backend,network"""', "[(VALID_MONERO_ADDRESS, set_monero_settings, 'monero'), (\n VALID_BITCOIN_ADDRESS, set_bitcoin_settings, 'bitcoin')]"], {}), "('addr,set_backend,network', [(VALID_MONERO_ADDRESS,\n set_monero_settings, 'monero'), (VALID_BITCOIN_ADDRESS,\n set_bitcoin_settings, 'bitcoin')])\n", (2303, 2454), False, 'import pytest\n'), ((3234, 3319), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""method"""', "['put', 'patch', 'delete', 'head', 'options']"], {}), "('method', ['put', 'patch', 'delete', 'head', 'options']\n )\n", (3257, 3319), False, 'import pytest\n'), ((4214, 4355), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""addr,set_backend"""', '[(VALID_MONERO_ADDRESS, set_monero_settings), (VALID_BITCOIN_ADDRESS,\n set_bitcoin_settings)]'], {}), "('addr,set_backend', [(VALID_MONERO_ADDRESS,\n set_monero_settings), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings)])\n", (4237, 4355), False, 'import pytest\n'), ((4991, 5132), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""addr,set_backend"""', '[(VALID_MONERO_ADDRESS, set_monero_settings), (VALID_BITCOIN_ADDRESS,\n set_bitcoin_settings)]'], {}), "('addr,set_backend', [(VALID_MONERO_ADDRESS,\n set_monero_settings), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings)])\n", (5014, 5132), False, 'import pytest\n'), ((5873, 6014), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""addr,set_backend"""', '[(VALID_MONERO_ADDRESS, set_monero_settings), (VALID_BITCOIN_ADDRESS,\n set_bitcoin_settings)]'], {}), "('addr,set_backend', [(VALID_MONERO_ADDRESS,\n set_monero_settings), (VALID_BITCOIN_ADDRESS, set_bitcoin_settings)])\n", (5896, 6014), False, 'import pytest\n'), ((652, 663), 'rest_framework.test.APIClient', 'APIClient', ([], {}), '()\n', (661, 663), False, 'from rest_framework.test import APIClient\n'), ((1704, 1720), 'model_mommy.mommy.make', 'mommy.make', (['User'], {}), '(User)\n', (1714, 1720), False, 'from model_mommy import mommy\n'), ((1725, 1782), 'model_mommy.mommy.make', 'mommy.make', (['Address'], {'user': 'user', 'address': 'addr', 'network': 'net'}), '(Address, user=user, address=addr, network=net)\n', (1735, 1782), False, 'from model_mommy import mommy\n'), ((2731, 2747), 'model_mommy.mommy.make', 'mommy.make', (['User'], {}), '(User)\n', (2741, 2747), False, 'from model_mommy import mommy\n'), ((2752, 2809), 'model_mommy.mommy.make', 'mommy.make', (['Address'], {'user': 'user', 'address': 'addr', 'network': 'net'}), '(Address, user=user, address=addr, network=net)\n', (2762, 2809), False, 'from model_mommy import mommy\n'), ((4576, 4609), 'model_mommy.mommy.make', 'mommy.make', (['Address'], {'address': 'addr'}), '(Address, address=addr)\n', (4586, 4609), False, 'from model_mommy import mommy\n'), ((873, 904), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_token_login"""'], {}), "('api_token_login')\n", (885, 904), False, 'from django.urls import reverse_lazy\n'), ((1058, 1089), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_token_login"""'], {}), "('api_token_login')\n", (1070, 1089), False, 'from django.urls import reverse_lazy\n'), ((1825, 1888), 'unittest.mock.patch', 'patch', (['f"""django_cryptolock.backends.verify_{network}_signature"""'], {}), "(f'django_cryptolock.backends.verify_{network}_signature')\n", (1830, 1888), False, 'from unittest.mock import patch\n'), ((2852, 2915), 'unittest.mock.patch', 'patch', (['f"""django_cryptolock.backends.verify_{network}_signature"""'], {}), "(f'django_cryptolock.backends.verify_{network}_signature')\n", (2857, 2915), False, 'from unittest.mock import patch\n'), ((3436, 3462), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_signup"""'], {}), "('api_signup')\n", (3448, 3462), False, 'from django.urls import reverse_lazy\n'), ((3612, 3638), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_signup"""'], {}), "('api_signup')\n", (3624, 3638), False, 'from django.urls import reverse_lazy\n'), ((3861, 3887), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_signup"""'], {}), "('api_signup')\n", (3873, 3887), False, 'from django.urls import reverse_lazy\n'), ((4650, 4676), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_signup"""'], {}), "('api_signup')\n", (4662, 4676), False, 'from django.urls import reverse_lazy\n'), ((5359, 5412), 'unittest.mock.patch', 'patch', (['"""django_cryptolock.api_views.verify_signature"""'], {}), "('django_cryptolock.api_views.verify_signature')\n", (5364, 5412), False, 'from unittest.mock import patch\n'), ((6226, 6279), 'unittest.mock.patch', 'patch', (['"""django_cryptolock.api_views.verify_signature"""'], {}), "('django_cryptolock.api_views.verify_signature')\n", (6231, 6279), False, 'from unittest.mock import patch\n'), ((1988, 2019), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_token_login"""'], {}), "('api_token_login')\n", (2000, 2019), False, 'from django.urls import reverse_lazy\n'), ((3014, 3045), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_token_login"""'], {}), "('api_token_login')\n", (3026, 3045), False, 'from django.urls import reverse_lazy\n'), ((5512, 5538), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_signup"""'], {}), "('api_signup')\n", (5524, 5538), False, 'from django.urls import reverse_lazy\n'), ((6378, 6404), 'django.urls.reverse_lazy', 'reverse_lazy', (['"""api_signup"""'], {}), "('api_signup')\n", (6390, 6404), False, 'from django.urls import reverse_lazy\n')]
# -*- coding: utf-8 -*- from models import User from tests.test import AppengineTestCase import constants class UserTestCase(AppengineTestCase): def test_has_profile(self): self.assertFalse(User.has_profile(None, None), 'None user and profile should not have any profile') self.assertFalse(User.has_profile('', []), 'Empty user and profile should not have any profile') self.assertFalse(User.has_profile('', [constants.PROFILE_ADMIN]), 'Non existing user should not have profiles') user = User(email='<EMAIL>', profiles=[ constants.PROFILE_ADMIN ]) user_key = user.put() self.assertTrue(User.has_profile( '<EMAIL>', [constants.PROFILE_ADMIN] ), 'Profiles have been assigned') user_key.delete()
[ "models.User.has_profile", "models.User" ]
[((603, 660), 'models.User', 'User', ([], {'email': '"""<EMAIL>"""', 'profiles': '[constants.PROFILE_ADMIN]'}), "(email='<EMAIL>', profiles=[constants.PROFILE_ADMIN])\n", (607, 660), False, 'from models import User\n'), ((205, 233), 'models.User.has_profile', 'User.has_profile', (['None', 'None'], {}), '(None, None)\n', (221, 233), False, 'from models import User\n'), ((338, 362), 'models.User.has_profile', 'User.has_profile', (['""""""', '[]'], {}), "('', [])\n", (354, 362), False, 'from models import User\n'), ((468, 515), 'models.User.has_profile', 'User.has_profile', (['""""""', '[constants.PROFILE_ADMIN]'], {}), "('', [constants.PROFILE_ADMIN])\n", (484, 515), False, 'from models import User\n'), ((737, 791), 'models.User.has_profile', 'User.has_profile', (['"""<EMAIL>"""', '[constants.PROFILE_ADMIN]'], {}), "('<EMAIL>', [constants.PROFILE_ADMIN])\n", (753, 791), False, 'from models import User\n')]
# ---------------------------------------------------------------------------- # Copyright (c) 2020, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import importlib from qiime2.plugin import ( Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float ) from q2_types.feature_table import FeatureTable, PresenceAbsence from q2_types.feature_data import FeatureData, Sequence from q2_types.sample_data import SampleData from q2_types.per_sample_sequences import ( SequencesWithQuality, PairedEndSequencesWithQuality, ) import q2_phylogenomics import q2_phylogenomics._prinseq import q2_phylogenomics._filter import q2_phylogenomics._assemble import q2_phylogenomics._pipelines from q2_types.bowtie2 import Bowtie2Index from q2_types.feature_data import DNASequencesDirectoryFormat from q2_phylogenomics._format import (GenBankFormat, GenBankDirFmt, BAMFormat, SAMFormat, BAMFilesDirFmt, SAMFilesDirFmt, PileUpTSVFormat, PileUpFilesDirFmt, FASTAFilesDirFmt) from q2_phylogenomics._types import (AlignmentMap, PileUp, ConsensusSequences, ReferenceSequence) citations = Citations.load('citations.bib', package='q2_phylogenomics') plugin = Plugin( name='phylogenomics', version=q2_phylogenomics.__version__, website='https://github.com/qiime2/q2-phylogenomics', package='q2_phylogenomics', description='A QIIME 2 plugin for phylogenomics analyses.', short_description='A QIIME 2 plugin for phylogenomics analyses.', ) plugin.register_formats(GenBankFormat, GenBankDirFmt, citations=[]) plugin.register_formats(BAMFormat, SAMFormat, BAMFilesDirFmt, SAMFilesDirFmt, PileUpTSVFormat, PileUpFilesDirFmt, citations=[]) plugin.register_formats(FASTAFilesDirFmt) plugin.register_semantic_types(AlignmentMap, PileUp, ConsensusSequences, ReferenceSequence) # before release we want to use GenBank format for this, # but I think it's broken with skbio < 0.5.6 - I get this # error when trying to load a genbank file: # ValueError: cannot set WRITEABLE flag to True of this array # plugin.register_semantic_type_to_format(ReferenceSequence, GenBankDirFmt) plugin.register_semantic_type_to_format(ReferenceSequence, DNASequencesDirectoryFormat) plugin.register_semantic_type_to_format(SampleData[PileUp], PileUpFilesDirFmt) plugin.register_semantic_type_to_format(SampleData[AlignmentMap], BAMFilesDirFmt) plugin.register_semantic_type_to_format(SampleData[ConsensusSequences], FASTAFilesDirFmt) importlib.import_module('q2_phylogenomics._transformers') prinseq_input = {'demultiplexed_sequences': 'The sequences to be trimmed.'} prinseq_output = {'trimmed_sequences': 'The resulting trimmed sequences.'} prinseq_parameters = { 'trim_qual_right': Int % Range(1, None), 'trim_qual_type': Str % Choices(['min', 'mean', 'max', 'sum']), 'trim_qual_window': Int % Range(1, None), 'min_qual_mean': Int % Range(1, None), 'min_len': Int % Range(1, None), 'lc_method': Str % Choices(['dust', 'entropy']), 'lc_threshold': Int % Range(0, 100), 'derep': List[Str % Choices(list('12345'))]} prinseq_parameter_descriptions = { 'trim_qual_right': 'Trim sequence by quality score from the 3\'-end with ' 'this threshold score.', 'trim_qual_type': 'Type of quality score calculation to use. Allowed ' 'options are min, mean, max and sum.', 'trim_qual_window': 'The sliding window size used to calculate quality ' 'score by type. To stop at the first base that fails ' 'the rule defined, use a window size of 1.', 'min_qual_mean': 'Filter sequence with quality score mean below ' 'min_qual_mean.', 'min_len': 'Filter sequence shorter than min_len.', 'lc_method': 'Method to filter low complexity sequences.', 'lc_threshold': 'The threshold value used to filter sequences by sequence ' 'complexity. The dust method uses this as maximum allowed ' 'score and the entropy method as minimum allowed value.', 'derep': 'Type of duplicates to filter. Use integers for multiple ' 'selections (e.g. 124 to use type 1, 2 and 4). The order does ' 'not matter. Option 2 and 3 will set 1 and option 5 will set 4 ' 'as these are subsets of the other option.\n\n1 (exact ' 'duplicate), 2 (5\' duplicate), 3 (3\' duplicate), 4 (reverse ' 'complement exact duplicate), 5 (reverse complement 5\'/3\' ' 'duplicate).' } map_paired_reads_input_descriptions = { 'demux': 'The demultiplexed sequences to map to the reference.', 'database': 'The reference sequence(s).' } map_paired_reads_parameters = { 'mismatches_per_seed': Int % Range(0, 1, inclusive_end=True), 'ceil_coefficient': Float, 'n_threads': Int % Range(1, None), 'mapped_only': Bool} map_paired_reads_parameter_descriptions = { 'mismatches_per_seed': 'Max mismatches allowed in seed alignment.', 'ceil_coefficient': 'Coefficient used to specify the bowtie ' 'function L(0,x) for max number of non-A/C/G/T ' 'characters allowed in an alignment.', 'n_threads': 'Number of alignment threads to launch.', 'mapped_only': 'Retain only records for reads that were mapped ' 'to the database in the output files.' } map_paired_reads_output_descriptions = { 'alignment_maps': 'Results of mapping reads in each input sample ' 'to the provided database.' } filter_input = {'demultiplexed_sequences': 'The sequences to be trimmed.', 'database': 'Bowtie2 indexed database.'} filter_output = {'filtered_sequences': 'The resulting filtered sequences.'} filter_parameters = { 'n_threads': Int % Range(1, None), 'mode': Str % Choices(['local', 'global']), 'sensitivity': Str % Choices([ 'very-fast', 'fast', 'sensitive', 'very-sensitive']), 'ref_gap_open_penalty': Int % Range(1, None), 'ref_gap_ext_penalty': Int % Range(1, None), 'exclude_seqs': Bool, } filter_parameter_descriptions = { 'n_threads': 'Number of alignment threads to launch.', 'mode': 'Bowtie2 alignment settings. See bowtie2 manual for more details.', 'sensitivity': 'Bowtie2 alignment sensitivity. See bowtie2 manual for ' 'details.', 'ref_gap_open_penalty': 'Reference gap open penalty.', 'ref_gap_ext_penalty': 'Reference gap extend penalty.', 'exclude_seqs': 'Exclude sequences that align to reference. Set this ' 'option to False to exclude sequences that do not align ' 'to the reference database.' } filter_citations = [citations['langmead2012fast'], citations['heng2009samtools']] filter_description = ( 'Filter out (or keep) sequences that align to reference database, using ' 'bowtie2 and samtools. This method can be used to filter out human DNA ' 'sequences and other contaminant in any FASTQ sequence data (e.g., ' 'shotgun genome or amplicon sequence data), or alternatively (when ' 'exclude_seqs is False) to only keep sequences that do align to the ' 'reference.') consensus_sequence_parameter_descriptions = { 'min_depth': 'The minimum depth to call a consensus base.' } consensus_sequence_parameters = { 'min_depth': Int } consensus_sequence_output_descriptions = { 'table': 'Table describing which consensus sequences are ' 'observed in each sample.', 'consensus_sequences': 'Mapping of consensus sequence identifiers ' 'to consensus sequences.' } consensus_sequence_outputs = [ ('table', FeatureTable[PresenceAbsence]), ('consensus_sequences', FeatureData[Sequence])] make_pileup_parameters = { 'min_mapq': Int % Range(0, None), 'max_depth': Int % Range(1, None) } make_pileup_parameter_descriptions = { 'min_mapq': 'The minimum mapQ to consider an alignment.', 'max_depth': 'The max per-file depth.' } plugin.pipelines.register_function( function=q2_phylogenomics._pipelines.filter_clean_consensus, inputs={ 'demultiplexed_sequences': SampleData[PairedEndSequencesWithQuality], 'alignment_ref': Bowtie2Index, 'filter_ref': Bowtie2Index}, parameters={ 'enable_cutadapt': Bool, 'enable_prinseq': Bool, 'cutadapt_cores': Int % Range(1, None), 'cutadapt_adapter_f': List[Str], 'cutadapt_front_f': List[Str], 'cutadapt_anywhere_f': List[Str], 'cutadapt_adapter_r': List[Str], 'cutadapt_front_r': List[Str], 'cutadapt_anywhere_r': List[Str], 'cutadapt_error_rate': Float % Range(0, 1, inclusive_start=True, inclusive_end=True), 'cutadapt_indels': Bool, 'cutadapt_times': Int % Range(1, None), 'cutadapt_overlap': Int % Range(1, None), 'cutadapt_match_read_wildcards': Bool, 'cutadapt_match_adapter_wildcards': Bool, 'cutadapt_minimum_length': Int % Range(1, None), 'cutadapt_discard_untrimmed': Bool, **{'bowtie2_' + k: v for k, v in filter_parameters.items()}, **{'bowtie2_' + k: v for k, v in map_paired_reads_parameters.items() if k != 'n_threads'}, **{'prinseq_' + k: v for k, v in prinseq_parameters.items()}, **{'samtools_' + k: v for k, v in make_pileup_parameters.items()}, **{'consensus_' + k: v for k, v in consensus_sequence_parameters.items()}}, outputs=consensus_sequence_outputs + [ ('filtered_sequences', SampleData[PairedEndSequencesWithQuality]), ('clean_sequences', SampleData[PairedEndSequencesWithQuality])], input_descriptions={ 'demultiplexed_sequences': 'Demultiplexed sequences.', 'alignment_ref': 'Reference genome(s) to use for alignment.', 'filter_ref': 'Reference sequences to use for filtering demultiplexed ' 'sequences with bowtie2. Will remove sequences that hit ' 'reference if exclude_seqs is True, otherwise remove ' 'sequences that do not hit the reference. If none is ' 'provided, this filter is not performed. This step is ' 'typically performed to remove host contaminant reads.'}, parameter_descriptions={ 'enable_cutadapt': 'Enable/disable adapter trimming with cutadapt.', 'enable_prinseq': 'Enable/disable quality trimming with prinseq.', 'cutadapt_cores': 'Number of CPU cores to use.', 'cutadapt_adapter_f': ( 'Sequence of an adapter ligated to the 3\' end. The ' 'adapter and any subsequent bases are trimmed. If a `$` ' 'is appended, the adapter is only found if it is at the ' 'end of the read. Search in forward read. If your ' 'sequence of interest is "framed" by a 5\' and a 3\' ' 'adapter, use this parameter to define a "linked" primer ' '- see https://cutadapt.readthedocs.io for complete ' 'details.'), 'cutadapt_front_f': ( 'Sequence of an adapter ligated to the 5\' end. The ' 'adapter and any preceding bases are trimmed. Partial ' 'matches at the 5\' end are allowed. If a `^` character ' 'is prepended, the adapter is only found if it is at the ' 'beginning of the read. Search in forward read.'), 'cutadapt_anywhere_f': ( 'Sequence of an adapter that may be ligated to the 5\' ' 'or 3\' end. Both types of matches as described under ' '`adapter` and `front` are allowed. If the first base ' 'of the read is part of the match, the behavior is as ' 'with `front`, otherwise as with `adapter`. This option ' 'is mostly for rescuing failed library preparations - ' 'do not use if you know which end your adapter was ' 'ligated to. Search in forward read.'), 'cutadapt_adapter_r': ( 'Sequence of an adapter ligated to the 3\' end. The ' 'adapter and any subsequent bases are trimmed. If a `$` ' 'is appended, the adapter is only found if it is at the ' 'end of the read. Search in reverse read. If your ' 'sequence of interest is "framed" by a 5\' and a 3\' ' 'adapter, use this parameter to define a "linked" primer ' '- see https://cutadapt.readthedocs.io for complete details.'), 'cutadapt_front_r': ( 'Sequence of an adapter ligated to the 5\' end. The ' 'adapter and any preceding bases are trimmed. Partial ' 'matches at the 5\' end are allowed. If a `^` character ' 'is prepended, the adapter is only found if it is at the ' 'beginning of the read. Search in reverse read.'), 'cutadapt_anywhere_r': ( 'Sequence of an adapter that may be ligated to the 5\' ' 'or 3\' end. Both types of matches as described under ' '`adapter` and `front` are allowed. If the first base ' 'of the read is part of the match, the behavior is as ' 'with `front`, otherwise as with `adapter`. This ' 'option is mostly for rescuing failed library ' 'preparations - do not use if you know which end your ' 'adapter was ligated to. Search in reverse read.'), 'cutadapt_error_rate': 'Maximum allowed error rate.', 'cutadapt_indels': 'Allow insertions or deletions of bases when ' 'matching adapters.', 'cutadapt_times': 'Remove multiple occurrences of an adapter if it is ' 'repeated, up to `times` times.', 'cutadapt_overlap': 'Require at least `overlap` bases of overlap ' 'between read and adapter for an adapter to be ' 'found.', 'cutadapt_match_read_wildcards': 'Interpret IUPAC wildcards (e.g., N) ' 'in reads.', 'cutadapt_match_adapter_wildcards': 'Interpret IUPAC wildcards (e.g., ' 'N) in adapters.', 'cutadapt_minimum_length': ( 'Discard reads shorter than specified value. Note, the cutadapt ' 'default of 0 has been overridden, because that value produces ' 'empty sequence records.'), 'cutadapt_discard_untrimmed': 'Discard reads in which no adapter was ' 'found.', **{'bowtie2_' + k: v for k, v in filter_parameter_descriptions.items()}, **{'bowtie2_' + k: v for k, v in map_paired_reads_parameter_descriptions.items() if k != 'n_threads'}, **{'prinseq_' + k: v for k, v in prinseq_parameter_descriptions.items()}, **{'samtools_' + k: v for k, v in make_pileup_parameter_descriptions.items()}, **{'consensus_' + k: v for k, v in consensus_sequence_parameter_descriptions.items()}}, output_descriptions={ **consensus_sequence_output_descriptions, 'filtered_sequences': 'Sequences after filtering with bowtie2.', 'clean_sequences': 'Squeaky clean sequences after all QC steps.'}, name='Filter, trim, clean, map to reference, and generate consensus.', description=( 'This pipeline performs a sequence of quality control steps, followed ' 'by alignment to a reference genome and generation of a consensus ' 'alignment. Input sequences are:\n' '1. (optionally) filtered by alignment against a reference database ' 'with bowtie2.\n' '2. (optionally) trimmed with cutadapt to remove adapter sequences.\n' '3. (optionally) Trimmed with prinseq to remove low-quality ' 'nucleotides.\n' '4. Aligned to a reference genome with bowtie2, sorted, and ' 'deduplicated.\n' '5. A consensus alignment is generated using ivar.'), citations=filter_citations + [ citations['schmieder_prinseq'], citations['langmead2012fast'], citations['heng2009samtools'], citations['Grubaugh2019ivar']] ) plugin.methods.register_function( function=q2_phylogenomics._prinseq.prinseq_single, inputs={'demultiplexed_sequences': SampleData[SequencesWithQuality]}, parameters=prinseq_parameters, outputs=[('trimmed_sequences', SampleData[SequencesWithQuality])], input_descriptions=prinseq_input, parameter_descriptions=prinseq_parameter_descriptions, output_descriptions=prinseq_output, name='Filter and trim demultiplexed single-end sequences with PRINSEQ.', description='Filter and trim demultiplexed single-end FASTQ sequences ' 'based on quality scores using PRINSEQ-lite.', citations=[citations['schmieder_prinseq']] ) plugin.methods.register_function( function=q2_phylogenomics._prinseq.prinseq_paired, inputs={ 'demultiplexed_sequences': SampleData[PairedEndSequencesWithQuality]}, parameters=prinseq_parameters, outputs=[('trimmed_sequences', SampleData[PairedEndSequencesWithQuality])], input_descriptions=prinseq_input, parameter_descriptions=prinseq_parameter_descriptions, output_descriptions=prinseq_output, name='Filter and trim demultiplexed paired-end sequences with PRINSEQ.', description='Filter and trim demultiplexed paired-end FASTQ sequences ' 'based on quality scores using PRINSEQ-lite.', citations=[citations['schmieder_prinseq']] ) plugin.methods.register_function( function=q2_phylogenomics._filter.filter_single, inputs={'demultiplexed_sequences': SampleData[SequencesWithQuality], 'database': Bowtie2Index}, parameters=filter_parameters, outputs=[('filtered_sequences', SampleData[SequencesWithQuality])], input_descriptions=filter_input, parameter_descriptions=filter_parameter_descriptions, output_descriptions=filter_output, name='Filter single-end sequences by alignment to reference database.', description=filter_description, citations=filter_citations ) plugin.methods.register_function( function=q2_phylogenomics._filter.filter_paired, inputs={ 'demultiplexed_sequences': SampleData[PairedEndSequencesWithQuality], 'database': Bowtie2Index}, parameters=filter_parameters, outputs=[ ('filtered_sequences', SampleData[PairedEndSequencesWithQuality])], input_descriptions=filter_input, parameter_descriptions=filter_parameter_descriptions, output_descriptions=filter_output, name='Filter paired-end sequences by alignment to reference database.', description=filter_description, citations=filter_citations ) plugin.methods.register_function( function=q2_phylogenomics._filter.bowtie2_build, inputs={'sequences': FeatureData[Sequence]}, parameters={'n_threads': Int % Range(1, None)}, outputs=[('database', Bowtie2Index)], input_descriptions={ 'sequences': 'Reference sequences used to build bowtie2 index.'}, parameter_descriptions={'n_threads': 'Number of threads to launch'}, output_descriptions={'database': 'Bowtie2 index.'}, name='Build bowtie2 index from reference sequences.', description='Build bowtie2 index from reference sequences.', citations=[citations['langmead2012fast']] ) plugin.methods.register_function( function=q2_phylogenomics._assemble.map_paired_reads, inputs={'demux': SampleData[PairedEndSequencesWithQuality], 'database': Bowtie2Index}, parameters=map_paired_reads_parameters, outputs=[('alignment_maps', SampleData[AlignmentMap])], input_descriptions=map_paired_reads_input_descriptions, parameter_descriptions=map_paired_reads_parameter_descriptions, output_descriptions=map_paired_reads_output_descriptions, name='Map paired end reads.', description='Map paired end reads to a database.', citations=[citations['langmead2012fast']] ) sort_alignment_maps_input_descriptions = { 'unsorted': 'The unsorted alignment maps.' } sort_alignment_maps_output_descriptions = { 'sorted': 'The sorted alignment maps.' } plugin.methods.register_function( function=q2_phylogenomics._assemble.sort_alignment_maps, inputs={'unsorted': SampleData[AlignmentMap]}, parameters={}, outputs=[('sorted', SampleData[AlignmentMap])], input_descriptions=sort_alignment_maps_input_descriptions, parameter_descriptions={}, output_descriptions=sort_alignment_maps_output_descriptions, name='Sort alignment maps.', description='Sort alignment maps by reference start position.', citations=[citations['heng2009samtools']] ) remove_duplicates_input_descriptions = { 'sorted': 'The sorted alignment maps.' } remove_duplicates_output_descriptions = { 'duplicate_filtered': 'The sorted and filtered alignment maps.' } plugin.methods.register_function( function=q2_phylogenomics._assemble.remove_duplicates, inputs={'sorted': SampleData[AlignmentMap]}, parameters={}, outputs=[('duplicate_filtered', SampleData[AlignmentMap])], input_descriptions=remove_duplicates_input_descriptions, parameter_descriptions={}, output_descriptions=remove_duplicates_output_descriptions, name='Remove duplicates.', description='Remove duplicate reads from alignment maps.', citations=[citations['heng2009samtools']] ) make_pileup_input_descriptions = { 'sorted': 'Sorted alignment maps.', 'reference': 'The reference sequence' } make_pileup_output_descriptions = { 'pileups': 'The resulting PileUp data.' } plugin.methods.register_function( function=q2_phylogenomics._assemble.make_pileups, inputs={'sorted': SampleData[AlignmentMap], # need a sorted property? # the following should become type ReferenceSequence # or somehow be integrated with the Bowtie Index 'reference': Bowtie2Index}, parameters=make_pileup_parameters, outputs=[('pileups', SampleData[PileUp])], input_descriptions=make_pileup_input_descriptions, parameter_descriptions=make_pileup_parameter_descriptions, output_descriptions=make_pileup_output_descriptions, name='Create PileUp files', description='Create PileUp Files from sorted alignment maps.', citations=[citations['heng2009samtools']] ) consensus_sequence_input_descriptions = { 'pileups': 'The PileUp data.' } plugin.methods.register_function( function=q2_phylogenomics._assemble.consensus_sequence, inputs={'pileups': SampleData[PileUp]}, parameters=consensus_sequence_parameters, outputs=consensus_sequence_outputs, input_descriptions=consensus_sequence_input_descriptions, parameter_descriptions=consensus_sequence_parameter_descriptions, output_descriptions=consensus_sequence_output_descriptions, name='', description='', citations=[citations['Grubaugh2019ivar']] )
[ "qiime2.plugin.Range", "importlib.import_module", "qiime2.plugin.Choices", "qiime2.plugin.Plugin", "qiime2.plugin.Citations.load" ]
[((1504, 1563), 'qiime2.plugin.Citations.load', 'Citations.load', (['"""citations.bib"""'], {'package': '"""q2_phylogenomics"""'}), "('citations.bib', package='q2_phylogenomics')\n", (1518, 1563), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((1574, 1868), 'qiime2.plugin.Plugin', 'Plugin', ([], {'name': '"""phylogenomics"""', 'version': 'q2_phylogenomics.__version__', 'website': '"""https://github.com/qiime2/q2-phylogenomics"""', 'package': '"""q2_phylogenomics"""', 'description': '"""A QIIME 2 plugin for phylogenomics analyses."""', 'short_description': '"""A QIIME 2 plugin for phylogenomics analyses."""'}), "(name='phylogenomics', version=q2_phylogenomics.__version__, website=\n 'https://github.com/qiime2/q2-phylogenomics', package=\n 'q2_phylogenomics', description=\n 'A QIIME 2 plugin for phylogenomics analyses.', short_description=\n 'A QIIME 2 plugin for phylogenomics analyses.')\n", (1580, 1868), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3045, 3102), 'importlib.import_module', 'importlib.import_module', (['"""q2_phylogenomics._transformers"""'], {}), "('q2_phylogenomics._transformers')\n", (3068, 3102), False, 'import importlib\n'), ((3308, 3322), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (3313, 3322), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3352, 3390), 'qiime2.plugin.Choices', 'Choices', (["['min', 'mean', 'max', 'sum']"], {}), "(['min', 'mean', 'max', 'sum'])\n", (3359, 3390), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3422, 3436), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (3427, 3436), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3465, 3479), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (3470, 3479), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3502, 3516), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (3507, 3516), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3541, 3569), 'qiime2.plugin.Choices', 'Choices', (["['dust', 'entropy']"], {}), "(['dust', 'entropy'])\n", (3548, 3569), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((3597, 3610), 'qiime2.plugin.Range', 'Range', (['(0)', '(100)'], {}), '(0, 100)\n', (3602, 3610), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((5352, 5383), 'qiime2.plugin.Range', 'Range', (['(0)', '(1)'], {'inclusive_end': '(True)'}), '(0, 1, inclusive_end=True)\n', (5357, 5383), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((5439, 5453), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (5444, 5453), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((6408, 6422), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (6413, 6422), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((6442, 6470), 'qiime2.plugin.Choices', 'Choices', (["['local', 'global']"], {}), "(['local', 'global'])\n", (6449, 6470), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((6497, 6558), 'qiime2.plugin.Choices', 'Choices', (["['very-fast', 'fast', 'sensitive', 'very-sensitive']"], {}), "(['very-fast', 'fast', 'sensitive', 'very-sensitive'])\n", (6504, 6558), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((6603, 6617), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (6608, 6617), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((6652, 6666), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (6657, 6666), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((8445, 8459), 'qiime2.plugin.Range', 'Range', (['(0)', 'None'], {}), '(0, None)\n', (8450, 8459), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((8484, 8498), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (8489, 8498), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((9032, 9046), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (9037, 9046), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((9331, 9384), 'qiime2.plugin.Range', 'Range', (['(0)', '(1)'], {'inclusive_start': '(True)', 'inclusive_end': '(True)'}), '(0, 1, inclusive_start=True, inclusive_end=True)\n', (9336, 9384), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((9496, 9510), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (9501, 9510), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((9546, 9560), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (9551, 9560), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((9700, 9714), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (9705, 9714), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n'), ((19701, 19715), 'qiime2.plugin.Range', 'Range', (['(1)', 'None'], {}), '(1, None)\n', (19706, 19715), False, 'from qiime2.plugin import Choices, Plugin, Citations, Range, Int, Str, List, Bool, Float\n')]
import numpy as np from Utils import Utils class DataLoader: @staticmethod def load_train_test_jobs(train_path, test_path, iter_id): train_arr = np.load(train_path) test_arr = np.load(test_path) np_train_X = train_arr['x'][:, :, iter_id] np_train_T = Utils.convert_to_col_vector(train_arr['t'][:, iter_id]) np_train_e = Utils.convert_to_col_vector(train_arr['e'][:, iter_id]) np_train_yf = Utils.convert_to_col_vector(train_arr['yf'][:, iter_id]) # train_X = np.concatenate((np_train_X, np_train_e, np_train_yf), axis=1) np_test_X = test_arr['x'][:, :, iter_id] np_test_T = Utils.convert_to_col_vector(test_arr['t'][:, iter_id]) np_test_e = Utils.convert_to_col_vector(test_arr['e'][:, iter_id]) np_test_yf = Utils.convert_to_col_vector(test_arr['yf'][:, iter_id]) # test_X = np.concatenate((np_test_X, np_test_e, np_test_yf), axis=1) print("Numpy Train Statistics:") print(np_train_X.shape) print(np_train_T.shape) # print("Numpy Val Statistics:") # print(val_X.shape) # print(val_T.shape) print(" Numpy Test Statistics:") print(np_test_X.shape) print(np_test_T.shape) # X -> x1.. x17, e, yf -> (19, 1) return np_train_X, np_train_T, np_train_e, np_train_yf, \ np_test_X, np_test_T, np_test_e, np_test_yf
[ "numpy.load", "Utils.Utils.convert_to_col_vector" ]
[((164, 183), 'numpy.load', 'np.load', (['train_path'], {}), '(train_path)\n', (171, 183), True, 'import numpy as np\n'), ((203, 221), 'numpy.load', 'np.load', (['test_path'], {}), '(test_path)\n', (210, 221), True, 'import numpy as np\n'), ((294, 349), 'Utils.Utils.convert_to_col_vector', 'Utils.convert_to_col_vector', (["train_arr['t'][:, iter_id]"], {}), "(train_arr['t'][:, iter_id])\n", (321, 349), False, 'from Utils import Utils\n'), ((371, 426), 'Utils.Utils.convert_to_col_vector', 'Utils.convert_to_col_vector', (["train_arr['e'][:, iter_id]"], {}), "(train_arr['e'][:, iter_id])\n", (398, 426), False, 'from Utils import Utils\n'), ((449, 505), 'Utils.Utils.convert_to_col_vector', 'Utils.convert_to_col_vector', (["train_arr['yf'][:, iter_id]"], {}), "(train_arr['yf'][:, iter_id])\n", (476, 505), False, 'from Utils import Utils\n'), ((659, 713), 'Utils.Utils.convert_to_col_vector', 'Utils.convert_to_col_vector', (["test_arr['t'][:, iter_id]"], {}), "(test_arr['t'][:, iter_id])\n", (686, 713), False, 'from Utils import Utils\n'), ((734, 788), 'Utils.Utils.convert_to_col_vector', 'Utils.convert_to_col_vector', (["test_arr['e'][:, iter_id]"], {}), "(test_arr['e'][:, iter_id])\n", (761, 788), False, 'from Utils import Utils\n'), ((810, 865), 'Utils.Utils.convert_to_col_vector', 'Utils.convert_to_col_vector', (["test_arr['yf'][:, iter_id]"], {}), "(test_arr['yf'][:, iter_id])\n", (837, 865), False, 'from Utils import Utils\n')]
# define some constants to be used in unittests from datetime import datetime import unittest from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization from jose import jwt from jose.constants import ALGORITHMS from jose.backends import RSAKey from pyramid import testing import requests_mock # A testing request enhanced with some WebOb properties class DummyRequest(testing.DummyRequest): @property def authorization(self): authorization = self.headers.get('Authorization') try: from webob.descriptors import parse_auth return parse_auth(authorization) except Exception: pass return None # create an encoded jwt with keys from this module def gen_jwt(claims): return jwt.encode(claims, PRIVKEY, ALGORITHMS.RS256) # help to generate random keys def gen_new_keys(): key = rsa.generate_private_key(65537, 2048, default_backend()) pem = key.private_bytes(encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption()) privkey = RSAKey(pem, ALGORITHMS.RS256).to_dict() privkey['id'] = 'keyid' for k in privkey: if isinstance(privkey[k], bytes): privkey[k] = privkey[k].decode('utf-8') pkey = key.public_key() pem = pkey.public_bytes(encoding=serialization.Encoding.PEM, format=serialization.PublicFormat.PKCS1) pubkey = RSAKey(pem, ALGORITHMS.RS256).to_dict() pubkey['id'] = 'keyid' for k in pubkey: if isinstance(pubkey[k], bytes): pubkey[k] = pubkey[k].decode('utf-8') return privkey, pubkey PRIVKEY, PUBKEY = gen_new_keys() JWKS = { "keys": [PUBKEY] } ISSUER = 'https://example.com' PROVIDER = 'https://provider.example.org' WELL_KNOWN_OIDC_CONFIG = { ISSUER: { 'issuer': ISSUER, 'authorization_endpoint': '{}/auth'.format(ISSUER), 'token_endpoint': '{}/token'.format(ISSUER), 'token_introspection_endpoint': '{}/introspect'.format(ISSUER), 'userinfo_endpoint': '{}/userinfo'.format(ISSUER), 'jwks_uri': '{}/jwks'.format(ISSUER), }, PROVIDER: { 'issuer': PROVIDER, 'authorization_endpoint': '{}/auth'.format(PROVIDER), 'token_endpoint': '{}/token'.format(PROVIDER), 'token_introspection_endpoint': '{}/introspect'.format(PROVIDER), 'userinfo_endpoint': '{}/userinfo'.format(PROVIDER), 'jwks_uri': '{}/jwks'.format(PROVIDER), } } USER_ID = 'example_user_id' class FunctionalTestCase(unittest.TestCase): def setUp(self): from tokenstore import main from sqlalchemy.pool import StaticPool with requests_mock.mock() as m: m.get('{}/.well-known/openid-configuration'.format(ISSUER), json=WELL_KNOWN_OIDC_CONFIG[ISSUER]) m.get('{}/jwks'.format(ISSUER), json=JWKS) m.get('{}/.well-known/openid-configuration'.format(PROVIDER), json=WELL_KNOWN_OIDC_CONFIG[PROVIDER]) m.get('{}/jwks'.format(PROVIDER), json=JWKS) app = main( {}, **{ 'sqlalchemy.url': 'sqlite://', 'sqlalchemy.connect_args': {'check_same_thread': False}, 'sqlalchemy.poolclass': StaticPool, 'oidc.issuer': ISSUER, 'oidc.client_id': 'example_client_id', 'oidc.providers': 'provider', 'oidc.provider.issuer': PROVIDER, 'oidc.provider.client_id': 'provider_client_id', 'oidc.provider.client_secret': 'provider_secret', 'oidc.provider.metadata.name': 'Provider', 'session.factory': 'pyramid_oidc.session.SessionFactory', 'session.secret': 'session_secret', 'session.cookie_opts.secure': 'False', 'session.cookie_opts.httponly': 'False', 'session.dogpile_opts.backend': 'dogpile.cache.memory', 'session.dogpile_opts.expiration_timeout': '1200', 'openapi.spec': 'tokenstore:openapi.yaml', 'tokenstore.cryptokey': '47fc5aea29aea2f9b49ab8fdc3c87ad2da6245da2d16a32c8cac1c2ec2ffb5ac', } ) from ..models.meta import Base Base.metadata.create_all(app.registry['dbsession_factory']().bind) from webtest import TestApp self.testapp = TestApp(app, extra_environ={'wsgi.url_scheme': 'https'}) def _user_token(self, exp=300, aud='example_client_id'): return gen_jwt({ 'iss': 'https://example.com', 'exp': int(datetime.utcnow().timestamp()) + exp, 'aud': aud, 'sub': USER_ID, 'resource_access': { 'token': { 'roles': ['user'] } } })
[ "jose.backends.RSAKey", "datetime.datetime.utcnow", "requests_mock.mock", "webtest.TestApp", "cryptography.hazmat.primitives.serialization.NoEncryption", "jose.jwt.encode", "tokenstore.main", "webob.descriptors.parse_auth", "cryptography.hazmat.backends.default_backend" ]
[((869, 914), 'jose.jwt.encode', 'jwt.encode', (['claims', 'PRIVKEY', 'ALGORITHMS.RS256'], {}), '(claims, PRIVKEY, ALGORITHMS.RS256)\n', (879, 914), False, 'from jose import jwt\n'), ((1016, 1033), 'cryptography.hazmat.backends.default_backend', 'default_backend', ([], {}), '()\n', (1031, 1033), False, 'from cryptography.hazmat.backends import default_backend\n'), ((4726, 4782), 'webtest.TestApp', 'TestApp', (['app'], {'extra_environ': "{'wsgi.url_scheme': 'https'}"}), "(app, extra_environ={'wsgi.url_scheme': 'https'})\n", (4733, 4782), False, 'from webtest import TestApp\n'), ((695, 720), 'webob.descriptors.parse_auth', 'parse_auth', (['authorization'], {}), '(authorization)\n', (705, 720), False, 'from webob.descriptors import parse_auth\n'), ((1219, 1247), 'cryptography.hazmat.primitives.serialization.NoEncryption', 'serialization.NoEncryption', ([], {}), '()\n', (1245, 1247), False, 'from cryptography.hazmat.primitives import serialization\n'), ((1263, 1292), 'jose.backends.RSAKey', 'RSAKey', (['pem', 'ALGORITHMS.RS256'], {}), '(pem, ALGORITHMS.RS256)\n', (1269, 1292), False, 'from jose.backends import RSAKey\n'), ((1622, 1651), 'jose.backends.RSAKey', 'RSAKey', (['pem', 'ALGORITHMS.RS256'], {}), '(pem, ALGORITHMS.RS256)\n', (1628, 1651), False, 'from jose.backends import RSAKey\n'), ((2883, 2903), 'requests_mock.mock', 'requests_mock.mock', ([], {}), '()\n', (2901, 2903), False, 'import requests_mock\n'), ((3300, 4173), 'tokenstore.main', 'main', (['{}'], {}), "({}, **{'sqlalchemy.url': 'sqlite://', 'sqlalchemy.connect_args': {\n 'check_same_thread': False}, 'sqlalchemy.poolclass': StaticPool,\n 'oidc.issuer': ISSUER, 'oidc.client_id': 'example_client_id',\n 'oidc.providers': 'provider', 'oidc.provider.issuer': PROVIDER,\n 'oidc.provider.client_id': 'provider_client_id',\n 'oidc.provider.client_secret': 'provider_secret',\n 'oidc.provider.metadata.name': 'Provider', 'session.factory':\n 'pyramid_oidc.session.SessionFactory', 'session.secret':\n 'session_secret', 'session.cookie_opts.secure': 'False',\n 'session.cookie_opts.httponly': 'False', 'session.dogpile_opts.backend':\n 'dogpile.cache.memory', 'session.dogpile_opts.expiration_timeout':\n '1200', 'openapi.spec': 'tokenstore:openapi.yaml',\n 'tokenstore.cryptokey':\n '47fc5aea29aea2f9b49ab8fdc3c87ad2da6245da2d16a32c8cac1c2ec2ffb5ac'})\n", (3304, 4173), False, 'from tokenstore import main\n'), ((4935, 4952), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (4950, 4952), False, 'from datetime import datetime\n')]
# -*- coding: utf-8 -*- """ Created on Sun Dec 18 18:10:32 2018 @author: Tasos """ import yaml from alchemist.laboratory import Laboratory def test_randomness(): with open("alchemist/tests/fixture.yml", 'r') as shelvesIn: fixt_loaded = yaml.load(shelvesIn) fixt_lab1 = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) fixt_lab2 = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) fixt_lab3 = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) fixt_lab4 = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) randomness = True if fixt_lab1.upper == fixt_lab2.upper and fixt_lab1.upper == fixt_lab3.upper: randomness = (fixt_lab1.upper == fixt_lab4.upper) assert randomness def test_can_react(): with open("alchemist/tests/fixture.yml", 'r') as shelvesIn: fixt_loaded = yaml.load(shelvesIn) fixt_lab = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) creact = fixt_lab.can_react('alcea', 'antialcea') assert creact def test_update_shelves(): with open("alchemist/tests/fixture.yml", 'r') as shelvesIn: fixt_loaded = yaml.load(shelvesIn) fixt_lab = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) new_upper = fixt_lab.upper[1:] new_lower = fixt_lab.lower[1:] fixt_lab.update_shelves('antialcea', 0) update = (new_upper == fixt_lab.upper and new_lower == fixt_lab.lower) assert update def test_do_a_reaction(): with open("alchemist/tests/fixture.yml", 'r') as shelvesIn: fixt_loaded = yaml.load(shelvesIn) fixt_lab = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) new_upper1 = fixt_lab.upper[1:] new_upper2 = fixt_lab.upper[:3] new_lower = fixt_lab.lower[1:] fixt_lab.do_a_reaction() d_reaction = False if new_upper1 == fixt_lab.upper or new_upper2 == fixt_lab.upper: d_reaction = (new_lower == fixt_lab.lower) assert d_reaction def test_run_full_experiment(): with open("alchemist/tests/fixture.yml", 'r') as shelvesIn: fixt_loaded = yaml.load(shelvesIn) fixt_lab = Laboratory(fixt_loaded["lower"], fixt_loaded["upper"]) full = False count = fixt_lab.run_full_experiment() full = (count == 1) assert full def test_antianti_upper(): print("\n'test_antianti_upper' is a negative test") upper = ["antiantialcea", "firma"] lower = ["antifirma", 'psittaccina'] check = Laboratory(lower, upper) def test_antianti_lower(): print("\n'test_antianti_lower' is a negative test") upper = ["antifirma", 'psittaccina'] lower = ["antiantialcea", "firma"] check = Laboratory(lower, upper)
[ "alchemist.laboratory.Laboratory", "yaml.load" ]
[((308, 362), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (318, 362), False, 'from alchemist.laboratory import Laboratory\n'), ((380, 434), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (390, 434), False, 'from alchemist.laboratory import Laboratory\n'), ((452, 506), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (462, 506), False, 'from alchemist.laboratory import Laboratory\n'), ((524, 578), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (534, 578), False, 'from alchemist.laboratory import Laboratory\n'), ((2541, 2565), 'alchemist.laboratory.Laboratory', 'Laboratory', (['lower', 'upper'], {}), '(lower, upper)\n', (2551, 2565), False, 'from alchemist.laboratory import Laboratory\n'), ((2750, 2774), 'alchemist.laboratory.Laboratory', 'Laboratory', (['lower', 'upper'], {}), '(lower, upper)\n', (2760, 2774), False, 'from alchemist.laboratory import Laboratory\n'), ((266, 286), 'yaml.load', 'yaml.load', (['shelvesIn'], {}), '(shelvesIn)\n', (275, 286), False, 'import yaml\n'), ((888, 908), 'yaml.load', 'yaml.load', (['shelvesIn'], {}), '(shelvesIn)\n', (897, 908), False, 'import yaml\n'), ((929, 983), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (939, 983), False, 'from alchemist.laboratory import Laboratory\n'), ((1180, 1200), 'yaml.load', 'yaml.load', (['shelvesIn'], {}), '(shelvesIn)\n', (1189, 1200), False, 'import yaml\n'), ((1221, 1275), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (1231, 1275), False, 'from alchemist.laboratory import Laboratory\n'), ((1615, 1635), 'yaml.load', 'yaml.load', (['shelvesIn'], {}), '(shelvesIn)\n', (1624, 1635), False, 'import yaml\n'), ((1656, 1710), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (1666, 1710), False, 'from alchemist.laboratory import Laboratory\n'), ((2153, 2173), 'yaml.load', 'yaml.load', (['shelvesIn'], {}), '(shelvesIn)\n', (2162, 2173), False, 'import yaml\n'), ((2194, 2248), 'alchemist.laboratory.Laboratory', 'Laboratory', (["fixt_loaded['lower']", "fixt_loaded['upper']"], {}), "(fixt_loaded['lower'], fixt_loaded['upper'])\n", (2204, 2248), False, 'from alchemist.laboratory import Laboratory\n')]
import numpy as np from pymoo.algorithms.moo.nsga2 import RankAndCrowdingSurvival from pymoo.core.population import Population from pymoo.core.problem import Problem from pymoo.util.clearing import EpsilonClearing from pymoo.util.misc import vectorized_cdist, norm_eucl_dist_by_bounds from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting class Selection: def __init__(self, **kwargs) -> None: super().__init__() for k, v in kwargs.items(): self.__dict__[k] = v class MinSelection(Selection): def do(self, rem): return rem[self.F[rem].argmin()] class RandomSelection(Selection): def do(self, rem): return rem[np.random.randint(len(rem))] class MinMaxSelection(Selection): def __init__(self, min_eps=0.01, **kwargs) -> None: super().__init__(min_eps=min_eps, **kwargs) def do(self, rem): F, D = self.F[rem], self.D[rem][:, rem] _min = F.argmin() clearing = EpsilonClearing(D, self.min_eps) clearing.select(_min) _rem = clearing.remaining() if len(_rem) > 0: _max = _rem[F[_rem].argmax()] return [rem[_min], rem[_max]] else: return rem[_min] class FrontwiseSelection(Selection): def __init__(self, **kwargs) -> None: super().__init__(**kwargs) F = kwargs.get("F") G = kwargs.get("G") class MyProblem(Problem): def __init__(self, **kwargs): super().__init__(n_constr=0 if G is None else 1, **kwargs) pop = Population.new(index=np.arange(len(F)), F=F) if G is not None: pop.set("G", G) pop = RankAndCrowdingSurvival(nds=NonDominatedSorting()).do(MyProblem(), pop, n_survive=len(pop)) self.rank = pop.get("rank")[pop.get("index")] self.crowding = pop.get("crowding")[pop.get("index")] def do(self, rem): _rank = self.rank[rem] _crowding = self.crowding[rem] I = np.lexsort([- _crowding, _rank]) return rem[I[0]] def aggregate_by_eps_clearing(X, eps, selection=MinSelection, return_cluster=False, func_dist=vectorized_cdist, func_dist_by_bounds=norm_eucl_dist_by_bounds, calc_distance=True, problem=None, xl=None, xu=None, **kwargs): if calc_distance: if problem is None: D = func_dist(X, X) else: if problem is not None: xl, xu = problem.bounds() D = func_dist_by_bounds(X, X, xl, xu) else: D = X clearing = EpsilonClearing(D, eps) sel = selection(problem=problem, X=X, D=D, **kwargs) D = {} while clearing.has_remaining(): rem = clearing.remaining() S = sel.do(rem) if isinstance(S, list): for s in S: cleared = clearing.select(s) D[s] = cleared else: cleared = clearing.select(S) D[S] = cleared I = np.array(list(D.keys())) if return_cluster: return I, D else: return I
[ "pymoo.util.clearing.EpsilonClearing", "numpy.lexsort", "pymoo.util.nds.non_dominated_sorting.NonDominatedSorting" ]
[((2851, 2874), 'pymoo.util.clearing.EpsilonClearing', 'EpsilonClearing', (['D', 'eps'], {}), '(D, eps)\n', (2866, 2874), False, 'from pymoo.util.clearing import EpsilonClearing\n'), ((982, 1014), 'pymoo.util.clearing.EpsilonClearing', 'EpsilonClearing', (['D', 'self.min_eps'], {}), '(D, self.min_eps)\n', (997, 1014), False, 'from pymoo.util.clearing import EpsilonClearing\n'), ((2006, 2037), 'numpy.lexsort', 'np.lexsort', (['[-_crowding, _rank]'], {}), '([-_crowding, _rank])\n', (2016, 2037), True, 'import numpy as np\n'), ((1719, 1740), 'pymoo.util.nds.non_dominated_sorting.NonDominatedSorting', 'NonDominatedSorting', ([], {}), '()\n', (1738, 1740), False, 'from pymoo.util.nds.non_dominated_sorting import NonDominatedSorting\n')]
""" #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# Copyright (C) 2018 <NAME>. #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. #-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=# """ from agora import Agora, Planner from agora.collector.execution import parse_rdf from agora.collector.http import http_get, RDF_MIMES from rdflib import Graph, ConjunctiveGraph from agora_graphql.gql.sparql import sparql_from_graphql __author__ = '<NAME>' def roots_gen(gen): for c, s, p, o in gen: yield s.toPython() class DataGraph(object): def __init__(self, gql_query, gateway, **kwargs): pass @property def roots(self): gen = self.__data_gw.fragment(self.__sparql_query, scholar=self.__scholar, follow_cycles=self.__follow_cycles, **self.__kg_params)['generator'] return roots_gen(gen) @property def loader(self): def wrapper(uri, format): result = self.__data_gw.loader(uri, format) if result is None and self.__data_gw.loader != http_get: for fmt in sorted(RDF_MIMES.keys(), key=lambda x: x != format): result = http_get(uri, format=fmt) if result is not None and not isinstance(result, bool): content, headers = result if not isinstance(content, Graph): g = ConjunctiveGraph() parse_rdf(g, content, fmt, headers) result = g, headers break return result return wrapper def __new__(cls, *args, **kwargs): dg = super(DataGraph, cls).__new__(cls) dg.__gql_query = args[0] dg.__gateway = args[1] dg.__agora = Agora(auto=False) dg.__agora.planner = Planner(dg.__gateway.agora.fountain) dg.__sparql_query = sparql_from_graphql(dg.__agora.fountain, dg.__gql_query, root_mode=True) data_gw_cache = kwargs.get('data_gw_cache', None) if data_gw_cache is None or dg.__gql_query not in data_gw_cache: data_gw = dg.__gateway.data(dg.__sparql_query, serverless=True, static_fountain=True, host=kwargs.get('host', None), port=kwargs.get('port', None), base=kwargs.get('base', 'store')) else: data_gw = data_gw_cache[dg.__gql_query] if 'server_name' in kwargs: del kwargs['server_name'] if 'port' in kwargs: del kwargs['port'] dg.__data_gw = data_gw if data_gw_cache is not None: data_gw_cache[dg.__gql_query] = data_gw if 'data_gw_cache' in kwargs: del kwargs['data_gw_cache'] if 'scholar' in kwargs: dg.__scholar = bool(kwargs['scholar']) del kwargs['scholar'] else: dg.__scholar = False if 'follow_cycles' in kwargs: dg.__follow_cycles = kwargs['follow_cycles'] del kwargs['follow_cycles'] else: dg.__follow_cycles = True dg.__kg_params = kwargs return dg def data_graph(gql_query, gateway, **kwargs): return DataGraph(gql_query, gateway, **kwargs)
[ "agora.Agora", "agora.collector.execution.parse_rdf", "agora.collector.http.RDF_MIMES.keys", "agora.collector.http.http_get", "rdflib.ConjunctiveGraph", "agora_graphql.gql.sparql.sparql_from_graphql", "agora.Planner" ]
[((2509, 2526), 'agora.Agora', 'Agora', ([], {'auto': '(False)'}), '(auto=False)\n', (2514, 2526), False, 'from agora import Agora, Planner\n'), ((2556, 2592), 'agora.Planner', 'Planner', (['dg.__gateway.agora.fountain'], {}), '(dg.__gateway.agora.fountain)\n', (2563, 2592), False, 'from agora import Agora, Planner\n'), ((2621, 2693), 'agora_graphql.gql.sparql.sparql_from_graphql', 'sparql_from_graphql', (['dg.__agora.fountain', 'dg.__gql_query'], {'root_mode': '(True)'}), '(dg.__agora.fountain, dg.__gql_query, root_mode=True)\n', (2640, 2693), False, 'from agora_graphql.gql.sparql import sparql_from_graphql\n'), ((1807, 1823), 'agora.collector.http.RDF_MIMES.keys', 'RDF_MIMES.keys', ([], {}), '()\n', (1821, 1823), False, 'from agora.collector.http import http_get, RDF_MIMES\n'), ((1882, 1907), 'agora.collector.http.http_get', 'http_get', (['uri'], {'format': 'fmt'}), '(uri, format=fmt)\n', (1890, 1907), False, 'from agora.collector.http import http_get, RDF_MIMES\n'), ((2125, 2143), 'rdflib.ConjunctiveGraph', 'ConjunctiveGraph', ([], {}), '()\n', (2141, 2143), False, 'from rdflib import Graph, ConjunctiveGraph\n'), ((2172, 2207), 'agora.collector.execution.parse_rdf', 'parse_rdf', (['g', 'content', 'fmt', 'headers'], {}), '(g, content, fmt, headers)\n', (2181, 2207), False, 'from agora.collector.execution import parse_rdf\n')]
from pathlib import Path import pytest from poetry_hooks.utils import create__version__str from poetry_hooks.utils import get_main_pkg from poetry_hooks.utils import get_pyproject_toml from poetry_hooks.utils import get_version from poetry_hooks.utils import parse__version__str @pytest.fixture def fake_project(tmpdir, fixtures): myproject = tmpdir.join("myproject").mkdir() myproject.join("test_pkg").mkdir() fixtures = Path(fixtures) with myproject.as_cwd(): txt = fixtures.joinpath("fake_pyproject.toml").read_text() myproject.join("pyproject.toml").write(txt) return myproject def test_get_pyproject_toml(fake_project): with fake_project.as_cwd(): pyproject = get_pyproject_toml() print(pyproject) def test_get_main_pkg(fake_project): with fake_project.as_cwd(): print(get_pyproject_toml()) pkg = get_main_pkg() print(pkg) def test_get_version(fake_project): with fake_project.as_cwd(): print(get_version()) def test_create_version_str(fake_project): with fake_project.as_cwd(): print(create__version__str()) def test_parse_version_str(fake_project): with fake_project.as_cwd(): print(create__version__str()) data = parse__version__str(create__version__str()) print(data)
[ "pathlib.Path", "poetry_hooks.utils.get_pyproject_toml", "poetry_hooks.utils.get_main_pkg", "poetry_hooks.utils.get_version", "poetry_hooks.utils.create__version__str" ]
[((437, 451), 'pathlib.Path', 'Path', (['fixtures'], {}), '(fixtures)\n', (441, 451), False, 'from pathlib import Path\n'), ((718, 738), 'poetry_hooks.utils.get_pyproject_toml', 'get_pyproject_toml', ([], {}), '()\n', (736, 738), False, 'from poetry_hooks.utils import get_pyproject_toml\n'), ((885, 899), 'poetry_hooks.utils.get_main_pkg', 'get_main_pkg', ([], {}), '()\n', (897, 899), False, 'from poetry_hooks.utils import get_main_pkg\n'), ((849, 869), 'poetry_hooks.utils.get_pyproject_toml', 'get_pyproject_toml', ([], {}), '()\n', (867, 869), False, 'from poetry_hooks.utils import get_pyproject_toml\n'), ((1003, 1016), 'poetry_hooks.utils.get_version', 'get_version', ([], {}), '()\n', (1014, 1016), False, 'from poetry_hooks.utils import get_version\n'), ((1109, 1131), 'poetry_hooks.utils.create__version__str', 'create__version__str', ([], {}), '()\n', (1129, 1131), False, 'from poetry_hooks.utils import create__version__str\n'), ((1223, 1245), 'poetry_hooks.utils.create__version__str', 'create__version__str', ([], {}), '()\n', (1243, 1245), False, 'from poetry_hooks.utils import create__version__str\n'), ((1282, 1304), 'poetry_hooks.utils.create__version__str', 'create__version__str', ([], {}), '()\n', (1302, 1304), False, 'from poetry_hooks.utils import create__version__str\n')]
from RPA.Browser.Selenium import Selenium from timeit import default_timer as timer from time import sleep performance_results = { "Launch page": [], "Go to URL": [], "Handle disclaimer": [], "Trigger search": [], "Scrape results": [], "Close browser": [], } def create_page(): browser = Selenium() browser.open_chrome_browser(url="about:blank") return browser def go_to_bing(browser): url = "https://www.bing.com" browser.go_to(url) def handle_disclaimer(browser): accept_button_selector = "css:button[class*='accept']" sleep(1) browser.wait_until_element_is_visible(locator=accept_button_selector) browser.click_element(locator=accept_button_selector) def trigger_search(browser): input_selector = "css:input[id*='form'][type*='search']" search_term = "<PASSWORD>" browser.click_element_when_visible(locator=input_selector) browser.input_text(locator=input_selector, text=search_term, clear=True) browser.press_keys(None, "RETURN") def scrape_results(browser): result_selector = "css:li > h2 > a" browser.wait_until_element_is_visible(locator=result_selector) elements = browser.get_webelements(locator=result_selector) results = [ { "href": browser.get_element_attribute(locator=element, attribute="href"), "text": browser.get_text(locator=result_selector) } for element in elements ] return results def go_to_next_page(browser): next_page_selector = "css:a[href*='/search'][title*='Nächste']" browser.wait_until_element_is_visible(locator=next_page_selector) modal_selector = "css:div[id*='notification'] span[class*='cta2']" modal_visible = browser.is_element_visible(locator=modal_selector) if modal_visible: browser.click_element(locator=modal_selector) browser.click_element(locator=next_page_selector) def shutdown(browser): browser.close_browser() def scrape_bing_results(): step1 = timer() browser = create_page() step2 = timer() performance_results["Launch page"].append(step2-step1) go_to_bing(browser) step3 = timer() performance_results["Go to URL"].append(step3-step2) handle_disclaimer(browser) step4 = timer() performance_results["Handle disclaimer"].append(step4-step3) trigger_search(browser) step5 = timer() performance_results["Trigger search"].append(step5-step4) search_results = [] for i in range(0, 3): results = scrape_results(browser) for result in results: search_results.append(result) go_to_next_page(browser) print(search_results, len(search_results)) step6 = timer() performance_results["Scrape results"].append(step6-step5) shutdown(browser) step7 = timer() performance_results["Close browser"].append(step7-step6) if __name__ == "__main__": for i in range(0, 30): scrape_bing_results() print("\n\n") lp_values = performance_results["Launch page"] gtu_values = performance_results["Go to URL"] hd_values = performance_results["Handle disclaimer"] ts_values = performance_results["Trigger search"] sr_values = performance_results["Scrape results"] cb_values = performance_results["Close browser"] avg_performance_results = { "Launch page": sum(lp_values) / len(lp_values), "Go to URL": sum(gtu_values) / len(gtu_values), "Handle disclaimer": sum(hd_values) / len(hd_values), "Trigger search": sum(ts_values) / len(ts_values), "Scrape result": sum(sr_values) / len(sr_values), "Close browser": sum(cb_values) / len(cb_values) } print("avg performance_results: ", avg_performance_results)
[ "timeit.default_timer", "time.sleep", "RPA.Browser.Selenium.Selenium" ]
[((319, 329), 'RPA.Browser.Selenium.Selenium', 'Selenium', ([], {}), '()\n', (327, 329), False, 'from RPA.Browser.Selenium import Selenium\n'), ((581, 589), 'time.sleep', 'sleep', (['(1)'], {}), '(1)\n', (586, 589), False, 'from time import sleep\n'), ((2012, 2019), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2017, 2019), True, 'from timeit import default_timer as timer\n'), ((2062, 2069), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2067, 2069), True, 'from timeit import default_timer as timer\n'), ((2167, 2174), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2172, 2174), True, 'from timeit import default_timer as timer\n'), ((2277, 2284), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2282, 2284), True, 'from timeit import default_timer as timer\n'), ((2392, 2399), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2397, 2399), True, 'from timeit import default_timer as timer\n'), ((2725, 2732), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2730, 2732), True, 'from timeit import default_timer as timer\n'), ((2831, 2838), 'timeit.default_timer', 'timer', ([], {}), '()\n', (2836, 2838), True, 'from timeit import default_timer as timer\n')]
# -*- coding: utf-8 -*- # Resource object code # # Created by: The Resource Compiler for PyQt5 (Qt v5.9.7) # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore qt_resource_data = b"\ \x00\x00\x0d\x01\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\xca\x00\x00\x00\xc9\x08\x06\x00\x00\x00\x62\xf1\xad\x06\ \x00\x00\x00\x01\x73\x52\x47\x42\x00\xae\xce\x1c\xe9\x00\x00\x00\ \x04\x67\x41\x4d\x41\x00\x00\xb1\x8f\x0b\xfc\x61\x05\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x1e\xc2\x00\x00\x1e\xc2\x01\x6e\xd0\ \x75\x3e\x00\x00\x0c\x96\x49\x44\x41\x54\x78\x5e\xed\xdd\x3f\x88\ \x23\xd7\x1d\x07\x70\xed\xae\xa4\x3b\x5c\x5d\xe9\xd2\xe5\x95\x2e\ \x8d\x6f\x84\x72\xe0\xe2\x20\x45\x0e\x52\xc4\xb8\x08\x76\x11\xb8\ \x22\xa0\xd1\xc6\x67\x62\x42\x7c\x8e\xc1\x18\x43\xc2\xc5\x84\x70\ \x24\x10\xce\x04\x92\xcb\x15\x87\xaf\x09\xc6\x85\x59\x52\x04\xa7\ \x09\x9b\x26\x38\x4d\x70\x9a\xe0\x6b\xcc\xa5\x73\xa9\xbc\xef\xd3\ \xd3\x5a\x7f\x7e\xda\x7d\x1a\xbd\x27\xcd\xfb\xfd\xbe\x0f\x3e\x04\ \xe7\x24\xcd\x68\xf5\xbe\x33\xef\xdf\xcc\x74\xf6\x59\xba\xd7\xc6\ \x2f\x5c\xba\x36\xfa\x56\x6f\x30\x7a\xb5\x37\x18\xbf\x4d\xb4\x0c\ \xf5\xc3\x1b\x8e\x9e\x0b\xd5\x46\x6f\xe9\x0f\x8f\xaf\xf6\x07\xa3\ \xba\x3f\x18\x9f\xf4\xaa\xfa\x73\xf7\xbf\x13\xa2\x2d\x9c\xf4\x07\ \xf5\x83\x5e\x35\x7e\xb9\x33\x1c\x5d\x09\xd5\xac\xcc\xd2\x7b\x71\ \xf4\x7c\xaf\x3a\xbe\xcb\x60\x50\x6e\xbd\x41\xfd\x71\x77\x50\xdf\ \x7a\x66\xf8\xfa\xb3\xa1\xfa\xb5\xbc\x0c\xef\x5c\xc6\x99\xc3\x85\ \xe3\x4b\xe9\x0b\x11\xed\xc0\x09\x9a\x6a\xa1\x46\xb6\xaf\xf8\x7e\ \x46\x35\xfe\x42\xd8\x71\xa2\x9d\x73\xfd\x9b\x8f\xd0\xaa\x09\xd5\ \x73\xff\xe5\x52\x35\xbe\xe1\x76\xec\x74\x79\x47\x89\x5a\xa1\x1a\ \xdf\xdf\x6f\x93\xcc\x75\xa2\xd0\x36\x14\x77\x8e\xa8\x4d\xaa\xfa\ \x6b\x74\x09\x42\xcd\xdd\x5d\xc1\x28\x16\x9b\x59\x54\x1c\x77\x76\ \x41\x3f\x3a\x54\xe3\xbc\xa5\x5f\x8d\x6e\xba\x0d\x3e\x15\x77\x84\ \xa8\xf5\xea\xcf\xb2\x37\xc5\xc2\x5c\x88\xb0\x71\xa2\x72\xa0\x35\ \x94\xad\xa3\xef\xce\x22\xf7\xa4\x8d\x12\x15\xc9\xf5\x5b\x92\x0f\ \x23\x63\x32\x47\xdc\x18\x51\xc1\x30\xdf\x97\x6c\x69\x0c\x52\x37\ \x1d\x35\x90\x37\x46\x54\xb8\xd3\xad\x3b\xf8\x48\x1b\x3b\xee\xa4\ \x1d\x26\x27\x43\x95\x6f\x50\x30\x4f\xc2\x75\x5a\x64\x84\xeb\xe0\ \xbf\x17\x6a\xfe\x66\x05\xab\x33\xa5\x0f\x24\xd2\x0a\xab\x4c\x42\ \xf5\x8f\x2b\x18\x3a\x93\x3e\x88\x48\xb9\xd3\x10\x81\xb8\x82\x36\ \x9b\xf0\x21\x44\xfa\x55\xa3\x9b\x21\x06\xe7\x17\x3f\xca\x25\x7d\ \x00\x91\x01\xe8\x97\x47\x8d\x82\xb9\x17\x73\x25\x30\x19\x77\xc1\ \x02\x4a\xbf\x8e\x4b\x7c\x23\x91\x1d\x98\x88\x3c\xf7\xac\xe2\x5e\ \x74\xb2\xfc\x26\x22\x8b\x70\x21\x62\x88\xc5\x52\x19\x8e\xae\x70\ \x06\x9e\x68\xa6\x7e\x10\x92\xb1\x58\x90\x20\xf9\x0d\x44\x06\xb9\ \x93\x86\xd8\xfc\xe2\x04\x23\xd1\xa2\xd5\x09\x48\x97\x1c\x36\xbb\ \x88\x96\xe0\x8a\xc8\xf9\x12\x6e\x10\x21\xbf\x98\xc8\x28\x3f\xfa\ \x35\x5f\xb0\x20\x4c\x7a\x21\x91\x79\xc3\xe3\xab\x21\x26\x98\x3f\ \x19\xdf\x17\x5f\x44\x64\xdc\xc2\x55\x90\xee\xff\xe0\xfc\x09\x91\ \x60\x61\x3e\x85\xd7\x9d\x10\xad\x53\xff\x38\xc4\xc4\x37\xbd\x78\ \x15\x23\x91\x00\x37\x9a\x9f\xa6\x04\x43\xc3\xc2\x0b\x88\x08\xc2\ \x0c\xbd\xbf\x2e\x5e\x7c\x01\x11\x39\x27\xd3\xa0\xf0\xfa\x13\xa2\ \xf3\x30\x28\x44\x11\x18\x14\xa2\x08\x0c\x0a\x51\x04\x06\x85\x28\ \x02\x83\x42\x14\x81\x41\x21\x8a\xc0\xa0\x10\x45\x60\x50\x88\x22\ \x30\x28\x44\x11\x18\x14\xa2\x08\x0c\x0a\x51\x04\x06\x85\x28\x02\ \x83\xb2\x73\xd7\x6f\x4f\xba\xaf\x7c\x30\xe9\x7e\xff\xd7\x93\xa3\ \x37\x1e\x2f\x38\x7c\xf7\x2f\x93\xc3\x5f\xfd\x63\xea\xfd\xbf\xae\ \xfc\xbb\x7f\x9f\x23\x7e\x2e\xe5\xc4\xa0\xe4\xd4\xfb\xce\xbb\x93\ \xee\x0f\xff\x70\x16\x80\xce\xe3\xff\xa5\xf3\xe8\x2b\xff\x99\x47\ \x3f\xf9\xf3\xa4\xfb\xda\x6f\x26\xbd\x1b\x3f\x15\xf7\x81\x92\x60\ \x50\x92\x7a\xe9\xcd\x49\xf7\xd6\x87\x93\xc3\x9f\xff\x6d\x72\xf0\ \xc7\xff\xca\x15\x3c\xa3\x83\xdf\xff\x67\x72\xf4\xd6\x27\x93\xde\ \x77\xdf\x97\xf7\x8f\x9a\x62\x50\x52\xc0\x11\x1d\x4d\x25\x1c\xe5\ \xa5\x0a\xbc\x0f\x67\xa1\xf9\xf6\xcf\xc4\x7d\xa6\x8d\x30\x28\x8d\ \xb9\xbe\xc6\xd1\xe8\x4f\x7b\x39\x73\x6c\x0a\x67\xb8\xde\xf7\x7e\ \x21\x7f\x0f\x8a\xc1\xa0\x6c\x0c\x01\x71\x1d\xeb\xce\xc3\x27\x62\ \xa5\x6c\x33\xf4\x69\x18\x98\x46\x18\x94\x4d\xa0\x89\x55\xc2\x19\ \xe4\x22\x68\x26\xb2\xf3\xbf\x11\x06\x25\x06\xda\xf9\x87\xbf\xfc\ \xbb\x58\xe9\x8a\xe5\xce\x88\x47\x3f\x7a\x24\x7e\x5f\x5a\xc1\xa0\ \x5c\x04\xf3\x16\x25\x36\xb3\x62\xf9\xe6\x18\xcf\x2e\x17\x61\x50\ \xce\x83\xce\xba\x54\xb9\xd4\x71\x07\x02\x4c\x80\x4a\x7f\x03\xf2\ \x18\x94\x75\x30\x49\x28\x56\x2a\xc5\xd8\x14\x5b\x8b\x41\x59\x71\ \xfd\xb6\xc9\x90\xcc\x1c\xbe\xf3\xa9\xfc\x77\xb1\x8d\x41\x59\x80\ \x90\x68\xeb\xb4\x37\x80\x03\x85\xf8\xf7\xb1\x8b\x41\x99\x87\xa3\ \xa9\x54\x71\x2c\x62\x58\x16\x30\x28\x33\x66\x3a\xee\x1b\xc0\x82\ \x4b\xe9\x6f\x65\x10\x83\x02\x7e\x08\xb8\x45\xeb\xb4\xda\x04\x8b\ \x3c\xa5\xbf\x99\x31\x0c\x0a\x26\x13\x5b\x33\x4f\xe2\xf6\xc3\x5f\ \x8b\xe2\x60\x51\xa3\xf8\x9a\x5d\x73\x07\x10\x5e\x03\x63\x3d\x28\ \xae\xf3\x7e\xf0\xdb\x7f\xc9\x15\x24\xa3\x83\xfb\xff\xf6\x2b\x7b\ \x51\x01\x63\xd6\x5e\xf9\xeb\x5a\xdc\x6b\x31\x7c\x7b\x70\xef\x9f\ \xe2\x67\xe6\x84\x65\x3b\xc6\x27\x25\x6d\x07\x05\xab\x6a\xa5\x8a\ \x91\x03\x02\x89\x7e\x10\x2a\xbd\xb4\x2f\x1b\x99\x5d\xf7\x82\xa5\ \xfd\xc2\xb6\x72\xc0\xdf\x4a\xdc\x17\x1b\xec\x06\x05\x0b\x1c\xa5\ \x0a\x91\x1a\x9a\x50\xd8\x96\xb4\x0f\x29\x20\x78\xbb\x1a\xd2\x36\ \xdc\x5f\x31\x1a\x94\x5d\x34\xb9\x66\x8b\x0e\xdd\xb6\xc4\x7d\x48\ \x0c\x4b\x50\xd0\xa4\x13\xf7\x25\x15\xd7\x5f\x31\xda\x04\xb3\x19\ \x94\xdc\x43\xc1\x38\xc2\xef\xab\x42\x61\x48\x57\xda\xa7\x54\x8c\ \xce\xaf\x18\x0c\x0a\xce\x26\x19\xaf\x29\x69\x43\x45\x42\x13\x49\ \xda\xb7\x54\x0c\x5e\x93\x6f\x2f\x28\x39\x8f\xb8\x6d\x9a\xa0\x43\ \x53\x2c\xd7\xdc\x90\xc1\x8e\xbd\xad\xa0\xa0\x39\x94\xab\xf2\xe0\ \xb6\x44\xd2\x36\xf7\x09\x43\xcf\xb9\xe6\x88\x8c\x9d\x55\x6c\x05\ \x05\x73\x17\xd2\x8f\xbe\xad\x36\x2f\xf5\xe8\xfe\xe0\x77\xe2\x3e\ \x6f\x0b\x43\xd3\xd2\xf6\x94\x32\x14\x94\x97\xde\xcc\x72\x36\xc1\ \xe8\xd9\xae\x46\xb6\x9a\xca\x32\xdf\x62\x6b\x04\xcc\x4e\x50\xd0\ \x34\x12\x7f\xf0\x6d\xa0\xb2\xa4\x98\x40\xcc\xcd\x1d\x24\x72\x0c\ \x60\x60\xf4\x50\xdc\x9e\x3e\x76\x82\x92\x63\xe9\x47\x49\x15\xc5\ \x77\xee\x85\xef\xb0\x0d\xcc\xdb\x48\xdb\x52\xc8\x46\x50\x70\xd4\ \x97\x7e\xe8\x6d\xf8\x26\x97\xb0\xad\x36\xcb\xb1\x64\xc7\xc8\x7d\ \xc2\x6c\x04\x25\xc7\x90\x30\x3a\xc9\xd2\xb6\xda\xcc\x8f\x82\x09\ \xdf\x65\x1b\xb8\x19\xa0\xb4\x2d\x65\x6c\x04\x25\xf5\x72\x15\xb4\ \xf7\xdb\xde\x81\x5f\x27\xf9\xdf\xc2\x35\x69\xa5\xed\x28\x63\x20\ \x28\x18\xed\x12\x7e\xe0\x6d\x60\x98\x59\xdc\x56\x01\x72\x2c\xdf\ \x31\x30\xfa\xa5\x3f\x28\x39\x56\x09\x17\x31\xd2\xb5\x4e\x86\x61\ \x72\x03\xab\x8a\xf5\x07\x25\x75\xff\x04\x57\x1f\x4a\xdb\x29\x49\ \xea\xdb\x31\x19\xb8\xc5\x91\xfe\xa0\xa0\x62\x4b\x3f\x6e\x53\x1a\ \xe6\x0e\x52\x9f\x65\x4b\x1c\x01\xdc\x90\xf2\xa0\xb8\x0e\x77\xea\ \x66\x86\x86\xe1\x50\x7f\x9f\x00\xe1\xbb\x35\xe6\xfe\xc6\xa5\x0e\ \x6e\x44\xd2\x1d\x94\xe4\xf3\x27\x8a\x2a\x44\xea\x99\x7a\xe5\x8b\ \x24\x75\x07\x25\xf5\x6c\xb4\xa6\x26\x46\xea\xc9\xc7\x36\xae\x9e\ \x4e\x48\x79\x50\x12\xaf\xef\xd2\xd4\x69\xf5\x4f\x0d\x13\xbe\x63\ \x53\x6d\x5e\x41\x9d\x80\xee\xa0\xa4\x1e\xf1\xd2\x74\xd4\x4c\x7d\ \xb6\x55\xbe\xec\x5e\x77\x50\x52\x2f\x2f\x57\xd5\x0e\x4f\x3c\x11\ \xab\x61\xd8\xfc\x1c\xba\x83\x92\x7a\xc5\xb0\xb6\x47\x51\x4b\xdf\ \xb1\x29\xdc\x96\x49\xda\x86\x12\xca\x83\x92\xf8\xb6\xa4\xd2\x36\ \x4a\x96\x7a\xe8\x5c\xda\x86\x12\xca\x83\x92\x78\x08\x54\xda\x46\ \xc9\x52\x1f\x48\xb4\x9d\x71\xe7\xe8\x0e\x8a\xf4\x63\x36\xa5\xb1\ \x69\xc1\xa0\x44\x63\x50\x62\x69\x0c\x4a\xea\xe5\x3d\x0c\x4a\xa1\ \xa4\x1f\xb3\x29\x8d\xd7\x5d\x24\x0f\x4a\xc9\xab\xaa\xcf\xa7\x37\ \x28\xfe\x1e\x5e\xc2\x8f\xd9\x94\xc6\xe1\xcf\xd4\xc3\xe7\x8a\x9f\ \xa3\xa2\x38\x28\x89\x17\xfe\xa9\x0c\x4a\xe2\xe5\xf6\x0c\x4a\x81\ \x18\x94\x8b\xa5\x7e\x5c\x04\x83\x52\xa0\xd4\x41\x61\x1f\xe5\x62\ \x8a\x57\x10\xb3\x33\x1f\x4b\xe5\xf0\x70\xe2\x1b\x4d\x70\xd4\xab\ \x50\xd2\x8f\xd9\x94\xbf\xf3\x8a\xb0\x8d\x92\x71\x1e\x25\x1a\x83\ \xb2\x09\x69\x1b\x25\x4b\x7e\xf1\x16\x83\x52\x26\xae\x65\x3a\x9f\ \xf4\x1d\xb7\xa1\xf8\x72\x60\xdd\x41\x49\xfd\x4c\x43\x6d\x47\x4c\ \xe9\x3b\x36\xa5\xb1\x69\x3a\x47\x77\x50\x52\x0f\x7f\x6a\xba\xcf\ \x2e\x46\xa8\xa4\xef\xd8\x94\xf2\x3b\xb1\x28\x0f\xca\x3b\x9f\x8a\ \x3f\x6a\x53\x9a\x1e\x73\x90\xfa\x39\x8f\xca\x1f\x57\xa7\x3b\x28\ \x78\x7c\xb5\xf4\xa3\x36\xa5\xe9\x72\xd7\xe4\x07\x91\x82\x6f\x33\ \x1b\x41\x77\x50\x52\x1f\x35\x35\xcd\xa5\xa4\x9e\x43\x51\xfe\x50\ \x21\xdd\x41\x49\xdd\x0e\x07\x5c\x6b\x2e\x6d\xab\x28\xb8\x31\xa0\ \xf0\xdd\xb6\x81\x9b\x55\x88\xdb\xd2\x41\x77\x50\x72\xdc\x29\x12\ \xb7\x23\x15\xb7\x55\x10\xac\xc9\x92\xbe\xdb\x36\x54\x1c\x40\xd6\ \x53\x1e\x14\x27\x79\x13\x43\xc1\xfd\xab\x52\x3f\xfa\x41\xf9\xd0\ \x30\xe8\x0f\x4a\xea\xa5\xe4\x1a\x2a\x45\xea\x83\x87\xf2\x11\x2f\ \xd0\x1f\x94\x1c\x0f\xce\x29\xb9\xf9\x95\xa3\xdf\x66\xe0\xf1\x74\ \xfa\x83\x92\xe3\x41\xa7\x98\xc8\x94\xb6\x55\x82\xd4\x67\x58\x50\ \x7c\x1d\xca\x8c\xfe\xa0\x40\xea\x55\xb2\x50\xe4\x72\x96\x0c\x4f\ \xdb\xea\x3c\x7c\x22\x6f\x4b\x17\x1b\x41\x49\x3d\xb9\x06\x25\x4e\ \xb0\xe5\x68\x86\xe2\x0c\x25\x6d\x4b\x19\x1b\x41\x49\x7d\x43\x6a\ \x40\xa7\xbe\xa8\x87\x7c\x5e\xbf\x9d\x7c\x91\x28\x94\xf8\x18\xf1\ \x06\x6c\x04\xc5\xcf\xa7\xb8\x26\x82\xf4\x43\x6f\xa3\xa4\xbe\x4a\ \x8e\x67\xed\xfb\x07\x2b\xe9\x9e\x3f\x99\x31\x12\x14\x07\x4d\x25\ \xf1\xc7\xde\x52\x09\x4f\xc4\xcd\x31\xc1\x08\x06\x1e\x72\x3a\x63\ \x27\x28\x39\x86\x45\x3d\x77\x54\x6d\x75\xc7\x1e\x4d\xae\x0c\x83\ \x19\xa0\xf8\x66\x12\xcb\xec\x04\x05\x52\xdf\x75\x64\xa6\xcd\x77\ \x68\xc9\x31\x1c\x0c\x1a\x6f\xdf\x74\x0e\x5b\x41\x49\xfd\xd8\xe8\ \x79\x7e\x09\xbe\x3b\x7a\x4b\xdb\xdd\x97\xd4\x8f\x9f\x9b\xa7\x61\ \xcd\xdb\x06\x6c\x05\x05\x52\x2f\xdf\x98\xe7\x3b\xf7\x2d\xe9\xdc\ \xe6\xea\x93\x81\xf2\xab\x19\x25\xf6\x82\x92\xf3\xac\x02\xbe\x12\ \xed\x39\x2c\xb9\x9a\x5b\x33\xc6\xce\x26\x60\x2f\x28\x90\xab\xaf\ \x32\x83\xce\xf3\x5e\xee\xec\xee\x02\x9a\xfa\x3e\x01\xcb\x0c\x9e\ \x4d\xc0\x66\x50\xb2\x8d\x80\x2d\xf1\xb3\xf7\x3b\x3a\xbb\xf8\x47\ \x85\x67\x98\x2b\x5a\x66\x60\x5d\x97\xc4\x66\x50\x20\xcb\x04\x9c\ \xc4\x55\xde\x9c\x8f\xdd\x46\xc5\xcd\xd9\xef\x9a\x67\x68\xde\x64\ \x99\xdd\xa0\xe4\x5a\xd2\xb1\x0e\xb6\x85\xb5\x56\x49\xe6\x5c\xdc\ \x59\x0a\x4b\x47\x70\x1d\x88\xb4\xad\x1c\xb0\xff\x6d\x1b\xd5\xdb\ \x21\xc3\x41\x71\x70\x9f\x2e\xa9\x52\xe4\xe6\x43\xf3\xc6\xe3\x8d\ \xfa\x31\x58\x57\x86\x33\xd3\x2e\xc3\x71\x06\x93\xaa\x8a\xee\x69\ \xd6\x80\xed\xa0\x40\xea\x5b\x1a\x35\x85\xf0\x60\x90\x61\x5e\xea\ \xe7\xe4\x37\x85\xbf\x91\xf4\xb7\x33\x84\x41\x81\xdc\xc3\xa9\x25\ \x33\xdc\x2f\x99\xc7\xa0\x78\xae\xed\x9d\x7b\xc8\xb8\x44\x7e\x02\ \xd5\x6e\xbf\x64\x1e\x83\x72\xc6\x75\x90\x77\x35\x7a\x54\x82\x36\ \x4c\x9c\xb6\x08\x83\xb2\x80\x61\xf1\x18\x92\x15\x0c\xca\x0a\x84\ \xa5\x25\x9d\xe8\x7d\xf0\x2b\xa1\x19\x92\x65\x0c\x8a\x08\x7d\x96\ \xcc\x4b\x41\xda\x88\x7d\x92\xb5\x18\x94\xf3\xec\x6c\xf6\xbe\x05\ \x0c\xdc\x9b\x6b\x1b\x0c\xca\x45\xfc\x12\x91\xc4\xcf\x3a\x6c\x13\ \x7c\x37\xa3\xeb\xb7\x36\xc1\xa0\xc4\xc0\xac\xf8\x5e\x66\xc4\x33\ \xf3\x17\x9b\xb1\x3f\x12\x83\x41\xd9\xc4\x2e\x17\x20\xe6\x84\x55\ \x00\x3c\x8b\x6c\x84\x41\x69\x02\x6b\xae\x8a\x6c\x8e\x3d\x7c\xc2\ \xe5\x28\xcd\x30\x28\xdb\xc0\x0a\xde\x12\x86\x92\x71\x21\x99\x5f\ \xea\xcf\x11\xad\xa6\x18\x94\x14\xb0\xb2\xd6\xaf\x17\xdb\xc1\x85\ \x53\xd1\x1e\x7d\xe5\xfb\x20\x06\x2f\xdb\xcd\x81\x41\x49\x0d\x15\ \x73\x6f\xa1\x99\x85\x03\xb7\x39\xe5\xd9\x23\x25\x06\x25\x27\x5c\ \x6f\x82\x3b\x49\x62\x05\x6e\x8e\x26\x9a\x5f\x9a\xef\x82\xe1\x2f\ \x08\xb3\x7d\xbd\x48\x6e\x0c\xca\xae\xf9\x0b\xb0\x5e\xf9\xc0\x07\ \x08\x93\x7c\xde\x5b\x9f\xac\x5c\x8b\x72\x06\x41\x98\xbd\xce\x05\ \x02\xef\xdd\xcb\x8d\x2b\x6c\x63\x50\x88\x22\x30\x28\x44\x11\x18\ \x14\xa2\x08\x0c\x0a\x51\x04\x06\x85\x28\x02\x83\x42\x14\x81\x41\ \x21\x8a\xc0\xa0\x10\x45\x60\x50\x88\x22\x30\x28\x44\x11\x18\x14\ \xa2\x08\x0c\x0a\x51\x04\x06\x85\x28\x02\x83\x42\x14\x81\x41\x21\ \x8a\xc0\xa0\x10\x45\x60\x50\x88\x22\x30\x28\x44\x11\x18\x14\xa2\ \x08\x0c\x0a\x51\x04\x06\x85\x28\xc2\x34\x28\xfd\xe1\xf1\x55\xe1\ \x1f\x89\x68\x6a\x1a\x94\xce\x70\x74\x45\xf8\x47\x22\x72\x7a\x83\ \xf1\x47\xd3\xa0\xb8\xd2\xaf\xea\xaf\xa5\x17\x11\x99\x57\x8d\xef\ \x85\x98\x74\x3a\xbd\x6a\xfc\x85\xf8\x22\x22\xe3\xdc\x19\xe5\xed\ \x10\x13\x77\x46\x71\xed\xb0\xe5\x17\x10\x11\x82\x32\x7a\x35\xc4\ \x04\x4d\xaf\xf1\x7d\xe9\x45\x44\xd6\x61\x54\x38\xc4\xc4\x37\xbd\ \xde\x93\x5e\x44\x64\xde\xf0\xf8\x6a\x88\x89\x0f\xca\xcb\xe2\x8b\ \x88\x2c\xab\xc6\x4f\x3b\xc3\x3b\x97\x43\x4c\x5c\x71\xff\xc1\x91\ \x2f\xa2\x25\xae\x4b\x12\x12\xf2\x4d\xe9\x0d\xea\x8f\xc5\x17\x13\ \x19\x85\x96\x56\x88\xc7\x37\x05\xbd\x7b\xe9\xc5\x44\x26\xb9\x16\ \xd6\x62\xb3\x2b\x94\x67\x86\xaf\x3f\x2b\xbe\x81\xc8\x20\xb4\xb0\ \x42\x34\x56\x4b\x7f\x50\x7f\x26\xbd\x89\xc8\x9a\xee\xa0\xbe\x15\ \x62\xb1\x5a\xfa\x83\x51\x2d\xbd\x89\xc8\x14\xd7\xec\x42\x0b\x2b\ \xc4\x42\x2e\xee\x85\xa7\x2b\x6f\x24\x32\x65\x54\x87\x38\xac\x2f\ \xfd\x6a\x74\x53\x7e\x33\x91\x7e\xbd\xaa\xfe\x52\xec\xc4\x4b\xc5\ \xbd\x81\x67\x15\x32\x2a\xe2\x6c\x32\x2b\xdd\x6b\xe3\x17\xe4\x0f\ \x21\x52\xed\x34\xfa\x6c\x32\x2b\xb8\x60\x45\xf8\x20\x22\xbd\x5c\ \xb7\x23\x54\xff\xf8\x82\x5e\x3f\xaf\x53\x21\x33\xe6\x2f\xd0\xda\ \xb4\xf4\x5e\x1c\x3d\xcf\x35\x60\x64\xc0\xc9\xc6\x4d\xae\xe5\xc2\ \x95\xc5\xa4\x19\x5a\x4d\x17\xce\x99\xc4\x16\xf7\x61\xbc\x5e\x85\ \xf4\x71\xad\x25\xb4\x9a\x42\x35\x4f\x53\xd8\xb9\x27\x75\x9a\x74\ \xde\x63\x0a\x3a\x3c\xe2\x06\x89\x4a\x52\x8d\x9f\x5e\xaa\xc6\x37\ \x42\xb5\xce\x53\xb0\x58\x8c\x1d\x7c\x2a\x55\xaf\xaa\x3f\x5f\xb8\ \xbc\x37\x67\xf1\xb7\x61\x75\xa9\x94\x76\x84\xa8\xc5\x4e\x70\xc3\ \xc7\x50\x8d\x77\x53\x2e\x0d\x47\xcf\xb9\x0d\x73\xa9\x0b\x15\xa1\ \x57\x1d\xdf\x0d\x55\x77\x3f\x05\x6b\x63\xb0\x90\x4c\xda\x39\xa2\ \x16\x38\xc1\x92\xac\x50\x5d\xf7\x5c\x86\x77\x2e\xe3\x8e\x7a\x6c\ \x8e\x51\x8b\x9c\x66\xef\xb0\x37\x2d\xd3\x65\x2f\xc7\x77\xd9\xd9\ \xa7\x7d\xc1\x04\xe2\xc2\xdd\x1d\x5b\x5d\x5c\x87\x69\x3a\xa3\x5f\ \x3f\xe0\x59\x86\x72\xc3\x48\x16\x0e\xd0\xed\x69\x62\x35\x2c\x38\ \x05\x62\x0e\x86\x7d\x19\x4a\x07\xf7\x77\x18\xd5\x3b\x1b\xea\xdd\ \x4b\x71\x7d\x1a\x0c\x31\x4f\x9f\xf6\x35\xaa\xd1\xbf\x21\x5a\x07\ \x33\xe8\xa8\x2b\xc9\x97\x9b\x44\x97\x4e\xe7\xff\xc9\xdc\xa1\x7b\ \x90\xad\xc4\xfe\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \ \x00\x00\x38\xab\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x02\x00\x00\x00\x02\x00\x08\x06\x00\x00\x00\xf4\x78\xd4\xfa\ \x00\x00\x00\x04\x73\x42\x49\x54\x08\x08\x08\x08\x7c\x08\x64\x88\ \x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\x48\x00\x00\x0e\x48\ \x01\x6b\x6f\x0d\xff\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\ \x74\x77\x61\x72\x65\x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\ \x70\x65\x2e\x6f\x72\x67\x9b\xee\x3c\x1a\x00\x00\x38\x28\x49\x44\ \x41\x54\x78\xda\xed\xdd\x0b\x94\x95\xd5\x7d\xf7\xf1\x3a\x22\x0b\ \x23\x22\x59\xba\x96\x74\x85\x98\x10\x17\x22\x1a\x05\x31\x1a\x23\ \x44\x01\xb5\x31\x9a\x10\x8b\x52\x92\xfa\x82\x18\x69\xa3\xa9\xf7\ \x1a\x6d\xab\x31\x60\x90\x98\xd6\xda\xc6\xa4\xa2\x68\x62\xa0\x2a\ \x29\xe5\x92\x4a\xad\x73\x61\xb8\xcb\x70\x67\x60\xee\xf7\xfb\xfd\ \x7e\x39\x67\xce\xcc\x39\x33\xfb\xdd\xfb\xf8\x18\x47\x18\x66\xce\ \x39\x73\x9e\xe7\xec\xe7\xd9\xdf\xbd\xd6\x67\xad\x77\xf5\x8d\x0a\ \x7b\xef\x67\xff\x7f\xe7\xb9\xec\xfd\x67\x42\x88\x3f\x03\xa0\xb7\ \xa9\x1f\x66\x8d\x93\xbe\x20\x5d\x2d\xcd\x97\x16\x49\x0f\x4a\xcf\ \x4a\xaf\x48\xeb\xa4\x4d\xd2\x36\x29\x45\xda\x25\x65\x48\x47\xa5\ \x6c\xa9\x48\xaa\x90\xea\xa5\x36\xc9\x27\x85\x2c\x3e\xeb\xff\x56\ \x6f\xfd\x6f\x8a\xac\x7f\xe6\xa8\xf5\xef\xd8\x65\xfd\x3b\xb7\x59\ \xff\x8d\x75\xd6\x7f\xf3\x59\xeb\xcf\xb0\xc8\xfa\x33\xcd\x90\x26\ \x4b\xe7\x32\x66\x80\xfe\xe8\x04\x20\xb1\x85\xfd\x1c\xe9\x2b\xd2\ \x2d\xd2\x03\xd2\x2a\xe9\x1d\x69\xbb\x74\x5c\xaa\xb4\x0a\xb4\x70\ \x19\xbf\x54\x25\x65\x4a\xe9\xd2\xbb\xd2\x8b\xd2\x72\xe9\x56\xe9\ \x52\x69\x2c\x73\x00\x20\x00\x00\x5e\x2d\xf0\x49\xd2\x97\xa4\x9b\ \xa5\x65\xd2\x0a\xeb\x17\xf4\x6e\xab\xb8\xf7\xbb\xb0\xb8\xc7\x4b\ \xbf\x15\x12\xf6\x48\xeb\xa5\x95\xd2\xfd\xd2\x5c\xe9\xcb\xaa\xef\ \x98\x43\x00\x01\x00\x70\x43\xb1\x9f\x28\xdd\x24\x3d\x2c\xad\x95\ \x0e\xba\xf4\xd7\xbb\x4e\x77\x11\x0e\x49\x6f\x49\x8f\x58\x21\xea\ \xf3\xcc\x35\x80\x00\x00\x24\xaa\xd0\x9f\x2d\x5d\x2e\x2d\xb6\x6e\ \x6b\x6f\xb3\x9e\x9d\x53\xb4\x9d\xa1\xee\x9c\xfc\xaf\xd5\xf7\x6a\ \x0c\xa6\xab\x31\x61\x6e\x02\x04\x00\x20\xde\x05\xff\x8b\x56\xa1\ \x79\x55\x3a\x2c\xf5\x50\x84\xb5\xd3\x63\x8d\xcd\xab\xd6\x58\x7d\ \x91\xb9\x0b\x10\x00\x80\x68\x7f\xdd\x5f\x63\xdd\xc6\xdf\x60\xfd\ \xda\xa4\xc0\xba\xf7\x4e\xc1\x06\x6b\x2c\xaf\xe1\x2e\x01\x40\x00\ \x00\x06\x17\xfc\x09\xd2\x5f\x58\x2f\xa0\xa9\x37\xef\xbb\x28\x9c\ \x9e\xd5\x65\x8d\xf1\x4a\x6b\xcc\x27\x70\x0d\x80\x00\x00\x98\xf5\ \x56\xfe\x0d\x56\x11\x38\x68\xf8\x5b\xf8\xa6\xeb\xb7\xe6\xc0\x4a\ \x6b\x4e\xf0\xd5\x01\x08\x00\x80\xc7\x8a\xfe\x24\xe9\x3e\xeb\x76\ \x70\x0b\x85\x0f\x67\xd0\x62\xcd\x11\x35\x57\x26\x71\xed\x80\x00\ \x00\xb8\xaf\xe0\x8f\xb1\x3e\xc7\x5b\x2d\x1d\x93\x06\x28\x6e\x88\ \xd2\x80\x35\x77\x56\x5b\x73\x69\x0c\xd7\x16\x08\x00\x80\x9e\x45\ \xff\x02\xeb\x97\xdb\x66\xa9\x83\x02\x86\x38\xeb\xb0\xe6\x96\x9a\ \x63\x17\x70\xcd\x81\x00\x00\x24\xb6\xe8\x9f\x2f\xdd\x2b\xbd\x2f\ \xf5\x52\xa4\xe0\x90\x5e\x6b\xce\xa9\xb9\x77\x3e\xd7\x22\x08\x00\ \x80\x33\x45\xff\x3c\xeb\x3b\xef\x2d\x7c\x8f\x0f\x4d\xf6\x1f\xd8\ \x62\xcd\xc9\xf3\xb8\x46\x41\x00\x00\xe2\x5b\xf4\xcf\x95\xee\x96\ \x36\xb2\xb5\x2e\x34\xe6\xb3\xe6\xe8\xdd\x9c\x88\x08\x02\x00\x30\ \xba\xcf\xf5\x6e\x97\xde\xe3\xdb\x7c\xb8\x74\xcf\x81\xf7\xac\x39\ \xcc\xe7\x85\x20\x00\x00\x11\x14\x7e\x75\x9e\xfc\xf3\xec\xad\x0f\ \x0f\xa9\xb0\xe6\xf4\x64\xae\x71\x10\x00\x80\xd3\xb7\xdf\x5d\x60\ \x1d\xaa\x13\xa2\x60\xc0\xa3\x42\xd6\x1c\x5f\xc0\xb6\xc4\x20\x00\ \xc0\xf4\xc2\x3f\x45\x5a\x25\xd5\x50\x1c\x60\x98\x1a\x6b\xee\x4f\ \x61\x2d\x00\x01\x00\xa6\x14\xfd\x73\xa4\x7b\xa4\x54\x36\xe8\x01\ \xc2\xd7\x40\xaa\x75\x4d\x9c\xc3\x1a\x01\x02\x00\xbc\x58\xf8\x2f\ \xb2\x9e\x83\x36\xb0\xe8\x03\x43\x6a\xb0\xae\x91\x8b\x58\x33\x40\ \x00\x80\x17\x0a\xff\x54\x69\x8d\xe4\x67\x81\x07\x22\xe2\xb7\xae\ \x99\xa9\xac\x21\x20\x00\xc0\x8d\x85\x7f\x8e\xb4\x95\xd3\xf6\x80\ \x51\x9d\x56\xa8\xae\xa1\x39\xac\x29\x20\x00\xc0\x0d\x6f\xf3\xab\ \x67\x99\x07\x58\xbc\x81\xb8\x3a\x60\x5d\x5b\x7c\x3d\x00\x02\x00\ \xb4\xdb\x9e\xf7\x11\xa9\x84\x85\x1a\xb0\x55\xa9\x75\xad\xb1\xed\ \x30\x08\x00\x48\x68\xe1\x9f\x60\xbd\xb4\xd4\xca\xc2\x0c\x38\xaa\ \xd5\xba\xf6\x26\xb0\x16\x81\x00\x00\xa7\x7f\xf1\x3f\x23\xb5\xb0\ \x10\x03\x09\xd5\x62\x5d\x8b\xdc\x11\x00\x01\x00\xb6\x16\xfe\x71\ \xd2\x13\x7c\xca\x07\x68\xf9\x09\xa1\xba\x36\xc7\xb1\x56\x81\x00\ \x80\x78\x16\xfe\xb1\xd2\x8f\xd9\xb1\x0f\x70\xc5\x0e\x83\xea\x5a\ \x1d\xcb\xda\x05\x02\x00\x46\x53\xf8\xc7\x48\xcb\x39\x98\x07\x70\ \xe5\x01\x44\xea\xda\x1d\xc3\x5a\x06\x02\x00\xa2\x29\xfc\xea\x28\ \xde\x25\x52\x31\x0b\x29\xe0\x6a\xc5\xd6\xb5\xcc\x91\xc4\x20\x00\ \x60\xc4\xe2\x3f\x57\xca\x64\xe1\x04\x3c\x45\x5d\xd3\x73\x59\xe3\ \x40\x00\xc0\x99\x4e\xe6\xdb\xcc\x42\x09\x78\xda\x66\x4e\x20\x04\ \x01\x00\x9f\x14\xfe\xf1\xd2\x6a\x29\xc0\xe2\x08\x18\x21\x60\x5d\ \xf3\xe3\x59\x03\x09\x00\x30\xb3\xf0\x9f\x25\x2d\x93\xea\x58\x10\ \x01\x23\xd5\x59\x6b\xc0\x59\xac\x89\x04\x00\x98\x53\xfc\x67\x4b\ \x87\x59\x00\x01\x58\x6b\xc1\x6c\xd6\x46\x02\x00\xbc\x5d\xf8\x2f\ \x91\x36\xb0\xe0\x01\x18\x82\x5a\x1b\x2e\x61\xad\x24\x00\xc0\x7b\ \xa7\xf4\x3d\x25\xf9\x58\xe4\x00\x0c\xc3\x67\xad\x15\x9c\x3a\x48\ \x00\x80\x07\x8a\xff\x4c\xe9\x08\x0b\x1b\x80\x28\xa8\x35\x63\x26\ \x6b\x28\x01\x00\xee\xdd\xb7\xff\x25\x29\xc8\x62\x06\x20\x06\x41\ \x6b\x0d\xe1\x7c\x01\x02\x00\x5c\xb6\x99\x4f\x21\x0b\x18\x80\x38\ \x28\x64\x13\x21\x02\x00\xf4\x2f\xfc\x13\xa5\x37\xa5\x01\x16\x2d\ \x00\x71\x34\x60\xad\x2d\x13\x59\x6b\x09\x00\xd0\xaf\xf8\x2f\x94\ \x6a\x59\xa8\x00\xd8\x48\xad\x31\x0b\x59\x73\x09\x00\xd0\xa3\xf0\ \x4f\x92\xb6\xb0\x30\x01\x70\x90\x5a\x73\x26\xb1\x06\x13\x00\x90\ \xb8\xe2\xbf\x40\x6a\x62\x31\x02\x90\x00\x6a\xed\x59\xc0\x5a\x4c\ \x00\x80\xb3\x85\xff\x73\xd2\xeb\x2c\x40\x00\x34\xa0\xd6\xa2\xcf\ \xb1\x36\x13\x00\x60\x7f\xf1\x9f\x25\xe5\xb3\xe8\x00\xd0\x88\x5a\ \x93\x66\xb1\x46\x13\x00\x60\x4f\xe1\x4f\x92\x9e\x96\xfa\x58\x6c\ \x00\x68\xa8\xcf\x5a\xa3\x92\x58\xb3\x09\x00\x88\x5f\xf1\x9f\x2c\ \xed\x60\x81\x01\xe0\x02\x6a\xad\x9a\xcc\xda\x4d\x00\xc0\xe8\x8b\ \xff\x22\xa9\x95\x45\x05\x80\x8b\xa8\x35\x6b\x11\x6b\x38\x01\x00\ \xb1\x15\xfe\xf1\xd2\xdb\x2c\x24\x00\x5c\x4c\xad\x61\xe3\x59\xd3\ \x09\x00\x88\xbc\xf8\x4f\x93\x72\x59\x3c\x00\x78\x80\x5a\xcb\xa6\ \xb1\xb6\x13\x00\x30\x72\xf1\xbf\x4b\xea\x60\xd1\x00\xe0\x21\x6a\ \x4d\xbb\x8b\x35\x9e\x00\x80\x33\xbf\xe5\xbf\x9a\x7d\xfc\x01\x78\ \xf8\x3c\x81\xd5\x7c\x25\x40\x00\xc0\x67\x8b\xff\x85\x52\x0a\x0b\ \x04\x00\x03\xa8\xb5\xee\x42\xd6\x7e\x02\x00\xc5\xff\xe3\x8d\x7d\ \xca\x59\x14\x00\x18\xa4\x9c\x8d\x83\x08\x00\xa6\x17\xff\x65\x52\ \x0f\x8b\x01\x00\x03\xa9\xb5\x6f\x19\xb5\x80\x00\x60\x5a\xe1\x1f\ \x2b\xbd\xc6\x02\x00\x00\xe1\xb5\x70\x2c\xb5\x81\x00\x60\x42\xf1\ \xbf\x58\xda\xcf\x45\x0f\x00\x7f\xa2\xd6\xc4\x8b\xa9\x11\x04\x00\ \x2f\x17\xff\xe9\x52\x19\x17\x3b\x00\x9c\x46\xad\x8d\xd3\xa9\x15\ \x04\x00\x2f\x16\xff\x79\x52\x1b\x17\x39\x00\x9c\x91\x5a\x23\xe7\ \x51\x33\x08\x00\x5e\x2a\xfe\x4b\xa7\x72\x8a\x1f\x00\x44\x42\xad\ \x95\x4b\xa9\x1d\x04\x00\x2f\x14\xff\x15\x5c\xd0\x00\x10\xb5\x15\ \xd4\x10\x02\x80\x9b\xdf\xf4\x5f\xcf\x45\x0c\x00\x31\x5b\xcf\x17\ \x02\x04\x00\xb7\x15\xff\x89\xd2\x4e\x2e\x5e\x00\x18\x35\xb5\x96\ \x4e\xa4\xb6\x10\x00\xdc\x50\xfc\xa7\x4c\xe5\x24\x3f\x00\x88\x27\ \xb5\xa6\x4e\xa1\xc6\x10\x00\x74\x2e\xfe\xd7\x4a\x0d\x5c\xac\x00\ \x10\x77\x6a\x6d\xbd\x96\x5a\x43\x00\xd0\xb1\xf8\xcf\x99\xca\x31\ \xbe\x00\x60\x27\xb5\xc6\xce\xa1\xe6\x10\x00\x74\x2a\xfe\xb7\x49\ \x3e\x2e\x4e\x00\xb0\x9d\x5a\x6b\x6f\xa3\xf6\x10\x00\x74\x28\xfe\ \xdf\x93\x02\x5c\x94\x00\xe0\x18\xb5\xe6\x7e\x8f\x1a\x44\x00\x48\ \x64\xf1\xff\x81\x14\xe4\x62\x04\x00\xc7\xa9\xb5\xf7\x07\xd4\x22\ \x02\x40\x22\x8a\xff\x72\xa9\x9f\x8b\x10\x00\x12\x46\xad\xc1\xcb\ \xa9\x49\x04\x00\x27\x8b\xff\xe3\xd2\x00\x17\x1f\x00\x24\x9c\x5a\ \x8b\x1f\xa7\x36\x11\x00\x9c\x28\xfe\xcf\x71\xc1\x01\x80\x76\x9e\ \xa3\x46\x11\x00\xec\x2c\xfe\xbf\xe4\x22\x03\x00\x6d\xfd\x92\x5a\ \x45\x00\xa0\xf8\x03\x00\x21\x00\x04\x00\x6e\xfb\x03\x00\x8f\x03\ \x40\x00\x88\xfe\x85\x3f\x2e\x28\x00\x70\x17\x5e\x0c\x24\x00\x8c\ \xfa\x53\x3f\xde\xf6\x07\x00\x77\x7e\x1d\xc0\x27\x82\x04\x80\x98\ \x37\xf9\xe1\x3b\x7f\x00\x70\xf7\x3e\x01\x6c\x16\x44\x00\x88\x7a\ \x7b\x5f\x76\xf8\x03\x00\x6f\xec\x18\xc8\xb6\xc1\x04\x80\x88\x0f\ \xf6\x61\x6f\x7f\x00\xf0\x0e\xb5\xa6\x73\x80\x10\x01\x60\xc4\x23\ \x7d\x39\xd5\x0f\x00\xbc\x47\xad\xed\x1c\x25\x4c\x00\x18\xb2\xf8\ \x5f\x3b\xf5\xe3\xb3\xa6\xb9\x50\x00\xc0\x9b\xd4\x1a\x7f\x2d\x35\ \x8f\x00\x30\xb8\xf8\x4f\x91\x1a\xb8\x38\xe0\x15\x97\x27\x67\x8b\ \x6b\xb7\xe7\x8a\x9b\x76\xe6\x8b\x3b\xf6\x16\x8a\x45\x19\x25\xe2\ \xfe\xc3\x65\xe2\xe1\x63\x15\xe2\x1f\x4e\x56\x8b\x9f\xe7\xd6\x8a\ \x7f\x2b\xac\x17\x6b\x4b\x9b\xc4\x7b\x95\x2d\xe2\x7f\x6a\xda\xc4\ \xa6\xea\x56\xb1\xae\xbc\x59\xac\x29\x69\x14\x2f\x17\xd4\x8b\x95\ \x39\xb5\xe2\xe9\x93\x55\xe1\x7f\x46\xfd\xb3\x8b\xe5\xbf\xe3\xce\ \x7d\x45\x62\xee\xae\x02\x71\x7d\x7a\xae\xb8\x32\x25\x9b\xbe\x86\ \x1b\xa9\xb5\x7e\x0a\xb5\x8f\x00\xa0\x8a\xff\x44\x29\x97\x8b\x02\ \x6e\x31\x33\x2d\x27\x5c\xd0\xff\x29\xab\x5a\xbc\x5d\xd6\x2c\xf6\ \x36\x75\x89\xac\x0e\xbf\x28\xeb\x0e\x88\xc6\x40\x50\xf8\x43\xfd\ \xc2\xa9\x16\x1a\x18\x10\xed\x7d\x21\x51\xd3\xd3\x27\x0e\xb6\x74\ \x8b\x3f\xc8\x30\xb1\x3a\xaf\x4e\xfc\xcd\x91\x72\x71\xeb\xee\x82\ \x70\x10\x61\xcc\xa0\x21\xb5\xe6\x4f\x24\x00\x98\x5d\xfc\xc7\x4a\ \x3b\xb9\x18\xa0\xa3\xaf\xca\x5f\xd8\x0b\x3e\x2a\x12\x4f\x9d\xa8\ \x12\x6f\xc8\x5f\xe5\x3b\x1b\x3b\x45\xb5\xbf\x4f\x0c\x08\xf7\xb4\ \xbe\xfe\x01\x51\xdc\x15\x10\x69\xf5\x1d\xe1\xbf\x83\xba\xfb\xa0\ \xee\x24\x5c\xb7\x3d\x97\x31\x46\xa2\xa9\xb5\x7f\x2c\x01\xc0\xdc\ \x00\xb0\x9e\x8b\x00\x3a\xdc\xae\xbf\x7d\x6f\xa1\x78\xf4\x78\xa5\ \x78\xb5\xa8\x41\x24\xcb\x62\x59\x2a\x7f\xcd\xab\x5f\xd7\x5e\x6e\ \x6d\x7d\x21\x71\xb4\xcd\x27\x36\x56\xb5\x8a\x9f\xc8\x90\x73\xe3\ \x8e\x3c\xe6\x03\x9c\xb6\x9e\x00\x60\x66\xf1\x5f\xc1\xe4\x47\x22\ \x5c\x26\x7d\x67\x5f\x51\xf8\x56\xf9\xee\xa6\x2e\x47\x6f\xd9\xeb\ \xde\x0a\xba\x7a\xc4\xef\xca\x9a\xc5\x03\x47\xca\xc5\xd5\xa9\x39\ \xcc\x17\x38\x61\x05\x01\xc0\xac\xe2\xbf\x94\x49\x0f\x27\x7d\x73\ \x67\xbe\x78\xe6\x64\xb5\x78\xbf\xb6\x4d\x34\xf5\x06\xa9\xf4\x11\ \x3e\x3e\x38\xd0\xd2\x2d\xfe\xb5\xa0\x5e\x2c\xdc\x5f\x2c\xa6\x25\ \x33\x8f\x60\x9b\xa5\x04\x00\x33\x8a\xff\x3c\xa9\x8f\x09\x0f\xbb\ \xcd\xdb\x55\x10\x7e\x9b\x3e\xb7\xa3\x87\x6a\x1e\x87\xa6\x5e\x36\ \xfc\xb0\xae\x43\x3c\x97\x5d\x13\xee\x5b\xe6\x18\xe2\x48\xd5\x84\ \x79\x04\x00\x6f\x17\xff\xe9\x52\x1b\x93\x1d\x76\xfe\xd2\x57\xb7\ \xf6\x4f\xb4\xfb\xa9\xd8\x36\xb7\x72\x5f\xaf\x78\xa5\xb0\x9e\x77\ \x07\x10\x2f\xaa\x36\x4c\x27\x00\x78\xb3\xf8\x5f\x2c\x95\x31\xc9\ \x61\xc7\x67\x79\x3f\xcb\xa9\x11\x47\x5b\x7d\x62\x80\xba\xec\x78\ \x53\x2f\x4b\xaa\x3b\x03\xf7\x1d\x2a\x0b\xbf\x5f\xc1\x9c\xc4\x28\ \xa8\x1a\x71\x31\x01\xc0\x7b\x9f\xfb\xed\x67\x72\x23\x9e\xbe\xbd\ \xb7\x50\xbc\x53\xd1\x22\xba\x83\xbc\xc4\xa7\x4b\x2b\xf3\xf5\x8a\ \x97\xf2\xeb\xf8\xcc\x10\xa3\xb1\xdf\x94\xcf\x03\x4d\x09\x00\xaf\ \x31\xa9\x11\xaf\x4f\xf6\xd4\xce\x78\x19\x2d\xdd\x54\x5b\x8d\x5b\ \x6f\xff\x40\x78\x77\xc3\xef\x1f\x28\x61\xde\x22\x16\xaf\x11\x00\ \xbc\x51\xfc\x97\x31\x99\x11\x8f\xdb\xfc\xea\x6d\xf4\xfa\x9e\x3e\ \xaa\xab\xcb\x5a\x61\x57\x20\xbc\xad\xf1\xac\x34\xee\x0a\x20\x2a\ \xcb\x08\x00\xee\x2e\xfe\xb3\xa4\x1e\x26\x32\x46\x5b\xf8\xd5\x1b\ \xe8\x34\x77\x37\xb5\xdf\x82\xda\x74\x68\x2e\x5f\x10\x20\x32\xaa\ \x76\xcc\x22\x00\xb8\xb3\xf8\x5f\x28\x95\x33\x89\x11\x8b\x19\xa9\ \x39\xe1\x4f\xf8\xda\x28\xfc\x9e\x7c\x3c\xf0\x56\x69\x53\xf8\xb0\ \x24\xe6\x3a\x46\xa0\x6a\xc8\x85\x04\x00\x77\x15\xff\x24\x29\x85\ \xc9\x8b\x68\x5d\x4d\xe1\x37\xa6\xa9\x31\x7e\x21\xb7\x56\x4c\xe7\ \xc0\x22\x0c\x4f\xd5\x92\x24\x02\x80\x7b\x02\xc0\x6a\x26\x2d\xa2\ \xf5\xd0\xd1\x0a\x51\xcb\x33\x7e\x23\xbf\x1c\x78\xe8\x58\x05\xd7\ \x00\x86\xb3\x9a\x00\xe0\x8e\xe2\x7f\x97\x34\xc0\x84\x45\xa4\x6e\ \xde\x99\x2f\xb6\x37\x74\x52\x09\x0d\x6f\x87\x5b\xbb\xc3\x5b\x0e\ \x73\x4d\x60\x08\xaa\xa6\xdc\x45\x00\xd0\xbb\xf8\x4f\x93\x3a\x98\ \xac\x88\xf4\x93\x3e\xf5\xcd\x38\x87\xf1\xd0\x3e\x69\x6a\x23\x27\ \x75\x5e\xc3\xdc\x5d\xf9\x5c\x23\x38\x95\xaa\x2d\xd3\x08\x00\x7a\ \x16\xff\xf1\x52\x2e\x93\x14\x91\xf8\xab\x8c\x12\x91\xdf\xc9\x1e\ \xfd\xb4\xa1\x5b\xa0\x7f\x40\xbc\x51\xd2\x28\xae\x49\xe3\x44\x42\ \x7c\x86\xaa\x31\xe3\x09\x00\xfa\x05\x80\xb7\x99\x9c\x18\xc9\xd7\ \xb6\xe7\x8a\x3f\x54\xb6\xb0\x65\x2f\x2d\xa2\xd6\x18\x08\x86\xb7\ \x18\xe6\xda\xc1\x20\x6f\x13\x00\xf4\x2a\xfe\x8b\x98\x94\x18\xc9\ \x53\x27\xaa\x44\x33\x47\xf1\xd2\xa2\x6c\xfd\x32\x2d\xae\x29\x69\ \x0c\x3f\x32\xe2\x3a\x82\x65\x11\x01\x40\x8f\xe2\x3f\x59\x6a\x65\ \x42\xe2\x4c\x6e\xdb\x53\x28\x32\x9a\xd9\xba\x97\x36\xba\x76\xa4\ \xd5\x27\x6e\xda\xc9\xbb\x01\x08\x53\x35\x67\x32\x01\x20\xf1\xdf\ \xfb\xef\x60\x32\x62\x28\xd3\x92\xb3\xc4\xaf\x8a\x1a\xc2\x1b\xbf\ \xd0\x68\xf1\x68\x6a\x47\xc8\x1f\x1d\x2d\xe7\xfa\x82\xb0\x6a\x4f\ \x12\x01\x20\x71\x01\xe0\x69\x26\x21\xce\xf4\xac\x7f\x4f\x53\x17\ \x15\x8b\x66\x4b\x7b\xbb\xac\x59\x5c\x91\xc2\x23\x01\x64\x3d\x4d\ \x00\x48\xdc\x3e\xff\x7d\x4c\x40\x9c\xea\xce\x7d\x45\xa2\xd2\xd7\ \x4b\x95\xa2\xd9\xda\xb2\x3a\xfc\xe2\x96\xdd\x9c\x2b\x60\xb8\x3e\ \x37\x9f\x17\xe0\xd6\xe2\xff\x39\x29\x9f\xc9\x87\x53\x3d\x76\xbc\ \x92\xef\xfa\x69\x8e\xb5\xae\x60\xbf\x78\x2c\xb3\x92\x6b\xcf\x6c\ \xaa\x16\x7d\x8e\x00\xe0\x5c\x00\x78\x9d\x49\x87\x53\x37\xf5\x59\ \x5b\xda\x44\x45\xa2\x25\xa4\xfd\x57\x65\xab\xb8\x92\x47\x02\x26\ \x7b\x9d\x00\xe0\x4c\xf1\x5f\xc0\x64\xc3\xa9\xcf\xfb\xf7\xf2\xbc\ \x9f\x96\xe0\xb6\xaf\xb9\x4b\x5c\x95\xca\xc6\x41\x06\x5b\x40\x00\ \xb0\xb7\xf8\x4f\x92\x9a\x98\x68\xf8\xc4\x77\xf6\x15\x89\x2a\x3f\ \xcf\xfb\x69\x7a\xb4\x03\x2d\xdd\xe1\x13\x25\xb9\x36\x8d\xa4\x6a\ \xd3\x24\x02\x80\x7d\x01\x60\x0b\x93\x0c\x7f\x7a\xde\x9f\xc9\xf3\ \x7e\x9a\x7e\x4d\xed\x17\x30\x93\x2d\x84\x4d\xb5\x85\x00\x60\x4f\ \xf1\x5f\xc8\xe4\xc2\x27\xcf\xfb\xdf\xe4\x79\x3f\x4d\xe3\x76\xbc\ \xcd\x27\x66\xa5\xe5\x72\xbd\x9a\x69\x21\x01\x20\xbe\xc5\x7f\xa2\ \x54\xcb\xc4\x82\xfa\xf6\x7a\x67\x23\x47\xf7\xd2\xf4\x6f\x59\xed\ \xfe\xf0\xfb\x29\x5c\xb7\xc6\x51\xb5\x6a\x22\x01\x20\x7e\x01\xe0\ \x4d\x26\x15\xd4\x2f\xff\xb4\x86\x0e\x2a\x0b\xcd\x35\x2d\xb7\xa3\ \x47\x5c\x9f\x4e\x08\x30\xd0\x9b\x04\x80\xf8\x14\xff\xb9\xd2\x00\ \x13\x8a\xe2\xff\x7f\x75\xed\x54\x14\x9a\xeb\x5a\x41\x57\x8f\xb8\ \x21\x3d\x8f\xeb\xd8\x2c\xaa\x66\xcd\x25\x00\x8c\xae\xf8\x8f\x93\ \x0a\x99\x4c\xec\xe9\xff\xc7\x9a\x36\x2a\x09\xcd\xb5\xad\xa4\x3b\ \x20\x6e\xdc\x41\x08\x30\x8c\xaa\x5d\xe3\x08\x00\xb1\x07\x80\x97\ \x98\x44\x66\xbb\x4c\xda\x58\xd5\x4a\x05\xa1\xb9\xbe\x95\xf9\x7a\ \xc5\x37\xb8\x13\x60\x9a\x97\x08\x00\xb1\x15\xff\x99\x52\x90\x09\ \x64\xb6\x77\x2a\x5a\xa8\x1c\x34\xcf\xb4\x8c\x96\xee\xf0\xe3\x2c\ \xae\x6d\x63\xa8\x1a\x36\x93\x00\x10\x5d\xf1\x3f\x5b\x3a\xc2\xe4\ \x31\xdb\x6f\xcb\xf8\xd4\x8f\xe6\xbd\xf6\x7a\x49\x23\xd7\xb7\x59\ \x54\x2d\x3b\x9b\x00\x10\x79\x00\x78\x8a\x49\x63\xb6\xff\x28\x6e\ \xa4\x52\xd0\x3c\xd9\x06\xa4\x1f\x1d\x2d\xe7\x3a\x37\xcb\x53\x04\ \x80\xc8\x8a\xff\x25\x92\x8f\x09\x63\xae\x57\x0a\xeb\xa9\x12\x34\ \x4f\xb7\x8e\xbe\x90\x98\xb7\x8b\xa3\x84\x0d\xa2\x6a\xda\x25\x04\ \x80\x91\x03\xc0\x06\x26\x8b\xb9\x7e\x91\x57\x47\x75\xa0\x19\xd1\ \xb2\x3b\xfc\xe2\xab\x9c\x20\x68\x92\x0d\x04\x80\xe1\x8b\xff\x6c\ \x26\x89\xb9\x7e\x78\xb8\x2c\x7c\x7b\x94\x46\x33\xa5\xa9\x63\x84\ \xb9\xf6\x8d\x32\x9b\x00\x30\x74\xf1\x3f\x4b\x3a\xcc\x04\x31\x93\ \xfa\x3c\xaa\xa9\x37\x48\x45\xa0\x19\xd7\x9e\x3e\x59\xc5\x1a\x60\ \x0e\x55\xe3\xce\x22\x00\x9c\x1e\x00\x96\x31\x39\xcc\xfd\xd6\x7f\ \x4f\x53\x17\x95\x80\x66\x64\xeb\x09\xf5\x87\x8f\xb5\x66\x2d\x30\ \xc6\x32\x02\xc0\x67\x8b\xff\x78\xa9\x8e\x89\xc1\x73\x7f\x1a\xcd\ \xc4\xa6\x36\x09\xba\x86\x23\x84\x4d\xa1\x6a\xdd\x78\x02\xc0\xa7\ \x01\x60\x35\x93\xc2\x4c\x7f\xf9\x51\xb1\xe8\xeb\xe7\xc9\x3f\x8d\ \xb6\xad\xb6\x9d\x35\xc1\x1c\xab\x09\x00\x1f\x17\xff\x29\x52\x80\ \x09\x61\x9e\x19\xa9\x39\xe1\x5f\x3e\x34\x1a\xed\xe3\xf6\x83\x03\ \xa5\xac\x0d\x66\x50\x35\x6f\x0a\x01\xe0\xc3\xac\xcd\x4c\x06\x33\ \x6d\xa9\xe6\x80\x1f\x1a\x6d\x70\xcb\x6a\xf7\x87\xdf\x89\x61\x7d\ \x30\xc2\x66\xa3\x03\x80\x75\xd4\x2f\x13\xc1\x40\x4f\x66\x56\xb1\ \xda\xdb\xdc\x7a\xfb\x07\x44\x63\x20\x28\x0a\xbb\x02\xe2\x70\x6b\ \xb7\x48\x6b\xe8\x10\x9b\xaa\x5b\xc5\xef\xca\x9a\xc2\x9b\x2d\xfd\ \x2c\xa7\x46\x3c\x96\x59\x29\x96\x1d\x2a\x13\x0b\xf7\x17\x8b\x7b\ \x0f\x96\x8a\x87\x8f\x55\x88\xe7\xb2\x6b\xc4\xbf\x16\xd4\xcb\xff\ \x5d\xb3\xd8\x2a\x43\xda\xae\xc6\x4e\x71\x42\x16\xa6\x0a\x5f\xaf\ \xe8\x0c\x86\xe8\x58\x9b\xdb\x53\x27\xf8\x2a\xc0\x20\x73\x8d\x0c\ \x00\xf2\x2f\x9e\x24\x65\x32\x01\xcc\x33\x7f\x77\x81\xe8\x0a\xf6\ \xb3\xd2\xc7\xb1\xa9\xb7\x28\x8a\x64\xa1\xff\x43\x65\x8b\xf8\x89\ \x2c\x20\x76\xee\x32\x37\x57\xfe\xbb\xff\x31\xab\x3a\x7c\x44\x73\ \x7d\x4f\x1f\x9d\x1f\xe7\x56\x27\xfb\xf4\xaa\x54\x5e\x08\x34\x84\ \xaa\x81\x49\x26\x06\x80\x25\x0c\xbe\x79\xa6\x27\x67\x87\x7f\x4d\ \xd2\x46\xd7\xd4\x8b\x93\x47\xdb\x7c\x62\x6d\x69\x53\x78\x5f\xf9\ \xeb\xb6\xe7\x26\x6c\x4c\x6f\xdb\x53\x28\x7e\x9a\x5d\x23\x3e\xa8\ \x6d\x17\xcd\xec\xe5\x10\x97\xf6\xef\x85\x0d\xac\x17\xe6\x58\x62\ \x54\x00\x90\x7f\xe1\x31\x52\x31\x03\x6f\x9e\xdf\x14\x37\xb0\xba\ \xc7\xd8\xd4\xed\xf7\xf5\xe5\xcd\xe1\x17\xc5\x74\xde\x42\xf6\x8e\ \xbd\x85\x62\x4d\x49\x23\x8f\x0b\x46\xd1\xfc\xa1\x7e\x71\xe3\x8e\ \x3c\xd6\x0c\x33\xa8\x5a\x38\xc6\xa4\x00\xb0\x9c\x41\x37\xcf\x4d\ \x3b\xf3\x45\x80\x4f\xfe\x62\x7a\x31\xec\x9f\xb2\xaa\xc5\xd5\x2e\ \xbb\x2d\xac\xbe\x6b\x7f\xb9\xa0\x9e\xbb\x02\x31\xb6\xff\xae\x62\ \x9b\x60\x83\x2c\x37\x22\x00\xc8\xbf\xe8\x58\xa9\x82\x01\x37\xcf\ \xd6\x1a\xde\xfa\x8f\xa6\x1d\x6d\xf5\x89\xc5\x07\x4a\x5c\x3f\xee\ \xea\x79\xf6\x8a\x9c\x1a\x51\xed\xe7\x7d\x81\x68\x9a\xca\xca\x0b\ \x3e\x62\x87\x40\x43\xa8\x9a\x38\xd6\x84\x00\xf0\x63\x06\xdb\x3c\ \xdf\x93\x0b\x19\xbf\xfd\x23\x6b\x25\xdd\x01\xf1\xd0\xb1\x0a\xcf\ \xcd\x81\xcb\x93\xb3\xc3\xfb\xde\x17\x77\x05\x18\xe4\x08\x5b\x46\ \x73\x37\xeb\x87\x39\x7e\xec\xe9\x00\x20\xff\x82\xe3\xa4\x1a\x06\ \xda\x3c\xfb\x9b\xd9\xeb\x7f\xa4\xa6\x3e\xdb\x5b\x9d\x57\x1b\x2e\ \x94\x5e\x3f\xfb\x41\x3d\xd2\x50\xcf\xb9\x69\x23\x37\xf5\x92\x27\ \x6b\x88\x11\x54\x6d\x1c\xe7\xe5\x00\xf0\x04\x83\x6c\x9e\x07\x8e\ \x94\xb3\x8a\x8f\xd0\xd4\xb7\xfa\xa6\x1d\x08\x73\xe7\xde\x22\xee\ \x06\x44\xf2\x0e\x48\x87\x9f\x75\xc4\x1c\x4f\x78\x32\x00\xc8\xbf\ \xd8\x79\x52\x03\x03\x6c\x96\x69\xc9\x59\xa2\xa0\xab\x87\x55\x7c\ \x98\xf6\x4e\x45\x8b\xd6\x6f\xf5\xdb\x49\xbd\xd8\xb8\x95\x1d\x21\ \x47\x6c\xdf\xe5\xb4\x40\x53\xa8\x1a\x79\x9e\x17\x03\xc0\x33\x0c\ \xae\x79\xd4\xad\x5e\xda\xd0\x4d\xbd\x13\xf1\xf3\xdc\x5a\xe6\x89\ \xf4\x0f\x27\x79\x24\x30\x5c\x5b\x57\xde\xcc\x3c\x31\xc7\x33\x9e\ \x0a\x00\xf2\x2f\x34\x41\x6a\x61\x60\xcd\xfb\x75\xd7\x10\xe0\x13\ \xb0\xa1\x5a\x68\x60\x40\x3c\x23\x8b\x1e\xf3\x84\x47\x02\x91\xb4\ \xf6\xbe\x90\xb8\xd2\xd0\xbb\x44\x06\x52\xb5\x72\x82\x97\x02\xc0\ \xf3\x0c\xaa\x79\xd4\x6e\x66\xb4\xa1\x8b\xff\xc3\x1e\x7c\xcb\x3f\ \x5e\xa1\x51\xed\x28\x48\x3b\xbd\xa9\x73\x1b\x98\x23\xc6\x78\xde\ \x13\x01\xc0\x7a\xf6\xdf\xca\x80\x9a\xe5\x1b\xe9\x79\xc2\xc7\x2d\ \xdd\x21\x9b\xfa\x26\x9e\x39\x32\xfc\xe7\x82\xe9\x0d\x9d\x4c\x94\ \x53\xda\xde\xa6\x2e\xe6\x87\x39\x5a\x9d\x78\x17\xc0\x89\x00\xf0\ \x08\x83\x69\x1e\xb5\x65\x2d\xed\xf4\xb6\x91\xdd\xdd\x22\xbe\x13\ \x70\xbc\xcd\xc7\x84\x19\xd4\xd4\xc6\x40\x37\xef\xcc\x67\x7e\x98\ \xe3\x11\x57\x07\x00\xf9\x17\x38\x5b\x2a\x65\x20\xcd\x5b\xbc\x39\ \xed\xef\xf4\x76\x4c\x16\xb4\x2b\x78\x8e\x1b\x31\x75\xc0\x51\x69\ \x37\xef\x04\x0c\x6e\xbf\x2a\xe2\x90\x20\x83\xa8\xda\x79\xb6\x9b\ \x03\xc0\x3d\x0c\xa2\x99\x6f\x74\xd3\x3e\xdb\xd4\xcb\x90\x1c\xee\ \x12\x3d\x75\xf4\x70\x23\x2f\x92\xfe\xa9\x55\xfb\x7b\xc3\x1b\x29\ \x31\x37\x8c\x71\x8f\x9b\x03\xc0\x01\x06\xd0\x3c\xc7\xb8\x75\xfb\ \x99\xa6\x76\xf8\xbb\x7b\x7f\x31\x73\x23\x46\xea\x1b\x78\xee\x28\ \x7d\xda\x96\x1e\x2a\x63\x5e\x98\xe3\x80\x2b\x03\x80\xfc\x83\xcf\ \x61\xf0\xcc\xa3\x8e\x82\xa5\x7d\xb6\xa9\xfd\xef\x99\x1b\xa3\xb3\ \xe4\x50\xa9\xe8\xe3\x24\xc9\x70\xdb\x56\xdb\xce\x9c\x30\xcb\x1c\ \x37\x06\x80\xad\x0c\x9c\x79\x7e\xcf\xcb\x7f\x9f\x69\x6c\xe0\x12\ \x3f\x2f\xe4\xd6\x32\xa1\x64\xeb\x09\xf5\xf3\x2e\x89\x59\xb6\xba\ \x2a\x00\xc8\x3f\xf0\x54\xa9\x9f\x81\x33\x8b\xda\xa8\x44\x6d\x58\ \x42\xfb\xb8\x55\xf8\x7a\x8d\xdd\xe2\xd7\xae\xcf\x03\xd9\x56\xfa\ \xe3\xc6\x23\x25\xa3\xa8\x5a\x3a\xd5\x4d\x01\x60\x0d\x83\x66\x9e\ \x27\x33\xab\x58\x99\x07\xb5\x1f\x1e\xe6\x59\x6d\xbc\xa9\xe7\xdf\ \x34\x21\x56\xb1\x85\xb4\x69\xd6\xb8\x22\x00\xc8\x3f\xe8\x45\x92\ \x9f\x01\x33\xcf\x81\x96\x6e\x56\x66\xab\x7d\x58\xd7\xc1\x9c\xb0\ \x49\x5a\x7d\x87\xf1\xf3\xeb\x03\xde\x03\x30\x8d\xaa\xa9\x17\xb9\ \x21\x00\xb0\xed\xaf\x81\x6e\xdb\x5d\x40\xd5\xb7\x9a\xda\x01\x71\ \x0e\x1b\xb6\xd8\xe6\x16\x39\xd7\x7a\x0d\x7f\x21\xb0\xa6\xa7\x8f\ \xb9\xc0\xf6\xc0\x7a\x05\x00\xf9\x07\x3c\x67\x2a\x47\xfe\x1a\x69\ \x6d\x69\x13\x95\xdf\x6a\xab\xf3\xb8\x3d\x6b\xb7\x37\x4a\x1a\x8d\ \x9f\x67\xec\x2b\x61\x1c\x55\x5b\xcf\xd1\x39\x00\xb0\xf1\x8f\xa1\ \xd8\xac\xe5\xe3\x96\xdf\xd9\x13\x7e\x59\x8d\x39\x61\xaf\x99\x69\ \x39\xc6\xcf\xb9\xbf\xe3\x40\x29\x36\x06\xd2\x2c\x00\xa4\x32\x40\ \xe6\xf9\xd6\x1e\xbe\xfd\x57\x4d\xdd\x94\x5e\x9c\x51\xc2\x9c\x70\ \xc8\x4f\xb3\x6b\x8c\x9e\x6f\x6f\x95\x36\x31\x0f\xcc\x93\xaa\x65\ \x00\x90\x7f\xb0\x29\xd2\x00\x03\x64\x9e\x67\xb3\xd9\xfa\x57\x35\ \x0e\xfa\x71\xd6\xd7\xb6\xe7\x86\x8f\x56\x36\xb5\x1d\x6d\xf5\x31\ \x0f\xcc\xa3\x6a\xec\x14\x1d\x03\xc0\x2a\x06\xc7\x4c\x5b\x6b\xda\ \x78\xf1\x2f\xd4\x1f\x3e\xbc\x86\xf9\xe0\xac\x8f\x9a\xbb\x8c\x9d\ \x73\x81\xfe\x01\x31\x9d\xc7\x4d\x26\x5a\xa5\x55\x00\x98\xfa\xf1\ \xa9\x7f\x35\x0c\x8c\x99\xd4\x01\x25\xa6\x37\x6e\xc7\x26\xc6\x8a\ \x1c\xb3\x1f\x03\x2c\x64\x43\x20\x13\xa9\x5a\x7b\xb6\x4e\x01\x60\ \x01\x83\x62\xa6\x6f\xee\xcc\x37\xbe\xf8\xab\x4f\xd2\x78\x23\x3b\ \x31\x66\xcb\x7e\x37\xf9\x83\xc0\x17\xd8\x10\xc8\x54\x0b\x74\x0a\ \x00\xdb\x18\x10\x33\x3d\x91\x59\x69\x7c\x00\xd8\x50\xd9\xc2\x5c\ \x48\xa0\xcc\x36\xbf\xb1\x73\xef\xb7\x65\xdc\x79\x32\xd4\x36\x2d\ \x02\x80\xfc\x83\x4c\x96\x42\x0c\x88\x99\xde\xa9\x68\x31\xba\xf8\ \xab\x97\xd0\xe6\xef\x2e\x60\x2e\x24\xd0\xbf\x14\xd4\x1b\x3b\xff\ \x36\x57\xf3\xe2\xa9\xa1\x54\xcd\x9d\xac\x43\x00\x60\xe7\x3f\x83\ \x15\x74\x9a\x7d\x38\xcb\xff\xd4\xb4\x31\x0f\x12\xbd\x0b\xa5\xc1\ \x9f\xa1\xa6\x37\x74\x32\x07\xd8\x19\x30\x31\x01\x40\xfe\x01\x92\ \xa4\x0a\x06\xc2\xdc\xcf\xb0\x4c\x7e\xfe\xaa\xfe\xee\x77\xee\x2d\ \x62\x2e\x68\xa0\xcc\x67\xe6\x8b\xa8\x7c\x0a\x68\x34\x55\x7b\x93\ \x12\x19\x00\x6e\x67\x10\xcc\xf5\xb7\x47\xca\x8d\xfe\xf5\xbf\x9d\ \x5f\x5f\xda\xd8\xd3\x64\xe6\xe7\x80\x25\xdd\x01\xc6\xdf\x6c\xb7\ \x27\x32\x00\xbc\xc7\x00\x98\xeb\xd5\xa2\x06\xa3\x03\xc0\x22\x76\ \xfd\xd3\xc6\x96\x6a\x33\xf7\xa2\x68\xe9\x0d\x32\xfe\x66\x7b\x2f\ \x21\x01\x40\xfe\x87\xcf\x95\xba\x18\x00\x73\xa9\xb7\xdf\x4d\x6d\ \x19\x2d\xdd\xcc\x01\x8d\xbc\x6e\xe8\xe1\x40\xea\x25\xd4\xcb\x18\ \x7f\x93\xa9\x1a\x7c\x6e\x22\x02\xc0\xdd\x74\xbe\xd9\x92\x0d\x3e\ \x97\x7d\xf9\x91\x72\xe6\x80\x46\x7e\x9e\x5b\x6b\xec\x5c\x9c\x95\ \xc6\x0e\x94\x86\xbb\x3b\x11\x01\x60\x23\x1d\x6f\xb6\x43\xf2\x57\ \xb0\x89\xad\x21\x10\xe4\xc4\x3f\xcd\x3c\x7a\xdc\xdc\xfd\x28\xf8\ \x0c\xd5\x78\x1b\x1d\x0d\x00\xf2\x3f\x78\x9e\xe4\xa3\xe3\xcd\x56\ \xdc\x15\x30\x72\xc1\x5d\xcb\xb6\xbf\xda\xf9\xfe\x81\x12\x63\x03\ \xc0\x5f\xb2\x1d\xb0\xe9\x54\x2d\x3e\xcf\xc9\x00\xb0\x98\x4e\x47\ \x6b\x6f\xc8\xc8\x05\xf7\xf6\xbd\x85\x8c\xbf\x66\x6e\x95\xbf\x82\ \x4d\x6d\x3f\x3c\x5c\xc6\x1c\xc0\x62\x27\x03\xc0\x16\x3a\xdc\x6c\ \xd3\x92\xb3\x44\xbf\x81\x9b\x00\x9c\x68\xf7\x33\xfe\x1a\xba\x3a\ \x35\xc7\xd8\x00\xa0\xb6\xe3\x66\x0e\x18\x6f\x8b\x23\x01\x40\xfe\ \x87\xce\x97\x7a\xe8\x70\xb3\x5d\x9f\x9e\x6b\xe4\x62\xfb\xb3\x9c\ \x1a\xc6\x5f\x53\xea\x8d\x78\x13\xdb\x63\xc7\x09\x00\x08\xd7\xe4\ \xf3\x9d\x08\x00\xf7\xd2\xd9\x50\xb7\xc1\x4d\x6b\xea\xd4\xbf\x6b\ \xb7\xf3\xc6\x35\x77\x00\xf4\x6a\x0f\xf0\x08\x00\x1f\xbb\xd7\x89\ \x00\xf0\x3e\x1d\x8d\xbf\x3e\x58\x6a\xdc\x42\xfb\x41\x5d\x3b\x63\ \xaf\xa9\x39\x06\x1f\x4b\xbd\xf8\x00\x1b\x52\x21\xec\x7d\x5b\x03\ \x80\xfc\x0f\x5c\x20\xf5\xd2\xd1\x78\xf8\x58\x85\x79\xbf\xb4\xf8\ \xf6\x5f\x5b\xdf\xde\x6b\xee\x81\x40\x77\xee\xe3\x3c\x0a\x84\xa9\ \xda\x7c\x81\x9d\x01\xe0\x3e\x3a\x19\x26\x7e\x77\xcd\xb7\xff\x7a\ \x5b\x9c\x61\xee\x67\x80\x73\x77\xe5\x33\x07\xf0\x89\xfb\xec\x0c\ \x00\x9b\xe9\x60\x28\x7f\x65\xd8\x82\xcb\xb7\xff\x7a\x7b\xe6\x64\ \xb5\xb1\x01\xe0\x6b\xbc\x97\x82\x4f\x6d\xb6\x25\x00\xc8\x7f\xf1\ \x18\xa9\x83\x0e\x86\x72\x93\x61\xcf\x5c\xf9\xf6\x5f\x6f\xeb\xca\ \x9b\x8d\x0d\x00\xdc\x99\xc2\x20\xaa\x46\x8f\xb1\x23\x00\xdc\x44\ \xe7\xe2\x13\x6a\xd1\x31\x65\x1f\x80\x2c\xbe\xfd\xd7\xde\xe1\x56\ \x33\xb7\xa5\xee\x09\xf5\x33\xfe\x38\xd5\x4d\x76\x04\x80\xd5\x74\ \x2c\x06\x53\xcf\xc5\x4d\x68\x2f\xe6\xd5\x32\xde\x1a\x53\xa7\xe1\ \x75\x05\xfb\x8d\x0c\x00\x4d\x1c\x07\x8c\xd3\xad\xb6\x23\x00\x1c\ \xa3\x63\x31\xd8\xde\xa6\x2e\xcf\x2f\xb0\x6a\x73\x99\x1b\x77\xe4\ \x31\xde\x1a\x53\x6f\xc1\x9b\xda\xf2\x3a\x7b\x98\x03\x38\xd5\xb1\ \xb8\x06\x00\xf9\x2f\x9c\x24\x0d\xd0\xb1\x18\xec\xb9\xec\x1a\xcf\ \x2f\xb0\x2a\xe4\x30\xd6\x7a\x7b\xb5\xa8\xc1\xd8\x00\xb0\xad\x96\ \xbd\x29\x70\x1a\x55\xab\x27\xc5\x33\x00\xf0\xf9\x1f\x4e\xf3\xf5\ \xf4\x3c\xcf\x6f\xbf\xfa\x93\x13\x55\x8c\xb5\xe6\x0a\xba\x7a\x8c\ \x0d\x00\xaf\x14\xd6\x33\x07\x10\xf3\xe7\x80\x91\x06\x80\x0d\x74\ \x28\x86\x92\xd1\xe2\xdd\x97\xaf\xfc\xa1\x7e\x31\x23\x35\x87\x71\ \xd6\xd8\x5f\xec\x31\x77\x03\x20\xd5\x1e\x3a\x56\xc1\x3c\xc0\x50\ \x36\xc4\x25\x00\xc8\x7f\x51\x92\xd4\x42\x87\x62\x28\xea\x70\x1c\ \xaf\xb6\xdf\x97\x37\x33\xc6\xdc\xfe\xd7\xba\xdd\xb6\xbb\x80\x79\ \x80\xa1\xa8\x9a\x9d\x14\x8f\x00\x70\x03\x9d\x89\x33\x51\x9b\x90\ \xb4\xf7\x85\x3c\xb7\xb0\xaa\x83\x7f\x66\xf3\xf2\x9f\xd6\xd4\x01\ \x40\xad\xbd\x21\x63\x8b\x7f\x40\xce\x51\x75\x2c\x37\x73\x01\x67\ \x70\x43\x3c\x02\xc0\x4a\x3a\x12\xc3\x59\x95\x5b\xeb\xb9\xc5\xf5\ \x9d\x8a\x16\xc6\x56\x73\xab\xf3\x6a\x8d\xfe\xf5\x9f\xdb\xc1\x17\ \x00\x18\xd6\xca\x78\x04\x80\x83\x74\x24\x86\x33\x3d\x39\x5b\x94\ \x76\x07\x3c\xb3\xb0\xf6\xc9\x5f\x56\xdf\xdc\xc9\xfe\xea\x3a\xbb\ \x32\x25\xdb\x98\x7d\x28\xce\xd4\xfe\xa7\xa6\x8d\xb9\x80\xe1\x1c\ \x1c\x55\x00\x90\xff\x82\x09\x52\x3f\x1d\x89\x91\x2c\x3f\x52\xee\ \x99\x85\xf5\xbd\x4a\x7e\xfd\xeb\xee\x85\x5c\xb3\x7f\xfd\xab\xf6\ \x72\x01\x5f\x00\x60\x58\xaa\x76\x4f\x18\x4d\x00\xf8\x16\x9d\x88\ \x48\xed\xf6\xc0\xc6\x40\x6d\x7d\x21\xf1\x8d\x74\x9e\xfd\xeb\x4c\ \xdd\x9d\x31\x75\xe7\xbf\xc1\x4d\x9d\x80\xc8\x7c\xc0\x08\xbe\x35\ \x9a\x00\xf0\x02\x1d\x88\x48\xa9\x97\xe6\xdc\x7e\x5b\x56\x1d\x73\ \xcc\x58\xea\x6d\x67\x63\xa7\xf1\xc5\x5f\xbd\xfc\xc8\x0b\x80\x88\ \xc0\x0b\xa3\x09\x00\x3b\xe8\x40\x44\x63\xe1\xfe\xe2\xf0\x01\x25\ \x6e\x6c\xff\xcb\xae\x6a\xda\xfb\xfb\x13\x55\x82\x26\xc4\xd6\x6a\ \x9e\xff\x23\x22\x3b\x62\x0a\x00\x53\x3f\x3e\xfe\xd7\x47\x07\x22\ \x5a\x8f\x67\x56\xba\x6e\x41\x6d\x0c\x04\x39\x57\xdd\x05\x3b\x4f\ \xb6\xf5\x85\xa8\xfe\xdc\xa9\x42\xe4\x54\x0d\x1f\x13\x4b\x00\xb8\ \x8e\xce\x43\xac\xfe\xa3\xb8\xd1\x35\x8b\x69\x70\x60\x40\x2c\x3b\ \x54\xc6\xb8\x69\xee\x83\xda\x76\x2a\xbf\x35\x5f\xaf\x49\x63\x87\ \x4a\x44\xec\xba\x58\x02\xc0\xe3\x74\x1c\x62\xa5\x8e\x68\xfd\x63\ \x4d\x9b\xf6\x8b\xa9\x3a\xcb\xe0\x31\x7e\x4d\x69\xef\xc1\xa3\xe5\ \x54\x7e\xab\xed\x6f\xee\x62\x4e\x20\x1a\x8f\xc7\x12\x00\x36\xd1\ \x71\x18\x6d\x08\xf8\x4d\xb1\xbe\x5b\xb5\xaa\x63\x8c\x9e\x39\x59\ \xcd\x58\x69\x6e\x56\x5a\xae\xf1\xdf\xfc\x0f\x6e\x6a\xe3\x2d\xe6\ \x05\xa2\xb0\x29\x96\x00\x50\x47\xc7\x21\x1e\x9e\xcc\xac\x0a\x6f\ \xad\xab\x5b\x5b\x91\x53\xc3\xf8\x68\x4e\xbd\xe9\x9e\xd6\xd0\x41\ \xd5\x1f\xd4\x6e\x61\xff\x7f\x44\xa7\x2e\xaa\x00\x20\xff\x81\x4b\ \xe9\x34\xc4\x93\xfa\x66\xb9\xa5\x57\x8f\x5f\x71\x1d\x7d\x21\x5e\ \xa2\x72\x89\x75\xe5\xcd\x54\xfc\x41\xed\x68\x9b\x8f\x79\x81\x58\ \x5c\x1a\x4d\x00\x58\x4a\x87\x21\xde\xe6\xee\x2a\x10\x1f\x35\x77\ \x25\x7c\x01\x9d\xbb\x8b\x6d\x7e\xdd\xe0\xc5\x3c\x76\xfb\x3b\xb5\ \x71\xfc\x2f\x62\xb4\x34\x9a\x00\xb0\x96\x0e\x83\x5d\x1e\x38\x5c\ \x26\x0a\x3a\x7b\x1c\x7f\xd9\x4f\x7d\x99\x70\x79\x72\x36\x63\xe0\ \x02\x7f\x27\x0b\x9d\x86\x4f\x8d\x12\xda\xca\x7c\xbd\x6c\xfe\x83\ \x58\xad\x8d\x26\x00\x64\xd1\x61\xb0\xfb\xd9\xee\x3f\x65\x55\xdb\ \xfe\x72\x97\x3f\xd4\x2f\xd6\x97\x37\xf3\xab\xdf\x45\x16\x65\x94\ \xb8\x76\x33\x29\x3b\xdb\xf3\xd9\xbc\xb3\x82\x98\x65\x45\x14\x00\ \xe4\xff\x70\xac\x14\xa4\xc3\xe0\x04\x75\xa6\xbb\x7a\x13\x3f\xb9\ \xbe\x23\xae\xfb\xbb\x37\xf5\x06\xc5\xab\x45\x0d\xe2\x3a\x36\xf7\ \x71\x15\xf5\x82\x9b\x2e\xef\x8a\xe8\xd4\x54\x9f\x5c\x95\xca\xb7\ \xff\x88\x99\xaa\xe9\x63\x23\x09\x00\x33\xe8\x2c\x24\x82\x3a\x56\ \x78\xe9\xa1\x32\xf1\xbb\xb2\x66\x51\xd2\x1d\x08\x6f\x78\x12\xcd\ \x02\xa9\x42\xc4\xca\x9c\x5a\x71\xe7\xde\xa2\xf0\x27\x88\xf4\xa9\ \xbb\xa8\xb0\xa6\x6e\x73\xd3\x4e\x6f\x2a\xcc\x32\x47\x30\x4a\x33\ \x22\x09\x00\x4b\xe8\x28\xe8\xb2\x8f\x80\xda\x9e\xf7\xdb\x7b\x0b\ \xc5\x92\x43\xa5\xe2\x89\xcc\xca\xf0\x8b\x61\x3f\xcb\xa9\x09\xbf\ \xc5\xbf\xe4\x60\x69\xb8\xd8\xdf\xb8\x23\x8f\x82\xef\x72\xea\x20\ \xa9\x82\xae\x1e\x2a\xfd\x10\x4d\x3d\x0e\xb9\x3e\x9d\x3b\x59\x18\ \xb5\x25\x91\x04\x80\x7f\xa6\xa3\x00\x38\xe5\xb6\x3d\x85\xa2\xda\ \xdf\x47\xa5\x3f\x43\x7b\xa7\xa2\x85\x79\x82\x78\xf8\xe7\x48\x02\ \x40\x32\x1d\x05\xc0\x09\x7f\xb9\xbf\x98\x67\xfe\x23\xec\x59\xa1\ \x0e\x41\x62\xae\x20\x0e\x92\x23\x09\x00\xb5\x74\x14\x00\xbb\xa9\ \xf7\x3d\x7c\xbc\xed\xcf\xb6\xbf\x70\x4a\xed\xb0\x01\x40\xfe\x0f\ \x2e\xa4\x93\x00\xd8\x4d\xbd\xc3\xd1\xc7\x87\xfe\xc3\xb6\xa2\xae\ \x00\xfb\x56\x20\xde\x2e\x1c\x2e\x00\xcc\xa3\x83\x00\xd8\x49\xbd\ \xc4\x49\xed\x1f\xb9\xdd\xc7\x11\xd5\x88\xbf\x79\xc3\x05\x80\x47\ \xe9\x20\x00\x76\x51\x9f\xb3\xd1\x46\x6e\xa9\xf5\x1d\xcc\x17\xd8\ \xe1\xd1\xe1\x02\xc0\x5b\x74\x10\x80\x78\x53\x3b\x3f\xaa\xb7\xd9\ \x69\x23\xb7\x40\xff\x40\xf8\xdc\x0c\xe6\x0d\x6c\xf0\xd6\x70\x01\ \xe0\x10\x1d\x04\x20\x9e\xae\x48\xc9\x16\x1f\xd4\xb5\x53\xd9\xd9\ \xf4\x07\x89\x77\x68\xc8\x00\x20\xff\x3f\x92\x24\x1f\x1d\x04\x20\ \x5e\x66\xa4\xe6\x24\xfc\x04\x48\x37\xb5\xbc\xce\x9e\x70\x60\x62\ \xee\xc0\x26\xaa\xc6\x27\x0d\x15\x00\xbe\x44\xe7\x00\x88\x17\xf5\ \xfd\x7a\x56\xbb\x9f\xaa\x1e\x61\x53\x5f\x45\x7c\x67\x5f\x11\x73\ \x07\x76\xfb\xd2\x50\x01\xe0\x66\x3a\x06\x40\x3c\xa8\xd3\x17\xcb\ \xba\x03\x54\xf5\x28\xda\xcb\x05\xf5\xcc\x1d\x38\xe1\xe6\xa1\x02\ \xc0\x32\x3a\x06\xc0\x68\xa9\xf3\x19\xea\x7b\xd8\xda\x37\x9a\x76\ \xbc\xcd\xc7\x37\xff\x70\xca\xb2\xa1\x02\xc0\x0a\x3a\x06\xc0\x68\ \x2c\xce\x28\x11\xed\x7d\x21\x2a\x7a\x14\xcd\x1f\xea\x0f\x9f\x87\ \xc0\xfc\x81\x43\x56\x0c\x15\x00\xd6\xd1\x31\x00\x62\xf5\x37\x47\ \xca\xc3\x27\xd7\xd1\xa2\x6b\x2f\xb0\xdd\x2f\x9c\xb5\x6e\xa8\x00\ \xb0\x9b\x8e\x01\x10\x8b\x9f\x9c\xac\x12\xa1\x01\xb6\xf7\x8b\xb6\ \x6d\x6f\xe8\xe4\x28\x6b\x38\x6d\xf7\x50\x01\xa0\x92\x8e\x01\x10\ \xad\x5f\xe4\xd5\x09\x4a\x7f\xf4\xad\xa4\x3b\x20\xae\x49\xcb\x61\ \x0e\xc1\x69\x95\x9f\x09\x00\xf2\xff\x70\x8e\xd4\x4f\xc7\x00\x88\ \xc6\xda\xd2\x26\x2a\x79\x0c\xad\x33\x18\xe2\xb9\x3f\x12\x45\xd5\ \xfa\x73\x06\x07\x80\xaf\xd0\x29\x00\x22\xa5\xde\x58\xdf\x54\xdd\ \x4a\x25\x8f\xa1\xa9\x83\x90\xfe\xf6\x48\x39\xf3\x08\x89\xf4\x95\ \xc1\x01\xe0\x16\x3a\x04\x40\x24\xae\x4a\xcd\x09\x3f\xbb\xa6\xc5\ \xd6\xfe\xad\x90\xef\xfd\x91\x70\xb7\x0c\x0e\x00\x0f\xd0\x21\x00\ \x46\x72\xed\xf6\x5c\x71\xa4\xd5\x47\x15\x8f\xb1\xa5\xd4\x77\xf0\ \xd2\x1f\x74\xf0\xc0\xe0\x00\xb0\x8a\x0e\x01\x30\x9c\xd9\x3b\xf2\ \x44\x41\x57\x0f\x55\x3c\xc6\x96\xd9\xe6\x0f\x9f\x8d\xc0\x5c\x82\ \x06\x56\x0d\x0e\x00\xef\xd0\x21\x00\xce\x44\xbd\xb0\x56\xed\x67\ \x77\xbf\x58\x5b\x7e\x67\x8f\xf8\xda\xf6\x5c\xe6\x12\x74\xf1\xce\ \xe0\x00\xb0\x9d\x0e\x01\x30\x94\x85\xfb\x8b\x45\x6b\x2f\xbb\xfb\ \xc5\xda\xca\x7c\xbd\xe2\x1b\xe9\x79\xcc\x25\xe8\x64\xfb\xe0\x00\ \x70\x9c\x0e\x01\x70\xaa\xfb\x0f\x97\x09\x1f\xbb\xfb\xc5\xdc\x6a\ \x7b\xfa\xc4\xcd\x3b\xf3\x99\x4b\xd0\xcd\xf1\xc1\x01\x80\x4d\x80\ \x00\x7c\xc6\x13\x99\x95\x22\xc8\xee\x7e\x31\xb7\xa6\xde\x20\xdf\ \xfa\x43\xeb\xcd\x80\x3e\x09\x00\x3e\x3a\x04\xc0\x27\x7e\x9e\x5b\ \xcb\xee\x7e\xa3\x68\x6d\x7d\x21\xf1\x9d\x7d\x45\xcc\x25\xe8\xca\ \x17\x0e\x00\xf2\xff\x31\x8e\xce\x00\xf0\x89\x35\x25\x8d\x54\xf0\ \x51\xb4\xba\x9e\x3e\x71\xfb\x5e\x7e\xf9\x43\x7b\xe3\x54\x00\xf8\ \x02\x1d\x01\x40\xed\xee\xb7\xb1\x8a\xdd\xfd\x46\xbb\xbf\xff\x4d\ \x3c\xf3\x87\x3b\x7c\x41\x05\x80\xab\xe9\x08\xc0\x6c\x5f\x4d\xc9\ \x16\x69\x0d\x1d\x54\xf0\x51\xb4\x93\xed\x7e\x71\x7d\x3a\x9f\xfa\ \xc1\x35\xae\x56\x01\x60\x3e\x1d\x01\x98\x4b\xed\xee\x77\xb8\xb5\ \x9b\x0a\x3e\x8a\xf6\x51\x73\x17\x9b\xfc\xc0\x6d\xe6\xab\x00\xb0\ \x88\x8e\x00\xcc\x74\xa3\xda\xdd\xaf\x93\xdd\xfd\x46\xd3\xfe\xaf\ \xae\x5d\x5c\x91\x92\xcd\x7c\x82\xdb\x2c\x52\x01\xe0\x41\x3a\x02\ \x30\xcf\x2d\xbb\x0b\x44\xb5\xbf\x97\x0a\x3e\x8a\xf6\x5e\x65\x8b\ \x98\x96\xcc\x5c\x82\x2b\x3d\xa8\x02\xc0\xb3\x74\x04\x60\x96\xf9\ \xb2\xf8\xab\xb7\xd5\x69\xb1\xb7\xdf\x14\x37\x30\x97\xe0\x66\xcf\ \xaa\x00\xf0\x0a\x1d\x01\x98\x63\xde\xae\x82\xf0\x0e\x75\xb4\xd8\ \x9a\xda\x1f\xe1\x85\xdc\x5a\xe6\x12\xdc\xee\x15\x15\x00\xd6\xd1\ \x11\x80\x19\xe6\xca\xe2\x5f\x43\xf1\x8f\xb9\xa9\x9d\x11\x9f\xcc\ \xac\x62\x2e\xc1\x0b\xd6\xa9\x00\xb0\x89\x8e\x00\x4c\x28\xfe\xf9\ \x9c\xe8\x37\x8a\xe6\x0f\xf5\x8b\x07\x0e\x97\x31\x97\xe0\x15\x9b\ \x54\x00\xd8\x46\x47\x00\xde\xa6\x0e\xa4\xe1\x85\xbf\xd8\x5b\x7b\ \x5f\x48\x2c\xca\x28\x61\x2e\xc1\x4b\xb6\xa9\x00\x90\x42\x47\x00\ \xde\xa5\x76\xa6\xab\xa2\xf8\xc7\xdc\xea\x7b\xfa\xc4\x1d\x6c\xed\ \x0b\xef\x49\x51\x01\x60\x17\x1d\x01\x78\xd3\x37\x65\xf1\xaf\xf0\ \x51\xfc\x63\x6d\x65\xdd\x81\xf0\xa3\x13\xe6\x12\x3c\x68\x97\x0a\ \x00\x19\x74\x04\xe0\x3d\x73\x64\xf1\x2f\xa7\xf8\xc7\xdc\xb2\x3a\ \xfc\xe2\xeb\xe9\x79\xcc\x25\x78\x55\x86\x0a\x00\x47\xe9\x08\xc0\ \x5b\x66\xef\xc8\x13\x65\x14\xff\x98\x5b\x46\x73\xb7\x98\x99\xc6\ \xd6\xbe\xf0\xb4\xa3\x2a\x00\x64\xd3\x11\x80\x77\xa8\xed\x7d\xd5\ \xad\x6b\x5a\x6c\x2d\xb9\xbe\x43\x5c\xc9\xd6\xbe\xf0\xbe\x6c\x15\ \x00\x8a\xe8\x08\xc0\x3b\xc5\xbf\x94\xe2\x1f\x73\xfb\x03\x5b\xfb\ \xc2\x1c\x45\x2a\x00\x54\xd0\x11\x80\xfb\xa9\x5b\xd6\x1c\xec\x13\ \x7b\x5b\x53\xd2\xc8\x3c\x82\x49\x2a\x54\x00\xa8\xa7\x23\x00\x77\ \x53\xbf\x5a\x77\x35\x76\x52\xc5\x63\xdc\xda\xf7\xc5\x3c\xb6\xf6\ \x85\x71\xea\x55\x00\x68\xa3\x23\x00\x77\x7b\xbb\xac\x99\x4a\x1e\ \x43\x0b\x0d\x0c\x88\xa7\x4e\xb0\xb5\x2f\x8c\xd4\xa6\x02\x80\x8f\ \x8e\x00\xdc\xeb\xb9\xec\x1a\x2a\x79\x0c\xad\x27\xd4\x2f\x96\x1f\ \x29\x67\x0e\xc1\x54\x3e\x15\x00\x42\x74\x04\xe0\x4e\x4b\x0e\x95\ \x86\x7f\xc5\xd2\xa2\xdf\xda\x77\x31\x5b\xfb\xc2\x6c\x21\x02\x00\ \xe0\x52\xb7\xee\x2e\x08\x17\x32\x5a\x74\xad\x21\x10\x14\x77\xee\ \x2d\x62\x0e\x81\x00\xc0\x23\x00\xc0\x7d\x2e\x4f\xce\x16\x27\xda\ \xfd\x54\xf3\x28\x9b\xda\x19\x51\x1d\x89\xcc\x1c\x02\x3e\x7e\x04\ \xc0\x4b\x80\x80\xcb\xfc\xba\xa8\x81\x6a\x1e\x65\xcb\xe9\xe8\x11\ \x37\xb0\xb5\x2f\xf0\x99\x97\x00\xf9\x0c\x10\x70\x91\xbf\xca\x28\ \xe1\xb9\x7f\x94\xed\x40\x4b\xb7\xb8\x86\xad\x7d\x81\xd3\x3e\x03\ \x64\x23\x20\xc0\x25\x66\xa4\xe6\x88\x4a\xf6\xf8\x8f\xaa\xa5\xb1\ \xb5\x2f\x70\xc6\x8d\x80\xd8\x0a\x18\x70\x89\x4d\xd5\xad\x54\xf4\ \x28\xda\xc6\xaa\xd6\xf0\xfb\x12\xcc\x1d\xe0\x34\x45\x1c\x06\x04\ \xb8\xc4\x43\x47\x2b\xa8\xe8\x51\xb4\x37\xd8\xda\x17\x18\x4e\x36\ \xc7\x01\x03\x2e\xf0\xd5\x94\x6c\x51\xed\xe7\xd6\x7f\xa4\x5b\xfb\ \xfe\x22\xaf\x8e\x79\x03\x0c\x2f\x7c\x1c\x70\x06\x1d\x01\xe8\xed\ \x57\xbc\xf5\x1f\xf1\xd6\xbe\x4f\x9f\x64\x6b\x5f\x20\x02\x19\x2a\ \x00\xec\xa2\x23\x00\x7d\xdd\xbc\x33\x5f\xf8\x43\xfd\x54\xf7\x08\ \xb6\xf6\xfd\xd1\x51\xb6\xf6\x05\x22\xb4\x4b\x05\x80\x14\x3a\x02\ \xd0\xd7\x07\x75\xed\x54\xf7\x11\x5a\x67\x30\x24\x7e\x70\xa0\x94\ \xf9\x02\x44\x2e\x45\x05\x80\x6d\x74\x04\xa0\xa7\x7b\x0f\x96\x52\ \xdd\x47\x68\x8d\x81\xa0\xf8\xce\x3e\xb6\xf6\x05\xa2\xb4\x4d\x05\ \x80\x4d\x74\x04\xa0\x9f\x69\xc9\x59\x22\xbf\xb3\x87\x0a\x3f\x4c\ \xab\xf0\xf5\x8a\xf9\xbb\xd9\xda\x17\x88\xc1\x26\x15\x00\xd6\xd1\ \x11\x80\x7e\x1e\x3b\x5e\x49\x85\x1f\xa6\x95\x74\x07\xc4\x8d\x3b\ \xd8\xda\x17\x88\xd1\x3a\x15\x00\x5e\xa1\x23\x00\xfd\xa8\xbd\xeb\ \x69\x14\x7f\xc0\x26\xaf\xa8\x00\xf0\x2c\x1d\x01\xe8\xe5\x87\x87\ \xcb\xa8\xf2\x14\x7f\xc0\x4e\xcf\xaa\x00\xf0\x20\x1d\x01\xe8\x45\ \x1d\x5e\x43\xa3\xf8\x03\x36\x7a\x50\x05\x80\x45\x74\x04\xa0\x8f\ \x45\x19\x25\x54\x7a\x8a\x3f\x60\xb7\x45\x2a\x00\xcc\xa7\x23\x00\ \x7d\xa4\x35\x74\x50\xed\x29\xfe\x80\xdd\xe6\xab\x00\x30\x83\x8e\ \x00\xf4\xf0\xad\x3d\x85\xe1\xbd\xec\x69\x14\x7f\xc0\x66\x33\x54\ \x00\x98\x4c\x47\x00\x7a\x78\xbd\xa4\x91\x8a\x4f\xf1\x07\x9c\x30\ \x59\x05\x80\x73\xe9\x08\x20\xf1\x2e\x93\x38\xf1\x8f\xe2\x0f\x38\ \xe4\xdc\x3f\x93\xd7\x99\x0a\x01\x7e\x3a\x03\x48\xac\xc5\x07\x78\ \xf9\x8f\xe2\x0f\x38\xc2\xaf\x6a\xff\x27\x01\xa0\x8a\x0e\x01\x12\ \xeb\x9d\x8a\x16\x2a\x3f\xc5\x1f\x70\x42\xd5\xe0\x00\x90\x49\x87\ \x00\x89\x73\x79\x72\xb6\x68\xe9\x0d\x52\xfc\x29\xfe\x80\x13\x32\ \x07\x07\x80\x74\x3a\x04\x48\x9c\x07\x8e\x94\x1b\x5f\xfc\xab\xfc\ \xbd\x14\x7f\xc0\x19\xe9\x83\x03\xc0\xbb\x74\x08\x90\x38\x7f\xac\ \x69\x33\xba\xf8\xfb\x43\xfd\xe2\xbb\x1c\xe9\x0b\x38\xe5\xdd\xc1\ \x01\xe0\x45\x3a\x04\x48\x1c\xd3\x6f\xff\x3f\x99\x59\xc5\x3c\x00\ \x9c\xf3\xe2\xe0\x00\xb0\x9c\x0e\x01\x12\xe3\xb6\x3d\x85\x46\x17\ \xff\xb7\xcb\x9a\x99\x07\x80\xb3\x96\x0f\x0e\x00\xb7\xd2\x21\x40\ \x62\xfc\x63\x56\xb5\xb1\xc5\x5f\x1d\x7a\xa4\x5e\x80\x64\x1e\x00\ \x8e\xba\x75\x70\x00\xb8\x94\x0e\x01\x12\xe3\xbf\xab\x5a\x8d\x2c\ \xfe\x8d\x81\xa0\xb8\x21\x9d\x97\xfe\x80\x04\xb8\x74\x70\x00\x18\ \x2b\xf5\xd3\x29\x80\xf3\xca\xba\x03\x46\x06\x80\xc7\x8e\x57\x32\ \xfe\x80\xf3\x54\xad\x1f\xfb\xa7\x00\xc0\x66\x40\x40\x62\x7c\x5d\ \xfe\x02\x36\xb1\xed\x69\xea\x62\xfc\x81\x04\x6e\x02\x74\x6a\x00\ \xd8\x43\xc7\x00\xce\x7a\xe8\x58\x85\x71\xc5\x3f\xd0\x3f\x20\x6e\ \xd9\x5d\xc0\xf8\x03\x89\xb1\x67\xa8\x00\xb0\x9e\x8e\x01\x9c\xf5\ \x56\x69\x93\x71\x01\xe0\x57\x45\x0d\x8c\x3d\x90\x38\xeb\x87\x0a\ \x00\x2b\xe9\x18\xc0\x59\xbb\x1b\x3b\x8d\x2a\xfe\x4d\xbd\x41\x71\ \x65\x0a\x6f\xfd\x03\x09\xb4\x72\xa8\x00\x70\x3f\x1d\x03\x38\xab\ \xc4\xb0\x17\x00\xdf\x28\x69\x64\xdc\x81\xc4\xba\x7f\xa8\x00\x30\ \x97\x8e\x01\x9c\x73\x99\xa4\x9e\x87\x9b\xd2\xd4\xdf\x94\x67\xff\ \x40\xc2\xcd\x1d\x2a\x00\x7c\x99\x8e\x01\x9c\x33\x7b\x87\x59\x5f\ \x00\x7c\xd4\xcc\x9b\xff\x80\x06\xbe\x3c\x54\x00\x48\x92\xfc\x74\ \x0e\xe0\x8c\xef\x1f\x28\x31\x2a\x00\x3c\xca\x77\xff\x40\xa2\xa9\ \x1a\x9f\x74\x5a\x00\xb0\x42\xc0\x61\x3a\x08\x70\xc6\x4f\x4e\x56\ \x19\x53\xfc\x9b\x7b\x83\x62\x3a\x5b\xfe\x02\x89\x76\x78\x70\xcd\ \x3f\x35\x00\xfc\x96\x0e\x02\x9c\xf1\x6a\x51\x83\x31\x01\x60\x6d\ \x69\x13\x63\x0e\x24\xde\x6f\x87\x0b\x00\x8f\xd1\x41\x80\x33\xb6\ \x56\xb7\x19\xf3\xf2\xdf\xad\xbc\xfc\x07\xe8\xe0\xb1\xe1\x02\xc0\ \x7c\x3a\x08\x70\x46\x46\x4b\xb7\x11\x01\x60\x3f\x2f\xff\x01\xba\ \x98\x3f\x5c\x00\xb8\x88\x0e\x02\x9c\x71\xb2\xdd\x6f\x44\x00\xf8\ \x69\x76\x0d\xe3\x0d\xe8\xe1\xa2\x33\x06\x00\x2b\x04\xd4\xd2\x49\ \x80\xfd\x0a\xbb\xcc\xd8\x04\xe8\xf6\xbd\x85\x8c\x37\x90\x78\xb5\ \xa7\xd6\xfb\xa1\x02\x40\x32\x1d\x05\xd8\xaf\xd2\xd7\xeb\xf9\xe2\ \xdf\xd2\x1b\x64\xac\x01\x3d\x24\x47\x12\x00\xfe\x85\x8e\x02\xec\ \xd7\x18\x08\x7a\x3e\x00\xa4\xd4\x77\x30\xd6\x80\x1e\xfe\x25\x92\ \x00\xb0\x84\x8e\x02\xec\xd7\x19\x0c\x79\x3e\x00\xac\xca\xad\x65\ \xac\x01\x3d\x2c\x89\x24\x00\xcc\xa0\xa3\x00\xfb\x05\x07\xbc\x7f\ \x0e\xc0\xf7\x3e\x2a\x62\xac\x01\x3d\xcc\x88\x24\x00\x8c\x95\x82\ \x74\x16\x60\x9f\xcb\x93\xb3\x3d\x5f\xfc\xbb\x82\xfd\x62\x5a\x32\ \x63\x0d\x68\x40\xd5\xf4\xb1\x23\x06\x00\x2b\x04\x64\xd1\x61\x80\ \x7d\x66\xa6\xe5\x78\x3e\x00\xec\x6e\xec\x64\xac\x01\x3d\x64\x0d\ \x55\xeb\xcf\x14\x00\xd6\xd2\x61\x80\x7d\xae\x4f\xcf\xf5\x7c\x00\ \x78\xb9\xa0\x9e\xb1\x06\xf4\xb0\x36\x9a\x00\xb0\x94\x0e\x03\xec\ \x73\x65\x8a\xf7\x1f\x01\x2c\xce\x28\x61\xac\x01\x3d\x2c\x8d\x26\ \x00\x5c\x4a\x87\x01\xf6\xf2\x87\xfa\x3d\x5b\xfc\x7b\xe4\xdf\xed\ \x8a\x14\x4e\xff\x03\x34\x71\x69\xc4\x01\xc0\x0a\x01\x75\x74\x1a\ \x60\x9f\xba\x9e\x3e\xcf\x06\x00\x75\xce\x01\x63\x0c\x68\xa1\xee\ \x4c\x75\x7e\xb8\x00\xb0\x89\x8e\x03\xec\x93\xdf\xd9\xe3\xd9\x00\ \xf0\xeb\xa2\x06\xc6\x18\xd0\xc3\xa6\x58\x02\xc0\xe3\x74\x1c\x60\ \x9f\x03\x1e\x3e\x0d\x70\xe9\xa1\x32\xc6\x18\xd0\xc3\xe3\xb1\x04\ \x80\xeb\xe8\x38\xc0\x3e\x6a\x9b\x5c\x2f\x36\xb5\xc1\xd1\xd5\xa9\ \x39\x8c\x31\xa0\x87\xeb\x62\x09\x00\x63\x24\x1f\x9d\x07\xd8\xe3\ \xbf\x2a\x5b\x3d\x19\x00\x8e\xb7\xf9\x18\x5f\x40\x0f\xaa\x86\x8f\ \x89\x3a\x00\x58\x21\x60\x07\x1d\x08\xd8\xe3\xa7\xd9\x35\x9e\x0c\ \x00\x6b\x4b\x9b\x18\x5f\x40\x0f\x3b\x86\xab\xf1\x23\x05\x80\x17\ \xe8\x40\xc0\x1e\xdf\xde\x5b\xe8\xc9\x00\xf0\x37\x47\xca\x19\x5f\ \x40\x0f\x2f\x8c\x26\x00\x7c\x8b\x0e\x04\xec\x71\x99\xd4\xda\xeb\ \xad\x13\x01\xfb\x07\x84\x98\x95\x96\xcb\xf8\x02\x7a\xf8\xd6\x68\ \x02\xc0\x04\xa9\x9f\x4e\x04\xec\x91\xea\xb1\x17\x01\x73\x3b\x7a\ \x18\x57\x40\x0f\xaa\x76\x4f\x88\x39\x00\x58\x21\xe0\x20\x1d\x09\ \xd8\xe3\xc5\xbc\x5a\x4f\x05\x80\xdf\x97\x37\x33\xae\x80\x1e\x0e\ \x8e\x54\xdf\x23\x09\x00\x2b\xe9\x48\xc0\x1e\x77\x7d\x54\xcc\xf7\ \xff\x00\xec\xb0\x32\x1e\x01\xe0\x06\x3a\x12\xb0\xef\x3d\x80\x02\ \x8f\xec\x08\x58\xee\xeb\x0d\xff\x7d\x18\x57\x40\x0b\x37\xc4\x23\ \x00\x24\x49\x2d\x74\x26\x60\x8f\x27\x32\x2b\x3d\x11\x00\x5e\xca\ \xaf\x63\x3c\x01\x3d\xa8\x9a\x9d\x34\xea\x00\x60\x85\x80\x0d\x74\ \x28\x60\x8f\xcb\x93\xb3\x45\x85\xfc\xf5\xec\xe6\xd6\xdb\x3f\x20\ \xae\x4f\xe7\xed\x7f\x40\x13\x1b\x22\xa9\xed\x91\x06\x80\xfb\xe8\ \x50\xc0\x3e\xcf\x66\x57\xbb\x3a\x00\xbc\x5f\xdb\xc6\x38\x02\xfa\ \xb8\x2f\x9e\x01\x60\x92\x34\x40\xa7\x02\xf6\xb8\x22\x25\x5b\xd4\ \xbb\xf4\x78\x60\xf5\xeb\xff\xb6\xdd\x05\x8c\x23\xa0\x07\x55\xab\ \x27\xc5\x2d\x00\x58\x21\xe0\x18\x1d\x0b\xd8\xe7\xd1\xe3\xee\x7c\ \x17\xe0\x57\x1c\xfd\x0b\xe8\xe4\x58\xa4\x75\x3d\x9a\x00\xb0\x9a\ \x8e\x05\xec\xf5\x5a\x71\xa3\xab\x8a\x7f\x69\x77\x20\x7c\xf7\x82\ \xb1\x03\xb4\xb1\xda\x8e\x00\x70\x13\x1d\x0b\xd8\xff\x59\xe0\xf6\ \x86\x4e\xd7\x04\x80\xff\x77\xb0\x94\x71\x03\xf4\x72\x93\x1d\x01\ \x40\x1d\x0f\xdc\x41\xe7\x02\xf6\x9a\x99\x96\x23\x0a\xbb\x02\xda\ \x17\xff\x97\x0b\xea\x19\x2f\x40\x2f\xaa\x46\x8f\x89\x7b\x00\xb0\ \x42\xc0\x66\x3a\x18\xb0\xdf\xfc\xdd\x05\xa2\xda\xaf\xef\xa7\x81\ \xbf\x2d\xe3\xc8\x5f\x40\x43\x9b\xa3\xa9\xe9\xd1\x06\x00\x3e\x07\ \x04\x1c\x72\xdd\xf6\x5c\xb1\xaf\xb9\x4b\xbb\xe2\xbf\xb9\xba\x95\ \x1d\xff\x00\x17\x7f\xfe\x17\x6b\x00\xb8\x40\xea\xa5\x93\x01\xe7\ \x36\x09\x7a\xa3\x44\x9f\x17\x03\xff\xb3\xa2\x39\xfc\x67\x62\x6c\ \x00\xed\xa8\xda\x7c\x81\x6d\x01\xc0\x0a\x01\xef\xd3\xd1\x80\xb3\ \x1e\x39\x5e\x21\xba\x83\xfd\x09\x2b\xfc\x4d\xbd\x41\xb1\xfc\x48\ \x39\x63\x01\xe8\xeb\xfd\x68\xeb\x79\x2c\x01\xe0\x5e\x3a\x1a\x70\ \x9e\xda\x6a\xf7\xcd\xd2\x26\xe1\x0f\x39\x1b\x04\x76\x34\x76\x8a\ \x1b\xd2\xf3\x18\x03\x40\x6f\xf7\x3a\x11\x00\xce\x97\x7a\xe8\x6c\ \x20\x31\x54\x31\xfe\x5d\x59\x93\xe8\xb1\x31\x08\x04\x07\x06\xc4\ \xb6\xda\x76\x71\x4f\x46\x31\x7d\x0e\xe8\x4f\xd5\xe4\xf3\x6d\x0f\ \x00\x56\x08\xd8\x42\x87\x03\x89\x75\xe3\x8e\x3c\xb1\x2a\xb7\x56\ \xec\x96\xbf\xd0\xe3\x75\x57\x40\x1d\xe9\xbb\xa6\xa4\x51\xcc\xd9\ \x99\x4f\x1f\x03\xee\xb1\x25\x96\x5a\x1e\x6b\x00\x58\x4c\x87\x03\ \xfa\xb8\x32\x25\x5b\xdc\x77\xa8\x4c\xbc\x55\xda\x24\x0e\xb6\x74\ \x8b\x92\xee\x80\x68\xef\x0b\x89\x81\x33\x14\x7a\x15\x18\xea\x7a\ \xfa\xc4\x91\x56\x9f\x58\x2b\xff\x99\x87\x8e\x56\x88\xaf\x73\x9b\ \x1f\x70\xab\xc5\x4e\x06\x80\xf3\x24\x1f\x9d\x0e\xe8\x6d\x7a\x72\ \x76\xf8\xd7\xfc\x82\x8f\x8a\xc4\x1d\x7b\x0b\xc3\x77\x0d\xae\x64\ \xeb\x5e\xc0\x4b\x54\x2d\x3e\xcf\xb1\x00\x60\x85\x80\x8d\x74\x3c\ \x00\x00\x09\xb5\x31\xd6\x3a\x3e\x9a\x00\x70\x37\x1d\x0f\x00\x40\ \x42\xdd\x9d\x88\x00\x70\xae\xd4\x45\xe7\x03\x00\x90\x10\xaa\x06\ \x9f\xeb\x78\x00\xb0\x42\xc0\x7b\x0c\x00\x00\x00\x09\xf1\xde\x68\ \x6a\xf8\x68\x03\xc0\xed\x0c\x00\x00\x00\x09\x71\x7b\x22\x03\x40\ \x92\x54\xc1\x20\x00\x00\xe0\x28\x55\x7b\x93\x12\x16\x00\xac\x10\ \xf0\x3c\x03\x01\x00\x80\xa3\x9e\x1f\x6d\xfd\x8e\x47\x00\x98\x2c\ \x85\x18\x0c\x00\x00\x1c\xa1\x6a\xee\xe4\x84\x07\x00\x2b\x04\x6c\ \x63\x40\x00\x00\x70\xc4\xb6\x78\xd4\xee\x78\x05\x80\x05\x0c\x08\ \x00\x00\x8e\x58\xa0\x53\x00\x38\x5b\xaa\x61\x50\x00\x00\xb0\x95\ \xaa\xb5\x67\x6b\x13\x00\xac\x10\xb0\x8a\x81\x01\x00\xc0\x56\xab\ \xe2\x55\xb7\xe3\x19\x00\xa6\x48\x03\x0c\x0e\x00\x00\xb6\x50\x35\ \x76\x8a\x76\x01\xc0\x0a\x01\xa9\x0c\x10\x00\x00\xb6\x48\x8d\x67\ \xcd\x8e\x77\x00\xb8\x87\x01\x02\x00\xc0\x16\xf7\xe8\x1c\x00\xce\ \x91\x1a\x18\x24\x00\x00\xe2\x4a\xd5\xd6\x73\xb4\x0d\x00\xec\x0c\ \x08\x00\x80\x2d\x9e\x8f\x77\xbd\xb6\x23\x00\x5c\x24\xf9\x19\x2c\ \x00\x00\xe2\x42\xd5\xd4\x8b\xb4\x0f\x00\x56\x08\x58\xc3\x80\x01\ \x00\x10\x17\x6b\xec\xa8\xd5\x76\x05\x80\xa9\x52\x3f\x83\x06\xe8\ \x63\x5a\x72\x96\xb8\x21\x3d\x4f\xcc\xdb\x55\x20\xae\x4e\xcd\xa1\ \x4f\x00\x77\x50\xb5\x74\xaa\x6b\x02\x80\x15\x02\xb6\x32\x70\x80\ \xb3\x54\x61\xff\xd1\xd1\x72\xb1\xb6\xb4\x49\xfc\xb1\xa6\x4d\xec\ \x6b\xee\x12\xf9\x9d\x3d\xa2\xa9\x37\x28\x42\x03\x03\x62\x70\xf3\ \x87\xfa\x45\x85\xaf\x57\x1c\x6d\xf3\x89\x94\xfa\x0e\xf1\x6e\x45\ \x8b\x58\x99\x53\x2b\xe6\xef\x2e\xa0\x2f\x01\x7d\x6c\xb5\xab\x4e\ \xdb\x19\x00\xe6\x30\x70\x80\xfd\xee\xd8\x5b\x28\x7e\x91\x57\x27\ \xf6\xcb\x62\xdf\xd7\xff\xd9\x22\x1f\x6b\x2b\xeb\x0e\x88\xb7\xcb\ \x9a\xc5\xfd\x87\xcb\xc4\x95\x29\xd9\xf4\x33\x90\x38\x73\x5c\x17\ \x00\xac\x10\x70\x80\xc1\x03\xe2\xef\x9a\xb4\x1c\xf1\xeb\xa2\x06\ \x51\xdb\xd3\x27\xec\x6e\xea\x4e\xc1\x07\x75\xed\xe2\x76\x19\x34\ \xe8\x7b\xc0\x51\x07\xec\xac\xd1\x76\x07\x00\x36\x06\x02\xe2\xe8\ \xaa\xd4\x1c\xf1\xcb\xfc\x3a\xd1\xd6\x17\x12\x4e\x37\xf5\x08\xe1\ \xbf\xab\x5a\xc5\x37\x77\xe6\x33\x16\x80\x0b\x37\xfe\x71\x3a\x00\ \xa8\x53\x02\x4b\x19\x44\x60\x74\xa6\x27\x67\x8b\xe7\xb3\x6b\x44\ \x43\x20\x28\x12\xdd\x02\xfd\x03\xe2\xad\xd2\x26\xf1\xb5\xed\xb9\ \x8c\x0d\x60\x1f\x55\x3b\xcf\x76\x6d\x00\xb0\x42\xc0\x23\x0c\x24\ \x10\xbb\xc5\x19\x25\xa2\xd2\xd7\x2b\x74\x6b\x1d\x7d\x21\xf1\x93\ \x93\x55\x8c\x11\x60\x8f\x47\xec\xae\xcf\x4e\x04\x80\xf3\xa4\x56\ \x06\x13\x88\xde\x73\xf2\x57\x7f\xbc\x5e\xec\xb3\xab\xfd\xb6\xac\ \x29\xfc\x89\x21\xe3\x05\xc4\x8d\xaa\x99\xe7\xb9\x3e\x00\xb0\x3d\ \x30\x10\xdb\x2d\xff\x0d\x95\x2d\xc2\x2d\x6d\x77\x63\xa7\x98\x95\ \xc6\x23\x01\x20\x4e\x9e\x77\xa2\x36\x3b\x15\x00\x26\x48\x2d\x0c\ \x2a\x30\xb2\x6f\xa4\xe7\x89\xa3\xad\x3e\xe1\xb6\x56\xd2\x1d\x10\ \xb7\xb2\x87\x00\x30\x5a\xaa\x56\x4e\xf0\x4c\x00\xb0\x42\xc0\x33\ \x0c\x2c\x30\xbc\x3b\xf7\x15\x89\x7a\x07\x3e\xed\xb3\xab\xb5\xf7\ \x85\xc4\xf7\x0f\x94\x30\x96\x40\xec\x9e\x71\xaa\x2e\x3b\x19\x00\ \xd4\xbb\x00\x1c\x15\x0c\x9c\xc1\x8d\x3b\xf2\x1c\xf9\xae\xdf\xee\ \xa6\x3e\x51\x64\x37\x41\x20\x26\x0d\x4e\x3c\xfb\x77\x3c\x00\x58\ \x21\xe0\x09\x06\x18\x18\xfa\xfb\xfe\x13\xed\x7e\xe1\x95\x56\xd8\ \x15\x10\x33\xd3\x38\x6f\x00\x88\xd2\x13\x4e\xd6\x64\xa7\x03\xc0\ \x38\xa9\x86\x41\x06\x3e\x75\x99\xa4\x76\xda\xf3\x5a\x4b\x6f\xe8\ \xe4\xeb\x00\x20\x72\xaa\x36\x8e\xf3\x6c\x00\xb0\x42\xc0\x8f\x19\ \x68\xe0\x53\xbf\x29\x6e\x10\x5e\x6d\x6f\x94\x34\x32\xc6\x40\x64\ \x7e\xec\x74\x3d\x4e\x44\x00\x18\x2b\x55\x30\xd8\x40\x96\x78\x3c\ \xb3\x52\x78\xbd\x3d\x21\xff\x8e\x8c\x35\x30\x2c\x55\x13\xc7\x7a\ \x3e\x00\x58\x21\x60\x39\x03\x0e\xd3\xa9\x03\x7d\x5a\x7a\x83\x9e\ \x0f\x00\xcd\xf2\xef\x38\x23\x95\xf7\x01\x80\x61\x2c\x4f\x44\x2d\ \x4e\x54\x00\x18\x23\x15\x33\xe8\x30\xd9\x6b\xc5\x8d\xc2\x94\xf6\ \x6a\x51\x03\x63\x0e\x0c\x4d\xd5\xc2\x31\xc6\x04\x00\x2b\x04\x2c\ \x61\xe0\x61\xaa\xd9\x3b\xf2\xc2\xc7\xec\x9a\xd2\x7c\xf2\xef\xfa\ \xf5\xf4\x3c\xc6\x1e\x38\xdd\x92\x44\xd5\xe1\x44\x06\x80\x24\x29\ \x93\xc1\x87\x89\x36\x56\xb5\x0a\xd3\xda\xfa\xf2\x66\xc6\x1e\xf8\ \x2c\x55\x03\x93\x8c\x0b\x00\x56\x08\x98\xcb\x04\x80\x69\xee\xd8\ \x5b\x28\x42\x03\x03\xc6\x05\x00\x75\xa8\xd1\xbc\x5d\x6c\x10\x04\ \x0c\x32\x37\x91\x35\x38\xa1\x01\xc0\x0a\x01\x9b\x99\x04\x30\xc9\ \x87\x75\x1d\xc2\xd4\xa6\xee\x7c\x30\x07\x80\xb0\xcd\x89\xae\xbf\ \x3a\x04\x80\x29\x52\x80\xc9\x00\x13\x7c\x35\x25\xdb\xa8\x67\xff\ \x43\x7d\x11\x70\x19\xf3\x00\x50\x35\x6f\x8a\xf1\x01\xc0\x0a\x01\ \xab\x99\x10\x30\xc1\xf2\x23\xe5\xc2\xf4\xb6\x70\x7f\x31\x73\x01\ \xa6\x5b\xad\x43\xed\xd5\x25\x00\x8c\x97\xea\x98\x14\xf0\xba\x77\ \x2b\x5a\x8c\x0f\x00\xbf\xe2\x93\x40\x98\x4d\xd5\xba\xf1\x04\x80\ \xcf\x86\x80\x65\x4c\x0c\x78\x9d\x17\x4e\xfb\x1b\x6d\xcb\x6c\xf3\ \x33\x17\x60\xb2\x65\xba\xd4\x5d\x9d\x02\xc0\x59\xd2\x61\x26\x07\ \xbc\xea\x3b\xfb\x8a\x04\x4d\x88\xfe\x01\x21\xae\x4f\xcf\x65\x4e\ \xc0\x44\xaa\xc6\x9d\x45\x00\x18\x3a\x04\xcc\x66\x82\xc0\xab\x5e\ \x2e\xa8\xa7\xfa\x5b\xed\xc9\xcc\x2a\xe6\x04\x4c\x34\x5b\xa7\x9a\ \xab\x55\x00\xb0\x42\xc0\x06\x26\x09\xbc\x68\x4b\x75\x1b\x95\x9f\ \xad\x81\x61\xae\x0d\xba\xd5\x5b\x1d\x03\xc0\x25\x92\x8f\xc9\x02\ \xaf\xd9\xd3\xd4\x45\xe5\xb7\xda\x86\xca\x16\xe6\x04\x4c\xa2\x6a\ \xda\x25\x04\x80\xc8\x42\xc0\x53\x4c\x18\x78\x4d\x6e\x47\x0f\x95\ \xdf\x6a\x69\xf5\x1d\xcc\x09\x98\xe4\x29\x1d\x6b\xad\xae\x01\xe0\ \x6c\xe9\x08\x93\x06\x5e\xd2\x18\x08\x52\xf9\xad\x76\xac\xcd\xc7\ \x9c\x80\x29\x54\x2d\x3b\x9b\x00\x10\x5d\x08\x98\x29\x05\x99\x3c\ \xf0\x82\x69\xc9\x59\x46\xee\xff\x7f\xa6\x56\xe5\xef\x65\x5e\xc0\ \x04\xaa\x86\xcd\xd4\xb5\xce\x6a\x1b\x00\xac\x10\xf0\x12\x13\x08\ \x5e\xa0\x8e\xc2\xa5\x7d\xda\xd4\x76\xc8\xcc\x0b\x18\xe0\x25\x9d\ \x6b\xac\xee\x01\x60\x9c\x54\xc8\x24\x82\xdb\xdd\xbe\xb7\x90\xaa\ \x7f\x4a\xbb\x2a\x35\x87\xb9\x01\x2f\x53\xb5\x6b\x1c\x01\x60\xf4\ \x47\x06\x0f\x30\x99\xe0\x66\xdf\xdc\x99\x4f\xc5\x1f\xd4\xd4\xe3\ \x10\x0e\x05\x82\x87\xa9\x9a\x35\x57\xf7\xfa\xaa\x7d\x00\xb0\x42\ \xc0\x9b\x4c\x28\xb8\xd9\x95\x29\xd9\x54\xfd\x41\xad\xa9\x37\xc8\ \xbc\x80\x97\xbd\xe9\x86\xda\xea\x96\x00\x30\x51\xaa\x65\x52\xc1\ \xcd\x3a\x83\x21\x2a\xbf\xd5\x0a\x3a\x7b\x98\x13\xf0\x2a\x55\xab\ \x26\x12\x00\xe2\x1b\x02\x16\x32\xb1\xe0\x66\x65\xbe\x5e\x2a\xbf\ \xd5\x32\x9a\xbb\x99\x13\xf0\xaa\x85\x6e\xa9\xab\xae\x09\x00\x56\ \x08\xd8\xc2\xe4\x82\x5b\x1d\x6d\xf5\x51\xf9\xad\xf6\x41\x6d\x3b\ \x73\x02\x5e\xb4\xc5\x4d\x35\xd5\x6d\x01\x60\x92\xd4\xc4\x24\x83\ \x1b\xa5\xd6\x77\x50\xf9\xad\xf6\x9f\x15\xcd\xcc\x09\x78\x8d\xaa\ \x4d\x93\x08\x00\xf6\x86\x80\x05\x4c\x34\xb8\x91\xda\xff\x9e\xf6\ \x71\xfb\xf7\x42\x0e\x03\x82\xe7\x2c\x70\x5b\x3d\x75\x5d\x00\xb0\ \x42\xc0\xeb\x4c\x36\xb8\xcd\x2f\xf2\xea\xa8\xfc\x56\x7b\xf4\x78\ \x25\x73\x02\x5e\xf2\xba\x1b\x6b\xa9\x5b\x03\xc0\xe7\xa4\x7c\x26\ \x1d\xdc\xe4\x0e\x36\x03\xfa\xd3\x1e\x00\xd7\x6e\xcf\x65\x4e\xc0\ \x2b\x54\x2d\xfa\x1c\x01\xc0\xd9\x10\x30\x4b\xea\x63\xf2\xc1\x4d\ \xaa\xfd\x7d\xc6\x07\x80\x43\x2d\x7c\x01\x00\xcf\x50\x35\x68\x96\ \x5b\xeb\xa8\x6b\x03\x80\x15\x02\x9e\x66\x02\xc2\x4d\xde\xad\xe0\ \x3d\x80\x7f\xce\xaf\x63\x2e\xc0\x2b\x9e\x76\x73\x0d\x75\x7b\x00\ \x48\x92\x76\x30\x09\xe1\x16\x7f\x7b\xa4\xdc\xf8\x00\x70\xe7\xde\ \x22\xe6\x02\xbc\x40\xd5\x9e\x24\x02\x40\x62\x43\xc0\x64\xa9\x95\ \xc9\x08\x37\xb8\x3a\x35\x47\x04\xfa\xcd\x3d\x16\xb8\xa6\xa7\x8f\ \x79\x00\x2f\x50\x35\x67\xb2\xdb\xeb\xa7\xeb\x03\x80\x15\x02\x16\ \x31\x21\xe1\x16\x7b\x9a\xba\x8c\x0d\x00\xea\x11\x08\x73\x00\x1e\ \xb0\xc8\x0b\xb5\xd3\x13\x01\xc0\x0a\x01\x6f\x33\x29\xe1\x06\x0f\ \x1c\x2e\x33\xb2\xf8\x07\x07\x06\xc4\xad\xbb\x0b\x98\x03\x70\xbb\ \xb7\xbd\x52\x37\xbd\x14\x00\xc6\x4b\xb9\x4c\x4e\xb8\xc1\xbe\x66\ \xf3\xee\x02\xb0\xfb\x1f\x3c\x40\xd5\x98\xf1\x04\x00\x3d\x43\xc0\ \x34\xa9\x83\x49\x0a\xdd\x7d\x77\x5f\x91\x30\xe9\x55\x80\xae\x60\ \xbf\xf8\x7a\x7a\x1e\x63\x0f\x37\x53\xb5\x65\x9a\x97\x6a\xa6\xa7\ \x02\x80\x15\x02\xee\x92\x06\x98\xac\xd0\xdd\xa6\xea\x56\x63\x02\ \xc0\xbf\x16\xd4\x33\xe6\x70\x33\x55\x53\xee\xf2\x5a\xbd\xf4\x5c\ \x00\xb0\x42\xc0\x6a\x26\x2c\x74\x37\x67\x67\xbe\xf0\x87\xfa\x3d\ \x5f\xfc\xeb\x7b\xfa\xc4\x55\xa9\x39\x8c\x39\xdc\x6c\xb5\x17\x6b\ \xa5\x57\x03\x80\xda\x1f\x20\x85\x49\x0b\xdd\xbd\x5a\xd4\xe0\xf9\ \x00\xf0\xf7\x27\xaa\x18\x6b\xb8\x59\x8a\xdb\xbf\xf7\x37\x2a\x00\ \x58\x21\xe0\x42\xa9\x9c\xc9\x0b\x9d\x5d\x9e\x9c\x2d\x52\x3c\x7c\ \x4c\xf0\x9a\x92\x46\xc6\x19\x6e\xa6\x6a\xc8\x85\x5e\xad\x93\x9e\ \x0d\x00\x83\xce\x0b\xe8\x61\x12\x43\x67\x57\xa6\x64\x8b\x03\x2d\ \xdd\x9e\x2b\xfe\x1b\xab\x5a\x19\x5f\xb8\x99\xaa\x1d\xb3\xbc\x5c\ \x23\x3d\x1d\x00\xac\x10\xb0\x8c\x89\x0c\xdd\x5d\x93\x96\x23\x72\ \x3b\x7a\x3c\x53\xfc\xd3\x1b\x3a\xc3\x77\x37\x18\x5b\xb8\xd8\x32\ \xaf\xd7\x47\xcf\x07\x00\x2b\x04\xbc\xc6\x64\x86\xee\xbe\x91\x9e\ \x27\x2a\x7d\xbd\xae\x2f\xfe\x47\x5b\x7d\xbc\xf4\x07\xb7\x7b\xcd\ \x84\xda\x68\x4a\x00\x18\x2b\xed\x67\x52\x43\x77\xb7\xec\x2e\x10\ \xb5\x3d\xee\x3d\x32\xf8\x64\xbb\x5f\x7c\x6d\x7b\x2e\x63\x09\x37\ \x53\xb5\x62\x2c\x01\xc0\x5b\x21\xe0\x62\xa9\x8c\xc9\x0d\xdd\xa9\ \x02\x9a\xe6\xc2\x17\x03\xd7\x97\x37\x8b\x2b\x52\xb8\xed\x0f\x57\ \x53\x35\xe2\x62\x53\xea\xa2\x31\x01\xc0\x0a\x01\xd3\xa5\x36\x26\ \x39\xdc\xe0\x67\x39\x35\xae\x38\x39\xb0\x33\x18\x12\x0f\x1f\xab\ \x60\xcc\xe0\x76\xaa\x36\x4c\x37\xa9\x26\x1a\x15\x00\xac\x10\x30\ \x4f\xea\x63\xb2\xc3\x0d\xee\xdc\x5b\x24\x0a\xbb\x02\xda\x16\xff\ \xac\x0e\xbf\x98\xcf\x01\x3f\x70\x3f\x55\x13\xe6\x99\x56\x0f\x8d\ \x0b\x00\x56\x08\x58\xca\x84\x87\x5b\xa8\x17\xea\x7e\x5f\xde\x2c\ \x7a\x35\xba\x1b\xa0\xee\x4c\xac\x2d\x6d\xe2\x96\x3f\xbc\x62\xa9\ \x89\xb5\xd0\xc8\x00\x60\x85\x80\x15\x4c\x7a\xb8\x6d\xeb\xe0\xb7\ \xcb\x9a\x13\xba\x7d\xb0\x2a\xfc\x2a\x8c\xdc\xb8\x83\x83\x7d\xe0\ \x19\x2b\x4c\xad\x83\xc6\x06\x00\x2b\x04\xac\x67\xf2\xc3\x6d\xd4\ \xa9\x7a\xaf\x97\x34\x8a\xee\x60\x3f\x85\x1f\x18\x9d\xf5\x26\xd7\ \x40\xd3\x03\x80\xfa\x3c\x70\x27\x17\x01\xdc\xfa\xb5\xc0\xea\xbc\ \x3a\xb1\xb7\xa9\x4b\xf4\xd8\x70\x57\x20\x38\x30\x20\x0e\xb5\x74\ \x87\x4f\xf2\xa3\xf0\xc3\x83\x76\x9a\xf2\xb9\x1f\x01\xe0\xcc\x21\ \x60\xa2\x94\xcb\xc5\x00\xb7\x6f\x27\xbc\xf4\x50\x99\x78\xa3\xa4\ \x31\xfc\x62\x5e\xac\xaf\x0b\xa8\x8d\x88\xde\xad\x68\x11\x0f\x1d\ \xad\x10\x33\xd3\xd8\xcc\x07\x9e\xa5\xd6\xfc\x89\xa6\xd7\x3f\xe3\ \x03\x80\x15\x02\xa6\x48\x0d\x5c\x14\xf0\x8a\x59\x69\xb9\xe2\x8e\ \xbd\x85\x62\xc9\xc1\x52\xf1\xd8\xf1\x4a\xb1\x32\xa7\x56\xfc\xba\ \xa8\x41\xbc\x57\xd9\x22\xb6\x56\xb7\x89\xb7\x4a\x9b\xc4\x4b\xf9\ \x75\xe2\xa9\x13\x55\x62\x99\x0c\x0e\x77\xee\x2b\x0a\x3f\x5a\xa0\ \xef\x60\x00\xb5\xd6\x4f\xa1\xf6\x11\x00\x06\x87\x80\x6b\xa5\x0e\ \x2e\x0e\x00\xf0\x2c\xb5\xc6\x5f\x4b\xcd\x23\x00\x0c\x15\x02\xe6\ \x48\x3e\x2e\x12\x00\xf0\x1c\xb5\xb6\xcf\xa1\xd6\x11\x00\x86\x0b\ \x01\xb7\x49\x01\x2e\x16\x00\xf0\x0c\xb5\xa6\xdf\x46\x8d\x23\x00\ \x44\x12\x02\xbe\x27\x05\xb9\x68\x00\xc0\xf5\xd4\x5a\xfe\x3d\x6a\ \x1b\x01\x20\x9a\x10\xf0\x03\xa9\x9f\x8b\x07\x00\x5c\x4b\xad\xe1\ \x3f\xa0\xa6\x11\x00\x62\x09\x01\xcb\xa5\x01\x2e\x22\x00\x70\x1d\ \xb5\x76\x2f\xa7\x96\x11\x00\x46\x13\x02\x1e\xe7\x42\x02\x00\xd7\ \x79\x9c\x1a\x46\x00\x88\x47\x08\x78\x8e\x8b\x09\x00\x5c\xe3\x39\ \x6a\x17\x01\x20\x9e\x21\xe0\x97\x5c\x54\x00\xa0\xbd\x5f\x52\xb3\ \x08\x00\x84\x00\x00\xa0\xf8\x83\x00\xc0\xe3\x00\x00\xe0\xb6\x3f\ \x08\x00\xa3\x7f\x31\x90\xaf\x03\x00\x40\x8f\xb7\xfd\x79\xe1\x8f\ \x00\xe0\xf8\x27\x82\xec\x13\x00\x00\x89\xfd\xce\x9f\x4f\xfd\x08\ \x00\x09\xdb\x2c\x88\x1d\x03\x01\x20\x31\x3b\xfc\xb1\xc9\x0f\x01\ \x20\xe1\xdb\x06\x73\x76\x00\x00\x38\x27\xc0\xf6\xbe\x04\x00\x9d\ \x0e\x10\xe2\x14\x41\x00\xb0\x9f\x5a\x6b\x39\xd8\x87\x00\xa0\xdd\ \x51\xc2\x1d\x5c\x9c\x00\x60\x1b\xb5\xc6\x72\xa4\x2f\x01\x40\xcb\ \x10\x70\xad\xd4\xc0\x45\x0a\x00\x71\xa7\xd6\xd6\x6b\xa9\x35\x04\ \x00\x9d\x43\xc0\x14\x29\x97\x8b\x15\x00\xe2\x46\xad\xa9\x53\xa8\ \x31\x04\x00\x37\x84\x80\x89\xd2\x4e\x2e\x5a\x00\x18\x35\xb5\x96\ \x4e\xa4\xb6\x10\x00\xdc\x14\x02\xc6\x4a\xeb\xb9\x78\x01\x20\x66\ \x6a\x0d\x1d\x4b\x4d\x21\x00\xb8\x35\x08\xac\xe0\x22\x06\x80\xa8\ \xad\xa0\x86\x10\x00\xbc\x10\x02\x96\x4a\x7d\x5c\xd0\x00\x30\x22\ \xb5\x56\x2e\xa5\x76\x10\x00\xbc\x14\x02\xe6\x49\x6d\x5c\xdc\x00\ \x70\x46\x6a\x8d\x9c\x47\xcd\x20\x00\x78\x31\x04\x4c\x97\xca\xb8\ \xc8\x01\xe0\x34\x6a\x6d\x9c\x4e\xad\x20\x00\x78\x39\x04\x5c\x2c\ \xed\xe7\x62\x07\x80\x3f\x51\x6b\xe2\xc5\xd4\x08\x02\x80\x29\x5f\ \x08\xfc\x07\x17\x3d\x00\x84\xd7\x42\xde\xf4\x27\x00\x18\xf9\x72\ \xa0\x9f\x05\x00\x80\x81\xfc\xbc\xec\x47\x00\x30\x3d\x04\xcc\x94\ \x4a\x59\x0c\x00\x18\x44\xad\x79\x33\xa9\x01\x04\x00\x42\xc0\x87\ \x59\x9f\x97\xfe\x8f\x45\x01\x80\x01\xd4\x5a\xf7\x79\xd6\x7e\x02\ \x00\x3e\x0d\x01\x49\xd2\x4a\x69\x80\x05\x02\x80\x07\x0d\x58\x6b\ \x5c\x12\x6b\x3e\x01\x00\x43\x07\x81\x3b\xd9\x2f\x00\x80\x07\xbf\ \xef\xbf\x93\x35\x9e\x00\x80\x91\x43\xc0\xa5\xd2\x09\x16\x0d\x00\ \x1e\xa0\xd6\xb2\x4b\x59\xdb\x09\x00\x88\x3c\x04\x9c\x2b\xad\x61\ \xf1\x00\xe0\x62\x6a\x0d\x3b\x97\x35\x9d\x00\x80\xd8\x82\xc0\x02\ \xa9\x89\x85\x04\x80\x8b\xa8\x35\x6b\x01\x6b\x38\x01\x00\xa3\x0f\ \x01\x7f\x2e\xa5\xb2\xa8\x00\x70\x01\xb5\x56\xfd\x39\x6b\x37\x01\ \x00\xf1\x0b\x01\x67\x49\x4f\x4a\xbd\x2c\x30\x00\x34\xd4\x6b\xad\ \x51\x67\xb1\x66\x13\x00\x60\x4f\x10\x98\x21\xe5\xb2\xd8\x00\xd0\ \x88\x5a\x93\x66\xb0\x46\x13\x00\xe0\xcc\x0b\x82\xaf\xb1\xe8\x00\ \xd0\xc0\x6b\xbc\xe8\x47\x00\x80\xf3\x41\xe0\xbb\x52\x23\x0b\x10\ \x80\x04\x50\x6b\xcf\x77\x59\x8b\x09\x00\x48\x5c\x08\x98\x24\x6d\ \x61\x31\x02\xe0\x20\xb5\xe6\x4c\x62\x0d\x26\x00\x40\x8f\x20\xb0\ \x50\xaa\x65\x61\x02\x60\x23\xb5\xc6\x2c\x64\xcd\x25\x00\x40\xbf\ \x10\x30\x51\x7a\x93\xf3\x04\x00\xd8\xb0\x8f\xbf\x5a\x5b\x26\xb2\ \xd6\x12\x00\xa0\x77\x10\x98\x2b\x15\xb2\x68\x01\x88\x03\xb5\x96\ \xcc\x65\x6d\x25\x00\xc0\x3d\x21\x60\x9c\xf4\x92\x14\x64\x01\x03\ \x10\x83\xa0\xb5\x86\x8c\x63\x4d\x25\x00\xc0\x9d\x41\x60\xa6\x74\ \x84\xc5\x0c\x40\x14\xd4\x9a\x31\x93\x35\x94\x00\x00\xf7\x87\x80\ \xb3\xa5\xa7\x24\x1f\x0b\x1b\x80\x61\xf8\xac\xb5\xe2\x6c\xd6\x4e\ \x02\x00\xbc\x15\x04\x2e\x91\x36\xb0\xc8\x01\x18\x82\x5a\x1b\x2e\ \x61\xad\x24\x00\xc0\xdb\x41\x60\xb6\x74\x98\x05\x0f\x80\xb5\x16\ \xcc\x66\x6d\x24\x00\xc0\xac\xc3\x85\x96\x49\x75\x2c\x80\x80\x91\ \xea\xac\x35\x80\xc3\x7b\x08\x00\x30\x34\x08\x8c\x97\x56\x4b\x01\ \x16\x44\xc0\x08\x01\xeb\x9a\x1f\xcf\x1a\x48\x00\x00\x54\x10\x98\ \x22\x6d\x66\x71\x04\x3c\x4d\x5d\xe3\x53\x58\xf3\x40\x00\xc0\x99\ \x36\x11\xca\x64\xa1\x04\x3c\x25\x93\xcd\x7c\x40\x00\x40\x24\x21\ \x20\x49\x5a\x22\x15\xb3\x70\x02\xae\x56\x6c\x5d\xcb\x49\xac\x6d\ \x20\x00\x20\x9a\x20\x30\x46\x5a\x2e\x55\xb0\x90\x02\xae\x52\x61\ \x5d\xbb\x63\x58\xcb\x40\x00\xc0\x68\x82\xc0\x58\xe9\xc7\x52\x0d\ \x0b\x2b\xa0\xb5\x1a\xeb\x5a\x1d\xcb\xda\x05\x02\x00\xe2\x7d\xbe\ \xc0\x13\x52\x03\x0b\x2d\xa0\x95\x06\xeb\xda\x64\xdf\x7e\x10\x00\ \x60\x6b\x10\x38\x4f\x7a\x46\x6a\x61\xe1\x05\x12\xaa\xc5\xba\x16\ \xcf\x63\x6d\x02\x01\x00\x4e\x06\x81\x09\xd2\xf3\x52\x2b\x0b\x31\ \xe0\xa8\x56\xeb\xda\x9b\xc0\x5a\x04\x02\x00\x12\x7d\x47\xe0\x11\ \xa9\x84\x85\x19\xb0\x55\xa9\x75\xad\xf1\x8b\x1f\x04\x00\x68\x77\ \xea\xe0\x3d\xd2\x01\x16\x6a\x20\xae\x0e\x58\xd7\x16\xa7\xf4\x81\ \x00\x00\xed\xc3\xc0\x1c\x69\xab\xd4\xcf\xe2\x0d\xc4\xa4\xdf\xba\ \x86\xe6\xb0\xa6\x80\x00\x00\x37\x06\x81\xa9\xd2\x1a\xc9\xcf\x82\ \x0e\x44\xc4\x6f\x5d\x33\x53\x59\x43\x40\x00\x80\x17\x82\xc0\x45\ \xd6\x4b\x4b\x7c\x42\x08\x9c\xf9\x53\x3e\x75\x8d\x5c\xc4\x9a\x01\ \x02\x00\xbc\x18\x04\xce\xb1\x9e\x65\xa6\x4a\x03\x2c\xfa\x30\xdc\ \x80\x75\x2d\xa8\x6b\xe2\x1c\xd6\x08\x10\x00\x60\xd2\x09\x84\xab\ \xd8\x61\x10\x86\xee\xd8\xb7\x8a\x93\xf9\x40\x00\x00\x5f\x0f\x7c\ \x98\xb5\x40\xda\x26\x85\x28\x0e\xf0\xa8\x90\x35\xc7\x17\xf0\x36\ \x3f\x08\x00\xc0\xe9\x61\x60\xb2\xf5\x1c\x94\x03\x88\xe0\xa5\x83\ \x79\xd4\x9c\x9e\xcc\x35\x0e\x02\x00\x30\x72\x10\x50\x47\x12\xdf\ \x2e\xbd\x27\x75\x51\x44\xe0\x32\x5d\xd6\xdc\xbd\x9d\xa3\x78\x41\ \x00\x00\x62\x0f\x03\xe7\x4a\x77\x4b\x1b\x25\x1f\xc5\x05\x9a\xf2\ \x59\x73\x54\xcd\xd5\x73\xb9\x76\x41\x00\x00\xe2\xbf\xed\xf0\x62\ \x69\x8b\xd4\x43\xd1\x41\x82\xf5\x58\x73\x71\x31\xdb\xf3\x82\x00\ \x00\x38\x17\x06\xce\x97\xee\x95\xde\x97\x7a\x29\x46\x70\x48\xaf\ \x35\xe7\xd4\xdc\x3b\x9f\x6b\x11\x04\x00\x20\xb1\x61\xe0\x02\xe9\ \x3e\x69\xb3\xd4\x41\x91\x42\x9c\x75\x58\x73\x4b\xcd\xb1\x0b\xb8\ \xe6\x40\x00\x00\xf4\x0c\x03\x63\xa4\x9b\xa4\xd5\xd2\x31\x36\x1c\ \x42\x8c\x1b\xf4\x1c\xb3\xe6\x90\x9a\x4b\x63\xb8\xb6\x40\x00\x00\ \xdc\x17\x08\x26\x59\xbf\xdc\x36\x48\x2d\x14\x37\x9c\x41\x8b\x35\ \x47\xd4\x5c\x99\xc4\xb5\x03\x02\x00\xe0\xbd\xcf\x0b\x6f\x90\x56\ \x4a\x07\x39\xad\xd0\xf8\xd3\xf6\x0e\x5a\x73\xe1\x06\x3e\xd7\x03\ \x01\x00\x30\x2b\x10\x4c\x90\xfe\xc2\x2a\x02\xdb\xd9\x73\xc0\xf3\ \xdf\xe6\x6f\xb7\xc6\x5a\x8d\xf9\x04\xae\x01\x10\x00\x00\x0c\xde\ \x96\xf8\x1a\xe9\x61\xeb\x76\x70\x25\x85\xd3\xb5\x2a\xad\x31\x7c\ \xd8\x1a\x53\xb6\xdf\x05\x08\x00\x40\x54\xa1\xe0\x8b\xd6\x77\xde\ \xaf\x4a\x87\xd9\x7f\x40\xdb\xef\xf1\x0f\x5b\x63\xa4\xc6\xea\x8b\ \xcc\x5d\x80\x00\x00\xd8\x71\x97\xe0\x72\xab\xd0\xbc\x68\x1d\xf0\ \xc2\xd9\x05\xce\xfe\xb2\xff\x5f\xab\xef\xd5\x18\x4c\xe7\xd7\x3d\ \x40\x00\x00\x12\x19\x0c\x26\x5a\x9f\x8c\xa9\x5b\xce\x6b\xad\x17\ \xcc\xd8\xba\x38\x76\x7e\xe9\x90\xf4\x96\xf4\x88\x74\xb3\xf4\x79\ \xe6\x1a\x40\x00\x00\xdc\xf2\xd5\xc1\x97\xac\xe2\xb5\x4c\x5a\x21\ \xad\x93\x76\x5b\xbf\x64\xfb\x0d\x7f\x0b\xbf\x4a\xda\x23\xad\xb7\ \x5e\xce\xbb\x5f\x9a\x2b\x7d\x99\xb7\xf2\x01\x02\x00\xe0\xe5\x80\ \x70\x8e\xf4\x15\xe9\x16\xe9\x01\x69\x95\xf4\x8e\xf5\xb6\xfa\x71\ \x2b\x24\xf8\x5c\xfa\xeb\x5d\x15\xf7\x4c\x29\x5d\x7a\xd7\xba\x65\ \xbf\x5c\xba\x55\xba\x54\x1a\xcb\x1c\x00\x08\x00\x00\x86\x0f\x0a\ \xe3\xa4\x2f\x48\x57\x4b\xf3\xa5\x45\xd2\x83\xd2\xb3\xd2\x2b\xd6\ \x5d\x85\x4d\xd6\xfb\x08\x29\xd2\x2e\x29\x43\x3a\x2a\x65\x4b\x45\ \xd6\x7b\x0a\xf5\x52\x9b\x15\x2a\x42\x16\x9f\xf5\x7f\xab\xb7\xfe\ \x37\x45\xd6\x3f\x73\xd4\xfa\x77\xec\xb2\xfe\x9d\xdb\xac\xff\xc6\ \x3a\xeb\xbf\xf9\xac\xf5\x67\x58\x64\xfd\x99\x66\xa8\x33\xef\x39\ \x09\x0f\x70\x87\xff\x0f\x46\x3b\x00\x65\x2e\x90\xb6\x57\x00\x00\ \x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x11\xcf\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x02\x00\x00\x00\x02\x00\x08\x03\x00\x00\x00\xc3\xa6\x24\xc8\ \x00\x00\x00\x03\x73\x42\x49\x54\x08\x08\x08\xdb\xe1\x4f\xe0\x00\ \x00\x00\x09\x70\x48\x59\x73\x00\x00\x19\x06\x00\x00\x19\x06\x01\ \x8b\xd7\x13\xdd\x00\x00\x00\x19\x74\x45\x58\x74\x53\x6f\x66\x74\ \x77\x61\x72\x65\x00\x77\x77\x77\x2e\x69\x6e\x6b\x73\x63\x61\x70\ \x65\x2e\x6f\x72\x67\x9b\xee\x3c\x1a\x00\x00\x02\xb2\x50\x4c\x54\ \x45\xff\xff\xff\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\ \x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\ \x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\x23\x1f\x20\ \x23\x1f\x20\x01\x2a\x90\xb7\x00\x00\x00\xe5\x74\x52\x4e\x53\x00\ \x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\ \x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1f\x20\x21\x22\x23\x24\ \x25\x26\x27\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x36\ \x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\ \x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x54\x55\x58\x59\ \x5b\x5c\x5d\x5e\x5f\x61\x62\x63\x64\x65\x68\x69\x6a\x6b\x6c\x6d\ \x6f\x70\x71\x72\x73\x74\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\ \x80\x81\x82\x83\x84\x85\x86\x87\x89\x8a\x8b\x8d\x8e\x8f\x91\x92\ \x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\xa0\xa1\xa2\xa3\ \xa4\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\ \xb5\xb6\xb7\xb8\xb9\xba\xbd\xbe\xbf\xc0\xc1\xc2\xc4\xc5\xc6\xc7\ \xc8\xc9\xca\xcb\xcc\xcd\xce\xd0\xd1\xd2\xd4\xd5\xd6\xd7\xd8\xd9\ \xda\xdb\xdc\xdd\xde\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\ \xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\ \xfb\xfc\xfd\xfe\xec\xcd\x14\x0a\x00\x00\x0d\x9e\x49\x44\x41\x54\ \x78\xda\xed\xdd\xfb\x63\xd5\x75\x1d\xc7\xf1\xcf\x2e\x8c\x31\x60\ \x43\x2e\x03\x81\x08\x24\x68\x0a\x53\x34\x45\x88\xcd\x64\x03\x9d\ \xa1\x22\x91\xca\x90\x5b\x80\x91\x29\x92\xb4\x80\x24\x50\x6a\x06\ \x82\x97\xb8\x0a\x15\x10\xa2\x60\xa4\x24\x4b\x8a\x45\x66\xe0\x92\ \x8b\xcb\x81\x03\x36\xc6\x36\xd8\x76\x3e\xff\x47\xe3\x2a\x17\x95\ \x73\xce\xe7\xfb\x3d\xdf\xef\xe7\xf3\x7e\xbe\x7e\x67\xdf\xc3\xf7\ \xf9\x18\x9c\xeb\xf7\x28\xc5\xfc\x5b\xbb\xfb\x96\xed\x3a\xd4\xa4\ \xc3\xb5\xa6\x43\x65\xcb\x1f\xc8\x20\x8e\xff\x6b\x3f\xa7\x56\x87\ \x75\x75\x25\x99\x04\xf2\x79\xf7\x54\xea\x30\xef\x68\x11\x89\x7c\ \xdd\xf4\x66\x1d\xee\xb5\x3c\x45\x24\x3f\xfb\xeb\xf0\x0f\x01\xfe\ \x6d\x64\xb3\x05\x00\x5a\xf8\x5f\xc0\xaf\x65\x54\x6a\x1b\x76\x94\ \x7b\x82\x3e\xed\x19\x6d\xc7\x4a\x48\xe5\xcb\xd2\x4e\x58\x02\xa0\ \x8e\xe7\x03\x7c\x59\x81\xb6\x65\xdf\x27\x96\x1f\x2b\xb5\x06\xc0\ \x2b\xc4\xf2\x63\xef\x5a\x03\xa0\x8c\x58\x7e\xec\x63\x6b\x00\x1c\ \x26\x96\x1f\x3b\x69\x0d\x80\x26\x62\xf9\xb1\x46\x6b\x00\x68\x62\ \x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\ \x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\ \x01\x80\x01\x80\x01\x80\x01\x80\x01\x80\x01\xe0\xe2\x92\x3a\xdc\ \xd8\x2f\x77\xf8\xc8\x02\x8b\x76\xcf\xb7\x3b\x03\xc0\x78\x69\x03\ \x1e\x7c\xfa\xb5\xb2\x4f\x6b\x23\xda\xc6\x55\x2e\x2d\x4c\x02\x40\ \xbc\x4b\xbd\xfd\xa7\x9b\xf6\x35\x6b\xcb\xf7\xf7\x3c\x00\xc4\xb1\ \xe4\xdc\x27\xb7\xd4\x6a\x37\x56\xda\x06\x00\x31\xfe\xea\xdf\xbf\ \xee\x98\x76\x68\x3b\xb2\x00\x10\xc3\x06\x2d\xae\xd2\x8e\xed\xcd\ \x64\x00\x44\xb9\xee\x33\xcb\xb5\x83\x5b\x00\x80\xa8\xd6\x77\xf9\ \x19\xed\xe4\x9a\xbf\x05\x80\xeb\x2f\x67\x55\xb3\x76\x75\x1b\x01\ \x70\xbd\x0d\xd9\x18\xd1\x0e\xaf\x17\x00\xbe\x76\xfd\xdf\xd2\x6e\ \x6f\x1a\x00\xbe\x66\x19\xf3\x4e\x3b\xde\x5f\xbf\x09\x80\xaf\x5e\ \xd1\x27\xda\xf9\x7d\xe4\x21\x80\x7a\xb7\x00\xf4\xde\xac\x05\xec\ \xa4\x87\x00\x0e\x39\x05\x60\x6a\xbd\x16\xb1\x34\xef\x00\x94\x39\ \x04\x20\x6b\xbd\x16\xb2\x74\xef\x00\xac\x76\x07\xc0\xad\x15\x1a\ \x00\x31\xef\x87\xce\x00\x98\x76\x5a\x03\x20\xf6\x75\x69\x76\x03\ \x40\xe6\x06\xad\x01\x10\xcf\x5e\x77\x02\x40\x8f\x3d\x1a\x00\xf1\ \xad\x57\xa3\x03\x00\xfa\x56\x68\x00\xc4\xbb\xd9\xf6\x03\x18\x5c\ \xa5\x01\x10\xff\x5b\x64\xdf\xb0\x1d\x40\x5e\xad\x06\x80\xc1\x32\ \xb6\xd8\x0d\xe0\xa1\x46\x0d\x00\xa3\x25\xff\xd2\x66\x00\x45\xcd\ \x1a\x00\xa6\xbb\x73\xa7\xb5\x00\xee\x6e\xd0\x00\xf0\x60\xf9\xbf\ \x3e\x68\x25\x80\x9c\xe3\x1a\x00\x1e\xad\xd3\xc0\xfc\x58\x3f\xb0\ \xb4\x38\x68\x00\xbd\x2b\x35\x00\x82\x5b\x41\x63\xc0\x00\xba\xed\ \xd3\x00\x90\xd2\xff\x4b\x00\xb4\xdb\xad\x01\x20\xa6\xff\x97\x00\ \x78\x59\x03\x40\x4e\xff\x6b\x01\x8c\xd3\x00\x10\xd4\xff\x1a\x00\ \xfd\x4f\x02\x40\x52\xff\xab\x01\xa4\x97\x6b\x00\x48\xea\x7f\x35\ \x80\x65\x1a\x00\xa2\xfa\x5f\x05\x60\xac\x06\x80\xac\xfe\x57\x02\ \xb8\xe1\x08\x00\x84\xf5\xbf\x12\x40\xa9\x06\x80\xb0\xfe\x57\x00\ \xb8\xad\x05\x00\xd2\xfa\x5f\x0e\x20\xf9\x03\x0d\x00\x69\xfd\x2f\ \x07\x30\x49\x03\x40\x5c\xff\xcb\x00\x64\x1f\x03\x80\xbc\xfe\x9a\ \x7b\x80\xc1\x03\x08\xb2\xff\x17\x00\x7a\x36\x02\x40\x60\xff\x2f\ \x00\x2c\xd2\x00\x10\xd8\xff\x12\x80\x6e\xa7\x00\x20\xb1\xff\x25\ \x00\xf3\x35\x00\x24\xf6\xbf\x08\xa0\x53\x0d\x00\xd2\x25\xf6\xbf\ \x08\x60\x0e\xfd\x83\x00\x10\x7c\xff\x0b\x00\x52\xab\xe8\x1f\x00\ \x80\x10\xf4\xbf\x00\x60\x34\xf9\xb5\x4e\x95\xd8\xff\x02\x80\x35\ \xe4\xd7\x9f\x8b\xec\x7f\x1e\x40\x66\x03\xfd\x75\xb9\xc8\xfe\xe7\ \x01\x4c\x20\xbf\xd6\xab\x44\xf6\x3f\x0f\x60\x07\xf9\xb5\x1e\x2b\ \xb2\xff\x39\x00\xbd\x22\xe4\xd7\x0d\x59\x22\xfb\x9f\x03\x30\x8b\ \xfc\x5a\x2f\x94\xd9\xff\x1c\x80\xb7\xc9\xaf\x8f\x77\x4e\x60\xff\ \xc2\x10\xbd\xf2\xda\x7a\x73\xd2\x78\x1d\x48\x47\x1e\x16\xda\xff\ \x2c\x80\xa1\xf4\xd7\xcf\x49\xed\xaf\x79\x1d\xe0\xec\xef\xff\xb3\ \x49\x52\xfb\x6b\x1e\x04\x6a\x7d\xf4\x01\xb1\xbf\xff\x67\x01\xb4\ \x13\xfe\x5e\xb0\x53\xf3\x33\x05\xf7\x6f\x05\x90\x2f\xb7\x7d\xf3\ \xe1\xbf\xbd\x32\xa6\xbd\x92\xdc\x5f\x7b\xf7\x2c\x40\xa4\x6c\x76\ \x61\x4e\x22\x1f\x4c\x59\xb8\xf0\xf5\x6f\x05\xb0\xc2\x93\x9f\x53\ \x37\xb7\x07\x7d\x2d\xec\xdf\x0a\xc0\x93\xcb\x59\x2e\x27\xbf\x9d\ \xfd\x5b\x01\x54\x9b\xff\x90\xc6\xf1\xd4\xb5\xb4\xbf\x56\x5d\xcd\ \x7f\x46\xf5\x1d\xd4\xb5\xb5\xbf\xf6\xe0\x79\xc0\xa6\x3c\xea\x5a\ \xdb\x5f\xab\x62\xe3\x1f\x31\x89\xba\xf6\xf6\xd7\x6a\xa1\xe9\x4f\ \xd8\x46\xdd\x00\xfb\x37\x98\x5e\x59\x5a\xbd\x6a\xfa\xf0\x3f\x97\ \xbc\x01\xf6\x1f\x59\x60\x0a\xc0\xf4\x9b\xe1\xd6\x90\x37\xc8\xfe\ \xca\x18\xc0\x36\xc3\x1f\x50\x40\xdf\x20\xfb\x9b\x03\x78\xdf\xec\ \xcf\xd7\xa4\x11\x38\xc8\xfe\xe6\x00\xf6\x9a\xfd\xf9\xb5\x04\x0e\ \xb4\xbf\x39\x80\x03\x66\x7f\xbe\x84\xc2\x81\xf6\x37\x07\x60\x78\ \x69\xa8\xc9\x24\x0e\xb4\xbf\x39\x80\x26\xb3\x3f\x3f\x86\xc6\x81\ \xf6\x37\x07\xc0\x83\x00\xab\xfb\x03\x40\x78\x7f\x00\x08\xef\x0f\ \x00\xe1\xfd\x01\x20\xbc\x3f\x00\x84\xf7\x07\x80\xf0\xfe\x00\x10\ \xde\x1f\x00\xa1\xdc\xa8\x84\xf5\x07\x80\xf0\xfe\x00\x10\xde\x1f\ \x00\xc2\xfb\x03\x40\x78\x7f\x00\x08\xef\x0f\x00\xe1\xfd\x01\x20\ \xbc\x3f\x00\x84\xf7\x07\x80\xf0\xfe\x00\x10\xde\x1f\x00\xc2\xfb\ \x03\x40\x78\x7f\x00\x08\xef\x0f\x00\xe7\xfb\xdf\xab\x00\x40\x7f\ \x00\xd0\x1f\x00\xf4\x07\x00\xfd\x01\x40\x7f\x00\xd0\x1f\x00\xf4\ \x07\x00\xfd\x01\x40\x7f\x00\x48\xef\x0f\x00\xe1\xfd\x01\x20\xbc\ \x3f\x00\x84\xf7\x07\x80\xf0\xfe\x00\x10\xde\x1f\x00\x01\x6d\x74\ \x48\xfa\x03\x40\x78\x7f\x00\x08\xef\x6f\xfa\xbd\x9f\x4d\x00\xb0\ \xbb\xbf\x1a\x68\x76\xc4\x43\x00\xb0\xbb\xbf\xea\x64\x76\xc8\x5d\ \x00\x88\xbd\xff\xe9\x10\xf5\x57\x86\x97\x7b\x5f\x0a\x00\xcb\xfb\ \xab\x25\x46\x07\x1d\x0d\x00\xcb\xfb\xab\xef\x9a\x1c\xf4\x44\x3a\ \x00\x2c\xef\xaf\xd4\xbb\x06\x47\x7d\x46\x01\xc0\xf6\xfe\xea\x3b\ \xf1\x1f\xb5\x32\x03\x00\xd6\xf7\x57\x6a\x41\xdc\x4f\x02\xe4\x2b\ \x00\xd8\xdf\x5f\x25\x6f\x8c\xf3\xb0\x53\x14\x00\x1c\xe8\xaf\x54\ \xfa\xef\xe2\xfa\xfd\x7f\x42\x01\xc0\x89\xfe\xad\xfb\xf1\xa9\x98\ \x8f\x7a\x60\x84\x02\x80\x2b\xfd\x95\xea\xb9\x2c\xb6\x9b\x77\xf4\ \xc9\xb6\x0a\x00\xee\xf4\x6f\x5d\xd6\xb8\x55\x7f\xad\x38\x7e\xe2\ \xfa\xfb\xfc\xc3\x3f\x2f\xc9\x4b\xbd\xf4\xe7\x00\x10\x70\xff\xef\ \x05\xfc\x37\x03\x80\xec\xfe\x00\x10\xde\x1f\x00\xc2\xfb\x03\x40\ \x78\x7f\x00\x08\xef\x0f\x00\xe1\xfd\x01\x20\xbc\x3f\x00\x84\xf7\ \x07\x80\xf0\xfe\x00\x10\xde\x1f\x00\xc2\xfb\x03\x40\x78\x7f\x00\ \x08\xef\x0f\x80\xaf\xda\x7d\x32\xfa\x03\x40\x78\x7f\x00\x08\xef\ \x0f\x00\xe1\xfd\x01\x20\xbc\x3f\x00\x84\xf7\x07\x80\xf0\xfe\x00\ \x10\xde\x1f\x00\xc2\xfb\x03\x40\x78\x7f\x00\x08\xef\x0f\x00\xe1\ \xfd\x01\x20\xbc\x3f\x00\x12\xd1\xbf\x3e\xbc\xfd\x01\x20\xbc\x3f\ \x00\x84\xf7\x07\x80\xf0\xfe\x00\xf0\xbd\xff\x3d\x0a\x00\xf4\x07\ \x00\xfd\x01\x40\x7f\x00\xd0\x1f\x00\xf4\x07\x00\xfd\x01\x40\x7f\ \x00\xd0\x1f\x00\xf4\x07\x00\xfd\x01\x40\x7f\x00\xd0\x1f\x00\x89\ \xdf\xfd\xf4\x17\x0d\x80\xfe\xb2\x01\xd0\x5f\x36\x00\xfa\xcb\x06\ \x40\x7f\xd9\x00\xe8\x2f\x1b\x00\xfd\x65\x03\xa0\xbf\x6c\x00\xf4\ \x97\x0d\x80\xfe\xb2\x01\xd0\x5f\x36\x00\xfa\xcb\x06\x40\x7f\xd9\ \x00\xe8\x2f\x1b\x00\xfd\x65\x03\xa0\xbf\x6c\x00\xf4\x97\x0d\x80\ \xfe\xb2\x01\xd0\x5f\x36\x00\xff\xfa\xe7\x2b\x00\xd0\x1f\x00\xf4\ \x07\x00\xfd\x01\x40\x7f\x00\xd0\x1f\x00\xf4\x07\x00\xfd\x01\x40\ \x7f\x00\xd0\x1f\x00\xf4\x07\x40\x70\x2b\xa2\xbf\x68\x00\xf4\x97\ \x0d\x80\xfe\xb2\x01\xd0\x5f\x36\x80\x21\x8d\xf4\x97\x0c\xa0\xfb\ \x61\xfa\x8b\x06\xb0\x91\xfe\xa2\x01\xdc\x45\x7f\xd9\x00\xb6\xd3\ \x5f\x34\x80\x6e\x2d\x2e\xf5\x4f\x1a\xf2\xf8\xec\x25\xbf\xbd\xfe\ \x4a\x4b\x9e\xb8\x37\x1d\x00\x67\xf7\xa8\x43\xfd\xfb\x94\x56\xc6\ \x70\x1b\xeb\xfe\x30\x02\x00\x4a\x2d\x71\xa6\x7f\xe6\x0b\x31\x3f\ \x9d\xb1\xe5\x26\x00\xac\x77\xa5\xff\x37\x3f\x8c\xe3\x96\xd6\x8c\ \x16\x0f\xe0\x2f\x8e\xf4\xcf\xa9\x8e\xeb\xb6\xb6\x14\x4b\x07\xb0\ \xc9\x8d\xfe\x5d\xfe\x1b\xe7\xad\x6d\x1a\x2e\x1c\xc0\x52\x37\xee\ \xff\x6d\x8d\xfb\xf6\x1e\xed\x2a\x1b\xc0\x0c\x27\xfa\x17\x1a\xdc\ \xe2\x17\x64\x03\xb8\xc9\x89\xc7\xff\xff\x34\xb8\xc9\x67\x7a\xcb\ \x7e\x26\xf0\x3f\x0e\xf4\xbf\xc5\xe8\x46\xff\x44\x36\x80\xc7\x1c\ \x78\xfe\xf7\x59\xa3\x5b\xbd\x53\x36\x80\x94\x7f\xd9\xff\xfc\xbf\ \xd9\xeb\x19\x2d\x6d\x45\x03\x50\x77\x7a\xf5\x7e\xa0\xfa\x3c\x4b\ \xff\x1b\xfb\x86\x6c\x00\xaa\xd8\xf6\xfe\xea\xa4\xd9\x2d\xbf\x4b\ \x38\x00\x35\xdf\xf2\xfe\x09\x4a\xe3\xf0\xbb\x82\x17\xd8\xdd\x1f\ \x00\xc1\x0b\x08\xb4\x3f\x00\x02\xff\x5f\x20\xd8\xfe\x00\x08\x5a\ \x40\xc0\xfd\x01\x10\xb0\x80\xa0\xfb\x03\xc0\x93\xcd\xb3\xb6\x3f\ \x00\x02\x15\x10\x7c\x7f\x00\x04\x29\x20\x04\xfd\x01\x10\xa0\x80\ \x30\xf4\x07\x80\x67\xfb\x85\x95\xfd\x01\x10\x98\x80\x70\xf4\x07\ \x40\x50\x02\x42\xd2\x1f\x00\x5e\xae\xc4\xbe\xfe\x00\x08\x46\x40\ \x68\xfa\x03\x20\x10\x01\xa7\x42\xd3\x1f\x00\x1e\xef\xe7\x96\xf5\ \x07\x40\x00\x02\xc2\xd4\x1f\x00\x89\x17\x10\xaa\xfe\x00\xf0\x7e\ \x73\x6d\xea\x0f\x80\x44\x0b\x08\x59\x7f\x00\x24\x58\x40\xd8\xfa\ \x03\x20\xb1\x02\x42\xd7\x1f\x00\xfe\xec\x39\x5b\xfa\x03\x20\x91\ \x02\x42\xd8\x1f\x00\x7e\xed\x67\xd7\xfe\x35\xea\x42\xd8\x1f\x00\ \xbe\xed\xb1\xab\x3f\x37\x78\x70\x90\x02\x80\x20\x00\x6a\xe8\xbf\ \xaf\xf8\x4b\x6c\xee\xa1\x00\x20\x0a\x80\x4a\x99\x78\xe9\xa3\xb7\ \x2d\xef\x0c\x0b\xe9\x8d\x04\x80\xaf\xeb\xf7\xa3\xdf\xfc\x71\xc7\ \xda\x45\x3f\xe8\x12\xda\x5b\x08\x00\xe1\x03\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\ \x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\ \x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\ \x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\x60\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\ \x00\xc0\x3a\x00\x23\xa3\x3b\x4a\x83\xd9\x51\xc6\xd2\xc9\xaf\x75\ \x36\x04\x30\x3c\xba\xc3\x1c\x31\x3b\xca\x0c\x42\xf9\xb5\x1c\x43\ \x00\xb9\xd1\x1d\xa6\xc2\xec\x28\xcf\x13\xca\xaf\x15\x1a\x02\xe8\ \x17\xdd\x61\xca\xcd\x8e\xb2\x9d\x50\x7e\x6d\xb6\x21\x80\x1b\xa3\ \x3b\xcc\x7b\x66\x47\x69\xba\x81\x52\x3e\xad\xcc\x10\x40\x87\xe8\ \x0e\xb3\xd5\xf0\x30\xe3\x29\xe5\xcf\x7a\x44\xcc\xc2\x44\x92\xa2\ \x3b\xce\x3a\x43\x00\xbb\x48\xe5\xcf\xe6\x1a\x86\xa9\x8d\xf2\x38\ \x2b\x0c\x8f\xa3\x1f\xa6\x95\x2f\xff\x00\xd4\x19\x76\xf9\x34\x41\ \xd0\xf4\xfe\x74\x6a\xf9\xb0\xe5\xa6\x5d\xca\xa2\x3c\xd0\x23\xa6\ \x07\xd2\x2b\xa9\xe5\xfd\xc6\x1b\x67\x79\x2d\xca\x23\xe5\x1a\x1f\ \x49\x3f\x45\x2f\xaf\x77\x47\xa3\x71\x95\xa7\xa3\x3c\x54\xfb\x88\ \xf1\xa1\x22\x08\xf0\x78\x79\xd5\xe6\xbf\x96\x0f\x46\x7b\xb0\x83\ \xe6\xc7\xd2\x2b\xb9\x1f\xe0\xe5\x26\x35\x79\xd0\x64\x40\xb4\x47\ \xdb\xe6\xc1\xc1\xf4\x7e\x1e\x0b\x78\xb6\x5c\x4f\x8a\x34\xa7\x45\ \x7b\xbc\x17\xb5\x27\xdb\x35\x9e\xe7\x04\x3d\x58\x5a\xc1\x9a\x88\ \x27\x3d\xf6\x45\x7d\xc8\xc9\xda\xa3\x35\x6d\x7f\x7e\xc6\xd8\x02\ \x16\xf7\xc6\x4c\x2e\x59\x5b\xe3\x55\x8d\x4d\x51\x03\x18\xa4\x99\ \x83\x8b\xfe\x8e\x79\x52\x35\x67\xcb\xc1\xdd\x1e\xfd\x7f\x3b\x1b\ \x38\x5b\xee\xad\x26\x25\x7a\x00\x53\x39\x5d\xee\xed\x4f\x31\xdc\ \xf1\x1c\xc0\xe9\x72\x6f\x33\x63\x79\xe8\xf1\x19\xe7\xcb\xb9\x0d\ \x8a\x05\xc0\x6a\xce\x97\x6b\xab\x4e\x8a\x05\xc0\xa3\x9c\x30\xd7\ \xb6\x3a\xa6\x67\x9f\x3a\xd6\x73\xc6\x1c\xdb\xa8\xd8\x9e\x7f\x5c\ \xc5\x19\x73\x6b\x9f\xa5\xc6\x06\xa0\x90\x53\xe6\xd6\x7e\x15\xe3\ \x2b\x10\x29\x3c\x0e\x70\x6b\xb7\xc4\xfa\x1a\xd4\x22\xce\x99\x4b\ \xdb\x13\xf3\x8b\x90\x83\x39\x69\x2e\x6d\x66\xec\x2f\x43\x97\x73\ \xd6\xdc\xd9\x99\xee\xb1\x03\x18\xc7\x69\x73\x67\xcb\xe3\x78\x23\ \x4a\xca\xc7\x9c\x37\x57\xd6\xdc\x37\x9e\xb7\x22\x4d\xe0\xc4\xb9\ \xb2\x55\x71\xbd\x17\xad\xcd\x01\xce\x9c\x1b\x8b\xe4\xc4\xf7\x6e\ \xc4\x29\x9c\x3a\x37\xb6\x31\xce\xb7\xa3\xa6\xff\x8f\x73\xe7\xc4\ \x86\xc4\xfb\x86\xe4\xe9\x9c\x3b\x17\xf6\x56\xdc\xef\x48\x4f\xdd\ \xcb\xd9\xb3\x7f\xa7\xfb\xc7\xff\x99\x84\x61\x9c\x3e\xfb\x37\xcf\ \xe4\x53\x29\xaf\x73\xfe\x6c\xdf\x27\x19\x26\x00\xb2\x8f\x73\x06\ \x2d\x5f\x91\xd9\x07\xd3\x78\x28\x68\xf9\x36\x1b\x7e\x32\x31\x79\ \x37\xe7\xd0\xe6\xd5\xf7\x36\xfd\x6c\x6a\x0e\xef\x0e\xb4\x79\x53\ \xcd\x3f\x9d\x5c\xcc\x59\xb4\x77\xeb\xbd\xf8\x7c\xfa\x4a\xce\xa3\ \xad\xab\xc8\xf2\x02\x40\x87\x8f\x38\x93\x96\x3e\x05\x74\xab\x37\ \x97\xa8\xb8\xb9\x81\x73\x69\xe5\xa6\x79\x75\x91\x92\x89\x9c\x4b\ \x1b\xb7\xc1\xbb\xcb\xd4\xbc\xc4\xd9\xb4\x6f\x7b\x32\xbd\x03\x90\ \xfc\x06\xe7\xd3\xba\x3b\x80\x3d\xbc\xbc\x52\x55\xdb\x77\x38\xa3\ \x76\xad\xaa\xaf\xf2\x74\x1d\xff\xc1\x39\xb5\x69\xb5\x83\xbd\xbe\ \x5a\x5d\xf6\x7e\xce\xaa\x3d\x6b\x1c\xe1\xfd\xf5\x0a\xfb\x54\x72\ \x5e\x6d\x59\xf3\x43\x7e\x5c\xb1\xb2\x0f\xff\x06\x58\xb2\x86\x22\ \xe5\xcb\xb2\xb9\x1f\x60\xc5\x8e\xdf\xed\xd7\x55\x6b\x3b\xf2\x58\ \xc0\x82\x55\xe6\x28\xdf\xd6\x96\xe7\x03\x42\xbf\x7d\xbd\x95\x8f\ \x4b\x7e\x89\x33\x1c\xee\xed\xee\xe6\xf3\xc5\xcb\x27\xf2\xca\x50\ \x98\xf7\x72\x3b\xdf\x2f\x5f\x7f\x33\xaf\x0e\x87\x76\x27\xc7\x25\ \xe2\x0b\x0c\x3a\xf0\x0e\x91\x90\xae\xbc\xbf\x4a\xcc\x8a\x79\x9f\ \x60\x18\xb7\x2c\x71\x5f\xd3\x94\xc3\x7b\x85\x43\xb7\x23\x63\x13\ \xf9\x3d\x36\xc9\x53\xf8\xc4\x48\xa8\xd6\x52\x9a\xe8\xef\x67\xca\ \xe6\x53\x63\x21\xda\x07\xb7\x05\xf0\x6d\x56\xc3\xf8\xec\x70\x48\ \x76\x6c\x52\x72\x20\xdf\x67\x96\x3a\x9d\x2b\x48\x84\x60\x8d\xa5\ \xd9\x81\x7d\xa5\x5d\xfa\x14\xae\x23\x14\xf0\x4e\x2d\xea\x19\xe8\ \xb7\x1a\xb6\x99\xc0\xd5\xe4\x02\x5c\xcd\xfc\x6e\x2a\xe8\xa5\x8c\ \xe3\x9a\xa2\x01\xad\x6a\x4e\x27\x15\x8a\x0d\x5e\xcc\xb5\xc5\x13\ \xbe\x86\x35\xa3\x53\x55\x68\x96\x3a\x6a\x0d\x2f\x12\x25\x70\x91\ \x1d\x13\x32\x55\xc8\x96\xf5\xf8\xda\x2a\xca\x24\xe4\x7e\xdf\xdb\ \xb3\x7a\xa9\x70\x6e\xe0\xb4\xdf\xf3\xad\xb3\xfe\x3e\xe6\xdb\x31\ \x67\x68\x9a\x0a\xf3\x92\x07\x4f\x7e\x71\xdb\xc1\x08\xa9\x3c\x5f\ \xf5\xce\x15\xb3\xf2\xdb\x29\x3b\xd6\x3e\xf7\x91\xb9\x2b\xd6\x6d\ \x7d\xaf\xbc\xe2\x08\xf7\x0d\x0c\xd6\x74\xec\xc0\xde\xf7\xb7\x6d\ \x78\x75\x61\xf1\xd0\xae\x09\x8b\xf7\x7f\x40\x1b\xb3\xe9\xbe\xf3\ \x50\xac\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x06\x4d\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x7d\x00\x00\x00\x3b\x08\x06\x00\x00\x00\x56\x81\x85\x54\ \x00\x00\x00\x01\x73\x52\x47\x42\x00\xae\xce\x1c\xe9\x00\x00\x00\ \x04\x67\x41\x4d\x41\x00\x00\xb1\x8f\x0b\xfc\x61\x05\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x0f\x61\x00\x00\x0f\x61\x01\xa8\x3f\ \xa7\x69\x00\x00\x05\xe2\x49\x44\x41\x54\x78\x5e\xed\x9d\x4b\x88\ \x1c\x55\x14\x86\x67\xe9\xd2\xa5\xbb\xb8\xc8\x4c\x44\x70\xe7\x42\ \xdc\xa8\x3b\x31\x3d\x8c\x20\x48\x16\x22\x42\x36\xea\x66\xc8\x4c\ \xc0\x20\xc2\x64\x33\x88\xa2\x20\x0a\x01\xc9\x42\x45\x48\x04\x13\ \x54\xf0\x81\xa8\x04\x66\xa1\x28\xc8\x80\x82\xba\x30\x28\xa8\x8b\ \x20\x1a\x14\xf1\x81\x8b\xb6\xbf\x4a\xd5\x50\x73\xe7\x3f\xf7\x51\ \xd5\x6d\x32\xd5\xe7\x87\x9f\x84\x9e\xfb\x3c\xff\xb9\xe7\xdc\x7b\ \xab\xa9\x5e\x70\x38\x1c\x0e\x87\xc3\xe1\x70\x0c\x08\xab\x87\x56\ \x6e\x5c\x5f\x3c\x7c\x64\x7d\x71\xf9\xc9\xb5\xa5\xe5\x0b\x13\xfe\ \xb5\xbe\xb4\x3c\x76\x5e\xdb\x9c\xe8\xb4\x3d\xe1\xd9\xb5\xa5\xd1\ \x89\x63\x07\x97\x6f\xab\xe5\x4c\x63\xfd\xe0\xe8\x61\x17\x79\x20\ \x5c\x1c\xbd\x77\xfc\xe6\x7b\x6e\xa8\xa5\xdd\x8b\xd5\x03\x2b\xd7\ \x53\x48\x56\x76\xee\x63\x8e\x2e\x13\xb5\x6b\x99\x77\xc3\x05\x1f\ \x2e\x89\xdc\x93\x90\x7f\x53\x2d\xf5\x15\xac\x2d\x2e\x3f\xa4\x0a\ \x3b\x87\x43\xf2\xfd\xc6\x81\x3b\xae\xab\x04\x27\xac\x7b\x0e\x9f\ \x0f\xb2\xc1\xab\x44\x9f\xfc\xe7\x5e\x55\xc0\x39\x3c\x4e\x16\xf7\ \x85\x4a\xf4\xc9\xb1\xec\xa4\x2a\xe0\x1c\x22\x47\x97\x1b\xd1\xdf\ \xd0\x05\x9c\x43\x64\xb5\xa1\x9b\xec\xda\xbf\x53\x7f\x74\x0e\x94\ \x87\x0e\xdf\xe9\xa2\xcf\x1b\xff\x2f\xd1\x4f\x3d\xf0\x78\xc5\x67\ \x57\x56\xe5\xdf\x67\xc1\x93\xb7\x3f\xb8\xd3\xef\x53\x77\x3f\x22\ \xcb\xcc\x82\xcf\xdf\x7f\xbc\xea\x73\xf3\xae\xa3\xf2\xef\x29\x32\ \xd6\x66\xdc\x8f\xdd\x72\x9f\x2c\xd3\x8b\xb3\x10\x1d\x61\xdf\x79\ \xe6\x95\xf1\xf7\xdb\xdf\x8c\x2d\xfc\xfe\xf3\xaf\xe3\xcf\xce\x7f\ \x38\x7e\xf5\xd8\xd3\xb2\x8d\x2e\xc4\xc8\xef\xbf\x70\x66\xfc\xd3\ \x57\x17\xeb\x5e\xf6\x82\x31\x51\x06\x87\x50\x6d\x84\xa4\xdc\xb7\ \x9f\x7e\xb1\x87\xed\xfa\xf4\xfb\xd1\x8b\xaf\x57\x73\x0a\xc1\x67\ \x1f\x9f\x79\x37\xea\x00\xb4\x85\xbd\x7e\xf9\xf1\x52\x5d\x6b\x37\ \xf8\x7c\xeb\xe5\xb7\x3a\x3b\xd1\x1e\x4e\x53\x74\x3c\xf4\xeb\xad\ \xcf\xeb\xa1\xe6\x83\x49\xbd\x76\xe2\x39\xd9\x66\x0e\x31\x1a\x86\ \x2d\x05\x75\x52\x2b\x09\x43\x2b\x34\x02\x9c\xdb\x38\x35\xfe\xf7\ \xef\x7f\xea\x4f\x6d\xfc\xf9\xdb\x1f\x72\x8e\x6f\x6e\x9e\xce\xaa\ \x0f\x28\x87\x73\x84\x6d\x14\x73\x5a\xa2\xbf\xf4\xe8\x66\xf6\xe0\ \x2d\xb0\x0a\x73\x57\x60\x43\x42\x29\x06\xed\x0a\xa2\x42\x6c\x05\ \xc5\x44\x67\x75\x97\x02\x91\x9b\xb6\xbf\xfc\xe0\x93\xfa\xd3\x32\ \xb0\xea\xdb\x63\x2c\xe6\x34\x44\xc7\x83\xa7\x05\xc2\x61\x6e\xfe\ \x9d\x86\xa3\x01\x84\xb7\x56\xbc\x25\x3a\x2b\xbc\x2b\xc8\xd5\x08\ \xd7\x07\x7d\x22\x63\x6f\xd1\x31\x4a\xca\xf0\xac\x44\xf2\x20\xe1\ \x34\x96\xe7\x1b\x5c\xba\xf8\xc3\xf8\x89\x5b\x8f\xc8\xfe\x1a\xe2\ \x18\xa9\x7e\xe9\x8b\x3e\x49\x39\xb1\x3c\x0f\xd8\x5f\xa8\x7e\x2c\ \xd1\x55\xdf\xcc\x11\x31\xf9\xd7\xca\xcf\xc0\x1a\x37\x0e\xcf\x58\ \x19\x33\x6d\xc4\x22\x18\xed\xab\xf1\x66\xb1\xaf\xe8\x31\x11\x09\ \x5f\x18\x4d\xd5\x3b\x7d\x74\xa3\x12\xd7\xc2\xf6\xdb\x5b\xb2\x1e\ \x64\x55\x5a\x75\x31\x68\x3b\x84\xb6\xc9\x0a\x8b\x8d\x57\x9d\x2c\ \x2c\xd1\x1b\xd0\x9f\xb5\x19\x25\xff\xa6\x1c\x13\x30\x17\x15\xdd\ \x70\x7c\x9c\xd1\x02\xf3\x09\xeb\x64\xb1\x8f\xe8\x4c\x4a\x21\x66\ \xf8\x36\x53\x93\xb2\x8e\x77\xb4\xad\x80\xf7\x93\xe3\x55\x9d\x86\ \x38\x8c\xb5\xea\x59\x61\x61\xf9\x98\xe8\xcc\x33\xd5\x1f\x27\x85\ \x18\x18\x4b\x2a\xaa\xb1\xea\x15\xac\xe8\x94\x64\x57\xd1\x19\xa8\ \xe5\xc5\x39\x82\xb7\x69\x89\x60\x4d\xca\x2a\x4f\x8e\x57\xe5\x43\ \xc6\x42\x76\x98\xdb\x63\xa2\xe7\x6c\xa8\x68\x4f\x1d\xe5\x1a\xe4\ \x8c\x19\xe7\x57\x20\x6a\xa9\xf2\x49\x76\x15\x9d\xc1\x2a\x30\x41\ \x6b\x53\x64\xd1\x9a\x94\x12\x81\x90\xa6\x80\x23\xb4\xcb\xa5\xd8\ \xec\x9c\xa9\x87\x78\x84\x68\x75\x72\x88\x89\x9e\xbb\xe1\xb4\xa2\ \x59\xc9\x98\xd5\x1e\x01\x5b\xab\xb2\x49\x76\x15\xdd\x9a\x48\xd7\ \xcb\x16\xeb\xf8\x12\xe6\x2d\x2b\xb4\x97\xf6\x8b\xc0\x39\xce\x69\ \x89\x4e\x1e\x56\xe5\x15\xad\x10\x5f\x72\xf4\xb2\x42\x7c\xe9\x02\ \xab\xd8\x55\x74\x6b\x23\x95\xca\x4f\x16\xad\x23\x10\x06\x6b\x97\ \xb3\x9c\x23\x77\xd5\x95\xd2\x12\x1d\x11\x54\x79\x45\xeb\x48\x5b\ \x92\x06\xad\x45\xc6\xf8\x54\xf9\x28\xbb\x8a\xae\xf2\x39\x47\x0c\ \x55\x36\x87\xec\xe6\x15\xc2\x5d\xbc\xe5\x6c\x9d\x3c\x3e\x83\x96\ \xe8\x25\x9b\x28\x4b\xf4\xdc\x3d\x08\xbc\xea\xa2\x63\x60\x85\xd2\ \xbc\xda\x26\x2b\x55\x21\x5c\x51\x6a\x53\xd4\xc7\xd9\x52\xb4\x44\ \xe7\x36\x4e\x95\x57\xb4\x44\x2f\x39\x72\x5d\x75\xd1\x2d\x43\x70\ \xb1\xa0\xca\xe7\x30\xd7\x91\x14\xfa\x38\x5b\x8a\xd6\x5c\xc3\xb4\ \x13\xe3\x20\x44\xb7\x56\x65\xec\x42\x25\x87\x0a\xe1\xcd\x93\x42\ \x49\x7e\x2d\xa5\x8b\x5e\xd3\x32\x44\x9f\x15\x67\xb5\x19\x0a\xaa\ \x50\xb2\x93\x2e\xa5\x8b\xde\xa2\x42\x9f\xdc\x8a\x01\x14\xc2\x94\ \x31\xd5\xf3\x6a\x06\x5d\xf4\x16\xad\x87\x01\xd3\x3e\xb2\x85\x57\ \xa3\x44\x13\x85\xae\xfd\xa6\xe8\xa2\xb7\x68\x7d\x59\x82\xa3\x97\ \x2a\x9f\x22\xe2\x2a\x60\xb0\x9c\x72\x25\x06\x84\x38\x19\x11\x82\ \xf6\x62\x75\x5d\xf4\x16\x99\xb4\x42\x97\xbc\xce\x35\xac\x75\x8f\ \x1f\x4e\xca\x32\x60\xc9\x11\x0a\x86\x37\x5c\x44\x2e\x0c\x1b\x5e\ \xc5\xba\xe8\x2d\x5a\xf7\xe5\xa0\xe4\xd2\x01\x5a\xb7\x6c\xca\x81\ \x10\x45\x39\x08\xab\x36\x37\xc4\x5b\x42\xaa\x67\xd4\x2e\x7a\x40\ \x2b\xbf\x5a\xcf\x87\x15\xb9\x33\xb7\x60\x39\x8f\xe5\x24\x39\x47\ \x46\xee\x03\xac\x5b\x3d\x75\x2d\xea\xa2\x07\xb4\x9e\xb4\x01\x56\ \x23\x79\x53\xd5\x83\x18\xdf\xca\xcf\x80\x55\x67\x5d\xad\xc6\xa2\ \x0c\x8f\x1b\xad\xef\xd9\xf1\x79\x18\xd6\x1b\x30\x5e\x55\xcf\x45\ \x17\x8c\x09\x07\x88\x06\x3c\x4d\x62\xe2\x4c\x92\xd5\xc4\x04\xd4\ \xd1\xab\x01\x02\xf4\xf9\x72\x42\x93\x9f\xe9\x8b\x3e\x89\x26\x8c\ \xc1\x3a\x71\x00\xeb\x89\x97\x8b\x2e\xc8\x6a\x8c\x7d\x05\xa9\x0b\ \x72\x9f\x3e\x59\x27\x88\x52\xb0\xfa\xad\xa8\xe2\xa2\x1b\x64\x03\ \x65\xe5\xd9\x12\xa4\x52\x42\x48\x84\xea\xdb\x2f\x91\x28\xb6\x01\ \x74\xd1\x13\xe4\xd8\xa4\x76\xd6\x39\x20\xdc\x97\x18\xa1\xcd\xae\ \xfd\xe2\x30\x29\xa3\xb9\xe8\x19\x64\x33\x44\x7e\x8c\xe5\xec\x36\ \x48\x0d\x18\x45\xb5\x55\x42\x26\x8f\x61\x62\x79\xbb\x01\x62\xb3\ \x19\x54\xed\x84\x74\xd1\x0b\xc9\x80\x08\xd7\x18\x28\x24\x3b\xff\ \x59\x5d\x9d\xb2\x09\x0c\xfb\xc3\xf0\x18\x79\x56\x7d\xee\x2b\xce\ \x52\x74\xe7\x35\x4a\x17\x7d\x0e\xe9\xa2\xcf\x21\x5d\xf4\x39\xe4\ \x15\xd1\xfd\x45\x43\xf3\xc4\xfa\x45\x43\xfe\x4a\xb1\xf9\x61\xfd\ \x4a\x31\x7f\x79\xe0\xfc\x70\xe7\xe5\x81\xfe\x9a\xd0\xf9\xe1\xce\ \x6b\x42\x81\xbf\x10\x78\xf8\xdc\xf5\x42\xe0\x06\x93\x5d\xbc\xbf\ \xfa\x7b\xa0\x24\x92\x57\x1b\xb8\x10\xfe\x92\xff\xa1\x32\xf2\x92\ \xff\x06\xfe\x73\x1e\x03\x62\xea\xe7\x3c\xda\x10\x3f\xdc\xe3\xdc\ \x3f\x4c\xfc\x70\xcf\xc2\xc2\x7f\x30\x8e\x88\x40\xbb\xc2\x0b\x1b\ \x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x05\x7a\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x65\x00\x00\x00\x65\x08\x06\x00\x00\x00\x54\x7c\x2d\xcf\ \x00\x00\x00\x01\x73\x52\x47\x42\x00\xae\xce\x1c\xe9\x00\x00\x00\ \x04\x67\x41\x4d\x41\x00\x00\xb1\x8f\x0b\xfc\x61\x05\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x0f\x61\x00\x00\x0f\x61\x01\xa8\x3f\ \xa7\x69\x00\x00\x05\x0f\x49\x44\x41\x54\x78\x5e\xed\x9d\x4d\xa8\ \xdc\x54\x14\xc7\xe7\x23\xc9\x2b\x5d\x75\xd9\x65\x97\x2e\xbb\x2c\ \x7d\x89\xf3\xdc\x88\x28\xc8\x43\x10\x8a\x20\x28\x14\x6c\x11\x4c\ \xf2\x7c\x94\xfa\x81\xad\xf8\x51\xa1\xa5\x42\x55\xb4\x58\x2c\x94\ \xc2\x2b\x58\x68\x17\x85\xd2\x2e\x5a\xba\x7a\xb8\x1a\x41\xf0\x21\ \x08\x75\x57\x11\xa4\xee\x5c\xc6\x7b\xee\x64\xe6\xcd\xdc\x9c\x7c\ \x4e\x26\x39\xbe\xf9\x5f\xf8\x6d\x26\xe7\x9e\x24\xf7\x77\xbf\x92\ \x59\xa4\x53\x47\x59\x59\xf5\xd7\x80\xbf\x66\x1f\xf5\x0f\xc7\x4d\ \xd2\x5c\x59\x19\xf8\x87\x2c\x2f\x38\x61\x7b\xc1\x5d\xdb\x0d\x9e\ \x38\x5e\x18\x01\x1e\xdb\x0d\x1f\xdb\x5e\x78\xcb\xf6\xfc\x37\x3a\ \x03\xff\x40\xdc\x84\xf5\x15\x6b\x35\x3c\xa2\x4e\xf4\xd0\x3c\x31\ \x28\x43\xb0\x45\x9d\x3a\x6e\xd2\xea\x65\xff\x60\xf3\x20\xd9\xe6\ \x4f\x02\x4a\xe3\x06\xff\xda\xee\xc6\x97\x95\x47\x0e\xcd\x91\x8e\ \x1b\x3e\x65\x93\x83\xb9\x50\x53\xff\x8e\x33\xd8\x78\x26\x6e\xea\ \x62\x85\xe6\x41\xb2\xca\x25\x04\x35\xa1\x3a\xfc\x8a\x1b\xbe\x10\ \x37\x79\x76\x71\x5c\x7f\x9d\x4d\x02\xea\x87\xa6\xb3\xbc\x1d\x1b\ \x05\x60\x84\x34\x0b\xed\xd2\xd2\xd7\x98\xc1\x99\x7d\x14\xc0\x55\ \x04\x8b\x85\x36\x53\xb1\x85\xd9\xe2\x78\x7e\xc0\x55\x00\xcd\x40\ \x1b\xab\x58\x45\x5c\xf4\x28\xc1\xc3\x60\xcb\x0c\x63\x1b\xa3\xa2\ \x77\x5b\x7c\x20\x68\x90\x99\xd1\x42\xaf\x4d\xb8\x20\xd0\x30\x6e\ \xf8\xed\xc8\x88\x5a\xf9\xb1\xe3\x92\x01\x2d\x21\xda\x09\x3d\xc0\ \x70\x01\xa0\x25\xe8\x49\x1f\xeb\x89\x2c\xf4\xba\xe2\x78\xc1\x69\ \xee\x20\x68\x07\xf5\xac\x78\xac\x43\x6f\x2d\xb9\x83\xa0\x1d\xf4\ \xff\x2f\x6a\xc5\xbf\xca\x1d\x04\xed\x00\x29\x02\x81\x14\x81\x40\ \x8a\x40\x20\x45\x20\x90\x22\x10\x48\x11\x08\xa4\x08\x04\x52\x04\ \x02\x29\x02\x81\x14\x81\x40\x8a\x40\x20\x45\x20\x90\x22\x10\x48\ \x11\x08\xa4\x08\x04\x52\x04\x02\x29\x02\x81\x14\x81\x40\x8a\x40\ \x20\x45\x20\x90\x22\x10\x48\x11\x08\xa4\x08\x64\x61\x52\xec\x97\ \x3f\x8d\xfa\x1f\xdd\x8b\xba\xdf\xed\x44\x9d\xdb\xff\x4c\xe8\xfe\ \xf0\x7b\xd4\xfb\xec\x51\x64\xbf\xf2\x05\x5b\x2f\x0f\xfb\xc5\x33\ \xa9\x79\xfb\xef\xde\x8c\xec\x97\x3e\x66\xeb\x69\xd6\x36\xa3\xee\ \xb5\x3f\x26\x75\xfa\xa7\x6e\x8f\x7e\x7f\x76\x23\xb2\xde\xbe\x3e\ \x9b\xf3\xe6\xdf\xa3\xeb\x5c\xff\x3c\x91\x67\x7c\x0d\x9d\x1b\x7f\ \xce\xc4\x77\xbf\xfa\x39\xb2\xde\xbc\x9c\x88\x2f\x4b\xed\x52\xe8\ \x82\x7b\x97\x86\xbb\x17\x9b\x41\xf7\xfb\xdf\xd8\x9b\x66\x51\x0d\ \xa7\x1b\x82\xc9\x63\xd2\xfb\xe4\x41\xe4\x3c\x77\x2a\x99\x83\x91\ \x42\x12\x67\x1a\x97\x61\x5a\x5e\xff\xbd\x3b\x6c\xcc\x34\xdd\xcb\ \xbf\xf2\xe7\x2f\x48\xad\x52\x8a\xdc\x60\x02\xd5\xc3\xec\x57\xcf\ \xb3\xf9\xc6\x90\xe8\xe9\xc6\x2c\x42\xef\xfc\x76\x32\x97\x29\xe5\ \xfd\x3b\x85\xf3\x5a\x6f\x5d\x8d\xfa\x1f\xde\x65\x8f\x71\xb0\xe7\ \x2f\x48\x7d\x52\x8c\x1b\x2e\xc5\x8f\x7f\x45\xce\xf3\x1f\xf0\x79\ \x55\xef\xec\x5d\xf8\x89\xaf\x97\xc3\xa4\x87\x8f\x99\xe7\x1a\xcb\ \x52\xa0\xb3\xa5\x51\x9b\x14\xae\x17\xd1\xf4\x64\xce\xb1\xb4\xd6\ \x70\xd3\x5b\x5a\xcf\xb2\x4e\x5e\x4b\xc4\xea\x69\x6f\x7a\x4d\xa2\ \x35\xe1\xf5\xaf\x93\xa3\xd4\x94\x9d\x22\x85\xcb\x97\x35\x4d\x15\ \x8d\x4f\x74\x8a\x82\xd4\x22\x85\x9b\xb6\x74\x23\xa7\xcd\xab\x74\ \x13\xa6\x44\xae\x67\x31\x8d\x98\x95\x97\xbb\x0e\xeb\xf8\x95\xdd\ \x18\x26\x5f\xd6\xfc\xcf\x76\xb4\x12\xf1\x55\xd7\x96\x5a\xa4\x24\ \x7a\x73\xd6\x74\x34\x86\x69\x20\xb3\x67\xd9\xc7\x2e\xce\x1c\x2f\ \x92\x97\xae\x65\xb2\x13\x33\x77\x78\xcc\x39\x67\xa4\x19\x24\x24\ \xe7\x4c\x49\x66\x7c\xab\x52\xcc\x1e\x52\x74\x91\xcb\xab\x67\xca\ \x2e\x9a\x37\x15\x53\x4a\x9e\xe4\x45\xc7\xa7\x30\xbf\x14\x66\x21\ \xce\xea\x7d\xd3\x98\x23\xc1\xec\x59\xa6\xb4\xaa\x73\xf4\x04\xa3\ \xd1\x72\x7b\xf2\x9c\xf1\x7b\x4f\xca\x1c\x79\x53\x81\x14\x26\xd6\ \xa0\xac\x14\x8c\x94\xa2\xcc\xd1\x78\x98\xbe\x78\x44\x2f\xf4\x55\ \xf2\x92\x68\xbd\xfb\x3a\x7b\x3f\x77\xf7\xb5\xa7\xa5\x48\xda\x12\ \x67\x8e\xae\x65\x92\xc2\x3d\xb4\x65\xde\x00\x33\xe5\xd5\xf2\xf0\ \x68\x4a\x34\x73\x2e\x93\x14\xc2\xec\xa1\xc4\xe4\x35\xcb\xd4\x8d\ \x58\xaf\x5d\x5a\xc8\x6b\x96\xfe\x3b\x5b\xc9\x38\xb3\x11\x97\x4d\ \x4a\xe2\x82\xca\x90\x75\xf1\x55\xf3\x16\x18\x79\x7b\x5f\x8a\x82\ \x9b\xc6\x72\xc9\x79\x75\x41\x54\x79\x75\xcf\xee\xd4\x96\x51\x0a\ \xd1\xfa\x9f\x5c\x4a\x32\xfd\xf7\xc1\xe6\x58\x56\x29\x63\x1a\xff\ \x3b\xf8\x9b\x5f\xf4\x4b\xc8\x45\x36\xf2\xff\x5e\x0a\xa8\x0e\xa4\ \x08\x04\x52\x04\x02\x29\x02\x81\x14\x81\x40\x8a\x40\x20\x45\x20\ \x90\x22\x10\x48\x11\x08\xa4\x08\x04\x52\x04\x02\x29\x02\x81\x14\ \x81\x40\x8a\x40\x20\x45\x20\x90\x22\x10\x48\x11\x08\xa4\x08\x04\ \x52\x04\x02\x29\x02\x81\x14\x81\x40\x8a\x40\xb4\x14\xdb\x0d\xcf\ \x71\x07\x41\x3b\x8c\x46\x0a\xbe\x19\x2c\x0b\xd7\x5f\xc7\x27\x05\ \x85\xa1\x3f\x29\x68\xad\x86\x47\xb8\x83\xa0\x1d\xf6\x0f\x36\x0f\ \xea\x2f\x6c\xab\xc5\xfe\x29\x17\x00\x9a\xc5\x76\x83\x1d\xfd\x99\ \x5a\x2a\x8e\x17\x6c\x71\x41\xa0\x59\x68\xd3\x15\x2b\x51\x52\xd4\ \xe2\xc2\x05\x81\x66\xb1\x8f\xfa\x87\x63\x25\xa3\xa2\x7e\x1c\x9a\ \x41\xa0\x39\x6c\x2f\xbc\x15\xab\xd8\x2d\x18\x2d\xed\x92\x18\x25\ \xe3\xa2\xd6\x96\x6d\xae\x02\x58\x2c\x33\x6b\x89\x59\x68\x3b\xa6\ \x02\x1e\x73\x15\xc1\xa2\x08\xb6\x69\x07\x1c\x2b\xe0\x0b\x7d\xa4\ \x1e\x5b\xe4\x66\xa0\x01\x30\x7a\x2e\x29\x50\x68\x7e\x53\x7b\xe6\ \x27\x5c\x22\x50\x1b\xc3\x95\x81\x7f\x28\x6e\xf2\x62\x85\x2a\x50\ \x45\x23\x11\xa8\x01\xbd\xd3\x1a\xf8\x07\xe2\xa6\x2e\x59\xe8\x69\ \xdf\x0b\x4e\x63\x3a\xab\x07\x9a\xae\xf4\x5b\xe0\x5a\x8a\xb2\xaa\ \xec\x9e\xc5\x26\xa0\x32\x43\xcb\x0b\x4e\xe4\x2e\xe8\x55\x8b\xde\ \x08\xd0\xe8\x19\xbd\x9a\x79\x08\x52\xd0\x7f\x1e\xfa\x41\xe9\x75\ \xa3\xd3\xe9\xfc\x07\xe3\x1b\x9f\x1a\xd2\xbd\x5e\x5b\x00\x00\x00\ \x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x05\x78\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x65\x00\x00\x00\x65\x08\x06\x00\x00\x00\x54\x7c\x2d\xcf\ \x00\x00\x00\x01\x73\x52\x47\x42\x00\xae\xce\x1c\xe9\x00\x00\x00\ \x04\x67\x41\x4d\x41\x00\x00\xb1\x8f\x0b\xfc\x61\x05\x00\x00\x00\ \x09\x70\x48\x59\x73\x00\x00\x0f\x61\x00\x00\x0f\x61\x01\xa8\x3f\ \xa7\x69\x00\x00\x05\x0d\x49\x44\x41\x54\x78\x5e\xed\x9d\x4d\x68\ \x1d\x55\x14\xc7\xdf\xd2\x65\x97\xdd\xa5\x8b\xcc\x4b\x49\x37\x75\ \xa1\x15\x44\x5a\x04\x41\xf3\x66\x48\xba\xd0\xc6\x2f\x0c\x82\x12\ \x2c\x36\x4d\xe6\xf9\xd5\xda\x26\xd8\x48\xa4\x44\x53\x2a\x35\x4a\ \x49\x8b\xd0\x92\x1a\x5a\x23\x45\x28\x95\xb6\x29\x16\x79\x0b\x17\ \x8a\x08\x59\x76\xe9\xb2\x4b\x97\xe3\x3d\x93\x3b\xe9\xbc\xfb\xce\ \x9b\xef\x79\x73\xcc\xfb\x1f\xf8\x41\xc8\xdc\x39\x33\x73\x7e\x77\ \xee\xbd\x33\x6f\x31\xb5\x2c\x31\x53\xb7\xf7\xba\x56\x63\xdc\xb5\ \x9c\x39\xcd\xfa\x4c\xdd\xd9\x00\xce\x46\x50\x93\xe9\xba\x73\xdc\ \x1d\x6a\x1c\xd2\x25\x2b\x27\xa6\x86\x46\xf7\xb8\x96\xbd\xa4\x0e\ \xb8\xe9\xd6\x1d\x0f\x24\xc5\x7e\xa4\xb8\xac\x24\xbd\xa8\x4b\x99\ \x3f\x9a\xc3\x23\xbb\x29\x29\x7f\x40\x90\x0e\xbb\x95\xfb\xee\x71\ \x07\xed\x49\x75\x4b\xfe\xcb\x1f\x00\x64\x45\xd5\x74\x75\x76\xe0\ \xe0\x13\xba\xcc\xc9\x43\xed\xb8\xcc\x25\x04\x45\x61\xb7\xa6\x06\ \x46\x77\xe9\x72\xc7\x07\x4d\xdc\x7c\x22\x50\x28\x96\xfd\x90\xa6\ \x07\x5d\xf6\xee\xa1\x84\x2c\xb0\x09\x40\x49\xd8\xad\xc8\xa1\xcc\ \x5f\xe6\xb2\x3b\x82\x72\xb1\x2f\x6b\x05\xed\x41\xb6\x66\x2c\xe7\ \x1f\x7e\x27\x50\x36\x4d\x6b\x64\xbf\x56\xf1\x38\xd4\x03\xe1\xc7\ \x5c\x63\xd0\x2b\xec\x96\x56\xb1\x15\xb4\x0a\xc0\xd2\xb7\x7a\xda\ \x1e\x30\xd5\xb0\x35\xc1\x35\x02\xbd\x26\x34\xb7\x60\x09\x2c\x03\ \x9a\xd3\x7d\x21\xfe\x04\x8f\xa1\x4b\x0e\xf4\x1a\xc6\x7f\xd1\xc8\ \x6d\x04\x95\x40\x53\x49\x8d\xcc\x70\x1b\x41\x45\x58\xce\x1c\x2d\ \x85\xc7\xd8\x8d\xa0\x1a\x2c\x7b\x09\x2b\x2f\x71\xa8\x15\x18\xa4\ \x48\x03\x52\x04\x02\x29\x02\x81\x14\x81\x40\x8a\x40\x20\x45\x20\ \x90\x22\x10\x48\x11\x08\xa4\x08\x04\x52\x04\x02\x29\x02\x81\x14\ \x81\x40\x8a\x40\x20\x45\x20\x90\x22\x10\x48\x11\x08\xa4\x08\x04\ \x52\x04\x02\x29\x02\x81\x14\x81\x14\x2c\xe5\xb3\x67\xdf\xf2\xae\ \xbb\xe7\xbc\x07\x5f\xaf\x79\x9b\x3f\xfe\xba\x4d\xeb\xdb\x75\xef\ \xe6\xa7\xcb\xde\xe7\x07\xdf\x66\xf7\x8b\xe3\xf4\x53\xaf\x75\xcd\ \xfb\xfd\x3b\x67\xbc\xd9\xa7\x5f\x67\xf7\x23\x3e\x18\x3e\xec\xfd\ \xbe\xf2\xf3\xf6\x3e\x57\xde\x5b\xf0\xff\xdf\x1c\x1a\xf5\x2e\xbe\ \x79\xaa\x2d\xe7\xdf\x6b\x1b\xfe\x79\xce\x3f\x37\xd1\x91\x27\x38\ \x87\x3f\xaf\xfe\xd2\xd6\xfe\xee\xe2\x55\xef\xfc\xd8\x74\x47\xfb\ \xec\x14\x24\x85\x4e\xf8\xde\xe2\x95\xed\x93\x8d\xe2\xb7\x6f\x6e\ \xb0\x17\xcd\x41\x85\xa3\x42\x70\x79\x4c\x7e\x3a\x71\xc1\xfb\x70\ \xdf\xe1\x8e\x1c\x9c\x94\xd9\x03\x6f\xb4\x15\x97\x23\x2c\x6f\xf5\ \xfd\xb3\x6c\x9b\x30\x0f\xce\xaf\xb1\xc7\x4f\x4f\x01\x52\x92\x5c\ \xa0\x09\xf5\xb0\x2f\x9e\x7f\x97\xcd\x17\x40\xa2\xc3\xc5\x4c\xc2\ \xad\x33\x2b\x1d\x79\x4c\x29\xd7\xa6\x16\x13\xe7\x5d\x3e\xf2\x91\ \xf7\xc3\xf4\x97\xec\x36\x0e\xee\xf8\xe9\xc9\x29\xc5\xbc\xe0\x34\ \xfc\x75\xed\x8e\x77\xf2\xc9\x57\xd8\xbc\xd4\x3b\x6f\xcf\x5f\x62\ \xf7\x8b\x23\xe8\xe1\x01\x79\xce\x31\x2d\x49\x3a\x5b\x3c\x39\xa5\ \x70\xbd\x88\x86\x27\x73\x8c\xa5\xb9\x86\x1b\xde\xba\xf5\xac\xef\ \x5e\xfd\xa4\xa3\x2d\xe5\x0d\xcf\x49\x24\xee\xab\xc6\xb1\x8e\xbb\ \xd4\x94\xdd\x4d\x0a\x97\x2f\x6a\x98\x4a\xda\xde\xec\x14\xe9\xc9\ \x21\x85\x1b\xb6\xa8\xc8\xdd\xc6\x55\xba\x08\x53\x22\xd7\xb3\xb8\ \x22\x46\xe5\xe5\xce\xe3\xc2\xcb\xcd\xed\xed\x5c\xbe\xa8\xf1\x9f\ \xeb\x68\x69\xda\xe7\x9f\x5b\x72\x48\x31\x7b\x73\xd4\x70\x14\xc0\ \x15\xc8\xec\x59\x67\x5f\x98\x6c\xdb\x9e\x24\x2f\x9d\x4b\xb0\x12\ \x33\x57\x78\xdc\x31\xc3\xd2\x4c\x4c\xc9\x71\x43\x92\xd9\xbe\x52\ \x29\x66\x0f\x49\x3a\xc9\xc5\xed\x67\xca\x4e\x9a\xb7\x1b\xa6\x94\ \x38\xc9\x65\xb7\x8f\x27\xa3\x14\x6e\x22\x8e\xea\x7d\x61\xcc\x3b\ \xc1\xec\x59\xa6\xb4\xbc\x63\xb4\x59\xb4\xb8\x9e\x9c\xb7\xfd\x8e\ \x93\x92\x27\x6f\x37\x20\x85\x69\x6b\x92\x56\x0a\xee\x94\x84\xe4\ \x29\x1e\x86\xaf\x38\x04\x4e\xf4\x59\xf2\x92\x68\x5a\x7d\x5d\x6f\ \x9e\x8b\x5d\x7d\xed\x68\x29\x92\x96\xc4\x51\x77\x57\x5f\x49\xe1\ \x1e\xda\xa2\x2e\x80\x1b\xf2\x8a\x78\x78\x34\x25\x9a\x39\xfb\x4a\ \x0a\x61\xf6\x50\x22\x78\xcd\x12\xbe\x90\xc5\x97\x8e\x96\xf2\x9a\ \x65\x65\xe2\x74\x47\x3b\xb3\x88\x7d\x27\xc5\x3c\xa1\x34\x44\x9d\ \x7c\xd6\xbc\x49\xee\xbc\x1d\x2f\x85\xe0\x86\xb1\x38\xe2\x5e\x5d\ \x10\x59\x5e\xdd\x73\x2b\xb5\xbe\x94\x42\x54\xfd\x23\x17\x49\xa6\ \xdf\x3e\xb8\x1c\x7d\x2b\x25\xa0\xd7\x3f\x07\xdf\x5f\x5a\xf5\x5f\ \x42\x96\x59\xe4\xff\xbd\x14\x50\x04\x90\x22\x10\x48\x11\x08\xa4\ \x08\x04\x52\x04\x02\x29\x02\x81\x14\x81\x40\x8a\x40\x20\x45\x20\ \x90\x22\x10\x48\x11\x08\xa4\x08\x04\x52\x04\x02\x29\x02\x81\x14\ \x81\x40\x8a\x40\x20\x45\x20\x90\x22\x10\x48\x11\x08\xa4\x08\x04\ \x52\x04\x02\x29\x02\x81\x14\x81\x40\x8a\x40\x20\x45\x20\x90\x22\ \x10\x25\x85\xbe\xc2\xc9\x6f\x04\x95\x60\x39\x0b\xb5\xe9\x41\xe7\ \x19\x76\x23\xa8\x04\xfa\x86\x33\xbe\xf3\x28\x0c\x9a\x4e\xfc\xaf\ \xa2\xaa\x3f\xf0\xc9\x73\x21\xa8\x3b\x65\xaf\x2f\x85\x26\x17\xae\ \x01\xe8\x31\x96\xb3\xe9\x0b\xa1\xc0\x64\x2f\x04\x9a\xe4\x83\xa0\ \x8f\x3a\xbb\x96\xfd\x90\x6d\x08\x7a\x46\xd3\x1a\xd9\xaf\x95\x6c\ \x05\x3e\x57\x5b\x31\xf4\x79\x5a\x2e\x66\xea\xce\x1f\xec\x0e\xa0\ \x54\xe8\xd3\xf3\xcd\xe1\x91\xdd\x5a\x43\x7b\xd0\xcc\xaf\x26\xfd\ \x47\xdc\x8e\xa0\x44\x06\xed\x49\xad\x80\x0f\x0c\x63\x3d\xa6\xdb\ \xb0\x65\x86\x5a\x8d\x1d\x67\x13\x80\x62\xb1\x9c\x75\x5d\xf2\x64\ \xb1\x75\xc7\x60\x28\x2b\x8d\xf0\xf2\x37\x4d\xe8\x39\xa6\xc5\x26\ \x05\x99\xf0\xdf\x9e\x58\x8d\x71\x5d\xe2\xec\xe1\xdf\x35\x78\x8e\ \xc9\x05\xad\xb0\xd4\xdd\x31\x47\xcf\x84\xba\xac\xc5\x04\xc9\x51\ \xc9\x97\xf1\xae\x2c\x05\x6a\xde\xa0\x97\x8c\x53\x03\xa3\xbb\x74\ \x19\xcb\x0b\x5a\x57\xbb\x43\x8d\x43\x80\xa7\xe3\xe9\x3c\x71\xd4\ \x6a\xff\x01\xfa\xe8\x5d\x11\xb2\x88\x6e\x66\x00\x00\x00\x00\x49\ \x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x0f\x5c\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x02\xd7\x00\x00\x00\x83\x04\x03\x00\x00\x00\xb4\x20\x2a\xa6\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x7f\x7f\x7f\x5f\x5f\ \x5f\xdf\xdf\xdf\xbf\xbf\xbf\x1f\x1f\x1f\x3f\x3f\x3f\x9f\x9f\x9f\ \x00\x00\x00\xc8\x53\xa5\x5e\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x0e\xda\x49\x44\x41\ \x54\x78\x9c\xed\x5d\xcb\x7b\xdb\x36\x12\xe7\x9b\x3a\x76\xbb\x9b\ \x44\x47\xb5\x49\x5b\x1d\x9d\x38\xca\xea\xc8\xb6\x76\xc2\x63\xdc\ \x5d\x39\x3c\x6a\x93\xf8\x8b\x8e\x69\x1b\x67\x79\x94\xdb\xc8\xc6\ \x9f\xbd\xc4\x93\xa0\x30\xa4\x00\x01\x7a\xac\xcb\xdf\xf7\x45\x8e\ \x28\x08\x8f\x1f\x87\x33\x83\xc1\x00\xf2\xbc\x1e\x3d\x7a\xf4\xe8\ \xd1\xa3\x47\x8f\x1e\x3d\x7a\xf4\xe8\xd1\xa3\x47\x8f\x1e\x3d\x7a\ \xf4\xe8\xd1\xa3\x47\x8f\x1e\x3d\xee\x0b\x9e\x5e\xcd\x7e\x38\x74\ \x1f\x74\x10\x5e\xec\xbb\xc5\xc9\x57\xae\x6b\x8c\x2e\x4e\xa2\xc5\ \xbf\x5d\xd7\xba\x03\x5c\xff\xb1\xe7\x06\xd3\x62\xe4\xba\xca\xf3\ \x13\xcf\x0b\xd0\x47\xd7\xd5\xba\xc6\xf3\x07\x68\xbf\x64\x87\x3f\ \x16\x68\xe4\xba\xce\x2f\xf8\xb5\xf8\xd3\x71\xb5\xae\x91\xaf\x3e\ \xec\x97\xec\x08\x5d\x96\xce\xc9\xf6\xe7\xf8\x75\xb8\xef\x47\xd4\ \x14\xa1\xe7\xed\x59\xb2\x4f\xbc\x81\x73\xb2\xe3\x15\xd6\x20\x53\ \xe4\xb8\xda\x1d\x60\xcf\x64\x7b\x3b\x20\x7b\x80\x5e\x93\xd7\x13\ \xc7\xf5\xba\xc7\x3d\x20\x3b\xee\xc9\x6e\x83\x7b\xb2\xd3\x59\xaf\ \x46\x5a\xe0\x9e\x6c\x8a\xf2\x76\x27\xd5\x3a\xc5\xbd\x21\x7b\x71\ \xb7\x93\x6a\x9d\xe2\xbe\x90\x1d\xa1\xf9\x2e\xaa\x75\x8b\xfb\x42\ \x76\xb2\x3a\x7e\xfb\x78\x6f\xc8\x1e\x7e\xd9\x45\xad\x8e\x71\x4f\ \xc8\x8e\x56\xd9\x0e\x6a\x75\x8d\x7b\x42\xf6\xe4\x5f\x3b\xa8\xd4\ \x39\xee\x07\xd9\xe1\xec\xff\x40\x63\xdf\x17\xb2\x27\x73\xf7\x75\ \xee\x00\x8e\xc9\x1e\xa0\x0a\x1b\x4a\x8c\x9c\xb6\x48\xf0\xb6\xfa\ \x97\x56\xc2\xed\xe3\xe6\x8f\x77\xde\x7e\x2f\xc8\x4e\x70\x95\xb1\ \xa7\x49\xf6\xb5\x75\x7b\x8f\xb6\xfc\x9e\x6b\xb2\xef\xce\xce\xce\ \xba\x4b\x74\x93\x9d\xbe\xd6\x6e\xcb\x17\x6b\x33\x58\xb0\xbd\x49\ \xf5\x2f\xac\x5a\x3f\x83\xc9\xfe\x3c\x7b\xcf\x5a\xb0\x77\x12\xf3\ \x2d\x57\x85\x5c\x93\xbd\x71\xbd\x64\x03\xd9\x65\xa6\xdd\x56\xc4\ \x27\xe8\x01\x59\xd5\x7c\xc8\xaf\x83\x64\xbf\xb8\x0b\x17\x94\xa2\ \xd2\x7e\xfd\x2c\xdd\x32\x34\x70\x64\x64\x1b\x0d\x83\xd3\x36\x9e\ \x55\xa8\x07\x02\x92\xbd\x18\x45\x05\x79\x68\xc2\x1b\x83\x16\xda\ \x30\xcc\xb6\xfa\xda\x91\x91\x3d\x35\x59\x7a\xf7\xa9\x42\xa0\x8a\ \x1a\x89\xdb\x04\x91\x9d\xa2\x8f\x31\x5a\xe2\xff\xc5\xfa\x7a\xaa\ \x1d\xc9\x76\x6e\xfd\x91\x91\x3d\x33\x6a\xed\xea\x84\xd6\x48\x20\ \x54\x31\x44\x76\x8c\x4e\x06\x34\x54\x35\xce\xe8\x95\x6b\x9b\x69\ \x50\xb8\x5d\x3c\xf7\xb8\xc8\x0e\x18\x63\xa9\xde\x24\x65\x3a\x87\ \xae\x42\x64\x4f\x57\x9e\x7f\x8b\xaf\x87\x7c\xbc\xc8\xca\x4e\x0e\ \xb7\x4a\x7e\x39\x2e\xb2\xa7\x23\x5e\x28\xd3\x69\xcd\x07\xf5\x2f\ \x44\xf6\x90\x8b\x62\xc2\x3a\x18\x51\xa5\xb2\x2d\x62\xf3\xc4\x89\ \xf0\xf4\x27\x84\x7e\x3f\x75\x38\x09\xd8\x44\xf6\xe9\xf3\x31\xba\ \x3b\x3d\x6d\xfb\x78\xc1\xba\x92\x6b\xae\x71\x15\x50\xd7\x21\xb2\ \x17\x5c\xa6\xf2\x11\xfd\xeb\xdb\xc5\xbf\x7d\x73\x19\x65\xda\x6e\ \x69\xd3\xec\x5a\x8d\x1b\xc8\xa6\x0d\xb6\x51\x19\xf1\x21\x0c\x35\ \x75\xe2\x70\x04\xb5\x01\x90\x5d\x70\xf3\xc9\x6f\x67\x82\xec\xb2\ \xe0\xcc\xa7\xa9\x21\xfd\xb3\x47\xc9\x3e\x91\xdb\x55\xc0\x9f\x71\ \x6f\xa1\xe9\x9f\x81\xcd\x01\x3c\x84\x5c\x43\x0b\xcb\x36\xd5\x53\ \x54\xad\x18\x8f\xac\xbe\xee\x04\x9b\x75\x76\x17\xb8\xc1\x0b\x75\ \xad\x57\x00\x3d\xcd\x00\xd9\x11\x62\xfd\xf2\xb9\x84\x97\x96\x8b\ \xf1\xf9\xd2\xee\xfb\x2e\x60\x47\xf6\x90\xcd\x52\x52\x5d\xcd\x16\ \x41\x94\x01\x64\xfb\xbc\x42\x61\xd8\xc6\x46\xce\x5b\x94\xad\x5f\ \x89\x8f\x60\x7d\xd9\x8e\x6c\x6e\xef\x82\x16\xeb\xa5\x46\x5d\x0a\ \x60\xee\x0d\x90\x2d\x2a\xcc\xf9\x94\xa6\x80\x14\x55\xf8\xb0\x20\ \x26\x45\x59\xf6\xa1\x8b\x6e\xe1\xdb\xba\x66\xf0\x99\x72\x83\xcf\ \xc5\xea\x89\x57\xeb\xda\xaa\xcd\x10\x56\xf4\x56\x64\x47\x2b\xf6\ \x9f\x18\xb6\x5e\x3e\xd5\xb3\x2f\x1e\xd7\x97\x20\xd5\x09\x90\x1d\ \x73\x7f\x93\xfa\xc7\x0b\x6a\xa6\xe7\x6b\xa5\xc2\x31\xb3\xdf\x4a\ \xfa\x71\x41\xc8\x4e\xa4\xeb\xe9\xce\x72\x82\xce\x6f\x3f\xfd\x84\ \xbb\x3b\x60\xbe\x0b\xf9\xf3\xf5\xf7\xb3\xa5\xf7\x1b\xbd\x0b\x02\ \x56\x64\x53\xb7\x39\xa1\xe3\x05\x1e\xf3\x98\x92\x2d\x67\x88\x94\ \x4b\xb5\x98\x42\x36\xe5\x96\xc8\x34\x0b\x46\xc1\x9e\x5f\x89\xd0\ \xac\x12\xeb\xd9\xec\xed\xda\x07\xcc\x29\x97\x33\xdc\x42\x4b\x03\ \xdb\x8a\x14\x0b\xda\xa4\x1a\x7d\xf4\x6a\x41\xee\xfa\x35\x5a\xfd\ \x90\x61\xc2\xcf\x2f\xce\x3e\xa3\x77\x52\x51\x2b\xb2\x13\xce\x62\ \x8b\xe7\xc7\xbc\x6f\x24\xb5\x31\x05\x2c\x29\x20\xd9\x39\xbf\x86\ \x3a\x3c\xbf\x14\xfd\x91\x79\x2f\x20\xdb\xcc\x6e\x4d\xc3\xfb\xc7\ \x0a\x2c\x41\x4d\xcc\xc1\x6e\x9b\x21\xbf\x21\x5d\xc1\x42\x11\x10\ \x89\x0b\x10\x7e\x92\x9f\xa1\xbb\x37\x1e\x96\x87\xac\x2e\x6a\x45\ \xf6\x60\x83\xe7\x47\xef\x41\x63\xee\x07\xd9\x29\x80\xec\x21\x53\ \x50\x21\x57\x54\x90\xe7\x57\x92\x11\x2e\x80\x1b\xcd\x6e\x4d\x43\ \x06\x16\xa3\x9d\x90\x1d\xb2\x27\x90\xbe\xe2\x5e\x26\x37\xf4\x3a\ \xe9\x71\x2a\xcb\x82\x15\xd9\xd3\xd7\xbc\x41\xd8\xf3\xa3\xf7\xa0\ \xa1\x01\x12\xc0\x4e\x01\x64\x73\x06\x53\x4e\x17\xe0\xf9\x85\x34\ \x6e\x98\x03\x5f\x67\xd1\x83\x86\x0c\x8c\xe7\x4a\x31\x17\x08\xd8\ \x7d\x25\x7d\x99\xe0\xa1\x96\x23\xf2\x01\xe3\x64\x2c\x25\x23\x59\ \x91\x5d\xce\xe9\xdf\x36\xcf\x0f\x31\x33\x25\x69\x80\x00\x90\x43\ \x80\x2d\xee\x7b\x88\x59\x36\xe0\xf9\x25\xd4\x88\x4e\x81\xcd\x39\ \xf4\x06\x84\xb2\xfe\xf2\x86\x2e\x42\xb5\x2a\xd8\x23\x97\x93\x8e\ \x46\xd5\xfd\xe7\x5e\x03\xe3\x64\x2a\x85\x96\xac\xc8\xe6\x93\xef\ \x16\xcf\x8f\xcd\x4c\xa6\x32\x99\xfe\x4a\x2d\xa7\x92\x1d\xf2\x60\ \x77\xc0\x65\x13\xf0\xfc\x4a\xc4\x02\xb6\xaa\x36\xa7\xfa\x23\x45\ \x32\xbf\x90\x69\x76\x80\x21\xed\xc5\x94\x8e\x6b\x8c\x4e\x26\x8c\ \x51\x46\x76\x20\xdd\x71\x2b\xb2\xc7\x6c\x98\xad\x9e\xdf\x1c\xff\ \x29\x65\x7e\x21\x0f\x4c\x25\x5b\x4c\x20\x93\x1b\x7e\x41\x55\x54\ \x8c\xff\x29\xd0\x38\xd5\x1f\x41\x23\x5e\x99\xef\x66\xc3\xd4\x82\ \x0e\x68\x40\x07\x99\xa0\xc7\x7c\x26\xc1\xc8\x4e\x51\x2d\x26\x56\ \x64\x2f\xd8\x30\x73\xd8\xad\x62\xfa\x63\x2c\xab\xe9\x08\xd0\x19\ \xea\xa5\x7a\x02\x79\xb7\x76\x41\xae\xe9\x0b\x6b\x5c\x55\x23\xf4\ \xa3\xb8\xf1\xc9\x74\x37\x64\x17\xdc\xd8\x92\x77\x21\x5a\x89\xf8\ \xfb\x92\x5d\xa9\x15\xa0\x15\xd9\xfc\x26\x0e\x85\xb8\xce\x08\xd8\ \xd3\xcb\xcc\x54\x21\x3b\x20\xa1\x16\xd9\x42\x2f\xc5\x4c\xa0\x13\ \x55\x51\x05\x4c\x49\x94\xea\x9d\x86\xf4\xd7\xae\xc8\x46\xe8\x8c\ \xe0\x67\x8f\xf5\x86\x37\x23\xc8\xae\x1f\x6c\x42\x76\x4c\x39\x32\ \x6e\xa8\xc8\xe8\xdf\xda\xfb\x6a\x84\x80\x21\x33\xa5\x47\xb6\x98\ \x40\x0e\x18\xd9\x80\x62\xe6\xfc\x8f\x55\xc5\x04\xe9\x2f\x51\x95\ \x63\xac\x85\x9f\x03\xb4\x26\xd9\x72\x01\x42\xf6\xa0\x33\x68\xdd\ \xd1\x50\xc6\xfe\x0a\xb5\xd4\x20\x1b\x32\x53\x1e\xa0\x71\x54\xb2\ \x85\x87\xc1\x19\x02\x14\x15\xbf\x21\x85\xea\x4c\x32\x3f\xa5\xa1\ \xbf\x76\x45\x76\xd1\xec\xfd\x44\x84\x0e\x04\xd9\x6b\x92\x6d\x49\ \x36\x64\xbd\x30\xe8\x6a\x4b\xd3\x4c\xe9\x91\x2d\x7c\x67\xce\xd0\ \x50\xed\x1c\x13\x76\xa8\xf1\x01\x1d\x70\xa5\xbf\xc2\x79\x7d\xf1\ \x0b\xee\x4b\x13\xb8\x67\xc8\x02\x4b\x6c\x20\x1b\xbd\xbf\xca\x51\ \xd3\x1b\xe9\xd2\xd9\x26\xed\x70\xe2\x00\xeb\x45\xeb\x22\xca\x1a\ \x9b\xa9\x17\xd2\xc5\x4c\x2d\xa7\x90\x2d\xb8\xe5\x64\x17\xb8\xc7\ \x49\xa3\x1c\x73\x81\x20\xb7\xb3\xd6\x5f\x52\xbe\x16\x1e\xe9\x0e\ \x66\x90\xc3\xc6\x80\xfc\x3f\x7d\xd4\xf4\xb3\x53\x69\xd1\xd8\xca\ \x40\xb2\x76\x62\xd2\xe9\x77\xeb\x9f\x4a\x66\x4a\xca\xd6\xd3\xd2\ \xd9\x62\x0a\xc3\xc8\x0e\x89\xa2\x7a\xd0\x28\xc3\x7c\x9d\x1c\xd8\ \x2e\x42\xef\x15\xd6\x5f\x24\xa9\x90\x55\xb5\x1b\x03\x99\x33\x6b\ \x12\xd0\x77\x5f\x79\x7c\xaf\xbf\xf0\xb3\xeb\x27\xcf\x05\xd9\xc4\ \xd3\xf5\x95\x09\x1a\x13\x78\x6c\xa6\xa4\xa8\x9c\x16\xd9\x42\x0f\ \x33\x6f\x84\x46\x18\xde\xb0\x7a\xc9\x36\xca\xaa\xfa\x11\x29\x2a\ \x69\x91\x07\xac\x04\xf5\x7d\xb1\x0c\x0c\x32\xf1\xe1\x8e\xbc\x11\ \x6e\xa7\x89\x3c\x85\x97\x98\x7d\xea\x7d\x31\xb2\x63\xd4\x7c\xb8\ \x4c\xf0\x6c\x76\x59\x3b\xaf\xcc\x1b\x21\xce\x57\xac\x78\xbb\x09\ \x6d\x0e\x6b\x80\x9a\x10\x3d\x6f\x44\x64\x4b\x31\x3f\xdb\xc7\x0f\ \x09\x3d\x5f\x00\x8f\x86\x56\x57\xe0\xea\x03\xe9\x29\x8e\x10\x7b\ \x43\xf3\x62\xaf\x2a\x19\x90\x1e\xa9\xe9\xb2\x75\x50\x35\x86\x66\ \x3a\xdb\xab\x6d\xc6\x7f\xc8\x90\xff\x24\xf9\x5e\x64\x3c\xec\xba\ \xac\x66\x0c\xc9\xf6\xdf\x78\xcf\xea\x65\x11\xe6\x67\x93\x19\xeb\ \x43\xa5\xec\x80\xa8\x91\xa4\x9a\xe8\x49\x9a\x33\xd4\x99\x41\xd6\ \x46\x8f\xcd\x20\x49\xf0\xe5\x9c\x15\x1b\x32\x2d\x48\x62\x9b\x63\ \x29\x4f\xca\xa7\x16\x0f\x93\x5e\x3d\x6a\xc1\xbb\xea\x55\x3a\x09\ \x47\x6b\x11\x72\x8b\x13\x67\x86\x44\x8f\xa5\xa4\x1f\x64\x69\xa4\ \xa0\xb2\x8e\x58\xc8\x53\x8a\x33\x18\x92\xfd\xa0\xaa\xb8\x14\x72\ \xca\x66\x90\x38\x22\x17\xa9\xc9\x61\x39\x69\xe7\xfb\xe9\x8d\x17\ \xd7\x4e\x32\xb4\x08\xa9\x90\x5d\x07\xb6\x58\x6c\x04\xdb\xba\x90\ \x13\x91\x33\xfb\x1e\x15\x8f\xc3\x6b\x39\x64\x12\x31\x8b\xe7\xe3\ \x3c\xc2\xf4\x17\x6f\xf8\x3a\x90\x74\x5b\xae\xe8\x39\x15\xd1\x72\ \x43\x01\x00\x01\x59\x1f\xc8\xb3\xea\xe5\x05\xd1\xdf\x25\x15\x06\ \x74\x3b\xf2\xb0\x2b\x38\xaa\x8b\x9a\x91\x4d\x8e\x65\x49\x84\xe3\ \xc8\x62\x23\xd8\x04\x4e\x32\xa5\xf0\x10\xbb\x9c\xd7\x23\x7f\xe5\ \x7d\x57\x5f\x8c\x74\x02\x51\xb5\x87\xc1\xa3\x7e\xe5\x4d\xf8\x80\ \xb7\xe0\xaf\x98\xa5\x7c\x7a\xb5\xfa\xd0\xf8\xea\xf0\x82\x10\x9a\ \xa0\x4f\x8b\xd5\x6d\xe6\xf9\xc5\xad\xf4\x31\x0f\x51\x76\xc1\x1f\ \x6d\x2e\xa3\x60\xb8\xfa\xe8\x3d\xad\xd4\x5d\xf4\x1b\x49\x16\x8d\ \x16\x08\x7d\xc8\xf0\x92\xc9\x65\x56\x89\x8d\x3c\x7d\x36\x23\x3b\ \x98\x7b\x7c\x55\x82\x34\x43\xfb\x96\xa2\xaf\x9e\x02\xcf\xdf\xe2\ \xee\x25\x2a\xde\x57\x4f\x83\xbc\x34\x94\xea\x84\x58\xeb\xc0\x16\ \x2f\x1e\x5d\xad\xfe\x2e\x75\xba\xb5\x83\x4b\xf2\x71\x55\x21\xc9\ \xe1\x6a\xa4\xbb\x80\xf9\x41\xeb\x0d\x03\xcb\xd1\x1b\x51\xb1\x7b\ \x55\xdd\x5a\xbe\x89\x63\xc0\x1c\x63\xb4\x7c\xb6\xba\x42\x17\xf2\ \xd8\xcc\xc8\x26\xc7\xb2\x84\x42\xee\xb8\xb0\xbc\x2c\x2e\x54\xb3\ \x87\x57\xc3\xe8\x2a\xb3\xfc\x19\x94\x06\xa6\x90\x5d\x67\x0e\x42\ \x0f\x02\xdd\xb3\x00\x22\x24\x92\x9d\x83\x5f\x5a\x68\x10\x39\xdd\ \x5c\x04\x6a\xf5\xbf\x8f\xa0\xe1\x2f\xbd\x7f\xfe\xed\x53\xe3\x92\ \x19\xd9\xf4\x58\x16\xe1\xcc\x74\xaa\xc1\x08\x41\x9f\x26\x3a\xcb\ \x62\x12\x5b\x60\xd6\xd8\xcb\xd6\x36\xe7\xf8\x15\x3e\x10\x89\x07\ \x72\xba\xa0\x5a\xf9\xed\x01\xcc\xf4\x0c\x25\x1b\x13\x18\x0a\x16\ \x3b\xbf\xec\x83\xd9\xaf\x31\x30\xb3\x57\x08\x2d\x6b\xb6\x16\x19\ \x50\xc9\xd7\xad\x6d\x92\x26\xc1\xf3\x1e\x20\x37\x48\xc1\x07\x8d\ \x32\xba\xb0\x26\x9b\x1c\xcb\x52\x9f\xa7\x90\x74\xc5\x76\x12\xf0\ \x2c\x39\xc8\xdb\x6d\x92\xfd\x6b\xe6\x8d\xeb\x7a\xc1\xbc\xea\x37\ \x6d\x6d\x52\x9d\x8b\xa0\x31\x45\x1a\x19\x55\xa1\xcb\x79\x8f\x35\ \xd9\x04\xbe\x60\x11\x4e\xb7\xe6\x35\x83\x1a\x20\x9f\x03\xdd\x6a\ \x28\xf5\xea\xb9\x29\xea\x42\x50\xf9\xa8\x55\x7b\x9d\x93\x8f\x41\ \xfd\x15\x68\xa4\x9f\xa5\xa4\xb1\xf0\xe1\xec\xed\x36\x86\x72\x0d\ \x6e\xc8\x8e\x85\x46\xed\x94\x16\xd8\x4c\x8d\x81\x61\x34\xc8\x8e\ \xd1\x32\x92\x26\x5d\x50\x12\x7b\x02\x2e\xc2\x61\x90\x69\x5c\x8b\ \xfe\xd2\x18\x28\xad\x78\xfc\xe4\xf9\x83\x95\x3d\xdb\x6e\xc8\x2e\ \x6b\x19\x01\x73\xdb\x19\x5a\xcc\x14\x64\xb7\x1b\xee\x11\x1a\xc9\ \x69\x79\x3e\x20\x90\xad\x9b\x50\x53\xe6\x66\x83\xfa\x6b\xde\xf6\ \x2d\xa9\x0c\xee\x48\x82\xbd\x58\xdd\x14\xe8\x0e\xb8\x21\xbb\xa8\ \x05\x6b\xd8\x21\x00\xb0\x99\x82\x9e\x85\x06\xd9\xc1\x1b\xaf\x94\ \xd4\x00\xf0\x85\xb0\xd5\x52\x4c\x33\xfc\x0a\xeb\xaf\xae\xae\x72\ \x90\xbb\x48\x36\x4c\xb5\x2c\x61\x1b\x20\x04\x2c\x87\x39\xd9\xb2\ \xdc\x75\x89\x0b\x68\xa6\x20\x41\x6d\x92\x1d\x5e\x7d\x2b\xcf\xfb\ \xc4\xce\x03\xa9\x03\xad\xb4\xd1\x93\x8b\x63\xf0\x91\xd2\x59\xf4\ \xfb\xa6\xfa\x17\x11\x99\x8e\xc0\xde\x1b\xe0\xec\x33\xba\xfd\x94\ \xad\x5d\x34\x27\x5b\x9e\x89\x25\x1d\xdf\x06\xcf\xcb\x05\x37\x35\ \x36\x25\x31\x7a\x94\xc9\x6f\x73\x73\x11\x83\x04\x3b\xd5\xd1\x0b\ \xf8\x91\x09\xe8\x90\xc0\x0c\x65\x03\x88\x05\x16\x19\xc6\x64\xa7\ \x8d\xc4\x84\x8e\x2e\x81\x5b\x43\x4a\x88\xba\xce\xed\x2e\x5d\xf7\ \xd3\x00\x3a\x5b\x57\x89\x97\x13\x23\x12\x79\x80\x32\x08\xad\x61\ \x4c\x76\x53\xd2\xd4\x87\xbc\x1b\xe0\xc3\xdc\x49\x76\xe4\x26\x89\ \x5d\x67\x03\x3c\xd9\x52\x3f\xa0\xcb\x5a\xc0\x9a\xbd\x3d\x4c\xc9\ \x26\x67\xa5\xd7\xe4\xf0\x8d\x73\x9a\x80\x77\xba\x77\x6f\xe4\xe2\ \x3b\x7c\xed\x70\xa9\x51\x26\xc6\x2d\xc5\xeb\x64\x87\xa7\x14\xbc\ \x93\x7c\xb7\xc3\xdc\xbc\x13\xa6\x64\x93\x63\xe2\xeb\x76\x02\xb3\ \xfc\x80\x78\x0e\x5d\xed\x26\xdb\xc9\xde\xf5\x40\x67\x98\x74\x4a\ \x54\x50\x35\xc2\x67\x09\x2f\xf9\xaa\x0c\x4f\x62\x1e\x6f\xbf\x58\ \x6c\x4a\x36\x9e\x36\x44\xa3\xfa\xbd\x59\x66\xcf\x18\xa4\xb5\x9b\ \x6c\x27\xa7\x32\x68\x1d\xa3\xf1\xad\xf4\x7f\xbe\x0a\xea\x8b\x25\ \x30\x76\xe1\x7c\xf5\x8f\x57\xc5\xed\x69\xfb\x3e\xdc\x0e\x18\x92\ \x4d\x56\xab\x7d\x49\x6d\x1b\x9d\xca\xd0\x72\x5e\xc6\x86\xfd\xa0\ \x0e\xce\x1b\xd1\xfb\xa1\x08\x29\x26\x1f\xf1\xa0\xff\xf0\xfd\x49\ \x65\x37\xa3\xa5\xa8\x09\x4f\x4f\x27\x5b\x6e\x19\x01\xc8\x7e\x7a\ \x75\xd9\xfa\x53\x1b\xe4\xa4\x10\x79\xc7\x97\xd1\x79\x23\x2d\x3f\ \x55\xb1\x81\x6c\x07\x27\xe9\x4c\x46\x1a\x85\xa2\x65\xfd\xff\x84\ \xc5\x57\xf0\xf0\x82\x91\x58\x6b\xae\x6a\xc2\x02\x0e\x07\x04\x36\ \x43\x25\x3b\xf8\xe3\xe7\x1f\x8b\x96\xb8\x1a\x7b\xa8\x32\xe9\x92\ \xc1\x49\x3a\xe1\x2f\xf0\xf5\xdd\x9f\x11\xf5\xed\xe6\x22\xcd\x35\ \x31\x9e\xee\x36\xfd\x48\x42\x89\x75\xfa\x09\xd9\xce\x01\x87\xba\ \x36\x43\x25\xfb\x2a\x6b\xdf\x28\x3e\x10\x2b\xf8\x02\x06\x67\x44\ \x55\x22\x02\xe2\x48\x4e\x3f\x93\xd7\xc4\x78\xe6\xed\xaf\xd5\xbf\ \xfc\xc4\x1b\xf0\x8f\xe8\x92\x60\xb8\xe5\xe9\x01\x0a\xd9\xd4\xbf\ \xb0\x9d\x40\x19\xe1\x48\xc8\x96\xd6\xc4\x02\x59\xd8\xbe\xa7\x02\ \x4e\x10\x13\x41\xdb\xf6\x38\x0e\x85\x6c\x3a\x69\x81\x76\x05\xed\ \x0c\x87\x26\x3b\xa2\xed\x4b\x6b\x62\xa5\x2c\x6b\x17\x92\xae\x2c\ \xa1\xc4\x5c\x6d\x28\x64\x53\xef\xcc\x3e\xea\x65\x80\x43\x93\xcd\ \xe4\xb6\x5e\x13\x8b\xe4\xd1\x63\xfb\x3c\xe4\x3d\x1c\xab\xfb\xdf\ \x0c\xa0\x90\x5d\x90\x84\x27\x20\xd3\x7f\x77\x38\x30\xd9\x21\x0d\ \x99\x49\x6b\x62\xb9\xec\x62\xe1\xe0\x8c\x58\x09\x55\xb7\x69\x9b\ \x40\x21\x9b\x6e\x63\x0e\x5c\x1e\x20\xb3\x09\x07\x26\x3b\xa0\x9b\ \xf6\xe8\x9a\x18\x46\xd8\x38\xcd\x00\x87\x91\xc5\xca\x3c\xcd\x8b\ \xdb\xf6\x87\x48\x54\xc9\xfe\xcb\x91\xfd\x98\x6e\xf1\xae\x17\xdb\ \x26\xf8\xbd\x08\x5a\xe2\x25\x67\xc1\x3e\x0d\x73\x97\x5b\x06\xc7\ \x14\xb2\xcf\x99\x1a\x11\x26\xc0\x22\xf0\xa2\x89\x43\xeb\xec\x98\ \x28\xe2\xa9\x88\x34\x11\x39\x16\x89\x40\xf8\x9d\xd0\xe1\xf4\x07\ \xd1\xb6\xfd\x59\xb4\x96\xe9\xba\xd8\x41\x64\x15\x78\xd1\xc4\xa1\ \xc9\xf6\x89\x8b\xf1\x99\xbf\xa5\xa9\x2d\x3c\x11\x88\x6c\xdc\x14\ \x83\x27\x49\x16\xe9\xb6\x3f\xf8\xd7\x42\x76\xbd\xb9\xd0\x26\xf0\ \xa2\x89\x43\x93\x4d\xf7\x66\x7e\xc3\xdf\x52\x6b\xc8\x13\x81\x62\ \x7c\x27\x84\x28\x93\x34\xe5\xe9\xb6\x93\x90\x16\xb2\x45\x84\xd1\ \x2a\xf0\xa2\x89\x43\x93\xed\x11\xc9\xe2\x44\xd0\xcc\x23\x11\xba\ \x22\x9e\x89\x58\x6c\x0f\x56\xeb\xf6\xd3\x04\x30\xd9\x75\x36\xba\ \x55\xe0\x45\x13\x07\x27\x1b\x9f\x8e\x21\xc2\x0e\x4c\x6d\x72\x02\ \x16\x98\xa0\x71\x9d\x25\xfd\x2e\x2c\xdf\x6f\xdb\x0e\x4c\x76\xbd\ \x11\xd9\x2a\xf0\xa2\x89\x83\x93\x8d\x73\x27\x02\x66\x03\x79\x00\ \x5b\x6c\xd4\x1d\x55\x2f\xb9\x58\x91\x8c\xbe\xbb\x7c\xa2\x7c\x5f\ \x17\x30\xd9\x63\xfe\xd8\xd8\x05\x5e\x34\x71\x70\xb2\xb1\xef\x47\ \xd6\xc4\x3c\x11\x6b\x13\x23\x7e\x85\x5f\x22\x07\xe9\x68\x5e\x0b\ \xd9\xa9\x70\x75\xec\x02\x2f\x9a\x38\x38\xd9\xd8\xf7\x3b\xdf\x43\ \x3b\x20\xd9\xb9\x30\xb7\x76\x81\x17\x4d\x1c\x9c\x6c\xec\xfb\x69\ \x85\xbc\x2d\x01\x91\x1d\xd5\x7e\xa4\x5d\xe0\x45\x13\x07\x27\x1b\ \xfb\x7e\xfb\xf8\x65\x72\x88\xec\x89\x94\x39\x69\x15\x78\xd1\xc4\ \xc1\xc9\xae\x7c\xbf\x68\xb9\x87\x66\x00\xb2\xe9\x74\x95\x12\x60\ \x17\x78\xd1\xc4\xe1\xc9\x1e\x8f\xfc\xd1\x1e\x9a\x01\xc8\xa6\x71\ \x18\xaa\xa5\xed\x02\x2f\x9a\x38\x3c\xd9\xe5\xeb\xad\xf6\x89\x99\ \x02\x20\x9b\x08\x36\xdd\x0a\x64\x19\x78\xd1\xc4\xe1\xc9\x9e\x7e\ \xd9\x6e\x9f\x98\x21\x54\xb2\xe9\x74\xd5\x1f\x91\x37\x76\x81\x17\ \x4d\x1c\x9e\xec\xf8\xc6\xe5\x3e\xb1\x56\xa8\x64\xd3\x38\x0c\x4b\ \xf1\xb0\x0b\xbc\x68\xe2\xf0\x64\xfb\xb7\x2e\xf7\x89\xb5\x42\x5d\ \x5d\x47\x72\x6e\x88\x5d\xe0\x45\x13\x87\x27\xdb\x3a\xf7\x5d\x0f\ \x0a\xd9\xfc\x10\x08\x46\x80\x55\xe0\x45\x13\x87\x27\xdb\xdb\xcf\ \x92\x2b\xb0\x06\xd9\x48\xc4\xb1\x0a\xbc\x68\xe2\x08\xc8\x86\x36\ \xb1\xb9\xc7\x8e\x0e\xf3\x31\xc2\x11\x90\x5d\xee\xa5\x0b\x3d\xd9\ \x04\xcf\xf7\xd2\x4a\x4f\xf6\x1e\xd1\x93\xbd\x47\x0c\xd6\xb3\x52\ \xf7\x8b\x23\xff\x0d\x5f\xc7\xe8\xc9\xde\x23\xa2\xb3\x4d\xbf\xe1\ \xbb\x53\x90\xdf\xf0\x3d\x60\xfb\x3d\x7a\xf4\xe8\xd1\xa3\x47\x8f\ \x1e\x3d\x7a\xfc\x15\xf0\x3f\x5c\x4c\x6c\x29\xb8\x18\x13\x99\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x01\x3e\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x1f\x00\x00\x00\x33\x04\x03\x00\x00\x00\x9d\xee\xce\x47\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x7f\x7f\x7f\xdf\xdf\ \xdf\x9f\x9f\x9f\x3f\x3f\x3f\x1f\x1f\x1f\x5f\x5f\x5f\xbf\xbf\xbf\ \x00\x00\x00\xce\x4a\x91\x57\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x00\xbc\x49\x44\x41\ \x54\x28\x91\x63\x60\x18\xe6\xa0\x2c\xa2\xc5\x00\xcc\x28\x87\xf0\ \xd5\x3a\x3a\x3a\x5a\x40\x0c\xa6\x70\x30\x9f\x29\x02\x28\xd0\xe1\ \x00\x64\x31\x3a\x80\x05\x54\x5b\xc5\x15\x94\x3d\x9a\x81\x2c\x8d\ \x02\xb0\x80\x87\x00\x90\x60\x6e\x05\x12\xa2\x60\x3e\x73\x33\x98\ \xb2\x00\x1a\x0b\x61\xb1\x26\x80\x29\x16\x07\x06\xc6\x00\x88\x94\ \x02\x98\x62\x6f\x60\x60\x85\xd8\x5d\x08\x75\x4c\x38\x83\x29\xaa\ \xeb\x12\x19\x02\x51\x05\xcc\xd8\x9b\x50\x05\x4a\x58\x1c\x50\x05\ \x54\x35\x0c\x50\x05\x34\x44\xd1\xbc\xcc\x11\x88\x2e\xd0\x84\x2e\ \x80\x66\x26\x03\xba\x99\x0c\x15\x0a\x68\x02\xe8\x96\x30\xb8\xa0\ \xf1\x99\xda\xd0\x04\xa0\xe1\x84\x00\x6c\xed\x68\x02\xac\x0d\xe8\ \xb6\xa2\xbb\x4b\x42\x00\x4d\x20\xa3\x00\x4d\x20\x02\xdd\x5d\xe8\ \xce\x60\x08\x42\x17\xa0\x33\x00\x00\xe9\x91\x19\xc7\xd8\xf0\x8d\ \xa1\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x12\x5e\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x02\xd0\x00\x00\x00\x94\x04\x03\x00\x00\x00\x48\x2f\x03\xfc\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x7f\x7f\x7f\x5f\x5f\ \x5f\xdf\xdf\xdf\xbf\xbf\xbf\x1f\x1f\x1f\x3f\x3f\x3f\x9f\x9f\x9f\ \x00\x00\x00\xc8\x53\xa5\x5e\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x11\xdc\x49\x44\x41\ \x54\x78\x9c\xed\x5d\x49\x97\xdc\xb6\x11\x26\x09\x2e\x7d\x74\x12\ \x2b\xe6\xb1\xad\xf7\xf4\xc2\xe3\xbc\x38\x23\xf1\xd8\xf6\x93\x6d\ \x1e\x25\x45\x23\xf1\xd8\x71\xac\x98\x47\x29\xb6\x1c\x1e\x47\xcb\ \x8c\xf9\xb3\xd3\x24\x16\x16\x16\x92\x45\x10\xec\x6e\xd9\xf3\x1d\ \x66\xba\x9b\xdb\xc7\x02\x50\xa8\x2a\x14\x00\xcf\xbb\xc3\x1d\xee\ \x70\x12\x84\x7b\xc4\x49\x64\x6d\x16\x7f\x00\x7c\x7b\x81\x38\xe9\ \x72\x67\x7d\x7f\x92\x3d\xb7\xbe\x56\xc3\x83\x1f\xdd\xdd\xeb\xc8\ \x20\x1f\x51\x67\xd9\x0b\xeb\xb2\xf9\xa7\xf5\xb5\x1a\xaa\x66\xe7\ \xee\x66\xc7\x45\xf4\x19\xea\x34\x54\xbd\x37\x81\x94\x2e\x65\x13\ \x37\xa8\x7a\x71\x8e\x78\x30\x76\x90\x64\xfc\x53\xf0\xc4\xf2\xfe\ \x97\x4e\x45\xe3\xb6\xd8\x8e\x89\x31\xcd\x41\x1e\x65\x8d\xf8\xf2\ \xcc\xf2\xfe\x65\xf3\xda\xee\x4a\x33\xdc\x96\xdb\x11\x11\xef\x07\ \x0f\x85\x37\x3f\xa4\xbd\xa0\xeb\x9d\xd5\xfd\x2f\x9b\x77\x56\xd7\ \x0d\xe1\x93\xad\xd2\xc5\x68\x7d\x2b\x7a\x41\x47\x56\xba\xe3\x20\ \x97\xad\xcd\x75\xc3\x28\x5c\xf6\xad\x47\xc4\xa8\x8a\x86\x82\xf6\ \x7f\xb3\xb9\x7d\xdc\xdc\xda\x5c\x36\x02\xbf\xb9\xb1\xed\x97\x4f\ \x8a\xf7\xa3\x47\x81\xa0\x3d\x2b\x89\x65\xee\xeb\x5f\xd6\xec\x5d\ \xdf\xf2\x08\x48\xc6\xbb\x16\x28\xe8\xca\xa2\x22\x25\x8d\x7b\x8d\ \x1a\x35\xe3\x95\xe3\x3c\x11\x5c\x8f\x1e\x86\x82\xae\x71\x06\xb7\ \x72\xbd\x7b\xa1\x90\xc6\xad\x1d\x73\x1c\x6c\xf6\xf4\xff\x5f\x5f\ \x74\xe4\xd5\x37\x80\x82\xce\xf7\xf3\x6f\x5f\x36\xb6\xe6\x37\x84\ \x42\xae\x6e\x3e\x38\xb8\xe9\x91\x51\xd0\x6a\xfa\x6d\xd3\x75\x5a\ \xa1\x2a\x16\x28\xe8\xe8\x7a\xf6\xdd\x03\x27\x9a\x43\x25\x17\x37\ \x37\xcb\x6f\x7a\x6c\xd4\x5d\x35\x39\xa8\xd2\xa6\x35\xc3\xe2\x9d\ \x72\x18\x0a\x3a\x9e\xef\x29\x14\x2e\x8c\x68\x8d\xdc\xc1\x64\xb4\ \xd0\x62\x27\x46\xb6\x6b\xff\x16\x4f\x2f\xc2\xec\xd0\x1e\xbf\x55\ \x0f\x43\x41\xcf\xb7\xef\x88\x13\xcd\xa1\x93\xab\x3f\x41\xef\x90\ \x9a\x12\x2f\x0e\x7f\x93\x43\xb7\xf5\x37\xf5\x30\x14\x74\x32\xbb\ \x76\xba\xd1\x1c\x3a\xb9\x4f\x51\x77\x54\xed\x1f\xbf\xab\x77\xf7\ \x3c\xa2\xd5\x3f\x28\xe8\x70\xb6\x01\x51\xb8\xf0\x56\x0c\xe4\xc2\ \xe6\xd3\xd3\x1d\x65\xfb\x27\xda\xb5\x7f\xf3\x5d\xa0\x99\x4d\x50\ \xd0\x64\xb6\xd4\x2a\x17\xe6\x81\x89\x5c\xf6\xe9\xd9\x1d\x5d\x1b\ \xf4\xbb\x8f\xc1\x67\x51\xfb\xef\xab\x16\xfc\xf0\x22\x41\x27\x8d\ \x8b\x38\x87\x44\x8e\x21\x77\xee\xd8\xaf\x0e\xa0\xec\x92\xed\x9b\ \xf6\x5f\xdb\xc7\x0b\xf1\x2e\x12\x74\xd4\x34\xce\xa2\x12\x8c\x1c\ \x83\xbf\x82\xc3\xb9\x32\x80\xa0\xc3\x27\x5d\x58\x62\x50\xd0\xb3\ \x83\x1d\xa9\xc3\x08\x29\x23\xc7\x70\x70\x0e\x5d\x38\x42\xc7\x04\ \x10\x34\x79\xbe\xd7\x0e\x2f\x11\xf4\x41\x1a\xee\x34\xa9\x42\x2e\ \x6d\xac\x62\x89\x27\x04\xb4\x93\xde\xeb\x21\x84\x25\x82\xf6\x9d\ \xa8\x68\x0e\x99\x5c\x74\x76\x06\x5e\xa0\xdb\x64\xff\x80\x8a\xb3\ \x04\x9f\x0d\xdc\x97\xe8\xe8\x1c\xa9\xa2\xa7\x28\x52\xc8\xe4\xfc\ \xb3\x0b\x2c\x65\xba\x0f\x95\x42\x6d\x57\x81\xcf\x06\x3b\x59\x12\ \xf4\x4c\x3b\x3a\x45\x46\xee\xa6\x28\x52\xc8\xf7\x3a\x3b\x25\x1d\ \x1b\x7a\xe7\xe0\x06\xfc\x06\x82\xcc\xa6\x61\xda\x25\x0e\x4b\x89\ \x73\x94\x27\x29\x76\x50\xc9\x65\x67\xa6\xa4\x2b\x13\x9d\x0a\x90\ \x4e\x77\xe2\x63\x78\xad\x9d\x49\x32\xd0\x42\xc3\x79\x36\x44\x82\ \xac\x74\x93\x14\xe9\xc3\xaf\xe5\xef\x4e\x9c\x4e\x77\x08\x84\xab\ \xfa\x3f\xf0\x6b\x0c\x06\xdd\xea\x5e\x90\xfe\x5e\xbd\xbc\x91\x4c\ \xbd\x64\x5e\x1d\x8a\x71\x6a\x74\x9a\xa2\x91\x5c\x74\x5e\x96\x74\ \xca\x8b\x3d\x81\xb4\x48\xd9\xab\xc0\xa2\x0f\x1a\xc4\x5b\xf5\xf2\ \xee\x65\x45\x7a\xa3\x3f\xcf\x58\x2b\x9a\x66\xfa\x24\x0c\x45\x23\ \x39\x37\x5e\xa7\x2b\x84\x62\x64\x34\x90\x0c\x80\xa2\x6f\x76\x7c\ \x84\xa5\xfd\x38\x51\x01\xe3\xeb\x59\x0f\xcf\x50\x7d\x21\x82\x62\ \x07\x95\x9c\x53\x23\x7d\x31\x72\x51\x49\x22\xc9\x3a\xf2\xfb\xe0\ \x17\x90\x5e\xb1\xf3\x46\x11\xed\x67\x3d\xbc\x41\xf5\x85\x08\x8a\ \x1d\x34\x72\x95\xe3\xc4\x9c\x45\xa8\x04\x97\x5c\xae\x5d\x7d\x07\ \x04\x46\xc1\x33\x6f\x1c\xf9\xac\xd0\x24\xb2\x2f\x44\x50\xec\xa0\ \x91\xab\xcf\xc8\x65\xf1\xfb\x57\x2d\x64\xda\xb9\x68\xa6\xc0\x38\ \x7e\x31\x71\xbb\x74\x56\x84\x28\x46\x29\x51\x0c\xc5\x0e\x1a\xb9\ \xfc\x8c\x7a\xc3\xbe\x59\x7a\xa9\xac\xd0\xfc\x3e\x07\x45\x64\x2a\ \x91\xa9\xa6\xf8\x9f\x99\x0f\xc7\x08\x02\x45\xd1\x33\x91\x8b\x4f\ \x15\xfc\xff\xa6\x7c\xd6\x55\x81\x47\xfd\x4f\x55\x5f\x5b\x2b\xa5\ \x19\x97\xa2\xfa\x88\xdc\xbb\x70\x42\xa5\x92\x79\xd6\x5d\x8a\x32\ \x3a\x50\x14\x3d\x13\x39\xac\x99\xee\x1a\x0f\x0f\x06\x6f\xc7\xec\ \x4b\x40\xa5\xaf\x23\xe5\x56\x3e\xbd\x10\x76\x6a\xcc\xe9\x26\x13\ \xbc\xfd\xeb\x59\x84\x2a\x8c\xd1\x81\xa3\xe8\x99\xc8\x11\x5c\x67\ \xeb\x1a\xa4\x6c\x5d\x8b\xdd\xe1\x43\x6f\x7f\x46\x5c\x49\x3e\xb8\ \xba\x6a\xae\xae\xb6\xf0\xfc\x58\x28\x50\x51\x57\xc8\x84\x0a\x46\ \xce\x0c\xe0\x77\x6b\x30\x3e\x32\x8e\xa2\x99\x5c\x79\x12\xb3\x23\ \xba\xf9\xd9\xfb\xba\xdc\xb7\x43\x3e\xe2\xb7\xba\xef\x4e\x7c\x35\ \x8e\x16\xf6\x55\xe9\x1e\xf2\x11\xd8\xf3\x28\x12\x94\x9d\x8b\xa4\ \x68\x44\x76\x12\x27\x3c\x6b\xe5\xfb\xf0\x50\x39\xf3\x9e\x6e\xd9\ \xb7\xdd\x58\x33\x85\x7a\xe5\x88\xac\xa9\x33\x55\x74\x8c\x52\xa1\ \x48\x8a\x46\xd4\x0e\x07\xca\xd0\x08\x3b\x29\x90\x67\x9e\x77\x5f\ \xfc\x06\xf5\x5f\xae\x71\x2e\x44\x77\x8f\x9c\x6f\xa5\x3b\xe8\xa3\ \xd8\x60\xac\x3b\x2c\x45\x23\xf2\x53\x84\xa4\xd9\xfc\x88\xda\x23\ \x3d\xf3\x08\xbc\x69\x6d\xb0\x8e\xf6\xfc\x23\x6e\xbe\xd5\xdb\x79\ \x8c\x0a\x8c\x18\xd0\x14\xcd\x17\x9f\x20\xda\xb1\xd9\xd1\x67\xef\ \xfc\xfe\xd9\xb0\x42\xe8\xb1\x75\x50\x99\xb4\xcc\x46\x13\xc2\x99\ \xf9\xe4\x29\xa6\x61\xa3\x29\x9a\x10\x9c\xc2\xbe\x63\x11\xb6\xe0\ \xb3\xa8\x7f\xbb\x0a\x28\xbd\xf2\x5a\xbb\xa4\x9c\x17\xc6\x7f\x38\ \x53\x1f\x56\x18\x0f\x79\x11\x45\x5c\x77\xbb\x0e\x92\xed\xaf\xe2\ \x33\x01\xd6\x0f\x31\x34\xc2\x14\x15\xc4\xb4\x46\x83\xb0\x09\x96\ \x51\xc4\x19\x90\xeb\x20\x7c\xf2\x52\x7c\xf6\x41\x79\x27\x06\x6d\ \x56\xac\xda\x95\x84\x0d\xc2\xca\x5d\x48\xb1\x19\x76\x89\x66\x76\ \x28\x32\xbe\x98\x3e\x85\x3c\xbf\x16\x9f\x23\xa0\xc1\x62\x03\xe3\ \x68\xd5\x29\x37\x09\xa6\xba\x2d\xa4\x58\x0d\x36\x9a\x89\x89\x39\ \x13\x18\x9f\x10\x48\xf1\x7e\xdb\x9f\x0e\x62\x2e\x1b\x43\xc7\xe4\ \xaf\xaa\xe1\x02\x8c\x02\x5d\x48\x31\x53\xa3\x29\xbf\x5e\xb1\xa5\ \x0f\xea\x31\x51\x7d\x73\xf5\xd3\x38\x2d\xcc\x90\x1d\xe8\xc5\x53\ \xf0\xb9\x30\x74\x4c\xe1\xaa\x1e\xec\xc1\xf6\xba\x9e\x3c\x69\x21\ \xc5\x5a\x89\x0f\x3e\xfc\x8d\x54\x9d\x84\x47\xe3\x90\x0f\xdf\x91\ \x6a\xc2\x45\x03\x03\xd6\x43\x00\x6d\xa9\x04\xc5\xdd\x8e\xcb\x69\ \x29\xb9\xab\x7a\xb0\x07\x7f\x65\x3f\x79\xd2\x42\x8a\xaa\xa9\x5e\ \x6d\xc3\xb2\xd3\x45\x63\x73\x7c\xc3\x72\xe7\xe5\x13\x55\x36\x9e\ \x34\x65\x81\x9b\x4c\x60\x4f\xd1\x0e\x63\x5c\xaa\x27\x57\x6b\x7a\ \xb0\x05\xc2\x9b\x58\x4a\x31\x97\x23\xd2\x49\xf3\x3a\xa2\xcd\x88\ \x4e\x17\x39\x74\x89\x06\x81\x15\xef\x4c\xde\xbe\x42\x6c\xb2\x0a\ \x12\xd8\x8b\x83\xf6\xd3\x86\x76\xff\xa4\x9e\x9c\xae\x69\x76\xd4\ \x88\xb0\xfc\x52\x8a\x4a\xab\x89\x9a\x8b\x4d\xf7\x83\x18\x34\x32\ \xc4\x51\x49\x17\x78\x9b\x1a\x92\x48\xa7\xb8\x83\xa8\x6d\x00\x9f\ \x72\xf8\x4c\xf6\xea\xc9\xc5\x9a\x1e\x6c\x8a\xf0\xc0\x97\x52\x8c\ \x64\xd7\x30\xbf\xf1\xfc\xdb\xb6\x05\xc4\xac\xba\x85\x86\x6e\xa2\ \x4b\x8b\x52\x07\x7e\xf5\x3b\x4f\x75\xe4\x41\xcf\x2b\x82\x4f\xa9\ \x3e\x7a\xb1\xd6\x08\x37\x6b\x7a\xb0\x19\x62\x20\x6b\x29\xc5\x58\ \xee\x70\x45\x82\x48\xb1\xa5\xff\x7d\x93\x0f\xf4\xbe\x3b\xb0\x1d\ \x67\xe6\x4f\x79\xcd\x9b\xbe\xa4\x72\xc8\xb1\x78\x47\xf4\x35\x9f\ \xe2\x35\xed\xbb\x0a\x11\xea\x58\x4a\x51\x31\x21\x45\x54\x95\xa7\ \x13\xc6\x7a\xc5\x25\xdd\x15\xfe\x64\x15\x9b\x22\x0f\x4c\xed\x1a\ \x96\x5a\x58\x3d\xd3\xaf\x0c\xd6\x1c\x0a\x2a\x11\x23\x86\x4b\x29\ \xfa\xf2\x60\x16\x1f\x63\x14\x5d\x59\xae\x37\xaa\xa0\xab\xe4\xc1\ \xa4\xa0\xb3\xed\xf8\x71\x90\x10\x30\xdd\xd5\x25\x6b\x1a\xd2\x0d\ \x22\xa6\xb4\x94\xa2\xec\x7d\x12\x2e\x75\x31\xef\xb4\xd6\xcb\x9a\ \x3a\xf5\xf1\xa4\x8d\x5f\x4c\x9c\x70\xd5\x7f\xcc\x26\x75\x64\xb8\ \xa2\x21\x4d\x30\x31\xa5\xa5\x14\xe5\x78\x8a\x18\xf9\x12\x3d\x59\ \xa6\x5f\x4c\x97\x88\x8a\x26\x05\x1d\x8d\x5b\xda\x30\x53\xbc\x9c\ \xd4\x91\x64\xc5\x54\x9f\x10\x23\xe8\xa5\x14\x89\x14\x55\xf2\xb9\ \xf4\x0a\xae\x17\x4a\xad\x39\x10\xca\x4a\xeb\x63\xbf\x29\x6f\x69\ \xe3\x7a\xcc\x7e\x30\x4c\x42\x80\x80\x4e\x3a\x42\x47\xe2\xb2\x3d\ \xb5\x87\xbc\x6a\x9e\xed\x3c\x96\x69\x4a\x23\xe1\x5f\xe9\x27\x8d\ \x44\xd6\xe6\x3c\x7f\xf4\x14\xb9\xd9\x04\xdc\xc6\xa0\x46\x70\x45\ \x53\x8e\xf7\xd2\x15\x01\xd5\x35\x85\x22\xe8\xbf\x37\xec\x4e\x62\ \x54\x2f\x19\xa7\x06\xf2\x6a\x31\xd5\x75\xba\x46\x19\x10\x96\x3f\ \x3d\xce\x5a\x21\xb2\xd4\xe9\x4d\xfb\xcf\xbf\xff\xaa\xf4\x92\x07\ \xb4\x04\x3a\x26\x08\x41\x2f\xa7\x28\x75\x04\x62\x58\xac\x7a\xcd\ \x39\xec\xd5\x0b\x36\x54\xbd\xd4\xf2\x11\x9a\xaa\xd1\xfe\x24\x92\ \xb0\xc9\xb8\x56\x03\x2b\xab\x61\x14\xb0\xd5\xea\x93\xed\xd0\x5e\ \xe7\x5e\x3d\xfe\xb5\xeb\x8b\x92\xb2\x79\xf6\x4b\x2b\xed\xf0\xea\ \xf3\xef\xab\x5b\x26\x17\x1f\x11\x8e\x5e\x4e\x11\x08\x9a\x56\xe0\ \xae\xa2\x36\xc3\xd6\x5d\x41\x25\x9c\xc9\x47\x2e\x6f\x3e\xbf\x78\ \xd4\xe5\x54\xe6\xe2\x69\xe5\xeb\xce\x4e\x97\xb0\x17\x57\x04\x3d\ \xab\x04\xd1\x74\x33\x8b\xe4\xb5\xb0\xbb\xa6\xfe\x8d\x5e\xdf\x3e\ \x3a\x7b\x7f\xd1\x4d\xc1\x78\xfb\xba\x7d\x2a\xeb\xf9\x03\x44\x38\ \x7a\x39\x45\xc9\x86\x2c\x98\x80\x09\x17\xbe\xc1\xba\x63\xb7\x53\ \x96\x3c\xec\x82\x79\x49\x7b\x59\x9f\xba\x52\x6d\xc7\x04\x0d\xe0\ \x23\xde\x22\xb5\xf0\xc1\xf3\xee\x35\x68\x54\x86\x2e\x13\x4a\x63\ \x8e\x39\x15\x71\xcd\x5e\x2e\x46\x08\x7a\x39\xc5\x0a\x0a\x3a\x65\ \x02\x4e\x78\x3b\x31\x58\x77\x25\x97\x19\x54\x48\xac\x67\x6b\x63\ \xd8\x3d\xe7\x6c\x3f\xc9\x8d\x22\x40\x18\xc9\xb5\x85\xa0\xb3\xee\ \xb6\x7e\x57\x25\x48\x79\x4b\x17\xd2\xf0\x5a\xed\xb7\xa3\x8f\xa5\ \x01\xb3\x18\x91\x18\xb7\x9c\xa2\xe4\x7e\x56\x4c\xc0\xc2\x7d\xd6\ \xad\xbb\x43\xef\x79\xd5\x42\xee\x1c\x22\xfa\x88\x83\xde\xf5\xfb\ \x3e\x32\xc5\x86\x27\x62\xc4\x48\x52\x3d\x7f\x30\x8b\x79\x05\x21\ \x7d\xff\xd6\xfc\x67\xc6\xd4\xa6\x61\xc7\xdf\xb3\xc7\x4f\x0b\x7a\ \x39\xc5\x0c\x0a\x9a\x1b\x73\xc1\x3b\xe5\x87\x1e\x09\x95\xb0\xd2\ \x94\x6a\x7a\x8f\xf0\xda\x8b\x80\x63\x7d\x3d\xc9\x8d\x02\xf3\x16\ \xc5\x7c\x41\xb3\xc1\x25\x42\xbb\x9d\xa0\xf9\x40\x4a\x4a\x93\x09\ \xfa\xf0\xee\xdd\xf7\xc8\x91\xa0\xc7\x29\xc2\xc8\x15\xe1\x77\x8b\ \x99\x7c\x43\x9d\x01\x93\x70\x24\x1f\xf9\x9a\xfd\x7f\x0e\x87\x74\ \x0b\x6c\x1c\x28\x42\x04\x32\x54\x73\x12\x01\xee\xbc\xb2\x2b\xab\ \xf7\x97\xec\xf5\xb8\xa0\x6b\xda\xdd\x60\x04\xbd\x9c\x22\x14\x74\ \xef\x18\x32\x46\xbe\xee\xfe\xb1\xa2\xcd\xcd\x37\xfd\xd2\x7b\xda\ \x7f\xc9\x5d\x0a\x3a\x47\x0c\xeb\x69\xb7\x65\xb8\x66\x77\xe0\x49\ \xcd\x5c\xd0\x39\xad\x82\x11\x62\x6c\x76\x39\x45\x28\x68\x21\xd7\ \x88\xdd\xd5\x90\x50\x16\x71\x33\xda\x68\xca\xfc\x37\x04\x94\x4f\ \x2d\xe8\x4d\xf3\xf1\x71\x07\xaa\x30\x12\xa1\x24\x7b\x41\x3f\xa1\ \x5f\x15\x41\x77\x9d\xd0\x95\x54\x93\x9c\x08\x5a\x68\x55\xe1\x18\ \x6e\x3e\x72\x46\x9a\x38\xf9\x48\x97\xd9\x0b\xfa\x0e\x2e\xf0\xbc\ \xc1\x46\x36\x71\x6f\x31\x3b\x20\xbd\x51\x5e\x3c\xe3\x56\x01\x17\ \x34\x3b\x41\x13\x34\x6c\x07\xce\x28\x42\x41\x0b\xc7\x90\x8b\xc8\ \x90\x8b\xca\x62\x1c\x03\x66\xe5\x65\x0e\xac\x6b\xb4\xa0\x37\x88\ \xb7\xd8\xcc\x17\x74\x24\x5f\x72\x70\x5e\x15\x1d\xbd\x19\xa8\xd1\ \x06\x41\x2f\xa7\x08\xc7\xcb\x72\xfe\x91\x8b\xc8\x90\x4f\x46\x87\ \x14\x93\x81\xe7\xe6\x30\xd3\xbe\xbd\x4b\xa0\x38\x2c\x5b\xf1\x1e\ \x40\x81\x62\x84\x68\x21\x68\x65\xc8\x23\x7e\xce\x75\x87\xa2\xa3\ \x35\x41\x5b\x3e\x1e\x2f\xe8\x42\x28\x31\x26\xc6\xd6\xc8\x57\x46\ \xc7\x36\x9d\xac\xe2\x01\xdb\x7c\xf3\x14\x7e\xf9\x80\xf4\x0c\x01\ \xc3\x8d\x74\x36\xfa\x2d\x8c\xf0\xe5\xda\x90\x5e\xa4\x8d\x64\x47\ \x73\x0f\x63\xa6\xa0\x2d\x29\x42\x41\x8b\x0a\xcc\x04\x4d\x13\x28\ \xe5\xe9\x20\x51\xa7\xb6\xf3\x81\x40\xd5\xe6\xc3\xd0\x97\x31\xac\ \xa4\x3a\x44\xee\xd0\xb6\xfb\xf6\x4e\xac\xe5\xdc\xdb\xd1\x3b\xfa\ \x15\x23\x68\x97\xaa\x43\xf8\x81\xcc\xea\xa0\x0a\x82\xe5\x7c\xfa\ \x57\xdd\x79\x34\xcc\x94\x09\x47\xe6\x5e\x9f\x12\xea\x49\xb3\xe2\ \x1d\x5b\x1d\x16\x82\xe6\x8e\x2e\xcd\x6b\xb8\xdc\xb7\x11\xfe\xd7\ \xf4\x5e\xf4\x78\x79\xc3\x1e\xef\xc6\xbc\xc3\x0b\x5a\xe4\x52\x33\ \x3b\xba\x73\xad\x78\xd8\xb3\xa0\x8f\xea\xd2\x0c\xfa\xfc\xe0\x50\ \x1e\xa9\x87\x7d\xa1\x97\x5f\x4f\x72\x63\x8f\x5b\xc7\xea\xe0\x7d\ \x79\x4c\x83\xeb\x17\xed\xcb\x76\x37\x61\xb1\x0e\xae\x5a\xdc\xd9\ \xd1\x58\xab\x43\xb8\x99\xcc\x33\x4c\xda\x9e\x8a\x4f\x1a\x61\x8b\ \x0e\x75\x91\x83\x7e\x25\x10\x65\x71\xad\x02\x6a\x94\xf1\x41\x43\ \xff\x95\x18\x49\x5e\xc9\x8e\x3e\x90\xeb\xa2\x46\x6f\xdb\xe7\x74\ \xe3\x3d\x11\x1f\x1d\xda\x77\xfc\x98\xf1\x7a\x34\x87\x85\x0b\xba\ \x77\xb8\x59\xac\xa3\x4d\x2c\x10\x03\x26\x7c\xb9\x9a\x36\x8e\x5e\ \x8b\xa7\x86\x72\xff\x26\xe9\x73\x31\x1e\x66\x42\xf8\xe2\xa2\xe0\ \xd9\x66\xda\x5b\x80\x42\xe0\xb0\x11\xf4\x41\x17\x5e\xb0\x49\xa0\ \xa4\x5b\x98\x80\x2d\x50\xb2\x69\x7e\x68\x7f\xe2\x0d\xd8\xca\x05\ \x9f\x4d\x11\x78\x86\x89\x38\x91\x47\xef\xea\x77\xe4\x1e\x3f\xea\ \xdf\x50\x29\xd6\x1f\xbc\x10\xac\xd6\x94\x3e\x85\xe2\x94\xa6\xba\ \xd7\xfb\x91\xe7\x1e\x0e\x06\xbc\x4b\x50\x23\x36\xb0\x10\x38\xac\ \x04\xed\x37\x2f\x3d\x92\x1e\x2a\xd2\xf7\xb4\x3e\x7d\xd7\x34\xb7\ \xbf\xb4\x82\xbe\xfc\xb1\xb5\x39\x58\x0d\xb3\x09\x2a\xcd\xa7\x08\ \x04\x2d\x1c\x43\x11\x8f\x0e\x5f\xdd\xfc\xa5\x3f\x75\x43\xcf\xba\ \xbd\x48\xff\x0d\xef\x00\xee\x2e\xaf\x81\x96\x6e\x87\x1f\x9b\x1c\ \x94\x4f\xc2\x4d\x97\x40\x79\x0b\x58\x08\x1c\x16\x41\x25\xaf\x95\ \xec\x6d\xd9\xe6\x14\x31\x83\x9d\x19\x64\x9b\x86\x64\x2f\x4a\xf1\ \x6a\xb8\x78\xf4\x52\x8a\x40\xd0\x91\x70\xb8\x43\xe3\x48\x24\x4b\ \x54\x7d\x7b\x23\x25\xa1\xc3\x65\x9c\xe5\xf4\xf3\x0a\xf6\x8c\x2a\ \xa9\x8f\x7c\xa4\xc9\xd3\xa2\xea\x52\x21\x88\x0b\xec\x92\xef\x1e\ \xbd\xf9\x59\xff\xf1\x60\x75\x90\x37\x5f\xec\xf8\x57\x8b\xc0\xbf\ \x05\x45\x10\xf8\xdf\xf4\x06\x84\xd1\x4c\xfe\xce\x78\x03\xb8\x65\ \x66\x20\x11\x2e\x77\xde\x10\xba\x11\x53\x61\xbb\x28\xc1\x6d\xa9\ \x10\x38\x2c\x02\xff\x83\xd8\xc8\x0e\x2f\x66\xcc\x70\x39\x45\x20\ \x68\x30\x61\xa0\xda\x19\x4e\xfd\xb3\x99\xc2\xb6\xff\x2c\x6d\x15\ \x41\x46\xd2\x0d\xba\xa4\xdf\x90\xd7\x00\x79\xe4\x53\x2e\x04\x0e\ \x9b\x31\xc3\x21\x58\x08\x7a\x39\x45\x30\x38\x5b\xf7\xf7\x32\x26\ \x37\xbf\x34\xfc\xe6\xc1\x21\x15\xaf\x80\x8f\x0e\x47\x06\xe8\xbb\ \x65\xb5\x44\xe7\x2b\x8f\xe5\xcb\x85\x20\x18\x39\x5c\xc2\x45\x11\ \xf4\xfc\x74\x03\x1b\x8a\xdc\x5d\x7f\xb3\x83\xf3\x6e\x25\x89\xf1\ \x67\x99\x35\x10\xdc\x3b\x42\x2a\x9f\x60\xa4\x9a\x74\x89\x09\x22\ \xfc\x2d\x67\xa7\xc8\x85\xc0\x91\x39\x4c\xf9\x57\x04\x8d\xc9\x54\ \x5a\x4e\xb1\xe1\x63\x80\x4f\x3a\x0b\x99\xc1\x94\x45\x1e\x9b\xcb\ \xeb\x5f\xf0\x51\x3b\xf0\x65\x24\x13\x9d\xa6\xb7\xf7\x09\xa9\x52\ \x6c\x46\x2e\x04\xf1\xab\xc3\xd5\x9f\x14\x41\x87\xb3\x53\xc2\x2c\ \x28\xf2\x94\xb0\xa8\xb9\x0e\xc1\x79\xa6\x5d\x4c\xcc\x13\x3c\xa5\ \x65\x6d\xe0\xb2\xc3\x63\x9b\x28\xd1\xe0\x5f\x3f\x45\x12\x26\x53\ \xa9\x85\x60\x38\x65\x29\x74\x41\xcf\x4b\x72\xb4\xa1\xc8\x93\x1c\ \x37\xcd\x16\x26\x25\x1a\xa6\xfa\x0c\xec\x42\xda\x27\x26\x79\xca\ \x6a\xbe\xe9\x70\x43\xa2\x81\xef\x5c\xf4\x26\x30\x27\x56\x2d\x04\ \x06\xbb\x24\xc7\xa1\xc7\x4b\x12\x99\x9d\xb6\x6b\x43\x91\x37\x9b\ \xe0\xa5\x57\xc3\xeb\xf4\x5d\xea\xf4\xdd\x38\x3a\x48\xbb\xce\x48\ \xbe\xd2\x95\x37\x08\x1a\x8f\xed\x13\x4e\x60\x96\xb7\x5a\x08\x14\ \xc4\x5d\x7e\x74\xf8\x7d\xd5\xfc\xf4\x18\xfe\x32\x37\x11\xdd\x86\ \x62\xc2\x7a\x5c\xf2\xea\xfe\x2d\x94\x6d\xb1\xb8\x8f\x1f\xdb\xda\ \xa7\xec\x92\x70\xfa\x28\x0b\xcc\xf1\x51\x0b\x81\x22\x74\xb7\x03\ \xde\x46\x0d\xd8\xcf\x9e\x5a\x61\x43\xd1\xe7\x36\x64\xd8\x7b\x4a\ \x2d\xe2\xf9\x41\x49\x05\x23\x33\x42\x59\xfe\x48\x6f\xc1\xc3\xca\ \xa1\x16\x02\xe7\xb9\xe2\x2a\x0c\x15\x6a\xb2\xd0\x5e\x7c\xb6\xa1\ \xe8\x0f\xb8\x9f\xf3\x77\x40\x52\x31\x32\x97\x9c\xae\xd6\x12\xf6\ \x0d\x16\x4c\x1f\xd0\x0a\x81\x62\xd5\xad\xcc\xb3\x79\xd3\xdf\xac\ \x28\x0e\x4e\xec\x97\x2c\x35\x1b\x8c\x2c\x1e\x4a\xfb\x6b\xbf\x77\ \x13\x82\x9e\x84\x56\x08\x14\xd3\x33\x39\x16\xa0\x46\x4d\xe8\x5c\ \x46\x71\x70\x21\x32\xbb\xfd\x9e\x01\xb1\x11\xdd\x43\xf3\x72\x62\ \x48\x5d\xb4\x3a\xad\x10\x28\xd4\x9e\xc7\x29\x0a\xd4\x14\xe5\x65\ \x14\x37\x43\x13\xfb\x27\x57\x59\x9d\xc0\xd8\x2a\x14\x7c\x80\x57\ \x3c\x19\xcc\x68\xd7\x0a\x81\xa2\x70\xe8\x81\x6b\xc8\xe7\x4d\xba\ \xb7\xa2\x38\xfc\x8c\xd1\xf5\x3a\x26\x41\x9e\x8e\x1c\x8c\xba\x96\ \x5a\x03\xc5\x58\x01\x75\xad\x14\x02\xc5\xf4\xec\xb3\x05\x18\xac\ \x6d\x10\x0b\x29\x16\x83\xea\x69\xd9\x0a\x34\x97\xdb\x91\x83\x34\ \x1e\x5b\x01\xb3\x33\x15\x1d\x8b\x5e\x08\x1d\xca\x35\x17\xba\x8e\ \x71\x0b\xa3\x2c\xa2\xa8\x2e\x8c\x02\xb0\x68\x4d\xa5\xfb\x63\x07\ \x3b\x41\x13\xd8\x49\xe7\xa2\xd9\xe9\x85\xd0\x82\xb8\x33\xa3\x0d\ \x40\x2d\xf5\xb3\x90\x62\xe6\xd2\xb5\xc5\x22\x6a\x2b\x47\x00\x75\ \x56\xbf\xf2\x93\x5e\x08\x2d\x92\x35\xcd\x68\xec\xe2\x55\x7b\xf6\ \xc9\x8a\x22\x6a\x69\x3d\xd7\x88\x5b\x41\xe7\x70\xc5\xe5\x7e\xe5\ \x27\xbd\x10\xe8\x15\xd7\x2b\xf2\x21\xf3\x96\x63\xb3\xa2\x88\x89\ \x10\x3a\x87\xdf\x56\x09\x69\xd5\x49\xd2\xa7\x94\x68\x85\xd0\x22\ \x5f\x77\x65\xcf\x12\xb5\xc0\xe0\x12\x8a\xa7\x59\x60\x30\x3c\xf4\ \x26\xa1\xdc\x09\x8b\x6c\x34\xbd\x10\x5a\x68\x3d\x8f\x5b\x64\x98\ \x76\xbd\x88\xe2\x89\x96\xcc\xac\xb6\xde\xa5\x5c\xc0\x22\x13\xdb\ \x50\x08\x9e\xbc\x2e\xe8\x0a\x40\xad\xee\xbc\x88\xe2\x49\x16\x81\ \x3d\x18\x7f\x1f\xc9\xd5\x4e\xfa\xa5\x5f\x33\x58\x2f\x04\xd8\x6c\ \xd7\xc1\xb0\x91\x0b\xb0\x88\xe2\x49\x96\x35\x3e\xb0\x7a\xf0\x42\ \xf1\xa2\xfa\x01\x38\xbd\x10\x8c\x93\x96\x9c\x02\x25\x86\x45\x14\ \x4f\xb2\x50\xb7\x11\x62\x46\xa3\x5e\x08\xc6\xb9\x34\x4e\x81\x6b\ \xd8\x4b\x28\x9e\x64\xe9\x79\x23\xea\x31\x15\x97\xae\xcc\x12\xb9\ \x99\xc2\x02\x8a\xa7\xd9\x4c\xc1\x84\x68\xac\x46\xe8\x13\x78\x1d\ \x03\xb9\x3d\x88\x3d\xc5\xd3\x6c\x0f\x62\x82\x96\x8e\x02\x30\xb1\ \xac\xbb\x03\xa0\x36\xbc\x59\x40\xf1\x44\x1b\xde\x18\x91\x0d\x17\ \xf9\x68\x55\x72\x02\xdc\xee\x6c\xf6\x14\xfd\x33\xda\xde\x77\x68\ \xfe\x91\xd7\xaf\x6e\xb1\xe6\xc3\x71\x9b\x92\xd9\x52\x3c\xd9\xa6\ \x64\x06\x98\xd6\x8c\xa4\xd0\xe2\x37\xee\x81\xdd\x66\x6f\x3f\x70\ \x64\x8a\x22\x76\xd7\xf1\xa3\xc0\xb8\x41\x71\x8b\xa1\x49\x8d\x0e\ \x81\xdd\x38\xd2\x96\x62\x7d\x36\x46\xc7\x01\x97\x43\x85\x3e\x6a\ \x56\x39\x02\x6e\x5b\x70\x6b\x8a\x67\xb5\x15\x6a\x38\x34\x7a\x59\ \x1e\xa1\xc3\x4e\x51\x92\xb0\xa5\x78\x5e\x9b\xfb\xc2\xfc\x6c\x08\ \xd3\x16\x11\xce\x91\xe3\xe2\xf2\x96\x14\xfd\xb3\xda\xae\xfa\xe0\ \x08\x1b\xe9\xa6\xc7\x88\x98\xa3\x37\x60\xb7\xa2\x78\x66\x1b\xb0\ \xb7\xeb\x5f\xeb\x18\x6a\xae\x6e\x91\x60\x06\xc2\x3d\x5b\x8a\xc5\ \x39\xf5\x85\x1e\x5b\x6a\x5d\x85\xba\xb9\xf9\x4a\x28\x71\x5a\xd4\ \x8e\x62\x75\xba\xfd\x9b\xcc\xc8\xf4\x97\x25\xe5\xcc\x9d\xdc\x2c\ \x51\x23\xc7\xf4\x6c\x28\x92\x33\xf2\x0b\x29\x0c\x0b\xf4\x5e\xde\ \x1e\xc7\xd2\x8f\x90\xe9\x00\x36\x14\x83\xb3\x09\x46\x8f\x60\x6c\ \xfa\xad\x4b\x24\xf6\x4e\xf2\x24\x45\xa4\x49\xf3\x07\x41\xb9\x5e\ \xf3\x4e\xcf\x4d\x45\x9f\x14\xf5\x6a\xce\xdb\xf9\xa9\xe8\x93\x22\ \x5a\xad\x7d\xfb\x9f\x82\x8a\x3e\x1e\x16\x28\xe9\x09\xe4\x67\x66\ \x45\x9f\x1a\xd5\x5a\xf1\x88\xec\x7c\x46\x57\xce\x02\xf9\x4a\xd9\ \x71\xe1\x79\x05\x3a\x4e\x0f\x7f\xa5\x80\x44\xdc\xa8\x69\x7a\x7f\ \x74\xac\x64\xe0\xd5\x77\xc6\x9d\x82\x62\x15\x03\x8f\x94\x77\x9a\ \x43\x41\xb0\xca\xc0\x5e\x70\xa7\x39\x34\x54\x6b\xe8\x8e\x3b\xcd\ \xa1\xe3\x72\x05\xdd\x41\xce\x28\xd1\xe0\x6c\x10\xae\x60\x77\xc4\ \x77\xde\x8a\x01\x75\xe3\x3c\xf8\x9d\xba\xbf\xe5\xef\x00\x81\xf3\ \xea\x97\x9c\xd9\x68\xe1\xb9\xa0\x72\x6d\x8a\xe5\x77\xee\xb7\x11\ \xae\xbb\x43\x52\xde\x05\xee\x8c\x70\x2d\x98\xf8\x9c\x32\x94\xce\ \x0a\x97\x6e\xad\xde\xea\xce\xb6\x1b\x00\x71\xb9\xbe\x9e\xb6\x46\ \xef\x1d\x7a\x38\x5d\x53\xc8\xe5\xf2\x93\xbf\x3b\x64\x0e\x2b\x61\ \xf5\x7c\xfa\x9c\x3b\xac\x81\xff\x03\x9f\x04\x17\x76\x2b\x85\xf8\ \x1c\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x01\x30\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x22\x00\x00\x00\x32\x04\x03\x00\x00\x00\xcb\xbf\x14\x6a\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x9f\x9f\x9f\x5f\x5f\ \x5f\xbf\xbf\xbf\x1f\x1f\x1f\x3f\x3f\x3f\x7f\x7f\x7f\xdf\xdf\xdf\ \x00\x00\x00\xc4\x02\x4f\xa8\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x00\xae\x49\x44\x41\ \x54\x28\x91\x63\x60\x18\x59\xa0\x2c\xa4\x03\x0c\x9c\x61\x02\x45\ \x1d\x50\xd0\x08\x15\x60\xec\xe8\x68\xf1\xe8\xe8\x70\x71\x71\x55\ \x80\x8a\x48\x74\x28\x33\xb0\x47\x74\x18\xc0\x0d\x61\x04\x2b\x66\ \xed\x08\x80\x8b\x54\x74\x08\x00\x49\xe6\x8e\x76\xb8\x48\x44\x13\ \x88\x64\x87\x1b\x0b\xd4\x04\x91\xec\x68\x83\x89\xb0\x74\x24\x40\ \xd4\xc0\x45\x2c\x20\x96\x30\x23\x74\x69\xb4\x40\x35\x37\xc3\x0d\ \x6e\x05\x53\x4c\x1d\x0d\x30\x11\x8f\x26\xa8\x71\x30\x07\xc3\xec\ \xb0\x40\xb8\xd9\x03\x22\xa2\xd1\x8a\x70\x60\x1b\xc4\x2a\x77\xb8\ \x48\x46\x13\xc4\x18\x84\x47\x59\x3a\xc0\x9a\xe0\x76\x83\xd4\x03\ \xdd\xcc\xd4\x52\x80\x10\x61\x30\x69\x2a\x28\xf4\x48\x40\x12\x60\ \x60\x4f\xf5\x70\x15\x67\x18\x05\x44\x02\x00\x18\x8e\x2d\x7e\xcf\ \xa3\x84\xc1\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x01\xf5\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x3d\x00\x00\x00\x58\x04\x03\x00\x00\x00\xb4\x75\xe2\x33\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\xdf\xdf\xdf\x1f\x1f\ \x1f\x5f\x5f\x5f\x3f\x3f\x3f\x9f\x9f\x9f\x7f\x7f\x7f\xbf\xbf\xbf\ \x00\x00\x00\x38\xd2\xda\x47\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x01\x73\x49\x44\x41\ \x54\x48\x89\xed\x94\xbd\x4f\xc3\x30\x10\xc5\xf3\x1d\xc6\x0a\x81\ \x94\x11\x21\x24\x3c\xd2\xcd\x63\xc5\x94\xb1\x88\xa5\x63\x19\x2a\ \x65\x04\x09\x21\x8f\x25\x94\xe4\xfd\xd9\xd8\x31\x4e\xce\xb1\x95\ \x0c\x95\x2a\x81\xfa\xa6\xb3\x9e\xef\x92\xdf\xd9\xbe\x20\x38\xeb\ \xac\x7f\xa0\x7c\x37\xed\x97\x78\xe8\xe3\x8f\x57\xc7\xce\x80\xbd\ \x89\x63\x34\x8e\x1f\x01\x37\x26\x16\xc0\x62\xec\x17\x18\xea\x73\ \xc0\xc9\xdf\x00\x6b\x13\x33\x1c\x1c\x9f\x0f\x35\x43\x78\xbe\xcf\ \x86\x9a\x29\xf0\x3d\xb6\x65\x4e\x5f\x33\x06\x3e\xc7\x7e\x4a\x6a\ \x52\x14\x92\xd3\x9a\x98\xa2\x90\x9c\xbd\x89\x29\x0a\xc9\x59\x99\ \x98\x7b\xda\x23\x73\xb6\x26\x66\xa8\xc7\xb6\xca\x31\x67\x22\x51\ \xbe\x1c\xff\x84\xf8\x62\x06\xbf\x9a\xc1\x2f\xff\x04\xfe\x25\x65\ \x88\x49\x4d\xa1\x51\x38\xf5\x23\xd2\x9e\x4a\xa3\x80\x3e\xa1\x82\ \x7c\xb3\xec\x50\x72\xeb\x05\x6c\x86\xf6\xc9\x5f\x55\x56\x66\xbd\ \x00\x3e\xf8\x09\xba\xf6\x24\x16\x23\x1b\xea\x57\x1a\xb5\xa0\x8c\ \xaa\xe6\xef\xff\xe5\xd0\xa8\xd5\x8a\xf8\x29\x7a\x7e\xd1\xf0\x2e\ \x64\x23\x7c\xd4\x0b\xbd\x73\x2b\x54\xfb\x33\xeb\x88\x24\xbe\x6e\ \x4a\xc8\x1b\xb9\x59\x7a\xa2\xa5\xbe\xc4\x7f\x44\xfd\x14\x5c\xf3\ \x7a\x1d\x84\x0c\xcb\xd4\xbe\x41\x12\xff\x8d\xab\x1a\x58\xca\xd5\ \x15\xc6\x27\xac\xe6\x45\xf8\x7c\x8b\xbb\x97\x6e\xf9\xce\x0e\xf6\ \x7c\xf2\xcd\x0b\x1b\xdf\x9d\x17\x36\x7e\x3b\xe5\x27\xe4\x72\xfb\ \x14\x91\xcb\xed\x93\x20\x97\xdb\xa7\x0a\x70\xe7\x2d\x51\xe9\x19\ \x97\x54\x98\xc6\xcf\x67\xf0\xb3\x23\xf1\x2f\x8e\xc7\x77\xe6\x81\ \xed\xbb\xf3\x80\xaa\xc0\xfd\xa4\x1f\xee\x26\xcb\x9f\x35\xa9\x1f\ \x52\x06\xa1\xf1\x36\xca\x6a\x62\x00\x00\x00\x00\x49\x45\x4e\x44\ \xae\x42\x60\x82\ \x00\x00\x0f\x5c\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x02\xd7\x00\x00\x00\x83\x04\x03\x00\x00\x00\xb4\x20\x2a\xa6\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x7f\x7f\x7f\x5f\x5f\ \x5f\xdf\xdf\xdf\xbf\xbf\xbf\x1f\x1f\x1f\x3f\x3f\x3f\x9f\x9f\x9f\ \x00\x00\x00\xc8\x53\xa5\x5e\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x0e\xda\x49\x44\x41\ \x54\x78\x9c\xed\x5d\xcb\x7b\xdb\x36\x12\xe7\x9b\x3a\x76\xbb\x9b\ \x44\x47\xb5\x49\x5b\x1d\x9d\x38\xca\xea\xc8\xb6\x76\xc2\x63\xdc\ \x5d\x39\x3c\x6a\x93\xf8\x8b\x8e\x69\x1b\x67\x79\x94\xdb\xc8\xc6\ \x9f\xbd\xc4\x93\xa0\x30\xa4\x00\x01\x7a\xac\xcb\xdf\xf7\x45\x8e\ \x28\x08\x8f\x1f\x87\x33\x83\xc1\x00\xf2\xbc\x1e\x3d\x7a\xf4\xe8\ \xd1\xa3\x47\x8f\x1e\x3d\x7a\xf4\xe8\xd1\xa3\x47\x8f\x1e\x3d\x7a\ \xf4\xe8\xd1\xa3\x47\x8f\x1e\x3d\xee\x0b\x9e\x5e\xcd\x7e\x38\x74\ \x1f\x74\x10\x5e\xec\xbb\xc5\xc9\x57\xae\x6b\x8c\x2e\x4e\xa2\xc5\ \xbf\x5d\xd7\xba\x03\x5c\xff\xb1\xe7\x06\xd3\x62\xe4\xba\xca\xf3\ \x13\xcf\x0b\xd0\x47\xd7\xd5\xba\xc6\xf3\x07\x68\xbf\x64\x87\x3f\ \x16\x68\xe4\xba\xce\x2f\xf8\xb5\xf8\xd3\x71\xb5\xae\x91\xaf\x3e\ \xec\x97\xec\x08\x5d\x96\xce\xc9\xf6\xe7\xf8\x75\xb8\xef\x47\xd4\ \x14\xa1\xe7\xed\x59\xb2\x4f\xbc\x81\x73\xb2\xe3\x15\xd6\x20\x53\ \xe4\xb8\xda\x1d\x60\xcf\x64\x7b\x3b\x20\x7b\x80\x5e\x93\xd7\x13\ \xc7\xf5\xba\xc7\x3d\x20\x3b\xee\xc9\x6e\x83\x7b\xb2\xd3\x59\xaf\ \x46\x5a\xe0\x9e\x6c\x8a\xf2\x76\x27\xd5\x3a\xc5\xbd\x21\x7b\x71\ \xb7\x93\x6a\x9d\xe2\xbe\x90\x1d\xa1\xf9\x2e\xaa\x75\x8b\xfb\x42\ \x76\xb2\x3a\x7e\xfb\x78\x6f\xc8\x1e\x7e\xd9\x45\xad\x8e\x71\x4f\ \xc8\x8e\x56\xd9\x0e\x6a\x75\x8d\x7b\x42\xf6\xe4\x5f\x3b\xa8\xd4\ \x39\xee\x07\xd9\xe1\xec\xff\x40\x63\xdf\x17\xb2\x27\x73\xf7\x75\ \xee\x00\x8e\xc9\x1e\xa0\x0a\x1b\x4a\x8c\x9c\xb6\x48\xf0\xb6\xfa\ \x97\x56\xc2\xed\xe3\xe6\x8f\x77\xde\x7e\x2f\xc8\x4e\x70\x95\xb1\ \xa7\x49\xf6\xb5\x75\x7b\x8f\xb6\xfc\x9e\x6b\xb2\xef\xce\xce\xce\ \xba\x4b\x74\x93\x9d\xbe\xd6\x6e\xcb\x17\x6b\x33\x58\xb0\xbd\x49\ \xf5\x2f\xac\x5a\x3f\x83\xc9\xfe\x3c\x7b\xcf\x5a\xb0\x77\x12\xf3\ \x2d\x57\x85\x5c\x93\xbd\x71\xbd\x64\x03\xd9\x65\xa6\xdd\x56\xc4\ \x27\xe8\x01\x59\xd5\x7c\xc8\xaf\x83\x64\xbf\xb8\x0b\x17\x94\xa2\ \xd2\x7e\xfd\x2c\xdd\x32\x34\x70\x64\x64\x1b\x0d\x83\xd3\x36\x9e\ \x55\xa8\x07\x02\x92\xbd\x18\x45\x05\x79\x68\xc2\x1b\x83\x16\xda\ \x30\xcc\xb6\xfa\xda\x91\x91\x3d\x35\x59\x7a\xf7\xa9\x42\xa0\x8a\ \x1a\x89\xdb\x04\x91\x9d\xa2\x8f\x31\x5a\xe2\xff\xc5\xfa\x7a\xaa\ \x1d\xc9\x76\x6e\xfd\x91\x91\x3d\x33\x6a\xed\xea\x84\xd6\x48\x20\ \x54\x31\x44\x76\x8c\x4e\x06\x34\x54\x35\xce\xe8\x95\x6b\x9b\x69\ \x50\xb8\x5d\x3c\xf7\xb8\xc8\x0e\x18\x63\xa9\xde\x24\x65\x3a\x87\ \xae\x42\x64\x4f\x57\x9e\x7f\x8b\xaf\x87\x7c\xbc\xc8\xca\x4e\x0e\ \xb7\x4a\x7e\x39\x2e\xb2\xa7\x23\x5e\x28\xd3\x69\xcd\x07\xf5\x2f\ \x44\xf6\x90\x8b\x62\xc2\x3a\x18\x51\xa5\xb2\x2d\x62\xf3\xc4\x89\ \xf0\xf4\x27\x84\x7e\x3f\x75\x38\x09\xd8\x44\xf6\xe9\xf3\x31\xba\ \x3b\x3d\x6d\xfb\x78\xc1\xba\x92\x6b\xae\x71\x15\x50\xd7\x21\xb2\ \x17\x5c\xa6\xf2\x11\xfd\xeb\xdb\xc5\xbf\x7d\x73\x19\x65\xda\x6e\ \x69\xd3\xec\x5a\x8d\x1b\xc8\xa6\x0d\xb6\x51\x19\xf1\x21\x0c\x35\ \x75\xe2\x70\x04\xb5\x01\x90\x5d\x70\xf3\xc9\x6f\x67\x82\xec\xb2\ \xe0\xcc\xa7\xa9\x21\xfd\xb3\x47\xc9\x3e\x91\xdb\x55\xc0\x9f\x71\ \x6f\xa1\xe9\x9f\x81\xcd\x01\x3c\x84\x5c\x43\x0b\xcb\x36\xd5\x53\ \x54\xad\x18\x8f\xac\xbe\xee\x04\x9b\x75\x76\x17\xb8\xc1\x0b\x75\ \xad\x57\x00\x3d\xcd\x00\xd9\x11\x62\xfd\xf2\xb9\x84\x97\x96\x8b\ \xf1\xf9\xd2\xee\xfb\x2e\x60\x47\xf6\x90\xcd\x52\x52\x5d\xcd\x16\ \x41\x94\x01\x64\xfb\xbc\x42\x61\xd8\xc6\x46\xce\x5b\x94\xad\x5f\ \x89\x8f\x60\x7d\xd9\x8e\x6c\x6e\xef\x82\x16\xeb\xa5\x46\x5d\x0a\ \x60\xee\x0d\x90\x2d\x2a\xcc\xf9\x94\xa6\x80\x14\x55\xf8\xb0\x20\ \x26\x45\x59\xf6\xa1\x8b\x6e\xe1\xdb\xba\x66\xf0\x99\x72\x83\xcf\ \xc5\xea\x89\x57\xeb\xda\xaa\xcd\x10\x56\xf4\x56\x64\x47\x2b\xf6\ \x9f\x18\xb6\x5e\x3e\xd5\xb3\x2f\x1e\xd7\x97\x20\xd5\x09\x90\x1d\ \x73\x7f\x93\xfa\xc7\x0b\x6a\xa6\xe7\x6b\xa5\xc2\x31\xb3\xdf\x4a\ \xfa\x71\x41\xc8\x4e\xa4\xeb\xe9\xce\x72\x82\xce\x6f\x3f\xfd\x84\ \xbb\x3b\x60\xbe\x0b\xf9\xf3\xf5\xf7\xb3\xa5\xf7\x1b\xbd\x0b\x02\ \x56\x64\x53\xb7\x39\xa1\xe3\x05\x1e\xf3\x98\x92\x2d\x67\x88\x94\ \x4b\xb5\x98\x42\x36\xe5\x96\xc8\x34\x0b\x46\xc1\x9e\x5f\x89\xd0\ \xac\x12\xeb\xd9\xec\xed\xda\x07\xcc\x29\x97\x33\xdc\x42\x4b\x03\ \xdb\x8a\x14\x0b\xda\xa4\x1a\x7d\xf4\x6a\x41\xee\xfa\x35\x5a\xfd\ \x90\x61\xc2\xcf\x2f\xce\x3e\xa3\x77\x52\x51\x2b\xb2\x13\xce\x62\ \x8b\xe7\xc7\xbc\x6f\x24\xb5\x31\x05\x2c\x29\x20\xd9\x39\xbf\x86\ \x3a\x3c\xbf\x14\xfd\x91\x79\x2f\x20\xdb\xcc\x6e\x4d\xc3\xfb\xc7\ \x0a\x2c\x41\x4d\xcc\xc1\x6e\x9b\x21\xbf\x21\x5d\xc1\x42\x11\x10\ \x89\x0b\x10\x7e\x92\x9f\xa1\xbb\x37\x1e\x96\x87\xac\x2e\x6a\x45\ \xf6\x60\x83\xe7\x47\xef\x41\x63\xee\x07\xd9\x29\x80\xec\x21\x53\ \x50\x21\x57\x54\x90\xe7\x57\x92\x11\x2e\x80\x1b\xcd\x6e\x4d\x43\ \x06\x16\xa3\x9d\x90\x1d\xb2\x27\x90\xbe\xe2\x5e\x26\x37\xf4\x3a\ \xe9\x71\x2a\xcb\x82\x15\xd9\xd3\xd7\xbc\x41\xd8\xf3\xa3\xf7\xa0\ \xa1\x01\x12\xc0\x4e\x01\x64\x73\x06\x53\x4e\x17\xe0\xf9\x85\x34\ \x6e\x98\x03\x5f\x67\xd1\x83\x86\x0c\x8c\xe7\x4a\x31\x17\x08\xd8\ \x7d\x25\x7d\x99\xe0\xa1\x96\x23\xf2\x01\xe3\x64\x2c\x25\x23\x59\ \x91\x5d\xce\xe9\xdf\x36\xcf\x0f\x31\x33\x25\x69\x80\x00\x90\x43\ \x80\x2d\xee\x7b\x88\x59\x36\xe0\xf9\x25\xd4\x88\x4e\x81\xcd\x39\ \xf4\x06\x84\xb2\xfe\xf2\x86\x2e\x42\xb5\x2a\xd8\x23\x97\x93\x8e\ \x46\xd5\xfd\xe7\x5e\x03\xe3\x64\x2a\x85\x96\xac\xc8\xe6\x93\xef\ \x16\xcf\x8f\xcd\x4c\xa6\x32\x99\xfe\x4a\x2d\xa7\x92\x1d\xf2\x60\ \x77\xc0\x65\x13\xf0\xfc\x4a\xc4\x02\xb6\xaa\x36\xa7\xfa\x23\x45\ \x32\xbf\x90\x69\x76\x80\x21\xed\xc5\x94\x8e\x6b\x8c\x4e\x26\x8c\ \x51\x46\x76\x20\xdd\x71\x2b\xb2\xc7\x6c\x98\xad\x9e\xdf\x1c\xff\ \x29\x65\x7e\x21\x0f\x4c\x25\x5b\x4c\x20\x93\x1b\x7e\x41\x55\x54\ \x8c\xff\x29\xd0\x38\xd5\x1f\x41\x23\x5e\x99\xef\x66\xc3\xd4\x82\ \x0e\x68\x40\x07\x99\xa0\xc7\x7c\x26\xc1\xc8\x4e\x51\x2d\x26\x56\ \x64\x2f\xd8\x30\x73\xd8\xad\x62\xfa\x63\x2c\xab\xe9\x08\xd0\x19\ \xea\xa5\x7a\x02\x79\xb7\x76\x41\xae\xe9\x0b\x6b\x5c\x55\x23\xf4\ \xa3\xb8\xf1\xc9\x74\x37\x64\x17\xdc\xd8\x92\x77\x21\x5a\x89\xf8\ \xfb\x92\x5d\xa9\x15\xa0\x15\xd9\xfc\x26\x0e\x85\xb8\xce\x08\xd8\ \xd3\xcb\xcc\x54\x21\x3b\x20\xa1\x16\xd9\x42\x2f\xc5\x4c\xa0\x13\ \x55\x51\x05\x4c\x49\x94\xea\x9d\x86\xf4\xd7\xae\xc8\x46\xe8\x8c\ \xe0\x67\x8f\xf5\x86\x37\x23\xc8\xae\x1f\x6c\x42\x76\x4c\x39\x32\ \x6e\xa8\xc8\xe8\xdf\xda\xfb\x6a\x84\x80\x21\x33\xa5\x47\xb6\x98\ \x40\x0e\x18\xd9\x80\x62\xe6\xfc\x8f\x55\xc5\x04\xe9\x2f\x51\x95\ \x63\xac\x85\x9f\x03\xb4\x26\xd9\x72\x01\x42\xf6\xa0\x33\x68\xdd\ \xd1\x50\xc6\xfe\x0a\xb5\xd4\x20\x1b\x32\x53\x1e\xa0\x71\x54\xb2\ \x85\x87\xc1\x19\x02\x14\x15\xbf\x21\x85\xea\x4c\x32\x3f\xa5\xa1\ \xbf\x76\x45\x76\xd1\xec\xfd\x44\x84\x0e\x04\xd9\x6b\x92\x6d\x49\ \x36\x64\xbd\x30\xe8\x6a\x4b\xd3\x4c\xe9\x91\x2d\x7c\x67\xce\xd0\ \x50\xed\x1c\x13\x76\xa8\xf1\x01\x1d\x70\xa5\xbf\xc2\x79\x7d\xf1\ \x0b\xee\x4b\x13\xb8\x67\xc8\x02\x4b\x6c\x20\x1b\xbd\xbf\xca\x51\ \xd3\x1b\xe9\xd2\xd9\x26\xed\x70\xe2\x00\xeb\x45\xeb\x22\xca\x1a\ \x9b\xa9\x17\xd2\xc5\x4c\x2d\xa7\x90\x2d\xb8\xe5\x64\x17\xb8\xc7\ \x49\xa3\x1c\x73\x81\x20\xb7\xb3\xd6\x5f\x52\xbe\x16\x1e\xe9\x0e\ \x66\x90\xc3\xc6\x80\xfc\x3f\x7d\xd4\xf4\xb3\x53\x69\xd1\xd8\xca\ \x40\xb2\x76\x62\xd2\xe9\x77\xeb\x9f\x4a\x66\x4a\xca\xd6\xd3\xd2\ \xd9\x62\x0a\xc3\xc8\x0e\x89\xa2\x7a\xd0\x28\xc3\x7c\x9d\x1c\xd8\ \x2e\x42\xef\x15\xd6\x5f\x24\xa9\x90\x55\xb5\x1b\x03\x99\x33\x6b\ \x12\xd0\x77\x5f\x79\x7c\xaf\xbf\xf0\xb3\xeb\x27\xcf\x05\xd9\xc4\ \xd3\xf5\x95\x09\x1a\x13\x78\x6c\xa6\xa4\xa8\x9c\x16\xd9\x42\x0f\ \x33\x6f\x84\x46\x18\xde\xb0\x7a\xc9\x36\xca\xaa\xfa\x11\x29\x2a\ \x69\x91\x07\xac\x04\xf5\x7d\xb1\x0c\x0c\x32\xf1\xe1\x8e\xbc\x11\ \x6e\xa7\x89\x3c\x85\x97\x98\x7d\xea\x7d\x31\xb2\x63\xd4\x7c\xb8\ \x4c\xf0\x6c\x76\x59\x3b\xaf\xcc\x1b\x21\xce\x57\xac\x78\xbb\x09\ \x6d\x0e\x6b\x80\x9a\x10\x3d\x6f\x44\x64\x4b\x31\x3f\xdb\xc7\x0f\ \x09\x3d\x5f\x00\x8f\x86\x56\x57\xe0\xea\x03\xe9\x29\x8e\x10\x7b\ \x43\xf3\x62\xaf\x2a\x19\x90\x1e\xa9\xe9\xb2\x75\x50\x35\x86\x66\ \x3a\xdb\xab\x6d\xc6\x7f\xc8\x90\xff\x24\xf9\x5e\x64\x3c\xec\xba\ \xac\x66\x0c\xc9\xf6\xdf\x78\xcf\xea\x65\x11\xe6\x67\x93\x19\xeb\ \x43\xa5\xec\x80\xa8\x91\xa4\x9a\xe8\x49\x9a\x33\xd4\x99\x41\xd6\ \x46\x8f\xcd\x20\x49\xf0\xe5\x9c\x15\x1b\x32\x2d\x48\x62\x9b\x63\ \x29\x4f\xca\xa7\x16\x0f\x93\x5e\x3d\x6a\xc1\xbb\xea\x55\x3a\x09\ \x47\x6b\x11\x72\x8b\x13\x67\x86\x44\x8f\xa5\xa4\x1f\x64\x69\xa4\ \xa0\xb2\x8e\x58\xc8\x53\x8a\x33\x18\x92\xfd\xa0\xaa\xb8\x14\x72\ \xca\x66\x90\x38\x22\x17\xa9\xc9\x61\x39\x69\xe7\xfb\xe9\x8d\x17\ \xd7\x4e\x32\xb4\x08\xa9\x90\x5d\x07\xb6\x58\x6c\x04\xdb\xba\x90\ \x13\x91\x33\xfb\x1e\x15\x8f\xc3\x6b\x39\x64\x12\x31\x8b\xe7\xe3\ \x3c\xc2\xf4\x17\x6f\xf8\x3a\x90\x74\x5b\xae\xe8\x39\x15\xd1\x72\ \x43\x01\x00\x01\x59\x1f\xc8\xb3\xea\xe5\x05\xd1\xdf\x25\x15\x06\ \x74\x3b\xf2\xb0\x2b\x38\xaa\x8b\x9a\x91\x4d\x8e\x65\x49\x84\xe3\ \xc8\x62\x23\xd8\x04\x4e\x32\xa5\xf0\x10\xbb\x9c\xd7\x23\x7f\xe5\ \x7d\x57\x5f\x8c\x74\x02\x51\xb5\x87\xc1\xa3\x7e\xe5\x4d\xf8\x80\ \xb7\xe0\xaf\x98\xa5\x7c\x7a\xb5\xfa\xd0\xf8\xea\xf0\x82\x10\x9a\ \xa0\x4f\x8b\xd5\x6d\xe6\xf9\xc5\xad\xf4\x31\x0f\x51\x76\xc1\x1f\ \x6d\x2e\xa3\x60\xb8\xfa\xe8\x3d\xad\xd4\x5d\xf4\x1b\x49\x16\x8d\ \x16\x08\x7d\xc8\xf0\x92\xc9\x65\x56\x89\x8d\x3c\x7d\x36\x23\x3b\ \x98\x7b\x7c\x55\x82\x34\x43\xfb\x96\xa2\xaf\x9e\x02\xcf\xdf\xe2\ \xee\x25\x2a\xde\x57\x4f\x83\xbc\x34\x94\xea\x84\x58\xeb\xc0\x16\ \x2f\x1e\x5d\xad\xfe\x2e\x75\xba\xb5\x83\x4b\xf2\x71\x55\x21\xc9\ \xe1\x6a\xa4\xbb\x80\xf9\x41\xeb\x0d\x03\xcb\xd1\x1b\x51\xb1\x7b\ \x55\xdd\x5a\xbe\x89\x63\xc0\x1c\x63\xb4\x7c\xb6\xba\x42\x17\xf2\ \xd8\xcc\xc8\x26\xc7\xb2\x84\x42\xee\xb8\xb0\xbc\x2c\x2e\x54\xb3\ \x87\x57\xc3\xe8\x2a\xb3\xfc\x19\x94\x06\xa6\x90\x5d\x67\x0e\x42\ \x0f\x02\xdd\xb3\x00\x22\x24\x92\x9d\x83\x5f\x5a\x68\x10\x39\xdd\ \x5c\x04\x6a\xf5\xbf\x8f\xa0\xe1\x2f\xbd\x7f\xfe\xed\x53\xe3\x92\ \x19\xd9\xf4\x58\x16\xe1\xcc\x74\xaa\xc1\x08\x41\x9f\x26\x3a\xcb\ \x62\x12\x5b\x60\xd6\xd8\xcb\xd6\x36\xe7\xf8\x15\x3e\x10\x89\x07\ \x72\xba\xa0\x5a\xf9\xed\x01\xcc\xf4\x0c\x25\x1b\x13\x18\x0a\x16\ \x3b\xbf\xec\x83\xd9\xaf\x31\x30\xb3\x57\x08\x2d\x6b\xb6\x16\x19\ \x50\xc9\xd7\xad\x6d\x92\x26\xc1\xf3\x1e\x20\x37\x48\xc1\x07\x8d\ \x32\xba\xb0\x26\x9b\x1c\xcb\x52\x9f\xa7\x90\x74\xc5\x76\x12\xf0\ \x2c\x39\xc8\xdb\x6d\x92\xfd\x6b\xe6\x8d\xeb\x7a\xc1\xbc\xea\x37\ \x6d\x6d\x52\x9d\x8b\xa0\x31\x45\x1a\x19\x55\xa1\xcb\x79\x8f\x35\ \xd9\x04\xbe\x60\x11\x4e\xb7\xe6\x35\x83\x1a\x20\x9f\x03\xdd\x6a\ \x28\xf5\xea\xb9\x29\xea\x42\x50\xf9\xa8\x55\x7b\x9d\x93\x8f\x41\ \xfd\x15\x68\xa4\x9f\xa5\xa4\xb1\xf0\xe1\xec\xed\x36\x86\x72\x0d\ \x6e\xc8\x8e\x85\x46\xed\x94\x16\xd8\x4c\x8d\x81\x61\x34\xc8\x8e\ \xd1\x32\x92\x26\x5d\x50\x12\x7b\x02\x2e\xc2\x61\x90\x69\x5c\x8b\ \xfe\xd2\x18\x28\xad\x78\xfc\xe4\xf9\x83\x95\x3d\xdb\x6e\xc8\x2e\ \x6b\x19\x01\x73\xdb\x19\x5a\xcc\x14\x64\xb7\x1b\xee\x11\x1a\xc9\ \x69\x79\x3e\x20\x90\xad\x9b\x50\x53\xe6\x66\x83\xfa\x6b\xde\xf6\ \x2d\xa9\x0c\xee\x48\x82\xbd\x58\xdd\x14\xe8\x0e\xb8\x21\xbb\xa8\ \x05\x6b\xd8\x21\x00\xb0\x99\x82\x9e\x85\x06\xd9\xc1\x1b\xaf\x94\ \xd4\x00\xf0\x85\xb0\xd5\x52\x4c\x33\xfc\x0a\xeb\xaf\xae\xae\x72\ \x90\xbb\x48\x36\x4c\xb5\x2c\x61\x1b\x20\x04\x2c\x87\x39\xd9\xb2\ \xdc\x75\x89\x0b\x68\xa6\x20\x41\x6d\x92\x1d\x5e\x7d\x2b\xcf\xfb\ \xc4\xce\x03\xa9\x03\xad\xb4\xd1\x93\x8b\x63\xf0\x91\xd2\x59\xf4\ \xfb\xa6\xfa\x17\x11\x99\x8e\xc0\xde\x1b\xe0\xec\x33\xba\xfd\x94\ \xad\x5d\x34\x27\x5b\x9e\x89\x25\x1d\xdf\x06\xcf\xcb\x05\x37\x35\ \x36\x25\x31\x7a\x94\xc9\x6f\x73\x73\x11\x83\x04\x3b\xd5\xd1\x0b\ \xf8\x91\x09\xe8\x90\xc0\x0c\x65\x03\x88\x05\x16\x19\xc6\x64\xa7\ \x8d\xc4\x84\x8e\x2e\x81\x5b\x43\x4a\x88\xba\xce\xed\x2e\x5d\xf7\ \xd3\x00\x3a\x5b\x57\x89\x97\x13\x23\x12\x79\x80\x32\x08\xad\x61\ \x4c\x76\x53\xd2\xd4\x87\xbc\x1b\xe0\xc3\xdc\x49\x76\xe4\x26\x89\ \x5d\x67\x03\x3c\xd9\x52\x3f\xa0\xcb\x5a\xc0\x9a\xbd\x3d\x4c\xc9\ \x26\x67\xa5\xd7\xe4\xf0\x8d\x73\x9a\x80\x77\xba\x77\x6f\xe4\xe2\ \x3b\x7c\xed\x70\xa9\x51\x26\xc6\x2d\xc5\xeb\x64\x87\xa7\x14\xbc\ \x93\x7c\xb7\xc3\xdc\xbc\x13\xa6\x64\x93\x63\xe2\xeb\x76\x02\xb3\ \xfc\x80\x78\x0e\x5d\xed\x26\xdb\xc9\xde\xf5\x40\x67\x98\x74\x4a\ \x54\x50\x35\xc2\x67\x09\x2f\xf9\xaa\x0c\x4f\x62\x1e\x6f\xbf\x58\ \x6c\x4a\x36\x9e\x36\x44\xa3\xfa\xbd\x59\x66\xcf\x18\xa4\xb5\x9b\ \x6c\x27\xa7\x32\x68\x1d\xa3\xf1\xad\xf4\x7f\xbe\x0a\xea\x8b\x25\ \x30\x76\xe1\x7c\xf5\x8f\x57\xc5\xed\x69\xfb\x3e\xdc\x0e\x18\x92\ \x4d\x56\xab\x7d\x49\x6d\x1b\x9d\xca\xd0\x72\x5e\xc6\x86\xfd\xa0\ \x0e\xce\x1b\xd1\xfb\xa1\x08\x29\x26\x1f\xf1\xa0\xff\xf0\xfd\x49\ \x65\x37\xa3\xa5\xa8\x09\x4f\x4f\x27\x5b\x6e\x19\x01\xc8\x7e\x7a\ \x75\xd9\xfa\x53\x1b\xe4\xa4\x10\x79\xc7\x97\xd1\x79\x23\x2d\x3f\ \x55\xb1\x81\x6c\x07\x27\xe9\x4c\x46\x1a\x85\xa2\x65\xfd\xff\x84\ \xc5\x57\xf0\xf0\x82\x91\x58\x6b\xae\x6a\xc2\x02\x0e\x07\x04\x36\ \x43\x25\x3b\xf8\xe3\xe7\x1f\x8b\x96\xb8\x1a\x7b\xa8\x32\xe9\x92\ \xc1\x49\x3a\xe1\x2f\xf0\xf5\xdd\x9f\x11\xf5\xed\xe6\x22\xcd\x35\ \x31\x9e\xee\x36\xfd\x48\x42\x89\x75\xfa\x09\xd9\xce\x01\x87\xba\ \x36\x43\x25\xfb\x2a\x6b\xdf\x28\x3e\x10\x2b\xf8\x02\x06\x67\x44\ \x55\x22\x02\xe2\x48\x4e\x3f\x93\xd7\xc4\x78\xe6\xed\xaf\xd5\xbf\ \xfc\xc4\x1b\xf0\x8f\xe8\x92\x60\xb8\xe5\xe9\x01\x0a\xd9\xd4\xbf\ \xb0\x9d\x40\x19\xe1\x48\xc8\x96\xd6\xc4\x02\x59\xd8\xbe\xa7\x02\ \x4e\x10\x13\x41\xdb\xf6\x38\x0e\x85\x6c\x3a\x69\x81\x76\x05\xed\ \x0c\x87\x26\x3b\xa2\xed\x4b\x6b\x62\xa5\x2c\x6b\x17\x92\xae\x2c\ \xa1\xc4\x5c\x6d\x28\x64\x53\xef\xcc\x3e\xea\x65\x80\x43\x93\xcd\ \xe4\xb6\x5e\x13\x8b\xe4\xd1\x63\xfb\x3c\xe4\x3d\x1c\xab\xfb\xdf\ \x0c\xa0\x90\x5d\x90\x84\x27\x20\xd3\x7f\x77\x38\x30\xd9\x21\x0d\ \x99\x49\x6b\x62\xb9\xec\x62\xe1\xe0\x8c\x58\x09\x55\xb7\x69\x9b\ \x40\x21\x9b\x6e\x63\x0e\x5c\x1e\x20\xb3\x09\x07\x26\x3b\xa0\x9b\ \xf6\xe8\x9a\x18\x46\xd8\x38\xcd\x00\x87\x91\xc5\xca\x3c\xcd\x8b\ \xdb\xf6\x87\x48\x54\xc9\xfe\xcb\x91\xfd\x98\x6e\xf1\xae\x17\xdb\ \x26\xf8\xbd\x08\x5a\xe2\x25\x67\xc1\x3e\x0d\x73\x97\x5b\x06\xc7\ \x14\xb2\xcf\x99\x1a\x11\x26\xc0\x22\xf0\xa2\x89\x43\xeb\xec\x98\ \x28\xe2\xa9\x88\x34\x11\x39\x16\x89\x40\xf8\x9d\xd0\xe1\xf4\x07\ \xd1\xb6\xfd\x59\xb4\x96\xe9\xba\xd8\x41\x64\x15\x78\xd1\xc4\xa1\ \xc9\xf6\x89\x8b\xf1\x99\xbf\xa5\xa9\x2d\x3c\x11\x88\x6c\xdc\x14\ \x83\x27\x49\x16\xe9\xb6\x3f\xf8\xd7\x42\x76\xbd\xb9\xd0\x26\xf0\ \xa2\x89\x43\x93\x4d\xf7\x66\x7e\xc3\xdf\x52\x6b\xc8\x13\x81\x62\ \x7c\x27\x84\x28\x93\x34\xe5\xe9\xb6\x93\x90\x16\xb2\x45\x84\xd1\ \x2a\xf0\xa2\x89\x43\x93\xed\x11\xc9\xe2\x44\xd0\xcc\x23\x11\xba\ \x22\x9e\x89\x58\x6c\x0f\x56\xeb\xf6\xd3\x04\x30\xd9\x75\x36\xba\ \x55\xe0\x45\x13\x07\x27\x1b\x9f\x8e\x21\xc2\x0e\x4c\x6d\x72\x02\ \x16\x98\xa0\x71\x9d\x25\xfd\x2e\x2c\xdf\x6f\xdb\x0e\x4c\x76\xbd\ \x11\xd9\x2a\xf0\xa2\x89\x83\x93\x8d\x73\x27\x02\x66\x03\x79\x00\ \x5b\x6c\xd4\x1d\x55\x2f\xb9\x58\x91\x8c\xbe\xbb\x7c\xa2\x7c\x5f\ \x17\x30\xd9\x63\xfe\xd8\xd8\x05\x5e\x34\x71\x70\xb2\xb1\xef\x47\ \xd6\xc4\x3c\x11\x6b\x13\x23\x7e\x85\x5f\x22\x07\xe9\x68\x5e\x0b\ \xd9\xa9\x70\x75\xec\x02\x2f\x9a\x38\x38\xd9\xd8\xf7\x3b\xdf\x43\ \x3b\x20\xd9\xb9\x30\xb7\x76\x81\x17\x4d\x1c\x9c\x6c\xec\xfb\x69\ \x85\xbc\x2d\x01\x91\x1d\xd5\x7e\xa4\x5d\xe0\x45\x13\x07\x27\x1b\ \xfb\x7e\xfb\xf8\x65\x72\x88\xec\x89\x94\x39\x69\x15\x78\xd1\xc4\ \xc1\xc9\xae\x7c\xbf\x68\xb9\x87\x66\x00\xb2\xe9\x74\x95\x12\x60\ \x17\x78\xd1\xc4\xe1\xc9\x1e\x8f\xfc\xd1\x1e\x9a\x01\xc8\xa6\x71\ \x18\xaa\xa5\xed\x02\x2f\x9a\x38\x3c\xd9\xe5\xeb\xad\xf6\x89\x99\ \x02\x20\x9b\x08\x36\xdd\x0a\x64\x19\x78\xd1\xc4\xe1\xc9\x9e\x7e\ \xd9\x6e\x9f\x98\x21\x54\xb2\xe9\x74\xd5\x1f\x91\x37\x76\x81\x17\ \x4d\x1c\x9e\xec\xf8\xc6\xe5\x3e\xb1\x56\xa8\x64\xd3\x38\x0c\x4b\ \xf1\xb0\x0b\xbc\x68\xe2\xf0\x64\xfb\xb7\x2e\xf7\x89\xb5\x42\x5d\ \x5d\x47\x72\x6e\x88\x5d\xe0\x45\x13\x87\x27\xdb\x3a\xf7\x5d\x0f\ \x0a\xd9\xfc\x10\x08\x46\x80\x55\xe0\x45\x13\x87\x27\xdb\xdb\xcf\ \x92\x2b\xb0\x06\xd9\x48\xc4\xb1\x0a\xbc\x68\xe2\x08\xc8\x86\x36\ \xb1\xb9\xc7\x8e\x0e\xf3\x31\xc2\x11\x90\x5d\xee\xa5\x0b\x3d\xd9\ \x04\xcf\xf7\xd2\x4a\x4f\xf6\x1e\xd1\x93\xbd\x47\x0c\xd6\xb3\x52\ \xf7\x8b\x23\xff\x0d\x5f\xc7\xe8\xc9\xde\x23\xa2\xb3\x4d\xbf\xe1\ \xbb\x53\x90\xdf\xf0\x3d\x60\xfb\x3d\x7a\xf4\xe8\xd1\xa3\x47\x8f\ \x1e\x3d\x7a\xfc\x15\xf0\x3f\x5c\x4c\x6c\x29\xb8\x18\x13\x99\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x02\x10\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x42\x00\x00\x00\x47\x04\x03\x00\x00\x00\x41\xb7\x8c\x68\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x5f\x5f\x5f\x9f\x9f\ \x9f\xdf\xdf\xdf\xbf\xbf\xbf\x7f\x7f\x7f\x1f\x1f\x1f\x3f\x3f\x3f\ \x00\x00\x00\xca\xb6\x71\x3b\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x01\x8e\x49\x44\x41\ \x54\x48\x89\xed\x95\x3d\x6f\xc2\x30\x10\x86\x93\x98\x24\x1d\xbb\ \xb4\xca\x18\xa9\x12\x62\x44\x0c\x55\xc6\xa8\x43\xc9\xdc\x0f\x91\ \x11\x4a\x1b\x3c\xb6\x5b\x46\x42\xdb\x70\x3f\xbb\xfe\xba\x34\x40\ \xce\x1e\x91\xaa\xbe\xc3\x61\x94\x87\xbb\xf3\xf9\x75\xf0\xbc\x73\ \x8a\x2d\xaa\x55\x6a\x25\xee\x1f\xbd\x79\x9b\x5b\x80\xd1\x5a\x84\ \x64\x67\x21\x32\xf9\xf3\x08\xa6\x34\xb1\x90\x21\x84\x4b\x9a\xe0\ \x2f\x22\x30\xd8\xd2\x04\xb4\x2a\x7e\x5a\x72\x38\x89\xb1\xb3\x8a\ \x52\x00\xef\x0e\x22\x86\xd4\x41\x14\x7b\x07\xe0\xd5\x6b\x07\x10\ \x42\xee\x2a\xf2\xea\x00\x58\x65\x39\x15\xa5\x5b\x57\x17\x6c\xe3\ \x00\xbc\x58\x9e\xeb\x8d\x8d\xf8\x90\x61\xd9\x7d\xad\x41\xa9\xdd\ \x3c\x1d\xa4\x60\xbf\x84\xc7\x6a\x75\x06\x33\xe5\x0b\xa9\x2b\x19\ \xc2\xfe\xb9\x24\x7a\x3c\x68\x2b\xbf\xad\xaa\x8a\x1f\x78\x8c\x83\ \x21\x1b\xf5\x51\xea\xb2\x69\xaf\x0a\x98\x53\x2a\x74\x2e\x0d\xf4\ \xc7\x1e\xc0\xb7\x5e\x5c\x50\x9e\xf0\x61\x87\xc4\x76\x98\x88\xd0\ \x92\x19\x45\x64\xb0\xd4\x8b\x09\x2e\x8e\x35\xc1\x8d\x25\xd4\x2d\ \x4a\x70\x63\x9c\xba\x89\xf8\x20\xc4\x3d\x1d\x8b\xe9\x3b\x26\xfb\ \x21\x8a\x04\x66\x60\x23\x4e\xa4\x10\xe3\xd0\x4f\xca\x7d\x4e\x10\ \x11\x7c\x89\x38\xbb\x26\x01\x51\x5e\xa9\xa1\x9e\xe3\x38\xe6\x40\ \xfb\xdf\x8c\xa3\xa4\xef\x90\x19\x47\x4c\x8d\xbc\x1b\x47\xa8\x1a\ \x1e\x52\x60\x7a\x24\x27\xda\xb9\xc3\x27\x77\x83\xee\x88\xc8\x1c\ \xe8\x8e\x0c\xa8\xb7\x30\xba\xa3\x24\x3b\xad\x8d\x3b\x6a\x92\x40\ \x77\x70\xd9\x0f\x1b\xb0\x50\xe7\x0e\x90\x36\x8e\xd2\x53\x22\xc4\ \x4d\x72\x49\x14\xa7\x39\xd8\x18\x9a\xa9\xe9\x54\x54\x79\x1b\x68\ \x53\x4a\x79\x2c\x16\xbb\xf5\x2d\xff\x18\x22\x5b\xd2\x3e\xaf\x6c\ \x80\xd0\xdd\x83\xeb\x05\xf8\xaf\x3f\xa4\x1f\x0e\xd8\x6f\x39\x5c\ \xde\xeb\x13\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x01\x5f\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x1c\x00\x00\x00\x33\x04\x03\x00\x00\x00\x76\xd9\x75\x44\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x7f\x7f\x7f\xdf\xdf\ \xdf\x9f\x9f\x9f\x3f\x3f\x3f\x1f\x1f\x1f\x5f\x5f\x5f\xbf\xbf\xbf\ \x00\x00\x00\xce\x4a\x91\x57\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x00\xdd\x49\x44\x41\ \x54\x28\x91\xdd\x91\x31\x0f\x82\x30\x10\x85\x0f\x08\xe2\xc8\xc8\ \xc8\xa0\x09\xa3\x23\xa3\x71\xea\x68\x8c\xc6\x8e\x2e\x26\x1d\x59\ \x4c\x1c\x2d\x16\xb9\x9f\x6d\x7b\xbd\x03\x46\x67\x6f\xe8\xeb\x17\ \xda\x77\xaf\x07\xc0\x0f\x55\xdc\xcf\xbb\x99\x52\x55\x6e\xec\x8c\ \x8f\x11\x52\x9c\x3e\x17\x58\x02\xa8\xa3\xe0\xd6\xf9\xc5\x8c\x82\ \x2a\xec\x2a\xb9\x9c\xe0\x2d\xe0\x87\xb1\xc1\x3a\xe0\xc0\x68\x1c\ \xad\x83\xf8\xbe\xc9\x00\x23\xae\xf0\x15\x44\xa3\x5c\xdd\x07\x41\ \x3e\x6c\x28\x4f\x21\x88\x64\x9c\xa1\x63\x27\x17\x1d\x2c\x2c\x34\ \x8f\xfe\x5e\xb9\x7a\x36\x1e\x2e\xbe\x34\xc6\x17\xb5\x51\x2b\x0a\ \x3e\xa9\xc6\x2e\xbe\x8e\xda\xa6\xd2\x56\x73\x5b\x2b\x18\xdb\xf5\ \x1c\x8a\x4e\xad\xd9\x09\x62\xa8\x96\x9d\x00\x69\x28\x4a\x46\xa3\ \x2d\x19\xf7\x32\x46\x4b\x4e\x25\x23\x0d\xb4\x71\x4c\xf0\x0c\xb7\ \xd4\x49\x30\x77\x21\x44\x27\x98\xf9\x54\xcf\x2b\x4c\x65\x0e\x89\ \xab\x67\xcc\xf4\xf2\x57\xff\x79\x7d\x01\xdf\x3e\x3f\x80\x00\xa7\ \x0a\x42\x00\x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ \x00\x00\x01\x87\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x00\x2a\x00\x00\x00\x32\x04\x03\x00\x00\x00\xd8\x68\x54\x9e\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x5f\x5f\x5f\x9f\x9f\ \x9f\xdf\xdf\xdf\xbf\xbf\xbf\x7f\x7f\x7f\x1f\x1f\x1f\x3f\x3f\x3f\ \x00\x00\x00\xca\xb6\x71\x3b\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x01\x05\x49\x44\x41\ \x54\x38\x8d\xed\x92\x3d\x0f\x82\x40\x0c\x86\x41\x04\x1d\x99\x0c\ \xa3\x93\x71\x24\x4c\x8c\xc6\x45\x66\xa3\x89\xa3\x1a\x8d\x8c\x8e\ \x8c\xe2\x07\xf6\x67\xdb\xbb\x5e\xb1\x55\x07\xdd\x7d\x07\xe8\xbd\ \x5c\xdb\xe7\x7a\x78\xde\xaf\xaa\xc0\xaa\x39\x2c\x94\x1d\x54\x70\ \xc4\x57\x56\x6e\x95\x9d\xc0\xc4\xbc\x42\x88\xa5\x5b\x82\xfb\x5a\ \xcb\x0a\x70\xa7\xa0\xa0\x1c\x52\x07\x6e\x14\xf4\x6d\x7d\x27\x1f\ \xce\xec\x9e\x9e\x6e\x04\x17\x0a\x72\xe9\xe6\xb0\xa6\x60\xcc\x01\ \x2d\x62\x26\x14\x68\x09\x0c\x99\x30\x95\xb8\xb4\x08\x99\x85\x70\ \x1b\xae\x2f\x0a\x74\xdc\x21\xba\xa5\xd8\x8a\xb8\xb4\x5a\xdd\xc5\ \xc9\x10\xf7\x8a\xcf\x6c\xa0\x4c\x2c\x67\x25\x27\xd3\xe2\xce\x60\ \xa7\x5c\x87\xbb\x92\x03\x6b\x71\x7b\xf2\xb8\x2d\x6e\x68\x9b\x3e\ \x71\xeb\xf7\x93\xb5\xd3\xf5\x15\x05\x4f\x37\x52\x7b\x79\xba\x39\ \xdf\x88\xc0\x35\x64\xb2\x5b\xe5\xa6\x5b\x29\x97\xa7\x5b\x9a\xfa\ \x41\xaa\x71\x3d\x30\x57\x19\x51\x1e\x62\xd6\x9c\x83\x6e\x41\x7b\ \x83\x11\xd4\xa9\xeb\x86\x15\xf6\xae\x85\x91\xbd\x8b\x1e\x92\xf9\ \xea\xf7\xb3\x59\x49\xb3\xdc\xbc\x9a\xa8\xe9\x3c\xfd\xe0\xfe\xf5\ \x85\x1e\x52\xea\x4e\xdd\x41\xf7\x19\x05\x00\x00\x00\x00\x49\x45\ \x4e\x44\xae\x42\x60\x82\ \x00\x00\x0f\x5c\ \x89\ \x50\x4e\x47\x0d\x0a\x1a\x0a\x00\x00\x00\x0d\x49\x48\x44\x52\x00\ \x00\x02\xd7\x00\x00\x00\x83\x04\x03\x00\x00\x00\xb4\x20\x2a\xa6\ \x00\x00\x00\x1b\x50\x4c\x54\x45\xff\xff\xff\x7f\x7f\x7f\x5f\x5f\ \x5f\xdf\xdf\xdf\xbf\xbf\xbf\x1f\x1f\x1f\x3f\x3f\x3f\x9f\x9f\x9f\ \x00\x00\x00\xc8\x53\xa5\x5e\x00\x00\x00\x01\x74\x52\x4e\x53\x00\ \x40\xe6\xd8\x66\x00\x00\x00\x09\x70\x48\x59\x73\x00\x00\x0e\xc4\ \x00\x00\x0e\xc4\x01\x95\x2b\x0e\x1b\x00\x00\x0e\xda\x49\x44\x41\ \x54\x78\x9c\xed\x5d\xcb\x7b\xdb\x36\x12\xe7\x9b\x3a\x76\xbb\x9b\ \x44\x47\xb5\x49\x5b\x1d\x9d\x38\xca\xea\xc8\xb6\x76\xc2\x63\xdc\ \x5d\x39\x3c\x6a\x93\xf8\x8b\x8e\x69\x1b\x67\x79\x94\xdb\xc8\xc6\ \x9f\xbd\xc4\x93\xa0\x30\xa4\x00\x01\x7a\xac\xcb\xdf\xf7\x45\x8e\ \x28\x08\x8f\x1f\x87\x33\x83\xc1\x00\xf2\xbc\x1e\x3d\x7a\xf4\xe8\ \xd1\xa3\x47\x8f\x1e\x3d\x7a\xf4\xe8\xd1\xa3\x47\x8f\x1e\x3d\x7a\ \xf4\xe8\xd1\xa3\x47\x8f\x1e\x3d\xee\x0b\x9e\x5e\xcd\x7e\x38\x74\ \x1f\x74\x10\x5e\xec\xbb\xc5\xc9\x57\xae\x6b\x8c\x2e\x4e\xa2\xc5\ \xbf\x5d\xd7\xba\x03\x5c\xff\xb1\xe7\x06\xd3\x62\xe4\xba\xca\xf3\ \x13\xcf\x0b\xd0\x47\xd7\xd5\xba\xc6\xf3\x07\x68\xbf\x64\x87\x3f\ \x16\x68\xe4\xba\xce\x2f\xf8\xb5\xf8\xd3\x71\xb5\xae\x91\xaf\x3e\ \xec\x97\xec\x08\x5d\x96\xce\xc9\xf6\xe7\xf8\x75\xb8\xef\x47\xd4\ \x14\xa1\xe7\xed\x59\xb2\x4f\xbc\x81\x73\xb2\xe3\x15\xd6\x20\x53\ \xe4\xb8\xda\x1d\x60\xcf\x64\x7b\x3b\x20\x7b\x80\x5e\x93\xd7\x13\ \xc7\xf5\xba\xc7\x3d\x20\x3b\xee\xc9\x6e\x83\x7b\xb2\xd3\x59\xaf\ \x46\x5a\xe0\x9e\x6c\x8a\xf2\x76\x27\xd5\x3a\xc5\xbd\x21\x7b\x71\ \xb7\x93\x6a\x9d\xe2\xbe\x90\x1d\xa1\xf9\x2e\xaa\x75\x8b\xfb\x42\ \x76\xb2\x3a\x7e\xfb\x78\x6f\xc8\x1e\x7e\xd9\x45\xad\x8e\x71\x4f\ \xc8\x8e\x56\xd9\x0e\x6a\x75\x8d\x7b\x42\xf6\xe4\x5f\x3b\xa8\xd4\ \x39\xee\x07\xd9\xe1\xec\xff\x40\x63\xdf\x17\xb2\x27\x73\xf7\x75\ \xee\x00\x8e\xc9\x1e\xa0\x0a\x1b\x4a\x8c\x9c\xb6\x48\xf0\xb6\xfa\ \x97\x56\xc2\xed\xe3\xe6\x8f\x77\xde\x7e\x2f\xc8\x4e\x70\x95\xb1\ \xa7\x49\xf6\xb5\x75\x7b\x8f\xb6\xfc\x9e\x6b\xb2\xef\xce\xce\xce\ \xba\x4b\x74\x93\x9d\xbe\xd6\x6e\xcb\x17\x6b\x33\x58\xb0\xbd\x49\ \xf5\x2f\xac\x5a\x3f\x83\xc9\xfe\x3c\x7b\xcf\x5a\xb0\x77\x12\xf3\ \x2d\x57\x85\x5c\x93\xbd\x71\xbd\x64\x03\xd9\x65\xa6\xdd\x56\xc4\ \x27\xe8\x01\x59\xd5\x7c\xc8\xaf\x83\x64\xbf\xb8\x0b\x17\x94\xa2\ \xd2\x7e\xfd\x2c\xdd\x32\x34\x70\x64\x64\x1b\x0d\x83\xd3\x36\x9e\ \x55\xa8\x07\x02\x92\xbd\x18\x45\x05\x79\x68\xc2\x1b\x83\x16\xda\ \x30\xcc\xb6\xfa\xda\x91\x91\x3d\x35\x59\x7a\xf7\xa9\x42\xa0\x8a\ \x1a\x89\xdb\x04\x91\x9d\xa2\x8f\x31\x5a\xe2\xff\xc5\xfa\x7a\xaa\ \x1d\xc9\x76\x6e\xfd\x91\x91\x3d\x33\x6a\xed\xea\x84\xd6\x48\x20\ \x54\x31\x44\x76\x8c\x4e\x06\x34\x54\x35\xce\xe8\x95\x6b\x9b\x69\ \x50\xb8\x5d\x3c\xf7\xb8\xc8\x0e\x18\x63\xa9\xde\x24\x65\x3a\x87\ \xae\x42\x64\x4f\x57\x9e\x7f\x8b\xaf\x87\x7c\xbc\xc8\xca\x4e\x0e\ \xb7\x4a\x7e\x39\x2e\xb2\xa7\x23\x5e\x28\xd3\x69\xcd\x07\xf5\x2f\ \x44\xf6\x90\x8b\x62\xc2\x3a\x18\x51\xa5\xb2\x2d\x62\xf3\xc4\x89\ \xf0\xf4\x27\x84\x7e\x3f\x75\x38\x09\xd8\x44\xf6\xe9\xf3\x31\xba\ \x3b\x3d\x6d\xfb\x78\xc1\xba\x92\x6b\xae\x71\x15\x50\xd7\x21\xb2\ \x17\x5c\xa6\xf2\x11\xfd\xeb\xdb\xc5\xbf\x7d\x73\x19\x65\xda\x6e\ \x69\xd3\xec\x5a\x8d\x1b\xc8\xa6\x0d\xb6\x51\x19\xf1\x21\x0c\x35\ \x75\xe2\x70\x04\xb5\x01\x90\x5d\x70\xf3\xc9\x6f\x67\x82\xec\xb2\ \xe0\xcc\xa7\xa9\x21\xfd\xb3\x47\xc9\x3e\x91\xdb\x55\xc0\x9f\x71\ \x6f\xa1\xe9\x9f\x81\xcd\x01\x3c\x84\x5c\x43\x0b\xcb\x36\xd5\x53\ \x54\xad\x18\x8f\xac\xbe\xee\x04\x9b\x75\x76\x17\xb8\xc1\x0b\x75\ \xad\x57\x00\x3d\xcd\x00\xd9\x11\x62\xfd\xf2\xb9\x84\x97\x96\x8b\ \xf1\xf9\xd2\xee\xfb\x2e\x60\x47\xf6\x90\xcd\x52\x52\x5d\xcd\x16\ \x41\x94\x01\x64\xfb\xbc\x42\x61\xd8\xc6\x46\xce\x5b\x94\xad\x5f\ \x89\x8f\x60\x7d\xd9\x8e\x6c\x6e\xef\x82\x16\xeb\xa5\x46\x5d\x0a\ \x60\xee\x0d\x90\x2d\x2a\xcc\xf9\x94\xa6\x80\x14\x55\xf8\xb0\x20\ \x26\x45\x59\xf6\xa1\x8b\x6e\xe1\xdb\xba\x66\xf0\x99\x72\x83\xcf\ \xc5\xea\x89\x57\xeb\xda\xaa\xcd\x10\x56\xf4\x56\x64\x47\x2b\xf6\ \x9f\x18\xb6\x5e\x3e\xd5\xb3\x2f\x1e\xd7\x97\x20\xd5\x09\x90\x1d\ \x73\x7f\x93\xfa\xc7\x0b\x6a\xa6\xe7\x6b\xa5\xc2\x31\xb3\xdf\x4a\ \xfa\x71\x41\xc8\x4e\xa4\xeb\xe9\xce\x72\x82\xce\x6f\x3f\xfd\x84\ \xbb\x3b\x60\xbe\x0b\xf9\xf3\xf5\xf7\xb3\xa5\xf7\x1b\xbd\x0b\x02\ \x56\x64\x53\xb7\x39\xa1\xe3\x05\x1e\xf3\x98\x92\x2d\x67\x88\x94\ \x4b\xb5\x98\x42\x36\xe5\x96\xc8\x34\x0b\x46\xc1\x9e\x5f\x89\xd0\ \xac\x12\xeb\xd9\xec\xed\xda\x07\xcc\x29\x97\x33\xdc\x42\x4b\x03\ \xdb\x8a\x14\x0b\xda\xa4\x1a\x7d\xf4\x6a\x41\xee\xfa\x35\x5a\xfd\ \x90\x61\xc2\xcf\x2f\xce\x3e\xa3\x77\x52\x51\x2b\xb2\x13\xce\x62\ \x8b\xe7\xc7\xbc\x6f\x24\xb5\x31\x05\x2c\x29\x20\xd9\x39\xbf\x86\ \x3a\x3c\xbf\x14\xfd\x91\x79\x2f\x20\xdb\xcc\x6e\x4d\xc3\xfb\xc7\ \x0a\x2c\x41\x4d\xcc\xc1\x6e\x9b\x21\xbf\x21\x5d\xc1\x42\x11\x10\ \x89\x0b\x10\x7e\x92\x9f\xa1\xbb\x37\x1e\x96\x87\xac\x2e\x6a\x45\ \xf6\x60\x83\xe7\x47\xef\x41\x63\xee\x07\xd9\x29\x80\xec\x21\x53\ \x50\x21\x57\x54\x90\xe7\x57\x92\x11\x2e\x80\x1b\xcd\x6e\x4d\x43\ \x06\x16\xa3\x9d\x90\x1d\xb2\x27\x90\xbe\xe2\x5e\x26\x37\xf4\x3a\ \xe9\x71\x2a\xcb\x82\x15\xd9\xd3\xd7\xbc\x41\xd8\xf3\xa3\xf7\xa0\ \xa1\x01\x12\xc0\x4e\x01\x64\x73\x06\x53\x4e\x17\xe0\xf9\x85\x34\ \x6e\x98\x03\x5f\x67\xd1\x83\x86\x0c\x8c\xe7\x4a\x31\x17\x08\xd8\ \x7d\x25\x7d\x99\xe0\xa1\x96\x23\xf2\x01\xe3\x64\x2c\x25\x23\x59\ \x91\x5d\xce\xe9\xdf\x36\xcf\x0f\x31\x33\x25\x69\x80\x00\x90\x43\ \x80\x2d\xee\x7b\x88\x59\x36\xe0\xf9\x25\xd4\x88\x4e\x81\xcd\x39\ \xf4\x06\x84\xb2\xfe\xf2\x86\x2e\x42\xb5\x2a\xd8\x23\x97\x93\x8e\ \x46\xd5\xfd\xe7\x5e\x03\xe3\x64\x2a\x85\x96\xac\xc8\xe6\x93\xef\ \x16\xcf\x8f\xcd\x4c\xa6\x32\x99\xfe\x4a\x2d\xa7\x92\x1d\xf2\x60\ \x77\xc0\x65\x13\xf0\xfc\x4a\xc4\x02\xb6\xaa\x36\xa7\xfa\x23\x45\ \x32\xbf\x90\x69\x76\x80\x21\xed\xc5\x94\x8e\x6b\x8c\x4e\x26\x8c\ \x51\x46\x76\x20\xdd\x71\x2b\xb2\xc7\x6c\x98\xad\x9e\xdf\x1c\xff\ \x29\x65\x7e\x21\x0f\x4c\x25\x5b\x4c\x20\x93\x1b\x7e\x41\x55\x54\ \x8c\xff\x29\xd0\x38\xd5\x1f\x41\x23\x5e\x99\xef\x66\xc3\xd4\x82\ \x0e\x68\x40\x07\x99\xa0\xc7\x7c\x26\xc1\xc8\x4e\x51\x2d\x26\x56\ \x64\x2f\xd8\x30\x73\xd8\xad\x62\xfa\x63\x2c\xab\xe9\x08\xd0\x19\ \xea\xa5\x7a\x02\x79\xb7\x76\x41\xae\xe9\x0b\x6b\x5c\x55\x23\xf4\ \xa3\xb8\xf1\xc9\x74\x37\x64\x17\xdc\xd8\x92\x77\x21\x5a\x89\xf8\ \xfb\x92\x5d\xa9\x15\xa0\x15\xd9\xfc\x26\x0e\x85\xb8\xce\x08\xd8\ \xd3\xcb\xcc\x54\x21\x3b\x20\xa1\x16\xd9\x42\x2f\xc5\x4c\xa0\x13\ \x55\x51\x05\x4c\x49\x94\xea\x9d\x86\xf4\xd7\xae\xc8\x46\xe8\x8c\ \xe0\x67\x8f\xf5\x86\x37\x23\xc8\xae\x1f\x6c\x42\x76\x4c\x39\x32\ \x6e\xa8\xc8\xe8\xdf\xda\xfb\x6a\x84\x80\x21\x33\xa5\x47\xb6\x98\ \x40\x0e\x18\xd9\x80\x62\xe6\xfc\x8f\x55\xc5\x04\xe9\x2f\x51\x95\ \x63\xac\x85\x9f\x03\xb4\x26\xd9\x72\x01\x42\xf6\xa0\x33\x68\xdd\ \xd1\x50\xc6\xfe\x0a\xb5\xd4\x20\x1b\x32\x53\x1e\xa0\x71\x54\xb2\ \x85\x87\xc1\x19\x02\x14\x15\xbf\x21\x85\xea\x4c\x32\x3f\xa5\xa1\ \xbf\x76\x45\x76\xd1\xec\xfd\x44\x84\x0e\x04\xd9\x6b\x92\x6d\x49\ \x36\x64\xbd\x30\xe8\x6a\x4b\xd3\x4c\xe9\x91\x2d\x7c\x67\xce\xd0\ \x50\xed\x1c\x13\x76\xa8\xf1\x01\x1d\x70\xa5\xbf\xc2\x79\x7d\xf1\ \x0b\xee\x4b\x13\xb8\x67\xc8\x02\x4b\x6c\x20\x1b\xbd\xbf\xca\x51\ \xd3\x1b\xe9\xd2\xd9\x26\xed\x70\xe2\x00\xeb\x45\xeb\x22\xca\x1a\ \x9b\xa9\x17\xd2\xc5\x4c\x2d\xa7\x90\x2d\xb8\xe5\x64\x17\xb8\xc7\ \x49\xa3\x1c\x73\x81\x20\xb7\xb3\xd6\x5f\x52\xbe\x16\x1e\xe9\x0e\ \x66\x90\xc3\xc6\x80\xfc\x3f\x7d\xd4\xf4\xb3\x53\x69\xd1\xd8\xca\ \x40\xb2\x76\x62\xd2\xe9\x77\xeb\x9f\x4a\x66\x4a\xca\xd6\xd3\xd2\ \xd9\x62\x0a\xc3\xc8\x0e\x89\xa2\x7a\xd0\x28\xc3\x7c\x9d\x1c\xd8\ \x2e\x42\xef\x15\xd6\x5f\x24\xa9\x90\x55\xb5\x1b\x03\x99\x33\x6b\ \x12\xd0\x77\x5f\x79\x7c\xaf\xbf\xf0\xb3\xeb\x27\xcf\x05\xd9\xc4\ \xd3\xf5\x95\x09\x1a\x13\x78\x6c\xa6\xa4\xa8\x9c\x16\xd9\x42\x0f\ \x33\x6f\x84\x46\x18\xde\xb0\x7a\xc9\x36\xca\xaa\xfa\x11\x29\x2a\ \x69\x91\x07\xac\x04\xf5\x7d\xb1\x0c\x0c\x32\xf1\xe1\x8e\xbc\x11\ \x6e\xa7\x89\x3c\x85\x97\x98\x7d\xea\x7d\x31\xb2\x63\xd4\x7c\xb8\ \x4c\xf0\x6c\x76\x59\x3b\xaf\xcc\x1b\x21\xce\x57\xac\x78\xbb\x09\ \x6d\x0e\x6b\x80\x9a\x10\x3d\x6f\x44\x64\x4b\x31\x3f\xdb\xc7\x0f\ \x09\x3d\x5f\x00\x8f\x86\x56\x57\xe0\xea\x03\xe9\x29\x8e\x10\x7b\ \x43\xf3\x62\xaf\x2a\x19\x90\x1e\xa9\xe9\xb2\x75\x50\x35\x86\x66\ \x3a\xdb\xab\x6d\xc6\x7f\xc8\x90\xff\x24\xf9\x5e\x64\x3c\xec\xba\ \xac\x66\x0c\xc9\xf6\xdf\x78\xcf\xea\x65\x11\xe6\x67\x93\x19\xeb\ \x43\xa5\xec\x80\xa8\x91\xa4\x9a\xe8\x49\x9a\x33\xd4\x99\x41\xd6\ \x46\x8f\xcd\x20\x49\xf0\xe5\x9c\x15\x1b\x32\x2d\x48\x62\x9b\x63\ \x29\x4f\xca\xa7\x16\x0f\x93\x5e\x3d\x6a\xc1\xbb\xea\x55\x3a\x09\ \x47\x6b\x11\x72\x8b\x13\x67\x86\x44\x8f\xa5\xa4\x1f\x64\x69\xa4\ \xa0\xb2\x8e\x58\xc8\x53\x8a\x33\x18\x92\xfd\xa0\xaa\xb8\x14\x72\ \xca\x66\x90\x38\x22\x17\xa9\xc9\x61\x39\x69\xe7\xfb\xe9\x8d\x17\ \xd7\x4e\x32\xb4\x08\xa9\x90\x5d\x07\xb6\x58\x6c\x04\xdb\xba\x90\ \x13\x91\x33\xfb\x1e\x15\x8f\xc3\x6b\x39\x64\x12\x31\x8b\xe7\xe3\ \x3c\xc2\xf4\x17\x6f\xf8\x3a\x90\x74\x5b\xae\xe8\x39\x15\xd1\x72\ \x43\x01\x00\x01\x59\x1f\xc8\xb3\xea\xe5\x05\xd1\xdf\x25\x15\x06\ \x74\x3b\xf2\xb0\x2b\x38\xaa\x8b\x9a\x91\x4d\x8e\x65\x49\x84\xe3\ \xc8\x62\x23\xd8\x04\x4e\x32\xa5\xf0\x10\xbb\x9c\xd7\x23\x7f\xe5\ \x7d\x57\x5f\x8c\x74\x02\x51\xb5\x87\xc1\xa3\x7e\xe5\x4d\xf8\x80\ \xb7\xe0\xaf\x98\xa5\x7c\x7a\xb5\xfa\xd0\xf8\xea\xf0\x82\x10\x9a\ \xa0\x4f\x8b\xd5\x6d\xe6\xf9\xc5\xad\xf4\x31\x0f\x51\x76\xc1\x1f\ \x6d\x2e\xa3\x60\xb8\xfa\xe8\x3d\xad\xd4\x5d\xf4\x1b\x49\x16\x8d\ \x16\x08\x7d\xc8\xf0\x92\xc9\x65\x56\x89\x8d\x3c\x7d\x36\x23\x3b\ \x98\x7b\x7c\x55\x82\x34\x43\xfb\x96\xa2\xaf\x9e\x02\xcf\xdf\xe2\ \xee\x25\x2a\xde\x57\x4f\x83\xbc\x34\x94\xea\x84\x58\xeb\xc0\x16\ \x2f\x1e\x5d\xad\xfe\x2e\x75\xba\xb5\x83\x4b\xf2\x71\x55\x21\xc9\ \xe1\x6a\xa4\xbb\x80\xf9\x41\xeb\x0d\x03\xcb\xd1\x1b\x51\xb1\x7b\ \x55\xdd\x5a\xbe\x89\x63\xc0\x1c\x63\xb4\x7c\xb6\xba\x42\x17\xf2\ \xd8\xcc\xc8\x26\xc7\xb2\x84\x42\xee\xb8\xb0\xbc\x2c\x2e\x54\xb3\ \x87\x57\xc3\xe8\x2a\xb3\xfc\x19\x94\x06\xa6\x90\x5d\x67\x0e\x42\ \x0f\x02\xdd\xb3\x00\x22\x24\x92\x9d\x83\x5f\x5a\x68\x10\x39\xdd\ \x5c\x04\x6a\xf5\xbf\x8f\xa0\xe1\x2f\xbd\x7f\xfe\xed\x53\xe3\x92\ \x19\xd9\xf4\x58\x16\xe1\xcc\x74\xaa\xc1\x08\x41\x9f\x26\x3a\xcb\ \x62\x12\x5b\x60\xd6\xd8\xcb\xd6\x36\xe7\xf8\x15\x3e\x10\x89\x07\ \x72\xba\xa0\x5a\xf9\xed\x01\xcc\xf4\x0c\x25\x1b\x13\x18\x0a\x16\ \x3b\xbf\xec\x83\xd9\xaf\x31\x30\xb3\x57\x08\x2d\x6b\xb6\x16\x19\ \x50\xc9\xd7\xad\x6d\x92\x26\xc1\xf3\x1e\x20\x37\x48\xc1\x07\x8d\ \x32\xba\xb0\x26\x9b\x1c\xcb\x52\x9f\xa7\x90\x74\xc5\x76\x12\xf0\ \x2c\x39\xc8\xdb\x6d\x92\xfd\x6b\xe6\x8d\xeb\x7a\xc1\xbc\xea\x37\ \x6d\x6d\x52\x9d\x8b\xa0\x31\x45\x1a\x19\x55\xa1\xcb\x79\x8f\x35\ \xd9\x04\xbe\x60\x11\x4e\xb7\xe6\x35\x83\x1a\x20\x9f\x03\xdd\x6a\ \x28\xf5\xea\xb9\x29\xea\x42\x50\xf9\xa8\x55\x7b\x9d\x93\x8f\x41\ \xfd\x15\x68\xa4\x9f\xa5\xa4\xb1\xf0\xe1\xec\xed\x36\x86\x72\x0d\ \x6e\xc8\x8e\x85\x46\xed\x94\x16\xd8\x4c\x8d\x81\x61\x34\xc8\x8e\ \xd1\x32\x92\x26\x5d\x50\x12\x7b\x02\x2e\xc2\x61\x90\x69\x5c\x8b\ \xfe\xd2\x18\x28\xad\x78\xfc\xe4\xf9\x83\x95\x3d\xdb\x6e\xc8\x2e\ \x6b\x19\x01\x73\xdb\x19\x5a\xcc\x14\x64\xb7\x1b\xee\x11\x1a\xc9\ \x69\x79\x3e\x20\x90\xad\x9b\x50\x53\xe6\x66\x83\xfa\x6b\xde\xf6\ \x2d\xa9\x0c\xee\x48\x82\xbd\x58\xdd\x14\xe8\x0e\xb8\x21\xbb\xa8\ \x05\x6b\xd8\x21\x00\xb0\x99\x82\x9e\x85\x06\xd9\xc1\x1b\xaf\x94\ \xd4\x00\xf0\x85\xb0\xd5\x52\x4c\x33\xfc\x0a\xeb\xaf\xae\xae\x72\ \x90\xbb\x48\x36\x4c\xb5\x2c\x61\x1b\x20\x04\x2c\x87\x39\xd9\xb2\ \xdc\x75\x89\x0b\x68\xa6\x20\x41\x6d\x92\x1d\x5e\x7d\x2b\xcf\xfb\ \xc4\xce\x03\xa9\x03\xad\xb4\xd1\x93\x8b\x63\xf0\x91\xd2\x59\xf4\ \xfb\xa6\xfa\x17\x11\x99\x8e\xc0\xde\x1b\xe0\xec\x33\xba\xfd\x94\ \xad\x5d\x34\x27\x5b\x9e\x89\x25\x1d\xdf\x06\xcf\xcb\x05\x37\x35\ \x36\x25\x31\x7a\x94\xc9\x6f\x73\x73\x11\x83\x04\x3b\xd5\xd1\x0b\ \xf8\x91\x09\xe8\x90\xc0\x0c\x65\x03\x88\x05\x16\x19\xc6\x64\xa7\ \x8d\xc4\x84\x8e\x2e\x81\x5b\x43\x4a\x88\xba\xce\xed\x2e\x5d\xf7\ \xd3\x00\x3a\x5b\x57\x89\x97\x13\x23\x12\x79\x80\x32\x08\xad\x61\ \x4c\x76\x53\xd2\xd4\x87\xbc\x1b\xe0\xc3\xdc\x49\x76\xe4\x26\x89\ \x5d\x67\x03\x3c\xd9\x52\x3f\xa0\xcb\x5a\xc0\x9a\xbd\x3d\x4c\xc9\ \x26\x67\xa5\xd7\xe4\xf0\x8d\x73\x9a\x80\x77\xba\x77\x6f\xe4\xe2\ \x3b\x7c\xed\x70\xa9\x51\x26\xc6\x2d\xc5\xeb\x64\x87\xa7\x14\xbc\ \x93\x7c\xb7\xc3\xdc\xbc\x13\xa6\x64\x93\x63\xe2\xeb\x76\x02\xb3\ \xfc\x80\x78\x0e\x5d\xed\x26\xdb\xc9\xde\xf5\x40\x67\x98\x74\x4a\ \x54\x50\x35\xc2\x67\x09\x2f\xf9\xaa\x0c\x4f\x62\x1e\x6f\xbf\x58\ \x6c\x4a\x36\x9e\x36\x44\xa3\xfa\xbd\x59\x66\xcf\x18\xa4\xb5\x9b\ \x6c\x27\xa7\x32\x68\x1d\xa3\xf1\xad\xf4\x7f\xbe\x0a\xea\x8b\x25\ \x30\x76\xe1\x7c\xf5\x8f\x57\xc5\xed\x69\xfb\x3e\xdc\x0e\x18\x92\ \x4d\x56\xab\x7d\x49\x6d\x1b\x9d\xca\xd0\x72\x5e\xc6\x86\xfd\xa0\ \x0e\xce\x1b\xd1\xfb\xa1\x08\x29\x26\x1f\xf1\xa0\xff\xf0\xfd\x49\ \x65\x37\xa3\xa5\xa8\x09\x4f\x4f\x27\x5b\x6e\x19\x01\xc8\x7e\x7a\ \x75\xd9\xfa\x53\x1b\xe4\xa4\x10\x79\xc7\x97\xd1\x79\x23\x2d\x3f\ \x55\xb1\x81\x6c\x07\x27\xe9\x4c\x46\x1a\x85\xa2\x65\xfd\xff\x84\ \xc5\x57\xf0\xf0\x82\x91\x58\x6b\xae\x6a\xc2\x02\x0e\x07\x04\x36\ \x43\x25\x3b\xf8\xe3\xe7\x1f\x8b\x96\xb8\x1a\x7b\xa8\x32\xe9\x92\ \xc1\x49\x3a\xe1\x2f\xf0\xf5\xdd\x9f\x11\xf5\xed\xe6\x22\xcd\x35\ \x31\x9e\xee\x36\xfd\x48\x42\x89\x75\xfa\x09\xd9\xce\x01\x87\xba\ \x36\x43\x25\xfb\x2a\x6b\xdf\x28\x3e\x10\x2b\xf8\x02\x06\x67\x44\ \x55\x22\x02\xe2\x48\x4e\x3f\x93\xd7\xc4\x78\xe6\xed\xaf\xd5\xbf\ \xfc\xc4\x1b\xf0\x8f\xe8\x92\x60\xb8\xe5\xe9\x01\x0a\xd9\xd4\xbf\ \xb0\x9d\x40\x19\xe1\x48\xc8\x96\xd6\xc4\x02\x59\xd8\xbe\xa7\x02\ \x4e\x10\x13\x41\xdb\xf6\x38\x0e\x85\x6c\x3a\x69\x81\x76\x05\xed\ \x0c\x87\x26\x3b\xa2\xed\x4b\x6b\x62\xa5\x2c\x6b\x17\x92\xae\x2c\ \xa1\xc4\x5c\x6d\x28\x64\x53\xef\xcc\x3e\xea\x65\x80\x43\x93\xcd\ \xe4\xb6\x5e\x13\x8b\xe4\xd1\x63\xfb\x3c\xe4\x3d\x1c\xab\xfb\xdf\ \x0c\xa0\x90\x5d\x90\x84\x27\x20\xd3\x7f\x77\x38\x30\xd9\x21\x0d\ \x99\x49\x6b\x62\xb9\xec\x62\xe1\xe0\x8c\x58\x09\x55\xb7\x69\x9b\ \x40\x21\x9b\x6e\x63\x0e\x5c\x1e\x20\xb3\x09\x07\x26\x3b\xa0\x9b\ \xf6\xe8\x9a\x18\x46\xd8\x38\xcd\x00\x87\x91\xc5\xca\x3c\xcd\x8b\ \xdb\xf6\x87\x48\x54\xc9\xfe\xcb\x91\xfd\x98\x6e\xf1\xae\x17\xdb\ \x26\xf8\xbd\x08\x5a\xe2\x25\x67\xc1\x3e\x0d\x73\x97\x5b\x06\xc7\ \x14\xb2\xcf\x99\x1a\x11\x26\xc0\x22\xf0\xa2\x89\x43\xeb\xec\x98\ \x28\xe2\xa9\x88\x34\x11\x39\x16\x89\x40\xf8\x9d\xd0\xe1\xf4\x07\ \xd1\xb6\xfd\x59\xb4\x96\xe9\xba\xd8\x41\x64\x15\x78\xd1\xc4\xa1\ \xc9\xf6\x89\x8b\xf1\x99\xbf\xa5\xa9\x2d\x3c\x11\x88\x6c\xdc\x14\ \x83\x27\x49\x16\xe9\xb6\x3f\xf8\xd7\x42\x76\xbd\xb9\xd0\x26\xf0\ \xa2\x89\x43\x93\x4d\xf7\x66\x7e\xc3\xdf\x52\x6b\xc8\x13\x81\x62\ \x7c\x27\x84\x28\x93\x34\xe5\xe9\xb6\x93\x90\x16\xb2\x45\x84\xd1\ \x2a\xf0\xa2\x89\x43\x93\xed\x11\xc9\xe2\x44\xd0\xcc\x23\x11\xba\ \x22\x9e\x89\x58\x6c\x0f\x56\xeb\xf6\xd3\x04\x30\xd9\x75\x36\xba\ \x55\xe0\x45\x13\x07\x27\x1b\x9f\x8e\x21\xc2\x0e\x4c\x6d\x72\x02\ \x16\x98\xa0\x71\x9d\x25\xfd\x2e\x2c\xdf\x6f\xdb\x0e\x4c\x76\xbd\ \x11\xd9\x2a\xf0\xa2\x89\x83\x93\x8d\x73\x27\x02\x66\x03\x79\x00\ \x5b\x6c\xd4\x1d\x55\x2f\xb9\x58\x91\x8c\xbe\xbb\x7c\xa2\x7c\x5f\ \x17\x30\xd9\x63\xfe\xd8\xd8\x05\x5e\x34\x71\x70\xb2\xb1\xef\x47\ \xd6\xc4\x3c\x11\x6b\x13\x23\x7e\x85\x5f\x22\x07\xe9\x68\x5e\x0b\ \xd9\xa9\x70\x75\xec\x02\x2f\x9a\x38\x38\xd9\xd8\xf7\x3b\xdf\x43\ \x3b\x20\xd9\xb9\x30\xb7\x76\x81\x17\x4d\x1c\x9c\x6c\xec\xfb\x69\ \x85\xbc\x2d\x01\x91\x1d\xd5\x7e\xa4\x5d\xe0\x45\x13\x07\x27\x1b\ \xfb\x7e\xfb\xf8\x65\x72\x88\xec\x89\x94\x39\x69\x15\x78\xd1\xc4\ \xc1\xc9\xae\x7c\xbf\x68\xb9\x87\x66\x00\xb2\xe9\x74\x95\x12\x60\ \x17\x78\xd1\xc4\xe1\xc9\x1e\x8f\xfc\xd1\x1e\x9a\x01\xc8\xa6\x71\ \x18\xaa\xa5\xed\x02\x2f\x9a\x38\x3c\xd9\xe5\xeb\xad\xf6\x89\x99\ \x02\x20\x9b\x08\x36\xdd\x0a\x64\x19\x78\xd1\xc4\xe1\xc9\x9e\x7e\ \xd9\x6e\x9f\x98\x21\x54\xb2\xe9\x74\xd5\x1f\x91\x37\x76\x81\x17\ \x4d\x1c\x9e\xec\xf8\xc6\xe5\x3e\xb1\x56\xa8\x64\xd3\x38\x0c\x4b\ \xf1\xb0\x0b\xbc\x68\xe2\xf0\x64\xfb\xb7\x2e\xf7\x89\xb5\x42\x5d\ \x5d\x47\x72\x6e\x88\x5d\xe0\x45\x13\x87\x27\xdb\x3a\xf7\x5d\x0f\ \x0a\xd9\xfc\x10\x08\x46\x80\x55\xe0\x45\x13\x87\x27\xdb\xdb\xcf\ \x92\x2b\xb0\x06\xd9\x48\xc4\xb1\x0a\xbc\x68\xe2\x08\xc8\x86\x36\ \xb1\xb9\xc7\x8e\x0e\xf3\x31\xc2\x11\x90\x5d\xee\xa5\x0b\x3d\xd9\ \x04\xcf\xf7\xd2\x4a\x4f\xf6\x1e\xd1\x93\xbd\x47\x0c\xd6\xb3\x52\ \xf7\x8b\x23\xff\x0d\x5f\xc7\xe8\xc9\xde\x23\xa2\xb3\x4d\xbf\xe1\ \xbb\x53\x90\xdf\xf0\x3d\x60\xfb\x3d\x7a\xf4\xe8\xd1\xa3\x47\x8f\ \x1e\x3d\x7a\xfc\x15\xf0\x3f\x5c\x4c\x6c\x29\xb8\x18\x13\x99\x00\ \x00\x00\x00\x49\x45\x4e\x44\xae\x42\x60\x82\ " qt_resource_name = b"\ \x00\x09\ \x0b\x8a\x5f\x53\ \x00\x65\ \x00\x71\x00\x75\x00\x61\x00\x74\x00\x69\x00\x6f\x00\x6e\x00\x73\ \x00\x05\ \x00\x6f\xa6\x53\ \x00\x69\ \x00\x63\x00\x6f\x00\x6e\x00\x73\ \x00\x0d\ \x06\xac\xe9\xa7\ \x00\x61\ \x00\x70\x00\x70\x00\x5f\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x65\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0f\ \x0d\xab\xd5\x27\ \x00\x68\ \x00\x65\x00\x6c\x00\x70\x00\x5f\x00\x62\x00\x75\x00\x74\x00\x74\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x05\x1e\x3a\xc7\ \x00\x6c\ \x00\x69\x00\x6e\x00\x6b\x00\x5f\x00\x74\x00\x6f\x00\x5f\x00\x70\x00\x61\x00\x67\x00\x65\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x05\x59\x67\x47\ \x00\x6f\ \x00\x63\x00\x6d\x00\x5f\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x5f\x00\x77\x00\x74\x00\x68\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0f\ \x03\x30\x74\x47\ \x00\x6f\ \x00\x63\x00\x6d\x00\x5f\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x5f\x00\x62\x00\x6c\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0c\ \x09\x15\x3c\xa7\ \x00\x6f\ \x00\x63\x00\x6d\x00\x5f\x00\x69\x00\x63\x00\x6f\x00\x6e\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x08\x55\xe8\x87\ \x00\x6c\ \x00\x6f\x00\x67\x00\x6e\x00\x6f\x00\x72\x00\x6d\x00\x61\x00\x6c\x00\x5f\x00\x36\x00\x38\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x09\ \x04\x34\x8c\x47\ \x00\x67\ \x00\x61\x00\x6d\x00\x6d\x00\x61\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0b\ \x0c\xd4\x28\x67\ \x00\x77\ \x00\x65\x00\x69\x00\x62\x00\x75\x00\x6c\x00\x6c\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x0c\ \x0d\x56\x91\xa7\ \x00\x73\ \x00\x69\x00\x67\x00\x6d\x00\x61\x00\x5f\x00\x33\x00\x36\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x09\ \x02\x69\xbe\x27\ \x00\x6d\ \x00\x75\x00\x5f\x00\x33\x00\x36\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x08\xa7\xe8\x87\ \x00\x6c\ \x00\x6f\x00\x67\x00\x6e\x00\x6f\x00\x72\x00\x6d\x00\x61\x00\x6c\x00\x5f\x00\x33\x00\x36\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x09\ \x02\x69\xbc\x47\ \x00\x72\ \x00\x32\x00\x5f\x00\x33\x00\x36\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x09\ \x0c\xa4\xa2\x87\ \x00\x74\ \x00\x68\x00\x65\x00\x74\x00\x61\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x08\ \x02\x69\x58\x47\ \x00\x72\ \x00\x5f\x00\x33\x00\x36\x00\x2e\x00\x70\x00\x6e\x00\x67\ \x00\x10\ \x08\xb5\xe8\x87\ \x00\x6c\ \x00\x6f\x00\x67\x00\x6e\x00\x6f\x00\x72\x00\x6d\x00\x61\x00\x6c\x00\x5f\x00\x34\x00\x38\x00\x2e\x00\x70\x00\x6e\x00\x67\ " qt_resource_struct_v1 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x01\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x01\x00\x00\x00\x0e\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x0a\x00\x00\x00\x04\ \x00\x00\x01\xe0\x00\x00\x00\x00\x00\x01\x00\x00\xa1\xda\ \x00\x00\x01\xb0\x00\x00\x00\x00\x00\x01\x00\x00\x9e\x63\ \x00\x00\x01\x72\x00\x00\x00\x00\x00\x01\x00\x00\x8d\x0a\ \x00\x00\x01\x20\x00\x00\x00\x00\x00\x01\x00\x00\x78\x32\ \x00\x00\x00\xfa\x00\x00\x00\x00\x00\x01\x00\x00\x68\xd2\ \x00\x00\x01\x8a\x00\x00\x00\x00\x00\x01\x00\x00\x8f\x03\ \x00\x00\x01\xf6\x00\x00\x00\x00\x00\x01\x00\x00\xa3\x65\ \x00\x00\x01\xc8\x00\x00\x00\x00\x00\x01\x00\x00\xa0\x77\ \x00\x00\x01\x38\x00\x00\x00\x00\x00\x01\x00\x00\x79\x74\ \x00\x00\x01\x54\x00\x00\x00\x00\x00\x01\x00\x00\x8b\xd6\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x06\x00\x00\x00\x0f\ \x00\x00\x00\xb8\x00\x00\x00\x00\x00\x01\x00\x00\x5d\xd8\ \x00\x00\x00\x6c\x00\x00\x00\x00\x00\x01\x00\x00\x45\xb4\ \x00\x00\x00\x92\x00\x00\x00\x00\x00\x01\x00\x00\x57\x87\ \x00\x00\x00\x28\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x00\xdc\x00\x00\x00\x00\x00\x01\x00\x00\x63\x56\ \x00\x00\x00\x48\x00\x00\x00\x00\x00\x01\x00\x00\x0d\x05\ " qt_resource_struct_v2 = b"\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x02\x00\x00\x00\x01\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x01\x00\x00\x00\x0e\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x01\x00\x00\x00\x03\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\x00\x00\x02\x00\x00\x00\x0a\x00\x00\x00\x04\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x01\xe0\x00\x00\x00\x00\x00\x01\x00\x00\xa1\xda\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\xb0\x00\x00\x00\x00\x00\x01\x00\x00\x9e\x63\ \x00\x00\x01\x7e\x50\x30\x91\x49\ \x00\x00\x01\x72\x00\x00\x00\x00\x00\x01\x00\x00\x8d\x0a\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\x20\x00\x00\x00\x00\x00\x01\x00\x00\x78\x32\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x00\xfa\x00\x00\x00\x00\x00\x01\x00\x00\x68\xd2\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\x8a\x00\x00\x00\x00\x00\x01\x00\x00\x8f\x03\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\xf6\x00\x00\x00\x00\x00\x01\x00\x00\xa3\x65\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\xc8\x00\x00\x00\x00\x00\x01\x00\x00\xa0\x77\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\x38\x00\x00\x00\x00\x00\x01\x00\x00\x79\x74\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x01\x54\x00\x00\x00\x00\x00\x01\x00\x00\x8b\xd6\ \x00\x00\x01\x7c\x39\x6b\x98\x96\ \x00\x00\x00\x18\x00\x02\x00\x00\x00\x06\x00\x00\x00\x0f\ \x00\x00\x00\x00\x00\x00\x00\x00\ \x00\x00\x00\xb8\x00\x00\x00\x00\x00\x01\x00\x00\x5d\xd8\ \x00\x00\x01\x7c\x7b\x84\x7b\x0a\ \x00\x00\x00\x6c\x00\x00\x00\x00\x00\x01\x00\x00\x45\xb4\ \x00\x00\x01\x7c\x39\x6b\x98\xa5\ \x00\x00\x00\x92\x00\x00\x00\x00\x00\x01\x00\x00\x57\x87\ \x00\x00\x01\x7c\x7b\x51\x37\xb0\ \x00\x00\x00\x28\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\ \x00\x00\x01\x7c\x71\x90\x26\xc5\ \x00\x00\x00\xdc\x00\x00\x00\x00\x00\x01\x00\x00\x63\x56\ \x00\x00\x01\x7c\x7b\x51\x6e\x4b\ \x00\x00\x00\x48\x00\x00\x00\x00\x00\x01\x00\x00\x0d\x05\ \x00\x00\x01\x7c\x39\x6b\x98\xa5\ " qt_version = QtCore.qVersion().split('.') if qt_version < ['5', '8', '0']: rcc_version = 1 qt_resource_struct = qt_resource_struct_v1 else: rcc_version = 2 qt_resource_struct = qt_resource_struct_v2 def qInitResources(): QtCore.qRegisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) def qCleanupResources(): QtCore.qUnregisterResourceData(rcc_version, qt_resource_struct, qt_resource_name, qt_resource_data) qInitResources()
[ "PyQt5.QtCore.qVersion", "PyQt5.QtCore.qUnregisterResourceData", "PyQt5.QtCore.qRegisterResourceData" ]
[((194848, 194949), 'PyQt5.QtCore.qRegisterResourceData', 'QtCore.qRegisterResourceData', (['rcc_version', 'qt_resource_struct', 'qt_resource_name', 'qt_resource_data'], {}), '(rcc_version, qt_resource_struct,\n qt_resource_name, qt_resource_data)\n', (194876, 194949), False, 'from PyQt5 import QtCore\n'), ((194976, 195079), 'PyQt5.QtCore.qUnregisterResourceData', 'QtCore.qUnregisterResourceData', (['rcc_version', 'qt_resource_struct', 'qt_resource_name', 'qt_resource_data'], {}), '(rcc_version, qt_resource_struct,\n qt_resource_name, qt_resource_data)\n', (195006, 195079), False, 'from PyQt5 import QtCore\n'), ((194619, 194636), 'PyQt5.QtCore.qVersion', 'QtCore.qVersion', ([], {}), '()\n', (194634, 194636), False, 'from PyQt5 import QtCore\n')]
from poemsai.tokenization import add_special_token import torch from transformers import GPT2LMHeadModel, GPT2Tokenizer def test_add_special_token(): token = '[<bla>]' tokenizer = GPT2Tokenizer.from_pretrained('gpt2') model = GPT2LMHeadModel.from_pretrained('gpt2') copy_from = tokenizer.all_special_tokens[0] orig_token_id = tokenizer(copy_from)['input_ids'][0] emb = model.get_input_embeddings() orig_emb_rows = emb.weight.shape[0] add_special_token(token, tokenizer, model, copy_from=copy_from) new_emb = model.get_input_embeddings() assert token in tokenizer.additional_special_tokens assert torch.allclose(new_emb.weight[-1], new_emb.weight[orig_token_id]) assert new_emb.weight.shape[0] == orig_emb_rows + 1, f'{new_emb.weight.shape[0]}, {orig_emb_rows + 1}'
[ "torch.allclose", "transformers.GPT2Tokenizer.from_pretrained", "transformers.GPT2LMHeadModel.from_pretrained", "poemsai.tokenization.add_special_token" ]
[((190, 227), 'transformers.GPT2Tokenizer.from_pretrained', 'GPT2Tokenizer.from_pretrained', (['"""gpt2"""'], {}), "('gpt2')\n", (219, 227), False, 'from transformers import GPT2LMHeadModel, GPT2Tokenizer\n'), ((240, 279), 'transformers.GPT2LMHeadModel.from_pretrained', 'GPT2LMHeadModel.from_pretrained', (['"""gpt2"""'], {}), "('gpt2')\n", (271, 279), False, 'from transformers import GPT2LMHeadModel, GPT2Tokenizer\n'), ((473, 536), 'poemsai.tokenization.add_special_token', 'add_special_token', (['token', 'tokenizer', 'model'], {'copy_from': 'copy_from'}), '(token, tokenizer, model, copy_from=copy_from)\n', (490, 536), False, 'from poemsai.tokenization import add_special_token\n'), ((652, 717), 'torch.allclose', 'torch.allclose', (['new_emb.weight[-1]', 'new_emb.weight[orig_token_id]'], {}), '(new_emb.weight[-1], new_emb.weight[orig_token_id])\n', (666, 717), False, 'import torch\n')]
from nose.tools import eq_ from ...features import Feature from ..scorer_model import MLScorerModel, ScorerModel def test_scorer_model(): sm = ScorerModel([Feature("foo")], version="0.0.1") eq_(sm.version, "0.0.1") del sm.version eq_(sm.version, None) def test_from_config(): config = { 'scorer_models': { 'test': { 'module': "nose.tools.eq_" } } } sm = ScorerModel.from_config(config, 'test') eq_(sm, eq_) def test_ml_scorer_model(): sm = MLScorerModel([Feature("foo")]) del sm.trained eq_(sm.trained, None)
[ "nose.tools.eq_" ]
[((202, 226), 'nose.tools.eq_', 'eq_', (['sm.version', '"""0.0.1"""'], {}), "(sm.version, '0.0.1')\n", (205, 226), False, 'from nose.tools import eq_\n'), ((252, 273), 'nose.tools.eq_', 'eq_', (['sm.version', 'None'], {}), '(sm.version, None)\n', (255, 273), False, 'from nose.tools import eq_\n'), ((490, 502), 'nose.tools.eq_', 'eq_', (['sm', 'eq_'], {}), '(sm, eq_)\n', (493, 502), False, 'from nose.tools import eq_\n'), ((599, 620), 'nose.tools.eq_', 'eq_', (['sm.trained', 'None'], {}), '(sm.trained, None)\n', (602, 620), False, 'from nose.tools import eq_\n')]