Datasets:

Formats:
csv
Languages:
English
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 10,071 Bytes
c6016e9
6f44ca5
c6016e9
 
41d0264
6f44ca5
c6016e9
 
41d0264
c6016e9
41d0264
 
c6016e9
41d0264
 
 
 
6f44ca5
 
 
c6016e9
41d0264
 
a75dc0e
df2d12a
a75dc0e
 
 
df2d12a
3e22cfb
5f1abcc
df2d12a
 
9740175
df2d12a
3e22cfb
df2d12a
 
 
 
 
9740175
 
 
 
 
c6016e9
 
 
0f4db9e
afc834f
a366e54
afc834f
c6016e9
 
 
0795903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a366e54
1a3dd96
 
 
 
1d9e9ac
 
 
1a3dd96
1d9e9ac
 
1a3dd96
 
 
 
 
14162e4
 
 
 
 
 
 
3c8b460
 
23bbb09
3c8b460
1a3dd96
14162e4
1a3dd96
1d9e9ac
23bbb09
 
 
 
 
 
 
 
 
 
 
 
 
1a8078f
23bbb09
c6016e9
 
1a8078f
 
 
c6016e9
1a8078f
 
 
c6016e9
1a8078f
 
 
 
c6016e9
1a8078f
 
 
c6016e9
1a8078f
 
c6016e9
 
1a8078f
 
 
c6016e9
1a8078f
 
 
 
a366e54
1a3dd96
0f4db9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
pretty_name: Geolayers
language: en
language_creators:
  - found
license: cc-by-4.0
multilinguality: monolingual
size_categories:
  - 10K<n<100K
task_categories:
  - image-classification
  - image-segmentation
source_datasets:
  - SustainBench
  - USAVars
  - BigEarthNetv2.0
  - EnviroAtlas
homepage: https://huggingface.co/datasets/arjunrao2000/geolayers
repository: https://huggingface.co/datasets/arjunrao2000/geolayers
download_size: 25570000000
tags:
  - climate
  - remote-sensing

# 1) Index all JPG previews under huggingface_preview/
data_files:
  - "huggingface_preview/**/*.jpg"

# 2) Also index metadata.parquet so DuckDB can read it
  - "metadata.csv"

# 3) Tell HF that metadata.parquet is your preview table,
#    and explicitly name which columns are images.

preview:
  path: metadata.csv
  images:
    - rgb
    - osm
    - dem
    - mask
configs:
  - config_name: benchmark
    data_files:
      - split: sustainbench
        path: metadata.csv
---


# Geolayers-Data
<img src="osm_usavars.png" alt="Sample Geographic Inputs with the USAVars Dataset" width="800"/>

 -->
This dataset card contains usage instructions and metadata for all data-products released with our paper:  
*Using Multiple Input Modalities can Improve Data-Efficiency and O.O.D. Generalization for ML with Satellite Imagery.* We release 3 modified versions of 3 benchmark datasets spanning land-cover segmentation, tree-cover regression, and multi-label land-cover classification tasks. These datasets are augmented with auxiliary, geographic inputs. A full list of contributed data products is shown in the table below.

<table>
  <thead>
    <tr>
      <th>Dataset</th>
      <th>Task Description</th>
      <th>Multispectral Input</th>
      <th>Model</th>
      <th>Additional Data Layers</th>
      <th colspan="2">Dataset Size</th>
      <th>OOD Test Set Present?</th>
    </tr>
    <tr>
      <th></th>
      <th></th>
      <th></th>
      <th></th>
      <th></th>
      <th>Compressed</th>
      <th>Uncompressed</th>
      <th></th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><a href="https://arxiv.org/abs/2111.04724">SustainBench</a></td>
      <td>Farmland boundary delineation</td>
      <td>Sentinel-2 RGB</td>
      <td>U-Net</td>
      <td>OSM rasters, EU-DEM</td>
      <td>1.76 GB</td>
      <td>1.78 GB</td>
      <td>βœ—</td>
    </tr>
    <tr>
      <td><a href="https://arxiv.org/abs/2202.14000">EnviroAtlas</a></td>
      <td>Land-cover segmentation</td>
      <td>NAIP RGB + NIR</td>
      <td>FCN</td>
      <td><a href="https://arxiv.org/abs/2202.14000">Prior</a>, OSM rasters</td>
      <td>N/A</td>
      <td>N/A</td>
      <td>βœ“</td>
    </tr>
    <tr>
      <td><a href="https://bigearth.net/static/documents/Description_BigEarthNet_v2.pdf">BigEarthNet v2.0</a></td>
      <td>Land-cover classification</td>
      <td>Sentinel-2 (10 bands)</td>
      <td>ViT</td>
      <td><a href="https://arxiv.org/abs/2311.17179">SatCLIP</a> embeddings</td>
      <td>120 GB (raw), 91 GB (H5)</td>
      <td>205 GB (raw), 259 GB (H5) </td>
      <td>βœ“</td>
    </tr>
    <tr>
      <td><a href="https://arxiv.org/abs/2010.08168">USAVars</a></td>
      <td>Tree-cover regression</td>
      <td>NAIP RGB + NIR</td>
      <td>ResNet-50</td>
      <td>OSM rasters</td>
      <td> 23.56 GB </td>
      <td> 167 GB</td>
      <td>βœ—</td>
    </tr>
  </tbody>
</table>


## Usage Instructions
* Download the `.h5.gz` files in `data/<source dataset name>`. Our source datasets include SustainBench, USAVars, and BigEarthNet2.0. Each dataset with the augmented geographic inputs is detailed in [this section πŸ“¦](#geolayersused) 
* You may use pigz (https://linux.die.net/man/1/pigz) to decompress the archive. This is especially recommended for USAVars' train-split, which is 117 GB when uncompressed. This can be done with `pigz -d <.h5.gz>`
* Datasets with auxiliary geographic inputs can be read with H5PY.
* If you plan on using the original datasets, please cite our paper "Using Multiple Input Modalities can Improve Data-Efficiency and O.O.D. Generalization for ML with Satellite Imagery". BibTex can be found at the bottom of this README. 
### Usage Instructions for the BigEarthNetv2.0 dataset (Clasen et al. (2025))
  We detail usage instructions to train on the BigEarthNetv2.0 dataset as a separate section due to the unique fusion mechanism we use for this input modality. Our training code is a distinct Github repository for fusing and training a ViT on the BigEarthNet2.0 dataset using an auxiliary SatCLIP token fused with `TOKEN-FUSE`. [Link to Github Repository](https://github.com/UCBoulder/GeoViTTokenFusion). This repository also uses torchgeo and timm as *submodules*. 

We use the original dataset [BigEarthNetv2.0](https://bigearth.net/) dataset which is processed with spatially-buffered train-test splits. We release two **processed** versions of the datasets introduced in Casen et al. (2025)
The first version is stored in directory `data/bigearthnet/raw/`. This dataset, although called `raw` is a pre-processed version of the raw BigEarthNetv2.0 dataset. We follow instructions listed on [this repository](https://git.tu-berlin.de/rsim/reben-training-scripts/-/tree/main?ref_type=heads#data). Steps performed:
  1. We download the raw `BigEarthNet-S2.tar.zst` Sentinel-2 BigEarthNet dataset.
  2. We extract and process the raw S2 tiles to a LMDB 'Lightning' Database. This allows for faster reads during training. We use the rico-hdl tool [here](https://github.com/kai-tub/rico-hdl) to accomplish this.
  3. We download reference maps and sentinel-2 tile metadata with snow and cloud cover rasters
  4. This final dataset is compressed into several chunks and stored in `data/bigearthnet/raw/bigearth.tar.gz.part-a<x>`. Each chunk is 5G large. There are 24 total chunks.

To uncompress and re-assemble the compressed files in `data/bigearthnet/raw/`, download all the parts and run:
```
cat bigearthnet.tar.gz.part-* \
  | pigz -dc \
  | tar -xpf -
```

Note that if this version of the dataset is used, SatCLIP embeddings would need to be re-computed on-the-fly. To use this dataset with the pre-computed SatCLIP embeddings, refer to the note below.

#### πŸ’‘ Do you want to try your own input fusion mechanism with BigEarthNetv2.0? 
The second version of the BigEarthNetv2.0 dataset is stored in `data/bigearthnet/`. These datasets are stored as 3 H5PY datasets (`.h5`) for each split in the dataset. 
This version of the processed dataset comes with (i) raw location co-ordinates, and (ii) pre-computed SatCLIP embeddings (L=10, ResNet50 image encoder backbone). 
You may access these embeddings and location metadata with keys `location` and `satclip_embedding`. 

### Usage Instructions for the SustainBench Farmland Boundary Delineation Dataset (Yeh et al. (2021))
1. Unzip the archive in `data/sustainbench-field-boundary-delineation` with `unzip sustainbench.zip`
2. You should see a directory structure as follows:
```
dataset_release/
β”œβ”€β”€ id_augmented_test_split_with_osm_new.h5.gz.zip
β”œβ”€β”€ id_augmented_train_split_with_osm_new.h5.gz.zip
β”œβ”€β”€ id_augmented_val_split_with_osm_new.h5.gz.zip
β”œβ”€β”€ raw_id_augmented_test_split_with_osm_new.h5.gz.zip
β”œβ”€β”€ raw_id_augmented_train_split_with_osm_new.h5.gz.zip
└── raw_id_augmented_val_split_with_osm_new.h5.gz.zip
```
3. Unzip all files using `unzip` and `pigz -d <path to .h5.gz file>`
There are two versions of data released: Datasets that begin with `id_augmented` refer to the version of the SustainBench farmland boundary delineation dataset with the OSM and DEM rasters pre-processed to RGB space following the application of the Gaussian Blur. Datasets that begin with `raw_id_augmented` contain the RGB imagery with 19 categorical rasters for OSM, and 1 raster for the DEM geographic input.

## πŸ“¦ <a name="geolayersused"></a> Datasets & Georeferenced Auxiliary Layers
### SustainBench – Farmland Boundary Delineation
* **Optical input:** Sentinel-2 RGB patches (224Γ—224 px, 10 m GSD) covering French cropland in 2017; β‰ˆ 1.6 k training images.  
* **Auxiliary layers (all geo-aligned):**  
  * 19-channel OpenStreetMap (OSM) raster stack (roads, waterways, buildings, biome classes, …)  
  * EU-DEM (20 m GSD, down-sampled to 10 m)  
* **Why:** OSM + DEM give an 8 % Dice boost when labels are scarce; gains appear once the training set drops below β‰ˆ 700 images.

---

### EnviroAtlas – Land-Cover Segmentation
* **Optical input:** NAIP 4-band RGB-NIR aerial imagery at 1 m resolution.  
* **Auxiliary layers:**  
  * OSM rasters (roads, waterbodies, waterways)  
  * **Prior** raster – a hand-crafted fusion of NLCD land-cover and OSM layers (PROC-STACK)  
* **Splits:** Train = Pittsburgh; OOD validation/test = Austin & Durham. Auxiliary layers raise OOD overall accuracy by ~4 pp without extra fine-tuning.

---

### BigEarthNet v2.0 – Multi-Label Land-Cover Classification
* **Optical input:** 10-band Sentinel-2 tile pairs; β‰ˆ 550 k patch/label pairs over 19 classes.  
* **Auxiliary layer:**  
  * **SatCLIP** location embedding (256-D), one per image center, injected as an extra ViT token (TOKEN-FUSE).  
* **Splits:** Grid-based; val/test tiles lie outside the training footprint (spatial OOD by design). SatCLIP token lifts macro-F1 by ~3 pp across *all* subset sizes.

---

### USAVars – Tree-Cover Regression
* **Optical input:** NAIP RGB-NIR images (1 kmΒ² tiles); β‰ˆ 100 k samples with tree-cover % labels.  
* **Auxiliary layers:**  
  * Extended OSM raster stack (roads, buildings, land-use, biome classes, …)  
* **Notes:** Stacking the OSM raster boosts RΒ² by 0.16 in the low-data regime (< 250 images); DEM is provided raw for flexibility.



Citation:

```
@inproceedings{
  rao2025using,
  title={Using Multiple Input Modalities can Improve Data-Efficiency and O.O.D. Generalization for {ML} with Satellite Imagery},
  author={Arjun Rao and Esther Rolf},
  booktitle={TerraBytes - ICML 2025 workshop},
  year={2025},
  url={https://openreview.net/forum?id=p5nSQMPUyo}
}
```
---